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PREFACE

Vibrational spectroscopy-based chemical imaging is a com-

paratively new imaging approach that has become truly

operational in the past 10 years. It applies to samples more

frequently met in academic rather than industrial laborato-

ries, and it is used for exploration rather than routine analysis.

However, it is steadily improving, gaining recognition in

various industries, and finding use for solving a variety of

real-world problems. The key points of chemical imaging

based on Raman, infrared, or near-infrared response/spectra

are chemical specificity and richness of information that

stems from the collection of full-range spectra. Such wealth

of data is usually best handled by the linear algebra-based

algorithms that have once been considered fairly advanced

but today are much more of a commonplace among this

chemical imaging community. Applications of linear algebra

(known as chemometrics in this field) are possible due to the

assumed linearity of the responses from the imaged sample.

Thus, quite often, a chemical imaging application (in this

context) is a nice example of usefulness of chemometrics for

extracting the information that would normally be unattain-

able or ambiguous by simply following response at a wave-

number that is considered indicative of a sought component

(which, in fact, is the most commonly followed approach in

the broadly popular imaging techniques). Many cases de-

picted in this book necessitate chemometrics for obtaining

meaningful images.

Hardware is another key element in the development of

chemical imaging. The improvement in combining spectro-

meters with microscopes (which roughly stands for a chem-

ical imaging instrument) has been tremendous in recent times

and certainly hugely contributed to this type of chemical

imaging to become more widely used. It may not be an

exaggeration to say that at present it is the applications that

are somewhat behind what technically can be obtained from

the available instruments. In this book, particular attention is

paid to hardware.

The same holds for software. There are a couple of

commercial software to chose from, and users quite fre-

quently individually employ programming languages (with

Matlab being unquestionably predominant) to tackle these

complex 3D (or 4D) data sets via routines that do not really

involve much more than skillfully combining existing algo-

rithms. Here, it is not so much about improving the compu-

tational approaches as many of them have been used quite

broadly for diverse problems, but rather finding suitable

applications in this imaging field to demonstrate the ability

to extract reliable information buried somewhere among

thousands of spectra with hundreds of data points.

This book tries to portray all facets of chemical imaging

via vibrational spectra. It starts with introducing vibrational

spectroscopy, addresses hardware in more and software in

less details (due to frequent references to computational

details in the applications), and then methodically lists

applications in several fields of which the biomedical and

pharmaceutical ones probably dominate as for the number

and impact of the publications, followed by no less promising

and important food and polymers. A glimpse into future is

also taken by listing several cutting-edge experimental en-

deavors. Each of the chapters in the book aims at covering all

the three vibrational spectroscopy mechanisms (Raman, IR,

andNIR)with Raman being given somemore attention in the

closing chapters. While, in essence, producing a chemical

imagemay not be a tough task and can be done easily in some

cases, it takes an expert with substantial knowledge of

vii



spectroscopy and chemometrics to single-handedly tackle

demanding cases and unravel useful information from the

labyrinth of data intrinsic to such experiments. The editors

believe that the authors of this book are such individuals,

world-class scientists, and authorities in respective fields.We

hope that the joint effort presented in this book is an

influential source of information on what chemical imaging

is, how andwhat for to use it, andwhere to look for additional

information.Wehope readerswill enjoy reading it asmuch as

the authors enjoyed writing.

February 2010 SLOBODAN ŠAŠIĆ ANDYUKIHIRO OZAKI
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FIGURE 6.1 Raman imaging of a meningioma tumor section.

(See text for full caption.)

FIGURE 4.7 Chemical image of a three-component mixture: (a),

(b), and (c) are the areas holding the pure components and (d) is the

area comprising the mixture. (See text for full caption.)

FIGURE 4.2 Presents an image and corresponding histogram

derived from a NIRCI data set of a pharmaceutical tablet comprised

of �22,400 NIR spectra. (See text for full caption.)

FIGURE 6.4 FTIR microscopic image (a), photomi-

crograph (b), and Raman microscopic image (c) of

ganglia. (See text for full caption.)

FIGURE 6.6 Factor analysis of a confocal Raman data set

delineates skin regions near a wound edge 0.5 days after wounding.

(See text for full caption.)

FIGURE 6.10 Raman tomographic images of canine bone tissue.

(See text for full caption.)



FIGURE 6.12 (a) Visible image of the adhesive/dentin interface with

the corresponding micro-Raman spectroscopic images: (See text for full

caption.)
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FIGURE 7.9 Correlation coefficient images of multiple corneo-

cytes isolated from untreated and washed sites. (See text for full

caption.)

FIGURE 7.11 Cross-sectional image of bleached human hair

microtomed to a thickness of �4mm. (See text for full caption.)
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FIGURE 7.12 IR imaging of relative sulfonate content in micro-

tomed human hair sections following various treatments. (See text

for full caption.)
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FIGURE 7.14 (a) Schematic depiction of the cutaneous wound-

healing model used in the current experiments. A 3mm punch

biopsy is used to generate an acutewound in a human skin specimen.

(See text for full caption.)
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FIGURE 7.15 IR characterization of keratin-rich regions in

wounded and nonwounded areas, 6 days postwounding, using factor

analysis in the 1185–1480 cm�1 spectral region. (See text for full

caption.)

FIGURE 8.11 Near-IR images highlighting regional variations

in cardiac oxy-(Hb þ Mb), deoxy-(Hb þ Mb), and total (Hb þ
Mb) through a protocol involving both regional and global ische-

mia in an isolated, arrested heart perfused with 50:50 blood:KHB

solution. (See text for full caption.)

FIGURE 8.15 Effect of dipyridamole infusion on oxygenation in

a partial regional ischemia model (dark regions are poorly oxygen-

ated). (See text for full caption.)

FIGURE 8.16 Effect of dobutamine infusion on oxygenation in a

partial regional ischemia model. (See text for full caption.)

FIGURE 8.17 Near-IR images highlighting variations in tissue

myoglobin oxygenation for KHB-perfused control and Kir6.2�/�

mouse hearts following treatment with 2,4-dinitrophenol (dark re-

gions are poorly oxygenated). (See text for full caption.)



FIGURE9.8 Images before, during, and after anMDA-435breast

cancer cell were exposed to the paclitaxel agent. (See text for full

caption.)

FIGURE 9.9 In situ CARS imaging of PTX from a PEVA film.

Spectrum color scheme was used to emphasize the change of

contrast. (See text for full caption.)
FIGURE 9.5 (a) Bright-field reflectance image, (b) polarized

light image, (c) and bright-field/Raman overlay image of Beconase

AQ nasal spray sample for a single region of interest with averaged

imaging spectrometer-generated Raman spectra, color coded to

match indicated regions in the polarized light image (d). Reprinted

from [17] with permission from Springer.

FIGURE 10.1 FPA detector spectra collection.

FIGURE10.8 FTIR spectroscopic images comparedwith images

from X-ray microtomography. Reproduced from Ref. 69 by per-

mission of John Wiley & Sons, Inc.

FIGURE 10.11 FTIR images of the PEG-griseofulvin mixture

exposed to different relative humidities. (See text for full caption.)



FIGURE 10.14 Dissolution of nifedipine and PEG. (See text for

full caption.)

FIGURE 10.13 FTIR imaging of formulation dissolution in

transmission. Reprinted from Ref. 83. Copyright 2003, with per-

mission from Elsevier.

FIGURE 11.11 PLS-DA score contrast images for disintegrant

(red ¼ high concentration, blue ¼ low concentration).

FIGURE 11.16 Intensity map at 1600 nm of 20 tablets with

varying content (40–60% API). Reproduced with permission from

Ref. 32.

FIGURE 11.21 NIR contrast image of unprocessed spectra (at

2120 nm) of a tablet corresponding to the density within the tablet.

Low intensity corresponds to high density. Reproduced with permis-

sion from Ref. 37.

FIGURE 11.24 CIF Images of two Raman and three NIR images

of the matrix of a good and a sticking problem blend [40].



FIGURE 12.2 IR image of the endosperm, the aleurone cells, and

the pericarp region of a wheat kernel. (See text for full caption.)

FIGURE 12.5 Chemical images of pork tissue (showing the I1630/

I1654 band ratio) obtained for three salt concentrations: high (a), medium

(b), low (c) (from left to right). Corresponding photomicrographs are

shown below the respective IR image.

FIGURE 13.4 PCA score images (PC 1–6) after removal of

background and other disturbances such as geometrical errors and

shadows. Blue arrows indicate soft and green arrows hard maize

kernels.

FIGURE 13.6 PCA score plot with classification (green¼ glassy,

red¼ intermediate, and blue¼ floury) (left) and the corresponding

classification projected onto the score image (right).



FIGURE 13.7 PCA score plot (PC2 versus PC4) after removal of background and SNV preprocessing (left). (See text for full caption.)

FIGURE 14.3 (a) Visual image (left), PLA-specific FT-IR image

(center), and PHB-specific FT-IR image (right) of a PHB/PLA

(50:50wt%) blend. (See text for full caption.)

FIGURE 14.5 Optical image (a) and FT-IR images (3.9� 3.9

mm2) of A0PHB/A0PLA (b) and A0PLA/A0PHB (c) and the correspond-

ing orientation function (f?) images of PHB (d) and PLA (e) of the

50% stretched PHB/PLA (50/50wt%) blend film (for optimum

comparison the f? images (d) and (e) are shown with the same

color scale).

FIGURE 14.7 Optical image (a) and FT-IR images (260� 260

mm2) of A0PHB (b) and A0PLA (c) and the corresponding orientation

function (f¥) images of PHB (d) and PLA (e) of the 200% stretched

PHB/PLA (40/60wt%) blend film (for optimum comparison the f¥
images (d) and (e) are shown with the same color scale).



FIGURE 15.4 Microscope images of (a) SERS of TC mole-

cules adsorbed on the Ag nanoaggregates excited at 514 nm

and (b) the corresponding LSPR Rayleigh scattering from

theAg nanoaggregates illuminated by thewhite light through

the dark-field condenser lens. The images cover an area of

78� 34 mm2.
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FIGURE 15.9 Fluorescence (the top) and SERRS

and SEF (the bottom)microscope images fromTRITC

and Atto610 at various concentrations.

FIGURE 16.4 (a) Time-resolved Raman images and (b)

corresponding optical microscope images of a dying S.

cerevisiae cell.

FIGURE 16.9 (a) Spectral profile of the CARS and TPEF

signals of a living yeast cell; (b) CARS lateral images of

living yeast cells for C�H stretching mode; (c) TPEF lateral

images of the same system at 506 nm. (See text for full

caption.)



1
SPECTROSCOPIC THEORY FOR CHEMICAL IMAGING

M. J. PELLETIER
Pfizer, Groton, CT, USA

C. C. PELLETIER1

NASA–Jet Propulsion Laboratory, Gales Ferry, CT, USA

1.1 INTRODUCTION

All images require some typeof contrast to differentiate regions

of interest in a field of view. Themost common source of image

contrast is variation in the intensity of reflected light. Contrast

can, however, be based upon any measurable property of the

sample that can be expressed as a function of location. Contrast

is improved for measurements having a wider dynamic range

and bymeasuring a larger number of variables for each pixel, as

in color versus black-and-white photography. Contrast may

also be enhanced with one or more of a wide range of

techniques including digital image processing and structured

illumination. This book will focus on chemical images gener-

ated using vibrational spectroscopic contrast. Such contrast is

generated by quantifying one ormore attribute(s) of an infrared

absorption, infrared emission, or Raman scattering spectrum

for each pixel. By providing a window into the spatial distri-

bution of properties such as molecular composition, structure,

state, and concentration, images based on vibrational spectro-

scopies open up a new way of seeing the world.

Imaging can be accomplished by measuring a property

from the entire field of view simultaneously (global imaging)

or by measuring a property from individual points in the field

of view sequentially and combining the points to create the

image (mapping). Since mapping requires a large number of

measurements, each measurement must be relatively fast for

mapping to be practical. For example, an image consisting of

640� 480 pixels contains over 300,000 measurements and

would take more than 3.5 days to acquire if each measure-

ment required 1 s. Mapping speed can be increased by

simultaneously measuring a property at multiple points in

a subregion of the field of view and combining those sub-

regions to create the image. The subregion may consist of a

single column of measurement points (line imaging) or may

contain multiple columns (mosaic imaging). In most cases,

even global imaging requires multiple frames, each contain-

ing different spectroscopic information, to be collected

sequentially and overlaid to form a single image. Sample

changes during the course of sequential measurements can

confound the interpretation of spectral images.

This chapter provides an introduction and theoretical

background for vibrational spectroscopies, as used to pro-

duce chemical images. Infrared, Raman, and related spectra

result from the interactions of electromagnetic radiation with

molecular vibrations, so this chapter begins with a descrip-

tion of relevant aspects of molecular vibration, followed by a

section on electromagnetic radiation and its interactions with

matter. Next are three sections on infrared spectroscopies,

divided by spectral region. After that, several different types

of Raman spectroscopy that are used for chemical imaging

are described. The final section briefly presents the use of

Raman and infrared spectroscopies for creating large chem-

ical images by remote sensing. Remote sensing is probably

responsible for the majority of chemical images created

because of its use in mapping the atmosphere, planets

including Earth, and moons, and in astronomy.

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
Copyright � 2010 John Wiley & Sons, Inc.
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1.2 MOLECULAR VIBRATIONS

A chemical bond between two atoms can be modeled as a

spring connecting two point masses. If the spring follows

Hook’s law, the force it applies between the two point masses

will beproportional to the springdisplacement from its lowest

energyposition.The system,calledaharmonicoscillator,will

have a single resonant vibrational frequency, u, given by

u ¼ 1

2pc

k

m

� �1=2

ð1:1Þ

where c is the speedof light,k is the force constant, andm is the
reduced mass, mamb/(ma þ mb).

Equation 1.1 describes the vibrational frequency of di-

atomic molecules reasonably well. Increasing the strength of

the chemical bond increases the vibrational frequency. In-

creasing the atomic mass reduces the vibrational frequency.

The force applied by a chemical bond does not follow

Hook’s law exactly, though. Atoms have finite size and

cannot occupy the same space. As a result, the repulsive

force increases much more quickly than Hook’s law would

predict as the atoms get close together. As the atoms get

further apart the chemical bond weakens, approaching zero

strength at infinite separation, again violating Hook’s law.

Deviations from Hook’s law are amplified by disparity

between the molecular masses. Vibrating systems that do

not follow Hook’s law are called anharmonic, and the extent

to which they deviate from an ideal harmonic oscillator is

called anharmonicity. Anharmonicity has a relatively small

role inmost forms ofRaman spectroscopy, a somewhat larger

role in mid-infrared (mid-IR) spectroscopy, and is of primary

importance in near-infrared (NIR) spectroscopy.

Vibrations in molecules containing more than two atoms

are more complicated. The total number of different, or

normal, vibrations (ignoring anharmonicity) in a molecule

with n atoms is 3n� 5 for a linear molecule and 3n� 6 for a

nonlinear molecule. For example, an anthracene molecule

has 24 atoms and therefore 66 normal vibrations. Some of

these vibrations have exactly the same frequency (called

degenerate vibrations). Other vibrations produce no signal

for a particular type of vibrational spectroscopy due to

symmetry constraints. As a result of these spectral simpli-

fications, even most large molecules have manageable vi-

brational spectra.

Oscillators sharing a common atom may exert forces on

each other when they oscillate. If the oscillator frequencies

are very different from each other, each oscillator remains

fairly independent of the other. If the frequencies are similar,

though, the oscillators can couple, essentially forming a new

single oscillator with new frequencies. Consider the linear

CO2 molecule. Both carbon–oxygen bonds are identical.

They couple to form a single oscillator having two different

vibrations. One vibration consists of each carbon–oxygen

bond stretching in phase, resulting in a vibration where the

carbon atom does not move. This in-phase vibration is an

example of a symmetric vibration. The other vibration con-

sists of the carbon–oxygen bonds stretching out of phasewith

each other, resulting in a vibration where the carbon atom

moves and the oxygen atoms do not. This out-of-phase

vibration is an example of an antisymmetric vibration. In

general, the antisymmetric vibration tends to be at higher

frequency and the symmetric vibration tends to be at lower

frequency than the natural frequency of the uncoupled

oscillators.

Groups of atoms in a molecule that are not vibrationally

coupled to the rest of the molecule, to a first approximation,

have about the same frequencies of vibration in any mole-

cule. This makes it possible to associate a vibrational fre-

quencywith a particular chemical functional group, such as a

carbonyl group or a phenyl ring, without considering the rest

of the molecule. These general-purpose vibrational frequen-

cies are called group frequencies. Tabulations of group

frequencies are typically refined to include the small fre-

quency shifts caused by properties of the rest of themolecule,

such as a weakening of the oscillator bond strength due to

electron density withdrawal by the rest of the molecule.

Tabulations of characteristic frequencies also are specific to

a type of vibrational spectroscopy, since vibrations that

produce a strong signal with one type may produce little or

no signal with a different type of vibrational spectroscopy.

Molecular vibrations are often classified into groups that

are intuitively descriptive of the vibrational motion. An

oscillation in bond length is called a ‘‘stretch.’’ An oscillation

in bond angle is called a ‘‘deformation’’ or ‘‘bend.’’ More

specialized descriptions include terms such as ‘‘wag,’’

‘‘rock,’’ or ‘‘breathing mode.’’ Another way to classify

molecular vibrations is by their symmetry properties using

group theory. It can be shown that vibrations having certain

symmetry properties will theoretically produce exactly zero

signal for some types of spectroscopy, but not for other types

of spectroscopy. Rules derived from symmetry considera-

tions that identify vibrations expected to produce no spec-

troscopic signal are called selection rules. A detailed expla-

nation of the use of group theory in vibrational spectroscopy

is given in Refs 1 and 2.

1.3 INTERACTIONS BETWEEN
ELECTROMAGNETIC RADIATION AND MATTER

1.3.1 Electromagnetic Radiation

Electromagnetic radiation consists of electric and magnetic

fields oscillating in phase with each other and perpendicular

to both each other and the direction of propagation. Gamma

rays, X-rays, ultraviolet (UV) radiation, visible light, NIR
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and mid-IR radiation, terahertz (far-infrared) radiation, mi-

crowaves, and radio waves are all forms of electromagnetic

radiation, differing only in their decreasing frequencies of

oscillation. The energy of electromagnetic radiation is quan-

tized. The smallest unit of light is the photon, having an

energy, E, given by E¼ hu, where u is the frequency of the

electromagnetic radiation and h is Planck’s constant.

Electromagnetic radiation can be thought of either as a

particle (photon) or as a wave.Wewill use the representation

that is most intuitive when describing phenomena involving

electromagnetic radiation. For simplicity, we will use the

term ‘‘light’’ as synonymous with electromagnetic radiation

of any frequency, rather than just those frequencies that are

visible to the human eye.

Light travels at 2.99792458� 108m/s in a vacuum. The

speed of light can be used to convert time into distance,

thereby providing depth resolution. Raman, mid-infrared,

and near-infrared spectroscopies have all been used this way

to make three-dimensional chemical images of objects in the

atmosphere, such as clouds or discharge plumes.

Light of a particular frequency can be specified by its

wavelength (the distance light travels during one oscillation

cycle of the electric field), its wavenumber (the number of

oscillating cycles per centimeter), or its energy (e.g., Joules

per photon). For example, light having a frequency of

6.00� 1014Hz has a wavelength of 500 nm, a wavenumber

of 20,000 cm�1, and an energy of 3.98� 10�19 J/photon, or

57.2 kcal/mol of photons.

Another important property of light is coherence. Co-

herence is a nonrandom relationship between photons.

Coherence may be spatial (photon relationships based on

photon location and/or direction) or temporal (relationships

based on time when maxima in the oscillation fields of the

photons occur). For example, a thermal light source is

temporally incoherent because there is no mechanism co-

ordinating the time that different photons are emitted. Lasers

are temporally coherent because the process of stimulated

emission causes the created photons to be in phase with the

photons that stimulated the emission. Some spectroscopic

processes such as coherent anti-Stokes Raman spectroscopy

(CARS) or Raman gain spectroscopy rely on establishing

temporal coherence between photons. Spectroscopic tech-

niques such as FTIR (Fourier transform infrared spectros-

copy) or OCT (optical coherence tomography) rely on

establishing temporal coherence from nominally incoherent

light sources.

1.3.2 Absorption and Emission of Light

A material having an internal process, such as molecular

vibration, that is resonant with the frequency of incident light

can be excited to a higher energy state by absorbing some of

the light. The higher energy state usually relaxes back to the

lowest energy state quickly by releasing heat and/or light.

The strength of optical absorption or emission can be used to

determine analyte concentration. Beer’s law [3] relates an-

alyte concentration to the strength of optical absorption,

regardless of whether the transition involves an electroni-

cally, vibrationally, or rotationally excited state:

Al ¼ �log T ¼ albc ð1:2Þ

where Al is the absorbance at wavelength l, al is the molar

absorptivity at wavelength l, b is the path length, c is the

analyte concentration, and T is the transmittance, that is, ratio

of transmitted intensity to incident intensity.

Emission intensity is also proportional to analyte

concentration.

1.3.3 Refractive Index

Light slows down relative to its speed in a vacuum when

traveling through matter. The ratio of the speed of light in a

vacuum to that in a material is the refractive index of that

material. Light incident on a planar interface between two

transparent materials of different refractive indices is bent as

a result of this speed change if the light is not perpendicular to

the interface. The bending at this interface is described by

Snell’s law:

n1 sin �1 ¼ n2 sin �2 ð1:3Þ

where n1 is the refractive index of the first material, �1 is the
angle of light with respect to interface normal in the first

material, n2 is the refractive index of the secondmaterial, and

�2 is the angle of light with respect to interface normal in the

second material.

The refractive index of a material changes with the

wavelength of the light, as well as with the temperature of

the material.

Light is also reflected at an interface between two trans-

parent materials having different refractive indices. The

reflected intensity is given by the Fresnel equations [4]

R? ¼ IR

Ii
¼ n1 cos �1�n2 cos �2

n1 cos �1 þ n2 cos �2

� �2

;

Rll ¼ IR

Ii
¼ n2 cos �1�n1 cos �2

n1 cos �2 þ n2 cos �1

� �2
ð1:4Þ

where R? is the reflectance of light polarized perpendicular

to the plane of incidence, Rll is the reflectance of light

polarized parallel to the plane of incidence, IR is the intensity

of reflected light, Ii is the intensity of incident light, n1 is the

refractive index of the first material, �1 is the angle of light
with respect to interface normal in the first material, n2 is the

refractive index of the second material, and �2 is the angle of
light with respect to interface normal in the second material.
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Figure 1.1a and b shows the reflectivity of an interface

between air (n¼ 1.000) and fused silica (n¼ 1.462) for both

polarizations of 500 nm light. The reflectivity of the interface

for light traveling into the higher refractive index material

generally increases with angle of incidence, except for a

reduction to zero at Brewster’s angle �B (�B¼Tan�1(n2/n1),

or 55.6� in this example) for light polarized parallel to the

plane of incidence. Light traveling from the higher index

material experiences total internal reflection for incidence

angles greater than the critical angle �c (�c¼ Sin�1(n2/n1), or

43.2� in this example). During total internal reflection, no

energy is transmitted through the interface. An evanescent

field does extend into the lower refractive index material,

though. If a higher refractive index material, or an absorbing

material, is placed in the evanescent field, energy can be

transferred through the evanescent field to this material. The

energy transfer process is called ‘‘attenuated total reflection’’

orATR [5]. The evanescent field rapidly decayswith distance

from the interface:

dp ¼ l

2pn1ðsin2 w�n221Þ1=2
ð1:5Þ

where dp is the penetration depth of the evanescent field, l is
the wavelength of light, n1 is the refractive index of the ATR

crystal, w is the internal angle of incidence, and n21 is the

refractive index ratio of the sample to the ATR crystal.

ATR has an important role in some spectroscopic imaging

techniques discussed later in this book.

As the dimensions of the refractive index interface ap-

proach the wavelength of light, diffraction effects dominate,

and the interaction between light and the refractive index

interface, which we now call a particle, is best described as

Mie scattering. Mie scattered light travels in all directions

from the particle. Most of the Mie scattered light intensity

travels in the forward direction for particles 5–10 optical

wavelengths in size. The scattered intensity becomes less

directed as the particle size becomes smaller.

Molecules can scatter light in two different ways. If

scattering does not change the energy of the light, it is called

elastic scattering or Rayleigh scattering. Inelastic scattering

or Raman scattering changes the energy of the scattered light.

Raman scattering is described in greater detail later in this

chapter. The intensity of molecular scattering is proportional

to the fourth power of the optical frequency. Rayleigh

scattering of polarized light is strongest in directions per-

pendicular to the electric field of the light and goes to zero in

the direction parallel to the electric field. The polarization

dependence of Raman scattered light is more complex and is

described later in this chapter.

Light can be scattered many times when it interacts with a

material consisting of a dense collection of many particles.

The optical path through such a sample is best represented by

a distribution of paths whose median can be 10–100 times

longer than an unscattered path through the material. A large

number of scattering events also tend to depolarize the light.

Light that is ultimately reflected from a material after mul-

tiple scattering events is called diffusely reflected light.

Similarly, light that is ultimately transmitted by a material

after multiple scattering events is called diffusely transmitted

light.

Diffuse reflectance and diffuse transmission usually de-

grade images. Spectroscopic imaging systems are often

designed to minimize the detection of diffusely scattered

light emanating from a sample. One exception is the use of

spatially localized diffuse reflectance for depth discrimina-

tion and depth profiling. The most probable light paths

through a highly scattering material form a banana-shaped

volume connecting the point where light enters the material

to a point where light exits the material, as illustrated in

Figure 1.2. The depth of the material probed by the light

increases with increasing separation of the optical entrance
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FIGURE1.1 Fresnel reflection of 500 nm light at the interface between air and fused silica. (a) Light traveling from air into fused silica;

(b) light traveling from fused silica into air.

4 SPECTROSCOPIC THEORY FOR CHEMICAL IMAGING



and exit points. This approach for depth discrimination and

volume imaging has been extensively used in near-infrared

spectroscopy [6–9]. Raman spectra have been collected this

way through scattering media [10, 11], so perhaps Raman

diffuse reflectance imaging is also possible.

1.3.4 Thermal Emission

All materials are continuously emitting radiation simply

because they are at a temperature above absolute zero. If

they are in equilibrium with their environment, they are also

absorbing an equivalent amount of energy from the environ-

ment in order to maintain a constant temperature. A material

that completely absorbs all frequencies of incident optical

radiation, called an ideal blackbody source, has an emission

spectrum given by [12]

Hl Tð Þ ¼ 2hc2

l5ðehc=lkT�1Þ ; Hu Tð Þ ¼ 2hc2u3

ehcu=kT�1
ð1:6Þ

where Hl(T) is the spectral radiant energy density per

nanometer, Hn(T) is the spectral radiant energy density per

wavenumber, l is the wavelength of light, u is the wave-

number of light, T is the temperature in Kelvin, h is Planck’s

constant (6.626� 10�34 J s), c is the speed of light

(2.998� 108m/s), and k is Boltzmann’s constant

(1.3807� 10�23 J/K).

Real materials do not totally absorb all frequencies of

electromagnetic radiation. Their emission spectra consist of

an ideal blackbody emission spectrum multiplied by their

absorbance spectrum, where absorbance is expressed as the

fraction of light absorbed. For example, an ideal blackbody

has a fractional absorbance of 1, and a completely transparent

object has a fractional absorbance of 0.

Thermal emission spectroscopy can determine the ab-

sorption spectrum of a material from its spontaneous emis-

sion of light. Laboratory samples are often heated to improve

the quality of the data. Chemical imaging based on thermal

emission spectroscopy is extensively used for remote sens-

ing, which is described in more detail at the end of this

chapter.

1.3.5 Fluorescence

Fluorescence is one process where an electronically excited

state decays to a lower electronic state by emitting a photon.

An energy level diagram describing fluorescence is shown in

Figure 1.3. The excited state is usually the lowest vibrational

level of the first excited singlet electronic state. The lower

state is usually one of many vibrational levels in the elec-

tronic ground state. The emission bands to the vibrational

levels in the ground state overlap spectrally giving a rela-

tively broad fluorescence emission spectrum with few spec-

tral features.

The lifetime of the fluorescence process is typically on the

order of 1–10 ns. Kinetically competing processes that return

a molecule from the electronic excited state to the ground

state without the emission of a photon, called dark reactions,

reduce the fluorescence lifetime. They also reduce the fluo-

rescence quantum yield, defined as the number of fluores-

cence photons produced divided by the number of molecules

in an excited state capable of producing fluorescence

photons. The process of reducing the fluorescence quantum

yield is called fluorescence quenching. Highly fluorescent

molecules have quantum yields very close to 1.

Absorption of a photon is the most common mechanism

for creating the excited state necessary for fluorescence

emission. Other mechanisms include chemical excitation

A B C D

FIGURE 1.2 Depth discrimination in a highly scattering material

by spatially resolved diffuse reflectance measurements. The most

probable light paths connecting spatially separated excitation and

collections points form a banana-shaped volume in the sample.

Using points A and D for excitation and detection probes a greater

depth than using points B and C for excitation and detection.
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FIGURE 1.3 Energy level diagram illustrating fluorescence.
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(chemiluminescence) or electron bombardment (cathodolu-

minescence). The absorption spectrum for the process of

creating excited states for fluorescence emission is called the

fluorescence excitation spectrum. The absorption spectrum

of a material is the sum of the fluorescence excitation

spectrum and the absorption spectrum of all processes that

do not produce fluorescence. Materials having a single

fluorescent species have the same emission spectrum at all

excitation wavelengths, since fluorescence almost always

occurs from the lowest vibrational level of the first electronic

excited state, regardless of how that state got populated.

The fluorescence emission spectrum from impurities is

often the combined spectra of many different chemical com-

pounds. The observed fluorescence therefore has properties

that differ from thefluorescence of a purematerial. Excitation

and emission spectra may be spectrally broader. The shape of

the emission spectrummay change significantly with chang-

ing excitationwavelength, or during fluorescence quenching.

The fluorescence decay rate may become very nonexponen-

tial due to different impurity fluorescence lifetimes. Since

materials having multiple fluorescent species can have mul-

tiple excitation spectra, excitation–emission matrices are

used to describe their fluorescence. Excitation–emission ma-

trices are three-dimensional plots on axes of excitationwave-

length, emission wavelength, and emission intensity.

Fluorescence imaging is a powerful and very popular

chemical imaging technique, but it is outside the scope of

this book. We include fluorescence here because it is often a

serious nuisance that limits the capabilities of Raman chem-

ical imaging. This limitation will be discussed in greater

detail later in the book. In the context ofRaman spectroscopy,

the term fluorescence is often used generically to mean any

process (often unknown) that produces a spectrally broad

background intensity. Phosphorescence is one example of a

nonfluorescence process that may be mistaken for fluores-

cence in a Raman measurement.

1.4 MID-INFRARED ABSORPTION

SPECTROSCOPY

The mid-infrared spectral range includes wavelengths

from about 2.5 to 25 mm. This corresponds to about

4000–400 cm�1 or 11–1.1 kcal/mol. Absorption in this spec-

tral region is due to molecular vibrations that modulate the

dipole moment of the molecule. The energy of these vibra-

tions is small compared to the energy of a chemical bond. For

example, the C�H bond energy of 98 kcal/mol is 12 times

greater than the vibrational energy, 8.4 kcal/mol, of the C�H

stretching vibration at 2950 cm�1.

Table 1.1 lists some characteristic mid-infrared absorp-

tion frequencies of common functional groups. Much more

extensive tables are given in Refs 13–15. Tables such as these

provide a good starting point for estimating the spectral

location of mid-infrared absorption bands that may be

analytically useful for chemical imaging. They are also

useful for assigning bands observed in a spectrum of a known

material to chemical groups in the material.

Huge libraries of mid-infrared spectra are available that

can provide the experimentally observed spectrum of most

common materials, often eliminating the need to estimate

spectra from characteristic frequency tables. These commer-

cial libraries can be supplemented by custom libraries or

small sets of experimental spectra collected from standards.

When the spectrum of a desiredmaterial is not available from

libraries, the spectra of several related materials from the

library can be used as a highly specific characteristic fre-

quency table to estimate the desired spectrum.

TABLE 1.1 Mid-Infrared Characteristic Frequencies for

Several Common Functional Groups

Vibration Shift (cm�1) Group

OH stretch

(dilute solution)

3600–3700 �OH in alcohols and

phenols

OH stretch

(solids and

liquids)

3250–3420 �OH in alcohols and

phenols

NH2 antisymmetric

stretch (solids)

3340–3360 �NH2 in primary

amines

H-bonded OH

stretch; very broad

2400–3100 �OH in carboxylic

acids

¼C�H stretch 3000–3100 Unsaturated

hydrocarbons

C�H stretch 2850–2990 Aliphatic

hydrocarbons

C:N stretch 2200–2260 Nitriles

Overtones and

combination

bands

1650–2000 Substituted benzene

rings

C¼O stretch 1650–1870 Carbonyl compounds

C¼O stretch 1740–1750 Esters

C¼O stretch 1700–1720 Ketones

NH2 deformation 1580–1650 Primary amines

Ring stretch, sharp

peak

1590–1615 Benzene ring in

aromatics

COO� antisymmetric

stretch

1560–1610 Carboxylic acid salts

Antisymmetric CH3

deformation

1440–1465 CH3 in aliphatics

Symmetric CH3

deformation

1370–1380 CH3 in aliphatics

C�O stretch 1015–1200 Alcohols

Si�O�Si antisym-

metric stretch

1000–1100 Siloxanes

C�Br stretch 500–650 C-Br in bromo

compounds

COC bend 430–520 Ethers

CNC bend 400–510 Amines

Compiled from Ref. 15.
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The intensity of mid-infrared absorption by a molecular

vibration is proportional to the square of the change in dipole

moment. Functional group absorptivities are not as generally

useful as functional group frequencies, however, because

dipole moments are much more sensitive to neighboring

group effects. The absorptivities of molecular vibrations do

follow Beer’s law, however, so mid-infrared molar absorp-

tivities are useful for measuring analyte concentrations.

Table 1.2 lists reported molar absorptivities for vibrations

in some common materials. The relatively strong mid-infra-

red absorption of these materials requires sample path

lengths to be on the order of 10 mmor less to yield undistorted

spectra.

Not allmolecular vibrations absorb light. For example, the

symmetric stretching vibration of carbon dioxide described

earlier has the changing dipole moment of one C�O bond

exactly cancelled out by the changing dipole moment of the

other C�O bond. Since this vibration has zero change in its

dipole moment, it cannot absorb infrared light. More gen-

erally, group theory can be used to identify vibrations having

a symmetry that causes any change in the dipole moment of

one chemical bond to be cancelled by a corresponding

change in another chemical bond. Such vibrations do not

absorb light, and are called symmetry forbidden.

Mid-infrared absorption chemical images can be created

by measuring spectra of external light intensity not absorbed

by the sample. Three different techniques to do this are based

on measuring light intensity after transmission through the

sample, after reflectance from the sample, and after ATR. All

three techniques can produce images by mapping or by

global imaging. ATR can be used in a different mode to

measure mid-infrared depth profiles by changing the pene-

tration depth of the evanescent wave [21]. This can be done

by varying the angle of incidence at the point of total internal

reflection or by using ATR elements having different refrac-

tive indices.

Mid-infrared depth profiles can also be created by mea-

suring the light intensity absorbed by a material using

photoacoustic spectroscopy [22]. Absorbed light produces

a thermal wave that travels back to the surface of the sample.

Some of the thermal wave energy couples into gas at the

sample interface producing sound that is detected by a

sensitive microphone. The penetration depth into the sample

is determined by the modulation frequency of the mid-

infrared light, which can be changed by changing the scan

speed of a Fourier transform mid-infrared instrument. Sam-

pling depths typically range from several to 100 mm.

Mid-infrared chemical images can be created from the

spontaneous thermal emission spectra of objects aswell, since

an object’s absorption spectrum can be deduced from its

emission spectrum. Between �20 and þ 50 �C, typical of
environmental temperatures on the Earth, the wavelength of

maximumidealblackbody intensity isbetween9and11.5 mm.

These emission wavelengths are not only in the center of the

highly predictive mid-infrared fingerprint spectral region, but

also in the atmospheric transmission window between 8 and

14mm. This makes mid-infrared emission spectroscopy

especially attractive for remote sensing. Laboratory applica-

tions of mid-infrared emission spectroscopy often involve

sample heating, since sensitivity increases with increasing

temperature difference between the sample and the detector.

1.5 FAR-INFRARED AND TERAHERTZ

SPECTROSCOPY

The far-infrared, terahertz, and submillimeter spectral re-

gions are all labels for approximately the same interval in the

electromagnetic spectrum. This spectral interval includes

wavelengths ranging from about 25 to 1000 mm. This

corresponds to about 400–10 cm�1, 12–0.3 THz, or

1.14–0.0286 kcal/mol. Room-temperature thermal energy,

TABLE 1.2 Mid-Infrared Molar Absorptivities for Several Common Functional Groups

Band Descripton Sample

Band

Position (cm�1)

Molar Absorptivity

(L/(mole cm))

Path Length for 1

AU in Neat Material (mm)

OH stretch Water 3404 100 1.8

OH bend Water 1643 22 8.3

CH stretch Toluene 3025 53 20.2

CH bend Toluene 728 302 3.5

Ring stretch Toluene 1496 94 11.4

CH bend Dichloromethane 1265 109 5.9

CH stretch Dichloromethane 3054 8 83.1

CH stretch Benzene, 25�C 3036 79 11.2

CH bend Benzene, 25�C 673 397 2.2

Ring stretch Benzene, 25�C 1478 102 8.7

CH stretch Acetonitrile 2944 5.83 90.5

CH bend Acetonitrile 1445 15.54 34.0

Compiled from Refs 16–20.
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kT, is in this spectral range at about 207 cm�1. The different

names, and differing spectral limits for the region, have been

associated with different bodies of experimental technique.

Both ‘‘far-infrared’’ and ‘‘submillimeter’’ imaging and spec-

troscopy are copious in the astronomical and remote sensing

literature. ‘‘Terahertz’’ has become more often associated

with measurements in this spectral region using innovative

new light sources and detection methods based on femto-

second lasers, quantum cascade lasers, or nonlinear optical

techniques.

Light absorption in the far-infrared region requires dipole

moment oscillation at lower frequencies than in the mid-

infrared spectral region, implying harmonic oscillators with

greater masses and/or weaker bond strengths. Intramolecular

vibrations contributing to this spectral region include stretch-

ing of bonds involving heavy atoms, organic skeletal bending

modes, torsional modes (restricted rotational motion about

single bonds), and ring puckering of small-ring molecules.

Intermolecular vibrations, between different molecules asso-

ciated by hydrogen bonding or electrostatic interactions, also

occur in this spectral region, aswell as crystal latticemodes of

polymers and inorganic solids. Pure rotational transitions of

light, gas-phase molecules extend from themicrowave region

into the far-infrared region. Table 1.3 gives some typical

molar absorptivities for some far-infrared absorption bands.

Blackbody excitation sources for spectroscopy are very

weak in the far-infrared spectral region. While other light

sources such as the HCN laser, quantum cascade lasers, and

difference-frequency generation optics are available for

making traditional transmission measurements in this spec-

tral region, terahertz spectroscopy [27] has arisen as the

primary far-infrared imaging technology. Terahertz spectros-

copy uses unique light sources and detection methods that

give it capabilities not available to traditional absorption

spectroscopy. Briefly, pulses of terahertz radiation are gen-

erated by illuminating a biased photoconductive antenna

with ultrashort pulses of near-infrared light from a titanium

sapphire laser. The pulses are detected with a similar time-

gated photoconductive antenna. The transit time, phase, and

amplitude of the subpicosecond terahertz pulse are recorded

after it interacts with the sample, making possible the cal-

culation of distance and both the refractive index and ab-

sorption spectrum of the sample.

Terahertz instruments are usually operated in either an

imaging mode or a spectroscopic mode, though combination

3D spectroscopic imaging devices have been reported [28].

The imaging mode measures the reflections from the sample

that occur at interfaces between compositions of differing

refractive index. The refractive indices of the materials in

adjacent layers are determined from the intensity of the

reflection using the Fresnel equations. The thickness of a

layer is determined from the time between reflections from

the interfaces at the start and end of the layer. Each pixel in a

two-dimensional map can provide a depth profile of the

sample refractive index. A three-dimensional map of an

entire pharmaceutical tablet can be collected in several

minutes. The lateral spatial resolution is diffraction limited

at hundreds of micrometers, while the axial resolution is

determined by the instrument time resolution, which is

usually on the order of 30 mm.

The spectroscopic mode of a terahertz instrument can

determine the absorption spectrum of a sample by Fourier

transforming a terahertz pulse transmitted by the sample. The

use of transmission rather than reflection eliminates spectral

artifacts that would result from including pulse reflection in

the Fourier transformation. Spectra of individual layers can

be obtained, however, by using a windowed Fourier trans-

form between reflected pulses when carrying out terahertz

imaging. The quality of these spectra may be compromised,

by refractive index heterogeneity in the layer.

Far-infrared emission spectroscopy is extensively used for

making chemical images of deep space. This topic will be

covered in greater detail in Section 1.8.

1.6 NEAR-INFRARED ABSORPTION

SPECTROSCOPY

The near-infrared spectral range includes wavelengths from

about 0.78 to 2.5 mm. This corresponds to about

12,820–4000 cm�1 or 37–11 kcal/mol. The energies of these

vibrations are greater than those of the mid-infrared funda-

mental vibrations, but still considerably less than the bond

energies of the vibrating chemical bonds. For example, the

C�Hbond energy of 98 kcal/mol is 5.8 times greater than the

5870 cm�1 C�H stretching vibration’s first overtone energy

of 16.8 kcal/mol.

Absorption in this spectral region is due to overtone and

combination bands of molecular vibrations that modulate the

dipole moment of the molecule. Overtone bands result from

TABLE 1.3 Far-Infrared Molar Absorptivities for Some

Common Materials

Sample

Spectral

Position

(cm�1)

Molar

Absorptivity

(L/(mole cm))

Path Length for 1

AU in Neat

Material (mm)

Benzene 300 0.110 8.1

Benzene 185 180 0.005

Benzene 33a 0.24 3.7

Toluene 345 1.63 0.66

Toluene 33a 0.5 2.1

Dichloromethane 285 2.77 0.23

Methanol 34a 2.22 0.18

Water 198 9.35 0.019

Water 32a 1.82 0.10

Hexane 33a 0.09 15

Compiled from Refs 20 and 23–26.
a Slowly varying background absorption, not a peak location.
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the simultaneous absorption of two or more vibrational

quanta by the same vibration. Combination bands result

from the simultaneous absorption of two or more vibrational

quanta by two or more different vibrations of the same

symmetry and of the same functional group.

An overtone or combination band has an energy slightly

below the sum of the individual energies of the related

fundamental vibrations. For example, the fundamental C–H

stretching vibrations for aliphatic hydrocarbons occur in the

region of 2800–3000 cm�1. Their first, second, and third

overtones occur in the spectral regions of 5555–5882,

8264–8696, and 10929–11664 cm�1, respectively [29]. This

deviation from the sums of fundamental vibrational energies

is due to the anharmonicity of the vibration. In fact, the very

existence of overtone and combination bands requires vibra-

tional anharmonicity, and the intensity of these absorption

bands increases with increasing anharmonicity.

Spectral interpretation in the near-infrared spectral region

is less developed than it is in themid-infrared spectral region.

The wide diversity of possible combination bands that are

severely overlapped makes definitive band assignments dif-

ficult. An excellent compilation of band assignments for

important molecules in the near-infrared spectral region is

given in Ref. 29. Published band assignments for model

molecules, along with estimates of band locations by sum-

ming the energies of the fundamental Vibrations involved,

provide a good starting point for estimating the spectral

location of near-infrared absorption bands that may be

analytically useful for chemical imaging. Libraries of

near-infrared spectra are also available.

Overtone and combination bands tend to be weaker by a

factor of 10–100 for each additional fundamental vibra-

tional quantum contributing to their absorption. For exam-

ple, a first overtone absorption band (two vibrational quan-

ta) will be 10–100 times stronger than the corresponding

second overtone absorption band (three vibrational quanta),

but 1/10 to 1/100 as strong as fundamental absorption bands

in the mid-infrared region. If combination and overtone

bands involving different numbers of vibrational quanta are

present in the same spectral region, the intensities of those

composed of the fewest vibrational quanta will tend to

dominate those composed of more vibrational quanta.

Stretching vibrations involving a hydrogen atom, mainly

C�H, O�H, and N�H vibrations, have the highest funda-

mental vibrational energies, so their overtones and combi-

nation bands tend to dominate the near-infrared spectra of

organic molecules. The large mass disparity between hy-

drogen and the atom to which it is bonded increases the

anharmonicity of the vibration, further enhancing the dom-

inance of these vibrations in near-infrared spectroscopy.

Near-infrared spectra are strongly affected by hydrogen

bonding. Hydrogen bonding not only changes the bond

strength of hydrogen-bond donors such as O�H and N�H

bonds, but also reduces their anharmonicity, and therefore,

the intensities of their near-infrared absorption bands. Over-

tone and combination bands involving O�H and N�H

groups are more intense when those groups are not hydrogen

bonded than when they are.

Temperature also has an important impact on near-infra-

red spectra. Anharmonicity of absorbing groups tends to

increase with temperature. Temperature also affects hydro-

gen bonding, which, in turn, affects near-infrared spectra. As

a result, band intensities and frequencies may change sig-

nificantly with small changes in temperature.

Tables of near-infrared functional group absorptivities are

mainly useful for semiquantitative estimations rather than for

quantitative analysis due to the dependence of near-infrared

absorbance on the sample microenvironment. The absorptiv-

ities of molecular vibrations do follow Beer’s law, however,

so near-infraredmolar absorptivities are useful formeasuring

analyte concentrations. Table 1.4 lists reported molar

absorptivities for vibrations in some common materials.

TABLE 1.4 Near-Infrared Molar Absorptivities for Several Common Functional Groups

Band Descripton Sample

Band

Position (cm�1)

Molar Absorptivity

(L/(mol cm))

Pathlength for 1

AU in Neat Material (mm)

NH v þ d 1-Propaneamine 4942 0.98 0.84

NH 2v 1-Propaneamine 6550 0.58 1.4

NH 3v 1-Propaneamine 9560 0.05 16.3

aliphatic OH v þ d 1,3-Propanediol 4782 0.69 1.1

aliphatic OH 2v 1,3-Propanediol 6750 0.16 4.4

aromatic OH 2v 2,5-Dichlorophenola 6901 2.23 0.44

CH v þ d n-Hexane 4334 3.43 0.38

CH 2v n-Hexane 5800 0.62 2.1

CH 3v n-Hexane 8396 0.11 11.8

CH 2v þ d n-Hexane 7182 0.09 13.9

OH v þ d Water 5173 1.07 0.17

OH 2v Water 6886 0.26 0.70

Compiled from Refs 23 and 30.
aSlowly varying background absorption, not a peak location.
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Overall, near-infrared absorptivities are much weaker than

those in the mid-infrared spectral region. Neat materials

often require sample path lengths on the order of millimeters

to get undistorted spectra of two-quantum overtone and

combination bands, compared with 0.01mm in the mid-

infrared spectral region. The increased path length can be

a benefit when analyzing larger samples. The maximum

usable path length can be further increased by measuring

three-quantum overtone and combination bands.

The relatively low absorptivities in the near-infrared

spectral region allow light to be detected after many scat-

tering events in inhomogeneous materials. The optical path

in the sample is then mainly a function of the sample elastic

scattering properties, which depend on physical properties

such as particle size, hardness, and density. In most cases,

elastic scattering degrades near-infrared chemical images.

Not only is the size of the point spread function (transverse

and axial) increased in a sometimes unpredicted way,

but the distribution of optical path lengths also creates a

nonlinear relationship between absorbance and analyte

concentration.

Near-infrared chemical images can be created by mea-

suring the spectrum of light transmitted through the sample,

reflected from the sample, and emanating from a spatially

offset position after diffuse reflection through the sample. All

three techniques can produce images by mapping. The first

two can also be carried out by global imaging. Spatially offset

diffuse reflectance can be used for depth profiling as de-

scribed earlier. One commercial application for near-infrared

spatially offset diffuse reflectance is noninvasive, real-time

determination of human brain oxygenation [31].

1.7 RAMAN SCATTERING

Raman scattering measures vibrational transition energies

from about 17 to 4000 cm�1, which is nearly equivalent to the

entire spectral ranges covered by far- and mid-infrared

spectroscopies together. Below about 17 cm�1, the same

physical effect is called Brillouin scattering. In contrast to

previously described spectroscopies, Raman excitation fre-

quencies can range from the ultraviolet to the near-infrared

region, giving the technique an extra dimension of flexibility.

1.7.1 Spontaneous Raman Scattering

Raman scattering results from a process fundamentally

different from that occurring in absorption or thermal emis-

sion spectroscopy. An inelastic collision of a photon with a

molecule causes the photon to gain from or lose to the

molecule one vibrational quantum of energy. A plot of the

scattered intensity versus the energy difference between the

incident and scattered photons (‘‘Raman shift’’) yields the

Raman spectrum. ARaman spectrum is similar to an infrared

absorption spectrum in that it reports the energy of some, but

usually not all, of the molecular vibrations in the sample.

An energy level diagram illustrating Raman scattering for

one vibration is shown in Figure 1.4. Light excites amolecule

to a virtual state, represented by a horizontal dotted line. The

virtual state is not a quantum mechanical stationary state.

Rather, it is a distortion of the chemical bond by the electric

field of the light. This distortion creates an induced dipole

moment. The virtual state immediately relaxes back to a

vibrational level in the ground state, emitting a photon.

Photons resulting from the return to the original vibrational

level have the same energy as before, and make up the

elastically scattered (Rayleigh scattered) light. Photons re-

sulting from a return to a vibrational level one vibrational

quantum higher or one vibrational quantum lower than the

original energy level make up the Raman scattered photons.

Stokes Raman scattering produces Raman photons at ener-

gies lower than the excitation photon energy because one

vibrational quantum of energywas left in themolecule. Anti-

Stokes Raman scattering produces Raman photons at higher

energy because a vibrational quantum of energy was taken

away from the molecule. The frequency of Raman scattered

light changes as the excitation frequency changes. It is the

energy difference between the excitation frequency and the

frequency of the Raman scattered light that does not change,

for a given Raman band.

According to classical physics, Raman scattering can be

viewed as resulting from the interaction of the oscillating

electric field of light with the electrons in a chemical bond.

As the optical electric field strength increases, it applies

increasing force to move the bonding electrons away from

E0 ν0

ν1

E1

(b)(a) (c) (d)

FIGURE 1.4 Energy level diagram illustrating spontaneous

Rayleigh and Raman scattering. (a) Rayleigh scattering; (b)

Stokes Raman scattering; (c) anti-Stokes Raman scattering;

(d) Stokes Raman scattering using a different excitation

wavelength.
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their equilibrium position. The movement of the electrons

creates a dipole moment and diminishes the intensity of the

exciting light. As the optical electric field strength decreases,

the bonding electrons move back toward their equilibrium

position, reducing the induced dipolemoment and increasing

the intensity of the light. The light generated by the bonding

electrons returning to their equilibrium position has the same

frequency as the original light, and therefore the same energy,

wavelength, and color. It does not have the same direction,

however. This light is the elastically scattered light or Ray-

leigh scatter.

The intensity of Rayleigh scatter is proportional to the

square of the chemical bond polarizability (a measure of how

far electrical charge moves in response to an electric field).

The polarizability of the chemical bond changes with nuclear

displacement during a molecular vibration. As a result, the

intensity of the elastically scattered light is modulated at the

frequency of the molecular vibration or rotation. Such a

modulation can be viewed as the sum of the original fre-

quency plus two new ‘‘sideband’’ frequencies of light. The

two sidebands are the Raman scattered light and possess

frequencies equal to the elastically scattered frequency plus

orminus thevibrational frequency of the chemical bond. Said

another way, the intensity-modulated elastically scattered

light is mathematically equivalent to the sum of three colors

of light: the elastically scattered light and the two colors of

Raman scattered light.

The classical description of Raman scattering in the

previous two paragraphs is intuitive but incomplete. For

example, it does not include a prediction of the Stokes to

anti-Stokes Raman intensity ratio. Any ratio would be con-

sistent with the model. A quantum mechanical analysis

provides a basis to describe all aspects of Raman scattering,

but is beyond the scope of this chapter. Detailed descriptions

of both the classical and quantum mechanical models for

Raman scattering can be found in Ref. 32. We will simply

utilize results from the complete analysis.

The quantummechanicalmodel for Raman scatteringwas

first described by Placzek [33]. His expression for Raman

scattering intensity, IR, is

IR ¼ 24p3

45 � 32 � c4 � hILNðu0�uÞ4
muð1�e�hu=kTÞ � 45ða0

aÞ2 þ 7ðc0aÞ2
h i

ð1:7Þ

where h is Planck’s constant, c is the speed of light, IL is the

excitation intensity, N is the number of scattering molecules,

u is the molecular vibrational frequency in Hz, u0 is the laser
excitation frequency in Hz, m is the reduced mass of the

vibrating atoms, k is Boltzmann’s constant, T is the temper-

ature in Kelvin, a0
a is the mean value invariant of the

polarizability tensor, and c0a is the anisotropy invariant of

the polarizability tensor.

Equation 1.7 describes several aspects of Raman scatter-

ing that are of practical importance for chemical imaging.

Raman intensity is proportional to the excitation intensity.

The lasers that are used for Raman spectroscopy are often

powerful enough to damage samples by excessive heating, so

sample damage thresholds place an upper limit on the amount

of sensitivity that can be gained by increasing the laser power,

especially in point mapping applications. Raman intensity is

proportional to the number of scattering molecules. This

relationship is the basis for most quantitative and semiquan-

titative analysis using Raman scattering (e.g., concentration

maps). Raman intensity is proportional to the fourth power of

the Raman photon frequency (u0� u). Raman sensitivity

increases rapidly with increasing excitation frequency (de-

creasing wavelength) because the Raman photon frequency

increases along with it.

The dipole moment induced by the optical electric field

that elevates the molecule to the virtual state is in the same

direction as the optical electric field, if the vibration has

spherical symmetry. In this case, the polarizability is a scalar

quantity. Chemical bonds in molecules lacking spherical

symmetry may restrict the movement of electrons in some

directions, causing the dipole induced by the optical electric

field to point in a direction different from that of the optical

electric field itself. This case requires the polarizability to be

expressed as a tensor quantity with each Cartesian coordinate

of the induced dipole moment depending on all three Car-

tesian coordinates of the optical electric field. The added

information in a Raman spectrum due to this tensor nature of

the polarizability has no analogue in absorption spectrosco-

py. The tensor nature of the polarizability is represented in

Equation 1.7 by the splitting of the polarizability into a mean

value invariant and an anisotropy invariant.

Experimentally, the tensor nature of the polarizability

causes symmetric vibrations to yield Raman scattering with

the same polarization as the excitation light, but the polar-

ization of Raman scattering from nonsymmetric vibrations

may be significantly different. Another consequence is that

randomly oriented crystals excited with polarized light often

have spectral bands at identical Raman shifts, but the relative

band heights and areas from different crystals may vary

considerably. Using unpolarized or circularly polarized ex-

citation light can significantly reduce this effect by averaging

two of the three tensor components, but does not fully

eliminate the problem because one tensor component cannot

be controlled.

Equation 1.7 can be rewritten in an analytically useful

form similar to Beer’s law:

IR ¼ ðILsRXÞPC ð1:8Þ

where IR is the measured Raman intensity, in photons per

second, IL is the laser intensity, in photons per second, sR is

the absolute Raman cross section, in cm2/molecule, X is the
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experimental constant,P is the sample path length, in cm, and

C is the concentration, in molecules/cm3.

Here, experimental factors, such as the efficiency of the

optics anddetector, are lumped together intoa singleconstant,

X. The molar absorptivity from Beer’s law is replaced by the

Raman cross section, which is a measure of the strength of a

Raman band. Raman cross sections are usually tabulated in

units of cm2/molecule. Values on the order of 10�29–10�30

cm2/molecule are typical for a strong spontaneous Raman

bandscattered fromaliquidorsolid.Ramancrosssectionscan

also be expressed in the same units asmolar absorptivity for a

more direct comparison with infrared absorption. Table 1.5

shows Raman cross sections for several common functional

groups. More extensive tables are available in Ref. 34. These

cross sections are about 10 orders of magnitude smaller than

mid-infrared molar absorptivities, illustrating how weak Ra-

man scattering actually is. Fortunately, the sensitivity of

Raman scattering is also proportional to the excitation inten-

sity. Intense laser light sources are used invirtually all Raman

chemical imagingapplications topartially compensate for the

low Raman cross sections.

Sensitivity, however, is not the only variable influencing

detection and quantitative capabilities in Raman spectros-

copy.Detection limits and limits to quantitative precision and

accuracy are usually determined by noise rather than by

sensitivity. Noise is any detected signal that is not wanted and

that hinders the use of the signal that is wanted. The most

serious noise source in Raman spectroscopy is fluorescence,

usually from low levels of impurities. Many experimental

andmathematical approaches have been explored and used to

reduce the impact of fluorescence on Raman spectroscopy,

but there is still room for substantial improvement. Another

serious noise source is the Raman spectrum of the sample

matrix containing the analyte of interest. A matrix, such as a

solvent or excipient, is present at high concentration, so its

Raman spectrum, or the uncertainties of its spectral inten-

sities, may obscure the spectrum of an analyte present at

much lower concentration.

Detection and quantitative capabilities are important in

chemical imaging because they often help determine image

contrast. For example, all Raman mapping or imaging must

be at least semiquantitative since the relationship among

pixels is a relative Raman intensity, which is proportional to

concentration. Semiquantitative Raman imaging may map

the approximate relative analyte concentration with no

knowledge of the absolute concentration. But a high detec-

tion limit, and/or a low dynamic range, will still tend to

obscure the presence of an analyte in an image. Another

semiquantitative approach is to classify each pixel as con-

sisting of only the major component detected in its Raman

spectrum, and then to report analyte concentrations as the

fraction of pixels classified as that analyte [36]. More accu-

rate quantitative analysis is generally reserved for samples

exhibitingminimal diffuse reflection so that Raman scattered

light from neighboring pixels is negligible.

The basis for quantitative analysis using Raman scattering

is Equation 1.8, which shows that the analyte concentration is

proportional to its Raman intensity. Unfortunately, the Ra-

man cross section, the instrument detection efficiency, and

the path length are usually unknown. An image generated

from uncorrected Raman intensity at an analyte band wave-

length may provide a qualitative description of analyte

distribution, but that distribution may be distorted by uncon-

trolled variables, such as focusing errors due to an uneven

sample surface or path length variation due to variable

degrees of Mie scattering from sample heterogeneity. Un-

known Raman cross sections are normally addressed by

building calibration curves from suitable standards. Uncer-

tainty in instrument detection efficiency and path length can

be addressed by ratioing the analyte Raman intensity to the

Raman intensity of a material in the sample whose concen-

tration is expected to be constant, or at least predictable.Mass

balance may be used when no component of the sample is

expected to have a uniform concentration as a function of

location in the sample. Quantitative analysis using Raman

spectroscopy is reviewed in Ref. 37.

TABLE 1.5 Raman Cross-Sections for Several Common Functional Groups

Band Descripton Sample

Band

Position (cm�1)

Cross Section

(cm2/(molecule sr)� 1030)

Cross Section

(L/(mol cm)� 1010)

Ring stretch Benzene liquid 992 28.0 169

CH stretch Benzene liquid 3060 45.3 273

CC stretch Cyclohexane liquid 802 5.2 31

CH stretch (all) Cyclohexane liquid 2800–3000 43.0 259

CH stretch CHCl3 liquid 3032 4.4 26

CCl3 asy stretch CHCl3 liquid 758 3.2 19

CCl3 sym stretch CHCl3 liquid 667 6.6 40

NN stretch Nitrogen gas 2331 0.4 3

OO stretch Oxygen gas 1555 0.6 3

CCl4 sym stretch CCl4 459 4.7 28

Compiled from Ref. 35.
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Raman spectra are generally less temperature sensitive

than far-, mid-, or near-infrared spectra. This is partly due to

the reduced sensitivity of Raman scattering to hydrogen

bonding, and partly due to sharper and less overlapping

bands in Raman spectra, which are therefore less likely to

be confounded by subtle temperature-induced changes. Non-

destructive temperature effects are rarely a serious problem

for Raman spectral imaging.

Table 1.6 lists Raman scattering characteristic frequencies

of some common functional groups. Much more extensive

tables are given in Refs 13 and 14. Tables such as these often

provide additional information such as the strength of the

Raman band or its polarization. They provide a good starting

point for estimating the spectral location of Raman bands that

may be analytically useful for chemical imaging. They are

also helpful for assigning bands observed in spectra of known

materials to chemical groups in the material.

Commercially available Raman libraries exist, but are not

as extensive as those available formid-infrared spectroscopy.

In most Raman imaging applications, pure compounds that

make up the sample are available, enabling the generation of

small, custom libraries targeted to the individual imaging

project. When pure components are not available, or when

the pure components interact to create changed Raman

spectra, chemometric methods can sometimes be used to

extract spectra from image data that are similar to the pure

component spectra.

There are several types ofRaman spectroscopy in addition

to spontaneous Raman scattering, each with its own capa-

bilities, limitations, and unique experimental implementa-

tion. Some differ in the instrumental approach used to excite

or collect Raman photons. Others differ in their use of optical

fields, special substrates, or tuning to influence the physics of

the scattering process. We conclude the section on Raman

scattering by briefly reviewing the theory behind four forms

of Raman scattering that are particularly useful for chemical

imaging: resonance Raman scattering, coherent anti-Stokes

Raman spectroscopy, surface-enhancedRaman spectroscopy

(SERS), and Raman gain (loss) spectroscopy.

1.7.2 Resonance Raman Scattering

When the photon energy of the exciting radiationmatches the

energy of an electronic absorption band (rather than just the

energy of transition to a virtual state), the intensity of some

Raman bands is dramatically increased by asmuch as a factor

of 106. This effect is called resonance Raman scattering

[32, 39]. Totally symmetric vibrations that are similar to the

changes in molecular geometry that occur during the tran-

sition from the ground electronic state to the first excited

electronic state are strongly enhanced and dominate the

Raman spectrum. In some cases, other vibrations may be

enhanced, but the enhancements tend to be weaker. Reso-

nance changes selection rules and depolarization ratios

TABLE 1.6 Raman Characteristic Frequencies for Several Common Functional Groups

Organics Inorganics

Vibration Shift (cm�1) Group Shift (cm�1) Group

SS stretch 480–510 Dialkyl disulfides 432–467 Thiosulphate

CS stretch 620–715 Dialkyl disulfides 568–576 Tetraborate

Skeletal stretch 749–835 Isopropyl group 683–817 Iodate

CC stretch 837–905 n-Alkanes 710–745 Nitrate

Sym COC stretch 830–930 Aliphatic ethers 776–817 Bromate

CC stretches 950–1150 n-Alkanes 806–855 Persulfate

Sym SO2 stretch 1188–1196 Alkyl sulfates 913–988 Phosphate

C6H5�C vibration 1205 Alkyl benzenes 914–943 Chlorate

CH2 in-phase twist 1295–1305 n-Alkanes 933–952 Perchlorate

CH2 twist and rock 1175–1310 n-Alkanes 956–1040 Sulfate

CH deformation 1330–1350 Isopropyl group 962–990 Sulfite

Ring stretch 1370–1390 Naphthalenes 1028–1045 Bicarbonate

Ring stretch 1385–1415 Anthracenes 1029–1069 Nitrate

CH3 deformation 1465–1466 n-Alkanes 1051–1089 Carbonate

NH2 scissors 1590–1650 Primary amines 1073–1090 Persulfate

C¼O stretch 1700–1725 Aliphatic ketones 1320–1322 Nitrite

C:C stretch 2100–2160 Alkyl acetylenes 2033–2162 Thiocyanate

C:N stretch 2232–2251 Aliphatic nitriles 2044–2071 Ferrocyanide

SH stretch 2560–2590 Thiols 2070–2215 Cyanide

Sym CH2 stretch 2849–2861 n-Alkanes 2102–2109 Ferrocyanide

Sym CH3 stretch 2883–2884 n-Alkanes 3045–3120 NH4
þ

Compiled from Refs 13 and 38.
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relative to those of nonresonance Raman scattering. For

example, resonance Raman overtone and combination bands

can be as strong as fundamental vibrations, at least for some

small molecules, while in nonresonance spontaneous Raman

scattering, such transitions would be forbidden.

Resonance Raman measurements can be challenging

because exciting the analyte at an absorption band wave-

length increases the chances for sample damage due to

heating or photolysis. Spectral distortion due to self-absorp-

tion and high background intensity from fluorescence emis-

sion can also complicate resonance Raman measurements.

Many resonance Raman spectral studies have been done

using a flowing sample in order to minimize sample damage.

Several reports have described ways to correct for spectral

distortion due to self-absorption [40, 41].

The increased likelihood of fluorescence can be a

significant problem for resonance excitation in the visible

and near-infrared regions. However, Raman spectra, in-

cluding resonance Raman, obtained with UV excitation can

actually exhibit decreased fluorescence interference. This is

because most of the UV excited fluorescence occurs in a

spectral region separate from that of the UV excited Raman

scattering, especially for excitation wavelengths below

250 nm. This benefit is being exploited in experimental

groundwork to collect UV resonance Raman images of

microorganisms on rocks and minerals for in situ planetary

studies [42, 43].

Resonance enhancement decreases rapidly as the excita-

tion frequency is tuned away from the electronic transition

frequency. The reduction of the enhancement with detuning

slows down far from resonance, though, so enhancements of

5–10 are not uncommon more than 1000 cm�1 away from

resonance. This lesser enhancement away from resonance is

known as preresonance enhancement. This type of enhance-

ment can be significant, yet has little effect on selection rules

or depolarization ratios. Fluorescence, self-absorption, and

sample damage due to absorption are less problematic as

well.

Resonance Raman has been employed to improve the

sensitivity and speed of acquisition in specific imaging

applications, but has not, so far, become a widespread

imaging technique. Imaging with resonance Raman works

best for chromophores having a strong or unique (relative to

the surrounding environment) absorption band coincident

with an available excitation laser line. A number of reported

imaging examples are based on resonance Raman scattering

from porphyrin-containing molecules, such as hemoglobin,

cytochromes, and hemozoin (malaria pigment). These have

allowed label-free visualization of the distribution of heart

tissue components [44], red blood cell infection [45], and

heme-containing enzymes in immune response cells [46].

Similarly, resonance Raman imaging of carotenoid com-

pounds in living human retinas has illustrated the complexity

and variability of macular pigment distribution [47].

Resonance Raman studies can also be carried out at

multiple excitation wavelengths. The intensity of a given

Raman band as a function of excitation wavelength, called a

Raman excitation profile, provides a spectrum similar to the

electronic absorption spectrum of the transition responsible

for the resonance enhancement. Other absorbing species do

not contribute, so the Raman excitation profile can be used to

resolve overlapping bands in absorption spectra. Full Raman

spectra at several excitation wavelengths can be combined

into a three-dimensional plot similar to a fluorescence ex-

citation–emission plot. To the best of the authors’ knowledge,

there are not yet any published examples of Raman chemical

imaging utilizing multiple excitation wavelengths. Such

images would be difficult and time consuming to create with

existing instrumentation, but could provide greatly enhanced

chemical specificity.

1.7.3 Surface-Enhanced Raman Spectroscopy

The sensitivity of Raman scattering can be enhanced by

several orders of magnitude in some cases by placing the

analyte very close to a metal surface. The resulting surface-

enhanced Raman process [48, 49] takes advantage of two

types of interactions between the metal and the analyte,

electromagnetic enhancement and a charge transfer mecha-

nism. The total enhancement is the product of the two, with

electromagnetic enhancement generally being much larger.

Electromagnetic enhancement is an antenna-like effect

that increases the amplitudes of both the excitation and

Raman scattered electric fields. It is caused by localized

surface plasmons, collective oscillations of conduction elec-

trons in the metal that are in resonance with the external

optical electric fields. Gold and silver, and to a lesser extent

copper, provide strong SERS enhancement because their

localized surface plasmon resonance frequencies occur in

the visible/NIR spectral region where Raman measurements

are normally carried out, and because losses that damp the

plasmon oscillations are small.

Surface plasmons cannot be excited by electromagnetic

radiation when the metal surface is smooth and flat, but can

be when the metal surface is roughened, or when the metal is

a small particle. SERS has, therefore, most often been carried

out on electrochemically roughened metal surfaces or on

colloidal metal particles. More recently, precisely fabricated

nanostructures have been used as SERS substrates, to reduce

variation in the SERS enhancement factor and to study

morphology effects on SERS enhancement.

Since the surface plasmon oscillation enhances the elec-

tric fields of both the excitation light and the Raman light, the

SERS enhancement is proportional to the fourth power of the

excitation electric field. An enhancement of the electric field

by a small spherical particle may be on the order of 10,

leading to a SERS enhancement on the order of 104. More

complex nanostructures can produce much larger SERS
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enhancements. Optimum enhancement would occur if the

optical frequency matched the peak in the surface plasmon

resonance frequency. Since the excitation and Raman fre-

quencies are not equal, however, optimum enhancement

occurs when the peak of the surface plasmon frequency is

between the Raman excitation frequency and the Raman

scattered frequency.

Electromagnetic enhancement does not require the target

molecule to touch the metal surface, but the enhancement

falls off very rapidly with distance from the metal surface as

shown by Equation 1.9:

ISERS / aþ r

a

� ��10

ð1:9Þ

where ISERS is the SERS scattering intensity, a is the average

size of field-enhancing features on the surface, and r is the

distance from the adsorbate to the metal surface.

For example, one study [48] reported a factor of 10

decrease in SERS signal when the adsorbate was separated

from a 12 nm enhancing particle by 2.8 nm. This level of

depth resolution is far better than that of diffraction-limited

microscopy at the same optical wavelength.

The charge transfer mechanism of SERS postulates the

formation of an adsorbate–metal complex that allows the

transfer of excitation and charge between the adsorbate and

themetal. The charge transfermechanism is difficult to verify

because it would operate only on the first monolayer of

adsorbates where electromagnetic enhancement is already

very strong. Campion et al. [50] provided strong evidence for

the charge transfer mechanism by observing a SERS en-

hancement factor of 30 on an atomically flat single crystal of

copper, a situation where electromagnetic enhancement was

expected to be small and well understood. A low-energy

electronic absorption band appeared in the spectrum of the

adsorbedmolecule that was not present in the spectrum of the

isolated molecule, further supporting a charge transfer

mechanism.

SERS enhancements using spatially isolated silver nano-

particles are on the order of 106. But this enormous sensitivity

enhancement pales in comparison to enhancements observed

in silver colloidal aggregates. A small fraction of molecules

adsorbed to silver colloidal aggregates have SERS enhance-

ments on the order of 1014 [48]! This level of enhancement is

sufficient for the measurement of single molecule Raman

spectra. Studies are underway to better understand the na-

nostructure of these SERS ‘‘hot spots,’’ which could lead to

the ultimate in sensitivity for chemical imaging.

Several approaches to chemical imaging with SERS in

addition to imaging an adsorbate on a metal surface have

been reported.Gold nanoparticles have been injected directly

into living cells to probe cellular molecules in their native

environment. Reporter molecules attached to the gold nano-

particles have been used to make chemical images, such as

pH images in single living cells [48]. Tip-enhanced Raman

spectroscopy (TERS) moves a fine metal tip within a few

nanometers of a surface, strongly enhancing Raman scatter-

ing [51]. TERS provides topographic images in addition to

providing Raman maps with nanometer spatial resolution.

SERS sensitivity can be increased by using an excitation

wavelength that is at or close to resonance with an adsorbate

chromophore. Surface-enhanced resonance Raman spectros-

copy (SERRS) provides an additional three or four orders of

magnitude in sensitivity enhancement.

1.7.4 Coherent Anti-Stokes Raman Spectroscopy

CARS [52, 53] is another approach that dramatically en-

hances the sensitivity of Raman scattering, in some cases by

as much as 10 orders of magnitude. Figure 1.5a shows an

energy level diagram of the CARS process. Laser light,

designated the pump field, excites amolecule from its ground

vibrational state to a virtual state. Laser light at a second

frequency, designated the Stokes field, stimulates the scat-

tering of a Stokes photon from the virtual state, leaving the

molecule in its first excited vibrational level. Laser light

typically at the pump frequency, this time called the probe

field, then excites the molecule from its first excited vibra-

tional level to a new virtual state. Finally, the molecule

returns to the ground vibrational state by scattering an

anti-Stokes photon.

Unlike spontaneous Raman scattering, where each

molecule in the sample scatters light independently of the

E0 ν0

ν1

E1

(b)(a) (c)

FIGURE 1.5 Energy level diagram illustrating CARS processes.

(a) Resonant CARS; (b) CARS nonresonant background; (c)

two-photon enhanced nonresonance CARS background.
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other molecules, CARS uses optical fields to impose both a

temporal and a spatial phase relationship between the mo-

lecules in the sample that scatter light. This nonrandom

relationship imposed on the molecules is the reason for the

‘‘coherent’’ in the CARS acronym and distinguishes CARS

from spontaneous anti-Stokes Raman scattering. CARS is an

example of a process called four-wave mixing where four

optical fields, the pump field, the Stokes field, the probe field,

and the anti-Stokes field, exchange energy.

Since CARS is a coherent process, the energy exchange

can build up with interaction distance as long as the four

optical fields maintain a fixed phase relationship with each

other. The speed of light through matter changes with

wavelength due to the wavelength dependence of the re-

fractive index, however, so effective phase matching occurs

over a limited distance through the sample. This distance

can be extended if the four optical fields propagate in

slightly different directions such that the vector components

of their velocities in a common direction are all equal. Then,

as long as the four fields overlap spatially they will remain

in phase. This noncollinear CARS geometry can be im-

plemented experimentally by crossing the pump laser beam

(which is also the probe laser beam) with the Stokes laser

beam in the sample. A laser-like anti-Stokes beam then

emerges from the sample at an angle different from the

pump and Stokes beams. Phase matching can also be

achieved in a collinear geometry if the beams are tightly

focused. Tight focusing creates a distribution of propagation

directions, which automatically satisfy the phase-matching

condition.

The intensity of the CARS anti-Stokes signal, IAS, is given

by

IAS / x3j j2I2PIS ð1:10Þ

where x3 is the third-order susceptibility, IP is the intensity of
the pump optical field, and IS is the intensity of the Stokes

optical field.

The third-order susceptibility describes the molecular

bond polarization responsible for the CARS effect. Unlike

spontaneous Raman scattering, where the scattered intensity

is proportional to the number of vibrational oscillators, the

CARS intensity is proportional to the square of the number of

vibrational oscillators. The squared dependence has impor-

tant implications for analytical applications of CARS de-

scribed later in this book.

The third-order susceptibility consists of the sum of a

resonant part that is enhanced by molecular vibrations and a

nonresonant part due to the electronic response of the ma-

terial that is not enhanced bymolecular vibrations. Scattering

from the resonant and nonresonant parts of the third-order

susceptibility is illustrated in the energy level diagrams

shown in Figure 1.5a and b, respectively. The squared

third-order susceptibility in Equation 1.10, therefore, con-

tains three terms: a purely resonant term, a purely nonres-

onant term, and a mixed term. The resonant term is respon-

sible for the vibrational spectrum that is normally desired.

The nonresonant term provides a constant background that

degrades CARS detection limits. The mixed term produces a

derivative-like spectral peak shape that causes CARS bands

to be redshifted with a dip on the high-energy side of the

band. The amount of redshift and dip in a CARS band is

proportional to the relative strength of the resonant and

nonresonant parts of the third-order susceptibility.

The spatial dimensions of phase coherence between the

CARS optical fields, and therefore the directionality of the

anti-Stokes field,may be determined by the dimensions of the

sample. Collinear CARS through extremely thin samples

produces equal anti-Stokes intensity in the forward and

backward directions. As the sample gets thicker, constructive

interference increases the forward scattered intensity while

destructive interference decreases the backward scattered

anti-Stokes intensity, leading to much less backward scatter

intensity for thick homogeneous samples. Anti-Stokes back-

scattering does occur in bulk samples, however, due to small

objects (lp/3), sharp discontinuities in x3, and elastic scat-

tering of the forward scattered anti-Stokes intensity.

Numerous schemes have been proposed to reduce the

nonresonant background in order to improve the CARS

signal. Two have proven to be especially enabling for CARS

microscopy. Collection of the backscattered anti-Stokes

intensity from thin samples (epi-CARS) greatly reduces the

nonresonant intensity from thematrix. A second scheme is to

use near-infrared pumpwavelengths. The nonresonance anti-

Stokes intensity can be enhanced if the pump wavelength is

near a two-photon absorption band of the sample, as illus-

trated by the energy level diagram in Figure 1.5c. Fewer two-

photon electronic absorption bands are accessible using near-

infrared light, thereby reducing the nonresonant background

for many samples.

Both qualitative and quantitative analyses of spectra are

more difficult for CARS than for spontaneous Raman spec-

troscopy. The redshift and dip on the high-energy side of

CARS bands distort CARS spectra by an amount that can

vary depending on the experimental conditions. Further

distortion can occur from interferences between resonances.

For example, one band height can influence the height of a

neighboring band. The quadratic dependence of CARS

intensity on analyte concentration complicates the resolution

of overlapping bands from different materials, as well as the

use of standard multivariate analysis algorithms. These

complications can be overcome, however, as evidenced by

many semiquantitative and quantitative CARS publications.

Since the intensity of the anti-Stokes CARS signal is

proportional to the intensity of the pump beam squared,

pulsed pump lasers provide greater signal intensity than

continuous-wave pump lasers having the same average pow-

er. For a fixed pump laser average power and pulse repetition
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rate, the peak optical power (and pulse bandwidth) increases

with decreasing pulse width. The higher peak power causes a

quadratic increase in nonresonant anti-Stokes CARS inten-

sity as pulse duration shortens. The resonant anti-Stokes

CARS intensity also increases with decreasing pulse width,

but gradually saturates as the bandwidth of the laser pulse

becomes larger than the Raman linewidth. Pulse widths of a

few picoseconds tend to provide an optimal compromise for

enhanced sensitivity of the resonance anti-Stokes intensity

with minimal band broadening and nonresonance anti-

Stokes CARS intensity.

The anti-Stokes CARS signal is proportional to the prod-

uct of the pump laser power squared and the Stokes laser

power, so the sensitivity to analyte concentration increases

rapidly as the laser beams are focused. Most of the CARS

signal, therefore, comes from the focal region, providing

depth discrimination and the capability to do three-dimen-

sional sectioning even in a collinear geometry.

One approach to CARS chemical imaging uses a single

fixed wavelength for the Stokes laser. Anti-Stokes CARS

intensity is collected as a function of spatial location to create

a single-wavelength chemical image at video frame rates.

The high image acquisition speed is truly enabling for many

applications, but the use of a single wavelength is a signif-

icant limitation. While monochrome images have proven to

be informative and valuable, they can be confounded by

several different effects that can contribute to image contrast.

Multiple images could perhaps be sequentially collected

using different wavelengths, but registration of the different

images may be problematic.

A second approach, broadband CARS [54], measures

multiple anti-Stokes CARS wavelengths simultaneously by

using a spectrally broad source for the Stokes beam. Acqui-

sition times per pixel are increased for several reasons

including distribution of Stokes beam intensity over many

spectral resolution elements, less effective reduction of the

nonresonance background, and increased detector readout

time. Acquisition times are still much faster than those of

spontaneous Raman spectroscopy, though, and are likely to

improve in the near future.

1.7.5 Stimulated Raman Gain Spectroscopy

Thefirst half of theCARSprocess, excitation to a virtual state

from the ground vibrational level followed by stimulated

emission from the virtual state to the first excited vibrational

level, can be used as a real-time chemical imaging meth-

od [55]. This process transfers energy from the pump beam

into the Stokes beam. The measurement of the increase in

Stokes beam intensity is called stimulatedRamangain (SRG)

spectroscopy, and the measurement of the decrease in pump

beam intensity is called stimulated Raman loss (SRL) spec-

troscopy. Both are examples of stimulated Raman spectros-

copy, and their names are used to distinguish them from the

older and less controlled form of stimulated Raman spec-

troscopy that used spontaneous Raman scattering from the

sample to create the Stokes beam, rather than an external

Stokes beam [56].

The change in pump beam intensity,DIP, and the change in
Stokes beam intensity, DIS, are given by

DIP / �NsRIPIS; DIS / NsRIPIS ð1:11Þ

where N is the number of molecules in the probe volume, sR
is the Raman cross section, IP is the intensity of the pump

optical field, and IS is the intensity of the Stokes optical field.

SRG and SRL spectroscopies are similar to CARS in that

they are all coherent processes requiring phase matching

between the pump and Stokes beams. In each case, the signal

has a nonlinear dependence on total laser power, providing

the opportunity for depth discrimination and three-dimen-

sional sectioning. All three methods can be several orders of

magnitude more sensitive than spontaneous Raman scatter-

ing. In fact, SRG spectra of molecular monolayers were

reported as early as 1980 [57].

Unlike CARS, the signals from SRG and SRL are pro-

portional to the number of molecules in the probe volume,

making data interpretation and chemometric analysis much

easier. There is no nonresonance background, so spectra look

like familiar spontaneous Raman spectra. The lack of a

nonresonance background also improves image contrast.

Preliminary studies [55] showed an improved detection limit

for retinol in methanol for SRL spectroscopy compared to

CARS measurements made by the same group.

1.8 CHEMICAL IMAGE CREATION USING

REMOTE SENSING

Remote sensing employs infrared emission and Raman

scattering, as well as other forms of spectroscopy, to make

chemical images of large targets. Remote sensing probably

accounts for the vast majority of chemical images that have

ever been collected. For example, the Moderate Resolution

Imaging Spectroradiometer (MODIS) instruments on board

both the Terra and Aqua satellites collect images with 36

visible and infrared bands (over the range of 0.4–14.4 mm)

that map the entire surface of the Earth every 1–2 days, and

have been doing so since 2002 [58].

Numerous imaging spectrometers have been flown on

aircraft, placed in orbit around Earth and other planets, sent

into deep space, and delivered to the surface of Mars.

Table 1.7 summarizes a number of planet- and moon-ob-

serving instruments, including the spectral ranges of the data

collected.Most of these spectral imaging data are available to

the public from NASA.

Analysis of spectral images may involve traditional che-

mometrics, image processing, expert systems, extensive
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spectral libraries, or a combination of approaches [68].

Common uses for the resulting chemical images of Earth

and its atmosphere include applied geology and mineralogy,

climate, agricultural, and pollution studies.

Abundant vibrational chemical images are being pro-

duced to investigate celestial targets, as well. Examples

include instruments aboard NASA’s Spitzer Space Tele-

scope [69] and earlier COBE (Cosmic Background Ex-

plorer) [70], the collaborative Infrared Astronomical Sat-

ellite (IRAS) [71], the European Space Agency’s Infrared

Space Observatory (ISO) [72], and the Japanese

AKARI [73]. Far-infrared wavelengths visualize clouds of

cold dust and very cold molecular clouds, while shorter IR

wavelengths (0.7–5 mm) can penetrate the dust to reveal

astronomical objects hidden to visible and ultraviolet de-

tectors. Ionic and molecular species in the universe, such as

atoms and atomic ions, polyatomic ions and molecules, and

aromatic molecules, are being mapped using emission

bands throughout the vibrational spectrum from the near- to

far-infrared region.

While the above applications all rely on passively emitted

radiation, remote sensing can also be carried out using an

excitation source, usually a laser. Laser radar or lidar (light

detection and ranging) uses backscattered intensity from a

pulsed laser as a function of time tomeasure absorption depth

profiles in the atmosphere. Differential absorption lidar

(DIAL) shifts the laser frequency onto and off an analyte

absorption peak to derive the analyte absorption. An open-

path FTIR array spectrometer has been reported that per-

forms 3D profiling of atmospheric plumes in real time [74].

Raman remote sensing includes Raman lidar, which

measures the intensity of Raman light detected from one or

more analyte Raman bands. To quantify the analyte, the

Raman band of nitrogen in the atmosphere is used as an

internal standard. An advantage of Raman lidar is that its

laser transmitter is simpler to automate than that for tradi-

tional lidar. Raman lidar has been extensively employed to

make three-dimensional maps of water in the atmosphere

extending dozens of kilometers. Other analytes such as NO,

CO, H2S, and hydrocarbons have also been mapped.
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2.1 INTRODUCTION

Raman imaging combines the visual perception of digital

imaging technology with the objective molecular informa-

tion from Raman spectroscopy. In its most fundamental

definition, a Raman image is an array of spatially accurate

Raman spectra. Raman imaging is used synonymously with

Raman chemical imaging [1], Raman hyperspectral imaging,

and Raman molecular imaging. Closely related terminology

includes multispectral imaging (<10 spectral bands), hyper-

spectral imaging (10–1000 spectral bands), and ultraspectral

imaging (>1000 spectral bands).

A chief motivation for applying Raman imaging in ma-

terials characterization is that most materials are spatially

heterogeneous in composition and structure. There is a

fundamental need and desire to measure material properties

in two and three spatial dimensions in order to fully under-

stand material identity, compositional distribution, confor-

mational distribution, and how these properties relate

to performance. Raman imaging addresses this need by

providing an efficient, intuitive means of visualizing the

two- and three-dimensional architectures of materials in a

nondestructive and noninvasive manner.

Raman imaging instruments are the tools used to deter-

minewhere molecule-specific Raman scatter arises in highly

heterogeneous materials. These instruments are used to

generate hundreds, thousands, or even millions of indepen-

dent, spatially resolved Raman spectra from the material of

interest. Figure 2.1 shows the data structure known as a

hyperspectral data cube consisting of X and Y (and even Z)

spatial dimensions and a wavelength (i.e., Raman shift,

cm�1) dimension obtained during a typical Raman imaging

experiment. The resulting hyperspectral data cube consists of

a series of wavelength-specific images where each pixel

contains a Raman spectrum associated with the material

imaged at that location. The Raman spectra in the hypercube

are generally processed to reveal image contrast that is

chemical specific without the need for stains, dyes, or

contrast agents. Consequently, there is often a reduced

burden or even no need for sample preparation unlike many

other material analysis tools.

TheRaman spectra extracted from individual components

compared to the mean spectral signature within the hyper-

spectral data cube in Figure 2.1d exemplify the analytical

value that Raman imaging provides over traditional bulk

spectroscopic measurements. The mean spectrum—

representative of a bulk Raman spectral measurement—is

very different from the localized spectral profile of individual

particles. Spatial sampling allows more reliable identifica-

tion in real-world mixtures by exploiting the natural spatial

variation. It also allows the use of chemometric processing

tools that can use the resulting spectral variability to identify

the individual components.

Raman imaging instrumentation advancements over the

years have paralleled progression in Raman spectroscopy

instrumentation. Like Raman spectroscopy, Raman imaging

has benefited from advancements in laser technology that

provide a highly monochromatic source, multilayer dielec-

tric and holographic dichroic filters that effectively remove

Rayleigh scattered laser light, imaging spectrometers that

isolate wavelengths of interest, highly sensitive charge-

coupled device (CCD) imaging detectors, and powerful PCs

having sufficient data storage capacities and processing

speeds capable of handling the large data files obtained in

a Raman imaging experiment. Other developments in Raman

spectroscopy and Raman imaging instrumentation include

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
Copyright � 2010 John Wiley & Sons, Inc.
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increased automation, improved ease of use, and enhanced

hardware robustness and stability. Due to these instrumental

improvements, there has been a dramatic increase in use and

acceptance of Raman imaging for a whole host of industrial,

forensic, and medical applications.

The focus of this chapter is on Raman imaging instrumen-

tation. Here we detail technological approaches currently

used in Raman imaging instrumentation, Raman instrumen-

tation platform types, signal-enhanced Raman instrumenta-

tion that address one of the fundamental limitations ofRaman,

that is, low light levels, tandem Raman imaging instruments

that benefit from orthogonal information obtained from mul-

tiple sensor types, and how to assess performance of a Raman

imaging instrument.

2.2 RAMAN IMAGING INSTRUMENTATION

TYPES

Over the past three decades, numerous instrumental designs

for performing Raman imaging have been developed and

commercialized. These instruments can be broadly classified

as scanning (i.e., mapping) approaches or wide-field (i.e.,

global) source illumination approaches.

In this section, general comparisonswill bemade between

scanning andwide-field approaches. A summary comparison

of each approach is shown in Figure 2.2.

2.2.1 Scanning

Themajority of Raman imaging since the development of the

first Raman microprobes in the 1970s has been performed

using scanning-based instrumentation [2]. In scanning meth-

ods, Raman ‘‘maps’’ of the sample surface are generated by

focusing a laser beam source onto the surface of the sample

and collecting one or more spectra at each spatial location

using either a dispersive spectrograph or an interferome-

ter [3]. Scanning methods can be further divided into point-

by-point scanning and line scanning systems.

2.2.1.1 Point-by-Point Scanning In point-by-point scan-

ning (i.e., mapping) Raman instruments, a laser is focused to

a small spot on the sample surface. ARaman spectrum is then

acquired from each spatial position using a dispersive spec-

trograph equipped with an array detector or using an inter-

ferometer. Raman images are generated by raster scanning

the sample through the laser beam using an X, Y (lateral

scanning), Z (axial scanning) stage, collecting a spectrum at

each position, and reconstructing the collected data in the

form of an image (shown schematically in Figure 2.2). Often

point-by-point scanning Raman imaging instruments are

operated in a confocal configuration in which the source

illumination and/or collected scattered light is focused

through pinholes to localize the excitation and collection

volumes from the sample. Using a confocal approach often
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reduces background fluorescence and helps reduce the ef-

fects of secondary scattering, but has the disadvantage of

eliminating up to 98% of the captured Raman photons and

further complication of poorly defined axial sampling.

Amajor limitation of point-by-point scanning approaches

is lengthy experimentation times, Tp, since the duration is

proportional to the number of pixels in the Raman image, n.

Since 98% of the Raman signal is lost in confocal point

scanning systems, even longer acquisition times are neces-

sary. If sample fluorescence is a problem, additional time

may be required to allow for photobleaching for each new

spatial location. In the past, scan times of hours to days were

not uncommon for point-by-point experiments. The lengthy

acquisition times placed practical limits on the number of

pixels collected to form an image, limiting its utility as a

routine imaging tool for materials characterization. Today,

however, advancements in scanning probe technology such

asWiTec’s continuous point-by-point scanning approach [4]

have significantly reduced acquisition times associated with

point-by-point Raman imaging. Individual spectra may be

acquired in milliseconds making the acquisition of Raman

images with thousands of spectra practical in a matter of

minutes. The spatial resolution of point scanning systems is

limited by the size of the laser spot (�1 mm) and the accuracy,

reproducibility, and stability associated with the rastering

stage. For light-absorbing materials having low damage

thresholds, localized thermal expansion and photoinduced

damage present further imaging challenges. This is especial-

ly problematic when attempting to find one laser power

density that is suitable for complex sample matrices having

materials possessing a variety of damage thresholds.

Despite the inherent limitation of point-by-point scanning

approaches to Raman imaging, the technique is mature and

has been applied successfully in numerous applications

[5–8]. Another advantage of point scan Raman imaging is

the ability to efficiently collect an entire spectrum. This is

particularly advantageous for work involving new material

systems in which the underlying spectroscopy is poorly

understood and a full spectrum may provide the required

information. Having the full spectrum available also im-

proves the chances that a chemometric process applied to the

data will be able to pull out meaningful information.

2.2.1.2 Line Scanning An extension of the point-by-

point scanning approach is line scanning [9, 10]. In line

scanning, a laser beam is elongated in one dimension to form

a line with the use of cylindrical optics or a scanning

mechanism such as a moving mirror. The laser line that

illuminates the sample is oriented parallel to the entrance slit

of a dispersive spectrograph equipped with a two-dimen-

sional CCD array detector. In this configuration, a spectrum

may be captured for each row of the CCD detector, which

corresponds to a spatial location along the length of the laser

line. Like point scanning, mechanical scanning is required

for image formation with line scanning approaches (shown

schematically in Figure 2.2), but scanning is required only in

the direction perpendicular to the laser line. As a result, the

number of spatial channels is reduced by
ffiffiffi
n

p
decreasing the

Wide-field imaging
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FIGURE 2.2 Hyperspectral data cube construct and trade-offs associated with scanning-based and wide-field Raman imaging instruments.
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experiment time, Tl, such that

T1 ¼ 1ffiffiffi
n

p
� �

Tp ð2:1Þ

Equation 2.1 assumes that there is ample laser power avail-

able to maintain a comparable laser power density to the

point scanning approach for a given experiment. The image

spatial resolution for the line scanning approach differs for

the x- and y-axes. The resolution in the direction parallel to

the laser line is determined by the magnification of the

collection optic and the pixel size associated with the de-

tector. Along this direction, diffraction-limited spatial reso-

lution is achievable. In the direction perpendicular to the laser

line, however, spatial resolution is dictated by the laser beam

width and the precision of the sampling stage rastering

mechanics.

While not as widely used as its point scanning pre-

decessor, line scanning Raman imaging systems are com-

mercially available and have been utilized in numerous

applications [9–12]. A relatively new development in line

scanning technology is Renishaw’s StreamLine� Plus im-

aging that utilizes a time-interleaved sampling approach for

reducing data acquisition times. Microscope optics are used

to illuminate a line on the sample, which is moved relative

to the sample by adjusting a motorized microscope stage

securing the sample beneath an objective lens. Spectral data

are read continuously from the detector as the grating

motion is synchronized with the movement of the line

across the sample [13].

2.2.2 Wide-Field Raman Imaging

A major motivation for performing Raman imaging is the

need to rapidly and accurately characterize sample morphol-

ogy and composition in two or three spatial dimensions and

perhaps additional dimensions such as time or temperature. It

may also be assumed that the higher the image fidelity (i.e.,

image definition), the higher the quality of the image and the

more complete the accurate assessment of material consti-

tuents. Raman imaging methodologies have advanced in the

past two decades to enable collection of high-resolution

(spectral and spatial) data through what have become known

as wide-field (i.e., global) imaging approaches.

In wide-field Raman imaging systems, the entire sample

field of view is illuminated (i.e., globally illuminated) with

laser light and analyzed in parallel. Numerous wide-field

Raman imaging approaches have been demonstrated andwill

be described in greater detail (below). The majority of these

approaches involve collecting images at discrete frequencies

(shown schematically in Figure 2.2).

Since two spatial dimensions are collected simultaneous-

ly, the duration of awide-field experiment,Tw, is proportional

to the number of spectral channels, m, as opposed to the

number of image pixels, n, as in point and line scanning

approaches.

The experimentation time relationships between wide-

field and point and line scanning approaches are shown in

Equations 2.2 and 2.3. The wide-field imaging time saving is

realized when m is less than n or
ffiffiffi
n

p
for point-by-point and

line scanning, respectively. With these equations, it is as-

sumed that the delivery and collection efficiencies of the

optics are identical for each approach, the time delay between

acquisitions (i.e., stage movement or filter tuning) is negli-

gible, the laser power is adjusted so that the power density at

the sample remains constant and below any damage thresh-

old of the sample, and the image is square.

Tw ¼ m

n

� �
Tp ð2:2Þ

Tw ¼ mffiffiffi
n

p
� �

T1 ð2:3Þ

For most materials characterization application needs, a

small number of spectral bands (typically<30) are adequate

to provide sufficient chemical and spatial information for the

analytes of interest. Reducing the number of spectral chan-

nels shortens the total experiment time and lowers the burden

associated with data storage and computer processing re-

quirements. In manymaterials characterization applications,

a very small number of spectral bands (i.e., <5) may be

required allowing rapid wavelength tuning to support

dynamic or ‘‘real-time’’ Raman imaging, which is a capa-

bility not feasible with scanning methods. With scanning

Raman methods, a reduction in the number of spectral

channels has no real impact on experiment times since the

entire spectrum is captured simultaneously. Time reduction

with scanning methods can result mainly by reducing n,

which negatively affects the spatial resolution or field of view

of the resultant Raman image.

Spatial resolution for wide-field imaging is normally

dictated by a convolution of diffraction theory, CCD pixel

size, andmagnification imparted by the imaging system at the

CCD. The Rayleigh criterion-based diffraction-limited res-

olution (r) is given by

r ¼ 1:22l

2NA
ð2:4Þ

where l is the wavelength of light and NA is the numerical

aperture of the light gathering optic. A spatial resolution of

250 nm has been demonstrated using an electrooptically

tunable filter-based Raman imaging microscope system

equipped with a 514 nm laser [14]. A spatial resolution of

250 nm, however, does not limit the ability to image even

smaller features of brightly scattering materials. Figure 2.3,

for example, shows a Raman imaging example from a SERS

active gold surface acquired using a wide-field Raman
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imaging system. Raman imaging reveals ‘‘hot spots’’ of

analyte distribution on the surface. Features as small as

80 nm are resolvable.

Wide-field Raman imaging has been demonstrated for a

wide variety of materials characterization applications with

an emphasis on polymer [15–17], semiconductor [18], bio-

medical [19–21], pharmaceutical [23, 24], and homeland

security applications [25–27].

2.3 WIDE-FIELD RAMAN IMAGING

INSTRUMENTATION DESIGNS

Avariety of instrumental developments have occurred over the

past two decades that fall under the category of wide-field

Raman imaging system designs. Such developments include

fiber array assemblies [28–32], tunable laser and fixed [33]

or rotating dielectric filters [34], acoustooptic tunable filters

(AOTFs) [35–38], and liquid crystal tunable filters (LCTFs)

[39–42]. In addition, wide-field Raman imaging techniques

such as coherent anti-Stokes Raman scattering (CARS) and

stimulated Raman will be discussed in Section 2.5.

2.3.1 Fiber Array Raman Imaging

A more recent approach to Raman imaging that has gained

popularity in the last decade is based on fiber optic arrays.

This technology has been termed fiber array spectral trans-

lators (FAST) [27], dimension reduction arrays [29–31], and

fiber image compression [32]. Two spatial dimensions and

one spectral dimension of data may be collected simulta-

neously with fiber arrays by focusing Raman light captured

from a globally illuminated field of view onto the proximal

end of a two-dimensional array of optical fibers. The distal

end of the fiber array is then drawn into a linear array and

inserted parallel into the entrance slit of a dispersive spec-

trometer equipped with an imaging format CCD detector.

The fiber array enables two spatial dimensions of data to be

reduced to a single dimension, which is then dispersed fiber

by fiber along the vertical axis of the spectrometer entrance

slit onto the CCD camera. In a single frame acquisition, all of

the spatial and spectral information is obtained simulta-

neously. Software is then used to unravel the embedded

spatial and spectral information by reconstructing the data

into a hyperspectral data cube in which each pixel of the

reconstructed image contains an associated, full Raman

spectrum (shown schematically in Figure 2.4).

Fiber arrays have an inherent speed advantage over

competing Raman imaging techniques for applications that

require substantial spectral information but only limited

spatial information. For reasonably bright Raman scatterers,

the data acquisition time for a single field of view is com-

parable to the time it takes to acquire a single dispersive

spectrum. Equations 2.5–2.7 show the relationship between

the experiment time required using a fiber array Raman

imaging system in comparison to point-by-point scanning,

line scanning, and (wavelength scanning) wide-field Raman

imaging instruments where ROI is the number of regions of

interest acquired in the experiment. The assumptions that

apply to Equations 2.2 and 2.3 also apply to Equations 2.5,

2.6. Equations 2.5–2.7 further assume that the laser power

may be adjusted to provide comparable power density at each

FIGURE2.3 (a) Raman image of a SERS active gold surface acquired using awide-fieldRaman imaging system. (b) Raman imaging reveals

‘‘hot spots’’ as small as 80 nm on the surface.
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spatial location such that the amount of Raman signal

produced at each spatial location is equivalent for each

technique.

TFAST ¼ Tp

n
� ROI ð2:5Þ

TFAST ¼ Tlffiffiffi
n

p � ROI ð2:6Þ

TFAST ¼ Tw

m
� ROI ð2:7Þ

Other advantages of using fiber arrays for Raman imaging

spectral resolution and spectral coverage are governed by the

dispersion properties of the dispersive spectrometer used in

the analysis. Fiber array image fidelity (number of pixels) is

limited by the number of CCD detector rows. High-definition

imagesmay be obtainedwith this technique by collecting and

reconstructing fiber array Raman images from multiple

adjacent fields of view. Alternatively, multiple spectrometers

each equipped with CCDs may be used to increase image

definition. An alternate implementation of Raman imaging

with fiber arrays is to use the data it produces to create a color

map that is superimposed on a high spatial resolution gray-

scale image of the sample acquired by a standard video

camera. Another drawback of using fiber arrays for Raman

imaging is susceptibility of pixel-to-pixel crosstalk as a result

of imperfect image performance of modern spectrometers.

Crosstalk may be minimized by intentional spacing of fibers

or specialized fiber mapping arrangements in which adjacent

fibers in the object field are also juxtaposed in the image field.

Manufacturability of the fiber arrays is also a current chal-

lenge of the technique.

Fiber array Raman imaging has been demonstrated in

several applications including analysis of microcompo-

sites and biomaterials [32] and standoff detection of

explosives [27].

2.3.2 Dielectric Interference Filter

Raman imaging with the use of dielectric interference filters

was first demonstrated in the early 1990s. Batchelder et al.

placed mechanically rotatable dielectric interference filters

in the infinity-corrected path of a Raman microscope [34].

Raman images were generated by capturing images of a

globally illuminated sample surface through the dielectric

filters with an imaging format CCD detector. The center

passband of the dielectric filters that had a reasonably narrow

bandpass (20 cm�1) could be tuned by mechanically rotating
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the filters. Numerous filters were required to tune across the

entire Raman spectrum (Figure 2.5).

Use of dielectric interference filters for Raman imaging

has several advantages including simplicity, relatively low-

cost components, and spatial resolutions that approached

diffraction limits. Drawbacks of this approach include image

shift associated with the mechanical movement of the

filters and bandpass position inhomogeneity across the field

of view.

Fixed dielectric filters have also been used in conjunction

with tunable lasers to perform Raman imaging [33]. This

approach addresses key limitations of the angle-tuned di-

electric interference filter approach to Raman imaging, but

suffers from high laser source background since Rayleigh

scatter rejection becomes a major challenge.

2.3.3 Acoustooptic Tunable Filter

AOTFs were first demonstrated as an imaging spectrometer

for performingRaman imaging in the early 1990s [35, 36, 38,

43]. AOTFs are solid-state, no moving parts devices that

operate based on the interaction of light with a traveling

acoustic sound wave in an anisotropic crystal medium. A

diffracted, narrow spectral bandpass of the incident light is

created by applying an rf signal to the AOTF. Bandpass

tuning and diffracted light intensity are achieved under

computer control by changing the applied rf frequency and

power, respectively (shown schematically in Figure 2.6).

Advantages of AOTFs include high optical throughput

(40% for unpolarized light), variable spectral bandpass,

broad spectral coverage (UV to mid-IR), and rapid tuning

speeds (�100 ms). AOTFs possess characteristics that limit

their applicability as a Raman imaging spectrometer, how-

ever, including broad spectral bandpasses (50 cm�1—about

10 times worse than a typical Raman spectrometer) and

spatial resolutions approximately 5 times worse than dif-

fraction-limited conditions.

Despite the limitations of AOTFs for Raman imaging,

these devices have been applied successfully in numerous

applications including studies of polymer blend systems [36]

and pathology analysis [37].

2.3.4 Liquid Crystal Imaging Spectrometers

For decades, Raman imaging instrumentation developers

have aspired to build systems that provide users the ability

to capture high spatial and spectral resolution images and to

do so in a rapid, efficient, and cost-effective way. At present,

it is the view of the authors that wide-field Raman imaging

systems equipped with liquid crystal imaging spectrometers

come closest to realizing those goals.

Most liquid crystal imaging spectrometers are capable of

providing diffraction-limited spatial resolution with spectral

resolutions rivaling that of a single-stage dispersive mono-

chromator. These devices also provide high out-of-passband

rejection efficiencies and broad free spectral ranges, operate

in the visible and near-infrared portions of the spectrum

(400–2500 nm), and have high overall etendues. Since these

devices are electrooptical having no mechanical moving

parts, they may be rapidly tuned with automatable random

accessing under computer control. Limitations of liquid

crystal imaging spectrometers include inefficient full spec-

tral data collection and low to moderate throughput (in some

designs).

FIGURE2.5 Wide-fieldRaman imaging instrument design incorporatingmechanically rotatable dielectric interference filters in the infinity-

corrected path of a Raman microscope.
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In the following sections, we summarize five types of

liquid crystal imaging spectrometers that have been imple-

mented for Raman imaging.

2.3.4.1 Lyot LCTF French astronomer B. Lyot intro-

duced the first birefringent interference filter in 1944 [44].

Lyot filters are currently composed of a series of stages

cascaded together, each consisting of fixed retardance bi-

refringent elements bonded to a nematic liquid crystal (LC)

wave plate (W) sandwiched and preferentially oriented

between two parallel linear polarizers. The multiple Lyot

stages cascaded together result in a single, narrow passband

of light due to constructive and destructive interference. The

center wavelength of the filter may be controlled electroop-

tically under computer control by applying a potential (V) to

the LC wave plate. Filter retardance is determined by the

thickness of each fixed birefringent element and doubles with

each successive stage, resulting in a transmission spectrum

having half the free spectral range and half the bandpass of

the previous stage. The bandpass and free spectral range of

the Lyot filter are determined by the thickest and the thinnest

birefringent elements, which are fixed duringmanufacturing.

Lyot filter designs are capable of spectral bandpasses ranging

from 30 down to 0.05 nm.

The overall transmittance of a Lyot filter has a sinc

function profile and is the product of the individual filter

stage transmittances. A Lyot filter with a continuously tun-

able bandpass of 7.6 cm�1 and a free spectral range greater

than 4600 cm�1 (500–650 nm) suitable for Raman imaging

has been demonstrated with a peak transmittance of only

16%. The poor overall transmittance is a consequence of the

relatively large number of highly absorbing polarizers and

imperfect wave plate action [42].

Compared to interferometer technologies such as Fabry–

Perot or Michelson interferometers, birefringence filters

such as Lyot filters have significantly relaxed tolerances

in precision requirements of the optical components and

are much less sensitive to effects of vibration, temperature

changes, and nonuniformity across the open optical aperture

enabling large aperture devices to be manufactured support-

ing wide-field Raman imaging system designs. The largest

drawback of the Lyot design is low optical throughput as a

result of the large number of polarizers needed to achieve a

givenfinesse (free spectral range divided by bandpasswidth).

For Raman imaging applications, nearly 20 polarizers are

required each having a transmission loss of approximately

10% [40].

2.3.4.2 Solc Filters To address the low overall transmit-

tance of Lyot filters, Solc proposed a fanout and folded filter

design [45] that improves optical throughput by using only

two polarizers in the design. Unfortunately in this design, the

transmission spectrum has side lobes [46] that can cause low

out-of-passband rejection efficiency making the Solc filter a

poor choice for Raman imaging applications.

2.3.4.3 Evans Split Element Filters Evans later pro-

posed a split element filter design [47] that has balanced
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FIGURE 2.6 Schematics of an acoustooptical tunable filter. Collimated incident light is diffracted as it passes through the device creating

a narrow spectral bandpass of light when an rf signal is applied to the AOTF.
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manufacturability, throughput, and side lobe characteristics.

The Evans split element design reduced the number of

polarizers to approximately one half the original Lyot designs

resulting in a doubling of the optical throughput while

maintaining a narrow spectral bandpass (9 cm�1) and ex-

tending the free spectral range for Raman imaging applica-

tions [24, 47, 48].

Throughout the 1990s and early 2000s, Evans split ele-

ment liquid crystal imaging spectrometers represented the

state-of-the-art technology for wide-field Raman imaging

applications. While the Evans filter properties exhibit ac-

ceptable performance for numerous materials characteriza-

tion applications, application demands have driven the need

for the development of imaging spectrometers having even

higher optical throughput for extremely low light imaging

applications, such as the detection of biothreat materials, and

improved thermal stability for applications requiring ex-

tremely high spectral bandpass precision, such as polymorph

discrimination.

2.3.4.4 Multiconjugate Filter To address increasing de-

mands for improved optical throughput and thermal stability,

a new class of liquid crystal imaging spectrometer, multi-

conjugate filter (MCF), has been developed [49]. MCF

combines the high transmittance associated with a Solc filter

and the high out-of-band rejection efficiency of the Lyot

filter. MCF differs from previous generation devices in that

each stage of the filter has an increased finesse—1.5 times the

finesse of Evans filters and 2 times the finesse compared to a

typical Lyot design. Increasing the finesse of individual

stages allows a filter to be manufactured having fewer stages

to achieve an overall finesse comparable to earlier generation

filters with greater optical throughput over a wider spectral

range (shown schematically in Figure 2.7a).

MCF also differs from previous generation filters in how

thermal stability is managed. Evans filters, for instance, use

an active temperature correction strategy that is based on

measuring capacitance in the LC variable retarder. MCF

instead uses a passive temperature correction strategy to
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FIGURE2.7 Schematic showing a comparison of the birefringent filter structure for Evans (a) andMCF (b) designs. Comparison of response

to thermal shock for the Evans filter (c) and the MCF (d).
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compensate for thermal effects on the device. This is

achieved by precisely maintaining chamber thickness for

each LC electrooptical component over a large range of

temperatures. The result is a highly predictable and repeat-

able temperature behavior for each electrooptical component

(Figure 2.7b).

Table 2.1 shows a side-by-side comparison of filter prop-

erties of MCF and the previous state-of-the-art Evans split

element design.

2.3.4.5 Fabry–Perot Liquid Crystal Tunable Filter For

completeness, it is worth mentioning the use of Fabry–Perot

liquid crystal imaging spectrometers for Raman imaging

applications. A Fabry–Perot device having a 20 cm�1 spec-

tral bandpass has been demonstrated in a Raman imaging

microscope [42]. While exhibiting excellent image quality,

the Fabry–Perot device suffers from moderate spectral res-

olution, low out-of-band rejection, limited free spectral

range, and small acceptance angle and requires extensive

measures formaintaining thermal stability to avoid thermally

induced bandpass drift.

2.4 RAMAN IMAGING INSTRUMENTATION

PLATFORMS

Like normal Raman spectroscopy, Raman imaging had to

wait for technological developments to become a practical

tool that could later be commercialized. Most of the current

Raman imaging instrument platforms benefit from the use of

continuous-wave (CW) or pulsed laser sources to provide

intense, highly monochromatic light, light directing optics

such as fiber optics, lenses, and microscope objectives,

multilayer dielectric or holographic optical filters for reject-

ing Rayleigh scattered light, wavelength selection devices

including gratings from a dispersive spectrometer, interfer-

ometer, or electronically tunable narrow bandpass imaging

spectrometers, highly sensitive detectors such as CCDs, and

PCs having the processing speeds and data storage capacity

for collecting, processing, and displaying often very large

data sets.

Raman imaging platforms have taken on numerous

shapes, sizes, and capabilities over the years. Raman imaging

instrumentation has proven effective in microscopic, mac-

roscopic, flexible endoscopic, and even standoff telescopic

analyses. This section will highlight examples of each.

2.4.1 Raman Imaging Microscopes

Currently, the most common platform for conducting Raman

imaging has been the light microscope. Raman imaging

performed in this manner provides high spatial resolution

images allowing for localized analysis of material compo-

sition and structure from the millimeter to submicron scale.

Laser light is typically delivered to the microscope plat-

form via optical fibers or through one or more direct beam

designs. Confocal Raman designs often include the use of

pinhole apertures in the laser delivery path to restrict the

illumination volume near the sample surface. Line scanning

systems typically use cylindrical optics while wide-field

imaging systems use beam expanding optics to shape the

beam prior to delivering the laser light to the sample. Optical

filters may be required to condition the laser beam to isolate a

particular laser wavelength of interest. Most designs deliver

laser light to the sample through a microscope objective and

utilize the same optic to collect the 180� backscattered

Raman light from the sample. Additional optical filters such

as dielectric interference filters or holographic notch filters

are usually required to remove the Rayleigh scattered laser

light from the detection channel. The filtered light is then

presented to one or more light dispersion or frequency

isolation devices including an interferometer, dispersive

spectrograph, or tunable filter. Finally, the light is detected

using one or more detector types depending on the wave-

length range over which the Raman scattering occurs as well

as the type of Raman imaging system being used. Figure 2.8

shows a point-by-point scanning Raman imaging result from

an over-the-counter (OTC) analgesic tablet performed by

Dr. Simon FitzGerald at HORIBA Scientific using an

XploRA (HORIBA Scientific) confocal Raman microscope.

The excitation laser wavelength was 638 nm and the grating

was 1200 grooves/mm. The entire map is composed of

50,901 spectra, covering 1.8� 0.7 cm2 at 200ms per point

in SWIFT� mode. Data were analyzed using the modeling

function in LabSpec 5 (HORIBA Scientific), which employs

a direct classical least square (DCLS) algorithm. Three

models that represent aspirin (Figure 2.8a), acetaminophen

(Figure 2.8b), and caffeine (Figure 2.8c) are shown. Scores of

individual spectra with respect to a model represent the

spatial distribution in the sample of the chemical the model

represents. Figure 2.8a shows the scores image of individual

TABLE 2.1 Comparison of Previous State-of-the-Art Evans

Split Element LCTF with Multiconjugate Filter

Evans Split

Element Filter

Multiconjugate

Filter

Design Green Raman Green Blue Raman

Spectral range 500–720 nm 445–740 nm

Polarized peak

transmission

14% @ 550 nm 26% @ 550 nm

24% @ 650 nm 32% @ 650 nm

Nominal FWHM

@ 550 nm

0.30 nm (9.9 cm�1) 0.42 nm (13.8 cm�1)

Angular field of

view

�3� �3�

Tuning accuracy

@ 550 nm

�0.1 nm (3.3 cm�1) �0.05 nm (1.7 cm�1)
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spectra with respect to the aspirin model and represents the

spatial distribution of aspirin in the tablet. The scores images

representing the spatial distribution of acetaminophen and

caffeine in the tablet are shown in Figure 2.8b and c,

respectively.

Figure 2.9 shows results from a commercial Falcon II�
(ChemImage Corporation, Pittsburgh, PA) wide-field Raman

imaging system used to characterize the budesonide active

pharmaceutical ingredient (API) particle size distribution

(PSD) in a sample of Rhinocort Aqua� nasal spray. Wide-

field Raman imaging is currently undergoing validation as a

method for characterizing API PSD in nasal aerosol and

spray products as part of bioequivalence (BE) testing for

new drug applications (NDAs) and abbreviated new drug

applications (ANDAs) [23]. Figure 2.9a shows themaximum

chord PSD of the Rhinocort Aqua� API, budesonide, asso-

ciated with the Raman image shown in Figure 2.1c. Also

shown is a photograph of the Falcon II� wide-field Raman

imaging system used to collect the data.

2.4.2 Raman Imaging Macroscopes

Until recently, Raman imaging has been constrained mainly

to the microscopic world (i.e., 0.25–500 mm). As technolog-

ical improvements continue to be made in the area of high

power output solid-state lasers, scaling Raman images up to

the centimeter and even meter scales has suddenly become

practical.

Figure 2.10 shows Raman image results collected using a

hyperspectral contrast imager system (HCIS, ChemImage

Corporation) for the macroscopic examination of forensic

evidence under contract to the Technical Support Working

FIGURE2.8 Commercialpoint-by-point scanningRamanimagingsystem(XploRA,HORIBAScientific): (a) aspirin, (b) acetaminophen, and

(c) caffeine scores images and respective Raman spectra associated with a pharmaceutical tablet, and (d) photograph of XploRA system.
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FIGURE 2.9 Commercial wide-field Raman imaging system

(Falcon II�, ChemImage Corporation): (a) the maximum chord

PSD of the Rhinocort Aqua� API, budesonide, associated with the

budesonide particle Raman image shown in Figure 2.1 and (b)

Falcon II� system photograph.
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Group (TSWG) for counterterrorism. This system is capable

of operation from 350 to 1700 nm and provides absorption/

reflectance, fluorescence/luminescence, and Raman hyper-

spectral image sets. The HCIS incorporates a 2W, 532 nm

laser and a liquid crystal imaging spectrometer for use in

Raman imaging. Figure 2.10 shows macro-Raman imaging

of ‘‘crack’’ and powder forms of cocaine acquired using

HCIS. This result demonstrates the ability to identify and

differentiate drugs of abuse on a macroscopic scale.

2.4.3 Raman Imaging Fiberscopes

Althoughmost of today’s Raman imaging instruments utilize

research-grade light microscope technology as the image-

gathering platform, the application of Raman imaging to

in situ industrial process monitoring and in vivo clinical

analysis is often made possible through the use of fiber-

scopes. Fiberscopes are an ideal platform for industrial and

clinical applications since these settings often require equip-

ment that is lightweight, compact, and rugged enough to

operate in harsh, hard to reach environments.

The first Raman imaging fiberscope utilized an AOTF but

suffered limitations inherent to AOTFs such as low spectral

resolution [50]. ARaman imaging fiberscope design employ-

ing LCTF was later described [51]. In this design, a coherent

imaging fiber bundle within the fiberscope was coupled to a

video CCD for real-time video imaging of the analysis area

and an LC imaging spectrometer coupled with an imaging

format CCD for Raman image acquisition. The fiberscope

was engineered such that laser delivery and Raman image

collection occurred in that same unit. The fiberscope tip

contained the necessary optics to filter the scattered radiation

generated by the interaction of the laser with the laser

delivery fiber and the laser rejection optics essential for

removing theRayleigh scattered light. Designmeasureswere

also taken to enable operation of the device in high-temper-

ature environments up to 315�C while maintaining high

signal to background (S/B) Raman imaging performance.

Figure 2.11 shows an example Raman image of a phar-

maceutical tablet acquired using a Raman imaging fiber-

scope. The figure shows a bright-field image (Figure 2.11a),

grayscale Raman image (Figure 2.11b) revealing aspirin

domains (bright regions), and a plot of the imaging spec-

trometer Raman spectra (Figure 2.11c) from region 1

(localized aspirin) and region 2 (excipient).

2.4.4 Raman Imaging Telescopes

In the past two decades, researchers have made great strides

in demonstrating the utility of telescopes for performing

standoff Raman measurements of solids, liquids, and gases

at ranges up to 500m [52]. Applications range from

standoff Raman detection of minerals on planetary surfaces

to remote detection of explosive residues to standoff detec-
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FIGURE 2.10 Raman imaging macroscope (HCIS, ChemImage Corporation): optical image (a) and macro-Raman image of ‘‘crack’’

(i.e., 2949 cm�1 Raman image (b) and powder cocaine (2800 cm�1 Raman image (c) forms of cocaine acquired using HCIS, library Raman

spectra (d), and photograph of HCIS system (e).
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tion of atmospheric gases [53]. More recently, researches

have begun to capitalize on the added value that imaging

provides.

The vast majority of standoff Raman systems utilize

pulsed laser excitation with gated detection enabling

detection of relatively weak Raman signatures in the pres-

ence of large ambient backgrounds and highly fluorescent

materials. Typically, a nearly collimated laser beam pulse is

directed toward a remote target. A portion of the Raman

scattered radiation is captured and refocused by the

optical tube assembly of the telescope. The focused light is

normally conditioned by laser rejection filters, f-number

matching lenses, and/or fiber optic couplers that present the

light to the entrance slit of a dispersive spectrometer

equipped with an intensified CCD detector. For Raman

imaging, researchers introduce the use of tunable filters or

FAST bundles [27].

Figure 2.12 shows a standoff FAST Raman chemical

imaging example from a Styrofoam/high-density polyethyl-

ene (HDPE) target acquired using a standoff Raman chem-

ical imaging sensor developed by ChemImage Corporation.

The target consists of letters that spell the word ‘‘FAST’’ cut

from Styrofoam plates and were adhered to a clear plastic

(HDPE) storage bin. Data were acquired at a 30m standoff

distance over a 17� 6 montage where each region of interest

in the montage captured 36 spectra simultaneously through

the FAST bundle. The figure shows FAST reconstructions for

Raman bands associated with the Styrofoam and HDPE,

respectively. The data collection time was on the order of

20min and covered an area of 225 cm2.

2.5 SIGNAL-ENHANCED RAMAN IMAGING

INSTRUMENTATION TECHNOLOGIES

‘‘Normal’’ Raman is inherently a low-sensitivity technique

due to the small cross section at the point of analysis. In

parallel with Raman instrumental developments have been

technological advancements that help address this key lim-

itation of Raman and Raman imaging. This section briefly

introduces signal-enhancing techniques and associated

instrumentation.

2.5.1 SERS Raman Imaging

Surface-enhanced Raman scattering (SERS) [54, 55] in-

volves absorbing molecules onto a rough metal surface prior

to analysis resulting in a much stronger Raman signal than

FIGURE 2.11 Commercial Raman imaging fiberscope (Raven�, ChemImage Corporation): bright-field image (a) and grayscale Raman

chemical image (b) revealing aspirin (light) and excipient (dark) locations in an over-the-counter pharmaceutical tablet collected using a

Raman fiberscope. LCTF spectra (c) from aspirin regions (1) and excipient regions (2). Photograph of Raven� fiberscope (d).
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that obtained using normal Raman. To achieve the SERS

enhancement, the excitation wavelength of the laser needs to

be the same as, or close to, the plasma wavelength of the

metal surface on which the molecules are absorbed, and the

metal surfacemust be highly reflective and atomically rough.

SERS Raman imaging may be performed using most com-

mercially available Raman point, line, or wide-field imaging

systems.

Recent work performed by Guicheteau et al. [56] dem-

onstrated how SERS Raman imaging can greatly enhance

conventional Raman imaging of biologicalmaterials. In this

work, normal and SERSRaman imagingwere performed on

single biological spores in complex biological mixtures

using a wide-field Raman imaging platform. Although

detection was achieved using both approaches, a

3000–5000� enhancement was observed with SERS Ra-

man imaging compared to normal Raman imaging. As a

result of the signal enhancement provided by SERS, there

was a significant improvement in data SNR, reduced laser

power density demands thus lowering the chance of pho-

toinduced sample damage, and significant reduction in

acquisition times.

2.5.2 SERRS Raman Imaging

A technique that provides even greater signal enhancements

over SERS alone is surface-enhanced resonance Raman

scattering (SERRS) [57, 58]. SERRS is a single process that

is a combination of SERS and resonance Raman scattering.

Resonance Raman scattering takes place when the energy of

the laser matches, or closely matches, the energy of an

electronic transition in a molecule. This makes the Raman

signal emitted from the molecule up to four times more

intense than the enhancement obtained by SERS alone. Like

SERS, SERRS Raman imaging may be achieved using

commercially available Raman imaging systems.

In one study, SERS/pre-SERRS (780/633 nm laser

excitation) point-by-point scanning and pre-SERRS line

scanning and SERRS wide-field imaging using an LC

imaging spectrometer were used to characterize

Langmuir–Blodgett (LB) films of methacrylic homopoly-

mer (HPDR13) deposited on silver island films [59]. In

addition to the expected SERRS signal enhancement, the

wide-field SERRS images revealed localized areas exhi-

biting high SERRS activity.
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FIGURE 2.12 Raman imaging telescope (Raman-ST, ChemImage Corporation): digital image (a), 1002 cm�1 FAST Styrofoam Raman
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2.5.3 CARS Raman Imaging

Another Raman signal enhancement technique is CARS [60,

61]. CARS uses two synchronized, near-infrared pulsed

lasers for sample excitation. These two pulsed lasers are at

different wavelengthswith one generating a pump fieldwhile

the other generating a Stokes field. These two fields are

focused on the sample at different angles and the subsequent

interaction between the sample and the lasers creates an anti-

Stokes signal that is much stronger than the signal that would

be generated using conventional Raman spectroscopy. Cur-

rent CARS Raman imaging instruments are typically bread-

board optical bench setups.

Currently, CARS is being used in several application areas

including imaging of biological cells and tissues. CARS

Raman imaging has been used to study the amount of lipids

and fats in vivo in real time [62].With this advancement, there

is promise that CARS could be used for real-time Raman

imaging of proteins and DNA.

Although CARS is more sensitive than conventional Ra-

man microscopy, nonresonant background created when

using CARS limits its sensitivity and makes spectral feature

assignments challenging.

2.5.4 SRS Raman Imaging

Researchers have recently developed a technique called

stimulated Raman scattering (SRS) that helps address the

incoherent background and sensitivity limitations of

CARS [63]. Like CARS, SRS uses two lasers for sample

excitation with one generating a pump field and the other

generating a Stokes field. With SRS, Raman signal given off

from a molecule is intensified when that molecule’s vibra-

tional frequency matches the frequency difference between

the two excitation lasers. When there is no vibrational

frequency to match with the excitation lasers’ difference in

frequency, SRS as well as nonresonant background does not

occur. Like CARS, SRS Raman imaging instrumentation is

typically found in academic settings in an optical bench

configuration or an in-house configured microscope.

SRS has numerous applications in the biomedical imaging

field including tissue and skin imaging as well as drug

delivery monitoring [63, 64]. In one study, SRS was used

to visualize multiple cell structures of varying size and

had the ability to track drug delivery to exact cellular

locations [63].

2.5.5 SORS Raman Imaging

Spatially offset Raman spectroscopy (SORS) [65–67] is

another signal-enhancing technique recently developed that

is capable of collecting weak, subsurface Raman signals.

SORS collects Raman signals from laterally offset regions

away from the pointwhere the laser contacts the sample using

optically breadboard components allowing for relative

movement between the laser illumination and Raman col-

lection areas. Once the spatially offset spectra have been

obtained, multivariate data analysis is applied to resolve the

depth-dependent spectral information. SORS suppresses

fluorescence generated from the sample surface enabling

the collection of very weak Raman signals that would

otherwise be overshadowed by fluorescence.

SORSRaman imaging is finding utility in numerous fields

including the medical and pharmaceutical industries. SORS

has been used to analyze tablets through their packaging to

determine if the drugs are counterfeit [66]. SORS Raman

imaging is also being assessed in medical research as a

potential highly specific, noninvasive diagnostic tool for

breast cancer [66]. Methods are currently being developed

that may allow analysis of breast tissue �10mm deep under

the surface of the breast. SORS may be used to analyze the

soft tissue and calcification deposits to determine if cancer is

present based on the Raman signals emitted, dramatically

reducing the number of needed biopsies [67].

2.6 TANDEM RAMAN IMAGING

INSTRUMENTATION

2.6.1 Raman–SEM/EDS Imaging

A more complete understanding of a material’s spatiochem-

ical makeup often requires both elemental and molecular

information. One useful approach to obtaining such infor-

mation is through the combined use of Raman imaging with

scanning electron microscopy coupled with energy disper-

sive (X-ray) spectroscopy (SEM/EDS) [68]. While Raman

imaging provides an understanding of the molecular distri-

bution of components, SEM/EDS [69–72] provides elemen-

tal information.

SEM is a type of electronmicroscope that employs a high-

energy electron beam to raster a sample surface to produce

high-resolution images (1–5 nm resolution) that detail sur-

face topography and composition among other properties.

The interaction of the electron beamwith the atoms at or near

the sample surface produces secondary electrons (SE), back-

scattered electrons (BSE), X-rays, light (cathodolumines-

cence), specimen current, and transmitted elections, each

requiring specialized detectors. Images produced by SEMs

have a very large depth of field generating a three-

dimensional appearance over awide range ofmagnifications.

BSE images are related to the atomic number of the spec-

imen, therefore providing information about the elemental

composition. X-rays characteristic of the sample are emitted

when the high-energy electron beam dislodges an atomic

inner shell electron resulting in the release of energy in

the form of an X-ray as a higher energy electron fills

the void. The analytical technique used to characterize these
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X-rays to obtain both qualitative and quantitative elemental

composition information about a sample is known as energy

dispersive X-ray spectroscopy (EDS, EDX, or EDXRF). By

generating an X-ray spectrum at each spatial location, EDS

can be used to generate an elemental map of the sample

surface.

Although the images produced by SEM/EDS contain

better feature resolution, a wider range of magnifications,

and a greater depth of field than those obtained using

conventional light microscopes, SEM/EDS does not provide

molecular information. Raman imaging provides a comple-

mentary means of characterizing the molecular spatial ar-

chitecture of the material.

Figure 2.13 shows results from an integrated wide-field

Raman imaging system (ChemImageCorporation) andSEM–

EDS (Aspex) platform prototype developed under a DOE-

funded Phase II STTRprogram. The figure shows a schematic

of the integrated Raman/SEM–EDS system (e), a SEM

secondary electron image (a) of an agglomerate on an ambient

MOUDI sample, an EDS spectrum (b) of the agglomerate

showing the presence of Ca, S, Al (background), and O,

elemental chemical images (a) of the agglomerate created

from the EDS spectrum, and a Raman image from the

agglomerate collected at 1010 cm�1. Figure 2.13 also shows

a comparison of the Raman dispersive spectrum collected

from the agglomerate along with the library spectrum from

CaSO4 (d). The Raman spectrum along with the elemental

dispersive spectroscopy verified the identity of the calcium

sulfate particle.

2.6.2 Raman–MXRF Imaging

An alternative elemental mapping method to SEM/EDS is

micro-X-ray fluorescence (MXRF). Unlike EDS, where

X-ray fluorescence of atoms is produced upon the interaction

with a focused electron beam,MXRF uses X-rays to generate

element-specific fluorescence spectra of the sample. MXRF

instruments use apertures to restrict theX-ray beam to a small

spot on the sample that is then raster scanned relative to the

sample surface by moving a stage that supports the sample.

Spatial resolution is determined by a convolution of the

apertured beam diameter and the precision of the stage

movement. Elemental images are produced by recording the

X-ray fluorescence signal using a detector such as a liquid

nitrogen-cooled lithium-drifted silicon chip as the stage is

translated in a raster scanning fashion.

In combination with Raman imaging, MXRF provides a

means to produce a low-resolution elemental map of the

sample surface that may be used to guide a more detailed,

high-resolutionmolecular image of regions of interest. These

FIGURE 2.13 Integrated Raman imaging/SEM–EDS instrument: SEM secondary electron image and elemental chemical images for C, O,

Al, S, and Ca (a) and 1010 cm�1 (sulfate) Raman image (c) of an agglomerate on an ambient MOUDI sample. EDS spectrum (b) of the

agglomerate showing the presence of Ca, S, Al (background), andO. Raman dispersive spectrum (d) collected from the agglomerate showing a

high correlation with library spectrum for CaSO4. Three-dimensional rendering of integrated Raman imaging/SEM–EDS instrument (e).
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integrated techniques are nondestructive and provide com-

plementary chemical information [73].

An example of the combined use of MXRF and Raman

imaging is illustrated inFigure2.14.Thefigure showsabright-

field imageofagranite thin section (a), single-element (Ca,Fe,

K, Si, Sr, and Ti) MXRF images for the region highlighted in

Figure 2.14a (b), and a 1080 cm�1 Raman image associated

with highlighted region of the MXRF calcium image in

Figure 2.14b (c). The MXRF elemental images reveal a

patchwork of localized elemental content consistent with the

typical composition of granites including silica polymorphs

(mainlyquartz), feldspars, andamphiboles.TheRaman image

shown in the figure was generated from the 1080 cm�1 band

corresponding to calcium carbonate (CaCO3). A good corre-

lation is evident between the elemental image distribution

for Ca obtainedwithMXRF andmolecular image distribution

for CaCO3 obtained from the Raman image.

2.6.3 Raman–LIBS Imaging

Laser-induced breakdown spectroscopy (LIBS) provides

elemental composition information about solid, liquid, and

even gaseous samples [74–77]. LIBS instruments utilize a

high-energy pulsed laser beam that is focused to a small spot

at the surface of the specimen. The laser energy density is

made high enough to ablate a small amount of material

generating a high-temperature plasma consisting initially of

mostly excited ionic species. A massive continuum emission

is observed following the laser pulse due to Bremsstrahlung

emission resulting from ion–electron recombination. After a

few hundred nanoseconds, the plume begins to cool and the

electron density decreases, resulting in predominately atom-

ic emission. Therefore, it is common practice for scientists to

time gate their experiments using a dispersive spectrometer,

delay generator, and intensified CCD detector to observe the

emission of the laser-induced plume during a time window

that minimizes the background continuum emission and

maximizes the ionic or atomic emission.

When combined with Raman imaging, Raman–LIBS

imaging enables complementary elemental, molecular, and

structural information to be obtained from the sample. Since

Raman and LIBS instrumentation share many of the same

components, integrated instruments can bemadewith a small

amount of additional cost. A limitation of combining LIBS

with Raman is the fact that LIBS is a destructive technique.

Therefore, Raman data are normally collected before the

destructive LIBS data.

2.6.4 Raman–AFM Imaging

The atomic force microscope (AFM) [78–80] is one of the

leading tools for imaging materials on the nanometer scale.

With resolutions demonstrated at fractions of a nanometer,

AFM is better than 1000 times the optical diffraction limit.

When combined with Raman imaging, AFM imaging pro-

vides a means to probe topographical details of sample

surface at the atomic level and chemical details of the sample

on the micron scale.

An AFM gathers information by ‘‘feeling’’ the sample

surface using a mechanical probe consisting of a microscale

cantilever with a sharp tip (probe) at its end. Forces between

the tip and the sample occur as the tip is brought in close

proximity to the sample that causes the cantilever to be

deflected. The deflection may be measured using laser

Ca Fe

K

Si

Sr

Ti

1 mm

3 mm

(a) (b)

(c)

FIGURE 2.14 Combining Raman imaging and micro-X-ray fluorescence: bright-field image (a), single-element MXRF images (b), and a

1080 cm�1 Raman image of a granite thin section (c).
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deflection, optical interferometry, capacitive sensing, or

piezoresistive AFM cantilevers. Most AFM instruments use

a feedbackmechanism to adjust the tip-to-sample distance so

that a constant force may be maintained between the tip and

the sample. Images may be achieved bymounting the sample

on a piezoelectric tube that moves the sample in the z-

direction for maintaining a constant force and in the x- and

y-directions for scanning the sample or a ‘‘tripod’’ configu-

ration of three piezo crystals, each responsible for scanning in

the x-, y-, and z-directions.

Compared with SEM, AFM has several advantages in-

cluding the ability to provide a true three-dimensional sur-

face profile at the atomic level resolution without special

sample treatments (such as metal/carbon coatings) and does

not always require operation under vacuum. Disadvantages

of AFM compared with SEM include susceptibility to image

artifacts, limitations on scanning areas (approximately

150 mm� 150 mm), and limited abilities to measure steep

walls or overhangs in the sample surface topography.

Figure 2.15 shows an AFM and Raman imaging result

from a 20 mm� 20 mm area of a SBR/PMMA polymer blend

sample obtained using a WiTec alpha300R confocal Raman

microscope equipped with an AFM.

2.6.5 Raman–SNOM Imaging

Near-field scanning optical microscopy (NSOM/

SNOM) [81–83] is a nanoscale imaging technique that

operates beyond the optical diffraction limit by exploiting

the properties of evanescent waves. Evanescent or nonpro-

pagating fields exist only near the surface of the sample and

carry the high-frequency spatial information about the ob-

ject. By positioning the detector very close (�l) to the

sample surface, surface inspection may be accomplished

with high spatial, spectral, and temporal resolving power.

SNOM instruments typically consist of a laser light source

coupled into an optical fiber, feedback mechanism, scanning

tip, detector, and piezoelectric sample stage. Images are

formed by rastering the detector across the sample using a

piezoelectric stage operating at a constant height or with

regulated height by using a feedback mechanism. Raman–

SNOM is one of the most popular near-field spectroscopy

techniques one may use to probe spectroscopically with

subwavelength resolution for the identification of nanosized

features with chemical contrast. Disadvantages of apertured

Raman–SNOM include being limited to using very hot and

blunt tips and by lengthy data acquisition times due to limited
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FIGURE 2.15 AFM (a) and Raman (b) imaging result from a 20mm� 20mm area of a SBR/PMMA polymer blend sample. The Raman

image is associated with the Si–Si stretching mode of the SiGe layer at 502 cm�1. The single Raman spectrum (c) reveals three peaks

corresponding to the SiGe layer: the Ge–Ge (200–300 cm�1), Si–Ge (380–450 cm�1), and Si–Si (502 cm�1) stretching modes along with the

Si–Si (520 cm�1) peak of the substrate.
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Raman signal. Apertureless Raman–SNOM approaches and

SERSRaman–SNOMapproaches have been used to enhance

Raman signals. Topological artifacts, however, make it hard

to implement these techniques for rough surfaces. For optical

images with spatial resolutions that surpass the diffraction

limit, WiTec offers a commercially available SNOM add-on

to their alpha300 R confocal Raman microscope.

2.6.6 Raman–IR Imaging

IR spectroscopy [84] and IR imaging [85, 86] are methods

commonly involving the study of the absorption properties

of materials in the IR portion of the electromagnetic

spectrum. The IR region of the electromagnetic spectrum

may be broken down to the near-infrared (NIR) spectral

region (0.8–1.4 mm), mid-infrared (MIR) spectral region

(1.4–30 mm), and the far-infrared (FIR) spectral region

(30–1000 mm). This section will focus on IR instrumentation

used to study fundamental vibrations and associated rotatio-

nal–vibrational structure of molecules found in the MIR

spectral region.

Molecules have specific frequencies at which they absorb

MIR radiation, in turn causing the molecule to rotate or

vibrate. Such energies are dictated by the mass of the atoms

associated with the vibration or rotation, the associated

vibronic coupling, and shape of the molecular potential

energy surfaces associatedwith themolecule. For a particular

vibration to be IR active, it must exhibit a change in the

permanent dipole. This is distinct from Raman active modes

in which there must be a change in the polarizability. The

frequencies atwhich the absorption and associatedmolecular

vibrations occur are characteristic of the bonding structure

within the molecule, giving rise to information about the

molecular structure of the sample.

Infrared spectra are obtained by examining the amount of

transmitted or reflected light that occurs at various wave-

lengths when a sample is irradiated with infrared radiation.

This is accomplished by splitting the IR source beam into two

beam paths—one that interacts with the sample and one that

is used as a reference (i.e., control) beam. A comparison of

the transmitted or reflected light to the source beam gives rise

to the infrared spectrum. This may be accomplished using a

monochromatic beam, which changes in wavelength over

time, or by using a Fourier transform interferometer-based

instrument thatmeasures all wavelengths at once. Raman and

MIR are often thought of as competing techniques. By

integrating Raman and MIR imaging [87], however, molec-

ular images that detail samplemorphology, composition, and

structure may be generated in a way that takes advantage of

the complementary chemical information that each method

may provide based on selection rules. Both methods are

nondestructive, noninvasive, and based on molecular vibra-

tions that give rise to fingerprint spectra for inorganic and

organic liquids, gases, and solids. MIR is particularly useful

as a low spatial resolution (>15 mm) imaging solution while

Raman imaging is more suited for high spatial resolution

imaging (>250 nm). MIR imaging is advantageous in that it

is a more rapid imaging technique since it is not based on an

inherently weak phenomenon like Raman.

2.6.7 Raman–NIR Imaging

NIR spectroscopy [88] and NIR imaging [89] are techniques

that assess the overtone and combination vibrations of mo-

lecules that occur at energies consistent with the near-infra-

red portion of the spectrum (800–2500 nm). Compared to

fundamental vibrations observed in the MIR spectral region,

NIR molar absorptivities are typically small and spectral

features are broad and less specific chemically. NIR spec-

troscopy and NIR imaging are particularly useful for appli-

cations that require quantitative information and for those

applications that require chemical information into the ma-

terial bulk as NIR can penetrate much further into the sample

than MIR radiation. Chemometric (i.e., multivariate) cali-

bration techniques such as principal component analysis

(PCA) and partial least squares are often employed in

quantitative NIR applications. NIR applications range from

pharmaceutical tablet ingredient analysis to medical diag-

nostics such as blood sugar level assessment and food and

agrochemical quality control.

NIR instrumentation is rather simplistic consisting of only

a light source (i.e., incandescent lamps, quartz halogen

lamps, or light-emitting diodes), a dispersive element (i.e.,

dispersive spectrometer, interferometer, or tunable imaging

spectrometer), and a detector (i.e., CCD, InGaAs FPA, or

PbS). When combined with Raman imaging, NIR imaging

provides the ability to image large areas in short amounts of

time since NIR is not a light-limited technique while Raman

provides added chemical specificity [90–92].

Figure 2.16 shows a LCTF Raman and NIR imaging

example of a model binary tablet composed of aspirin and

lactose acquired on a FalconRaman imagingmicroscope and

a Condor NIR imaging macroscope system (ChemImage

Corporation), respectively. Shown in the figure are aspirin

(a) and lactose (b) NIR and Raman (inset images) of the

model tablet along with representative NIR (c) and Raman

(d) spectra associated with the tablet ingredients. In this

binary example, the specificity associated with NIR is suf-

ficient to discriminate the tablet ingredients without reliance

on chemometric treatment of the data. The Raman and NIR

results are qualitatively similar for the areas imaged that are

in common for the two techniques. Subtle differencesmay be

attributed to differences in the penetration depths between

the Raman and NIR techniques.

As more ingredients are added into a tablet formulation, it

becomes increasingly difficult to rely solely on NIR for

component discrimination even with the use of chemo-

metrics. Figure 2.17 shows an example of whole tablet FAST
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Raman and NIR imaging of Extra Strength Excedrin coated

tablets (active ingredients per tablet: acetaminophen 250mg

(pain reliever), aspirin 250mg (pain reliever), and caffeine

65mg (pain reliever aid)) acquired on a Falcon Raman

imaging microscope and a Condor NIR imaging macroscope

system (ChemImage Corporation), respectively. Shown in

the figure is a digital photograph of the tablet (a), Raman

imaging of aspirin (b), acetaminophen (c), and caffeine (e),

NIR PCA score images revealing acetaminophen (d) and

caffeine (f) distributions, and representative FAST Raman

spectra (g) and NIR absorption spectra (h) associated with

individual domains of each active ingredient within the

tablet. The FAST Raman image was acquired as a 28� 28

montage over a 121mm2 area at an average rate of approx-

imately 300ms/pixel—nearly half of which was attributed to

photobleaching and stage translation times. Lack of inherent

specificity when compared to Raman can make near-IR

imaging a challenge for a lot of tablet ingredients. Such was

the case for aspirin in this Excedrin tablet example.

2.6.8 Raman–Fluorescence Imaging

Fluorescence imaging, like fluorescence spectroscopy [93,

94], is a method that analyzes fluorescence produced from a

sample. Electrons in sample molecules are excited from

lower energy ground electronic states to higher energy

vibrational levels in excited electronic states using a light

source such as a filtered xenon or mercury lamp. Electrons in

the excited molecule will then relax to vibrational levels of

the ground electronic state by one or more nonradiative and/

or radiative mechanistic paths including the release of a

photon as is the case in fluorescence and phosphorescence.

By exciting the sample at a constant wavelength and screen-

ing the different energies of the emitted photons, an emission

spectrum (i.e., image)may be recorded in which the structure

of the different vibrational levels of the sample molecules

may be determined. Although not a very selective technique,

fluorescence is an extremely sensitive technique. Single

molecule detection has been demonstrated [95].

Fluorescence spectroscopy and imaging instruments con-

sist of a light source (i.e., laser, photodiode, xenon arc, or

mercury vapor lamp), a wavelength selection device (i.e.,

optical filter or dispersive element such as a grating mono-

chromator or tunable imaging spectrometer), and a single-

channel or multichannel detector such as a CCD. Most

modern fluorimeters contain both an excitation monochro-

mator and an emission monochromator allowing one to

record both an excitation spectrum and a fluorescence spec-
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FIGURE 2.16 Aspirin (a) and lactose (b) NIR and Raman (inset images) of a model tablet along with representative NIR (c) and Raman

(d) spectra associated with the tablet ingredients.
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trum. Fluorescence spectra are recorded by holding the

excitation wavelength constant and measuring the emission

wavelengths with the emission monochromator while ex-

citation spectra are recorded by holding the emission

wavelength constant and measuring the absorption spec-

trum with the excitation monochromator. Fluorescence

imaging systems using tunable imaging spectrometers typ-

ically incorporate a filtered light source producing a con-

stant excitation wavelength while images of the sample are

recorded at various emission wavelengths using a CCD

detector staring through the tunable filter. Fluorescence

imaging provides a high-sensitivity means of rapid visu-

alization and presumptive identification of fluorescence

species in a sample. When combining fluorescence imaging

with Raman imaging [26], Raman provides a more defin-

itive determination of thematerial composition. Figure 2.18

demonstrates the combined utility of fluorescence and

Raman imaging for targeting and detection of trace bioa-

gents in a complex background. The sample in the figure

consists of Bacillus globigii (Bg)-spiked outdoor ambient

background particulate collected into an aqueous collection

fluid buffer by a Joint Biological Point Detection System

(JBPDS) sensor and deposited onto an aluminum-coated

microscope slide. Figure 2.18 shows a differential image

contrast optical image (a) of a region of interest containing

the elliptically shaped Bg endospores—a stimulant for

Bacillus anthracis (Anthrax)—in the presence of the com-

plex background matrix that was targeting using hyper-

spectral fluorescence imaging (b). The fluorescence imag-

ing revealed the presence of the biological spores based on

the characteristic autofluorescence and shape/size of the

spores. Figure 2.18d shows representative hyperspectral

fluorescence spectra of the Bg spores and background,

respectively. Once targeted using fluorescence, Raman

imaging is used for the purpose of presumptive identifica-

tion of the biothreat stimulant. The Raman image in

Figure 2.18c was based on a Euclidean distance classifi-

er-based search against a predetermined spectral library.

Despite the greater sensitivity inherent to fluorescence,

Raman was able to detect a Bg endospore not detected by

fluorescence (arrow in Figure 2.18c) due to the greater

penetration depth associated with the Raman laser excita-

tion wavelength (i.e., 532 nm) compared to the fluorescence

excitation wavelength (365 nm).
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FIGURE 2.17 Whole tablet FAST Raman and NIR imaging of Extra Strength Excedrin coated tablets: digital photograph of the tablet

(a); Raman imaging of aspirin (b), acetaminophen (c), and caffeine (e); NIR PCA score images revealing acetaminophen (d) and caffeine

(f) distributions; representative FAST Raman spectra (g) and NIR absorption spectra (h) associated with individual domains of each active

ingredient within the tablet.
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2.7 EXTRA-DIMENSIONAL RAMAN IMAGING

INSTRUMENTATION

Industrial trends have begun to shift the utility of Raman

imaging from the laboratory and academic settings to more

at-line/online applications. The demands on the technology

include adding extra dimensionality to the data (i.e., addi-

tional spatial and time dimensions) and operation in real-time

configurations. This section highlights recent efforts in vol-

umetric and dynamic Raman imaging.

2.7.1 Volumetric Raman Imaging (X, Y, Z, l)

Depth-resolved Raman microspectroscopy is an active area

of research in the Raman community [96, 97]. Many re-

searchers employ optical confocal Raman microscopes to

perform their depth-resolved analysis. While effective for

localized evaluations of microchemistry, optical confocal

methods are time consuming for creating high-definition

images and are susceptible to complex optical effects that

make spatially accurate depth information highly challeng-

ing to obtain. While susceptible to many of the same limiting

optical effects suffered by confocal Raman, Raman imaging

technology employing wide-field illumination provides a

means for substantially reducing the time required to gen-

erate high-definition volumetric Raman images.

Figure 2.19 shows an example of volumetric Raman

imaging acquired using a Falcon II� Raman chemical

imaging system (ChemImage Corporation). Raman images

and dispersive Raman spectra were acquired as a function of

depth through the sample on a Paramount polymer sample

provided by Richard Mendelson et al. from Rutgers Univer-

sity, Newark, NJ (shown schematically in Figure 2.19d). The

multilayer polymer system consists of layers of polyethylene

terephthalate (PET), adhesive, ethylene vinyl alcohol

(EVOH), and a mixture layer of low-density polyethylene

(LDPE) and titanium dioxide (TiO2). Reconstructed Raman

images of the PET (a), EVOH (b), and LDPE/TiO2 layers as

well as Raman intensity profiles as a function of depth for the

dispersive Raman data (e) and Raman imaging data (f) are

shown in the figure.

2.7.2 Dynamic Raman Imaging (X, Y, T, l)

Wide-field Raman imaging platforms in which all spatial

elements of the image are collected in parallel enable the

technology to transcend static imaging. Wide-field Raman

imaging enables scientist to monitor dynamic processes, to

analyze materials in motion, and to watch reactions in real

time with visualization of changes in the material content.

For the pharmaceutical industry, wide-field Raman imaging

allows degradation studies and interacting studies of APIs
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FIGURE2.18 Combined utility of fluorescence and Raman imaging for targeting and detection of trace bioagents in a complex background:

(a) differential interference contrast (DIC) optical image revealing elliptical Bg spores in the presence of background; (b) autofluorescence

hyperspectral image used to target Bg; (c) C–H Raman image for presumptive identification of Bg spores; (d) fluorescence spectra associated

with Bg spores and surrounding matrix; and (e) Raman library spectra of Bg and surrounding background surfactant matrix.
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and/or excipients in conjunction with monitoring dynamic

processes to observe the change in material content in real

time. The combined chemical and spatial information reveals

subtle features of materials often unseen with traditional

imaging techniques.

Figure 2.20 shows dynamic Raman imaging of acetamin-

ophen dissolution and subsequent recrystallization. Time-

dependent Raman images were acquired on a 532 nm Falcon

II� system (ChemImage Corporation) with anMCF tuned to

1617 and 1625 cm�1. Raman image frames were acquired

using 100ms integration times. A bright-field reflectance

image (a) shows an area of acetaminophen type I and type II

polymorph mixture prior to dissolution with methanol.

Figure 2.20b–i shows a time sequence of Raman images

associated with the 1625 cm�1 band taken before experiment

(b), at solvent introduction time (c), crystallization onset time

(d), and 16 s (e), 25 s (f), 32 s (g), 54 s (h), and 116 s (i) after

crystallization onset.

Crystallization rates were derived for type I and II acet-

aminophen polytypes from a linear fit of mass percentage

recrystallized for acetaminophen type I polymorph crystal

and acetaminophen polymorph type II crystal in the field of

view imaged over the period of recrystallization time

(Figure 2.20m). Crystallization rates were determined to be

2.5 and 0.93 ng/s for acetaminophen polymorph types I and

II, respectively. Polymorph type formation was confirmed

using Raman imaging with 4 s integration time per Raman

image frame immediately following the dynamic Raman

imaging experiment. Figure 2.20 also shows a bright-field

image of the region of interest following recrystallization (j),

a 1625 cm�1 Raman image associated with the type II

polymorph (k), and a 1617 cm�1 Raman image associated

with the type I polymorph.

2.8 RAMAN IMAGING INSTRUMENTATION

PERFORMANCE ASSESSMENT

As Raman imaging instrumentation has matured, it has be-

come apparent that therewas a need for an objective means of

assessing instrument performance. In 2002, theASTME13.10

subcommittee ‘‘Molecular Spectroscopic Optical Imaging’’

was founded in order to address the need for standards and

methods for measuring chemical imaging equipment perfor-

mance. As part of ASTME13.10, a Raman imaging task force

was formed that focused onmethod and standard development

for assessing Raman imaging performance. Such stan-

dards [98] and methods would be used to characterize day-

to-day system performance, which could be used to alert the

user of the need for maintenance and/or calibration and to

determine the suitability of equipment for a specific analysis.
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FIGURE 2.19 Volumetric Raman imaging of a Paramount polymer sample (d) provided by Richard Mendelson et al. from Rutgers

University, Newark, NJ. Volumetric Raman image reconstructions of PET (a), EVOH (b), and LDPE/TiO2 (c) layers. Component-specific

Raman intensity profiles as a function of sample depth for the dispersive Raman channel (e) and wide-field Raman imaging channel (f) of a

Falcon II� Raman chemical imaging system (ChemImage Corporation).
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2.8.1 Standard Practice Development

TheRaman imaging task force has drafted a standard practice

document (currently up for ballot) entitled ‘‘Standard Prac-

tice for Evaluating the Performance of Raman Molecular

SpectroscopicOptical Imaging Instruments’’ [99]. This prac-

tice provides a method to verify the overall performance of a

Raman imaging instrument through use of an objective figure

of merit (FOM) calculated from Raman imaging data col-

lected from a proper test reference material.

2.8.2 Test Standards

The test standard shall consist, ideally, of a Raman active

substrate with a pattern of a different Raman active material

deposited on the surface of the substrate or impregnated

within the substrate. The test standard should exhibit min-

imal diffuse scattering. In the event of a test standard having

only one Raman active material, either the test pattern or the

substrate may be Raman inactive. The test pattern shall be of

a type that provides several different line spacings, which

bracket the expected spatial resolution of the Raman imaging

instrumentation under evaluation. The spatial features on the

test patternmust be traceable toNIST. Suggested patterns are

the USAF 1951 or the NBS (NIST) 1963A Resolution

Targets. The test standard shall consist of a substrate or

target pattern comprised of Raman active material with

known and well-characterized peak(s) in its spectrum.

Figure 2.21b shows Raman spectra of monocrystalline sil-

icon employed as the test standard substrate, as well as the

response from the chromium test pattern deposited on the

silicon surface.

2.8.3 FOM Calculations

In order to determine the FOM, the Raman image area (A),

free spectral range (vmax� vmin), spatial resolution (RSpatial),

spectral resolution (RSpectral), Raman spectral signal-to-noise

ratio (SSNR), Raman image signal-to-noise ratio (ISNR),

and data collection time (tAcq) are measured using a proper

FIGURE 2.20 Dynamic Raman imaging using a wide-field Falcon II� Raman imaging system (ChemImage Corporation): (a) bright-field

reflectance image of acetaminophen (APAP) type I and type II polymorphmixture prior to dissolution with methanol; time sequence of Raman

images associatedwith the 1625 cm�1 band taken before experiment (b), at solvent introduction time (c), crystallization onset time (d), and 16 s

(e), 25 s (f), 32 s (g), 54 s (h), and 116 s (i) after crystallization onset; (j) postcrystallization bright-field reflectance image; (k) 1625 cm�1 Raman

image associated with the type II polymorph; 1617 cm�1 Raman image associated with the type I polymorph; and plots of mass percentage

recrystallized for APAP types I and II in the field of view imaged over the period of recrystallization time.
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test reference material.

FOM ¼ A 	 ðvmax�vminÞ 	 SSNR 	 ISNR
RSpatial 	RSpectral 	 tAcq ðmm=sÞ ð2:8Þ

2.8.3.1 Data Acquisition For instruments employing

point and line mapping, Raman spectra of the target spectral

region are collected over an image area in a systematicway in

order to construct a Raman image hypercube. In order to

achieve the highest possible spatial resolution, the laser spot

area shall be minimized and the sample shall be translated

relative to the laser illumination at fine spatial intervals.

For instruments employing wide-field illumination, a

Raman hypercube spectral imaging data set is collected over

a spectral range sufficient to measure the FWHM, wave-

number accuracy, and SSNR associatedwith the test standard

Raman spectral band(s) of interest. Appropriate test standard

patterns are imaged in order to determine the spatial reso-

lution and ISNR of the Raman imaging system.

In order to evaluate the anamorphic magnification of the

Raman imaging system, both horizontal and vertical test

patterns must be measured for both point scan and wide-field

imaging systems.

2.8.3.2 Measurement of Image Area Image area (A) has

units of mm2 and is defined as

A ¼ ðPX 	DPXÞ � ðPY 	DPYÞ ð2:9Þ

where PX and PY are the number of pixels and DPX and DPY
are the dimensions of the pixels in the X and Y spatial

dimensions, respectively.

Figure 2.21a shows a flat-field-corrected Raman image

at 520 cm�1 from Cr on Si USAF 1951 Raman resolution

FIGURE 2.21 (a) Flat-field-corrected Raman image at 520 cm�1 from Cr on Si USAF 1951 Raman resolution target test standard collected

using awide-field Ramanmicroscope (FALCON II�, ChemImage Corporation) employing anMCF imaging spectrometer. The Raman image

was collected using a laser power of 475mWat the sample, which corresponds to a laser power density of 1.1� 104W/cm2 for the 10� (NA0.3)

microscope objective. The image was collected in 960 s over a spectral range of 60 cm�1 with a 4 cm�1 step size using an EM CCD detector

(DU-897 iXon�, Andor, South Windsor, CT) operating at a gain of 200. (b) The mean Raman spectra of ROI1 and ROI2. (c) Intensity profile

corresponding to ROI3 from Figure 2.21a.
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target test standard collected using a wide-field Raman

microscope (FALCON II�, ChemImage Corporation) em-

ploying an MCF imaging spectrometer. The Raman image

was collected using a laser power of 475mW at the sample,

which corresponds to a laser power density of 1.1� 104

W/cm2 for the 10� (NA 0.3) microscope objective. The

imagewas collected in 960 s over a spectral range of 60 cm�1

with a 4 cm�1 step size using an electron-multiplying (EM)

CCD detector operating at a gain of 200. The Raman image

in Figure 2.21a consists of 350� 350 square pixels of

0.585 mm/pixel, to yield the image area equal to 41,943 mm2.

2.8.3.3 Determination of Free Spectral Range The

Raman free spectral range FSR is defined as

FSR ¼ ðnmax�nminÞ ¼ BP 	C ð2:10Þ

where BP is the spectral bandpass of the Raman imaging

spectrometer in the current measurement andC is the number

of spectral channels corresponding to the number of inde-

pendent spectral regions. The FSR in the Raman image in

Figure 2.21 is equal to 540� 480¼ 60 cm�1.

2.8.3.4 Measurement of Spectral Signal-to-Noise Ratio
The Raman SSNR is defined as

SSNR ¼ ðImax�I baselineÞ=sbaseline ð2:11Þ

where (Imax��Ibaseline) is the bias-corrected maximum Ra-

man spectral band intensity value for the target region of

interest and sbaseline is the standard deviation of the mean

spectrumwithin a defined background region of the spectrum

devoid of Raman spectral features associated with the target

region of interest.

For the image shown in Figure 2.23a and corresponding

Raman spectrum in Figure 2.23b, the SSNR is 310.9.

2.8.3.5 Measurement of Image Signal-to-Noise Ratio
The Raman ISNR is defined as

ISNR ¼ haiTarget ROI�hbiBackground ROI

sBackground ROI

ð2:12Þ

where haiTarget ROI and hbiBackground ROI are the mean

Raman image intensity values for the target region of interest

and the background region of interest, respectively, and

sBackground ROI is the standard deviation of the signal in the

background region of interest. ISNR of Raman image in

Figure 2.23a is equal to 15.5 when using the mean pixel

intensity within ROI1 (—) comprised of Raman active Si

minus the mean pixel intensity within ROI2 (- - -) comprised

of Raman inactive Cr divided by the standard deviation

within ROI2.

2.8.3.6 Measurement of Spatial Resolution Measure-

ment of spatial resolution involves imaging a series of

features of known size and determining the minimum line

spacing that can be resolved by the system under evaluation.

Contrast (modulation) is defined in Equation 2.13:

Contrast ¼ imax�imin

imax þ imin

ð2:13Þ

where Imax and Imin are themaximum andminimum intensity

produced by the image, respectively.

Contrast is measured for the line pairs with higher num-

bers of lines per mm (spatial frequency) until either a set of

line pairs is foundwhere the image provides contrast between

FIGURE 2.22 Determination of spatial resolution from the Raman image of the Raman test standard. A Raman CTF measured from the

Raman test standard (¤) is compared to the theoretical MTF (—) and CTF (- - -). The diffraction-limited CTF shows the Rayleigh criterion

contrast (26.5%) at 746 lp/mm spatial frequency (D) corresponding to a spatial resolution of 1.34 mm.

48 RAMAN IMAGING INSTRUMENTATION



adjacent lines in the set that is�26.5% contrast (the Rayleigh

criterion) or the smallest line pair features available on the

test standard are imaged. If the smallest features are still

resolved (contrast 
26.5%), a contrast transfer function

(CTF) plot is constructed and the spatial resolution is esti-

mated from the extrapolation of the CTF plot.

Figure 2.22 shows a case based on the contrast measured

for the Raman image shown in Figure 2.21a. Despite mea-

surable degradation, the contrast does not fall below the

Rayleigh criterion limit. The spatial resolutionwas estimated

by modeling the theoretical CTF to the Rayleigh criterion.

Alternatively, a linear extrapolation of the measured contrast

may be employed to predict the Rayleigh criterion.

Modulation transfer function (MTF) for USAF 1951

target was constructed using Equation 2.14:

MTF ¼ 2

p
arccosðmÞ�m 	

ffiffiffiffiffiffiffiffiffiffiffi
1�m2

ph i
ð2:14Þ

where m is the normalized spatial frequency defined as

m ¼ x

x0
¼ x 	 l 	 f=# ¼ x 	 l 	 fl

D
¼ x 	 l

2NA
ð2:15Þ

where x is the absolute spatial frequency, x0 is the incoherent

cutoff frequency, l is thewavelength, f/# is the lens f-number,

fl is the focal length, and D is the lean (entrance pupil)

diameter. The MTF function may be converted to a CTF

using a Coltman series expansion formula with 50 terms:

CTF ¼ 4

p
MðxÞ�Mð3 	 xÞ

3
þ Mð5 	 xÞ

5
�Mð7 	 xÞ

7

�

þ Mð9 	 xÞ
9

�Mð11 	 xÞ
11

þ Mð13 	 xÞ
13

� 	 	 	 �
ð2:16Þ

The Rayleigh criterion for the Raman image in

Figure 2.23a was reached at a 746 lp/mm spatial frequency.

This spatial frequency corresponds to the spatial resolution

of 1.34mm.

2.8.3.7 Measurement of Spectral Resolution Spectral

resolution is determined by comparing theoretical and mea-

sured peaks of a Raman activematerial. The average FWHM

for a well-characterized spectral band is measured from

multiple spatial locations on the test standard. For example,

ROI1 in USAF 1951 resolution target (Figure 2.21a) is

generated by a band corresponding to the first optical phonon

mode of silicon at 520 cm�1 (Figure 2.21b). The measured

FWHM in Figure 2.23b is 13.2 cm�1, which is substantially

broader than the 3.5 cm�1 natural Raman linewidth of sili-

con. The measured FWHM is also broader than the instru-

mental bandpass of the imaging spectrometer (11.2 cm�1)

that was measured independently using a collimated light

source. Therefore, the measured FWHM is a convolution of

the spectrometer bandpass and the linewidth of the Raman

target.

The convolution of Raman spectral linewidth and the

spectrometer bandpass leading to the broadening of the

measured bands may be numerically modeled by gene-

rating a Lorentzian distribution with a FWHM equal

to the natural linewidth of the test standard Raman

band of interest. Multiple Gaussian distributions are

then generated representing instrumental bandpass

(FWHMImagingSpectrometer) and are then convolved with the

Lorentzian distribution to represent measured Raman spec-

tral resolution FWHMMeasured. An example of modeling

results is shown in Figure 2.23a. The difference (DFWHM)

between the convolution-broadened FWHM and instru-

mental bandpass plotted as a function of measured FWHM

for the Cr on silicon example from Figure 2.21 is shown in

Figure 2.23b. The plot follows a double exponential decay

FIGURE 2.23 Determination of instrument bandpass from the Raman image of the test standard. (a) Modeled lineshapes are shown for the

convolved peak (solid) with FWHM of 13.2 cm�1, the natural Raman linewidth (dotted) of 3.5 cm�1, and the bandpass of the imaging

spectrometer (dashed) (11.2 cm�1). (b) The difference (DFWHM) between the convolution-broadened FWHM and the imaging spectrometer

FWHM as a function of varying measured FWHM follows a double exponential decay function.
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function (Equation 2.17).

DFWHM ¼ FWHMMeasured�FWHMImaging Spectrometer

¼ A 	 eð�B 	 FWHMMeasuredÞ þC 	 eð�D 	 FWHMMeasuredÞ þE ð2:17Þ

For the example in Figure 2.23, measured FWHM at

520 cm�1 is 13.2 cm�1, which corresponds to the instrumen-

tal bandpass of 11.2 cm�1, which is in good agreement with

an independent measurement of 11.2 cm�1.

2.8.3.8 Determination of Acquisition Time The Raman

acquisition time tAcq is defined as the total time required to

collect the Raman image, inclusive of the time required to

translate the sample in X, Y, or Z spatial dimensions, the time

required to scan the imaging spectrometer, and the time to

autofocus the sample, including settling time, the time to

photobleach the sample, and the time to readout the detector.

The Raman image in Figure 2.23a was collected for 60 s per

frame over 16 frames, resulting in tAcq of 960 s.

Table 2.2 summarizes the parameters used to calculate the

FOM for the image shown in Figure 2.23a, to arrive at FOM

of 841,722 mm/s.

2.8.4 A Practical Example

Figure 2.24 shows an example use of the FOM for assessing

the quality of Raman images generated from a wide-field

Raman imaging system (Falcon II�, ChemImage Corpora-

tion)when comparing anEvans split element andMCF liquid

crystal tunable filters [49]. In this scenario, an aliquot of an

TABLE 2.2 Figure of Merit Parameters for the Image in

Figure 2.21a

Value Notes

Image area (mm2) 41,943.0 204.8mm� 204.8mm
Wavelength range (cm�1) 60.0 480–540 cm�1

at 4 cm�1 step

SSNR 310.9

ISNR 15.5

RSpectral (cm
�1) 11.2

RSpatial (mm) 1.34

Acquisition time (s) 960 16 image frames,

60 s per frame

FOM (mm/s) 841,722

1802.06.2Evans

8.8

ISNR

MCF 12.7

SSNR

1200

ASTM FOM

6.7× improvement

5 µm

Raman shift (cm−1)

1 spore (MCF)

1 spore (Evans)
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FIGURE 2.24 Comparison of liquid crystal tunable filter-based Raman image instrument performance using the FOM: (a) bright-field

reflectance image of Bg spores deposited onto an aluminum slide; 1450 cm�1 Raman images collected using the Evans LCTF (b) and MCF

(c); (d) single spore Raman spectra obtained from the hyperspectral data for the two filter types compared to a dispersive Raman spectra

acquired from 50 spores; and image SSNR, image ISNR, and overall FOM calculation results comparing MCF and Evan split element tunable

filter designs. These results suggest a 6.7� improvement of MCF over the Evans split element design.
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aqueous solution containingBg spores was deposited onto an

aluminum slide, as shown in the bright-field image

(Figure 2.24a). After 10min of photobleaching of the sample

to reduce the fluorescent background to a minimum, Raman

images were collected with each LCTF type scanning from

800 to 3150 cm�1. Also shown in the figure are raw

1450 cm�1 Raman images collected using the Evans LCTF

(b) and MCF (c). Clearly, the noise on the image frame for

Evans filter is higher than the noise onMCF image frame due

to the lower throughput associated with this type of filter.

Superior Raman spectral quality of MCF compared to the

Evans filter design is again evidenced by the single spore

Raman spectra obtained from the hyperspectral data for the

two filter types compared to a dispersive Raman spectra

acquired from 50 spores (d). A calculation of image SSNR,

image ISNR, and overall FOM using the images shown in

Figure 2.24b and c results in the MCF having an FOM value

about 6.7 times higher than Evans filter measurement (d).

2.9 CONCLUSIONS AND FUTURE DIRECTION

Raman imaging instrumentation has advanced significantly

since the first Raman images were obtained nearly three

decades ago. Substantial improvements have been made in

point scanning, line scanning, andwide-field Raman imaging

platform designs. Raman imaging instrumentation has

branched out from breadboard components on an optical

table to microscope, macroscope, fiberscope, and even tele-

scope systems that havemoved the technology far beyond the

research laboratory setting. Along with this development has

come the expansion of the technology and associated appli-

cations ranging from submicron Raman imaging of biolog-

ical spores to standoff macroscopic Raman imaging of

homemade explosive devices. Integrating Raman imaging

with other chemical imaging technologies has dramatically

increased what is possible from a structural, elemental

composition, and molecular composition materials charac-

terization standpoint. With the formation of the ASTM

E13.10 subcommittee ‘‘Molecular Spectroscopic Optical

Imaging,’’ focus has now been applied to Raman imaging

instrument validation and performance assessment through

standard reference material and standard practice and meth-

od development.

Future trends will inevitably continue to push instrumen-

tation limits in areas such as improved spatial and spectral

resolution. Application and market demands will thrust Ra-

man instrumentation development to enable greater area

coverage, increased data acquisition rates, improved data

SNR, increased instrument stability and ease of use, and

lowered instrument cost. Dynamic Raman imaging applica-

tions will require further development of wide-field Raman

imaging technology in combination with tandem methods.

With the realization of these continual improvements in

Raman imaging instrumentation, new applications and uses

of the technology will inevitably follow that will prove

beneficial to mankind.
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3.1 INTRODUCTION

The combination of IR spectroscopywith visiblemicroscopy

has been used in a wide range of analytical applications for

more than 20 years. More recently, however, IR microspec-

troscopy has benefited from developments in IR detector

arrays leading to a marked growth in FT-IR imaging tech-

nologies and applications. It is now a fairly simple task to

obtain a high-quality IR spectrum from a sample region of

around 20 mm in matter of seconds, and the ability to

collect full IR images containing hundreds of thousands of

pixels, where every image pixel contains a full range IR

spectrum, is now available in many hundreds of laboratories

worldwide. IR imaging hardware is not yet mature, but

despite this, with today’s state-of-the-art FT-IR imaging

systems, the analysis time for many applications is limited

not by the speed at which quality images are obtained, but by

the data analysis or sample preparation techniques at the

disposal of the operator.

Progress in commercial FT-IR imaging hardware devel-

opment comes from various drivers, but two are particularly

relevant: (a) the high popularity of single point IR micro-

scopy systems that has fuelled the interest in technology and

applications utilizingmore rapid methods of data acquisition

and (b) the development of multichannel array detectors

that operate in the mid-infrared region for nonspectroscopic

applications. These are fundamental to both the understand-

ing of current FT-IR imaging technologies and probable

developments in the near future.

3.1.1 Developments in IR Microscopy

and Imaging Systems

Interest in obtaining IR spectra from small samples goes back

to over 60 years; for example, a reported study of the structure

of penicillin by Thomson [1] in the late 1940s used a prism-

based dispersive spectrometer coupled with a beam condens-

er/microscope system. A commercial IR microscope system

described in 1953 by Coates et al. [2] demonstrated quite

respectable IR spectra from single fiber samples of less than

20 mm in diameter, recorded with 15min scan times, and

contained some design attributes that are still present in

today’s systems. However, it was not until early 1980s when

the rapid uptake of commercial FT-IR systems and applica-

tions such as semiconductor microanalysis provided both the

applications and technology interest to spur the growth in IR

microspectroscopy. Today, all major manufacturers of lab-

oratory FT-IR spectrometers include IR microscopes, some

with automated point mapping systems, as well as imaging

systems in their product portfolios.

Early (1980s) FT-IR microscope systems were mostly

bolt-on accessories derived from optical microscope frames

that were modified to support the collection of IR spectra

from selected regions of interest (ROI). Later, systems were
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designed from the outset to deliver improved IR spectro-

scopic performance, but were still constrained somewhat by

the design characteristics of the FT-IR spectrometers to

which they were coupled. As the technique became more

popular during the 1990s, manufacturers adopted a more

system-based approach to IR microscopy, resulting in per-

formance, ease of use, and cost benefits. Various advances in

the basic system hardware components have been realized in

this timeframe, for example, the use of CCD (charge-coupled

device) cameras in the visible imaging systems to assist the

visual examination and selection of ROI in the sample, and

improved illumination through use of light-emitting diodes

(LEDs). Spectrometer design improvements have provided

greatly improved FT-IR performance, but pivotal among

these developments (as far as imaging is concerned) has

been those in IR array detectors. Today’s instruments are

available as both add-ons to high performance FT-IR spectro-

meters and stand-alone units. An example of the latter

approach are the iN�10 and iN�10MX IR microscope

imaging systems, respectively, from Thermo Scientific Ni-

colet, introduced in 2008, which integrate spectrometer and

microscope components into a single unit requiring no

separate FT-IR bench.

This chapter outlines the common hardware systems used

in laboratory FT-IR imaging. Because today’s technology

has evolved largely from single point microscopy systems,

some materials covered are common to both microscopy and

imaging (in fact many of today’s systems include both point

mapping and imaging capability in a single instrument).

First, we consider the basic optomechanical components of

the system. Next, array detector technology and approaches

to its implementation will be discussed. For reasons of space

and likely redundancy, the design of the FT-IR component of

the system is not covered in detail. For this, there are

numerous review articles in the literature, for example, for

FT-IR systems and principles, the publication ofGriffiths and

de Haseth [3] or for a discussion on contemporary commer-

cial interferometer designs, the article of Jackson [4]. It

should be noted, however, that the basic spectrometer per-

formance attributes are of paramount importance to overall

system performance, and it is perhaps no surprise that the

most successful FT-IR imaging systems are provided by

manufacturers where both the spectrometer and imaging

system are manufactured by single suppliers. Due to the

differences in implementation among the various manufac-

turers of equipment, this chapter is not a comprehensive

review of all the various design approaches, but rather an

outline of some of the key design considerations relevant to

the more popular systems available.

With commercial FT-IR imaging hardware, it is also

worth mentioning the influence of commercial factors. If a

systems designer were to develop an FT-IR imaging system

from the ground up for highest performance only (however

defined), it is likely that the resulting system would be unlike

most current, commercially available systems. For example,

current laboratory FT-IRs have fundamental design con-

straints imposed by requirements such as spectral resolution,

compatibility with commercial macrosampling accessories,

cost, and so on, which may be inconsistent with the design

requirement or imaging. Designers need to strike the right

balance of imaging performance, ease of use/manufacturing/

maintenance/longevity, and a host of other factors that will

not only carry the instrument through the crucial earlymarket

phase but also enable the instrument to successfully progress

through subsequent stages in its life cycle to generate the

required return on investment. In other words, for commer-

cial success, imaging hardware design is strongly influenced

by performance requirements but not necessarily dictated

by them.

A further point to note is that although various system

components will be outlined individually, this does not help

to illustrate the effect of the strong interdependence of these

components on total systemperformance.An overall systems

engineering approach is crucial to good FT-IR imaging

design and considering the performance attributes of com-

ponents in isolation is but one part of the overall design.

3.2 SYSTEMS OVERVIEW

To understand the basic layout, an FT-IR imaging optome-

chanical system can be compared with that of a conventional

optical microscope, noting the important differences. A

typical microscope/imager schematic is shown in Figure 3.1;

although different manufacturers offer some variants on this,

it conveys the main elements under consideration. The

‘‘imager’’ is generally capable of viewing a sample at both

visible and IRwavelengths. The use of suitable flipmirrors or

dichroics (see later) enables both IR and visible radiation to

illuminate the sample, and post-sample, to be directed to the

appropriate detectors. In the system shown in visible oper-

ation, the illumination beam is produced by an LED and

passes through a dichroic mirror that combines the IR and

visible beams. A second LED beam is produced to illuminate

the sample from above if required. The beam either passes

through the sample or is reflected by the sample to be

collected by the objective optic and then relayed to a visible

camera or binocular viewing system. In IR image collection

mode, the modulated IR beam from the spectrometer illu-

minates the sample from either above or below (i.e., reflec-

tion or transmission mode of operation). The energy is

focused onto the sample in transmission mode by a focusing

optic that can usually be adjusted. When a cassegrain system

is employed (see later) in reflection mode, the beam is

focused onto the sample through half of the objective casse-

grain and collected using the other half of the system. In

either mode, the IR energy, which is reflected or transmitted

by the sample, is collected by the objective cassegrain, and
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the image optionally magnified (by either passing through a

second high magnification optics unit or by using an alter-

native cassegrain to change the magnification) if required.

The system is usually arranged to refocus the beam after the

sample (at the ‘‘intermediate focus plane’’), where a set of

adjustable aperture blades can be moved so as to restrict the

sample field points that are ultimately projected onto the IR

detector. Next, the beam is directed onto a fixed dichroic

mirror, where the IR part is reflected onto the IR detector

while the visible component passes through to the visible

camera optics.

3.3 THE ROLE OF THE FT-IR SPECTROMETER

While discussions about IR imaging technology usually

concentrate on the detector, the source and interferometer

cannot be overlooked in their contribution to the overall

system performance. ‘‘Garbage in–garbage out’’ applies here

and the best detectors are unlikely to compensate for a poor

IR source or interferometer. Fortunately, these components

are well developed in laboratory FT-IR systems and though

not optimal, current designs should not limit the performance

of imaging systems. Detailed descriptions of how an FT-IR

spectrum is generated are widely available in the literature

(see, for example, Ref. iii). Two elements of the FT-IR that

are of particular relevance to imaging systems, however, are

the IR source and the interferometer mode of data collection.

3.3.1 Source

Sources of continuous IR radiation (note that special com-

ponents to modulate the source intensity are not required as

the interferometer acts as a modulator) mostly consist of a

resistively heated silicon carbide or ceramic element that

operates at around 1100–1400K. In laboratory FT-IR, the

combination of source size and interferometer optics is

chosen to deliver a homogeneous image of about 6–10mm

diameter at the normal sample position. As signal-to-noise

ratio is a key performance attribute of IR imaging systems, it

might be expected that increasing source intensity (e.g., by

raising its temperature) might be expected to increase the

signal-to-noise level in an instrument, with all other things

equal. However, consideration must be given to the interfer-

ogram (see later) shape, its dynamic range, and the associated

analog-to-digital converter (ADC) sampling. In a high opti-

cal throughput laboratory FT-IR using a DTGS detector, the

dynamic range of the interferogram is such that increasing

the source intensity much further would have little improve-

ment in signal-to-noise ratio because of insufficient dynamic

range of the ADC to properly sample the noise in the

system. Indeed, other factors come into play, such as

FIGURE 3.1 Typical IR microscope and imaging system layout. Solid line: input beam for transmission mode; dotted line: input beam for

reflection mode. The spectrometer coupling optic accepts the output beam from the FT-IR spectrometer.
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stability and longevity, which generally discourage this

practice. For microsampling, light losses due to the sample

itself can be substantial, so the issue of inadequate ADC

sampling no longer applies, and it might be considered

beneficial to operate a brighter source element for imaging.

However, with imaging using focal plane array (FPA) de-

tectors, the contribution of the relatively limited dynamic

range of the array detectors employed comes into play to

counter this effect: that is, the detectors and associated

electronics physically cannot handle the large signals en-

countered with laboratory FT-IR in any event. Current sys-

tems generally use standard FT-IR sources. At the time of

writing although there are reports of some special sources

with higher operating temperatures (at considerable cost), the

current state of the art in source design is probably not a

severe limitation of imaging systems.

There are examples of use of radiation from a synchrotron

beamline to advantage due to the increased intensity and

coherence of the source [5–7]. The impact of such a source on

the performance of single point microscopy systems is

beyond doubt, enabling higher signal-to-noise spectra from

smaller sample areas. However, its potential advantage in

large area imaging systems is less clear. Given the practi-

cality issues and likelihood that the SNR is limited by

components other than the source, these studies are of greater

benefit from their applications perspective.

3.3.2 Interferometer

This technology is now relatively mature, having been

available commercially for almost 30 years. Many manu-

facturers currently utilize fourth- or fifth-generation inter-

ferometer designs and their major design issues are well

understood. Systems are now appreciably more stable, reli-

able, and perform with much higher signal-to-noise ratios

than their 1980s counterparts. To understand the operation of

FT-IR imaging systems, especially the signal collection

requirements for the various detectors, it is necessary to

understand the modes of operation of the interferometers

utilized.

All systems in common use are based on the Michelson

interferometer, the fundamental design ofwhich goes back to

the 1890s [8, 9]. A schematic is shown in Figure 3.2. Light

from the IR source S is collimated (usually by a relatively

short-focus paraboloid mirror) and the collimated beam split

into two nearly equal paths along the ‘‘arms’’ of the inter-

ferometer by a beamsplitter B. In the classical design, one

beam is reflected back along its path by a fixedmirrorMF and

the other beam reflected back from a second mirror Mm that

moves parallel to the beam. Both beams recombine at the

beamsplitter and the useful half is directed onto a detector D

(the other half is returned to the source). Looking at the

source from the detector (Figure 3.3), we see the two

mirrors—one image moving relative to the other. When the

beams have traveled different path lengths they arrive in

different phases. Provided the two mirrors appear to be

moving perfectly parallel to each other, the returning plane

wavefronts will interfere constructively or destructively

depending on whether the wavefronts are in or out of phase.

The detector ‘‘sees’’ a signal as a function of the difference

between the two path lengths and this signal at any point

contains partial information about the entire source spec-

trum. This signal requires a Fourier transform to decode it.

The plot of intensity versus optical path difference (OPD) of

the two arms of the interferometer is known as the interfer-

ogram, and the point in the interferogram where OPD is zero

is where all frequencies interfere constructively. This is the

most intense part of the interferogram—the centerburst. The

distance moved by the mirror, and hence OPD, is usually

tracked by the same interferometry principle and the distance

scale defined by the laser frequency acts as the reference for

all wavelengths in the spectra. The key to good interferom-

eter design is to keep the two beams perfectly aligned (as seen

by the detector) as the OPD is varied. With a linear tracking

mirror, this places a high demand on the engineering toler-

ances required in the bearings—near nanometer scale

FIGURE 3.2 Principle of common FT-IR interferometers used in IR imaging systems.
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precision is required and the larger the distance over which

this has to apply the bigger the problem. Today’s interfer-

ometer variants are arrived at by various ingeniousmethods to

enable these requirements to be met as far as possible within

certain cost and reliability targets. While the discussion of

these is interesting itself, it is beyond the scope of this chapter.

The main point to note is that the OPD may be generated by

one of two methods. In both cases, the interferogram is

necessarily sampled at finite intervals of the OPD or time.

In the so-called continuous mode of operation, the interfer-

ogram points are sampled during a continuous movement of

the optical element, which generates the OPD�.1 At the point
of data collection, the OPD is changing. In an alternative

mode of operation, the step-scan mode, the OPD is again

generated as a function of distance but the signal is collected

at a point when the OPD is not changing. Some interferom-

eters operate in both step-scan and continuous-scan mode,

while others are limited to continuous-scan operation only.

3.3.3 Continuous-Scan Mode

The characteristic frequency of the signal at a given wave-

number is a function of the velocity v at which the OPD is

generated and the wavelength (or wavenumber s)

Fv ¼ vs Hz

and known as the Fourier frequency corresponding to that

wavenumber. The spectrum can be thought of as being

encoded by the interferometer at the various Fourier fre-

quencies. The interferometer scans with an optical path

difference velocity of typically between 0.1 and 5 cm/s so

that the Fourier frequencies fall approximately within the

audio frequency range and are easily digitized. Although it

varies slightly between models, a common mirror speed is

0.16 cm/s, giving an OPD velocity of 0.32 cm/s, which is

often referred to as a ‘‘5 kHz’’ scanning speed, based on the

measured frequency of the reference He–Ne laser. In con-

tinuous-scan FT-IR, the common single detector signal sam-

pling rates are around 5 kHz for room temperature detectors,

20 kHz for MCT detectors, and today as fast as 250 kHz for

kinetics studies. Detectors generally work optimally only in

certain frequency ranges, and the matching of interferometer

speed to optimum detector operational frequency is an

important performance consideration, as discussed in the

section on array detectors below.

3.3.4 Step-Scan Mode

Many research-grade FT-IR spectrometers are also capable

of operation in step-scan mode. Step-scan mode became

more popular in the early 1990s, originally to facilitate time-

resolved studies of repetitive events and modulation experi-

ments [10], and proved to be an enabling capability for early

imaging systems. In step-scan mode, the optical path dif-

ference is incremented and then held for a period of time;

a 1Hz step rate implies that the OPD is stepped every

second leading to a constant OPD for just under 1 s, allowing

for a short settling time. While held at that step, time- or

frequency-independent measurements, including collecting

a frame or co-added group of frames from an array detector,

can be acquired. It has been found advantageous to scan both

FIGURE 3.3 Detector view of fixed and moving mirror beampaths combining to form the interferogram in a scanning interferometer.

1 In practise, various components may be moved to generate the OPD,

depending on the design, including linear movement of single plane or cube-

corner optics, or rotary movement of mirror pairs.iv
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arms of the interferometer in tandem. One armmirrormoves

continuously over the entire OPD in exactly the same

manner as in a continuous-scan interferometer, while the

second arm is scanned over much shorter distances at the

same speed (to keep the OPD constant) and then quickly

returned to start the short sweep again, repeatedly, to gen-

erate an effective stepped motion of OPD as seen by the

detector. The main point to note here is that at each point the

IR modulation frequencies can now be effectively de-

coupled from the OPD velocity, that is, no longer time/

speed dependent. This provides (a) potentiallymuch greater

flexibility in the choice and operating conditions for the

detectors and (b) potential for enabling much faster kinetics

studies under favorable conditions. However, step-scan

systems have their own issues due to the fact that moving

systems have their own inherent inertia and mirror stabili-

zation times can be significant in the overall measurement

time, and the relative cost/complexity of such systems place

them at a disadvantage compared with modern continuous-

scan systems. In fact, the use of step-scan systems was a

necessity for the early commercial FPA-based systems

because of the data capture rates of these devices. Subse-

quently, the use of continuous-scan systems with small

arrays [11] proved to be at least as effective and more

efficient than the early FPA-based systems. It was not until

the availability of subsequent generations of FPA detectors

with higher data acquisition rates that the more popular

continuous-scan interferometers could be used more effec-

tively with these detectors.

3.4 OPTOMECHANICAL CONSIDERATIONS

As noted above, the fundamental requirement to operate in

two different wavelength regions places certain design

constraints on the system relative to a visible-only system.

Optical microscopes operate over a relatively short-wave-

length range (�0.5 mm) comparedwith IR systems (>12 mm)

and are more readily corrected for the various aberrations

present [12]. For example, in the IR system the relative

importance of spherical aberrations is generally higher and

aspheric or toroidal mirrors tend to be preferred. The IR

component is usually all-reflecting, and the use of Schwarzs-

child Cassegrain optics (referred to as ‘‘cassegrains’’ in this

chapter) is common. These are frequently found in the

objective, condenser, and sometimes detector focusing ele-

ments of the system.

3.4.1 Cassegrain Optics

This double-spherical mirror system is widely employed

and is broadly similar to that used in telescope systems

(Figure 3.4). Three properties of cassegrains are particularly

relevant, numerical aperture (NA), magnification, and work-

ing distance—and the correct balance of these properties is

key to good system design. The numerical aperture of the

objective is important for IR imaging. Its value is the sine of

the angle u between the axis and most extreme ray passing

through the image point and the system—that is, the greater

the NA the greater the cone angle or light gathering power of

the objective. For good images, each point in the sample needs

to be focused to a point to avoid image blur (Figure 3.5). The

blur is directly related to the point spread function (PSF) for

the system, which is used to determine the projected spot size

for a point source (or point in the sample). Even with perfect

optics, a point source is spread out by virtue of thewave nature

of light, which limits the spot size to around awavelength due

to diffraction. In fact, the projected spot size is inversely

proportional to the cone angle, that is, the NA. The PSF for a

circular optic is known as an Airy disc function (Figure 3.6),

FIGURE 3.4 All reflecting ‘‘cassegrain’’ focusing system in common use in IR imaging systems. As an objective, in transmission mode, the

full aperture is used. In reflection mode, illumination is through half of the optic and collection through the other half (shaded beam).
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where the full width at half height (FWHH) is given by

FWHH ¼ 0:61ln sin � ¼ 0:61l=NA

that is, about 1 wavelength for an NA of 0.6. Correct posi-

tioning of the primary and secondary optics in the cassegrain

is also important to minimize aberrations and becomes more

difficult at higher magnification. A common choice for

objectives is to use an NA of around 0.6 with magnifications

between 6� and 32�. Higher magnification, higher NA

systems generally suffer the disadvantage of smaller working

distance and image field. Another parameter to consider is the

distance to the back focal plane of the objective. Some optical

microscopes have no such back focal plane, that is, the output

beam is effectively collimated, allowing various image-en-

hancing ancillary components such as filters or polarizers to

be placed in the beam without having to be concerned about

the location of the primary image plane. This design was

introduced by Spectra Tech [13] in the late 1990s, and also

used by Thermo in the Continuum� systems, and Bio-Rad in

the UMA 500/600 microscopes.

It is also worth noting that these on-axis cassegrain de-

signs have a central obscuration zone due to the secondary

(smaller) mirror that both reduces transmission and spreads

the light further out to the outer rings of the PSF compared to

an unobscured system [14].

The question of what is the optimum magnification of the

cassegrain sometimes arises. Higher magnification is not

necessarily better as a number of factors need to be consid-

ered, depending, for example, on the viewing system used

(e.g., eyepieces or video camera) in the case of an objective,

or detector pixel size in the case of the detector cassegrain.

For example, if a binocular viewer is used, it helps to have a

higher magnification objective, but field of view andworking

distances are compromised; however, a relatively low mag-

nification provides a more convenient image size for the

remote apertures that are used. Given the objective is a

relatively costly and critical component of the system, one

way to circumvent the need formultiple objectives to provide

multiple magnifications is to employ a single fixed objective

and magnify further along the optical path. This has been

implemented, for example, by use of Z-fold optics [15],

FIGURE 3.6 Airy point spread function for a circular optic.

FIGURE 3.5 Image blur is directly related to the point spread function, which determines the spot size focused from a single sample point.

A broader PSF implies greater image blur.
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enabling rapid switching between magnifications without

moving the objective cassegrain (Figure 3.7).

Magnification between sample and detector varies with

detector used. For single point and small array detector

focusing systems, high magnifications are generally not

required. Given that the total noise contribution for a detector

is proportional to the square root of the detector area, that is,

to the linear size for a square pixel, it is desirable to

completely fill the detector area with as much signal as

possible to maximize signal to noise. There are also practical

issues that limit the physical size of the detector element—

currently of the order of about 20 mm, although this continues

to decrease. In fact, in some single point systems, the image is

demagnified onto the detector. When the sample is imaged

onto larger detector array, typical sample–detector magnifi-

cations project 6.25 mm� 6.25 mm at the sample onto actual

detector pixel sizes of 40 mm� 40 mm, an overall magnifi-

cation of only 6.4.

3.4.2 The Use of Apertures

An essential component of IRmicroscope systems, apertures

play a slightly different role in imaging systems. As most

commercial systems combine point microscope and imaging

systems, their role will be described briefly here. In a single

point system, apertures are placed before or after the sample

to restrict light fromunwanted regions of the sample reaching

the detector. In some systems, apertures are placed both

before and after the sample in a dual confocal arrangement to

further reduce interference from light from outside the

masked area [16], known as Redundant Aperturing� by

Spectra Tech. A further enhancement to this approach uses a

single reflex aperture in a dual-pass configuration to restrict

both sample input and output beams at the same time. This is

a conceptually attractive approach to limiting the diffraction

blur caused by apertures, but the advantages are partially

offset by the practicalities of maintaining perfect alignment

in a more complex optical system, and some applications

(e.g., diffuse reflectance) tend to benefit from overfilling the

sample with IR illumination, which is not possible with such

a system. The point to note is that in IRmicroscopy, apertures

play a major role in determining the spatial resolution of the

system. Effects due to the aperture edges themselves and of

the central obscuration zone of the cassegrain both contribute

to pushing the energy distribution away from the center of the

PSF, degrading achievable spatial resolution. The effects of

various schemes have been described by Sommer and

Katon. In the absence of sample effects (which unfortu-

nately can be very significant!), apertures placed before and

after the sample are more effective in reducing the problem

than use of single apertures, but this dual aperture config-

uration requires considerably more care with alignment. In

addition, in single aperture systems, in favorable situations,

these diffraction effects can be partially overcome by over-

aperturing at the sample, that is, setting the apertures

slightly smaller than required to reduce the contributions

due to diffraction.

In imaging systems using array detectors, the spatial

discrimination is achieved by the individual pixels them-

selves, although aperturesmay be used for other reasons. The

spatial resolution of these systems is sometimes incorrectly

confusedwith the sample image pixel size. Provided the pixel

size is small enough to ensure the sample image plane is

sampled correctly, generally in accordance with the Nyquist

criterion, the spatial resolution of the array system is deter-

mined mainly by the wavelength of light and NA of the

system. For example, many systems today offer a sample

image pixel size of 6.25 mm� 6.25 mm, but the spatial res-

olution achievable is somewhat worse than this—typically

>12.5 mm, even in the absence of sample effects. A descrip-

tion of the factors determining spatial resolution in the

various aperturing modes of single point systems and array

systems is described in a technical note by Nishikida [17].

3.4.3 Visible Image System

To facilitate correct positioning of the sample prior to IR

image collection, the sample is usually viewed and correctly

positioned using a built-in optical microscope. Over recent

years, the use of a digital imaging camera has become more

popular than the use of binocular viewers, though some

FIGURE 3.7 ‘‘Z-fold’’ magnification optics used to provide

additional magnification for a given objective cassegrain

configuration.
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systems still provide both means of sample imaging. The

fundamental background pertaining to design and construc-

tion of digital visible imaging systems iswell described in the

numerous resources available on the Web, particularly from

the major suppliers of optical microscopes and camera

systems. With respect to their application in FT-IR imaging

systems, video cameras can provide adequate quality live

image display with potential for much improved ease of use

and productivity. Image capture software can allow graphics

overlay and user interaction with the live image, enabling

simple definition of IR image areas via ‘‘grow boxes’’ on the

live sample image using the PC mouse. Additionally, the

graphics image can be digitally enhanced and various soft-

ware algorithms such as feature selection and particle size

analysis can be readily invoked. Modern USB cameras

further simplify the visible image system by eliminating the

need for interfacing video capture cards at the PC. Given the

typical sample areas that are imaged in the IR, the image

fields required for live visible imaging are such that camera

sizes of about 0.5–1.5mega pixels are typically used. If larger

visible image areas than that can be projected onto the

detector array at the required spatial resolution are required,

then the use of a computer-controlled mapping stage can be

used to step the sample to build up a composite image by

stitching together individual frames in a mosaic pattern. This

type of operation is commonly referred to as ‘‘mosaicing’’

and while initially used to build up larger visible survey

images of the sample, it is now used for both visible and

infrared images where larger area sampling is required. Due

consideration of the uniformity of the field of illumination

across the detector is required in order tominimize artifacts at

the boundaries between the individual ‘‘tiles’’ of the mosaic

pattern. This applies to both IR and visible imaging, although

various response correction schemes can be implemented in

software to correct for this nonuniformity in illumination.

This mode of data collection obviously places special re-

quirements for precision and backlash in the sample stage

mechanism in order to ensure the individual ‘‘tiles’’ are

stitched together without overlap or gaps.

In most systems, some optical components (e.g., the

objective) are common to both the IR and visible beam

paths. At points where the visible and IR systems intersect,

there is usually a suitable beam-switching mirror or increas-

ingly with modern systems, a dichroic optic. Dichroic optics

generally transmit the visible wavelengths and reflect the

infrared wavelengths by suitable choice of an appropriate

coating and substrate. Use of a dichroic optic offers the

potential advantage of eliminating a movable mirror and

hence improved alignment stability—always a good thing—

at the expense of a reduction in visible transmission (which

can usually be compensated for elsewhere). In addition,

choice of dichroic coatings needs to be made with care if

the system is to be used for spectroscopy in the NIR region

where some coatings can have poor reflectivity in this region.

In addition to digital enhancement, various optical

schemes can be employed to enhance the visible image, the

most common being the use of simple polarizers. These

techniques are well described in the visible microscopy

literature; as mentioned previously, some designs incorpo-

rate a collimated beam from the back pupil of the objective to

facilitate the addition of image-contrasting optics such as

differential interference contrast (DIC) prisms. This ‘‘infinity

correction’’ technique has been used quite extensively in

advanced light microscope applications.

3.4.4 Sample Stage

With more systems using the technique of ‘‘mosaicing’’ to

generate larger images, and an increasing demand for auto-

mation as the technique becomes more widely adopted, the

use of a computer-controlled precision stage is becoming the

norm in IR imaging systems. The sample stage is an impor-

tant yet often overlooked attribute of a good imaging system,

which is a little surprising given the very high demands

placed on the part and its relative high cost (generally second

only to the detector array).

3.5 DETECTORS FOR IR IMAGING

Over the past decade, the increased interest in IR microanal-

ysis is largely due to the applications that have been made

more accessible as a result of the development of systems

employing array detectors. There are two main reasons for

this: first, the parallel nature of data collection using detector

arrays means that images can be generated much faster,

limited largely by the detector arrays and associated elec-

tronics; second, with the removal of masking apertures and

their contribution to diffraction effects, the possibility of

higher spatial fidelity might be assumed compared with

single detector systems. While the benefit of faster data

collection certainly justifies the use of arrays, the improve-

ments due to improved spatial resolution are not so clear in

practice. To better understand the current status of the use of

detector arrays in IR imaging, a brief history of their utili-

zation will be outlined.

3.5.1 Early Developments

The potential of coupling infrared array detectors to Fourier

transform spectrometers was realized more than 35 years

ago [18], but this field was initially developed by the astron-

omy and remote sensing communities [19], and was largely

overlooked by the analytical spectroscopic community. It

tookmanyyears to achieve the first practical system [20]. The

field progressed from linear array detectors, through small

discrete arrays [21–23], and the first utilization of IR arrays in

space for astronomy was on the IRAS mission in 1983 [24].
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By1985, astronomers had access to 32� 32 elementmercury

cadmium telluride (MCT) and indium antimonide (InSb)

hybrid arrays with direct readout multiplexing [25–28],

while on the ground, a Fourier transform spectrometer of

the classic French ‘‘cats-eye/step-and-integrate’’ design was

interfaced to the Canada–France–Hawaii telescope by 1984,

and equipped with a pair of 256� 256 MCT arrays by

1993 [29, 30]. A laboratory step-scan interferometer was

modified for airborne operation in 1993 [31], with more

detailed descriptions published in 1995 [32, 33] and in the

patent literature [34]. A 1997 SPIE monograph summarizes

different approaches to imaging spectrometers at that time,

and describes some of the technical details [35], while

spaceborne imaging FT-IR spectrometers are discussed fur-

ther by Beer [36].

As infrared array detectors became commercially avail-

able for civilian purposes, analytical studies became feasible,

and the first paper that reported combining an infrared array

detector and a Fourier transform spectrometer for chemical

studies in a laboratory was published in 1995 [37]. This paper

by Lewis et al. brought this technique to the attention of

analytical chemists. By constructing hardware and software

interfaces between commercially available components (step-

scan FT-IR spectrometer, infrared microscope accessory,

focal plane array, and data acquisition system), they devel-

oped a laboratory-based infrared spectroscopic imaging sys-

tem, suitable for use in chemical and biological/biomedical

applications. Commercial systems followed rapidly, using

step-scan interferometers, first with InSb near-infrared (NIR)

cameras, then with MCT mid-infrared cameras. With the

development of faster readout arrays, and more powerful

personal computers (PCs), the first commercial FT-IR imag-

ing systems using conventional rapid-scan interferometers

and FPAs were introduced in 2002. Since that time, the

applications of this technique have grown very rapidly [38],

although the pace of technological innovation has slowed.

Sampling of the detector signal is usually performed at

even OPD displacement increments, defined by the He–Ne

laser zero crossings, and considerable effort is made to

maintain a constant mirror velocity [39]. The sampling rate

and the spectral region over which unambiguous data are

collected (free-scanning spectral range) are related. A sam-

pling rate of once per cycle of the He–Ne reference signal,

which is every other zero crossing, results in a free-scanning

spectral range of 0–7900 cm�1.Optical filtering is not usually

required, because the loss of efficiency of the beamsplitter,

combinedwith reduced source intensity, attenuates signals at

higher infrared frequencies. However, if the sampling rate is

halved, that is, data collected at every fourth zero crossing,

corresponding to 2.5 kHz for the laser, the free-scanning

spectral range is reduced to 0–3950 cm�1. This is adequate

for the mid-IR spectral region; however, optical filtering is

required to prevent folding of information from the region

3950–7900 cm�1 back into the range 3950–0 cm�1. The

ability to reduce the free spectral range results in two direct

benefits for infrared imaging: slower data collection rates and

smaller data files.

3.5.2 Infrared Array Detectors

The array detectors are manufactured by aerospace and

defense companies, since historically the developments in

IR radiation detection and temperature and emission mea-

surements were targeted for end users such as astronomers,

climatologists, and the military, all programs funded by the

government. Military systems include recognition and sur-

veillance, tank sight systems, and missile control. More

recently, infrared array detectors have been considered as

‘‘dual technology’’ due to the growing number of alternate

areas of application. The combination of passive operation

and high sensitivity is leading to many commercial uses

including environmental and chemical process monitoring

and medical diagnostics. The potential for civilian and

commercial applications has steadily grown in part due to

a noticeable decrease in these high-cost technologies fol-

lowing initial development of the technology base.

Infrared array detectors have their own terminology for

portions of the infrared spectrum, specified in wavelength

(microns), and are based more on the response of detector

materials, and atmospheric transmission windows, than on

molecular vibrations (fingerprint, combinations, and over-

tones). In this scheme, near-infrared covers from 0.7

to 1.0 mm, from the edge of the visible to the silicon detec-

tor cutoff. Short-wave infrared (SWIR) is 1.0–3 mm
(10,000–3300 cm�1), covered by InGaAs detectors to about

1.7 mm(5900 cm�1), and lead salt detectors (Pbs and PbSe) to

3 mm.There is a transmissionwindow in the atmosphere from

3 to 5 mm (3300–2000 cm�1) and this is termed mid-wave

infrared (MWIR); the detector used widely here is InSb, with

some PbSe and MCT applied as well. Long-wave infrared

(LWIR) is used in several different ways: 5 to�11 mm (2000

to �950 cm�1), where standard MCT arrays cut off, or the

atmospheric window variously described as 7–14 mm
(�1400 to�700 cm�1), or 8–12 mm (�1250 to�850 cm�1);

here, MCTs and microbolometers are used. Very long-wave

infrared (VLWIR) usually refers to wavelengths longer than

�11 mm to about 25 mm (400 cm�1), and this region is

covered by long-wavelength cutoff MCT [40, 41] and ma-

terials like arsenic-doped silicon impurity band conduction

(Si:As IBC) [42].

MCTarrays operating at longer than 5 mm require cooling

to liquid nitrogen temperatures and Si:As arrays to liquid

helium temperatures. Imaging detectors used in military and

remote sensing application usually employ Stirling cycle

refrigerators, while in laboratory applications, they are

mounted in pour-fill Dewars. Microbolometers are thermal

detectors generally not requiring liquid nitrogen tempera-

tures, and have a flat response across the spectrum [43].
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Infrared array detectors are sometimes classified as first,

second, or third generation [44]. First generation generally

refers to scanning linear arrays, often the MCT ‘‘common

module’’ developed in the 1970s. Second generation arrays

refer to two-dimensional staring detectors, integrated via

bump bonds to a silicon-based readout integrated circuit

(ROIC). The ROIC may contain one or more analog-to-

digital (A/D) converters. Third generation arrays is a much

less well-defined term [45, 46], but can include ‘‘intelligent’’

arrays with an integrated A/D for each pixel, two- or mul-

ticolor arrays with multiple detector elements per pixel, large

numbers of pixels (2048� 2048 and greater), and finally, the

vision of eliminating the bump bonds and growing the

detector material on a silicon substrate.

Infrared array detectors in general are monolithic or

hybrid devices and operate either cooled or uncooled de-

pending on the active material and performance character-

istics of the array. Each array, based on its designed use, will

have a different type of signal processing electronics. For the

purposes of this chapter, we will concentrate on cooled

detectors (MCT and InSb) that in their respective spectral

ranges exhibit the greatest sensitivity and can operate at the

fastest frame rates.

Mercury cadmium telluride (MCT or HgCdTe) detectors

are widely used in infrared detection, and the history and

technology of this material has been recently reviewed [47–

51]. Today’s state of the art inMCTarrays [52] include single

FPAs with 4096� 4096 pixels, and a mosaic of thirty-five

2048� 2048 FPAs, for a device with a total of 147 million

pixels [53]. Hoffman and Rogalski have described improve-

ments analogous to Moore’s law in semiconductors: the

number of pixels has doubled every 19 months over the past

25 years. In semiconductors, larger wafers, smaller feature

sizes, and larger die sizes became possible, while wafer fabs

worked to reduce particle counts and other sources of defects,

leading to increased yields.

3.5.3 Infrared Cameras

A focal plane array, which is the rectangular or square set of

detectors,must be incorporated into aDewar and built up into

a camera (Figure 3.8), to be a useful device. In the case of

InSb and MCT cameras, the FPA is located on a cold finger

within a pour-fill liquid nitrogen Dewar. The FPA itself

consists of the detector array, fabricated from InSb or

MCT [54], and a multiplexer or readout integrated circuit,

which is a silicon-based device.

Unlike visible region focal plane arrays using silicon as

both a detector and the readout circuitry (e.g., charge-cou-

pled devices), the detectors and readouts in infrared focal

planes cannot be fabricated together, because the detector

materials are incompatible with the temperatures used in

integrated circuit manufacturing. Therefore, the detector

array and the ROIC are fabricated separately and then

integrated via indium bump bonds, which provide the elec-

trical connection between the detectors and the ROIC.

To stop radiation, which does not come from the spec-

trometer from falling on the detector, a conical cold shield is

placed in front of the FPA. Optical filtering can be used to

limit the wavelengths of light falling onto the detector. In

some cases, the optical filter can be the Dewar window

itself; however, this means that the filter is at room tem-

perature, and its emitted blackbody radiation will therefore

fall on the focal plane. This can be a problem for detectors

FIGURE3.8 Block diagramof an infrared camera, incorporating a two-dimensional focal plane array. The focal plane array is attached to the

cold finger of the Dewar and is therefore maintained at around 77K.
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with long-wavelength response (MCT, and to a certain

extent InSb). In these cases, it is useful to locate the

bandpass filter within the Dewar and maintain it at a low

temperature, to limit its long-wavelength emissions.

There is an electrical feedthrough, via a bulkhead connec-

tor, between the FPA and a set of electronics in the camera

head. These electronics are at ambient temperature and are

commonly called the close proximity electronics or warm

electronics. These provide the biases, clocks, and control

information necessary to run the FPA, and convert the FPA’s

analog output data to digital form for frame grabbers, giving

an interface to the personal computer. Today, one or more A/

D converters are in the warm electronics, and the connection

to the PC may be via a video cable to a digital frame grabber

card, or via FireWire.

A frame of data represents the infrared signals for each

pixel at a certain optical retardation of the interferometer. In

an FT-IR spectrometer, the classical approach is to read out

the detector signal at a zero crossing of the He–Ne reference

signal, ensuring that data points are recorded at even optical

displacement increments [55]. To send a trigger to read out

the frame at the appropriate time, a separate coax cable is

normally run from the appropriate output on the spectrom-

eter, directly to the camera. Ideally, the trigger signal to the

camera should clear the array, initiate acquisition for the

desired time, and then read out the whole array. This is true

for a triggerable snapshot array, but a rolling mode array

operates differently (see below). This trigger is often referred

to as the Jam sync signal.

Cameras can operate in rolling mode where, for example,

only two rows of the array are active at any time, followed by

the next two, then the next two, and so on. A rolling mode

camera is also free running: it is running continuously, and is

not reset by a trigger, so that the start of data collection of a

complete new frame is a short, but indeterminate, time after

the trigger. The majority of cameras, however, operate in

snapshot mode, where the whole array is integrated and read

out at one time.

3.5.4 Indium Antimonide-Based Systems

The 128� 128 InSb detector [56] used by Lewis et al.,

contained 16384 pixels, and neither the readout rate of the

detector nor the speed of a 1995-vintage data system per-

mitted rapid-scan operation. Therefore, in the 1990s, these

imaging spectrometers had to be operated in step-scan [57]

mode, with a simple electronic interface between the spec-

trometer and the camera. Following this work, Bio-Rad [58]

commercialized an InSb-based imaging system in 1995. The

InSb system was nonideal for scientific reasons, as the most

specific and assignable spectroscopic information occurs in

the mid-infrared region, but there were also technical issues;

for instance, the signal was digitized using a 12-bit A/D

converter, providing significantly less precision than con-

ventional FT-IRA/Ds and the digitization occurred remote to

the detector Dewar, generating high noise levels.

3.5.5 The ‘‘Javelin’’ MCT Camera

In 1995, two-dimensional mid-infrared cameras were still a

rarity in the civilian world. Notable individual systems

included a 16� 64 liquid helium-cooled, arsenic-doped sil-

icon (Si:As) FPA [59], and a 256� 256 MCT FPA [60], but

the challenge was to locate anMCTarray, and then a camera,

and integrate it into a system that could be manufactured in

volume, and therefore suitable for a commercial product.

Bio-Rad commissioned Santa Barbara Focalplane (SBFP) to

produce such a camera. A significant number of 64� 64

MCT focal plane arrays were available at Santa Barbara

Research Center [61] as a result of the Javelin antitank

missile program [62]. SBFP obtained and integrated these

detectors with a newer generation of electronics, including a

14-bit A/D converter, into their standard Dewar. The first

mid-infrared imaging system using this camera was intro-

duced in 1997 [63, 64].

The ‘‘Javelin’’ camera had its own peculiarities though.

The focal plane was designed around 1992, and is actually

contained in the missile itself, not the launcher. As such, it is

not expected to be subject to multiple cooldown cycles,

although the Javelin literature talks about achieving as many

as 80 cooldown cycles. In a normal laboratory, this would

correspond to only 4months of operation,with one cooldown

per working day! Because the thermal characteristics of

MCT and silicon are different, multiple cooling cycles can

induce delamination, where the indium bump bonds fracture

and the MCT ‘‘peels away’’ from the ROIC.

The pixel pitch of the Javelin FPA is 61 mm� 61 mm, for

a focal plane size of 4mm� 4mm. The pixel size allowed

for a significant well capacity, quite suitable for the high-flux

application of FT-IR-based spectral imaging. The spectral

response starts above 5000 cm�1, rolls off at about

1010 cm�1, and is dead by about 950 cm�1. Some Javelin

cameras also exhibited ‘‘fixed pattern noise’’ in the images,

most likely due to crosstalk between rows in the ROIC; this

problem was addressed in later focal plane developments.

The readout frame rate of the Javelin array is specified at

180Hz, operating in rolling mode. In this scheme, only two

of the 64 rows are active at any time, one reading (collecting

photons) and one writing (moving the charge into an active

readout capacitor row). The integration time is not set

independently, and therefore equals 1/32 of the frame time

(the reciprocal of the frame rate). The rest of the FPA is

essentially turned off for 31/32 of the time, giving a max-

imum effective duty cycle for the camera of only 3%.

Although the Javelin camera as installed in the missile has

a frame rate of 180Hz, SBFP, using their own warm elec-

tronics, successfully ran it with a frame rate as high as

419Hz, with 316Hz being a typical operating rate. Thus,
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it was necessary for commercial instruments using the

Javelin detector to use step-scan interferometers, although

some rapid-scan experiments using high undersampling rates

were performed [65, 66]. The development of this ‘‘Javelin

camera’’ based imaging system initiated a second wave of

imaging applications development [67–70], including the

first imaging kinetics studies by Koenig [71–73].

3.5.6 Rapid-Scan FT-IR Imaging

To deal with the significant inefficiencies of the Javelin-based

imaging FT-IR spectrometer, a systems design approach was

used to match the speeds of all the components in the signal

chain, including matching the flux levels, well capacity, and

integration time of the array. The design goal of a rapid-scan

system employing a two-dimensional array detector required

new components all along the control and signal paths. In

1998, Bio-Rad contracted with SBFP to develop a new MCT

camera. The key component was a high-speed ROIC, which

interfaced to a new set of warm electronics containing four A/

D converters. The ROIC was designed to accommodate

arrays up to 128� 128 pixels, with the more modern 40mm
pixel pitch, and be triggerable, with snapshot readout and

windowing (choice of the size and location of the pixels to

be read out within the array). With a windowing ROIC,

the readout speed of the FPA is inversely proportional to

the number of active columns, so that if a 128� 128 can be

readout at ‘‘x’’ kHz, a 16� 16 can be readout at ‘‘8x’’ kHz.

The first product resulting from this program (128� 128

camera, for a 5mm� 5mm size FPA) was introduced in

2001 [74]. This camera had a frame rate of �1700Hz at the

128� 128 frame size, and was operated in ‘‘fast step-scan’’

mode, with a step rate of�100Hz. In 2002, the 64� 64 pixel

and smaller format cameras were introduced, with readout

rates compatible with rapid-scan operation.

3.5.7 Use of Linear MCT Arrays

The cost, reliability, and performance issues of the early

FPA-based systems prompted an alternative approach to

FT-IR imaging, first by PerkinElmer, then other vendors,

utilizing a small array that could be easily coupled with a

rapid-scan interferometer. This provided the possibility of

delivering spectroscopic performance on individual pixels,

which was analogous with that of conventional FT-IR sys-

tems equipped with MCT detectors. The 16-element linear

array of the PerkinElmer Spotlight� was purpose built for

FT-IR imaging and made from the highest quality, intrinsi-

cally pureMCT. Each detector element is connected with an

individual gold wire connector as opposed to ‘‘bump bond,’’

taking the signal out of the Dewar to a PCB for processing

via a hermetically sealed and shielded cable. All 16 channels

are processed in parallel at 32 kHz using individual inte-

grated circuits with multiple ADCs, that is, all 16 channels

are reading photons effectively 100% of the time, (in con-

trast to the 3% duty cycle of the Javelin array at the time)

resulting in much higher signal quality. On the optical side,

imaging is simplified as a flat illumination field is now

required over a much smaller area, making it easier to

maintain uniform illumination and spatial resolution across

the sample field. This combination of high-quality signal

processing and ultrafast frame rate allowed the system to

acquire high sensitivity IR images in impressively low times.

This design approach was later adopted by Thermo Scien-

tific and Jasco with some minor modifications. The original

Spotlight� detector measures a small 100 mm� 6.25 mm (or

400 mm� 25 mm) area relatively quickly. This was later

modified for larger frame areas. The signal processing

quality is very high—such that in many cases a single scan,

with an acquisition time of 0.2 s for all 16 elements, is all that

is required to get good quality spectra. The sample stage is

then stepped at up to 10 steps per second in 6.25 mmor 25 mm
steps to quickly generate images of a user defined size at up

to about 170 spectra per second in a so-called ‘‘push broom’’

mode of operation. At the time, this approach allowed both

the use of a rapid scanning FT-IR spectrometer providing

ease of use, better reliability, a lower purchase price, and

lower ongoing maintenance costs. The image collection

speed was limited by the interferometer OPD velocity rather

than the detector, and the electronics system essentially

limited by photon noise. To further improve efficiency of

data collection, stage movement is synchronized with the

interferometer, moving when the interferometer reaches

each end of its travel and its velocity is momentarily zero.

A further benefit in efficiency with small arrays pertains to

background collection. Given that each detector pixel spec-

trum is usually processed as a ratio of the sample spectrum

against a background spectrum, the time required to collect

background spectra of a given quality for the detector array

is considerably lowerwith the small array comparedwith the

large FPA.

From a spectroscopic view, in addition to the impressive

signal-to-noise performance of these systems, the use of

photoconductive MCT in the linear arrays allows a wider

wavelength range tobeaccessed.Aswehave seen, theconven-

tional FPA’s response does not extend much beyond about

1000 cm�1 whereas the MCT in the Spotlight system com-

fortably reaches to about 720 cm�1. In addition, the custom-

designeddetector array includeda single element ‘‘mid-band’’

MCT detector alongside the array on the same substrate,

allowing both imaging operations to 720 cm�1 and single

point microscopy to about 600 cm�1 using a single Dewar.

3.6 SAMPLING MODES FOR IR IMAGING

The majority of laboratory mid-IR imaging systems are

designed to provide transmission imaging by default, with
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options for various types of reflection measurement. Early

applications were mostly transmission studies, and of

these, biomedical applications were prevalent due to the

pioneering hardware developments undertaken by Levin and

coworkers at the National Institutes of Health in the United

States in the 1990s. Since then, increased interest in other

sampling techniques such as attenuated total internal reflec-

tion (ATR) and use of low-E slides for transflectance work

has shifted the emphasis somewhat, although transmission

remains the most popular technique. With current hardware,

it is often the case that highest optical throughput and best

signal-to-noise performance is usually obtained in transmis-

sion, although some systems can be better optimized for

other modes of measurement if set up specifically for

that purpose.

3.6.1 Transmission Sampling

Sample preparation methods are well described in the liter-

ature [75]; however, two points about transmission sampling

are relevant to hardware. First, when samples are supported

on an IR transmitting window or located in devices such as

compression cells, they tend to shift the focus on the detector

as a result of refraction effects. The shift depends on the

sample/substrate/cell windows, but can be hundreds of mi-

crons. The relatively fast optics often used in the condenser

and detector systems means this can have a considerable

effect on the signal magnitude at the detector. To compensate

for this, adjustment of the position of the focus is usually

provided, either by adjustment of the position of the con-

denser or by change in its focal length. Second, in transmis-

sion imaging, the sample itself can be a major factor in

determining the spatial resolution achievable. This is a

consequence of the following: (a) in real systems, light

enters the sample at a range of angles to the surface and

(b) these light rays striking the boundaries between different

components in an inhomogeneous sample (for example, two

polymers of different refractive index in a laminate) can be

redirected in various ways depending, for example, on

whether they are transmitted (and subsequently refracted)

or totally internally reflected at the boundary and subsequent

boundaries. For these reasons, the spatial resolution of a

system is often estimated not by using a real sample but by

examining a response across a physical boundary such as

knife edge.

3.6.2 Reflection Sampling

In many systems, both specular and diffuse reflection imag-

ing can be readily performedwith standard hardware used for

transmission, but with the sample illuminated from the upper

cassegrain by use of a flipmirror or beamsplitter positioned to

intercept 50% of the incoming beam and direct into one half

of the objective. The second half of the cassegrain collects the

reflected beam that is subsequently relayed through the

system onto the detectors. This is therefore at best 50%

efficient compared with transmission mode. Furthermore, as

only half of the collection geometry is used, the point spread

function is broadened [76]. The use of reflection mode is

popular for studying tissue sections using low-E slides to

support the sample [77]. As the slide acts as an IR reflector,

the beam passes through the sample twice, with the reflected

signal undergoing a phase shift at the interface. This probably

further confounds the quantitative interpretation ofmeasured

spectra.

Most simple specular reflection and transflectionmeasure-

ments are performed with the average incoming beam at an

angle of about 20–30� (the minimal angle limited by the size

and position of the primary cassegrain mirror), but reflectio-

n–absorption measurements at grazing angle to the sample

may be performed by use of suitable objectives. Various

modifications to the standard cassegrain layout have been

described [78]. In some cases, the illumination is restricted to

grazing incidence (typically 65–85� from the normal to the

surface) by use of an appropriately placed aperture [79], or in

another example used in Bruker systems [80], a system of

additional mirrors inside the cassegrain deviate the beam to

high incidence angle. This technique, used primarily in single

point mapping systems, has demonstrated impressive mea-

surements of layers of just a few nanometers thickness [81],

but its use with FPAs is not widely reported.

3.6.3 Diffuse Reflection

The cassegrain objectives used for standard mid-IR imaging

systems provide illumination and reflection cone angles

that allow collection of both specular and diffusely reflected

(in a geometrical sense) components of the reflected beam.

Unlike some of the macroaccessory designs for diffuse

reflection, there are generally no special hardware considera-

tions to remove the front surface component (i.e., Fresnel

component), and this can cause additional difficulties in

interpretation of reflection spectra in the mid-IR. Combining

this effect with the relatively high absorption in the mid-IR,

diffuse reflection of neat samples is somewhat limited.

However, this is not the case in the NIR region and much

of this region (about 8000–4000 cm�1) is readily accessible

with some systems using MCT arrays. Systems using both

small linear [82] and FPAs [83] can generate high-quality

NIR diffuse reflection images in the longer wavelength NIR

region. This is achieved using essentially the same imaging

hardware but replacing the mid-IR source with a tungsten

halogen source. Other hardware modifications for NIR dif-

fuse reflection can include replacing the FT-IR beamsplitter

material with one more efficient at NIR wavelengths, and

modifying any optical filter, for instance, the long-pass filter

in the FPA Dewar can be eliminated or replaced by a NIR

region-specific short-pass filter.
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The understanding of spatial resolution in diffuse reflec-

tion imaging is less clear. Not only does the incoming beam

penetrate the sample to some considerable depth, it is likely

to emerge at some displacement from the point of entry, due

to the nature of diffuse reflection itself. This effect is more

severe in the NIR region. Various qualitative estimates of

these effects have been made [84, 85], and values of

50–100 mm penetration depth have been suggested—this

value varying with a number of sample parameters such as

particle size. This and typical NIR absorptivities suggest that

the use of imaging optics with a magnification providing

smaller than about 10 mmper pixel at the sample is unlikely to

be beneficial for current applications of this method.

3.6.4 ATR Imaging

The ATR technique has become one of the most popular

sampling techniques for macro-IR sampling [86] and there

are now a number of devices variously utilized to generate

ATR images. It is of course possible to generate ATR images

using single point ATRmicroscope accessories by repeatedly

removing the sample, repositioning, and rescanning repeat-

edly to build up an ATR ‘‘image,’’ but this has obvious

drawbacks apart from the huge time penalty, as possible

cross-contamination and sample deformation issues come

into play.

ATR imaging systems using array detector systems [87]

present some considerable design challenges both from an

optical and mechanical point of view. Current ATR imaging

accessories are designed as add-on accessories for existing

transmission/reflection systems and this in itself places some

constraints on system design. Current methods include use of

various size hemispheres, often of germanium, as the internal

reflection element (IRE), with both FPAs and linear detector

array systems operating in a ‘‘raster-scan’’mode, and also the

use of commercial macro-ATR accessories where the ATR

element is imaged directly onto a FPAwithout the presence of

a visible microscope system [88]. In addition to the well-

documented sampling advantages (no requirement to prepare

thin sections as with transmission), one particular advantage

is a potential improvement in spatial resolution compared

with transmission sampling for two reasons: (a) the sample is

immersed in the IRE and the effective NA, and hence spatial

resolution improves with the refractive index of the IRE and

(b) the much lower sample penetration depths of typically

less than 2 mm mean that the effect of the sample-induced

resolution degrading mechanisms described above for trans-

mission and diffuse reflectancemodes is virtually eliminated.

The issue of sample contact is now of a different magni-

tude compared with most single point ATR designs, as now

the contact has to be maintained over the whole area to be

imaged, which can bevery difficult for hard sampleswith less

than very flat surfaces. For softer materials, variants on IRE

shape have been employed, including a KRS-5 chevron

design used by Esaki et al. [89], but the design does not

offer the magnification or increased NA advantage of a Ge

hemisphere.

Using FPA systems, typically the sample is pressed

against the IRE and the IRE/sample held stationary. The

imaging area is determined by the field of view (FOV) of the

camera (assuming all other things equal). With typical

imaging optics, this FOV ranges from about 45 to 180 mm
linear dimension with a sample image pixel size of about

1.5 mm using standard array sizes between 32� 32 and

128� 128 pixels. However, obtaining bigger ATR images

is not simply a matter of increasing crystal size (and number

of FPA pixels as required) with such systems, as efficient and

uniform illumination becomes more difficult with increasing

crystal size for the hemisphere arrangement in particular.

That said, other crystal parameters such as radius of curvature

can be adjusted to alter the illumination field. Increasing

image area with a reduction of image pixel density relative to

that of micro-ATR accessories has been achieved by use of

commercial macro-ATR accessories [90] with areas up to

about 4mm2 imaged. Working at the near-theoretical spatial

resolution, however, generally limits the FOV to about 50 mm
linear dimension using a 64� 64 array.

An alternative approach is to move the IRE þ sample

relative to the beam Figure 3.9 in an off-axis configuration.

Now, the FOVis determined not by the detector array size but

to first order by the diameter (in the case of a hemisphere) or

geometry of the IRE crystal. The PerkinElmer Spotlight

system [91] utilizes an IRE tip diameter of about 500 mm,

and Paterson andHavrilla [92] have demonstrated this design

approach using a 25mm diameter Ge hemisphere with a

16� 1 array to provide an effective sample image area of

about 2500 mm� 2500 mm with a 1.56 mm pixel size at the

sample. Selecting optimal crystal parameters is nontrivial as

parameters such as illumination field flatness, energy

throughput, and radius of curvature of input and output IRE

surfaces are somewhat interrelated. Furthermore, properties

such as sample penetration depth and spatial resolution vary

with offset from the center of the hemisphere, with optical

aberrations increasing outward from the center. Careful

matching of IRE crystal geometry to the other system

components is fundamental to optimum performance. A

further point is that without appropriate software correction,

such rastering systems can provide artifacts due to noniden-

tical responses of the individual detector pixels. To illustrate

an extreme case, consider a 16� 1 array where the sample/

IRE is rastered in a direction perpendicular to the line defined

by the detector pixels. If the response of detectors 1 and 16 is

different, the resulting imagewill show striations at the points

where the pixels 1 and 16 are adjacent to each other (i.e., at

the stitching points). This is not limited to linear arrays and is

worse with larger arrays. With FPAs, this effect can lead to

both horizontal and vertical striations. This type of artifact is

not eliminated by simply ratioing the image spectra with
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background spectra recorded from identical pixels and re-

quires software correction and/or data collection schemes to

minimize this effect.

3.7 IR IMAGING SPEED AND PERFORMANCE

CONSIDERATIONS

As the detector technology and data acquisition methods

have evolved, the factors affecting IR signal-to-noise and

other spectroscopic performance ofmerit have become better

understood for array-based systems. With the earlier step-

scan-based systems, Koenig’s and Levin’s groups investi-

gated various noise sources and possible approaches to data

acquisition to improve S/N [93, 94]. Bhargava and Levin [95]

and Srinivasen and Bhargava [96] discuss and compare FPA

and linear array detector systems and issues around perfor-

mance comparison between different imaging systems, for

example, a figure of merit based on the time to collect a fixed

number of IR image pixels at a givenS/N for a given set of FT-

IR data collection parameters (e.g., resolution, apodization,

etc.) is proposed. As with the much simpler FT-IR spectro-

meters, however, meaningful and accurate direct compar-

isons between different manufacturers’ instruments remain

plagued with difficulties.

Today, the rapid-scan mode of data collection is generally

preferred, with most manufacturers using detector arrays

of 16� 1 to 128� 128. This permits kinetics studies of

nonrepeatable events that occur on the timescale of seconds,

for instance polymer dissolution. However, if an event is

reproducible and triggerable, it can be synchronized at each

step of the mirror retardation, with faster time resolutions

achievable using the step-scan mode. Time resolutions in the

millisecond timescales have been demonstrated by Bhargava

and Levin [97], who suggest that with the appropriate setup,

time resolutions in the microsecond timescale are feasible.
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4
TECHNOLOGIES AND PRACTICAL CONSIDERATIONS
FOR IMPLEMENTING NEAR-INFRARED CHEMICAL
IMAGING

E. NEIL LEWIS AND LINDA H. KIDDER

Malvern Instruments, Columbia, MD, USA

4.1 INTRODUCTION

Near-infrared chemical imaging (NIRCI) has evolved from

a novel analytical technique to one in routine use in a variety

of settings. Please refer to other chapters for explorations of

NIRCI applications in biomedical, pharmaceutical, food, and

polymer fields of study. Ignoring the spatially resolved nature

of the resulting data, NIRCI can be viewed as highly parallel

near-infrared spectroscopy (NIRS), where tens to tens of

thousands of NIR spectra are acquired simultaneously.

Therefore, NIRCI can be expected to provide qualitative

and quantitative analytical information that is, at the least,

equivalent to NIRS. In practice, however, significantly more

insight into the functionality of heterogeneous materials may

be obtained using NIRCI rather than NIRS. The reason for

this is twofold. As NIRCI data are collected in a spatially

resolved manner, that is, the user knows from where on

a sample a NIR spectrum is derived, novel information about

the spatial distribution of sample components and the

correlation of this with performance can be investigated.

Second, the large number of spectra acquired, and the ability

to characterize the resulting distribution of values across

a sample, provides statistical insights into chemical hetero-

geneity, a characteristic that is also known to impact sample

performance.

Chemical imaging instrumentation has become more

economically accessible and robust because of iterative

advances in hardware, computational capabilities, electron-

ics, and data processing strategies. Its increased accessibility

and ability to solve real-world problems has acted as

a catalyst for the discovery of further uses. It is likely that

as imaging solves more problems, the techniques will be

more routinely deployed in laboratory, QA/QC, and process

monitoring environments.

Although there has been a parallel path in the development

of NIR imaging spectrometers for space and remote sensing

applications, this chapter will focus on terrestrial laboratory

and process systems. An excellent source of general back-

ground information that encompasses early developments in

both fields can be found in Refs 1 and 2.

4.2 NEAR-INFRARED SPECTROSCOPY

The analytical near-infrared (NIR) region spans the range

from approximately 700 to 2500 nm, where absorptions

arising principally from overtones and combination bands

of O–H, N–H, and C–H stretching and bending fundamentals

are found. In comparison to the fundamental modes found in

the mid-infrared spectral region (MIR: 2500–25,000 nm,

4000–400 cm�1), sample absorptivities can be one to many

orders of magnitude less. This minimizes the need for

extensive sample preparation whose principal purpose is to

avoid saturation of absorbed radiation. Samples can be

examined through packaging materials, and the technique

can be used to examine hydrated samples, within limits.

Intact samples are usually characterized using diffuse reflec-

tance, and the technique is particularly useful for performing

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
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rapid, reproducible, and nondestructive analyses of known

materials [3]. Although less preparation in comparison to the

MIR may be needed in presenting samples to the spectrom-

eter, data analysis can often be relativelymore extensive. The

absorption bands for the overtone and combination modes

tend to be broader and more overlapped than for the funda-

mentalmodes, and somultivariatemethods are typically used

to separate spectral signatures of sample components.

4.3 NEAR-INFRARED CHEMICAL IMAGING

Unlike its MIR and Raman imaging counterparts, NIR

microscopy was relatively rarely applied in the laboratory.

In Infrared Microspectroscopy: Theory and Applications

published in 1988 [4], near-infrared appears only twice in

the index, and in the 1995 volume, Practical Guide to

Infrared Microspectroscopy, the term does not appear in

the index at all and is not explicitly covered by any of the

individual chapters [5]. In the Handbook of Near-Infrared

Analysis published in 1992 [3], there is no mention of

microscopy, mapping, or imaging in the index. The reason

for the relatively late development and application of NIRCI,

compared to the MIR and Raman counterparts, perhaps has

to do with the typical application areas of traditional NIR

spectroscopy. NIRS was largely targeted toward agricultural

and industrial applications for the determination of bulk,

averaged properties [3]. Industry mindset was that traditional

NIRSapplicationswouldnotbenefit fromtheability toexplore

the spatial distribution of sample components. Scattered early

work describes data collection of spatially resolved NIR

spectra [6–19], but the real proliferation of NIRCI started

approximately in 2001 with the commercialization of global

imaging and line mapping implementations: (Spectral

Dimensions—now Malvern Instruments—Columbia, MD,

USA), (PerkinElmer, Shelton, CT, USA), (Specim, Oulu,

Finland). These first commercial systems mostly targeted

pharmaceutical, agricultural, and waste sorting applications

[20–23]. By the mid-2000s, once imaging platforms became

widely available, and the utility of the approach in the

pharmaceutical and agricultural areas became apparent,

NIRCI has become more widely used [24–27].

In a simplistic way, NIRCI can be viewed as just an

‘‘expanded’’ version of standard NIRS, where multiple NIR

spectra are acquired in parallel or in series. The near-infrared

spectral information in a NIRCI data set is comprised of the

same spectral absorbance bands, molecular scattering,

diffraction effects, instrument line shapes, and so on, as for

single point NIR spectra. Therefore, spectral preprocessing

(dividing through by a background data set, baseline sub-

traction, multiplicative scatter correction, derivatives, etc.)

and multivariate data analysis approaches are as critically

important for the correct interpretation of NIRCI data as they

are for single point NIR spectra.

There is, of course, a difference in practice. Conventional

NIR spectrometers average the spectral signatures across the

sample area into one spectrum, whereas NIRCI spectro-

meters preserve spatial distinctions, collecting multiple un-

ique NIR spectra across the same area. Depending on the

technique employed, tens to tens of thousands of NIR

spectra comprise a data set, and the resulting spatially

resolved data can be applied to understanding the heteroge-

neity of a single sample or for high-throughput analysis of

multiple samples. The statistical information provided by

having so many data points enables the application of unique

quantitative analysis methods. The combination of spatial

and statistical information enables NIRCI to also be

a primary analytical method—for instance, in calculating

the size of chemical domains or the thickness of a coating

cross section. Figure 4.1 presents an example of this capa-

bility. Figure 4.1a shows a single wavelength image (at

2080 nm) that distinguishes several layers within

a pharmaceutical granule. The thickness of three layers has

been calculated by individually thresholding and binarizing

each, and then determining the distribution of thickness

values across the layer. The results of this calculation are

displayed in Figure 4.1b as a 1-pixel thick line located along

the outer edge of its corresponding layer. The coating thick-

ness is indicated by the shade or color of this 1-pixel

outline—in the color representation red shows areas of

thicker coating, whereas blue indicates thinner coatings. The

actual coating statistics can be represented by displaying

a histogram of coating values. The distribution statistics for

these three layers are shown in Figure 4.1c. Themean coating

thicknesses for these three layers are 387.3 mm, 64.3mm, and

61.9mm, respectively. These values are determined a priori

from the chemical image. This is in contrast to standard NIR

spectroscopy that is exclusively employed as a secondary

analytical method, in which calibration models must first be

derived to establish correspondence between NIR spectros-

copy and a correlative gold standard. These points are

discussed in more detail below.

4.3.1 Chemical Imaging Data Cube: Hypercube

Chemical image data sets can be represented as a three-

dimensional cube spanning one wavelength and two spatial

dimensions. This data construct is often called a hypercube,

and each element within the cube contains the spectral

intensity response measured at a particular spatial location

and wavelength [1]. The hypercube can be explored as

a series of spectra where the spatial location is known and

preserved, or alternatively, as a series of images at specific

wavelengths. However, much of the novel information

provided by a hypercube combines both spectral and spatial

information, for example, correlating sample function with

the spatial interrelationship or size of components. A variety

of uni- and multivariate (chemometric) data processing
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techniques are available to explore this type of information;

Ref. 26, and its included references, provides a thorough

survey of this area.

4.3.2 Multispectral and Hyperspectral

The terms multispectral and hyperspectral originated

from the remote sensing community and are also used by

the analytical imaging community. The terms indicate the

number of wavelengths in a particular data set, with hyper-

spectral data containing more than multispectral data.

Although there is no absolute, generally accepted limit,

commonly ‘‘hyperspectral’’ implies tens to several thousands

of contiguous but narrow wavelength channels, whereas

‘‘multispectral’’ implies several to tens of wavelengths,

with no requirement for the selected wavelengths being

contiguous or narrow. NIRCI implemented with an interfer-

ometer or an imaging monochromator (grating, prism, or

a combination of dispersive elements) will collect hyper-

spectral data. Imaging with a series of bandpass filters

provides a multispectral approach. A tunable filter (liquid

crystal tunable filter (LCTF) or acousto-optic tunable filter

(AOTF)) or tunable source (optical parametric oscillator

(OPO)) may collect data in either multi- or hyperspectral
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FIGURE 4.1 (a) Single wavelength image (2080 nm) highlighting multiple chemically distinct layers within a cross-sectioned pharma-

ceutical granule. (b) Coating thickness distribution traces summarizing the thickness of three visible layers of the granule. The trace outlines the

outer edge of the layer and the shade or color gradation gives the thickness value—in the color representation red represents a relatively thicker

layer and blue thinner. For the black and white representation, variations in shade are indicative of coating thickness differences. (c) Histogram

representations of the coating thickness distributions of the three layers. Values given are in micrometer. The mean coating thicknesses for the

first three layers are 387.3, 64.3, and 61.9mm, respectively.
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mode, based on how many channels are measured, and this

can be tailored to solve particular analytical problems.

4.3.3 Statistical Analyses and Spatial Heterogeneity

NIRCI data contain the same spectral information that is

recorded with a conventional NIR spectrometer taken over

the same sample area, but breaks the information apart as

a function of spatial location. Therefore, a NIR spectral

parameter in a NIRCI data set is not defined by a single

value, but spans a range based on spatial location. As a simple

representative example, Figure 4.2 presents an image and

corresponding histogram derived from a NIRCI data set

of a pharmaceutical tablet containing �22,400 NIR spectra.

A multivariate approach (partial least squares, PLS II) was

employed, with the library built using representative ‘‘active

pharmaceutical ingredient (API)’’ and ‘‘excipient’’

data points from within the NIRCI data set. Each of the

�22,400 NIR spectra is ‘‘scored’’ using the PLS model

derived from the library, and the higher the score, the more

of that component present in that pixel location. By arranging

the score results by spatial (x, y) coordinates as shown in

Figure 4.2a, the variation in relative concentration (abun-

dance) of the API across the tablet is visualized. The histo-

gram representation of the image shown in Figure 4.2b

provides a statistical analysis of the PLS score results. The

mean value of this distribution is 0.4495, indicating that the

mean API abundance determined using this method is

�44.95%. Note that the model and the result are generated

using only a single NIRCI data set. A standard NIR analysis

of the same sample would give a single number—an API

concentration—based on an average across the entire sam-

ple. In addition to providing a mean value, Table 4.1 presents

the relative amount of API present in a tablet across�22,400

different spatial locations. For NIRCI, the question we ask is

not simply ‘‘howmuch’’ but rather ‘‘howmuch at a particular

location.’’ NIRCI presents a distribution of values, not just

a single one.

There are a variety of analytical and statistical tools that

can be used to efficiently analyze these data, and in many

instances, subjective and qualitative interpretation can be

replaced with automated, robust, quantitative, and reproduc-

ible statistical analyses [28]. In addition to determining

‘‘calibrationless’’ component abundance information, one

of the most obvious benefits of obtaining thousands of

spatially resolved NIR spectra in a single data set is that the

spatial heterogeneity of a sample can be characterized. This

characterization can provide significant insight into the

functionality of complex materials, both naturally occurring

and man-made. Table 4.2 presents the mean, standard devi-

ation, skew, and kurtosis of the histogram representation of

the image presented in Figure 4.2b. The skew and kurtosis

values can be used to characterize component heterogeneity

within the sample, providing a reproducible method of

FIGURE4.2 Presents an image and corresponding histogramderived fromaNIRCI data set of a pharmaceutical tablet comprised of�22,400

NIR spectra. Amultivariate approach (partial least squares, PLS II) was employed, and the resulting image highlights theAPI. By arranging the

score results by spatial (x, y) coordinates as shown in (a), the variation in relative concentration (abundance) of the API across the tablet is

visualized. The histogram representation of the image shown in (b) provides a statistical analysis of the PLS score results. (See the color version

of this figure in Color Plate section.)

TABLE 4.1 Relative API Contribution Across 22,400

Locations on a Single Tablet [See Figure 4.2b]

Normalized PLS Score Range of Number of Pixels

0.6–1.0 514

0.5–0.6 5941

0.4–0.5 9010

0.3–0.4 5860

0.0–0.3 1077
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analyzing this sample characteristic from NIRCI data. Ref-

erence 28 provides details on how to assess heterogeneity of

samples using these statistical parameters.

In addition to providing a quantitative assessment tool to

assess sample mixing, the statistical component of NIRCI

analysis can also alleviate calibration and correlative issues

that arise for single point NIR spectroscopy. Often, variation

among spectra containedwithin aNIRCI data set, or obtained

from pure components, can be used to create a multivariate

model. As mentioned previously, the PLS analysis for

the sample presented in Figure 4.2 is entirely self-contained.

The library was constructed from pixels within the data set

(spectra that most closely represented pure component API

and excipient spectra), and a ‘‘classification’’ approach to

generating a PLS model was utilized. A ‘‘classification’’

model uses a library composed of pure component spectra,

rather than a series of spectra spanning a known range of

concentrations. These data enjoy a ‘‘statistical robustness’’

due to the large number of individual pixels representing the

sample. The resulting model is applied to the sample data to

produce score images relating the abundance of the library

components. The intensity of each pixel reflects howmuch of

that component is predicted to be present at that spatial

location, and the brighter the pixel, the more content pre-

dicted at that location, as seen in Figure 4.2a. As a result,

NIRCI can solve many problems spatially without first

having to create a separate series of calibration samples that

are typical for single point measurements [29].

4.3.4 High Throughput

An advantage of NIRCI is the ability to perform high-

throughput measurements on samples, in effect ignoring the

spatial dependence of the information [30–32]. Rather than

focusing on characterizing the heterogeneity of a single

sample, in high-throughput mode the average NIR spectrum

of multiple (hundreds to thousands) individual samples can

be compared. This can be tremendously useful in a QA/QC

environment where large numbers of samples need to be

screened or evaluated. Figure 4.3 presents an example of

examining a sample in ‘‘high-throughput’’ mode. Unlike the

previous examples presented in Figures 4.1 and 4.2, the

image in Figure 4.3 highlights the chemical composition of

individual pharmaceutical granules, not information relating

to the distribution of components within a single granule.

Spatial distribution has no relevance; the granules could be

lined up in rows and columns or distributed randomly—the

same answer would be achieved. The image in Figure 4.3a is

created by overlaying images at four distinct wavelengths,

once for each component: citric acid 2220 nm, sucrose

2080 nm, flavoring 1940 nm, and acetaminophen 1670 nm.

A binary image at each of these marker bands is created, in

which the chemical species of interest is thresholded to the

value of ‘‘1’’ and anything else is set to ‘‘0’’. These separate

binary images are overlaid to generate a four-color compos-

ite, where each color represents a separate chemical entity.

TABLE 4.2 Statistical Analysis of 22,400 PLS Score Values

Derived from a Single Tablet [See Figure 4.2b]

# Pixels 22402

Mean pixel value 0.4495

STD of distribution 0.0871

Skew �0.1745

Kurtosis �0.2248

FIGURE 4.3 Example of a high-throughput NIRCI application in which the chemical identification of multiple objects is characterized.

(a) A composite binary image made from single channel images at wavelengths characteristic of the four identified sample components: citric

acid 2220 nm, sucrose 2080 nm, flavoring 1940 nm, and acetaminophen 1670 nm. (b) Single pixel representative spectra of the four

components. Using size and number of the particles, approximate component abundancesmay be estimated from this image. This results in the

following approximation of component abundance: sucrose 88%, citric acid 7%, acetaminophen 3%, and a flavoring component 2%.
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Using size and number, an approximate ‘‘abundance’’ cal-

culation can be performed, the results of which are presented

in Table 4.3.

Because the NIR spectra of these four components are

well separated, it is possible to generate this image by

collecting as few as six wavelengths—one for each compo-

nent and two wavelengths to allow for baseline subtraction.

Using an NIRCI system that employs a random access

wavelength filter, it is possible to collect these images in

almost real time. The field of view can be optimized depend-

ing on the desired sample size, andmultiple fields of view can

be stitched together to acquire enough particles to provide

robust sampling statistics.

4.3.5 Calibration for Chemical Imaging Systems

Accepted strategies for calibration, instrument qualification,

and performance verification are important for the imple-

mentation of NIRCI as a routine analytical method. Because

NIR mapping/imaging systems employ multiple detector

elements (pixels) to gather data, a truly quantitative calibra-

tion would include an individual calibration of each pixel as

a unique detector. The need to characterize the signal-to-

noise of each pixel has been presented [33]. Although many

of the same procedures used to calibrate traditional NIR

spectrometers can be applied to NIRCI, the requirement for

standard reference materials (SRMs) that are homogeneous

(relative to the size scale resolved by the imaging system) can

make the implementation of these procedures difficult. If

a standard referencematerial is not spatially homogeneous at

the spatial resolution of theNIRCI system, then each detector

will measure something slightly different. In characterizing

a large number of pixels, one must be able to make the

assumption that each pixel is ‘‘seeing’’ an equivalent scene;

therefore, the development of truly homogeneous standard

reference materials is critical to individually calibrating each

detector. It is important that existing NIR spectroscopic

standards be evaluated for use in NIRCI applications, pri-

marily by characterizing the extent of spatial heterogeneity.

As an example, Figures 4.4–4.6 show NIRCI data from

three reference materials commonly used in NIRS:

Spectralon� (Labsphere, North Sutton, NH, USA) impreg-

nated with carbon black used to establish detector linearity

and two different SRMs used for wavelength calibration

(NIST 1920a and NIST 2036). Figure 4.4 shows a near-

infrared chemical image of the 80% reflectivity Spectralon

reflectance standard, which clearly shows the individual

particles of carbon black that are used to reduce the overall

reflectivity from 99%. This type of standard cannot be used to

characterize the linearity of each pixel in a multielement

detector, as the individual pixels are not exposed to an

equivalent scene.

Figure 4.5 shows NIRCI data of a NIST 1920a SRM used

for wavelength calibration [34]. The spectra seen in

Figure 4.5a from different spatial locations within the sample

highlight real chemical differences across what should be (or

may be assumed to be) a homogeneous standard. The corre-

sponding image (at 1530 nm) shows the extent of the spatial/

chemical heterogeneities readily apparent with a 40 mm/pixel

magnification. This SRM is also not sufficiently homoge-

neous to permit the characterization of individual pixels on

a multielement detector. Figure 4.6 shows results taken with

the same system magnification of the NIST 2036 SRM [35].

This standard, a rare earth oxide glass, is highly homoge-

neous at 40 mm/pixel magnification.

This difference is not only unique to NIRCI, but also

impacts Raman- and MIR-based chemical imaging and

mapping systems. Once a ‘‘uniform’’ scene has been mea-

sured (imaged), the response of tens to tens of thousands of

detectors needs to be analyzed. This can be accomplished

using a statistical approach, evaluating a mean response and

the standard deviation around themean, and then implement-

ing a method to accommodate pixels (if any) that fall outside

of acceptable limits. Approaches to this include excluding

pixels entirely or replacing them with nearest neighbor

averages. The definition of ‘‘acceptable limits’’ may change

depending on the analytical requirements of specific applica-

tions and should be determined using scientific principles.

Very often, because spatially homogeneous standard ref-

erence materials are not available, or simply because

TABLE 4.3 Granule Abundance by Component

Component Component Abundance (%)

Sucrose 88

Citric acid 7

Acetaminophen 3

Flavoring 2

FIGURE 4.4 Near-infrared chemical image of Spectralon�
standard (80% reflectivity), taken with magnification of �40mm/

pixel. Dark spots are carbon black particles that are clearly resolved

at this magnification.
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a calibration of each pixel is not required to obtain

a qualitative result, values obtained for the calibration of all

pixels/detectors are averaged to a single value. However, it is

important to consider that there is a distribution of responses

(e.g., signal-to-noise ratio) and not just a single value for

a multidetector spectrometer. Averaging these values throws

away important information. Efforts are underway to develop

strategies, standard materials, and methods applicable

FIGURE 4.5 (a) Spectra from bright and dark areas in the data set compared with the NIST published spectrum of the 1920a SRM.

Differences in the spectra are associated with true chemical differences, that is, different concentrations of the rare earth oxide powders at

different locations in the SRM. (b) Normalized image at 1530 nm of NIST 1920a NIR standard reference material. Differences in intensity

across the image reflect the spatial localization of the different rare earth oxide powder constituents of the sample. This SRM is not spatially

homogeneous at this magnification (�40mm/pixel).

FIGURE 4.6 (a)�200 overlaid single pixel spectra extracted across the line in the image in panel (b). The sample is NIST 2036 SRM. (b)

NIR chemical image (at 1945 nm) of the same sample showing the high level of chemical and spatial homogeneity at 35mm/pixel

magnification. (c) A histogram distribution of the reflectance values at 1945 nm. The mean reflectance is 0.0942 with a standard deviation

of 0.0026. These values provide a quantitative metric of chemical homogeneity.
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to imaging. In addition to independent efforts, an ASTM

subcommittee on Molecular Spectroscopic Optical Imaging

(E13.10) has been working toward the development of con-

sensus standards for NIR, Raman, andMIR imaging systems.

Basic instrument calibration of traditional NIR spectro-

meters consists of x- and y-axis (wavelength and intensity,

respectively)calibration.Otherparameters(suchasspectrom-

eter noise, limits of detection, linearity, etc.) are helpful in

determining thatan instrument isperformingasspecified[36].

Imaging-only considerations for method validation include

spatial resolution, field of view andmagnification, uniformity

of illumination, and the extent of optical aberrations. An

instrument qualification should be structured to make sure

that the system isworking to reasonable specifications; that is,

it is fit for purpose. This type of check is performed upon

installation, and perhaps after a repair or upgrade. There are

severalpublications thatdealwith theuniqueissuesassociated

with the calibration of NIRCI systems [37, 38].

A similar but different consideration is performance

verification, in which the general performance of an instru-

ment is verified. This level of system verification may occur

on a daily basis, or as a quick check before data are collected.

Again, it should be emphasized that data obtained from

a NIRCI system represent a distribution of values across the

number of pixels/detectors being used, and that reporting

these values as a mean and accompanying standard deviation

provide valuable information about the system performance.

The high-throughput capabilities of NIRCI discussed pre-

viously (see Section 4.3.4) enable calibration samples or pure

components to be in the same field of view as the sample.

Several groups have taken advantage of this capability for

calibrating NIRCI systems [30–32, 38, 39]. Creating single

data sets that contain both sample and reference materials

simplifies many aspects of the experiment. The data are

‘‘internally’’ consistent because reference and sample

data are measured simultaneously by the same instrument—

temporal variations in instrument response are automatically

accounted for. This minimizes the need to apply transfer of

calibration procedures to analyze samples on other instru-

ments [30–32]. As an example, Figure 4.7 shows a NIRCI

data set in which three pure components are positioned in the

same field of view as the sample. The pure components are

three rectangular compacts of white powder, and the contrast

in the image is derived frommultivariate analysis that assigns

shades based on a multivariate response. Data were collected

on the sample and the pure components at the same time.

4.4 INSTRUMENTATION

4.4.1 Collection Modes

NIRCI can be collected one spectrum at a time (point map-

ping), one line at a time (linemapping), or one image at a time

(global imaging). In the remote sensing world, these

modes are known as whisk broom, push broom, and staring,

respectively. Table 4.4 attempts to enumerate common

implementations of these three data collection methods,

giving references to someof the corresponding seminalwork.

As with most analytical techniques, there are a number

of practical considerations that influence the suitability of

specific chemical imaging instrumentation and methods for

particular applications. To proceed rationally in developing

a method, the analytical problem must be defined, and

the data requirements to derive an analytical solution must

be well characterized. Factors such as the desired spatial

resolution, number of individual measurements, magnifica-

tion, sample size, the amount of time available for

data acquisition, the type of sample, whether the sample is

stationary or moving, will all influence selection of the

optimal technique and sample presentation. Although

a 2D imaging approach will work equally well for a high-

throughput, lowmagnification QA/QC screening application

as it will for a microscopy application (such as the detection

and identification of impurities within a single sample), in

reality different experimental implementations (different

modes) might be employed for those two applications.

The following sections describe common implementations

of NIRCI and specific components that comprise these

instruments.

4.4.1.1 Point Mapping As mentioned earlier, in contrast

to its MIR and Raman counterparts, NIR microspectroscopy

FIGURE 4.7 Chemical image of a three-component mixture:

(a), (b), and (c) are the areas holding the pure components and

(d) is the area comprising the mixture. In this case, the pure (white

powder) sample components were pressed into rectangular com-

pacts and placed in the same field of view as the mixture sample.

Applying a PLS model based on the pure materials results in the

three-channel composite image shown. This highlights the inherent

chemical heterogeneity of the mixture and the chemical differences

between each of the compacts. (See the color version of this figure in

Color Plate section.)
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studies, with no mapping component, are relatively unusual

[43–46]. Similarly, there are only a few early references to

NIR point mapping, and these were implemented using

a grating spectrometer coupled to a fiber microprobe [6,

13], by illuminating the sample with a tunable OPO [16],

and coupling a FT-NIR interferometer to a NIR micro-

scope [15, 47]. Figure 4.8 shows a schematic implementation

of point mapping with a grating spectrometer (a) and an

interferometer (b).

NIR point mapping was implemented by Lodder et al. [6]

by coupling the output of a grating spectrometer into a fiber

optic using a compound parabolic concentrator. The resulting

spot of collimated light (�0.74mm2) was directed onto the

sample surface, and the spectrometer scanned from 1100 to

2500 nm. A single point PbS detector mounted off-axis at the

proximal (input) end of the fiber was used to collect diffusely

scattered light resulting from the interaction with the sample.

The fiber probe could be moved in 10 mm increments along

TABLE 4.4 Varieties of NIRCI Implementations and Corresponding Early Publications

Device for

Wavelength

Separation Detector Source

Scan Sample

or Wavelength

Source/Image

Filtered Early Reference

Point mapping

Grating spectrograph Point Broadband Both Source [6] (1990): Fiber probe, microposi-

tioner, grating spectrometer, PbS

detector, 1100–2500 nm

Grating spectrograph Array Broadband Sample Source [13] (1997): Fiber probe, grating

spectrograph, CCD detector,

508–1026 nm

FT-NIR Michelson

interferometer

Point Interferometer Both Source [15] (1998): IR microscope, Mi-

chelson interferometer, 7500-

4200 cm�1

Tunable OPO Point Tunable OPO Wavelength Source [16] (1998): OPO tunable source,

PbS detector, fiber probe,

1400–4100 nm

Line mapping

FT-NIR Michelson

interferometer

Linear array Interferometer Both Source [23] (2003): IR microscope, Mi-

chelson interferometer, 7500-

4200 cm�1

Prism/grating/prism

spectrograph

Array detector Broadband Sample Image [10] (1992): prism/grating/prism

spectrograph, CCD, 650–1100 nm

Grating spectrograph Array detector Broadband Sample Image [9] (1992): grating spectrograph,

NIR tube camera, 900–1900 nm

Global Imaging

FT-NIR Michelson

interferometer

Array detector Interferometer Wavelength Source [12] (1996): Michelson interferom-

eter, InSb FPA, 1000–5500 nm

Tunable filter (AOTF) Array detector Broadband Wavelength Image [8] (1992): AOTF/CCD,

400–1200 nm

[40] (1994): AOTF/InSb,

1000–2400 nm

Tunable filter (AOTF) Array detector Broadband Wavelength Source [17] (1998): AOTF/InGaAs FPA/

source filtering, 1000–1700 nm

Tunable filter (LCTF) Array detector Broadband Wavelength Image [20] (2001): LCTF, InGaAs FPA,

1100–1700 nm.

Hadamard pattern mask Point detector Broadband Both Source [11] (1995): Hadamard transform/

FT-IR spectrometry Michelson in-

terferometer, 7500–4200 cm�1

Digital micromirror array Point detector Broadband Both Source [41] (2000): digital mirror array/

grating spectrometer/point detector

Tunable laser (OPO) Array detector Tunable OPO Wavelength Source [14] (1997): OPO, InSb FPA

Linear variable filter Array detector Broadband Sample Image [42] (2004): linear variable filter,

NIR FPA, 1500–2300 nm

Interference filter Array detector Broadband Wavelength Image [7] (1990): filters/CCD,

400–1100 nm
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the sample using a micropositioning stage. Another point

mapping approach implemented by Lodder et al. [16] was to

illuminate a sample through a fiber-optic bundle with the

narrowband light output of a Nd:YAG-pumped OPO. This

system generated tunable NIR light from 1.4 to 4.1 mm, with

an effective power of 3.3MW. In this implementation, the

fiber bundle was split into illumination and collection fibers,

and light scattered from the sample was returned to a PbS

detector. In both these implementations, the size of the

sample spot is defined by the output of the illuminating fiber.

NIR point mapping can also be implemented by coupling

the output of a FT-NIR interferometer to an optical micro-

scope that utilizes all reflective optics to eliminate chromatic

aberration. The microscope is used to view and position the

sample and, most importantly, to condense the incoming

radiation into a small spot using optics and masking aper-

tures. After interaction with the sample, the light is collected

by the microscope and focused onto a standard single point

detector. The spatial extent from which data are collected is

defined by the size of the illumination spot and the projection

of the detector through the collection optics onto the sample.

The size of the illumination spot is determined by adjusting

masking apertures before and, in some cases, after interaction

with the sample [4].

In the point mapping approaches discussed above, by

translating the sample in small increments along both x and

y spatial axes, an area on the sample can be imaged. Image

fidelity is determined by illumination spot size (via a fiber or

microscope), step increment in the x and y directions, and the

total number of points that are collected.

NIR point mapping, relatively uncommon to begin with,

has been superseded by line mapping and global imaging.

This is due to the much shorter data collection times, higher

image fidelity, and relative economy available in these other

implementations.

4.4.1.2 Line Mapping Line mapping approaches fall

between point mapping and global imaging in terms of the

number of spatial locations that can be collected simulta-

neously. These techniques sweep a line across the sample,

and hence the ‘‘push broom’’ moniker. The most common

implementations utilize either an FT-NIR interferometer or

an imaging spectrograph based on a dispersive optical ele-

ment. Figure 4.9 shows a schematic implementation of line

mapping with a spectrograph.

FT-NIR-based line mapping is implemented in the same

way as for the point mapping approach discussed above, but

the sample is illuminated over an area, and the resulting light

is focused through a linear aperture onto a linear array. The

area of the sample from which data are collected is deter-

mined by the number of detector elements, typically 16 or

32 pixels, their size and spacing, and overall system mag-

nification. By translating the sample along both x and y

spatial axes, a larger area on the sample can be imaged.

Sample motion

Single point detector

Parabolic concentrator

Fiber optic

(a)

Diffuse reflectance

Grating
spectrometer /
light source

Aperture to define spot size

(b)

Sample motion

Single point detector

Beam splitter

Reflective focusing optics

Diffuse reflectanceInterferometer/
light source

FIGURE 4.8 Schematic of point mapping NIRCI system in which the output of a grating spectrograph is directed onto a sample through a

fiber optic. The output of an interferometer is condensed to a small spot on a sample for point mapping NIRCI.

Sample motion

Collection optics

Entrance slit

QTH broadband 
light

Diffuse reflectance

λ

2D array detector

xImaging 
grating
spectrograph

FIGURE4.9 Schematic of linemappingNIRCI systemwhere the

wavelength dispersing element is an imaging grating spectrograph.
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Data can be collected with unequal x and y spacing, or the

distance that the translation stage moves can be matched to

the detector element spacing imaged upon the sample to

create a data set with the spacing for the two axes being equal.

Data are collected more rapidly than for point mapping

approaches. It is still a mapping technique though and does

necessitate moving the sample along the x and y axes to build

up area coverage across a sample.

A typical line mapping spectrograph approach to NIRCI is

implemented as follows: the sample is illuminatedwith broad-

band light and after interacting with the sample, the resulting

diffusely reflected NIR signal is collected with optics (lenses

or fiber optics) and focused onto the input slit of the spectro-

graph.Thedimensionsof the inputslit and themagnificationof

the input optics define the spatial extent of the sample field of

view (which is linear). This line of light is accepted into the

spectrograph and dispersed across a 2DNIR focal plane array

(FPA). Ultimately, one axis of the FPA encodes the spatial

information from the sample, while the orthogonal axis re-

cords the spectral information from the line image.Additional

spatial information isbuilt upbyscanning thesampleunder the

input optics, or less commonly by scanning the input optics

across the sample [48], or moving the spectrograph and

camera combination across a stationary sample [42].

4.4.1.3 Global Imaging The most common global im-

aging approach for NIRCI is to employ an image quality

LCTF. A broadband source illuminates the sample, and

light that has interacted with the sample is collected with

a series of imaging optics, and passed through the tunable

filter, before being imaged onto a NIR FPA. The sampling

area is highly configurable, typically ranging from 3� 3

mm (�10� 10 mm per spectrum) on a side to 10� 10 cm

(�330� 330 mm per spectrum) for standard commercial

configurations. Figure 4.10 shows a schematic of this

implementation.

The AOTF, although it is more commonly employed for

remote sensing applications, has also been used as an im-

aging tunable filter for global NIRCI in the laboratory [8, 17,

40]. Employed as an image filter [8], it is implemented much

like the LCTF described above, where the diffusely reflected

light from a sample that has been illuminatedwith broadband

light is wavelength filtered upon passing through the AOTF.

The resulting narrow wavelength image is focused onto

a NIR FPA. The AOTF has also been used as a source

filter [17], in which broadband light is wavelength filtered

by the AOTF before impinging on the sample.

FT-based global imaging is not commonly implemented,

particularly in comparison to its FT-MIR global imaging

counterpart. The approach is identical to FT-NIR point and

line mapping, except that the output of the interferometer is

used to illuminate the entire sample area. For commercially

available systems, the standard image area is typically

400� 400 mm or 4� 4mm. Although initially implemented

using a step-scan interferometer [49], most commercial

instruments now employ a rapid scan approach [50].

Another source filtered approach is global NIRCI with

OPO laser illumination [16, 51]. The narrow wavelength

output of anOPO is directed onto a sample. Optics collect the

resulting diffusely scattered light after interaction with the

sample and focus this onto aNIRFPA. The output of theOPO

is scanned across a desired wavelength range, building up the

data cube one wavelength at a time. The OPO light can be

delivered onto the sample through refractive optics or fiber

optics over a broad range of sample areas determined by

the optics for sample illumination and the collection/focus-

ing optics that transfer the resulting light onto the FPA.

A novel approach using a Hadamard encoding mask was

implemented as a relatively inexpensive way to perform

chemical imaging [11]. A later improvement on the original

concept was the use of a digital micromirror array (DMA) to

create the Hadamard pattern [41]. These approaches were

never commercialized.

4.4.2 Illumination

For remote sensing applications, broadband illumination is

most often provided by the Sun. In a laboratory setting, an

alternate source of NIR light must be employed. This creates

a bit more flexibility in how the illumination is provided to

the sample, broadband (like the Sun) or prefiltered in narrow

wavelength bands. These implementations are referred to as

‘‘image’’ and ‘‘source’’ filtering, respectively. This is com-

parable to the distinction of post- and predispersive systems

for traditional NIRS [3]. For ‘‘image filtered systems,’’

broadband NIR light impinges on and interacts with the

sample, and the resulting light is wavelength filtered before

being focused onto a detector. Most grating/prism-based

systems, as well as tunable filter approaches, are image

filtered. In contrast, FT-NIR-basedNIRCI systems are source

Collection optics

Tunable filter

QTH broadband 
source

Diffuse reflectance

Array detectory
x

Monochromatic light

FIGURE 4.10 Schematic of global NIRCI system where the

wavelength dispersing element is a tunable filter.
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filtered, as broadband light is passed through an interferom-

eter before interacting with the sample. Collecting NIRCI

data by illuminating the sample with the narrowband output

from an OPO is also a source filtered implementation.

No matter the chosen implementation, there are several

basic criteria that must be met to optimize illumination for

mapping and imaging approaches. Sample illumination

should be intense enough to provide adequate signal across

the sampling area, but not so intense as to damage the sample.

It should also be relatively uniform across the field of view,

as uneven illumination can cause the spectral quality of

data collected at different points on the sample to vary

significantly. Variations in signal-to-noise characteristics of

data across maps and images can be particularly problematic

because many of the processing methods applied to these

data make inherent assumptions about the equivalence of all

the data. When ‘‘viewing’’ chemical maps or images, the

quality of the underlying spectral data may not be apparent.

These considerations are mostly relevant for global imaging

or line mapping systems since both criteria—appropriate

power and uniformity—are usually met for point mapping

systems. However, temporal drift in illumination power

across separate data points in point maps has the same effect

as uneven spatial illumination for line mapping and global

imaging. For global imaging with OPO illumination, the

variation in pulse-to-pulse power across the scanned wave-

lengths has a similar effect.

For interferometer-based imaging and mapping systems,

a broadband quartz tungsten halogen (QTH) source is most

common, covering the range 14,000–2,800 cm�1

(0.7–3.5 mm). The source is coupled to a FT-NIR spectrom-

eter and the resulting modulated light is used to irradiate the

sample. Originally designed for single point spectroscopy,

conventional FT-NIR sources are not ideal for imaging,

particularly for larger samples where total power with uni-

form distribution can become one of the dominant perfor-

mance-limiting factors. Using multiple filtered sources for

FT-based spectroscopic imaging presents practical and eco-

nomic limitations since multiple spectrometers are required.

For tunable filter global imaging (LCTF or AOTF), and

imaging spectrograph-based (grating/PGP) line imaging, the

most common implementation is also a QTH source, but

rather than being filtered through an interferometer first, it

impinges directly (without modulation) and illuminates the

entire sample area. The illumination delivered to the sample

is easily optimized by the addition of more sources, if

required. NIR global imaging is particularly amenable to

studying large sample areas because of this flexibility.

Global imaging employing narrow wavelength illumina-

tion of a sample with an OPO tunable laser has only recently

been commercially available. (OPOTEK, Inc., Carlsbad,

CA, USA) OPOs are tunable across the entire NIR spectral

range, with a tuning bandwidth of �3 nm from

1400–2500 nm. Very high powers (2.5mJ peak energy) can

be delivered in a single pulse, so expanding the beam using

appropriate optics to illuminate large sample areas is possi-

ble. The sampling area illuminated is flexible, although care

must be taken when probing small sample areas to appro-

priately attenuate the output power to prevent sample dam-

age. Because of the nonuniformity in pulse-to-pulse power, it

is necessary to have calibrated intensity standards in the field

of view to appropriately scale the resulting diffuse reflec-

tance. However, there is also spatial variation (speckle) that

varies frompulse to pulse, and it can be difficult to adequately

flat field the resulting image. Strategies employed to optimize

the illumination uniformity include employing a high-fre-

quency wobble on the fiber to blur the speckle and inserting

an integrating sphere in the path between the OPO and the

sample [52].

4.4.3 Optics

Collection and image formation optics are critical in the

performance of an imaging instrument. Chromatic aberra-

tion, working distance, magnification, numerical aperture,

depth of penetration, spatial resolution, and field of view are

important attributes that should be considered.

One of the chief differences in the optical implementation

ofNIRCI systems iswhether reflective or refractive optics are

used: reflective optics eliminate chromatic aberration but

are relatively bulky, whereas refractive optics are extremely

flexible and compact, but are achromatic only over

a relatively narrow wavelength range. Reflective optics

predominant for FT-based NIRCI systems, and refractive

optics are favored for most other implementations. FT-

NIRCI systems are based on FT-MIR imaging systems,

where the wavelength range that must be spanned is an order

of magnitude greater than in the NIR. Only reflective optics

have the achromatic performance to operate in both the NIR

and the MIR, so the most practical solution for FT-based

NIRCI is to employ reflective lenses.

In contrast, NIR global imaging systems that use tunable

filters and PGP spectrographs employed for line mapping are

tailored to specific and narrower wavelength ranges and may

therefore employ appropriately designed refractive optics.

Refractive optics offer greater flexibility in field of view, as

there tend to be more ‘‘off-the-shelf’’ options. However,

when compared to the visible region where a microscope is

designed to provide good imaging performance over only

�300 nm (see Table 4.5), the NIR that extends about �1800

nm creates a more significant optical design challenge.

4.4.4 Wavelength Filters

The selection of ‘‘spectrometer’’ (wavelength filter) is the

most significant factor impacting the overall performance

and behavior of a NIRCI system as it determines optical

throughput, spectral resolution, and in numerous cases the
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useable spectral range. Thus, a discussion of the available

options will be a primary focus of this chapter.

4.4.4.1 LiquidCrystal TunableFilter AnLCTF is aLyot

filter inwhich thewavelength is electronically tunable [53]. It

is a solid-state device with no moving parts and is used for

global NIR imaging. A typical wavelength range accessible

to these filters is 950–2450 nm, although two filters in tandem

are required to cover this range. One filter can be used in

the range 950–1900 nm, and the other covers the range

1000–2450 nm. The spectral resolution of these filters is

constant with wavenumber but variable with wavelength and

is typically 7 nm at 1650 nm and 9 nm at 1900 nm.

The tuning time between discretewavelengths is�100ms,

independent of the size of the wavelength step. The advan-

tages of thesefilters are ruggedness (nomoving parts and solid

state), randomwavelength access, rapid tuning, and excellent

image quality with an on-axis (direct-view) optical configu-

ration. Tunable filters operate in either hyperspectral or

multispectral mode and can be tuned rapidly. This opens up

the possibility of real-time imaging, in which a few analytical

relevant wavelengths are collected in a few seconds.

The LCTF requires collimated input that acts to limit the

numerical aperture of the detection system. Also, the filters

are polarization sensitive, and as the device functions as

a blocking filter, the transmission varies from<5% to�30%

across the spectral range. Because of the polarization sen-

sitivity of the LCTF, specular reflectance (i.e., glare from

shiny surfaces) can be eliminated by polarizing light used to

illuminate the sample.

4.4.4.2 Interferometers Michelson Fourier transform in-

terferometers are used for point mapping, line mapping, and

global imaging. A series of data points are acquired as the

moving mirror translates through the optical retardation

defined by the wavelength resolution stipulated: the higher

the resolution, the greater the overall mirror displacement.

An interferogram is acquired for each spatial location, and

the spectra are recovered via a fast Fourier transform (FFT).

The shorter the wavelengths of light used, the more closely

spaced the points must be in order to avoid aliasing, that is,

a mixing of these shorter wavelengths into the longer wave-

length data [54]. Compared to theMIRwhere undersampling

is possible, data sets in the NIR can have twice to three times

the number of data points for the same spectral resolution

(in cm�1). NIR imaging data sets can therefore be quite large,

especially if acquired over thousands of spatial locations.

If high spectral resolution data are required, an interfer-

ometric technique is the method of choice, as it will provide

the highest available spectral resolution. However, as dis-

cussed earlier, for the NIR range, these higher spectral

resolutions are often not necessary. Also, if the desired

information is contained in only a few wavelengths, the

interferometer may be at a disadvantage, since there is no

capacity to operate in multispectral mode. Also, as the

operation of commercial NIRCI interferometers is based on

a moving mirror approach, they are best suited for environ-

mentally controlled (laboratory) settings and are not as

mechanically robust as the other filtering approaches

addressed here.

4.4.4.3 Grating/Prism/Grism There are several varia-

tions in the implementation of this approach: single diffract-

ing elements such as planar gratings and prisms have been

successfully employed, and compound dispersing elements

such as a grating–prism (grism) or prism–grating–prism

(PGP), as well as convex gratings [55], have been designed

to overcome spatial and spectral distortions (smile and

keystone, respectively), and to reduce the overall optical

complexity and path length. Both grism and PGP implemen-

tations permit a ‘‘direct-view’’ configuration, with a linear

optical path through the spectrograph, permitting the con-

struction of a compact, linear imaging spectrograph [2, 56].

One commercially available PGP NIR imaging spectro-

graph spans the wavelength range 1000–2500 nm, and with

a 30 mm slit provides a spectral resolution of 8 nm. This

implementation is very robust, with nomoving parts, and has

been used in process environments. As with an interferom-

eter, a PGP spectrograph has no capacity to operate in

multispectral mode, but as typical data collection times can

be quite rapid, this may not be an important consideration.

4.4.4.4 Acousto-Optic Tunable Filter The AOTF is

a solid-state, electronically tuned wavelength filter. The filter

is comprised of an optically clear crystal, typically TeO2, for

operation in the NIR (400–1900 nm), to which a piezo-

acoustic transducer has been bonded. By applying an rf

frequency to the transducer, an acoustic wave is propagated

through the crystal that sets up the equivalent of

a transmission grating within it. The wavelength is tuned by

varying the applied rf frequency. The time to tune between

wavelengths is theoretically on the order of 5 ms, but 20 ms is
more commonly achieved in practice [57]. The bandpass of

the filter varies with wavelength, spanning 5–20 nm from

900–1700 nm. Like the LCTF, the device is polarization

sensitive and requires collimated input, and because the

center wavelength can be randomly accessed, an AOTF can

TABLE 4.5 Typical Image Formation Optic-Type Used,

Based on Instrumental Wavelength Range

Spectral

Region

Wavelength

Limits

Wavelength

Range Optic Type

Visible 400–700 nm 300 nm Refractive

NIR 700–2500 nm 1800 nm Reflective (FT)/

refractive

(PGP, tunable filter)

MIR 2500–25,000 nm 22,500 nm Reflective
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operate in multispectral or hyperspectral mode. The input

aperture is typically quite small, which can further reduce

throughput. However, the filter is a robust, solid-state device

and suitable for process environments. Although the optical

path of an AOTF is not ‘‘direct view,’’ relatively compact

systems have been designed [58, 59].

4.4.4.5 Bandpass Filters Filter wheels holding

a selection of bandpass filters can be used for spectral

imaging. While it is possible to tune the bandpass of

a dielectric filter by tilting it, such a solution is relatively

inflexible andmay introduce image shift aswell.Without this

option however, one is left with only a series of discrete

wavelengths. Tuning speed is limited by the mechanical

operation of translating the filters in and out of the optical

path. If only a few wavelengths are required to solve an

analytical problem, this approach can be very efficient, but it

provides limited flexibility for method development.

4.4.5 Detectors

More information about the development and characteristics

ofNIRdetectorsmaybefoundinRefs1and59.Detectorsused

for single point mapping are the same as those used for single

point spectrometers. There are a variety of detectors, and

typical systems might containMCT, InSb, or indium gallium

arsenide (InGaAs). Linear arrays used either in dispersive

spectrographsor as linedetectors inFT-NIRmapping systems

are more typically MCT, InGaAs, and PbS. NIR global

imaging systems and PGP line mapping systems require the

use of two-dimensional detectors called focal plane arrays.

NIR global imaging instruments commonly employ InSb

arrays in a 320� 256 (or 240) (�1100–5000 nm) format and

InGaAs in a 320� 256 (or 240) format (�900–1700 nm)

range. Although most commonly employed for the MIR,

MCTarrays (320� 256 format) have also been developed to

operate in the NIR (�1–2.5 mm, 1000–4000 cm�1). Depend-

ing on wavelength range, and intended application, these

detectors operate in uncooled, temperature stabilized, TE

cooled, Stirling cooled, or liquid nitrogen cooled modes.

4.5 OPTIMIZING EXPERIMENTAL SUCCESS:

PRACTICAL CONSIDERATIONS

4.5.1 Spatial Resolution and Magnification

Despite the similarities between conventional and imaging

spectroscopies, there are particular considerations unique to

imaging. For example, it is confusing when one refers to the

‘‘resolution’’ of an imaging spectrometer. Unlike standard

spectrometers where resolution refers exclusively to spectral

resolution, imaging spectrometers are characterized by both

spectral and spatial resolution.

The concepts of spatial resolution and magnification are

often confused, and the terms used interchangeably. Spatial

resolution describes the smallest size objects that can be

distinguished and is influenced by immutable constraints

such as the diffraction limit of light, design considerations

such as aberrations introduced by the optics, and even

experimental considerations such as depth of penetra-

tion [61], sample type, and wavelength of probe radiation.

Magnification, on the other hand, describes the size of an

image relative to the original object. Simply switching to

a higher magnification optic will not permit particles that

are smaller than the spatial resolution of the system to be

optically resolved. Magnification beyond the spatial reso-

lution of the system is simply oversampling or ‘‘empty

magnification’’ and only serves to reduce the area of

a sample that can be imaged at the limit of resolving power

of the optical system. In summary, the smallest size particle

that can be clearly distinguished is ultimately determined by

the system spatial resolution and not by the magnification

employed.

4.5.2 Detection Limit

The detection limit for imaging spectroscopy is quite dif-

ferent from that for bulk spectroscopy and is highly sample

dependent because in imaging, dilution occurs on a pixel-by-

pixel level, rather than across the entire. In other words, if the

spectrum of a trace particle is detectable in a single pixel, that

component will be above the detection limit for a NIRCI

system. This does not hold for a standard NIR measurement

where the spectral responses of the contaminant and other

sample components are averaged. If, however, the same

amount of that trace component is dispersed equally through-

out a sample, rather than being localized at a single pixel,

NIRCI no longer has an advantage in detecting the contam-

inant. Therefore, detection limits of chemical imaging

techniques are strongly influenced by particle size and the

chemical and spatial heterogeneity of the sample.

4.5.3 Sampling and Samples

The utility of imaging lies in the ability to resolve spatial

heterogeneities in solid-state samples. Imaging liquids or

even suspensions have limited use, as constant sample

motion or mixing at the molecular level serves to average

spatial information. One possible exception is the use of

high-throughput capabilities of imaging to screen multiple

liquid or suspension samples, an application that relies on

parallel acquisition of thousands of spectra to compare

differences between samples, rather than exploring spatial

heterogeneitywithin a single sample. Also, there is no benefit

in imaging a truly homogeneous solid sample, as a standard

spectrometer will generate the same information. Of course,

the definition of the ‘‘extent’’ of homogeneity is ultimately
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dictated by the sample type, the spatial resolution of the

imaging system, and also the magnification that is employed.

4.5.4 Data Analysis and Chemometrics

Because image contrast is based on intrinsic sample

characteristics (the near-infrared spectral signature of the

components), images are derived without tagging or staining

of the sample. Contrast can be generated frommany different

spectroscopic parameters: peak height, peak area, wave-

length shift, baseline variations (scattering differences), and

other measures derived from multivariate analyses.

Data analysis methods for chemical imaging data sets

typically begin with the same steps as for single point spec-

troscopy; preprocessing is utilized to separate chemical and

physical effects, unless of course an analysis is based on

physical effects (such as scattering differences seen as base-

line variations). The next step involves the segmentation of

componentswithin an image, that is, being able to adequately

separate sample components of interest. If the sample is

comprised of components whose spectral features are well

separated, it is possible to proceed with a univariate (single

wavelength/marker band) approach. However, given the na-

ture of diffuse reflectance NIR spectroscopy, spectral overlap

is typically significant. Also, a univariate approach utilizes

only a small fraction of available data, and in many cases

a multivariate approach can improve results by including

a greater proportion of the data. There are differences in how

this approach is implemented for traditional NIRS compared

toNIRCI. Building amultivariatemodel for traditional NIRS

most typically commences with gathering spectra from

a series of reference samples whose component concentra-

tions vary to mimic the range expected from the unknowns.

These spectra are used to create a library and subsequently to

determine an appropriate quantitative multivariate model

directly relating spectral profiles to component concentra-

tions. An alternate approach is most often employed for

NIRCI, in which ‘‘qualitative’’ classification models are

developed from a library composed of pure component spec-

tra.Theinherentvariation in‘‘purecomponent’’spectraacross

a large number of individual detectors provides inherent

statistical robustness. By employing the ‘‘qualitative’’ clas-

sification approach, it is possible to estimate quite reasonably

relative component abundance, using only pure component

spectra as a starting point.

Once segmented through uni- ormultivariatemethods, for

samples that are significantly heterogeneous, standard image

processing tools such as morphological filtering and particle

statistics may be applied directly. It may even be possible to

derive pure component reference spectra for ‘‘qualitative’’

classification directly from the ‘‘unknown’’ sample data set,

in which case there is no need to acquire additional ‘‘cali-

bration’’ data. A model is developed and subsequently ap-

plied to the same data set.

As individual pixel spectra become increasingly well

mixed, analytical strategies tend to converge with more

traditional methods, and also to more heavily rely on multi-

rather than univariate methods. However, constructing reli-

able mixture calibration data sets (rather than building

a library of pure component spectra and applying

a qualitative approach) for chemical imaging can be chal-

lenging, since as discussed in the Section , each pixel must

see exactly the same composition for this to be a valid

approach. Achieving homogeneity at the distance scale of

NIR imaging (typically�30–40 mm) is challenging. Because

of this, the application of ‘‘qualitative’’ classification meth-

ods is still the favored approach although the spectra used to

create the library are gathered from separate pure component

data—from a standard spectrometer, separate data sets, or an

isolated area in the field of view.

4.6 CONCLUSIONS

In contrast to its MIR and Raman counterparts, NIRCI did not

evolve frompointmappingapproaches.Given the emphasisby

the single point NIR spectroscopic community on bulk and

averaged properties, the potential capabilities of acquiring

mapping and imaging NIR data sets were not widely recog-

nized.Asdifferenttechnologicalinnovationsemergedthrough-

out the 1990s, avarietyofgroupsbegan to explore thepotential

of line mapping and global implementations of NIRCI. The

field and its applications began to blossom in the early 2000s

with thecommercialavailabilityofglobal imaging(LCTF)and

line mapping (PGP and FT-NIR) NIRCI instruments.

Since that time NIRCI has been applied to a variety of

laboratory- and process-based areas, and recognition of the

unique capabilities of NIRCI systems has grown. NIRCI has

the capability to qualitatively and quantitatively characterize

the chemical distribution within a sample, providing unique

insights into bulk sample properties not easily characterized

by techniques that average physical and chemical informa-

tion. The increasing sample throughput of the instruments,

coupledwith the enhanced sophistication of data analysis and

calibration strategies, has ensured that the resulting conclu-

sions based on imaging data are more robust.

The available experimental implementations provide

a variety of options, and user choice can be guided by

aligning system attributes with the experimental goals. NIR-

CI systems can be optimized for high-spectral resolution

laboratory work, or repetitive process monitoring of samples

moving on a web, and any number of scenarios in between.
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5.1 INTRODUCTION

Data analysis and chemometrics for hyperspectral imaging is

a vast topic and can easily become confusing. This is due to

the many chemometrics methods available and the diversity

of vibrational spectroscopic techniques where chemometrics

is and can be applied. Still, in this chapter, sufficient material

is presented for the reader to get an overview and pick

up useful morsels. A simple NIR (near-infrared) imaging

example is used throughout the chapter to illustrate the

concepts in a didactical manner.

This section starts with some of the definitions of hyper-

spectral images and their mosaics, including data file for-

mats. The topic of different types of image resolution is

introduced. Calibration standards and standardization are an

important part of this section. Different modes of hyperspec-

tral imaging exist and each of them may require a different

way of tackling the data. Section 5.2 describes some classical

univariate techniques, without too much emphasis on all

details, which may help in image cleaning or transformation

of images. The true heart of the matter in chemometrics is in

Section 5.3, where local models, image cleaning, spectral

transformation, principal component analysis (PCA), mul-

tivariate curve resolution (MCR), image regression, discrim-

inant regression, artificial neural nets (ANNs), and cluster-

ing/classification are described.

5.1.1 Digitized Images, Multivariate Images, and

Hyperspectral Images

Data analysis is about analyzing results of measurements.

These are by definition several measurements (a single num-

ber cannot be analyzed further) and these can be arranged in

arrays of data, for example, vectors, matrices, and three-way

arrays.

Digitized images are arrays of numbers. A grayscale or

intensity image, called a B/W image, is amatrix consisting of

lines (or rows) and columns (Figure 5.1). Each element in the

matrix is a grayscale value for a certain position (a pixel

position) and together these create the image impression if

observed on a computer monitor, a piece of paper, or a sheet

of film. In the early days, the sizes of the images were limited

to powers of 2; thus, sizes of, for example, 64� 64,

128� 128, 256� 256, and 512� 512 were used, that is not

the case anymore. For analog television, the PAL standard

size is 625 lines of which only 575 are used. For digital

television, sizes of 576� 720, 720� 1280, and 1280� 1920

are standard [1–3]. Digital cameras for still color photogra-

phy may have a range of sizes and very often huge color

images can be made. The data matrices mentioned here are

only virtual and the images are stored as data files. For color

images shown on screens, three intensity values are available

for each pixel position in the matrix to give the blue, green,

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
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and red values. These are often called the color channels

because they are spectral bands and not single wavelengths.

In the printing world, all colors are synthesized by using

cyan, yellow, andmagenta dots. As an array, color images are

three-way arrays consisting of three layers.

Any image that has more than three channels could be

called a multivariate image and early on, multivariate images

with 4–20 channels were often used.With the introduction of

the AVIRIS system for airborne imaging, the term hyper-

spectral was introduced and the AVIRIS had 224 channels.

Nowadays, hyperspectral images usually havemore than 100

channels (Figure 5.1). Hyperspectral images are three-way

arrays made up of rows (lines), columns, and channels.

Hyperspectral and multivariate images are also stored as

data files.

A hyperspectral image has spectral properties in the

variable dimension. This means there is a lowest wavelength

(or wavenumber), a highest wavelength, and that the wave-

lengths in between are spread reasonably evenly. In other

words, the variables are contiguous. This is illustrated in

Figure 5.1. A wavelength or wavenumber is, however, an

idealized concept. In reality, there is a bandpass of the

monochromator or filter. Therefore, the terms bands or

channels are often used, where the 1000 nm channel means

the band centered around 1000 nm with the typical band-

width for the monochromator/filter used.

In early days of image analysis, pixels were integers,

values between 0 and 255 (28 possibilities to express an

intensity). In radiology, integers between 0 and 4095 (212

possibilities) are often the standard values. Newer systems

have an even higher intensity resolution. It is also possible to

average images in order to reduce noise. This creates dec-

imals, usually expressed as real or double precision numbers.

An upcoming, but not yet very common, technique is

three-dimensional imaging. A three-dimensional image has

three pixel coordinates and the pixel is called a voxel (Fig-

ure 5.1). The need for advanced computers and viewing

equipment limits the wider spread of 3D techniques [4, 5]

(see Chapter 6).

As a general definition of a hyperspectral image, one

could use the following: an array with two (or three) pixel

(voxel) coordinates, where each pixel (voxel) is represented

by a vector of at least 100 elements of measured values and

each element in the vector is single or double precision

(Figure 5.1). A further requirement is that the elements in

the vector can be ordered and are spread rather evenly. In

many instances, the hypercube may be reshaped into an

image data matrix (Figure 5.2). If the pixel coordinates are

kept available this is an excellent way of handling images. A

typical hyperspectral image may thus have tens of thousands

of pixels.

Sometimes more than one hypercube need to undergo

the same data analysis procedure. In such a case, it is handy

to make a mosaic of many hypercubes. This could be

a temporal sequence of hypercubes. Mosaicing is also the

solution to some sampling problems when not enough

objects (e.g., cereal grains) fit into one image (field of view

of camera). Figure 5.3 gives a schematic view of the mosaic

technique. Mosaics of a few hundred thousands of pixels are

possible.

Voxel

H
I

J

Spectrum

K

I
J

Hypercube

(a) (b)

FIGURE 5.1 (a) A three-dimensional image has indices h¼
1, . . ., H for depth and i¼ 1, . . ., I and j¼ 1, . . ., J for the planar

dimensions. Each position (h, i, j) has an associated number or

intensity called a voxel. For two-dimensional images the depth

dimension collapses into a plane and the voxel becomes a pixel with

indices (i, j). (b) The most common hyperspectral images have two

planar position dimensions i¼ 1, . . ., I and j¼ 1, . . ., J. Each pixel

position has a K-dimensional vector or spectrum associated to it.

The position (i, j, k) contains a number or intensity. There are both

spatial and spectral neighbors. The data structure is also called

a hypercube.

Reshaping

K

I
J

K

I × J

2

Pixel index

FIGURE 5.2 For most calculations, the hypercube can be re-

shaped into an image data matrix. This is acceptable as long as the

pixel indices are kept.

Mosaic

1 2

4 5 66

3

6

FIGURE 5.3 For analyzing more than one hypercube with the

same model, it is possible to make a mosaic. For example, the

numbers in the figure may belong to a time sequence.
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An example of a NIR hyperspectral image of size

256� 320 with 118 wavelength bands from 960 to 1662 nm

in 6 nm steps is shown in Figure 5.4. This is a grayscale image

at 1302 nm of a piece of dried meat (a product known as

biltong), consisting of muscle and fat, as well as a piece of

only fat to be used as a reference. The pieces of meat and fat

were positioned on a dark background (silicon carbide

sandpaper). Some typical spectra (as detector current) are

also shown in Figure 5.4. This image will be referred to

throughout the chapter to illustrate some chemometrics

techniques and principles.

5.1.2 Image Data Files

The choice of format for storing image data should basically

be decided on a few principles: the choice of compression (if

needed), accessibility to the source code, that is, is the open

source principle valid, and how the data can be accessed by

various applications for multivariate analysis.

Many hyperspectral file formats are derived from remote

sensing, where the ENVI (environment for visualizing

images) standard has prevailed. Vibrational spectroscopy

instrument manufacturers commonly use similar formats

customized to their hardware and software. In hyperspectral

imaging, files are large, therefore the storage and file formats

have to be designed accordingly. The ENVI application uses

three different formats, that is, the band sequential (BSQ),

band interleaved by line (BIL), and band interleaved by pixel

(BIP) [6]. BSQ and BIL are designed specifically for tape

storage. As with many other formats, the header is separated

from the data that allows the description of the channels,

bands, and other information about the images. BIP stores

each line in an image sequentially. Each spectral vector l1 to
lK is kept as a vector where the pixels are lined up after each

other. Figure 5.5 illustrates the principle. Pixels are ordered

according to their indices. For simpler images, for example,

results from a chemometrics analysis, the formats TIFF

(tagged image file format) [7], PNG (portable network

graphics), and BMP (bitmap) are common. Another file

format in imaging is the JPEG (joint photographic expert

group) format, only recommended for publication, but not for

analysis.

5.1.3 Types of Image and Data Resolution

Resolution can mean different things in an image. There is

spatial resolution: the bigger the image (megapixels!) the

better the spatial resolution. Then there is spectral resolution

(resolution in the wavelength range) and numerical resolu-

tion (each pixel in a wavelength band can be a short integer,

a long integer, a floating point, or double precision). An

image sequence measured over time may also have temporal

resolution. In some hyperspectral images the resolution in

each pixel approaches that of a high-quality spectrometer, but

in many cases a compromise is made to get a better spatial

resolution.

The human eye has very good spatial resolution, but

limited intensity (maximum 32 gray levels) and almost no

spectral resolution, while most calculations require a very

high precision. This duality should be taken into account in

all image analyses. All calculations should be carried out

with the data in the most precise form, but for visual

inspection rounding errors can be made.

5.1.4 Standardization and Standards

The human eye is very flexible and can recognize many

things in an image regardless of small errors in, for example,

intensity, contrast, gamma, and white balance. This approximate

FIGURE 5.4 A grayscale image at 1302 nm of the dried meat and fat sample (a) and three typical spectra (fat, muscle, and background) in

A/D converter counts (b).

λ1, λ2 ... , λΚ1.1 1.2
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FIGURE 5.5 An illustration of the band interleaved by pixel

format.
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visual recognition is not very reproducible. Correct calcu-

lations require precise, accurate, and reproducible values.

This requires reproducible measurement equipment, though

not all imaging setups are stable enough. Therefore, calibra-

tion objects with known properties have to be imaged and

used in correction algorithms. An example used in NIR

and visible reflectance imaging cameras is dark and white

references that can be used to calculate pseudoabsorbance

values [8, 9]. It is also very important to use geometrical

references such as rulers or tiled patterns with known tile size

to confirm correct pixel geometry [10]. Some instrument

manufacturers do the standardization during the image scan-

ning while others rely on the researcher to do the appropriate

standardization.

The standardization to absorbance is illustrated in Fig-

ure 5.6 using the dried meat NIR hyperspectral image as an

example. When comparing the spectra in Figure 5.6 with

those in Figure 5.4, one notices that the spectra have now

acquired the more familiar shape that is usual for NIR

absorbance spectra; the images though look unfamiliar now

(compared to the digital image).

5.1.5 Imaging Techniques Used for Hyperspectral

Imaging

In remote sensing, the classical AVIRIS instrument makes

hyperspectral images in the visual and near-infrared wave-

length ranges: 224 bands between 400 and 2500 nm. Visual

and near-infrared images can, however, also be made in the

laboratory. Similarly, it is possible to make hyperspectral

Raman and FT-IR images [11]. Mass spectrometry techni-

ques such as secondary ion mass spectrometry (SIMS) and

time of flight (ToF)-SIMS also provide hyperspectral images.

Hubbard [12] gives an overview of methods using electrons,

ions, X-rays, gamma rays, infrared, and atomic force for

characterizing surfaces. Many of these methods can give

multivariate data and images.

It is important to know that the types of image cleaning

and preprocessing applied are dependent on the imaging

technique used. The demands on the multivariate chemo-

metrics models are sometimes also dependent on imaging

modus used. The presentation of analysis results may be

mode dependent too. A special challenge is combining

different imaging modes. Lau et al. [13] show an example

of the same painting analyzed bymicro-Raman and scanning

electron microscope-based X-ray fluorescence.

5.2 OPERATIONS ON GRAYSCALE IMAGES

A grayscale image is a matrix of numbers and this allows

many types of calculations. The traditional image analysis

literature covers these calculations or operations [14–20].

The importance of such image operations is that they can be

used to clean hyperspectral images before an analysis is

attempted or to clean or analyze the results after

a hyperspectral analysis. Some of the classes of operations

are radiometric operation, local neighborhood operations,

FIGURE 5.6 An illustration of the standardization of the dried meat image indicated in Figure 5.4. (a) The dark current image; (b) the 25%

reflectance standard image; (c) the image converted to absorbance units at 1302 nm; (d) typical spectra for fat, muscle, and background after

conversion.

96 DATA ANALYSIS AND CHEMOMETRICS FOR HYPERSPECTRAL IMAGING



global operations, many-image arithmetic, and warping.

These can be used in sequences or in the adaptive mode.

1. Radiometric operations are pixel-per-pixel operations

and can be intensity, contrast, and gamma settings, as

well as inversion. They are often used for preproces-

sing individual variable slices in a hyperspectral

image.

2. Local neighborhood operations take into account the

fact that each pixel has neighbors. A typical example is

median filtering, where each pixel intensity is replaced

by the median of itself and a group of neighbors.

The median filtering operation is sometimes used for

guessing the values of missing, dead, or incomplete

pixels.

3. Global operation images can be transformed as

a whole, such as in Fourier, cosine, slant, Haar, or

Hadamard transform. This allows filtering in the Four-

ier domain.

4. Arithmetic operations are pixel-per-pixel arithmetic

on two or more images, that is, addition, subtraction,

multiplication, and division. Subtraction is often used

for removing shading. Division can be used for creat-

ing ratios. This is popular in geology.

5. Warping is a general expression for geometrically

correcting many images to a common geometrical

base and includes rotation, mirroring, linear and some-

times nonlinear compression, or expansion. This is

also called registration.

Interesting software is the freeware ImageJ [21]. It contains

example images and can carry out all the techniques from1 to

5. It is very instructive to test these. Also most software for

handling photographic images contain elements of the

above-mentioned techniques.

5.3 CHEMOMETRICS FOR HYPERSPECTRAL

IMAGES

Basic information on the analysis of multivariate and hyper-

spectral images can be found in Refs 11 and 22–24. Remote

sensing and satellite imaging use hyperspectral images and

relevant information can be found in the literature [25–31].

The field of chemometrics is huge and only selected tech-

niques will be explained in detail. For the techniques not

discussed in detail, recent literature references will be given.

Many of the older literature for chemometrics combinedwith

multivariate imaging and hyperspectral imaging can be

found in Refs 22 and 23. A good review of the chemometrics

literature is given by Gendrin et al. [32] as well as Nicola€ı et
al. [33]. A tutorial on chemometrics for spectral data can be

found in Ref. 34.

A general overview of the sequence between using

a hypercube or mosaic as an input and producing multiple

outputs is given in Figure 5.7, where the input is a hypercube

or a mosaic. On this input array, a number of data analysis

techniques can be applied, often in some logical sequence

starting with cleaning, background removal, and shading

correction, followed by exploratory analysis and ending with

making classification or regression models. This sequence

can be gone through once or in many loops. The results are

presented as images, plots, and tables. Because of the huge

amount of data, visualization is of utmost importance. Tables

are used only for presenting general model parameters.

Factor analysis is a general term for models that contain

a bilinear decomposition in factors. The most important

factor analysis models are principal component analysis

(Section 5.3.4) and multivariate curve resolution (Sec-

tion 5.3.5). They are also maximally different in goals and

algorithms. There are a huge number of modified factor

models possible. These are only mentioned and not ex-

plained. Regression models can be used to build a linear

Output:

Data analysis

Input:

Hypercube or mosaic

Standardization

Cleaning

Shading and background removal

Preprocessing

Multivariate modeling

Multivariate classification

Segmentation

Regression

Prediction

Plots

Tables

LV

images

Binary

images

Color

images

FIGURE5.7 Using a hypercube ormosaic as input, a large number of operations of data analysis are possible, depending on the problem to be

solved. The output may be color or false color images, latent variable images, binary/segmented images, and plots or tables.
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relationship between a spectrum and a concentration. These

are described in Section 5.3.6 while Section 5.3.7 refers

specifically to discriminant regression. A good alternative for

nonlinear regression modeling is the artificial neural net as

described in Section 5.3.8. Some special techniques for

clustering are mentioned in Section 5.3.9.

5.3.1 Local Models

Because of the huge amount of pixels, not all have to be used.

There is rarely any application where all available pixels are

used or needed. It is always good to get rid of bad, erroneous,

and background pixels and to build the data analysis models

on a clean subset. This also means that the data array is not

a hypercube anymore (Figure 5.8). Extensive use of local

models forms the main difference between standard (non-

image) chemometrics and image chemometrics. In image

chemometrics, even a small subset of an image or mosaic

may contain thousands of objects and allow a useful chemo-

metrics model.

5.3.2 Exploratory Chemometrics for Hypercube

Cleaning

It is not meaningful to look at all channels in a hyperspectral

image. The tens of correlated channelsmake this exercise too

time consuming and ineffective. Even making pseudocolor

images of triplets of channels is not easy enough. For this

reason, even exploratory studies need multivariate analysis.

PCA may be used to construct 5–15 principal component

(PC) score images that give the essence of what is in the

hypercube (Figure 5.9). The PC score images are uncorre-

lated, which is an advantage. An even more powerful tech-

nique is to make PC scatter plots of the scores. In these score

plots, clusters, gradients, and single pixels (often outlier

pixels) can be seen very clearly. Behrend et al. [35] describe

a simple cleaning method for hyperspectral Raman images.

K

I × J

KK

I × J–D

I × J–D–B

Subset 1

Subset 2

K

K

FIGURE 5.8 Many images contain harmful or unwanted pixels that have to be removed before data analysis. This reduces the image data

matrix by D number of rows. Sometimes background pixels need to be removed. This further reduces the image data matrix by B number of

rows. The final model is made on the image datamatrix with I� J�D�B rows. Sometimes a preliminary analysis indicates that a further split

in subsets is needed.

Hypercube/mosaic

Score images

PCA

Score A

Score B

I
J

K

J

I

5–15

FIGURE 5.9 A hypercube or mosaic contains too many corre-

lated images to make studying them meaningful. A simple PCA

calculation can produce a smaller data array of uncorrelated score

images, which is easier to overview. Even better is making score

plots as these can show clean clusters, overlapping clusters, gra-

dients, or outlier pixels.
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By interactive operation between score images and score

plots, disturbing or harmful pixels can be removed to produce

a cleaned image. The same operation can also be used tomake

subsets. Examples of how this is done can be seen in Chapter

13. At this stage, there is no need to look at PCA loadings for

spectral interpretation. This should be donewhenfinalmodels

on image subsets are made. Figure 5.10 shows a score plot of

the first two principal components calculated on mean-cen-

tered data for the meat image. In this score plot, a region of

interest (ROI) (the background) is indicated with an ellipse.

Another cluster obviously contains the muscle and fat, but

overlapping. By removing the background cluster from the

calculations simpler chemometricsmodels aremade possible.

Figure5.10 also shows the third principal component imageof

themeat example after the dark background and some regions

at the edges were removed. This image subset is the one that

will be analyzed further.

5.3.3 Filtering and Preprocessing

Because the pixels in a hyperspectral image are spectra,many

spectral preprocessing, error correction, or image improve-

ment techniques can be used. The transformations are not

different from what is used in bulk vibrational spectroscopy.

Siesler et al. [36] give a good overview of transformation

techniques for NIR spectra. Reference 37 can also be con-

sulted for more information about preprocessing of NIR

hyperspectral images. Raman preprocessing is described

later on in Chapter 9. Transformation, correction, or en-

hancement techniques can be made in different ways and for

different reasons. Corrections can be made on the image

planes using classical univariate image analysis techniques.

They can be made on spectra using spectral correction

techniques or they can be made on an image data matrix

based on statistical considerations (Figure 5.11).

As mentioned before, all classical univariate image anal-

ysis techniques (see Section 5.2) for error correction and

image improvement can be used on each of the image planes

in a hyperspectral image. Examples are noise reduction by

median filtering or Fourier or wavelet transformation. Some

transformations are based on statistical considerations. Co-

lumnwise removal of the mean (Figure 5.3) is used as

a standard and division by the error or other standard

deviation is sometimes used. If nonlinearities are expected,

some nonlinear transformations such as taking logarithms

can be attempted. These operations are all columnwise in the

image matrix.

In NIR or VIS-NIR spectroscopy, measurements are

often carried out in the modes of diffuse transmission or

diffuse reflection. This creates effects on particle size,

particle roughness, and others. The general effect of this

is to add a baseline to the spectra. The main form of this

baseline is an offset combined with a slope. Many spectral

transformation techniques aim at removing these to better

FIGURE 5.10 (a) PC3 score image of the dried meat with background removed. (b) A PCA score plot with the background pixels to be

removed indicated by the ellipse.

K

I
J

K

Univariate image analysis

Spectral correction

Statistical considerations

FIGURE 5.11 Corrections and transformations on hyperspectral

images can be made on image planes (classical univariate image

analysis), spectral vectors (spectral corrections), or on whole ma-

trices (based on statistical considerations).
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describe the chemical information. The transformations are

used row-wise in the image data matrix (Figure 5.3). Spec-

tral smoothing can be used to improve noisy spectra. In

order to remove background, first derivatives can be calcu-

lated to remove offsets. Second derivatives can be used to

remove both offsets and slopes. Using the Savitzky–

Golay [38] transformation, the taking of derivatives and

smoothing in a window are carried out at the same time.

Other transformations used to remove offset and slope and

to increase chemical information are multiplicative scatter

correction (MSC) [39] and standard normal variate

(SNV) [40]. A very simple but sometimes successful trans-

formation is removing noisy wavelengths.

It is important to mention that the transformations should

be made on the properly cleaned image subset. Some of the

transformations proposed increase errors and cause confusion

if bad, erroneous, or irrelevant pixels are left in the data set.

In a study where the application of hyperspectral imaging

for damage detection on the surface of mushrooms was

investigated, the spectral variability caused by sample cur-

vature and nonuniform light scattering was emphasized [41].

Curvature, cusps, and edge effects, contributing to inhomo-

geneous lighting or nonuniform light scattering are often

factors to be addressed and corrected for when analyzing

food samples. Gowen et al. [41] investigated four different

spectral preprocessing techniques in an attempt to effectively

remove spectral variation due to external factors while

retaining the spectral features that would allow sample

characterization. The application of MSC and mean normal-

ization (divide each spectrum by its maximum intensity

value) were shown to be the most efficient preprocessing

methods to decrease variability due to curvature present in

the samples.

5.3.4 Principal Component Analysis

Once a problem-related image subset has been made by

exploratory study as explained in Section 5.3.2 and trans-

formed as in Section 5.3.3, a PCAmodel can be applied. The

model made is

X ¼ TP0 þE ð5:1Þ

where X (L�K) is the cleaned and preprocessed image

subset, T (L�R ) a matrix with R score vectors, P (K�R)

a matrix with R loading vectors, and E (L�K) the residual.

The prime is used to indicate the transpose of a matrix.

Equation 5.1 is also shown in Figure 5.9, but with T¼C and

P¼ S. The properties are that the sum of squares (SS) of E is

minimized and that the vectors in T and P are orthogonal.

Because the pixel indices are saved, it is possible to reshape

the score vectors in T into score images. It is also possible to

use the information in E to make residual images. The

loading vectors in P can be used to make spectral interpreta-

tions. The selection of R, the number of components to be

used, is not very easy, but usually some practical cutoff limit

can be found. This is easier for images as for other data,

because of the possibility to visually study the score images

and score plots (Figure 5.7). One may select R too high and

then it is easy to find a cutoff where the score images or score

plots become too noisy and to select a new R. Sometimes

residual images based on E can be used for this purpose.

Because of the orthogonality of the loading vectors in P,

negative loadings have to occur, making the spectral inter-

pretation difficult. Real spectra never have negative parts.

More on PCA for images can be found in two books [22, 23].

See also Chapters 9 and 13.

An important diagnostic is the sum of squares. By rewrit-

ing Equation 5.1, the following is obtained:

X ¼ t1p
0
1 þ t2p

0
2 þ t3p

0
3 þ � � � þ tRp

0
R þE ð5:2Þ

where tr and prwith r¼ 1, . . ., R are the numbered score and

loading vectors from the matrices T and P, respectively. By

setting the SS of X to 100%, the SS for each term in the sum

can be calculated and they also sum up to 100%:

SSX ¼ SS1 þ SS2 þ SS3 þ � � � þ SSR þ SSE ð5:3Þ

with SS1 ¼ t01t1, . . .. Equation 5.3 has the property SS1�
SS2� SS3� � � � � SSR. The first component has the largest

SS followed by the remaining components in decreasing

order. The SS of unused components is the residual sum of

squares SSE. It should be noted that SSE is dependent on the

choice ofR, but it is assumed to become small. Plotting the SS

values against the component number is sometimes used to

find a cutoff value for R, but in image data analysis with very

small SS values it can become less meaningful because of

the huge number of pixels and local phenomena. In general,

onemay say that the usual statistical diagnostics are less used

and that interpretation of the score images, residual images,

and score plots can be done visually with good results.

Figure 5.12 shows the PCA (after mean centering) results

after background removal (as indicated in Figure 5.10) of the

dried meat image. The score plot of PC1 and PC3 shows two

clear clusters now. These correspond to muscle tissue and fat

tissue. Figure 5.12 also shows an attempt at segmenting fat

and muscle as two segmented images. Segmentation was

done by interactively drawing polygons in the score plots and

mapping the selected pixels to image space. This segmen-

tation would have been impossible to carry out in the image

space. In Figure 5.13, selected spectra from the centers of

both clusters (fat andmuscle tissue) in Figure 5.12 are shown.

Also the loading of the third principal component is shown.

The loading is dominated by the typical (positive) fat peak

around 1212 nm. Other peaks are also related to fat or to the

different types of water binding in fat and muscle tissue. The

study of spectra and loadings is only meaningful after the
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removal of background and other disturbing regions and

segmentation and identification of the clusters.

5.3.5 Multivariate Curve Resolution

Curve resolution or multivariate curve resolution, unmixing,

or endmember (a few other names also exist) analysis are all

factor analysis models [32, 42–44]. The MCR models are

calculated on a cleaned image subset but without any

statistical preprocessing or derivatives that can produce

negative results. An important assumption made is that

concentrations and spectra are never negative. The model

made is

X ¼ CS0 þE ð5:4Þ

FIGURE 5.12 (a) The PC3 versus PC1 score plot with clusters for muscle and fat pixels delineated. The segmented classes for fat (b) and

muscle (c). Some misclassification at the edges can be observed as a result of shading. The fat cluster is more extended than the muscle tissue

cluster indicating more statistical variation in the fat material.

FIGURE5.13 (a) Typical spectra ofmuscle tissue from the center of themuscle cluster indicated in Figure 5.12a. (b) Typical fat spectra from

the center of the fat cluster indicated in Figure 5.12a. (c) For comparison, PC3 loading is added.
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where X (L�K) is the cleaned and preprocessed image

subset, C (L�R ) is a matrix with R concentration vectors,

S (K�R) is a matrix with R pure spectra vectors, and E

(L�K) is the residual. This equation is also illustrated in

Figure 5.14. Once a value for R is selected, alternating

calculations of C and S are tried to minimize E, while all

values inC and S are kept nonnegative. For the correct value

of R, this calculation usually converges. One may also study

the final values of S because they are pure spectra and can be

identified. Because pure spectra are nonnegative, the curve

resolution model is good for spectral studies and identifica-

tion. Curve resolution is only possible if the linear mixing

model holds. This is true in some cases for IR and Raman and

especially for TOF-SIMS data, but rarely for NIR data. A

numerical difference between PCA and MCR is that PCA

results can be calculated with great precision in

a reproducible manner. MCR results depend on when the

MCR iterations are stopped and can be variable. Some

authors have tried to minimize this effect [42, 43]. With

PCA, one may increase R without changing the previously

calculated components. With MCR, all components have to

be recalculated if R is changed. There is no specific order of

the components in MCR. Once good values for C and S are

found, the pure spectra can be studied for spectral interpre-

tation and the concentrations can be used for making con-

centrationmap images. In some cases, the residual image can

be used for diagnostic purposes.

MCR seems to work ideally for ToF-SIMS data and

reasonably well for IR and Raman data and for NIR

data from pharmaceutical samples. It does not work at all

for NIR on food and agricultural products, probably because

of issues related to wavelength-dependent penetration depth

and scattering.

Besides PCA and MCR, also other factor models can be

made. Independent component analysis (ICA) is some-

times used [45]; also factor rotation could be an

alternative.

5.3.6 Multivariate Image Regression

A regressionmodel can be built between a spectral vector and

an external variable, for example, a concentration:

y ¼ Xbþ e ð5:5Þ

where y (L� 1) is a mean-centered vector of concentrations,

X (L�K) a mean-centered image matrix or image subset,

b (K� 1) a vector of regression coefficients, and e (L� 1)

a vector of regression residuals (Figure 5.15). This is known

as multivariate image regression (MIR). More can be found

in Refs 23 and 46–48. The model is often built as a partial

least squares (PLS) model, but alternatives exist. Without

going into too much detail, PLS uses R components (just like

a factor model) to calculate b and avoids a lot of pitfalls that

other methods for calculating b have.

Equation 5.5 can also be expressed in terms of SS:

SSy ¼ SSXb þ SSe ð5:6Þ

or as a coefficient of determination:

R2 ¼ 1� SSe=SSy ð5:7Þ

Here, SSy is set to 100%, SSe is the residual SS in percent, and

SSXb is the model SS. Any acceptable model would have aR2

or SSXb of at least 65% and often SSXb> 90% (another font is

used for R2 to distinguish it from R, the number of

components).

One of the problems of Equation 5.5 is that the y-values

have to be known accurately and with high precision. In

remote sensing, this is called the ground truth. It is very

expensive to find the ground truth for every pixel in an image,

so awell-selected subset is used. In the laboratory, the ground

2
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FIGURE 5.14 A general decomposition of a hyperspectral image

ormosaic subset withL (L�K) spectra. ThematricesX,C (scores),

and E (residual) all use the pixel index. The matrix S contains the

loadings. The columns of the matricesC andE can be reshaped into

images because the pixel index is available. R is the number of

components calculated.
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FIGURE 5.15 The regression equation for an image data matrix

with L pixels. The pixel index vector is valid for X, y, and e.
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truth is replaced by wet chemical analysis (Figure 5.16). As

a result, b is often calculated with a well-selected smaller

number of points.

Once b is known, it is valid for all the spectra in

a hyperspectral image Z similar to X in Equation 5.5:

yhat ¼ Zb ð5:8Þ

where yhat are the predicted concentrations, Z the mean-

centered image data matrix, and b as in Equation 5.5. The

values in yhat then form a concentration map because they

have pixel coordinates.

The concentration map is basically an intensity image

with dark for low concentration and bright for high concen-

tration. It may also be color-coded using a range of colors, for

example, blue (cold) for low concentrations and red (hot) for

high concentrations. With up to three constituents, complex

color maps can be made using the red, green, and blue

channels [37, 46]. In these, each color nuance can be inter-

preted as a certain mix of the three constituents.

An important aspect of regression modeling is quality

testing and this should be done using a test set with known y-

values that is not used for model building. Cross-validation is

sometimes used, but for images there are so many pixels

available that a proper test set can always be made. Some

authors use a smaller test set for model building and a larger

validation set for determining the statistical properties of the

prediction.

Xt is the test set image data matrix and yt is the vector

containing the ground truth or wet chemical values:

yhat ¼ Xtb ð5:9Þ

This is the same as Equation 5.8, but now for the test set.

The residual can be calculated as follows:

f ¼ yt�yhat ð5:10Þ

where f is the test set residual. It can be used to calculate a root

mean square error of prediction (RMSEP) value:

RMSEP ¼ ½f 0f=J�0:5 ð5:11Þ

J is the number of test set pixels. RMSEP has the form of

a standard deviation. It is the average prediction error that can

be achieved and should be kept low.

5.3.7 Discriminant Regression

Sometimes it is necessary to make a model that gives

maximum discrimination between two classes of pixels. This

can be done as in Equation 5.5, but by filling the vector ywith

dummy variables: �1 and þ 1 (sometimes 0 and 1, but

because of mean centering this does not matter). When used

with PLS regression, this technique is called PLS discrim-

inant analysis (PLS-DA). When used for prediction as in

Equation 5.9, the yhat values should ideally be�1 or 1. This is

not usually the case, but they become a histogram of values

around �1 and þ 1. One could then choose 0 as a cutoff for

the class membership. The values in yhat can also be used as

class membership images because the pixel coordinates are

available.

5.3.8 Artificial Neural Networks

A shortcoming, of all regressionmodels shown earlier, is that

they are linear regression models and not very adapted to

dealing with nonlinearities. Artificial neural networks are

better adapted for doing this. The reason for this is that they

use nonlinear transformations and inner layers. Aweak point

of ANNs is the slow calculation with many input variables.

Some authors have solved this by using a limited number of

latent variables as inputs [49–51]. ANNs are very flexible and

many varieties exist.

Figure 5.17 shows a typical neural network with one

hidden layer. The layers consist of nodes. The nodes in the

input layer represent wavelength bands or latent variables

and an offset value. Inside each node, a nonlinear transfor-

mation (e.g., sigmoidal) takes place. The arrows represent

weights connecting the nodes, thus removing an arrow is the

same as putting its weight to zero. The output layer could be

a concentration or class membership. By backpropagation,

the weights are continuously adjusted until the relationship

between inputs and outputs is as wanted, for example,

prediction of a concentration from a spectral vector input.

ANNs are slow to train, but very quick for prediction of

concentrations or class memberships once the training is

done.

5.3.9 Clustering and Classification

Clustering is the activity of separating the pixels of

a hypercube in clusters or classes. This can be done in

two ways: supervised and unsupervised. The unsupervised

methods of clustering make no assumptions in advance. An

algorithm is used to find a certain number of clusters that

are maximally separated according to some criteria. In

K

I
J

y-variable

ground truth

FIGURE 5.16 For some pixels or regions in the hypercube, there

may be ground truth (a remote sensing term) or wet chemical

information available. This allows the building of regression

models.
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supervised clustering, some advance knowledge about the

pixels is available and this knowledge is used in

a clustering algorithm. The discriminant regression in

Section 5.3.6 is a supervised clustering because it is known

in advance which pixels are �1 and which are þ 1. The

PCA- and MCR-based analyses in Sections 5.3.3 and 5.3.4

are unsupervised because the clusters are formed by the

data themselves.

Clustering uses distances, similarities, and dissimilarities

in multivariate Euclidean and non-Euclidean space. There

are many techniques and algorithms for clustering and the

nomenclature is confusing. Gan et al. [52] describe hierar-

chical, fuzzy, center-based, search-based, graph-based, grid-

based, density-based, model-based, and subspace clustering

methods. Xu and Wunsch [53] take up hierarchical, parti-

tional, neural net-based, kernel-based, sequential, density-

based, and grid-based clustering. Another interesting book

is by Mirkin [54]. An overview of clustering methods is

given by Omran et al. [55]. Clustering methods can handle

many pixels, but not so many variables. In most cases, the

data need to be reduced to a smaller number of latent

variables by PCA, MCR, or something similar in advance.

Once an acceptable clustering model is found, it can be used

for classification. It is almost always possible to get 100%

correct classification for a training set. Therefore, it is

absolutely necessary to use a test set to evaluate the real

classification accuracy of a model. An interesting tutorial is

by Tran et al. [56]. An interesting new development is the

use of support vector machines (SVM) and radial basis

functions (RBF) [57].

5.4 CONCLUSION

Because of the huge number of pixels available, hyperspec-

tral images or mosaics are ideal for the application of

chemometrics in all its guises. Even more important is that

chemometrics is absolutely necessary for handling the huge

amount of data produced by imaging equipment. Some

important advice could, however, be given. First, work only

on properly cleaned images. Camera and optical errors

should be removed and not modeled. The same goes for

background unrelated to the problem studied. Second,

consider spectral preprocessing as it can result in huge

improvements. Finally, use image subsets. Sometimes

a simple model built on a properly selected subset shows

more interesting details than a sophisticated model built on

a large data set.

ABBREVIATIONS

ANNs Artificial neural networks

BIL Band interleaved by line

BIP Band interleaved by pixel

BMP Bitmap

BSQ Band sequential

ENVI Environment for visualizing images

FT-IR Fourier transform infrared

ICA Independent component analysis

IR Infrared

JPEG Joint photographic expert group

MAF Maximum autocorrelation factor

MCR Multivariate curve resolution

MIR Multivariate image regression

MLR Multilinear regression

MRI Magnetic resonance imaging

MSC Multiplicative scatter correction

NN Neural network

NIR Near infrared

PLS-DA Partial least squares discriminant analysis

PC Principal component

PCA Principal component analysis

PLS Partial least squares

PNG Portable network graphics

RBF Radial basis function

ROI Region of interest

RMSEP Root mean square error of prediction

SECV Standard error of cross-validation

SIMS Secondary ion mass spectrometry

SNV Standard normal variate

SS Sum of squares

SVM Support vector machines

TIFF Tagged image file format

ToF-SIMS Time of flight secondary ion mass spectrometry

TSS Total soluble solids

Output

layer

Hidden

layer

Input

layer

FIGURE 5.17 A typical (simplified) artificial neural network

structure with one hidden layer. The circles are called nodes and

may contain a nonlinear transformation (only shown for a few

nodes). All nodes are connected between input and hidden layers

and between hidden and output layers.
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DEFINITIONS

artificial neural network: a general name for a network of

nodes and internode weights that can be trained for a specific

task.

backpropagation: a popular method of training an ANN.

bad pixel: a pixel that is nonresponsive (dead) or gives

a highly nonlinear response. These are camera-based bad

pixels.

bands: same as channels.

channels: the K wavelength or wavenumber intervals in

a spectrum, usually identified as the center wavelength/

wavenumber.

classification: using the results of a (cluster) model to put

pixels/pixel groups into classes.

cleaning: removing bad/erroneous/background pixels before

further data analysis.

clustering: using similarity or dissimilarity in multivariate

space to make groups of pixels.

coefficient of determination: a diagnostic for regression

models, close to 1 for perfect models and below 0.65 for bad

models.

concentration map: a score vector from curve resolution

that is reorganized into an image.

cross-validation: a naive validation method that often gives

misleading results.

dependent variable: y-variable or response variable in

a regression model.

dummy variable: a variable set to �1 or 1 (or 0 or 1) in

a discriminant regression model.

endmember analysis: same asmultivariate curve resolution,

mainly used in geology.

erroneous pixel: a pixel that has spectroscopic errors that

cannot be easily corrected, such as specular reflection,

extreme shading, and edge effects. These errors are not

camera based.

factormodel: a statistical model that decomposes an image

data matrix into a number (R) of factors and a residual

matrix. TheR factors each consist of a score vector (column)

and a loading vector (row). By constraining the residual and

the score/loading pairs, different types of models can be

allowed.

global operations: operations that transform whole images

into new images or data matrices/vectors.

grayscale image: an I� J array of intensities/numbers.

hidden layer: a layer between the input and output layers in

an ANN.

hypercube: another name for the hyperspectral image

data collected.

hyperspectral image: an array of I� J pixels (sometimes

H� I� J voxels) where each pixel (voxel) is a K-dimen-

sional vector representing a spectrum (K> 100).

image arithmetic: arithmetic operations on whole image

planes, usually involving one or two images.

image data matrix: a hypercube reorganized into a pixel �
channel matrix with pixel positions preserved. If no confu-

sion is possible, “data matrix” can be used.

image plane: a grayscale image extracted from the hyper-

cube for one channel.

image subset: a specific well-chosen subset of an image

data matrix. If no confusion is possible “subset” can be used.

independent variable: X-variable in a regression model.

input layer: a collection of nodes, one for each input variable

in an ANN.

intensity image: a grayscale image.

latent variable: another name for a score from PCA or FA.

loading: a vector in a factor model that describes spectral

information.

local neighborhood operations: operations that take into

account neighbor values for each pixel operated on.

mode: a physical technique for collecting a multivariate/

hyperspectral image. NIR, Raman, FT-IR, MRI, CAT scan,

and ToF-SIMS are, for example, all imaging modes.

mosaic: a combined hypercubemade of hypercubes taken on

different occasions or of different samples.

multilayer perceptron: an older name for ANN.

multivariate curve resolution: a factor model that mini-

mizes the residual sum of squares by making R nonnegative

scores and loading pairs.

multivariate image: same as a hyperspectral image, but

sometimes with K being smaller (K< 20).

node: a data collection and nonlinear transformation point in

an ANN.

nonnegativity: the principle that spectra and concentrations

cannot become negative, used as the basis for MCR

modeling.

output layer: a collection of nodes, one for each output

variable in an ANN.

principal component analysis: a factor model that mini-

mizes the residual sum of squares after each component and

creates R orthogonal scores and loading pairs.

radiometric operations: image operations on pixels that

ignore neighbor pixel values.

registration: also called warping.

regression coefficient vector: a vector of regression coeffi-

cients, one coefficient for each channel (wavelength or

wavenumber band).

residual image: an image of pixelwise standard deviations

that visualizes which parts of the image are well or badly

modeled by a factor model.

residual (matrix): the part of an image data matrix that does

not fit the model.

response variable: y-variable or dependent variable in

a regression model.

root mean square error of prediction: average standard

deviation of prediction, based on test set residual.

score: a vector in a factor model that describes pixel/con-

centration information.
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score image: a score vector reorganized into an image with

the help of pixel indices.

standardization: expressing the elements of the hypercube

in spectroscopic units instead of currents measured by the

camera hardware. This operation requires standards, but

ensures that all images are reproducible independent of

camera and illumination source instabilities.

supervised: used for clustering when the wanted results are

known as external information.

test set: a data set used for testing the regression equation and

not used for regression model building.

training set: a data set used to train a regression/ANN

model.

validation set: a test set used for testing prediction results.

unmixing: same as MCR.

unsupervised: used for clusteringwhen the data generate the

clusters without using external information.

warping: also called registration, geometrically fitting two

images to each other.

y-variable: dependent or response variable in a regression

model
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6.1 INTRODUCTION

Human and animal tissues provide new and exciting pro-

spects for the application of Raman imaging. Small structural

features and compositional differences can be imaged with

resolution that is comparable to that of optical microscopy

and provide Raman spectral markers for a variety of disease

states, such as brain cancer, gastrointestinal disorders, mac-

ular degeneration, and dental caries. Multivariate analyses

are widely applied to Raman images of tissue to enhance

image contrast and potentially visualize pathology before

morphological changes become apparent. Raman images

have also been used to develop morphological models to

diagnose certain cancers, such a breast cancer in situ.

With fast computer processing and efficient CCD cameras

and filters, high-fidelity Raman images of fresh tissues and

single cells can now be obtained, as can images from speci-

mens that have been fixed, stained, labeled, or embedded for

conventional light microscopy. There is also considerable

progress made toward the development of fiber-optic Raman

in vivo techniques for defining brain or skin tumor margins

for surgical treatment. Particularly exciting are the prospects

of combiningRaman imagingwith other biomedical imaging

modalities, such as infrared, fluorescence, ultrasound, acous-

tic impedance, and coherence optical tomography. Besides

obtaining spatially localized compositional, structural, and

functional data, multimodal approaches offer the first real

opportunity to evaluate the specificity of Raman as

a biomedical diagnostic. Our research group has recently

demonstrated that bone Raman scatter from overlying soft

tissue layers could be recovered noninvasively and recon-

structed to produce Raman tomographic images using meth-

ods adapted from fluorescence diffuse tomography.

In this chapter, we will survey Raman imaging applica-

tions to a wide range of tissues, cells, and biofluids. This

chapter will review the biomedical insights gained from

earlier Raman mapping and spectral studies to provide the

reader with some historical perspective and highlight the

current status of Raman imaging in the field.More important,

we hope that this broad overview of the field will serve as

a guide to those who wish to enter the biomedical field or

expand their studies into new areas.

6.2 BRAIN

6.2.1 Malignant Glioma and Tissue Necrosis

Brain tissue changes profoundly in structure and function

during development and aging; however, these patterns can

be dramatically altered by the growth, progression, and

invasion of primary brain tumors [1, 2]. Malignant

glioma is one of the most aggressive types of primary brain

tumors, accounting for 45–50% of all brain tumors reported

in patients. The prognosis for patients with malignant

glioma is poor with median survival ranges of 9–12

months [3, 4]. The treatment for gliomas is surgical resection

to the largest extent possible, followed by adjuvant radio-

therapy and chemotherapy [5]. Optical imaging techniques

that clearly define tumor margins during surgical resection

would be of immense value to both basic and clinical

neuroscience. Raman microspectroscopy holds considerable

promise as an in vivo technique for diagnosing, grading, and

defining tumor margins [6–8]. Early Raman mapping studies

identified glycogen as one of the major polysaccharide

components of vital glioblastoma tissues collected from

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
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20 glioma patients [6]. By performing cluster analysis,

spatial distribution of glycogen could be visualized. Micro-

scopic crystal-like cholesterol inclusions and calcified

deposits were also identified and localized to the necrotic

region of glioma tissue. More important, biochemical infor-

mation contained in the Raman spectrum enabled necrotic

tissue to be discriminated fromvital glioblastoma tissue. This

findingwould be extremely useful for grading tumors in vivo.

To avoid underestimating tumor grades in which necrotic

tissues was inadequately sampled, high wavenumber

(HWVN) Raman maps of human glioblastoma tissues were

produced [9]. Compared to vital glioblastoma, surrounding

necrotic tissues give lower DNA and stronger cholesterol

ester signal contributions.

Recent multivariate Raman imaging studies have shown

that necrotic tissue could be distinguished from the prolif-

erative and invasive activities of rat glioma cells, as well as

from different brain anatomical structures, such as the corpus

callosum and cortex [7]. In nontumor tissues, lipid content

was highest in the corpus callosum but decreased gradually

toward the cortex. A similar trend was observed in tumor

tissues but the total lipid content was reduced as a result of

demyelination. The lowering of myelin lipid content may

have been caused by glioma cells requiring more energy to

grow compared to the surrounding tissues. Clusters associ-

ated with proliferative and invasive activities of glioma cells

were identified and correlated with the tumor-promoting

activities of the Ki-67 andMT1-MMP proteins, respectively.

Validation of proliferative and invasive Raman spectral

markers by immunohistochemical methods is extremely

invaluable, as is the identification of necrotic and perinecrotic

zone clusters that have been linked with a poorer clinical

outcome. Clusters associated with the accumulation of

plasma proteins in response to edema were also identified

and localized to tumor tissues and the tissues adjacent to the

tumors.

6.2.2 Brain Metastases and Meningioma

Combined FTIR imaging and fiber-optic Raman mapping

techniques have also been used to detect suspected brain

metastases of malignant melanomas in mice injected with

lung or skin cancer cell lines [10, 11]. Fiber-optic Raman

mapping could detect the presence of suspected tumors in

2mm thick tissue sections with sizes ranging from 240 mm
� 240 mm (4 pixels) to 1.1mm� 1.2mm (90 pixels). The

locations of the tumors were confirmed by consecutive

histological staining. In addition, the absence of tumors from

Raman maps collected from the reverse side of the tissue

sections provided some information on tumor depth pene-

tration. Raman spectra taken from the suspected tumor sites

were dominated by melanin bands as they were resonance

enhanced in the interval 400–1800 cm�1. In contrast, FTIR

images collected from the same tissue section in the interval

2750–3050 cm�1 showed differences only in brain tissue

morphologies. Although fiber-optic Raman mapping were

performed ex vivo, the flexibility of the probe may allow

in vivo mapping during surgical resection. In contrast, FTIR

imaging would be more suited for small specimens or speci-

mens with known tumor locations. FTIR and/or Raman

techniques have been used to study other brain tumor types

and to visualize tissue hemorrhage, calcified deposits, car-

otene inclusions, and increased nucleic acid contributions

[8, 12, 13]. For example, Figure 6.1 shows chemical images

collected from human meningioma tumor tissues via a wide-

view Raman imaging system [8]. In this figure, carotene

inclusions in a 43� 37 mm2 tumor area is imaged in 50min

using a lateral resolution of 0.54 mm (Figure 6.1b). By using

single bandRaman imaging at 1581 cm�1, tissue hemorrhage

could also be visualized (Figure 6.1d).

6.3 BREAST

6.3.1 Breast Cancer

The potential benefits of using Raman spectroscopy to

diagnose breast cancer have been studied by several research

groups [14–20]. Visualization of breast tissue microstructur-

al features is a key first step toward the development of

a noninvasive Raman imaging technique for the identifica-

tion and classification of breast cancer in a clinical environ-

ment. In one early study, high-definition chemical images of

FIGURE 6.1 Raman imaging of a meningioma tumor section. (a)

Photograph (size 43� 37 mm2) and Raman chemical image of

carotene inclusion. (b) Photomicrograph (c, size 1.8� 2.4mm2)

and a single band Raman image at 1581 cm�1 to visualize hemor-

rhage (d). Reprinted from Ref. 8 with permission from Wiley. (See

the color version of this figure in Color Plate section.)
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thin chicken breast tissues were obtained using a Raman

microscope equipped with an liquid crystal tunable filter

(LCTF) [17]. Component discrimination based on univariate

(ratiometric) technique was used to visualize the distribution

of lipid and protein components. However, image contrast

could be improved by using multivariate techniques, such as

classical least squares analysis. Other multivariate techni-

ques based on principle component analysis (PCA) have also

been used to identify lipid and carotenoid components in

lymph node biopsies collected from patients diagnosed with

breast cancer [21].

In another study, Raman microimages collected from

60 human breast tissue biopsies were used to create

a morphological model that could eventually be used to

develop an algorithm to diagnose female breast cancer

in situ [22].Althoughmorphologicalmodeling requiresmore

advanced knowledge of the specimen compared to PCA and

other multivariate methods, it affords greater insight and

accurately reflects the physiochemical changes associated

with disease diagnosis [23]. Figure 6.2 shows the morpho-

logically derivedRaman images for collagen, cell cytoplasm,

and cell nuclei from a normal breast duct [22]. A comparison

with the serial stained section shows that the Raman images

correlate well with the tissue architecture. The model used

a linear combination of these Raman basis spectra together

with those derived from fat (mostly triolein), cholesterol-like

deposits, b-carotene, calcium hydroxyapatite, calcium oxa-

late dihydrate, and water. Although the value of the model is

dependent on the signal to noise ratio of the spectra being

fitted, the model overcomes the problems associated with

overfitting as the majority of the basis spectra are morpho-

logically derived, especially collagen that is known to be

present in human tissue in many different forms. However,

basis spectra from synthesized or commercially available

chemicals, including those derived from deparaffinized

tissue sections, can be used when necessary. The nine

morphological and/or chemical basis spectra used in the

morphological model are sufficient to explain the major

spectral features associated with normal, diseased, and

cancerous breast tissue biopsies. In contrast, only three basis

spectra are needed to model normal and transformed human

breast epithelial cells [24]. In this approach, DNA, RNA, and

proteins were extracted from the cell nuclei and used to

construct spectra-fitting models to visualize compositional

changes associated with tumorigenesis at the subcellular

level.

6.3.2 Breast Tumor Progression Models

Breast pathologists frequently use tumor progression models

to describe a series of abnormal changes that occur in breast

ductal tissue over time. The model often includes

hyperplasia of usual type (HUT), atypical hyperplasia

(ADH), ductal carcinoma in situ (DCIS), invasive ductal

carcinoma (IDS), and finally metastasis [25, 26]. Although

there are clear morphological differences between the path-

ological groups, themodelsmay not always be linear. Raman

maps collected from 50 histochemically graded breast ductal

biopsies were used to find a possible progressive biochemical

link within a four-group proliferation model (HUT, ADH,

DCIS, and IDC) and a four-DCIS pathological model (low-

grade, intermediate-grade, and high-grade noncomedo, as

well as high-grade comedo) [27]. Linear discriminant anal-

ysis (LDA) that maximizes variance between groups and

minimizes variance within groups [21] was applied to the

proliferation and DCIS models. Spectral analysis performed

on the proliferation model showed that the relative lipid

levels in breast tissues with HUT were similar to normal

breast tissue [27]. As pathology progressed, fat levels

appeared to vary as it was substituted by higher collagen

contributions. There was poor discrimination of DCIS be-

tween the other pathological groups within the proliferation

model. The DCIS group appeared to be associated morewith

HUT and IDC than its supposed precursor ADH. Although

other biochemical changes were observed, the proliferation

model did not appear to follow a general pattern as pathology

progressed. In contrast, spectral differences were observed

between the mean spectra of the first three grades of DCIS in

the DCIS pathological model, whereas the mean spectra of

high-grade comedoDCIS group were quite distinct, owing to

some interductal necrosis. The DCIS pathological model

appeared to follow a pattern within its own group. This study

highlights some of the major challenges still faced by breast

pathologists and spectroscopists in classifying or fitting

FIGURE 6.2 Raman images of normal breast duct (a–c) with

corresponding serial stained section (d). Each image represents the

contribution of a specificmorphological element to the region being

studied: (a) collagen, (b) cell cytoplasm, and (c) cell nucleus.

Reprinted from Ref. 22 with permission from Wiley.
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biochemical pathological progression tomodels that may not

be linear or exhibit extreme nonlinearity.

6.3.3 Breast Implant Materials and Pathology

Raman spectroscopy is increasingly being used to answer

important medical questions surrounding the composition

and pathology of breast implantmaterials [28–30].One of the

earliest applications of Raman imaging to breast implant

tissues employed an acoustic-optic tunable filter

(AOTF) [31]. AOTF Raman imaging was used to detect

Dacron polyester inclusions in a histopathologically graded

breast implant capsular tissue biopsy. Dacron polyester

patches are often used to attach silicone implants to the chest

wall during reconstructive and cosmetic surgery. Although

breast tissue lipid and protein spectral features aremasked by

high tissue fluorescence, polymer inclusions of �15 mm in

diameter could be imaged by taking the ratio between the

Dacron polyester Raman image at 1615 cm�1 and the back-

ground image at 1670 cm�1. As shown in Figure 6.3, a high-

fidelity Dacron chemical image within a 230� 230 pixel

area was acquired using a 10min integration time. Confocal

Raman mapping techniques have also been used to distin-

guish between protein and Dacron fibers from a surgical

suture site, as well as spatially resolve silicone and polyure-

thane particles associated with silicone explants [32].

6.4 GASTROINTESTINAL TRACT

6.4.1 Barrett’s Esophagus and Esophageal

Adenocarcinoma

Barrett’s esophagus, a condition of long-term gastroesoph-

ageal reflux disease, is characterized by the incomplete

replacement of normal squamous mucosa in the lower

esophagus by columnar-lined mucosa of intestinal origin

[33, 34]. Patients with intestinal metaplasia are at increased

risk of developing dysphasia and, in some cases, esophageal

adenocarcinoma [35, 36]. The prognosis for patients with

esophageal cancer is poor, as the tumor is highly invasive and

can spread to other parts of the body by metastasis [37].

Patients with low-grade dysphasia (LGD) are advised to

undergo routine endoscopic biopsy surveillance, whereas

patients with high-grade dysphasia (HGD) may require more

intensive surveillance with surgical resection or endoscopic

ablation [38]. The benefits of using such surveillance

approaches, however, still remain unproven, owing to the

problem with interobserver variability and inadequately

defined markers of dysplasia and early carcinogenesis

[39–42]. Several emerging optical diagnostic techniques are

currently been investigated and in some cases validated

against gold standard histopathological approaches to

address some of these issues [43–46]. For example, in

a consensus pathology and Raman spectroscopic study in-

volving esophageal biopsies collected from 44 patients un-

dergoing surveillance for Barrett’s esophagus, sensitivities

and specificities of 73–100% and 90–100% were obtained,

respectively [47].Multivariate analysis techniqueswere used

to create spectral classification models to allow the objective

prediction of pathology. In a following study, pseudocolor

Raman (score)maps were generated and used to visualize the

biochemical changes in histopathologically gradedHGD and

adenocarcinoma biopsies [48]. Mean spectra taken from

selected regions of the maps showed that HGD and

adenocarcinoma sites were associated with a high DNA,

oleic acid, and actin level, while the relative glycogen levels

were greatly reduced compared to normal squamousmucosa.

More recently, the use of CCD cameras with zero readout

times has enabled Raman images of frozen esophageal tissue

FIGURE 6.3 High-definition images of Dacron polyester in

human breast implant capsular tissue: (a) bright-field reflectance

image and (b) background ratioed Raman image (1615 cm�1/

1670 cm�1); 10min integration, 20� (NA¼ 0.46) objective. Rep-

rinted from Ref. 31 with permission from the American Chemical

Society.
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sections to be acquired 3–7 times faster than point mapping

approaches, thereby making the implementation of Raman

imaging for histological screening in clinical environment

a future possibility [49, 50].

6.4.2 Colon Wall Structure and Composition

The colon is the final area of the GI tract charged with

recapturing electrolytes and water from food products [51].

Structurally, the colon wall consists of four basic layers,

namely, the mucosa, submucosa, muscularis externa, and

serosa [52, 53]. Themucosa, the innermost layer of the colon,

is lined with adsorptive and secretory epithelial cells. These

cells are supported by connective tissues and nerve cells from

the underlying submucosa. Beneath the submucosa is the

muscularis externa that contains circular and longitudinal

tissues of smooth muscle. These muscle tissues assist in the

movement of food products along the GI tract by means of

wave contractions called peristalsis. Covering themuscularis

externa is the outermost serosa layer that provides the

necessary lubricating fluids to minimize friction associated

with peristalsis.

The mucosa have been the focus of numerous ex vivo and

in vivo Raman spectroscopic studies involving colon can-

cers [18, 54–56]. The first reported application of Raman

imaging to colon cancer involved the human colonic

carcinoma cell line HT29 [23]. In this study, cell membrane,

nucleus, and cytoplasm were identified when spectra of

HT29 cells were fitted with chemical spectra of phosphati-

dylcholine, DNA, cholesterol linoleate, triolein, and actin,

the later being morphologically derived from “cell cy-

toplasm” of breast ductal tissues. Raman spectroscopic and

imaging studies, however, have seldom been used to char-

acterize tissues and nerve cells underlying the mucosa, such

as ganglia nerve cells found in between the circular and

longitudinal muscle tissues. The absence of ganglia cells is

related to Hirschsprung’s disease, a relatively common

pediatric illness with symptoms that include feeding

intolerance, abdominal distension, and chronic constipa-

tion [57, 58].

Combined Raman and FTIR imaging techniques have

recently been used to visualize the biochemical composition

of colon wall tissue section obtained by colostomy from

a neonatewith an anorectalmalformation [53]. Unsupervised

multivariate (cluster) analyses were applied to the segmented

spectral data sets to yield 14 color-coded Raman and FTIR

images and spectra that were assigned and compared. The

epithelium and mucus secretion on top of the mucosal layer

were the first cluster memberships identified from the Raman

image acquired using a step width of 10 mm. The correspond-

ing site-matched FTIR data convincingly showed that the

mucus was produced by epithelial glands and comprised of

polyglycosylated peptides. Moreover, the epithelium gave

rise to two identical DNA clusters, albeit with slightly

different signal contributions. These differences were attrib-

uted to spatial variation in epithelial cell turnover activities.

Besides the elevated DNA and mucus levels, epithelial

spectra gave lower collagen contributions compared to that

of connective tissue and muscle tissue. An additional muscle

tissue constituent, termed muscularis mucosa, was identified

between the mucosa and submucosa tissues. Raman and

FTIR images of longitudinal muscle tissues could be distin-

guished from circular muscle tissues by the lower collagen

contribution in the later tissue constituent. By using a step

width of 2.5 mm, Raman images of subcellular features of

ganglia could be spatially resolved. This is clearly illustrated

in Figure 6.4 in which the Raman image yielded more cluster

memberships compared to those derived from the corre-

sponding diffraction-limited FTIR image. The Raman image

and single point spectra analysis showed that the

ganglia substructure was comprised of lipid, DNA, and

RNA components that could be readily distinguished from

circular muscle tissues and the collagen-rich fibrous

septa surrounding the ganglion.

FIGURE 6.4 FTIRmicroscopic image (a), photomicrograph (b), and Ramanmicroscopic image (c) of ganglia. The Raman image consist of

59� 59 spectra (c) recorded with a step size of 2.5 mm. Colors represent cluster memberships: fibrous septa (red, orange), circular muscle layer

(yellow), subcellular features (black, magenta, blue, and cyan), and transition between ganglion and fibrous septa (green). Bar¼ 20 mm.

Reprinted from Ref. 53 with permission from Wiley-VCH Verlag GmbH & Co. (See the color version of this figure in Color Plate section.)
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6.5 URINARY

6.5.1 Bladder Outlet Obstruction

Raman mapping has mainly focused on identifying the

structural composition or biochemical changes associated

with normal or diseased urinary tissues and cells. Histori-

cally, the first example of Raman mapping to urinary tissue

involved the characterization of a layer composition of

a healthy guinea pig bladder tissue in the 400–2000 cm�1

spectral range [59]. By subdividing the spectral data set into

groups of similar spectra using cluster analysis, Raman

pseudocolor maps of the urothelium, lamina propria, and

muscle layer could be obtained. The lamina propria gave

higher collagen signal contributions, which was confirmed

by immunohistochemical analysis. In contrast, the muscle

layer was dominated by high actin and myosin signal con-

tributions, whereas the urothelium contained strong fatty

acid signal contributions. Similarly, bladder clusters have

been identified in Raman maps collected from patients in the

HWVN spectral range (�2400–3800 cm�1) [9]. This is an

important finding as the HWVN region is far removed from

signal interference from fused silica fibers and thus would

simplify the collection and data analysis of in vivo fiber-optic

Raman measurements [60]. HWVN Raman maps collected

from submucosal regions showed evidence of colocalization

between smooth muscle and fibrocollagenous tissue [9]. A

similar colocalization of smooth muscle and collagen fibers

was identified in the fingerprint Raman maps collected from

damaged guinea pig bladder tissue in response to partial

outlet obstruction [61]. This implied that the infiltration of

collagen fibers in the bladder wall tissue was the result of

outlet obstruction and was confirmed by histology. Clusters

of normal muscle and damaged muscle were also identified.

Difference spectra taken between these clusters gave an

almost pure spectrum of glycogen that indicated the accu-

mulation of glycogen in damaged muscle tissue areas.

6.5.2 Bladder Cancer

Ramanmaps of nontumor and tumorbladder tissues collected

from 15 patients subjected to cluster analysis yielded from

three to sevenclusters permap [62].Foreachcluster, a cluster-

averaged spectrum (CAS) was calculated and classified by

LDAas nontumor or tumor. NontumorCAS contained higher

collagen content, while CAS from tumor areas were charac-

terized by high lipid, nucleic acid, protein, and glycogen

content. However, two of the nontumor CAS were classified

as tumor by the LDA model. Raman maps showed that CAS

fromhighly inflamed tissues also contained highnucleic acid,

and thus it would not be possible in all cases to discriminate

between CAS of inflammation tissue areas and CAS from

tumor areas. Nevertheless, 84 of the 90 CAS (93%) were

correctly classified with 94% sensitivity and 92% specificity.

6.5.3 Testicular Microlithiasis

Testicular microlithiasis is a rare clinical condition charac-

terized by multiple calcifications (microliths) scattered ran-

domly throughout the testicular parenchyma [63]. Although

this condition has questionable significance as a marker for

testicular cancer, it is readily detected by radiological and

histological methods [63, 64]. Microliths arise from an

accumulation of cellular debris forming a central calcified

core, surrounded by concentric layers of connective or

stratified collagen fibers. Recent Raman mapping studies

provided invaluable insights into the molecular composition

of gonadal microlithiasis and its surrounding tissues in both

malignant and benign specimens [65]. The structures (clus-

ters) of the testicular parenchymawith microliths adjacent to

a germ cell tumor (seminoma) obtained by Raman mapping

closely followed the morphology observed in stained tissue

sections. Raman spectra of microliths showed evidence for

hydroxyapatite and protein-like components. This suggests

that a protein-like material was captured in the microlith. In

contrast, the tissue surrounding the microliths was rich in

lycopene and glycogen, while the basal membrane of the

seminiferous tubule contained higher collagen component.

The presence of glycogenwithin all themalignant specimens

and its noticeable absence in the only one benign lesion

pointed toward the pathogenic role of the precursor cells of

germ cell neoplasm in the gonads.

6.5.4 Kidney Glomerulus

In the kidney, the glomerulus is responsible for the clearance

of waste products and therefore is a key site for many renal

dysfunctions [66]. The application of Raman imaging tech-

niques for detecting aberrations in renal architecture and

function would be of considerable interest to the clinician.

For example, Raman molecular imaging (RMI) can generate

spatially accurate, reagentless images of the human glomer-

ulus tissue [67]. The Raman images were acquired using a

wide-field imaging microscope integrated with a multicon-

jugate filter (MCF). The MCF tunable filter enabled images

to be created at specific wavelengths, thereby increasing

throughput and rejecting unwanted wavelengths and stray

light. As shown in Figure 6.5, the optical contrast between the

kidney glomerulus bright-field image and the Raman images

acquired at 1450, 1650, and 2930 cm�1 was clearly evident.

In addition, by using a fluorescence MCF tunable filter,

autoflourescence images (or spectra) collected from the

stained tissue sections could be linked to specific regions in

the Raman spectral image (or spectra).

6.5.5 Prostatic Cancer Cells

The combined approach of RMI and fluorescence imaging

techniques has been used to visualize single prostate cancer
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cells labeled with fluorescent dye or nanocrystals [67, 68].

Confocal Raman techniques have also been used to analyze

and visualize the intrinsic biochemical composition of two

different human prostatic cell line populations, namely,

PNT1A (normal prostate) and LNCaP (prostate adenocarci-

noma) [69]. Raman score maps generated by PCA could be

identified with the overall average cellular spectrum, as well

as to visualize the distribution of DNA/protein, cytosol,

nucleic acids, and a variety of different biochemicals linked

to subtle differences between the cell types. For example, the

malignant cells contained a higher b-sheet conformation,

whereas the benign cells exhibited a higher, more stable,

a-helical conformation. Furthermore, the malignant cells

displayed a higher DNA content compared to benign cells.

6.6 SKIN

6.6.1 Basal Cell Carcinoma

Basal cell carcinoma (BCC) is one of the most studied

malignancies of the skin, owing to its prevalence amongst

Caucasians with a history of excessive sun exposure [70].

Epidemiological data estimate an incidence rate of 800,000

cases of BCCs in the United States every year with an overall

incidence rate that is increasing worldwide by 3–10% per

annum [70, 71]. Although slow growing and rarely meta-

static, BCC can cause significant local destruction to sun-

exposed areas of the body, such as the head or neck. ForBCCs

occurring near anatomically sensitive sites, such as the nose

and eyes, examination of frozen pathology during Mohs

surgery is recommended. Mohs surgery is an effective

tissue-sparing procedure for BCC with a cure rate of

98–99% [72]. However, for large and complex cases, Mohs

surgery is time-consuming for both the surgeon and the

pathologist. Rapid detection of BCC tumor margins using

real-time intraoperative optical methods may minimize the

need for frozen histology and expedite Mohs surgery

[71, 72]. Recently, confocal Raman system was used to map

15 frozen BCC sections collected from 15 patients [73].

Multivariate statistical analyses performed on the Raman

maps were used to determine the tumor margins in frozen,

unfixed tissue sections. Morphologically, BCCs resemble

hair follicle structures [70] and their locations coincided

with the nodular features observed in the Raman maps and

histology. In the Raman maps, BCC tumor margins could be

delineated from the surrounding nontumorous dermal tissue.

The BCC spectra contained higher lipid and nucleic acid

content. The highBCCnucleic acid content reflected the high

cell density of the tumor compared to the surrounding

nontumorous tissue. In four Raman maps, dermal tissue

adjacent to the tumor appeared to be poor in collagen, which

was consistent with the theory thatmatrixmetalloproteinases

played a pathogenic role in BCC, degrading the collagen-rich

dermal tissue. In addition, 3 of the 15 frozen sections

appeared to contain a dense chronic inflammatory infiltrate.

Spectral difference studies showed that the infiltrate con-

tained higher fatty acid and aromatic amino acid contribu-

tions, whereas collagen levels were reduced compared to

normal dermal tissue spectra. Although subtle differences

were noticed between BCC and epidermal tissue spectra,

three of the epidermal spectra were misclassified and pre-

dicted as BCC. Based on logistic regression modeling,

a sensitivity of 100% and specificity of 93% were achieved

for BCC. Micro-Raman spectroscopy has been used to

visualize the distribution of protein in normal human skin

melanocyte cells [74], whereas stimulated Raman scattering

(SRS) microscopy used the CH2 band at 2845 cm�1 to

visualize the lipid-rich domains in mouse skin tissue

sections [75].

6.6.2 Wound Healing

The epidermis presents the first physical barrier to wound

injury. When breached, the epidermis initiates the wound

healing process to prevent bacterial infection and restore

homeostasis [76]. Wound healing is a highly dynamic

process, involving the timed and balanced activity of

inflammation, proliferation, reepithelialization, and remo-

deling [77, 78]. Such processes can be followed by spectro-

scopic techniques in a time-dependent manner. For instance,

combined IR and confocal Raman techniques followed

changes that occurred during the reepithelialization of

human excisional wounds maintained in cell culture for

a period of 6 days [77]. Raman images of unwounded and

FIGURE 6.5 Bright-field image of kidney glomerulus with select Raman image frames collected at 1450, 1650, and 2930 cm�1. Reprinted

with permission from Ref. 67.
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wounded regions of the skin were collected in the interval of

800–1140 cm�1. At 12 h post-wound injury, Raman (score)

images in Figure 6.6 showed the spatial distribution of the

stratum corneum, the underlying epidermal, and the dermal–

epidermal boundary region, as well as the distribution of

several smaller regions identified as cell nuclei. Keratin was

identified as the major protein component of the stratum

corneum and epidermal layers, while the dermal–epidermal

layer was dominated by collagen. Lipids and DNA compo-

nents were confined to the stratum corneum and cell nuclei,

respectively. In the time-dependent Raman images, varia-

tions in elastin spatial distribution was observed near the

wounded area of the skin. Based on gene microarray studies,

the sudden decrease in elastin levels observed during the

second day of the wound healing process was attributed to

increased expression of cathepsin S, matrix metalloprotei-

nase-7, and the suppression of lysyl oxidase activity.

6.7 OCULAR

6.7.1 Age-Related Macular Degeneration

Macular pigment (MP) in the human retina is composed of

three carotenoids, lutein, zeaxanthin, and meso-zeaxanthin

[79]. These carotenoids are concentrated within the

macula lutea region of the retina, as well as the retinal

depression called the fovea. The fovea contains the highest

density of cone photoreceptors that are essential for high-

acuity color vision [79, 80]. MPs are potent antioxidants and

are thought to protect the retina against oxidative stress in

response to age-related macular degeneration (AMD),

a leading cause of irreversible blindness in the elderly

(�65 years old). A variety of methods have been used to

assess MP in the human retina, of which resonance Raman

imaging (RRI) is a recently developed in vivo method. MP

carotenoids are stereoisomers, each containing long conju-

gated polyene chains, thereby giving rise to a prominent

C¼C stretching Stokes Raman band around 1524 cm�1. This

band is resonance enhanced in the blue-green spectral range,

with a peak centering around�527 nm [81]. The 1524 cm�1

band can be used to measure MP concentrations in human

retina and has been validated against chromatographic meth-

ods using model systems, such as excised human donor

eyecups [79]. RRI performed on 17 healthy volunteers

showed significant intersubject variations in MP concentra-

tions, symmetries, and spatial extent. The spatial distribution

of MP in one RRI image was similar to that observed in the

associated fluorescence-based image in which the MP level

peaked at the center and fell rapidly toward the outer region

of the macula. The RRI images of healthy volunteers were

categorized into fourmain groups that could be distinguished

from each other, as well as from RRI images collected from

three elderly patients with pathological changes in the

retina and/or vitreoretinal interfaces. For example, Figure 6.7

shows RRI images of a 57-year-old healthy male and a

70-year-old female diagnosed with the mild form of dry

AMD. In the healthymale patient, theMPdistribution consists

of a narrow central peak butwith a noticeable disruption to the

outer MP ring structure. In contrast, the MP ring structure in

the AMD case was broken up with a relatively high central

peak and crosslike spokes. In addition, Figure 6.7 shows MP

distributions in the left and right eyes of a 62-year-old female

after detachment of the vitreous in the right eye. Detachment

FIGURE 6.6 Factor analysis of a confocal Raman data set

delineates skin regions near a wound edge 0.5 days after wounding.

Factor analysis was conducted over the 800–1140 cm�1 region

yielding four loadings that map to anatomically distinct regions in

skin. (a) The spatial distribution of scores for f1 highlights the

stratum corneum region of the skin, rich in keratin-filled corneo-

cytes and lipids. (b) Factor loading 2 shows high scores in the

underlying epidermal region, while high scores for f3 (c) reside

near the dermal–epidermal boundary region. (d) The size, location,

and spatial distribution of several smaller regions with high

scores for f4 are identified as cell nuclei. (e) Factor loadings reveal

several spectral features specific to the microanatomy of the epi-

dermis in human skin. Reprinted fromRef. 77with permission from

Wiley. (See the color version of this figure in color plate section.)
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of the vitreous apparently caused the formation double-peak

MP structures inside the MP ring.

6.7.2 Cholesterol and Cataracts

Cholesterol is a major lipid component of ocular tissue, and

alterations in lens lipid composition and content have been

implicated in the formation of cataracts [82]. Raman imaging

approaches have been employed to indirectly image the

distribution of cholesterol in healthy rat eye slices incubated

with filipin, a cholesterol-binding fluorescent antibiotic [83].

Raman spectrum of filipin is characterized by an intense

signal at 1586 cm�1 and negligible interference from signals

arising from lens proteins and lipids makes it ideal for

imaging. The filipin Raman image obtained by subtracting

the Raman scattered light at 1510 cm�1 (background) from

the Raman scattering at 1586 cm�1 (filipin) showed

a honeycomb structure identical to the one in the bright-field

image. The appearance of the honeycomb structure in the

filipin Raman image was attributed to the high cholesterol

concentration (�7mM) in the lens fiber membranes com-

pared to that inside the fibers of the eye lens. The honeycomb

structure was not observed in Raman images of rat lens

incubated in the absence of filipin. Moreover, the Raman

image obtained using the 1450 cm�1 CH2 and CH3 signal

(1450 cm�1 minus 1510 cm�1) showed that lens protein

distribution was homogeneous. In another study, the relative

filipin intensity was highest in cataractous region of the

human eye lens, which equated to a high cholesterol con-

centration (with unesterified 3b-OH groups) compared to the

healthy portion of the eye lens [84]. In contrast, the protein

distribution as measured by the relative intensity of the

intrinsic phenylalanine band at 1004 cm�1 was reduced in

the cataractous region, but the total amount of proteinwas not

different. In single human cells, nonresonant Raman imaging

experiments showed that the distribution of nuclear protein

within eye lens epithelial cells was also homogeneous [85].

The later Raman image was obtained using the intense

protein CH2 and CH reporter bands around 3000 cm�1.

6.7.3 Human Tear Fluid

Numerous proteomic reviews have indicated that changes in

human tear fluid protein composition can be used to diagnose

the disease status of ocular surfaces and to better understand

the complex chemistry behind tear fluid deficiencies [86, 87].

FIGURE6.7 RRI images of three subjectswith ringlikeMPdistributions. (a)A 57-year-old healthymalewithMPdistribution consisting of a

narrow central peak and a surrounding strong, nearly rotationally symmetric distribution. MP levels in the ring are slightly higher than at the

center and feature a noticeable disruption/offset at the “2 o’clock” position. (b) A 70-year-old female diagnosed with a mild form of dry AMD,

showing a weak, broken ring structure with central high MP density and crosslike spokes. MP distributions in left (c) and right eye (d) of a 62-

year-old female measured after detachment of the vitreous in the right eye. Six months prior to detachment, RRI images revealed the same

ringlikeMPpatternwith a central spike in both eyes.Detachment of the vitreous apparently caused the formation of a double-peakMP structure

inside the MP ring in this subject. Reprinted from Ref. 79 with permission from the Optical Society of America.
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Recently, a novel drop coating deposition Raman spectros-

copy (DCDRS) technique was used to examine the compo-

sition of tear fluid samples collected from three healthy

humanvolunteers [88]. InDCDRS, tear fluidswere deposited

onto hydrophobic surfaces and upon drying yielded a thick

amorphous ring with fern-like patterns at the center. Raman

maps obtained from the dried tear deposits revealed an

inhomogeneous distribution of protein, urea, bicarbonate,

and lipid components. The positioning of the protein, urea,

and bicarbonate components was related to their relative

solubilities and concentrations, while the lipid component

was found not in solution but as insoluble debris in the drying

droplet. The DCDRS method could potentially provide

a fingerprint of protein (and lipid) composition, while the

ferning pattern could give an empirical measure of the

“quality” of the tears.

6.7.4 Eye Structure and Morphology

Raman mapping has been used to elucidate the microstruc-

tural organization in mouse eye slices after the rapid freezing

via an in vivo cryotechnique [89]. Freeze-dried specimens

were also embedded in resin, sectioned, and stained with

toluidine blue to allow the tissue morphology to be compared

against those obtained by Raman microscopy. Together with

a light microscopic image and in-depth spectral study, the

Ramanmap contained four typical spectral patterns that were

color coded to reflect the ocular skeletal muscles, scleral

connective tissues, choroids/pigment epithelium, and rod/

cone photoreceptor layer. It was found that the choroid and

pigment layers contained melanin, whereas the sclera and

photoreceptor layers predominantly comprised of hemoglo-

bin and rhodopsin proteins, respectively. This methodology

was also used to visualize oxygen saturation in blood vessels

of living animals [89].

6.8 CARDIOVASCULAR

6.8.1 Atherosclerotic Plaques

In cardiovascular research, numerous invasive and noninva-

sive imaging strategies have been sought to allow the timely

identification of atherosclerotic plaques before disruption or

rupture [90–92]. Although a vast majority of atherosclerotic

plaques are asymptomatic, the rupture of these so-called

“vulnerable plaques” can result in a cardiac event.Vulnerable

plaques appear as a thin fibrous cap overlying a large neurotic

lipid core (40% of the entire plaque). Raman imaging has

often been used to visualize atherosclerotic plaques in ex vivo

tissue specimens. In one study, Raman cluster and autofluor-

escence imaging techniques were used to spatially separate

fluorescent ceroid deposits in atherosclerotic plaques from

the surrounding nonfluorescent atheroma [93]. Ceroids are

final products of lipid oxidation and spectroscopically give

strong hemoglobin and cholesterol ester signals. This sup-

ported the hypothesis that iron and heme formed complexes

with intravascular lipoproteins, thereby stimulating the ox-

idation and initial formation of these ceroid deposits.

Other Raman studies have spatially resolved protein-

rich and fat-rich regions in mice models of atherosclero-

sis [94]. By taking the ratio between the collagen and

elastin bands at 1000 cm�1 and 1015 cm�1, smooth muscle

of the media (middle layer) and collagen of the

adventitia (outermost layer) could be separated [95]. Large

arteries also contain a morphologically distinct collagen–-

proteoglycan-rich layer, the intima, with a sheet of elastic

fibers of the internal elastic lamina (IEL) on the peripheral

side. Based on the morphological modeling of mildly ath-

erosclerotic human tissue, Raman images of cholesterol,

foam cells, and necrotic core could be localized to the

intima (Figure 6.8), while smooth muscle cells was found

predominantly in the media [23]. By comparing the Raman

image of the internal elastic lamina with the associated phase

contrast image, fenestration patterns could be observed.

FIGURE 6.8 Phase contrast images (a and g) of a mildly ath-

erosclerotic artery, with the IEL and collagen fibers highlighted in

(g). Also shown are the Raman images of cholesterol (b), foam cells

and necrotic core (c), IEL (d), smooth muscle cells (e), and collagen

(f). Keymorphological features, such as the fenestration of the IEL,

can be observed. Reprinted from Ref. 23 with permission from

Wiley.
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Fenestration of the elastic lamina is known to be associated

with atherosclerosis. Another hallmark of atherosclerotic

disease progression, which was supported by Raman imag-

ing, was the infiltration of smooth muscle into the intima.

Although Raman imaging can identify atherosclerotic

plaques in ex vivo specimens, collecting in vivo singleRaman

spectra is currently complicated by poor tissue penetration,

long acquisition times, and background fluorescence from

blood products [90–92]. With the development of more

efficient probe designs, compact diode lasers, and CCD

detectors, in vivo detection might involve the use of

a catheter-based Raman probe combined with intravascular

ultrasound (IVUS) imaging [96, 97].

6.9 LUNG

6.9.1 Bronchial Wall Structure and Composition

The lung is a complex branching organ evolved to conduct

air across multiple spatial scales, starting at the large scale

from the bronchi to the lobular bronchioles and the terminal

bronchioles. These terminal bronchioles eventually bifur-

cate into smaller alveolar units where gas exchange with

blood ultimately occurs [98]. The first reported pseudocolor

Raman images of a bronchial wall segment outlined its

chemical composition and microscopic structure [99].

Structurally, the bronchial wall is comprised of a ciliated

columnar epithelium with underlying lamina propria and

submucosa. These structures (or clusters) were captured by

the pseudocolor Raman images, together with the nuclear

epithelial and cytoplasmic epithelial clusters associated

with the bronchial epithelium. The nuclear epithelial cluster

appeared to contain lower lipid and protein content and

higher DNA content compared to the cytoplasmic epithelial

cluster. A cluster associated with the liquid coating of the

bronchial epithelium, termed bronchial mucus, was also

identified. The bronchial mucus, which plays a critical role

in defending the respiratory tract from inhaled airborne

particles, contained a major lipid component, triolein. Trio-

lein was only visible in frozen tissue sections as it was

washed away during the staining process. Similar lipid

signal contributions were detected in the submucosal region,

which indicated that bronchial mucus was primarily pro-

duced by the submucosal glands and transported to the

epithelial surface via gland ducts. The submucosal region

was comprised of variable amounts of smooth muscle,

cartilage, and fibrocollagenous stroma with variable quan-

tities of glands and gland ducts. Subsequent Raman spectral

studies showed that fibrocollagenous stroma and smooth

muscle contained higher collagen and actin/myosin signal

contributions, respectively, whereas cartilage tissue was

dominated by variable amount of sulfated glycosaminogly-

can and collagen signal contributions.

6.9.2 Congenital Lung Disorders

Lung development begins in embryonic life and continues

several years postnatally [100]. Lungs exposed to environ-

mental toxins during this developmental period, as well as

during adolescence, may result in altered lung function and/

or increased risk of respiratory disease in later life. The

feasibility of using Raman and FTIR imaging methods to

detect biochemical changes associatedwith congenital cystic

adenomatoid malformation (CCAM), a rare but curable

prenatal lung disorder, was investigated. CCAMs are benign

nonaerating and nonfunctioning lung tissue masses arising

from the overgrowth of the terminal bronchioles and reduc-

tion in alveolar growth [101]. Prenatal CCAMetiology is best

classified by sonography, but histology is often needed to

make a more definitive diagnosis [102]. From histology,

CCAM contains fewer holes, whereas normal lung tissue

contains sponge-like aerating morphologies. In the Raman

study, a high spatial resolution of �10 mm was necessary to

distinguish CCAMs from normal tissue and to ensure that the

Raman clusters obtained were continuous [101]. One of the

four clusters associatedwith red blood cell content was lower

in CCAMs compared to normal tissue, while clusters asso-

ciated with lipids and smooth muscle were either unchanged

or not important. However, the lipid cluster obtained by FTIR

imaging was an important diagnostic criterion, the content

being higher in CCAMs. Although Raman spectroscopy

positively identified phosphatidylcholine as one of the major

lipid components of CCAMs, FTIR showed that lung mucus

contained glycogen. The Raman findings reported in this

study appeared to be considerably different when compared

to that reported on normal human bronchial tissues [99] and

thus highlight the complexity of analyzing lung tissue struc-

ture and composition across multiple spatial scales.

6.10 BONE

6.10.1 Bone Microstructure and Composition

Bone is a highly specialized connective tissue that performs

essential metabolic and weight-bearing functions, as well as

adapting to changes inmechanical stress towhich the organ is

exposed in everyday life [103]. Bone may be viewed as

a heterogeneous composite material comprised of cross-

linked collagen fibrils interspersed with hydroxyapatite-like

mineral crystallites of various sizes, shapes, orientations, and

compositions [104, 105]. Raman microspectroscopy is well

placed for investigating these metric parameters and has

provided invaluable insights into bone microstructure and

compositional changes associated with aging, disease, and

trauma [106–110].

With modern quantum efficient CCD detectors and ad-

vanced signal recovery techniques, Raman images of differ-

ent bone microarchitectures can be obtained with minimal
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interference from bone tissue fluorescence and polymer

embedding reagents [111–113]. For example, Raman imag-

ing combined with factor analysis was used to visualize

phosphate (n1 PO4) andmonohydrogen phosphate (n1 HPO4)

gradients in trabecular (spongy) bone and cortical (compact)

bone at 3 mm spatial resolutions [106]. Canine trabecular

bone tissue was embedded in polymethylmethacrylate

(PMMA), while a transverse section of human cortical bone

was imaged fresh without embedding. In trabecular bone,

independent PO4 and HPO4 factors at corresponding band

positions of 958 and 1000 cm�1 were generated. In mature

bone, PO4 species were localized to the highly mineralized

trabecular struts. However, mineralization at the edge of the

struts was incomplete, as evident by the higher HPO4 signal

contributions from the same location. This showed that even

in mature bone there were bone remodeling sites in which

new bone could form. Bone remodelingwas clearly observed

in Raman images acquired from immature trabecular bone

struts in which the HPO4 region appeared to extend 20 mm
into the mineralized PO4 regions. Small amounts of PMMA

resin were found penetrating the newly remodeled bone,

which provided further evidence for incomplete mineraliza-

tion of the organic matrix. In contrast, Raman score images

obtained from bone forming around blood vessels (osteons)

in cortical bone yielded only a single mineral factor contain-

ing both PO4 and HPO4 species. The uniformity of the ratio

image of the two phosphate species showed that they tracked

each other and that cortical bonewas less frequentlymodeled

compared to trabecular bone.

Because of the heterogeneity of bone, polarized light is

often needed to provide a contrast between different bone

tissue components, such as the alternating lamellae structures

formed around the osteons. Similarly, Raman contrast

images obtained from human osteon lamellae tissues showed

that amide I and n1 PO4 band intensities were sensitive to the

orientation and polarization direction of incident light [114].

This finding provided invaluable insights into the structural

organization of cortical bone, as well as highlighting some of

the erroneous conclusions that may be obtained if n1 PO4,

amide I, or their ratios were used to calculate bone compo-

sitional properties. In contrast, the amide III, n2 PO4, n4 PO4,

or their ratios are less orientation dependent and therefore

would provide a more accurate description of bone compo-

sitional properties. The organization of osteon lamellae at

different polarization directions is best illustrated by the 3D

Raman contrast images shown in Figure 6.9 [115]. When

polarization direction is perpendicular, lamellar bone struc-

ture is invisible (Figure 6.9a); however, when polarization

direction turns parallel, the lamellar becomes visible

(Figure 6.9b). Furthermore, by spatially fusing osteon la-

mellae Raman images with acoustic impedance images via

nanoindentation landmarks, site-matched compositional,

structural, and elastic information can be obtained [116].

These types of studies are important in elucidating whether

the alternating lamellar structures are designed toward pro-

tecting osteons from catastrophic failure [117].

6.10.2 Craniosynostosis

Raman hyperspectral imaging has also been widely used to

study the pathology behind craniosynostosis in which the

fibrous tissues between the cranial sutures fuse prematurely

[118–120]. Craniosynostosis is a severe craniofacial birth

defect and is believed to be caused by the expression of

fibroblast growth factor receptor (FGFR) transcripts at the

osteogenic front in developing calvaria bone. The pathology

of the disease can be mimicked under tissue cell culture

conditions by treating normal fetal day 18.5 mouse calvarial

sutures with high FGF2 concentrations. Mineral and matrix

Raman score images of FGF2-treated sutures and control

sutures were obtained [119]. By dividing the mineral score

image by the matrix score image, relative mineral-to-matrix

ratios (MTMR) were calculated. No significant differences

between the MTMR for FGF2-treated sutures and that for

control sutures were found, owing to the short duration of the

experiment (�48 h). However, the MTMR for FGF2-treated

suture bone regions were between 1.5 and 2.0 times higher

compared to the control bone suture regions. This provided

evidence that the principal site of FGF2-induced craniosyn-

ostosis was the osteogenic front, or the tips of the bones. In

a more detailed study, the suture region of normal fetal day

18.5 mice was found to contain a mineral factor that spec-

troscopically resembled octacalcium phosphate [120]. Com-

pared to the characteristic apatitic n1 PO4 band around

957–962 cm�1, the octacalcium phosphate band is broader,

FIGURE 6.9 (a) 3D view of n1 PO4/amide I ratio for different

polarizations of the incident laser beam as indicated in the figure by

double arrows. (b) Same lamellae showdifferent contrast depending

on polarization direction of the beam in panel (a). Reprinted from

Ref. 115 with permission from Elsevier.
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less carbonated, and has been proposed as one of the mineral

precursors in the formation of mature bone.

6.10.3 Bone Fragility

Bone fragility can be broadly defined as the susceptibility to

fracture as a result of failedmaterial and structural properties,

rather than a simplistic reduction in the amount of bone [121].

For instance, bone fragility in osteogenesis imperfecta (OI)

results from abnormal collagen type I synthesis in the organic

matrix portion of bone that in turn disrupts mineral deposi-

tion and mineral crystalline size. Diseases of high bone

remodeling, such as osteoporosis, produce disturbances in

bone material composition and microarchitecture, leading to

reduced bone strength, increased bone fragility, and suscep-

tibility to fracture [121, 122]. On the other hand, the accu-

mulation of bone microdamage in healthy young adults as

a result of repetitive mechanical loading on the weight-

bearing portions of the bone can also contribute to bone

fragility [104]. Some spectroscopic measures of bone fra-

gility have been identified and spatially resolved by multi-

variate Raman imaging techniques. For example, Raman

images collected from human cortical bone specimens iden-

tified a mineral factor around 952 cm�1 (n1 PO4) that was

localized to the interstitial tissue, away from the osteonal

tissue [123]. The 952 cm�1 band is usually associated with

poorly crystalline, disordered (amorphous) calcium phos-

phate and its presence may be attributed to damage to the

bone at some point in its history. A similar band was also

detected in mouse models of osteogenesis imperfecta at

952 cm�1 and in the diffuse region of microdamaged bovine

bone, albeit at a higher band position of 956 cm�1 [110, 124].

Mineral factors with bands between 963 and 964 cm�1

have been identified in mouse models of osteogenesis

imperfecta and partially damaged/microdamaged bovine

bone [110, 113, 124]. The 963–964 cm�1 band in mouse

models of OI and damaged bone were interpreted as being

more stoichiometric and less carbonated. Whereas in micro-

damaged bovine bone, it was attributed to a phase transfor-

mation and/or amorphization.

Abnormal changes to the organic component of bone have

also been identified by Raman imaging. To simulate failed

bonematerial and structural properties, a cylindrical indenter

was used tomechanically deform bovine cortical bone speci-

mens with loads of up to 1.2GPa [108]. In high-loaded

intents, single organic matrix factors were obtained from

the control (nonindented) and indented areas, whereas the

edges of the indented region yielded two matrix factors.

Raman images taken from the edges of the indent showed

increase in the low-frequency component of the amide III

band and high-frequency component of the amide I band.

These changes indicated the rupture of collagen cross-links

as a result of shear forces exerted by the indenter passing

through cortical bone. Remarkably, no evidence of ruptured

collagen cross-links was observed at the center of the indent,

which indicated that only compression of the organic matrix

occurred at this location.

Trabecular bone, which is found primarily in the spine,

hip, and wrist, is greatly impacted by osteoporosis because it

is remodeled up to a magnitude faster compared to cortical

bone [125]. Raman studies on trabecular bone have shown

that women who sustained osteoporotic hip fractures gave

higher carbonate/amide I ratios compared to women without

fractures [109]. These studies also showed that carbonate/

phosphate ratios in cortical bone biopsies were elevated in

osteoporotic women. The later finding may provide indirect

evidence for recent bone remodeling activity and/or attempts

made by the tissue to repair the damage. The ability to

measure cortical bone carbonate/phosphate ratios, noninva-

sively, would be a significant first step toward the detection

andmonitoring of bone fragility and fracture healing in living

human patients. Despite the technical challenges of collect-

ing weak bone Raman scatter through layers of skin, muscle,

fat, and other connective tissues, bone Raman spectra have

been recovered to depths of �5mm using ring/disk fiber-

optic probe collection geometries [126]. By using more

sophisticated fiber-optic illumination/collection geometries

and reconstruction methods adapted from fluorescence

diffuse tomography, Raman tomographic images could

be obtained to depths of 24–45mm below the skin [127].

Figure 6.10 shows the Raman tomographic images of an ex

vivo canine bone tissue superimposed on a three-dimensional

reconstruction of a canine limb section.

6.11 TEETH

6.11.1 Dental Caries

The pattern of caries development is changing, with increas-

ing prevalence of smaller carious lesions with slower pro-

gression rates [128, 129]. This shift has rendered many

conventional visual and visuotactile detection methods, such

as dental radiographs and dental explorers, less useful as

more sensitive methods with higher specificity would be

needed to identify them [129, 130]. This situation is further

complicated by lesions that develop just below the inter-

proximal contact site (e.g., between adjacent teeth), an

area that is difficult to examine by the clinician. Several

optical detection methods are currently been developed to

identify these carious lesions and to quantify the degree of

mineral loss to ensure that the correct dental intervention is

implemented.

In one such study, a multimodal approach of Raman

microspectroscopy and optical coherence tomography

(OCT) was used to detect dental caries extracted from

orthodontic patients [130]. Raman microspectroscopy

furnished biochemical and structural information on tooth
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enamel, while OCT imaging provided morphological and

depth information on carious enamel. For example,

a compounded OCT depth image of a tooth surface contain-

ing two clinically confirmed incipient lesions exhibited

increased light backscattering compared to sound enamel.

Light backscattering was detected to a depth of �290 mm at

carious locations and was attributed to the increased porosity

of the underlying enamel surface. Examination by Raman

microspectroscopy identified changes to hydroxyapatite, the

major mineral component of tooth enamel. It was found that

the intensity of the 960 cm�1 peak, which corresponded to

the n1 PO4 stretching mode in hydroxyapatite, was different

for carious and sound enamel. Similar changes to the PO4

vibrations in the 350–700 cm�1 (n2, n4) and 800–1200 cm
�1

(n3) spectral ranges were also observed. From Raman im-

aging studies, the intensity ratio of the 1043 cm�1 (n2) and
959 cm�1 (n1) bands appeared to reach a maximum at the

carious region of the tooth. The increased ratio intensity was

attributed to changes in enamel crystallite morphology and/

or orientation of the enamel rods as a result of demineral-

ization during caries development. This hypothesis was

supported by subsequent polarized Raman analysis in which

carious enamel exhibited a higher degree of depolarization

and reduced anisotropy compared to sound enamel [131].

Raman polarization and anisotropy images acquired from

a sample area measuring 880 mm� 715 mm showed that

lesion location, size, and possible severity could be visual-

ized. Furthermore, numerical Raman measures of depolar-

ization and anisotropy, including those values derived from

OCT, could be obtained [131, 132]. Numerical Raman

anisotropy measures of sound and carious enamel have also

been obtained using a fiber-optic Raman probe, and ex vivo

carries were detected with 100% sensitivity and 98% spec-

ificity [133]. Such measures would allow dental clinicians to

evaluate the degree of caries severity and to ensure that the

correct conservative treatment was implemented.

With increased advances in fiber-optic Raman and CCD

camera technologies, large areas of tooth enamel surfaces

and sections can now be imaged, for example, by using

a hollow optical fiber probe with a glass ball lens to furnish

a high-contrast Raman image of a lesion within

a 4.5mm� 4.5mm sample area [134]. The lesion was im-

aged using the intensity ratios of the n4 PO4 bands at 443 and

446 cm�1. The authors envisioned that by using bundled

hollow optical fibers, wider enamel tooth surfaces could be

imaged more rapidly. On the other hand, the advent of CCD

cameras with zero readout times has enabled whole carious

human tooth sections to be imaged in less than an hour [50].

The imaged tooth section measuring 9mm� 16mm con-

tained over 84,000 spectra. Carious enamel could be readily

discriminated from the surrounding sound enamel and

dentin owing to its high fluorescence signal contribution.

A horizontal fluorescent feature that coincided with the

cementoenamel junction (CEJ) of the tooth was also

identified. Figure 6.11 shows Raman images of a smaller

1.5� 3.4mm2 cross section that was obtained in 27min and

contained over 42,000 spectra. In this figure, carious enamel

exhibited weaker polarization dependence compared to

sound enamel. Raman images based on the n1 PO4 band-

widths and band positions could also be created. Remarkably,

a 4–8 cm�1 bandwidth difference between enamel and den-

tine regions was observed; however, the significance of this

finding has yet to be fully investigated.

6.11.2 Dental Restoration

In dental restoration, acid etching of the dentine layer is often

necessary to expose the underlying intertubular dentin fibrils,

in preparation for bonding with a resin-based composite

filling. This procedure involves the diffusion of resin mono-

mers into the “wet” demineralized dentin zone, followed by

entanglement with the collagen fibrils to yield adhesive/

dentin (a/d) interfaces with high tensile bond strengths

[135, 136]. However, the bond strength of the interface

is not maintained over time and the reasons behind this

FIGURE 6.10 Raman tomographic images of canine bone tissue.

(a) Medial and anterior views of soft tissue mesh (white) and bone

surface mesh of tibia and calcaneus (turquoise) overlaid with 50%

contrast isosurface of the reconstructed three-dimensional (3D)

Raman image of bone (green). (b) Same view as (a) overlaid with

10% contrast isosurface of the reconstructed Raman image of bone

(blue). (c) 3D mesh of limb section (white), including bone (tur-

quoise), illustrating location of the cross section (blue) containing

the highest Raman scatter intensity. (d) Raman intensity at cross

section in (c) in pseudocolor overlaid on the micro-CT image of the

bone, showing range of illumination (red arrows) and collection

(green dots) positions. Reprinted with permission from Ref. 127.

(See the color version of this figure in Color Plate section.)
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decrease remain unclear [136, 137]. Recently, Raman mi-

croscopic imaging was used to examine the distribution of

resin monomer and mineral in the intertubular region of the

adhesive/dentin interface [136]. The adhesive system used in

this study consists of hydrophilic HEMA and hydrophobic

BisGMA resins. Raman imaging of the adhesive/dentin

interface revealed a partially demineralized dentin layer

that could be distinguished from the adhesive resins. This

was achieved by using the characteristic dentin mineral n1
PO4 band at 961 cm�1 and the adhesive resin CH2 and

C–O–C bands at 1453 cm�1 and 1113 cm�1, respectively

(Figure 6.12). The adhesive resins readily penetrated into

the demineralized dentin tubules and spread into the inter-

tubular regions through open tubular channels. In compar-

ison to HEMA, BisGMA resisted diffusion into the “wet”

demineralized dentin, owing to its hydrophobic functionality.

The incomplete infiltration of BisGMA into the deminera-

lized dentin matrix may account for the decrease in bond

strength of the adhesive/dentin interface observed in aqueous

environments over the long term. Similar results were

reported in a following multivariate-based Raman imaging

study, together with the detection of chemical and structural

changes to the adhesive/dentin interface not previously

identified by univariate-based statistical methods [137].

FIGURE 6.11 (a) A composite croos-polarized image of a tooth with a carious defect. The defect appears darker compared to sound

enamel due to a weaker polarization dependence. The bandwidth and the position of the 960 cm�1 peak in the dental caries region are shown

in (b) and (c), respectively. Reprinted from Ref. 50 with permission from Laurin Publishing Co., Inc.

FIGURE 6.12 (a) Visible image of the adhesive/dentin interface with the corresponding micro-Raman spectroscopic images: (b) 961 cm�1

(phosphate), (c) 1453 cm�1 (CH2), and (d) 1113 cm�1 (C–O–C). The spectral mapping was recorded from sites corresponding to the

demarcations noted on the visible image. Reprinted with permission fromRef. 136. (See the color version of this figure in Color Plate section.)
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Ramanmicrospectroscopy has also been used to visualize the

adhesive/dentin interface formed via the Silorane adhesive

system [138].

6.11.3 Dentinoenamel Interfaces

Raman microspectroscopy has also proved useful in visual-

izing mineral/protein distributions and stress fields across

dentinoenamel interfaces [139–142]. For example, confocal

Raman system was used to image the microscopic stress

fields across a dentinoenamel junction (DEJ) of a sectioned

cattle tooth under increasing compressive loads [141]. By

utilizing the piezospectroscopic property of hydroxyapatite

under high loads, the n1 PO4 vibration undergoes a spectral

shift that can be measured. Spectral shifts of �2.45� 0.12

cm�1/GPa have been reported for synthetic hydroxyapatite

loaded under uniaxial stress [141]. Given that the enamel

layer was highly mineralized and that it was inclined with

respect to the normal axis of the tooth, a complicated stress

field patternwas observedmainly at this location. Further, the

DEJ appeared to be stress free and did not separate or

delaminate when higher compressive loads were applied.

This observation clarified the micromechanical role of the

DEJ, which was to release microscopic stress across the

interfacial zone when loaded in compression. Raman micro-

spectroscopy has also been used to visualize stress fields in

bone tissues and artificial joints [141], as well as nanoin-

dentation-induced residual stress fields in human tooth

enamel [143].

6.12 CONCLUSIONS

This chapter has summarized the progress made in the

application of Raman imaging to a diverse variety of spe-

cialized tissue types in their normal healthy and diseased

states. The collection of Raman images from tissue areas

spanning several centimeters, however, still poses a serious

challenge to the early diagnosis of disease in a clinical

environment. This challenge cannot be underestimated as

the discrimination of disease tissues across multiple spatial

scales is required in order tomeet the requirements of disease

diagnosis. Although this challenge can be met by current

instrumentation, the results of randomized clinical trials have

yet to appear in the literature.

In parallel with the significant advances made toward

the development of fiber-optic Raman probes for in vivo

diagnostic applications, multimodal approaches that

combine Raman with other optical imaging modalities

have already made a significant impact on biomedical

research. Multimodal approaches may in the future allow

surgeons to use spatially localized images to guide them

during surgery and to evaluate the efficacy of therapeutic

interventions.
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7.1 INTRODUCTION

The rapid growth in biomedical applications of vibrational

microscopy and imaging is in large part due to the vast

amount of information inherent in the complete IR or Raman

spectrum acquired from each pixel during the measurement.

For characterization of tissues and cells, this spectral infor-

mation directly monitors elements of molecular and supra-

molecular structure in the sample constituents. This situation

is in sharp contrast to imaging techniques based on electronic

spectroscopy, that is, absorption or fluorescence, where the

relationship between the spectral properties of the chromo-

phore and the molecular structure of the tissue in which it is

located is generally not available. As an example (described

later in this chapter) of the relationship between the spectra

and the molecular structure information, IR images acquired

during the healing of wounded skin permit us to distinguish

the spatial distribution of collagen from keratin, and even

more important, permit us to distinguish between the various

forms of keratin in cells that are activated during reepithe-

lialization of the wounded area [1].

For the past several years, our laboratories have utilized IR

spectroscopy, microscopy, and imaging to monitor the bio-

physics and pharmacology of the skin barrier and the spatial

distribution of the major constituents in hair [2–7]. This

chapter presents an overview of how to effectively use these

technologies to generate useful molecular and supramolecu-

lar structure information from tissues and cells. Our general

approach is reductionist and predicated upon the reasonable

assumption that molecular structure information extracted

from IR spectra collected from purified tissue components

provides an appropriate basis for interpretation of tissue

spectra. To illustrate this approach for skin, we demonstrate

the sensitivity of the IR spectra of purified ceramides (amajor

skin lipid class) to lipid chain conformation and packing. We

next utilize this information to interpret a structural transition

in intact full thickness stratum corneum (SC). This structural

information is used to track the kinetics of the restoration of

the skin barrier following its disruption by thermal pertur-

bation. Finally, we move to the imaging mode and demon-

strate the feasibility of imaging conformational order in

exogenous lipid vesicles following their application to skin.

Subsequent to studies of the permeability barrier in skin,

we demonstrate the use of IR microscopy to track biochem-

ical alterations in single cells through evaluation of natural

moisturizing factor (NMF), an important hydration control

mechanism in corneocyte biology. Finally, two applications

of IR imaging are presented. The first is a cosmetic science

experiment detailing the spatial distribution of the lipid and

protein constituents in hair. The second is an application to

the healing of skin wounds, in which we track temporal and

spatial changes in the distribution of skin proteins that
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become activated within the first several days of wound

healing in an organ culture (skin explant) model.

7.2 IR SPECTROSCOPYOF SKINANDCERAMIDE

MODELS

7.2.1 Supramolecular Organization of Skin

The spatial region of skin of major importance in cosmetic

science andpharmacology research is the outermost layer, the

SC.This layer constitutes themainbarrier topermeability and

in addition maintains water homeostasis. A schematic of the

SC supramolecular organization given in Figure 7.1 depicts

the twomajor tissue constituents, cells and lipids.Thecellular

component consists of corneocytes—anucleated, asymmet-

ric, flattened cells filled with keratin and embedded in

a hydrophobic lamellar, lipid-rich matrix comprising equi-

molar proportions of ceramides, fatty acids, and cholesterol.

The dimensions of a typical corneocyte are revealed from an

AFM image in Figure 7.1a. Their shape is irregularly hexag-

onal, with an average thickness of a few hundred nanometers

in the “Z” direction perpendicular to the skin surface and

�40–50 mm in the “X, Y” directions parallel to the skin

surface. In Figure 7.1b, the corneocytes are depicted embed-

ded in the lipid matrix in what is generally termed the “bricks

andmortar”model,with the lipidmatrix serving as themortar

holding the corneocyte “bricks“ in the necessary geometry.

A schematic of the possible modes of organization of the

lipid lamellar layers is depicted in Figure 7.1c. The chain

packing and conformation for each of these three common

bilayer motifs are depicted in a top view perpendicular to the

skin surface and a side view. In the orthorhombic phase, the

chains are conformationally ordered (all-trans conforma-

tion) while each central chain is surrounded in a tightly

packed fashion by four others. The hexagonal organization,

in which a central molecule is surrounded by six others, is

also characterized by highly ordered all-trans chains. How-

ever, a looser chain packing occurs resulting in substantial

rotation about the long axis of the lipid molecules. Finally, in

the liquid crystalline state generally induced at high tem-

peratures, the chains are conformationally disordered, that is,

possess gauche rotations, and assume dynamic, irregular,

packingmotifs. In some descriptions of the lipid organization

in skin, the majority of the SC lipids are thought to be

segregated into orthorhombic or hexagonally packed

domains separated by grain boundaries [8]. The latter are

regions suggested to contain molecules that may be con-

formationally disordered and which therefore might present

a possible pathway for diffusion of hydrophobic species.

7.2.2 IR Spectra–Structure Relationships for Chain

Order and Packing in Ceramides

IR spectroscopy provides an ideal method for the study of

lipid phase behavior. The basic spectra/structure correlations

FIGURE7.1 Themajor structural components comprising the stratum corneum and the “bricks andmortar”model. (a) AnAFM image of an

isolated human corneocytewith its height profile along the line drawn across the image showndirectly below. (b) The “bricks andmortar”model

of the supramolecular organization of the stratum corneum (top view, perpendicular to skin surface). Corneocytes are shown as black hexagons

with gray lipid “mortar” between them. (c) A schematic of lipid phases thought to simultaneously exist in the stratum corneum (left: top view,

perpendicular to skin surface; right: side view). The degree of order in the lipid phases increases from top to bottom.
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FIGURE 7.2 Temperature-induced changes in IR spectral parameters evaluating acyl chain conformational order and packing in a stratum

corneum ceramide, a-hydroxyacid sphingosine (ceramide AS). (Top) Molecular structure of a-hydroxyacid sphingosine. (a) The symmetric

CH2 stretching frequency increases with temperature indicating a loss in acyl chain conformational order (trans–gauche isomerization). (b)

The CH2 rocking mode frequencies as a function of temperature highlight the orthorhombic to hexagonal packing transition.

were worked out over a period of 50 years through the

seminal studies of alkanes and polyethylene from (amongst

others) the laboratories of Snyder (Berkeley) [9–13], Zerbi

(Milan) [14–16], and Shimanouchi (Tokyo) [17, 18]. The

original correlations have been extended to assemblies of

lipids, lipid–protein complexes, and more recently tissues,

including skin.

Two IR spectral regions are of interest in the current

introduction to the interpretation of lipid spectra. The CH2

stretching frequencies (2840–2940 cm�1) are well known to

be sensitive to chain conformational order (trans–gauche

isomerization) in the lipid chains. The sensitivity of these

frequencies to temperature is depicted in Figure 7.2a, where

themajor order–disorder transition is shown for a typical skin

ceramide,a-hydroxyacid sphingosine (also termed ceramide

AS), whose chemical structure is included in the figure.

The sigmoid-shaped transition between �65 and 80�C is

accompanied by a �4–5 cm�1 increase in the symmetric

CH2 stretching frequency near 2850 cm�1. This frequency

increase reflects the formation of gauche rotations in the

chains. A comment about precision in the frequency mea-

surement required in the IR measurement is appropriate.

Typically, a precision of 0.05 cm�1 in this measurement can

be readily achieved so that a shift of a few cm�1 is easily

detected.

Complementary information about chain packing is

available from the CH2 rocking (720–730 cm�1) and

scissoring (1460–1474 cm�1) modes. The sensitivity of

the CH2 rocking region to chain packing is depicted in

Figure 7.2b. When an orthorhombic perpendicular subcell

is present in the supramolecular structure, the rocking

modes are split into a doublet with component frequencies

at �720 and 730 cm�1. This is clearly the case for

ceramide AS, as is evident from Figure 7.2b in which

the temperature dependencies of frequencies of the com-

ponents are plotted. When the temperature approaches

that of the onset of conformational disorder, the ortho-

rhombic doublet collapses to a single band. Equivalent

changes (not shown here) are observed for the scissoring

contour.

A small change in the chemical structure of the ceramide

molecule produces significant changes in the phase state of

the molecules. Removal of the a-hydroxy group to form

nonhydroxy fatty acid sphingosine (ceramide NS) produces

a significantly altered IR response of the spectral parameters

considered above. For the symmetric CH2 stretching fre-

quency (nsym(CH2)) that ranges from 2847 to 2855 cm�1,

the actual band position can be used to differentiate changes

in chain packing from alterations in conformational disor-

der. Solid–solid phase transitions in which the all-trans

conformational order persists are revealed through a CH2

stretching frequency below �2850 cm�1 following the tran-

sition. This is the result observed for ceramide NS in

Figure 7.3a. The persistence of essentially complete con-

formational order is indicated by the relatively low frequen-

cy above the transition compared with ceramide AS

(Figure 7.2a). The presence of a low-temperature ortho-

rhombic phase in the system is confirmed through obser-

vation of the characteristic rocking mode doublet depicted

in Figure 7.3b. The collapse of the doublet (Figure 7.3b),

coupled with the persistence of chain order (Figure 7.3a),

reveals the presence of a solid–solid phase transition in
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which chain packing is altered from orthorhombic to

hexagonal.

7.2.3 Phase Transitions in Isolated Stratum Corneum

Perhaps somewhat surprisingly, the above simple framework

for tracking conformational order and packing alterations in

chain molecules is sufficient to understand a structural

transition that we have observed in isolated human SC.

In Figure 7.4a, the temperature dependence of nsym(CH2)

in human SC is plotted over the range 3–108�C. Two transi-
tions characterized by frequency changes are evident. The

transition centered at �90�C produces the relatively large

change in nsym(CH2) (from�2850.2 to 2853.5 cm�1), which,

as noted above, arises from trans–gauche isomerization in

the chains. In addition, a broad transition from 20 to 40�C is

accompanied by a small increase in nsym(CH2) from�2849.2

to 2850 cm�1.

Spectra of the methylene rocking (711–735 cm�1) region

at �4�C temperature intervals from 6.3 to 79.0�C for an SC

907560453015

W
av

en
um

be
r 

(c
m

–1
)

W
av

en
um

be
r 

(c
m

–1
)

2847

2849

2851

2853

all-trans

Loosening
of packing

908070605040302010
718

720

722

724

726

728

730

Orthorhombic

Hexagonal

Temperature  (ºC) Temperature  (ºC)

HN

OH

OH

O

(a) (b)

FIGURE 7.3 Temperature-induced changes in IR spectral parameters evaluating acyl chain conformational order and packing in a stratum

corneum ceramide, nonhydroxy fatty acid sphingosine (ceramide NS). (Top) Molecular structure of nonhydroxyacid sphingosine. (a) The

symmetric CH2 stretching frequency increases with temperature showing little change over this temperature range indicating a loosening in

acyl chain packing, that is, a transition from orthorhombic to hexagonal packing, with essentially no change in conformational order. (b) The

temperature dependence of the CH2 rocking mode frequencies accentuates the orthorhombic to hexagonal packing transition.

Temperature (ºC)

100806040200

S
y
m

. 
C

H
2

 s
tr

e
tc

h
in

g
 f
re

q
u
e
n
c
y
 (

c
m

–
1
)

2848

2849

2850

2851

2852

2853

2854

Wavenumber

735730725720715710

A
b
s
o
rb

a
n
c
e
 (

s
c
a

le
d
)

0.00

0.01

0.02

0.03

0.04

0.05
79.0
74.8
70.8
66.7
62.6
58.4
54.3
50.2
46.1
41.8
37.5
33.3
29.0
24.8
20.9
16.9
13.2
9.5
6.3

(a) (b)
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sample are shown in Figure 7.4b. At temperatures <40�C,
this mode is split into a doublet with components near 719

and 729 cm�1. As noted previously, the observation of the

latter band is reliably diagnostic for orthorhombic perpen-

dicular subcell packing of the lipid chains in the tissue. At

temperatures above 40�C, the doublet collapses to a single

peak at�720 cm�1. This spectral change reflects collapse of

orthorhombic chain packing. The situation is similar to the

transition observed for ceramide NS (Figure 7.3b) and, taken

together with the persistence of chain conformational order,

is indicative of an orthorhombic ! hexagonal packing tran-

sition at physiologically relevant temperatures. In the SC, the

solid–solid transition is followed by the broad (80–100�C)
higher temperature lipid acyl chain order ! disorder tran-

sition as indicated by the nsym(CH2) increase from�2850 to

2853 cm�1.

7.3 BARRIER REFORMATION FOLLOWING

THERMAL PERTURBATION

The SC has been an obvious target of approaches for trans-

dermal drug delivery based onmethods that involve transient

modifications of its barrier properties. Traditional functional

methods such as trans-epidermal water loss utilized to

monitor barrier integrity provide no insights into structural

modifications that occur subsequent to the application of

exogenous molecules to the skin surface. The solid–solid

phase transition discussed above provides a useful diagnostic

tool to monitor barrier reformation kinetics [6]. For initial

studies, we chose to thermally perturb the barrier.

7.3.1 Experimental Protocols

Dermatomed human cadaver skin samples (500 mm thick)

were placed SC side up on a substrate soakedwith 0.1% (w/v)

trypsin for �24 h at room temperature. The SC was physi-

cally separated, washed with phosphate-buffered saline and

distilled water, and dried on a ZnSe IR window. A second

window was placed on top of the SC and the sample

“sandwich” was contained in a temperature-controlled IR

cell. The skin barrier was disrupted by warming to 55�C,
restorationwas initiated by quenching the sample to either 25

or 30�C, and IR spectra were collected for the desired times.

7.3.2 Results: Kinetics of Barrier Reformation

Spectra of the SC rocking mode contour at various time

points following quenching from 55 to 30�C are plotted in

Figure 7.5a. The partial reappearance of the 729 cm�1 peak

unambiguously monitors the reformation of orthorhombic

lipid phases. The time dependence of the integrated band

intensity at 729 cm�1 is plotted in Figure 7.5b. Included in the

figure are equivalent data for a sample quenched to 25�C. The
rocking data kinetics display exponential growth in the initial

stages followed by linear increases at longer times. These

data provide strong evidence for partial restoration of the

orthorhombic phase component of the SC barrier following
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relatively minor thermal perturbation. The kinetic equations

for the data in Figure 7.5 are as follows: (1) for the sample

quenched to 30�C, Icalc¼�0.0286 exp(�0.0503T) þ 3.12�
10�5T þ 0.0304 and (2) for the sample quenched to 25�C,
Icalc¼�0.0297 exp(�0.0132T) þ 1.69� 10�5T þ 0.0248.

In these equations, Icalc is the peak intensity at 729 cm
�1 and

T is the time (h) following quenching. The half-lives for the

exponential part of the growth in each case are �13.8 h (30�

quench) and �52.4 h (25� quench). Further analysis of the

data reveals that half to three quarters of the orthorhombic

phase for a particular quenching temperature was restored

during the time course of these experiments.

The importance of this approach lies in the fact that skin

barrier damage (or disruption) and reformation are of po-

tential interest in elucidating the mechanism and effects of

transdermal drug delivery on skin. Although temperature

itself is only rarely used in vivo to enhance delivery, it was

selected for the current measurements as a convenient lab-

oratory variable to develop a more quantitative IR approach

for analyzing barrier recovery. The sensitivity of IR spectral

parameters for monitoring lipid reorganization as described

is obviously at the core of the approach. Future experiments

along these lines are easily envisioned in which the effects of

exogenous agents may be tracked.

7.4 IR IMAGING OF ACYL CHAIN
CONFORMATIONAL ORDER

The demonstrated sensitivity of the methylene stretching

frequencies to chain conformational order provides the

opportunity to image the conformational order of exogenous

lipid-containing formulations upon application to skin. We

have successfully demonstrated this approach with lipo-

somes, widely touted as drug delivery vehicles. The method

ismost convenient if someor all chains of the exogenous lipid

molecules are perdeuterated. The symmetric CD2 stretching

frequencies occur between �2084 and 2092 cm�1. This

spectral region is free from interference from endogenous

skin components, while the frequency position is still

sensitive to chain conformational order, that is, a higher

frequency reflects the existence of gauche bonds in the

chains.

A liposome formulation of sn1-perdeuterated, 1-palmi-

toyl, 2-oleoylphosphatidylcholine (P-d31OPC) was used to

demonstrate these ideas. POPC is known to exist in the liquid

crystalline (chains conformationally disordered) phase at

room temperature. Application of liposomes of P-d31OPC

to skin results in their permeation through the SC [2]. The

effect of the ordered SC lipid environment on the chain

conformation of the P-d31OPC is imaged in Figure 7.6.

Figure 7.6a depicts a visible micrograph of the SC. The

spatial variation in the CD2 symmetric stretching frequency

and intensity alongwith the amide II intensity (from skin) for

spectra acquired along two lines (at 200 and 50 mm) from

the (arbitrary) origin at 0 mm are plotted in Figure 7.6b. The

position of the beginning of the SC is indicated both by

a decrease in the CD2 frequency and an increase in the amide

II intensity, and is consistent with the optical micrograph.

With the CD2 intensity as a measure of the exogenous

lipid concentration, a vesicle reservoir appears to be retained

above the skin surface. The majority of lipid has permeated

into the epidermal region. Although the CD2 band intensity is

diminished deeper into the skin, it remains above zero at

a horizontal position of 120 mm,which corresponds to depths

of�90 and�70 mm for the lines examined at 200 and 50 mm,

respectively. At these depths, the CD2 stretching frequency

increases, possibly reflecting hydration changes at the epi-

dermal/dermal boundary line. In general, the permeated

material in the SC epidermal region shows a 1–2 cm�1

decrease from the surface layer of liposomes suggesting that

the permeated liposomes become more conformationally

ordered when they enter the SC. For the individual chains

to become ordered, the chains in the exogenous liposomes

must have become disrupted andmixedwith the SC ceramide

lipid chains. The latter as shown previously are highly

ordered. This tentative suggestion of liposome disruption

may be relevant for studies of release of trapped therapeutic

agents from inside.

7.5 IR MICROSCOPY AND IMAGING

OF CORNEOCYTES

This section describes the application of IR imaging spec-

troscopy to a study of isolated human corneocytes. The

approach is suitable for monitoring molecular structure,

chemical composition, and biological maturation processes

occurring in these epidermal cells. The latter are tracked

through concentration changes in the relative levels of

a substance called the natural moisturizing factor. Our initial

experiments describing this method have been pub-

lished [19]; the current review builds upon this work by

describing a new application to follow changes in corneocyte

NMF levels as a function of external stress, which in the

current case was chosen to be water washing of the skin.

It is beyond the scope of the current work to review in

detail the biology of the epidermis and the essential roles of

the protein filaggrin and of the NMF in skin barrier biology

and hydration. It suffices for our current purposes to note that

filaggrin is involved in the generation of the terminally

differentiated corneocytes characteristic of the SC. Compac-

tion of keratin is essential to the generation of a robust

physical skin permeability barrier that prevents water loss

from the body and controls the penetration of external agents.

Furthermore, filaggrin proteolysis is the essential step in

NMF generation [20]. It is hydrolyzed into hygroscopic

components including free amino acids and pyrrolidone
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FIGURE 7.6 IR imaging analysis of lipid permeation and acyl chain conformational ordering upon application of 1-palmitoyl-d31,

2-oleoylphosphatidylcholine liposomes to pigskin. (a) Visible micrograph of �5 mm thick pigskin section following application of lipid

vesicles to the surface. (b) IR spectral parameters at positions along the line drawn at 200mm in the visible image (top) and 50mm (bottom): (i)

the wavenumber value of the symmetric CD2 stretching mode arising from the applied liposomes (solid line, left-hand ordinate), (ii)

the intensity of the same mode (., right-hand ordinate), and (iii) the intensity of the amide II mode as a marker for the presence of skin (——,

right-hand ordinate).

IR MICROSCOPYAND IMAGING OF CORNEOCYTES 139



carboxylic acid, which together account for over 50% of the

NMF composition. NMF can contribute up to 30% of the

SC’s dry weight and is essential in maintaining SC hydration

which, in turn, is essential for both enzymatic activity and SC

mechanical properties [21–24]. This complex biochemical

process is highly regulated and is not yet completely under-

stood; however, recent seminal studies have demonstrated

that mutations in the gene encoding for filaggrin play a major

role in diseases of the skin barrier, such as ichthyosis vulgaris

and atopic dermatitis [25–28].

IR spectroscopic imaging permits the acquisition of an

array of spectra within individual corneocytes at a spatial

resolution of approximately 10 mm, a dimension convenient

for imaging when compared with cell dimensions

(Figure 7.1). We have used the approach to track the spatial

distribution of various components in skin sections, aswell as

to image the molecular structure of selected endogenous

components [2, 29].

In the current example, corneocytematurationwas studied

byacquisitionofIRspectra fromcells isolatedfromsequential

tape strips collected fromvolar forearms. Isolation of corneo-

cytes from the tape strips was achieved by flushing the tape

with hexane followed, when necessary, by sonication and

filtration. Aliquots of corneocytes suspended in hexane were

placed onto IR windows and the solvent was evaporated. For

theSCmaturationstudies, spectrawereacquired from20to40

individualcorneocytesper tapestripandameanspectrumwas

generated. As shown in Figure 7.7a, the mean spectra depict

differences inNMFlevels incellson tapestripscorresponding

to different depths beneath the skin surface. The dominant

spectral feature at 1404 cm�1 arises from carboxylate com-

ponents in the corneocytes, attributable to the presence of the

amino acid breakdown products of filaggrin. These spectral

featureshadpreviouslybeencorrelatedwithmodelsamplesof

NMFtoconfirmassignmentof thechemicalcomposition[19].

The protein amide I feature at 1650 cm�1, which occurs in all

these spectra (not shown), was used as an internal standard

permitting generation of a relative concentration profile of

NMF levels.Byapplying thismeasure to cells from tape strips

2, 5, and 12, a progressive increase inNMF levels is evident in

the outer SC layersmoving in from the skin surface (tape 2) to

a depth of approximately 6 mm (tape 12). The relative NMF

profile is plotted in Figure 7.7b. These data are entirely

consistent with our initial results that focused on differences

inNMF levels between corneocytes isolated from tapes 3 and

11 [19].

The above results are promising and demonstrate the

utility of vibrational spectroscopic approaches to provide

molecular and compositional information in research der-

matology. Recently, in vivo confocal Raman studies have

indicated that differences in NMF levels can be measured in

patients with atopic dermatitis associated with filaggrin gene

mutations [30]. The demonstrated ability of infrared imaging

to directly detect changes in the chemical composition of

corneocytes at different stages of SCmaturation suggests that

the technology might be of general utility for detecting

changes in single cells associated with disease states, envi-

ronmental stresses, and variations in anatomical sites. The

ease of working with tape strips enables the sampling of any

anatomic site repeatedly at the same locationwhile providing

a high degree (�0.5 mm) of depth resolution. This, alongwith

the high spectral quality of the IR data, indicates that the

protocol may be very useful for clinical applications.

Our initial application of IR microspectroscopy has been

focused to track the changes in corneocyte biochemistry

induced by a simple stress, namely, the washing and rubbing

of skin. Leaching and removal of NMF as a result of

cleansing has been suggested to be a source of dry skin [22].

To directly monitor changes in corneocyte NMF levels

induced by cleansing, corneocytes were prepared as follows.

Two adjacent sites of the inner upper arm were tape stripped

6 times after which one site was treated for 1min by washing

with water (accompanied by physical rubbing) while the
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FIGURE 7.7 (a) Mean IR spectra from imaging data of corneo-

cytes collected at different stratum corneum depths by tape strip-

ping. (b) Relative NMF concentration with depth generated from IR

imaging spectra as measured by the band area ratio of the carboxy-

late symmetric stretching mode (�1404 cm�11) to the amide I band

(�1650 cm�1). A progressive decrease in relative NMF is observed

as the cells mature.
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other site was untreated. Subsequently, both sites were tape

stripped; corneocytes were isolated and collected as previ-

ously noted.

Figure 7.8a shows the IR imaging protocol applied to

a typical corneocyte visible image. An array of 16 IR spectra

(pixel size of 6.25 mm2) is acquired from each corneocyte.

Two mean spectra generated from the IR images of 40

corneocytes each, from washed and untreated sites, are

displayed in Figure 7.8b. Thus, each mean spectrum is

generated from 640 individual IR spectra. It is clear that the

mean corneocyte spectrum from the tape strip acquired after

washing shows a significant reduction in the 1404 cm�1 peak

associated with NMF. In Figure 7.9a and b, spectra from

corneocytes have been concatenated and images of correla-

tion coefficients are shown for the 4� 4 arrays (16 spectra per

cell) from each of the 40 corneocytes isolated from the

control site (top in Figure 7.9a and b) and from the treated

site (bottom in both Figure 7.9a and b). In Figure 7.9a, spectra

in the 1200–1430 cm�1 region have been correlated to the

mean spectrum of the untreated site and similarly to themean

spectrum of the washed site in Figure 7.9b. For the majority

of the images, the correlation maps clearly differentiate the

washed from the untreated corneocytes, demonstrating that

NMF is removed from corneocytes by cleansing skin with

water. IR imaging directly detects compositional changes

induced by this relatively mild stress. As previously dem-

onstrated in our studies of SC maturation, it is possible to

quantitatively image changes in NMF levels in corneocytes

by generating images in which the 1404 cm�1 peak charac-

teristic of NMF is normalized to the amide I peak [19]. As

illustrated in Figure 7.10, the images of relative NMF

concentration in corneocytes from the control and washed

sites show marked differences. Washing skin prior to isola-

tion of the cells clearly results in reduced NMF concentra-

tions as directly measured in the current IR imaging studies.

The current results, taken together with the initial studies,

demonstrate that IR imaging can track corneocytematuration

in the SC via imaging of NMF levels in cells and suggest

experiments focusing on the effects of both environmental

stresses and disease-related changes in SC corneocyte biol-

ogy. Finally, we note that the ease of workingwith tape strips,

the ability to sample repeatedly at the same location (pro-

viding a high z-dimension resolution of approximately

0.5 mm) and the convenience of sampling any anatomic site,

as well as the very high spectral quality of the IR images, all

indicate that the application of IR imaging will be of great

general utility for clinical studies related to corneocyte

biochemistry.

7.6 IR MICROSCOPIC IMAGING OF HAIR

Hair and its constituent keratin fibers have been studied by

vibrational spectroscopicmethods for decades [31–33]. Such

investigations have frequently focused on oxidative damage.

More recently, spatially resolved molecular structure infor-

mation has been acquired with Raman microspectroscopy.

As an example, the extensive measurements by Kuzu-

hara [34–36] elucidated structural changes particularly in

the cortex and cuticle induced by a variety of chemical

treatments. These studies have been extended to include

both white and melanin-enriched black human hair.

FTIR microspectroscopy has also been employed to

spatially image cross sections of human hair with both

normal imaging instrumentation and with a synchrotron

source-based spectrometer [37, 38]. These experiments per-

mit the spatial resolution of cuticle, cortex, and medulla in

cross section. To illustrate the utility of IR spectroscopic

approaches, some results of imaging experiments from the

ISP laboratory are shown below.

Human hair (�60–80 mm in diameter) is conveniently

divided from the outside moving inward into three separate

regions, namely, the cuticle, the cortex, and the medulla. The
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FIGURE7.8 (a) Visible image of an isolated corneocytewith grid

overlay representing the array of 16 IR spectra collected from all

corneocytes sampled. Each pixel (spectrum) in the grid samples a

6.25 mm2 area. (b) Mean IR spectra (1180–1460 cm�1 region) are

generated from the 4� 4 array of imaging data collected from each

of 20 corneocytes obtained from the control and washed sites. Each

mean spectrum is generated from 320 IR spectra and a significant

decrease in the 1404 cm�1 NMF spectral feature is observed after

washing.
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outermost region, the cuticle, is comprised of 6–10 layers of

flattened, overlapping cells, corresponding to 3–5mm in

thickness, which are largely constructed from amorphous

proteins. The cortex contains the bulk of the hair (keratin)

fibers that are comprised of two components, the microfibril

and thematrix. Themicrofibrils are highly crystalline regions

comprised ofa-helical proteins. These proteins, which have a
lowcysteinedisulfide content, are imbedded in the amorphous

matrix of high cysteine content. The microfibrils are aligned

along the hair fiber axis. Finally, the central medulla (�5–10

mm in diameter) is composed largely of lipids and proteins.

Figure 7.11a–d demonstrates the nature of the information

available in the current IR experiment. Captured in this figure

are cross sections of bleached human hair that have been

embedded in tissue freezing medium, cryogenically micro-

tomed to a thickness of 4 mm, mounted on CaF2 windows

and imaged. Figure 11a displays the visible micrograph of

the sectioned hair, with clearly resolved cuticle, cortex, and

medulla. Figure 7.11b, c, and d depicts IR spatial images of

the relative concentrations of protein, lipid, and sulfonate,

respectively. Protein levels in Figure 7.11b derived from the

amide I intensity are increased in the cortex of the hair fibers

compared to the medulla, while clear delineation of the

cuticle is not feasible. In contrast, the concentration profiles

of lipid chains depicted in Figure 7.11c (asmeasured from the

intensity of the C–H stretching vibration at 2925 cm�1)

suggest increased levels of lipids in the medulla compared

with the cortex. Finally, Figure 7.11d images sulfonate

concentrations in the same set of hair cross sections (mea-

sured from the S¼O stretching vibration of SO3
� at

1040 cm�1) and suggests increased levels in the cortex of

bleached hair. The limit of spatial resolution available with

a standard source is achieved in this experiment.We note that

it is feasible to do significantly better with a synchrotron

source. The �10 mm spatial resolution in the current mea-

surement as depicted in the images of Figure 7.11 is surpris-

ingly sufficient to view the medulla region of the fiber. These

images clearly demonstrate that simple functional group

mapping provides useful contrast for tracking the concentra-

tions of the important chemical species of hair in cross

section. The approach is potentially useful for evaluation of

the physiological state of hair including assessment of dam-

age from cosmetic treatment.

As an example of the utility of the IR imaging experiment,

samples of virgin, bleached, and base-treated hair have been

imaged. It is widely known that significant damage to hair is

derived from oxidation due to bleaching. The spectroscopic

marker suitable for imaging this effect is the sulfonate (S¼O)

vibration at 1040 cm�1, which is related to oxidized disulfide

bond content. Figure 7.12a, b, and c depicts the ratio of the

1040 cm�1 band to that of the amide A band found at

3290 cm�1 for virgin, bleached, and base-treated hair cross

(a)

(b) 40 corneocytes from control site

40 corneocytes from washed  site 0.4

0.5

0.6

0.7

0.8

0.9

0.5

0.6

0.7

0.8

0.9
40 corneocytes from control site

40 corneocytes from washed  site

FIGURE 7.9 Correlation coefficient images of multiple corneocytes isolated from untreated and washed sites. (a) Correlation to mean of

untreated cells: top two rows are concatenated images of 40 corneocytes isolated from untreated sites and similarly bottom two rows from cells

isolated fromwashed sites. (b) Correlation image to mean of cells fromwashed sites: concatenation same as in part (a). Correlation coefficient

scale: white> gray> black. (See the color version of this figure in Color Plate sectionwith correlation coefficient scale: red> yellow> black.)

FIGURE 7.10 IR images of relative NMF concentration as

measured by band area ratio (1404 cm�1/amide I) in 80 corneocytes,

40 each from the control (top two rows) and washed sites (bottom

two rows). The 640 individual spectra collected from the imaging

data of the 40 control corneocytes clearly have a higher band area

ratio (white> gray> black), which in this image represents a higher

concentration of NMF in these cells.
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sections, respectively. This intensity ratio makes possible the

assessment of protein structural damage via the relative

concentration of the oxidized sulfonate mapped across the

hair sections. In common to all three cases, there is elevated

sulfonate intensity detected in the cuticle region, most likely

due to the exposed nature of the external region of the hair

fiber to external oxidative conditions. High scores indicate

that the�SO3
� levels are elevated in the areas of the cortex,

and toward the interior of the fiber in general of the bleached

hair compared to virgin or base-treated hair. This effect is not

quite as pronounced toward the center (medulla) of the fiber,

indicating that this region is somewhat shielded from the

oxidative effects of the bleaching. From this visualization, it

is suggested that structural integrity (S�S bonds) diminished

in the matrix portion of the cortex in the bleached hair.

These figures demonstrate that IR imaging can be extended

tomicroscopic visualization of structure and damage to hair

as a result of disease or cosmetic treatment. While the work

shown in this section does not address the detailed nature of

the states of the molecules (conformation, etc.), it clearly

demonstrates the feasibility of doing so in a spatially

resolved manner.

7.7 VIBRATIONAL MICROSCOPIC IMAGING OF

WOUND HEALING

7.7.1 Introduction

In response to injury, skin exhibits a complex temporal and

spatial series of cellular processes normally leading towound

healing. The events are considered to occur in three (over-

lapped) phases: inflammation, proliferation, and maturation/

remodeling. Following a cutaneous wound, skin responds

very quickly by initiating two main cellular mechanisms

geared toward wound closure, namely, reepithelialization

and contraction of connective tissue. Within hours following

the injury, keratinocytes at thewound edge become activated.

Proliferation and migration of keratinocytes commence in

the first 2 days via formation of a layer of epidermal cells

known as the migrating epithelial tongue (MET) [39, 40].

This process is essentially complete in 7–9 days following

the injury at which time the wound bed is covered by a layer

of cells. Subsequent to these events, a stratified epidermal

layer is reestablished. Following the proliferative phase,

granulation tissue forms and the wound begins to contract.

FIGURE7.11 Cross-sectional image of bleached human hairmicrotomed to a thickness of�4mm. (a)Visible image; (b) IR image of amide I

band (�1650 cm�1) intensity representing protein content; (c) IR image of the asymmetricCH2 stretching band (2925 cm
�1) intensity depicting

primarily lipid content; and (d) IR image of the sulfonate band (�1040 cm�1) intensity potentially useful for evaluating oxidative damage to

disulfide bonds predominantly present in the cortex. Grayscale: white> gray> black. (See the color version of this figure in Color Plate section

with color scale: red> yellow> blue.)
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The last stages of the process involve formation of collagen

cross-linking both to itself and to other molecules, a process

that improves the tissue tensile strength. A schematic of

the sequence of events that take place is shown in

Figure 7.13 [41]. Over the past two decades, genomic and

proteomic approaches have greatly enhanced our under-

standing of the spatial and temporal sequence of events.

To date, optical imagingmethods to directly characterize

the molecular structure and spatial distribution of the newly

synthesized tissue constituents have not been available.

Knowledge gained at the molecular structure level would

be of particular interest for processes such as the evaluation

of therapeutic agents and for the study of interfaces between

native and artificial skin. There are at least two major

impediments to the application of relatively sophisticated

spectroscopic methods for the evaluation of wound healing.

First is the difficulty in creating reproduciblewoundmodels

ex vivo, which are essential for the systematic tracking of

biochemical events over the time course of healing. Second,

prior to the development of vibrational microscopy tech-

nologies, optical methods were unavailable that could

distinguish the spatial/temporal evolution of closely related

protein species (e.g., various forms of keratin) within a

single section of wounded tissue or in full thickness

(wounded) skin. The current section reviews the efforts of

the Rutgers laboratory and their collaborators at the

Hospital for Special Surgery (New York City) in demon-

strating the utility of IR imaging for monitoring the spatial

position of various keratins during the formation and

migration of keratinocytes [1].

7.7.2 Methods

7.7.2.1 Human Organ Culture Wound-Healing Model
The model we have used involves creation of acute wounds

in human skin acquired during reduction abdominoplasty

(“tummy tuck”) in accordance with approved institutional

protocols. A 3mm biopsy punch created the wound. Healing

processes in skin specimens could be maintained for up to 6

or 7 days in culture in an environmental chamber at 37�C, 5%
CO2, and 95% relative humidity.

7.7.2.2 IR Imaging Experiments Unwounded and

wounded skin samples healing for specific periods of time

were selected for IR imaging. Frozen samples were micro-

tomed perpendicular to the stratum corneum into 5 mm thick

sections and placed on BaF2 windows. An XY sample stage

permitted the collection of IR images (pixel area of 6.25 mm2)

over �0.5mm� 0.5mm sample areas. The sampling ar-

rangement is depicted in Figure 7.14a. Spectral resolution

was 8 cm�1.

7.7.3 Results and Discussion

The ability of FT-IR imaging to track molecular structure/

composition changes during wound healing is evident from

factor analysis of the IR spectral imaging data in the

1185–1475 cm�1 region in a spatial area containing a wound

edge and a MET 6 days postwounding (Figure 7.15a–f). A

visible image of the same skin section used for IR imaging is

presented in Figure 7.15a. The MET progresses from the

nonwounded area toward the right side of the image as

labeled. Four different factors arising from keratin

(Figure 7.15f, traces labeled f1–f4) were revealed from

factor analysis; their score images are presented in

Figure 7.15b–e. The major spectral features in this wave-

number region arise from CH2 and CH3 bending modes

(�1450 cm�1), carboxylate symmetric stretch (�1400

cm�1), and the amide III mode (�1235 cm�1) from keratin.

The factor loadings are obviously similar, but nevertheless

map to four spatially distinct keratin-rich areas of the tissue.

The score image for f1 (Figure 7.15b) highlights the SC and

provides a clear marker for the original wound edge

(Figure 7.15a). On the left side of this image, high scores

carry over into theviable epidermal region. Score images for
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FIGURE 7.12 IR imaging of relative sulfonate content in micro-

tomed human hair sections following various treatments. The band

area ratio of the 1040 cm�1 sulfonate peak over the amide A band

(�3200 cm�1) is presented for (a) untreated hair, (b) bleached hair,

and (c) base-treated hair. (See the color version of this figure inColor

Plate section.)
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the keratin factors f2 (Figure 7.15b) and f3 (Figure 7.15c) are

concentrated in the suprabasal and basal epidermal regions,

respectively. The keratin imaged inFigure 7.15c encompasses

a large region of theMET. The score image for the basal layer

keratin (Figure 7.15d) also reveals a diffuse line of keratin-

containing cells with elevated scores extending into the lower

region of theMET.Thefinal score image (Figure 7.15e)with a

keratin spectral signature is spatially restricted to the outer

and leading edges of theMET (Figure 15e). Spectra located in

the outer edges of the METat 4 days postwounding (data not

shown) share similar characteristics with f4, and reveal a

downward frequency shift in the carboxylate symmetric

stretch.

At this stage of the experiment, we attempted to correlate

the four keratin factors with the particular keratin type

corresponding to the factor. We started by correlating our

images with information derived from immunofluorescent

keratin staining examining the temporal expression of various

keratins during healing [1, 42, 43]. In healthy skin, keratino-

cytes in the basal layer express keratins 5 and 14, while

keratins 1 and 10 are expressed in suprabasal keratinocytes.

As the wound is reepithelialized, keratinocytes at the wound

edge initially become activated; migration and hyperproli-

feration proceed accompanied by expression of keratins 6, 16,

and 17 (K6, K16, and K17) [44]. We have confirmed the

presence of activated keratinocytes at the wound edge in our

model by staining sections of acutewoundswith K17 specific

antibody [1]. Twenty-four hours after the wounding, we

observed strong suprabasal K17 staining at the wound edge

indicating activation of keratinocytes. In addition, keratino-

FIGURE7.13 Flowchart of the complex, overlapping temporal sequence of events that take place following an acute cutaneouswounding of

human skin (adapted from Ref. 41).

FIGURE 7.14 (a) Schematic depiction of the cutaneous wound-

healing model used in the current experiments. A 3mm punch

biopsy is used to generate an acutewound in a human skin specimen.

At various time points after wounding, samples are fast frozen and

microtomed to 5mm thick sections for IR imaging (embedding

media is not used). (b) An IR image resulting from factor analysis

conducted over the amide I and II spectral region (1480–1720 cm�1)

on a 6-day postwounded sample is displayed. The score image is

shown for a factor loading that strongly resembles keratin revealing

the MET and the epidermis (keratin-rich areas) in the nonwounded

area. Grayscale coding for scores: white> gray> black. (See the

color version of this figure in Color Plate section with color coding

for scores: red> yellow> blue.)
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cytes composing the MET were positive for K17, thus con-

firming migration of activated suprabasal keratinocytes over

the wound bed. As anticipated, we did not observe K17

staining in healthy, unwounded skin.

Since variations in IR spectral bands arise directly from

molecular composition and/or structural differences in par-

ticular spatial regions of the sample, it is reasonable to

assume that our initial hypothesis is correct, namely, that

the spectral variations between the various factors (f1–f4)

arise from specific types of keratin known to reside in

different regions of the epidermis and recovering wound

area. Based on similarities between the staining patterns and

the IR images, we suggest the following assignments of

factors to particular keratins:

1. Factor loading 1 and its corresponding score image

(Figure 7.15b) are characteristic of differentiating

keratinocytes, rich in K1/10.

2. Factor loading 2, imaged in Figure 7.15c and residing

in the suprabasal region proximal to and within the

MET, represents regions abundant in K17.

3. High scores for f3 (Figure 15d), found in the basal

region extending into the lower MET, depict areas rich

in K14.

4. Although we cannot assign f4 to a particular keratin or

keratinswith certainty, regionswith high scores for this

factormay represent areaswith a higher content of both

K14 and K17.

To our knowledge, the current interplay (for classifica-

tion of very similar proteins) between molecular biology-

based methods and vibrational spectroscopic images is a

novel approach with many potentially interesting applica-

tions. Thus, further development in the spectral analysis of

additional wound-healing samples and purified materials

under controlled environmental conditions will allow us to

exploit the molecular structure information inherent in the

data. This in turn may begin to provide a basis for under-

standing changes in the observed spatial distributions of

particular proteins during therapeutic interventions for

wound healing.

7.8 CONCLUDING COMMENTS

The point of view we have adopted throughout our devel-

opment of biomedical applications of IR and Raman im-

aging is that the molecular structure information inherent in

the spectra provides a unique means to interpret the images

generated. This is evident in the examples illustrated above.

Thus, the approach adds a new dimension to the more

traditional means (e.g., absorption, fluorescence, scatter-

ing) of evaluating inhomogeneous structures in biological

tissues.

It seems fair to note that the techniques as currently

applied are limited in two ways. First, the images are of

poorer spatial resolution (�10 mm in the IR and�2 mm in the

FIGURE 7.15 IR characterization of keratin-rich regions in wounded and nonwounded areas, 6 days postwounding, using factor analysis in

the 1185–1480 cm�1 spectral region. (a) Visible image of the 5mm thick skin section used for IR imaging. (b–e) Factor scores for corresponding

factor loadings (f1–f4) shown in part (f). In the score images: white> gray> black. See text for details. (See the color version of this figure in

Color Plate section with score image scale: red> yellow> blue.)
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Raman) than those generated by traditional means. Second,

the weakness of the physical phenomena involved (in par-

ticular Raman scattering), and to some extent the vast

amounts of spectral information (�100–1000 points per

pixel), limits the speed at which images can be generated.

Nevertheless, partial solutions to the above issues are

emerging, at least for particular problems. IR spatial res-

olution may be enhanced through the use of ATR imaging

by a factor of 2–4, depending on the particular ATR

substrate. More dramatically, for problems not requiring

large images, novel approaches such as TERS (tip enhanced

Raman spectroscopy), involving the coupling of an atomic

force microscope with Raman spectroscopy, combines

the sensitivity provided by near-field enhancement of the

Raman signal with the nanometer spatial resolution of the

AFM.
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8.1 INTRODUCTION

By virtue of the good transparency of tissue through the

range 750–1000 nm, near-IR spectroscopy offers the means

to effectively probe certain tissue properties in vivo. This

possibility was first revealed explicitly by J€obsis in 1977 [1],
with a scientific paper illustrating the ability to monitor

hemoglobin saturation (and also suggesting the prospect of

monitoring the oxidation state of cytochrome a,a3) in vivo.

This seminal manuscript spawned an in vivo near-IR spec-

troscopy community that continues to flourish today, with

evermore adventurous souls devising evermore adventurous

measurements. For example, as the fundamental technology

has grown more sensitive and less expensive, fiber-optic-

based spatial and time-resolved cerebral measurements are

now almost routine. The interested reader is referred to Ref. 2

that includes a biographical sketch andRef. 3 that includes an

overview of Professor J€obsis’ career, as well as 11 technical
contributions, many of which come from the leading lights

active in this research area.

In vivo near-IR spectroscopic measurements provide in-

formation regarding tissue blood supply and oxygenation by

virtue of the near-IR absorptions of hemoglobin; the near-IR

spectrum of oxy-Hb is very dissimilar from that of the

deoxygenated counterpart. The near-IR absorptions in the

740–980 nm range arise from electronic transitions, with

absorptivities high enough to feature prominently in tissue

spectra that also include substantial features from vibrational

overtone modes of water. There is a body of work suggesting

the possibility that a very weak cytochrome a,a3 absorption

can also be exploited to monitor tissue redox status in vivo

[4, 5]. This possibility has not yet been explored within

imaging studies, however, andwill therefore not be discussed

further in this chapter.

The majority of in vivo spectroscopy measurements have

made use of fiber optics as the means both to deliver light to

the subject and to convey it back to the detector. By its nature,

this approach yields only very limited spatial resolution.

Varying the interoptode spacing confers some flexibility; the

depth of penetration for light reaching the detector is influ-

enced by the interoptode distance: the greater the separation,

the deeper the effective depth of penetration. This factor has

been exploited in cerebral spectroscopy as a means to

distinguish signals from superficial (close source/detector

optode spacing) versus contributions from the target of

interest, that is, the brain. While two- or even three-dimen-

sional “imaging” can be achieved by using multiple optodes,

and this approach has been exploited for cerebral imaging

(and functional imaging) [6, 7], high-resolution two-dimen-

sional imaging requires a novel approach.

This chapter focuses on a technique for macroscopic

in vivo imaging of superficial (or otherwise exposed) tissue,

with imaging targets typically of dimensions ranging from

1� 1 to 10� 10 cm2. The technique combines very good

spatial resolution with spectral resolution that—although

modest—is entirely sufficient to recover the essential fea-

tures of in vivo near-IR spectra. Integrating a two-dimen-

sional CCD array with a camera and a wavelength selection
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device—generally a liquid crystal tunable filter—the imag-

ing system can provide full spectroscopic image data cubes

spanning 512� 512 pixels (two spatial dimensions) and 41

wavelengths at 10 nm intervals over the range 650–1050 nm

(the third, spectroscopic, dimension). This global imaging

technique thus provides spectroscopic information simulta-

neously for the complete field of view.

This chapter begins with a brief overview of the essential

features of in vivo spectroscopic imaging and of the meth-

odologies used to acquire the data. Distilling useful two-

dimensional images from the three-dimensional data sets

requires the judicious adoption and/or development of

appropriate data processing techniques, which are also

surveyed here. We then focus in some detail on two sets

of specific applications. We first discuss skin, with applica-

tions encompassing dermatological research (skin hydra-

tion), burns, and skin flaps in the context of reconstructive

surgery. This last application is not only of intrinsic interest,

but also of historical note since it was the first strong,

clinically relevant application of the 2D imaging technique.

We then review a fairly substantial body of work that has

illustrated the potential of cardiac imaging both as a re-

search tool and for potential intraoperative use. The chapter

closes with a synopsis and overview of future plans and

possibilities.

8.2 METHODS

8.2.1 Instrumentation and Measurement Technique

The essential elements of the near-IR imaging technique are a

near-IR emitting lamp (or lamps) to illuminate the target of

interest, a near-IR camera to capture images, and a tunable

filter to permit wavelength selection. A typical experimental

arrangement is illustrated by Figure 8.1.

The target is typically illuminated by a pair of quartz

halogen floodlights; reflectance images are then acquired

with an infrared-sensitive CCD array camera. The majority

of studies reported here used a system with 512� 512 back-

illuminated CCD elements interfaced to a 14/16-bit ST-138

analog to digital converter run in 14-bit mode (Princeton

Instruments, Trenton, NJ). The lens is a Nikon Micro AF60

operating at f/8. To enhance signal to noise with inconse-

quential loss in spatial resolution, 2� 2 binning is generally

performed to produce final images with 256� 256 pixels.

Each pixel in the final image generally represents a tissue area

of approximately 1mm2 (depending, of course, on the cam-

era–subject distance).

Because the absorptions of interest are so broad, near-IR

spectroscopic imaging does not require high spectral reso-

lution. Onewavelength selection device ideally suited for the

task is a liquid crystal tunable filter. These devices mount to

the camera lens and provide the means to select wavelengths

with a bandwidth of about 5 nm. In practice, spectroscopic

images covering the 650–1050 nm range are typically built

from 41 images acquired at 10 nm intervals (co-adding of

replicate images—typically five—is commonly done to in-

crease signal to noise). Under this protocol, acquisition of a

complete spectroscopic image takes approximately 5min.

To acquire pseudo-absorbance spectra, raw spectroscopic

reflectance imaging data are collected for both for a neutral

reflector (e.g., a gray card) and for the sample of interest,

providing 65,526 single-beam reference spectra I0(l) and the
same number of sample spectra I(l), respectively. The pseu-
do-absorbance spectra are derived from reflectance mode

measurements by

AðlÞ ¼ �log½IðlÞ=I0ðlÞ�

The nature of the spectra measured in vivo and their

processing to reveal physiological information are discussed

in Sections 8.2.2 and 8.2.3.

FIGURE 8.1 Experimental setup for near-IR macroscopic imag-

ing measurements. Alternatively, for horizontal line of sight, the

lamps are placed on tripod stands with the camera/LCTF mounted

on a tripod between them. Typically, the image area lies in the range

1 cm� 1 cm to 10 cm� 10 cm.
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8.2.2 In Vivo Imaging

The basis for in vivo near-IR imaging is illustrated by

Figure 8.2, which shows the near-IR spectra for deoxy-Hb,

oxy-Hb, and water. Pseudo-absorbance spectra measured in

vivo may be viewed (and reconstructed) as weighted super-

positions of these component spectra, with an additional term

generally included to represent and account for possible

variations in baseline level:

A ¼ ðCdeoxyLÞ � edeoxy þðCoxyLÞ � eoxy

þðCwaterLÞ � ewater þBbaseline � ½1�

Here, the absorptivity spectra are given by the columnvectors

edeoxy, eoxy, and ewater. Bbaseline represents the baseline shift

(which multiplies the unit column vector [1] to provide a

pseudo-spectrum). The structural tissue components of tissue

provide only extraordinarily weak absorptions in the short-

wavelength near-IR (SW-NIR) region (750–950 nm) and can

be safely neglected in reconstructing spectra.

The three-dimensional nature of the spectroscopic imag-

ing technique is illustrated byFigure 8.3,whichhighlights the

central feature; each of the 256� 256 array pixels is associ-

ated with a full near-IR spectrum. The absolute concentra-

tionsCdeoxy,Coxy, andCwater are not readily determined since

the absolute path length “L” that light travels within tissue

before emerging is unknown.However the spectra do provide

. quantitative determination of tissue oxygen saturation

parameters, for example, the ratio of oxy- to total

hemoglobin Coxy/(Coxy þ Cdeoxy),

. qualitative determination of differences in Cdeoxy, Coxy,

and blood volume (as estimated by Cdeoxy þ Coxy) for

separate pixels within a single image and changes in the

same parameters for individual pixels followed over

time.

Physiologically relevant information can therefore be recov-

ered from a simple spectral reconstruction technique (i.e., by

determining the fitting coefficients CdeoxyL, CoxyL, CwaterL,

and Bbaseline for each spectrum), as outlined in the following

section.

8.2.3 Processing of Biomedical Near-IR Spectroscopic

Images

All the standard tools to process images can be exploited in

the processing of spectroscopic images and the reader is

referred to several excellent textbooks and review articles

that outline the current state of the art in image processing

[8, 9]. However, it is the ability to exploit the spectral

information or the spectral and spatial information concur-

rently from a scene that conveys the power to spectroscopic

imaging compared to techniques that process each image

frame separately.

Awide array of techniques have been adopted and adapted

for the interpretation of spectroscopic images. These include

dimension reduction methods such as principal compo-

nent [10], independent component [11, 12], and partial least
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FIGURE 8.2 Molar absorptivity spectra for oxyhemoglobin,

deoxyhemoglobin, and water (adapted from data in Refs 59–61).

The spectrum of water has been multiplied by 106 on the vertical

axis.

FIGURE 8.3 Schematic diagram to illustrate the three-dimen-

sional nature of the spectroscopic imaging experiment. For in vivo

studies, images (512� 512, binned to 256� 256 pixels) are typi-

cally acquired at 10 nm intervals over the range 650–1050 nm. The

resulting spectroscopic “data cube” may then be processed to

provide images reflecting spatial variations in composition.

METHODS 151



squares analyses [13]. As an example of this general ap-

proach, Figure 8.4 illustrates the capability of principal

component analysis to reveal useful features in a spectro-

scopic imaging data set acquired for a forearm. Both unsu-

pervised and supervised classification methods may also be

exploited [14], the former generally as any of the various

clusteringmethods and the latter as support vector machines,

discriminant partial least squares, and pseudoinverse k-near-

est neighbor classifiers. These and other data processing

techniques are reviewed elsewhere in this book.

Because near-IR spectra measured in vivo include con-

tributions from only components whose near-IR spectra are

well characterized, by far the most common approach to

construct physiologically relevant images is to use a spectral

unmixing technique.

8.2.3.1 Spectral Unmixing Spectral unmixing considers

the recorded spectrumat eachpixel tobea composite spectrum

derived from a number of constituents. Unmixing involves

determining the relative contributions of these constituents at

each pixel of the image. Techniques such as independent

component analysis [15] and multivariate curve resolution

[16]maybeexploited to this end even if the component spectra

are unknown; however, it is generally considered beneficial to

make use of other models that do make use of the component

spectra if and when they are available.

When the major constituents of the sample and their

spectra are known, the component spectra can be used to

unmix composite spectra and hence to provide an estimate of

the relative abundances of the constituents. A linear mixing

model is generally assumed; for N known constituents, each

composite spectrum is modeled as a linear combination of N

constituent spectra (see above). To accomplish this, once the

data have been collected and converted to pseudoabsorbance

spectra, a two-dimensional matrix “A” is constructed. Each

column represents the spectrum for an individual pixel. The

concentrations of deoxy-Hb, oxy-Hb, water (as well as the

offset corrections) may then be evaluated as “C” using the

relationship

ðCLÞ ¼ ðe0eÞ�1e0A

where “e” is a matrix whose columns comprise the molar

absorptivity spectra of the individual components (deoxy-

Hb, oxy-Hb, water, and the “offset” spectrum, which is the

unit column vector [1]).

For simple multicomponent systems that are completely

determined, as is the case for near-IR spectra measured

in vivo, the above prescription provides reliable estimates of

the relative constituent concentrations. Since the optical path

length “L” is generally unknown (but assumed to be constant

across the spectral range included inA), all concentrations are

multiplied by that constant path length. For these reasons, it is

often the case that images are constructed as ratios of the CL

products (with the unknown “L” thus being factored out). The

most common approach by far is to construct “oxygenation”

FIGURE 8.4 Principal component decomposition of a spectroscopic reflectance image of a forearm, 30min after treatment with a

moisturizer and acetone. The original spectroscopic image consisted of 75 images taken at 10 nm increments from960 to 1700 nm.Thefirst four

components (score images) capture thevariation associatedwith the effects of themoisturizer (light area in the first principal component image;

upper left) and acetone (dark area in the same image) on the skin. To derive these images, the spectroscopic image (which is arranged as a 3D

array consisting ofx–y pixels andwavelength as the three dimensions)was first unwrapped to provide a 2Darray containing 65,536 spectra. The

2D array was then subject to a truncated singular value decomposition, determining both the loadings and scores in rank order according to

variance. The first vector from the score arraywas then reshaped to the original image dimension and displayed as the score image; similar steps

are done with the second, third, and so on score vectors to generate the remaining score images.
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or, equivalently, “O2 saturation” images as the ratio of oxy-

hemoglobin to total hemoglobin (and/or myoglobin).

8.3 APPLICATIONS

8.3.1 Skin

Visible and ultraviolet light are strongly absorbed by hemo-

globin and skin pigments such as melanin, and as a result

light in the UV/visible range penetrates only the uppermost

skin layers. In contrast, skin is a relatively weak absorber of

near-IR light. Near-IR spectroscopy can therefore be used to

interrogate tissues such as the epidermis and dermis that lie

beneath the superficial layer. While hemoglobin remains an

important chromophore in the near-IR between 700–950 nm,

melanin absorbs only very weakly. Variations in skin pig-

mentation that are often a major confounding factor in visual

skin assessment are negligible factors in interpreting near-IR

spectroscopic measurements of skin.

Hemoglobin displays distinct absorptions in the near-IR

depending on whether the heme is carrying oxygen or is

deoxygenated (Figure 8.2). Near-IR reflectance measure-

ments may therefore be processed to reveal noninvasively

the relative concentrations and spatial distribution of skin

oxy- and deoxy-Hb. Water in tissue is also an important

absorber of near-IR light with absorption characteristics

distinct from Hb (Figure 8.2). Indeed, most of the strongest

features in the near-IR spectrum of tissue between 950 and

2500 nm are the result of absorption bands of water (over-

tones and combinations of the stretching and bending vibra-

tions of the OH bond). To illustrate, Figure 8.5 graphically

demonstrates the correspondence between the absorption

features associated with water and their counterparts in the

reflectance spectrum of skin. Spectroscopic imaging there-

fore provides the opportunity to measure the spatial varia-

tions in cutaneous water simultaneously with the distribution

of hemoglobin concentration and oxygenation.

The visible appearance of skin has long been used to

assess the condition and health of the skin. Visual and

photographic examinations are relied upon extensively in

dermatology, wound management, and surgery and remain

the gold standard in many clinical evaluations of skin.

However, reliable assessment requires a highly trained evalu-

ator. The question then arises as to the consistency of

evaluations made by different observers or by the same

observer at different times. The attraction of instrumental

methods is that they offer a nonsubjective means to assess

skin properties. For example, the parameters provided by

near-IR spectroscopic imaging—tissue blood supply, oxy-

genation, and hydration—are not easily discerned from

conventional photographs or by simple visual examination,

but they can be crucial to understanding skin health. For

example, when confronted with awound the surgeon is faced

with the decision of how best to treat the wound. Successful

wound management requires an understanding of wound

healing, the anatomy in and around the site of thewound, and

wound physiology. These are in turn greatly influenced by

various factors; age, emotional and nutritional status of the

individual, a history of diabetes, smoking, and the mechan-

ical stresses at the site of the wound all affect the healing

process and dictate the method of wound treatment.

Objective measurements of the physiological properties

of bothwound and surrounding tissue provide insight into the

nature and the extent of the injury. Near-IR imaging can help

fulfill this key role by providing objective indices related both

to the health of skin and to its capacity to heal [17]. As a

practical matter, the fact that it is closely related to the

standard of visual/photographic assessment means that the

technique can be integrated readily within current clinical

practices associated with dermatology, wound management,

and surgical wound closure.

8.3.1.1 Wound Management: Example of Burn Injury
Assessment Burn specialists are often faced with difficult

decisions on how best to treat their patients. While many

burns will heal spontaneously, others that may appear su-

perficially to be virtually identical in nature will require

surgery. There is therefore a need for new prognostic burn

characterization techniques to better guide the early deci-

sion—whether to perform surgery or wait and allow the

wound to heal.

Typically, the burn specialist makes a visual diagnosis

based on the surface appearance of thewound. If thewound is

very deep or very shallow, that visual diagnosis of the wound

FIGURE 8.5 Near-IR reflectance spectrum of skin (A: top trace)

and the transmission spectrum of water (B: lower trace). Overtones

and combinations of water OH stretching and bending vibrations

dominate the spectra of both pure water and skin.
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shortly after injury is quite accurate. However, burn injuries

that are of intermediate depth do not easily fall into pre-

defined categories and even experienced clinicians can have

difficulty in accurately assessing the capacity of thewound to

heal. Adding to the complexity and uncertainty of burn

assessment is that the wound evolves and has the capacity

toworsen over time. Therefore, patients may be observed for

days to weeks before a decision is made on the course of

action. Improved wound management stemming from an

accurate assessment of wound healing would translate into

less morbidity to the patient and shorter periods of hospital-

ization to effect healing or treatment of the wound.

Near-IR imaging offers a noninvasive means to track

physiological changes associated with an injury early in the

post-burn period. An adequate supply of oxygenated blood

is required for wound healing. Tissue oxygenation and total

hemoglobin images derived from near-IR reflectance mea-

surements therefore have a directly interpretable and im-

mediate connection to the healing capacity of the

wound [18, 19]. The examples below, from clinical mea-

surements taken on the burn unit at Sunnybrook Hospital

(Toronto, Ontario), highlight the particular strengths of the

imaging technique.

Figure 8.6 shows both an oxygenation image (left) and a

total hemoglobin image (right) of an electric burn on the arm

of a patient [19]. The image shows relatively uniform tissue

oxygenation with the exception of a poorly oxygenated

area that corresponds to the entry point for the electrical

current. The total hemoglobin image further shows that no

hemoglobin is present at the wound’s entry point. This

evidence therefore suggests that the area is not being perfused

by blood, would therefore likely die without intervention,

and that the wound should be treated surgically. Of further

interest is a bright ring surrounding the entry point of the

wound in the total hemoglobin image, suggesting tissue

hyperperfusion. The oxygenation image further indicates

that this region of hyperperfusion is well oxygenated, sug-

gesting that the tissue in this area has the capacity to heal from

the electrical insult. This illustration suggests that images

such as these can delineate the areas of the wound that will

need surgical attention.

Because near-IR reflectance imaging is a rapid, nonin-

trusive, and noncontact method that carries little or no risk to

the patient, the technique can be performed routinely to

monitor wound behavior over time. To this end, Figure 8.7

documents the changes in tissue oxygenation and total

hemoglobin 3, 5, and 8 days after a patient was admitted

with partial thickness burn on the shoulder [20]. The oxy-

genation image displays uniform oxygenation across the

shoulder over the 8 days, while the total hemoglobin image

indicates that the wound is hyperperfused. This hyperperfu-

sion, most clearly evident on day 5, is waning 8 days after the

injury. These images are consistent with a healing wound,

and this wound did indeed heal spontaneously.

These two examples illustrate the ability of near-IR

imaging to provide the clinician with an objective method

to help in the early and reliable assessment of wounds with

the potential to improve wound management.

FIGURE 8.6 Near-IR spectroscopic images highlight the spatial variations in tissue oxygenation (left; scale denotes percent oxygenation)

and total hemoglobin (right; scale is in mM/cm) that are symptomatic of an electrical burn on the arm. The burned area is distinguished by both

poor blood supply and poor tissue oxygenation. The imaged area is approximately 8� 4 cm2. Data acquisition time was about 5min. See

Section 8.2.1 for the image acquisition methodology, and Sections 8.2.2 and 8.2.3.1 for the spectral reconstruction technique employed to

recover hemoglobin/myoglobin levels. Adapted with permission from Ref. 19.
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8.3.1.2 Surgical Wound Closure: Example of Skin Flap
Assessment Surgical intervention is often the desired

course of action for effective treatment of acute and chronic

wounds. Intricate skin flap procedures are often relied upon

to provide wound closure and coverage for complicated

wounds. A wide range of flap procedures is used in recon-

structive surgery. Unlike a skin graft that is expected to

recruit its own blood supply, flap tissue used in reconstruction

retains its vascular attachment and thereby is provided with a

supply of blood. The flap must be adequately perfused in

order for the procedure to succeed, and the most common

complication is compromised arterial supply to or venous

drainage from the flap; prolonged periods of little or no blood

circulation to the flap will cause the flap tissue to die,

requiring the surgery to be repeated.

Salvaging a failing flap requires early detection of per-

fusion deficits in the flap followed by attempts to reestablish

adequate blood circulation to the flap.We have demonstrated

that near-IR spectroscopy and imaging can be used at the

time of surgery and postoperatively to ensure that the flap is

well supplied with oxygenated blood and to check for

perfusion (inflow or outflow) abnormalities [21–26].

Figure 8.8 displays a series of near-IRoxygenation images

interspersedwith photographsof a reverseMcFarlane pedicle

skin flap on the back of a rat. This is a standard model for the

study of skin flap viability, designed to have a predictable

failure pattern; since blood is supplied only via a single artery

at one end of the flap, the end of the flap distal to the blood

supply is fated to die within 72 h. The question addressed by

the images shown in Figure 8.8 is whether near-IR images

acquired at the time of surgery can reveal the deficit in tissue

oxygenation that leads to flap failure. If it is so, then the

surgeon can use that immediate feedback to decide whether

corrective action is necessary to ensure viability.

The photographs (Figure 8, panels b, d, f, and g) document

the fate of the flap over 72 hours. The photograph taken before

surgery (panel b) showshealthy skin on the backof the rat.One

hour after surgery (panel d) the photograph looks essentially

thesame.Twelvehours after surgery (panel f) theupperportion

of the flap is discoloured (darkened in the grayscale photo-

graph) compared to the lowerportionof theflap.After 72hours

the photograph shows that the upper half of the flap has died.

The oxygenation images show a very different time

course. Prior to surgery (panel a), the skin on the back of

FIGURE 8.7 Near-IR spectroscopic images highlighting trends in tissue oxygenation (upper; scale denotes percent oxygenation) and total

hemoglobin (lower; scale is in mM/cm) through the healing process for a burn injury of indeterminate partial thickness on the shoulder of a

patient. Images were acquired 3, 5, and 8 days after injury.While the burn injury is as well oxygenated as the surrounding uninjured tissue, the

total hemoglobin images show hyperperfusion (elevated hemoglobin levels) at the injury site. Data acquisition time was about 5min. The

imaged area is approximately 2� 3 cm2. See Section 8.2.1 for the image acquisitionmethodology, andSections 8.2.2 and 8.2.3.1 for the spectral

reconstruction technique employed to recover hemoglobin/myoglobin levels.
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the rat is uniformly well oxygenated. However, the oxygen-

ation image acquired immediately following the flap surgery

(panel c) reveals that the upper half of the flap, distal to the

blood supply, is poorly oxygenated. The oxygenation image

taken 1 h after surgery (panel e) is consistent with the

oxygenation image acquired immediately after the surgery.

By comparison, the 1 h post operative photograph (panel d)

shows no signs of the distal portion of the flap being in

distress. The oxygenation images clearly show something the

eye cannot see until 12 or more hours after the event. Early

recognition that the flap is poorly perfused thus dictates a

need to restore the circulation then and there, where a repeat

operation might otherwise be required.

8.3.1.3 Dermatological Applications: Example of Skin
Hydration Near-IR imaging has a number of useful appli-

cations in the area of dermatology including mapping tissue

vasculature [27, 28], highlighting inflammation [29], and

gauging tissue hydration [30–34]. We summarize here an

example to demonstrate the latter application.

Skin acts as a barrier both to keep body fluids in and to

keep environmental contaminants out. The outermost layer

of the epidermis, the stratum corneum, is resistant but not

impervious to the passage of water, among many other

constituents. As a result, moisture levels in the epidermis,

or outer layer of the skin, vary in relation to health, envi-

ronmental factors, and interventions of many sorts. Epider-

mal and stratum corneum hydration levels serve as an

indication of skin health, and specifically of the effectiveness

of the skin’s barrier function. Monitoring hydration can also

help in predicting the outcome of treatments for compro-

mised skin.

Water absorption band intensities in the near-IR spectral

region have been shown to be good gauges of skin hydration,

which may be quantified by simply evaluating the net peak

area of the spectral water bands. To illustrate, Figure 8.9

shows band integrations for both the second overtone OH

stretching band near 970 nm in the short-wavelength near-IR

region and themore intense first overtoneOH stretching band

near 1450 nm in the long-wavelength near-IR (LW-NIR)

region.

To illustrate the capability of the technique, Figure 8.10

shows a hydration image of a forearm for which one area was

treated with a moisturizing cream and a second area treated

with acetone. For each pixel in the near-IR spectroscopic

image, the integrated area of the water band was calculated

over the long-wavelength near-IR band (1300–1650 nm) and

a linear baseline subtracted. The resulting values were plot-

ted to generate a hydration image that clearly delineates the

variations in skin hydration level due to the different

treatments.

As illustrated by this example, near-IR spectroscopic

imaging offers one of the few methods to determine the

spatial distribution of water in skin and tracks its change over

time in response to treatment or environmental effects. The

technique further provides the means to examine skin barrier

function and evaluate perturbations in that function due to

chemical and other treatments. As such, the technique offers

FIGURE 8.8 A series of near-IR oxygenation images and digital photographs of a reverse McFarlane skin flap. Panels a and b compare the

oxygenation image and photograph taken before raising the flap. The tissue is well oxygenated and visually appears healthy. Immediately

following the flap surgery (panel c), the flap tissue farthest from the blood supply is poorly oxygenated (dark regions denote poor oxygenation).

One hour after surgerywhile the photograph shows an apparently healthy flap, the corresponding oxygenation image clearly shows that the distal

end of the flap is in distress. Only after 12 h do visible signs of trouble appear in the 12 h picture (panel f), and by 72 h the upper half of the flap is

dead (g). The imaged area is approximately 10� 4 cm2. Data acquisition time was about 5min. See Section 8.2.1 for the image acquisition

methodology, and Sections 8.2.2 and 8.2.3.1 for the spectral reconstruction technique employed to recover hemoglobin/myoglobin levels.
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a potentially valuable tool in dermatological applications

where the integrity of the barrier function of the stratum

corneum is of paramount interest.

8.3.2 Cardiac Imaging

To provide its function of pumping blood through the cir-

culatory system, heart tissue itself requires its own steady and

reliable flow of blood. If one of the cardiac arteries supplying

this blood is occluded, the risk is local cardiac tissue damage

at best, and death at worst. These high stakes motivate a wide

range of research activities, ranging from fundamental to

applied, to characterize cardiac tissue energetics both with

normal perfusion and under conditions mimicking those

associated with a “heart attack”. Cardiac near-IR spectro-

scopic imaging has therefore been evaluated as a means to

delineate regional differences and to track temporal changes

in tissue oxygenation and blood supply.

8.3.2.1 Imaging of Arrested Hearts As a first step in

evaluating the potential of the technique, near-IR spectro-

scopic imaging was used to characterize cardiac tissue in

arrested porcine hearts [35]. Excised hearts were supplied

with a 50:50 mixture of blood and Krebs-Henseleit buffer

(KHB, a blood substitute) via a perfusion circuit and were

arrested for the duration of the protocol. The heart was

suspended in a position suitable to permit imaging of the

anterior side, including the anterior wall of the left ventricle.

Once equilibrated, images were acquired for the arrested

perfused heart. To produce regional variations in blood (and

hence oxygen) delivery, the LAD artery was then occluded

for a period of 2 h and images acquired at the 10min, 1 h, and

2 h time points (this occlusion cuts off the normal blood

supply to the left ventricular wall, rendering it ischemic).

Blood flowwas then restored for 20min, followed by a period

of 10min of global ischemia—no blood flow to any cardiac

vessels—and finally a period of reperfusion.

The three sets of image series in Figure 8.11 illustrate the

sensitivity of the near-IR imaging technique in highlighting

both regional and temporal variations in deoxy-Hb, oxy-Hb,

and blood volume (as estimated by [deoxy-Hb] plus [oxy-

Hb]). The images, which reflect the fitting coefficients ob-

tained by spectral reconstruction, clearly highlight the re-

gional increases and decreases in deoxy-Hb and oxy-Hb,

respectively, during regional ischemia. Equally striking is the

constancy of the blood volume during regional ischemia;

although the regional deoxy/oxy balance was clearly and

dramatically shifted, regional ischemia did not produce any

change in the total blood volume within the affected area—

increases in deoxy-Hb were perfectly compensated by de-

creases in oxy-Hb. On the other hand, global ischemia did

precipitate a clear drop in blood volume, as blood was

allowed to drain from the heart during the period that supply

was halted.

8.3.2.2 Imaging of Beating Hearts Having demons-

trated the general feasibility of cardiac imaging on arrested

hearts, the next step was to attempt the same experiments on

beating hearts [36]. The experiments were essentially the

same as those for arrested hearts; porcine hearts were excised

and perfused with the same 50:50 blood:KHB mixture, and

the imaging setup was identical. The essential distinguishing

feature was that the heart was beating. Image acquisition was

therefore gated to the cardiac cycle; acquisitionwas triggered

by the peak of the electrocardiogram QRS complex, with a

FIGURE 8.9 Skin pseudoabsorbance near-IR spectrum of skin,

highlighting the short-wavelength (SW-NIR) and long-wavelength

(LW-NIR) water bands used for hydration imaging.

FIGURE 8.10 Near-IR image highlighting spatial variations in

skin hydration. Each pixel represents the area of the LW-NIR water

absorption (see Figure 8.9), integrated over the wavelength range

1300–1650 nm. Brighter pixels denote higher tissue water content.

The dehydrating effects of acetone on the upper layer of skin are

evident while the barrier supplied by the moisturizer retains cuta-

neous water within the treated area.
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fixed delay time to ensure that all images were acquired at the

same point in the cardiac cycle. This point was chosen to be

during diastole—the phase during which the heart muscle

would normally be relaxed as the heart chambers are filled

with blood (these particular experimentsmade use of isolated

isovolumic hearts; within that model, heart motion is mod-

erated somewhat by a balloon that is kept inflated within the

left ventricle). This approach to image acquisition permitted

averaging of triplicate images (three images of integration

time 80ms were averaged) acquired at each of the 41

wavelengths and ensured that images at each wavelength

were registered spatially with those preceding and following.

The success of this approach is illustrated by the image

sequence in Figure 8.12, highlighting regional differences

and temporal changes in the ratio of deoxy- to oxy-Hb.

Again, the regional O2 deficit triggered by occlusion of the

LADartery is clearly highlighted, as is the global reduction in

tissue oxygenation that accompanies cessation of all blood

supply. The next step was in vivo imaging of porcine hearts

exposed in an open chest model [37]—a model mimicking

the challenges that would be encountered during cardiac

bypass surgery. That investigation highlighted a point that is

frequently raised when interpreting the in vivo spectra of

either skeletal or cardiac muscle, namely, the question of the

relative contributions of hemoglobin and myoglobin to the

measured spectra. This question was specifically addressed

in the next investigation.

8.3.2.3 Relative Contributions of Hemoglobin and Myo-
globin Myoglobin is an oxygen-binding heme protein that

is found in the intracellular space of both cardiac and skeletal

muscle tissues. Oxygen binding to myoglobin is stronger

than it is for hemoglobin, so myoglobin remains completely

oxygenated evenwhen blood hemoglobin oxygenation levels

are low. Most relevant to spectroscopy and spectroscopic

imaging is the fact that the near-IR spectra of myoglobin and

hemoglobin (and of the two deoxygenated counterparts) are

virtually indistinguishable. As a consequence, “tissue oxy-

genation” as gauged by near-IR spectroscopy reflects the

oxygenation status of both myoglobin and hemoglobin.

In the context of cardiac imaging, it was of interest to

determine the extent to which myoglobin contributes to the

spectra measured for blood-perfused hearts. To address this

question, near-IR spectroscopic images were acquired for

eight hearts that were perfused initially with blood-free KHB

perfusate [38]. During KHB perfusion, only myoglobin

contributed to the heme protein absorption profile. Following

spectroscopic image acquisition, the perfusate was switched

to the usual 50:50 blood:KHB mixture and a second spec-

troscopic image was acquired. An ROI (region of interest)

was then defined by a patch of tissue that encompassed no

superficial blood vessels, and the spectra within that ROI

averaged for (1) all hearts during KHB perfusion and (2) all

hearts during blood/KHB perfusion. The spectra (Fig-

FIGURE 8.11 Near-IR images highlighting regional variations

in cardiac oxy-(Hb þ Mb), deoxy-(Hb þ Mb), and total (Hb þ
Mb) through a protocol involving both regional and global ische-

mia in an isolated, arrested heart perfused with 50:50 blood:KHB

solution. Note that while regional oxy and deoxy levels were

affected by the interruption in local blood flow, the changes were

exactly equal and opposite; the total blood supply was unaffected

by regional ischemia, as evidenced by the homogeneous distribu-

tion in the total (Hb þ Mb) image. The imaged area is approx-

imately 12 cm� 12 cm (the heart is approximately 10 cm in

height). Data acquisition time was about 5min. See Section

8.2.1 for the image acquisition methodology, and Sections 8.2.2

and 8.2.3.1 for the spectral reconstruction technique employed to

recover hemoglobin/myoglobin levels. Adapted with permission

from Ref. 35. (See the color version of this figure in Color Plate

section.)
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ure 8.13) were then reconstructed as least squares optimal

weighted sums of three component spectra, namely, deoxy

(Mb þ Hb), oxy(Mb þ Hb), and water. Using per-heme

absorptivity values (for hemoglobin, the per-heme absorp-

tivity is one-fourth of the molar absorptivity), the path length

weighted heme group concentrations were determined to be

0.39� 0.05 and 0.62� 0.07mM/cm for KHB- and blood/

KHB-perfused hearts, respectively.

The contribution of myoglobin to cardiac spectra and

spectroscopic images is therefore substantial. For perfusion

with diluted blood,myoglobin contributed over half (63%) of

the intensity observed for the combined hemoglobin/myo-

globin near-IR features. Extrapolating to perfusion with

whole blood, the contribution of myoglobin would still be

only marginally less than 50% of the observed near-IR

profile. This large contribution of myoglobin to the near-IR

spectra (and spectroscopic images) may offer the basis to

better characterize the role of myoglobin in cardiac tissue—a

role that is not presently well understood.

8.3.2.4 Quantitative Interpretation of Derived Oxygen-
ation Parameters The preceding section clearly illus-

trates the utility of near-IR imaging as a qualitative indi-

cator of both spatial and temporal variations in tissue

oxygenation and blood supply. However, inspection of the

quantitative oxygenation parameters led to a surprising

observation; the tissue “oxygenation” never approaches

zero, since there is always a significant spectral contribution

from oxy-(Hb þ Mb). This is the case both for the local area

that is affected when regional blood supply is reduced to

zero and for the heart as a whole when the oxygenation of

the perfusate is reduced to zero (acute hypoxia).

In light of the above, experiments were designed to better

understand the relationship between the oxygenation of

blood supplying cardiac tissue and oxygenation parameters

derived for that tissue from the near-IR spectra/images [39].

To this end, hearts (N¼ 3) were perfused with a 1:1 blood:

KHB mixture, with oxygenation values as measured for

samples of the arterial perfusate ranging from 100% to

30%. Spectroscopic images were acquired through this range

of blood oxygenation levels, and two ROIs were defined for

close scrutiny. One ROI was restricted to the LAD artery

(which runs along the surface of the heart), with the rationale

that spectra within this region should reflect arterial bloodHb

oxygenation with little contribution from Mb. The second

ROI encompassed bulk tissue well removed from the major

arteries, with the expectation that spectra within this region

should broadly reflect both Hb and Mb tissue oxygenation.

Oxygenation values derived spectroscopically for the

LAD arterial ROI correlated well with measured arterial

blood oxygen saturation values (R2¼ 0.937, slope¼ 0.72).

For the tissue ROI, which encompasses contributions from

myoglobin, arterial blood, and venous blood, the oxygen-

ation parameters derived from the near-IR spectra correlated

well (R2¼ 0.926) with the mean cardiac arterial/venous

saturation. However the slope, 0.40, was much shallower

FIGURE 8.12 Near-IR images highlighting regional variations in the ratio of cardiac deoxy-(Hb þ Mb) to oxy-(Hb þ Mb) through a

protocol involving both regional and global ischemia in an isolated, beating heart perfused with 50:50 blood:KHB solution. Image acquisition

was gated to the cardiac cycle (see text). As indicated by the scale, lighter areas highlight areas/episodeswith relatively poor tissue oxygenation.

The imaged area is approximately 8 cm� 8 cm. Data acquisition time was about 5min. See Section 8.2.1 for the image acquisition

methodology, and Sections 8.2.2 and 8.2.3.1 for the spectral reconstruction technique employed to recover hemoglobin/myoglobin levels.

Reproduced with permission from Ref. 36.
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than that for the arterial blood/near-IR saturation relationship

(Figure 8.14). This was ascribed to the presence of tissue

myoglobin, which raises the “tissue oxygenation” parameter

above the value that would be expected in the absence of

myoglobin.

8.3.2.5 Application: Cardiac Response to Stress Agents
Having developed the techniques outlined above, more

recent investigations have explored modulations of cardiac

coronary flow produced in vivo by the coronary vasodilator

dipyridamole [40] and the b-adrenergic agonist dobuta-

mine [41]. These compounds are of interest since they are

both used as stress agents during echocardiographic, nuclear,

and MRI stress tests to produce flow maldistribution and

myocardial ischemia [42–45].

Although dipyridamole causes coronary vasodilation in

normal areas (with no effect on O2 demand [42]), it does

not further dilate vessels that are already dilated within

ischemic tissue. This results in a redistribution of flow

favoring normal tissue that is known as the “coronary

steal” phenomenon [46–50]. Near-IR imaging provided a

striking visualization of this effect within an in vivo heart

regional ischemia model [40]; dipyridamole further low-

ered the already reduced oxygenation within a moderately

ischemic area due mainly to a considerable decrease in

LAD flow, while at the same time the oxygenation of the

nonischemic area increased owing, most probably, to

increased coronary flow. These oppositely directed changes

served to increase the contrast between normal and mod-

erately ischemic areas in the near-IR oxygenation images

(Figure 8.15).

The effect of dobutamine is to increase heart rate and

blood pressure, as well as dilating coronary blood vessels

[42, 43], thereby increasing both oxygen supply and demand.

To explore the balance between these effects, a protocol was

carried out to image regionally ischemic hearts during

dobutamine administration [41]. Near-IR imaging revealed

that the oxygen supply accompanying flow augmentation

exceeded the excess oxygen demand in the subepicardium

and that the effect was most pronounced within the ischemic

area; tissue oxygenation was enhanced substantially in the

ischemic area and only slightly in normally perfused areas

(Figure 8.16). Thus, dobutamine administration increased

subepicardial flow and oxygenation both in severely and

moderately ischemic areas, hence reducing the contrast to

normally perfused regions in the near-IR oxygenation images.

The diametrically opposite effects of dobutamine and

dipyridamole on flow and oxygenation distribution in turn

promoted decreased and enhanced contrast, respectively,

between normal and ischemic areas. These studies clearly

show that any intervention that changes the oxygen supply/

demand balance may improve or worsen the delineation of

ischemic regions by near-IR imaging.

8.3.2.6 Application: Imaging of Cardiomyopathic Rodent
Hearts While it is well known that diabetic patients have

problems with limb microcirculation, it is less widely appre-

ciated that a similar condition also exists in their hearts.

Inadequate oxygen supply to the myocardium, combined

with the metabolic defect due to diabetes, results in a

significant mismatch between energy demand and supply

and contributes to the development of diabetic

cardiomyopathy.

Laboratory rodents have a well-established genetic back-

ground compared to larger animals, thus allowing for bigger

and better standardized research projects that may eventually

lead to the development of new therapies for human patients.

To that end, dynamic, high-resolution optical imaging is a

very attractive research tool to monitor oxygenation deficits

in rodent hearts. Because mouse hearts are so small, near-IR

radiation probes not only epicardial/subepicardial tissue, but

also transmural layers. Near-IR imaging therefore provides a

FIGURE 8.13 Near-IR spectra (solid lines) averaged over a

region of interest �0.5 cm� 0.5 cm for an arrested, isolated heart

during perfusionwith KHB alone (KHB-perfused tissue) and for the

same ROI/heart during subsequent perfusion with a 50:50 blood:

KHB mixture (blood-perfused tissue). Note the substantial contri-

bution of myoglobin features to the spectrum of KHB-perfused

tissue, and the subsequent increase in intensity of the oxy-(Hb þ
Mb) feature upon perfusion with the blood/KHB mixture. Dotted

lines represent the optimal least squares reconstructed spectra, with

fitting to optimally reproduce the observed spectra across the region

650–900 nm. The comparison suggested that for hearts perfused

with whole blood, myoglobin features account for �50% of the

intensity observed for the oxy- and deoxy-(Hb þ Mb) absorptions.

See Section 8.2.1 for the image acquisition methodology, and

Sections 8.2.2 and 8.2.3.1 for the spectral reconstruction technique

employed to recover hemoglobin/myoglobin levels. Reproduced

with permission from Ref. 38.
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powerful means to characterize cardiac tissue for rodent

models of cardiomyopathy.

Kir6.2�/� mice have a prediabetic type 2 condition and

cardiomyopathy [51, 52] that result from a disabling muta-

tion in the potassium conducting subunit, Kir6.2, of the

sarcolemmal ATP-sensitive potassium (KATP) channel [53].

KATP channels are metabolic sensors located in the cell

membrane. In pancreatic b-cells, KATP channels regulate

insulin secretion [54]. Kir6.2�/� mice are lacking glucose-

stimulated insulin secretion in the pancreas and develop

diabetes mellitus type 2 when they become old and ob-

ese [51]. The function of KATP channels as metabolic sensors

is also lost in their hearts and Kir6.2�/� mice develop heart

failure under chronic stress conditions and in association

with hypertension [52]. Recently, mutations in cardiac KATP

channels have been identified in human patients with severe

diabetic cardiomyopathy of unknown etiology [55].

The response of Kir6.2�/�mouse hearts to stress has been

characterized previously by infusion of a mitochondrial

uncoupler, 2,4-dinitrophenol (DNP). These hearts suffered

a greater decrease in ATP and a higher degree of regional

hypoxia in Kir6.2�/� hearts than did control healthy hearts,

as demonstrated previously by optical point spectroscopy

and NMR methods [56]. By its nature, however, that study

could not resolve spatial variations in tissue response.

To test the hypothesis that metabolic stress engenders

widespread hypoxic areas in KATP-deficient hearts, near-IR

spectroscopic images were acquired for KHB-perfused con-

trol andKir6.2�/� hearts both at equilibrium and duringDNP

administration (Figure 8.17). DNP infusion (50 mM, 24min)

FIGURE 8.14 Relationships between myocardial blood oxygenation (as determined from samples of arterial and venous blood) and blood/

tissue oxygenation as determined by the analysis of near-IR spectroscopic images. “LAD spectroscopic oxygenation” is the ratio of oxy- to

total-(Hb þ Mb) as determined for a ROI confined within a superficial cardiac artery. “Tissue oxygenation” is the same ratio as determined

spectroscopically for a ROI well removed from any superficial artery. Reproduced with permission from Ref. 39.
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uncoupled oxidative phosphorylation in mitochondria and

increased oxygen consumption. Therefore, the hearts—per-

fused under constant flow conditions—became partially

hypoxic during DNP infusion. Hypoxia was generally more

pronounced in Kir6.2�/� hearts at 10 and 20min of DNP

treatment, in agreement with the data obtained previously by

visible range spectroscopy [57].

This work, reported here for the first time [58], shows that

near-IR spectroscopic imaging is capable of providing high-

resolution oxygenation maps of KHB-perfused mouse

hearts. As such, the technique can be used to detect perfusion

and metabolism deficits and to characterize microvessel

damage in rodent models of cardiac diseases.

8.4 CONCLUSION AND OUTLOOK

Through the work summarized here, near-IR spectroscopic

imaging is now well established as a means to probe tissue

hydration, blood supply, and oxygenation both for superficial

tissue and for internal organs that may be exposed during

surgical procedures. The defining features compared to

imaging in the visible region are the greater depth of pen-

etration (up to severalmillimeters) and the insensitivity of the

measurement to skin pigmentation, blemishes, scars, and so

on—these advantages have been decisive in opening the door

to the various applications explored to date.

Translation from the research laboratory to the surgical

suite is underway. Collaborative interactions with cardiac

and reconstructive surgeons will resolve key questions,

addressing both the practical and performance criteria that

must be met in order for the methodology to benefit the

patient. For example, the regulatory requirements for ex-

ploratory measurement in the hospital have been fulfilled by

devices recently developed at the NRC Institute for Biodiag-

nostics, and those devices are being used on hospital wards

and in the operating theatre. Growing interest both in the

medical community and among clinical instrumentation

providers reflects a general recognition of the potential for

the technique. It would appear that the only question is which

among the many applications will be the first to find accep-

tance in the form of routine clinical adoption.

FIGURE 8.15 Effect of dipyridamole infusion on oxygenation in

a partial regional ischemia model (dark regions are poorly oxygen-

ated). Partial LAD occlusion produces an ischemic region (b), and

dipyridamole infusion with the same occlusion enhances the con-

trast (c) due to blood flow redistribution from the ischemic to the

nonischemic region. The heart is approximately 10 cm in height.

Data acquisition time was about 5min. See Section 8.2.1 for the

image acquisition methodology, and Sections 8.2.2 and 8.2.3.1 for

the spectral reconstruction technique employed to recover hemo-

globin/myoglobin levels. Adapted with permission from Ref. 40.

(See the color version of this figure in Color Plate section.)

FIGURE 8.16 Effect of dobutamine infusion on oxygenation in a partial regional ischemia model. While 80% occlusion of the LAD

produced a clearly ischemic region (dark regions are poorly oxygenated), dobutamine administration increased subepicardial blood flow and

oxygenation within that region, hence reducing the contrast to normally perfused regions in the near-IR oxygenation images. The heart is

approximately 10 cm in height. Data acquisition time was about 5min. See Section 8.2.1 for the image acquisition methodology, and Sections

8.2.2 and 8.2.3.1 for the spectral reconstruction technique employed to recover hemoglobin/myoglobin levels. Adapted with permission from

Ref. 41. (See the color version of this figure in Color Plate section.)
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Raman chemical mapping in the field of pharmaceuticals

mostly pertains to visualization of the components in tablets.

This is understandable because imaging the tablets is rela-

tively easy, and, technically, commercial instrumentation is

in most cases quite satisfactory for obtaining reasonably

good data. Hence, in the industrial applications (that accord-

ing to the accessible literature lead the progress in this field),

there is no particular need for in-house built instruments

with special requirements. In addition, there are a number

of manufacturers with state-of-the-art instruments that

reflect continuous progress in the available hardware. The

application of Raman mapping is clearly growing in the

pharmaceutical industry, in particular in the departments of

development and manufacturing. Looking-forward perspec-

tives are relatively good because of the mounting evidence

that chemical imaging techniques greatly aid in the in-depth

understanding of the correlation between final products and

manufacturing processes.

The situation is very different when the biochemical

materials are concerned. A number of excellent applications

of Raman chemical imaging on such samples are already

described in previous chapters. To avoid repeats, only ap-

plications with active pharmaceutical ingredients (API) are

addressed in this chapter. This definition is certainly arguable

as it is difficult to draw a line between the biomedical and

pharmaceutical fields (indeed, is there a discriminating cri-

terion at all?), but it does facilitate the representation of the

chemical imaging works in this book. With this “disclaimer”

inmind, there is not somuch to report.Whilemapping tablets

is in actual fact effortless, mapping any biological material

(e.g., cell) is certainly quite an opposite. Sample preparation,

acquisition details, stability of the sample, quality of the

spectra, concentration of the API, and data analysis are all far

more complex, by no means straightforward, and compete

with the well-established and frequently used techniques

(such as fluorescence).

This chapter thus mostly lists applications of Raman

mapping to compact materials of industrial interest. Interest-

ingly, this seems to be one of rare fields in which the industry

seems to be on the forefront of applications and is behind

the drive for improvements in hardware. Additional informa-

tion may be found in an excellent review paper by Gowen

et al. [1] or in another review on similar subject by Šaši�c [2].
Most of references below list Raman mapping of various

tablets. Naturally, in most of them the API is the main target

of analysis, but the nature of the mapping data is such that

information about all the excipients can be obtained (their

spectral traces are retrievable from the convoluted spectra

provided their Raman responses are above the limit of

detection). Small concentrations of APIs are often detect-

able. This may seem somewhat surprising because of the

inherent inefficiency of the Raman effect (see Chapter 1).

However, several factors contribute to the relatively easy

detection of the APIs: (1) in most cases, API molecules are

(very) strongRaman scatterers, so compared to the excipients

their Raman spectra are certainly more intense; (2) tablets

are very dense materials, so a large number of scatterers are

irradiated in sharp contrast to the liquids where correspond-

ingly low concentrations are much more of a problem; and

(3) the laser light is focused by a microscope objective that

significantly aids in the efficiency of detection of backscat-

tered Raman light.

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
Copyright � 2010 John Wiley & Sons, Inc.
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Themost direct purpose of Raman chemicalmapping is to

identify and characterize API domains. It is tempting to say

“particle sizes” instead of “domains” but in comparison to the

methods that detect true particle sizes, chemical mapping

described in this book is far coarser and its outcomes

probably cannot be considered directly comparable to par-

ticle sizing results. Dissipation of irradiation light is signif-

icant and the sampling volume across the sample cannot be

exactly determined, so the resulting pixels are somewhat

tentative and cannot be considered equivalent to true parti-

cles. Nevertheless, these images are tremendously useful for

monitoring variations in the appearance of the components

(API and excipients likewise) in tablets or blends with

variations in process parameters, as well as for in-depth

understanding of the formulations.Vibrational spectroscopy-

based chemical imaging seems to be the key technique for

these purposes.

The wealth of information described above is not trivially

extricable. The spectral mixing is considerable and sophis-

ticated data analysis tools are frequently, but not necessarily,

employed to reach conclusions ([3, 4] and also see chapter on

software with references therein). Chemometrics is often

indispensable for retrieving signals of minor components

and comprehensive evaluation of the data. A number of

chemometric approaches and examples from practice are

described later in this chapter.

A few typical studies referring to the tablets are now

dealt in detail, while some more specific applications re-

garding the means used or the samples are described in

separate paragraphs.

Low-concentration APImapping was described in studies

by Šaši�c [5] and Henson and Zhang [6]. Šaši�c analyzed

alpazolam and xanax tablets from the lots known to expe-

rience some issues with particle sizes. The Raman signal of

the API in these formulations (respective loadings 0.8%

and 0.4% w/w) could not be reliably extracted by a simple

univariate analysis. The author points out to misinterpreta-

tions that may occur if univariate maps produced at the

nonoverlapped API peak are not verified through the raw

spectra and reports that multivariate analysis appears to

be far more reliable due to the fact that one of the loadings

in principal component analysis (PCA) largely overlaps

with the spectrum of pure alprazolam (the name of API)

(Figure 9.1). Unexpected match between one of PCA load-

ings and Raman spectrum of API seems to be of tremendous

use for visualizing low-loading API in various tablets. As a

result, API was imaged in a number of tablets and it was

found to be of comparable sizes and homogeneity. In sum-

mary, the suspected agglomeration of APIs is not con-

firmed—if it occurs, it is occasional and a larger study with

more tablets is needed for confirmation.

Henson and Zhang [6] used Raman mapping to address

the problem of form conversion in the formulation with 0.5%

loading. Three forms of the inspected API were known to

exist and the first step of the study was to establish a library

with the Raman spectra of those forms and most abundant

excipients. In a series of separate experiments, it was con-

firmed that each of these three forms is retrievable. This was

followed by the analysis of the tablet with all the forms

present in the ratio of 1:1:8, which is meant to mimic

undesired conversion of the API. Using the techniques of

partial least squares (PLS) and Euclidean distance (ED)

(more details on this work is given below), it was not only

confirmed that all these forms are identifiable in the mixed

tablets, but also that the ratio of the assigned pixels is close to

the relative concentrations of the forms.

Confocal mapping experiments of Ward et al. [7] and

Breitenbach et al. [8] also describe very interesting contribu-

tions of Ramanmapping for better understanding of the solid

dosage formulations. Ward et al. [7] described the use of

Raman mapping for characterizing amorphous domains of

sorbitol (used as a model compound) on the surface of the

crystalline sorbitol. Using the 100� objective, these authors

were able to collect the spectra from various depths inside the

sample. The images obtained from those spectra indicated

the volume of the inspected amorphous particle of sorbitol.

Breitenbach et al. [8] employed Raman confocal mapping to

characterize the physical state of the active, physicochemical

stability of the formulation (solid solution of ibuprofen in

polyvinylpyrrolidone, PVP) and the homogeneity of the API

distribution. The physical state of the API in the polymer

matrix was also compared with the solutions of the API in a

solvent.

9.1 CORRELATION WITH NIR MAPPING

An interesting attempt to correlate near-infrared (NIR) and

Raman mapping was made by Clarke et al. [9]. They pro-

posed “fusion” of the two types of chemical images in cases

when the components in a formulation are not all identifiable

by one of the imaging methods. By using a microscope slide

with reference marks, they were able to collect chemical

images of exactly the same area on a tablet with these two

mapping platforms. The obtained chemical maps were then

overlaid. The analyzed formulations (blend of five compo-

nents in total) contained two components with strong Raman

response and two with strong NIR response. Through ana-

lyzing separate chemical images, it was found that four out of

five components were detectable by each of the used tech-

niques, with inorganic bindermissing from theNIRmaps and

the disintegrant material missing in the Raman maps. The

best combination of the two chemical images was found to

contain Raman images of the active and inorganic binder and

NIR images of diluent, disintegrant, and lubricant. The

combinations of these images provided a comprehensive

visual description of the formulation and hinted at the cause

of the problem experienced during manufacturing (powder
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sticking to the tablet tooling), which was the underlying

rationale for this study to be conducted.

Somewhat different view is expressed in the in-depth

study of Raman and NIR chemical imaging of common

pharmaceutical tablets [10]. The key argument in this study

is that Raman mapping is superior to NIR mapping with

regard to imaging low-concentration components. In this

chapter, the excipients explotab and Mg stearate were con-

sidered as the low-concentration components and while

Ramanmapping was capable of retrieving information about

those at least to some extent, NIR mapping failed to provide

any information. The explanation was found in the better

sensitivity of Raman instruments and much better suitability

of Raman spectra for multivariate analysis. NIR bands are

broad and indistinguishable and as such very demanding for

unraveling. Second derivation, normally applied to improve

comprehension of the spectral features in NIR spectroscopy,

is of little use here as it produces a very large number of peaks

(both positive and negative) that effectively render PCA

inapplicable for these data. On the other hand, the sharpness

FIGURE9.1 Top: The pure component dispersiveRaman spectra of the xanax 0.5mg formulation togetherwith the spectrum from the tablet.

The active component (alprazolam) can clearly be identified through a series of unobstructed peaks centered around the strong band at

687 cm�1. Bottom: The PCA of the mapping spectra reveals that one of the loadings strongly resembles the spectrum of alprazolam, thus

enabling reliable imaging of the API via the corresponding PC score. Without this (fortunate) overlap, it would have been impossible to image

the API due to its weak signal/low concentration [5].
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and the easy recognition of the Raman bands (in particular

those of Mg stearate in the analyzed formulation) lead to

relatively straightforward application of PCA and identifi-

cation of the bands of those two components (Figure 9.2).

PCA was found to be the only way to produce chemical

images of the minor components, but significant caution was

advised as this algebraic approach may lead to ambiguous

results. PCA did not identify the pure component spectra but

rather the linear combinations of the spectra of the present

species, and consequently the obtained chemical imagesmay

also be seen as linear combinations of these species. For

example, the features of explotab may be combined with

those of avicel or API, so its final chemical image may be

contaminatedwith distributions of these two components and

additional verification was advised to confirm the assign-

ments. Interestingly, the spectral features ofMg stearatewere

so clear in PCA that its chemical image was quite reliable

despite it being only 1% w/w of the formulation.

On the other hand, NIR mapping was much faster. In

general, if the component of interest is identifiable by an NIR

instrument at the acceptable spatial resolution, it is certainly

more recommendable to proceed with this technique as those

experiments complete in less than one-fourth of the time

needed for Raman mapping.

9.2 BEADS

Beads are very structured and essentially simple formula-

tions, so chemicalmapping of them is very different from and

less demanding than mapping the tablets. Mapping of beads

can provide two types of information: about the thickness and

chemical structure of the layers, with the latter being appar-

entlymore natural target for chemical imaging. There are two

studies [11, 12] on Raman mapping of the beads that discuss

advantages of usingmultivariate data analysis of themapping

spectra in comparison to univariate approaches. If high-

quality spectra are obtained from a bead, then univarate

analysis is reasonably successful in identifying the chemical

structure and spatial characteristics of the layers. However,

collecting such spectra is time-consuming and somewhat

contrasts the inherent simplicity of the structure of a bead.

That is to say, one of the major problems in Raman chemical

mapping of the tablets is the spectral interference caused

by intimate mixture of the components that requires rela-

tively high-quality spectra to be obtained that are then

unraveled by multivariate analysis. Because the components

of a bead are spatially separated, the quality of the spectra is

only important for the quality of the chemical images that are

produced from them, as there is no need for deconvolution.

Thus, multivariate approaches can be used solely for denois-

ing. Reference 12 compares Raman images of a bead that

are obtained by univariate and multivariate approaches

(Figure 9.3). It concludes that significant reduction of ac-

quisition time is achievable if the spectra are denoised by

PCA. Raw Raman mapping spectra of low s/n ratio are

successfully denoised and images produced from them com-

pare highly to the images obtained from the Raman spectra

with high s/n ratio. It is estimated that the acquisition can be

lowered to only 10% of that that provides high-quality
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FIGURE 9.2 Top: Loadings from the PC analysis of a tablet with

20% API [10]. The stars mark the peaks that can be correlated with

the pure component spectra. Of particular interest here are loadings

#5 and #9 that can be correlated with explotab and Mg stearate,

respectively. This in particular holds for the loading #9 that features

three isolated peaks unambiguously assignable to Mg stearate. This

allows reliable imaging ofMg stearate (middle, white pixels refer to

Mg stearate) despite its low concentration in the formulation and

relativelyweakRaman scattering ability. Also, an image of explotab

(bottom) can be produced although it needs to be additionally

verified because of the presence of some peaks in loading #5 that

cannot be assigned to explotab only.
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spectra with minor loss in the information content of the

images. This philosophy does not apply to the tablets because

of the complexity and heavy overlap of the spectra from

them, but it applies to other materials conceptually compa-

rable with beads (i.e., constituents spatially separated).

9.3 GLOBAL ILLUMINATION CHEMICAL

IMAGING

Global illumination (GI) Raman chemical imaging is a newer

and significantly different approach compared to the more

commonly used point or line mapping approaches [13]. As

such, it certainly counts fewer applications, and it is yet to

establish its niche in the pharmaceutical industry. However,

the first few applications that can be seen in the literature are

encouraging and reveal that such instruments certainly have

significant prospects for widespread use.

Three studies are featured here that address general

characteristics of the GI approach in relation to the mapping

one. The last one directly refers to pharmaceutical samples

while the first two deal with more generic targets.

Markwort et al. [14] first carried out an extensive analysis

of the images of polymer samples in which they concluded

that the GI approach is indeed faster and of superior visual

quality/spatial resolution compared to the point or line map-

ping. However, they underlined its major drawback originat-

ing in photon migration that diminished prospects of unam-

biguous spectral and spatial identification of the components.

Schl€ucker et al. [15] studied performances of these two

platforms on a highly structured silicon sample that is, as far

as the compositions of the sample and the spectra are con-

cerned, significantly simpler compared to all other samples

described in this chapter. Their evaluation of the spatial

resolutions achievable on the two platforms was clearly in

favor of GI platform.While the separation of about 1 mmwas

achieved on the grating equipped platforms, submicron/

diffraction limited images were obtained with the GI

instrument.

Finally, Šaši�c and Clark [16] discussed the strategy for

imaging of pharmaceutical samples on the two platforms.

They analyzed the same areas on a common pharmaceutical

tablet consisting of five components with a high API loading

(25%), and on a formulation blend. The mapping platform

was found to be successful in identifying all five components

in the tablet. The ability of the mapping platform to produce

high-quality spectra that could be analyzed in a multivariate

fashion proved to be crucial for successful identification of

the low-concentration components such as Mg stearate and

explotab with the concentrations of about 1% and 3% w/w,

respectively. The applied mathematical methods (PCA and

multivariate curve resolution) are not simple and their ap-

plications do not proceed in accordance with the theory. In

particular, it is worth noting the fortunate situation in which

some of the loadings in PCA largely overlappedwith the pure

component spectra that was vital for the identification of

these two components. Mathematically, this has not been

expected because the number of informative factors exceeds

the nominal number of components. On the other hand, in

line with the theory, the spectra obtained on the GI platform

were less well defined—the spectra overlapped more strong-

ly and the resolution was rather coarse compared to that on

the mapping platform. In part as a consequence of this, the

spectral indications and hence images of the minor compo-

nents could not be retrieved despite the use of themultivariate

tools. On the other hand, the visual quality of the much more

pixelated GI chemical images of the detectable (more abun-

dant) components was clearly better than that of the mapping

FIGURE 9.3 Raman chemical images of the middle (top) and outer layer (bottom) of the three-layered bead at the respective univariate

wavenumbers. The spectra from which the maps are obtained were acquired for 30, 10, 5, and 3 s, left to right, and then denoised by principal

component analysis. The size of the maps is approximately 1� 0.5mm2. The aspect ratio is not maintained in this representation. Binarization

of these images reveal that the difference in the number and position of pixels referring to the two shown layers is minimal, whichmeans that 3 s

acquisition is practically as effective as that of 30 s.
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platforms and overall the imaging on this platformwas found

to be faster (Figure 9.4). In this study, no attempt wasmade to

compare the acquisition times on the two platforms because

the GI platform was used to collect the spectra that consid-

erably lengthened the acquisition times. It should be borne in

mind that that was a suboptimal use of theGI platform, as this

platform works best if the bands of interest are identified and

imaging conducted strictly across such short regions. The

major goal of the cited article, however, was to compare

the platforms in as many details as possible, and this was

the major reason for collecting the GI spectra. Simple

estimates show that GI platform may be much faster to

image the components that are imageable on it. More exact

estimates are difficult to provide because the experimental

details are governed by numerous factors, such as spatial

resolution and fidelity of the image, and so only general

assessments can be given.

Finally, the images of the blends were also found to be

illustrative of the general features of the two platforms. The

blends aremore demanding in comparison to the tablets as far

asRaman chemical imaging is concerned because the density

of the sample is significantly smaller, causing much weaker

Raman signal to be detected on the charge-coupled device

(CCD) camera. In this particular experiment [16], no images

were obtained but only the most different spectra in the

imaging set were identified. The results showed that the

spectral separation was achieved on the mapping platform,

that is, the spectra of the pure major excipient and API were

detected, while the API spectrumwas found to be ubiquitous

and present in all the spectra from the GI platform. This was

ascribed to significant photon migration on the GI system.

Lesser density of the sample/intensity of Raman signal

diminished chances for detecting the components of lower

concentrations.

Several very recent applications illustrate effectiveness of

the GI chemical imaging for identifying spatially separated

particles.

Doub et al. [17] evaluated the feasibility of using GI

Raman imaging for identifying chemical identity, particle

size, and particle distribution for a corticosteroid in aqueous

nasal spray suspension formulations. Several nasal sprays

formulated with beclomethasone dipropionate particles

ranging from 1.4 to 8.3 mm were imaged by both Raman

microscopy and normal microscopy to obtain more exact

information about particle sizes.

The Raman spectra of the components of the inspected

formulations are shown in Figure 9.5. The strong API band at

1662 cm�1 appears very suitable for GI chemical imaging

because of its strength and lack of interference. It is worth

mentioning that cases such as this are by nomeans rare in the

pharmaceutical environment—the APIs often exhibit strong

and nonoverlapped bands that can readily be used for GI

chemical imaging. Figure 9.5 also shows the bright-field

reflectance and bright-field/Raman overlay images of the

nasal spray sample. On the basis of the clear appearance of

the Raman peak of the API in the accompanying spectra,

one can assign the two color-coded particles to the API.

No Raman signal around 1650 cm�1 was detected for the

FIGURE9.4 The univariate images ofAPI, avicel, andDCP (left to right) obtained by the global illumination (top) and linemapping systems

(bottom). All corresponding score images are essentially comparable to those shown. TheX and Y spatial offsets observable in the images from

the two instruments are due to errors when aligning the microscope slides. The size of all shown images is 250� 250 mm2. This formulation

contained high API loading of approximately 25%. The image fidelity is much higher in the global illumination images. Reprinted with

permission from Society for Applied Spectroscopy.
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placebo sample of similar visual appearance. Such convinc-

ing identification of the API led to reviewing much larger

areas with the particles from the spray (deposited on

Al-coated glass microscope slides) and allowed statistical

assessment of the sizes of API particles through binarization

of the API images.

Another example is also shown in Figure 9.5 in which an

assessment of agglomeration/adherence of the API is given.

The green, circled API particles appear adhered to the larger

particles of the excipients. The related statistics, although

revealing obvious problems with the exactness of the mea-

surements, suggest that relatively small number of relatively

large API particles is associated with the excipients.

Conceptually, similar application is described in Ref. 18

although on a very different sample. This time an inhalation

formulation was imaged by a GI instrument. The aim of

the experiment was simply to determine whether the large

particles of lactose carry smaller particles of API. No

attempts were made to determine the distribution of the API

particles or to characterize them in any other way. Figure 9.6

shows the normal microscopy and Raman chemical image of

the API on a particle of lactose of about 100� 50 mm2.

Raman images as the one in Figure 9.6 can be obtained very

quickly. Figure 9.6 was obtained in a fewminutes by imaging

at only four wavenumbers owing to, again, very favorable

situation with the strength of the API Raman band used for

imaging and lack of interference. API was clearly visualized

on the surface of lactose, which was impossible through the

normal microscopy image. It is also worth mentioning that

despite the API loading being about 5%, the Raman signal of

the API significantly exceeds that of lactose, so API images

are actually of better quality than that of lactose.

Another GI application refers to chemical imaging of

granules obtained by thewet granulation process [19]. In fact,

granules analyzed in this study were actually the final

pharmaceutical product because the granulation was not

followed by tabletting but the capsules were simply filled

with the granules. The goal of the study was to determine

the structure of the granules and hence whether or not the

wet granulation proceeds according to the expectation

(that the granules are mixtures of the API and the major

excipient). In addition to GI chemical mapping, NIR chem-

ical mapping is used in parallel and the results of themethods

are compared.

The results revealed that in terms of granulation both

platforms identified the majority of granules as mixtures of

FIGURE 9.5 (a) Bright-field reflectance image, (b) polarized light image, (c) and bright-field/Raman overlay image of Beconase AQ nasal

spray sample for a single region of interestwith averaged imaging spectrometer-generatedRaman spectra, color coded tomatch indicated regions

in the polarized light image (d). Reprinted from [17] with permission from Springer. (See the color version of this figure in Color Plate section.)

FIGURE 9.6 Normal microscopy and Raman chemical image of

an API on the surface of a lactose particle. The sizes of these images

are 100� 100 mm2.
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the twomost abundant components (mannitol and API in this

case) and that granules of pure materials only occasionally

arose. Of those, the pure mannitol ones largely exceeded

those of pure API. However, spectral indications of the pure

API were much clearer in Raman than in NIR. Incidentally,

not only the Raman response of theAPIwasmuch better than

its NIR signal (in relative terms), but also the overlap was

significantly smaller leading to a much clearer appearance

of the API in the Raman chemical images (Figure 9.7).

In addition, the reflection from the granules was better

recorded on the normal microscopy camera on the GI plat-

form.As a result, not only chemical images on theGI platform

were visually more convincing, but also the normal micros-

copy images on this platform pointed out to discernible

appearance of the pure API particles (as distinctly white

pixels). On the other hand, the NIR platform turned out to

be much faster despite various combinations of experimental

parameters employed on the GI platform aimed at speeding

the acquisition. It should be noted here that the NIRmeasure-

ments were additionally troubled with the spatial separation

of the granules that led to the complete absence of signal at

some pixels. This caused problemwith regard to thresholding

and contributed to poor identification of pure API granules.

9.4 BIOMEDICAL APPLICATIONS

Asmentioned above, following the API in tablets or powders

is fairly easy compared to locating it in more demanding

biological samples such as tissues or cells. One of the most

comprehensive illustrations of the latter (among not somany)

may be found in the studies by Ling et al. [20, 21]. Here, a

brief summary is given of a quite complex approach (again in

comparison to working with tablets or powders) to Raman

image the distribution of the anticancer agent paclitaxel in a

living tumor cell.

Renishaw 2000 Raman spectroscopic system (Renishaw,

Gloucestershire, UK) was used in that study with the laser
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FIGURE 9.7 (a) The Raman chemical image of mannitol at 1030 cm�1. The circled granules are believed to be pure mannitol on the basis of

the spectra in (b) that feature only the mannitol band at 1030 cm�1. (c) The Raman chemical image of API at 1050 cm�1. (d) The circled

granules are assigned to the pure API on the basis of the presence of only the strong API peak at 1050 cm�1. These images have been produced

from the baseline corrected data.
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beam being expanded so that, althoughmuch better known as

a mapping system, this instrument was effectively used here

through its global illumination capabilities. The images of

paclitaxel were obtained at 1000 cm�1. Fluorescence is an

unavoidable problem in bioimaging, so in the preprocessing

of the images in Figure 9.8, the key element was found to be

subtraction of the images at 1080 cm�1 that are considered to

represent fluorescence from the solvent. That way, Raman

chemical images were obtained. Before this step, various

other processing tools are employed, such as correction for

nonuniform illumination, noise reduction, and so on to

account for complex optical features of the sample.

The experiment proceeded with exposing the cancer cells

to paclitaxel solution for several hours. All the images were

obtained with acquisition times of about 5min per image and

with a 60� water immersion objective. The series of pro-

duced images illustrated gradual diffusion of paclitaxel into

the cell. It was found that paclitaxel concentrated around the

center of the cell and the membrane but not in the cell

nucleus. This pattern was explained by binding of the agent

to the microtubules.

There is another exciting imaging application with the

sameAPI.Kang et al. [22] recently reported on coherent anti-

Stokes Raman spectroscopy (CARS) imaging of paclitaxel in

various polymer films. The study was motivated by the need

to determine the distribution of theAPI in a controlled release

drug delivery system and the visualization of the release.

Paclitaxel was CARS imaged in three dimensions inmatrices

of several polymers and its spatial distribution was followed

in time and depth during the release from the poly(ethyl-co-

vinyl acetate) (PEVA, 40% vinyl acetate) film.

The CARS mechanism is described elsewhere in this

book. It is a significantly different and far more complex

underlying mechanism compared to other mapping/imaging

approaches presented here. It is based on collinear overlap of

two laser beams that allows selective enhancement of non-

overlapped bands of the imaged chemical entity. For this

case, it was found that several bands of paclitaxel satisfy

conditions for CARS imaging, and thus these were used to

produce CARS chemical images.

Figure 9.9 shows an example of in situ CARS imaging of

paclitaxel in (largely) PEVA film during its release into a

phosphate buffer saline medium. The images were obtained

by tuning the differences between the two laser beams at

3060 cm�1 to one of the nonoverlapped C–H stretching

FIGURE9.8 Images before, during, and after anMDA-435breast

cancer cell were exposed to the paclitaxel agent. The first row

illustrates the images before the drug treatment. The second and

third rows illustrate the images 10 and 45min during the drug

treatment. The fourth to seventh rows illustrate the images 10min,

1.75 h, 4 h, and 4.5 h after the drug treatment. The left column shows

the white light images of the cell that show the cell structure, the

center column shows the Raman images of the cell that show the

intensity distribution of the 1000 cm�1 Raman band, and the right

column shows the overlay of images in the left and center columns.

The red arrow points to the cell nucleus region and the blue arrow

points to the cell blebbing region. The color bar indicates the relative

Raman signal intensity increase from bottom to top. Reprinted with

permission fromOptical Society of America. (See the color version

of this figure in Color Plate section.)
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vibrations of paclitaxel. The speed with which these images

were collected was impressive compared to long measure-

ment times normally necessitated in common Raman

imaging experiments. The 3D resolution presented is also

considered an inherent feature of the technique and does

not require any special data analysis approach, which is again

very different from the common Raman. The release of the

drug seems to be very neatly followed through corresponding

CARS images—after 1 h the drug appears to be completely

released. The detection limit was found to be 29mM.

In conclusion, the authors underline several important

features of CARS imaging that may propel this technique to

be more frequently used for better understanding of mech-

anism of action of drug delivery systems: (1) there is no need

for labeling that is indispensable in fluorescence microscopy,

(2) noninvasiveness, (3) sensitivity (although still inferior to

fluorescence), (4) real-time imaging capability, and (5) 3D

resolution. However, the overall complexity of the instru-

mentation may be seen as a considerable obstacle.

9.5 DATA PROCESSING

Data processing is an important part of image analysis.

Figure 9.10 illustrates the general role of chemometrics and

statistics in this process. In the first step, chemical images

of the components are extracted from the unfolded 3D

“hyperspectral cubes.” Further processing of chemical

FIGURE 9.9 In situ CARS imaging of PTX from a PEVA film. Spectrum color scheme was used to emphasize the change of contrast. The

columns were arrayed as time lapse, and rows were arrayed as depth of the film. The CARS images were taken from different depths of the film

withvp�vs tuned to 3060 cm
�1. The acquisition time for each imagewas 1.12 s. Reprintedwith permission fromAmericanChemical Society.

(See the color version of this figure in Color Plate section.)

FIGURE 9.10 The role of chemometrics and statistics in chemical image analysis.
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images via chemometrics and statistical tools can extract

simplified metrics for process understanding, prediction of

dissolution, polymorph detection, and so on. This informa-

tion can then be used to improve formulation design, identify

root cause of manufacturing issue, feedback to manufactur-

ing process control, and so on. Designing an appropriate data

analysis strategy is often a complex task. This is not only due

to the large size of data but also due to the lack of “pure”

pixels (pixels containing spectral response from a single

chemical species) in most pharmaceutical applications.

Both univariate and multivariate data analysis methods

can be applied for producing chemical images. However,

multivariate techniques are more comprehensive and much

more efficient for imaging components of low concentration.

A recent review article by Gendrin et al. gives a nice

summary on different chemometric methods for vibrational

chemical imaging applications including Raman, NIR, and

infrared (IR) mapping and imaging [23]. The discussion

below focuses on pharmaceutical application of Raman

imaging, but it equally applies to NIR and IR mapping

because of the same structure of the data (bearing in mind

that differences may occur due to the specificity of noise in

Raman data).

As mentioned above, Raman mapping generates data

“hypercubes” consisting of four dimensions: x and y spatial

dimensions, a wavelength dimension, and spectral response

dimension. The numerical format of the data is actually a

three-dimensional data cube in which intensity values are

stored as a function of spatial dimensions and thewavelength

dimension. A typical image data analysis procedure consists

of the following steps: (1) data preprocessing to reduce

undesired effects (e.g., use of spectral normalization and

derivatization to minimize spectral interferences due to

surface roughness or particle size effects); (2) generation

of chemical maps to visualize spatial distribution of compo-

nents of interest via appropriate univariate or multivariate

methods; and (3) extraction of metrics such as domain size,

homogeneity, and so on. Note that depending on the specifics

of an application, not all the above steps are needed and some

steps could be combined. Two hidden steps unmentioned

above are the unfolding of the three-dimensional data into

two-way data (pixel� spectral channel) prior to data analysis

and the folding of two-way result data to the original image

format after data analysis.

Preprocessing is the first step for Raman image analysis.

Generally, spectral preprocessing of the Raman spectra data

is less demanding than that for NIR and IR spectra except for

the situations when cosmic rays or fluorescence background

removal is needed.

Cosmic rays are ionizing radiation of extraterrestrial

origin that may interact with the CCD to produce random,

sharp, and easily recognizable peaks (or rather spikes) in the

Raman spectra. These peaks can hamper performance of

multivariate chemometric methods. For example, distance-

based classification algorithms can be confused by this kind

of noise. Cosmic rays removal by experimental means

typically lengthens the experimental time significantly,

which is an issue in already quite time-consuming chemical

mapping experiments. Zhang and Henson [24] proposed a

modified nearest-neighbor comparison algorithm to identify

and correct this erroneous signal by mathematical means.

The proposed algorithmwas based on linear regression of the

nearest-neighboring pixel. Via a linear regression, the spec-

trum from a pixel can be approximated by those from its

neighbors. In addition to the use of neighboring pixels, this

algorithm allows the incorporation of pure reference spectra

of low-concentration components in the regression. This

matters for elimination of uncertainty in the assignment of

the pixels lacking similar neighbors.

The utility of this algorithm was demonstrated by

improvements in multivariate classification analysis.

Figure 9.11 shows spectra at several pixels before and after

the removal of cosmic rays. These pixels were erroneously

classified because of the cosmic spikes overlapping with API

bands. Without correction, some API form III and excipient

pixels were incorrectly assigned as API forms I or II. A better

classification was achieved after applying the proposed

algorithm.

Wang et al. proposed the use of wavelets as a processing

step before fuzzy c-means clustering analysis of Raman

imaging data [25]. Through the testing on Raman images

with different noise levels, it is shown that noise removal

using wavelets improved the classification accuracy using

fuzzy c-means clustering. The preprocessing of spectral data

was accomplished by decomposing them in the differential

wavelet domain and then a multiscale pointwise product

(MPP) criterion was used to discriminate between the true

spectral signal and the noise. The approach was tested by

classifying Raman images collected from adhesive and

dentin interface specimens. When comparing with tradition-

al denoising techniques including spline and Savitzky–Golay

filtering, better classification accuracy was achieved with the

wavelet filtering. In addition, the localization property of

wavelet filters facilitated better visual perspective of images.

After the pretreatment, chemical maps can be generated

from the spectra through either univariate or multivariate

techniques. Compared to NIR and IR imaging, Raman

imaging is more amenable to univariate techniques since

Raman spectra typically consist ofmuch sharper and stronger

spectral features. Univariate techniques are a straightforward

way to generate individual chemical maps in cases when

selective bands for the components of interest can be iden-

tified. Similar to single point Raman spectroscopy, this

approach uses peak height or peak area of those specific

bands.

There are numerous multivariate techniques (see

Chapter 5). Depending on whether a priori information is

involved, multivariate methods fall into two categories:
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supervised and unsupervised techniques. Unsupervised

techniques do not require any prior information about the

sample. Examples of these methods are PCA, multivariate

curve resolution (MCR), and cluster analysis (CA).

PCA essentially maps each spectrum from a multidimen-

sional space (in terms of wavelength) to a spacewith reduced

number of coordinates. The PCs are constructed to explain as

much of the data variance as possible. PC scores can be used

to generate chemical maps in lieu of raw spectral responses,

while loadings can be used to interpret the physical meaning

of each PC.

MCR techniques try to resolve pure component spectra

and corresponding distributions directly from the image data

by mathematical means. Typically, to ascertain that the

estimated solutions do not contain unacceptable values, some

constrains are applied, such as nonnegativity of spectral

response and concentration values. CA method is a pattern

recognition approach that classifies pixels into clusters

(groups) without involving training data. CAmethod assigns

pixel memberships by minimizing certain kind of distance-

based objective function.

Supervised techniques require reference spectra of pure

components and these methods include ordinary least

squares (OLS), PLS, and pattern recognition methods such

as minimum ED classifier.

A simple side-by-side comparison between the univariate

and multivariate methods on the quality of chemical images

derived was reported by Šaši�c [11]. In this study, an artificial
model images with different levels of noise and an image

from a real bead samplewere considered. PCA andOLSwere

used as multivariate tools. The results revealed that the

performance of univariate method deteriorated dramatically

with the increase of the noise level, while the multivariate

methods were still able to generate high-quality chemical

maps notwithstanding significant noise. Unsurprisingly,OLS

performs better than PCA due to the use of the reference

spectra. These results clearly demonstrated the advantages of

multivariate methods in image analysis.

Zhang et al. compared several multivariate methods using

a case study of a model pharmaceutical tablet [26]. The

results of that study are summarized in Figure 9.12, which

shows RGB composite images for the three major compo-

nents derived using different multivariate approaches. Red,

green, and blue channels were assigned to sodium benzoate,

lactose, and avicel, respectively. The results from OLS in

Figure 9.12d are deemed to be the most reliable, being based

on the reference spectra. For each specific component,

respective OLS image contains contrast information. The

other results in this figure did not use any a priori information

about the sample. The result of MCR combined with alter-

nating least squares (ALS) is practically indistinguishable

from the OLS result. Although the PCA image in

Figure 9.12a somewhat resembles the OLS image, some of

the cold pixels present in the OLS image are absent. This is

caused by the fact that PCA scores do not necessarily

represent the actual distribution of the selected component

due to the PC loadings being (more or less of) a mixture of

signals from various components. PCs are extracted by

finding directions of the highest data variance, and hence

the loadings (as mathematical concepts) do not necessarily

align with the pure component spectra. The cluster analysis

results, KM image in Figure 9.12b, and FCM image in

Figure 9.12c show some similarities with the OLS image.

However, there is a difference in the boundaries of different

FIGURE 9.11 Spectra of several misassigned pixels before and after cosmic spike removal.
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components across the images; for example, the domains of

red (sodium benzoate) in KM and FCM images are slightly

larger than those inDCLS image. This could be caused by the

equal population tendency of these clustering algorithms. An

advantage of FCM over FM is that FCM is able to preserve

the intensity variation within the same cluster, generating a

more instructive image.

Widjaja and Seah proposed the use of band-target entropy

minimization (BTEM) to recover pure spectra and chemical

maps from minor components present in Raman maps of

pharmaceutical tablets [27]. BTEM algorithm is a recent

variation ofMCR techniques. It assumes that the derivedpure

component spectra have simpler shapes that translate to less

“entropy” in comparison to that of the mixture spectra. The

algorithm works as follows. First, PCA is applied on the

image data to generate a set of eigenvectors. Next, BTEM is

performed on selected eigenvectors to derive pure compo-

nent spectrum, one at a time. The model tablets involved in

the study consist of acetaminophen, lactose, avicel, and Mg

stearate.Mg stearatewas targeted as aminor component with

weight percentages ranging 2–0.2%. BTEM was able to

resolve the pure spectrum of Mg stearate at levels as low

as 0.2 wt%. The derived Mg stearate spectrum was not a

perfect match to the reference pure spectrum due to inter-

ference from other components. However, this inaccuracy

does not significantly affect produced chemical images. On

the other hand, the SIMPLISMA resolved [28] Mg stearate

pure spectrum is seriously distorted even at 2wt% level. It

seems that the success of BTEM’s detection of minor com-

ponent relies more on the minor component’s distribution

variation in the image than on its spectral signal-to-noise

ratio. The basis for BTEM detection of minor components is

as follows: as long as sufficient variation of the minor

component exists across the image, PCA can find a direction

aligned closely with that component and this allows subse-

quent BTEM refinement. Thus, BTEM offers new possibil-

ities for minor component detections, especially in cases

when segregation and inhomogeneity occur.

Henson and Zhang [6] reported the use of supervised

multivariate classification technique for drug characteriza-

tion in low dosage pharmaceutical tablets (0.5%w/w of API)

using Raman mapping. Multivariate classification was per-

formed to detect the presence of two undesired API poly-

morphs within tablets. A five-class spectral library was

constructed containing Raman spectra of pure components.

A target matrix was constructed such that each row of the

matrix was a five-element vector consisting of a 1 for the in-

class component and 0’s for the out-of-class components.

Then, a PLS model was constructed between the library

spectra and the target matrix. Figure 9.13 shows the PLS

score plot using the first three PLS latent variables. Direct use

of PLS prediction values for classification is often referred to

as PLS discriminant analysis (PLS-DA). However, PLS-DA

was found unsuccessful for pixel classification since the

FIGURE 9.12 Composite images of PCA scores (a) KM, (b) FCM, (c) OLS, and (d) MCR/ALS using raw spectra (e). In (a), (d), and (e),

images were enhanced to increase the contrast of 95% of the pixels.
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appropriate setting of cutoff values for PLS prediction value

is challenging. Thus, classification was accomplished via a

minimum ED approach on PLS scores. Basically, this meth-

od assigns a pixel’s membership according to its closeness to

pure component centers in PLS latent space.

Mostmultivariate image analysismethods in the literature

ignore the spatial information during the analysis after un-

folding the image data cube into a two-way data matrix.

Incorporating spatial information may enhance the cluster

analysis performance by improving the robustness and sta-

bility of the results. Lin et al. proposed a spatially directed

agglomeration clustering method and applied this approach

to chloramphenicol palmitate polymorph characterization in

tablets [29].

The algorithm is based on the agglomeration clustering

analysis approach. The method defines spectral similarity by

calculating the norm of the projection residual vector be-

tween each pair of spectra. First, the algorithm starts from a

single cluster consisting of two nearest pixels. These two

pixels are chosen from pixels with Raman spectra belonging

to the top 10% most similar ones. Next, the cluster grows by

stepwise merging the next pixel that is spatially the nearest to

the cluster among unclassified pixels. The constraint is that

the spectrum of this pixel should belong to the top 10%most

similar ones when comparing with the mean spectrum of the

cluster. The algorithm terminates when all the pixels are

assigned to respective clusters. It utilizes both spectral

differences and spatial closeness of pixels for determining

distances in the agglomeration process. The performance

of the proposed algorithm is better than that of a classical

K-means cluster analysis algorithm as it provides more

accurate estimates for the contents of different polymorphs.

Raman mapping hardware can be used not only for

mapping distributions but also for determining if a compo-

nent of interest (almost exclusively API) can be determined.

However, because common mapping experiments typically

probe only a relatively small area on the sample, a challeng-

ing question is how many spectra need to be collected to

determine if a sought component (say, undesired API poly-

morph) of very low concentration is present in the sample.

Šaši�c and Whitlock [30] proposed an optimized, statically

based sampling scheme to tackle this problem. The method

relies on two simple statistical charts that help predefine

the number of spectra to collect that should guarantee the

identification of the sought component if it is present in

the sample.One of the graphs used determines the probability

of detecting a specific event as a function of the total number

of probes. In other words, it addresses the question of how

manymapping spectra need to be collected to find at least one

spectrum with the signal for the component of interest. It is

based on binomial distribution with an initial assumption

about the concentration of the component of interest. The

second graph is used to show the number of experiments

needed to confirm a hypothesis. For example, the hypothesis

here can be 95% confidence limit for the probability of

finding the component of interest in an experiment with

strictly determined number of spectra to collect. This study

is not exactly a typical chemical mapping experiment be-

cause the key goal is in identifying and not necessarily

visualizing the component of interest. However, in addition

to using the Raman mapping hardware, the data analysis

approach heavily relies on identifying the pixels of interest in

the relevant chemical image.
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10
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IN PHARMACEUTICAL SCIENCE
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10.1 INTRODUCTION

Spectroscopic imaging using vibrational spectroscopy has

significant advantages when studying pharmaceutical sam-

ples compared to many other imaging methods, due to the

inherent chemical specificity of vibrational spectroscopy and

fast acquisition times. FTIR spectroscopic imaging in the

mid-IR region has emerged as a very powerful tool in

pharmaceutical science and technology.

FTIR imaging in the mid-IR region is particularly at-

tractive for the analysis of pharmaceutical systems because

the spectral bands are present in this region (particularly in

the “fingerprint” region) not only allow one to easily

differentiate the various components in the sample but also

provide awealth of information about the molecular state of

a particular component (e.g., amorphous or crystalline),

intermolecular interactions, and polymorphic changes. The

imaging capability of this method is crucial for obtaining

information about the spatial distribution of different com-

ponents (drug, polymer, excipients) within the tablet. The

distribution of these components is often a key property for

the performance of the pharmaceutical product. Thus, the

spatial distribution of different components has a significant

effect on the physical and mechanical properties of the

tablet and plays a very important role in the mechanism of

drug release (e.g., during dissolution). Content uniformity

or a layered structure of the tablet is often required for an

efficient or specific type of drug delivery. FTIR imaging is a

particularly useful tool for assessing the effects of drug

loading and sample preparation methods on drug release.

The key advantage of FTIR imaging, when all spectra are

measured simultaneously using a focal plane array (FPA)

detector, lies in the application of the technique to samples

that changewith time. The ability to create spatially resolved

chemical snapshots as a function of time offers the possibility

of studying dynamic systems such as tablet dissolution via

simultaneous measurement of the distribution of polymer,

drug and water. The application of FTIR imaging to tablet

dissolution overcomesmajor limitations of the currently used

USP dissolution test, which is a rather crude approach since it

does not provide any insight into tablet during dissolution.

This chapter will not focus on applications of multivariate

analysis to imaging of pharmaceutical formulations as there

are a number of publications that have already reviewed

this [1–4].

This chapter will summarize and discuss the applications

of FTIR imaging to pharmaceutical systems, with the main

focus on applications of ATR-FTIR imaging, both in micro-

and macro-modes [5, 6]. Micro-ATR-FTIR imaging offers

imaging with a high spatial resolution by overcoming the

diffraction limit of infrared light in air with the use of

immersion optics, such as an ATR objective with a germa-

nium (Ge) crystal. Macro-ATR-FTIR imaging without the

use of an IR microscope facilitates the imaging of greater

fields of view and opens a range of possibilities for studying

large areas or whole tablets and the analysis of many samples

in a high-throughput manner. The main advantage of

ATR-FTIR imaging is its suitability for studying aqueous

systems, which is crucial for in situ dissolution analysis

[7–9]. This chapter will examine many applications of

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
Copyright � 2010 John Wiley & Sons, Inc.
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macro-ATR-FTIR imaging, mostly pioneered in our group.

These applications include the analysis of the spatial distri-

bution of components within tablets, in situ imaging of tablet

compaction, dissolution and drug release, application to

high-throughput analysis, and combining ATR-FTIR imag-

ing with other techniques.

The limitations of ATR-FTIR imaging will be ex-

plained as well as methodologies to overcome these

limitations or validate the results obtained with ATR-

FTIR imaging. The data obtained with macro-ATR-FTIR

imaging of model tablets were compared with the results

of imaging for the same tablet by X-ray microtomogra-

phy for validation of the ATR-FTIR imaging approach.

Successful application of ATR-FTIR imaging to water-

soluble and poor soluble drugs has been demonstrated by

combining ATR-FTIR imaging with a flow-through cell

and UV/Vis detection of the dissolved drug in water. New

developments include combining visible optical imaging

with ATR-FTIR imaging of the dissolution of a tablet;

this combination allows for the critical assessment of

previous studies where conclusions about the mechanism

of dissolution were based solely on the visible optical

images.

Macro-ATR-FTIR imaging is particularly suitable for

the high-throughput analysis of many samples [10]. Thus,

the applicability of FTIR imaging to studying many samples

simultaneously was successfully achieved using a “drop-on-

demand” device by preparing arrays of microdrop samples

directly onto the surface of the ATR crystal. Recently, this

approach was extended to the use of poly(dimethylsiloxane)

(PDMS)-based multichannel devices that allowed the study

of the dissolution of several formulations simultaneously.

Overall, the ATR-FTIR imaging approach with macro-ATR

capability is a very powerful novel tool for high-throughput

analysis of pharmaceutical formulations and can provide

guidance to the design of pharmaceutical formulations for

controlled release.

10.2 MID-INFRARED SPECTROSCOPY

Infrared spectroscopy has long been a useful analytical

tool for studying pharmaceutical formulations. It has the

potential to reveal much chemical information about the

formulations for both the analysis of static samples and

samples during dissolution and provides complementary

data to that otherwise obtained from the systems studied.

For example, the FDA dissolution tests only analyze the

dissolution profile under a very controlled environment [11]

and do not investigate the formulation itself. Therefore, the

opportunity exists to improve the understanding of these

chemical formulations. An excellent review on applications

of mid-IR spectroscopy to pharmaceuticals was provided

recently [12].

10.2.1 ATR and Transmission Approaches

The samplingmethodology used in FTIR imaging is based on

those developed in conventional FTIR spectroscopy, which

needs to be discussed first. There are several approaches that

can be used for studying pharmaceutical formulations using

IR spectroscopy; these are transmission, diffuse reflectance,

and ATR. Diffuse reflectance collects and analyzes scattered

IR energy.

Transmission mode is the most well-known form of

infrared spectroscopy. A beam of infrared light passes

through a sample and examination of the resulting radiation

can determine which frequencies of infrared light have been

absorbed. The sample must be thin enough to allow the

radiation to pass through, but it must also be thick enough

such that a reasonable amount of absorbance occurs and so

careful sample preparation is required. A suitable thickness is

usually between 5 and 20 mm. The form of the chosen sample

is also an important factor; powders cause random reflections

of the light as it passes through the sample, thus the beam can

become too scattered.

A more flexible technique is that of attenuated total

reflection spectroscopy. This technique uses an inverted

prism-shaped crystal composed of a material with a high

refractive index, such as diamond that has a refractive index

of 2.4 or zinc selenide that has a similar value of refractive

index. The sample is placed on the top surface of the

crystal, while the infrared light enters the crystal and ap-

proaches the top surface of the crystal at an angle greater than

the critical angle. ATR spectroscopy is based on the principle

that although total internal reflection occurs at the interface

between the crystal and the sample, the radiation does

penetrate a few micrometers into the sample, in the form of

an evanescent wave, where the absorption by the sample

attenuates the beam.

The penetration depth of the evanescentwave into the next

medium, which is defined as the distance in which the

amplitude of the electric field will fall to 1/e of its initial

value at the surface, can be calculated using Equation 10.1.

DP ¼ 1

2pWNCðsin2H�N2
SCÞ

1=
2

ð10:1Þ

where DP is the depth of penetration,W is the wavenumber,

NC is the crystal refractive index,H is the angle of incidence,

and NSC¼Nsample/Ncrystal.

The depth of penetration in Equation 10.1 is dependent on

several factors listed above. Longerwavelengths have greater

depth of penetration. The expected depths of penetration

using common polymeric materials with refractive indices of

around 1.5 are usually in the range 1–5 mm when working in

mid-IR [13]. The equation also states that total internal

reflection will only occur if the incidence angle is larger

than the critical angle.
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To measure a sample in ATR mode, it must be placed on

the surface of the crystal; therefore, sample preparation can

be very simple. The sample must be pressed onto the crystal

with sufficient force to ensure comprehensive contact be-

tween the two media because of the shallow penetration

depth of the evanescentwave. The crystalmust be transparent

to infrared radiation and have a high refractive index. Zinc

selenide crystals are hard, brittle, and easily scratched but

a large, optically consistent crystal can be obtained relatively

cheaply. Diamond is another option; however, it is expensive

and absorbs certain mid-infrared frequencies of infrared

radiation, especially at high temperatures. The main advan-

tages of diamond are that it is able to endure high pressures,

its chemical resistance, and it is exceptionally hard making it

scratch resistant.

A general perception about ATR spectroscopy is that a

high level of force is required to achieve a good contact

between sample and ATR crystal, which is often not the

case. Adequate contact can be achieved with liquid sam-

ples simply by covering the top of the crystal with the

sample; however, when working with polymeric materials,

some force is required to achieve sufficient contact. The

required force can be minimized as flat surfaces help

facilitate the contact, while malleable samples require

minimum force in compaction. When working with some

pharmaceutical polymeric materials in dissolution experi-

ments, the formation of a gel upon contact with water

greatly improves the contact of the polymer [14]. When

compacting most pharmaceutical samples in situ on an

ATR crystal, the level of compaction required is an order of

magnitude less than in industrial tablet presses, demon-

strating that the necessary force is achievable in a lab.

Nevertheless, while compaction with a diamond as an ATR

crystal is not an issue, it can be harder to achieve a

satisfactory compaction on some other crystals, such as

zinc selenide, without incurring damage.

10.2.2 FTIR Spectroscopic Imaging

Conventional FTIR spectrometers are single detector de-

vices. One spectrum is obtained that averages information

from the total measured volume of the sample, so there is no

spatial information in the data acquired. Previously, image

production was only possible using mapping techniques,

which involved gathering spectral data in a grid pattern from

a localized area of the sample to build up a spatially resolved

map of the system. This was advanced with the introduction

of linear array detectors that gather a line of data at a time,

and move across the sample. The major advancement came

with the introduction of the FPA detector. The single

element detector is replaced with a grid array of detectors

(the FPA detector) that collect spatially resolved spectral

information from all regions of the sample simultaneously.

This means that when acquiring the image, each detector

gathers data during every scan, and therefore every point is

measured at the same time. The result is that for a 64� 64

detector 4096 spectra are gathered with each scan. The FPA

detector can be used in conjunction with a standard inter-

ferometer and source. As a 64� 64 system records 4096

spectra with each scan, a large amount of data is produced;

therefore, in early systems to reduce the computationally

intensive nature of this process, step-scan mode was im-

plemented, where the moving mirror changed position in

discrete steps. This allowed the computer time to process the

data. With modern, more powerful systems and better

detectors, continuous-scan mode is used, in which the

mirror moves smoothly and continuously. This gathers data

much more rapidly.

10.2.3 Introduction to Spectroscopic Imaging

For this explanation, example data acquired with a 64� 64

detector will be used. The subject chosen for this image is

a model pharmaceutical tablet consisting of caffeine and

hydroxypropyl methyl cellulose (HPMC), a cellulose-based

polymer. A schematic diagram of the imaging analysis is

represented in Figure 10.1.

Each pixel in the grid collects a full infrared spectrum,

with a spectral range of 4000–800 cm�1. The concentration

of a component is proportional to its absorbance as stated

by the Beer–Lambert law. The absorbance of a particular

spectral band can be calculated by integrating the area

under the spectral band. By plotting the absorbance values

of a component spatially, it is possible to generate a relative

concentration map. A band must be found for each mate-

rial, which is well separated from the bands of other

materials. For this reason, the band highlighted between

2750 and 3000 cm�1 was chosen for water and the band

between 1670 and 1730 cm�1 was chosen for caffeine

(Figure 10.1). By plotting these integral values in a grid

matching that of the detector array (taking into account the

aspect ratio of the images obtained with macro-ATR using

an inverted prism), concentration maps of HPMC and

caffeine within the tablet can be constructed as shown in

Figure 10.1.

The two images generated in Figure 10.1 represent the

same spatial region. One plots the distribution of the absor-

bance of caffeine, the other plots the distribution of the

absorbance of HPMC, and hence they show their correspond-

ing distributions within the imaged area of the sample. Red

and pink domains correspond to regions of high concentra-

tion, whereas blue domains correspond to regions of low

concentration. It can be seen that these images are comple-

mentary, that is, where there is a high-concentration region of

caffeine there is a relatively lower concentration region of

HPMC. There are some regions where low concentration is

registered for both; this is most likely a void within the tablet

structure or an impurity.
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10.2.4 Imaging Sampling Methodologies

Spectroscopic imaging can be performed in both transmis-

sion and ATR modes; however, as explained above, trans-

mission requires significantlymore sample preparation. ATR

is a surface technique: during imaging the bottom layer of

the tablet is measured. Transmission measurements apply

through thewhole sample: in imagingmode, only an average

through the sample is seen [5]. A large particle seen in an

imagemay in fact not be a large particle, but instead consist of

two separate particles at different depths that slightly overlap

in the path of the beam as shown in Figure 10.2. Nonetheless,

transmission imaging has been successfully applied to many

materials [15–17].

ATR imaging will not suffer from this “averaging” issue;

however, there are some considerations that must be made as

the spectroscopic data obtained are sampled from the bottom

surface layer of the sample. The probing depth of the image is

around several micrometers; however, the individual parti-

cles in most powder-based pharmaceutical formulations are

much larger than this, whichmeans that a relatively small part

of the total volume is imaged and only “the tip of the iceberg”

may be seen. This effect is demonstrated in Figure 10.3,

where, although the powders had been sieved thoroughly to

a particle diameter of 90mm, there are some much smaller

domains visible. It is probable that each of these domains is

actually a small fraction of a much larger particle that lies

within the ATR field of view (FOV). Nevertheless, both

transmission and ATR mode have uses and an appropriate

choice must be made based on the analytical requirements as

they differ on many aspects such as spatial resolution, field of

view, and the possibility of leaving artifacts [18–20].

TheATR imaging spectrometer is patented byVarian [18].

With modern FPA detectors, an image can be attained in as

little as 10 s. Mapping methods that are not strictly imaging

are also commonly used. These systems employ a linear array

of detectors and a mechanical rastering technique in order

to construct a map that will contain the same data as image

obtained using an FPA detector [21, 22]. These measure-

ments can achieve a better signal-to-noise ratio than an FPA

and can now operate at a speed that rivals that of the older

FPA detectors. The use of linear array detectors for the

chemical mapping of polymeric materials [23] and pharma-

ceutical samples [24] has recently been demonstrated.

FIGURE 10.1 FPA detector spectra collection. (See the color version of this figure in Color Plate section.)
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The simultaneous gathering of all the spectra using an

FPA detector permits the study of dynamic systems such as

the dissolution of pharmaceutical formulations [7, 25]. This

principle can then be extended to studymany samples at once

in high-throughput analysis [26–28]. This technique is also

useful for polymers and diffusion processes [5, 29–31].

Themost versatile accessory forATR-FTIR imaging is the

Golden Gate� from Specac; its application for imaging

purposes was pioneered in our laboratory. The internal optics

for this are shown schematically in Figure 10.4. Shown here

working in ATR mode with a small diamond crystal, lenses

built into the chamber that houses the ATR accessory focus

the beam onto the sample.

As can be seen from the diagram in Figure 10.4, the beam

of infrared radiation undergoes total internal reflection at the

interface of the ATR crystal with the sample. The angle at

which the beam arrives at the interface is about 45�; there-
fore, as opposed to being imaged with a circular beam, the

sample area is imaged by an elliptical beam. As the angle is

roughly 45�, the resulting ratio of the height of the image to

the width of the image is approximately 1:21/2 as shown in

Figure 10.5; this aspect ratiomust be taken into accountwhen

recording and displaying the images. This effect has been

minimized by the integration of improved optics into the

Golden Gate� producing images that are closer to square in

shape [32].

The spatial resolution of a system is limited by the

wavelength of the radiation being used and the numerical

aperture (NA). This is described by the Rayleigh criterion,

shown in Equation 10.2, which can be used to calculate the

theoretical distance required between two adjacent points in

order for them to be just resolved.

r ¼ 1:22l

2NA
ð10:2Þ

where r is the distance between two adjacent points that are

just resolved (to resolve two points completely the separation

distance 2r is required), l is the wavelength of the radiation,
and NA is the numerical aperture of the system, defined in

Equation 10.3:

NA ¼ n sin y ð10:3Þ

where n is the refractive index of the imaging medium

between the objective and the sample and y is the half the

angular aperture.

To resolve two points completely from each other, the

separation required is a minimum of 2r. In practice, this

cannot be achieved due to practical imperfections such as

optical aberrations within the system. A microscope is

required to realize the highest spatial resolutions that can

be achieved in infrared. In the case of a diamond Golden

Gate� accessory, as shown in Figure 10.4, 13 mm is the

demonstrated spatial resolution [33].

As described above, diamond is a particularly useful

material for working in ATR mode and has now been fully

adapted to work with imaging [5, 33, 34]. The image size for

Incoming IR beam 
Adjustable mirrors 

Lenses 

ATR crystal 

Outgoing IR 
beam to FPA 

FIGURE 10.4 Internal optics of a diamond Golden Gate� accessory.

FIGURE 10.5 (a) Schematic presentation showing the elliptical imaging area resulting in image stretching. Reprinted with permission from

Ref. 33. Copyright 2003 Society of Applied Spectroscopy. (b) Change in imaging aspect ratio. Reprinted with permission from Ref. 33.

Copyright 2003 Society of Applied Spectroscopy.
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the initial imaging work performed with a diamond was

820 mm� 1140 mm, whereas with the advent of the new

imaging Golden Gate�with optimized optics and a modern

detector, the imaging area is now 570 mm� 530 mm and thus

the aspect ratio has moved from 1:1.4 to 1:1.1.

10.2.5 Imaging FTIR Microspectroscopy

FTIR microspectroscopy employs an imaging or mapping

system in conjunction with microscope optics to gather

spectra from very localized regions [20]. This has an

application in the analysis of heterogeneous samples with

small domain sizes, and can be performed in both transmis-

sion and ATR modes. In practice, the achievable spatial

resolution of microspectroscopic mapping is limited to

around 10–15 mm, which can be accounted for by the low

throughput of the IR beam with small aperture sizes, though

this can be improved by the use of a synchrotron [35–38].

This has allowed the collection of chemical maps of hair

showing the medulla region [37, 39]. However, despite the

use of a 3 mm aperture, the fingerprint region has a wave-

length of 6–11 mm resulting in spectra that would be

“contaminated” by the spectral information from the sur-

rounding materials.

As shown by Equation 10.2, the Rayleigh criterion is

partially dependent upon the numerical aperture of the

system. Therefore, by using an ATR crystal that has a much

higher refractive index than air, it is possible to drastically

improve the spatial resolution of the system. Chan and

Kazarian were able to obtain a resolution of 4 mm using

infrared light of wavelength 6 mm [33].

The increased spatial resolution has led to improved

detection limits when looking for trace amounts of materi-

als [40]. This is particularly useful when studying pharma-

ceutical formulations, as heterogeneities are often to be

found in the micrometer scale.

10.2.6 ATR-FTIR Expanded Field of View

Attaining the highest spatial resolution is often of significant

importance; however, thiswill come at the expense of the size

of the field of view leading to imaged areas that are rather

small (e.g., about 50� 50 mm2). For studies in which a larger

field of view is required, it is possible to use a large ZnSe

imaging prism with custom designed expanded optics. The

experimental apparatus is analogous to that of a standard

Golden Gate�; however, concave lenses are inserted before

the imaging optics that expand the beam [41]. The schematic

for this system is shown in Figure 10.6.

The area imaged by this accessory is about 15.4mm �
21.5mm; this enlarged FOV facilitates the measurement of

multiple samples simultaneously, as the samples can be

deposited directly on the surface of the crystal within the

imaged area. This has been applied to acquire data frommore

than a hundred static samples in one image, while the

dissolution of five samples has been studied simultaneously

[41]. A disadvantage of imaging with an expanded FOV is a

decrease in the spatial resolution. As the beam is expanded,

the projected area for each pixel in the detector increases; the

beam expansion also leads to a reduction in the numerical

aperture of the system. Thus, expanded field of view imaging

cannot be used to obtain data concerning smaller features of

the studied samples and so it is only applied to situations in

which an enlarged area of interest is necessary.

10.2.7 Quantitative Analysis

ATR is a well-established approach and has long been

applied in conjunction with conventional FTIR spectroscopy

to obtain quantitative data. ATR-FTIR spectroscopy has been

used to determine the diffusion coefficients for liquids in

anhydrous lanolin and polyethylene glycol and for urea from

polyethylene glycol into medical adhesive [42, 43]. With the

introduction of the FPA detector, quantitative analysis can

now be performed in imaging mode. This has been demon-

strated with pharmaceutical tablets consisting of HPMC as

the polymer matrix and niacinamide as a model drug [1].

Concentration profiles were created using the partial least

squares (PLS) to quantify the components. From these

dissolution profiles, it is possible to obtain a global view of

the dissolution and link it to the physical processes occurring

in the dissolving tablet for determination of the mechanism

of dissolution. FTIR-ATR imaging is also being applied to

aid the development of quantitative models for drug disso-

lution as proposed by Jia and Williams [44]. This is signif-

icant since for real systems and those with complex granule

structures it is important to have experimental examples

as case studies for validation and improving the accuracy

of the model, while it is also essential to understand what the

effects of digitization may be in terms of introducing errors

into the predicted behavior of a system. Imaging can also be

applied to quantitatively study the effects of contaminants

in formulations [45].

To produce valid quantitative analysis of a system, it is

necessary to extract absolute values for the concentrations of

IR from source 

Mirrors 

Lenses 

ZnSe crystal 

IR to detector 

FIGURE 10.6 Expanded field of view accessory for imaging.
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the components within the system. This is done using the

Beer–Lambert law, shown in Equation 10.4, where A is

absorbance, e is the molar absorption coefficient and [J] is

the molar concentration of species J, and l is the sample

thickness. This can be written as shown in Equation 10.4.

A ¼ e½J�l ð10:4Þ

Assuming a constant path length, the absorbance A is

proportional to [J], the molar concentration of the compo-

nent. Therefore, if themolar absorptivity e is known, or using
samples of known concentrations to produce a calibration

curve, it is possible to calculate the concentration from the

absorbance of a component. In order to do this, it is necessary

to know the path length of the radiation in the sample. In

transmission, the radiation passes straight through the sample

and so the path length is merely the thickness of the sample.

In ATRmode, due to the fact that the radiation interacts with

the sample via the evanescence wave, instead of the path

length, the effective path length is used. For nonpolarized

light, this is calculated using Equation 10.5 [10]:
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where y is the angle of incidence, n1 is the refractive index of
the crystal, and n2 is the refractive index of the sample.

When performing quantitative studies it is important to

note that even when analyzing a homogeneous sample the

absorbance may not always be homogeneous throughout the

whole imaged area of the sample. This is because the angle of

incidence may not always be uniform across the imaging

surface of the crystal [46]. This will have the effect of

changing the effective path length and consequently the

absorbance. Therefore, it is very important to ensure correct

optical alignment of the system for imaging studies. It should

also be noted that the mean angle of incidence is heavily

dependent upon the alignment of each individual system and

so may not match the specification of the manufacturer [47].

More sophisticated methods such as parallel factor analysis

(PARAFAC) and multilinear partial least squares (N-PLS)

can be used to determine the amount of drug in a formulation

as well [48].

10.3 PHARMACEUTICAL INVESTIGATIONS

10.3.1 Polymorphisms

FTIR spectroscopy is well suitable to the study of polymor-

phism of drugs. The ability to distinguish between polymor-

phic forms is crucial to the pharmaceutical industry as each

polymorphic form can be individually patented; therefore,

pharmaceutical companiesmust find all possible polymorphs

of the drugs they have developed otherwise competitors can

use the same drug in another crystalline form as in the case of

cefdinir [49].

The polymorphic state of the drug can have a large effect

on the dissolution properties of a formulation. The amor-

phous form of a drug typically exhibits a much higher

solubility than the crystalline form. Moreover, controlling

the crystalline state of the API has significant implications

in ensuring the safety and efficacy of the formulation.

Infrared spectra are highly sensitive to polymorphic

changes in a compound. Polymorphic transitions will man-

ifest in several forms of spectral change. Upon a transition

from an amorphous state to a crystalline structure, the peaks

in the spectrum of the compound will become sharper and

more defined. A more quantifiable difference comes in the

form of a peak shift, for example, amorphous ibuprofen has a

carbonyl peak situated at 1730 cm�1, whereas the carbonyl

peak in the crystalline form will shift to about 1710 cm�1,

because during crystallization hydrogen bonds will form

between the drug molecules [7].

This sensitivity has led to the creation of many assays for

classifying the crystallinity of a compound [50–54]. For

example, sulfamethoxazole has two distinct polymorphic

forms and, when studied in diffuse reflectance mode, dis-

tinct spectra can be identified that correspond to the dif-

ferent forms. However, in using diffuse reflectance mode

there are two parameters for which consistency must be

maintained:

1. Production of homogeneous samples for validation

and calibration

2. Consistent particle size for all components

Inhomogeneous calibration and validation samples can

give incorrect values for IR absorption leading to errors in

prediction, while variation in particle size can change the

diffuse reflecting properties of a sample. However, an accu-

racy of 4% is readily achievable when quantifying the

crystallinity of a sample.

10.3.2 Supercritical Fluid Investigations

When preparing pharmaceutical formulations there are nu-

merous methods that can be used for embedding the drug

within the polymer bulk. Supercritical impregnation has been

shown to be practical in preparing samples for which a

molecularly dispersed and homogeneous distribution of the

drug within the polymer is required. This can be done via

particle formation by antisolvent precipitation, aerosoliza-

tion, and rapid expansion of supercritical fluids [55–57].

Kazarian and Martirosyan [75] have applied ATR-FTIR
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spectroscopy to study the procedure of supercritical fluid

drug impregnation using PVP as the polymer and ibuprofen

as a model drug. It was shown that this process is capable of

molecularly dispersing the drug in the polymer matrix (the

drug is dissolved in polymer matrix at the molecular level).

This was revealed by the shift of the carbonyl peak of

ibuprofen from1710 to 1727 cm�1within the PVP, indicating

that the intermolecular bonds between drug molecules had

been broken. This demonstrated the ability of ATR-FTIR

spectroscopy to reveal specific interactions between the

C¼O groups of the PVP and CO2. ATR-FTIR spectroscopy

using a diamond crystal is particularly suited to this work as it

is much stronger than other applicable materials such as zinc

selenide, and thus, it can endure the high pressures required

to work with supercritical carbon dioxide [58].

10.4 FTIR IMAGING OF PHARMACEUTICALS

Since mid-FTIR imaging was first introduced in 1997, the

technique has been applied to study many different systems

from all facets of science, from areas such as polymer

diffusion and dissolution [29, 59] to the curing rubbers and

biological systems [60–62]; it has even found use in foren-

sics [63] and recently in the imaging of live cancer cells [64].

It has been widely applied to the study of pharmaceutical

formulations, most commonly to study the controlled release

mechanisms of oral dosage formulations [65].

10.4.1 Imaging of Compacted Pharmaceutical Tablets

ATR-FTIR imaging is a valuable tool for studying pharma-

ceutical tablets, as little or no preparation of the sample is

required, and much valuable spectroscopic information can

be extracted from imaging studies of these formulations. The

lack of sample preparation is a useful property of the ATR

methodology as transmission mode requires careful micro-

toming of the sample into thicknesses of less than 10–20 mm,

while ATR-FTIR imaging allows for the study of many

aspects of the tablets. The most important property of

imaging is its ability to assess the spatial distribution of

different components within the sample [66–68]. By taking

several images of a sample, changes in the distribution can be

studied; for example, when undergoing compaction, the

positions of particles within the tablet rearrange, followed

by the particles crumbling, and then the voids within the

material collapse resulting in a harder denser material.

This process can be studied in situ using ATR-FTIR imag-

ing [69, 70].

A custom designed compaction cell has been developed

to work in conjunction with a diamond ATR crystal and

Golden Gate� accessory that allows for in situ compaction

of the pharmaceutical powders into model tablets [68]. The

operation of this cell is shown in Figure 10.7.

The brass cell is bolted into place over the diamond

plating; the powder mixture is then poured into the hole in

the cell, and then the cylindrical punch is placed into the hole

on top of the powder before the armature is lowered. A torque

screwdriver is then used to wind down a compaction plating

from the armature of the Golden GateTM accessory onto the

punch compacting the powder.

Diamond is employed for this approach because when

working with compaction only hard ATR crystals can be

used, while its feasibility for imaging tablet compaction has

already been shown formodel tablets consisting of starch and

caffeine [19]. This technique has also been used to study the

effect that choice of polymer can have on the compaction

properties and drug distribution of a formulation using

lactose HPMC and Avicel as model excipients and caffeine

as a model drug [69]. It was found that the distribution of

caffeine is strongly affected by the composition of the

polymer matrix used in the tablet. Another important result

was also obtained from this work regarding ATR imaging. A

general apparent limitation of ATR spectroscopy is that it is

a surface technique, so data gathered using this technique

would be only valid for the surface of interest and would not
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FIGURE 10.7 Schematic presentation of in situ imaging of tablet compaction.
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provide any information frommost of the sample. This is true

only if there is a significant difference in constituents or the

structure of the formulation between the imaged surface and

the bulk. Wray et al. [69] used X-ray tomography as a

complementary technique with model tablets to compare

the ATR-FTIR surface images with the cross-sectional data

from the X-ray tomography. They show that there is a similar

distribution of drug particles throughout the bulk of the tablet

shown in Figure 10.8 and hence that FTIR-ATR imaging is a

valid tool for studying pharmaceutical tablets.

10.4.2 Micro-ATR-FTIR Imaging

Macroimaging, such as that with theGoldenGate�, is useful

when a large field of view is required. However, sometimes it

is necessary to investigate samples on a smaller scale in order

to resolve details of smaller features. Micro-ATR imaging

can be used to study compacted pharmaceutical tablets;

however, it is not possible to perform in situ compaction on

these samples so they have to be prepared ex situ.Micro-ATR

imaging will produce an image with a size of approximately

50� 50 mm2. This has been demonstrated by Chan et al. [19]

using model formulations consisting of caffeine, starch, and

HPMC as shown in Figure 10.9.

Figure 10.9 shows that the distributions of starch and

HPMC are complementary, demonstrating the ability of

micro-ATR-FTIR imaging to spatially separate different

chemical domains within a mixture on the micrometer scale.

The quality of these images also shows that good contact was

made between the micro-ATR crystal and the sample. The

large particle seen in the caffeine image is approximately

10 mm in diameter; this would not be visible in the macro-

ATR imaging demonstrating the effectiveness of being able

to image samples on a much smaller scale. The smaller

caffeine particles visible have a diameter of the order of

2–3 mm only, which is very close to the limits of the spatial

resolution of the system; however, they are still clearly

visible.

10.4.3 Imaging of Water Sorption in Pharmaceutical

Formulations and Human Skin

The manufacture of pharmaceutical solid dosage forms

mixes drug compounds that are typically hydrophobic into

hydrophilic polymer matrices in order to enhance the disso-

lution properties of the API. Therefore, during storage and

manufacture, these formulationsmaywell absorbwater from

the atmosphere. This sorption of water can manifest itself

in the form of undesirable effects on the dissolution and

therapeutic properties of the formulation, hindering the

bioavailability of the API. The presence of water can cause

the drug to recrystallize, negatively affecting the dissolution

FIGURE 10.9 Micro-ATR-FTIR images showing the distribution of caffeine starch and HPMC in a tablet. Reprinted in part with permission

from Ref. 19. Copyright 2003 American Chemical Society.

FIGURE 10.8 FTIR spectroscopic images compared with images from X-ray microtomography. Reproduced from Ref. 69 by permission

of John Wiley & Sons, Inc. (See the color version of this figure in Color Plate section.)
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performance. The sorption of water into the polymer powder

can alter its compaction properties, which can then have an

effect on the particle morphology within the formed tab-

let [71]. This has led to a great interest in studying the uptake

of water into pharmaceutical formulations [72–74].

The application of conventional FTIR spectroscopy can

only give an averagevalue from the sample for the quantity of

water absorbed; however, it is unable to display any hetero-

geneity of water sorption into different domains of the tablet.

Previous studies have used solely polymer-based formula-

tions whereas Kazarian andMartirosyan have shown that the

composition of the formulation can affect the availability for

water sorption [75]. FTIR imaging has been applied to study

the heterogeneous distribution of water in pharmaceutical

formulations. A controlled humidity cell was combined with

FTIR imaging in transmission mode, providing the oppor-

tunity of studying water sorption into different domains of

the sample in situ [76] as shown in Figure 10.10.

The tablets used consisted of polyethylene glycol [49] and

griseofulvin. The relative humidity was varied between 0.5%

and 90% and the temperature maintained at 25�C. Images

were produced to show the distribution of griseofulvin, PEG,

and water individually as shown in Figure 10.11.

The work demonstrated that the water preferentially

absorbed into the domains of the hydrophilic PEG, rather

than the drug. It was also able to reveal that there was a

significant increase in the level of water sorption above a

relative humidity of 70%, but no effectwas seen on the spatial

distribution of the components.

As described previously, humidity can affect the com-

paction properties of tablets. The controlled humidity

approach has been applied to study the compaction of

pharmaceutical formulations in ATR mode [70]. Tablets

consisting of ibuprofen and HPMC were exposed to humid-

ities between 0% and 80% before being compacted into

tablets. Results of this work are shown in Figure 10.12.

FIGURE 10.10 Schematic diagram of controlled humidity in FTIR transmission imaging mode. Reprinted from Ref. 76. Copyright 2004,

with permission from Elsevier.

FIGURE 10.11 FTIR images of the PEG-griseofulvin mixture exposed to different relative humidities. The left (a), middle (b), and right (c)

columns show the distribution of griseofulvin, PEG, and water, respectively. Reprinted from Ref. 76. Copyright 2004, with permission from

Elsevier. (See the color version of this figure in Color Plate section.)
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These data show that at the same compaction pressure the

sample exposed to the higher humidity shows a greater level

of infrared absorbance. This is because the density has been

increased due to better compaction, showing that the water

has had a significant lubricating effect upon the formulation.

A higher level of compaction can manifest itself in altered

dissolution properties for the formulation. FTIR imaging has

demonstrated the ability to reveal information about the

properties of compacted tablets. These data have been quan-

titatively analyzed via the extraction of the absorbancevalues

of the spectral bands, which have then been used to produce

histograms showing the range of absorbance values through-

out the image.

The combination of macro-ATR-FTIR imaging with a

controlled environment accessory allowed analysis of stra-

tum corneum, which is the uppermost layer of the skin, under

controlled humidity [77]. The heterogeneous distribution of

water in the stratum corneum was analyzed with the aid of a

multivariate approach. It has also been shown that ATR-FTIR

imaging provides information on the swelling of the stratum

corneum as a function of humidity. This approach was also

used to image the penetration of liquid ethanol into the

skin [77] and showed good potential for studying the trans-

dermal delivery of drugs [78, 79].

10.5 FTIR IMAGING OF TABLET DISSOLUTION

There is an established set of testing procedures for phar-

maceutical formulations designed to provide a basis for

identification, assay, purity determination, dissolution anal-

ysis, and so on; this is published every year in the United

States Pharmacopeia (USP) [80]. It is this set of instructions

upon which the FDA then carries out enforcement of regula-

tions for pharmaceutical manufacturers.

Unfortunately, despite numerous studies on the dissolu-

tion of solid formulations, there is still a lack of understand-

ing of the processeswithin the formulation (or tablet) upon its

contact with dissolution media. The reason for this is con-

ventional dissolution studies, such as USP II, do not inves-

tigate the physical processes that may be occurring within

the tablet. They are capable only of analyzing the drug

FIGURE 10.12 (a) Image showing FTIR results for compaction of HPMC at 120MPa and 60% RH with histogram showing the number

of pixels at a particular absorbance level. Reproduced from Ref. 70 by permission of JohnWiley & Sons, Inc. (b) Image showing FTIR results

for compaction of HPMC at 120MPa and 80% RHwith histogram showing the number of pixels at a particular absorbance level. Reproduced

from Ref. 70 by permission of John Wiley & Sons, Inc.
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concentration in the dissolutionmedium as a function of time

without any insight into the complex processes within the

formulation.

Dissolution has a set of USP regulations similar to those

of the FDA. The test is a simple repeatable dissolution

procedure that makes use of a rotating basket or paddle

arrangement inside a chamber filled with the dissolution

medium [11].

The formulation is placed inside the basket and the

chamber is filled with dissolution medium. The basket is

then rotated inside the chamber and the concentration of

the drug released into the dissolution medium is measured.

The standard dissolution test and consistency of application

are required for meaningful comparison; therefore, there are

very strict calibration settings [81]. However, this does not

provide information about the processes within the tablet that

occur during dissolution. It is essential to understand the

mechanisms of tablet dissolution in order to produce efficient

and reliable tablets.

FTIR imaging has been applied successfully to study

many relevant processes, such as pH effects on dissolu-

tion [67], polymer behavior under dissolution [14], effects

of the initial sample parameters [1, 8], and the occurrence

of polymorphic transitions [7, 82].

10.5.1 Transmission Imaging of Dissolution

Koenig and coworkers have used FTIR imaging to analyze

the dissolution of drug delivery formulations in transmission

mode [83]. Formulations consisting of testosterone as the

API and poly(ethylene oxide) (PEO) as the polymer matrix

were used. This technique was able to demonstrate the

dissolution of the API from the hydrophilic matrix as shown

in Figure 10.13.

This work was challenging due to the strong infrared

absorption of water in the mid-infrared region. This neces-

sitated the use of deuterated water as well as a very thin

spacer, thus restricting investigation to very thin samples

(about 10 mm). These samples will not fully represent real

tablets as with the application of such thin spacer, the tablets

have a very small thickness.

10.5.2 ATR-FTIR Imaging of Dissolution

ATR imaging has the advantages that the path length is

independent of the sample thickness and that the depth of

penetration of the infrared light into the sample is rather

small. Therefore, the dissolution in water-based media of

tablets thatmore closely approximate real-world samples can

be studied, as opposed to artificially prepared thin samples.

The possibility of using of macro-ATR-FTIR imaging to

examine the dissolution of polymer/drug formulations in

contact with water was first demonstrated in a study by

Kazarian and Chan [7]. The macro-ATR-FTIR imaging

approach, developed in that work, has allowed them to

simultaneously study the spatial distribution of both polymer

and drug in contact with water as a function of time. Themost

important finding in that study was that crystallization of the

initially molecularly dispersed drug occurred upon contact

with the dissolution medium. This was important because

crystallization slows overall drug dissolution. These phe-

nomena would not be detected by the conventional dissolu-

tion tests and demonstrated that ATR-FTIR imaging can

provide important insight into the mechanisms of drug

release. That study also demonstrated that the ATR-FTIR

imaging approach allows the visualization of the dissolution

of inclusion complexes of ibuprofen with cyclodextrines that

prevented drug crystallization [7].

Another example of ATR-FTIR imaging of dissolution

involved formulations of nifedipine in PEG [82]. Different

amounts of crystalline nifedipine were dissolved in molten

PEG (MW¼ 8000) at 70�C to produce samples of 5%, 10%,

and 20% drug. The samples were then allowed to cool and

solidify before being powdered. The powder was then trans-

ferred to the ZnSe ATR crystal that was heated to 60�C to

remelt the formulation. The sample was then covered with a

glass slide, using a spacer to create a space in which a sample

of uniform thickness could form. The sample was then

allowed to cool further before the addition of water. FTIR

images were then acquired at 5min intervals. The results are

shown in Figure 10.14.

The results show that there is a change in the morphology

of the drug as it recrystallizes. This occurswithin the polymer

matrix upon contact with water, but FTIR imaging shows that

this happens in regions in which the water is not yet present.

This demonstrates a different trigger for crystallization com-

pared to ibuprofen that exhibits crystallization on direct

contact with the dissolution medium [7]. The data also

showed that an increase in the drug loading led to much

increased crystallization. This work has utilized the great

FIGURE 10.13 FTIR imaging of formulation dissolution in

transmission. Reprinted from Ref. 83. Copyright 2003, with per-

mission from Elsevier. (See the color version of this figure in Color

Plate section.)
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potential of FTIR imaging to reveal more information about

the dissolution of pharmaceutical formulations [82].

10.5.3 Flow-Through Dissolution Studied with FTIR

Imaging

To study flowing dissolution using ATR imaging, a refine-

ment of the simple compaction cell was designed. The cell

has been developed such that the tablet can still be compacted

in situ as shown in Figure 10.15; however, the dissolution

medium can then flow through the cell without the need to

move the sample. The construction is similar to the standard

compaction cell; however, surrounding the punch is retract-

able metal bolt that is raised after compaction creating

a chamber through which the dissolution medium flows as

shown in Figure 10.15 [66].

The dissolution cell has a similar experimental setup to

that of the compaction cell as shown in Figure 10.15. It is

bolted into place over the diamond plating, the only differ-

ence being the off-center punch hole and the retractable bolt.

There are also flow pipes attached to the side of the block,

through which the dissolution medium is pumped.

This equipment is particularly useful for studying the

dissolution of model pharmaceutical tablets, as it brings the

spatially resolved chemical specificity of FTIR spectroscopic

imaging to flow processes. It allows for the study of the

ingress of water into the tablet, the formation of polymer gel

layers, and ultimately the dissolution of the drug itself.

By taking images at regular time intervals, a time-resolved

chemical information of the dissolution can be obtained. The

dissolution cell is also designed with the punch aligned

slightly off center such that the tablet only covers half the

face of the diamond. This sets the interface between the tablet

and the dissolution medium as the centerline of the image,

while also providing space for any potential gelation and

expansion or dissolution of the polymer to be observed.

Figure 10.16 reveals the extent of the information that can

be obtained using this method. The sample is a model tablet

consisting of HPMC and caffeine [66]. The caffeine and

HPMC are shown to only cover half the image as expected.

It can also be seen that the images are complementary; there

are two circular domains of low concentration in the HPMC

image, which are matched by two domains of higher con-

centration in the caffeine image. Water is observed to be

filling the empty space on the unoccupied side of the inter-

face; as this is an image taken soon after the water has

made contact with the tablet it has not started to ingress into

the bulk.

Ibuprofen will tend to crystallize in the presence of acidic

media. FTIR imaging can not only determine the presence

and distribution of the ibuprofen but will also reveal the

crystalline state of the drug. This can be determined through

examination of the position of the carbonyl band. This is

shown in Figure 10.17a. The peak at 1732 cm�1 is from

ibuprofen dissolved in PEG, while the peak at 1706 cm�1 is

crystalline ibuprofen.

Figure 10.17b shows an image taken from the dissolution

of an ibuprofen and PEG tablet in acidic media; the image

shows the location of the drugwithin the polymermatrix. The

spectrum is extracted from the location indicated by the

arrow in which the strong band between 1150 and 970 cm�1

is caused by the presence of PEG. The carbonyl peak appears

at 1705 cm�1; from this it can be ascertained that the ibu-

profen in this system is indeed in the crystalline form. This

FIGURE 10.16 Images of dissolution of caffeine tablet. Rep-

rinted fromRef. 66. Copyright 2004, with permission fromElsevier.

ATR diamond

Golden Gate
armature

Punch

Removable bolt

Flow pipe

Tablet

Water

FIGURE 10.15 Schematic representation of the flow dissolution

cell combined with ATR accessory.

FIGURE 10.14 Dissolution of nifedipine and PEG. Top row

shows drug dissolution and bottom row shows the polymer disso-

lution. Reprinted in part with permission from Ref. 82. Copyright

2004 American Chemical Society. (See the color version of this

figure in Color Plate section.)
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demonstrates the power of constructing the images from

spectral data.

The in situ compaction and dissolution cell uses the

diamond crystal meaning that the images produced are

1mm2 or smaller. These images were obtained with a high

spatial resolution (about 15 mm), which is useful for studying

crystallization and small changes in the structure of the

tablet. This FOV only facilitates the study of a relatively

small area of small tablets; however, it is often necessary to

have a larger field of view [7, 19] to study larger areas of

tablets, and the processes of dissolution that occur a larger

distance from the original boundary of the tablet. For this a

larger crystal must be used. ZnSe is suitable for this purpose;

however; it is not as hard as diamond, so compaction cannot

be performed in situ. Therefore, the tablets must be com-

pacted ex situ and then dissolution studied in situ. There is

the possibility of leakage if care is not taken. In the diamond

dissolution cell, as the formulation is compacted onto the

diamond, leakage is very unlikely [66]; the swelling of

polymers such as HPMC further helps to prevent this in-

gress [14]. For the ZnSe crystal, the sample can be formed

in situ if the polymer has a low melting point, and this

has been used to study the dissolution of PEG-based

formulations [68]. A schematic diagram of the ZnSe disso-

lution cell can be seen in Figure 10.18.

One of the most recent examples of applications of

ATR-FTIR imaging to dissolution and drug release is the

simultaneous FTIR imaging and visible optical photography

of an HPMC-based tablet [9]. A custom designed cell was

built [9] based on data from previous studies, which showed

that a possible leakage of water into the interfacial region

between tablet and ATR crystal is not an issue for HPMC-

based tablets because of the swelling of the HPMC tablet

during water ingress [14]. The new cell, which attached to a

diamondATR accessory, has a visibly transparent windowon

the top surface. The tablet is compacted ex situ and then

placed between a diamond crystal and the window. The cell

has pipes built into the sides, which allow the dissolution

medium to flow through the chamber inside the cell. Thus,

visible images were acquired using a CCD camera from the

top surface of the tablet simultaneously with ATR-FTIR

images measured from the bottom surface during the disso-

lution of the tablet. This combined approach allowed the

study of the moving fronts observed during dissolution.

The assignment of the fronts had been a contentious issue

as different explanations for the fronts were provided.

FIGURE 10.17 (a) Crystalline and amorphous peaks of ibuprofen and (b) image of PEG and ibuprofen with extracted spectrum.
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Consequently, this new imaging approach was applied to a

previously studied system that consisted of a colored drug

(buflomedil pyridoxal phosphate) and HPMC [9]. Previous

assignment of the dissolution fronts for this tablet based on

optical photography was not convincing, because photogra-

phy does not provide a quantitative value for concentrations

of the drug, polymer, andwater; effects such as changes in the

materials’ refractive indices, changes in the scattering prop-

erties of themedium due to intake ofwater, and gel formation

can all affect the interpretation of the visible imaging data.

The ATR-FTIR imaging approach provided reliable inter-

pretation of the fronts and compared them with the appear-

ances of the fronts in visible photography. The three fronts

observed in the dissolution of the studied tablets were

assigned to true water penetration, total gelification of

HPMC, and the erosion front [9]. This assignment of the

fronts is crucially important for understanding the mecha-

nism of drug release in HPMC-based tablets. This under-

standing may help in the designing of new and better drug

delivery products.

10.6 ATR-FTIR IMAGING OF COUNTERFEIT

TABLETS

FTIR imaging in both micro- and macro-ATR modes can be

used to distinguish genuine tablets from counterfeit tablets.

The spread of fake tablets presents a significant health threat

and counterfeiting of pharmaceutical tablets is a serious

crime in both developed and developing countries. Thus,

there is often an urgent need to identify the composition of

suspect tablets and to use this information in finding the

source of these fake medicines. The nondestructive and

noninvasive nature of ATR-FTIR imaging is particularly

beneficial for the analysis of counterfeit tablets. The distri-

bution of different components can be studied in counterfeit

antimalarial tablets in a totally nondestructive way without

the need to stain, break, or dissolve the tablets. Following

the ATR imaging process, tablets can be analyzed by other

complementary techniques.

The combination of micro-ATR-FTIR imaging with de-

sorption electrospray ionization linear ion-trap mass spec-

trometry (DESI MS) has been applied to analyze counterfeit

artesunate antimalarial tablets [84]. Malaria is a potentially

fatal disease but the highly active artemisinin derivatives, for

example artesunate, are effective for successful treatment.

Micro-ATR-FTIR imaging determined the type of drug

domains in tablets whereas DESI MS enabled high-sensitiv-

ity drug detection.

In these studies, the advantage of the imaging approach to

detect domains of highly localized drug with high spatial

resolution has been demonstrated. The micro-ATR-FTIR

imaging approach collects localized information simulta-

neously from different areas of the sample in a single

measurement, which enables the detection of locally con-

centrated trace materials due to their heterogeneous distri-

bution. On the other hand, a conventional detector obtains

an average signal from the whole sampling area in a single

measurement and, therefore, the absorption from the trace

materials will be much weaker. Therefore, the imaging

approach can, in principle, enhance the sensitivity of the

detection of trace materials distributed heterogeneously by

many times (depending on the size of the sampling area,

particle size, number of pixels in the array detector, and the

spatial resolution of the image) in a single measurement

compared to conventional spectroscopy with a single detec-

tor. This is particularly important in forensic science when

one needs to localize and identify a small particle (drug, toxic

powders, etc.) on the surface of the tablet or of any other

specimen. The sensitivity levels of conventional FTIR spec-

troscopy andFTIR spectroscopic imagingwere compared for

a specific system; a model tablet made of polymer and drug,

and it was found that for this particular set of samples, the

lowest concentration of drug in tablet that could be detected

with the conventional MCT detector was 0.35wt%; whereas

while using the ATR imaging approach, the presence of the

drug has been detected in a sample containing less than

0.075wt% of drug [40]. This imaging advantage is crucial in

applications such as the screening of counterfeit drugs,

samples of which can be highly inhomogeneous because of

FIGURE 10.18 Schematic diagram showing the ZnSe tablet dissolution cell. Reprinted from Ref. 8. Copyright 2005, with permission from

Elsevier.
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inadequate manufacturing practices, as was demonstrated in

the applications of micro-ATR-FTIR imaging.

In the follow up study, the investigation of counterfeit

antimalarial tablets with macro-ATR-FTIR imaging was

combined with studies using spatially offset Raman spec-

troscopy (SORS) [85]. SORS, which is also a nondestructive

technique, allows Raman spectra of the tablets to be obtained

without removal of their packaging material (e.g., blister

packs). In the combined study, SORS was used for the

identification of the bulk composition of the tablets through

the packaging, while macro-ATR-FTIR spectroscopic imag-

ing using a diamond ATR accessory enabled the study of the

spatial distribution of the drug and the excipients over the

surface of the tablets. The imaging capability of the macro-

ATR-FTIR approach permitted the detection of low-concen-

tration components that were near, or below, the threshold for

detection of the SORS technique [85]. Overall, these studies

have demonstrated that ATR-FTIR spectroscopic imaging

techniques have great potential to help in the forensic char-

acterization of counterfeit tablets.

10.7 ATR-FTIR IMAGING FOR

HIGH-THROUGHPUT ANALYSIS

FTIR imaging is an inherently high-throughput technique

and is well suited to study many samples simultaneously.

Recent studies from our laboratory have demonstrated that

the FTIR imaging approach with macro-ATR capability is a

very powerful novel tool for high-throughput technology of

pharmaceutical formulations and can provide guidance for

the design of pharmaceutical formulations for controlled

release.

Key ideas of developed methodology [28] have been (i) a

combination ofmacro-ATRwith an FPA infrared detector for

FTIR imaging; (ii) the use of a microdrop system to deposit a

microdroplet directly onto the surface of the ATR crystal;

(iii) a combination of themacro-ATR imaging accessorywith

a controlled humidity cell. This approach allowed imaging of

more than 100 samples simultaneously under identical con-

ditions. A schematic diagram of the experimental procedure

is shown in Figure 10.19a. Dispenser head 1 was loaded with

the sample containing the drug, while dispenser head 2 was

loaded with pure PEG (polyethylene glycol). Droplets with

different compositions of drug (ibuprofen and nifedipine

were used as model drugs) and polymer were prepared by

dispensing a different number of drops from each dispenser

head onto the same location [28]. The ATR-FTIR image of

more than 100 PEG formulations is shown in Figure 10.19b.

This methodology was applied to study PEG/formula-

tiuons under controlled humidty and to measure the amount

of sorbed water in each formulation. The effect of elevated

temperature on the stability of all formulations was also

studied [86]. This high-throughput approach identified the

concentration range for stable formulations and provided

evidence that hydrogen bonding between ibuprofen and the

polymer is responsible for enhanced stability at higher

temperatures [86]. The polymorphic transition of nifedipine

was also analyzed using this high-throughput imaging meth-

odology [28]. ATR-FTIR imaging has also been successfully

applied to study the permeation of model drugs through

human skin in a high-throughput manner [87].

This approach enables the measurement of up to 1024

samples. The introduction of this new accessory with an

enhanced field of view provided an opportunity to combine

ATR-FTIR spectroscopic imaging with a multichannel grid

that allowed the simultaneous imaging of the dissolution of

several different formulations [41]. The demonstrated ap-

proach was also the first example of the application of

spectroscopic imaging to microfluidics and may broaden its

future use in miniaturized high-throughput devices [88].

10.8 CONCLUSION

This chapter has covered the important issues concerning

the application of FTIR spectroscopy and FTIR imaging to

pharmaceutical formulations. The application of convention-

al spectroscopy to pharmaceuticals was introduced first

before moving on to spectroscopic imaging. There was a

summary of the hardware necessary for this work and the

different techniques applied, which discussed the advantages

and disadvantages of both transmission and ATR spectros-

copy. The application of these methods was then discussed

further with a review of relevant case studies.

The applications shown in this chapter have demonstrated

the tremendous analytical potential of FTIR imaging. The

most important component of FTIR imaging is the FPA

detector, as within a system of coherent optics this provides

the very important capabilities of being able to collect both

spatial and spectral information simultaneously across a

system. Also with modern FPA detectors data acquisition

time is very short. This opens up many possibilities for

imaging spectroscopy, especially the study of dynamic sys-

tems such as the dissolution of solid dosage forms.

The applicability of FTIR imaging is augmented by the

versatility of the system in ATR mode. This has led to the

development of many customized accessories; the applica-

tion of these novel techniques to the study of pharmaceutical

formulations has been talked about in detail in this chapter.

The major utilizations of these accessories have been for

compaction, dissolution, controlled humidity, high-through-

put analysis, and forensic studies. The use of macro- and

micro-ATR imaging allows for investigation of samples at a

range of spatial resolutions and fields of view. It is important

to remember that ATR imaging does only produce an image

of the surface layer of a tablet, though work has been done to

show that these data are still relevant. Recent developments
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in the area of ATR-FTIR imaging with a variable angle of

incidence opens up the opportunity of 3D imaging surface

layers of skin in studies of transdermal drug delivery [10] or

thin layers of polymeric or pharmaceutical samples [89]. The

combination of macro-ATR imaging with mapping [90]

offers possibility of obtaining images with large fields of

view that may be useful in pharmaceutical analysis. The

capabilities of ATR-FTIR imaging are further enhanced by

the fact that it is not by necessity a destructive technique, so

once a sample has been analyzed in situ it can be extracted

and reanalyzed elsewhere allowing complementary techni-

ques to be applied to further improve the investigation of a

sample. Even when working with dissolution, which is a

destructive process, other analysis techniques can be used

in conjunction with it, such as UV/Vis or visible optical

analysis.

The work in this chapter has demonstrated that FTIR

imaging is an invaluable analytical tool for the study of

pharmaceutical formulations. FTIR imaging has clear ad-

vantages over the standard pharmaceutical analysis tools

such as the USP dissolution test, which produces a dissolu-

tion profile, in that it reveals information about what happens

within the tablet.

ATR-FTIR imaging has great potential in studies of the

interaction of drugswith live cells, whichmay be useful in the

optimization of chemotherapy approaches in cancer treat-

ment [64]. ATR-FTIR imaging can also be a valuable tool for

studying protein crystallization in a high-throughput manner

under a range of different conditions [91].
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11.1 INTRODUCTION

Although spectroscopic microscopy utilizing other modali-

ties was described as far back as the late 1940s [1], near-

infrared spectroscopic imaging, also called NIR chemical

imaging (NIRCI), was first conceived relatively late, when

implemented by several groups in the early 1990s. The

history of NIR spectroscopic imaging instrumental develop-

ment is presented in Chapter 4 and has also been reviewed in

Ref. 2. Its application in the pharmaceutical industry gained

momentum almost a decade later with the introduction of

commercial instrumentation, and it became one of the most

exciting new analytical techniques available within the phar-

maceutical industry for formulation development and

manufacturing troubleshooting of solid dosage forms. Its

value to the industry was derived from the ability to deliver

spatially resolved chemical information in solid samples,

information that was not readily available using previously

existing instrumentation. Today, NIR imaging is employed

by most (larger) pharmaceutical companies and contracted

out for many intermediate-sized ones, and advantages of this

relatively new technique arewidely exploited and developed.

The increase in the number of application areas within the

pharmaceutical industry is due in large part to the unique

information that can be accessed. However, it is undoubtedly

also encouraged by the simplicity of sample preparation

(often limited to placing a tablet in the field of view (FOV))

and the ease with which data can be acquired. Despite the

wealth of new information that is accessed and the realization

that it is often critical in formulation development and

troubleshooting, deployment of this technique has not yet

fully achieved its potential, in part due to the multidisciplin-

ary nature of the technique; NIR imaging combines NIR

spectroscopy and advanced mathematical processing of both

the spectra (chemometrics) and the resulting chemically

segmented images (image processing). The challenge to find

personnel with the required balance of skills, coupled with

the secrecy of developed methods (necessary to preserve the

competitive advantage that they infer), has presented the

biggest hurdles for early adoption by the industry at large.

The most innovative users today are often part of multidis-

ciplinary teams that combine expertise in different areas

(e.g., spectroscopy, chemometrics, image analysis, formula-

tion, and process development), and now the literature

abounds with applications of NIRCI from which methods

can be extracted. Methods can be implemented into macros

that can then be deployed in a turnkey fashion for data

processing, making it possible for nonexpert users to suc-

cessfully implement NIRCI for routine applications.

In this chapter, NIR imaging studies have been grouped

into the three most successfully implemented application

areas: (1) formulation, process, and quality by design (QbD);

(2) quality assurance (QA) and troubleshooting; and (3) the

investigation of counterfeit products. There are other types

of applications for NRICI, but they tend to rely on the same

basic principles of method development presented in this

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
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chapter. Although NIRCI is used widely throughout the

pharmaceutical development process, extending from for-

mulation development to commercial production, the general

consensus remains that the technique is still underutilized.

Product and process understanding have been of particular

interest within the pharmaceutical industry since the PAT

initiative and QbD were launched by the U.S. FDA [3]. The

spatial distribution of active ingredients and excipients is

considered to be one of the critical quality attributes of solid

dosage forms [4]; NIRCI is most often used to analyze the

distribution uniformity of the active ingredients in tablets or

powder blends and correlate this with product performance.

During the development phase of a pharmaceutical formu-

lation or process, NIR imaging can be extremely helpful in

assessing the criticality of distribution of ingredients (either

active or excipient) with respect to product quality, a concept

at the heart of QbD. At the end of the process, QA of finished

solid dose formulations is usually based on assays: purity of

the API, dissolution properties, and a number of physical

tests. These tests are often destructive, so although they

provide an indication that there is a problem, the sample is

destroyed in the process, making further analysis into the

cause of the problem impossible. This makes it difficult to

remedy the situation. Since these properties are very often

related to the spatial distribution of components in a solid

dosage form, NIR imaging has a great potential for QA

analysis and troubleshooting (i.e., investigation of out-of-

specification products). Finally, because poor quality or lack

of the active ingredient(s) in counterfeit products can heavily

compromise safety, counterfeit analysis, identification, and

sourcing are of extreme importance within the pharmaceu-

tical industry and for the health authorities. Counterfeit drugs

are often difficult to detect visually, as they have been

produced to closely mimic the real drug product. NIRCI has

proven to be an invaluable tool for identifying these visually

(nearly) identical products in the market.

The objective of this chapter is to describe the various

fields of applications and methods used for NIRCI through

several illustrative examples. As such, it is not meant to be an

exhaustive review of the literature, but rather to provide a few

key relevant analytical templates that may be used to solve

common problemswithin the pharmaceutical industry.Many

references are provided for review of background informa-

tion on various topics, and we encourage newcomers in the

field to consult these reviews for amore thorough description

of the concepts.

11.2 METHODS: STRENGTHS AND LIMITATIONS

Considering the breadth of potential objectives for NIRCI, it

should come as no surprise that there is no single analytical

method that is optimized for all possible applications. Mul-

tiple approaches have been described with respect to sample

presentation, data acquisition, spectral preprocessing and

processing, and image analysis. In fact, methods may some-

times appear contradictory, depending on the types of appli-

cation and their objectives; the choices made by the investi-

gator should be relevant to the objectives of the application,

even as far as selectingwhetherNIRCI is the right approach at

all! Lyon et al. from the U.S. FDA [5] reported some phar-

maceutical applications ofNIR technology that described the

progression from NIR spectroscopy to imaging as a function

of the questions at hand. OnceNIRCI has been selected as the

instrumental tool, a data acquisition and processing scheme

that achieves the relevant analytical goal must be developed,

and this is themethod development phase, the need for which

is universal across analytical techniques. Lewis et al. [6]

discussed data acquisition and processing approaches for

various applications and LaPlant [7] focused on specific

aspects of data acquisition and processing that we also feel

are important for proper method development. The general

consensus is to try a simple approachfirst, but that onemust be

prepared todevelopadedicated (andoftenmore complicated)

method to answer very specificquestions in complex systems.

For example, a quick screeningof a powder sample to confirm

the presence of component agglomerates can be done very

rapidly by acquiring a fewspectral data points and calculating

a peak height; a more precise characterization of the agglom-

erates may require data to be acquired over a large spectral

range, combined with chemometrics and image analysis.

Figure 11.1 shows a block diagram of parameters that should

be considered in the development of a NIR imaging

application.

Sample preparation for NIR imaging ranges from simply

positioning the sample in the field of view to cross-sectioning

for the purpose of analyzing the core of a tablet or for certain

NIR mapping implementations that require a perfectly flat

surface (see Chapter 4 for more details). Sample preparation

can have a huge impact on the result and can therefore be

quite important. Various aspects of this subject and how it

relates to other data acquisition parameters are explained

below.

It may sound surprising that very few publications on

applications of NIRCI describe any optimization of data

acquisition parameters. For example, a vast majority of

applications reported in the literature make use of an LCTF

and focal plane array-based instrument for whichwavelength

resolution and range can be adjusted, and it is well under-

stood that these can affect the discrimination between com-

pounds of interest. Yet, very little effort has been put into

optimizing these parameters beyond using either the full

spectrum or ingredient-specific wavelengths. In other quan-

titative applications, the signal-to-noise ratio can play an

important role that can be influenced simply by acquiring

more scans or co-adds. The lack of reports of data acquisition

optimization probably stems from two fairly simple facts:

most implementations of NIR imaging are so fast that the
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actual gain in time from the selection of an smaller spectral

range is not worth the effort, and the signal to noise is so good

from single scanswith few co-adds thatmost applications can

be solved without the need to increase scan time.

One important consideration in the selection of sample

preparation method and spectral range is the relationship

between wavelength and depth of penetration in a NIRCI

diffuse reflectance measurement. Figure 11.2a shows how

the depth of penetration can impact the image produced by a

diffuse reflectance measurement. In image a, the diameter of

the sphere in the chemical image is smaller than its physical

diameter because the radiation penetrates only to depth a.

Image b shows a sphere of a diameter equivalent to the actual

sphere, but concentric shading represents the mixture spectra

that would be measured progressively toward the edge as the

beam probes some of the continuous matrix before it hits the

sphere itself. In image c, the diameter of the sphere can also

be estimated adequately, but all spectra in this circlewould be

mixture spectra because a volume of the continuous matrix

below the sphere is also measured.

The effect of the depth of penetration can be controlled by

selecting the wavelength range. As the depth of penetration

increases with the decrease in wavelength, selecting a longer

wavelength range effectively reduces the depth andmay help

detect minor components present close to the surface. The

opposite is also possible, where selecting a shorter wave-

length may be useful to probe a greater proportion of the

sample and thereby ‘‘see’’ agglomeration phenomena that

may not be present within a few tens of microns of the

surface. Another means of accessing a deeper portion of the

tablet is cutting a cross section; this is routinely performed

with coated tablets, for which there is no desire to investigate

the coating. The tablet can be milled using a bevel-edged

blade, cross-sectioned using a sharp straight blade or even

sectioned with a microtome.

An interesting aspect of imaging cross sections of tablets

was reviewed by Clark and Šašic [8] in Raman mapping

experiments. While the technique used is very different in

terms of the depth of the measurement (around 2 mm with

Raman and around 50–200 mmwithNIR), the question raised

remains pertinent: How is an image of a cross section able to

provide a measurement of the diameter of equal-sized

spheres (representing agglomerates of pharmaceutical in-

gredients) when a microtome will actually not section all of

them in the same depth? Figure 11.3 shows a schematic

representation of the combined effects of the depth of

penetration and two cross-sectional planes on the image

acquired from the same sized spheres located at different

depths in a continuous matrix.

Two general interpretations can be made from this sche-

matic: (1) a very small depth of penetration will always

Data acquisition

Spectral preprocessing Qualitative interpretation
(unsupervised)

Image calculations

Image analysis

Final image

Sample information

Calibration (supervised) 

Wavelength range
Wavelength resolution
Number of scans/replicates
Spatial resolution
Field of View
Etc.

Conversion to log (1/R)
Normalization (e.g.,SNV)
Derivative spectra
Smoothing
Baseline correction
Etc.

Univariate intensity
Peak height ratio
Correlation coefficient
Principal component analysis
Etc.

Particle/domain statistics
Binary images
Etc.

Visual assessment
Distribution intensities
Standard deviation
Etc.

PLS
CLS
PLS-DA
Clustering
Etc.

FIGURE 11.1 General routes for NIR imaging applications.

FIGURE 11.2 Schematic representation of the effect of the depth

of penetration on the size of the sphere (representing an agglomerate

of a single ingredient) measured.
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underestimate the size of spheres that have a diameter larger

than the depth of penetration if they are not cross-sectioned in

the middle of the sphere; (2) a large depth of penetration

underestimates the concentration of the sphere ingredients

because it measures mixture spectra especially close to the

edges (it is, however, better able to estimate the size of the

sphere). For these identical spheres present at different

depths in the sample, size is best estimated using a longer

depth of penetration (scenario 1b), but the ‘‘purity,’’ or

concentration of the ingredient within the sphere, is best

estimated in the spheres using a very short depth of

penetration (scenario 1a). Overall, the simplified schematic

illustrates that there is no ‘‘best’’ data acquisition scheme for

all scenarios; the success of a method at answering the

question at hand is always directly related to the choices

made.

Selecting the FOVor the size of the scanned area is also

very important because if the sample size selected is not

representative of the distribution of the formulation, no

amount of spectral processing is going to give an accurate

‘‘picture’’ of the distribution. For tablets and other samples

that can be measured whole, positioning and sometimes

fixation of the sample might be the only sample preparation

steps. Difficulties arise when parts of powder blends have to

be sampled. How does one ensure representative sampling?

This is a widespread problem for any analysis from large-

scale production and sampling must be considered with the

usual statistical considerations in mind. The amount of

material sampled is important, sample handling of the

thieved powdermust not cause segregationwithin the powder

sample, and, finally, a representative area of each sample

should be analyzed by imaging. A good example of such a

process is described in the section on the analysis of powder

blends. It is possible to prepare pressed pellets of a powder

sample to stabilize the material, although the high pressure

and additional powder handling may compromise the integ-

rity of the sample.

At the sample level, the importance of proper selection of

the FOV should never be underestimated. The FOV must be

large enough to ensure that the image acquired from a

sample is sufficiently representative of the whole sample,

even when the sample does not meet expected criteria for

distribution of components (i.e., contains very large agglom-

erates). For example, if it is expected that agglomerations of

API will be present in a size range of 10–80 mm in diameter,

then imaging a 500 mm FOV could potentially yield enough

information to characterize at least a few of these agglom-

erates. However, if the sample is out of spec, then it may

contain agglomerations as large as 300–500 mm, which

means a FOV measuring 500 mm simply cannot describe

the problem; in reality, the problem may not be seen at all in

this small FOV. If the field of view is imposed by instru-

mentation available and relatively small, then time must be

invested in the acquisition of a number of images to be

combined into one larger image. While there is no upper

limit for the size of the FOV, the largest FOV typically used

in the pharmaceutical industry is a few centimeters across

for the investigation of tablet identity in a blister pack,

where a macro field of view is desired to image the entire

blister pack at once. The FOV for global imaging instru-

ments based on refractive optics tends to be more flexible,

and large areas are attainable by selecting low magnification

optics. Mapping instruments that typically employ mirrored

optics may have only one or two magnification options, and

large FOVs may only be obtained by moving the x, y stage

over larger areas with the standard magnification optics

in place.

Related to FOV are the concepts of pixel magnification

and spatial resolution. Although they are related, they should

not be confused; pixel magnification is determined entirely

by the configuration of the optics employed, whereas the

spatial resolution is impacted by physics of the type of

measurement performed as well as the selection of optics.

Most NIRCI pharmaceutical applications reported in the

literature are performed in diffuse reflectance. In this mode,

the sample is illuminated with NIR radiation and the detector

measures the radiation diffusely reflected from the sample. In

diffuse reflectance, the diffraction limit at the wavelength of

themeasurement and the depth of penetration of the radiation

both affect the actual maximum spatial resolution that can be

achieved. These phenomena were explored in detail by

Hudak et al. [9], who concluded that the effective spatial

resolution in a NIR diffuse reflectance measurement is in

the order of 60–90 mm.When the particle size is added to the

equation, Clarke et al. [10] reported that the majority of the

diffusely reflected radiation may come from the top 50 mmof

the sample (with small particles); this led them to conclude

that with careful selection of the wavelength range, it is

indeed possible to obtain information about the spatial

distribution of components similar to that obtained from

Raman microscopy, a technique characterized by a much

FIGURE 11.3 Schematic representation of the effect of depth of

penetration (a represents a short depth of penetration and b repre-

sents a long depth) and cross-sectioning plane on the measurement

of spheres of identical diameter positioned at different depths in a

continuous matrix.
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smaller pixel size and consequent longer data acquisition

times.

Typical agglomerations (also called particles, aggregates,

or domains) of an active ingredient and the vast majority of

excipients vary between 5 and 500 mm; it is important to bear

the actual spatial resolution in mind when selecting a pixel

magnification for a particular experiment to avoid wasting

time on ‘‘empty’’magnification. As the lower limit for spatial

resolution has been modeled to be �50 mm, acquiring data

with a magnification of 25 mm per pixel will provide the

optimum sampling interval, without empty magnification. In

contrast, using a 1 or 10 mmper pixelmagnification optic will

not provide any additional information regarding the distri-

bution of ingredients. Alternatively, acquiring data at a

100 mm pixel magnification may not provide enough spatial

resolution to localize the smaller domains. It is equally

important to understand the wavelength-dependant depth of

penetration (as reviewed in Figure 11.3). It is possible to

take advantage of the repetition of spectral features across

different wavelength ranges in the NIR spectrum: choose a

longer wavelength range with a shorter depth of penetration

to investigate smaller domains, and shorter wavelengths to

characterize larger domains.

As real pharmaceutical products are not made of equal-

sized spheres, it may be beneficial for the user to control both

pixelmagnification (through selection of imaging optics) and

the depth of penetration (depending on the wavelength of

light used to probe the sample).

A circumstance that illustrates this principle is the char-

acterization of magnesium stearate (MgSt). This component

is usually present at concentrations around 1%. Used as a

lubricant, it does not tend to aggregate, but rather surrounds

relatively large particles. The fact that MgSt domains tend to

be smaller than the spatial resolution of the technique makes

it quite challenging to characterize, as spectra will be thor-

oughly mixed, with spectral contributions from both MgSt

and the particles it surrounds. Fortunately, the NIR spectrum

of MgSt contains a strong and sharp band in the long-

wavelength range that can be identified even when the

component is present in very small amounts. By scanning

over (or only selecting) the long-wavelength spectral range,

the volume that is being sample can be minimized. Simply

put, components present in small amount are easier to locate

in smaller sampling volumes, as an agglomerate can repre-

sent a more significant fraction of this sampling volume. By

applying appropriate data processing, it is possible to pick the

distinctiveMgSt spectral features from the mixture spectrum

and perhaps be able to determine the amount of MgSt

measured at each pixel. Interestingly, it is often not necessary

to acquire new images to apply the method just described; a

small spectral range may simply be extracted from a full

spectrum originally acquired. This two-step approach, ac-

quiring the full spectral range but selecting limited wave-

length ranges for targeting processing of specific compo-

nents, ensures that most components can be characterized. In

conclusion, the spatial resolution, magnification, and field of

view should be considered carefully for each application

based on the questions to be answered and the knowledge

available.

11.2.1 Data Processing

Once spectroscopic data are acquired, the second step con-

cerns the preprocessing of the spectra obtained. A simple rule

is to minimize preprocessing as much as possible since

preprocessing methods can introduce unwanted and confus-

ing variations in the data set. Reflectance counts are con-

verted into absorbance spectra (log (1/R)) following removal

of the detector’s dark response and division by an appropriate

background response image. Spectral normalization is often

applied for pathway corrections of the surface of the sample;

normalization such as SNV will often work quite effectively

if spectral features of the NIR spectra are more or less alike,

which is often the case for NIR spectra because the bulk

material contributes strongly to the spectrum. The flip side is

that if spectra are relatively different, scaling the absolute

responses might compromise the information. At the ex-

treme, normalizing noisy spectra will increase the noise

significantly. The effect of normalization should be consid-

ered carefully, especially for quantitative data analysis.

Beyond normalization, derivative spectra are often used to

enhance discrimination of different components. Second

derivative spectra are commonly used in NIR spectroscopy

because of the easier spectral interpretation; first derivative

spectra can be used as well, but interpretation of peak

maxima is less intuitive since peak maxima translate to a

zero value in the first derivative spectrum. It should be noted

that the noise level increases in derivative spectra.

Blend powders and tablets are fairly complex systems, and

the key to the successful application of NIRCI has always

been a good understanding ofwhat information is desired and

what processing of the images is required to achieve it. Most

method development strategies involve a progression of data

processing, moving from the calculation of a simple single

band intensity or integrated area to unsupervised and super-

vised (calibrated) methods as the sample and the questions

increase in complexity.

The simplest and fastest way of getting information out of

aNIR image is univariate analysis.When a singlewavelength

is selected, the contrast in the image is based on the spectral

intensity at that wavelength; this may be sufficient to provide

the distribution information for components of interest show-

ing distinct spectral features. Visual inspection of the single

wavelength image can provide some information and does

not need any calibration or complex calculations. For more

complex mixtures or components with overlapping spectral

features, unsupervised multivariate analysis may be neces-

sary to capture the desired information among the natural
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variability of the sample and generate chemically relevant

image contrast. Principal component analysis (PCA) is

widely accepted as a surveyingmethod for chemical imaging

data. PCA computes vectors describing the sources of spec-

tral variability and reports scores, or proportions of the

importance of these specific sources of spectral variability

for each spectrum (pixel) of the image. In samples where the

components are segregated into large particles, the PCA

loading vectors often resemble the spectra of the pure

components, which greatly facilitates interpretation of the

variability. When the sample is more homogeneously blend-

ed, PCA is much less attractive, as the interpretation of the

sources of variability is complicated (Sasic [11] published an

interesting discussion on this topic with a comparison of NIR

and Raman data) and the scores are generally less strikingly

different between pixels. PCAwill performwell and be fairly

easy to interpret when dealing with a very simple system,

consisting of few ingredients that are spatially segregated.

More finely blended ingredients produce mixture spectra at

more pixels of the tablet that then drive the PCA to look for

sources of variability betweenmixture spectra; thevariability

then often does not arise from a single ingredient (i.e., a

single spectral pattern) and positive and negative bands

displaying combined spectral features from multiple ingre-

dients are seen in the loading vectors. When the aim of the

analysis is to understand the differences in distribution of

ingredients between samples, but not necessarily look to

interpret the loading vectors, PCA has proven to be a very

powerful tool [12,13]. However, if there is a need to under-

stand the subtle differences between samples that are very

similar, have very low content in some ingredients, and

consequently display mostly mixture spectra, the use of

supervised chemometrics is usually more advisable.

Various supervised chemometrics methods are used to

predict the concentration or abundance of ingredients at

every pixel of spectral images. Classical least squares (CLS)

and partial least squares (PLS) are quite common methods.

CLS is a fairly simplemethodwhere regression equations are

derived from the spectra that link spectral features and

concentration. It requires a calibration matrix where the

concentration of all ingredients is known and built in the

model. It generally performs well with moderately complex

systems, but deals relatively poorly with noisy data and very

large spectral range selections. PLS is a matrix decomposi-

tion method that attempts to describe the concentration of

ingredients with as few vectors as possible by taking into

account both the spectra and the concentrations. The main

advantage of PLS is that one does not necessarily need to

know the concentration of all ingredients, although it is

important to include all ingredients in the calibration matrix.

A PLSmodel developed to predict a concentration requires a

calibration matrix to be built that spans the concentration

ranges expected for all ingredients, or at least the main ones.

Preparing such a calibration is not an easy task in imaging

because it is practically impossible to prepare a mixture

blended finely enough to ensure that all pixels of the image

have the same concentration of all ingredients. An average

spectrum of a sample image is often calculated to circumvent

this difficulty. A more practical approach is the use of PLS

discriminant analysis (PLS-DA), or classification PLS,

where the model is built with pure ingredient spectra only,

each in a separate class, and themodel attempts to predict the

fit of the pixel spectra in the sample imagewithin the different

classes. Some references discussing these different

approaches are given in Table 11.1.

As mentioned above, the preparation of a traditional NIR

quantitative calibration set should be considered with great

care for a NIRCI application. The major drawback of such a

calibration set is that it is virtually impossible to prepare

homogeneous samples of a specific concentration at the scale

of scrutiny used inNIRCI. Simply put, it is almost certain that

the powder blend will not be homogeneous at a scale of 40 or

even 125 mm per pixel; it is the fundamental reason why this

technique is used to assess the quality of blends! Since the

preparation of a full calibration set can be quite difficult (or

even impossible) and would be very time-consuming, dis-

criminant analysis approaches are more often used in NIR

imaging. PLS-DA for example uses a reference library of

pure spectra; a model is developed that maximizes the

differences between classes (pure ingredients) and can be

used to predict the class assignment of pure or mixture

spectra. The spectrum acquired at each pixel in an image is

then assigned a score for the different components in the

library. This approach is probably the most reported super-

vised analysis in the pharmaceutical NIRCI literature be-

cause of the availability of the pure components (both actives

and excipients) and simplicity of acquiring their spectral

signature. The PLS-DA scores can be related to the abun-

dance (and by extension the concentration) for each library

component. The accuracy of the abundance prediction de-

pends on the spectral signatures of the components and the

level of optimization of the model to differentiate them. For

example, bulk ingredients abundance may be predicted

easily with a crude model using a broad wavelength range,

but this model may perform poorly for minor components,

TABLE11.1 MethodsUsed forAnalyzingHyperspectralData

Cubes in Pharmaceutical Applications

Approach References

Single wavelength 6, 11, 14–18

Peak–height ratio 16, 18

Correlation coefficient 16

PCA 6, 11–13, 18, 19, 23

CLS 17, 20

PLS-DA (pure spectra) 6, 14, 19, 21–25

PLS (calibration set) 16, 20

Source: C. Ravn et al. (2008) J. Pharm. Biomed. Anal. 48.
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especially those that have spectral signatures with fewer

features or low overall absorbance. Such components may

require a separate calibration, which emphasizes their dis-

crimination from the bulk ingredients (as a group) as opposed

to the discrimination of the individual bulk ingredients.

It is always useful to explore the impact of the selection of

preprocessing and chemometric tools [20, 23]. For example,

Gendrin et al. [20] compared the impact of calculating PLS

and CLS predictions using normalized absorbance spectra

and second derivative spectra. As expected, different proces-

sing schemes favor the prediction of different components

depending on their abundance, the intensity of the spectral

features, the signal-to-noise ratio of the data, and the number

of components included in the system. This study emphasizes

the need to understand both the system (sample) under

investigation and the advantages and disadvantages of the

chemometric tools available.

At this point in the analysis, the abundance distribution is

often investigated in the form of a histogram plot of the

distribution; the x axis of the histogram plot can be a

concentration prediction, a peak intensity, a score from a

PCA or PLS, a correlation coefficient, and so on. This type of

statistical representation of the data emphasizes the presence

of low- and high-concentration areas (often called holes and

hot spots, respectively). Lewis et al. describe an example of

the use of the histogram plot in a blending study in Ref. 26.

Figure 11.4 shows histogram plots for a component in three

different samples and can serve to understand the correspon-

dence between the histogram and the components distribu-

tion. In the first plot, a fairly narrow distribution is observed

with no asymmetry in the tails; this is indicative of a

homogeneous distribution of the component across the sur-

face of the sample. Such a distribution is characterized by a

small standard deviation and skew close to zero. Themean of

the distribution is proportional to the abundance (concentra-

tion) of that component. The second plot shows significant

asymmetry and a broader histogram (higher standard devi-

ation from the mean); the tail to the right of this distribution

translates into a positive skew, which is indicative of areas of

higher concentration in the sample (i.e., hot spots). Finally,

the third plot shows asymmetry on the left side (negative

skew), which indicates areas of lower concentration for the

particular ingredient (holes, or cold spots).

Finally, image analysis is usually performed on the chem-

ically contrasted images to obtain specific information about

spatial distribution of components, preferential colocaliza-

tion of ingredients, coating thickness, and so on. By con-

verting the score images (or peak height or any other contrast

mechanism selected) into a binary image, it is possible to

obtain information about the spatial distribution of different

components. This information can be extracted directly by

visual inspection, but quantification of particle or agglom-

erate sizes is obtained by measuring the area (i.e., number of

pixels) of the continuous regions isolated in the binary image.

Binary images, in which pixels are on or off depending on

their content of the component of interest, can be used for

statistical analysis:mean and variance in diameter, number of

particles (domains), nearest neighbor, and other tools to

quantify (non)uniformity in the images. This part of the

processing will be addressed in some specific applications.

11.3 APPLICATIONS

11.3.1 Formulation, Process, and Quality by Design

11.3.1.1 Blend Uniformity of Powder Samples Blend

uniformity is one of the major pharmaceutical areas in which

NIR imaging is applied, in large part due to the push for better

process understanding in QbD. Although sampling and

handling of powder samples introduces a new challenge

compared to tablets or other finished products, analysis of

powder blend uniformity by NIR imaging has proven to be

quite successful. A uniform blend with respect to active

ingredients and excipients is usually desirable to assure a

consistent quality of the final product. NIR imaging can be

applied to measure blend uniformity from early process

development at laboratory scale to full process control in

a production environment. In the process development, the

choice of a blender type, the influence of mixing time,

premixing, humidity, and particle sizes of ingredients are

investigated extensively and NIRCI can provide valuable

information about the effects of these parameters on blend

uniformity and finished products in a relative short time.

One excellent description of blend analysis in a small-

scale model system was described in great detail by Ma and

Anderson [19], who evaluated the uniformity of the distri-

bution of ingredients in a blend through two types of sam-

pling. First, the top of the blend was imaged in the mini-

blender. The content of the mini-blender was then pressed

into a compact and the bottom and the cross section of the

compact were imaged (Figure 11.5).

In this experiment, the blend was first monitored in situ by

imaging through a window into the blender, and then com-

pacted to enable an investigation of a cross section of the

blender content. Pressing the compacts in the mini-blender

should cause very little change to the distribution of actual
FIGURE 11.4 Histogram plots describing the distribution of a

component in a sample.
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components. Interesting results were obtained that described

the progressive mixing of ingredients, but perhaps the most

interesting was that the traditional UV analysis of the blend

powder to measure API distribution showed an inexplicably

large difference between multiple sampling positions at a

certain time point. Analysis of the chemical images acquired

at the same time point revealed that more API was present

near an edge in the top and bottom images of the compact,

thereby confirming that therewas indeedmoreAPI probed by

the UV analysis of the measurement made at that edge.

The analysis was continued to evaluate the difference in

API concentration at various points in the top, cross section,

and bottom of the compacts produced at 10 time points. The

bottom showed the largest variability during process, but a

relative uniformity at the end of the run (Figure 11.6).

Additional statistics were calculated with regard to the size

of high-concentration agglomerates that also became more

homogeneously distributed as the blend approached the

15minute end point. A multitude of information about the

effect of the order of loading the ingredients, selection of the

blender, blending time, and blend efficiency relative to

position within the blender was gathered in this study that

can be invaluable in process understanding. A slightly dif-

ferent small-scale blend experiment is shown in Figure 11.7.

In this experiment, nine images (FOV¼ 13� 10mm

each, magnification 40 mm pixel size) were concatenated to

sample a representative amount of powder, resulting in a

sampling area of approximately 4� 3 cm.A concatenation of

smaller images, that is, a mosaic approach, was selected, as

opposed to using a lower magnification and thereby a larger

FOV because small agglomerations of API are expected; a

larger FOV (e.g., magnification 125 mm per pixel) would

have enabled the acquisition of this image at once, but each

pixel would have probed a larger volume and have revealed

only concentration variables arising from the larger agglom-

erations. In this case, therewas an interest in the smaller ones,

so a smaller pixel size approximating the maximum spatial

resolution of a diffuse reflectance measurement was more

appropriate. The pure spectrum of the active ingredient was

used to calculate a correlation coefficient image; this simple

mathematical processing was selected because the active

ingredient had very distinct spectral features (see

Figure 11.7b). Once the image contained the desired chem-

ical contrast (in this case the relative abundance of API),

image analysis was performed to isolate particles (or do-

mains) of higher abundance. They correspond to the white

areas in the binary images. In the binary images, individual

pixels are classified as the active ingredient (white) or as bulk

material. The threshold for classifying pixels as active in-

gredient or not was determined based on the contrast of the

correlation coefficient. The effect of the blender type for this

mixture can be assessed easily by visual inspection. Agglom-

erates of the active ingredient can be seen in the Turbula-type

blender process, while nearly no agglomerates are present in

the blend of the Gral-type blender. Quantitative assessment

of the detected agglomerates was performed by using a

particle statistics function employing binary images in the

software ISys 4.0 (Malvern Instruments, UK).

Another small-scale experiment was reported by Li

et al. [25], who studied blend uniformity with the objective

FIGURE 11.5 (a) Compact prepared from blended powder. Images were acquired from the bottom of the compact (indicated by the arrow)

and two images were acquired from the cross-sectional areas shown in (b). Reproduced with permission from Ref. 19.

FIGURE 11.6 Predicted concentration of active ingredient (acet-

aminophen) from different sections of the bottom of the compact.

Reproduced with permission from Ref. 19.
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of measuring the effect of API particle size (i.e., sieve

fraction) on blending behavior as a function of time. Small

volumes of powder blends were prepared in 20mL scintil-

lation vials using a benchtop rotating mixer (Glas-Col brand,

Terre Haute, IN, USA) and measured using an FPA-based

chemical imaging system (Malvern Instruments).

Blend samples containing API of particle sizes 60, 80,

100, 200, and 320 mesh were mixed for 20min. The NIR

images were recorded directly from the top of the vials. SNV

normalized and first derivative spectra were used for PLS-2

calibration of the three ingredients: API, HPMC, and mi-

crocrystalline cellulose (MCC). On the basis of the predicted

concentration of each component, binary images were cre-

ated to calculate particle statistics in the same manner as

described above.

It should be noted that the determination of the threshold

in concentration images is subjective and should therefore be

set with appropriate reasoning. If concentration differences

are relatively large, the threshold can often be determined

visually because it corresponds to a change of slope in the

histogram plot of the distribution. However, such sharp

changes in slope are not always seen. In such cases, a number

of standard deviations from the mean or another relevant

statistical parameter are usually selected to set the threshold.

The most important aspect of this step is to always use the

same threshold to process the data so that the binary images

obtained are comparable. The total percentage of pixels (i.e.,

area) multiplied by the average concentration measured in

these pixels should correlate with the expected concentration

of the ingredient; of course, this will deviate if the sample is

not representative of the batch. Comparing the measured

abundance and known concentration can help to verify the

accuracy of the threshold chosen to create binary images and

also establish if the sample is representative. As discussed

previously, if large agglomerations are seen, there is an

increased likelihood that the abundance measured in the

imaged area is not representative of the whole.

Typical particle statistics calculated from the imaged area

are shown in Table 11.2, which serves to characterize uni-

formity further than in terms of concentration variation.

In Table 11.2, a clear relationship between API particle

size and the size and number of domains detected exists: As

FIGURE 11.7 (a) Correlation coefficient and binary NIR images of API agglomerates in two powder blends processed with different

blenders. (b) NIR Imaging spectra of the API and two excipients corresponding to the blend composition as shown in (a).
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larger particles are used, the blend yields a much smaller

number of larger agglomerations. The proportion of the area

of the sample containing higher concentration of API de-

creases slightly as the particles get smaller, but probably not

significantly. Binary images of a 100-mesh and 320-mesh

API after 20min of blending are shown in Figure 11.8. The

evolution of API domains in the blend process can be

monitored by stopping the blend process and recording a

NIR image. In Table 11.3, particle/domain statistics are given

for the 80-mesh API as a function of blend time.

Assessing blend uniformity using particle statistics is a

very attractive approach to investigate and compare different

quality parameters during process development.

Concentration (or abundance) predictions should always

be analyzed in conjunction with the agglomerate size mea-

surement and the results presented in Table 11.3 are a good

example of the value of this additional piece of information.

As the blending time increases, there is a significant change

in the number of domains, but the mean diameter of the

remaining domains is fairly constant. Since the abundance of

the API remains unchanged as blending progresses, it is

important to look at the concentration (mean score or other

parameter used to quantify API) to understand what is

happening: if the number of domains decreases, but the

concentration (score) increases in these domains, the API

is likely segregating. On the other hand, if the number of

domains decreases and the scores decrease as well, it is an

indication that the API is gradually more finely blended.

NIR chemical imaging is used to determine blend quality

not only in pharmaceutical formulations involving small

molecules, but also for biopharmaceuticals. A common

approach to stabilize proteins is to dry them, for example,

by freeze drying, spray drying, or supercritical fluid (SCF)

drying. However, protein degradation can occur during dry-

ing and/or storage of the dried products. Therefore, the

addition of sugars or other stabilizing excipients is generally

required. Exclusion of protein from sugars could lead to

aggregation during storage, and phase separation has been

reported to be responsible for failures in protein stabilization.

A new SCF procedure was examined and NIRCI was used to

study the homogeneity of the SCF samples [16]. NIR images

were recorded after preparation of small (thin) pressed

compacts using a manual tablet press because the available

amount of powder sample was limited. A quantitative PLS

calibration model was created and compared with the per-

formance of a correlation coefficient-based model. Binary

mixtures were investigated, which makes a correlation co-

efficient very attractive to use since interpretation is quite

easy and reliable, although a quantitative conclusion may be

less reliable at very low concentrations. Uniformity of the

TABLE 11.2 API Particle/Domain Statistics in Blending

Simulation After 20min

Total Particles/Domains (>0.001mm2)

API Size (Mesh)

Number of

Domains Area %

Diameter

(mm)

60 55 4.42 0.28

80 116 5.02 0.22

100 139 4.75 0.18

200 243 4.44 0.13

320 630 4.11 0.08

>320 914 4.30 0.06

Source: Reproduced with permission from Ref. 25.

TABLE 11.3 Particle/Domain Statistics in Blending

Simulation with 80-Mesh API

Total Particles/Domains (>0.001mm2)

Blending Time

(min)

Number of

Domains Area % Diameter (mm)

0.17 67 4.89 0.28

0.5 114 6.92 0.25

1.0 108 7.50 0.25

5.0 106 6.40 0.24

10 88 4.95 0.23

20 57 3.28 0.23

Source: Reproduced with permission from Ref. 25.

FIGURE 11.8 Binary images of blends prepared from API with a respective particle size of 100 and 320 mesh after 20min of blending.
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SCF samples was assessed by comparing the relative stan-

dard deviation (%RSD) of the lysozyme concentration with

freeze-dried samples and hand mixed (deliberately nonuni-

form samples) (Figure 11.9).

11.3.1.2 Blend Uniformity Assessment in Tablets Uni-

formity of SCF sample showed comparable or better unifor-

mity than freeze-dried product. No phase separation, ag-

glomeration,was detected due to the SCFprocess. Themodel

could be used to investigate stability of the formulation as a

function of time (and accelerated stress conditions).

Blend uniformity can also be measured in tablets; it is

considered a critical quality parameter that can be measured

withNIRCI, alongwith the polymorphic state of API, state of

hydration, and content [5]. With respect to product under-

standing and quality by design, it is now well accepted that

formulation developers should know what the desired uni-

formity of all critical ingredients is and, maybe more im-

portantly, how deviations from this uniformity affect the

performance of a tablet. Hilden et al. [13] successfully used

NIRCI in a formulation development study and determined

the optimal particle size for an excipient to prevent dissolu-

tion failure or stability issues in their product. In contrast to

blend uniformity of powders, tablets can be analyzed as such,

which avoids some of the sample integrity issues related to

powders, although representative sampling of tablets (for

instance, of a commercial batch) could be difficult as well. To

assess blend uniformity in tablets, experimental tablets are

often designed to deliberately vary the uniformity of the

components by using different mixing times during the blend

process [14] or varying API and excipient properties such as

particle size. Using this approach, a number of objectives can

be studied such as the impact of nonuniformity of specific

ingredients, comparison of blend uniformity of commercial

products [14, 21], and the impact on uniformity caused by the

tabletting process itself (Figure 11.10).

FIGURE 11.9 (a) NIR images and histogram plots of the lysozyme concentration distribution of A: supercritical fluid dried sample;

B: freeze-dried sample; C: hand-mixed sample. (b) Average NIR imaging spectra of pure trehalose and lysozyme. Reproducedwith permission

from Ref. 16.
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FIGURE11.10 NIRchemical imaging of the active ingredient distribution in six compositionally identical pharmaceuticalmodel tablets and

the corresponding concentration distribution.

The imaging approach should be chosen to achieve as

much discriminating power as possible between the tablet

ingredients, that is, include both an appropriate spectral range

andmagnification. If tablet uniformity is compared relatively

to a ‘‘gold standard’’ of uniformity, there is often no need to

quantify the concentrations of ingredients. PLS-DA or CLS

using pure component spectra are often favored for this type

of work because the calibration samples need to be only pure

ingredients, and the resulting score images are related to the

concentration of ingredients at each pixel. The quantification

of uniformity can be expressed as %RSD of the predicted

individual scores as long as the distribution can be considered

to be Gaussian. For severe nonuniformity, the distribution of

concentrations/scores is expected to depart significantly from

a normal distribution. Statistical values such as skew and

kurtosis can be used to assess the distribution with respect to

deviation from a normal distribution.

The API is not always the only component investigated;

many examples of NIR chemical imaging measurements of

distribution of excipients can be found in the literature. The

objective is always quite simple: once specific clustering

phenomena have beenmeasured, it becomes possible to trace

their presence back to certain critical manufacturing vari-

ables and possibly correct a problem or modify the process to

obtain the desired outcome. A similar approach to that

presented above for the API can be followed for studying

the uniformity of a specific excipient in tablets. Dissolution

properties of an API in a tablet formulation depend strongly

on physical distribution of the API and also the excipients. In

one particular instance, the distribution of a disintegrant was

assessed using NIRCI to investigate the impact of nonuni-

formity on dissolution behavior [27]. Different blend times

were used to incorporate the disintegrant and different com-

pression forces were used to prepare tablets that were then

imaged using a Sapphire NIR chemical imaging system

(Malvern Instruments) and finally their dissolution profile

was measured. Using PLS-DA, a discriminating contrast for

the disintegrant was created for a seven-compound tablet

formulation after spectral preprocessing consisting in SNV

normalization and calculation of the second derivative. In this

case, quantification of uniformity was performed using a

measure of regions (domains) of higher abundance of the

disintegrant. The domain statistics provide information such

as size, shape, and position of each domain and may be

combined with the average abundance in each domain for

further investigation of heterogeneity.

Results show that the disintegrant is more uniformly

distributed after 30min of blending. PLS-DA score images

are shown in Figure 11.11. Dissolution profiles were found to

be nearly similar regardless of the distribution of the disin-

tegration agent, which was quite unexpected. It was con-

cluded that the physical properties of the API are probably

more critical for dissolution of this formulation and that the

distribution of the disintegrant can therefore be considered as

noncritical. In quality by design approaches during devel-

opment, the identification of noncritical attributes is of major

importance as well.

In other examples of investigations of excipients with

NIRCI, more relationships with process parameters were

found to affect distribution of components in the finished

product. For example, the compaction force was found to

affect dissolution by forming disintegrant clusters that were

40% larger in a particular product; root cause analysis of a

processing issue also traced the problem to increased cluster

size of a polymer component of the tablets [28].

Quantitative analysis of the clusters in the form of the

measurement of their size and number in each tablet provides

a statistical means of comparing these samples beyond the

pretty picture (procedure described in Ref. 29). This is an

example of a product where there probably needs to be

manifold differences in cluster size to cause dissolution

failure. Other products are more sensitive. In 2005, the FDA

Office of Compliance published results indicating a link

between API mixing and excipient differences as measured

by NIR chemical imaging and dissolution failure in phar-

maceutical tablets purchased on the Internet [21].While there

are not really any general rules to predict which formulations

are more sensitive to cluster sizes, this measurement is often

significantly more relevant to lower dose products because a

greater number of larger cluster sizes are indicative of not

only possible dissolution problems, but also possible assay

failures. Simply put, if the API of a very low dose product is
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FIGURE 11.11 PLS-DA score contrast images for disintegrant (red¼ high concentration, blue¼ low concentration). (See the color version

of this figure in Color Plate section.)

present in large clusters, there is an increased chance that

some tablets contain a few clusters too many or too little;

either case can represent significant deviation from the

prescribed dosage. In this case, cluster size measurements

using NIR chemical imaging would have been an invaluable

tool had it been available during formulation development.

Roggo and Ulmschneider [30] described one such trou-

bleshooting/formulation development application for gran-

ules. A PLS classification calculated from images acquired

from a broad NIR spectral range allowed the identification

and localization of all five components of uncoated granules.

The resulting images highlighted an important segregation

issue, where the API and the avicel were concentrated in the

core of the granules and excipients starch and crospovidone

were at the periphery. This information, and the ability to test

more samples following trials of process changes, indicated

that a premixing step was required to avoid the segregation

observed.

11.3.1.3 Process Analytical Technology: Blend Unifor-
mity Monitoring NIR imaging (Figure 11.12) with all its

capabilities for blend uniformity assessment of all critical

ingredients is probably one of themost interesting techniques

to use as a PAT tool, but its place so far has remained mostly

in the quality by design area. Its implementation as a process

monitoring tool remains slow, although appropriatemeasure-

ments are sorted out from the process understanding initia-

tives. Blend monitoring has been targeted, but final tablets

are often discussed. Acquiring imaging at speeds typically

encountered in tablet production is a nontrivial exercise, so it

is important to understand the real benefits of such endeavors

to avoid deploying expensive instrumentation that may in

reality be overkill.

The first hurdle to application is that, as stated earlier,

representative sampling of production scale blends is tricky.

Using a sample thief can already compromise the composi-

tion/uniformity of a sample. Nevertheless, the standard

accepted in the industry is currently to perform HPLC on

samples that have been removed from the blender at different

locations of the blend using a sample thief. This approach is

time-consuming (and often operator sensitive) and not con-

sidered to be compatible with U.S. FDA process analytical

technology (PAT) regulations [31], as it does not provide an

understanding of the blending process—it simply gives an

assessment of whether or not an end point has been reached

with respect to the bulk distribution of the active ingredient.

For direct process analysis (without extracting a sampling

from the blend), global imaging systems have been used

positioned above or even connected to a blender to measure a

small portion of the blend touching a window. Despite the

fact that these instrument configurations are far from rou-

tinely used, interest is growing and feasibility studies of this

type of monitoring have been reported [15, 29]. El-Hagrasy

et al. [15] used a liquid nitrogen-cooled InSb imaging camera

setup with six discrete bandpass filters encompassing ab-

sorption bands of two components of the blend (lactose and

salicylic acid) to investigate blend uniformity in situ. The

FIGURE 11.12 NIR imaging setup: InSb camera (C), heat lamps

(HL),V-blender (B), sapphirewindow(W), spectrophotometer (S), and

fiber-optic probe (FOP). Reproduced with permission from Ref. 15.
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main advantage of this type of global imaging approach is the

relative large field of view (approximately 15 cm, represent-

ing about two-thirds of the top surface of the blend in this

case), which is a significant advantage compared to single

point NIR blend control (often in the range of 1 cm diameter).

The blend process was stopped every 2min and NIR images

were recorded of the top of the blend. The standard deviation

of the intensity recorded in one of the six spectral bands was

used as a measure of uniformity of the active ingredient.

Results showed that the blend was optimally mixed at

�14–16min, but demixing was clear beyond 20min. These

results were in line with other reference techniques, and in

this case the UV and single point NIR spectroscopic blend

monitoring. In real life, stopping a (commercial) blend

process for process analysiswould not be favorable, although

this could be acceptable for process development and control

of the final blend uniformity (at the mixing time where the

blend is expected to be uniform).

The use of an LCTF/FPA NIR imager directly connected

to a V-blender via fibre optic (Figure 11.13) was evaluated by

Lewis et al. [29]. The basic assumption explored was that, in

principle, if high-quality images can be obtained with these

complex instrumental configurations, evolution of the blend

process could be studied, monitored, or controlled.

The state of uniformity during the blend process was

monitored using the histogram plot of the intensity of some

significant spectral bands; results are shown for the distri-

bution of the API, as assessed by the intensity at 1632 nm.

The standard deviation values in Figure 11.14 decrease

with increased blending time, as expected in a process where

the blend is becomingmore homogeneous. The narrowing of

the histogram distribution indicates that the bulk of pixels are

becoming more similar to each other. As explained previ-

ously, a positive skew indicates that the tail on the right side of

the distribution is longer, which represents a population of

pixels with high API content. As the skew decreases with

blending time, it means that these high API content domains

are mixing with the bulkmaterial and moving toward a mean

blending value. The kurtosis is a measure of the ‘‘peaked-

ness’’ of a distribution, or alternatively the size of the tails. A

large positive number indicates that the distribution tails are

large, implying that a significant population of pixels does

not lie close to the mean (indicative of ‘‘hot’’ and ‘‘cold’’

spots in the sample with respect to the component being

investigated). In this example, there is no clear trend relating

kurtosis and blending time, which implies that although

progress of the mixing process can be seen based on the

standard deviation and skew values, there are still noticeable

domains of API present in the mixture.

The decision on whether imaging measurements in the

blender itself will provide a significant benefit over multiple

NIR or UV probes has not been made yet, but it is expected

that the rapidly increasing body of knowledge gathered with

NIRCI in formulation development will help answer this

question.

11.3.2 Quality Control

NIR imaging is considered to be particularly useful for

quality control of finished products or during different stages

of manufacturing. As described earlier, the uniformity of

ingredients or the presence of agglomerates of API or ex-

cipients can be strongly related to the quality and perfor-

mance of a finished product. In fact, all applications dis-

cussed in this chapter are more or less related to quality

control. Existing techniques such asHPLC arewidely used to

measure the API content, but distribution of ingredients is

certainly not applied on a routine basis. Dissolution studies

can determine the release characteristics of the API, but like

HPLC analysis are destructive and laborious procedures that

FIGURE 11.13 A prototype NIR imaging blend monitoring

instrument mounted to a V-blender. Reproduced with permission

from Ref. 29.

FIGURE11.14 Distribution of the intensity of 1632 nm corresponding to the API at different blend times. Reproducedwith permission from

Ref. 29.
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cannot provide direct insight into the cause of possible

deviations. For more complex formulations, such as multi-

layer systems, direct information on the formulation design

can be retrieved in a relatively short time by NIR imaging. In

this section, a number of application examples are reported

that show a wide range of applicability of NIR imaging for

quality control.

11.3.2.1 Content Uniformity Content uniformity of ta-

blets is a common quality parameter describing variance of

the API in a product of interest. Although high precision and

accuracy make HPLC or UVanalysis particularly suitable to

obtain reliable API dose results from single tablets, there are

generally no equivalent methods to test the excipients,

despite the fact that is it now well accepted that excipient

uniformity can play a crucial role in the performance of a

pharmaceutical formulation. Dissolution properties are of

great importance with respect to bioavailability, but stability

and other common quality parameters have been shown to be

related directly to the uniformity of excipients. The quanti-

tative measurement of the content of API and excipients and

their spatial distribution in powder or tablets are referred to

as blend uniformity; measurement of only the amounts is

referred to as content uniformity.

Since content uniformity is calculated as an intertablet

variance, ‘‘only’’ the mean content of single tablets has to be

determined. By averaging all spectra/pixels of one tablet, the

mean spectrum can be retrieved and used for content pre-

dictions [32, 33]. Gendrin et al. performed a feasibility study

for two kinds of pharmaceutical samples: simple binary

mixtures of API and cellulose and a more complex compo-

sition resembling a pharmaceutical formulation containing

API, MCC, lactose, and other low-content excipients. PLS-2

(concentration) and CLS calibrations was developed using

the mean spectra of each data cube and accurate concentra-

tion predictions were obtained. It was shown that optimal

spectral preprocessing and calibration settings were depen-

dent on the complexity of the mixture. Both PLS-2 and CLS

provided good predictions for the API, while the uniformity

of MCC and lactose was better described by PLS-2.

In general, for content uniformity, an average spectrum is

calculated from the entire imaged surface and the prediction

of concentration made on this unique spectrum. The basic

assumption is that the outer layer of the tablet is represen-

tative of thewhole tablet. This assumption may be confirmed

by imaging of multiple subsequent cross sections of a tablet

and comparing the individual average spectra. The resulting

images can be analyzed individually or reconstructed into a

three-dimensionalmatrix representing the distribution of one

or more ingredients (Figure 11.15). As a general rule, if the

content (concentration) calculated from the surface corre-

sponds to the expected concentration and aggregates of

single components are small, the outer surface is probably

a good representation of any layer of the tablet. However, if

the concentration calculated deviates from the expected

dosage and large aggregates are observed, the outer surface

may differ significantly from other layers in the tablet. The

good news is that in itself, the measurement of a concentra-

tion deviating from the dosage and segregated into discrete

domains is an indicator of a problem that probably needs to be

addressed! If tablets are pressed manually, there might be an

important segregation effect when particle sizes of ingredi-

ents differ significantly; recording both sides of a tablet

would provide information about possible segregation during

the pressing of the tablet. In addition, it should be noted that if

the content uniformity of different compounds with large-

scale spectral features in different spectral ranges is to be

analyzed simultaneously, these wavelength differences may

result in different penetration depths within the sample,

which could affect the observed compositional information.

An additional advantage of usingNIR Imaging for content

uniformity analysis is the relative short data acquisition time

and the possibility to analyze a large number of tablets

simultaneously. A high-throughput content uniformity ap-

plication was described by Lee and coworkers [32]. In this

work, a large FOV (59.5mm� 47.5mm) was used, produc-

ing relatively large pixel sizes of 186 mm (Matrix NIR,

Malvern Instruments) and allowing the simultaneous anal-

ysis of 20 tablets. An interesting conclusion of this work is

that if the content of the API is relative high and its spectrum

FIGURE 11.15 (a) Schematic of the sample preparation for a three-dimensional analysis of composition, (b) false-color image representing

the distribution of API (light) in the excipient matrix (dark), and (c) rendering of the API aggregates without the excipient matrix.
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contains characteristic bands, it might be possible to make

use of a single or a few wavelengths to obtain the concen-

tration measurement, which reduces data acquisition time

from minutes to seconds (for 20 tablets). Compared to

traditional HPLC analysis, this can be considered as a huge

increase in effectiveness. Figure 11.16 shows an example of

this approach, where 20 tablets are positioned in a large FOV

and color coded according to the average intensity of a single

wavelength at 1600 nm, which in turns corresponds to the

concentration of API.

The image provides qualitative information that is visibly

accessible; samples colored in red show high intensity at

1600 nm, corresponding to high API concentration. Con-

versely, samples colored in blue show low intensity at

1600 nm, corresponding to low API concentration. A cali-

bration curve can be developed by plotting the average

intensity versus the determined content of a reference meth-

od. The concept of this high-throughput analysis opens clear

possibilities for a significant increase in efficiency for content

uniformity analysis. Successful implementation strongly

depends on the accuracy of the content predictions and the

data acquisition time. In low dose products, it should be

expected that a single wavelength approach may not provide

the accuracy needed and a calibratedmodel will be necessary

to measure content uniformity; data acquisition time would

probably go from seconds to a couple of minutes for an array

of tablets that translates to <10 s per tablet.

11.3.2.2 Coating Thickness andMultilayerMicrospheres
NIR Imaging can be used effectively for the visualization of

different layers in complex formulations and determination

of coating thickness [4, 33]. A striking example is given in

Figure 11.17 in which a multilayer time-release granule is

shown. An NIR image of the cross section was recorded and

PCAwas applied to calculate the different types of variances

within the hypercube data. Clearly, three layers can be seen in

the granule, without extensive calibration of data processing.

The coating thickness of a single time-release micro-

spherewas investigated by Lewis et al. [33]. Since themagni-

fication ofNIR imaging instruments is limited to about 10 mm
pixels, relative thin coatings are difficult to quantify in a cross

section byNIR imaging. In this case, themicrosphere coating

thickness was in the order of about 200 mm and the micro-

sphere had been cross-sectioned for data collection (see

Figure 11.18). By preparing a binary image based, for

instance, on the difference in intensity at 2080 nm, clear

differences in intensity exist between the coating and core

components. Quantitative calculations can be performed

with respect to thickness and regularity of the coating.

If a mixture of two types of microspheres is considered,

NIR imaging can be used to identify different types of

microspheres based on morphology and/or chemical infor-

mation. Even using the intensity of a single wavelength can

be effective in discriminating between two types of particles.

FIGURE 11.16 Intensity map at 1600 nm of 20 tablets with

varying content (40–60% API). Reproduced with permission from

Ref. 32. (See the color version of this figure in Color Plate section.)

FIGURE 11.17 Visible (a) and NIR principal component images (b) of a pharmaceutical time-release (multi-layer) granule. Reproduced

with permission from Ref. 4.
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If reliable contrast images are obtained, particle statistics can

be used for quantification of the microsphere mixture prop-

erties such as the ratio between the different types of micro-

spheres and particle size distribution (Figure 11.19).

11.3.2.3 Quality Assessment of Tablets/Capsules Many

of the previously described applications have highlighted the

strength of NIRCI for comparing samples; even without any

reference spectra of ingredients, the technique can be used to

compare chemical composition and structure. This ability

was exploited by Westenberger et al. [21] and Veronin and

Youan [34], who investigated products commercially avail-

able on the Internet. In the first studies, a number of available

products on the Internet were examined using traditional and

nontraditional methods such as TGA and NIR imaging.

Often, products imported through Internet pharmacies are

not approved by the FDA, and there are concerns about their

safety and effectiveness, which warranted these comparative

studies. NIR imaging highlighted differences in formulation

between the Internet-bought and the approved U.S. counter-

part. Many samples contained different excipients that raised

a concern about the shelf life of the product. NIR imaging

was also able to detect manufacturing differences, such as

less uniform blending, raising questions about dose unifor-

mity. Most of these formulation and manufacturing issues

would not have been evident with traditional testing alone.

Veronin and Youan similarly observed very large differences

in the structure of tablets purchased over the Internet.

A less common quality control application of NIR imag-

ing is the detection of local contaminations in a solid dose

formulation. Local contaminations are often present in rel-

atively small areas of the formulation, and consequently a

high spatial resolution is needed for their detection. Raman

imaging is considered to be more effective for the investi-

gation of local contaminations in general due to its greater

chemical specificity and higher spatial resolution. However,

the latter becomes a disadvantage when there is no prior

indication of where a small contaminant may be located

because a high spatial resolution scan can easily take tens of

hours to cover the entire surface of a tablet. It is possible to

detect and identify some forms of contaminants, such as

degradation products, with NIR imaging when they are

localized in distinct areas (domains) of a tablet surface.

Detection and even identification are more likely if the

impurity covers an area larger than about 30 mm and contains

distinct spectral features. PCA analysis or other multivariate

analysis can then be used to detect small sources of variance

in the hypercube data. In Figure 11.20, an example is shown

of the presence of a local degradation product [35, 36].

11.3.2.4 Density of Tablets and Roller Compaction
Ribbons Another application that is of interest for quality

assessment of tablets and intermediate products is the ex-

amination of density. Ellison et al. [37] investigated the

possibility of using NIRCI for tablet density mapping. In

pharmaceutical processing, the lubricant Mg stearate can

affect compaction efficiency based on blend time and amount

of Mg stearate used. Insufficient lubrication produces intra-

tablet variations in density. Consistent tablet density profiles

and uniform compaction force, as managed by proper lubri-

cation, are important to obtain a predictable performance.

Lactosemonohydratewas blendedwith different amounts

of Mg stearate for different mixing times. Compacts were

prepared of each blend. NIR chemical images were collected

for each tablet, and the density at each image pixel was

calculated. Density distribution within compacts was well

perceivedwithin theNIR images. Tabletswith noMg stearate

or 0.25% Mg stearate were less uniform than tablets with

1.0% lubricant. NIR imaging can be used to nondestructively

assess density profiles of tablets and confirm prediction of

friction alleviation and improvement in force distribution

during tabletting. In this study, the density profiles were both

qualitative, showing differences in density profiles between

tablets of different blends, and quantitative, providing actual

density and tabletting force informationwithin a single tablet

(Figure 11.21).

FIGURE 11.18 NIR image of a cross section of a coated micro-

sphere and NIR spectra corresponding to the core and coating of the

microsphere. Reproduced with permission from Ref. 33.

FIGURE 11.19 Identification of two types of microspheres based

on single wavelength intensity (left: 2050 nm, right 2130 nm).

Reproduced with permission from Ref. 33.
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A similar investigation of roller compaction ribbons was

presented by Lim et al. in 2008 [38], where the team showed

differences in the homogeneity of the density across the

width of the MCC ribbon as a function of the compaction

force. In this particular experiment, the ribbons produced

with greater force had a broader gradient of density, as

illustrated by the grey scale intensity distribution in Fig-

ure 11.22. The density at each point in the images was

evaluated by a simple measurement of the baseline shift.

11.3.2.5 Analysis of Tablets in Blister Packaging The

possibility to identify and characterize tablets in blister

packaging would be of a great potential within the pharma-

ceutical industry. For quality control of finished products,

high-speed cameras could be employed using a large field of

view to include hundreds of tablets within short data acqui-

sition times [39]. The advantage of NIR radiation being able

to pass packaging material offers opportunities to identify

packaged product without any interference. Malik et al.

investigated the feasibility of using NIR imaging not only

for identification but also for evaluation of differences in

moisture uptake during storage and degradation. An InSb

focal plane array video camera with near-IR bandpass cold

filter was employed to image a large area (0.5m) using a

tunable filter accessing the spectral range �1680–2300 nm.

With this configuration, the total amount of tablets analyzed

simultaneously was�1300, corresponding to�16 pixels for

each tablet. The measurement was able to identify the active

ingredient and follow the moisture uptake in tablets stored in

high moisture environment following puncture of the blister.

Although the imaging method was not as precise as spec-

troscopic analysis of single tablets, the method definitely has

great potential for possible implementation in the pharma-

ceutical industry, not in the least because of the enormous

gain in efficiency (i.e., 1300 tablets are imaged in a couple of

minutes).

Blister packs have also been investigated with NIRCI to

detect adulteration (i.e., a ‘‘wrong’’ tablet present in a pack)

and empty blisters and in counterfeit analysis (discussed in a

separate section). In Figure 11.23, an example is shown of the

analysis of tablets in a blister package. One of the tablets was

replaced by a tablet containing a different API, which is

FIGURE 11.20 Tablet showing local contaminations. The NIR spectra of the white areas within the tablet correspond to the NIR spectrum

of a known degradant. Reproduced with permission from Ref. 36.

FIGURE 11.21 NIR contrast image of unprocessed spectra (at 2120 nm) of a tablet corresponding to the density within the tablet. Low

intensity corresponds to high density. Reproduced with permission from Ref. 37. (See the color version of this figure in Color Plate section.)

FIGURE 11.22 Roller compaction ribbons showing density var-

iation across thewidth of the ribbon for compression forces of 40, 50

and 60 kN.
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clearly seen in the NIR image. The data collection and

processing methods described previously for tablets are

directly applicable to blister packs; in some cases, single

band measurements are sufficient to differentiate products

(such as in Figure 11.22), and, in other times, calibrated

methods are needed to measure distribution of ingredients.

11.3.2.6 Combining Imaging Techniques The basic

principles of NIR spectroscopy imply that only organic

materials display spectral features in this spectral range.

When inorganic ingredients are present in a formulation,

their domains will appear as black holes in the NIR image

because of this absence of a spectrum.Many investigators use

the holes as simple indicators of the positioning of inorganic

ingredients, but one group (Clarke et al. [40]) pushed the

analysis one step further by acquiring both Raman and NIR

chemical images of the same area of a tablet surface to

investigate the distribution of both organic and inorganic

materials in an attempt to understand a ‘‘sticky-tablet’’

problem. The chemical image fusion (CIF) approach

required that a microscope slide be calibrated for exact

positioning of the sample for both instruments. The data

were acquired separately by the two instruments and pro-

cessed independently to create distribution images of the

ingredients. The Raman distribution images of the inorganic

binder and API were merged (a Z-concatenation may be

applied for this purpose, for example) with the NIR distri-

bution images describing the diluent, disintegrant, and lu-

bricant (Figure 11.24). The compiledCIF images of good and

sticky tablets were compared. Unexpectedly, the uniformity

of the lubricant (NIR) did not seem to be the main cause for

the observed differences although its distribution was not as

fine as expected for both batches. The distribution of the

inorganic binder in the formulation however seemed to be the

main differentiator where, surprisingly, the good batch dis-

played a less uniform distribution. It was concluded that

small particles with an even distribution are not always best,

and this example shows the importance of understanding the

specifications for various ingredients, an integral part of the

QbD framework.

FIGURE11.23 Visible andNIRPCA score image of a pharmaceutical blister pack. One of the 10 tablets was replaced prior to analysis with a

tablet containing a different API. Reproduced with permission from Ref. 15.

FIGURE 11.24 CIF Images of two Raman and three NIR images of the matrix of a good and a sticking problem blend [40]. (See the color

version of this figure in Color Plate section.)
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11.3.3 Counterfeit Analysis

Counterfeit pharmaceutical products are a real threat to the

health of patients, and the reputation and commercial success

of legitimate producers of genuine tablets. Using NIR

imaging, multiple samples can be compared simultaneously

or detailed compositional information can be obtained and

compared from individual samples. The applicability of NIR

imaging for detecting counterfeit products was investigated

extensively [41–44] and only a few examples are detailed

here to explain the main aspects of the problem tackled with

NIRCI.

Generally, counterfeits are described as those containing

the correct ingredients but having been manipulated in an

uncontrolled manner, those containing the wrong active (or

inactive) ingredients or any active ingredient at all [41]. In the

first instance, a relatively large field of view can be used to

screen possible counterfeit products compared to genuine

products to compare their chemical makeup (even in the

blister pack). In this case, components distribution within a

sample is not the main objective, at least initially, but the

presence of the right main ingredients is. From a health

standpoint, one may be interested in knowing only about the

presence of the right active ingredient in the reported con-

centration. In either case, PCA analysis or peak heights can

be used to identify anomalous spectral variations. It is

obvious that the spectral features of a possible counterfeit

API and the dosage play an important role at high dose, but in

relatively low dose products, detecting whether the API is

different from the reference can be difficult using a simple

PCA, as described previously in the analysis of tablets.

However, for many products the lack of any API or major

excipients can be detected very easily with this simple

approach.

For example, the image on the left-hand side in

Figure 11.25 shows that the genuine tablet contains no talc,

which has an obvious absorption band in the NIR at 1390 nm.

Counterfeit tablet (B3) also does not contain talc, while tablet

A2 shows significant absorption representative of talc. On the

right-hand side, the wavelength selected is characteristic of

the API that from this image appears not to be present in

tablet B3, but present in tablet A2. The histogram character-

istics show that the intensity of the API is more widely

distributed for tablet A2 than for the genuine tablet, meaning

that the API is present but less evenly distributed [42]. When

the interest of an evaluation of counterfeit products is

restricted to the determination of the presence and concen-

tration of the API, NIR chemical imaging is overkill. Indeed,

a single point spectrum acquired from each tablet would

provide the same information at lower cost. What drives the

use of NIRCI in the analysis of counterfeit products is the

additional information provided by the spatial arrangement

of the ingredients.

The investigation of counterfeit products using NIRCI

generally involves data acquisition and processing very

similar to the methods described for quality control, trou-

bleshooting, and formulation development. One example of

a more advanced use of NIRCI is an investigation of

counterfeit tablets involved in imaging individual tablets

and application of a PCA and cluster analysis in an exercise

aiming to determine the number of sources for a set of

tablets. Counterfeit source identification is useful to deter-

mine the extent of the problem by helping understand how

many different plants produce counterfeit tablets, regardless

of their possible use of common ingredients. Clustering

techniques using all spectral information data instead of a

single wavelength can be very helpful for classification of

unknown products, in order to emphasize the origin of

observed variation due to a different API but also due to

different excipients. Lopes and Wolff [42] investigated 55

counterfeit Heptodin� tablets obtained from a market

survey and an additional 11 authentic tablets for compar-

ison. PCA and k-means clustering showed both that the

counterfeit tablets could be grouped into 13 main groups of

which only 18% contained the correct API. Counterfeit

tablets also showed differences in excipient composition

resulting in a relative large number of clusters. NIR imaging

proved to be an excellent tool for counterfeit source analysis

in this study.

FIGURE 11.25 NIR Images at 1390 nm (left) and 1720 nm (right) and histogram of the image intensities of a genuine Heptodin� tablet

(GEN) and two counterfeit tablets: A2 (containing no API) and B3 (containing API). Reproduced with permission from Ref. 42.
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11.4 CONCLUSION

NIR chemical imaging provides invaluable information

about pharmaceutical products that is not accessible by

traditional techniques. As with most new analytical techni-

ques, a substantial investment in method development has

been required. With a variety of experimentally sound

approaches to real problems now in the literature, new users

can build on early successes and reproduce experiments and

apply methods. Once tailored to individual applications, the

steps can be documented in reproducible SOPs and macros.

Early applications focused on troubleshooting various qual-

ity problems, but formulation development (in a QbD

approach) and counterfeit analysis are now taking center

stage. NIR chemical imaging provides a route to develop

better understanding of formulations that should reduce the

likelihood of out-of-spec batches. The data produced

throughout the formulation development promote a thor-

ough understanding of the product and can therefore

be implemented in control of the process, supporting the

PAT initiative.
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12.1 INTRODUCTION

For several decades, vibrational spectroscopy has played an

important role in the analysis of foods and food components.

On one hand, near-infrared and mid-infrared spectroscopies

have been major driving forces for the development of rapid

online techniques for industrial applications. On the other,

vibrational spectroscopic techniques have been important for

the general characterization of foods and food components.

In the latter category, IR and in recent years also Raman

spectroscopy have made important contributions. The suc-

cess of vibrational spectroscopy in food analysis is related to

their general characteristics: the techniques are rapid, and

little or no sample treatment is required, which implies they

might also be applied in vivo. In many applications, both

qualitative and quantitative information from the samples

can be obtained. But foods are generally heterogeneous

by nature, and traditionally, this has been a challenge

mainly overcome by sample homogenization or replicate

point measurements to increase reproducibility of sampling.

However, a great amount of information is revealed by

investigating the heterogeneity of a foodmatrix, and recently

there has been an increased interest in applying Raman and

IR imaging for characterization of food samples. This has

been forced forward by the continuous development of novel

instrumentation of Raman and IR imaging systems.

In general, there are two major ways of obtaining vibra-

tional images of localized regions in foods: mapping

or imaging. Mapping involves sequential measurements of

spectra of adjacent regions in order to create an image.

Imaging, on the other hand, requires an image of the sample

to be focused onto an array detector where the intensity of the

radiation passing through or being scattered from each region

of the sample is measured at each pixel of the detector. The

majority of published studies using Raman or IR spectros-

copy for mapping or imaging of foods are strictly speaking

mapping experiments. But as new imaging instruments are

continuously being developed and commercialized, the trend

is changing toward more frequent use of “real” imaging

systems. In this chapter, however, no attemptswill bemade to

distinguish between these two approaches, as mapping ex-

periments clearly illustrate the potential that lies in using

Raman and IR imaging for food analysis.

The aim of this chapter is to review the current status of

Raman and IR imaging applications for food analysis. So

far, the number of applications is limited, but the potential

of using these techniques is far ranging, and the chapter

intends to highlight some of these underlying potentials.

Studies on agricultural products, studies related to animal

breeding, and studies from fields like medical diagnostics

and pharmaceutical analysis have also been included when

reasonable, as sample similarities often occur, and as the

applications provide generic knowledge often directly

transferable to the analysis of foods. The chapter is not

meant to be an extensive survey of all literature in the

field, but intends to provide a state-of-the-art picture and

future perspectives regarding Raman and IR imagingwithin

different fields of food analysis.

12.2 VEGETABLES, FRUITS, AND PLANTS

Traditionally, vibrational spectroscopic characterization of

plant substances has been a fairly cumbersome approach.
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Copyright � 2010 John Wiley & Sons, Inc.

229



First, the analyst had to purify the substance to be examined.

Various separation techniques, most of them highly intrusive,

were used prior to spectroscopic measurements. On top of

this, all information regarding spatial distribution was lost.

However, the advent of IR and Raman microscopes and

imaging techniques introduced a new era of microanalysis

of vegetables, fruits, and plants. Now, spatially resolved

spectroscopy can be made in situ, without the need for stains

or chemicals. In recent years, the potential of using IR and

Raman imaging for revealing the microstructure of plant

tissue has been illustrated through a range of different

applications. In the following section, a few of these applica-

tions are described.

12.2.1 Revealing the Anatomy of Wheat Grains—A

Short Survey of IR Instrumentation

Wheat is among the most-produced grains of the world and

constitutes an important part of the human diet. Thus, the

microstructure of wheat has been of special interest in regard

to its utilization in foods, as themicrostructure affects factors

ranging from milling quality to breeding considerations.

Figure 12.1 shows the main components of the wheat kernel,

including the pericarp at the outside of the kernel, the

aleurone cells, the endosperm, and the germ.

Raman and IR spectroscopies have been extensively used

for the characterization of the microstructure of wheat and its

components. Actually, the spectroscopic evaluation of wheat

provides an interesting historical survey on the development

of Raman and, in particular, IR imaging techniques for the

applications on plant tissue. As early as 1993, Wetzel and

Reffner published a study that summarizes the early work of

using spatially resolved FT-IR microspectroscopy to exam-

ine the microstructure of wheat kernels [1]. In their study, an

IR microscopy system equipped with a mercury–cadmium–

telluride (MCT) detector was used for analyzing sections of

wheat kernels. The wheat kernels were soaked overnight in

distilled water under refrigeration, and sections of 8 mm
thickness were prepared by cryostatic sectioning on a mi-

crotome. IR images of tissue areas were made from moving

stage experiments, and the authors were able to reveal the

spectroscopic and the chemical signatures of the different

parts of the wheat kernels. Lipids, carbohydrates, and

proteinswere observed bymoving from the pericarp, through

the aleurone layer and the aleurone cell walls, into the

endosperm, and further into the germ. Individual differences

in the same endosperm andwithin two parts of the same germ

could also be visualized. This study is one of the first to prove

the concept of vibrational microscopy for revealing in situ

information of seed microstructure. This approach and sim-

ilar studies paved the way for using the information obtained

from localized distribution of chemicals within single seeds

and link the findings with the seed development process and

the quality of seeds for final end use.

As the development of IR microscopy progressed during

the 1990s, synchrotron-based IRmicroscopywas introduced,

allowing for improved signal-to-noise performances and

increased spatial resolution. In 1998, Wetzel et al. used this

technique for advanced characterization ofwheat kernels [2].

In their previous study on wheat using a conventional globar

IR source, the authors had shown that it was possible to

differentiate the aleurone cell layer from the surrounding

material of a wheat kernel. But locating the cell wall in

between the individual cells was more difficult due to limits

in spatial resolution. By introducing synchrotron-based IR,

on the other hand, the presence of single aleurone cells could

be investigated, and both proteins and carbohydrates of the

cell walls provided sufficient contrast to visualize single

aleurone cells. Synchrotron-based IR microscopy thus

allowed for interrogating single cells and even parts of single

cells in situ.

Another major development of IR instrumentation

involved the introduction of MCT focal plane array (FPA)

detection, replacing the more time-consuming point map-

ping for making IR images and allowing for true IR imaging

of samples. Marcott et al. used this technique for the char-

acterization of wheat kernels [3]. IR images were obtained in

which each pixel represented 4.5 mm� 4.5 mm areas of the

sample, and chemically different regions of the wheat kernel

could be clearly visualized. An IR image of wheat kernel is

provided in Figure 12.2. The image has been generated

by overlaying two images representing the areas under the

amide II (protein) band centered at 1550 cm�1 and the

carbonyl (lipid) band centered at 1735 cm�1, thus providing

the sufficient contrast for visualization of the endosperm, the

aleurone cells, and the pericarp regions.

12.2.2 Wheat Grain Microstructure and Grain
Hardness

One of the most important characteristics of wheat kernels

used for processing is their hardness. The hardness is related

to the texture of the starchy endosperm and severely affects

milling performance and the resultant flour quality. It is well

known that hard wheat varieties have a mechanical resistant

endosperm, whereas the endosperm of soft wheat varieties is

FIGURE 12.1 Wheat cross section revealing the pericarp at the

outside of the kernel, the aleurone cells, the endosperm, and the

germ.
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friable. Nevertheless, the biochemistry ofwheat hardness has

been a subject for debate over the past years, and elucidating

the biochemical factors related to grain hardness has been

considered a key for optimization of the wheat milling

process.

Piot et al. used confocal Raman microspectroscopy to

characterize wheat grains [4, 5]. In their studies, high-reso-

lution spectral mapping was performed on 50 mm thick solid

sections with spectra obtained at 2 mm intervals, and a He/Ne

laser delivering at 8mW was used as the excitation source.

The researchers were thus able to characterize starch and

proteins of the endosperm, as well as the arabinoxylans

and ferulic acids of the aleurone–aleurone, the aleurone–

pericarp, and the aleurone–endosperm cell walls. The group

further focused on the role of the proteins of the endosperm in

relation to grain hardness. The secondary structure of the

endosperm proteinswas estimated bymeans of decomposing

the amide I bands into contributions of a-helical, b-sheet,
b-turn, and random coil secondary structures, respectively.

Their findings suggested that the a-helical secondary

structure of protein could be associated with wheat grain

hardness.

The polysaccharides of the endosperm have also been

related to grain hardness. Barron et al. used FT-IR micro-

spectroscopy for imaging of wheat endosperm cell walls of

four different cultivars of wheat, selected due to their differ-

ences in endosperm texture [6]. Images of transverse sections

were obtained fromwhich cell contents had been removed by

sonication. Based on principal component analysis (PCA) of

the images obtained, differences between the structural

heterogeneities of the different varieties could be studied.

Hard and soft wheats could not be differentiated using the

spectral features derived from entire transverse sections

of the endosperm, but when focusing on locations within

the grain, the soft and the hard wheat cultivars could clearly

be distinguished based on their polysaccharide signatures.

12.2.3 Flax Stems

Natural fibers have always received considerable interest for

both textile and industrial purposes, and in order to improve

fiber quality, knowledge of chemical components and struc-

ture of the cell walls is of vital importance. Flax is among the

oldest fiber crops in the world. It is used for the production of

linen, and thus efforts have beenmade to developnoninvasive

methods for microstructure characterization of flax stems to

improve quality. Himmelsbach et al. used bothRaman and IR

imaging in order to characterize the distribution of chemical

components in flax stem tissue [7, 8]. The FT-IR images of

flax stem tissue were obtained by mapping using MCT

detection, and from the images they were able to distinguish

the primary chemical components such as waxes in the

cuticular and epidermal tissues, pectate salts in the epidermal

and parenchymal tissues, cellulose in the core and fibers,

aromatics in the core, and acetylated polysaccharides in the

fibers and core. Corresponding Raman mapping was per-

formed on similar flax stem samples using an FT-Raman

microprobe system equipped with a 1064 nm Nd-YAG laser

source. As in the IR study, the Raman images gave evidence

of wax components in the cuticular and epidermal tissues,

and the strongest intensities related to carbohydrates were

found in the fiber cells. In addition, the presence of pectins,

other noncellulosic polysaccharides, and cellulosewas found

in the parenchyma tissue, whereas evidence of lignin in core

tissue and pigments in epidermal tissue was found.

Retting is one of the postharvest processing steps used to

mediate the release of stem fibers from flax. Finding the

optimal retting agent is critical for the industry, which makes

studying the effect of retting agents an important issue. FT-IR

microscopic mapping has been investigated as a tool to study

enzymatic retting of flax stems [9]. Using combined IR and

visible imaging, it was possible to elucidate the relative loss

or changes in the distribution of key chemical components

after treatments with enzymes with andwithout an additional

chelator. Also, the IR mapping technique was shown to have

advantages over visible imaging alone in that it can detect and

locate chemical species present after treatment in relation to

the anatomical features of the flax stem.

12.2.4 Exploring the Anatomy of Other Plant Species

Revealing the microstructure of plant tissue is not merely

related to improved industrial processing, but might equally

well be related to breeding programs for selecting superior

FIGURE 12.2 IR image of the endosperm, the aleurone cells, and

the pericarp region of a wheat kernel. The image was generated by

overlaying two images representing the areas under the amide II

(protein) band centered at 1550 cm�1 and the carbonyl (lipid) band

centered at 1735 cm�1, respectively. (See the color version of this

figure in Color Plate section.)
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varieties for special purposes and prediction of grain quality

and nutritive values for humans and animals. Corn and barley

constitute examples of varieties important for human con-

sumption, and their microstructure has been extensively

investigated. Synchrotron-based FT-IR microspectroscopy

has been used to explore the structural–chemical features of

corn seed tissue within cellular dimensions [10], and similar

approaches have been used to reveal the molecular micro-

structural–chemical features within tissue in grain barley [11,

12]. The analytical approach in these studies, however, re-

sembles the approaches found in the examination of wheat

and flax, and details of these studies will not be discussed

further.

Lignin, together with cellulose, is the most abundant

biopolymer of the plant cell wall, and understanding the

heterogeneity of biopolymers such as lignin and cellulose in

the cell wall is essential from the perspectives of both plant

biology and commercial utilization. Lignin is produced by

condensation reactions of the structural entities coumaryl,

coniferyl, and sinapyl alcohols, all aromatic compounds that

provide suitable Raman cross sections. Agarwal used Raman

imaging to investigate the structure and composition of plant

cell walls in black spruce wood, and images showing the

lignin and cellulose distribution within the cell walls were

obtained [13]. Figure 12.3 shows a Raman image of the

spatial distribution of lignin coniferaldehyde and coniferyl

alcohol units in a cross section enclosing the cell walls of six

adjoining cells. The imagewas generated using the combined

band region of 1519–1712 cm�1.

In a similar study, infrared imaging was used to charac-

terize the anatomy of sunflower and maize root [14]. One of

the main objectives was to evaluate the potential of using IR

for differentiating between two different plant species (i.e.,

monocotyledons and dicotyledons), using maize and sun-

flower as representative organisms. PCA enabled the authors

to find means for distinct separation of maize and sunflower

using IR spectra of the epidermis and xylem, and the infrared

band at 1638 cm�1, representing hydrocinnamic acid in

lignin, provided a conclusive method for distinguishing

between maize and sunflower plant tissues.

Another important, thoughminor, component in plant cell

walls is pectin, and Micklander and coworkers investigated

the potential of using Raman microscopy for characterizing

the distribution of pectin in tissue of potatoes [15]. Measure-

ments were made on raw potato tubers, and spectra were

investigated with special emphasis on the unique galacturo-

nic methyl ester peak around 1745 cm�1. The authors found

that high-quality pectin spectra of potato cell walls could be

obtained, but they could not conclude whether these spectra

were sufficiently distinctive to be able to distinguish between

different qualities of pectin and starch in different potato

cultivars.

12.2.5 Pigments and Related Compounds

In Raman spectroscopy, the scattering efficiency of molec-

ular bonds varies widely. The scattering efficiency depends

first of all on the polarizability of the electrons constituting

functional groups and bonds. Symmetric bonds, like double

and triple bonds, are known to provide highRaman scattering

efficiencies. But an additional effect, the resonance effect,

which arises when the frequency of the laser beam is close to

the frequency of an electronic transition, might also enable

significant scattering enhancement for particular chemical

FIGURE 12.3 Raman image showing the spatial distribution of lignin coniferaldehyde and coniferyl alcohol units in a cross section

enclosing the cell walls of six adjoining cells in black spruce wood. The image was generated using the combined band region of

1519–1712 cm�1.
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bonds. In foods, these effects are often observed for

colored components and pigments, and the effect might

enable very sensitive detection of such components (in the

ppm range) [16].

Carotenoids are natural pigments occurring in plants,

algae, and other microorganisms. They serve essential func-

tions in plants related to the photosynthesis, and carotenoids

like a- and b-carotene are known to transform to vitamin A.

The demand for improved cultivars of high nutritional value

requires detailed information on the regulation of the carot-

enoid biosynthesis. Carotenoid molecules consist of a long

central chain with a conjugated double bond system, which is

the light-absorbing chromophore responsible for the char-

acteristic color of these compounds. Baranska et al. showed

that Raman imaging can provide insight into carotenoid

accumulation directly in living plant tissue [17]. They fo-

cused on the main carotenoids (i.e., b-carotene, a-carotene,
lutein, and lycopene) of carrot root. The carotenoids are

mainly distinguished due to positional variations of the

�C¼C� stretching vibration observed within the wavenum-

ber range between 1500 and 1540 cm�1, and Raman images

provided insight into the distribution and relative contents of

the different carotenoids. From theses results, indications of

the developmental regulation of carotenoid genes were

obtained.

Polyacetylenes are another group of compounds found in

carrots, and their presence in foods has been related, among

other things, to bitter off-taste. Polyacetylenes are organic

molecules constituting two or several carbon–carbon triple

bonds, and these bonds provide unique Raman scattering in

the region around 2200 cm�1 due to stretching vibrations.

Baranska et al. used Raman imaging to provide detailed

information regarding these compounds in carrot root, and

also found that Raman spectroscopy could be used to dis-

tinguish between chemically similar polyacetylenes [18].

Another research group used Raman microscopy to measure

the distribution of amygdalin across a bitter almond cotyle-

don [19]. Amygdalin is an aromatic glycoside incorporating

a nitrile group, and besides being related to bitterness, this

compound is known to release highly toxic hydrogen

cyanide upon hydrolysis. The characteristic Raman bands

of amygdalin include the nitrile stretching vibration around

2244 cm�1 and the aromatic carbon–hydrogen stretch around

3060 cm�1. In this study, only line maps of Raman spectra

were provided, but the study illustrates the potential of

using Raman imaging for characterization of cyanogenic

glycosides in plant tissue.

Raman imaging has also been used to study and identify

secondary metabolites in medicinal and spice plants [20].

Baranska et al.managed tomap the distribution of anethole in

fennel fruits and curcumin in curcuma roots. Anethole is an

aromatic terpenoid used both in food additives and perfumes.

Curcumin is a polyphenol and has been related to certain

health beneficial effects.

12.2.6 Imaging Techniques for Point Sampling

Microspectroscopic imaging techniques provide means for

obtaining spectra with high spatial resolution, enabling high-

quality spectra of single components within few micrometer

ranges to be obtained. Thus, these techniques are frequently

used for point sampling purposes to obtain representative

spectra of pure components in heterogeneous matrices.

Wetzel and coworkers described one approach for revealing

protein spectral details in wheat endosperm [21, 22]. Wheat

endosperm is a heterogeneous matrix constituting numerous

starch granules (with sizes typically in the range of

5–30 mm) in a network of proteins. The secondary structure

of the proteins is in general vital for understanding factors

such as digestive behavior, nutritive quality, and texture of

plants, and the utilization and availability to humans and

animals. In IR and Raman spectroscopies, the amide I band

is one of the main bands directly related to protein secondary

structures, and deconvolution of this band enables relative

quantifications of structures like b-sheet and a-helical
conformations, respectively. Wetzel’s approach for wheat

endosperm analysis involved high-density mapping of sec-

tions of wheat endosperm utilizing the high spatial resolu-

tion achieved by synchrotron-based IR microspectroscopy.

From the spectra of these sections, spectra dominated by

protein information could be chosen by eliminating spectra

revealing high starch content and high scattering contribu-

tions due to the presence of starch granules. By averaging

protein spectra from adjacent sections of one sample,

representative protein information was obtained allowing

estimation of the sample’s protein secondary structure.

Yu et al. used a similar approach to investigate flax and

winterfat (forage) seeds [23, 24].

12.3 ANIMAL TISSUE

Representative sampling is a reoccurring theme in food

analysis. For instance, imagine having a large cow muscle

on your lab bench. Youwould like to predict the tenderness of

the muscle, but what do you do when you have a NIR probe

covering 2 cm2 of the sample? The sampling area is way too

small to represent the entire sample, but too large to say

anything about the sample microstructure. Traditionally,

these challenges have been faced by grinding the material

or making multiple spectroscopic measurements throughout

the sample. Recent developments, however, have allowed for

imaging of large areas using NIR. At the same time, IR and

Raman microspectroscopies have paved the way for detailed

characterization of the microstructure of animal tissues. The

potential use of these techniques for animal tissue charac-

terization is far ranging, including applications relating lipid

deposition in tissue to human health, and linking protein

structure to texture and tenderness. In the present section
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a few applications of IR and Raman microimaging of animal

tissue is described.

12.3.1 Heat- and Salt-Induced Changes of Meat

Heating is one of the most important steps in the processing

of muscle foods, and heating is often essential in order to

achieve a palatable and safe product. Meat undergoes con-

siderable structural changes upon heating both with regard to

microstructure and protein structure, and thus the quality of

the meat product also changes drastically after cooking.

Kirschner et al. used FT-IR microscopic imaging to monitor

the denaturation processes in aged beef loin [25], focusing

first of all on the denaturation processes in connective tissue

and single myofibers, respectively. The analysis comprised

raw and heated slices of Longissimus dorsi muscles of four

Norwegian Red cattle. In the study, the secondary structure

changes of the myofibrillar proteins due to heat treatment

were monitored in the amide I region of the IR spectra, and

evidence for increasing aggregated b-sheet structures and

decreasing a-helical structures due to heat treatment was

found. The changes found appeared to be more pronounced

for themyofibers than for the connective tissue. Images based

on the band ratio of two bands in the amide I region related to

aggregated b-sheet (1630 cm�1) and a-helical structures

(1654 cm�1), respectively, clearly visualized the degree of

protein denaturation due to heat treatment. This is shown in

Figure 12.4. The upper image was obtained of a raw muscle

section, whereas the lower image was obtained after heat

treatment at 70�C.The intensity levels correspond to the band
ratios and thus the level of protein denaturation, whereas the

black areas correspond to spectra that have been rejected due

to failing a signal-to-noise ratio quality test.

Salting is another processing method that affects the

secondary structure of proteins and thus the muscle texture.

B€ocker et al. used IR imaging to study salt-induced chemical

changes in pork muscle [26]. Tissue samples from three

different degrees of brine salting (1.6%, 7.7%, and 15.4% salt

concentrations, respectively) were obtained and analyzed

with an FT-IR microscope equipped with an FPA detector.

Images made of the band ratios of the amide I bands at 1630

and 1654 cm�1, related to aggregated b-sheet and a-helical
structures, respectively, are shown in Figure 12.5. The three

upper images are chemical images, whereas the three lower

are correspondingmicrographs. Black domains in the images

refer to spectra that have been rejected due to a signal-to-

noise ratio quality test. From the images, the effect of

decreasing a-helical structures due to salting is clearly seen.
In addition, at high salt content the fiber cells shrink to a high

degree, increasing the extracellular space. This is visualized

by an increase in the black pixel domains in the chemical

image.

FIGURE12.4 Chemical images obtained using the I1630/I1654 band ratio as ameasure for the denaturation level of sections of raw (upper) and

heated (70�C, lower) muscle sections of cattle. Corresponding photomicrographs of the IR images are displayed on the left side.
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12.3.2 Imaging Techniques Used for Point Sampling

As discussed in Section 12.2.6, microscopic imaging tech-

niques are frequently used for point sampling purposes to

obtain representative spectra of pure components in hetero-

geneous matrices. This approach has also been used for the

collection of single myofiber spectra of meat and pork

muscle [27, 28]. Kohler et al., however, introduced an

automated multivariate image analysis approach to separate

regions of connective tissue and myofibrillar cells in FT-IR

images [29]. In this study, a total of 113 IR images of Long-

issimus dorsi muscles aged for four different lengths of time

were obtained. The spectra in each pixel of every image were

first subjected to a quality test, and spectra of undesirable

signal-to-noise ratios or with high absorbances due to water

vapor or lipids, were removed. All remaining spectra were

then subjected to preprocessing based on extended multipli-

cative signal correction (EMSC) in order to remove unwanted

physical interferences in the spectra. A PCA model was

obtained from spectra randomly picked from every image in

order to distinguish between connective tissue and myofibril-

lar cells. This PCAmodel was then used for the segmentation

of myofibrillar cells and connective tissue in all the images.

Connective tissue spectra combined with information of their

spatial positionwithin a region of connective tissue could then

be related to different aging times, and theheterogeneity of the

connective tissue could be studied closely.

12.3.3 Bone Tissue

The analysis of bone tissue is most often encountered within

biomedical fields, but the characterization of bone tissue

might be equally valid in the animal sciences. The overall

strength of the bone is clearly one of the factors involved, and

Raman spectroscopy has been proposed as one potential

method to identify differences in mineral composition of

bone. Timlin et al. used Raman imaging to study fatigue-

related microdamage in bovine bone [30]. In their study,

Raman images of bone tissue with no visible damage, with

microcracks, and with diffuse damage were obtained and

analyzed. The analysis revealed changes in the Raman

phosphate bands in damaged bone that were attributed

to the presence of different mineral species, and the study

demonstrated the power of spectroscopic imaging for ex-

ploring the heterogeneous chemical microstructure of bone.

The phosphate v1 region of the Raman spectra

(950–970 cm�1) was of particular interest to the authors.

The methodology and the approach should be transferable to

studies of bone and bone deformities of other animal species

and fish.

12.4 MISCELLANEOUS FOOD PRODUCTS

12.4.1 Biopolymer Blends

Texture and rheological properties are important parameters

in food, and the quality of food is often crucially dependent

on their microstructure. In many kinds of processed foods,

additives like biopolymers are a major factor providing

texture, and thus full understanding of the microstructure of

the additives is crucial in order to make products with the

expected properties. Often, blends of biopolymers are used to

provide the appropriate matrix, and imaging techniques

based on the chemical contrast between the constituents of

a blend, such as Raman and IR imaging, enable unique

insights into the microstructure of such systems.

Mousia et al. used FT-IRmicroscopic imaging to study the

spatial variation in the composition of biopolymer blends

prepared by extrusion of mixtures of gelatin and maize

FIGURE 12.5 Chemical images of pork tissue (showing the I1630/I1654 band ratio) obtained for three salt concentrations: high (a), medium

(b), low (c) (from left to right). Corresponding photomicrographs are shown below the respective IR image. (See the color version of this figure

in Color Plate section.)
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starch [31]. In their study, FT-IR spectral mappingwith a step

size of 30 mm was used on thin films of extruded amylopec-

tin–gelatin blends, and maps of the ratio of the area of

saccharide bands (1180–953 cm�1) divided by that of the

amide I and II bands (1750–1483 cm�1) were used to visu-

alize the spatial variability in the amylopectin-starch ratios.

The calculated amylopectin-starch ratios and their depen-

dence on the sampling area were also tested by coaddition of

spectra from large aperturemeasurements and small aperture

measurements, respectively, but no significant differences

due to the sampling approaches were found. The results

suggested a high degree of heterogeneity of the blends,

despite the thorough mixing expected due to the extrusion

processing. The images also revealed that gelatin constituted

the continuous phase in the blends, regardless whether native

or pregelatinized starch was used.

Oat products are gaining popularity due to their claimed

cholesterol-lowering properties. But unlike most cereal

flours, pure oat flour is unsuitable to make stable expanded

structures. This is mainly due to the high levels of lipid and

soluble gums present. Therefore, oat flour products are

usually blended with other cereal flours to make extruded

products. Cremer and Kaletunc studied the spatial distribu-

tion of starch, protein, and lipid domains in corn and oat flour-

based extrudates using FT-IR imaging [32]. From the images,

the spatial distribution of lipids (based on the carbonyl band

at 1740 cm�1), proteins (based on the amide I and II bands at

1650 and 1550 cm�1), and carbohydrates (based on the

region of 1100–1000 cm�1) were obtained, and thus infor-

mation regarding heterogeneity and interactions between

components could be obtained. The results revealed that

starch forms a continuous phase in cereal-based extrudates.

Among the main components, proteins were the least evenly

distributed. The lipid distribution was neither correlated with

the starch nor the protein distribution.

Pudney et al. turned their attention to another kind of

biopolymer mixture, namely, blends of gellan and k-carra-
geenan in water [33, 34]. The authors made Raman images of

the gelled soft solid microstructures in various mixtures. The

quantification of individual components was performed, and

due to the chemical similarity of the two polysaccharides,

multivariate curve resolutionwas employed to provide single

component concentration maps. Under certain concentration

regimes, the two biopolymers phase separate. This property

can be used to produce different microstructures. Thus, two

different microstructures were mapped, and quantitative

component maps of the two biopolymers were obtained. The

resultant concentrations could then be used to produce tie

lines for the gellan/k-carrageenan phase diagram, providing

essential knowledge for understanding and manipulating

their structures and properties in a systematic way. Raman

images of diary spread were also obtained in order to extend

the same methodology to investigate even more complex

“real-life” samples.

12.4.2 The Microstructure of “Real-Life” Products

Imitation cheese is often used in food products, such as

pizzas, as a cheaper alternative to natural cheese. Imitation

cheese is a relatively high-fat product (containing around

25% fat), thus consumer awareness related to health aspects

forces food manufacturers to develop new imitation cheeses

with reduced fat contents. However, a reduction of fat con-

tents is known to affect the texture and melting properties of

the product, and knowledge of the microstructure of low-fat

imitation cheeses is of great importance. Noronha et al. used

FT-IR imaging for examination of the microstructure of

starch-containing imitation cheeses [35]. The imitation

cheeses contained one of four different types of starch

(native, pregelatinized, resistant, or waxy corn), and IR

images of the four matrices were obtained. The images

provided valuable information regarding the distribution of

lipids, proteins, and starch, and the starch type had a clear and

visible effect on the distribution of proteins and lipids.

Combined with results from electron- and light microscopy,

the results suggested that the resistant starch did not gelati-

nize after proper manufacturing. Pregelatinized and native

corn starch, on the other hand, did gelatinize, and thus

interacted more with the protein matrix.

In 2007, melamine was identified as the organic com-

pound responsible for the deaths of a significant number of

cats and dogs due to adulterated pet food. As it turned out,

melamine was intentionally added to pet food in order to

boost the apparent protein content of the product, and there is

great concern that melamine will enter the food chain again

and harm animals or humans. Thus, there is an interest to

develop rapid and reliablemethods for detection ofmelamine

in pet food. In Raman spectroscopy, marker bands for

melamine, in particular the unique triazine ring breathing

mode around 670 cm�1, have been identified. Liu et al.

performed a small survey to visualize the potential of

using Raman imaging for identification of melamine in pet

food, and made mixtures of melamine in wheat flour [36].

Figure 12.6 shows images of wheat flour containing 6% of

melamine. In the figure, a bright field reflection image is

compared with the corresponding Raman image indicating

the presence ofmelamine due to the intensity of the 670 cm�1

band. The melamine concentration of the mixture is fairly

high, but the authors claim that detection of melamine in

concentrations around 0.2wt% is accomplishable.

12.4.3 Emulsions

A large number of foods exist in the form of emulsions (i.e.,

mixtures of two immiscible liquids where one liquid is

dispersed in the other by the action of emulsifiers like

surfactants and/or proteins). Multiple emulsions consist

of three phases (water/oil/water or oil/water/oil), and

these emulsions are especially interesting in the design of
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functional foods due to the possibilities for oxidation pro-

tection by the outer layer and for designed slow ingredient

release.A rapid technique for the analysis of thesemixtures is

desirable.

Meyer et al. used coherent anti-Stokes Raman scattering

(CARS) microscopy to investigate the composition and

molecular distribution in water–oil–water emulsions [37].

CARS is a nonlinear Raman technique that requires exces-

sive instrumentation (i.e., multiple laser sources) compared

to conventional Raman spectroscopy, but image acquisition

times are often short due to the nonlinear dependence of the

signal intensity on the laser intensity. The emulsion compo-

nents can be imaged separately by choosing the appropriate

Raman resonance for the CARS analysis. Meyer made

multiple emulsions consisting of inner water droplets and

an outer water phase with high sucrose and glucose content.

The inner phase was dispersed in MCT-oil droplets with

almost the same refractive index (1.449) as the outer water

phase (1.445). The similarities of these refractive indices

make analysis using microscopic techniques based on trans-

mission or reflection difficult due to lack of contrast. The

spectra of the different emulsion components were obtained

using conventional Raman spectroscopy to select the Raman

resonances specific for the emulsion components, and by

choosing these resonances in the CARS analysis, the spatial

distribution of the molecules within single emulsion droplets

could be imaged. The authors also demonstrated the three-

dimensional sectioning capability of CARS microscopy by

acquiring images at different focal depths.

12.4.4 Microorganisms

Microbial contamination is a serious issue for the food

industry as well as the consumers, and fast, reliable, and

nonambiguous methods for characterization and quantifica-

tion of microorganisms are continuously being developed.

Raman and IR spectroscopies have been frequently used

for the characterization of microorganisms [38, 39], and

when spatial resolution is sufficient, Raman and IR micro-

scopic imaging provides tools for identification, quantifica-

tion, and investigation of the chemical heterogeneity of

microorganisms.

R€osch et al. investigated the spatial heterogeneity of

bacteria and bacterial spores commonly encountered in

industrial food and pharmaceutical clean rooms usingRaman

microspectroscopic imaging [40]. The heterogeneity map-

ping was performed with the overall aim of developing

a technique for rapid detection of airborne contaminations

within clean rooms. Raman images of nine different micro-

organisms were obtained, and images were based on the

carbon–hydrogen stretch region at �2900 cm�1, the amide I

vibration at �1650 cm�1, and the methylene deformation at

�1420 cm�1. The heterogeneity, or even lack thereof, within

the bacteria and the bacterial spores could be clearly visu-

alized. From these results, the authors could deduce which

microorganisms that needed multiple measurement points

for representative characterization and which microorgan-

isms that were homogeneous and needed less sampling

points.

FIGURE 12.6 Bright field reflection image (a), corresponding Raman image at 670 cm�1 (b), and fusion of Raman and bright field reflection

image of amixture ofwheyflour andmelamine (6%). The high intensity Raman spectrum of (d) corresponds to thewhite spots due tomelamine

in (b).
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Escoriza et al. investigated the suitability of using

Raman microscopic imaging for the quantification of filtered

waterborne bacteria [41]. Chemical images based on the

carbon–hydrogen stretching region (2800–3000 cm�1) were

obtained using 532 nm laser excitation, and the images were

used for enumeration of waterborne bacteria. The intensities

of the Raman response correlated well with the number of

cells present in drops of sample water on aluminum-coated

slides. However, sensitivity might be a limiting factor, thus

the development of filters with low Raman scattering back-

ground to concentrate the bacteria present is essential.

Tripathi et al. also studied waterborne pathogens using

Raman imaging [42]. Here, Raman imaging was used to

distinguish Bacillus atrophaeus and Escherichia coli in

mixtures at the cellular level. Their results demonstrated the

ability of Raman chemical imaging to detect high-quality

Raman spectra of individual organisms in the presence of

complex biotic backgrounds, by taking advantage of the

spatially resolved sampling capability of the technique. An

overlay of a Raman image and a bright field image of

a mixture of B. atrophaeus and E. coli bacterial cells is

shown in Figure 12.7.

An important step in moving from single point analysis to

imaging of microbial strains is the feasibility of detecting

localized bacterial colonies. However, the amount of data

acquired in a short time frame when using imaging techni-

ques might prevent chemical imaging techniques from being

feasible for online or at-line sensing. Gilbert et al. used

infrared imaging to distinguish between three different

E. coli strains [43]. The goal of their investigations was

to determine the spatial distribution of the different E. coli

types. Employing PCA, the feasibility of using infrared

imaging for visualization of the spatial distributions of the

different E. coli types was demonstrated. But the large

amount of data obtained required long computational times,

thus a wavelet-based data compression method prior to

chemometric data analysis was introduced in order to reduce

the amounts of data. And with acceptable information losses,

computation times could by reduced by more than one order

of magnitude.

12.5 CONCLUDING REMARKS AND FUTURE

PROSPECTS

From tissue sections to imitation cheeses, the use of Raman

and IR imaging of foods spans a wide variety of different

applications. In addition, the field of spectroscopic imaging

covers a variety of techniques and instrumental configura-

tions, and which technique to choose will mainly depend on

the nature of the application. The chemical components to be

investigated might favor one of the techniques. Some com-

ponents (for instance components with highly symmetric

bonds, and aqueous solutions) are more appropriately

analyzed with Raman spectroscopy, and vice versa, but often

various chemical species are interesting making both ap-

proaches feasible. Sampling is another issue. Transmission

IR microscopic imaging requires thin sections often below

10 mm, whereas considerably thicker samples might be

analyzed with Raman techniques. Spatial resolution is no

doubt another critical factor. Traditionally, Raman techni-

ques have been able to provide by far the best spatial

resolution, but the introduction of synchrotron-based FT-IR

and ATR-FT-IR imaging has reduced these differences

somewhat [44].

Time is always of the essence, and due to the introduction

of FPA or MCT linear array detection, the applications of

“real” IR imaging on food samples are “frequently” used.

Raman imaging, on the other hand, is still associated with

time-consuming mapping or line imaging approaches, even

though “real” imaging techniques like wide-field Raman

imaging is gaining interest [36, 41, 42]. The feasibility of

confocal Raman measurements, i.e. taking the depth of the

sample into account, is an additional intriguing possibility for

foods. Ideally, one would wish to use the complementary

nature of infrared and Raman spectroscopy to fully charac-

terize a sample, but within food analysis the choice of

instrumentation is most often a matter of availability and

tradition. Naturally, people tend to use what is at hand

and what they are familiar with. Instrumentation for vibra-

tional imaging is expensive, and increasing awareness and

dropping price-tags are important factors in order to increase

the use of Raman and IR imaging in food analysis.

Hyperspectral vibrational images contain huge amounts

of data and information. In order to extract this information,

the use of multivariate analysis is essential, and features

related to component identification and characterization,

band resolution, global and local quantitative analysis,

and data compression et cetera is readily available. However,

the main challenge is finding the appropriate robust and

automated routines for image analysis, and the role of

FIGURE 12.7 An overlay of a Raman image and a bright field

image of a mixture of B. atrophaeus and E. coli bacterial cells.
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preprocessing for robust image analysis should not be under-

estimated. An illustrating example of preprocessing is the use

of EMSC to correct IR images of cryosections of Long-

issimus dorsi muscle from cattle subjected to different heat

treatments [45]. EMSC is a model based preprocessing

method used to separate and characterize physical and chem-

ical information in vibrational spectra [46]. The physical-

based features (like scattering effects)might both enhance and

obscure the chemical information of spectra. In the cattle-

study the authors showedhow scatter information in theFT-IR

spectra are related to different textural properties of the

sample due to heat treatment. The scattering effects might

thus misleadingly be interpreted as chemical differences

when spectra are not properly preprocessed. However, Fig-

ure 12.8 reveals an example of the latter case. In thefigure, two

chemical images of the same tissue cross section is shown.

The images are made from the intensity of the band at

1240 cm�1, which is mainly related to the connective tissue.

In the middle image the connective tissue parts are hardly

visible, but after EMSC processing (left image) the matrix of

connective tissue is clearly revealed.

The fields of medical and pharmaceutical imaging will

certainly help to pave the way for new applications within

food analysis. The analysis of tissues, cells and even single

cells will undoubtedly constitute one central field [47–49].

The qualitative and quantitative characterization and distri-

bution of primary components like proteins, carbohydrates,

lipids, water, and even DNA are rich sources of information

that relates to fields ranging from food processing, animal

welfare, breeding, and quality and heath, to metabolism. For

instance, Raman and IR spectroscopies are feasible methods

for characterization of lipids in foods and biological sys-

tems [50–52], and imaging might be a feasible way of

looking at fatty acid metabolism in cells linked to health

beneficial aspects. A similar approach for imaging involves

the characterization and distribution of secondary metabo-

lites and other minor components like alkaloids, carotenoids,

vitamins, or other antioxidants in cells and tissues [53–55].

For many years, Raman and IR spectroscopies have been

recognized as feasible tools for detection and characteriza-

tion of microorganisms and pathogens [38, 39, 56]. Imaging

might provide additional aspects both due to rapid screening,

sampling and sample heterogeneity, and recent studies have

proven the feasibility of rapid IR imaging of microarrays

of bacteria, and the detection of pathogens using Raman

chemical imaging [57,58]. Another future area involves

time-dependent processes. As imaging equipment is contin-

uously being developed allowing for fast imaging of samples,

the potential of using Raman and IR imaging for studying

time-dependent processes is made possible. Related applica-

tions might include a variety of fields from tracking diffusion

and component migration in tissue, characterization

of phase-changes and crystallizations, to the visualization

of water sorption [59–62].

Spectroscopic imaging is a young discipline and has been

developing rapidly in recent years. Instrument prices are

fairly high, the availability of easy-to-use instrumentation is

low, and there is still a lack of awareness and knowledge of

instrumentation and their potential in food analysis. Thus,

spectroscopic imaging for food analysis will undoubtedly

gain increasing interest in the years to come. The techniques

provide great possibilities for characterization and under-

standing of biological systems and processes. As food

science is getting increasingly interdisciplinary covering

fields like genomics, proteomics, and metabolomics, vibra-

tional imagingwill undoubtedly be one of the important tools

at the intercepts providing basic and new knowledge and

understanding within these and related fields.
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13.1 INTRODUCTION

13.1.1 Bulk Near-Infrared Analysis for Food Products

It has been known for a very long time that food products can

be studied by mid-infrared (MIR) (ca. 2500–15,000 nm) and

near-infrared (NIR) (780–2500 nm) spectroscopy, as they

contain the C–H, O–H, and N–H bonds that have high absor-

banceintheNIRandMIRwavelengthregions.Thesebondsare

present in the major constituents of all biological materials.

Already during the 1960s and 1970s the pioneers of NIR

spectroscopy were mainly interested in food applications,

for example, soybeans [1], meat [2], oilseeds [3], and cer-

eals [3–7]. It was found very early that water, fat, protein, and

different carbohydrates could be quantified by NIR calibra-

tionsforawidevarietyofagriculturalproducts,half-fabricates,

and finished consumer products as presented by various

authors [8–12]. Later, constituents suchas inorganic salts [13],

alcohol [14], fatty acids [15], antioxidants [16, 17], and

phenolic compounds [17, 18] were also quantified, as were

physicalparameterssuchaskernelhardness[19–23],maturity[24],

and sensory quality [24–26]. These analyses are usually done

on bulk materials, from which a single NIR spectrum is

obtained, as the goal is to integrate over an area that is as

large as possible in order to avoid sampling errors. Most food

products are inhomogeneous by nature, thus requiring inte-

gration or homogenization before bulk NIR measurements.

13.1.2 NIR Hyperspectral Imaging

The earliest scientific imaging applications were simple

black and white or color images in the visual spectroscopic

range, but inspired by satellite imaging, multivariate image

analysis [27] was soon becoming useful in the laboratory.

Already the first satellite images included wavelengths in the

NIR, in addition to visual and MIR wavelengths. Nowadays,

hyperspectral imaging [28] is becoming more commonly

available, providing complete spectra extending into the

long-wave NIR (1100–2500 nm) for each pixel in an image

(refer to Chapter 2). The simplest of these images have x and

y spatial coordinates and a wavelength coordinate lambda,

making a three-way array called a hypercube. This hyper-

spectral image or hypercube thus allows the description of

differences and gradients in the sample under study. Because

of this, the samples can be heterogeneous. The spectra in

these hyperspectral images show localized spectral features

that can be used for exploration and classification. With

external information (reference data) also localized, quanti-

tative and qualitative calibrations and predictions are feasi-

ble. NIR hyperspectral imaging (NHI) also means that

sample preparation different from bulk NIR spectroscopy

is needed. Grinding and other homogenization methods are

useful for bulk NIR spectroscopic analysis, whereas sam-

pling and sample preparation forNIR imaging have their own

peculiarities.
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13.1.3 Instrumentation

The NHI instrumentation used for food applications reported

in the literature is mainly of three types: (1) Specim-type

linescan instruments, (2) Matrix NIR focal plane type and

liquid crystal tunable filter (LCTF)-based instruments, and

(3) homebuilt instruments often based on SpecimPGP (prism

grating prism) monochromators. Some authors used instru-

ments based on filters and filter wheels. The sample presen-

tationmode forNHI of food is usually diffuse reflectance, but

fluorescence using laser excitation is also used. Only a few

applications use transmission.

13.1.4 Sample Preparation and Presentation

For imaging of meat and fish samples, for example, a

reasonably flat surface of the right size to fit with the camera

and objective (field of view (FOV)) and an optimal illumi-

nation system have to be prepared. For cereals, the kernels

have to be laid out in the right orientation (embryo or crease

up or down) on a suitable background and shadows or kernel

overlap should be avoided or minimized. Fruit, vegetables,

and other similar food products have the disadvantage of

being round and require special care in illumination and

imaging, unless an almost flat part of the surface is studied. A

more detailed, systematic comparison between bulk NIR

spectroscopy and NIR imaging is given in Table 13.1.

13.1.5 Sample Size and Wavelength Range

Two important aspects of NHI of food are magnification and

wavelength range.Magnification can accommodate anything

between the size of a watermelon (30 cm) and the size of a

minuscule bacteria or fungi colony (0.1mm). The wave-

length range can cover from the visible wavelengths with

some added wavelengths up to 1100 nm. Alternatively, more

advanced cameras use 900–1700 or 1000–2500 nm. Indus-

trial online applications include only a few well selected

wavelength regions, as speed is needed for measurement and

quality control. For research purposes, a large wavelength

range and smaller wavelength spacing can be used because

getting the answer in real time is not a requirement.

13.1.6 Localized Properties

Bulk NIR spectroscopy is almost always used to quantify a

component (protein, water, fat, carbohydrates) or to describe

a physical property, sensory quality, or authentication of a

food material. Because of its nature, bulk NIR spectroscopy

describes averages. NHI, on the other hand, can be used not

only for local quantification of composition but also for

localized physical properties or disturbances. The latter is

not always translated to concentrations. The localized dis-

turbances may be irregularities in the skin of a fruit or

vegetable, the presence of parasites in fish, or beginning of

fungal or bacterial infections. Changes in diffuse reflection

properties can, for example, be used to identify damage both

on and under the skin of fruit and vegetables, even when they

are not necessarily associated with chemical changes.

13.1.7 Chapter Details

In this chapter, a brief overview of the current literature

covering food applications will be given. Forages and feeds

are not included, although some similarities with food ap-

plications exist. Applications that use wavelengths below

740 nm only are not mentioned and nor are remote sensing

applications. The literature applications are given under the

headings cereals, fruit and vegetables, meat and fish, and

miscellaneous. This will be followed by an example illus-

trating the application of NHI in a food product. How to

TABLE 13.1 A Systematic Comparison Between Bulk NIR Spectroscopy and NIR Hyperspectral Imaging

Instrument Setup Attributes Bulk NIR Spectroscopy NIR Hyperspectral Imaging

Sample preparation Grinding, homogenizing Preferably none

Sample holder Cup, petri dish Flat surface, dark or reflecting background

Illumination May be heterogeneous As homogeneous as possible

Detector Si, InGaAs, PbS Si, InGaAs, HgCdTe, InSb

Wavelength range Vis-2500 nm Vis-1000 nm, 900–1700 nm, 1000–2500 nm

Penetration depth 0.1–10mm 1–2mm

Mode Reflection Reflection

Transmission Fluorescence

Transflection Transmission

Measurement Integrating sphere Focal plane (stare down)

Rotating–moving cup Linescan (push broom)

Flow cell Point scan (whisk broom)

Liquid cell

Desired property Concentration Chemical gradients, local damages, local infections, and local parasites
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optimally extract useful information from the hypercube, by

suitable chemometric techniques, will be shown. The appli-

cation in this case was the classification of yellow maize

kernels of different hardness categories.

13.2 APPLICATIONS IN THE LITERATURE

13.2.1 General Overview

An indication of the number of NHI applications for food

reported in peer reviewed journals during the past 15 years is

given in Table 13.2. These applications mostly address food

quality and/or safety. A number of overview articles have

been published on NHI and the food related applications

reviewed also mostly include safety and quality [29–31]

aspects. The study of Wang and Paliwal [30] in addition

also includes bulk NIR applications. Du and Sun [31] also

reviewed other imaging techniques such as ultrasound, mag-

netic resonance imaging (MRI), and various tomographic

techniques. Subjects not being addressed until now are

adulteration and genetics and these have a future potential

in food studies using NHI.

13.2.1.1 Cereals All NIR hyperspectral imaging cereal

applications reported thus far have been performed on single

kernels [32–39]. Single maize kernels were measured in

transmission [32] or diffuse reflection mode [33, 34], and

moisture [32], oil, and oleic acid [34] were quantified.Wheat

applications were mainly in diffuse reflection mode and

encompassed among others the classification of different

wheat classes [35, 36] and of the degree of vitreousness in

durum wheat [35, 37]. An early detection of sprouting in

single wheat kernels was illustrated as having sensitivity

greater than either the human eye or wet chemical viscosity

testing [38]. Individual wheat grains were classified as black-

point or fungal affected [39]. More details on instrumenta-

tion, wavelength range, imaging mode, image size, and

chemometric techniques used are listed in Table 13.3.

13.2.1.2 Fruit and Vegetables Fruit and, to a lesser

extent, vegetables are the mainstay of food imaging and are

mainly imaged in the visual (400–780 nm) and Herschel

(800–1100 nm) ranges. A few applications in the InGaAs

range (900–1700 nm) exist. However, no applications have

thus far been reported in the long-waveNIR (1100–2500 nm)

range. Themajority of the reports onNHI applied to quality of

fruit and vegetables had apples as the study subject. These

studiesmainly focused on determination of starch index [40],

bitter pit [41], stem-end/calyx [42], firmness [43], and bruise

detection [44–47]. Bruise detection entails the identification

of skin and subskin anomalies.

A number of studies addressed important quality aspects

of cucumbers, including chilling-induced damage [48, 49],

bruise detection [50], and grading [51, 52]. As was the case

for most of the fruit and vegetable applications, this was

performed in diffuse reflection mode.

Further studies on fruit included determination of fruit

firmness for mangoes [53] and peaches [54] as well as acidity

in strawberries [55]. One of the few studies performed in

transmission was the detection of pits in tart cherries [56].

Quantitative investigations encompassed total soluble solids

in mango [53], strawberry [54], apple [44], melon (trans-

mission) [57], and kiwi [58]. The paper reporting the deter-

mination of total soluble solids in kiwi is probably the first

paper being published on the application of NHI in food.

Moisture content was quantified in strawberry [55] and

mango [53].

NHI was also applied to fruit safety and mainly consti-

tuted the detection of fecal contamination of apples [59–63].

One publication described the fungal infection of

mandarins [64].

The authors of the papers on fruit and vegetable quality

used a wide variety of multivariate chemometric techniques

in order to study the spatial and spectral information. These

were principal component analysis (PCA), linear discrimi-

nant analysis (LDA), partial least squares (PLS), partial least

squares discriminant analysis (PLS-DA), multiple linear

regression (MLR), and neural networks (NN). In the studies

on food contamination, mainly PCA, PLS-DA, and classifi-

cation were used. More details on instrumentation, wave-

length range, imaging mode, and image size are listed in

Table 13.4.

13.2.1.3 Meat and Fish A number of NHI studies have

been performed on the evaluation of meat and fish quality.

Studies on meat included the prediction of beef tender-

ness [65] and marbling [66], drip loss, pH, and color for

pork [67]. Moisture and fat content were quantified in

different fish species [68, 69] and parasites were detected

in cod [70, 71].

Fecal and ingesta contamination detection and classifica-

tion in poultry constitute the majority of safety applications

for meat [72–75]. Chickens were also studied for skin tumor

detection [76]. The only application using a four-filter in-

strument studied the detection of chicken heart disease [77].

All meat and fish NHI applications had 1100 nm as the

maximumwavelength,meaning that the visible andHerschel

TABLE 13.2 Number of Peer Reviewed Papers Published on

NIR Hyperspectral Imaging of Food

Food Quality Food Safety

Meat and fish >10 articles 6–10 articles

Cereals 6–10 articles 6–10 articles

Fruits and vegetables >10 articles 6–10 articles

Other (e.g., nuts, oilseeds,

and mushrooms)

1–5 articles None
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ranges prevailed. Table 13.5 shows more details on instru-

mentation and chemometric techniques used for these

applications.

13.2.1.4 Miscellaneous Sweetness according to sucrose,

fructose, and glucose concentrations, as well as amino acids,

were determined in green vegetable soybeans using PCA and

NN [78]. Presence of shell parts in walnut pulp was most

effectively determined using the support vector machine

(SVM) classifier with Gaussian kernel [79]. Using a sequen-

tial process of elimination, the presence or absence of food

pathogens could be determined in selected food pro-

ducts [80]. A study of white mushroom used three principal

components (PCs) to detect bruises including correction for

curvature [81]. Table 13.6 lists more details on instrumen-

tation, wavelength range, imaging mode, image size, and

chemometric techniques.

13.3 NIR HYPERSPECTRAL IMAGE ANALYSIS

OF A FOOD PRODUCT: MAIZE

13.3.1 Problem Definition and Samples

In this section, a systematic approach is suggested for

applying multivariate data analysis on NIR hyperspectral

images of food products. This approach follows a sequence of

steps that allows the exploration and interpretation of the

hypercube. The selected application was the detection and

identification of endosperm differences related to hardness of

maize (Zea mays L.) kernels. Maize kernel hardness is

important to the grain and food industry as it influences

end-use processing performance. Maize endosperm consists

of glassy and floury endosperm that when present in a

particular ratio determine whether the kernel is hard or soft.

In this experiment, six maize kernels of each of the three

hardness categories, that is, hard, intermediate, and soft,

supplied and labeled byexperiencedbreeders,were positioned

with the embryo down on a dark background (silicon carbide

sandpaper) and an NIR hyperspectral image was acquired.

Figure 13.1 shows the digital color image of the samples and

the layout of the kernels in terms of hardness categories.

13.3.1.1 Instrumentation The instrument used for

hyperspectral imaging was a sisuChema SWIR (short-wave

infrared) hyperspectral, pushbroom imaging system (Specim,

Spectral Imaging Ltd, Oulu, Finland). The sisuchema is

comprised of an imaging spectrograph PGP coupled with a

2D array mercury–cadmium–telluride (MCT) detector with a

spectral range of 1000–2498 nm with ca. 6.5 nm wavelength

interval. The use of sisuChema gave maximum 231 pixels per

line (x coordinate) and 239 wavelengths (lambda coordinate).

The scanning stage of the instrument could be programmed

to acquire any number of lines (y coordinate). Black (0%

reflectance) and white (100% reflectance) reference images

were acquired immediately before the sample was imaged.

The image acquired with the sisuChema was automatically

converted to pseudoabsorbance in the Evince 2.020 hyperspec-

tral image analysis software package (UmBio AB, Umea
�
,

Sweden), taking the internal dark and white references into

consideration. Automatic correction for missing pixels was

applied. Subsequent data analysis was also performed using

Evince 2.020. The original image hypercube was 618� 231

� 239 (y by x by lambda), but after cropping to remove

background rows and columns at the edges of the original

image, a 570� 219� 239 image was obtained. The pixel size

was approximately 0.2� 0.2mm2.

13.3.1.2 Data Reduction Using PCA The hypercube

contains an enormous amount of data, making it necessary

to apply data reduction techniques such as PCA. Figure 13.2

shows a typical schematic layout of how PCA can be applied

to hypercubes. This is done by reorganizing the hypercube

into a very long data matrix (570� 219¼ 124,830 rows in

this case). The data matrix obtained is usually subjected to

spectral preprocessing such as mean centering and/or scal-

ing. This preprocessed data matrix is then decomposed to

produce score vectors (the matrix T) and loading vectors (the

matrixP), leaving a residual (thematrixE). The score vectors

can be reorganized to produce score images. The loading

vectors can be shown as line plots to allow spectral inter-

pretation. Scatter plotting of two different score vectors

produces a score plot. This plot is very useful for finding

outliers, clusters, and gradients.

The first step in multivariate image analysis is thus

almost always a simple three-component PCA. This is done

to identify background, shading, specular reflection, bad

pixels, and edge effects by observing selected score plots

and their respective score images interactively. Figure 13.3

shows the first score image after PCA on the mean-centered

data (PC1–PC3 component sizes expressed as percentage

of sum of squares (SS)¼ 90.7, 8.3, and 0.64). The image

clearly shows background and shading and these have to be

removed. This is done more easily by interactive selection

between the score image and the score plot. In Figure 13.3,

the cluster containing the background pixels is marked. The

edge effects, from the cusp of the kernels, that reflects

radiation away from the camera lens also need to be

removed.

13.3.1.3 Interpretation of Score Images and Score Plots
Figure 13.4 shows the score images for principal components

1–6 after background and shading removal. This figure uses

color coding in which low values in the score plot are

indicated as blue and high values as red; values in between

use the sequence of blue-green-yellow-orange-red. A large

area of the same color in a component indicates spectral and

spatial similarity in the region (a single kernel in this case). If
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all kernels have the same color, then distinguishing between

them is not possible (e.g., PCs 1, 3, 4, and 6). This entails that

no information, in terms of difference in kernel hardness, is

available in score images of these components. In the score

image of PC2 (Figure 13.4), the soft kernels could be distin-

guished from the other kernels to some extent. The score

image of PC5 shows a clear distinction between the hard, soft,

and intermediate kernels. As all colors are present in all

kernels, to a greater or lesser extent in PCs 2 and 5, this

distinction is clearly not on a kernel basis, but based on the

difference in texture of the endosperm inside the kernels.

Principal components 2 and 5 would thus be expected to be

most efficient for potential classification of the samples into

hard, intermediate, and soft maize kernels. Principal compo-

nent sizes expressed as %SS (variation explained by each

component) are 94.4, 3.8, 1.6, 0.07, 0.05, and 0.02.

13.3.1.4 Detection and Selection of Clusters Figure 13.5

shows the PCA score plot of PC2versus PC5 after the removal

of background and other disturbances such as geometrical

errors and shadows. After trial and error testing of all PC

combinations, utilizing interactive comparison between the

score plots and score images, this combination of PCs

(2 and 5) was confirmed to be the most efficient in discrim-

inating between the different hardness classes. This was

already inferred from earlier visual inspection of the score

images illustrated in Figure 13.4. Three clusters can be

distinguished on the score plot (indicated by ellipses in

Figure 13.5). Figure 13.6 shows the respective selected

clusters on the PCA score plot and the corresponding clas-

sification projected onto the score image. These clusters do

not relate to the kernels of different hardness, but are unevenly

distributed in all kernels, as can be seen in the classification

image (Figure 13.6). Each cluster thus describes physical and

chemical similarities within the endosperm of the kernels.

Differences between the clusters signify chemical and phys-

ical differences between endosperm regions, for example,

FIGURE 13.1 Digital image of maize kernels of different hard-

ness (H¼ hard, I¼ intermediate, and S¼ soft).

570 (y) 

All spectra 

Remaining 
spectra after 
background 
and errors 
removed  

= T

P ′

+ E

PC scores 
reorganized into 

score images  

219 (x) 
239 (λ)

Absorbance

239

570 × 219 

239 239 

FIGURE 13.2 Schematic layout of PCA to produce principal components (T), loadings (P0), residuals (E), and score images.
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glassy or floury. Glassy and floury endosperm regions are

distributed differently in hard, intermediate, and soft maize

kernels. Hard kernels have more glassy endosperm (indicated

in green) and less floury endosperm (indicated in blue). In soft

kernels, this ratio is reversed. Classification was thus found to

FIGURE 13.3 First PCA score image (left) and corresponding score plot (right) with background included (indicated with ellipse on score

plot). The physical size of the image is 11.4mm� 4.4mm.

FIGURE 13.4 PCA score images (PC 1–6) after removal of

background and other disturbances such as geometrical errors and

shadows. Blue arrows indicate soft and green arrows hard maize

kernels. (See the color version of this figure in Color Plate section.)

FIGURE 13.5 PCA score plot (PC2 versus PC5) after removal of

background and other disturbances such as geometrical errors and

shadows. The ellipses indicate clusters that are potentially soft, hard,

and intermediate classes.
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be rather in terms of endosperm texture and not in terms of

whole hard, intermediate, or soft maize kernels. According to

the cereal literature, maize kernels of different hardness

contain glassy and floury endosperm in different ratios [82].

From the classification image (Figure 13.6), it is clear that

kernels thatwere labeled as hard by themaize breeders had the

maximumamount of glassy endosperm and kernels labeled as

soft the maximum amount of floury endosperm. Kernels of

intermediate hardnesswould thus be expected to havevarying

ratios of glassy and floury endosperm. However, from the

score plot and classification image (Figure 13.6), a distinct

cluster that could be associated with the larger part of the

endosperm present in the maize kernels of intermediate

hardness had been observed. This seems to indicate that

maize kernels of intermediate hardness contain not only

different ratios of glassy and floury endosperm, but also an

intermediate type of endosperm different in physical proper-

ties and chemical composition to that of glassy and floury

endosperm.

13.3.1.5 Preprocessing of Data NHI could identify three

types of endosperm indicating that a range of endosperm

textures could exist. The selection of the classes in Figure

13.6 is not very refined. More refined classes could be found

after standard normal variate (SNV) preprocessing and

these are shown in Figure 13.7. Standard normal variate is

FIGURE 13.6 PCA score plot with classification (green¼ glassy, red¼ intermediate, and blue¼ floury) (left) and the corresponding

classification projected onto the score image (right). (See the color version of this figure in Color Plate section.)

FIGURE 13.7 PCA score plot (PC2 versus PC4) after removal of background and SNV preprocessing (left). The ellipses indicate clusters

representing glassy, intermediate, and floury endosperm. PCA score plot with classification (green¼ glassy, red¼ intermediate, and blue¼ floury)

(middle) and the corresponding classification projected onto the score image (right). (See the color version of this figure in Color Plate section.)
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a row-wise subtraction of the mean and division by standard

deviation. Therefore, it entails removal of offset and slope

differences. Principal components with %SS of 90.2, 3.44,

2.0, 1.25, and 0.46 were calculated.

Figure 13.7 shows the score plot of PC2 versus PC4 with

an indication of possible clusters. In this figure, the clusters

were made by interactive polygon selection between the

score plot and the score image and are assumed to be more

accurate. The final result is the classification image

(Figure 13.7). Because of the more accurate description of

the clusters, smaller areas of the score plot were selected. The

larger unclassified areas are indicated in gray in the classi-

fication image. Contrary to the images where no preproces-

sing was applied, the results where SNV has been applied

needed fewer components, indicating that SNV correction

indeed is useful. One can make the assumption that the SNV

correction removes some scattering effects and therefore

needs fewer components for the classification.

13.3.1.6 Interpretation of Spectral Data To do an inter-

pretation of the endosperm types, it is important to look at

spectral information. The average spectra for the glassy and

floury endosperm classes are shown in Figure 13.8. It is

clearly seen that the floury endospermhas an offset compared

to the glassy endosperm, indicating more scattering. For

removing the scattering effect, SNV preprocessing was

applied. By comparing the average SNV preprocessed spec-

tra, small chemical differences could now be inferred. How-

ever, from the difference plot (Figure 13.8), these chemical

differences become more prominent and can be more easily

interpreted. Positive differences between glassy and floury

endosperm were observed at 1450 (starch and water) and

1929 nm (protein and water). Negative differences between

glassy and floury endospermwere observed at 2192 (protein)

and 2298 nm (protein).

By combining the two classes and doing PCA on the SNV

corrected data, a difference between glassy and floury en-

dosperm was observed in the second PC score. The corre-

sponding second loading line plot (not shown) was similar to

the difference plot in Figure 13.8, thus corroborating the

interpretation of the difference plot.

13.3.1.7 Partial Least Squares Discriminant Analysis
To test the classification, PLS-DA models were tested on

the endosperm classes for the SNVcorrected image. PLS-DA

makes a regressionmodel between the spectra and a vector of

dummy variables. The dummy variable is, for example, 1 for

glassy endosperm and 0 for floury endosperm. The quality of

FIGURE 13.8 Average spectra of glassy (solid line) and floury endosperm types. Top left is without preprocessing and top right after SNV

applied. Bottom left is the difference of SNV corrected spectra.
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the PLS-DA model indicated the meaningfulness of the

subdivision in glassy and floury endosperm. The results of

the PLS-DA model are shown in Figure 13.9, which shows

that after three PLS components the explanation of the %SS

of the y-variable (referred to as R2Y-cum in Figure 13.9) was

92.5%. It is also possible to make similar models for training

and test sets and to test the accuracy of the prediction of the

respective endosperm classes.

13.4 CONSIDERATIONS FOR NIR

HYPERSPECTRAL IMAGING AND DATA

ANALYSIS OF FOOD PRODUCTS

13.4.1 Sampling and Sample Presentation

Because of the two-dimensional nature of imaging and the

limited FOV of camera and lens combinations, the right

choice of sample presentation is important. This maize

hardness application was made using the maximum amount

of kernels to fit the FOV of the camera (Figure 13.1). The

shape of the maize kernels in addition requires careful

illumination optimization. Still there is no correction for the

fact that the kernels are not even or of similar thickness and

have a rounded edge (cusp). This problem is often encoun-

tered when imaging raw food products.

13.4.2 Image Cleaning

The importance of removing background (Figure 13.3) and

any bad pixels, optical, geometrical, or physical disturbance

cannot be overstated. High-quality image analyses can be

performed only on properly cleaned images. The data anal-

ysis presented in this chapter would not have succeeded

without efficient removal of irrelevant pixels. By making a

simple PCA model of the uncleaned image and using score

plots and score images interactively, most irrelevant pixels

can be identified and removed sequentially.

13.4.3 Final PCA Model, Cluster Detection, and
Selection

After cleaning, a final PCA model encompassing many

components can be made. Using score images (Figure 13.4)

and score plots (Figure 13.5) interactively, the relevance of

the PCs can be evaluated. Using combinations of the most

relevant PCs, clusters can be detected based on pixel density

(Figure 13.5). The final image is an overlay of selected

colored fields on top of a score image, also called a classi-

fication image (Figures 13.6 and 13.8). The choice of clusters

or classes in the score plots is, however, subjective. Still, the

two selections shown (Figures 13.6 and 13.8) led to the same

overall conclusions.

Chemometric models change when clusters are chosen

differently, but they are still robust if the choices are properly

done. It should also be kept in mind that histological back-

ground information of the sample should always be taken

into account when selecting score plot clusters. It is quite

likely that a person without knowledge of the composition of

maize kernels could select incorrect classes in a score plot

such as the one in Figure 13.5. The PLS-DA models with a

high %SS of the y-variable and the accuracy of the predic-

tions confirm that the correct classes for glassy and floury

endosperm were chosen.

13.4.4 Penetration Depth

NHI as used in this application is two dimensional, but the

images are integrals over a three-dimensional structure,

where depth information is also included. It was observed

by using stereomicroscopy of cut kernels that some regions

are pure glassy endosperm, some pure floury endosperm, but

some seemed to be a blend of both. These are the regions that

were identified as intermediate.

The application shows additional information about pen-

etration depth of the NIR radiation. Texture differences in the

endosperm could be seen through the pericarp (thickness

<0.2mm), but the embryo (1.5–2mm deep) was never

clearly visible. These facts give an indication of the pene-

tration depth in the imaging experiment. As a general rule, it

is always advisable to find how deep the radiation penetrates

the sample when making hyperspectral images.

13.5 CONCLUSION

The raw materials used in the food industry are heteroge-

neous and of an organic nature, making NHI an ideal

FIGURE 13.9 The evolution of the %SS (indicated as R2y-cum)

of y-variable as a function of the number of PLS components used in

PLS-DA modeling.
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complement to bulk NIR spectroscopy. Many research

groups have been using homebuilt and commercial imaging

systems to measure different food materials, mainly fruit,

vegetables, meat, fish, and cereals. Most applications inves-

tigated until now utilized the range of a CCD or CMOS

camera (400–1100 nm). Some applications required the

InGaAs range (900–1700 nm), while only a few used the

extended InGaAs or HgCdTe range (1000–2500 nm). Few

applications used transmission or fluorescence with laser or

UV lamp excitation, but reflection was the major mode used.

The transition from laboratory use to online applications

is still big, but it is getting easier as instrumentation improves

in versatility, speed, and robustness.

Due to the huge amount of data generated by hyperspec-

tral imaging, the hypercubes constitute extensive sources of

chemometric applications, and there are thus infinite oppor-

tunities for making local models, both spatially and spec-

trally. The application of detection and identification of

glassy and floury endosperm in maize kernels of different

hardness shows how histological knowledge and chemo-

metrics can be combined in a meaningful way.

Future hyperspectral imaging setups will hopefully have a

wider wavelength range and better spatial resolution. This

will require better detectors (cameras) and better illumina-

tion sources. Error-free cameras are also high on thewish list

for the future. An interesting idea would be to develop

equipment that integrates ultraviolet, visible, NIR, MIR, and

Raman spectra with the same spatial resolution and

registration.

At present, hyperspectral images are two dimensional.

Three-dimensional hyperspectral images made by tomo-

graphic techniques would be a huge improvement, but this

would require vast improvements in spectroscopic and cam-

era hardware as well as computing power [83].
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ABBREVIATIONS

BP Back propagation

CART Classification and regression trees

CCD Charge-coupled device

CMOS Complementary metal oxide semiconductor

DA Discriminant analysis

FOV Field of view

GA Genetic algorithm

LCTF Liquid crystal tunable filter

LDA Linear discriminant analysis

MCT Mercury–cadmium–telluride

MIR Mid-infrared

MLR Multiple linear regression

MRI Magnetic resonance imaging

NHI Hyperspectral imaging

NIR Near-infrared

NN Neural network

PC Principal component

PCA Principal component analysis

PCR Principal component regression

PGP Prism grating prism

PLS Partial least squares

PLS-DA Partial least squares discriminant analysis

QDA Quadratic discriminant analysis

ROI Region of interest

SNV Standard normal variate

SS Sum of squares

SVM Support vector machine

SWIR Short-wave infrared

UV Ultraviolet

VIS Visible
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14.1 INTRODUCTION

Vibrational spectroscopy is a well-established method to

investigate structure and dynamics of polymers [1–5]. One

can study constitution, configuration, conformation, and

inter- and intramolecular interactions (e.g., hydrogen bond-

ings) of polymers by use of IR andRaman spectroscopy. Both

IR and Raman spectroscopy have been used extensively for a

variety of polymer researches from basic studies to applica-

tions such as structural studies, miscibility, phase transition,

crystallization, hydrogen bonding, thermal and mechanical

properties, and polymer reactions. IR and Raman spectros-

copy are often complementary. IR spectroscopy yields strong

bands due to vibrational modes of functional groups with

strong polarization, such as OH and C¼O stretching modes,

while Raman spectroscopy gives intense bands due to vi-

brational modes of functional groups having large polariz-

ability, such as SS, CX (X¼Cl, Br, S), C¼C, and C¼N

stretching modes. Bands due to local vibrational modes such

as CH2 rocking modes appear strongly in IR spectra while

those arising from stretching modes of a whole molecule or a

large part of molecule, such as accordion modes, emerge

strongly in Raman spectra.

For IR spectroscopy of polymers, not only transmittance

spectroscopy but also attenuated total reflection (ATR) spec-

troscopy, reflection spectroscopy, reflection–absorption

(RA) spectroscopy, time-resolved spectroscopy, and micro-

spectroscopy are often employed. IR linear dichroism is very

important for the orientation measurements of polymers.

As for Raman spectroscopy of polymers, not only normal

Ramanspectroscopybutalso resonanceRamanspectroscopy,

surface-enhanced Raman scattering (SERS), time-resolved-

Raman spectroscopy, and Raman microscopy are very

useful. One can find a number of good examples of

IR and Raman spectroscopic studies of polymers in many

references [1–5].

Near-infrared (NIR) spectroscopy has also been utilized

in polymer researches and applications [1, 6]. NIR spectros-

copy has often been the choice inmany practical applications

of polymers, such as measurements and predictions of phys-

ical properties like density, particle size and crystallinity,

online monitoring, and quality control. However, it is also

very important to point out that NIR spectroscopy finds its

uniqueness in the fundamental polymer research. In fact, it

has been used to investigate hydrogen bonding, inter- and

intramolecular interactions, polymer reactions, physical

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
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properties such as thermal and mechanical properties, and

diffusion of solvents in polymers.

14.2 VIBRATIONAL SPECTROSCOPY IMAGING

OF POLYMERS

Vibrational spectroscopy imaging of polymers is natural

extension of their vibrational spectroscopy mapping [7, 9].

The latter, particularly IR and Raman mapping of polymers,

was developed during the past two decades. The development

of NIR mapping of polymers was delayed by one decade. In

the field of polymer spectroscopy, vibrational spectroscopy

mapping has been employed to identify contaminations in

polymers and polymericmaterials, to determine distributions

of components in them, and to investigate structure and

morphology of polymers, polymer blends, and polymer

composites. The most serious problem in vibrational map-

ping is that it takes a long time to obtain a mapping. There is

no doubt that imaging is much more powerful than mapping.

The general history, advantages, and instrumentation of

vibrational spectroscopy imaging are described in previous

chapters, and thus in this chapter, the advantages are de-

scribed mainly from the point of polymer applications.

Vibrational spectroscopy imaging has the following ad-

vantages in polymer science and technology [7–35]: (i) By a

combination of vibrational spectroscopy and digital imaging

techniques, one can obtain information about the distribution

of components in polymers or the distribution of different

morphologies in them. (ii) It is possible to explore dynamic

processes such as polymer dissolution on the timescale of the

image acquisition process by observing larger sample areas

with high spatial resolution.

FT-IR and Raman imaging has often been utilized to

investigate phase separation, miscibility, and morphology

in polymer blends. For example, Vogel et al. [10] studied

phase separation in blends of poly(3-hydroxybutyrate)

(PHB) with poly(L-lactic acid) (PLLA) and poly(e-capro-
lactone) (PCL) by using FT-IR imaging. Oh et al. [11]

reported an FT-IR imaging study on phase-separated mor-

phology of poly(styrene-co-allyl alcohol)/polyester blends.

Chernev and Wilhelm [12] and Snively and Koenig [13]

demonstrated the usefulness of polarization radiation for the

production of FT-IR images for the first time. Vogel et al. [14]

combined rheo-optical measurement with FT-IR imaging to

investigate anisotropic polymer blends.

Wilhelm et al. [15, 16] insisted on the importance of a

combination of IR and electron microscopy for characteri-

zation of polymer morphologies. They investigated lateral

and depth resolution in FT-IR and Raman imaging in com-

parison with those in SEM. Gupper et al. [18] studied

morphology of polymer blends by using Raman imaging.

NIR imaging is relatively new in polymer fields although

it has already been used extensively in pharmaceutical

applications [19]. Furukawa et al. [20] used this technique

to evaluate the homogeneity of binary blends of PHB and

PLLA. Shinzawa et al. [35] explored the effect of the

grinding on cellulose excipient at the molecular level by

NIR imaging.

FT-IR imaging has recently been employed to explore

polymer dissolution [21–24]. These sort of attempts are

successful particularly for systems evolving rather slowly,

because the temporal resolution of the method is low. Koenig

and coworkers [21–23] reported investigations on FT-IR

imaging of dissolution of polymers. FT-IR imaging allows

the detection of initial chemical or physical imperfections in

the sample being studied and those generated during the

diffusion process. Gupper and Kazarian [24] studied solvent

diffusion and solvent-induced crystallization in syndiotactic

polystyrene using FT-IR spectroscopy and imaging.

Michaels et al. [25] applied near-field IR imaging and

spectroscopy to study a thin film polystyrene/poly(ethyl

acrylate) blend. The instrument couples the nanoscale special

resolution of scanning probe microscopy with the chemical

specificity of vibrational spectroscopy. Its key features in-

clude broad tenability and bandwidth, parallel spectral de-

tection for high image acquisition rates, and IR-transparent

aperture probes.

Patterson et al. [26] established the ability to collect IR

microspectroscopic images of large areas using a large radius

hemisphere internal reflection element (IRE) with both a

single point and a linear array detector, and used this system

for a polymer film research.

14.3 FT-IR IMAGING OF POLYMERS

14.3.1 FT-IR Imaging Study of Phase Separation

in Polymer Blends

Recently, Vogel et al. [10] investigated phase separation in

blends of PHBwith PLLA and PCL as a function of the blend

composition by using FT-IR imaging. Chemical structures of

PHB, PLLA, and PCL are shown in Figure 14.1. PHB

belongs to the poly(hydroxyalkanoates) (PHAs) group,

which is synthesized by bacteria from renewable re-

sources [36, 37]. PHB has received much attention as an

environment friendlymaterial because of its thermoplasticity

coupled with its biodegradability. However, PHB is stiff and

rigid because of the perfectly isotactic structure consisting

exclusively of theR configuration. To improve itsmechanical

properties, PHB has to be copolymerized or blended with

other polymers: PLLA [38], PCL [39], poly(ethyleneoxide)

(PEO) [40], and so on. PHB/PLLA (50/50) blend shows

sea–island structure while PHB/PLLA (30/70) blend yields a

homogeneous one-phase polymer system.

Figure 14.2 compares FT-IR spectra of the individual

blend components, PHB and PLLA (a) with the spectrum
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of PHB/PLLA (50:50wt%) blend (b) [10]. In Figure 14.2a,

one can find several absorption bands that are specific for the

blend components, PHB and PLLA. To compare the PHB/

PLLA blends in terms of phase homogeneity, the intensities

of the C¼O stretching bands at 1723 cm�1 for PHB and

1759 cm�1 for PLLA were used, respectively. Figure 14.3

depicts visible images and PLLA- and PHB-specific FT-IR

images of PHB/PLLA (50:50wt%) (a) and PHB/PLLA

(30:70wt%) (b) blends [10]. It can be seen from Figure 14.3

that the 50:50 blend has an island structure with a size of

30–40 mm.Of note is that the PLLA- and PHB-specific FT-IR

images are complementary. In contrast to the 50:50 blend, the

30:70 blend does not show phase separation in the visible and

FT-IR images. From these results, Vogel et al. [10] concluded

that the 50:50 blend is phase separated while the 30:70 blend

is a compatible one-phase system. The I1723/I1759 intensity

ratio was used to compare these blends in terms of

homogeneity.

Figure 14.4 plots the ratio versus the concentration of

PLLA (wt%) for the PHB-rich and PLLA-rich areas detected

in the FT-IR imaging of the blends with different composi-

tions [10]. The plot illustrates that the blends with 15, 30, 60,

70, and 85wt% PLLA show only small differences in the

intensity ratio between the PHB-rich and PLLA-rich areas.

This finding indicates that these blends hold homogeneous

one-phase polymer systems. On the other hand, the blends

with 40 and 50wt%PLLA show significant differences in the

ratio. It is very likely that these blends are separated in two

phases with different PHB/PLLA compositions. A miscibil-

ity gapwas also found from the FT-IR imaging around the 50/

50 (w/w) composition for the PHB/PLLA blends [10].

Vogel et al. [14] reports FT-IR imaging obtained with

polarized radiation on anisotropic PHB/PLA blends. They

O
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FIGURE 14.1 Chemical structures of PHB, PLA, and PCL. (Reproduced fromRef.10with permission. Copyright 2008American Chemical

Society.)

FIGURE 14.2 (a) FT-IR spectra of PHB (—) and PLA (- - -). (b)

FT-IR spectrum of a PHB/PLA (50:50wt%) blend. (Reproduced

from Ref.10 with permission. Copyright 2008 American Chemical

Society.)

FIGURE 14.3 (a) Visual image (left), PLA-specific FT-IR image (center), and PHB-specific FT-IR image (right) of a PHB/PLA (50:50wt%)

blend. (b) Visual image (left), PLA-specific FT-IR image (center), and PHB-specific FT-IR image (right) of a PHB/PLA (30:70wt%) blend.

(Reproduced fromRef.10with permission. Copyright 2008AmericanChemical Society) (See the color version of this figure inColor Plate section.)
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previously investigated these blends by rheo-optical FT-IR

spectroscopy [1, 2], which combines a stress–strain test with

in situ polarization measurements to detect the structural

information on a molecular level simultaneously to the

mechanical treatment. They observed interesting orientation

phenomena of the PHB and PLA chains in the investigations

of the mechanical elongation of PLA-rich (�60wt% PLA)

PHB/PLAblend films (35�C, 10%strain perminute). In these

blends, the PLA chains orient in the direction of elongation

whereas the PHB chains orient perpendicular to the drawing

direction [40]. PHB/PLA blend films with PHB> PLA

composition, on the other hand, show mechanical properties

similar to PHB homopolymer and could only be oriented by

cold drawing in ice water after quenching from the melt [41].

In the FT-IR imaging study, theydemonstrated that the FT-

IR imaging technique with polarized radiation provides

superior details in terms of the characterization of orientation

phenomena in anisotropic materials compared to imaging

data with unpolarized radiation as well as to dichroic mea-

surements with a single element detector.

To investigate variations in chain orientation induced by

the mechanical treatment, the C¼O stretching bands of the

PHB/PLA blend films were employed to calculate the ori-

entation function f? (assuming a perpendicular transition

moment of the C¼Oabsorption bands relative to the polymer

chain direction) by

f? ¼ �2
R�1

Rþ 2

where R¼A||/A? is the dichroic ratio of the C¼O stretching

bands in the polarization spectra. The peak areas under the

left wing from 1825 to 1779 cm�1 and under the right wing

from 1718 to 1691 cm�1 were assumed to be characteristic of

the PLA and PHB components, respectively. To monitor

changes in the state of order as a function of the mechanical

treatment, the structural absorbance A0, which eliminates the

effect of orientation on band intensities, was used:

A0 ¼
Ajj þ 2A?

3

Figure 14.5 shows an optical image (a) and FT-IR images

(3.9� 3.9mm2) of A0PHB/A0PLA (b) and A0PHB/A0PLA (c) and

the corresponding orientation function (f?) images of PHB

(d) and PLA (e) of the 50% stretched PHB/PLA (50/50wt%)

blend film [14]. It can be seen fromFigure 14.5b and c that the

‘‘islands’’ are PHB-rich while the matrix has a higher PLA

content.

The corresponding orientation function (f?) images

(Figure 14.5d and e) show that the PHB chains in the

‘‘islands’’ assume a negative orientation (f?��0.4) while

the PLA chains orient positively in the same domains (f?
� 0.3). In contrast, in the matrix both PHB and PLA orient

only very slightly positive (f? between 0 and 0.1). Thus, the

two phases of the unstretched PHB/PLA (50/50wt%) blend

filmwith uniform thickness respond differently to the applied

mechanical stress: the PHB-rich phase is extended to higher

degrees and lower thickness with opposite orientations of the

two polymer components (PHB negative, PLA positive),

whereas the PLA-rich phase undergoes only a small elon-

gation with negligible thickness reduction and very low

positive orientation for both polymer composites. Figure 14.6

illustrates schematic representation of the orientation mech-

anism in the PHB-rich domains of a phase-separated PHB/

PLA (50/50wt%) blend film [14].

Vogel et al. [14] measured FT-IR polarization spectra of

thewhole area, the matrix area, and ‘‘island’’ area of the 50%

elongated PHB/PLA (50/50wt%) blend film. It was found

that the polarization spectra measured with a single element

FIGURE 14.4 PHBmax/PLAmax ratio versus the content of PLA for the PHB- and PLA-rich image areas of the particular blend (see text).

(Reproduced from Ref.10 with permission. Copyright 2008 American Chemical Society.)
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detector cannot discriminate the different orientation me-

chanisms in the phase-separated, anisotropic structure of the

PHB/PLA blend.

Figure 14.7 depicts an optical image (a) and FT-IR images

(260� 260mm2)ofA0PHB (b) andA0PLA (c) and thecorrespond-

ing orientation function (f?) images of PHB (d) and PLA (e) of

the 200% stretched PHB/PLA (40/60wt%) blend film [14]. In

previous studies, PHB/PLA blend films with PLA contents

>50wt% were classified as miscible. The images in Figure

14.7b and c display slightly streaky patterns with reference to

the distribution of PHB and PLA over the sampled area. It was

found from Figure 14.7d that over thewhole area PHB shows a

negative orientation function f? in the range from �0.05 to

�0.25. The orientation function f? of PLA is positive over the

whole image (0.05–0.25) as can be seen in Figure 14.7e.

In this way, in the orientation function (f?) images an

opposite orientation (PHB negative, PLA positive) was de-

tected over the whole image area. With reference to the streak

pattern for the PLAorientation function image, a lower positive

chain alignment could be detected for the PLA-rich areas.

14.3.2 FT-IR Imaging Study of Polymer Dissolution
by Solvent Mixtures

Miller-Chou and Koenig [21] reported an FT-IR imaging

study of the dissolution of entangled poly(a-methylstyrene)

(PAMS) in binary solvent mixtures of systematically varied

amounts of methyl isobutyl ketone (MIBK) in deuterated

cyclohexane (C6D12). The FT-IR imaging study revealed

that, in many of the solvent systems, the solvent did not

resolve the polymer uniformly at the polymer–solvent inter-

face, causing cracking and roughening of the polymer edge,

which can be directly seen in the images.

FIGURE 14.5 Optical image (a) and FT-IR images (3.9� 3.9mm2) of A0PHB/A0PLA (b) and A0PLA/A0PHB (c) and the corresponding

orientation function (f?) images of PHB (d) and PLA (e) of the 50% stretched PHB/PLA (50/50wt%) blend film (for optimum comparison the

f? images (d) and (e) are shown with the same color scale). (Reproduced from Ref.14 with permission. Copyright 2008 American Chemical

Society) (See the color version of this figure in Color Plate section.)

FIGURE 14.6 Schematic representation of the orientation

mechanism in the PHB-rich domains of a phase-separated

PHB/PLA (50/50wt%) blend film (black: PHB chains; gray: PLA

chains). (Reproduced from Ref.14 with permission. Copyright

2008 American Chemical Society.)

FIGURE 14.7 Optical image (a) and FT-IR images (260� 260

mm2) of A0PHB (b) and A0PLA (c) and the corresponding orientation

function (f1) images of PHB (d) and PLA (e) of the 200% stretched

PHB/PLA (40/60wt%) blend film (for optimum comparison the f1
images (d) and (e) are shown with the same color scale). (Repro-

duced from Ref.14 with permission. Copyright 2008 American

Chemical Society.) (See the color version of this figure in Color

Plate section.)
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Ribar et al. [42] monitored in situ dissolution of PAMS

in solvent mixtures of MIBK and cyclohexane-d by using

FT-IR imaging earlier than Miller-Chou and Koenig [21].

The PAMS studied by Ribar et al. [42] was below the

entanglement molecular weight. It was found that the dis-

solution of the entangled PAMS is very different from the

unentangled system. Miller-Chou and Koenig [21] found

evidence of solvent segregation, which was not seen in the

unentangled PAMS. The entangled PAMS did not dissolve

uniformly at the polymer–solvent interface. It is very likely

that when the solvents ingress into the polymer, pressure

builds up due to limited segmental mobility of the entangled

chains and high vapor pressure of cyclohexane-d. Large

amounts of stress energy are frozen into the polymer in the

glass transition. Thus, stress is relieved by cracking, and

when the cracks combine, they cause small blocks of the

polymer to break away from the bulk polymer.

Figure 14.8 shows FT-IR spectra of PAMS, MIBK, and

C6D12 [21]. Each component of the systemwasmonitored by

a characteristic IR band. A peak at 1600 cm�1 due to the ring

quadrant stretching mode of PAMS, a band at 1720 cm�1

arising from the C¼O stretching mode of MIBK, and a peak

edge of 2148 cm�1 assigned to the CD stretching mode of

C6D12 were used to characterize each component.

Figure 14.9 shows spectral images showing the concen-

tration of PAMSandMIBKduring dissolution of PAMS [21].

Of particular interest is that dissolution did not occur uni-

formly over the polymer–solvent interface, creating physical

peaks and crevices. A similar interface roughening was

observed when pure C6D12 was used as a solvent.

Figure 14.10 displays spectral images showing the con-

centration of PAMS,MIBK, and C6D12 during dissolution of

FIGURE 14.8 FT-IR spectra and peaks used to monitor each

component (C6D12, PAMS, MIBK) in the system. (Reproduced from

Ref. 21with permission. Copyright 2008AmericanChemical Society.)

FIGURE14.9 (a) Spectral images showing the concentration of PAMS andMIBKduring dissolution of PAMS. (b) Spectral images showing

the concentration of PAMS and cyclohexane-d during dissolution of PAMS. (Reproduced from Ref. 21 with permission. Copyright 2008

American Chemical Society.)
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PAMS in an 85:15 C6D12:MIBK solvent solution [21]. It can

be seen from these images that the polymer did not dissolve

uniformly and blocks of polymer erupted from the bulk

polymer interface. However, upon repeating the experiment,

the polymer appeared to dissolve uniformlywith only a slight

roughening of the polymer–solvent interface. Figure 14.11

depicts spectral images showing the concentration of PAMS

with corresponding black and white imaging of C6D12 at the

same time.When cracks meet, a polymer chunk breaks away

from the bulk polymer.

This is a good example of FT-IR imaging studies of

polymer dissolution by solvent mixtures.

14.3.3 FT-IR Spectroscopy and Imaging Study of

Solvent Diffusion and Solvent-Induced Crystallization in
Syndiotactic Polystyrene

Gupper and Kazarian [24] investigated kinetics of solvent

diffusion (chloroform) and solvent-induced crystallization in

syndiotactic polystyrene (sPS) by using FT-IR transmission

imaging and single element detector transmission FT-IR

spectroscopy. The appearance of d crystalline sPS was

monitored as a function of solvent exposure time by spatially

resolved information from imaging experiments carried out

under controlled environmental conditions (temperature and

solvent vapor pressure) and with uniaxial solvent diffusion

into the polymer. Polymer crystallization kinetics at various

positions in the polymer and solvent diffusion coefficients

were determined from a series of time-resolved FT-IR

images. It was found from the imaging experiments that

solvent diffusion is the limiting factor in the overall crystal-

lization process of an sPS sample.

Solvent-induced crystallization in polymers is fundamen-

tal for processing and applications of polymeric materials.

Recent rapid development of FT-IR imaging enables one to

explore dynamic processes of polymers, such as morpho-

logical changes and crystallization in polymer/solvent sys-

tems. Gupper and Kazarian [24] introduced a novel appli-

cation, namely, spatially resolved in situ investigations on the

kinetics of solvent-induced polymer crystallization by FT-IR

transmission imaging and single element detector transmis-

sion FT-IR spectroscopy.

The polymer studied was sPS. Compared with the atactic

and isotactic forms, sPS has the tendency to crystallize very

FIGURE 14.10 Spectral images showing the concentration of PAMS, MIBK, and C6D12 during dissolution of PAMS in an 85:15 C6D12:

MIBK solvent solution. (Reproduced from Ref. 21 with permission. Copyright 2008 American Chemical Society.)

FIGURE 14.11 Spectral images showing the concentration of PAMSwith corresponding black and white images of C6D12 at the same time.

When cracksmeet, a polymer chunk breaks away from the bulk polymer. (Reproduced fromRef. 21with permission. Copyright 2008American

Chemical Society.)
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quickly and to a relatively high extent on exposure to

temperatures above Tg or on exposure to certain solvents.

It is known that sPS has four main crystalline modifications

and several subforms. A principal distinction can be made

between the transplanar or TTTTall-transa andb formswith

all the phenyl side groups trans to each other and the helical

or TTGG c and d forms, where macromolecules arrange in a

helical conformation and the phenyl side groups are trans–-

trans–gauche–gauche to each other along the polymer back-

bone. To obtain sPS in its helical conformation, a step

involving solvents, that is, casting from solution, precipita-

tion from solution, or exposure of an amorphous sample to a

suitable solvent, is required. Immirzi et al. [43] studied the

use of solvents and their effects on amorphous sPS. It was

reported that some organic solvents introduce the c and some

the d form. The forms can be distinguished by wide-angle X-

ray diffraction and vibrational spectroscopy.

Figure 14.12 shows FT-IR spectra of chloroform (a),

amorphous (b), and d crystalline (c) sPS [24]. A band at

1220 cm�1 is assigned to the bending mode of chloroform.

This band was used to determine the type of solvent diffusion

behavior and the solvent diffusion coefficient. A band at

1275 cm�1 due to sPS was employed to monitor the crys-

tallization process of the polymer. The 1400–900 cm�1

region shown in Figure 14.12 is accessible in imaging and

single element detector experiments and contains informa-

tion about solvent uptake as well as phase transformations of

sPS. Figure 14.13 shows position of the front of chloroform

as a function of horizontal pixel number of focal plane array

(FPA); the gas phase is on the left side, and the polymer is on

the right side [24]. In this figure, the gaseous chloroform was

supplied from the left side. Profiles are based on the values of

the integrated absorbance of the 1220 cm�1 band. The sam-

ple was exposed to vapor of chloroform for 52 s in profile (a).

For profiles (b–h), solvent exposure time increases in steps of

52 s. The plots in Figure 14.13 show that, with longer solvent

exposure time, the solvent frontmoves to the right and further

into the polymer. It can be clearly seen that the polymer film

swells on interaction with the solvent. The results in Fig-

ure 14.13 reveal the equilibrium concentration of chloroform

within the polymer by the plateau of the concentration value

around 20, which remains almost constant from the polymer/

solvent interface to the solvent diffusion front. It suggests that

there is equilibrium between the condensed solvent phase

within the polymer and the gaseous supply.

To deduce quantitative information about the diffusion of

chloroform, the polymer film edge and the position of the

chloroform diffusion front after different solvent exposure

times were determined from the plots derived from FT-IR

images. Figure 14.14 shows a log–log plot of chloroform

diffusion front distance (d in mm) from the polymer/solvent

interface versus solvent exposure time [24]. The polymer film

edge was found by integration of the sPS bands at 1530 and

1420 cm�1, and the position of the solvent front was deter-

mined by integrating the 1220 cm�1 band of chloroform.Both

film edge and solvent front were defined as the points at 50%

of the maximal integrated absorbance values. The type of

solvent diffusion can be determined by the so-called diffusion

exponenta. According to Snively andKoenig [44], anavalue

of 0.5 indicates Fickian and a value of 1.0 case II type

diffusion behavior. All experiments with chloroform yielded

a values of about 0.5 and indicate Fickian diffusion behavior.

Figure 14.14b plots the diffusion front distance from the

polymer/solvent interface (d in cm) versus the square root of

solvent exposure time [24]. From the slope of the linear

regression, the solvent diffusion coefficient D at 20& was

calculated to be 4� 10�7 cm2/s. It is of note that solvent

diffusionwas directly determined from spatially resolved FT-

IR images. The observed value ofD is in excellent agreement

with the diffusion coefficient of liquid chloroform frommass

uptake experiments by Vittoria et al. [45]. It was rather

FIGURE 14.12 FT-IR spectra in the 1400–900 cm�1 region of

chloroform (a), amorphous (b), and d crystalline (c) syndiotactic

polystyrene. (Reproduced from Ref. 24 with permission. Copyright

2005 American Chemical Society.)

FIGURE 14.13 Position of the front of chloroform as a function

of horizontal pixel number of FPA; the gas phase is on the left side,

and the polymer is on the right side. Profiles are based on the values

of the integrated absorbance of the band of chloroform at

1220 cm�1. (Reproduced from Ref. 24 with permission. Copyright

2005 American Chemical Society.)
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remarkable that the diffusion coefficient of chloroform,when

supplied in its gaseous form, is about the same as with a

supply of liquid chloroform. This indicates that an increase in

the amount of solvent present does not affect the plasticiza-

tion of the polymer and solvent diffusion compared to that of

a saturated chloroform atmosphere.

This study also investigated solvent-induced crystalliza-

tion of sPS. Vittoria et al. [45] revealed that chloroform

induces a helical crystalline form of sPS (d formwith solvent

molecules forms a complex with the helical macromolecular

chains). The fundamental question addressed in their study

was whether the overall crystallization process in an sPS

sample is limited by the macromolecular chain rearrange-

ments or by the solvent diffusion into the polymer.

Figure 14.15a depicts the normalized concentration/time

profiles for the two limiting situations [24]. The black solid

line represents the solvent concentration profile at a certain

position in the polymer and applies to both cases discussed

below. The gray lines illustrate the amount of d crystalline

sPS at the same specific location in the sample for two

possible scenarios. Curve (I) in Figure 14.15a indicates that

there must be a certain amount of solvent before the macro-

molecules start to rearrange. As soon as this critical value of

solvent concentration is reached, the reorganization into the

thermodynamically more stable d crystalline modification

begins. Curve (II) represents the situation where the rear-

rangement of the macromolecular chains from the randomly

coiled amorphous state into the helical conformation is the

rate-determining step in the crystallization process.

Figure 14.15b illustrates observed increase in degree of

crystallinity (squares) and solvent (circles) concentration

50 mm away from the polymer/solvent interface versus ex-

posure time (FPA pixel row 41) [24]. It can be seen from

Figure 14.15b that the pattern reflects curve (I) in

Figure 14.15a and suggests a diffusion-limited crystalliza-

tion process.

Figure 14.16 depicts normalized integrated absorbance

profilesfor thespectralbandsofchloroformanddcrystallinity

FIGURE 14.14 (a) A log–log plot of chloroform diffusion front

distance (d inmm) from the polymer/solvent interface versus solvent

exposure time. (b) The diffusion front distance from the polymer/

solvent interface (d in cm) plotted versus the square root of solvent

exposure time. (Reproduced from Ref. 24 with permission. Copy-

right 2005 American Chemical Society.)

FIGURE 14.15 (a) Limiting situations for the overall crystalli-

zation process of an sPS sample: (I) the rate of solvent diffusion into

the polymer limits the crystallization progress; (II) rearrangement of

macromolecular chains is slow compared to the movement of the

solvent diffusion front. (b) Observed increase in degree of crystal-

linity (&) and solvent (.) concentration 50 mm away from the

polymer/solvent interface versus solvent exposure time (FPA pixel

row 41). (Reproduced from Ref. 24 with permission. Copyright

2005 American Chemical Society.)
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as a function of the horizontal pixel number of the FPA

detector [24]. The solid lines indicate concentration profiles

of chloroform whereas the dashed lines represent the inte-

grated absorbance value of the band at 1275 cm�1 due to sPS,

or indicator of d crystallinity. The profiles at both solvent

exposure times in Figure 14.16 show that the crystallization

process is completed before the solvent equilibrium is

achieved in the semicrystalline polymer. This observation

led to the conclusion that the overall crystallization process is

limited by the solvent diffusivity and plasticization of the

polymer rather than by the rearrangement ofmacromolecular

chains.

Gupper and Kazarian [24] also explored how fast the

actual crystallization process was occurring and what the

lower critical solvent concentration to introduce crystallinity

was. Figure 14.17 plots the absorbance of the 1275 cm�1

band versus the solvent exposure time [24]. Curves (a–c)

correspond to polymer films that were subjected to chloro-

form levels of 60%, 75%, and 95% of the saturated solvent

vapor. At the highest solvent vapor concentration, the overall

crystallization process is finished in about 60 s. When the

solvent vapor pressure is lowered, the crystallization process

takes much longer. The solvent molecules move in between

single macromolecular chains, increase the distance between

them, and allow the polymer to rearrange. The higher the

amount of solvent present, the easier it is for the macro-

molecules to rearrange.

The reported in situFT-IR imaging approach is not limited

to sPS and can be applied to diffusion and crystallization

studies of a wide range of polymers.

14.4 NIR IMAGING OF POLYMERS

14.4.1 NIR Imaging of Polymer Blends

Furukawa et al. [20] carried out FT-NIR imaging for four

kinds of PHB/PLLA polymer blends with the PLLA content

ranging from20 to 80wt% to elucidate the blend quality. This

study highlights the potential of FT-NIR imaging for qual-

itative and quantitative nondestructive evaluation of blend

homogeneity. Furukawa et al. [20] combined FT-NIR data

with partial lease squares regression (PLSR).

Figure 14.18a and b shows NIR spectra in the

1200–2400 nm region and their second derivative of neat

PHB and PLLA [20]. Bands due to the combination and first

overtonemodes of theCHvibrations and that arising from the

second overtone of the C¼O stretching vibration are ob-

served in both PHB and PLLA spectra. It is noted that the

bands of PHB and PLLA are significantly overlapping even

in the second derivatives spectra. Thus, it was different to use

the intensity at a fixed wavelength to monitor the distribution

and prediction for the blend components. Consequently, they

employed the PLSR.

Figure 14.19 shows the score images of four kinds of PHB/

PLLA (80/20, 60/40, 40/60, 20/80) blends derived from

PLSR [20]. In the score images, the pixels with higher and

low score values indicate PHB- and PLLA-rich phases,

respectively. The compositions of polymer blends were

estimated by using PLSR method. The predicted concentra-

tions of the components of the polymer blendswith averaging

over the space are in good agreement with their actual

concentrations. The score images directly depict the spatial

distributions of the components of PHB/PLLA polymer

blends. The standard deviations (STD) of the histograms,

indicating the distribution of the score values, show small

values for the blends. These results quantitatively and qual-

itatively show the high kevel of homogeneity of PHB/PLLA

blends.

FT-NIR imaging proved to be very useful in the study of

binary polymer blends. Even in the homogeneously polymer

FIGURE 14.16 Normalized integrated absorbance profiles for

the spectral bands of chloroform and d crystallinity as a function of

the horizontal pixel number of the FPA detector. (Reproduced from

Ref. 24 with permission. Copyright 2005 American Chemical

Society.)

FIGURE 14.17 Absorbance of the band at 1275 cm�1 band, an

indicator of d crystallinity, plotted versus chloroform vapor expo-

sure time. Chloroform concentrations were set to levels of 60% (a),

75% (b), and 95% (c) solvent-saturated air entering the sample

compartment as indicated in the figure. (Reproduced from Ref. 24

with permission. Copyright 2005 American Chemical Society.)
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blends, FT-NIR imaging can nondestructively investigate a

sample over a wide range.

14.4.2 NIR Imaging of Cellulose Tablets

Grinding is a central part of the manufacturing process of

pharmaceutical tablets. The main objective of grinding pro-

cess usually is to simply obtain the uniform distribution of

components within tablets, and the uniform distribution

enables one to design the well-controlled sustained release

of the actives from the tablet. Another important aspect of the

grinding process is the expected mechanochemical effect,

which induces additional chemical or physical changes in the

pharmaceutical ingredients themselves during the pro-

cess [46]. The control of mechanochemical effect potentially

makes it possible to control the desired pharmaceutical

property of the final products.

Shinzawa et al. [35] explored the effect of the grinding on

cellulose excipient at the molecular level by NIR imaging.

Figure 14.20 shows (a) original NIR imaging spectra of the

cellulose tablet ground for 60min and (b) a typical second

derivative spectrum, respectively [35]. Three characteristic

peaks are observed in Figure 14.20b. A negative peak ob-

served at 6950 cm�1 is assignable to the first overtone of the

OH stretching mode of OH groups in the amorphous region

with weak hydrogen bonds [35, 47, 48]. A peak at 6780 cm�1

is ascribed to hydrogen-bonded OH groups in the semicrys-

talline region, where the crystalline structure of cellulose is

partially disordered. The peak at 6304 cm�1 is assigned to

hydrogen-bonded OH groups in the crystalline region

[35, 47, 48].

In the handling of spectroscopic imaging data, the plot of a

peak position can be a useful way to elucidate the structural

morphological information of a sample [35, 49]. A substan-

tial change ofmolecular structure can be detected as a form of

band position shift to a higher or lower wavenumber. Band

position related to such diatomic OH molecules can be a

useful index representing a characteristic feature of molec-

ular structure. For example, peak positions concerning the

amorphous band observed in spectral data of the tablet

ground for (a) 0min and (b) 60min are shown in Fig-

ure 14.21 [35]. The amorphous band position in Figure 14.21

shifts to the lower wavenumber with the increase in the

grinding time. Since the crystallinity of the cellulose samples

clearly decreases with grinding time, now the meaning of the

observed shift in Figure 14.21 becomes important. The band

position shift to a lower wavenumber direction is obviously

correlated with the increased degree of hydrogen bonding in

amorphous region along with the grinding time. Thus, it is

most likely that the peak position shift is due to the quan-

titative increase in the amorphous content. Peak positions

concerning crystalline band of the tablet ground for (c) 0min

and (d) 60min are illustrated in Figure 14.21. One can note

that the crystalline band in Figure 14.21 shifts to the higher

wavenumber with the increase in the grinding time, mostly

reflecting the fact that the crystalline content is decreasing. It

is also noted that the entire features between amorphous and

crystalline peaks become complementary. Such visualization

may bring another kind of information on the molecular

structure in terms of chemical bond strength, compared to the

conventional visualization technique based on spectral in-

tensity that primarily depends on the concentration of com-

ponent [49]. Averaged positions of the observed three peaks

in Figure 14.20b are illustrated in Figure 14.22 [35].Note that

the averaged peak positions are derived from each cellulose

tablet. For example, the peaks representing (c) amorphous,

(d) semicrystalline, and (e) crystalline structure are shown in

Figure 14.22 [35]. As expected, the overall features of three

peaks are more or less similar, but the directions where they

shift are opposite to each other.

The ability of cellulose to interact with water molecule is

important from pharmaceutical point of view. Water mole-

cule usually does not penetrate the crystalline area of cellu-

lose while it is entrapped by the amorphous area. Disordered

FIGURE 14.18 (a) NIR spectra and (b) their second derivative

spectra of neat PHB (i) and PLLA (ii).
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alignment of the cellulose polymers is strongly associated

with the entrapment of water molecule. For example, the

degree of the prolonged retention of the water molecule is

related to the amount of the amorphous component [50].

Since Figure 14.21 indicates that the tablet becomes uni-

formly covered with amorphous structure of the cellulose

after sufficient level of grinding, water molecules can bewell

entrapped in the amorphous region of the tablet and thus

eventually leading to the direct contact with active pharma-

ceutical ingredients [35, 50]. It implies that the tablet ground

for 60min, which is well covered with the amorphous

structure, will result in the better solubility of active phar-

maceutical ingredients than others.

14.5 RAMAN IMAGING OF POLYMERS

Huan et al. [34] studied phase behavior and compatibility in

PET/HDPE polymer blends by using confocal Raman map-

ping. Maleic anhydride-grafted high-density poly(ethylene)

(MAH-HDPE) was prepared by melt mixing HDPE with

MAH and peroxide at 220�C [51]. The polymer blends were

prepared by compounding the PET with MAH-HDPE or

HDPE at 220�C in a twin-screw extruder. Three sets of both

types of blends were prepared with the PET/HDPE ratios of

20/80, 50/50, and 80/20wt%. The spatial resolution of the

Raman mapping measurements was about 2 mm. Raman

images were recorded by first positioning a polymer sample

in the laser focus using a video camera and white light

illumination, followed by scanning over the mapping region

FIGURE 14.19 Score images of PHB/PLLA blends derived from PLSR. PHB/PLLA: (a) 80/20, (b) 60/40, (c) 40/60, (d) 20/80.
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FIGURE 14.20 (a) NIR spectra of cellulose tablet ground for

60min and (b) a representative second derivative spectrum. (Re-

produced fromRef. 35 with permission. Copyright 2009 Society for

Applied Spectroscopy.)
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(selected as 60� 60 mm2 in step sizes of 2 mm) and accumu-

lating a full spectrum at each pixel. A total of 900 Raman

spectra (30� 30 probe spots) were measured for each

sample.

Using polyethylene terephthalate/high-density polyeth-

ylene (PET/HDPE) blending system as an example, PET

and HDPE are widely used as packaging materials;

&HDPE can modify the rheological properties and impact

properties of PET and increase the velocity of crystalliza-

tion, while PET can improve the mechanical properties and

thermostability of HDPE. However, they are not thermo-

dynamically miscible. If blended mechanically, the incom-

patibility between the two polymers may bring poor
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FIGURE14.21 Peak position of the amorphous band on cellulose

tablets ground for (a) 0min and (b) 60min and the crystalline band

on the cellulose tablets ground for (c) 0min and (d) 60min.

(Reproduced fromRef. 35with permission. Copyright 2009 Society

for Applied Spectroscopy.)
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Ref. 35 with permission. Copyright 2009 Society for Applied
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mechanical properties. If they are blended in the presence of

maleic anhydride, a well-known reactive solubilizer, the

viscosity status and compatibility between two phases could

be improved significantly.

Raman mapping recorded three sets of both types of

blends prepared with the PET/HDPE ratios of 20/80, 50/

50, and 80/20wt%. With the aid of the multivariate image

segmentation approach based on spatial directed agglomer-

ation clustering [52], the spatial distribution or the degree of

mixing in the polymer blendwas studied. The spatial directed

agglomeration clustering was implemented for the segmen-

tation of Raman mapping data measured on the 50%

HDPE–50% PET incompatible blend.

Figure 14.23a shows an optical image of 50%HDPE–50%

PET polymer blend prepared with maleic anhydride [34].

Figure 14.23b illustrates reliability curve for 50%

HDPE–50% PET polymer blend prepared with maleic an-

hydride and Figure 14.23c depicts the dissimilarity curve for

FIGURE 14.23 (a) Optical image of 50% HDPE–50% PET polymer blend prepared with maleic anhydride. (b) Reliability curve for 50%

HDPE–50% PET polymer blend prepared with maleic anhydride. (c) Dissimilarity curve for the polymer blend. (d) Correlation map of the

polymer blend where the gray scale represents the correlation coefficients with respect to the representative spectra of cluster 1. (e) The

correlation map of the polymer blend with respect to the representative spectra of cluster 2.
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FIGURE14.24 The projections of the normalized spectra on the first two PCs for 50%HDPE–50%PET polymer blend preparedwithmaleic

anhydride. ~: Data points in cluster 1; *: data points in cluster 2; *:; data points in cluster 3.

FIGURE 14.25 (a) Optical image of 80% HDPE–20% PET polymer blend prepared with maleic anhydride. (b) The dissimilarity curve for

the polymer blend. (c) The correlation map of the polymer blend where the gray scale represents the correlation coefficients with respect to the

representative spectra of cluster 1. (d) The correlation map of the polymer blend with respect to the representative spectra of cluster 2.
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the polymer blend. Figure 14.23d illustrates the correlation

map of the polymer blend where the gray scale represents the

correlation coefficients with respect to the representative

spectra of cluster 1. The correlation map of the polymer

blend with respect to the representative spectra of cluster 2 is

shown in Figure 14.23e. Figure 14.24 illustrates the projec-

tions of the normalized spectra on the first two PCs for 50%

HDPE–50% PET polymer blend prepared with maleic

anhydride [34].

Similar analysis was performed on 80%HDPE–20% PET

incompatible blend, 20% HDPE–80% PET incompatible

blend, 50% HDPE–50% PET semicompatible blend, 80%

HDPE–20% PET semicompatible blend, and 20%

HDPE–80% PET semicompatible blend. The dissimilarity

curves during the corresponding clustering processes are

shown in Figures 14.25bFi, 14.26bFi, 14.27bFi, 14.28bFi

and 14.29b, respectively [34]. It is observed that there are

several leaps in the curves that correspond to the number of

clusters in the image data. By inspecting the representative

spectrum for each cluster, one could determine the chemical

identity of the clusters. Correlation maps of the spectra in the

image with reference to the chemically significant represen-

tative spectrum of individual cluster are also shown in

Figures 14.25c and d, 14.26c and d, 14.27c and d, 14.28c

and d, and 14.29c and d [34].

The pe-abundant areas are present as a clear and broad

continuous phase, while pet-abundant areas are dispersed as

big islands, indicating the immiscible polymer blend is

highly heterogeneous in spatial chemical distribution. The

pe-abundant and pet-abundant areas are both present as clear

and broad phases that isolated by each other, indicating

components in the immiscible polymer blend are mixed

poorly on the scale of laser sampling volume. The pet-

abundant areas are present as clear and broad continuous

phases and pe-abundant areas are dispersed as isolated big

islands, indicating the polymer blend is immiscible. The very

small pet-abundant areas are dispersed uniformly in the

broad continuous phases composed of pe-abundant areas,

indicating the heterogeneity in the miscible blend is sub-

stantially improved compared to that in the immiscible one.

The subphases in miscible blends are much smaller than

those in immiscible blends; the vibration intensity ratios for

FIGURE 14.26 (a) Optical image of 20% HDPE–80% PET polymer blend prepared with maleic anhydride. (b) The dissimilarity curve for

the polymer blend. (c) The correlation map of the polymer blend where the gray scale represents the correlation coefficients with respect to the

representative spectra of cluster 1. (d) The correlation map of the polymer blend with respect to the representative spectra of cluster 2.
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FIGURE 14.27 (a) Optical image of 50% HDPE–50% PET polymer blend prepared without maleic anhydride. (b) The dissimilarity curve

for the polymer blend. (c) The correlation map of the polymer blend where the gray scale represents the correlation coefficients with respect to

the representative spectra of cluster 1. (d) The correlation map of the polymer blend with respect to the representative spectra of cluster 2.

FIGURE14.28 (a)Optical image of 80%HDPE–20%PETpolymer blend preparedwithoutmaleic anhydride. (b) The dissimilarity curve for

the polymer blend. (c) The correlation map of the polymer blend where the gray scale represents the correlation coefficients with respect to the

representative spectra of cluster 1. (d) The correlation map of the polymer blend with respect to the representative spectra of cluster 2.

RAMAN IMAGING OF POLYMERS 279



miscible blends are much smaller than those in immiscible

blends. Bothmiscible blends show improved homogeneity in

chemical distributions.

The Raman imaging results were also verified by SEM

observation of the polymer blends [34]. The result from the

SEMmicrographs suggests that when blended mechanically,

phase separation could not be avoided between the nonpolar

HDPE and the polar PET. However, in the presence of maleic

anhydride-graftedHDPE, the reactive solubilizationmakes it

possible to improve the viscosity status and gives marked

dispersibility of the polymer blend.
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15.1 INTRODUCTION

In Raman spectroscopy, detailed information about structure

of a target molecule is provided by peak positions and inten-

sities of vibrational modes of the functional groups [1]. How-

ever,Ramanscatteringis, ingeneral,weakduetosmallRaman

crosssections, that is,�10�24 cm�2. Ithaswidelybeenknown

thatRamanscatteringisenhancedbyresonanceofamolecular

electronic transition with incident light (resonance Raman

effect). In 1974, an enhanced Raman spectrum of pyridine

adsorbed on an Ag electrode roughened by successive

oxidation–reduction cycleswas reported [2]. Itwas originally

thought that the enhanced Raman scattering was due to the

increase in the surface area of the electrode. In 1977, it was

shown that the enormous surface-enhancedRaman scattering

(SERS) enhancement factor of 105–106 for adsorbed pyridine

wasnot proportional to the surface area [3, 4]. Itmeant that the

enhanced Raman scattering depended not only on the surface

area but also on the nanostructures responsible for the en-

hancement of Raman scattering cross section itself. This new

phenomenon was termed as SERS.

For SERS studies, various SERS-active systems have

been developed—for example, electrodes roughened by

oxidation–reduction cycles, island films formed by vapor

deposition, lithographically produced nanostructures, and

metal colloids prepared by reducing a dissolved metal salt

in an aqueous solution [5]. Metal colloids can be easily

prepared and have widely been applied to SERS. Metal

nanoparticles and nanoaggregates in the colloid solutions

have various sizes and structures. In metal nanoparticles,

incident light is resonant with plasmon due to dipolar

oscillation of conduction band electrons (localized surface

plasmon resonance (LSPR)). The LSPR maxima depend on

the size and shape of nanoparticles. At a gap of metal

nanoparticles, an electromagnetic (EM) field is enormously

enhanced. SERS originates in the EM field at the gap with

a distance of a few nanometers [6–9]. By conventional

ensemble measurements, only an ensemble of SERS spectra

of target molecules adsorbed on various nanoparticles

and nanoaggregates are measured. Therefore, microscopic

imaging is indispensable to investigate correlation between

SERS enhancements and individual nanostructures.

Raman, Infrared, and Near-Infrared Chemical Imaging Edited by Slobodan Šašić and Yukihiro Ozaki
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Microscopic imaging has been applied to study spatial

distribution of target molecules in heterogeneous materials,

for example, various biological molecules in a living cell.

SERS spectroscopy shows extremely high sensitivity. In-

deed, the single molecule spectroscopy by SERS has already

been reported [10–14]. In SERS, the vibrational fingerprints

provide detailed information about molecular structure,

spectral multiplexing is easy, and nonfluorescent molecules

can be measured. However, SERS light is emitted from the

molecules adsorbed at the junction of noble metal nanos-

tructures [6–9]. In other words, spatial resolution of SERS

imaging can be achieved to a few nanometers.

15.2 METHODS AND INSTRUMENTATIONS

A typical Raman spectroscopic setup for SERS imaging is

composed of several essential components, namely, an

excitation light source (i.e., laser), an appropriate arrange-

ment for Rayleigh scattering rejection (i.e., notch filter),

an analyzer (i.e., spectrometer or spectrograph), a detector,

a converter and a controller for data acquisition, and so

on [15, 16]. Among all these components, the excitation

source and the detection system are the centers of interest for

imaging purpose.

As for the excitation wavelength for Raman imaging, one

has to remember that scattering background and autofluor-

escence are greatly reduced with longer wavelengths and

SERS characteristics become more feasible particularly in

biological sectors [17, 18]. Hence, using dyes that adsorb

in the red or near-infrared (NIR) wavelength region results in

much better signal-to-noise ratios than when using dyes in

the blue spectral region [19, 20]. On the other hand, because

of insufficient cross section of Raman scattering, great care

has to be taken to transfer the scattered light from a sample

to a spectrometer. Old-fashioned spectrometers have an

entrance slit that has to be kept narrow, and thus optical

losses are unavoidable. This issue is elegantly overcome in

a confocal Raman microscope by focusing excitation laser

beam onto the sample via a microscope objective and col-

lecting scattered signal through another objective lens in

transmission configuration. The scattered light enters the

spectrometer through a pinhole ensuring an optimal optical

throughput. As usual, prior to focusing onto a grating, the

scattered light passes a notch filter to remove the reflected and

elastically scattered light. Nowadays, compact Raman spec-

trometer systems are available in which all the components

are integrated. They are easy to handle but cannot readily be

modified, such that they are difficult to adapt to nonstandard

applications. Dedicated and specifically tailored systems

may overcome these restrictions. The details of all compo-

nents of Raman spectrometers can be found in Ref. 16.

Different methods are under development to improve

the image quality and to extract as much information as

possible [15, 16, 21]. Here, we focus only on two general

concepts essential to understand the imaging characteristics.

15.2.1 Point-by-Point Mapping

As explained earlier, in confocal Raman spectroscopy, the

excitation laser beam is tightly focused by microscope

objectives and the Raman scattering light is collected from

a small volume of the sample. The spatial resolution Dd is

limited by the Rayleigh criterion as follows:

Dd ¼ 0:61l

NA

where NA is the numerical aperture and l is the excitation

wavelength. As numerical aperture of 1.0 can readily be

achieved, Raman spectra can be measured with spatial

resolution of ca. 0.5 mm (for excitation of 785 nm). Upon

moving the sample through the laser focus (or vice versa) in

step widths that correspond to the optical resolution, Raman

image of the heterogeneous samples can be obtained,

providing molecular structure and microscopic structure

information at the same time.

Higher spatial resolution beyond the diffraction limit may

be accessible by scanning near-field optical microscopy

(SNOM). The sample is irradiated through an optical fiber

with an aperture that is smaller than thewavelength or a probe

is placed very close to the sample surface and the light

interacts with the sample prior to diffraction. The response

of the illuminated spot is then detected by the detector

system. In analogy to scanning probe microscopies, sequen-

tial nanometer-sized spots of the sample are probed and an

image of the complete specimen is built up by a raster scan.

This technique has been widely used for monitoring by

correlated two-photon-induced photoluminescence and

Raman scattering imaging. It has been detected that the

photoluminescence and SERS are emitted from the gap of

a noble metal nanodimer by combination with topographic

measurements [17, 22–24]. This is consistent with the cal-

culated results by a finite-difference time-domain (FDTD)

calculation [8, 9, 18, 25–28]. In these cases, correlation

between SERS and the nanosizedmorphology is investigated.

However, as the sample is probed only in near-field, the

number of molecules contributing to the Raman scattering

is drastically reduced. In addition, the number of the probed

photons passing through the capillary (in reflection config-

uration) is reduced by several orders of magnitude.

15.2.2 Intensity Mapping

With conventional imaging, upon irradiation the optical

emission from the sample is passed to the 2D array of the

detector system (e.g., CCD in digital camera). Every pixel of

the detector corresponds to the individual real points of the
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sample and the display shows an intensity mapping of those

corresponding points, rather than the individual spectral

information. Figure 15.1 shows a schematic diagram for the

intensity mapping concept self-explaining the different

intensities recorded by individual pixels of 2D array and

corresponding to the real points of the sample. For instance,

the pixel number “o” represents the maximum intensity

scattered from the Raman scatterer, while the pixel numbers

“m” and “p” show only the background. Instead of spectral

characteristics, only scattering intensity and microscopic

structure information can be obtained. To confirm that the

bright spots emit SERS or fluorescence, we need to measure

the spectral characteristics. To avoid measurement of an

ensemble of the bright spots, we limit a measuring area by

inserting a pinhole before a polychromator [29], although

spectra at various positions are simultaneously measured

using a focal plane array detector for a FT-IR imaging [30].

In the next section, this simple and effective method is

explained in detail.

15.3 CORRELATION BETWEEN SPR AND SERS

IMAGES

We demonstrate here correlation measurements between

LSPR Rayleigh scattering and SERS. Use of a microscopic

system for the correlated measurements of LSPR Rayleigh

scattering and SERS images enabled us to establish relation-

ships between SERS, excitation polarization, excitation

energy, and LSPR maxima [18].

Figure 15.2a illustrates the experimental setup for

measuring of LSPR Rayleigh scattering spectra of single

Ag nanoaggregates. In an inverted optical microscope,

a collimated unpolarized white light beam from a 100W

halogen lamp was introduced into a sample surface through

a dark-field condenser lens. Rayleigh scattering light from

a single bright spot, likely a single Ag nanoaggregate, was

collected using an objective lens and detected using either

a digital camera for plasmon and SERS imaging or a poly-

chromator connected to a charge-coupled device for spectral

measurements. We detected LSPR Rayleigh scattering light

from a single Ag nanoaggregate and minimized background

light by selective measurement on a sample area of 1.5 mm
diameter (shown in an open circle in Figure 15.2b) using

a pinhole (300 mm radius) set in the image plane of the

inverted microscope [18].

Figure 15.2a also shows the experimental setup for SERS

spectral measurement of single Ag nanoaggregates. The

inverted optical microscope was common to detections of

Rayleigh scattering and SERS signals. Excitation lasers used

were an Ar ion laser, second harmonics (532 nm) of a LD

YAG laser, a Kr ion laser, and a He–Ne laser. A set of mirrors

(M1–M3) on position controlled ports were used for select-

ing 457, 488, 514, 532, 567, and 633 nm laser wavelengths

FIGURE 15.1 A schematic diagram of intensity mapping. Dif-

ferent intensities shown in individual pixels correspond to the real

points on a sample.

FIGURE 15.2 (a) The experimental setup that we recently

developed to measure LSP resonance and Raman scattering spectra

for individual isolatedAg nanoaggregates [20, 27–29, 33, 35, 36]. C,

dark- or bright-field condenser; O1 and O2, objective lens; P,

polarizer; N, notch filter; L, tube lens; pin, pinhole; CCD,

charge-coupled device. (b, c) Dark-field and SERS images of

selected sample surfaces, respectively [20].
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for SERS excitations. The laser beamswere passed through a

polarizer (P1) and a quarter-wave plate (W) and reflected by a

half-mirror (HM) into the dark-field condenser lens before

focusing at the sample surface.We adjusted the focal point of

the laser beams to that of white light by using two convex

lenses (L1 and L2). This arrangement was helpful for simple

detection of both Rayleigh scattering and SERS signals

without additional optics. SERS signal from a single bright

spot (Figure 15.2c) was collected using the common objec-

tive lens (O1), passed through a holographic notch filter (N)

[HNF-(457.8, 488, 514.3, 532, 568.2, and 632.8)], and

detected using the CCD cameras in the sameway as Rayleigh

scattering detection. The excitation laser power was

100mW/cm2 at the sample surface.We selected SERS signal

from single Ag nanoaggregates and minimized the contri-

bution of background signals to SERS by using a pinhole.

The pinhole allowed us selective measurements of SERS

signals from a small sample area of 1.5 mm diameter.

15.3.1 Single Nanoparticle and Dimer

SERS enhancement factors have been studied in aspects of

both theory and experiments. Theoretical studies based on an

electromagnetic model have clarified the correlation among

SERS, LSPR, and geometry of isolatedAg nanoaggregates [7].

Experimental studies have revealed that SERS enhancement

factors depend on the geometry of Ag nanoaggregates and

LSPR Rayleigh scattering spectra [18, 29, 31–35]. These

studies have shown that SERS, LSPR Rayleigh scattering, and

the geometry of Ag nanoaggregates are related to each other.

However, correlationmeasurements of SERS imaging, LSPR

Rayleigh scattering imaging, and SEM imaging of Ag na-

noaggregates have not been made because of experimental

difficulty. The correlated measurement perfectly enables to

evaluate theoretical and experimental results. This evaluation

is indispensable for providing prospect of development of

geometry that gives rise to high SERS enhancement factors.

Figure 15.3 shows SERS, LSPR Rayleigh scattering, and

scanning electron microsccope (SEM) images of the same

isolated Ag nanoparticles with adsorbed rhodamine 6G

(R6G). SERS and LSPR Rayleigh scattering images of

isolated Ag nanoaggregates were observed by using dark-

field microscopic system indicated in Figure 15.3. The

geometry of the Ag nanoaggregates was observed by FE-

SEM. The correlation observations enable us to confirm that

dimers of Ag nanoparticles show SERS activity.

Our investigations of LSPRRayleigh scattering and SERS

have directly demonstrated three kinds of relationships be-

tween LSPR and SERS. From these investigations, we have

identified relationships among excitation polarization,

excitation energy, and LSPR energy and have reached to

three specific conclusions: (1) SERS bands have the same

polarization dependence as that of a longitudinal LSPR band.

This indicates that excitation polarization set parallel to the

longitudinal plasmon mode can provide maximum SERS

intensity. (2) SERS intensity is dependent on LSPR maxi-

mum, suggesting that a larger overlap between molecular

absorption band and LSPR band can provide higher SERS

intensity. (3) Finally, a spectral shape of SERS is reliant on

LSPR energy, indicating that a SERS spectrum can be

modulated by a LSPR band shape [18, 29, 31–35].

15.3.2 Nanoaggregate

Figure 15.4a and b, respectively, shows microscope images

of SERS and Rayleigh scattering due to LSPR of the Ag

nanoaggregates on which 5,50-dichloro-3,30-disulfopropyl
thiacyanine (TC) was adsorbed from its 0.5 mM aqueous

solution excited at 514 nm. One can see various colors of

the Ag nanoaggregates shown by their individual LSP res-

onance in Figure 15.4b. In the case of rhodamines and

porphyrins, SERS from Ag nanoaggregates usually exhibits

yellow or red color [32, 36]. However, in the case of TC,

SERS from Ag nanoaggregates yields various colors, not

only red or yellow but also blue. We consider that the reason

for showing various colors was due to the absorption bands of

TC that appear at short wavelengths (dimer: 408 nm, mono-

mer: 430 nm, J-aggregate: 464 nm) [37].

Figure 15.5a and b shows 514.5 nm excited polarized

SERS spectra of a single Ag nanoaggregate on which TC

has been adsorbed from its 0.5 mM aqueous solution and the

FIGURE15.3 (a)ALSPRRayleigh scattering image, (b) a SERS

image, (c) and a SEM image of isolated Ag nanoparticles. (d)

Enlarged SEM images of each isolated Ag nanoparticles indicated

by numbers. Scale bar of (a–c) is 5mm. Scale bar of (d) is 100 nm.
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corresponding polarized scattering spectra of the LSPR,

respectively. At the polarization angles of 120� and 210�,
the SERS intensity became zero and the maximum, and the

LSPR bands appeared at 565 and 710 nm, respectively. This

polarization dependence of the SERS spectra is coincident

with that of the LSPR band, not at a longer but at a shorter

wavelength as shown in Figure 15.5c, and is contrary to those

of SERS spectra in our previous works [18, 32, 33]. Note that

two LSPR bands emerge at the polarizer angle of 120�, and
a calculated LSPR band on the short axis of Ag nanodimer is

observed not at 565 nmbut at 350 nm [32]. These likelymean

that the Ag nanoaggregate excited at 514 nm is not a simple

dimer but an aggregate that has a junction on the short axis.

We succeeded in reproducing the LSPR bands by FDTD

calculation for a rectangle-like nanoaggregate that consists

of two-by-three Ag spheres. The appearance of two

LSPR bands is due to component nanodimers with different

lengths on the short axis of the nanoaggregate as shown in

Figure 15.6.

15.3.3 Long-Range Nanostructure

Nowadays, Au nanoparticles have become an indispensable

element for the advancement of nanoscience and nanotech-

nology. Particularly, Au nanostructures and/or clusters are

qualified enough for use in various surface-enhanced vibra-

tional (SEV) spectroscopic applications because of their

large spectral enhancement ability, biocompatibility, chem-

ical robustness, and well-established functionalization

chemistry [18, 20, 38–40]. In the case of single molecule

detection for biomedical applications, the mystery of SERS

enhancement at a “hot site” from Au nanoparticles (even

from other noble metal nanoparticles) has not yet been

extensively studied. One of the reasonable excuses is to

FIGURE 15.4 Microscope images of (a) SERS of TC molecules

adsorbed on the Ag nanoaggregates excited at 514 nm and (b) the

corresponding LSPR Rayleigh scattering from the Ag nano-

aggregates illuminated by the white light through the dark-field

condenser lens. The images cover an area of 78� 34mm2. (See the

color version of this figure in Color Plate section.)

FIGURE 15.5 (a) Polarized SERS spectra of TC molecules

adsorbed on a single Ag nanoaggregate excited at 514 nm. Inset:

the SERS spectrum in the 1800–600 cm�1 region. (b) Polarized

reflectance spectra of the same Ag nanoaggregate due to its LSPR.

Inset: the chemical structure of 5,50-dichloro-3,30-disulfopropyl
thiacyanine sodium salt. (c) Polarization dependences of SERS and

LSPR.
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prepare a suitable sample and to understand the surface

plasmon resonance (SPR)-mediated electromagnetic field

distribution. Hence, we have initially developed an innova-

tive, easy to prepare, and less expensive technique [41]. An

extensive topographic measurement by atomic force micro-

scope (AFM) and SEM has been adapted. From the initial

topographic measurements, it is confirmed that the interpar-

ticle gap is ranging from0 to 5 nm as expected and suitable for

a SERS-active substrate. By this proposed technique, it was

also possible to prepare a single hot site and1Dor2D structure

of Au nanoparticles. Thus, it opens some other windows of

basic research now under sincere consideration. Here, we

report only anisotropic Au nanoaggregate and long-range

two-dimensional (2D) Au nanoaggregates to elucidate the

correlation between SPR excitations and SERS activity [41].

The anisotropic Au sample mostly shows a weak blue-shifted

peak near 450 nm in addition to a broadened peak centered at

570 nm covering a trail for another one near 700 nm. In the

case of the 2D Au sample, more than one SPR peaks are

observed in the longer wavelength region. The SERS obser-

vation confirms million times higher enhancement at least in

Raman intensity using the Au nanoaggregates adsorbed by

dye molecules. The anisotropic sample of Au nanoparticles

shows approximately five times higher enhancement in Ra-

man signal compared to that of the 2D sample. A preferen-

tially intense scattering signal in SPR and SERS is observed

near the edge in the case of long-range 2DAunanoaggregates.

Figure 15.7a shows SPR images of the anisotropic sample,

that is, elongated aggregate (EA) of Au nanoparticles. The

twopositions,marked as 1 and 2 in Figure 15.7a, indicates the

variation in SPR excitations along the line. In the case of

anisotropic assembly of Au nanoparticles, a broader SPR

peak centered at 570 nm covering a trail for another peak near

700 nm is observed in addition to aweak peak near the shorter

wavelength region that is suppressed in the long-range 2D

samples. Figure 15.7b shows an SPR spectrum obtained from

the Au sample at the marked position “X” in Figure 15.7a.

The same sample is adsorbed by crystal violet (CV) and

investigated with the 647 nm laser excitation. Figure 15.7c

shows the SERS image of the same sample of Au nanopar-

ticles. The discontinuous SERS intensity confirms the inten-

sity variation in relation to the SPR excitation along the

aggregates as shown in Fig. 15.7a. As mentioned earlier,

the SPR solely depends on the variation of local structure in

nanometric scale and thus influences the Raman scattering

signal. Although the Au nanoparticles are assembled in

elongated fashion, the interparticle gaps and individual

nanoparticles are not supposed to be similar to each other.

It is noteworthy from the SPR observation that the broader

peak centered at 570 nm covers well enough the excitation

laser wavelength (647 nm) and enhances the SERS signal

higher compared to that of the 2D samples as explain below.

Figure 15.7d shows the SERS spectrum of CV adsorbed on

the EA sample obtained at the marked position “Y” in

Figure 15.7c. The peaks observed herewith are consistent

with the reported ones [42, 43]. The average SERS intensity

seems higher compared to that of the 2DAu samples. A good

correlation between the SPR and SERS images is observed

herewith for the anisotropic sample of Au nanoparticles.

In the case of long-range self-assembled-like aggregates,

the localized SPR gets more freedom and is intuitively

influenced by surrounding active hot sites [17, 24, 44]. In

turns, the nanoparticles participating in inducing cascaded

FIGURE 15.6 Calculated polarized Rayleigh scattering spectra

of a rectangle-like Ag nanoaggregate. Inset: the nanoaggregate that

consists of three-by-two spheres with a diameter of 20 nm. The long

and short axes have lengths of 57 nm and 40 (38) nm, respectively.

FIGURE15.7 (a) The SPR image of the anisotropic sample ofAu

nanoparticle of 50 nm diameter, indicating the intensity variation

corresponding to SPR excitations along the line. (b) The SPR

spectrum for the same sample obtained at the marked position “X”

in Figure 15.7a, indicating a broader SPR peak covering aweak trail

of near 700 nm. (c) The SERS image of CV adsorbed on the same

sample indicating a good correlation to Figure 15.7a. (d) The SERS

spectrum of the CV adsorbed on the same sample obtained at the

marked position “Y” in Figure 15.7c. The scale bar shown in

Figure 15.7c indicates the size of SPR and SERS images. The dotted

vertical line in Figure 15.7b shows the laser excitation position.
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hot sites may behave like nanorods. Indeed, several SPR

excitations are observed in this study. Figure 15.8a shows

an SPR image of two-dimensional long-ranged assembly

(2DLA) self-explaining inhomogeneous distribution of the

localized SPR excitations. The plasmon excitation is not so

intense like that of the anisotropic samples, elucidating the

fact that the SPR excitations on the particular nanoscale

position are influenced by surrounding localized energy.

Figure 15.8b shows the SPR peaks of the 2DLA sample

obtained at the marked position “X” in Figure 15.8a with at

least three peaks centered at 620, 670 and 750 nm. Such a

spectral discrete behavior is not surprising and is reported for

different substrates both theoretically and experimentally [45,

46]. The blue-shifted peak centered at 620 nm could be

attributed as the quadruple array resonance and those at

670 and 750 nm might be inferred to discrete peaks of a

broad long-wavelength dipolar array resonance termed as

longitudinal plasmon resonance. Figure 15.8c shows the

SERS image of the same sample and observed inhomoge-

neous signal distribution. The SERS intensity is found to be

higher than that of the RA sample, but not so enhanced like

that of theEA sample. Figure 15.8d shows the SERS spectrum

of CV adsorbed on the 2DLA sample of Au nanoparticles

obtained at the marked position “Y” in Figure 15.8c. The

SERS peaks observed herewith are consistent with the re-

ported ones [45, 46].

15.4 APPLICATION OF SERS IMAGING

15.4.1 SERS-Active Substrates for Protein Detections

In conventional SERS-based studies, SERS-active substrates

are usually first prepared (e.g., metal colloid, electrodes, or

island films), and then analytes are assembled on these

substrates for further SERSdetections. Formost SERS-based

protein detections on chips, antibodies and probes are usually

linked to metal nanoparticles.

In our studies, we used a contrary way that was based on

strong interactions between proteins and Ag nanoparti-

cles [16]. After interactions between proteins and target

analytes, we obtained SERS-active substrates by using

colloidal Ag staining for total proteins. Figure 15.9 shows

fluorescence images of tetramethylrhodamine isothiocya-

nate (TRITC) and Atto610 molecules after the interactions

between the proteins, human immunoglobulin G (IgG), and

avidin and their corresponding target analytes, TRITC-an-

tihuman IgG, and Atto610-biotin, respectively. Figure 15.9

also represents their surface-enhanced resonance Raman

scattering (SERRS) and surface-enhanced fluorescence

(SEF) images after the colloidal Ag staining [47]. Note that

the SERRS and SEF images of each fluorescent molecule

show significant concentration dependences. For TRITC-

antihuman IgG, the color of the SERRS/SEF images

changes from yellow, which is similar color to that of the

fluorescence image, to green as the concentration decreases.

For Atto610-biotin, the color of the SERRS/SEF images

change from red, which is similar color to that of the

fluorescence image, to orange as the concentration de-

creases. The blue-shifted color images show the enhance-

ment of SERRS because SERRS occurs near the excitation

wavelength. Indeed, the fluorescence maxima of TRITC and

Atto610 are located at 580 and 630 nm, respectively. The

SERRS peaks of TRITC and Atto610 appear in the

1700–900 and 1400–1000 cm�1 regions, corresponding to

around 560 and 610 nm, by the excitation at 514 and 568 nm,

respectively. From the changes in the SEF and SERRS color

images, we find that SEF is reduced remarkably with the

decrease in the concentrations of target analytes. Both

SERRS and SEF can be observed from the bottom images

of Figure 15.9, which are due to distance-dependent en-

hancement of SERRS and SEF. For the molecules in close

proximity to the metallic surface, SERRS is enhanced by an

electromagnetic field on the metal surface, but fluorescence

is quenched by an energy transfer to the metal surface

[48, 49]. Moreover, we found that SERRS images are much

more stable than the fluorescent ones that tend toward

photobleaching. We can observe stable SERS-active Ag

aggregates even at much lower concentration when there

are few SEF-active Ag aggregates. This indicates the great

potential of SERRS images in ultrasensitive determinations

of protein–ligand interactions.

FIGURE 15.8 (a) The SPR image of the 2D sample of Au

nanoparticle of 50 nm diameter. (b) The SPR spectrum of the same

sample obtained at the marked position “X” in Figure 15.8a,

indicating several peaks in the longer wavelength (i.e., �620,

�670, and �750 nm). (c) The SERS image of CV adsorbed on the

same sample indicating a good correlation to Figure 15.8a. (d) The

SERS spectrum of the CVadsorbed on the same sample obtained at

the marked position “Y” in Figure 15.8c. The scale bar shown in

Figure 15.8c indicates the size of the SPR and the SERS image. The

dotted vertical line in Figure 15.8b shows the laser excitation

position.
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FIGURE 15.9 Fluorescence (the top) and SERRS and SEF (the bottom) microscope images from TRITC and Atto610 at various

concentrations. (See the color version of this figure in Color Plate section.)

15.4.2 SERS Imaging for Living Cell Analysis

SERS measurements for biological and medical specimens

often use NIR lasers, which can reduce the risk of damaging

the specimens by applying high power [50]. The high spec-

ificity of vibrational spectra, the reduction of fluorescence,

the drop in the detection time (from �300 to �1 s compared

to normal Raman spectroscopy [50–52]), improvement in

spatial detection limit (from �400 to �100 nm compared

with normal Raman spectroscopy [50–52]), and the insen-

sitivity to the aqueous environment increase the significance

of SERS to study complex biological systems like living

cells [53–55]. In these experiments, colloidal Ag or Au

particles were adsorbed on the cells or incorporated inside

the cells, and SERS was applied to monitor the cellular

processes and events. Also, SERS-active nanoparticles bring

the advantage of detecting or tracking different known

biomolecules over fluorescent tags. The use of fluorescent

tags suffers from confused overlapping fluorescence spectra

broader than SERS spectra and nonuniform photobleaching

rates, thus leading us to several potential complications [56].

This section deals with the current scenario of living cell

analysis using surface-enhanced Raman spectroscopy. No-

table protocols used by many researchers in this regard have

been described in this chapter. A great deal of attention has

been given to the SERS measurements from inside and

outside from the living cells using colloidal noble metal

particles with and without probe molecules.

15.4.2.1 Intracellular SERSMeasurements Delivery of

nanoparticles into cellular interior, as well as routing of the

particles or targeting of cellular compartments, can be

achieved in various ways, depending not only on the nature

of the experiments but also on the type of cell line and

physicochemical particle parameters, such as size, shape, and

surface functionalization [57–59]. These methods include

fluid-phase uptake from the cultural medium andmechanical

methods such as microinjection. The in vivo molecular

probing of cellular compartments by measuring SERS spec-

tra from endosomes in living individual epithelial cell line

IRPT and macrophage cells J774 were reported [60].

SERS signals are highly irreproducible and do not render

themselves to acceptable quantification of target intracellular

constituents. In addition, delivering SERS inducers (Au/Ag

nanoparticles) to points of interest inside cells is another

major challenge [61]. In one of their latest works, Kneipp

et al. [60] have rightly considered the lysosomal context of

nanoparticle aggregates when interpreting the SERS bands.

One of the methods to achieve quantitative results is to

develop functionalized nanoparticle sensors that employ

nanoparticles and have been coated with a molecule that

will bind to the analyte of interest. The functionalized

nanoparticle probes have several advantages over nonfunc-

tionalized probes: (1) The functional group adds a degree of

specificity to the sensor by providing a specific interaction

with the target analyte. (2) The analyte molecule does not

need to be Raman active or have a particularly large Raman

cross section, and (3) the surface is coated with the functional

molecule, interfering molecules cannot adsorb to the particle

surface, and therefore the background is reduced [62].

Nanoparticle-based pH sensors using 4-mercaptobenzoic

acid (4-MBA) was developed by Talley et al. [63]. A Raman

spectrumof 4-MBAchanges according to the state of the acid

group as shown in Figure 15.10. As the pH is reduced and the

acid group becomes protonated, the COO� stretching mode

at 1430 cm�1 decreases in intensity. The strong ring breath-

ing modes at 1075 and 1590 cm�1 are not affected by the

change in pH. The 4-MBA-coated nanoparticle sensors show
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a pH response in the range of 6–8 that is ideal for biological

measurements. To demonstrate the feasibility of utilizing

these nanoparticle sensors in living cells, the 4-MBA-

functionalized nanoparticles were incorporated into Chinese

hamster ovary (CHO) cells by passive uptake. A represen-

tative SERS spectrum of the cells incorporated nanoparticles,

shown in Figure 15.11, illustrates that the functionalized

nanoparticles retain their functionality and are not over-

whelmed by a large background when they are placed into

a biological matrix. The spectrum indicates that the pH

surrounding the nanoparticle is below 6, which is consistent

with the particles being located inside a lysosome (pH

�5) [64]. Although CHO cells are not normally considered

phagocytotic, they have been shown to uptake latex beads as

large as 1mm in diameter [65]. These studies also showed

that the phagocytosed latex particles were localized in lyso-

somes once they were internalized.

Recently, Chourpa et al. [66] proposed an advanced

multispectral imaging approach using a combination of

SERRS with fluorescence techniques. The fluorescence

emission and SERRS spectra of the anticancer drug, mitox-

antrone (MTX), were recorded simultaneously over an

optical section of the cell (Figure 15.12). The spectral

intensity map in Figure 15.12b (average intensity in the

spectral region including both fluorescence and SERRS

maxima) shows a large zone of high intensity (presumably

nuclear and perinuclear drug fluorescence) and at least four

particularly bright spots localized in low-intensity zones

(cytosol and membrane) of the cell. The spectra correspond-

ing to these spots (Figure 15.12c) confirm the presence of tiny

Ag aggregates, since they contain fluorescence background

superimposed with SERRS signal of mitoxantrone, notice-

able due to the most intense band at 1300 cm�1. The SERRS

intensity appears at least as high as that of fluorescence, thus

indicating that in terms of sensitivity of subcellular analysis

these two techniques are comparable. Figure 15.12c illus-

trates the semiquantitative analysis of the intracellular

spectra since each of them can be deconvoluted into

a proportional addition of characteristic fluorescence and

SERRS spectra. For instance, the spectrum in Figure 15.12c

indicates that the SERRS signal in the given location (inner

part of the aggregate 4 located in the membrane of the cell) is

colocalized with the fluorescence characteristics of mitox-

FIGURE 15.10 (a) A Raman spectrum of solid 4-MBA and (b)

SERS spectra of 4-MBA attached to silver nanoparticles at pH 12.3

and (c) pH 5.0. The insets to the left of each spectrum illustrate the

dominant state of the molecule under the conditions described

above [63].

FIGURE 15.11 (a) A confocal image of CHO cells with 4-MBA nanoparticle sensors incorporated into the cells. The cells are outlined in

black to facilitate viewing the low contrast of the cells against the bright nanoparticles. (b) A SERS spectrum of one of the nanoparticle sensors

(indicating that the pH around the nanoparticle sensor is less than 6).

APPLICATION OF SERS IMAGING 293



antrone 33 in a low-polarity environment of membranes

(contribution of 50.8%) with that of an oxidative metabolite

(contribution of 29.1%). These data, together with 6.8%

contribution of the fluorescence characteristic of hydrophilic

cytosolic complex of the drug, are in agreement with the

assignment of the main SERS pattern to the inner cellular

membrane (contribution of 11.7%). Therefore, the combi-

nation of SERRS and fluorescence multispectral imaging is

a real opportunity to colocalize nanoparticulate SERS

substrates with subcellular compartments. Analysis of such

SERRS–fluorescence multispectral maps provides multiple

information about the drug molecular contacts in a given

subcellular compartment.

15.4.2.2 Extracellular SERS Measurements The SERS

measurement of the outer cell membrane of living cells is

getting importance because of their sensitivity toward dif-

ferent biological functions of cells [67]. Following are some

notable protocols attempted in this regard.

SERS is a promising tool to monitor neurotransmitter

release at the single-cell level; it is a sensitive technique that

provides structural information about the released com-

pounds and spatial information about their release sites [68].

Furthermore, SERS has recently been successfully applied to

differentiating cancerous cells from normal cells. For exam-

ple, to obtain a highly sensitive cellular image of living

normal HEK293 cells and HEK293 cells expressing PLCc1
using the SERS technique, functional nanoprobes based on

Au/Ag core–shell nanoparticles, conjugated with monoclo-

nal antibodies, were used by Lee et al. [69]. PLCc1 is

a protein whose abnormal expression may be associated with

tumor development. Schematic illustration of Ag-coated Au

nanoprobeswith R6G for the SERS imaging of cancer cells is

given in Figure 15.13. Functionalized nanoprobes, conjugat-

ed with secondary antibodies, were attached only to the

markers on cancer cells. On specific binding, nanoprobes

were washed using a buffer solution. After washing,

the remaining nanoprobes were selectively attached to the

cancer markers by antibody–antibody interaction. Each

FIGURE 15.12 Combined fluorescence and SERRS confocal spectral imaging of a fluorescent anticancer drug MTX within an MCF-7

cancer cell. (a)White light microscope image of the cell, dashed line shows the outer membrane limits. (b) Spectral intensity distribution map

(average intensity in the region of 1200–1500 cm�1 or 685–699 nm) reveals four silver colloid aggregates (bright spots 1–4). (c) Intracellular

spectrum (inner part of the aggregate 4 located in the membrane of the cell) fitted with a sum of proportional contribution of characteristic

fluorescence and SERRS spectra.
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Raman spectrum was measured by moving down the laser

spot from the top of the cell with an interval of 3mm, but any

characteristic SERS signal of R6Gwas not observed from the

normal cells (Figure 15.13a and b). Only a few noise signals

caused by fluorescence were observed in the spectra. The

SERS image for the same PLCc1-expressing HEK293 cells

is shown in Figure 15.13c. In this figure, the image for the

SERS spectra were displayed by a monochrome-decoding

methodusing the strongestRamanpeak ofR6Gat 1650 cm�1.

The darker the black of the bar, the lower the concentration of

SERS nanoprobes attached to the cell. Figure 15.13d shows

a combined image of the bright-field and SERS images. It

shows the distribution of the PLCc1 markers on the cell

membrane. For a clear understanding, the Raman depth

profiling spectra were also measured and are shown in

Figure 15.13d. Here, the R6G reporter-labeled SERS spec-

trumon the cell membrane looks somewhat different from the

SERS spectrum of pure R6G. In particular, one strong extra

Raman peak was observed at 1542 cm�1. However, the other

Raman peaks of Raman reporter R6G in HEK cells are well

matchedwith those of pureR6G. In an other work [70], SERS

signals of cell components were measured along with SERS

signals of Raman reporter indocyanine green (ICG). The

relative contributions of ICG and cell components depend

on the coadsorption of both kinds of molecules. According to

the experimental data, however, the intensity of the strongest

Raman peak at 1650 cm�1, which was used for Raman

mapping, was very much consistent with the intensity of

antibody interactions between nanoparticles and biomarkers.

Thus, it is believed that SERS imaging with the antibody-

conjugatedmetal nanoprobes can clearly distinguish between

cancerous and noncancerous cells.

Sujith et al. [71] recently attempted to study the cell wall

biochemistry of living single yeast by SERS. Figure 15.14a

and b show dark-field images of living yeast cells without

and with Ag nanoparticles, respectively. Heterogeneously

distributed colored spots on the cells in Figure 15.14b cor-

respond to isolated Ag nanoparticles or nanoaggregates. This

correspondence is evident from AFM images of a yeast cell

surface (Figure 15.14c) and a yeast cell surface adsorbed

withAg nanoparticles (Figure 15.14d). The average diameter

of the particles adsorbed on the cell was 96 nm. However, the

diameter of individual Ag nanoparticles used for the current

work is �40 nm. Thus, an increase in the observed diameter

can be attributed to low resolution of an AFM tip that cannot

reach the interface between particle and cell wall, or aggre-

gation of nanoparticles. The height of the particles adsorbed

was found in the range 10–23 nm (Figure 15.14e). This small

height is possibly due to cell surfaces hollowed by strong

adsorption of Ag particles. AFM measurements revealed

that about 20% of adsorbed Ag particles form dimer-like

aggregates. Figure 15.14f and g shows the dark-field and

corresponding SERS image of Ag nanoparticles adsorbed

on the cell wall, respectively. The SERS-active spots

can clearly be seen in red, green, and yellow colors Figure

15.14g. The distribution of dimer-like aggregates in

Figure 15.14d is consistent with that of SERS-active spots

in Figure 15.14g. To identify SERS spectra from individual

nanoaggregates on single living yeast cell wall shown in

Figure 15.15, they measured Raman and SERS spectra of

FIGURE 15.13 (a) Normal cell dark-field image and SERS spectroscopy image. (b) Raman measurements. (c) Single cancer cell: bright-

field image (left), SERS image (right). (d) Overlay image of bright field and SERS and Raman mapping for single cancer cell. The spots in (b)

and (d) indicate the laser spots across the middle of the cell along the y axis.
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mannan, glucan, and chitin, which are the main components

of yeast cell wall. Among the cell wall components, the

SERS spectra of mannan from only Saccharomyces cerevi-

siaewere similar to SERS spectra in Figure 15.15 and did not

show any similarity to the Raman spectra of mannan. Ahern

and Garell [72] reported that affinity between mannan and

Ag nanoparticles is intrinsically weak. Thus, mannan itself

cannot show SERS signal. It is widely known that mannan of

yeast cell walls covalently bonded with proteins (mannopro-

teins) [73]. Moreover, nitrogen atoms in proteins have strong

affinity for Ag atoms. Thus, they attributed the SERS spectra

to mannoproteins. The amino acids fenilaranin, tyrosine,

tryptophanes, histidine, and so on are present in mannopro-

teins that have chromophoric groups. So, there is a chance

of electronic absorption in the spectral region of excitation,

and thereby resonance enhancement. The circles (red spots)

in Figure 15.15 indicate similar mannoprotein peaks. How-

ever, there are also peaks other than the observed manno-

protein peaks (squares (green spots) in Figure 15.15), which

are amide, C–N, protein backbone, and amino acid vibra-

tions [60, 72, 74, 75] related to the bioactivity of living cells

such as protein secretion, movement, and so on. The nanoag-

gregate-by-nanoagregate spectral variation in Figure 15.15

may arise from yeast cell wall heterogeneity due to clustering

or asymmetric cell surface distribution of mannopro-

teins [76]. The heterogeneity will provide multiple interac-

tions of mannoprotein with Ag nanoaggregates by amino and

carboxyl groups.

15.5 BLINKING IN SERS IMAGING

SERS spectroscopy is sensitive enough to measure a Raman

spectrum of a single molecule adsorbed on a noble metal

nanoaggregate [10, 11]. Recently, several reviews of single

molecule SERS spectroscopy were published [6, 12–14].

Some phenomena are considered as evidences for the single

molecule detection. First, a statistical distribution of SERS

signals does not show Gaussian distribution but Poisson

distribution [10, 12]. The former is characteristic of an

ensemble of many molecules, and the latter means there is

a single or a few molecules adsorbed on a noble metal

nanoaggregate. Second, a SERS spectrum from a mixture of

two different kinds of analyte molecules is attributed to either

analyte molecule [6, 12, 13]. At sufficiently low concentra-

tions of both analytes, a single analyte molecule is adsorbed

on a noble metal nanoaggregate. Finally, the blinking SERS

emission and the spectral fluctuation are shown inRefs 11, 13,

and 14. Blinking is considered as an evidence for single

molecule detection also in fluorescence spectroscopy [77].

Figure 15.16 shows time-resolved SE(R)RS spectra of

5,50-dichloro-3,30-disulfopropyl thiacyanine, whose struc-

ture is shown in an inset of Figure 15.5b, adsorbed on a

single Ag nanoaggregate in water [78]. Initially, the SERRS

spectrum attributed to the J-aggregates with background

emission changed to the temporally fluctuated SERRS spec-

tra. This spectral fluctuation coincides with the dissolution of

the J-aggregates into the monomer or the dimer. We assume

that the anionic thiacyanine molecules are adsorbed on

negatively charged citrate-reduced Ag surfaces through their

positively charged nitrogen atoms (¼Nþ<) such as rhoda-

mine 6G (R6G) [79]. However, they have two negatively

charged –SO3
� groups unlike R6G. The spectral fluctuation

of SERS of the thiacyanine is likely attributed to thermally

FIGURE 15.14 Dark-field image of (a) yeast cell and (b) Ag

adsorbed onyeast cell surfaces (100�) (scale 1mm).AFM images of

(c) an yeast cell and (d) a Ag adsorbed on yeast cell. Dimer

nanoaggregates are circled. (e) Height trace along the line drawn

in (d) (Ag nanoparticles are schematically represented. The heights

ofAg particles from left to right are 10, 10, 10, 23, and 15 nm). (f)Ag

nanoaggregates on a yeast cell surface and the corresponding (g)

SERS image (60�) (scale 1 mm).

FIGURE 15.15 SERS spectra from different Ag nanoaggregates

on a single yeast cell wall. Inset: the SERS image of a single yeast

cell (60�) (scale 1mm). The spectra from “a” to “f” were collected

from Ag nanoaggregates a–f in the image.
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driven movement of the molecules at the small junctions of

Ag nanoaggregates by the Coulomb repulsion. Indeed, both

of temporally fluctuated and temporally stable SERS spectra

were observed from a single Ag nanoaggregate adsorbed

by 3,30-diethyl thiacyanine, cationic dye, that does not form
J-aggregates [80]. However, this charge dependence of the

blinking SERS was qualitatively investigated in a way

similar to that of temperature dependence of blinking SERS

of R6G [28], and it has been reported that the blinking is

a thermal activated mechanism. We need to investigate the

blinking SERS quantitatively.

We took a video of the blinking SERS from Ag nanoag-

gregates adsorbed by 5,50-dichloro-3,30-disulfopropyl thia-
cyanine in water using an inverted microscope (Olympus,

IX-70) coupling with a cooled digital CCD camera (Hama-

matsu, ORCA-AG) whose time resolution was �60ms. The

video images are shown in Figure 15.17a. Figure 15.17b

shows a time profile of the blinking SERS intensity made by

the analysis of the video. In this method, many time profiles

of SERS intensities can be measured all at once. The spectral

fluctuation strongly relates to background emission intensity

that composes SERS intensity. The blinking can be quanti-

tatively characterized by some methods. One is the auto-

correlation function given by

CðtÞ ¼
X
n

ðhInðtÞ � Inðtþ tÞi�hInðtÞi2Þ

in which In(t) is the intensity at wavenumber n and time t

[81, 82]. It has been reported that the autocorrelation

functions, which indicate some periodicity, from each Ag

nanoaggregate adsorbed by R6Gwere not reproduced by any

simple function [82]. This suggests a complex process in

the blinking. Laser power dependence of blinking was

investigated using the rate calculated integrating averaged

FIGURE15.16 Time-resolved SE(R)RS spectra of 5,50-dichloro-
3,30-disulfopropyl thiacyanine adsorbed on a single Ag nanoaggre-
gate in water.

FIGURE 15.17 (a) Microscope images of SERS from single Ag nanoaggregates adsorbed by thiacyanine at various times. (b) Time profiles

of blinking SERRS intensity. (c) Distribution of bright events against time bins. The line shows the best fitting result by power law.
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autocorrelation function at various laser power [81]:

k�1 ¼
ð
ðCðtÞ=Cð0ÞÞdt

On the other hand, power-law statistics are useful for long-

range nonexponential behavior of the blinking [83].

Figure 15.17c shows normalized bright time probability

distribution of the time profile of SERS intensity

(Figure 15.17a) against each bright time bins. The line in

Figure 15.17c is given by

PðtÞ ¼ At�a

inwhicha is the power-law exponent. Thismay be indicative

of the blinking SERS.

15.6 CONCLUSION

In this chapter, we outlined recent studies on the mechanism

of SERS imaging and its biological applications. In the

introduced SERS imaging, noble metal colloids and a con-

ventional dark-field microscope were used. Thus, these

studies on the mechanism of SERS were investigated in

terms of correlation with LSPR. SERS has been used for

bioapplications from the first stage of its invention. In recent

years, biomedical applications of SERS have become

a subject with a variety of challenges and opportunities

for practitioners of chemistry, biology, and medicine. We

reported recent advances in the applications of SERS spec-

troscopy in protein detection and living cell analysis. Special

attention has been given to different protocols used by

researchers for intra- and extracellular analysis with and

without probe molecules.
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16.1 INTRODUCTION

“Spectra are letters from themolecule.” This romantic phrase

states impressively how molecules send us messages about

themselves in the form of spectra. In particular, vibrational

spectra such as Raman and infrared embody many charac-

teristic features that are specific to a molecule. By analyzing

vibrational spectra, we can identify chemical species and

elucidate in details their structure and dynamics. Thus,

vibrational spectra are often called “molecular fingerprints.”

In the mid-infrared “fingerprint” region, we observe many

vibrational bands that are attributable to skeletal modes

characteristic to a molecule. Since biological systems are

made up of molecules, vibrational spectroscopy should be

useful in life sciences as much as it is in material sciences.

Owing to its noninvasive and nondestructive nature, Raman

spectroscopy is more suitable for biological applications

than infrared. Thanks to recent technical developments, we

can now investigate a living cell in vivo under a microscope.

Thus, quite a number of Raman microspectroscopic studies

have already been reported on living cells [1–11], though it

was very difficult to confirm that the cells were really living.

We recently found a strong Raman band in mitochondria of

a living fission yeast cell, which sharply reflects the meta-

bolic activity of mitochondria [8, 9]. We call this band the

“Raman spectroscopic signature of life.” By monitoring

this signature, we can indeed confirm that the cell is living.

It means that we can visualize not only the distributions of

molecular species but also the cell activity of the growing

and dying yeast cells. In this chapter, we review our recent

studies on the structure, transformation, and bioactivity of

single living yeast cells by linear and nonlinear Raman

microspectroscopy. Last but not least, hyper-Raman (HR)

microspectroscopy will be introduced, by which we can

investigate infrared active vibrational modes with submic-

rometer spatial resolution under a microscope. Combination

of Raman and hyper-Raman opens up a new scope for

high spatial resolution vibrational microspectroscopy that

is not restricted by the selection rule. We note that this

chapter is a compilation of several of our previous papers

cited in the reference and therefore contains some overlaps of

descriptions.
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16.2 IN VIVO REAL-TIME PURSUIT OF THE CELL

ACTIVITY OF SINGLE LIVING FISSION YEAST

CELLS BY TIME- AND SPACE-RESOLVED

RAMAN MICROSPECTROSCOPY

16.2.1 Experimental

We used a confocal Raman microspectrometer (Nanofinder,

Tokyo Instrument, Inc.). The 632.8 nm line of a He–Ne laser

(Melles Griot 05-LHP-991) was used with a power of

1–4mW at the sample. The spatial resolutions were 0.3 and

1.7 mm for the lateral and the axial directions, respectively.

Yeast cells (Schizosaccharomyces pombe), whose nucleus

was labeled by green fluorescent protein (GFP), were

studied.

16.2.2 Space-Resolved Raman Spectra

Figure 16.1 shows the space-resolved Raman spectra of a

single living fission yeast cell in the G1/S phase. These

spectra were obtained under a low nutrition condition, so

that the cell cycle was slowed down to allow a long exposure

time of 300 s. Figure 16.1a, b, and d corresponds to the

spectra for nucleus, mitochondria, and septum, respectively.

The positions from where Raman spectra are measured are

indicated by letters a, b, and d in the inset. Using a cell

whose mitochondria are tagged by GFP, we have confirmed

that the spectrum in Figure 16.1b comes from mitochondria.

The spectra from nuclei are dominated by known protein

Raman bands. In particular, the bands in Figure 16.1a show

the amide I mode of the main chain (1655–1660 cm�1), the

C–H bend of the aliphatic chain (1450 and 1340 cm�1), the

amide III mode of the main chain (1250–1300 cm�1), and

the breathing mode of the phenylalanine residue in proteins

(1003 cm�1). It is well known that the frequencies of the

amide I and III bands are sensitive markers of the secondary

structure of the protein main chain. In the present study, the

amide I band is observed in the range of 1654–1659 cm�1,

which indicates the domination of a-helix structures [12].

Concerning the secondary structure, we need to investigate

further in details because this band is broad and thus

we cannot neglect the contribution from other secondary

structures. New insight into the secondary structure of

proteins in a living cell is highly important in connection

with the presence of natively unfolded proteins [12, 13],

which has been discussed intensively in the past few

years. In addition to the protein bands, weak bands are

observed at 781 and 1576 cm�1, which can be assigned to

nucleic acids. According to the result of a component

analysis of isolated nuclei, the DNA/RNA/protein chemical

composition ratio in a S. pombe nucleus is 1/9.4/115 [14].

This ratio means that proteins are about 10 times more

abundant in the isolated nucleus than nucleic acids. This

result is consistent with the result of the in vivo Raman

spectra observed in the present study. The intensity ratio of

the band at 853 cm�1 to that at 825 cm�1 is known to be

an indicator of the H-bonding strength of the phenolic

hydroxyl group [15].

TheRaman spectrum frommitochondria (Figure 16.1b) is

similar to that of phosphatidylcholine (Figure 16.1c) except

for an intense band at 1602 cm�1. Apart from this 1602 cm�1

band, all prominent bands in Figure 16.1b are ascribed to the

known phospholipid vibrational modes with reference to the

assignments of the spectrum of phosphatidylcholine [16, 17].

The skeletal C�C stretch modes in the region of

1000–1150 cm�1 are known to be sensitive to the confor-

mation of the hydrocarbon chains [18]. The bands at 1062

and 1122 cm�1 are assigned to the out-of-phase and in-phase

modes of the all-trans chain. On the other hand, the band

at 1082 cm�1 is attributed to the gauche conformation.

The ratio of the intensity of the gauche band to that of the

trans band is larger in the Raman spectrum from mitochon-

dria (Figure 16.1b) than in that from phosphatidylcholine

(Figure 16.1c). This finding indicates that the hydrocarbon

chains of the mitochondrial membrane are conformationally

less ordered than that in pure phosphatidylcholine.

The Raman spectrum from septum is shown in

Figure 16.1d. The bands are mostly assigned to polysacchar-

ides. We found the change of the Raman spectrum of the

septum in the course of the cell division process. Based on

the normal mode analysis of disaccharides [19, 20], it is

considered that this change reflects the gradual polymeriza-

tion of the saccharide molecules.

FIGURE 16.1 Spatial-resolved Raman spectra of a single living

fission yeast cell in the G1/S phase; (a) nucleus, (b) mitochondria,

(c) phosphatidylcholine (model compound of lipid bilayer), and (d)

septum.
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16.2.3 Time- and Space-Resolved Raman Spectra

of a Dividing Fission Yeast

As the cell division proceeds, the Raman spectrum is ex-

pected to change drastically, reflecting the changes in mo-

lecular composition of the organelles. Figure 16.2 shows the

time- and space-resolved Raman spectra of a yeast cell

dispersed in YE broth. We start the Raman measurement

from the early M phase (a), in which a dividing nucleus is

observed at the center of the cell. At 9min (b), the two nuclei

are put apart symmetrically toward the perimeter of the

cell. At 1 h, 13min (G1/S phase), the nuclei are completely

separated and located at the two ends of the cell. In the

followingG1/S stage, a septum starts to form from the plasma

membrane, as shown in (d). Finally, the septum becomes

mature at 5 h, 54min (e). In the course of the mitosis process,

the Raman spectrum changes significantly. TheRaman bands

at 0min (a) are assigned to the proteins in the nucleus. The

spectrum at 9min is a superposition of those of the mito-

chondrion and cytoplasm. It means that the mitochondria

started to be generated at the central part of the cell. At 1 h,

13min (c), the phospholipid bands due to mitochondria are

observed dominantly in the Raman spectrum. It should also

be noticed that the intense band is found at the Raman shift

of 1602 cm�1. The intensity of this band relative to that of

the 1654 cm�1 band is clearly higher than those observed in

the space-resolved experiment in Figure 16.1. This result is

intriguingwith regard to the relevance of the 1602 cm�1 band

to the metabolic activity of mitochondria. The time- and

space-resolved Raman spectra were obtained from the yeast

cells dispersed in YE broth, while those for the space-

resolved Raman spectra (Figure 16.1) were measured under

a low nutrition condition. It means that the band intensity at

1602 cm�1 depends on the nutrient condition. The stronger

band at 1602 cm�1 in Figure 16.2c is indicative of higher

metabolic activities in a yeast cell in YE broth.

16.2.4 Discovery of the “Raman Spectroscopic
Signature of Life”

To investigate in further details the relationship between the

band intensity at 1602 cm�1 and the metabolic activity of a

mitochondrion, the following experiment has been carried

out. We added a KCN aqueous solution to the yeast cell

sample in order to look at the effect of a respiration inhibitor

on the intensity of the 1602 cm�1 band. The time- and space-

resolved Raman spectra of a KCN-treated yeast cell are

shown in Figure 16.3. The temporal resolution is 100 s. Five

minutes before the addition of KCN, the Raman spectrum

shows a strong band at 1602 cm�1 and the well-known

phospholipid bands at 1655, 1446, and 1300 cm�1. Three

minutes after the addition of KCN (b), the intensity of the

band at 1602 cm�1 decreases considerably, while the other

phospholipid bands remain unchanged. As time goes on,

the 1602 cm�1 band becomesweaker ((c) and (d)), and finally

disappears at 36min (e). Concomitantly, the phospholipid

bands gradually change from well-resolved peaks to diffuse

broad bands. The protein band at 1003 cm�1 does not change,

and no additional peaks appear throughout the time course

of the experiment. We consider that the addition of KCN

affects a mitochondrion of a living yeast cell in the following

FIGURE 16.2 Time- and space-resolved Raman spectra of the

central part of a living yeast cell. The laser beam spot is denotedwith

a white broken circle.

FIGURE 16.3 Time- and space-resolved Raman spectra of a

KCN-treated yeast cell.
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two steps. First, the cellular respiration is inhibited by the

action of CN�, and the metabolic activity of the mitochon-

drion is lowered. This process has been monitored by the

drastic decrease in the intensity of the 1602 cm�1 band.

Second, the double-membrane structure of the mitochondri-

on is degraded by the lowered metabolic activities, and it is

eventually destroyed. This process has been probed by the

changes in the phospholipid bands. It is highly likely that

the 1602 cm�1 band probes the primary dying process of the

KCN-treated yeast cell through the metabolic activity of a

mitochondrion. Therefore, we call this band the “Raman

spectroscopic signature of life.”

16.3 INVIVOTIME-RESOLVEDRAMANIMAGING

OF A SPONTANEOUS DEATH PROCESS OF A

SINGLE BUDDING YEAST CELL

16.3.1 Vacuole and Dancing Body in a Budding

Yeast Cell

Vacuole is one of the biggest organelles in a yeast cell.

The function of vacuole includes amino acid storage and

detoxification. In a budding yeast (S. cerevisiae) vacuole, a

particle called dancing body occasionally appears and

moves actively for a while. Although a previous fluorescence

study suggested that the main molecular component of the

dancing body was polyphosphates [21], it was not clear.

One of the difficulties in studying dancing body is that we

cannot separate it from the vacuole. We have investigated

the molecular component of a dancing body by time- and

space-resolved Raman spectroscopy (data not shown),

and have proved that the dancing body consists of crystal-

like polyphosphate [10].

16.3.2 Spontaneous Death Process Following

the Appearance of a Dancing Body

Figure 16.4 shows the time-resolved Raman images (a) and

the opticalmicroscope images (b) in a timespan of about 20 h

of a single living budding yeast S. cerevisiae. From the

microscope images in Figure 16.4b, it is seen that a dancing

body forms in a vacuole between 5 h, 50min and 6 h. Then,

the vacuole disappears between 8 h, 41min and 9 h, 31min.

Finally, the cell becomes totally destructed between 9 h,

31min and 19 h, 37min. It is obvious that these changes in

the microscope images reflect a spontaneous cell death

process of an S. cerevisiae cell. We confirmed that this

spontaneous death process observed in Figure 16.4 also

occurred for cells without laser irradiation. We have exam-

ined 642 cells to find that once a dancing body was formed

in a vacuole, the cell eventually died without any exception.

In Figure 16.4b, we trace these changes at the molecular

level by the Raman images at 1602, 1440, 1160, and

FIGURE16.4 (a) Time-resolvedRaman images and (b) corresponding opticalmicroscope images of a dying S. cerevisiae cell. (See the color

version of this figure in Color Plate section.)
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1002 cm�1. The 1602 cm�1 band, the “Raman spectroscopic

signature of life,” reflects the metabolic activity of mito-

chondria. Therefore, it shows the distribution of active

mitochondria in a cell. The band at 1445 cm�1 is due to

the C–H bending modes of phospholipids. This band gives

an image of phospholipid distribution, which corresponds to

the location of mitochondria that contain high concentration

of phospholipids. The polyphosphate band at 1160 cm�1

provides an image of phosphate distribution including the

location of a dancing body. The band at 1002 cm�1 is

assigned to the breathing mode of phenylalanine and shows

the protein distribution in a cell. At 0min, the cell has

active mitochondria as shown by the 1602 cm�1 image. The

phospholipids (1440 cm�1) and proteins (1002 cm�1) are

located only outside of a vacuole, but some amount of

polyphosphates do exist inside the vacuole as well as

outside. At 6 h, when a dancing body becomes suddenly

visible, the metabolic activity in mitochondria is markedly

lowered as seen from the 1602 cm�1 image, though the

mitochondrial distribution (1440 cm�1) does not change

appreciably. The 1160 cm�1 band gives an image covering

a large part of the vacuole, indicating that a dancing body is

trapped by the laser field and that it moves with the scanning

laser spot within the vacuole. There is no change in the

protein distribution. At 8 h, 41min, the dancing body stops

moving and stays at the lower part of the vacuole. At this

stage, the metabolic activity of mitochondria is completely

lost, while the mitochondrial and protein distributions do

not change much. The 1160 cm�1 band image corresponds

to the remaining of the dancing body that does not move any

more. At 9 h, 31min, the vacuole is lost, while the remain-

ing of the dancing body still exists at the center of the cell.

The Raman images show that the molecular distributions at

this stage are highly randomized. It indicates the loss of

structures in the cell. At 19 h, 37min, the molecular dis-

tributions become totally random, showing that the cell is

not alive any more. Thus, a spontaneous cell death process

is visualized by in vivo time-resolved Raman imaging at the

molecular level.

16.4 NONLINEAR RAMAN

MICROSPECTROSCOPY AND IMAGING

OF SINGLE LIVING CELLS

16.4.1 Ultrabroadband Multiplex Coherent

Anti-Stokes Raman Scattering Process

As shown above, spontaneous Raman microspectroscopy is

powerful for elucidating intracellular structure in vivo with

three-dimensional sectioning capability. However, it may not

be suitable to trace a detailed dynamical behavior inside the

cell, because of its relatively low efficiency. Spontaneous

Raman process often requires several minutes to obtain

one spectrum. This low efficiency originates from the small

scattering cross section of the spontaneous Raman process.

An alternative approach to obtain vibrational images with

high speed is coherent anti-Stokes Raman scattering

(CARS) [5, 22–27]. In particular, multiplex CARS micro-

spectroscopy is promising because of its capability to obtain

vibrational spectra efficiently [24, 28–31]. Figure 16.5 shows

an energy diagram for the multiplex CARS process. The

multiplex CARS process requires two laser sources, namely,

a narrow-band pump laser (v1) and a broadband Stokes laser

(v2). Themultiple vibrational coherences are created because

of the wide spectral range of the frequency difference,

v1�v2. If we can prepare ultrashort laser pulses, an impul-

sive Raman excitation and a subsequent narrow-band probe

can also generate a multiplex CARS spectrum [32, 33].

One of the most prominent features of multiplex CARS

microspectroscopy lies in the fact that it can easily distinguish

the concentration change of a particular molecule from the

structural change through the spectral analysis [11]. It should

be emphasized that a single-wavenumber CARS detection,

which is widely adopted in CARS microscopy, cannot dis-

criminate these two phenomena. Although there were several

restrictions on the spectral coverage of multiplex CARS

microspectroscopy mainly due to the bandwidth of the laser

emission [24, 28–31], the spectral coverage has been signi-

ficantly broadened using the supercontinuum light source

FIGURE 16.5 Energy diagram for multiplex CARS process.
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generated from a photonic crystal fiber [11, 34–36] or a

tapered fiber [37]. Recently, the spectral coverage of

the multiplex CARS microspectroscopy has been extended

to be more than 3500 cm�1.

16.4.2 Experimental Setup for Ultrabroadband

Multiplex CARS Microspectroscopy

Figure 16.6 shows a schematic of the multiplex CARS

microspectrometer. An unamplified mode-locked Ti:sap-

phire laser (Coherent, Vitesse-800) provides wavelength

fixed radiation at 800 nm, which is used as the pump laser.

Typical duration, pulse energy, and repetition rate are 100 fs,

12 nJ, and 80MHz, respectively. A portion of the output from

the oscillator is used as a seed for generating a superconti-

nuum in the PCF (crystal fiber, NL-PM-750). The input pulse

energy for the supercontinuum generation is less than 2.3 nJ.

As shown in Figure 16.6, the fundamentals of the Ti:sapphire

laser and the supercontinuum are used for the pump (v1) and

Stokes (v2) lasers, respectively. To obtain Raman spectrum

with high frequency resolution, the pump laser pulses are

spectrally filtered using a narrow bandpass filter. The band-

width was measured to be about 20 cm�1. Because the pump

laser is in the near-infrared (NIR) region, the Stokes laser

must also be in the NIR. The visible component in the

supercontinuum is thus blocked by a long-wavelength pass

filter. Thanks to the NIR excitation, we can expect several

advantages such as low photodamage, suppression of the

nonresonant background signal, and a deep penetration depth

for opaque samples. Two laser pulses are superimposed

collinearly using an 800 nm notch filter, and then tightly

focused onto the sample with a 40� 0.9 NA microscope

objective. Under the tight focusing condition, the phase-

matching conditions are relaxed due to the large angular

dispersion and the small interaction volume [38, 39]. The

relaxation of the phase-matching condition is important

especially for CARS spectroscopy, because a wide range of

vibrational resonances can be accomplished simultaneously

using the ultrabroadband Stokes laser. A 40� 0.6 NA mi-

croscope objective is used to collect the forward-propagating

CARS signal. Finally, the CARS signal is guided to a

polychromator (Acton, SpectraPro-300i), and is detected by

aCCD camera (Roper Scientific, Spec-10:400BR/XTE). The

multiplex CARS images are measured by a point-by-point

acquisition of the CARS spectrum. The sample is moved

using piezo-driven xyz translators (MadCity, Nano-LP-100).

We used fission yeast S. pombe as a sample [7–9]. The nuclei

of yeast cells were labeled by GFP.

16.4.3 CARS Imaging of Single Living Cells

Figure 16.7a shows a typical spectral profile of the CARS

signal of a living yeast cell. As clearly shown, a strong signal

is observed at the Raman shift of 2840 cm�1. This band

originates from C�H stretch vibrational mode, which shows

a slightly dispersive lineshape due to an interference with a

nonresonant background. On the basis of our previous spon-

taneousRaman [7–9] andCARS [11] studies, the signal at the

FIGURE 16.6 Experimental setup for multiplex CARS micro-

spectroscopy; BS: beam splitter; NBF: narrow bandpass filter; LF:

long-wavelength pass filter; NF: notch filter; SF: short-wavelength

pass filter.

FIGURE16.7 (a) Typical spectral profile of theCARS signal from a living yeast cell; (b) CARS image of living yeast cells at theRaman shift

of C�H stretching vibrational mode. The short bar measures 2mm.
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Raman shift of 2840 cm�1 is found particularly strong in

mitochondria, because mitochondrion is an organelle con-

taining a high concentration of phospholipids. Figure 16.7b

shows the vibrationally resonant CARS image at C�H

stretching mode using a differentiation method [11]. The

CARS spectrum of a yeast cell in Figure 16.7a is obtained at

(x, y)¼ (5.65 mm, �3.05 mm), which is indicated as a black

cross in Figure 16.7b. In Figure 16.7b, yeast cells at various

cell-cycle stages are clearly imaged. Especially, a septum is

visualized in the yeast cell around the center of Figure 16.7b.

The septum is composed of carbohydrates such as polysac-

charide, which is also rich in C–H bonds.

Thanks to the three-dimensional sectioning capability,

CARS microscopy enables us to obtain not only a lateral

but also an axial slice of a living yeast cell. Figure 16.8a

shows a lateral CARS image of a yeast cell. Figure 16.8b

corresponds to the vertical slice of the yeast cell at the

position of y¼ 0. The CARS signal is weaker at the top part

than at the bottom part. This variation is due to the imperfect

focusing of the two laser beams because of the spatially

heterogeneous refractive index inside the cell.

16.4.4 Multi-Nonlinear Optical Image of Single Living

Cells

The supercontinuum light source can also be used as an

excitation light source for the two-photon excitation fluo-

rescence (TPEF) [40–42]. Owing to the broadband spectral

profile of the supercontinuum, the two-photon allowed elec-

tronic state can be excited efficiently in comparison with

conventional TPEF microscopy using a Ti:sapphire oscilla-

tor. Figure 16.9a shows the CARS and the TPEF spectra

obtained in a 100ms exposure time. The nuclei of the yeast

cells in the present study are labeled by GFP. A broad but

distinguishable peak is observed around 506 nm. Taking into

account the spectral profile of this signal, it is assigned to the

TPEF signal due toGFP. Figure 16.9b and c showsCARS and

TPEF images. It should be emphasized that both images of

multiplex CARS and TPEF signals are obtained simulta-

neously in one single measurement. Since there is no overlap

between the CARS and TPEF signals in the spectral domain,

it can be easily differentiated using a spectrometer. Although

dual imaging of the CARS and the TPEF signals has been

reported using two synchronized Ti:sapphire oscillators [43],

full spectral information is obtained for the first time in the

present study.

In conclusion, we can obtain Raman spectrum and Raman

image with high speed using ultrabroadband multiplex

CARSmicrospectroscopy. At themoment, the exposure time

is 30ms, which is about 1/30 in comparison with that of

spontaneous Raman microscopy.

16.4.5 In Vivo Measurement of a Cell Division Process

CARS technique enables us to obtainvibrational images with

a high speed. We have applied it to the cell division pro-

cess [44]. Figure 16.10a and b shows a CARS at the C�H

stretch mode and TPEF images, respectively. The sample is a

living fission yeast cell whose nucleus is labeled by GFP. The

number at the upper left shows the time of observation.

Exposure time at each spatial point is 50ms. Each image is

constructed from 61� 61 CARS spectra obtained by scan-

ning the sample from the bottom to the top. It took 3.8min for

obtaining one image, which determined the temporal reso-

lution in the present experiment. Two living cells at the G1

phase are observed at the beginning. Both cells have septa at

around the center of the cell. A strong CARS signal due to

membranous organelles is also observed at each compart-

ment. First, we focus on the yeast cell at the lower side of the

images. The CARS signal from the septum decreases in the

cell division (from (a-1) to (a-4)). The cell finally splits into

two daughter cells (a-4). One of the daughter cells moves

almost out of the field of view at (a-8). For the other daughter

cell, theCARS signal inside the cell does not show significant

distribution change from (a-10) to (a-21) in comparison with

that in the dividing process (from (a-1) to (a-4)). Second, the

yeast cell at the upper side is discussed. The CARS signal

from the septum gradually increases from (a-1) to (a-10).

Next, it decreases slightly at around (a-13), and the cell splits

into two daughter cells at (a-15). After the cell division, the

daughter cell in the field of view still shows dynamic

distribution change of the CARS intensity inside the cell,

which is in contrast to the cell at the lower part. It could be

explained by the migration of organelles in the axial direc-

tion. As shown in Figure 16.10b, the relative positions of

nuclei inside the cell do not change significantly in the course

of the cell cycle during the observation. It is also noted that

the TPEF signal intensity becomes weaker and weaker in the

FIGURE 16.8 Lateral (a) and axial (b) CARS images of a yeast

cell at C�H stretching vibrational mode. The short bars correspond

to 1 mm.
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course of the cell division. It is probably due to a photo-

bleaching effect by laser irradiation. On the other hand, the

CARS signal intensity does not deteriorate. This result

manifests another advantage of the CARS imaging, which

does not suffer inherently from the photobleaching effect.

16.5 HYPER-RAMAN MICROSPECTROSCOPY

Using spontaneous Raman and/or CARSmicrospectroscopy,

we can investigate the structure and dynamics of chemical

and biological systems, such as living cells in vivo. However,

Raman and CARS allow us to observe only the Raman active

vibrationalmodes because of the selection rule. Thus, Raman

or CARS microspectroscopy alone is not sufficient to obtain

full vibrational information on molecules under investiga-

tion. Imagine a situation in which we have the Raman

spectrum of an unknown species in a biological system under

amicroscope andwe cannot extract it for analysis with X-ray

crystallography and/or NMR. Then, we would like to have

the infrared (IR) spectrum measured under the same micro-

scope. However, the spatial resolution of infrared microsco-

py is very limited. It is on the order of several micrometers

due to the diffraction limit of infrared light. Although a near-

field technique has been introduced to IR microscopy, it is

still in a developing stage [45, 46]. To overcome this diffi-

culty, we have developed hyper-Raman microspectroscopy

that allows investigation of Raman inactive but infrared

active vibrational modes with a spatial resolution as high as

that of Ramanmicrospectroscopy. This development is a new

approach to achieve complete vibrational microspectroscopy

FIGURE16.9 (a) Spectral profile of the CARS and TPEF signals of a living yeast cell; (b) CARS lateral images of living yeast cells for C�H

stretchingmode; (c) TPEF lateral images of the same system at 506 nm. The red and green spectra in (a) are obtained at thewhite and the black

crosses in (b) and (c), respectively. (See the color version of this figure in Color Plate section.)

FIGURE 16.10 CARS at the C�H stretching vibrational mode

(a) and TPEF (b) images, respectively. The sample is a living yeast

cell, whose nucleus is labeled by GFP. The scale bar corresponds to

2mm. The number at the upper left shows the time course of the

observation. Exposure time at each spatial point is 50ms. Lateral

(XY) images consist of 61� 61 pixels, and are measured in 3.8min

per one image.
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that is not restricted by the selection rule and that provides

full vibrational information on molecules detected only

under a microscope [47].

Hyper-Raman scattering, one of the nonlinear Raman

effects, was first observed in 1965 [48]. Since then, there

have been many researches, both theoretically and experi-

mentally [48–54] focused on this phenomenon. According to

the selection rule [49–52], any IR active vibrational mode

is HR active. Therefore, with the use of a visible or near-IR

laser source, HR microscopy can obtain IR equivalent vi-

brational informationwith spatial resolution as high as that of

Raman microscopy. Moreover, the nonlinear property of the

process provides some advantages over conventional Raman

microscopy, such as inherent three-dimensional sectioning

capability and the absence of interference from one-photon

fluorescence.

The sample we have chosen for the present study is all-

trans-b-carotene, which is a typical carotenoid widely found
in nature. There are two reasons for the choice. One is to show

that a natural substance can be a good HR probe under a

microscope. The other is to demonstrate the selection rule

under the mutual exclusion principle. Note that all-trans-

b-carotene has the inversion symmetry.

The light source is a mode-locked Ti:sapphire laser

(Coherent, Vittesse-800), which is the same light source for

multiplex CARS microspectroscopy. The output from the

femtosecond laser is too broad to be used for HR excitation.

Thus, it is spectrally filtered using a narrow bandpass filter or

a grating and slit pair. Avariable neutral density filter is used

for adjusting the excitation power. The filtered laser output is

introduced to an invertedmicroscope (Nikon, TE2000-S) and

then focused onto a sample with an objective (40� NA 0.9).

HR scattering is collected with the same objective, passed

through a dichroic mirror and a couple of short-wavelength

pass filters (Asahi Bunko), and is coupled into an optical fiber

to be guided into a polychromator (Acton, SpectraPro-300i).

Finally, HR spectra are recorded on a charge-coupled device

(CCD, Roper Scientific, Spec-10:400BR). A HR image is

acquired by scanning the sample with a piezo-driven xyz

translator (MadCity, Nano-LP-100). It is noted that this setup

is part of themultiplexCARS system. By blocking the Stokes

supercontinuum, the system can be changed from CARS to

HR microspectroscopy.

Spontaneous Raman spectra were obtained with a confo-

cal Raman microspectrometer (Nanofinder, Tokyo Instru-

ments, Inc.). The light sourcewas a cwHe–Ne laser. Infrared

absorption spectra in KBr disks were recorded on a JASCO

FT/IR-670 spectrometer.

All-trans-b-carotene and benzene were purchased

from WAKO Pure Chemical Industries and from Nacalai

Tesque, Inc., respectively. All reagents were used without

further purification. Microcrystals of b-carotene were

obtained by recrystallization from benzene solutions.

A typical size of the microcrystals used in the present study

was 20 mm in length. All sample preparation was made under

deep red light.

HR, Raman, and IR spectra of crystalline all-trans-b-car-
otene are shown in Figure 16.11. In the HR spectrum, an

intense band is observed at 1564 cm�1. This wavenumber is

different from that in theRaman spectrumat 1523 cm�1 but is

close to that in the IR spectrum at 1561 cm�1. The wave-

number is also consistentwith the normal coordinate analysis

of all-trans-b-carotene [55]. Assuming that all-trans-b-car-
otene belongs to the point group C2h, HR active vibrational

modes should be infrared active. Therefore, the HR signal at

1564 cm�1 is safely ascribed to a C¼C and C�C stretch

vibration of the conjugated chain [55]. ComparingHRand IR

spectra in Figure 16.11, we notice that the relative intensities

of HR and IR bands are different. In fact, some IR active

bands are not observed in the HR spectrum. It can

be explained by considering the origins of HR and IR signal

intensities. The HR signals are generated through the first

derivatives of hyperpolarizability with respect to the vibra-

tional normal coordinates, while IR signals are through such

derivatives of the dipole moment. The electronic resonance

effect may also contribute to the HR signal. We also mea-

sured all-trans-b-carotene in cyclohexane dilute solutions.

The overall spectral profile in solution was similar to that in

the microcrystals.

Figure 16.12a shows an overall spectral profile of an all-

trans-b-carotene microcrystal measured in 1 s. An intense

FIGURE 16.11 Vibrational spectra of all-trans-b-carotene mi-

crocrystals; HR spectrum (top), Raman spectrum (middle), infrared

absorption spectrum (bottom) measured in a KBr disk. A vertical

solid line indicates 1564 cm�1. HR spectrum was obtained with the

pulse energy of 3mW at the sample point. The exposure time was

5min. The HR spectrum has been corrected for the two-photon

fluorescence background.
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signal is observed at 0 cm�1, which corresponds to the hyper-

Rayleigh scattering or the second harmonic of the excitation

laser field. The broad background is probably due to the two-

photon fluorescence of the sample. Figure 16.12b and c

shows two HR lateral images of the microcrystal at the

Raman shifts of 1564 and 1944 cm�1, respectively.As clearly

shown in Figure 16.12b,HR image is successfully obtained at

1564 cm�1. On the other hand, no vibrational contrast is

observed at 1944 cm�1 (Figure 16.12c). The high vibrational

contrast in Figure 16.12b with the exposure time as short as

1 s for a pixel demonstrates the feasibility of HR microspec-

troscopy as a new tool for vibrational imaging.

As shown in the following, HR microspectroscopy has a

spatial resolution much higher than that of conventional IR

microspectroscopy. First, the lateral spatial resolution is

evaluated. The HR intensity profile at the edge of the crystal

shown in Figure 16.12 is shown in Figure 16.13a. By fitting this

profile with a step function convoluted with a Gaussian, the

full-width at half-maximum is determined to be 0.6� 0.2mm.

Although the value 0.6 mm is considered to be the largest

possible spatial resolution, it corresponds well to the theo-

retical value [3] 0:61l=
ffiffiffi
2

p
NA ¼ 0:38 mm from the laser

beam spot size. It is emphasized that we have successfully

obtained avibrational imageof an infrared activevibrational

modewith submicrometer resolution. The spatial resolution

of a microscope is grossly determined by the spot size of

the focused laser beam. The spot size is proportional to the

wavelength of incident light if it is tightly focused to the

diffraction limit. Therefore, it is difficult to achieve high

spatial resolution with IR microscopy, which uses longer

wavelength light. IR microscopy with submicrometer reso-

lution has been demonstrated by IR near-field scanning

optical microscopy (IR-NSOM) with tip-enhanced infrared

absorption technique [7] orwith specially designed aperture

probes [46]. However, the application of IR-NSOM to bio-

logical sample is intrinsically limited, because IR-NSOM

cannot provide three-dimensional sectioning capability.

A strong absorption by water is also a drawback for IR

microscopy. The HR microspectroscopy, which has been

developed by us, can be regarded as a unique alternative,

because it enables us to obtain a vibrational image with an IR

active mode with a submicrometer spatial resolution. Fur-

thermore, HR microspectroscopy can also be employed to

measure IR and Raman inactive vibrational modes.

Second, we discuss the depth resolution. Utilizing the

second order nonlinear optical process, HR microspectro-

scopy has an intrinsic high axial resolution. Figure 16.13b

shows the depth dependence of the HR signal of b-carotene
in a cyclohexane solution at 1574 cm�1, whichwasmeasured

across the interface between the cover glass and the

solution. The intensity profile is fitted well with a single

exponential function convoluted by a Gaussian. The expo-

nential decay is most probably due to the reabsorption of

the scattered light by the solution. From the rise of the signal

in glass/solution interface, the axial spatial resolution is

estimated to be 1.4� 0.4 mm. The observed axial spatial

FIGURE 16.12 (a) HR spectrum of an all-trans-b-carotene

microcrystal measured in 1 s. The gray line is obtained by averaging

the 220 spatially resolved spectra of the microcrystal; the HR

images of the microcrystal at the Raman shift of (b) 1564 cm�1

and (c) 1944 cm�1. An inset shows amicroscopic image of the same

crystal. A black bar in the inset indicates 5mm. The pulse energy of

the incident laser was 8mWat the sample point. The exposure time

was 1 s for each pixel. The whole image was acquired in 10min.
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FIGURE 16.13 (a) Lateral and (b) axial intensity profiles of the

HR signal (filled circles) of (a) a microcrystal at 1564 cm�1 and (b)

all-trans-b-carotene in cyclohexane at 1574 cm�1. Fitted curves are

indicated by solid lines.
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resolution is comparable to the theoretical estimation [3],

2l=
ffiffiffi
2

p
NA2 ¼ 1:4 mm.

HR microspectroscopy is shown to provide vibrational

information under a microscope on Raman inactive but

infrared active modes. With a careful choice of the exciting

laser wavelength and the use of electronic resonances, we

believe that this technique can be applied to a wide variety of

organic materials. The lateral and axial spatial resolution is

evaluated to be less than 0.6 and 1.4 mm, respectively. The

lateral resolution of HR microspectroscopy is much better

than that of conventional infrared microscopy. Thus, com-

bination of Raman and HR methods accomplishes high

spatial resolution vibrational microspectroscopy that is not

restricted by the selection rule.

16.6 CONCLUSIONS

Owing to its inherent high molecular specificity, linear and

nonlinear Raman spectroscopies provide rich information on

molecular composition, structure, and dynamics in a living

cell. In addition, the “Raman spectroscopic signature of life”

enables us to visualize metabolically active mitochondria

without any pretreatment like dye labeling. In the near future,

we will be able to discuss the life and death of a single living

cell quantitatively at the molecular level, using time- and

space-resolved linear and nonlinear Raman spectroscopy.
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arithmetic,warping), 97

Optical coherence tomography, 3

Optical parameter oscillator (OPO), 77, 85

Optical path difference (OPD), 58

Optics for NIR imaging, 86

Ordinary least square (OLS), 180

Orientation function, 266, 267

Orthorhombic, 135, 136

Osteons, 122–123

Overtone bands, 8

Oxygenation, 156, 158–9

Paclitaxel, 176, 177

Partial least square (PLS), 78

PAT, 206

Path length, ATR, 191

PCA, 170, 172, 210, 224, 235

Pectin, 232

PEG, 196, 200

PEG-griseofulvin mixture, 194

Penetration depth, 256

PGP spectrographs, 86

Pharmacology, 134

Phase transition, 135, 136

Phospholipid vibrational modes 302

Photoacoustic spectroscopy, 7

Pigments, 232

PLCc1, 294, 295
PLS, 170, 181, 210, 211

PLS-DA, 216, 217, 255

Polarized light images, 175

Polyacetylene, 233

Polymer, 263

poly(e-caprolactone), 264, 265
poly(3-hydroxybutyrate), 264, 265, 266, 267,

poly(L-lactic acid), 264, 265, 266, 267

polymer blends, 264, 265, 266

polymorphism, 191

Power-law, 298

Principal component analysis (PCA), 100, 151, 249

Prism-grating-prism (PGP), 87

Prostate, 116–117

Protein detection, 291

Protein-ligand interaction, 291

Proteins, 302

Pump laser, 306

PVP, 192

QbD, 206

Quality assessments of tablets, 221

Quality control, 218

Quantitative IR imaging, 190

Quantum yield, 5

Quartz halogen floodlights, 150

Raman characteristic frequencies, 13

Raman cross section, 12

Raman gain spectroscopy, 3

Raman imaging

-AFM imaging, 39

fiberscopes, 34, 42

instrumentation designs, 27

instrumentation performance assessment, 45

-IR imaging, 41

-LIBS imaging, 39

macroscopes, 33

microscopes, 32

-MXRF imaging, 38

-NIR imaging, 41

polarized, 122, 124

-SNOM imaging, 40

telescopes, 34

Raman lidar, 18

Raman molecular imaging (RMI), 116–117

Rapid scan FT-IR imaging, 67

Rayleigh criterion, 189, 286

Rayleigh scattering, 4, 11

Reducing the image complexity, 98

Refractive index, 3

Remote sensing, 17

Reperfusion, 158, 159

Resonance Raman effect, 285

Resonance Raman imaging (RRI), 118–119

Resonance Raman scattering, 13

Rheo-optical FT-IR, 266

Rhodamine 6G (R6G), 288, 294–297

Roller compacted ribbons, 221

Saccharomyces cerevisiae, 296

Sampling modes for IR imaging, transmission, reflection,

diffuse reflection, 68

Sampling, NIR imaging, 208, 256

Savitzky–Golay, 100, 179

Scanning (point-by-point/line), 24, 25

Scanning electron microscope (SEM), 37, 288

Scanning near-field optical microscope (SNOM), 286

Score images, 99, 172, 249, 252, 253
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Selection rules, 309

SERRS Raman imaging, 35, 36

Short-wave infrared, 64

Signal-to-noise, 48

Silver colloidal aggregates, 15

Silver nanoparticles, 15, 287–289, 291–293, 295–297

Simplisma, 181

Single molecule spectroscopy, 286

Skin, 117–118, 133–134, 195

flap assessment, by NIR imaging, 155

hydration, 156, 157

NIR application, 153

Snell’s law, 3

Sorbitol, 170

SORS Raman imaging, 37

Spatial resolution, 25, 48, 88, 189, 208, 310

Specim PGP (prism-grating-prism), 244

Spectral unmixing, 152

Spectralon�, 80

Spontaneous death of cells, 304

Spontaneous Raman scattering, 10

SRS Raman imaging, 37

Standard normal variate (SNV), 100, 254

Standoff Raman systems, 35

Starch, 193

Statistical analysis and spatial heterogeneity, 79

Step scan mode (IR imaging), 59

Stimulated Raman gain/ loss spectroscopy, 17

Stokes laser, 306

Stokes scattering, 10

Stratum corneum (SC), 133, 134, 136, 140

Streamline�, 26

Sum of squares (SS), 100

Supercritical fluid drying, 214

Superficial fluid investigations, 191

Surface enhanced Raman spectroscopy, 14

Surface plasmon resonance (SPR), 285, 287–291

Surface-enhanced fluorescence (SEF), 291

Surface-enhanced Raman scattering (SERS), 285, 287–298

Surface-enhanced resonance Raman scattering (SERRS), 291,

293, 296

Tablets in blister packaging, 222

Tandem Raman imaging instrumentation, 37

Tear fluid, 119–120

Terahertz spectroscopy, 7

Testicular microlithiasis, 116

Tetramethylrhodamine isothiocyanate (TRITC), 291

Thiacyanine, 288, 296

Thickness of layers (pharmaceutical), 76

Tip-enhanced Raman spectroscopy, 15

Tissue, 133

Tissue oxygenation, 154

Tomography, Raman, 111, 123–124

Tooth enamel, 123–124, 126

Transmission imaging IR, 188

Transmission imaging of dissolution, 196

Tumor margins, 111, 117

Two-photon excitation fluorescence, 307

Univariate imaging, 113, 125, 179, 180

USAF, 46

USP regulation (dissolution), 195

Vacuole, 304

V-blender, 218

Vegetables, 245, 247

fruits and plants, images of, 229

Very long wave infrared, 64

Vibrations, 2

Visible image systems, 62

Visible images, 198

Volumetric Raman imaging, 44

Voxel, 94

Warm electronics, 66

Water sorption in pharmaceutical formulations and human skin, 193

Wavelength filters, 86

Wheat, 246

Wheat grains, 230

Wheat kernel, 230

Wide-field Raman imaging, 26

Wound healing, 117–118

Wound management, 153

Xanax, 170

Yeast cell, 295

Zinc selenide crystal, 187, 196, 198
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