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Preface

The NATO ARW “Molecular Self-Organization in Micro-, Nano-, and Macro-
Dimensions: From Molecules to Water, to Nanoparticles, DNA and Proteins” to
commemorate Professor Alexander S. Davydov was held in Kiev, Ukraine, on
8–12 June, 2008, at the Bogolyubov Institute for Theoretical Physics of the National
Academy of Sciences of Ukraine.

The objective of this NATO ARW is to unveil and formulate the principal features
that govern myriads of the molecular self-organization processes in micro-, nano-,
and macro-dimensions from the following key representatives such as liquid wa-
ter and aqueous solutions, and molecular liquids, nanodots, nanoparticles including
gold, solitons, biomolecules such as DNA and proteins, biopolymers and biosen-
sors, catalysis, molecular modeling, molecular devices, and thin films, and to offer
another, more advanced directions in computational, experimental, and technologi-
cal areas of nano- and bioscience towards engineering novel and powerful molecular
self-organized assemblies with tailored properties.

Nanoscience is indeed one of the most important research and development fron-
tiers in modern science. Simplistically, nanoscience is the science of small particles
of materials of a size of nanometre. Molecular nanoscience and nanotechnology
have brought to us the unprecedented experimental control of the structure of matter
with novel extraordinary properties that open new horizons and new opportunities,
and new ways to make things, particularly in our everyday life, to heal our bodies,
and to care of the environment. Unfortunately, they have also brought unwelcome
advances in weaponry and opened yet more ways to foul up the world on an enor-
mous scale. We therefore highly need to unveil the general principles that govern the
molecular self-organization at a nanoscale in order to understand the future capabil-
ities of the human race, to have a vision of where the nanotechnology is leading,
how it will affect what we are, and what our societies will become. We hence have
a lot of work ahead of us in order to harness new nano-dimensions’ developments
to good ends.

These global challenges of the nano-dimensional world as being transformed into
the major objectives of this NATO Advanced Research Workshop are the following:

� To view it from and to juxtapose it at the different dimension’s angles, viz., the
microscopic scale, on the one hand, and from the macroscopic one, on the other
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vi Preface

� From these perspectives of ‘meeting’ all dimensions, to unveil and formulate the
principal features that govern myriads of the molecular self-organization pro-
cesses in all these dimensions, largely focusing of their key representatives such
as liquid water and aqueous solutions, and molecular liquids, nanodots, nanopar-
ticles including the gold ones, solitons, biomolecules including the DNA and
proteins, biopolymers and biosensors, catalysts, molecular models, molecular de-
vices, and thin films

� To offer another, more advanced directions in computational, experimental, and
technological areas of nanoscience towards engineering novel and powerful
molecular self-organized assemblies with tailored properties.

That is why the chief idea and the main purpose of our multi-disciplinary NATO
Advanced Research Workshop is to bring together the scientists who work in the
fundamental and applied areas of physics, chemistry, and biology from the NATO
and Cooperation Partner Countries to share their research expertise, their knowl-
edge of our many-dimensional world that manifests via the myriads of facets.
It suffices to recall in this regard a nonlinearity-induced conformational dynam-
ics of molecular complexes as a key issue in soft-matter physics and biophysics,
effective trapping of nonlinear localised excitations and how they contribute to
macroscopic phenomena, nonlinear charge and energy transport, proton conduc-
tivity through water-filled carbon nanotubes—many of them are rooted to the
pioneering researches that was conducted in the 1970s and 1980s by the outstanding
Soviet physicists and the former director of the Bogolyubov Institute for Theoretical
Physics Professor Alexander S. Davydov who was also well known for his works in
nuclear physics and molecular crystals (Davydov’s splitting). His idea of the energy
transport through proteins based on the concept of soliton (Davydov’s soliton) was
widely recognized and inspired many studies in France, Germany, Denmark, UK.,
USA, Greece, Israel, Japan, Italy, and China. Another facets that we meet down-
shifting from a macroscopic scale to the nano one are the extraordinary catalytic
properties of gold micro- and nanoparticles that have been confirmed by countless
experiments, applications of nanoparticles in the biophysical and biomedical sci-
ences, and in biotechnology, particularly including biosensors, DNA transfection,
enzyme encapsulation, and drug delivery, the surface-functionalized nanoparticles,
nanotubes, etc.

To achieve the goals of this NATO Advanced Research Workshop, the Workshop
program is composed of the lectures presented by the key speakers who review
the current state of art of their fields, the participants’ talks on the main frontier
achievements, the posters with short screenings that helps the audience for a further
discussion, and the extended and inspirational roundtable discussions and informal
and friendly debates—this orchestrated way of intensive communications, as we
do believe, leads to proposing novel ideas and formulating new concepts of an-
other, more advanced directions in the computationally simulated and nano- and
biotechnological realizations of nanostructured molecular self-organized devices
and materials with tailored characteristics. The planned workshop also provides
the important opportunity for the scientists from the countries of the former Soviet
Union to have a broad access to the internationally recognized experts from the
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Western Europe, USA, Canada, and Japan, to fully participate by presenting their
works and sharing their thoughts. By all accounts, this workshop will be definitively
an extraordinary scientific event with the anticipated long-range future contacts and
cemented scientific collaborations that will bring very real technological benefits,
inspire new ideas, and spark further theoretical and experimental efforts in the study
of the nanoworld.

This book represents itself the collection of lectures which review the current
state of art of the fields of micro-, nano-, and macro-dimensions, present the main
frontier achievements in the molecular self-organization processes in liquid water
and aqueous solutions, and molecular liquids, nanodots, nanoparticles including
gold, solitons, biomolecules such as DNA and proteins, biopolymers and biosen-
sors, catalysis, molecular modeling, molecular devices, and thin films, and offer
another, more advanced directions in computational, experimental, and technologi-
cal areas of nano- and bioscience towards engineering novel and powerful molecular
self-organized assemblies with tailored properties.

Italy Nino Russo
Ukraine Victor Ya. Antonchenko
Belgium/Ukraine Eugene S. Kryachko
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E. J. Brändas Department of Physical and Analytical Chemistry, Quantum
Chemistry, Uppsala University, SE-751 20 Uppsala, Sweden

L. S. Brizhik Bogolyubov Institute for Theoretical Physics, 03680 Kyiv, Ukraine

T. Bryk Institute for Condensed Matter Physics, National Academy of Sciences
of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine

A. P. Chetverikov Dept. of Physics, Saratov State University, Astrakhanskaya 83,
Saratov-410012, Russia

V. D. Danchuk National Transport University, 1 Suvorov str., 01010 Kyiv,
Ukraine, vdanchuk@ukr.net

M. Druchok Institute for Condensed Matter Physics, National Academy
of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine

P. D’yachkov Kurnakov Institute of General and Inorganic Chemistry, Russian
Academy of Sciences, Leninskii pr. 31, Moscow 119991 Russian Federation

W. Ebeling Institut für Physik, Humboldt-Universität Berlin, Newtonstrasse 15,
Berlin-12489, Germany

L. A. Ferreira Instituto de Fı́sica de São Carlos, IFSC/USP, São Carlos, SP, Brazil

xi



xii Contributors

A. A. Eremko Bogolyubov Institute for Theoretical Physics, 03680 Kyiv, Ukraine,
eremko@bitp.kiev.ua

D. A. Estrı́n Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica
/ INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad
de Buenos Aires. Ciudad Universitaria, Pabellón II, Buenos Aires (C1428EHA),
Argentina

R. Grasso Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneria,
Catania University, viale A. Doria 6, I-95125 Catania, & Laboratori Nazionali del
Sud—Istituto Nazionale di Fisica Nucleare, Via S. Sofia 44, 95123 Catania (Italy)

M. Gulino Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneria,
Catania University, viale A. Doria 6, I-95125 Catania, & Laboratori Nazionali del
Sud—Istituto Nazionale di Fisica Nucleare, Via S. Sofia 44, 95123 Catania (Italy)

D. Hennig Institut für Physik, Humboldt-Universität Berlin, Newtonstrasse 15,
Berlin-12489, Germany

P. E. Hoggan LASMEA, UMR 6602 CNRS., University Blaise Pascal, 24 avenue
des Landais, 63177 Aubiere Cedex, France

M. Holovko Institute for Condensed Matter Physics, National Academy
of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine

A. P. Kravchuk National Transport University, 1 Suvorov str., 01010 Kyiv,
Ukraine

E. S. Kryachko Bogolyubov Insitute for Theoretical Physics, Kiev-143, 03680
Ukraine

V. D. Lakhno Institute of Mathematical Problems of Biology, RAS, 142290,
Pushchino, Institutskaya str., 4, Russia, lak@impb.psn.ru

L. Lanzano’ Dipartimento di Metodologie Fisiche e Chimiche per l’Ingegneria,
Catania University, viale A. Doria 6, I-95125 Catania, & Laboratori Nazionali del
Sud—Istituto Nazionale di Fisica Nucleare, Via S. Sofia 44, 95123 Catania (Italy)

M. Leopoldini Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni
per Elaborazioni Parallele e Distribuite-Centro d’Eccellenza MIUR, Universita’
della Calabria, I-87030 Arcavacata di Rende (CS), Italy

F. J. Luque Departament de Fisicoquı́mica and Institut de Biomedicina (IBUB),
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Recent Progress on Small Hydrogen
Molecular Ions

Alexander Alijah

Abstract The hydrogen molecular ions HCn have been studied intensely by experi-
mentalists and theoreticians. Apart from HC2 , most work has been dedicated to HC3
and mainly concerns the electronic ground state. In my talk, I presented some recent
results on the excited electronic singlet and triplet states before turning to the next
higher member of the HCn series, HC4 . This ion, initially characterized in the 1970s
and first observed in 1984, has since been largely overlooked. Indeed, recent stud-
ies focus on HC5 and HC6 . HC4 is interesting as the smallest of the clusters with an
HC3 core. Various nuclear configurations have been suggested as stable in the lit-
erature. We have systematically explored the potential energy surface and thereby
examined those structures. Benchmark calculations have been performed at the sta-
tionary points. The results of this study were presented at the conference.

Keywords Astrochemistry � Hydrogen clusters � Rovibrational states � Potential
energy surfaces

1 HC
3

HC3 is the simplest polyatomic molecule and as such has served as a test system
for the development of theoretical and computational methods. Its importance in
physics, chemistry and astronomy has made it subject of two Discussion Meetings
of the Royal Society [1, 2]. The minimum energy configuration in the electronic
ground state is that of an equilateral triangle. HC3 is thus the prototype of a three-
centre-two-electron bond. The lowest electronic states of HC3 can be derived easily
from their electronic configurations. Consider a superposition of 1s-orbitals lo-
calised at the three hydrogen atoms in equilateral triangular configuration, giving
rise to molecular orbitals of symmetry a0 and e0. The electronic ground state is
derived from the configuration a02 and designated X 1A0. The excited electronic

A. Alijah
Departamento de Quı́mica, Universidade de Coimbra, 3004–535 Coimbra, Portugal
e-mail: alijah@ci.uc.pt

N. Russo et al. (eds.), Self-Organization of Molecular Systems: From Molecules
and Clusters to Nanotubes and Proteins, NATO Science for Peace and Security
Series A: Chemistry and Biology, c� Springer Science+Business Media B.V. 2009
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Fig. 1 Cuts through potential energy surfaces of HC3

configuration a0e0 leads to the electronic states 1E 0 and 3E 0, which are however not
stable in this configuration according to the Jahn–Teller theorem. The singlet state is
decomposed intoB1†C and 3 1A0, while the two branches of the triplet state become
a3†Cu and 23A0. Conical intersections occur at all configurations of symmetry D3h.
Figure 1 shows one-dimensional cuts of the full potential energy surfaces in which
the remaining two coordinates are relaxed to mimic paths leading from the minima
to dissociation.

1.1 Singlet HC
3

Quite a number of potential energy surfaces have been reported for the electronic
ground state. The most accurate one, the so-called CRJK surface [3], is based on 69
ab initio points obtained to sub-microhartree accuracy by Cencek et al. [4]. It is a
local surface valid only to up to 20;000 cm�1 which has been used extensively for
rovibrational calculations [5–8]. There is also a range of potential energy surfaces
which extend into the region of dissociation into H2 C HC [9–12].

At even higher energies, some surfaces may not be satisfactory. As they are based
on single-surface modelling approaches, they may not describe well the avoided
crossing with the next higher electronic singlet state, B 1†C. The two lowest singlet
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surfaces would be needed, for example, to describe the charge transfer process
H2 C HC� HC2 CH which is non-adiabatic. For the B 1†C state, no accurate and
complete surface has been known in the literature until recently.

We have now presented full potential energy surfaces of the three lowest elec-
tronic singlet states [13]. In this work we used the highly accurate ab initio points
by Cencek et al. [4] and Polyansky et al. [10], complemented by our own points
calculated at the conventional FCI/cc-pV5Z level. The analytical approach is based
on the diatomics-in-molecules (DIM) [14] formulation
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which is improved by addition of three-body terms to the matrix elements. Care
must be taken not to destroy the permutational symmetry, jH � �Ij D jPHij � �Ij,
and to keep the off-diagonal terms negative. Thus, the following substitutions have
been made,

Hii ! Hii C V
.3/.R/ ; Hij ! Hij �

�
QV .3/ .R/

�2 (3)

where V .3/.R/ and QV
.3/
.R/ are totally symmetric and depend on the three internal

coordinates.

1.1.1 Vibrational Resonance in the B1†C State

The B 1†C state is characterised by six shallow minima only 57:07 cm�1 below
dissociation. They correspond to a hydrogen atom weekly bound to HC2 , forming
a linear complex. There is a weak rotational barrier of only 4:63 cm�1. The bar-
rier for proton exchange is 22;393:04 cm�1, which is well above dissociation. Thus,
proton exchange is not feasible. The question arising now is whether or not the
HC2 � � �H complex is stable. For the isotopologue 1HC3 this is not the case. Fur-
thermore, the hypothetical lowest vibrational state would have symmetry A01 which
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would violate the Pauli principle. If, however, the protons are replaced by deuterons
to form DC2 � � �D, which is a boson system, such a state becomes symmetry-allowed
and is stable by 20 cm�1 with respect to DC2 .vD 0/ C D. We have not so far esti-
mated its lifetime.

1.2 Triplet HC3

As outlined above, the potential energy surface of the 1 3E 0 state has two sheets
that intersect at D3h configurations. The system stabilizes on the lower sheet, a3†Cu .
Already in 1974 Schaad and Hicks [15] predicted the existence of vibrational states
for triplet HC3 . This issue has since been investigated further by theoretical groups,
but the first accurate vibrational [16] and rovibrational [17] energies have been
reported only in 2001. Our surface has since been improved to yield accurate rep-
resentations of the two sheets of the 13E 0 surface [18] using the double many-body
expansion (DMBE) [19]

Vu=l .R/ D
X
i

V .1/ C
X
i

V
.2/

u=l .Ri /C V
.3/

u=l .R/ (4)

The subscripts u=l refer to the upper and the lower sheet, respectively. A special
form of the three-body term has been employed,

V
.3/

u=l .R/ D P1.R/˙ �2P2.R/ (5)

that not only ensures degeneracy at the intersection line (�2 D 0) but also linear
splitting with respect to the Jahn–Teller active coordinate, �2, of the two sheets in
the vicinity of this line.

The lower sheet, a3†Cu , is characterized by three equivalent minima of depth
2;947 cm�1, separated by saddle points of 2;598 cm�1. The rovibronic states of the
homonuclear isotopologues may be described as symmetry-adapted superpositions
of localized states such as to form a one-dimensional representation,

ˇ̌
 ˙A

˛
�
ˇ̌
 ˙I

˛
C
ˇ̌
 ˙II

˛
C
ˇ̌
 ˙III

˛
(6)

and a two-dimensional one
ˇ̌
ˇ ˙E;�

E
�
ˇ̌
 ˙I

˛
C !

ˇ̌
 ˙II

˛
C !2

ˇ̌
 ˙III

˛
(7)

ˇ̌
ˇ ˙E;�

E
�
ˇ̌
 ˙I

˛
C !2

ˇ̌
 ˙II

˛
C !

ˇ̌
 ˙III

˛
(8)

with !D e 2�i
3

. Each of the localized functions
ˇ̌
 ˙

˛
, dropping now the localization

index I , II or III, can be expanded approximately in terms of linear molecule basis
functions as
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ˇ̌
 ˙

˛
D

1
p
2

ˇ̌
ˇv1vj`j2 v3

E
.jN`mi ˙ jN � `mi/ (9)

Such an expansion is useful from a qualitative point of view as it leads to a clas-
sification of the rovibrational states in terms of linear molecule quantum numbers
and the symmetry index (A;E), which however do not hold rigorously. Therefore
one cannot rely on the above expansion in order to actually solve the Schrödinger
equation of the nuclear motion. We have used instead the accurate method of hyper-
spherical harmonics [20], in which all nuclear configurations are treated on equal
footing to calculate the rovibronic states of the 19 lowest bands for N � 10, al-
together 560 states [21]. Assignments in terms of approximate quantum numbers
have been provided along with the exact symmetry quantum numbers.

The two symmetry components (A;E) of a rovibrational state are split in en-
ergy because of the potential barriers. In a first approach, this splitting should
just depend on the energy. Our calculations [21] have shown that the splitting
cannot be described in such simple terms, and recently we have investigated its
nature [22]. The splitting can be understood in terms of hyperspherical motion of
the nuclei, see Fig. 2. Motion along the hyperspherical angle 	, which is equivalent
to the angle of pseudorotation, mainly accounts for the splitting and, since mo-
tion along orthogonal coordinates does not contribute, provides upper bounds. Near

f1= π3
2

f1= π1
2

f1=0 f1=π

Fig. 2 Hyperspherical mapping: For a given value of the hyperradius, ¡, which controls the size of
the triangle formed by the three nuclei, its shape depends on the polar angle, 
 , and the azimuth, '
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the minima this hyperspherical motion can be related to the antisymmetric stretch
quantum number v3, such that within a family of states with symmetric stretch and
bending quantum numbers v1 and v2 held fixed, the splitting increases with increas-
ing v3.

This is demonstrated in Fig. 3 for DC3 . The left panel contains all splittings as a
function of energy, while the right panel contains only those of three selected fam-
ilies of states, each of which now showing increase of the splitting with energy.
In the case of the mixed isotopologue HC2D, hyperspherical motion links the two
isomers HDHC and HHDC and might be responsible for perturbations found in the
calculated spectra [23], see Fig. 4.
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Table 1 Predicted rovibrational transition frequencies of triplet HC3 and some isotopologues

Initial �rve Final �rve
Molecule state (w) state (w) Qv=cm�1 Q�/GHz �/nm

HC3 (0; 00; 0) A02(4) (0; 11; 0)– A002(4) 665.89 19,963 15,017
E0 (2) (0; 11; 0)– E00 (2) 665.89 19,963 15,017

HC3 (0; 00; 0) A02(4) (0; 00; 1) A002(4) 749.71 22,476 13,339
E0 (2) (0; 00; 1) E00 (2) 749.72 22,476 13,339

HC3 (0; 00; 0) E0 (2) (1; 00; 0) E00 (2) 984.12 29,503 10,161

HDHC (0; 00; 0) B2(3) (0; 11; 0)– B1(3) 551.46 16,532 18,134

HDHC (0; 00; 0) B2(3) (0; 00; 1) B1(3) 628.32 18,837 15,915

HHDC (0; 00; 0) A1(1) (0; 11; 0)– A2(1) 638.23 19,134 15,668
B2(3) (0; 00; 1)– B1(3) 638.23 19,134 15,668

HHDC (0; 00; 0) A1(1) (0; 00; 1) A2(1) 712.13 21,349 14,042
B2(3) (0; 00; 1) B1(3) 712.13 21,349 14,042

HHDC (0; 00; 0) A1(1) (1; 00; 0) A2(1) 879.64 26,371 11,368
B2(3) (1; 00; 0) B1(3) 879.64 26,371 11,368

The rotational transition isN D 1 N D 0. The statistical weights of the states involved are given
in parentheses.

1.2.1 Predicted Transition Frequencies

Neither HC3 nor its isotopologues have been observed so far. As a guidance for ex-
perimentalists, we have calculated the frequencies of transitions originating from
the vibrational and rotational ground states. The selection rules are for HC3 and DC3 :
A01 $ A001, A02 $ A002, E 0 $ E 00 while for H2DC and D2HC they are A1$A2,
B1 $ B2. Furthermore, the angular momentum selection rule�N D 0;˙1 applies.
Table 1 indicates that lines are to be expected in the mid to far IR region.

2 HC
4

HC3 is one of the most important species in astrochemical processes [24]. Acting as a
strong proton donor, it catalyses the formation of a large variety of molecules such as
water, amines or alcohols. It is formed by the very fast reaction H2CHC2 � HC3 CH
which takes place on the HC4 potential energy surface. HC4 itself is an interesting
species in its own right, as it is the simplest weakly bound complex of the type
HC3 � � �X. It has been detected experimentally by mass spectroscopy [25] following
theoretical predictions. Alvarez-Collado et al. [26] presented vibrational calcula-
tions on the HC4 cation based on a local potential energy surface obtained by the
same authors, in which the HC3 moiety was kept frozen. Moyano et al. [27] reported
a local potential energy surface and have localized a transition state which links two
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equivalent minimum structures. Jahn–Teller distortions and related structures have
been described by Jiang et al. [28] and Jungwirth et al. [29].

It appears that some of the results by previous workers have been obtained at a
modest level by today’s computational standards and may be questionable. We have
thus performed a systematic search for local minima and saddle points and per-
formed benchmark calculations for those structures [30]. As an example we present
in Table 2 our ab initio results for the minimum structure shown in Fig. 5. Vary-
ing systematically the number of active orbitals in the CASSCF/MRCI calculations
we found that 16 active orbitals yield results of nearly full CI quality at a much
lower cost. Hence this computational level lends itself to the extensive calculations
needed for the construction of the potential energy surface. The minimum config-
uration of HC4 is a C2v complex in which the HC3 core is deformed as compared to
HC3 itself, stabilized with respect to dissociation into HC3 C H by 1;952:75 cm�1.
Owing to permutational symmetry, there exist 12 such configurations which may be
grouped into four sets of three. Within each set, there exist three low energy tran-
sition states, TS1, only 1;062:48 cm�1 above the minima. These transition states,
obtained by moving the loosely bound hydrogen atom from the apex of the HC3 core
to a side, have been discussed in an early paper by Poshusta and Zetik [31], but
strangely their knowledge seems to have got lost. There are also transition states for
proton exchange, TS3, see Fig. 5, which are 3;127:29 cm�1 above the minima and

Table 2 CASSCF=MRCI and FCI calculations at the minimum configuration of HC4
Basis set

na VQZ V5Z AV5Z V6Z AV6Z V7Z AV7Z
4 – 1.851 871 2472 514 620 636 674 683
8 915 517 559 666 681
12 919 520 563 669 685
16 920 522 564 671 686 724 733
20 921 523 565 672 687

All 922 524

na denotes the number of active orbitals.
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Fig. 5 HC4 structures: Minimum, first-order saddle points TS1 and TS3 and second-order saddle
points TS2 and TS4 (from left to right)
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thus located above dissociation. Some non-planar structures, which can be derived
by symmetry arguments, are also shown in Fig. 5. The potential energy surface of
HC4 is quite complex, consisting of 12 minimum structures and connecting transi-
tion states as well as conical intersections at square and tetrahedral configurations.
Figure 6 offers a view of the low energy part of the potential energy surface up to
dissociation. We have also examined the possibility of further true minima on the
potential energy surface as suggested in the literature [28, 29] but could not find
evidence for any other than the 12 lowest ones.

It is interesting to compare the structure of HC4 with that of the next higher
mem-ber of the even HCn clusters, HC6 . As noted by Montgomery and Michels [32]
and confirmed by Kurosaki and Takayanagi [33], HC6 exists in two isomeric struc-
tures, one with a HC3 core to which both a hydrogen atom and a hydrogen molecule
are loosely bound, and the other with a HC2 core and two loosely bound hydrogen
molecules. The latter isomer is more stable by 1;417 cm�1 [33]. It is also more sta-
ble, by at least 2;085 cm�1, than HC4 plus H2. It is generally thought [32] that the
odd-membered clusters HCn are formed by adding H2 units to an HC3 core while the
even-membered ones consist of an HC2 core with added H2 molecules. HC4 is special
in that it doesn’t fit into this scheme.
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FDTD Studies of Metallic Nanoparticle Systems�

Ariel L. Atkinson, Jeffrey M. McMahon, and George C. Schatz

Abstract This paper provides an overview of the optical properties of plasmonic
nanoparticles, using gold nanowires as a model system. The properties were calcu-
lated using classical electrodynamics methods with bulk metal dielectric constants,
as these methods provide a nearly quantitative description of nanoparticle optical
response that can be used for particles with dimensions of a few nanometers to
many hundreds of nanometers. The nanowire calculations are based on the finite-
difference time-domain (FDTD) method in two dimensions, and we specifically
consider the transmission of light through nanowire arrays, as this provides a simple
nanomaterial construct which still displays the richness of optical phenomena that
is found for more general nanostructures. The calculations show a number of fea-
tures that are known for other nanostructures, including the red-shifting of plasmon
resonances as wire spacing is decreased, and as particle aspect ratio is increased.
In addition, the influence of dielectric coatings on the wires is examined, includ-
ing factors which determine dielectric sensitivity. These results provide insight into
what structures will be most effective for index of refraction sensing applications.

Keywords Finite-difference time-domain � Extinction � Transmission � Plasmon �
Hole-array � Nanowire array � Dielectric sensitivity � Gold � Nanoparticle

1 Introduction

The past few years have seen intense interest in the use of silver and gold particles
in chemical and biological sensing applications using the intense absorption and
scattering associated with plasmon resonance excitation as a reporter for the pres-
ence of molecules that are near to the particles [1–4]. Plasmon excitation involves
the collective excitation of the conduction electrons in metals, leading to resonant
wavelengths that are strongly dependent on nanoparticle size, shape, arrangement
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and dielectric environment. Because of the large size of the particles, and the fact
that every conduction electron in the particle contributes to plasmon excitation, the
extinction coefficients associated with these particles are enormous compared to the
corresponding extinction coefficients in molecules, and as a result, sensing based
on plasmon resonance excitation is superior to molecular fluorescence for some
applications.

Plasmon-based sensing can be accomplished using a number of different spec-
troscopic methods. Extinction or scattering measurements can be used to determine
the wavelength shift of the plasmon resonance as molecules bind to the particles
(refractive index sensing) [5]. Alternatively, one can use extinction or scattering
to detect the wavelength shifts that occur when molecular binding processes lead
to aggregation of the particles (aggregation sensing) [2]. Holes in metal films are
another popular platform for refractive index sensing where transmission or reflec-
tivity are used [6–8]. It is also possible to detect molecules using surface enhanced
Raman spectroscopy (SERS) in which polarization induced in the conduction elec-
trons when plasmons are excited leads to enhanced electromagnetic fields around
the nanoparticles [9, 10]. There are also a number of nonlinear optical techniques
(hyper-Rayleigh, hyper-Raman) which can be enhanced by plasmon excitation, and
which also have sensitivity to adsorbed molecules [11].

The experimental studies of sensing based on the optical properties of silver and
gold particles have been accompanied by substantial theory work, mostly based
on continuum electrodynamics methods for modeling optical response. In this one
solves Maxwell’s equations for the chosen nanoparticle structure and assumed val-
ues for the dielectric constants of the particles and the surrounding material [11–38].
This works quite well for particle sizes larger than 2 nm, especially for determin-
ing far-field properties such as extinction spectra. However for smaller particles, and
even for bigger particles that have<2 nm substructures, there can be errors that arise
from the use of a dielectric continuum approach, so there has been some activity us-
ing electronic structure theory as an alternative [39]. The focus of this work will,
however, be on larger particles where classical electrodynamics is adequate.

Since most of the particle structures of recent interest are non-spherical, and of-
ten the particles are in arrays or aggregates, the calculation of optical properties
using classical electrodynamics needs to be done using computational (rather than
analytical) methods. Fortunately several computational electrodynamics methods
have become available in the last few years (often derived from research in optical
physics and electrical engineering that is unrelated to nanoscience) that are capable
of describing particles with sizes up to a micron, and complicated dielectric environ-
ments, including coatings and substrates that in some cases include dye molecules
or other nanoparticles [40].

The most popular methods for performing computational electrodynamics stud-
ies of silver and gold nanostructure optical properties include the discrete dipole
approximation (DDA), the finite-difference time-domain (FDTD) method, and the
Whitney form finite element (WF-FE) method [40]. These methods are based on
fundamentally different concepts, but in all three cases the particles are represented
in terms of discrete elements of some kind that are small compared to the particle
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size but large compared to the size of an atom (typical element size for metallic
structures is around 1 nm). The DDA and FDTD methods use cubic elements. In
DDA, the cubes are thought of as polarizable elements and the solution to Maxwell’s
equations involves determining the collective polarization in response to an applied
field. The FDTD method uses a cubic grid to define finite difference approximations
to Maxwell’s equations. The WF-FE method typically uses tetrahedral elements, a
vector-based polynomial representation of the field components within each ele-
ment, and boundary condition matching on the surfaces of each element.

These three methods have good and bad features. DDA is only an approximate
method due to errors in defining the polarizability of each cube from the dielectric
function. As a result, there are errors in the extinction calculations (usually less than
10%) and there can be problems with getting high quality fields at positions near the
particle surface. FDTD is an exact method, but it runs into convergence issues close
to the nanoparticle surface due to the finite difference approximation. In addition it
is computationally very demanding due to the large grids that are needed (larger than
in DDA as grids are needed to represent empty space and to apply boundary condi-
tions). WF-FE methods require a complicated gridding process, but are capable of
providing much more accurate solutions than the other methods, especially for lo-
cations near the surfaces of the particles. Generally, high accuracy is not needed for
the evaluation of far-field properties such as the extinction or scattering cross sec-
tions; however, accuracy is quite important to the evaluation of electric fields near
the nanoparticle surfaces, such as is needed in the evaluation of SERS enhancement
factors.

In the remainder of this manuscript, we first describe the FDTD method, and
then we illustrate its use to describe the optical properties of metal nanostructures,
including the dependence of plasmon properties on the size, shape, arrangement
and dielectric environment of the nanoparticles. To provide a consistent set of re-
sults to illustrate these properties, we apply the FDTD calculations to determine
the properties of gold nanowire arrays. These structures only require calculations
on two-dimensional grids, which makes it relatively easy to study array structures
that range from isolated particles to continuous metal films. In addition we consider
particle sizes from a few to several hundred nanometers, with a range of shapes and
spacings, all within a consistent framework, and all based on the use of transmission
spectra (transmission versus wavelength) as the observed optical property.

2 Theory and Model

2.1 Finite-Difference Approach to Solving Maxwell’s Equations

Finite-difference approaches to electrodynamics explicitly solve Maxwell–Ampere’s
law and Faraday’s law in differential form, Eqs. (1) and (2), respectively:
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"
@

@t
EE D r � EH � EJ (1)


@

@t
EH D �r � EE (2)

where EE and EH are the electric and magnetic fields, " and  are the permittivity
and permeability of the medium, and EJ is the current density. To do this, the partial
derivatives in the equations are approximated using Taylor expansions. For example,
in one dimension the Taylor expansions of a function, f .x/, around the point x are
given by

f .x C a/ D f .x/C a
@

@x
f .x/C ::: (3)

f .x � a/ D f .x/ � a
@

@x
f .x/C : : : (4)

Equations (3) or (4) can be rearranged to get an expression for @
@x
f .x/, leading to

forward and backward finite-difference approximations, respectively, which would
be first-order accurate (i.e. the truncation errors are of order a2). A second-order
accurate finite-difference approximation to @

@x
f .x/ can be obtained by subtracting

Eq. (4) from Eq. (3), known as a central difference,

@

@x
f .x/ D

f .x C a/ � f .x � a/

2a
: (5)

Central difference expressions are typically used in finite-difference algorithms be-
cause of the higher accuracy compared to forward and backward differences. The
most straightforward way to use the finite-difference expressions in Eqs. (3)–(5) is
to discretize the domain of f .x/ using a grid, where f .x/ is assumed to exist only at
the discrete grid points. It is important to note that to obtain second-order accuracy
in the temporal derivatives of Eqs. (1) and (2) EE and EH must be defined on time
grids shifted by a. For example, in Eq. (1) the time derivative of EE must “leap over”
the spatial derivatives of EH , known as a leap-frog algorithm (see below).

Even though only Eqs. (1) and (2) are explicitly solved by finite-difference
algorithms, special care must be taken in order to satisfy Gauss’ laws,

r �
�
" EE
�
D � (6)

r �
�
 EH

�
D 0: (7)

One way to satisfy Eqs. (6) and (7) is to shift all of the field components from
each other, known as the Yee method, Fig. 1 [41]. For a proof of this result
see Ref. [42].
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Fig. 1 The Yee cell

2.2 Finite-Difference Equations

2.2.1 Three-Dimensional Equations

Using the Yee cell (Fig. 1) and second-order accurate finite-differences (Eq. (5)) the
finite-difference approximations to Eqs. (1) and (2) become
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Equations (7)–(13) can be solved by discretizing a domain, specifying " and  at
the discrete grid points, and sequentially solving Eqs. (7)–(9) and Eqs. (10)–(13).

2.2.2 Two-Dimensional Equations

If the system is invariant along one axis, which we will take to be the z-axis, then
Eqs. (8)–(13) are greatly simplified.

TEZ polarization

When EH is oriented along the z-axis, such that the components of EE are in the
xy-plane, Eqs. (8)–(13) reduces to
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TMZ polarization

When EE is oriented along the z-axis, such that the components of EH are in the
xy-plane, Eqs. (8)–(13) reduces to
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2.2.3 One-Dimensional Equations

If the system is further invariant along another axis, which we will take to be the
y-axis, then Eqs. (14)–(19) reduce to the 1D scalar wave equations,
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or

"i;j;kC1=2
E
nC1=2
z i;j;kC1=2 �E

n�1=2
z i;j;kC1=2

�t

D
Hn
y iC1=2;j;kC1=2

�Hn
y i�1=2;j;kC1=2

�x
(22)

iC1=2;j;kC1=2

HnC1
y iC1=2;j;kC1=2

�Hn
y iC1=2;j;kC1=2

�t

D
E
nC1=2
z iC1;j;kC1=2 � E

nC1=2
z i;j;kC1=2

�x
: (23)



18 A.L. Atkinson et al.

2.3 Initial Conditions and Boundary Conditions

For practical use of the FDTD method, boundary conditions must be applied, and
initial waves of arbitrary form must be easily introduced into the system.

2.3.1 Boundary Conditions

Even when simulating infinite domains, the computational domain must be trun-
cated. However, many techniques have been developed to mimic open regions of
space. One of the most successful techniques is to truncate the domain with artifi-
cial materials that absorb nearly all incident waves, called perfectly matched layers
(PML) [43]. An efficient and accurate way of implementing PML with the Yee spa-
tial lattice is to use convolutional PML (CPML) [44]. The implementation of CPML
involves stretching the spatial derivatives and superimposing a time-dependent
scalar function onto them. For a more complete discussion of PML see Ref. [42].

2.3.2 Initial Conditions

Given suitable initial conditions defined everywhere in the computational domain,
the FDTD equations will properly evolve the fields according to Eqs. (1) and (2).
However, defining computational domains for initial conditions with large spatial
extent is often inefficient and unnecessary. A more efficient technique to introduce
fields into the computational domain, particularly with the Yee spatial lattice, is to
use the total field–scattered field (TF–SF) [45–47] technique. The implementation
of this involves splitting the domain into two regions, an interior total field region
and an exterior scattered field region. The FDTD method is applied directly in each
region without modification. However, near the boundaries where the spatial deriva-
tives extend into both regions, the fields are modified using the (known) incident
field, so that all equations are consistent.

2.4 Dispersive Materials

Many materials have a frequency dependent dielectric response. For metals this
response is often approximated using the Drude model. To model these materials
using the FDTD method, auxiliary differential equations are used to link the mate-
rial polarization and electric flux density [42, 48, 49]. These equations are updated
self-consistently with the FDTD equations.
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2.4.1 Auxiliary Differential Equation Method for the Drude Model

The Drude model approximates the frequency dependent relative permittivity of a
material as

" .!/ D "1 �
!2D

!2 � i!�D
(24)

where "1 is the relative permittivity at infinite frequency, !D is the Drude pole
frequency, and �D is the inverse of the pole relaxation time. To use Eq. (24) in
the FDTD equations, the Maxwell–Ampere law is first expressed in the frequency
domain,

i!" EE D r � EH � EJ : (25)

Equation (24) is then inserted into Eq. (25), and rearranged such that the frequency
dependence of the material is contained entirely in EJ ,
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Fourier-transforming the results back to the time-domain and rearranging gives a
modified set of FDTD equations for EE,
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and a corresponding update equation for EJ ,
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3 Results and Discussion

3.1 Preliminary Work

3.1.1 Description of Model

In this work, the two-dimensional FDTD method is used to study a variety of metal-
lic nanowire systems. As mentioned earlier, nanowires were chosen because they
provide a computationally convenient structure (only requiring 2D grids) that can
be varied to consider a broad range of problems that relate to the dependence of
optical properties on particle size, shape and arrangement. To provide a consistent
optical property for many different structures, our calculations will only refer to the
transmission of light through nanowire arrays.

The layout of the FDTD computational area used for the nanowire calculations
is depicted in Fig. 2. In these calculations, we take the x-direction to denote the
film thickness, as well as the propagation direction of the light, while y measures
distances along the film and is also the polarization direction. The grid is taken to
be 230 nm in the x-direction while the y-direction is allowed be variable in size to
account for different particle spacings and sizes. The “back” and “front” of the grid
(at x D 0 and x D 230, respectively) have 15 nm of CPML on them to absorb scat-
tered radiation. Periodic boundary conditions are defined in the y-direction. In cases

(a)

y

x

(c)

(b) (e)
(d)

(a)

Fig. 2 A sample 2D FDTD computational grid showing the different components: (a) the CPML
layers, (b) the initiation line for the plane wave, (c) and (d) the reflection and transmission spectra
calculation points, respectively, and (e) the target area. In the convention used here, thickness is
measured in the x-direction and length is measured in the y-direction
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Fig. 3 Comparison between transmission cross-sections for a 30-nm diameter gold disk array by
(1) the 2D FDTD method and (2) Mie theory. In both arrays the disks have a spacing of 200 nm

where we study isolated particles, the y maximum is taken to be large enough rel-
ative to the particle size that there is no interaction between the particle and its
replicas. In most cases, 200 nm of spacing is more than sufficient. The section be-
low entitled “Spacing Between Particles in an Array” covers this.

3.1.2 Comparison to Analytical Results

An important step in determining the reliability of any computational technique
is to compare the results with other known results. In this case, Mie theory (as
applied to circular wires) is used as the benchmark against which to measure the
2D-FDTD calculations. This was done for a 30 nm diameter gold wire, and we
see good agreement of the two results in Fig. 3. Note that the transmission has a
minimum at around 520 nm. This is the well-known extinction maximum associated
with gold nanoparticles. Note that 2D plasmon resonances are in general somewhat
blue-shifted compared to 3D resonances, but for gold these differences are small.

3.2 Effect of Particle Shape and Size

3.2.1 Equivalent Surface Area Shapes

A simple and rather significant variable that effects the interaction of light with a
particle is the particle’s shape. In Fig. 4 we present a comparison of transmission
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Fig. 4 Transmission spectra for three different structures, each with the same area, all calcu-
lated with 2D FDTD. The rectangle has an aspect ratio of 4:1, with the long axis oriented in the
y-direction. The spacing between structures in each of these arrays was set at 200 nm

results for three different shapes: a square, a disk, and a rectangle. All three have
the same surface area, and hence the differences in the transmission probability are
based on the shapes themselves. The surface area of each is 100 nm2, and the rect-
angle’s aspect ratio [length (y-direction) to thickness (x-direction)] is 4:1, so the
rectangle is 20 by 5 nm, the square’s edge is 10 nm and the circle has a diameter
of 11.3 nm. Notice that the rectangle gives a plasmon resonance that is red-shifted
compared to the other particles. This is a well-known effect for anisotropic nanopar-
ticles, but the red shift is small in this case as the particle is much smaller than the
wavelength of light.

3.2.2 Particle Size

Another simple variable that has a strong influence on the optical properties of
a particle or particle system is the size of the particles involved. In this work,
particles with 2D cross sections of disks, squares, and rectangles were studied.
The rectangular structures were scaled to keep the same aspect ratio of length to
thickness (4:1), so that the effect of aspect ratio could be investigated separately.
The results for these simulations are shown in Fig. 5(a)–(c).

Note that the smaller disk and square spectra are very similar to each other.
The resonance peaks observed in the rectangle’s spectrum are significantly different
from the other two due to particle anisotropy. As all of the particles increase in size,
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Fig. 5 (a) The effect of size on the transmission for an array of disks. The spacing in each array
was 200 nm. (b) The effect of size on the transmission for an array of squares. The spacing in each
array was 200 nm

the red-shifting and broadening of the plasmon peaks is clearly visible. These ef-
fects arise from two kinds of electrodynamic effects (as reviewed previously [15]):
(1) the induced polarization is not all in-phase for plane wave excitation due to the
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Fig. 5 (continued) (c) The effect of size on the transmission for an array of rectangles. The spacing
in each array was 200 nm

finite wavelength, and (2) the plasmon is broadened due to radiative damping (i.e.,
the rate of emission by the particle is comparable to the rate of excitation). In ad-
dition, for all of the particles, the spectra show more plasmon peaks for the large
particle sizes. This in part due to multipole resonance excitation, which is another
effect that arises from the finite size of the particles compared to the wavelength.

3.2.3 Aspect Ratio

To study the effect of changing the aspect ratio of a rectangular structure, we keep
the thickness of the particles constant at 10 nm, and vary the length in the range
10–150 nm (aspect ratios of 1:1 to 1:15). The resulting transmission spectra are
presented in Fig. 6. Since the increasing length is parallel with the polarization
of the incident light, the transmission is dramatically decreased as the aspect ratio
is increased (corresponding to increased extinction), and the resonance peaks are
red-shifted. These effects arise from a combination of the depolarization/damping
effects that were mentioned in the previous section, and from electrodynamic
boundary effects that relate to particle shape and the ability of the conduction elec-
trons to oscillate relative to the positive background. These effects have previously
been studied for spheroidally shaped gold particles [15], and they are also important
for rods [50].
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Fig. 6 The effect of the aspect ratio of gold particles on the optical signature. Here the thickness
was kept constant at 10 nm while the length was varied from 10–150 nm. The spacing was kept
constant at 200 nm

3.3 Particle Orientation and Arrangement

3.3.1 Spacing Between Particles in an Array

In all of the studies done so far, we modeled infinite arrays of metallic structures,
but in most cases the structures/particles were spaced sufficiently far apart that no
coupling or interactions between particles occur. In this section, the influence of
particle spacing is considered for rectangles that are 80 nm in length and 10 nm
thick for spacings of 4–200 nm. The results are presented in Fig. 7. For spacings
of 100–200 nm, there is little interaction between the particles, and the dominant
resonance is close to 600 nm. Here the transmission decreases as particle spacing
is decreased simply due to changes in particle density. For smaller spacings, the
plasmon resonances begin to couple and red-shift. This is again a known effect
provided that the particle spacing is less than 100 nm, and a simple model for it
based on dipole–dipole coupling was described by Zhao et al. [51].

Another feature of these spectra is that for the close spacings, the transmission
drops close to 0%, a rather amazing result given that these particles are only 10 nm in
thickness. In this limit the particle array is best thought of as a hole array in a metal
film. Past work has demonstrated that hole array structures can efficiently convert
incident plane wave excitation into surface plasmon polaritons (SPPs) which are
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Fig. 7 Spectra of particle arrays each with particles of 10 nm thickness and 80 nm length but with
varying spacings between them

propagating plasmons that can decay nonradiatively with reasonable efficiency [52].
In addition, it has been demonstrated that interference between SPP excitation and
direct transmission through the film can lead to Fano profiles in transmission spectra
in which the transmission drops to nearly zero over a limited wavelength range. This
behavior was previously seen for 50 nm films [38], but the present application shows
that very small transmission also arises for 10 nm films.

3.4 Environmental Dielectric Effects

3.4.1 Changing the Medium

A further well-known variable that affects the optical properties of nanostructured
metallic systems is the refractive index of the surrounding medium in which the
measurements are done. Here we use gold rectangular bars to study this effect,
considering bars which are 80 nm in length and 10 nm in thickness to be embed-
ded in a dielectric whose refractive index is varied from 1.0 to 2.0. The resulting
transmission data are presented in Fig. 8. This shows that the plasmon resonance at
600 nm for nD 1.0 gradually red shifts as the index increases. This is a well-known
effect [13] which typically leads to a roughly linear increase of wavelength with
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Fig. 8 Spectra of gold particles immersed in different refractive index media. These particles are
80 nm in length, 10 nm in thickness, and have a spacing of 200 nm

index. In the present study, there is a 330 nm increase in plasmon wavelength for
a unit increase in index, which is a typical reactive index sensitivity for anisotropic
nanoparticles [53].

Particle shape affecting refractive index sensitivity

An extension of the previous study is to examine the differing sensitivities of par-
ticles with different aspect ratios. In this case, spectra were computed for different
dielectric environments for particle arrays with particles 10 nm thick and lengths
ranging from 10 to 150 nm. Figure 9 plots plasmon wavelength versus refractive in-
dex, showing the linear dependence that was mentioned above. In addition, we see
that the slope of these curves, which is the refractive index sensitivity, increases with
increasing aspect ratio (particle length). Over the range of one refractive index unit,
the small 10 nm by 10 nm square particles (1:1) have a shift of 65 nm whereas
the much longer particles with an aspect ratio of 1:15 display a 500 nm shift.
This increase in refractive index sensitivity is correlated with the larger plasmon
wavelength associated with the longer particles. This effect that has been noticed
in past work [53], although the present results are much more systematic, showing
that there is a nearly linear dependence of slope (refractive index sensitivity) on
aspect ratio.
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Fig. 9 Here the data from Fig. 8 was combined with other studies done with particles all 10 nm in
thickness and with different lengths, varying from 10 to 150 nm. The plasmon peak positions were
plotted against the refractive index of the media in which they were immersed

3.4.2 Dielectric Layer on the Surface

Different refractive indices

In many experiments the dielectric material is present as a layer of finite thickness
rather than as a homogeneous material. To study this situation, we consider a layer
of thickness 10 nm placed on the light-incident side of the metal rectangles. The
thickness of this layer is taken to match the thickness of the metal (10 nm each).
The refractive index of the coating layer is then varied from 1.0 to 2.0. The resulting
transmission spectra are in Fig. 10. Note that though the larger refractive indices
still shifts the resonance peak to the red, but the index sensitivity is greatly reduced
(only about 40 nm shift per refractive index unit, compared to 330 nm in Fig. 8).
This effect was explored previously for layers of molecules on triangular nanopar-
ticles [5], and similar results were observed that are determined by the range of the
plasmon enhanced electromagnetic field around the particle.

Different thicknesses

To continue this study of finite layers, we consider a similar layer structure as in
Fig. 10 but now looking at the effect of varying layer thickness for a refractive index
of 1.6. The gold structures are the same as was used in the previous study, except
that the thickness has been increased to 20 nm. The results are shown in Fig. 11. This
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Fig. 10 Spectra of gold particles with a layer of a dielectric on the light-incident side while varying
the refractive index of the layer. These particles are 80 nm in length, 10 nm in thickness, and have
a spacing of 200 nm. The dielectric coating is 10 nm in thickness

Fig. 11 Spectra of gold particles 80 nm in length and 20 nm in thickness with different thicknesses
of a dielectric coating with a refractive index of 1.6 on the light-incident side. These particles have
a spacing of 200 nm
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shows that there is discernible red-shifting when changing the gold thickness from
0 to 20 nm, but at thicknesses of 25 and 30 nm the peak does not shift at all. This
shows that the effect of layer thickness saturates at about 25 nm, which is similar to
results seen in earlier work for particles in 3D. This saturation distance is similar to
the range over which the electromagnetic field near the nanoparticles approaches its
asymptotic form.

4 Conclusion

This article has provided an overview of the optical properties of metallic nano-
structures with emphasis on the influence of plasmon excitation on these properties,
and how these results can be used to make chemical and biological sensors. Our
numerical results have explored the optical properties of gold nanowire structures
using two-dimensional FDTD calculations. The ability to study a variety of parame-
ters and systems with this simple model has provided a coherent picture concerning
the sensitivity of plasmon resonance behavior to particle size, shape, spacing and
dielectric environment. In most cases we were able to relate the properties ob-
served to theories that were developed in earlier studies of particles in 3D that have
proven useful for providing qualitative insight. In addition, the simple nanowire
model provides opportunities for studying unusual effects, such as the transition
from particle-like to film-like behavior as particle spacing is varied, revealing that
even very thin (10 nm) films can have zero transmission over a narrow wavelength
provided that the film has holes with the right spacing.
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Exploring the Nitric Oxide Detoxification
Mechanism of Mycobacterium tuberculosis
Truncated Haemoglobin N

A. Bidon-Chanal, M.A. Martı́, D.A. Estrı́n, and F.J. Luque

Abstract Mycobacterium tuberculosis, the causative agent of human tuberculosis,
encodes a haemoprotein named Truncated Haemoglobin N (trHbN), which in its ac-
tive site transforms nitric oxide (NO) to nitrate anion .NO �

3 /. The NO-dioxygenase
activity of trHbN seems to be crucial for the bacillus, which can survive under
the nitrosative stress conditions that occur upon infection of the host. As a defense
mechanism against the copious amounts of NO produced by macrophages upon
infection, the protein must achieve a high level of NO-dioxygenase activity to elim-
inate NO, but this is modulated by its efficiency in capturing O2 and NO. Migration
of small diatomic ligands through the protein matrix is related to the presence of a
doubly branched tunnel system connecting the surface and the haem cavity site. In
this work, we have studied the mechanism that controls ligand diffusion and product
egression with state-of-the-art molecular dynamics simulations. The results support
a dual path mechanism for migration of O2 and NO through distinct branches of
the tunnel, where migration of NO is facilitated upon binding of O2 to the haem
group. Finally, egression of NO �

3 is preceded by the entrance of water to the haem
cavity and occurs through a different pathway. Overall, the results highlight the inti-
mate relationship between structure, dynamical behavior and biological function of
trHbN.
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1 Introduction

Tuberculosis has been declared as a global emergency by the World Health Organi-
zation (WHO) and represents one of the main open threads in health sciences. The
disease is caused by Mycobacterium tuberculosis, which infects about one third
of the human population and causes about two million deaths per year over the
world [1]. In the early stages of the infection, the immune system reacts by increas-
ing the production of nitric oxide (NO) in the macrophages, a process that should
contribute to reduce the replication rate of the bacilli and eliminate the pathogen
from the host by inhibiting key enzymes such as the terminal respiratory oxidases
and iron-sulfur centers of key enzymes [2, 3]. However, M. tuberculosis can resist
the hazardous environments of its intramolecular niche and eventually enter an in-
duced dormancy state and rest in latency. The ability of the microorganism to evade
the toxic effects of NO and nitrosative stress appears to be associated with the NO-
dioxygenase activity of the bacillus [4–6], which seems to be crucial for the survival
and pathogenicity of M. tuberculosis. The detoxification activity is related to a small
hemoprotein called Truncated Hemoglobin-N (trHbN), where the haem-bound O2

reacts with NO to yield the harmless nitrate anion.
Truncated hemoglobins (trHb), also called 2/2Hb [7], are small hemoproteins

found in bacteria, unicellular eukaryotes and higher plants [8, 9]. They form a
distinct group in the globin super-family and a phylogenetic analysis shows that
they can be divided into three subgroups, named I, II and III (also known as N, O
and P, respectively), with less than 20% identity between members of the different
classes [9]. The main differences with mammalian globins are a shorter primary se-
quence that lacks 20–40 residues, and a 2-on-2 a-helical fold instead of the 3-on-3
a-helical classical globin fold found in myoglobin [7, 10–13]. This shortening in
sequence results in the conservation of only a-helices B, E, G and H, while helices
C and D are merged together to form the C-D loop and helix F is replaced by a long,
flexible loop that connects helices E and G (see Fig. 1).

Although a comprehensive knowledge of the functional role of truncated
hemoglobins remains to be elucidated, several studies have hypothesized some
physiological functions. Scavenging of nitrogen and oxygen species, O2 transport
and uptake, cellular respiration and (pseudo-)enzymatic reactions seem to be the
most plausible ones [14]. For the particular case of trHbN, several evidences
indicate that the oxygenated form of trHbN can convert NO to nitrate anion ei-
ther in vitro or in vivo [4–6]. The lack of this protein in M. bovis results in a
decrease of respiration activity upon exposure to NO, and expression of M. tu-
berculosis trHbN in M. Smegmatis and flavohaemoglobin lacking Escherichia
coli and Salmonella enterica Typhimurium, also enhances the survival capacity
of the organisms under oxidative stress in the presence of NO [6, 15]. Other
truncated hemoglobins also present this dioxygenase activity, like trHbO of
M. tuberculosis and trHbN of M. smegmatis, but with lower reaction rates that
do not confer a notable increase in the survival of the organism.
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Fig. 1 Side view (left) and top view (right) of the truncated haemoglobin fold. The haem group
and the coordination residue HisF8 are represented in sticks

2 Mycobacterium tuberculosis trHbN

The crystal structure of the oxy form of trHbN is an homodimer where the two
chains present minimal structural differences between them, as noted by a root-mean
square deviation (rmsd) between chains of only 0.7 Å. It exhibits a 2-on-2 a-helical
sandwich fold where helices B and G along with CD an F loops provide a cage
that accommodates the haem group. Like 100% of the globins known at the present
moment, the Fe atom of the haem group is coordinated to the NE2 atom of the
HisF8 residue, which acts as anchoring group for the porphyrin ring in the proximal
site. The cavity containing the haem is mainly built up of hydrophobic residues in
well-conserved topological positions within group I truncated haemoglobins (C6,
C7, CD1, E14, F4, FG3, G8, H11) which in trHbN correspond to Leu(42), Phe(45),
Phe(46), Phe(61), Met(77), Arg(84), Val(94), Ile(119). These residues contribute to
haem stabilisation through van der Waals contacts. Furthermore, haem stabilisation
is also achieved through hydrogen bonds with residues ThrE2 and TyrEF6, and also
through salt bridges between the propionate groups and residues LysE10, ArgE6
and ArgFG3.

The distal site of the haem cavity is mainly packed with the side chains of apolar
(PheB9, ValB13, PheCD1, LeuE7, PheE14, PheE15, ValG8) residues. In fact, only
two polar residues, TyrB10 and GlnE11, are found in the haem binding pocket.
Nevertheless, ligand binding to the haem is modulated by the interactions formed
by these polar residues. Thus, TyrB10 forms a hydrogen bond with the oxygen
molecule that strongly stabilises it upon binding to the Fe atom, and GlnE11 con-
tributes to ligand stabilisation by forming a hydrogen bond with the hydroxyl group
of TyrB10. This hydrogen-bond network largely contributes to the decrease in the
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koff experimentally measured for O2 .2:0� 10
�1 M�1/, which is �2 orders of mag-

nitude lower than that determined for Sperm whale myoglobin .1:2�101 M�1/, thus
increasing the possibility that the active site is loaded with oxygen when NO reaches
the cavity.

Inspection of the three dimensional structure of the protein also highlights the
presence of a two-branched apolar tunnel that connects the solvent with the protein
core, with a total volume of �345 Å3. The long tunnel branch lies between helices
B and E and has a length of �20 Å, while the short branch is �8 Å long, nearly
orthogonal to the long branch of the tunnel, and is placed between helices G and
H (see Fig. 2). Soaking of the crystal structure with Xe atoms shows the presence
of five different cavities where atoms are trapped with high residence times: two
are found in the short tunnel branch, two sites are identified in the long branch, and
the fifth site is located in the region where both tunnel branches converge. Of these

Fig. 2 Bottom (top-left) and frontal (top-right) views of the doubly branched tunnel found in the
crystal structure of truncated haemoglobin N (PDB ID: 1IDR). Side view of the tunnel long branch
showing PheE15 in the closed conformation (bottom-left) and in the open conformation (bottom-
right)
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Table 1 Kinetics and equilibrium constants for the reactions of ferrous HbN with oxygen and
nitric oxide compared to that from sperm whale myoglobin

O2 binding to ferrous Hb NO oxidation by oxy Hb

Enzyme kon .M�1 s�1/ koff .s�1/ K (M) k .M�1s�1/

trHbN [4, 5] 2:5� 107 2:0� 10�1 8:0� 109 7:5� 108

Myoglobin [17, 18] 1:4� 107 1:2� 101 8:6� 107 3:4� 107

five positions, the one that shows the highest occupancy is placed at the middle
of the long branch of the tunnel, next to PheE15, whose side chain protrudes into
the tunnel. Migration of a small diatomic ligand through the long branch is thus
sterically limited by PheE15, and Milani et al. proposed that this residue could act
as a gate for the migration of diatomic ligands to the haem cavity [16]. Remarkably,
in the X-ray crystal structure the side chain of PheE15 is found in two different
conformations interchangeable by a rotation of 100ı around the Ca–Cb bond. The
rotation changes the position of the phenyl ring, which protrudes into the tunnel
(closed state) and then lies parallel to the tunnel axis (open state), thus reducing the
steric hindrance that impedes access through the tunnel long branch [16].

Kinetic data presented in Table 1 shows that the conversion of Fe.II/–O2 C NO
to Fe.III/CNO �

3 in trHbN occurs with a rate constant 20 times greater than in Mb,
but the rate constant measured for the entrance of O2 .kon/ is of the same order of
magnitude in both cases and only two times greater in trHbN with respect to Mb.
These findings point out the possibility of a diffusion controlled mechanism where
NO migration to the haem would be the limiting step of the process.

3 Ligand Migration

As stated before, for the reaction to occur the protein must contain oxygen bound to
the haem Fe before NO reaches the active site. Thus, the first question that arises is
how O2 diffuses from the solvent to the active site of trHbN and, furthermore, which
changes occur upon its binding. Experimental studies indicate that ligand diffusion
could proceed through the double branched tunnel, that is, O2 has two possible
pathways to reach the haem cavity. However, access through the tunnel long branch
may be blocked by PheE15, as hypothesized by Milani et al. and therefore diffusion
through the tunnel short branch appears to be the most feasible pathway. To study
the behavior of PheE15 and the accessibility to the active site in the oxy and deoxy
forms of trHbN, a series of 0:1�s molecular dynamics simulations were performed
with the deoxygenated and oxygenated forms of the protein to study its dynamics,
both at global and residue levels, along with steered molecular dynamics simulations
to investigate the free energy profiles associated with the diffusion process [19].
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3.1 O2 Diffusion

Analysis of the deoxy-trHbN MD simulation points out that the tunnel long branch
is completely blocked by PheE15 during the whole trajectory and rotation of the
PheE15 side chain around the Ca-Cb bond leading to conversion between closed
and open orientations found in the X-ray crystal structure is not observed. When the
side chain of PheE15 protrudes into the tunnel long branch, molecular interaction
potential energy maps computed for a diatomic ligand show clearly a discontinuity
in the energy isocontour at the position occupied by PheE15, thus reflecting the
steric hindrance exerted by the benzene ring. A more quantitative analysis comes
from the free energy profile associated with the diffusion of a diatomic ligand (O2 or
NO) through the tunnel as determined from steered molecular dynamic calculations
(see Fig. 3). When the side chain of PheE15 is buried into the tunnel (closed state),
the free energy increases steadily as the ligand is forced to become closer to the
haem cavity.

The preceding findings suggest that ligand diffusion to the active site in the de-
oxy state of trHbN must occur through the short branch of the tunnel. To explore the
feasibility of this hypothesis, free energy calculations where performed for the mi-
gration of O2 through this pathway. The results reveal that migration must overcome
a barrier of �2 kcal/mol to reach a flat minimum at a position that corresponds to
one of the binding sites in the Xe soaking X-ray crystallographic experiments. From
this position, located between residues PheG5, AlaG9 an IleH11, the ligand can ac-
cess the Fe atom surpassing a �4 kcal/mol barrier, which mainly reflects a narrow
passage between ValG8 and the haem group (see Fig. 3).

3.2 NO Diffusion

To investigate the possibility of PheE15 to act as a gate to ligand migration through
the tunnel long branch, the fluctuations of the H˛–C˛–Cˇ–C� dihedral angle along
the trajectory of the oxy form were examined. Surprisingly, several transitions be-
tween open and closed states are detected, and in fact one of those transitions
permitted the migration of a water molecule through the tunnel long branch reaching
the haem active site. Moreover, steered molecular dynamics calculations show that
when the phenyl ring of PheE15 is placed parallel to the tunnel axis (open state), the
diffusion process becomes nearly barrierless and access to the haem binding pocket
is favored by 3–4 kcal/mol (see Fig. 4). In contrast, migration through the short tun-
nel branch is not energetically accessible as the free energy barrier increases as the
ligand becomes closer to the haem cavity (see Fig. 4).

These results sustain the hypothesis of a dual migration mechanism where dif-
fusion of O2 and NO would occur through different pathways. In the deoxy form,
oxygen can reach the haem group through the tunnel short branch, while the long
branch remains completely blocked by PheE15. However, upon binding of O2 to the
haem, diffusion of NO through the tunnel short branch is impeded and access to the
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Fig. 3 Free energy profiles obtained for the diffusion of an oxygen molecule through the long
tunnel branch when the PheE15 residue adopts a closed conformation (top) and through the short
tunnel branch in the deoxy state (bottom)

haem cavity takes place through the long branch. This mechanism is operative due
to the very high oxygen affinity of the protein (O2 binding affinity to ferrous trHbN
of 8:0 � 10�9/, which guarantees that it is mainly loaded with O2. It also benefits
from the high hydrophobic character of the ligand diffusion tunnel, which can act
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Fig. 4 Free energy profiles obtained for the diffusion of a nitric oxide molecule through the long
tunnel branch when PheE15 adopts an open conformation (top) and through the short tunnel branch
when O2 is bound to the haem (bottom)

as a potential reservoir to concentrate nonpolar diatomic ligands, and at the same
time limit the rate at which water can occupy the heme pocket when vacated by the
dissociated ligand. These factors would then contribute to enhance the efficiency of
NO detoxification, while minimizing the fraction of NO that directly binds to the
deoxy-heme, inhibiting the detoxification process.
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3.3 Molecular Basis of the Dual Migration Mechanism

The mechanism of ligand migration outlined above raises the question of the re-
lationship between O2 binding and opening of the long branch of the tunnel, thus
enabling access of NO to the O2-bound haem. To answer this question, a close
look to the structural and dynamical features of trHbN in deoxy and oxy states is
necessary.

X-ray crystallographic and spectroscopic data [16, 20] highlighted the pres-
ence of a particular hydrogen-bond network in the active site of the oxy form of
trHbN, where the hydroxyl group of TyrB10 interacts with haem-bound O2, while
the amine group of GlnE11 is hydrogen bonded to it. Inspection of the molecular
dynamics simulations reveals that such a hydrogen-bond network is stable and main-
tained along the trajectory, as noted in the lack of significant disruptions in the
hydrogen-bond contacts. In turn, such a hydrogen-bond pattern imposes restrains to
the conformational flexibility of the side chains of TyrB10 and GlnE11. The hydro-
gen bond formed between TyrB10 and the oxygen molecule restricts the movement
of the residue side chain, as the hydroxyl group is acting as hydrogen-bond donor. In
turn, the terminal amido unit of GlnE11 acts as hydrogen-bond donor to the TyrB10
hydroxyl group, which forces the side chain of GlnE11 to adopt a staggered confor-
mation (Fig. 5).

This situation is very different from the structural preferences detected in the
deoxy state of trHbN. In this latter state, the terminal amido moeity of GlnE11
is found to act as hydrogen-bond donor to or hydrogen-bond acceptor from the
hydroxyl unit of TyrB10, which plays the reverse role in those interactions. How-
ever, since the position of TyrB10 is no longer restrained by the interaction with
O2 in the deoxy state, thee chain of GlnE11 adopts an all-trans extended con-
formation. Thus, the conformational change experienced by GlnE11 is related to
the modification in the hydrogen-bond patterns reflected in dynamical fluctuation

Fig. 5 TyrB10 and GlnE11 conformations in the deoxy (left) and oxy (right) states. PheE15 and
the haem group are shown as sticks, and oxygen is shown in spheres
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between .TyrB10/O–H � � �O D C.GlnE11/ and .TyrB10/O � � �H–N.GlnE11/ hy-
drogen bonds, which are constantly exchanged during the whole simulation.

PheE15 is located in helix E just one turn further away from GlnE11 and the
staggered conformation adopted by the side chain of GlnE11 in the oxy stateplaces
the side chains of PheE15 and GlnE11 at a distance�1:5 Å closer than in the deoxy
form. In fact, the average distance between side chains in oxy-trHbN is 3.9 Å, (i.e.,
the van der Waals contact between –CH2– and >CH groups according to Pauling’s
radii) and a remarkable fraction of structures (around 45%) present distances below
this number and sometimes as short as 3.1 Å. As a consequence GlnE11 exerts a
mechanical pressure over PheE15, pushing its side chain and promoting a change
in the orientation of the benzene ring that would facilitate the opening of the tunnel
long branch, which eventually would allow ligand diffusion. On the other hand,
in the deoxy form the distance between the two side chains is larger, and the me-
chanical pressure exerted by the side chain of GlnE11 over PheE15 is lower, which
favors the population of the closed state that impedes the accessibility through the
tunnel long branch. In fact, the transition barrier between the closed and open states
of PheE15, which was estimated to be around 6 kcal/mol in the deoxy state, was
predicted to be reduced to 3 kcal/mol in the oxy-trHbN, which reflects a facilitated
transition from the closed state to the open one.

To asses the role of both residues in the diffusion mechanism control, molecular
dynamics simulations of the TyrB10.!/Phe and the GlnE11.!/Ala oxy-trHbN mu-
tants were performed [21]. These mutations were chosen because they disrupt the
hydrogen-bond network formed by the haem-bound O2 molecule. To the best of our
knowledge, kinetic data are available only for the TyrB10.!/Phe mutant, but they
are conclusive in stating that, although the mutated protein can bind O2, there is a
drastic decrease in the NO consumption activity [5].

Previous studies of the chemical reaction by Crespo et al. [22] demonstrated
that this activity decrease cannot be attributed to a loss in the catalytic efficiency
of the mutant, as the energetics of the reaction was not significantly perturbed
with the mutation. Accordingly, it can be speculated that the loss of activity of
the TyrB10.!/Phe mutant arises from the difficulty of NO to migrate to the ac-
tive site as the molecular mechanism that assists opening of the tunnel long branch
is disrupted. At this point, inspection of the PheE15 H˛–C˛–Cˇ–C� dihedral an-
gle in molecular dynamics simulations of the TyrB10.!/Phe mutant clearly states
that the side chain populates the closed conformation during the whole trajectory,
thus blocking ligand access to the active site. The disruption of the hydrogen-bond
network through residue mutation has the same effect found in the deoxy-trHbN
simulation, where the conformation adopted by the side chain of GlnE11 increases
its distance from the benzene ring of PheE15. In the TyrB10.!/Phe mutant, the
.Tyr/OH � � � .Gln/NH2 hydrogen bond cannot be formed and the GlnE11 residue
forms a hydrogen-bond with the haem-bound O2 mole. To do this, the side chain of
the residue adopts an all-trans extended conformation similar to that found in the
deoxy-trHbN and the distance to the PheE15 side chain is increased on average to
5.2 Å. In the GlnE11.!/Ala mutant, the fixed conformation of PheE15 is directly
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related to the small volume of the Ala side chain, which prevents any significant
interaction with the side chain of GlnE11.

Overall, both TyrB10 and Glne11 are very important for the protein to carry out
the conversion of NO to nitrate anion. Noteworthy, this mechanism is modulated by
O2 binding to the haem Fe, as it fixes the conformation of TyrB10 and forces GlnE11
to adopt a staggered conformation, which promotes the conformational change of
PheE15 side chain and opening of the tunnel long branch.

4 Protein Dynamics and Ligand Migration

At first sight, there is no major structural difference between the average structures
of the protein skeleton in the oxy and deoxy states of trHbN. However, this finding
does not necessarily mean that the peptide backbone is playing no role in modulating
the NO-dioxygenase activity of the protein. Rather, a careful analysis of the dynam-
ical behavior of the protein reveals an unexpected, but crucial contribution to the
migration of ligand through the protein matrix.

Inspection of the main global motions of the protein backbone determined from
essential dynamics demonstrates that a drastic alteration in the “breathing” of the
protein takes place upon binding of O2 to the haem Fe atom. Thus, the essential
dynamics modes for the deoxy state reveals that the major motion involves the dis-
placement of helices G and H, which mainly define the short branch of the tunnel,
and the F loop. However, in the oxy state, the major motion affects the relative dis-
placement of helices B and E, which are the structural elements that contribute to
delineate the walls of tunnel long branch. Accordingly, the increased flexibility ob-
served in distinct structural elements in the deoxy and oxy states should facilitate
the migration of small ligands through the short and long branches of the tunnel.
In particular, the reduced friction between helices B and E in the oxy state should
contribute to explain the decrease in the barrier for the conformational transition
between closed and open states of the PheE15 gate.

Interestingly, it turns out that the major structural fluctuations detected in
TyrB10.!/Phe and GlnE11.!/Ala mutants comes from the displacements of the
helices C, G, H and the loop F, which are the same structural elements identified
in the deoxy state of trHbN. Again, this finding agrees with the experimentally
observed decrease in the detoxification activity of the mutated TyrB10.!/Phe
protein [5].

These results evidence that the binding of O2 to trHbN has not only a local ef-
fect of increasing the mechanical pressure exerted by GlnE11 onto the benzene ring
of PheE15, but also triggers a global effect, which affects the dynamical behav-
ior of the whole protein by increasing the mobility of helices B and E. Overall, it
might be concluded that the simultaneous effect of both local and global changes
triggered upon O2 binding facilitate the access of NO to the haem cavity and thus
contribute to the efficiency of trHbN as a defense mechanism for the survival of the
microorganism.
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5 Egression of Nitrate Anion

Under nitrosative stress, the protein must be able to recover its initial state as
quick as possible to achieve a safe NO detoxification regime and guarantee the
survival of the bacillus. Accordingly, it is not only necessary to accomplish the
NO-dioxygenase activity, but also to release efficiently the nitrate anion formed in
the active site cavity to the solvent, thus enabling the protein to start a new enzy-
matic cycle.

Clearly, the driving force for the release of the nitrate anion to the bulk aque-
ous solution is the hydration of the negative charge. However, this process faces
two problems. First, the increased size of the nitrate anion relative to the reactants
(O2;NO) implies that migration through the protein tunnel should be more difficult.
Second, the hydrophobic nature of the tunnel does not support the migration of a
negatively charged chemical species. Finally, an additional problem to be consid-
ered is the breaking of the bond between the haem Fe and the nitrate anion, which
in turn is expected to interact with GlnE11 and TyrB10 through hydrogen bonds in
the haem binding pocket. Accordingly, to reach the aqueous solvent, the Fe–ONOO
bond must be broken, the hydrogen bond interactions lost, and the anion must dif-
fuse through the protein matrix.

Molecular dynamics simulations of the haem-bound nitrate anion of trHbN have
been valuable to elucidate the puzzle associated with egression of the product [23].
It was found that the presence of the nitrate anion bound to the Fe atom promotes
a sizable distortion of the cavity walls. The hydrophobic residues lining the cavity
(ValB13, LeuB14, PheCt, PheCD1, MetE4 and LeuE7) are pushed up to 1.5 Å far
away from the Fe atom relative to their position in the oxy trHbN, thus increasing the
cavity volume by a factor of ca. 2. Furthermore, the conformational rearrangement
of these residues reduces the compactness of the cavity and facilitates the entrance
of water molecules to the active site through two non-simultaneous channels (see
Fig. 6). The first one is a consequence of the fast relocation of MetE4 side chain
that creates a pore in the cavity as the residue moves away from the nitrate anion.
The path is located between residues TyrB10, LeuB14, MetE4 and LysE8 and water
molecules diffuse through it and solvate the nitrate anion. Later on, a new pathway

Fig. 6 Side view of the two different water pathways that appear in the molecular dynamics sim-
ulation of the nitrate-bound truncated hemoglobin N



Exploring the Nitric Oxide Detoxification Mechanism of Mycobacterium tuberculosis 45

appears due to the rearrangement of residues PheE7 and PheCD1, which is main-
tained along the rest of the simulation. As a result, the nitrate anion is effectively
solvated by a few water molecules during the whole simulation.

To investigate the role played by hydration on the breaking of the bond between
haem Fe and nitrate anion, a series of QM and QM/MM calculations were per-
formed [23]. The results showed a crucial role of water in lowering the barrier of the
Fe–ONOO bond breaking. For a model system derived from a representative snap-
shot of the MD simulation in which waters around the nitrate anion were removed,
the barrier associated to bond breaking amounts to �18 kcal=mol. On the other
hand, when water molecules are kept and included in the QM subsystem, the barrier
is lowered to �4 kcal=mol showing that hydration is essential to efficiently break
the bond.

Once the hydrated nitrate anion is released from the haem Fe atom, molecular
dynamics simulations showed the existence of two possible egression pathways.
In one case the nitrate anion escapes through the upper part of the haem cavity
within 3 ns, while in the other it passes below the CD loop and escapes in �4:5 ns.
In both cases, the anion egression is preceded by the formation of a hydrogen bond
with ThrE2, which is placed at �9 Å away from the Fe atom. These results indicate
that the anion can be rapidly released to the bulk solvent once the Fe–ONOO bond
is broken and point to the entry of water as the crucial event in triggering the release
of the nitrate anion.

This mechanism is supported by the free energy profiles obtained from steered
molecular dynamics simulations (see Fig. 7) [23]. The anion must overcome a small
barrier of less than 1 kcal/mol to reach the ThrE2 interaction site, which can be seen
in the energy profile as a minimum that provides a 1 kcal/mol stabilization. Finally,
it can escape from the haem cavity surpassing a second barrier of �2 kcal=mol.

Overall, these results indicate that the pathway by which the nitrate anion escapes
from the haem cavity is completely different from those used by O2 and NO to reach

Fig. 7 Free energy profile for the egression of NO �3 from the active site
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the binding pocket. Furthermore, egression of the nitrate anion is largely determined
by the entrance of water molecules into the active site, which lower the energy
necessary to break the bond with the haem Fe atom and stabilize the unbound nitrate
anion in the cavity.

6 Conclusion

The results point out the intimate nature between structure, dynamics and function
in trHbN. Clearly, a comprehensive understanding of the biological role played by
trHbN for the survival of M. tuberculosis cannot be achieved without an integrated
knowledge of the protein structure and dynamics.

The analysis of the information collected from different computational tools per-
mit us to reconcile the migration of the ligands O2 and NO through the highly
hydrophobic branches of the protein tunnel with the larger size and charged nature
of the nitrate anion, as the product of the reaction leaves the enzyme using a dif-
ferent pathway. Taken together, this information permits to identify certain residues
that play a crucial role in the NO-dioxygenase activity of trHbN, such as PheE15,
which acts as the gate of the long tunnel branch, the pair TyrB10–GlnE11, which
not only modulates the O2 binding affinity and the correct positioning of NO in the
heme-bound O2 cavity but also contributes to facilitating the opening of the gate by
combining both local and global conformational changes, and ThrE2, which assists
the nitrate anion along the regression pathway.

The knowledge gained from the detailed analysis of these results should be
valuable to suggest possible mutations, which should affect the efficiency of the NO-
detoxification mechanism by trHbN, to explain the differences in activity between
related truncated hemoglobins and eventually to provide a basis for the design of a
pharmacological strategy against tuberculosis based on the definition of trHbN as a
potential therapeutic target.
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Complex Symmetry, Jordan Blocks
and Microscopic Self-organization

An Examination of the Limits of Quantum Theory
Based on Nonself-adjoint Extensions with Illustrations
from Chemistry and Physics

Erkki J. Brändas

Abstract The basis and motivation for extending quantum mechanics beyond its
traditional domain are recognized and examined. The mathematical details are
briefly discussed and a convenient compact complex symmetric representation de-
rived. An original formula is proved and demonstrated to incorporate general Jordan
block configurations characterized by Segrè characteristics larger than one. It is ver-
ified that these triangular forms can portray realistic evolutions via maps established
both within fundamental quantum mechanics as well as within a generalized ther-
modynamic formulation displaying features that are reminiscent of self-organization
on a microscopic level. Various applications of these so-called coherent dissipative
structures in physics and chemistry are pointed out, and discussed with possible
inferences also made to the biological domain.

Keywords Aqueous solutions � Analytic continuation � Complex symmetry � Res-
onances � Jordan blocks � Segrè characteristics � Condensed matter � Coherent-
dissipative structures � ODLRO � Universal relation � High-TC � Molten salts �
Special- and general theory of relativity

1 Introduction

Everybody working in the theoretical fields of rigorous quantum mechanics as
applied to micro-, meso- and macroscopic systems know the fundamental con-
tributions of Alexander S. Davydov, whether it concerns the excellent exposition
of quantum mechanics [1] or the development of the so-called Davydov soliton
[2]. To pay honor to this outstanding performance the present NATO Advanced
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Workshop aimed at unveiling the principles that govern the countless processes in
micro-, meso- and macroscopic phenomena, where in particular molecular aggre-
gation at various levels of organization play a crucial role. Recent advances to
understand the disparity between physics, chemistry and biology contends that this
gap cannot be explained or reduced to physics alone. Rather than engaging in a
discussion of reductionism versus a constructionist viewpoint, see e.g. the work of
S. Kauffman [3], we will advocate below a somewhat different view-point that is
microscopic yet emphases a holistic conception.

To embark on the trails of the NATO Research Workshop program, we will pro-
vide an examination of systems where attributes like coherence/decoherence as well
as various levels of dissipation are conjured. Not only will we consider the limits
of quantum theory in probing non-selfadjoint extensions of standard quantum me-
chanics, but we will also examine the properties of emerging thermal- and quantum
correlations. Under certain circumstances, e.g. at interfering timescales, the mix-
ing of emerging correlation structures will show evidence of persisting long-lived
conformation patterns, which through their constructive character descend to the
concept of microscopic self-organization.

The consideration given here is based on traditional linear algebra quantum me-
chanics [4], but augmented with an important generalization, namely the proviso
to extend quantum concepts, like resolvents or Green’s functions, into the complex
plane as well as their associated Fourier/Laplace transformed propagators into ap-
posite semi-groups with potentially well-established contraction properties. As a
result it will be possible to include dynamical characteristics such as time-, length-
and temperature scales into the theory [5–7]. A simple scaling argument leads fur-
ther to a complex symmetric formalism, which imparts a wider set of possibly
broken symmetry solutions. Hence there might emerge structures, recognized as
Jordan blocks, i.e. block diagonal triangular units with Segrè characteristics larger
than one. Nevertheless it is important to remember that proper invariance laws, e.g.
gauge invariance, unitarity and time reversibility are appropriately embedded in the
formulation and accessible when necessary.

The outline of this review will be as follows. The subsequent sections entail in a
few words the mathematical background and the relevant details for the appreciation
of the extension programmed above. We will make the prerequisites for the so-called
resonance picture of unstable states including a quantum statistical description based
on explicit quantum theoretical density matrices and associated reduced system
operators. As a prerequisite for the applications we will define the concept of a dis-
sipative system and particularly introduce a new type of time irreversible building
blocks denoted as a coherent dissipative structure. Appraisals of situations where
alike configurations subsist are briefly examined and various conclusions regarding
associated emergent properties compared. In particular we will consider anomalies
of proton transport in water and ionic conductance of molten salts, conjectures re-
garding long-range proton correlations in DNA and further, quantum correlation
effects in high-TC cuprates. As a final point a surprising derivation of Einstein’s
laws of relativity is provided.
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To close up the introductory section we call attention to two statements detailed
by A. S. Davydov’s in the preface to the 2nd edition of his Quantum Mechanics [1].
The first one concerns the remark that “we show the inapplicability of the concept
of an essentially relativistic motion of a single particle”. Further below it is followed
up by “we do not consider in this book special methodological problems, the expo-
sition is based upon dialectical materialism”. As will be evident from our theoretical
development, and of course leaving out political implications, the laws of opposites,
negation and transformation has a certain appeal as regards the emergence of Jordan
blocks, the transformation properties of the preferred physical localized basis, the
principle of microscopic self-organization and the materialization of new dissipative
structures defining new levels of organization.

2 Mathematical Details

We will here give a brief mathematical exposition and demonstration regarding the
extensions necessary for the present description. The objective and motivation for
our endeavor is primarily to find new realistic and rigorous time evolutions that goes
beyond traditional time dependence based on the unitary time-evolution operator. At
the same time we need to find new complex structures on the so-called unphysical
Riemann sheet that build up the resolvent or the Green’s function improving the
analysis of associated auto-correlation functions and their Fourier–Laplace trans-
forms. In short, we will look for a more compact way of examining the signal
determining the spectrum and vice versa, and this may give new insights into the
physical and chemical properties of the system.

First we will illustrate an inherent way to do appropriate analytic continuations
both in connection with the numerical integration of the actual differential equation
as well as in reference to solving standard secular equations. It is further shown
that a complex symmetric representation becomes the natural ansatz. To prove that
this choice does not impose any restrictions on the model, an explicit formula for the
general Jordan canonical form is established. The techniques ascertain the resonance
picture of unstable states, including solutions with broken symmetries, emergence
of timescales and microscopic self-organization.

The theory summarized here incorporates the Schrödinger—as well as the Li-
ouville equation. The former, inserted in a non-isolated system framework, will
be shown to provide a basis, not only for a mathematical rigorous development
of scattering theory, but also for an account of the theory of relativity. The Liouville
superoperator formulation, extended to include thermalization via the Bloch equa-
tion and referring directly to the density matrix, will be shown to produce explicit
relationships between the temperature, the size and the timescale of the alleged time
irreversible dissipative structure. From the general definition of complex open sys-
tems we achieve a thorough description of the system-environment split and the
precise characterization of a coherent-dissipative system.
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2.1 The Differential Equation

We will here discuss the various consequences in the mathematical development
caused by the generalizations introduced in the introduction. To avoid misunder-
standings we need to understand some of the fine points in the development of
quantum mechanics. For this reason it is important to say a few words on the “clas-
sical” Schrödinger equation (8).

As everybody studying quantum mechanics know, Schrödinger described in his
famous treatise, posing quantization as an eigenvalue problem, how to acquiesce
physically suitable solutions of the boundary value problem of the (Schrödinger)
differential equation. He imposed the requirements of continuity, single valued- and
finiteness. The quandary or complication, though well understood and worked out
today yet sometimes misread, is the relation between these demands and the ones
of square integrability, i.e. that the solutions of interest should belong to a suitably
defined Hilbert space. For instance the so-called continuum wave-functions present
a normalization problem, since the characteristic aspect of such oscillatory wave-
functions (rather than exponentials) are that their orthonormality is expressed by
the use of the Dirac delta function. One might say that square integrability is suffi-
cient for bound-state problems where the potential is bounded from below and that
continuum wave-functions never needed quantization. It is nevertheless interesting
to note the way in which eigenfunctions of the differential equation operator may
be used to form an eigenfunction expansion of the Hilbert space without ever be-
ing required to belong to Hilbert space themselves. In summary one might say that
Schrödinger was able to formulate quantization as an eigenvalue problem precisely
because of his familiarity with the developments of Hilbert and Weyl [9]. To rigor-
ously develop any useful generalizations one needs either to pose precise boundary
conditions for the physically interesting solutions or to find the relevant topology
for the actual spaces.

Let us start with the boundary condition problem. The first one to study these
aspects for second order ordinary differential equations in a realistic and useful way
was Herman Weyl [10]. The theory, which preceded both the development of Hilbert
Space as well as Schrödinger’s original papers, was extended to treat perturbations,
which make the spectrum continuous, by Titchmarsh [11]. In fact it can be shown
that the Weyl-Titchmarsh m-function through its intimate connection with the spec-
tral density forms a key quantity in the solution of the boundary value problem, i.e.

�.Ě / � �.E˛/ D lim
"!0C0

1

�

EˇZ

E˛

ImŒm.E C i"/�dE (1)

where � is the spectral function of the differential operator. Furthermore, m is the
uniquely given energy dependent coefficient obtained from requesting that a suitable
combination of the two linearly independent initial value solutions of the 2nd-order
ordinary differential equation should be L2 or square integrable. Note that ImŒm�
should be evaluated at the limit when the imaginary part of the complex energy
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parameter E C i" goes to zero. The asymptotic boundary condition is handled by
another limit that gives the unique L2 solution at infinity via the so-called limit-
point classification, a feature dependent on the properties of the potential. Although
this categorization is different from the conditions required in standard scattering
theory, see e.g. Newton [12], one can e.g. prove that the m-function is entirely
dependent on the logarithmic derivatives of the physical solution [13, 14], and that
its imaginary part can be expressed, when appropriate, in the standard form, as [14]
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where k D
p
E, l ¤ 0 is the angular momentum quantum number and Fl is the

well-known Jost function [12]. For some key applications referring to the contin-
uous spectrum as well as to the problem of extending the limit-point limit-circle
theory to the complex plane, see particularly references [13–16]. Without going into
more details we will emphasize the possibility to extend the techniques to a set of
coupled ordinary second order differential Eq. (17). Although one might integrate
the partial differential equation directly along a suitable path in the complex plane
we will instead resort to another different but very convenient approach below.

2.2 The Complex Symmetric Form

In order to set the stage for a more general development, we will board on a theorem
derived and supported by Balslev and Combes [18]. Using rigorous mathematical
characteristics of so-called dilatation analytic interactions they proved important
spectral properties of many-body Schrödinger operators [18]. The possibility to
“move” or rotate the continuous spectrum was immediately subject to successful
applications in a variety of quantum theoretical applications in both quantum chem-
istry and nuclear physics [17]. The key to this development can be grasped from
a simple scaling argument [19]. Before explaining how to generate the dilatation
transformation we will make a simple but significant conclusion. The basic idea is
mainly to make a suitable change of coordinates in every matrix element building
up the secular equation. Consider for instance the general operator �.r/, where we
write r D r1; r2; : : : rN I assuming 3N fermionic degrees of freedom. By simply car-
rying out the scaling r 0 D �3N r �I � D ei# , where # < #0 for some #0 that generally
depends on the potential, one finds trivially

Z
'�.r/�.r/	.r/dr D

Z
'�.r 0�/�.r 0/	.r 0/dr0 (3)

It is assumed that the operator �.r/ as well as '.r/ and 	.r/ are appropriately
defined for the scaling process to be meaningful, and that the interval of the ra-
dial components of r generally is .0;1/; we will return to this issue further below.
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The important conclusion from Eq. (3) is the requirements of analyticity with ref-
erence to the parameter �, hence the complex conjugate in '.��r/, and this is the
main reason why most complex scaling applications in quantum chemistry are im-
plemented via complex symmetric representations, see e.g. Ref. [20].

Returning briefly to the domain issue. Following Balslev and Combes [18] we
introduce the N -body Hamiltonian as H D T C V , where T is the kinetic energy
operator and V is the (dilatation analytic [18]) interaction potential. We clearly need
to restrict the domain of H , since it is an unbounded operator, although bounded
from below (compare, e.g. the distinction with the Stark Hamiltonian treated above
with Weyl’s theory [13, 14]). Without going into unnecessary detail we write the
domain of H as (below H is the well-known Hilbert space, see e.g. [5, 18] for
further details)

D.H/ D fˆ 2 H;Hˆ 2 Hg (4)

The condition on the dilatation analytic potential is essentially that the (pair) po-
tential does not dominate the kinetic energy and hence the unboundedness is due to
the latter or D.H/ D D.T /. With these preliminaries we can introduce the scaling
operator U.#/ D exp.iA
/ where the generator A is given by

A D
1

2

kDNX
kD1

Œ Epk Exk C Exk Epk� (5)

Note that the parameter # is here real, but will be made complex in what follows
commensurate with what is said above. Also Exk and Epk are the coordinate and mo-
mentum vectors of the particle k. As a result we obtain

U.#/ˆ.r/ D e
3N#
2 ˆ.e#r/ (6)

The form of the generator, defined by Eqs. (5) and (6), can be simply derived by
direct differentiation of both sides of Eq. (6) with respect to the parameter # . A more
interesting route is to work with the Mellin transformation
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with its eigenfunction satisfying (with A here restricted to N D 1 for simplicity)

Ajrji��
3
2 D �jrji��

3
2 (8)

For the centrally symmetric case .jrj D r/, cf. the possibility to connect the Mellin
transform with the Riemann zeta function, one can write down the eigenfunction of
the generator A as

 � D
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p
2�
ri��

1
2 (9)
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This leads to the following inversion formulas

S.�/ D
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 �� .r/'.r/drI '.r/ D
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 �.r/S.�/d� (10)

and the eigenvalue relation displaying an alternative way to carry out the scaling
using the relation

eiA# �.r/ D e
1
2 # �.e

#r/ D ei�# �.r/ (11)

By turning # ! i# the one-parameter unitary dilation group, defined in Eq. (6),
becomes an unbounded similitude. This affects not only the operator domains, but
it alters the spectrum significantly, i.e. the absolutely continuous spectrum (there
is no singularly continuous spectrum for dilatation analytic operators [18]) will be
“rotated down” in the complex plane with a rotation angle of 2# . As we will se
further below this possibility to make the scaling parameter # complex will contract
 � accordingly and lead to novel spectral representations in terms of resonances,
deflated rotated cuts including Jordan blocks, where the corresponding transformed
canonical vectors appear partitioned into all possible factorizations of any natural
number.

Summarizing: We have considered the general scaling parameter � D j�j ei#

(for some 0 � # < #0 as mentioned above). What is more, provided that the poten-
tial V is a sum of two-body, �-compact (bounded by the kinetic energy operator)
potentials, we have restricted the Hilbert space to a dense subspace on which the un-
bounded complex scaling operation is defined. Upon closing the subset to the whole
Hilbert space one obtained the simple form of the deformed spectrum, defining the
dilation analytic family of Hamilton operators depending explicitly on the analytic
parameter �. The development leads naturally to complex symmetric representa-
tions, in which the standard self-adjoint formulation is embedded. Although there
exists other tools to investigate the “unphysical sheet” the present approach has
been very convenient for atomic and molecular physicists and chemists since the
dilatation analytic Hamiltonian is the perfect tool, save complications related to
the Born-Oppenheimer approximation, see Appendix 1, which naturally opens up
the complex plane via spectral rotation. Analogous analytic continuation in the
Liouville case is not trivial but can be done [5], see e.g. the developments in the
next section.

As we will, see there will be a price to pay for this extension. To examine this
complication we will first show that the present complex symmetric representation
invokes no restriction on the formulation. This will lead to a simple and useful com-
plex symmetric form of the most general finite matrix description [21, 22], and this
will be of immediate use in what follows.
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2.3 The Emergence of the Jordan Block

To display the emergence of the Jordan block structure we will give a physical ar-
gument that leads directly to the forms that we can identify as non-diagonalizable
triangular units in disguise. Although Gantmacher proved [23] that every square
matrix is similar to a complex symmetric matrix and that every symmetric matrix
is orthogonally similar to an explicitly given normal form, we have found, in our
scientific work, a particularly suggestive and elegant representation [21, 22] which,
contrary to previous existence proofs produce a very simple, explicit form. We will
return to some illustrative applications of this formulation in coming sections [5, 6].

To begin with, we will give a brief account of the quantum statistical frame-
work to be examined. Not only do we need to consider how to treat the
system–environment partition, but we also need to incorporate Liouville-like mas-
ter equations in the evolution dynamics. Although this sounds a bit too general
to be practical, we will see some surprising simplifications as well as make some
useful definitions. It is important to remember that one wants to start at the most
basic level of formulation in order to justify the extensions made previously. We
will henceforth focus on the density matrix � (not to be confused with the spectral
function of Section 2.1) subject to the Liouville equation (h̄ suppressed)

i
@�

@t
D OL� (12)

where
OL D H� � �H� (13)

Note that we have kept the Hermitean conjugate in the second term above for the
possibility to do dilatation analytic extensions [5, 26]. The use of reduced density
matrices and their associated, representability properties for solving the Schrödinger
equation has a long and interesting history [24] and technical progress is still devel-
oping. Although we will revisit the problem again, it is necessary to bring up and
stress the fundamental importance of Yang’s celebrated Off-Diagonal Long-Range
Order, ODLRO [25], and its profound theoretical and physical consequences. For
later use we will also introduce the definition of the N -particle (and its p-reduced
companions) representable density matrix �.p/ as follows

�.p/.x1 : : : xpjx
0
1 : : : x

0
p/ D (14)

�
N

p

	Z
‰�.x1 : : : xp; xpC1 : : : xN /‰.x

0
1 : : : x

0
p; xpC1 : : : xN /dxpC1 : : : dxN

where the (normalized) wave function ‰.x1 : : : xN / represents a fermion many-
body quantum mechanical system. One usually considers two types of particles,
bosons and fermions, but since quantum chemical applications concern the elec-
tronic structure of atoms and molecules it is common practice to focus on the
characteristics of reduced fermionic density matrices, particularly with pD 1 or
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pD 2. Note also that the normalization is set to the number of pairings, but other
choices are frequently used. For the present purpose an oversimplified model should
be sufficient. It will be rigorously rationalized later on.

We will considerM DN=2 bosons (orN fermions) described by set ofm � N=2
localized pair functions or geminals h D .h1; h2; : : : hm/ obtained from appropri-
ate pairing of one-particle basis spin functions (m should not be confused with the
m-coefficient of previous sections). For the moment we will take no notice of the
fermionic level. Although this model is somewhat primitive (it can easily be im-
proved [42]) it will allow the portrayal of interesting phenomena via the density
operator

�.2/ D � D

mX
k;l

jhki�klhhl jI Trf�g D
N

2
(15)

to be subsequently examined in what follows. Note the inconsistency in the nor-
malization, but the reader should not worry, as it will be shown to have a natural
explanation. A straightforward statistical argument will describe the model and its
quantum content. The matrix elements �kl define probabilities for finding particles
at site k and transition probabilities for “particles to go” from site k to l . Hence
the matrix � has the elements (a connection with the structure of fermion density
matrices [38] will be made further below and also in the coming sections)

�kk D pI �kl D p.1 � p/I k ¤ l I p D
N

2m
(16)

The associated secular equation reveals a non-degenerate large eigenvalue �L D
mp � .m � 1/p2 and a small .m � 1/-degenerate �S D p2. Note that for large m,
�L 	 N=2. Consequently the density operator becomes

�.2/ D � D �Ljg1ihg1j C �S

mX
k;lD1

jhki.ıkl �
1

m
/hhl j (17)

Using the transformation jhiBDjgiD jg1;g2; : : : gmi, see Appendix 2 for the ori-
gin of this transformation

B D
1
p
m

0
BBBB@

1 ! !2 � !m�1

1 !3 !6 � !3.m�1/

� � � � �

� � � � �

1 !2m�1 !2.2m�1/ � !.m�1/.2m�1/

1
CCCCA
I ! D e

i�
m (18)

a compact diagonal representation for the degenerate part obtains

�.2/ D � D �Ljg1ihg1j C �S

mX
kD2

jgkihgkj (19)
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Rationalizations of this result will be discussed, see e.g. Eq. (30), and studied further
below.

To fully integrate thermal- and quantum fluctuations into the theoretical formu-
lation an intensive quantity like the temperature must be consistently incorporated.
This is fundamentally a difficult problem since we are dealing with systems out
of equilibrium, yet we will show how to introduce the “temperature” in a quasi-
equilibrium context taking into consideration the constructive interaction between
the thermal inputs from the environment on the open system. With an open or dis-
sipative system (we will here use the term inter-changeably) we mean: a system
in which there exists a flow of entropy due to exchange of energy or matter with
the environment, see e.g. the wonderful discourse “From being to becoming” [27].
Additionally we will append specifications for so-called coherent-dissipative struc-
tures. In passing we should also make clear that we do not apply the thermodynamic
limit, unless specifically implemented. Continuing to build on these traits, we will
carry out the very well known mathematical trick of invoking the temperature by
making time imaginary i.e.

t ! t � īhˇI

where

ˇ D
1

kBT

Here kB is Boltzmann’s constant and h̄ is Planck’s constant divided by 2� . We also
supply a word of warning that the extended formulation for time and ˇ must be done
separately [5, 22]. The usual thermalization procedure resorts to the Bloch equation
using, instead of the Liouvillian, the energy superoperator OLB, i.e.

�
@�

@ˇ
D OLB� (20)

with
OLB D

1

2
fH j ih
j C j ih
jH g (21)

appropriately extended to a biorthogonal complex symmetric representation. In par-
ticular we note the complex conjugate in the bra-position, which is in contrast to
the extended Liouville time generator in Eq. (13). Since we may use the mathe-
matical machinery presented above, we can assign to our model a complex energy
Ek D Ek � i"k to every site described by the basis function hk . Note also that the
total energy expression is given by

E D TrfH2�
.2/g (22)

where H2 is the reduced Hamiltonian of the ensemble. The total energy for the
many-body Hamiltonian, involving at most two body terms, can alternatively be
decomposed into a sum of pair energies, see e.g. [5] for more details. We will give
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the exact form for this expression in Section 3.1. Using Eqs. (20) and (21) we can
write the formal solution of the Bloch equation

�
.2/
T D e

�ˇ OLB�.2/

using the standard factorization property of the exponential superoperator

e�ˇ
OLB�.2/ D �L

mX
k;l

jhkie
iˇ 12 ."kC"l /hhl j C �S

mX
k;l

jhkie
iˇ 12 ."kC"l /

�
ıkl �

1

m

	
hhl j

(23)

In the example above we have assumed that the real part of the energies Ek for
each site is independent of k and hence without restriction can be set equal to
zero. To avoid confusion, we have not explicitly indicated that the analytic pic-
ture behind the thermalization, and the corresponding transformation, generates a
complex symmetric bi-orthogonal representation. In particular a complex conjugate
should appear in the bra-position, although the choice of a real localized basis set
fhkgI k D 1; 2; : : : m, would make this temporarily unnecessary.

As usual we assign the relation between the imaginary part of the energy, the
half-width and the timescale as

"k D
�k

2
D

h̄

2�k
(24)

In previous derivations we have as a rule established the following “quantization
condition”, see Eq. (25) below, based on our request that the thermalized density
matrix in Eq. (23) should produce a Jordan block and that this feature presumes a
special physical property of the dissipative system e.g. provides a prolonged survival
time or structural timescale. In the appendix we have examined a simple thermal
scattering process and derived basically the same quantization condition between
timescales and the “temperature” of the coherent dissipative structure, the difference
being that the quantization condition here follows from a physical argument rather
than from a mathematical coincidence. Applying this condition, see Appendix 1

ˇ"l D 2�
l � 1

m
I l D 1; 2; : : : m (25)

We obtain directly

�
.2/
T D �L

mX
k;l

jhkie
i �m .kCl�2/hhl j C �S

mX
k;l

jhkie
i �m .kCl�2/

�
ıkl �

1

m

	
hhl j (26)

By inspection we conclude that the first “large” part of Eq. (26) is proportional to a
Jordan block of order 2 and the “small” part to one of order m. This insight comes
from the simple fact that
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J D

0
BBBB@

0 1 0 : 0

0 0 1 : :

: : : : 0

: : : : 1

0 : : : 0

1
CCCCA

(27)

and
Qkl D .ıkl �

1

m
/ei

�
m .kCl�2/I k; l D 1; 2; : : : m (28)

are similar. Using the same transformation, as defined in Eq. (18), the statement is
easily confirmed [21, 22], see Appendix 2, i.e.

Q D B�1JB (29)

The transformationB�1 defines the basis jf i that represents the canonical basis for
the Jordan block, i.e.

jhiB�1 D jf i D jf1; f2; : : : fmi (30)

As a consequence the Dunford formula for the thermalized superoperator in Eq. (23)
becomes (to avoid extra notation, we have only distinguished the operator from its
matrix representation in Eq. (3) by a calligraphic J )

�
.2/
T D �LJ .m�1/ C �SJ (31)

J D
m�1X
kD1

jfki hfkC1j

Note that J .m�1/ D jf1i hfmj is a Jordan block of order 2. Since �.2/T is traceless
the energy, see Eq. (22), becomes

E D Tr
n
H2�

.2/
T

o
D 0 (32)

As a final point, we remark that the change of basis due to the thermalization proce-
dure is neither a unitary- nor a similarity transformation.

Before leaving this section one should make the following distinction. The Jordan
blocks may appear in many situations in quantum theory. Hence it is important to
point out that we do not consider traditional use of nilpotent operators, i.e. step
operators in angular momentum algebra or creation- and annihilation operators in
second quantization. Instead we re-stress that our focus is put on the dynamics of
our open dissipative systems and as a result a multiplicity in the related operator
representation, with Segrè characteristics larger than one, may arise (i) in the density
matrix (e.g. studies of proton transfer processes in water and aqueous solutions [29])
(ii) in the Hamiltonian (the complex symmetric ansatz of the Klein Gordon Equation
(Eq. (30)) (iii) and at the Liouville level (spontaneous and stimulated emission of
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radiation in masers [31]). It will be shown, that the results obtained in case (i), are
consistent with the evolution properties of a dynamical process of type (iii).

With the reasoning above as a background, we will define, as proposed in
Section 2.3 the concept of a coherent dissipative system by requiring additionally
that (a) they are created or destroyed by integrated quantum- and thermal correla-
tions (T ¤ 0), (b) they exchange energy with an (partially) entangled environment
and (c) they can not have a size smaller than a critical one. Unequivocal dynam-
ical evolution on such systems will lead to non-exponential decay and the law of
microscopic self-organization.

In the sections to follow, we will analyze the significance and the relationship of
this new phase organization onto the microscopic level. The mathematical reasons
for this interpretation will be given in Appendix 3.

3 Quantum Technology

After the preliminary mathematical details given in the first two sections we will
continue with some specific applications to non-isolated systems where realistic
maps of the dynamical behavior can be portrayed by the theory developed here.

There has been, already since the millennium shift, a dramatic theoretical and ex-
perimental development, both fundamental and innovative, of modern physics and
chemistry not to mention biology. The tools of state-of-the-art science and technol-
ogy extend into many new areas of industrial significance with quantum physics
and chemistry becoming essential both for miniaturized objects on the nanoscale—
as well as on the higher complexity levels, and for advanced computer and data
communications. On the biological side we are understanding and learning how to
operate the hierarchy of the levels of complexity from the lowest quantum molecular
level all the way up to large-scale systems consisting of all components, controlled
by mechanisms at the lower level, linked into networks that makes the dissipa-
tive system robust and flexible. These features lead to novel advanced technologies
depending heavily on fundamental principles. We have termed those original de-
velopments characterized by such traits quantum technology. To convey the idea,
we have indicated in Table 1, what we mean, by listing some recent topics and
techniques starting from pure quantum systems going towards more “mixed-dirty”

Table 1 Quantum technology

Application Area Mechanism/Technique
Quantum information Nonclassical
Condensed matter Broken symmetry
Ultracold matter Dissipation-dispersion
Interferometry Coherence–decoherence
Coherent dissipative systems Quantum–thermal correlations
Stochastic non-linear dynamical systems Stochastic resonances
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fields of applications, for some more details on this development, see e.g. the pro-
ceedings from the Nobel Symposium Nr. 104 [28].

Below we will adopt examples from high TC superconducting cuprates, anoma-
lous conductance of HC and OH� in aqueous solutions, electric conductivity of
molten salts and finally some observations of interesting mathematical structures
within a biological frame. Under a new heading we will present a surprising
application to Einstein’s laws of relativity. The last topic concerns “Relativistic inno-
vations” under Application Area and “Quantum mechanical superposition principle”
under Mechanism/Technique.

3.1 High-TC Cuprates—General Features

We will start the sections on applications by attending to the development of
ODLRO [25] and the phases of high-TC cuprate superconductors. The field has
for a long time been one of high controversy as to what constitutes the fundamental
mechanism behind the Cooper pairing, not to mention the semantic difficulties caus-
ing misunderstandings between quantum chemists and condensed matter physicists.
For instance, while the resonating valence bond state [32] predicted many unusual
properties of the early oxide super-conductors indicating a common unique mecha-
nism, there appeared many different interpretations like the nature of the carriers and
the symmetry of the gap function. Although the book The Theory of Superconduc-
tivity in the High-TCCuprate Superconductors [33] by P. W. Anderson, containing
a full presentation of the experimental and theoretical material up to about 10 years
ago, including Central Dogmas and selected re- and preprints of work made by the
author and his collaborator’s, full consensus in the scientific community has not
yet been achieved. For instance, there is a growing belief in the quantum chemistry
community that new theoretical approaches together with the utilization of the enor-
mous advance in computer capacity will lead to first principles based predictions
of real materials in general and to physical phenomena involving high tempera-
ture superconductors in particular. Recent DFT studies supports a chiral plaquette
polaron theory [34] of cuprate superconductivity, see also related developments in
terms of d-wave polaronic condensates within an extended Hubbard Hamiltonian
model [35–37].

One of the crucial differences between solid-state theoreticians, with a quantum
chemical orientation, and condensed matter physicists are the latter’s predilection
to work within the thermodynamic limit. To keep away from possible misunder-
standings, we will not presuppose this limit from the beginning. The main objective
will therefore be to set up the conditions of ODLRO [25] or rather use Coleman’s
extreme type configuration [38] as a precursor for the onset of the superconducting
phase.

We have already mentioned the fundamental importance of Yang’ concept of
ODLRO [25]. Related to this development is what Coleman calls wave functions
of the extreme type [38]. This is a configuration of strongest possible correlations
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between the fermions of the system. Assume that our system consists ofN fermions
and that we have selected a finite basis ofm spatial orbitals, from which we construct
an equal amount of ˛ and ˇ spin orbitals. All in all we have 2m orthogonal spin
orbitals, which we can pair in such a way that we obtain m singlet spin pair de-
terminants jk; k Cmi D jhki for k D 1; 2; : : : m. The nature of the basis depends
naturally on the problem at hand. For simplicity one might think of the basis element
as being localized at a particular site k in the system, but symmetry considerations
may also give rise to more than one basis geminal per site. One might suspect that
the totally symmetric combination, cf. Section 2.3, will play a special role. The
function or geminal jgi, defined by

jgi D

mX
kD1

ck jhki (33)

plays the key role in the construction of a particularly interesting class of functions,
i.e. the explicitly constructed many-body wavefunction termed an antisymmetrized
geminal power

ˇ̌
gN=2

˛
. It is defined as the normalized combination of wedge prod-

ucts, see below ˇ̌
gN=2

˛
/ jg ^ g ^ : : : ^ gi (34)

The coefficients of the geminal will in the extreme case be given by

ck D
1
p
m
I k D 1; 2 : : : m

We can now state Coleman’s fundamental observation and result.

Theorem 1. The geminal jgi is an eigenfunction of �.2/.gN=2/ with a non-
vanishing eigenvalue iff jgi is of extreme type, i.e. the eigenvalues of �.1/.g/
are all equal.

Above we have indicated the dependence on the wavefunction, i.e. the one that
has been used to obtain the pth reduce density matrix. Hence �.1/.g/ refers to the
first order reduced density matrix, which is obtained from the geminal (2-particle
wavefunction) g. It is surprising that the form of �.2/.gN=2/ in form coincides with
formula (17,19) .g D g1/ of Section 2.3, with two minor differences (actually the
differences can be avoided by a more rigorous statistical ansatz).

�.2/.gN=2/ D �L jg1i hg1j C �S

mX
kD2

jgki hgk j C �
.2/
T (35)

First there appears, in addition to the “large” and “small” part a so-called “tail”
component consisting of all unpaired spin orbital contributions with a degenerate
eigenvalue equal to �S . Furthermore the eigenvalues are slightly different although
they carry the same macroscopic features, i.e.
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�L D
N

2
� .m � 1/�S I �S D

N.N � 2/

4m.m � 1/
(36)

The appearance of �.2/T in Eq. (35) explains why the full normalization of �.2/,
set to the number of pairings, see Eq. (14), is not in conflict with Eq. (15), that
is the normalization over the m � m matrix, historically denoted [24] “the box”,
constituting only the large and small parts. From the factorized density matrix (in
the limitm!1), we will relate the superconducting gap with the following energy
expression, cf. Section 2.3,

hHtotiAv D Tr
˚
H2�

.2/



(37)

where Htot is the total Hamiltonian and the reduced Hamiltonian H2 given by

H2 D
1

.N � 1/
.h1 C h2/C h12 (38)

containing the one body part hi and the two body part hij , see e.g. Coleman [24]
and others [5] for more details. We note that in the limit m ! 1 only the large
component contributes to the energy expression (37). However, as will be easily
seen, this may also occur for finite m. Associating the superconducting energy gap
2� with the relevant two-body operator V12, accounting for the, as yet, unknown
mechanism, then it follows that an enormous energy stabilization occur provided all
matrix elements

hhkj V12 jhli D �gI k; l D 1; 2 : : : m (39)

i.e. are independent on k and l . It follows further from Eq. (39) that the contribution
from the small part becomes rigorously zero, since the phases in the eigenvec-
tors corresponding to jgki I kD 2; 3 : : : ; m, see the definition of the basis jgi from
Eq. (18), “wash” out the sum to zero. Hence we obtain

2� D �L jTr fV12 jgi hgjgj D

�
N

2
�
N.N � 2/

4m

�
jhgj V12 jgij (40)

which yields with the use of Eq. (39)

2� D �L jhgj V12 jgij D �L m
ˇ̌
�g
ˇ̌
D
N

2
Nm
ˇ̌
�g
ˇ̌
I .m � 1/ � Nm � m (41)

Note that the present derivation does not require taking the thermodynamic limit
and that it is enough for Nm�g ! � <1, i.e. to stay finite in the limit. As such our
derivation acts as a precursor to the onset of ODLRO.

Returning to the many anomalies displayed by the high-TC cuprates, we will
show that the present setting provides a good portrayal and explanation of why we
see so many different properties in comparison to the traditional low-temperature
superconductivity, e.g., exceedingly high TC values, strong anisotropies, anomalous
energy gaps, d-wave character of the gap function, the universal linear relation
between TC and carrier concentration, saturation effects, not to mention general
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thermal behavior, doping dependence of condensed electrons, heat capacity, Knight
shifts, and existence of both a condensate- and a spin gap. Although many of
these properties have been examined separately in the light of various different
mechanisms, we believe that the present description give ample explanations and
non-contradictory justification, even before the exact nature of the pairing has been
determined.

One of the most striking features of Eq. (49) is the quadratic behaviour of �L
as a function of the number of fermions. In addition to the universal linear relation
and the pronounced saturation effect, it also predicts a sudden break-down of the
superconducting state at higher carrier concentrations, the break-down correspond-
ing to 2mDN: Note also that the energy gap 2� is not due to simple pair breaking,
as in the BSC case, but rather to a more complex breakage of coherent sub-clusters
of various sizes [6]. In analogy with the discussion in Appendix 1 it is possible to
compute the gap [6] determining successive cluster break-ups, destroying islands
of various sizes in the precursor [37], until the condensate is destroyed. Original
reflectivity data indicated gaps around

2�

kBTC
	 .6:3 � 9:4/ (42)

where TC is the critical temperature. However, the situation turned out to be more
involved [35–37] and the consensus today is based on a more complex structure,
i.e. a superconducting- and a pseudo gap. Combining the apposite gap parameter
with Eq. (40) normalizing appropriate quantities to carrier- (here holes, p-type) and
virtual particle concentrations per effective mass, it is possible to determine the
maximum critical temperature, T max

C and to obtain the universal relation between
the normalized TC and the hole content x, i.e.

TC

T max
C

D 4.x � x2/ (43)

This feature is reflected by muon-spin-relaxation experiments [39] displaying a uni-
versal linear relation between TC and the muon spin relaxation rate (proportional
to the carriers per effective mass) with increasing carrier doping suggesting also a
saturation effect for each class of superconductors. The latter is further in agreement
with the negative quadratic deviation exhibited in the formulas above.

3.2 Microscopic Mechanisms

It is an interesting fact that the over all features of Cu-O based super-conductors can
be described without evoking an explicit microscopic mechanism. Although there
exists a plethora of different propositions, we will only mention and discuss a few
representative situations. Effectively we will illustrate our point of view by bringing
up the following ones: (i) spontaneous break-up of the superconducting state by
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quantum-thermal correlations [37], (ii) repulsive electronic interactions/correlations
[36], (iii) non-adiabatic molecular electron-vibrational theory [40], and (iv) short-
lived magnetic clusters with domain wall motion [41].

In the first case [37] an attempt was made to extract general physical information
independent from the precise nature of any pair formation mechanism. As a re-
sult the energy gap is not due to simple pair break-up processes, but rather with
a gradual restriction of pair mobility through successive disturbances of the ac-
tual coherence. In this way the superconducting gap, the universal linear relation
as well as current experiments on muon-spin-relaxation, infrared-reflectivity and
uv-photoemission could be rationalized and quantified.

Introducing the interactions between the electrons, via a short-range screened
Coulomb repulsion, adopting an extended Hubbard Hamiltonian [36], one is lead, in
a straightforward way, to an adequate description of the condensate and much of the
essential behavior of these highly correlated materials. Note that the extreme con-
figuration can be derived from statistical arguments [42] similar to the discussions
in Section 2.2. It is furthermore possible to devise an approach, where a fraction of
the electrons are condensed, while the remainder is unpaired. The associated wave
function can all the same be written as a geminal power, accounting for a pair of
Wannier functions, localized on every lattice point at the centre of the unit cell.
The Cu atom is in an almost D4h environment, but small puckerings of the cuprate
layer and external ions lower the symmetry to C4v. Hence localized E-functions in
this group are symmetry adapted combinations of Cu e-orbitals and inplane oxygen
pz-orbitals. Apical oxygen px and py orbitals also have such symmetry and com-
bining all these orbitals yield pairs of E-basis functions on every lattice cell. The
thermal average of the eigenvector of the second order reduced density matrix thus
exhibits a d-wave symmetry, transforming as the B1 irreducible representation of
the C4v group.

The theory [35, 36] accounts for (i) short coherence lengths, (ii) transition
temperature dependences, (iii) unusual heat capacity behavior, (iv) Knight shift tem-
perature dependence. At the same time the two-fluid model accounts for the normal
spin gap although the latter is not essentially related to superconducting pairing.

It is interesting to note that the general theory, advocated here, has intimate rela-
tions with non-adiabatic electron-vibration coupling [40]. Although not mentioned
here, there is a non-stated supposition resting in the definition of the hierarchy of
reduced density matrices. Most applications invoke a parametric dependence on the
inter-nuclear coordinates while a fully reduced electronic density matrix should in-
corporate suitable averages over these, see a recent discussion [43] on this topic.
Leaving the details of this question aside here, we proceed by asking what would
happen if the large eigenvalue in Eq. (35) would emerge corresponding to some
gk , k ¤ 1 (equivalent to assigning a particular predetermined phase to each site).
Since energy supported at the level of the small part of �.2/ does wash out for all
eigenvectors, except the one with all elements equal to 1=

p
m, the resultant energy

gap is still unimportant as �S ! 0 for large m. As a consequence it follows that
the two-body contribution, see Eqs. (30–41) all together vanishes and the one-body
part becomes crucially important for energy stabilization to emerge. This is in a
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sense a restricted one-body effect, since it is dependent on the two-body phase con-
trolled interaction through ODLRO. Nevertheless it is to some extent dependent on
electron transfer rates through non-adiabatic electron-vibration couplings, yielding
gap formation and Jahn–Teller like nuclear arrangements, which are all character-
istics of the same fermionic ground state energy, cf. electron transfer phenomena
related to conical intersections. The present mechanism models accurately the less
pronounced phonon dependence compared to the standard BCS situation.

Finally we want to mention the possibility to link the high-TC phenomenon to the
interplay between quantum correlations and short-lived magnetic clusters [41]. Note
that we are using the more strict definition of a coherent dissipative structure in that
we require the criteria that (a) the correlations are created by quantum and thermal
correlations (T ¤ 0), (b) they exchange energy with an entangled surroundings and
(c) they can not have a size smaller than a critical one, viz. they must intermix
quantum and thermal correlations in accordance with the density matrix formulation
described above. Introducing the key quantity for this integration, i.e. the thermal de
Broglie wave length,

ƒdb D

s
h2

2�MkBT
(44)

where M is the effective mass, to be identified with the “magnetic wall effective
mass” [41]. Combining Eqs. (44) and A(5) with the criteria that our coherent dis-
sipative structure exhibits a spatial dimension, dmin, depending linearly on ƒdb and
the number of degrees of freedom smin D m, for some minimum value of m, i.e.

dmin D F.H/ � smin �ƒdb (45)

where F.H/ depends on the HamiltonianH and on some thermodynamic variables
as well as external parameters [42], one obtains

dmin D

�
32�3

.F /�2M

� 1
2

�
p
kBT � �rel (46)

Eqs. (45–46) can be interpreted either as (a) smin times F multiplied by the correla-
tion length �, where � is the de Broglie wave length based on the effective mass or
(b) as the de Broglie wave length based on the reduced mass M 0 D .smin/

�2Mphen,
whereM 0 D F 2Mphen, giving necessary input for a quantitative analysis. Hence the
underlying magnetic mechanism, based on Eq. (46), leads to consistent estimates
of correlation lengths, effective masses and relaxation times as well as giving good
qualitative figures for the maximum current density limited by the frustrated spins
following the charge carriers [41].

Before finishing this section, we reemphasize that this examination of some of
the possible mechanisms of high-TC superconducting cuprates is not complete in
any sense, for instance one might mention that accurate band theory calculations for
the YBaCuO’s yield consistent results including a d-wave gap function [45]. Instead,
the purpose has been to demonstrate that many different mechanisms, supported by
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the general coherent dissipative picture presented above, promote a very detailed
as well as a qualitative over all picture of high-TC cuprates. It goes without saying
that this picture should be applicable to other systems under similar but also quite
different conditions.

3.3 Coherent Dissipative Structures

We will here discuss briefly coherent dissipative structures in amorphous condensed
systems [6, 29, 42, 46–48]. The first case concerns the evaluation of the rate con-
stants characterizing the processes (ki andEi are the reaction rates and the activation
energies respectively)

H3OC C H2O
k1;E1
 !H2O C H3OC

OH� C H2O
k2;E2
 !H2O C OH�

(47)

This is perhaps the most fundamental process in existence and it plays an important
role in many chemical systems not to mention in the biological organism. For the
pioneering work of Meiboom, using NMR spectroscopic measurements, through
the classic work of Eigen to the detailed analysis of Hertz we refer to previous
discussions [6, 29, 48] and references therein. The motivation compelling Hertz
to reconsider the so-called HC-particle (or the H3OC ion) as a dynamic entity in
aqueous solutions, and not representing a particle in the conventional sense, came
from the classical predictions of the connections between (i) the proton transfer
rates, ki, of the reactions Eq. (47) and the excess conductivities of HC and OH�.
The latter can be defined from the experimentally measured ionic conductances, �X
of the ion X in water, i.e.

�eHC D �HC � �XC

with XC D KC or NaC and

�eOH� D �OH� � �Cl�

From well-known theories by Nernst and Einstein using the standard Arrhenius type
ansatz, the classical relation becomes

�e
HC

�eOH�
D
k1

k2
(48)

and

log
�
�e

HC

�eOH�

	
D C �

E1 �E2

RT
(49)
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where C is a temperature independent constant and R the gas constant. The clas-
sically predicted values, obtained from Eqs. (47–49) above, are k1=k2 	 2:35 at
T D 25ıC andE1�E2 	 �2:0 kJ/mol for T D 15ıC; : : : ; 55ıC. As we will se this
is in complete disagreement with the predictions made from the theory of coherent-
dissipative structures [29] and accurate measurements by means of advanced [1]
H-NMR spin-echo techniques [49].

To prove our point we will employ the thermal de Broglie wave length ƒdb, see
Eq. (44) for the definition, and the size estimate of the coherent-dissipative structure,
Eq. (45). Since ƒdb for a “quasi-free” proton is about 1 Å at room temperatures,
one might find “water protons” within a distance of orderƒdb around each HC. The
coherent-dissipative structure thus consists of HC constituents forming positive ions
indistinguishable from those belonging to the water molecule. The hypothesis, i.e.
the assumption that thermal–quantum correlations between the protons belonging
to the ions and those belonging to the water molecules provide the pair correlated
entities of the system. From this over-all conjecture of quantum correlated pairs of
fermionic entities HC (and similarly for OH�) follows two important predictions.
Assuming similar correlations between the positive and the negative ions one can
derive the following modifications of Eqs. (48–49), i.e. and

�e
HC

�eOH�
D

r
mOH�

mHC

k2

k1
(50)

log
�
�e

HC

�eOH�

	
D C 0 C

E1 �E2

RT
(51)

Comparing with the classical derivation one obtains that k1=k2 	 1:75 at T D 25ıC
and E1 � E2 	 C2:1 kJ=mol (for XC D KC/ for T D 15ıC; : : :; 55ıC. The value
for the difference in activation energies, using XCDNaC, is slightly smaller. All
in all these predictions are in good agreement with the previously quoted experi-
ments that was carried out in the laboratory of H. G. Hertz [49]. In fact the present
theory did promote another prediction [29, 50], viz. an anomalous decrease of HC

conductance in H2O=D2O mixtures pointing at a fundamental quantum statistical
difference between HC and DC entities, i.e. portraying fermionic- versus bosonic
properties.

A closely related phenomenon is the high electric conductivity of molten al-
kali chlorides [47]. Using essentially the same arguments. Defining the molar
conductivity

„XCl D �XC C �Cl�

where XD Li, Na, K, Rb a similar reasoning that lead up to Eq. (45), or equivalently
that a property like the conductance should (in the first approximation) be linearly
dependent on the size on the coherent-dissipative structure, i.e.

„XCl D c � F �
�
ƒdb.XC/Cƒdb.Cl�/

�
�
4�kBT

h̄
� �XCl (52)

�XCl D �XC C �Cl�
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In Eq. (52), �XCl is the relaxation time for each melt, a quantity that goes into
the equation for smin, see Eqs. A(5) and (45), and ƒdb.ion/ is the relevant thermal
de Broglie wave length. Note that the theory assumes that the coefficients c and
F have a general dependence on thermodynamic parameters, but are independent
of the specific melt under consideration. Since the ionic masses appears above ex-
plicitly through the de Broglie wave length ƒdb it is natural to define the scaled
molecular conductivity as

„�XCl D „XCl=
�
.mXC/

�1=2 C .mCl�/
�1=2

�
/ �XCl (53)

It is a striking result that the scaled molecular conductivities, obtained from stan-
dard conductivity and density data, confirm the simple relationship of Eq. (53).
For instance at T D 800ıC, one obtains for the chlorides of Li, Na, K, and Rb:
„�ClD 350 ˙ 3% and at T D 900ıC, „�Cl 398 ˙ 2%. Note that the quoted values
have a variation of about 4%, the same order of magnitude as the experimental ac-
curacy and reading errors for molecular conductivity data, see the original reference
for details [37]. It is interesting to note that the scaled molecular conductivity of
CsCl does not obey the present constancy, a 13% deviation at T D 800ıC and equal
to 22% at T D 900ıC. This rests most likely on the fact that the crystalline phase of
CsCl is bcc in contrast to the other four alkali chlorides that form fcc lattices. One
would expect that the microstructure of the melts, determining the relevant Hamil-
tonian have to influence the factor F in Eq. (52), and hence this should be reflected
in the scaled molecular conductivity data.

In summary: We have, from the theory of coherent-dissipative structures, an-
alyzed long-range correlation effects based on charge fluctuations. Anomalous
features of proton transfer processes in water and aqueous solutions have been
predicted and confirmed by experiments. We have also examined the general micro-
dynamical behavior of Coulombic interactions dominating inter-ionic long-range
correlations in molten salts. One concludes that the relaxation times of the charge
fluctuations, spontaneously appearing around each ion, are independent of the
masses of the ions, indicating that the microscopic relaxation process is intrinsically
connected with the emergence of an irreducible coherent-dissipative structure.

4 Theory of Relativity

A somewhat surprising application of the present formulation comes from the theory
of relativity. We remind the readers of Davydov’s remark, quoted in the introduction,
namely that “we show the inapplicability of the concept of an essentially relativistic
motion of a single particle”. It is nevertheless a well-known fact that the Klein–
Gordon equation can be written formally as a standard self-adjoint secular problem
based on the simple Hamiltonian matrix (in mass units)
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H D

�
m0 p=c

p=c �m0

	

where m0 is the rest-mass, pDm� is the momentum of the particle and c the
velocity of light—note also that the entities above are operators and the velocity
� of the particle(s) is relative a system in rest, wherever the rest masses of the
particles involved are m0 and �m0 respectively. This formulation, generalized to
fermions via the Dirac equation, accounts for most of the very accurate predictions
of microscopic phenomena by relativistic quantum theory with powerful techniques
extended to the general many-body picture [52].

As shown elsewhere [7, 30, 51] an analogous formulation can be made by a com-
plex symmetric ansatz. The latter corresponds to the philosophy of this article, i.e.
of embedding the formulation in a more general framework of (coherent) dissipative
systems and this is also in agreement with the citation made by the man we honor.
This principle permits an important generalization here, since it will simultaneously
allow the introduction of time- and length scales as well as mimic the non-positive
definiteness of the Minkowski metric.

In this section we will briefly review the model, starting with the special theory
of relativity. We will then proceed to discuss the extension to the general theory. The
end result of this endeavour will be to connect with some of the most well known
facts of the laws of special and general relativity, i.e. the contraction of length-
and timescales, Einstein’s law of light deflection in a gravitational field and the
compatibility with the Schwarzschild gauge in the minimal two-component metric.
The conclusions imply that “Einstein laws of relativity” are founded on the quantum
mechanical superposition principle and hence a characteristic quantum effect.

4.1 The Special Theory

With the backing of the present generalized description we will promptly set up a
simple 2 � 2 complex symmetric matrix that (without interaction) displays perfect
symmetry between the states of the particle and its antiparticle image.

H D

�
m �i�

�i� �m

	
(54)

In Eq. (54) the diagonal elements are the energies associated with a particle with
mass m in a state with its wave vector denoted by jmi and the antiparticle state,
assigned a negative energy �m with the state vector j Nmi. The extension to the Dirac
equation is essentially straightforward, but will be left out here [30]. Above, �i�
is the complex symmetric interaction, to be defined below; the minus sign is by
convention. For zero interaction the diagonal elements are ˙m0. Note also that the
vectors jm0i and j Nm0i by choice are orthonormal, while jmi and j Nmi as a rule are
bi-orthogonal.
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Solving the secular equation corresponding to the ansatz (Eq. (54)) we obtain
directly the roots �˙ D ˙m0 from �2 D m2

0 D m2 � �2. Defining the kinematic
perturbation as � D p=c we identify the familiar relation m2c4 D m2

0c
4 C p2c2. In

passing we observe that p D m� , with appropriate modifications for a particle in an
electromagnetic [43] (or other field), is in general an operator, which in its extended
form may not be self-adjoint. Returning to the Klein–Gordon type equation, we
obtain the associated “eigensolutions”

jm0i D c1 jmi C c2 j Nmi I�C D m0I

j Nm0i D �c2 jmi C c1 j Nmi I �� D �m0I

jmi D c1 jm0i � c2 j Nm0i I

j Nmi D c2 jm0i C c1 j Nm0i I
(55)

with

c1 D

r
1CX

2X
I c2 D �i

r
1 �X

2X
I m D

m0

X
I c21 C c

2
2 D 1

X D
p
1 � ˇ2I ˇ D p=mc:

For “classical particles” we recover the familiar ˇ factor (not to be mixed with ab-
solute temperature parameter), e.g. p=mc D �=c. In general we must remember
to keep the order of the entities appearing in the operator secular equation. The
present formulation is somewhat unspecified for simplicity, but the procedure need
to be checked, se below. Since we respect complex symmetry our model admits,
under suitable environmental interactions and/or correlations primary complex res-
onance energies commensurate with rigorous mathematics and precise boundary
conditions, see sections above. Hence we find that

m0c
2 ! m0c

2 � i
�0

2
I �0 D

h̄

�0
I mc2 ! mc2 � i

�

2
I � D

h̄

�
; (56)

where �; � and �0; �0 are the half widths and lifetimes of the state respectively.
Inserting the modifications of Eq. (56) into our complex symmetric secular equation
and separating real and imaginary parts one gets the contractions

�0 D �
p
1 � ˇ2I � D �0

p
1 � ˇ2: (57)

By comparing times in the two scales, enforcing Lorentz-invariance for the length
l , one concludes that

l D
l0p
1 � ˇ2

I t D
t0p
1 � ˇ2

I m D
m0p
1 � ˇ2

: (58)

From this analysis we deduce that the laws of special relativity appears as a sim-
ple consequence of the quantum mechanical superposition principle. Next we will
extend the consideration to gravitational interactions.
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4.2 General Theory

We will first extend the model by including the scalar gravitational interaction by
augmenting the present development in the basis jm; Nmi:

H D

�
m.1 � �.r// �i�

�i� �m.1 � �.r//

	

�2 D m2.1 � �.r//2 � p2=c2I � D m0.1 � �.r//I � D p=c

(59)

with
�.r/ D =r I  D

G �M

c2

Here is the gravitational radius,G the gravitational constant,M a “classical mass”
(which does not change sign whenm! �m/ and � D p=c as before. Also �.r/ � 0
depends on the coordinate r of the particle m, with origin at the center of mass of
M . The coordinate r (and t ) refers to a flat Euclidean space and the emerging scales
define the curved space-time. Eq. (59) leads to the eigenvalues �˙

m2
0 D m

2 � p2=.1 � �.r//2c2I (60)

�˙=.1 � �.r// D ˙m0 D ˙
p
m2 � p2=.1 � �.r//2c2

m D m0=
p
1 � ˇ02I ˇ0 � 1I 1 > �.r/I ˇ0 D p=mc.1 � �.r// D �=c.1 � �.r//:

(61)

Utilizing the simple fact (in this model) that the angular momentum, m�r , for a
particle under the influence of a central force is a constant of motion we obtain
(here m D Omop has the eigenvalue m0) the relation

m0�r D m0cI � D �.r/c D c=r: (62)

where the constant have been evaluated at the limiting velocity c and the limiting
distance, the gravitational radius. It follows, for a particle with a non-zero restmass,
that a degeneracy (Jordan block) occurs at the Schwarzschild radius, r D RLS ,
provided the mass M is entirely localized inside the sphere, i.e.

1

2
m D m�=c D m�.r/I r D RLS D 2 (610)

Here we need to distinguish two cases (in addition to m0 D 0) in approaching the
singularity:

1. Either m ! 1 adiabatically (or on-adiabatically from e.g. an electro-magnetic
fluctuation) with m0 finite

2. m is finite with m0 ! 0 adiabatically (or non-adiabatically).
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For instance in the limit of a finite m one obtains from Eq. (59) at r D RLS

H deg D
1

2

�
m �im

�im �m

	
! H deg D

�
0 m

0 0

	

j0i D
1
p
2
jmi � i

1
p
2
j Nmi

ˇ̌
N0
˛
D

1
p
2
jmi C i

1
p
2
j Nmi

(62)

explicitly displaying a Jordan block singularity at the Schwarzschild radius.
Thus, as a first conclusion, we have established that the present scalar model

specify that a quantum particle will occupy one of two possible states. The iden-
tification of these states occurs through the interaction � and the emergence of the
length and timescale contractions. For zero rest-mass particles we further find, using
�0 D m0 D 0 and the requirement that our equations should be consistent with the
singularity, at r D RLS, that

m2c4.1 � �0.r//
2 D p2c2 (63)

�0.r/ D
2GM

c2r
D 2�.r/

Relation (63) means that zero rest-mass particles like, e.g. photons obey the law
commensurate with the effect of light deflection in a gravitational field.

As a final point we will indicate through a non-scalar description that Eq. (63) is
compatible with the Jebsen–Birkoff stationary, spherically symmetric solution [53].
We will set up and generalize the following familiar formalism

hr j pi D .2�h̄/�3=2ei=h̄Qr�p (64)

where

r D

0
@
x

y

z

1
A I p D

0
@
px
py
pz

1
A

to four dimensions obtaining

r;�ict

ˇ̌
ˇ̌p; iE

c

�
D .2�h̄/�2ei=h̄.Nr�p�Et/

or
hx� j …i D .2�h̄/�2ei=h̄.Qx�…/ (65)

with the apparent definition

x D

0
BB@
x

y

z
ict

1
CCA I … D

0
BB@
px
py
py
iE=c

1
CCA (66)
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Note the complex conjugate in the bra-position, invoked to guarantee complex
symmetric constructions. Rewriting our equations, displaying usual operator
identifications

Ep D �i h̄rIE D i h̄
@

@t
I E… D �i h̄

�
r; i=c

@

@t

	

we obtain next the operator secular equation (identity operator suppressed)

�2 D .E2 � p2c2/ D �c2 E… � E… D �c2 Q… �… D �c2…2 D m2
0c
4 (67)

This relation can be utilized to define the restmass, i.e. from

…2 D �h̄2
�
� �

1

c2
@2

@t2

	

and ˝
x�
ˇ̌
�…2

ˇ̌
…i D m2

0c
2 hx� j …i (68)

From Eqs. (59–61) follows the relation

m D
m0.1 � �.r//p
1 � 2�.r/

D
�0p

1 � 2�.r/
(69)

where �0 is the positive (real part) eigenvalue of the secular equation of the matrix

m

�
.1 � i�.r// �.r/

�.r/ �.1 � i�.r//

	
(70)

Since the eigenvalues of the matrix above may be non-real in our complex symmet-
ric setting, i.e.

m D mr � i�I�0 D �r � i�0 (71)

we find by projecting out the real and imaginary parts of Eqs. (70–71) that

� D �0
p
1 � 2�.r/I� D

h̄

�
I�0 D

h̄

�0

or for differential “times”

d�2 D d�20 .1 � 2�.r// (72)

Eqs. (59) and (72) implies that we can introduce the gravitational interaction as
follows in the present case of m0 ! 0 (static, spherically symmetric case), i.e.
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…2 ! …2
grav D

�
1 �

2Gm

c2r

	�1
p2r �

�
1 �

2Gm

c2r

	
E2

c2
(73)

or in its appropriate symmetrized forms

…2 ! …2
grav D

�
1 �

2Gm

c2r

	�1=2
p2r

�
1 �

2Gm

c2r

	�1=2

�

�
1 �

2Gm

c2r

	1=2
E2

c2

�
1 �

2Gm

c2r

	1=2
(730)

and/or

…2 ! …2
grav D pr

�
1 �

2Gm

c2r

	�1
pr �

E

c

�
1 �

2Gm

c2r

	
E

c
(7300)

Eqs. (73) correspond to a change of the coordinate-, and recipocal coordinate sys-
tem: x0 D ’�1x, …0 D ’…, where ’ is a 4 � 4 similarity transformation, but here
restricted to two dimensions in the basis (r, ict) and (pr ; iE=c) with corresponding
modifications in Eqs. (65–68)

’ D

0
BB@

�
1 �

2Gm

c2r

	�1=2
0

0

�
1 �

2Gm

c2r

	1=2

1
CCA (74)

Rather than using the traditional covariant formalism, we have conformed to the
present complex symmetric picture using simple matrix algebra [4] to analyze the
consequences of the transformations. From Eqs. (73) follow directly

˝
.r; ict/�

ˇ̌
…2
ˇ̌
pr ; iE=c

˛
!
˝
.r 0; ict0/�

ˇ̌
…02

ˇ̌
p0r ; iE

0=c
˛
DD

.r 0; ict0/�
ˇ̌
ˇ…2

grav

ˇ̌
ˇp0r ; iE0=c

E
D
D
.r; ict/�

ˇ̌
ˇ…2

grav

ˇ̌
ˇpr ; iE=c

E

Hence the coordinate transformation ˛, which in general should be commensurate
with the appropriate boundary conditions for the quantum system under study, ap-
pears in the present formulation in such a way that the surrounding gravitational field
develops as an effect of the geometry characterizing the source of the interaction.
In addition, it follows directly from Eqs. (63) and (72–74), that we have established
the sought after compatibility with the Schwarzschild metric in the spherically sym-
metric, static vacuum.

5 Concluding Remarks

We will begin the conclusions with some specific conjectures regarding processes
within the biological domain. Since the theoretical development centers around
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the transformation matrix B, see Eq. (18) and Appendix 2, we will consider its
properties further. One notice directly that it lends itself to an interesting factor-
structure, cf. also discussions in connection with Mellin transform in Section 2.2.
The factoring property implies that certain groups of sites will act coherently and/or
strongly correlated [5, 6, 22, 54]. A simple example will explicitly display what we
mean, below [55].

Let us briefly introduce the following notation for the cyclic structure shown in
B: Denoting the simple column .!�; !�3; !�5; : : : ; !�2n�1/�, for any arbitrary n,
with the symbol .n/� where n � m, it is easy to see how the structure of the general
matrix will develop. After the trivial organization of the first two rows, the next one
will be partitioned into two, if m is even. In general m will be partitioned into the
factors of m in ascending order. For instance choosing m D 12 we can write for
p
12 B the symbolic form

.1/

.1/

.1/

.1/

.1/
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(75)

For more details on the symmetries involving both rows and columns, we refer to
a recent study [55]. One might e.g. speculate what would be the consequences for
the appearance of a large prime number mDp. This means that no partitions will
emerge in Eq. (75). Whether this irreducibility infers any physico-biological signifi-
cance would of course be an interesting possibility. The present structure, interpreted
within our coherent-dissipative ensemble, would further suggest possible interpreta-
tions in the biological field, e.g. proton correlations in DNA, the origin of the screw
like symmetry of the double helix and possible long-term correlations of the small-
est microscopic self-organizing units co-operating in vivo systems [54]. To examine
the latter, we will rely on the following pair entropy

S
.2/
pair D kB

ln .N � 1/
N � 1

(76)

referring to the weight of physical pairs in all possible pairings of N fermionic
particles. It is well-known that a double helix of identical C � G base pairs, e.g.
Cytosine and Guanine forms a left-handed screw with a 30 ı angle between two
consecutive “stairs” forming a full rotation in 12 base-pair units. As the base pairs
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are held together via H-bond patterns of the Watson Crick type exhibiting a specific
phase stability we will conceive of a simple quantum correlated model of tunneling
protons. The smallest case corresponds to N D 4. It follows that the number of
pairings and the relevant probability are

r D

�
N

2

	
D

�
4

2

	
D 6I �.1/ D

N

2r
D
1

3
(77)

where �.1/ D p, see Eq. (16) is the probability of finding a proton pair in a particular
correlated state. The entropy (Eq. 76)) for the (N D 4) pairing system is hence
given by

S
.2/
pair D �kB

1

3
ln
�
1

3

	
(78)

noting that every unit, see Eq. (75), is in contact with an environment of other similar
or identical units. This result is consistent with m D 6, which implies that we need
six correlated pairs (or base pairs) to “get around” 180ı in the vector space. Hence
12 pairs would be needed for a full rotation but since we “do not return” to the
origin here we have instead a pseudo-cyclic “screw-like” symmetry reflected in Eq.
(18), i.e. the appropriate column of Eq. (75). Note further that the Gibb’s partition
of the micro entropy above is not maximum for a near equilibrium situation. This
follows from the fact that the function �x ln xI 0 � x � 1, has a maximum for
x D 1=e. Assuming that our correlation model in a more realistic dissipative system
of varying occurrence of base pairs would “prefer” a “close to equilibrium” entropy,
we find that a recalculation of our parameters above yields the result

N � 1! eI r D

�
N

2

	
!

�
e C 1

2

	
	 5:05

indicating a less orderly double helix with about 10–11 base pairs in a full turn as
well as a possible change in directions of the screw. One might further imagine that
a coherent situation linking together very many units would cause a sudden drop in
the pair entropy, corresponding to a large N in Eq. (76), resulting in macroscopic
selforganization of all participating base pairs, thereby extending the characteristic
lifetime for the relevant units of protonic pairs.

As a final conclusion we propose that the general characteristics of the present
extended theoretical picture, and supported from the illustrative study cases given
here, are generic manifestations of thermally activated quantum correlations of a
coherent-dissipative structure. We have shown that a small but crucial extension of
standard quantum mechanics leads to a formulation that allows for general bro-
ken symmetry solutions, yet have conventional quantum mechanics embedded.
The complex symmetric framework provides a natural approach to Hamiltonian
and Liouvillian isometric and contractive evolution and a consistent organization
of energy superoperator thermalization based on the Bloch equation. The over-all
description is not explicitly dependent or susceptible to precise physico-chemical
mechanisms as the latter can be successively employed separately to derive qualita-
tive conclusions and quantitative data.
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Not only do we have a general organization of coherent-dissipative structures ef-
fectively representing quantum correlation effects in condensed and soft condensed
matter, but we have also, as a result of the present account, portrayed Einstein’s
laws of relativity as a quantum effect. Notwithstanding this statement, one should
be aware of the remarkable fact that the current formulation of gravitational in-
teractions is essentially “classical” outside the domain boundary characterized by
the Schwarzschild radius. Yet the laws of relativity derive here from the quantum
mechanical superposition principle. Except from the occurrence of a general Jordan
block singularity, the equations appear mostly to be of classical-orthodox character.
Note, however, that a theoretical structure exists inside the singularity, a situation,
which has not been satisfactorily determined by all classical theories. The present
black-hole-like configuration develops via the degeneracy condition, see Eqs.
(610–63), acceding the latter interactions, or correlations, to condense or unify
[7, 30] according to Yang’s ODLRO [25]. In a sense “the law of the opposite,
negation and transformation” has here been repeatedly applied in harmony with the
statement Alexander S. Davydov.

6 Appendices

6.1 Quantum Diffusion and Thermal Scattering

Here we will examine particular aspects of a process that we have named thermally
induced quantum diffusion using the language of standard scattering theory. The
outcome leads directly to the derivation of the formula used in Section 2.3. The
precursor is the following thermal scattering model.

Consider m degrees of freedom (they could be bosonic or paired fermionic, the
quantum statistical analysis can be carried out separately) and assume that they are
correlated on a relaxation timescale given by �rel. The latter corresponds to the aver-
age lifetime of the building blocks of the system, and depends in general on the type
of particles or properties of the localized units being represented, cf. the Einstein
relation which combines transport displacements with the diffusion constant D. To
complete the picture we will define an area or region of the correlations, correspond-
ing to a spherically averaged total scattering cross section denoted by �tot. This area
should be consistent with the physical parameters of the model so that on average we
will detect one particle or degree of freedom in the differential solid-angle element
d� during the limit timescale �lim given by Heisenberg’s uncertainty relation, i.e.

�lim D
h̄

kT
(A1)

Here as usual kB is Boltzmann’s constant and T the absolute temperature. We
restress that our goal is not to determine cross section data or evaluating life-
times, reaction rates etc. Instead our aim is to find consistent relations between
temperatures, the size of the dissipative structure, various lifetimes, reaction rates
etc. and to use this information as input to our quantum statistical equations.
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With the ingredients introduced above it is a simple matter to set up the con-
sistency relations between incident and scattered fluxes. The incident flux, Ninc of
number of particles=degrees of freedom per unit area and time is

Ninc D
m

� tot�rel
(A2)

Since the number, Nsd� of particles scattered into d� per unit time is

Nsd� D
d�

�lim
D
kBT

h̄
d� (A3)

we obtain straightforwardly

�tot D

Z
�.�/d� D

Z
Ns

Ninc
d� (A4)

From which we obtain the first relation between our experimental parameters

m D
4�kBT

h̄
�rel (A5)

The relation (A5) (note that �tot cancels out in Eq. (A4)) tells us that the number m
of the model’s correlated degrees of freedom depends uniquely on the temperature
and the relaxation time.

The next step is to use this information as input to the thermalization formula of
Section 2.3, i.e. we want to study the behavior of the matrix element O�kl D jhki

˝
h�l

ˇ̌
which yields, (the degenerate energy value is set to zero)

e�
ˇ
2 H2 O�kle

�
ˇ
2 H2 D ei

ˇ
2 ."kC"l / O�kl (A6)

Recognizing the temperature dependence from our oscillating building blocks of
our dissipative system we make the simplifying assumption that we can organize
the excitation spectrum of the collective cluster of particles=degrees of freedom
harmonically, i.e. with the distance between the levels being h̄��1rel (except the zero
point vibration). Hence the (l � 1)th level is characterized by the angular frequency
��1l which is uniquely determined by the harmonic spectrum. Hence it follows that
�rel D .l � 1/�l I l D 2; 3; : : : m, with �1 D 1I l D 1, corresponding to the zero
reference energy. From this follows

1

2
ˇ."k C "l / D

h̄

4kBT �rel

�
1

�k
�
1

�l

�
D

h̄

4kBT �rel
fk C l � 2g D

�

m
.k C l � 2/

(A7)
where we have used Eq. (A5) in the last equality above. Together with Eq. (A6) we
have the result needed in Section 2.3.
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6.2 The Complex Symmetric Jordan Form

To make this review self-contained we will make a straightforward proof estab-
lishing a complex symmetric representation of the classical canonical Jordan form.
We will assume that the reader is familiar with standard linear algebra theories
and understand why the present complex symmetric representation of a non-normal
operator cannot be diagonal, see e.g. Löwdin [4] for a very clear account of the nec-
essary background knowledge. For simplicity we will not discuss the fundamental
theories behind the construction [21] or prove the more general formula for the var-
ious powers of the nilpotent operator [22]. The latter follows along the same lines,
but would make the appendix unnecessary convoluted.
We will hence show by a straight forward computation, n > 1 that

Qn D Bn
�1J nBn (A8)

where

ŒQn�ik D !
.iCk�2/.ıik �

1

n
/I! D e

i�
n I ŒJ n�ik D ıiC1;k I ŒB�ik D !

.2i�1/.k�1/

Note that the indices i and k runs from 1 to n and that there will be no problems
if an index should become larger than n; since the corresponding matrix element
will be zero anyway not contributing to the summations in the proof. Because
J nnD 0IJ

n�1
n ¤ 0 its Segrè characteristic is n:

Since det .Bn/ ¤ 0 (note the slight difference betweenBn and the unitary trans-
formation matrix in Eq. (18)) we can define the inverse as

˛ D B�1n D
1

n
B�
n (A9)

Direct evaluation of the right hand side of Eq. (A8) gives

ŒQn�ik D

n�1X
jD1

nX
lD1

˛ij ŒJn�jk !
.2l�1/.k�1/ D

n�1X
jD1

˛ij !
.2jC1/.k�1/

D

8<
:
n�1X
jD1

˛ij !
.2j�1/.k�1/

9=
;!

2.k�1/

The last expression can be simplified by the use of Eq. (A9) not forgetting to subtract
the missing term corresponding to j D n above. The result yields

ŒQn�ik D !
2.k�1/

˚
ıik � ˛in!

.2n�1/.k�1/


D !2.k�1/

�
ıik �

1

n
!i�k

�
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In the last expression above we have used Eq. (A9) and the fact that !2n D 1.
Furthermore since trivially ıik D ıik!i�k the proof follows, i.e.

ŒQn�ik D !
2.k�1/

�
ıik!

i�k �
1

n
!i�k

�
D !.kCi�2/

�
ıik �

1

n

�

Analogously one can prove the more general formula

�
Qr
n

�
kl
D !r.kCl�2/Œıkl �

�
Rr
n

�
kl
�I k; l D 1; 2; : : : m (A10)

�
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�
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D

8<
:

1
m

sin
�
�r.l�k/

m

�

sin
�
�.l�k/
m

� k ¤ l
r
m

k D l

(A11)

using the same strategy.

6.3 Microscopic Self-Organization

One of the many surprising consequences of the extended quantum formulation, de-
veloped above, is the appearance of Jordan blocks and its physical consequences. As
mentioned earlier, these structures may appear directly in the Hamiltonian [5–7, 30],
see also scattering matrix formulations based on the Gelfand triple [56], or in the Li-
ouvillian [5, 6]. It is a complicated matter to analyze the effects of complex scaling
on the time evolution, since the sought after contractive semigroup properties of the
dilated propagator cannot be rigorously proven for, e.g. the Coulomb potential [57].
In the latter case one needs to remove the subspace associated with the bound states,
and in general, the space and the Hamiltonian have to be carefully chosen such that
the dilatation operator is able to convert isometric evolution of unscaled wave func-
tions to contractive evolution of scaled ones [56]. To integrate the case of Jordan
blocks into the picture we need specifically to look at the consequences of the asso-
ciated evolution, restricted to the subspace of degenerate eigenvectors [57].

To simplify things we will formalize the description in two ways. First, it is
necessary to work in a retarded-advanced formulation, i.e. we define the propagator
and resolvent as

G˙.t/ D �i
.˙t /e�iLt

G.z/ D .zI � L/�1 (A12)

where 
.x/ D 1; x � 0 and 
.x/ D 0; x < 0. It is assumed that we have a
well-defined mathematical structure allowing analytic continuation across the real
axis into the complex plane. Although the extension of complex scaling to the Li-
ouville case is not trivial [26], the analytical structure is here essentially the same
whether the operator, or generator of the evolution, L, is the Hamiltonian, evolving



Complex Symmetry, Jordan Blocks and Microscopic Self-organization 83

wave functions, or the Liouvillian, evolving density matrices (h̄ is suppressed for
simplicity). With this in mind we can write down the connecting Fourier–Laplace
transforms, i.e.

G˙.t/ D 1

2�

Z

C˙

G.z/e�izt d z (A13)

G.z/ D
Z

C˙

G˙.t/eizt d z (A14)

where the contour C˙ runs in the upper (C) and the lower (�) complex half plane
respectively, from �1 toC1. With the initial condition and the retarded-advanced
evolution one gets with �.t/ D �0; t D 0; �˙.t/ D ˙iG˙.t/�0, the inhomogeneous
equations �

i
@

@t
� L

	
G˙.t/ D ı.t/ (A15)

and
�˙.z/ D ˙iG.z/�0 (A16)

In Eq. (16) the C sign indicates that t > 0 and z is in the upper half plane while
the – sign indicates that t < 0 and z is in the lower half plane.

The second formalization will be introduced by examining the case of an emerg-
ing Jordan block of order m in the Hamilton/Liouvillian formulation. By way of
choice we will directly work with frequencies and timescales [6, 54] instead of
complex energy differences. Thus we define (t > 0, z in the upper half plane—note
no appearance of Planck’s constant)

P D .!0� � i/I C J (A17)

and
G.t/ D e�iP t

� I G.z/ D .!� I � P/�1 (A18)

Here !0 ¤ 0 is the resonance frequency, � the finite lifetime of the state and m the
degeneracy, here also the Segrè characteristic. In principle there is no problem to
take the limits � ! 1 and !0 ! 0. In order to derive an evolution law from Eqs.
(A17) and (A18) we expand the propagator

e�iP t=� D e�i!0t e�t=�
m�1X
kD0

�
�i t

£

	k
1

kŠ
J .k/ (A19)

and its Fourier–Laplace transform, or the associated resolvent

.!� I � P/�1 D
mX
kD1

..! � !0/� C i/
�k J .k�1/ (A20)
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From Eqs. (A17–A20) one deduces that the evolution of a coherent-dissipative
system generated by

T D P=� (A21)

no longer follows the standard exponential decay law, cf. radioactive decay and the
arguments that identify such behavior under some relevant time intervals [5]. In-
stead, the exponential above is multiplied by a polynomial leading to a modified
principle (in the limit of an infinite dimensional Jordan block one might consider
more general evolution laws). The Fourier–Laplace transform, (Eq. (A20)), con-
tains, as a result multiple poles, which result in general spectral gain–loss functions
that go beyond the simple Lorentzian (or distorted Lorentzian) shapes. It is straight-
forward to see the effect of the shift operator J. Borrowing some data from our
m-dimensional problem defined in Section 2.2, we obtain

P=� D .Eo=h̄ � i=�/I C .1=�/J (A22)

where � D h̄=kBT , is the average thermal lifetime, and Eo is the real part of the
degenerate energy (set to zero previously for simplicity). To discuss the modified
decay law we start by

N.t/ D jh'0 j'.t/ij
2 D e�

t
� (A23)

where
'.t/ D e�i!0t e�t=�'0 (A24)

obtaining as usual

dN D �
1

�
N.t/dt (A25)

In the degenerate case with fk.t/ D e�i!0t e�t=�fk , one gets for the r th power of t
(note that only f1 is an eigenfunction, while the others complete the root manifold)

N.t/ /
ˇ̌
hf1jJ .r/ jfrC1i

ˇ̌2 � t
�

	r
1

rŠ
e�

t
� D

�
t

�

	r
1

rŠ
e�

t
� (A26)

where

J .r/ D

m�rX
kD1

jfki hfkCr j

For the highest power m�1 we obtain from Eq. (A26)

dN D tm�2
�
m � 1 �

t

�

	
N.t/dt (A27)

and the new microscopic law of evolution

dN.t/ > 0I t < .m � 1/� (A28)
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This relation is consistent with the results of Section 2.3 and Appendix 1, i.e. iden-
tifying � with �lim and .m � 1/� with �rel.

Hence we have proved that Jordan blocks appearing in the generator of the
coherent-dissipative dynamical system yields a non-decaying evolution law that
suggests microscopic self-organization. Furthermore this evolution is consistent
with generic timescales obtained from the thermalized Bloch equation subject to
a degenerate density operator exhibiting a canonical Jordan form with a Segrè char-
acteristic, m, of the same order as the one generating the dynamics.
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13. M. Hehenberger, H. V. McIntosh and E. Brändas, Weyl’s Theory Applied to the Stark Effect in

the Hydrogen Atom, Phys. Rev. A10, 1494–1506 (1974).
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19. P. O. Löwdin, Scaling Problem, Virial Theorem, and Connected Relations in Quantum
Mechanics, J. Mol. Spectrosc. 3, 46–66 (1959).
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22. E. Brändas, Resonances and Dilatation Analyticity in Liouville Space, Adv. Chem. Phys. 99,
211–244 (1997).

23. F. R. Gantmacher, The Theory of Matrices (Chelsea, New York, Vols. I, II, 1959).
24. A. J. Coleman and V. I. Yukalov, Reduced Density Matrices: Coulson’s Challenge, Lecture

Notes in Chemistry (Springer-Verlag, Berlin, 72, 2000).
25. C. N. Yang, Concept of Off-Diagonal Long-Range Order and the Quantum Phases of Liquid

He and of Superconductors, Rev. Mod. Phys. 34, 694–704 (1962).
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ter. IV: Conductivities of Molten Alkali Chlorides—A Novel Relation, Ber. Bunsenges. Phys.
Chem. 93, 1065–1069 (1989).

48. C. A. Chatzidimitriou-Dreismann, Complex Scaling and Dynamical Processes in Amorphous
Condensed Matter, Adv. Chem. Phys. 80, 201–314 (1991).

49. R. Pfeifer and H. G. Hertz, Activation Energies of the Proton-Exchange Reactions in Wa-
ter Measured with the 1H-NMR Spin-Echo Technique, Ber. Bunsenges. Phys. Chem. 94,
1349–1353 (1990).
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54. E. J. Brändas, Dissipative Systems and Microscopic Selforganization, Adv. Quant. Chem. 41,

121–138 (2002).
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Directed Transport of the Davydov Solitons
by Unbiased a.c. Forces

L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, and W.J. Zakrzewski

Abstract We show that in asymmetric molecular chains a periodic unbiased field
causes a drift of the Davydov solitons. This directed current, known as ratchet
phenomenon, has a threshold with respect to the intensity and the frequency of the
field. In spatially symmetric chains a harmonic periodic electric field generates os-
cillations of solitons but does not result in their directed drift. Such a drift current can
be induced in symmetric chains by a time periodic asymmetric external field. This
complex dynamics of solitons is generated by the interplay between the Peierls–
Nabarro barrier, external field and dissipative effects in the chain. The dependence
of the amplitude of soliton oscillations and the velocity of the drift are shown to
depend on the intensity of the field, its frequency and the coefficient of the energy
dissipation.

Keywords Ratchet effect � Polaron � Solitons � Peierls–Nabarro potential � Field
driven current

1 Introduction

The phenomenon of directed transport of charge carriers induced by alternating un-
biased (zero mean) forces in various systems has been attracting a great deal of
attention. This phenomenon is known also as the ratchet phenomenon [1]. Study
of this effect is promising for technical applications in nanotechnologies, including
molecular motors, and is important for understanding the functioning of biologi-
cal motors. The conditions for the ratchet behaviour are now well understood and
some interesting theoretical ratchet models have also been proposed. Moreover, a
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relatively large variety of experimental realizations is also available (see, e.g., re-
view [1] and references therein). In particular, semiconducting heterostructures,
such as diode (n, p)-junctions, semiconductor superlattices, Josephson junction
arrays, SQUID ratchets, quantum dot arrays with broken spatial symmetry have
been engineered and shown to possess ratchet properties.

Here we demonstrate that electron self-trapped states in quasi-one-dimensional
molecular systems also exhibit the ratchet behaviour. Such self-trapped states, gen-
erally called polarons (in one-dimensional systems also known as the Davydov
solitons) are localized states of electrons formed due to the electron-phonon in-
teraction [2–5]. Their properties have been studied in great detail both theoretically
and experimentally. The class of low-dimensional molecular systems in which po-
larons exist, includes quasi-1D organic and inorganic compounds (like conducting
platinum chain compounds), conducting polymers (e.g., polyacetylene [3], polypyr-
role [6], polythiophene [7]), biological macromolecules (˛-helical proteins [2],
DNA [8]) etc.

It is known that the necessary conditions for the ratchet effect under the action of
stochastic or deterministic external forces, both in classical and quantum systems,
involve the energy dissipation in the system and the breaking of spatial and/or tem-
poral symmetries [1, 9]. The mechanism for the appearance of the directed motion
caused by the zero-mean force, has been established for particles moving in a spa-
tially periodic ratchet potential, and has been extended to soliton ratchets [10–13].
Some of the necessary requirements for the ratchet effect are naturally intrinsic to
solitons in molecular systems. Energy dissipation in molecular systems is always
present due to the interaction of the atoms with the many degrees of freedom of
the surrounding medium which can be considered as a thermal bath. In molecular
chains the spatial symmetry can be broken because of the complex structure of the
elementary cell. The temporal symmetry can be broken by applying an asymmet-
ric periodic force, e.g. by an appropriate biharmonic driver. This suggests that we
should expect the ratchet phenomenon for the Davydov solitons to occur in complex
molecular chains. Indeed, our numerical studies [14] have confirmed the existence
of the drift of such solitons in an asymmetric diatomic chain under the action of un-
biased periodic force. In molecular chains, due to their discreteness, solitons move in
a Peierls–Nabarro potential which is periodic with a period equal to the lattice con-
stant [15], and which plays the role of the ratchet potential. The presence of the
Peierls–Nabarro potential plays an essential role in the ratchet behaviour of solitons
in discrete systems [12, 13].

2 Hamiltonian and Equations

To demonstrate the existence of the ratchet effect for solitons we have performed
numerical simulations of the polaron dynamics in asymmetric molecular chains in
the presence of an external periodic unbiased electromagnetic field [14]. Thus we
have considered a diatomic molecular chain that contains two different atoms or
groups of atoms in a unit cell, periodically arranged along the chain axis at their
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equilibrium positions, z0n;1 D na; z0n;2 D na C b, where a is the lattice constant
and b is the distance between the two atoms in a unit cell. The total Hamiltonian of
a molecular chain in an external field is represented by the following sum of terms:

H D H0 C Hint ; H0 D He C Hph C He�ph: (1)

Here the Hamiltonian H0 describes the electrons in a molecular chain interacting
with the lattice vibrations. In the approximation of the nearest-neighbour hopping
interaction, in the site representation, He is given by the expression

He D
X
n

h
E1 a

�
n;1an;1 CE2 a

�
n;2an;2 � Js.a

�
n;1an;2 C a

�
n;2an;1/

�Jl.a
�
n;1an�1;2 C a

�
n�1;2an;1/

i
; (2)

where a�n;j .an; j / are creation (annihilation) operators of an electron on the site
.n; j /I Ej is the on-site electron energy which takes into account the presence of
the neighbouring atoms. Furthermore, Js and Jl are the energies of the hopping
interactions with the nearest neighbours from the same unit cell and from the neigh-
bouring cell, respectively. In our work we have studied only one extra electron in
the chain, and therefore, we omit the electron spin index. The Hamiltonian of the
lattice vibrations, Hph, in the harmonic approximation and in the approximation of
the nearest-neighbour interaction, is given by

Hph D
1

2

X
n

"
P 2
n;1

M1

C
P 2
n;2

M2

C ws.un;1 � un;2/2 C wl .un;1 � un�1;2/2
#
; (3)

where M1 and M2 are masses of atoms, and un;j are the longitudinal displacements
of these atoms from their equilibrium positions. Also, zn;j D z0n;j C un;j I pn;j
are the momenta, canonically conjugate to un;j I ws and wl are the elasticity con-
stants describing the strengths of the interactions between, respectively, the nearest-
neighbour atoms belonging to one unit cell and to the neighbouring cells.

The electron–phonon interaction originates from the fact that the hopping in-
teractions coefficients Js and Jl , of the site energy Ej depend on the interatomic
separation. Taking into account such a dependence of only the site energy, we obtain
the electron–phonon interaction Hamiltonian, Hint, which, in the linear approxima-
tion with respect to the lattice displacements, takes the form:

He�ph D
X
n

�
a
�
n;1an;1 Œ�1.un;1 � un�1;2/ � �s.un;1 � un;2/�

Ca
�
n;2an;2 Œ�1.unC1;1 � un;2/ � �s.un;1 � un;2/�

�
: (4)
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Here ¦s and ¦l are the coefficients of the electron–phonon interaction between near-
est neighbours. Finally, the Hamiltonian of the interaction with the external electric
field E.t/ is given by:

Hint D �eE.t/
X
n

�
.na � z0/a

�
n;1an;1 C .naC b � z0/a

�
n;2an;2

�
: (5)

In the absence of an external field the Fröhlich Hamiltonian (Eq. (1)) describes the
states of electrons interacting with lattice vibrations. Self-trapped states of electrons
in such systems are usually described in the adiabatic approximation which is equiv-
alent to the semiclassical consideration in which the vibrational subsystem is treated
as a classical one. In this approximation the wave function of the system is repre-
sented in a multiplicative Born–Oppenheimer form

j i D U j ei; (6)

where U is the unitary operator of the coherent atom displacements induced by the
presence of quasiparticles, described by the vector state j ei. In the case of one
extra electron in the chain its state is described by

j ei D
X
n;j

‰n;j a
�
n;j j0i: (7)

Here j0i is the corresponding vacuum state and  n;j is the quasiparticle wave
function in the site representation, which satisfies the normalization condition
h ej ei D 1.

Considering h jH j i as the Hamiltonian functional of the quasiparticle wave-
function and of the lattice variables, we obtain a system of nonlinear equations
which describe the interaction between the quasiparticle and phonon subsystems.
For numerical studies it is convenient to use dimensionless time measured in units
of h̄= J , energy measured in units of J , displacements measured in the length unit
l D h̄

p
2=JM, and to express all parameters in the dimensionless units using the

following relations:

M1;2 D
1

2
M.1˙m/;ws;l D

1

2
W.1˙w/; Js;l D

1

2
J.1˙d/; �s;l D

1

2
X.1˙x/; (8)

or, respectively:

m D
M1 �M2

M
;w D

ws � wl
W

; d D
Js � Jl

J
; x D

�s � �l

X
;X D �s C �l : (9)

In these units the dynamic equations for the electron and lattice functions,  n;j , and
un;j , respectively, in the presence of an external electric field E.t/, take the form:
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(10)

Here the intensity of the electric field E.t/ is measured in units ea=J and we have
defined:

G D
Xl

2J
; C D

h̄2W

MJ 2
; D D

E2 �E1

J
(11)

Moreover we have also introduced into the equations for the atom displacements a
damping force, which is described by the terms proportional to � in Eq. (10). This
force describes the interaction between the atoms and the thermal bath that generates
the dissipation of the energy. In all our simulations we have taken � D 0:2, unless
indicated differently.

3 Dynamics of Solitons in the a.c. Unbiased Field

To study the polaron dynamics, we have first derived the stationary solutions of
Eq. (10) in the absence of an external field, i.e., by setting E.t/ D 0. For our nu-
merical simulations we have assumed free boundary conditions. For properly chosen
values of the system parameters, when the polaron size is not too small, Eq. (10) can
be studied analytically in the continuum (long-wave) approximation (see, e.g., [2]).
In this case one can show that Eq. (10) can be reduced to the Schrödinger equation
for the electron wave function in the self-consistent deformation potential. This po-
tential is proportional to the electron probability at a given place and time so that the
Schrödinger equation contains a cubic nonlinearity and is known as the nonlinear
Schrödinger equation (NLSE). In the leading order approximation the NLSE has the
soliton solution.

 n;j .t/ D

r
.1 � P /�a

4

exp.�iEt=h̄/
cosh �.zn;j �R/

; (12)



94 L.S. Brizhik et al.

where zn;j are the atom positions along the chain and E and R are the eigenenergy
and the c.m. coordinate of the soliton, respectively. The coefficient P in Eq. (12)
is the weight coefficient determined by the contribution of the energy sublevels of
the upper electron band to the formation of the soliton state and, for the properly
chosen values of the parameters, is very small, P�1. The localization parameter of
the soliton, �, in the notation (Eq. (9)) is given by the relation:

� D .1 � p/
4G2.1C x2 � 2xw/

p
1CD

2
=4

aC.1C d2/.1 � w/
: (13)

We have taken the numerical values of the parameters (Eq. 11) so that the stationary
state of the Hamiltonian H0 (the stationary solution) is close to the analytical solu-
tion (Eq. 12) and is self-trapped within a few lattice sites. In particular, this is the
case for G D 0:4, C D 0:22, d D D D 0:1, x D 0:05, w D 0:15, m D 0:3.

The numerically determined stationary solutions of Eq. (10) at E.t/ D 0 were
then used as the initial conditions (the initial excitations) for their dynamics in the
presence of the field at E.t/ ¤ 0. We have studied numerically the time evolu-
tion of such an excitation by calculating its profile, half-width and the position of
the quasiparticle centre of mass (c.m.) coordinate for various forms of the external
periodic unbiased electric field. We have found that the field, itself, does not signif-
icantly affect the profile of the soliton, though it causes oscillations of the c.m. of
the soliton and of its width. In Fig. 1 we present the values of the c.m. coordinate
of a soliton as a function of time for an asymmetric chain (d D 0:1; D D 0:1) in
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Fig. 1 Position of the c.m. of the soliton as function of time in an external harmonic field at GD
0.4, C D 0.22, E0 D 0.08, T D 1,000 d.u. in an asymmetric chain with: d D D D 0.1, x D 0.05,
wD 0.15, mD 0.3
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the presence of an unbiased harmonic field E.t/ D E0 sin.2�t=T / at E0 D 0:08,
T D 2000 (note, all parameters are measured in dimensionless units, (d.u.)). This
figure demonstrates very clearly that the unbiased harmonic field causes a drift of
the soliton, i.e., it generates a uni-directed current in the chain. The fine structure
of the drift (the details of the oscillations) depends not only on the parameters of
the field and the dissipation coefficient, but also on the asymmetry properties of the
system. Our results, shown in Fig. 1, clearly demonstrate the ratchet behaviour of
polarons.

As one can see from Fig. 1, in the electric field periodic in time, the soliton tra-
jectory is a sum of oscillations and a drift. The values of the drift velocity, the period
and amplitude of oscillations as well as all the details of the drift profile are deter-
mined by the values of the chain and field parameters. This effect has a threshold
with respect to the intensity of the field and its period, i:e:, the effect takes place
provided that E > E0;cr ; T > Tcr . Thus, for instance, for E0 D 0:08 and for the
other values of the chain parameters as above we have Tcr D 400 d:u. Moreover,
we have also found (see [14]) that the directed current of polarons under harmonic
perturbations in molecular systems arises also when there is only an asymmetry in
the electronic subsystem.

Note that chains with only one nonzero anisotropy parameter, d or D, possess a
reflection symmetry. In such cases a harmonic electric field does cause soliton oscil-
lations around its initial position but does not generate a soliton drift (this conclusion
is confirmed by our numerical simulations). Instead, according to the symmetry con-
sideration [9], one can expect the ratchet phenomenon to take place in a symmetric
chain only if an external unbiased periodic field is asymmetric in time. As shown
below, this is indeed the case,. In particular, Fig. 2 presents the trajectory with a
unidirectional (on average) motion of a soliton in the unbiased biharmonic periodic
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Fig. 2 Position of c.m. of the soliton as function of time in an external biharmonic field at
G D 0.4, E0 D 0.087, ˇ D 0.6, ' D � /2, T D 2,000 in a symmetric chain at: C D 0.22, d D
0.1, DD xD wD mD 0
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field, E.t/ D E0 sin.2�t=T /C ˇ sin.4�t=T � '/.E0 D 0:08; ˇ D 0:6; ' D �=2/.
The figure shows that the unbiased biharmonic field causes a directed (on average)
motion of solitons in the symmetrical chains.

It is worth to mention here that the case ofD D 0:1, d ¤ 0, applies to polyacety-
lene with alternating chemical bonds [3], while the case dDDD 0 corresponds to a
simple chain with one atom per unit cell with the lattice constant a=2. From Fig. 2
we see that, even in such simple systems, the ratchet effect takes place!

Let us observe that this dynamics of solitons is induced by the discreteness of the
molecular chain which leads to the Peirls–Nabarro potential, which is periodic with
the same period as the lattice [15–18]. Notice that the Peierls–Nabarro potential
is a characteristic feature of many discrete models and is responsible for the uni-
directional motion in various discrete soliton ratchets described by, e.g., the discrete
sine-Gordon [10] and the discrete nonlinear Schrödinger-type [13] equations.

The presence of the Peierls–Nabarro potential explains our numerical results and
the existence of the threshold with respect to the intensity of the field and its period.
For driving amplitudes below the threshold (depinning threshold) the soliton re-
mains pinned to the lattice site and its c.m. oscillates around it. The drift is possible
when the intensity of the field exceeds the depinning threshold and the amplitude
of the soliton oscillations exceeds the lattice constant (the period of the Peierls–
Nabarro barrier). The oscillation amplitude depends on the intensity of the field and
on its period and is approximately proportional to the square of the period of the
electric field, A / E0T 2. If the period of the external force is very small, this am-
plitude is less than the period of the ratchet potential and the soliton oscillates within
the potential well of the Peierls–Nabarro barrier and, therefore, remains trapped on
a lattice site.

To describe the soliton dynamics, both in the homogeneous and in the discrete
cases, a collective coordinate approach is often used [11, 19]. In such an approach,
a discrete soliton of the form (Eq. 12), is treated as a single particle and the c.m.
coordinate of the soliton, R.t/, is its collective coordinate. In a molecular chain the
dynamic equation for this c.m. coordinate of the soliton, R.t/, under the external
force, E.t/, taking into account the lattice discreteness and the energy dissipation,
takes the form:

Ms
RR D �� PR C f .R/ C eE.t/; (14)

whereMs D m
�C�m is the effective mass of the soliton, ‘dressed’ with phonons,

�� / � [20], and f .R/ D �dUPN=dR with UPN being the periodic Peierls–Nabarro
potential, UPN.R C a/ D UPN.R/ (a is the lattice constant), [15]. Equation (14) is
of a type well known to lead to the ratchet phenomenon [1] i.e. to a unidirectional
(on average) motion of a particle whose trajectory is a limit cycle phase locked to
the external periodic driver E.t/.

In a chain with one atom per unit cell, the Peierls–Nabarro potential is given
by the expression UPN.R/ D U0 cos.2�R=b/, where b is the lattice constant of the
chain, and the height of the barrier depends on the electron–phonon coupling of the
system [15]. In a diatomic chain, this barrier is described by two periodic terms, and
is given by:



Directed Transport of the Davydov Solitons by Unbiased a.c. Forces 97

UPN.r/ D U1 cos.2�r/ C U2 cos.4�.r C 
//; r D
R

a
; (15)

where Ui depend on the square of the electron–phonon coupling, similarly to the
case of a uni-atomic chain.

It is known that the broken spatial symmetry in the ratchet potential, which
in our case is the periodic potential of the Peierls–Nabarro barrier, and/or of
the time correlations in the driving force are crucial and lead to the ratchet ef-
fect [1, 9]. Our numerical results, shown in Fig. 1, clearly demonstrate the ratchet
behaviour of polarons in asymmetric diatomic molecular chains under an unbiased
harmonic (temporarily symmetric) field E.t/ D E0 sin.2�t=T /. This indicates that
the Peierls–Nabarro potential (Eq. 15) in asymmetric chains is asymmetric. To show
this we have studied the dynamics of the soliton governed by the discrete Eq. (11)
in a constant field, E.t/ D E0 D const. We have found that Eth.E/ D Eth.�E/ for
symmetric chains, while Eth.E/ ¤ Eth.�E/ for asymmetric ones.

As is clear from Eq. (14), the soliton is pinned by the lattice and, in a static elec-
tric field, it can move if the external field exceeds the pinning threshold value. In a
symmetric chain this threshold is symmetric for fieldsE and �E, but is asymmetric
for asymmetric chains.

Results shown in Fig. 3, demonstrate that, indeed, as is well known from the
analysis of Eq. (14) [9, 21], the uni-directional motion of the soliton corresponds to
the limit cycle which is phase-locked to the frequency of the external driver: R.t C
Tc/ D R.t/C ka; PR.t C Tc/ D PR.t/.a is the period of the ratchet potential, Tc is
the period of the cycle). On this orbit, the average soliton velocity is expressed as

hV i D
1

Tc

Z Tc

0

PRdt D
ka
lT

(16)
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Fig. 3 Dependence of the average soliton velocity on the constant electric E field for G D 0.4,
C D 0.22, b D 0.5 and: (a) d D D D 0; (b) D D 0, d D 0.1; (c) D D 0.1, d D 0.1; (d) D D 0.2,
d D 0.1
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Fig. 4 Displacement (in the lattice units) of the c.m. of the soliton as function of the period of an
external harmonic field at GD 0.4, C D 0.22, d D DD 0.1, xD wD mD 0, E0 D 0.88

with k and l being integer numbers. In this resonance regime, the soliton passes k
sites during l periods of the external drive so that, except for a shift in space, its
profile is completely reproduced after this time interval.

The dependence of the soliton shift,D D< V > T , on the period of the applied
field, obtained by numerical simulations of Eq. (10), is shown in Fig. 4. We note that
the soliton displacement is not a smooth monotonic function of T but a piecewise
function with plateaux. The plateau values of the soliton velocity satisfy Eq. (16)
and correspond to dynamic regimes, which are limit cycles with rotation numbers
(� D 1; 2; : : :I l D 1) that are phase-locked to the driver.

The main characteristics of the soliton dynamics, obtained in numerical simula-
tions of Eq. (10) and presented in Fig. 4, can be explained in terms of the solutions
of the Eq. (14) for the collective coordinate. To demonstrate this we have studied
Eq. (14) numerically and we present our results in Fig. 5.

For these studies we have chosen the ratchet potential in the form Eq. (15) and
found that Eq. (14) describes qualitatively and often also quantitatively the dynam-
ics of the soliton described by the discrete system of Eq. (10), as can be seen by
comparing Fig. 5a and b with Figs. 2 and 4, respectively. The best agreement corre-
sponds to the ratchet potential parameters U2=U1 D 0:25; ' D �1=8 at which the
profile of the potential Eq. (15) has a well manifested asymmetry – see Fig. 6.

Generally speaking, the possibility of a soliton to drift in an unbiased field
and the properties of this drift is a problem involving many parameters. To ana-
lyze the corresponding space diagram, we can only present some two-dimensional
crossections of the corresponding parameter space. Some of such diagrams are given
in [14], from which it follows that soliton oscillation amplitude as a function of the
absorption, has plateaux due to the discreteness of the chain. The lengths of the
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Fig. 5 Position of the c.m.c. as function of time in the field Ee D 8.7, T D 2000, � D 400,
(a) and the dependence of the velocity of the drift on the period of the field Ee D 4.5, � D 100,
(b) in the ratchet potential with the parameters u1 D 1.0, u2 D 0.25, 
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Fig. 6 Profile of the Peierls–Nabarro potential in an asymmetric chain at the parameters u1 D 1.0,
u2 D 0.25, ™ D �1/8

plateaux depends on the parameters of the system. Beyond this plateaux, the ampli-
tude decreases with the increase of the energy dissipation.

Soliton drift results from the superposition of various oscillating processes with
different periods. As a result, soliton dynamics is a highly nonlinear processes, and
the dependence of the soliton velocity on the damping coefficient and on the field
intensity is nonmonotonous and the velocity can even change its sign!

In molecular chains, a soliton motion in the Peierls–Nabarro potential is accom-
panied not only by the oscillations in time of the soliton velocity but also by the
oscillations of a soliton localization parameter � [15] which determines also the
soliton amplitude (Eq. (13)). Overcoming the Peierls–Nabarro barrier, the soliton
gets broader and therefore, its amplitude decreases.

The dependence of the average soliton velocity on the damping coefficient and on
the driver intensity, as has been reported in [14], strongly depends on the values of
the chain parameters and of the parameters of the driving force E.t/. The important
parameter here is the parameter of the asymmetry of the biharmonic field, '.
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4 Conclusions

In conclusion, our study has shown that the ratchet effect can take place in one-
dimensional molecular systems which support the existence of large polarons (soli-
tons). Such self-trapped electron states are formed at intermediate strengths of the
electron interaction with lattice deformations. The coupling constant of this interac-
tion has to be large enough as the Peierls–Nabarro barrier (Eq. (15)) is essential for
the dynamics of the soliton; on the other hand, this coupling cannot be too large to
prevent the formation of small polarons, whose transport properties are qualitatively
different from those of the solitons. There is a large class of low-dimensional molec-
ular systems, including biological macromolecules and some conducting polymers
and inorganic compounds, which possess large polarons, as it has been demonstrated
in many experiments.

It is also worth pointing out that, in a certain sense, in spite of their different
physical nature, molecular ratchets, considered here, are similar to the ratchets of
the discrete cavity optical solitons [13], based on the discrete nonlinear Schrödinger-
type equation (stationary molecular solitons can be described by this equation as
well).

We would like to add that, similarly to the deterministic fields considered here,
symmetric white noise [22] can also cause the uni-directed current of solitons in
low-dimensional molecular systems, though the dynamics of solitons in such cases
is less symmetric and more complicated than for the harmonic fields (we plan to
report on this in the near future). The role of the noise in inducing the ratchet
effect is important for the understanding of the functioning of biological motors.
Molecular solitons, which are the charge and energy carriers during the metabolic
processes in biological systems according to the Davydov hypothesis [2], are formed
in ˛-helical proteins. Such protein macromolecules possess a highly asymmetric
structure and, so, their Peierls–Nabarro barrier is asymmetric too. Moreover, these
macromolecules are immersed in the cellular cytoplasm and are subject to ther-
mal fluctuations. Therefore, in these systems the presence of a symmetric stochastic
noise can result in the formation of a directed current of solitons, i.e., such systems
can be good candidates for molecular motors.

On the other hand, there is a class of low-dimensional compounds, such as
polyacetylene (PA), polydiacetylene (PDA), polytiophene (PT), etc., which provide
experimental evidence for the existence of large polarons and bipolarons [6, 7, 23].
Based on our results we expect that, in these compounds, the unbiased alternating
electric field can induce a directed current. In the compounds with an asymmetric
unit cell, such as polyphenylene–venillene, polythienylene–venillene, this directed
current can be induced by a harmonic periodic field, while in compounds with a
symmetric unit cell, such as PA, PDA, PT, polyphenylene, polypyrrole, polyaniline,
polyfurane, polysilans etc., this effect can be observed in periodic biharmonic, or,
in general, in asymmetric periodic in time fields.

Moreover, the ratchet effect can take place also in compounds with charge
density waves (CDW) (see review [24]). Similarly to the case of polarons, such
CDWs are also described within the adiabatic approximation for the many-electron
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wavefunctions and in the limit of low concentration of electrons their CDW wave-
function reduces to the wavefunction of separated bisolitons [25], as was shown
in [26]. In fact, the pinning of the CDW by the lattice in these systems does exist and
it has been proved that the sliding mode of the CDW is possible in constant fields
only above some threshold [24]. Indeed, the d.c. signal produced by biharmonic
microwaves in TTF-TCNQ (tetrathiofulvalene-tetracyanoquinodimethane) has been
experimentally observed [27]. Some features of experimental results were explained
in [28] where it was assumed that the charge transport in TTF-TCNQ occurs via a
rigidly sliding CDW (a CDW was modelled as a Brownian motion of a classical
particle in the periodic potential within the collective coordinate approach, Eq. (14).
This agrees qualitatively with our results, though a further detailed study still has to
be performed.
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Some Properties of Solitons�

L.S. Brizhik, A.A. Eremko, L.A. Ferreira, B.M.A.G. Piette,
and W.J. Zakrzewski

Abstract We present a general review of some aspects of the dynamics of topolog-
ical solitons in 1 and 2 dimensions. We discuss some recent work on the scattering
of solitons on potential obstructions and in the presence of some external fields.

Keywords Ratchet effect � Polaron � Solitons � Kinks � Breathers � Landau-Lifshitz
equation � Peierls–Nabarro potential field

1 Introduction

Solitons arise in various areas of applied mathematics and in the mathematical de-
scription of some processes in physics [1] and in biology [2].

In many applications of mathematics to the description of physical processes one
uses either point like objects or plane waves. Solitons are different. They describe
objects that are localised in space (but not localised to a point). So their energy
density is described by a function which is essentially nonzero in a finite region; i.e.
is significantly nonzero only in a small region and goes to zero, exponentially or as
an inverse power, as one moves away from this region.
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The stability of solitons is often guaranteed by topological considerations, most
often associated with the topology of SN ! SN maps.

The simplest examples of such maps (in 1 and 2 dimensions) involve, respec-
tively, the sine-Gordon kinks and the solitons (baby skyrmions) of the S2 sigma
model. In the sine-Gordon case the Lagrangian density is given by

L D @	 � @	 � � sin.	/: (1)

Solutions of the sine-Gordon equations of motion are well known [3]. They in-
volve kinks and antikinks, which are topological solitons; breathers, which can be
thought of as interacting bound states of kinks and antikinks, further bound states
of kinks and breathers and many other solutions, less interesting from our point of
view. The Lagrangian of the sine-Gordon model is relativistically covariant; thus if
we have its static solution we can always obtain a non-static solution by Lorentz-
boosting the static one. Thus starting with a static kink we can obtain a moving
kink. The same is true with nonstatic solutions, like stationary breathers. They can
be Lorentz boosted to generate moving breathers. Thus this Lorentz covariance can
be used to put all kinks and breathers in their centre of mass; i.e. when we talk about
the scattering of two kinks we consider their motion relative to their centre of mass.
This is important as we will mention later on.

In two spatial dimensions (i.e. forND2) the solitons are based on sigma models.
In the relativistic case the Lagrangian is given by:

L D @	 � @	 � 
S
�
.@	 � @

	/2 � .@	 � @�	/.@
	 � @�	/

�
� V.	/; (2)

where for V we can take any ‘simple’ function of 	3 which vanishes as 	3 D 1. In
most of our discussions we have used

V.	/ D .1 � 	23/: (3)

Moreover, to have topology we require that the vector 	 lies on the unit sphere S2,
i.e. that 	 � 	 D 1. To have a finite potential energy the field at spatial infinity is
required to go to 	3 D ˙1, 	1 D 	2 D 0. In this work we choose “the vacuum”
to be defined as 	3 D C1. The model with this choice of the potential, i.e with V
given by Eq. (3) is called the “new baby skyrme model” [4].

The three terms in Eq. (2) are, from left to right, the pure S2 sigma model,
the Skyrme and the potential term. The last two terms are needed to stabilize the
solitons. They have no influence on the topology — which is still based on the
topology of S2 ! S2 maps as imposing the spatial infinity boundary condition has
defined a one-point compactification of R2, allowing us to consider 	 on the ex-
tended plane R2

S
1 topologically equivalent to S2. Incidentally, potential terms

other than Eq. (3) have also been studied [4]. The results, in their cases, are slightly
different but their generic features are the same. Hence here we discuss the results
obtained for Eq. (3).
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2 Dynamics

The dynamics of the sine-Gordon kinks is well known. We have analytical expres-
sions for the two kinks moving towards each other and we can easily see what
happens. In fact, the kinks reflect from each other, as can be seen by looking at the
time dependence of their energy density. They come close to each other and then
reflect. This can be further checked by performing the numerical simulation of the
time evolution of two static kinks some distance appart. In this case the kinks grad-
ually move away from each other thus showing that the forces between them are
repulsive. If one sends them towards each other they gradually slow down and fi-
nally repel. Of course, as the motion is in one dimension not much can happen (they
can repel or pass through each other, and in this case they choose the first option).

In two dimensions we have more possibilities, as the solitons can be sent towards
each other at an impact parameter. But on top of that we often find applications when
the dynamics is not based on the relativistic Lagrangian mentioned in the previous
section but, instead, is determined by the Landau–Lifshitz equation.

In that case the equation of motion is given by

@	

@t
D 	 �

@L

@	
(4)

where L now stands for only the spatial part of L, i.e of Eq. (2).
The dynamics of both cases is very different. In the relativistic case, when the

solitons are sent towards each other at zero impact parameter (head-on) we have
the familiar 90ı scattering. Thus, in this case the system evolves in such a way that
after the scattering the two outgoing solitons are moving in the direction at 90ı with
respect to their motion before the scattering. When the solitons are sent at a very
large impact parameter they miss each other completely; for intermediate values of
the impact parameter their scattering interpolates between these two extremes.

The head-on 90ı scattering of the solitons has been explained in many ways;
the most compelling involves the indistinguishability of solitons [1]. As the system
of two solitons is described by a function which is symmetric with respect of the
interchange of their positions this is built into their phase space which, in terms of
the relative position, is really described by R2 mod a reflection with respect to the
line joining their positions. Hence, effectively, the space is R2

Z2
, where Z2 describes

this reflection, and so it is a cone. A straight line motion in this space, going through
the vertex of the cone, is described by a 90ı motion when viewed in R2. At other
values of the impact parameter the motion still involves a straight line but this time
not going through the vertex etc.

In the case involving the Landau–Lifshitz equation the situation is completely
different.

First of all the equations involve only first order time derivatives and so the mo-
tion takes place in a lower dimensional phase space.
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This has been analysed in great detail by Papanicolaou and Tamaras [5] who
showed that when one has a system of two solitons one can introduce rD .x1; x2/—
a 2 dimensional vector describing their relative position and the relative momentum
p and the momentum satisfies

pi � ˛ �ij xj : (5)

Here, ˛ is nonzero if the system has a nonvanishing topological charge, which is the
case when we have two solitons. The equation of motion is then of the form

d2xi

dt2
� ˛�ij

dxj
dt

(6)

resulting in a motion along a circle.
Incidentally, in three spatial dimensions the dynamics of solitons is even more

complicated (see, e.g. [1]) but, interestingly, many aspects of it can be related to the
dynamics in two dimensions (through projections into various planes).

All this discussion concerned solitons moving in a free space, i.e. in a space with
no potential obstructions. In the next section we discuss some aspect of the scat-
tering of solitons when we do have a potential obstruction—either in the shape of
a potential bump or a potential hole. Of course, such an obstruction is located in
some region of space hence the system looses its translational invariance. So all our
discussion will be performed in the frame in which the obstruction is at rest.

3 Potential Obstructions

There are various ways of introducing a potential obstruction; a hole or a barrier.
However, given that the soliton field, strictly speaking, is never zero, even though
it vanishes (exponentially, or as power) as we move away from its position, this
potential has to be introduced in such a way that it does not change the “tail” of
the soliton, i.e. it has to vanish when, in one dimension, 	� 0 or � or, in two
dimensions, when 	3� 1.

3.1 Sigma Models

A possible way of introducing such an obstruction is to add an extra term to the
Lagrangian. This extra term should vanish outside the obstruction, i.e. when 	3 D 1.
Of course, there are many terms that we could use but given that our Lagrangian
already contains a term with this property in [6] we exploited this fact and chose
to add ˛.1 � 	23/ in some region of x and y. In fact, we chose our obstruction to
be located in some finite region of x, say at positive x and to be independent of y.
So it is in the form of a trough in the “hole” case or a dam in the “barrier” case. In
our work we chose the obstruction to be constant and located in a small range of
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x, for x 2 .�L=2;L=2/. This, effectively, corresponds to taking  in the original
Lagrangian to be given by 0 for x in the range of the obstruction and 1 elsewhere.
Then the case of 0 > 1 corresponds to a barrier (dam), and for 0 < 1 we have
a hole (trough).

Then sending the soliton from a point well away from this obstruction, i.e. ini-
tially placed at some sufficiently negative x, in the positive x direction, we can study
the effects of the scattering on the obstruction.

We have performed many numerical simulations varying both the sign and value
of 0 � 1 and the velocity of the incoming soliton. We have found that when we
have a barrier the scattering is very elastic with the system essentially converting
all its kinetic energy into the potential energy to ‘climb the potential hill’ and then
releasing this energy back as either the kinetic energy of the reflected or the trans-
mitted soliton. Hence the velocity of the outgoing soliton was always very close, in
magnitude, to the original velocity.

For the hole the situation was different. Varying the incoming velocities we saw
many trajectories. Sometimes the solitons were transmitted, sometimes they were
trapped in the hole, sometimes they were reflected. In Fig. 1, we present plots of
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Fig. 1 Trajectory of a soliton during the scattering for a well of width L D 10 and 1 D 1: and
0 D 0:8. Here � D 0:5 and (a) v D 0:0102, (b) v D 0:0106, (c) v D 0:012
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positions in x as a function of time seen in three representative simulations (i.e.
started with different values of initial velocities and corresponding to a different
behaviour).

Thus we have seen that in addition to the transmission the soliton can get trapped
in the hole. This trapping can lead to it being permanently stuck in the hole (with
the soliton radiating its excess of energy) or after a bounce or two in the hole the
soliton can be ejected either forwards or backwards so that the whole process looks
like a transmission or a reflection! We have looked at this process in great detail
[7]. In [7] it is argued that the interaction proceeds through the excitement of the
vibrational modes of the soliton. Moreover, [7] presents a simple model of these
modes and of their interaction with the soliton—we will comment on this later on.
Before that, we look at other models and in particular at the sine-Gordon model
in one dimension. This model has no genuine vibrational modes so we might have
expected the behaviour of its solitons to be somewhat different. In the next section
we show that this is, however, not the case.

3.2 Sine-Gordon Model

In the studies of the sine-Gordon case the obstruction potential has been introduced
in two different ways — either by making � in Eq. (1) position dependent [8] or by
altering the basic metric [9]. Here we discuss the results reported in [8]; the results
of [9] are qualitatively very similar.

Both papers have found that in the sine-Gordon model, like in the sigma model in
two dimensions, the solitons can get trapped, be transmitted and bounce back. The
process is inelastic and depends on the initial condition of the soliton. Of course, it
also depends on the size and the depth of the hole. If the initial condition is taken
in the form of a kink moving with a given velocity then there is a well defined
critical velocity above which the kink get transmitted (with a certain loss of en-
ergy). Below this critical velocity it is trapped or reflected. The ranges of velocities,
at which the kink is reflected are very narrow. As the hole becomes shallower the
critical velocity decreases and as the hole becomes narrower the number of veloc-
ity windows at which we observe reflections gets larger. All the details are given
in [8].

In Fig. 2 we present a plot of the outgoing velocity as a function of the incoming
velocity in the case of a relatively narrow well (� in the well is reduced from 1 down
to 0:8). The hole is relatively narrow — i.e. a soliton fits in it about three times.

Looking in detail at the velocities at which the reflections take place we note that
these velocities come in several small ‘windows’ which are very narrow. If we try
to explain them by the excitation of the vibrational modes of the solitons we have a
problem with the sine-Gordon model, in which a soliton has no such modes but the
reflections do take place. Of course, although the model has no vibrational modes it
has pseudovibrational ones which can get excited and can radiate (similar conclu-
sions, in a different context, were reached by Romanczukiewicz [10]). An example
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Fig. 2 Outgoing velocity of
the kink as a function of its
initial velocity
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of such a mode is the variation of the slope of the kink. The usual kink solution is
given by

'.x/ D 2 arctan.exp.
.x � x0///; (7)

where x0 is the kink’s position and 
 is its slope. For Eq. (7) to be a solution of the
equation of motion which follows from Eq. (1) we need to set 
 D �. However, if we
put 
 different from � we excite the mode which corresponds to the variation of 
 .
In fact, when the kink enters the hole, where � is different, it automatically tries to
adjust its slope and so it excites this mode. Of course, when this mode of the kink
is excited — the kink begins to radiate and it is this interaction of the radiation with
the kink itself which is reponsible for the final outcome of the scattering process.

4 Breathers

The sine-Gordon model, in addition to the kink, also possesses breathers as its so-
lutions. These breathers are given by

	.x; t/ D 2 arctan

 
sin.!t/

! cosh.
p
1 � !2 x/

!
: (8)

Their energy is 16
p
1 � !2 and they can be thought of as bound states of a kink

and an antikink with the binding increasing as ! ! 1. Hence it is interesting to
see what can happen as a breather is sent towards a hole; clearly, it can scatter by
changing its ! or it can split leaving a kink (or an antikink) in the hole and allowing
its partner to scatter forwards or backwards.



110 L.S. Brizhik et al.

f

−0

1

2

3

x
−60 −40 −20 20 40 600

x
−60 −40 −20 20 40 600

f

−6

−5

−4

−3

−2

−1

0

Fig. 3 Breather profile for L D 10, � D 0:8, v D 0:1 and ! D 0:1. (a) t D 1 before scattering
with the well, (b) t D 500, the breather has split into a kink and a trapped anti-kink

We have performed several numerical experiments of such systems and they are
described in great detail in [11]. Here we will mention only some of them, sending
the interested reader, who would like to see more details, to [11]. As expected our
results have shown that the breathers do get trapped, pass with, in general, a dif-
ferent ! (note that increasing ! releases some energy), or split with either a kink
or an antikink being ejected from the hole. Sometimes the hole can also lead to the
creation of a further breather.

In Fig. 3 we present a couple of pictures showing a breather (of frequency ! D
0:1 moving with velocity v D 0:1) just before a scattering on a hole (of depth
� D 0:8 and size L D 10), and some time later, in the case when the interaction
with the hole leads to the splitting of the breather.

5 Simple Models

Let us mention now two simple models which partially explain what we have seen
in our numerical simulations.

5.1 Two Dimensional Case

First we consider the sigma model in two dimensions. In this case the soliton pos-
sesses many vibrational modes [12] and so our model treats the soliton as a system
of four masses which are connected to each other by elastic springs [7]. To check
its validity we took our system of four masses and sent it towards the potential hole.
As the system falls into the hole the masses begin to oscillate. These oscillations are
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then found to model the soliton vibrations seen in full simulations. Some energy is
transferred to these oscillations and if the energy of the centre of mass is too low the
system becomes trapped in the hole. Sometimes, when the system reaches one of the
edges of the hole it happens to be in a state that allows the energy of the oscillations
to be transferred back to the system as a whole (the energy of its centre of mass)
and the soliton can come out. Whether this happens or not depends on the flow of
the energy between the vibrational modes and on the kinetic and potential energy of
the soliton. As we showed in [7], the model reproduces quite well the main features
of the scattering pattern seen in the full simulations.

5.2 Sine-Gordon Case

In the sine-Gordon case we do not have vibrational modes so our model is different.
To construct it we looked at the old results on the scattering of kinks on point in-
purities [13] (showing a similar trapping=transmission=reflection pattern) and their
recent explanation by Goodman and collaborators [14]. In [14] the authors explained
the observed results by invoking an interaction of the kink with the oscillation of the
vacuum (around the impurity) which was described by a standing wave whose am-
plitude was a further degree of freedom (in addition to the position of the kink). This
interaction proceeded through the excitation of the quasimode of the kink—namely
its slope. The model of Goodman et al. reproduced all the features of the results
of the original simulations reported in [13] and so the two models discussed by us
in [8] are based on the adaptation of the ideas of Goodman et al. to our case. In both
models we introduced degrees of freedom describing various standing waves in the
hole (in one model the waves were restricted to the edges of the hole and in the
other they described the global standing waves in the hole). The waves in both mod-
els were chosen somewhat arbitrarily as the idea was not to reproduce the pattern in
any detail but just to check whether the mechanism of Goodman can be applied to
our case too.

In fact both models worked surprisingly well. They reproduced the pattern quite
well, although the critical value of velocity was a little too high. Given that these
models involved only very few (3 or 4) degrees of freedom we were very encouraged
by these results; they require further work to understand better which modes are
important and which are less so.

6 Further Solutions (Wobbles etc.)

However, the kinks and breathers are not the only finite energy solutions of the sine-
Gordon model. In fact, the model possesses also solutions which describe bound
states of kinks and breathers. One of such solutions, the ‘wobble’ was recently
discussed in detail by Kälberman [15].
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The paper of Kälberman presents an analytic form of this solution, shows that it
describes a static kink in interaction with a breather, and then discusses some of its
properties.

Recently, three of us [16], have looked at these more general solutions of the
sine-Gordon model describing kinks and breathers. The work in [16] was based on
the Hirota method [17] of deriving such solutions. Using this method [16] has shown
that

	 D 2 ArcTan

h
2 fcotan
g cos�I C e

Q�3fe��R C �2 e�Rg
i

h
fe��R C e�Rg � 2 fcotan
g � e Q�3 cosf�I C 'g

i ; (9)

where

Q�3 D γKfx � vK tg C �K; γK D cosh˛K; vK D tanh˛K; (10)

� D
coshf˛B � ˛Kg � cos 

coshf˛B � ˛Kg C cos 


and ' D 2ArcTan
sin 


sinhf˛B � ˛Kg
: (11)

and

�R D
1q
1 � v2B

cos 
 fx � vB tg C �B;

�I D
1q
1 � v2B

sin 
ft � vB xg C �B

describes the most general kink/breather field configuration in which the kink and
the breather have arbitrary velocities (and so move with respect to each other).

If one then takes

�K D �B D vB D vK D 0; �B D
�

2

and denotes
! D sin 
; �

�

2
� 
 �

�

2

then

� D
1 �
p
1 � !2

1C
p
1 � !2

; ' D ˙�: (12)

and then the expression above takes the form

	 D 2 ArcTan

hp
1�!2

!
sinf! tg C 1

2
e xfe�

p
1�!2 x C �2 e

p
1�!2 xg

i
h
coshf

p
1 � !2 xg C

p
1�!2

!
� e x sinf! tg

i ; (13)
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where ! is a frequency varying from �1 to 1. This agrees with the expression given
by Kälberman which describes a stationary field configuration in which the kink and
the breather sit on ‘top of each other’ and are not in relative motion.

As is clear from Eq. (13) the field configuration depends on one parameter (the
frequency of the breather) and so, the stability of this field configuration was stud-
ied in [16]. This was done by calculating 	 and its time derivative from Eq. (13)
which were then used as the initial condition for the simulations. The results of
these simulations were in complete agreement with the analytical expression thus
showing that the solution was stable with respect to small perturbations (due to the
discretisations).

The wobble was also found to be stable with respect to larger perturbations. To
establish this the original slope of the kink was changed: (i.e. in the expression (13)
the factor exp.x/ was replaced by exp.�x/ where � ¤ 1) and several simulations
with � ranging from 1.05 to 1:3 were performed.

The ‘new’ initial conditions corresponded to an incorrect initial field configu-
ration and so the system possessed some extra energy. The system then evolved
towards a stable wobble emitting some radiation which was sent out towards the
boundaries of the grid. For � close to one—the perturbations were small—hence
the system returned to its initial configuration (with � D 1:0). For larger values of
the perturbation the system was more perturbed and often not only kept on sending
out its excess of energy but also, at regular intervals, altered its frequency of oscil-
lation (increasing it) which allowed it to send out even more radiation. In Fig. 4 we
present the plots of the time dependence of the total energy the potential energy as
seen in the simulation in which � was set at 1.15.

E

8

9

10

11

12

t
0 100000 200000 300000 400000 500000 600000

Fig. 4 Time evolution of the energy of the perturbed wobble as seen in a simulation started with
� D 1:15
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One can also study what happens when one sends the initial (‘wobble’) config-
uration towards a potential hole. This was also studied in [16] and it was found
that, for a single breather [16], the final outcome can be one of many possibilities.
Namely, the hole can break the breather or it can separate the breather from the kink
(as mentioned in [16] in one simulation the kink was trapped in the hole while the
breather bounced off the kink and returned to where the wobble originally came
from).

Even more interesting results were found when the initial field configurations in-
volved a kink with more breathers. Such configurations are stable and [16] gives an
explicit expression for a configuration corresponding to a kink and two breathers
which is then shown to be stable.

7 The Energy

As we mentioned before the energies of the kink or the breather configurations
have very simple forms. This is indeed also the case for the more general field
configurations mentioned above. In fact, [18] shows that the energies of all field
configurations that can be derived by the Hirota method are additive as they are
determined entirely by the asymptotic values of the �i functions that arise in the
construction of these field configurations. The �i functions arise when one sets
	 D 2 log �1

�0
and then solves the relevant equations. An interested reader can find

more detail in [18].
In the cases discussed above the Hamiltonian density is given by

H D .@t	/
2 C .@x	/

2 C Œsin .	/�2 ; (14)

and so the energy becomes

E D

Z 1
�1

dx H D 2@x .ln �0 C ln �1/ jxD1xD�1 (15)

and so its value is determined entirely by the asymptotic values of �i functions.
This way, [18] has shown that the energies of solutions we have mentioned in

this talk are:

1. For moving kink:

E1�soliton D 4
1

p
1 � v2

: (16)

2. For a moving breather (of frequency !)

Ebreather D 8

p
1 � !2
p
1 � v2

: (17)
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3. For the wobble

Ewobble D 4
1q
1 � v2K

C 8

p
1 � !2q
1 � v2B

: (18)

4. For a solution involving a kink and two breathers mentioned above (with their
velocities set to zero)

EkinkC2breathers D 4C 8

q
1 � !21 C 8

q
1 � !22 ; (19)

where !i D sin 
i , i D 1; 2.

8 Perturbed Field Configurations

The paper [16] discusses also more general field configurations. It suggests that a
general field configuration corresponding to a perturbed kink evolves into a config-
uration of one kink and several breathers (moving with respect to each other). To
see whether this is the case [16] looked at various perturbations of the kink, paying
particular attention to configurations which were generated by adding to the kink an
extra perturbation of the form

ı	.t D 0/ D
B

cosh.x/
; ı

@	

@t
.t D 0/ D

A

cosh.�x/
: (20)

These simulations were performed for various values of A, B ,  and �. In all cases
the perturbation made the kink move and generated many moving breather-like con-
figurations. To see what the system would finally settle at, the energy was absorbed
at the boundaries of the grid. This had the effect of slowing down the kink and also of
absorbing and=or altering some breather-like structures. The process was very slow
and the results were somewhat inconclusive. It was clear that a general field config-
uration gradually split into moving kinks and breathers, and some radiation, which
quickly moved out to the boundaries. However, the resultant field configuration was
metastable; it still radiated, albeit very slowly, and gradually evolved towards a field
configuration involving mainly a kink. Whether at the end of its evolution the sys-
tem ended up with a kink or a kink with some breathers was hard to determine. The
interested reader is encouraged to look at more details which are given in [16].

9 Ratchet Behaviour of Solitons

Another interesting property of solitons is their behaviour in an external harmonic
or biharmonic field. This phenomenon, which goes under the name of ratchet be-
haviour, involves the appearance of a directed drift (motion) of solitons under
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the influence of an unbiased (zero mean) external force [19]. The first studies of
the ratchet phenomenon for kinks of the sine-Gordon model were performed by
Salerno and Zolotaryuk [20]. In their work they satisfied the necessary conditions
for the ratchet effect; i.e. they added an external unbiased force which was peri-
odic in time and also a further term which was responsible for energy dissipation.
This has guaranteed the phenomenon and in [20] they described various aspects
of this phenomenon, like dependence on the initial condition of the kink and of
the field etc. Of course, these properties are important as the ratchet behaviour has
found applications in many areas; from nanoscale technologies to the functioning
of biological motors. Hence it is important to understand the generality of the phe-
nomenon and of its applications. In fact, in a recent paper [21] we have looked at
the ratchet behaviour in some low-dimensional molecular chains which support the
existence of polarons. The class of such low-dimensional molecular systems is quite
large, it includes biological macromolecules (˛-helical proteins), quasi-1D organic
and inorganic compounds (like conducting platinum chain compounds), conducting
polymers (polyacetylene, polydiacetylene), etc.

We have also looked further at the ratchet behaviour in the sine-Gordon system -
this time looking at breathers. This work is still in progress [22], so here we can
present only very preliminary results.

9.1 Sine-Gordon Breathers

To do this we added to the sine-Gordon model two terms; one responsible for dissi-
pation and one involving the external field. Hence the equation we used was.

@2	

@2t
� ˛

@	

@t
�
@2	

@2x
� �

sin.2	/
2

� E.t/ D 0; (21)

where ˛ determines the strength of the absorption and E.t/ determines the external
field.

First we looked at the behaviour of a breather in the presence of a bi-harmonic
field. In this case we took the field E.t/ in the form

E.t/ D A sin.!t/ C B sin.2!t C ı/ (22)

and performed various simulations starting with various breathers.

9.1.1 Biharmonic Field

First we considered the case of the bi-harmonic field. In this case we took both
A and B nonzero. The results of the simulations depended a little on the initial
conditions (i.e. how well the kinks, in the breather, were separated when the field
was turned on).
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Fig. 5 Trajectory of a kink,
split of from the breather of
frequency 0:01; electric field
characterised by A D B D
0:1, ı D 0:1, ! D 0:175

x

0

10

20

30

t
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When they were reasonably split the kinks moved away from each other as if
we had two independent topological structures (strictly speaking a kink and an an-
tikink). In Fig. 5 we present a typical plot of the trajectory of the kink (as a function
of t); the antikink follows a similar trajectory moving towards negative x.

We see that the kink, once it is away from the antikink, behaves as if they were
completely independent.

9.1.2 Harmonic Field

Next we looked at the field involving one term for E.t/. This was implemented
by putting B D 0. This time the results were different. To understand them we
have to consider the discussion given in [20]. There it was shown that for a single
kink of the sine-Gordon model we need the field to be biharmonic to see the ratchet
behaviour. In our case the field is not of a simple kink but when the breather becomes
sufficiently separated (i.e. its kinks are antikinks are sufficiently separated) then they
behave effectively as free kinks and antikinks and then the discussion given in [20]
applies. Thus, in a harmonic field, each kink will not exibit the ratchet behaviour.
Thus, during the initial stage, due to the action of the field, the kink and antikink
of the original breather get separated until, effectively, they behave as if they were
independent of each other. At this stage the ratchet behaviour stops operating and
they, independently of each other, oscillate in the external field. However, the very
small (but still nonzero) atractive forces between the kink and antikink are still there
so, having themselves separated, the kink and antikink may start moving towards
each other. Once they are close again—they can annihilate (due to the action of the
field), or . . . get separated again.

In the next few pictures (Figs. 6 and 7) we present our preliminary results (show-
ing the time dependence of the trajectory of the field in x � 0 obtained in several
simulations).
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Fig. 6 Trajectory of a kink split of from the breather; electric field characterised by A D 0:237,
B D 0. In (a) frequency of the breather is ! D 0:24 and of the field !1 D 0:145. In (b) they are
0:09 and 0:038, respectively
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Fig. 7 Trajectory of a kink split of from the breather; electric field characterised by A D 0:237,
B D 0. In (a) frequency of the breather is ! D 0:02 and of the field !1 D 0:2495. In (b) they are
0:09 and 0:2451 respectively

The first picture shows very clearly that after the initial separation the kink os-
cillates around x � 10 and then gradually starts moving towards x � 0 and then
annihilates.

The following two pictures show very clearly that the separation of kinks can
be delayed—but then once the field separates sufficently far from each other—they
oscillate around their new positions like a kink in a harmonic field.

Finally, in the last three pictures we show two further aspects of the motion. In
Fig. 8a we see that the motion of the kink is amazingly regular and after a long time
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Fig. 8 Trajectory of a kink split of from the breather; electric field characterised by A D 0:237,
B D 0. In (a) and (b) frequency of the breather is ! D 0:24 and of the field !1 D 0:16 and
!1 D 0:14, respectively. In (c) ! D 0:20 and !1 D 0:032

the kink is beginning to move towards the antikink. Fig. 8b shows that sometimes
the split kinks move with a low velocity away from each other and Fig. 8c shows
that sometimes the breather does not get split at all. Here we plot the x > 0 of one
kink of the breather; as you can observe it comes back to x D 0 (where it is in a
breather) and gradually moves out, i.e. the amplitude gradually increases. We have
also seen the simulations in which the breather has never split (i.e. this growth was
virtually nonexistent).

Clearly, these are only very preliminary results. This work is still in progress and
we hope to produce more complete results sometime in the near future.

10 Final Comments and Conclusions

We started this talk with a very brief review of the topological solitons and of their
dynamics. Then we reviewed the results of our studies of the scattering of topologi-
cal solitons on a potential obstruction, of both a barrier- and a hole-type.

Our results have shown that when a soliton was sent towards the barrier its be-
haviour resembled that of a point particle. Thus at low energies the soliton was
reflected by the barrier and at higher energy it was transmitted. The scattering pro-
cess was very elastic. During the scattering the kinetic energy of the soliton was
gradually converted into the energy needed to ‘climb the barrier’. If the soliton had
enough energy to get to the ‘top’ of the barrier then it was transmitted, otherwise it
slid back regaining its kinetic energy.

In the hole case, the situation was slightly different. When the soliton entered
the hole it gained extra energy. Some of this energy was converted into the kinetic
energy of the soliton, some was radiated away. So when the soliton tried to ‘get out’
of the hole it had less kinetic energy than at its entry and, when this energy was too
low, it remained trapped in the hole. During the scattering process, like in the case
of a barrier, the soliton’s size changed and so it started oscillating. Afterwards, even
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when the soliton left the hole, its size continued to oscillate. Hence, looking at this
problem from the point of view of the scattering on a hole, it is clear some energy of
the soliton was transferred to the oscillations resulting in the emission of radiation,
i.e. in an inelastic scattering process.

We have also looked at the scattering of breathers on potential holes. As breathers
can be thought of as bound states of kinks and antikinks they can split leaving a
trapped kink or an antikink in the hole and allowing its partner to escape either
forwards or backwards. In addition, as the energy of the breather depends on the
frequency of its oscillation (‘breathing’) this frequency can change as well. All such
phenomena were seen in our simulations and we hope to report on this more fully
in the near future [11].

We have also looked at some field configurations, which are solutions of the
equations of motion and which describe bound states of kinks and breathers. As the
energy of each breather depends on its frequency (and vanishes in the limit of this
frequency going to 1) the extra energy, due to these extra breathers, does not have
to be very large. The solutions appear to be stable and this stability is guaranteed by
the integrability of the model. We have tested this numerically and have found that
small perturbations, due to the discretisations, do not alter this stability. To change
it we need something more drastic—like the absorption or the space variation of
the potential (i.e. the coefficient of the sin2 term in the Lagrangian). But even then
the effects are not very large—one sees splitting of breathers etc. but no ‘global
annihilation’.

Finally, we have also presented some preliminary results on the behaviour of
breathers in the presence of an external electric field. When this electric field was
biharmonic the breathers were split into their components (a kink and an antikink)
and the movement of each of them exhibited a ratchet behaviour. When the field
was harmonic the outcome was more complicated. Most of the time the breathers
were split and then they moved to some distance from each other at which stage
the forces between them were quite weak and effectively they were independent of
each other. At that stage the harmonic electric field could not sustain the ratchet
behaviour and so the kink and antikink oscillated around their positions. However
gradually, the forces would pull them towards each other and they either annihilated
or reformed as a breather which was then split again. Sometimes the electric field
simply annihilated the breathers, at other times they took a while to get split. All
this depended on the initial conditions of the breather and the electric field. We plan
to investigate this further and present our results in one of our future publications.

Let us finish by adding that all our results (on the scattering of topological soli-
tons on obstructions) generalise to other models; such as. e.g. the Landau–Lifschitz
model with a position dependent potential or an external magnetic field, other mod-
els in (1C1) dimensions, such as a �	4 model or even models describing ferro- and
anti-ferro-magnets [23].

Clearly a lot of work still has to be done in this area and we can expect to get
further interesting results.
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Spectral Effects of Resonance Dynamic
Intermolecular Interaction for Crystalline
Carboxylic Acids at Temperature Phase
Transitions

V.D. Danchuk, A.P. Kravchuk, and G.O. Puchkovska

Abstract In the present paper we report on temperature dependent FTIR spec-
tra studies of Davydov splitting value for the in-phase CH2 rocking vibrations of
methylene chains in crystalline n-carboxylic acids CH3.CH2/n�2COOH with odd
.nD 15; 17; 19/ and even .nD 10; 14; 16; 22/ numbers n of carbon atoms in the tem-
perature region from 100 K to the crystal melting point.

The analysis of obtained temperature dependencies allows to determine the fol-
lowing regularities. For all acids in the region of low temperatures the Davydov
splitting value practically does not depend on temperature. When temperature in-
creases for acids with odd number nD 10; 14; 16 of carbon atoms the splitting value
decreases to zero without sharp changes. For acids with odd number and even num-
ber nD 22 of carbon atoms, the slow decreasing of the splitting value and then sharp
decreasing to zero in the nearest region to the crystal melting point takes place.

A statistic-dynamic model is proposed which provides an adequate description
of the observed effects. In the frameworks of this model two different mechanisms
are responsible for the temperature changes of the vibrational modes splitting value.
In addition to the thermal expansion of crystals at heating, the damping of vibra-
tional excitons on orientational defects of different nature takes place. Genesis of
such defects is related to the excitation of conformational, librational and rotational
degrees of freedom of H-bonded molecular dimers at different temperatures.

Theoretical analysis of resonance dynamical intermolecular interaction effect on
the intramolecular vibrations spectra of the crystals was performed in the terms
of stochastic equations with account of such mechanisms. The explicit expression
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for the theoretical dependence of Davydov splitting value on temperature was ob-
tained. Computer simulation of such dependence was performed for crystalline
normal chain carboxylic acids. Good agreement between the experimental data and
computer simulation results takes place.

Keywords Carboxylic acid crystals � Davydov splitting � Damping of vibrational
excitons � Conformational transitions � Librations � Rotations � IR spectra

1 Introduction

It is known that in long-chain aliphatic crystals in the temperature range below the
melting point the molecules can perform the orientational disordered motions of
different types. It is clear that any distortions in the periodic location of atoms in
the plane perpendicular to the long axis of the molecules should result in some pe-
culiarities of intermolecular interactions. In particular, one could expect changes in
the resonance dynamic intermolecular interaction (Davydov splitting of vibrational
excitons) in the orientational disordered phases.

Earlier, in studying the effects of the intermolecular interaction and the problems
of molecular dynamics in crystals of homologous series of odd-numbered nor-
mal paraffins, ’-olefins, n-carboxylic acids, cholesteryl n-alkanoates, and aromatic
compounds by the method of infrared spectroscopy, in particular, the temperature
dependence of spectral peak positions for Davydov components of the intramolec-
ular vibrations was observed [1–4]. These spectral components approach each
other in the region of the order—orientational disorder phase transition. For nowa-
days, there is no commonly accepted explanation of the observed temperature
dependence.

In this work we report on temperature dependent FTIR spectra studies of
Davydov splitting value for CH2 rocking vibrations of crystalline long-chain
n-carboxylic acids CH3.CH2/n�2COOH with odd .nD 15; 17; 19/ and even
.nD 10; 14; 16; 22/ numbers of carbon atoms, n, in the temperature region from
100 K to the crystal melting temperature.

Also we propose mechanisms, which adequately describe the observed effects
for carboxylic acid crystals as examples. These mechanisms are connected with
the damping of vibrational excitons in crystals due to their interaction with orien-
tational lattice defects, which appear due to the excitation of conformational and
librational–rotational degrees of freedom of organic molecules in the region of the
phase transition.
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2 Resonance Dynamical Intermolecular Interaction
in Carboxylic Acid Crystals (Theory)

2.1 Low-Temperature (Order) Phase

Let’s consider a low-temperature monoclinic modification of the crystalline n-
carboxylic acids, whose alignment of methylene chains is described by the or-
thorhombic O-subcell with two .CH2/2 chain fragments [5] (Fig. 1).

In general, the eigenfrequencies for transversal vibrations, which correspond to
the components of Davydov multiplets, can be found with the use of the standard
procedure, which involves the diagonalization of the matrix [6]

n
_
!
2

0 �
_

D
o
; (1)

when passing to the coordinates of symmetry, which are transformed according to

irreducible representations of corresponding factor-group. Here _
¨
2

0 is a diagonal (in
the coordinates of symmetry) matrix of squares of frequencies for intramolecular vi-
brations in the crystal in the absence of the resonance dynamic intermolecular in-

teraction;
_

D is the corresponding matrix of the resonance dynamic intermolecular
interaction.

For a crystal with two molecules per unit cell, one can present the frequencies of
Davydov multiplets components for jth normal fundamental vibrational mode ¨.j/

(wave vector
�!
k = 0) in the convenient form [7].

¨
.j/
1 	 ¨

.j/
0 C �¨

.j/;

¨
.j/
2 	 ¨

.j/
0 � �¨

.j/:

(2)

Fig. 1 Low-temperature structure of carboxylic acid crystals: (a) arrangement of methylene chains
in the orthorhombic O-subcells (b) projection of carbon skeleton planes on the plane of crystalline
axes (a, b) for orthorhombic O-subcell
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Here ¨.j/0 is the frequency of jth intramolecular vibrations, not perturbed by the
resonance dynamic intermolecular interaction;

�¨. j/ �

_

D
2 ¨0

is a frequency shift, caused by the resonance dynamic intermolecular interaction.
The expression (Eq. (2)) is written, when neglecting the values of second order of
smallness.

And, at some approximations, the vibrational Davydov splitting value,��, from
Eq. (2) is defined as

�� D ¨
. j/
1
�¨

.j/
2
D

D. j/
.l;n/

¨
. j/
0

: (3)

2.2 High-Temperature (Orientational Disorder) Phase

Here we describe the contribution of the intermolecular interaction effects and
molecular dynamics for carboxylic acid crystals in the orientationally disordered
phase on the formation of the spectral bands of intramolecular vibrations in the
framework of stochastic equations [8–10].

For this purpose, we consider .N C 1/ reactively coupled identical oscillators,
which form an actual system (cluster) with .N C 1/ states of the selected optical
(IR) active mode in the bath, which includes also the molecules, which undergo
reorientation. At some approximations, the time correlation function of this selected
mode is described by the equation

d
dt
_

G .t/ D
_

G.t/
h

i
_

�+
_

� + γ
_

1
i
;

_

G.0/= 1: (4)

The time correlation function,
_

G.t/, includes oscillations (
_

� is the matrix of oscil-
lations); reactive relaxations due to the interaction between the oscillators of the
actual system (

_

� is a matrix of reactive relaxations); pure relaxations, γ, due to the
anharmonic interaction of the selected vibrational mode with vibrations of the bath
and due to the reorientation of molecules.

The corresponding normalized spectral function,
_

J.¨/, can be determined from
_

G.t/ with the use of Fourier transformation:

_

J.¨/ D
1
	

Z 1

0

_

G.t/ e�i¨ tdt : (5)
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To determine the matrix of frequency oscillations,
_

�, which is a part of the
expression (Eq. (4)), we write the stochastic Hamiltonian of the system in the form

_

H .t/ D
_

H
.0/
.t/C V.1/.t/: (6)

Here
_

H
.0/
.t/ D

_

P .t/ C V.0/ .t/ is the Hamiltonian of the system, which describes
a weak influence of the thermostat; V.0/.t/ is the stochastic potential energy of
interactions between the molecules of the actual system and the bath; V.1/ .t/ is
the stochastic potential energy of interactions between the molecules of the ac-
tual system. For convenience we assume that it is precisely the resonance dynamic
intermolecular interaction that gives the main contribution to the perturbation of

frequencies, which are elements of the oscillations matrix,
_

�, and determines the
magnitudes and the structure (symmetry) of the actual system.

Then, taking into account the processes of the discrete frequency modulation,

we write the elements of the oscillations matrix,
_

�, for ith component of Davydov
multiplet of jth normal vibration in the form

�
�
. j/
i

�
D δ l;n

�
¨
. j/
0 C n �¨. j/

i

�
; l;n D 0; 1; 2; : : : ;N: (7)

The elements of the reactive relaxations matrix,
_

� , which are determined by the
rate of molecules transition to their excited (conformational, librational, rotational)
states can be written in the following form:

.�/l;n D R Œ.N � n/ δ lC1;nCk nδ l�1;n � .N � nC k n/ δl;n� : (8)

Here the frequency modulation of the intramolecular vibrational mode due to the
resonance dynamic intermolecular interaction is switched on with the rate R and
switched off with the rate k R. These rates can be presented in the form of the
adapted Arrhenius law:

R D
pX

mD1

Am exp
�
�

EAm

kBT

	
; k D

pX
mD1

exp
�
�Sm T ��EAm

kB T

	
; (9)

where EAm is the activation energy; kB is Boltzmann constant; T is absolute
temperature; �Sm; �EAm are, respectively, variations of entropy and activation
energy, required for the turning out the discrete modulation processes in the excited
state, m, which corresponds each conformational, librational or rotational transition
of a molecule.

Having taken into account the binomial distribution of states for the actual system
and having performed the averaging over the ensemble, we obtain the corresponding
spectral function
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_

J .¨/ D
1
π

h
i
�
¨ �

D
�
. j/
i

E�
�” � �

i�1
�
; (10)

where h:i denotes averaging. Then the average value of the vibration frequency for
the ith component of Davydov multiplet of jth normal vibration is determined as
follows D

�
. j/
i

E
D ¨

. j/
0 C�¨

. j/
i

N

1C
pX

mD1

exp
�
�SmT ��EAm

kB T

	 (11)

The analysis of the expressions (Eq. (11)) shows that, when the temperature in-
creases, the values of Davydov components frequencies,

D
�

. j/
i

E
, tend to reach the

value of the frequency of the vibrational mode nonperturbed by the intermolecular
resonance, ¨0.

In this case, the role of entropy variations, �Sm, as a measure of system dis-
ordering becomes dominant in the comparison with the intermolecular interaction
energy.

3 Results and Discussion

It is known [2], that most n-carboxylic acids in the condensed state form hydrogen
bonded central symmetric cyclic dimers (Fig. 2), which are layered in the crystal,
ended by methyl groups on both sides. The quantum-chemical calculations show,
that the rotational barrier for C–C’ carbon bond, namely, the nearest to a dimer
ring, is essentially less than that for other C–C carbon bonds of molecules [11].
This fact provides the possibility for an existence of different conformers due to
the molecules deformation nearby the dimer ring. So for some temperatures the
conformation transitions can lead to the molecular oriental disordering in sites of
the crystalline lattice.

Fig. 2 Structure and natural coordinates of dimer CH3.CH2/4COOH
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The procedure and equipment for measuring IR-spectra of long-chain molecules
in the temperature range from 100 to 350 K were described in [1, 2]. IR-spectra of
n-carboxylic acids have been measured with the use of UR-20 spectrophotometer in
the spectral range of 400–4;000 cm�1 (the spectral split program is 2). The spectral
width of a split in the range of 700 cm�1 is 1:5–2 cm�1.

IR-spectral parameters of Davydov’s components, namely, peak positions, spec-
tral widths, intensities, have been measured in the temperature range of 103–373 K.
The nitrogen cryostat has been used for the spectral measurements at low temper-
atures. In order to get the intermediate temperatures a special vacuum cell was
constructed. Its internal part was cooled with liquid or gas-like nitrogen with the
control of its supply or heated up to the desired temperature. The temperature was
measured by the copper–constantan thermocouple, which was placed directly on the
cell with the sample. Samples of investigated acids were obtained by sealing of their
melts between KBr plates, which were glued at the side ends. In the case of kC14,
kC16 and kC18 samples it was possible to obtain single-crystal films and to measure
their IR-spectra in the polarized light at the normal light incident on the (001) plane
at Eka and Ekb (Fig. 3). IR-spectra have been recorded at each 4–5 K, and near the
phase transition the temperature step has been decreased to 1–2 K. The accuracy of
temperature control was ˙1 K. The accuracy for the determination of Davydov’s
doublet component spectral positions was not worse than 0:2–0:3 cm�1.

According to [12, 13], all investigated acids crystallize from the melt in the
monoclinic modification. Parameters of O-subcell are practically the same for the
crystals of the majority of long-chain aliphatic compounds.

It is experimentally observed that the most sensitive IR-bands to the conforma-
tional and orientational transitions in the IR-spectra of n-carboxylic acid crystals
CH3.CH2/n�2COOH are the bands at 720 cm�1, which correspond to the in-phase
rocking vibrations of methylene chains of these molecules (Fig. 3).
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Fig. 3 IR-spectra of monocrystalline film CH3.CH2/14COOH at T D 300K .a/ and T D
100K .b/ in polarized light: dash curve - Eka, solid curve - Ekb
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Fig. 4 Computer simulation for temperature dependence of Davydov splitting value
��1;2 for CH2 in-phase rocking vibrations of the molecules in n-carboxylic acids.
.a/ nD 10; .b/ nD 15; .c/ nD 22 (dots—experiment [2], curve—theory)

In Fig. 4 (dots) we present the experimental data of the temperature changes
in Davydov splitting value, ��1;2, for these vibrations of different carboxylic acid
crystals, when the samples are heated from 100 K to their melting temperatures.

The analysis of obtained temperature dependencies for n-carboxylic acid crystals
has allowed to draw the following regularities. For all acids in the region of low
temperatures Davydov splitting value practically does not depend on temperature.
When temperature increases, for acids with odd .n D 15; 17; 19/ and even .n D 22/
numbers of carbon atoms, the slow decreasing of the splitting value takes place. In
the nearest region (�T D 20  30K/ to the crystal melting point we observe the
sharp decreasing of this value to zero. For acids with even numbers n D 10; 14; 16

of carbon atoms the splitting value decreases to zero without sharp changes.
In our case the theoretical temperature dependence of the corresponding

Davydov splitting value has the following form

��
.j/
1;2 .T/ D

�¨
.j/
1;2

1C exp
n
�S1 T��EA1

kB T

o
C exp

n
�S2 T��EA2

kB T

o ; (12)
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where �¨.j/1;2 is the value of Davydov splitting of intramolecular vibrations for the
crystals in the ordered low-temperature monoclinic phase; �S1, �E1 are, respec-
tively, variations of entropy and activation energy at conformation transitions of
molecular dimers;�S2,�E2—corresponding energetic parameters at orientational
transitions of molecular dimers as a whole in sites of the crystal lattice.

The fitting of the theoretical dependency (Eq. (12)) to experimental data was re-
alized by the variation of�S1,�E1,�S2,�E2 values with the help of Levenberg–
Marquardt method in order to obtain the minimum of the average square deviation
of the theoretical dependency from experimental data.

In Fig. 4 (lines) we present the computer simulation results of observed Davydov
splitting value temperature dependencies by Eq. (12). For n-carboxylic acid crystals
with even number of carbon atoms .n D 10; 14; 16/ the best agreement of the theo-
retical dependency with the experiment was obtained in the two parameter approach
for Eq. (12), taking into account only �S1 and �E1. For carboxylic acid crystals
with numbers of carbon atoms n D 15; 19; 22 a satisfactory theoretical description
of the experiment was obtained in the four parametric approach for Eq. (12), taking
into consideration not only�S1,�E1, but also�S2,�E2.

Thereby, the analysis of computer simulation results shows, that for light car-
boxylic acids with even number of carbon atoms .n D 10; 14; 16/ the decreasing
of the resonance dynamic intermolecular interaction efficiency at heating up to the
melting point is caused mainly by the conformational dynamics of molecular dimers
(see Fig. 4). Here in the temperature region of the “crystal-liquid” phase transition
the positional melting of the crystalline lattice is probably realized.

In the case of carboxylic acids with n D 22 and with odd numbers n D 15; 17; 19,
the damping of vibrational excitons is caused not only by conformational transi-
tions, but also in the temperature region near the melting point by the excitation
of librational and rotational motions of molecular dimers as a whole. The absence
of the molecular rotation in sites of the crystalline lattice for the light carboxylic
acids with even numbers of carbon atoms .n D 10; 14; 16/ up to the melting point
is, probably, caused by the denser molecule packing in these lattices. As the calcu-
lations of intermolecular interactions, carried out in the frames of the atom—atom
assumption [12], showed, in the case of acids with an even number of carbon atoms,
n, the interaction between end methyl groups is on 60% larger, than that of the acids
with an odd n value. This effect results in the larger hindering of methylene chain
rotations in the first case. For the acids with the even n such rotation is significantly
hampered, since not only volumetric dimer rings, but also the stronger interactions
between the layers of molecules hinder it. The increase of the carbon atoms number,
n, up to 22 leads to the decrease of the specific contribution from the interactions of
methyl groups, and thus, to the smaller difference in the behavior (dynamics) of even
and odd acids, which becomes apparent in the shape of the temperature dependence.
The similar temperature dependence of Davydov splitting value is also observed for
the acid with n D 24 in [14].

Herewith the estimated values for corresponding energetic parameters of con-
formational and orientational dynamics in carboxylic acid crystals were obtained
(Table 1).
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Table 1 The theoretical estimations of energetic parameters for conformational and orientational
dynamics of molecular dimers in n-carboxylic acid crystals

Number of carbon atoms, n �E1, kJ/mol �S1, kJ/mol K �E2, kJ/mol �S2, kJ/mol K
10 14.5˙ 1.3 0.06˙ 0.005 � �
14 32.0˙ 3.3 0.11˙ 0.01 � �
15 9.0˙ 1.5 0.019˙ 0.006 156.9˙ 4.4 0.50˙ 0.01
16 11.6˙ 0.9 0.040˙ 0.004 � �
19 10.1˙ 0.9 0.031˙ 0.003 185.3˙ 5.0 0.57˙ 0.01
22 12.4˙ 1.6 0.032˙ 0.006 271.9˙ 3.2 0.80˙ 0.01

Earlier, in [15] estimated values of activation energy and entropy variations for
exciting the molecule rotations at the transition into the rotator phase for crys-
talline n-paraffin C19H40 were obtained. They are �EA D .167:4 ˙ 2:9/ kJ=mol,
�S D .0:5651˙ 0:0084/ kJ=.mol � K/. This variation of activation energy, �EA,
for n � C19H40 on order of magnitude agrees with the corresponding value, which
is obtained by the proton spin relaxation spectroscopy method (�EA D 96 kJ=mol)
[16].

As seen from Table 1, the estimated values for energetic parameters of
n-carboxylic acids obtained in present work agree with those ones for n-paraffins.

The good agreement of computer modelling results with experimental data, as
well as the correlation between obtained in the present work the estimated values
for energetic parameters of carboxylic acids and corresponding ones for normal
paraffins [15, 16], probably, indicates the adequacy of the proposed here models for
the description of resonance dynamic intermolecular interactions in orientationally
condensed media.

4 Conclusions

1. In FTIR-spectra for the region of the “order-orientation disorder” phase
transition the temperature dependence of Davydov splitting value for the in-
phase CH2 rocking vibrations of crystalline long-chain n-carboxylic acids
CH3.CH2/n�2COOH.n D 10; 14; 15; 16; 17; 19; 22/ has been found out.

2. A statistic and dynamic model is proposed, which provides an adequate descrip-
tion of the observed effect. In the framework of this model, the damping of
vibrational excitons on orientational defects of different nature takes place. Gen-
esis of such defects is caused by the excitation of conformational, librational and
rotational freedom degrees of H-bonded molecular dimers at the heating of the
crystal.

3. The theoretical analysis of the effects of resonance dynamical intermolecular
interactions on the spectra of intramolecular vibrations of the crystals was per-
formed in the terms of stochastic equations, taking into account the oriental
disordering of the crystalline lattice. Computer simulations of such dependence
were performed for pure carboxylic acids. Good agreement between the experi-
mental and computer simulation results was obtained.
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Linear Augmented Cylindrical Wave Method
for Electronic Structure of Isolated, Embedded,
and Double-Walled Nanotubes

Pavel D’yachkov and Dmitry Makaev

Abstract The results of study of the band structure of single-walled nanotubes,
both isolated and embedded into a crystal matrix, and double-walled nanotubes are
surveyed. The mathematical apparatus of the linear augmented cylindrical wave
(LACW) method is described, and its application to prediction of the electronic
properties, semiconducting and metallic, of nanotubes is considered. The method
uses the local density functional approximation and the muffin-tin (MT) approxima-
tion for the electron potential and is implemented as a quantum-mechanical program
package.

Keywords Nanotubes � Double-walled � Embedded � Electronic structure

1 Introduction

An understanding of the structure of nanomaterials is very important for science
and technological applications. Carbon nanotubes are nanomaterials with unique
physical properties and possible technological applications. It was experimentally
confirmed in 1991 that carbon can exist in the form of cylindrical nanofilaments
obtained by rolling up of a graphene sheet. Such structures were identified in solid
products of arc-discharge evaporation of graphite [1].

The small size of carbon nanotubes and the quantum character of their electrical
properties determined the possibilities of using nanotubes as elements of new gener-
ation integrated circuits with characteristic size on the order of tens of nanometers.
It is expected that nanotubes will facilitate a technological revolution in integrated
circuit elements from a micrometer to a nanometer scale [3–8].

In the study of the electronic properties of nanotubes, theory has always been
ahead of experiment. Quantum-chemical methods [9–12] predicted (and it was
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Fig. 1 (a) Zigzag, (b) armchair, and (c) chiral nanotubes

then experimentally established) that the character of conductivity—metallic or
semiconducting—is determined by the geometry of the graphene framework. An-
other very important class is double-walled nanotubes composed of two concentric
cylindrical graphene layers. From the standpoint of nanoelectronics, double-walled
nanotubes are molecular analogues of coaxial cables.

A perfect single-walled carbon nanotube is a cylinder obtained by rolling up a
graphite sheet (graphene). There are two types of nonchiral single-walled nanotubes:
armchair of .n; n/ configuration and zigzag of .n; 0/ configuration; in addition,
there is a family of different chiral tubulenes (Fig. 1). In armchair tubes, carbon
hexagons are oriented with respect to the nanotube axis so that two C–C bonds of
each hexagon are perpendicular to the tube axis; in zigzag tubes, these bonds are
parallel to the axis. In chiral nanotubes, the orientation of hexagons with respect to
the tube axis is intermediate. Nanotubes are capable of conducting electrical cur-
rent without scattering of charge carriers [13–17]. There are two types of electron
transport through matter: ordinary transport, in which the energy of charge carriers
is close to the energy of electrons at the bottom of the conduction band and their
velocity is proportional to the applied voltage, and time-of-flight transport, where
the energy of electrons is not lost due to electron–phonon scattering. The limiting
case of such transport is ballistic conductance, where the measured resistance of
a nanotube is equal to the resistance of ohmic contacts and heat is released only
through contacts but not through the conductor itself. The nanotube thereby acts
as a waveguide: each subband of the conduction band makes a contribution to the
conductance equal to the conductance quantum G0 D 2e2=h. In carbon nanotubes,
the Kondo effect [15] and superconductivity were observed. A junction of two nan-
otubes, semiconducting and metallic, conducts current in one direction [18].

In summary, carbon nanotubes are an important class of nanomaterials. This un-
derlies the importance of the development of accurate methods of calculation of
the electronic structure of nanotubes. The linear augmented plane wave (LAPW)
method is one of the most accurate quantum-chemical methods of calculation of
the band structure of crystal. It was developed for crystals with three-dimensional
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translational symmetry (3D-LAPW) [19, 20]. Later, the basic ideas of this method
were used for systems with another geometry. In the variant of the LAPW method
for quasi-one-dimensional systems (1D-LAPW), it is assumed that an infinite sys-
tem extended along one direction is confined in a potential box in the form of a
parallelepiped [21]. In the directions normal to the translation axis, the movement
of an electron is restricted. A generalization of the LAPW method for surface elec-
tronic states and layered crystals was developed in [22]. In this case, the movement
of an electron in the interatomic region is described by plane waves in the directions
of translations and by a standing wave in the third direction. The augmented wave
method was formulated for cubic and spherical clusters [23, 24]. For calculation of
the electronic band structure of nanotubes, the linear augmented cylindrical wave
(LACW) method was developed in 1999–2007 at the Kurnakov Institute of General
and Inorganic Chemistry, RAS [25–31]. In the present paper, we summarize these
results.

2 Single-Walled Nanotubes

2.1 Computational Method

2.1.1 One-Electron Approximation

In the LACW method, a one-electron model is used, implying that a many-electron
wave function is described by the determinant of one-electron functions:

‰k .q1; q2; : : : ; qN / D
1
p
NeŠ

det

��������

'1.q1/ '2.q1/ ::: 'Ne .q1/

'1.q2/ '2.q2/ ::: 'Ne .q2/

::: ::: ::: :::

'1.qNe / '2.qNe / ::: 'Ne .qNe /

��������
: (1)

Then, the problem of calculation of electron levels is reduced to solution of the
one-electron Schrödinger equation

H' D E';  D 1; 2 : : : Ne; (2)

where H includes the operators of the kinetic and potential energy of Ne electrons.

2.1.2 Electron Potential

In calculation of a many-electron system, the key problem is the choice of elec-
tron potential. In the LACW method, this potential is constructed with the use of
the muffin-tin (MT) approximation and the local density functional approximation
for exchange interaction. The MT approximation implies that the crystal space is



138 P. D’yachkov and D. Makaev

Fig. 2 Nanotube (5, 5) in
a potential well confined by
cylindrical potential barriers

divided into regions of two types: atomic regions and interatomic regions. Each
atom of a polyatomic system is surrounded by a sphere (MT sphere). In the MT
spheres, the potential is taken as spherically symmetric. In the interatomic region,
the electron potential is taken to be constant. This potential is chosen as the energy
reference. The radii of MT spheres are selected so that the spheres of neighboring
atoms are in contact. Such a choice is physically rather evident: information on the
chemical nature of atoms constituting a polyatomic system is contained only inside
the MT spheres. In a nanomaterial, the movement of electrons is restricted by its
dimensions and geometry. In a nanotube, electron motion is confined to an approx-
imately cylindrical layer with a thickness on the order of the doubled van der Waals
radius of the atom. Correspondingly, in the LACW method, the motion of electrons
in the space between MT spheres is limited by two cylindrical barriers impenetra-
ble for electrons: the external barrier �a of radius a and the internal barrier �b of
radius b which are chosen so that the region confined by these barriers accommo-
dates a significant portion of the electron density of the system under consideration
(Fig. 2). Such a potential is referred to as a cylindrical MT potential.

2.1.3 Coulomb and Exchange Interaction

To calculate the potential in the MT spheres, the electron density distribution ¡.r/ of
a system is constructed as a superposition of electron densities of its atoms. Inside
the MT spheres, its spherically symmetric part ¡.r/ is taken. The electrostatic po-
tential Ve.r/ created by the distribution ¡.r/ is determined from the solution of the
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Poisson equation. The Coulomb potential VC .r/ D Ve.r/CVn.r/ in the MT spheres
is obtained by adding the electrostatic potential Vn.r/ created by the positive charges
of atomic nuclei. The electron density distribution ¡.r/ is also used for calculation
of the exchange interaction in the local density functional approximation.

2.1.4 Solution of the Schrödinger Equation for the Interspherical Region

Let us derive the basic equations of LACW method, beginning with the solution
of the Schrödinger equation for the interspherical and MT regions. In the inter-
spherical region, the basis functions are the solutions of the Schrödinger equation
for free movement of electrons inside an infinite tube with outer and inner radii a
and b, respectively. When expressed in Rydberg’s (Planck constant h̄D 1, electron
mass mD 1=2, electron charge eD

p
2 ) and cylindrical coordinates fZ,ˆ , Rg, this

equation takes the form

�
�

�
1

R

@

@R

�
R
@

@R

	
C

1

R2
@2

@ˆ2
C

@2

@Z2

�
C U .R/

�

�‰ .Z;ˆ;R/ D E‰ .Z;ˆ;R/

(3)

The potential U(R), determining the region in which electrons of an isolated nan-
otube are allowed to move, takes the form

U .R/ D

�
0; b � R � a

1; R < b;R > a
: (4)

The solution of Eq. (3), taking into account Eq. (4), has the form ‰.Z;ˆ;R/ D

‰P .Z/‰M.ˆ/‰MN .R/. Here,

‰P .Z/ D
1
p
c

expŒi.k C kP /Z�; kP D .2�=c/P; P D 0;˙1;˙2; : : : (5)

is the wave function that describes the free movement of an electron along the
translational symmetry axis Z with the period c. The wave vector k belongs to the
one-dimensional Brillouin zone: ��=c � k � �=c. The function

‰M .ˆ/ D
1
p
2�
eiMˆ; M D 0;˙1;˙2; : : : (6)

describes the rotation of the electron about the symmetry axis of the system, and the
function ‰MN .R/, determining the radial movement of the electron, is the solution
of the equation

�
�
1

R

d

dR
R
d

dR
C
M2

R2

�
‰MN .R/C U.R/‰MN .R/ D EjM j;N‰MN .R/: (7)
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Here, N is the radial quantum number andEjM j;N is the energy spectrum; the energy

E D .k C kP /
2 CEjM j;N ; (8)

corresponds to the wave function ‰ (Z, ˆ, R).
At b � R � a, Eq. (6) is written as

�
d2

dR2
C
1

R

d

dR
C �2jM j;N �

M2

R2

�
‰MN .R/ D 0; (9)

where �jM j;N D
˚
EjM j;N


1=2. After substituting �R D x and ‰.R/ D y.x/ into
Eq. (9), it reduces to the Bessel equation. Its solutions are referred to as cylindrical
functions of the Mth order [32, 33]. Any solution of the Bessel equation can be
represented as a linear combination of cylindrical Bessel functions of the first JM
and second YM kinds:

‰MN .R/ D C
J
MNJM

�
�jM j;NR

�
C CY

MNYM
�
�jM j;NR

�
: (10)

In Eq. (10), CJ
MN and CY

MN are constants chosen so as to ensure the normalization
of the wave function ‰MN .R/,

aZ

b

j‰MN .R/j
2 RdR D 1; (11)

and its vanishing at the interior and exterior potential barriers,

CJ
MNJM

�
�jM j;N a

�
C CY

MNYM
�
�jM j;N a

�
D 0;

C J
MNJM

�
�jM j;N b

�
C CY

MNYM
�
�jM j;N b

�
D 0:

(12)

From the set of Eqs. (12), the relationship between CJ
MN and CY

MN :

CY
MN D �C

J
MN
JM

�
�jM j;N a

�

YM
�
�jM j;N a

� ; (13)

and the equation for �jM j;N :

JM
�
�jM j;N a

�
YM

�
�jM j;N b

�
D JM

�
�jM j;N b

�
YM

�
�jM j;N a

�
; (14)

are derived.
For integral (Eq. (11)), the expression:

bZ

a

‰�MN .R/‰MN .R/RdR

D
a2

2
f‰0�MN .a/‰

0
MN .a/g �

b2

2
f‰0�MN .b/‰

0
MN .b/g D 1

(15)
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or
a2

2

�
CJ

MN J
0
M

�
�jM j;N a

�
C CY

MN Y
0
M

�
�jM j;N a

��2

�
b2

2

�
CJ
MN J

0
M

�
�jM j;N b

�
C CY

MN Y
0
M

�
�jM j;N b

��2
D 1

(16)

is valid. From this equation after the substitution (Eq. (13)), we find the coefficients
CJ
MN and CY

MN . Thus, the basis function ‰ (k, P, M, N) in the �II region in the
general cylindrical coordinate system takes the form

‰II .k; P;M;N / D
1

p
2�c

exp fi .KPZ CMˆ/g

�
�
CJ
MNJM

�
�jM j;NR

�
C CY

MNYM
�
�jM j;NR

�� (17)

Here, KP D k C kP .

2.1.5 Solution of the Schrödinger Equation for the MT Spheres

Inside the MT sphere ˛ in the local spherical coordinate system fr, ™, ®g, the basis
function is expanded in spherical harmonics Ylm.
; '/ [19, 20]:

‰I˛ .r; 
; ' jk; P;M;N / D

1X
lD0

lX
mD�1

ŒAlm˛ul˛ .r; El˛/C Blm˛ Pul˛ .r; El˛/� Ylm .
; '/ :
(18)

In Eq. (18), ul˛ is the solution of the radial Schrödinger equation in the MT sphere
’ for the energy El˛:

HMT˛ul˛.r/ D El˛ul˛.r/: (19)

Inside the MT sphere of radius r˛ , the ul˛ function is taken to be normalized:

r˛Z

0

Œul˛ .r/�
2 r2dr D 1: (20)

The Pul˛ D Œ@ul˛=@E�El˛ function is found from the equation h Pul˛.r/ D ul˛.r/ C
El Pul˛.r/. The ul˛.r/ and Pul˛.r/ functions are orthogonal:

r˛Z

0

Pul˛ .r/ ul˛ .r/ r2dr D 0: (21)
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This can be easily verified by differentiating the left and right-hand sides of Eq. (20).
The integral of the squared Pul˛.r/ function is designated as Nl˛:

Nl˛ D

r˛Z

0

jPul˛ .r/j
2 r2dr: (22)

2.1.6 Basis Functions and Overlap and Hamiltonian Integrals

The desired solutions of the Schrödinger equation must be everywhere continuous
and differentiable; therefore, to construct basis functions, the solutions of the wave
equation for the interspherical region and MT spheres should be sewn together. This
can be achieved by selecting the coefficients Alm˛ and Blm˛ in Eq. (18).

A major mathematical difficulty here is that function (Eq. (17)) is expressed in
a general cylindrical coordinate system and function (Eq. (18)), in a local spherical
system. However, using the theorem of addition for cylindrical functions, we can
express ‰II through the cylindrical coordinates Z˛ , ˆ˛ and R˛ of the sphere ’ and
the local spherical system r, ™, ®:

‰II˛ .r; 
; ' jk; P;M;N / D
1

p
2�c

exp fi .KPZ˛ CMˆ˛/g

� exp fiKP r cos 
g .�1/M

�

C1X
mD�1

�
CJ

MNJm�M
�
�jM j;NR˛

�
C CY

MNYm�M
�
�jM j;NR˛

��

�Jm
�
�jM j;N rsin


�
eim'

: (23)

Equating functions (Eqs. (18) and (23)) and their derivatives at the boundary of the
MT spheres, we obtain

Alm˛ D DMNP;lm˛ r
2
˛

˚
I2 Pul˛.r˛; El˛/ � I1 Pu0l˛.r˛; El˛/



; (24)

Blm˛ D DMNP;lm˛ r
2
˛

˚
I1 u0l˛.r˛; El˛/ � I2 ul˛.r˛; El˛/



: (25)

Here, the following designations are used:

I1.MNPI lm˛/ D

�Z

0

exp fiKP r˛ cos 
g

�Jm
�
�jM j;N r˛ sin 


�
P
jmj
l .cos 
/ sin 
d
;

(26)
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DMNP;lm˛ D
1
p
2c
.�1/

mCjmj
2
C l

i l
�
.2l C 1/

.l � jmj/Š

.l C jmj/Š

�1=2

� exp fi .KPZ˛ CMˆ˛/g .�1/M

�
�
CJ
MNJm�M

�
�jM j;NR˛

�
C CY

MNYm�M
�
�jM j;NR˛

��
(27)

I2 .MNPI lm˛/ D 2
�=2R
0

exp i.KP r˛ cos 
/iKP cos 


�Jm.�jM j;N r˛ sin 
/C .1=2/�jM j;N sin 

�ŒJm�1.�jM j;N r˛ sin 
/ � JmC1.�jM j;N r˛ sin 
/�P jmjl

�.cos 
/ sin 
d
:

(28)

The integrals I1 and I2 are calculated by numerical integration methods. The overlap
and Hamiltonian integrals are calculated by the formula:

hP2M2N2jP1M1N1i D ıP2P1ıM2M1ıN2N1 �
1

c
.�1/M1CM2

�
X
˛

exp fi Œ.KP1 �KP2/Z˛ C .M1 �M2/ˆ˛�g

(29)

�

C1X
mD�1

�
CJ
M2N2

Jm�M2

�
�jM2j;N2R˛

�
C CY

M2N2
Ym�M2

�
�jM2j;N2R˛

��

�
�
CJ
M1N1

Jm�M1

�
�jM1j;N1R˛

�
C CY

M1N1
Ym�M1

�
�jM1j;N1R˛

��

�

8<
:I3 .P1 � P2;N2;N1;M2;M1Im; r˛/ � r

4
˛

1X
lDjmj

.2l C 1/.l � jmj/Š

.l C jmj/Š
clm˛

9=
;;

where

I3 D 2

�=2Z

0

r˛Z

0

cos Œr .KP1 �KP2/ cos 
� Jm
�
�jM2j;N2r sin 


�

�Jm
�
�jM1j;N1r sin 


�
r2 sin 
 d
dr; (30)

clm˛ D
˚
I �2 .M2N2P2I r˛; l; jmj/ Pul˛.r˛; El˛/

� I �1 .M2N2P2I r˛; l; jmj/ Pu0l˛.r˛; El˛/



�
˚
I2 .M1N1P1I r˛; l; jmj/ Pul˛.r˛; El˛/

� I1 .M1N1P1I r˛; l; jmj/ Pu0l˛.r˛; El˛/



CNlm˛
˚
I �1 .M2N2P2I r˛; l; jmj/ u0l˛.r˛; El˛/ (31)
�I �2 .M2N2P2I r˛; l; jmj/ ul˛.r˛; El˛/




�
˚
I1 .M1N1P1I r˛; l; jmj/ u0l˛.r˛; El˛/

�I2 .M1N1P1I r˛; l; jmj/ ul˛.r˛; El˛/


;
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D
P2M2N2

ˇ̌
ˇ bH
ˇ̌
ˇP1M1N1

E

D
�
KP1KP2 C �jM1j;N1�jM2j;N2

�
ıP2P1ıN2N1ıM2M1 �

1

c
.�1/M1CM2

�
X
˛

exp f i Œ.KP1 �KP2/Z˛ C .M1 �M2/ˆ˛�g

�

C1X
mD�1

�
CJ
M2N2

Jm�M2

�
�jM2j;N2R˛

�
C CY

M2N2
Ym�M2

�
�jM2j;N2R˛

��

�
�
CJ
M1N1

Jm�M1

�
�jM1j;N1R˛

�
C CY

M1N1
Ym�M1

�
�jM1j;N1R˛

��

�
˚
KP1KP2I3 C �jM2j;N2�jM1j;N1 I

0
3Cm

2I10 �

�r4˛

1X
lDjmj

.2l C 1/.l � jmj/Š

.l C jmj/Š
ŒEl˛clm˛ C �lm˛�



: (32)

Here,

I
0

3 D 2

�=2Z

0

r˛Z

0

cos Œr .KP1 �KP2/ cos 
� J
0

m

�
�jM2j;N2r sin 


�

�J
0

m

�
�jM1j;N1r sin 


�
r2 sin 
d
dr; (33)

I4 D 2

r˛Z

0

�=2Z

0

cos fr .KP1 �KP2/ cos 
gJm.�jM2j;N2r sin 
/

�Jm.�jM1j;N1r sin 
/ .sin 
/�1 drd
; (34)

�lm˛ D f I
�
2 .r˛;KP2;M2;N2; l; jmj/ I1 .r˛;KP1;M1;N1; l; jmj/

C I �1 .r˛;KP2;M2;N2; l; jmj/ I2 .r˛;KP1;M1;N1; l; jmj/g

� Pul˛.r˛; El˛/ u0l˛.r˛; El˛/ � I �2 .r˛;KP2;M2;N2; l; jmj/

�I2 .r˛;KP1;M1;N1; l; jmj/ Pul˛.r˛; El˛/ ul˛.r˛; El˛/

�I �1 .r˛;KP2;M2;N2; l; jmj/ I1 .r˛;KP1;M1;N1; l; jmj/ Pu0l˛ .r˛; El˛/

� u0l˛ .r˛; El˛/ ; (35)
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Finally, from the equation

det khP2M2N2 jH jP1M1N1i �E.k/ hP2M2N2 j P1M1N1ik D 0; (36)

the electron dispersion law E.k/ of an isolated nanotube is determined.

2.2 Results

The use of the cylindrical MT approximation makes the calculation depending on
the radii a and b of the outer and inner potential barriers. They were varied so as to
reproduce the full width of the valence band of a (5, 5) carbon nanotube (22 eV).
In the basis set including all LACWs with an energy up to 50 eV (Ecut D 50 eV),
coincidence was achieved at b D R˛ � 1:21Å and a D R˛ C 1:21Å. At Ecut D

100 eV, coincidence was achieved at b D R˛ � 1:38Å and a D R˛ C 1:38Å. In
calculations of the other carbon nanotubes, the radii a and b were not optimized;
rather, they were calculated by these formulas depending on the selectedEcut value,
50 or 100 eV.

2.2.1 Metallic Armchair (n, n) Nanotubes

We calculated (n, n/ systems with n from 3 to 12. Figures 3 and 4 show the band
structure and density of states in the vicinity of the Fermi level for the (12,12) carbon
nanotube [34]. The computation results show that carbon nanotubes with n from 4 to
12 have a metal-type band structure with the Fermi level located at the intersection
of two �-bands at the point k D .2=3/.�=c/. The density of states near the Fermi
level between the first singularities of the valence band and conduction band is con-
stant. In the center of the Brillouin zone, the upper occupied ¢ level �v.�/ is located
above the upper occupied π level �v.π/ in all (n, n/ carbon nanotubes. In π-electron
models, Sv1 and Sc1 are the boundary singularities of the valence and conduction
bands, respectively, and the minimal gap is E11 D E11.��

�/ D E.Sv1/ � E.Sc1/.
However, as can be seen in Figs. 3 and 4, in the center � and at the boundary K
of the Brillouin zone, the lower �c1.�/ and Kc1.�/ states are located below the Sc1
singularity and form a shoulder under the Sc1 peak of the density of states. The
Sv1 � Sc1 gap still corresponds to the direct transition with the minimal energy. The
gap E11.���/ D EŒ�c1.�/��EŒ�v.�/� corresponds to the second direct transition
(Fig. 3). For (n, n/ carbon nanotubes with n D 8–10, the E11.���/ and E11.���/
energies are almost the same, and for tubes of smaller diameter,E11.���/ is 0.2–0.5
eV smaller than E11.���/. The plots of the direct transition energies E11.���/ and
E11.��

�/ versus the diameter d of nanotubes are shown in Fig. 5. There are signif-
icant deviations from the relationship E11 � d�1. The situation is complicated by
close E11.���/ and E11.���/ values and the intersection of these characteristics
in the range 0:7 nm�1 < d�1 < 1:0 nm�1 (n D 8–10).
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Fig. 3 Band structure of the
(12,12) nanotube

Fig. 4 Density of states
(DOS) of the (12,12) nan-
otube near the Fermi level
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Fig. 5 Correlation between
the diameter d and
direct transition energies.
Series 1: E11.ππ�/ D
E.Sv1/ � E.Sc1/;
series 2: E11.¢π�/ D
EŒ�c1.π/��EŒ�v.�/�;
series 3: experimental data
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The electronic structure of the (3,3) nanotube is sharply different [34]. Here, the
Sc1 singularity coincides with the Fermi level, which leads to a sharp increase in
the density of states at this level and correlates with the experimentally observed
superconductivity of the (3,3) nanotube.

2.2.2 Semiconducting Zigzag (n, 0) Nanotubes

The (n, 0) carbon nanotubes with n D 5–26 not a multiple of three are semiconduct-
ing (otherwise, the nanotubes are semimetals) [35]. As an example, Figs. 6 and 7
show the band structure and density of states of (13, 0) carbon nanotube. The bound-
ary singularities of the valence band (Sv1/ and conduction band (Sc1/ correspond to
the direct ππ� transition at the point � , andE11 D E.Sc1/�E.Sv1/. The dependence
of E11 on d�1 is oscillating (Fig. 8): the E11.d�1/ function alternates between two
curves corresponding to (n, 0) nanotubes for which the remainder upon division of n
by 3 is equal to 1 or 2 (nmod 3D 1 and nmod 3D 2, respectively). The curve mod
3 D 1 is located above the curve mod 3 D 2. The maximal values E11 D 0:90 eV
and E11 D 0:56 eV for mod 3 D 1 and mod 3 D 2 correspond to the tubules with
d D 1.25 (n D 16) and 11Å (n D 14), respectively. A further decrease in tube di-
ameter leads to a sharp decrease in the gap E11 (Table 1). For carbon nanotubes
with n � 8.d�6:3 Å), the gap is closed. Figure 8 shows that there is not a one-to-
one correspondence between E11 and d . For example, the E11 gap of about 0.3 eV
corresponds to four zigzag tubes with d D 7:8, 8.6, 20.4, and 40.8 Å. The same
is observed for the second direct gap E22 D E.Sc2/ � E.Sv2/. The amplitudes of
oscillations of the E22.d�1/ function are even greater (approximately by a factor
of 3) than in the case of E11.d�1/ (Fig. 9).
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Fig. 6 Band structure of the
(13,0) nanotube

Fig. 7 Density of states of
the (13,0) nanotube near the
Fermi level
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Fig. 8 Minimal optical gap
vs. the diameter of semicon-
ducting (n,0) nanotubes 22
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Table 1 Minimal energy gap
of single-walled nanotubes

SWNT E11, eV
(10,0) 0.31
(11,0) 0.32
(13,0) 0.83
(14,0) 0.56
(16,0) 0.89
(17,0) 0.50
(19,0) 0.80
(20,0) 0.46
(22,0) 0.75
(23,0) 0.35
(25,0) 0.70
(26,0) 0.41
(28,0) 0.66
(29,0) 0.38
(31,0) 0.62

Fig. 9 Second direct optical
gap E22 vs. the diameter
d of semiconducting (n,0)
nanotubes
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3 Embedded Single-Walled Carbon Nanotubes

Interest has arisen in the design of hybrid electronic devices in which a carbon
nanotube is embedded into a common bulk semiconductor. Such devices can be
exemplified by electronic elements consisting of a single-walled carbon nanotube
embedded into an epitaxially grown semiconductor heterostructure [37]. Let us con-
sider how the interaction with a surrounding crystal can change the band structure
of the embedded carbon nanotube [30, 36].

3.1 Computational Method

For an isolated nanotube, there are two vacuum regions �v, on the outside and
inside of the nanotube. The nanotube and the vacuum regions are separated by
impenetrable (infinite) cylindrical potential barriers. For an embedded nanotube, it
is surrounded on the outside with the region of a single-crystal matrix �m (Fig. 10).
The barrier Vm between the nanotube and the matrix is penetrable (finite), so that
tunneling of electrons from the nanotube into the matrix is possible. Let us find the
solutions of the Schrödinger equation for the orbitals and electronic energies of the
nanotube in the matrix. The matrix is assumed to be a homogeneous medium with
a constant potential Vm, which corresponds to the model of a single-walled carbon

Fig. 10 (Top) Nanotube
embedded into a matrix and
(bottom) the cross section of
the electron potential along
the N0M line MT
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nanotube in contact with an electron gas. Let us consider the case where the barrier
Vm is located noticeably above the Fermi level, so that the matrix has a relatively
weak effect on the states of the valence and conduction bands of the nanotube.

In the interspherical region of the nanotube and in the matrix region, the LACWs
are the solutions of Schrödinger equation (Eq. (3)) with the potential

U .R/ D

8<
:
0; b � R � a

1; R < b

Vm; R > b

: (37)

Due to the cylindrical symmetry of the potential U.R/, the solutions of Eq. (3) are
presented in the form‰.Z;ˆ;R/D‰P .Z/‰M.ˆ/‰MN.R/. The‰MN .R/ function
describes the radial movement of an electron in the interspherical region �II of the
nanotube and in the matrix region �m.

In the nanotube region, U.R/D 0 and Eq. (3) takes the form of Bessel equation
(Eq. (9)). Its solutions, as in the cased of an isolated nanotube, are represented by
Eq. (10).

In the matrix region (U.R/DVm/, the ‰jM jN .R/ functions must obey the
equation:

�
d2

dR2
C
1

R

d

dR
�
�
Vm � �

2
jM j;N

�
�
M2

R2

�
‰jM j;N .R/ D 0: (38)

Equation (38) at Vm > �2MN is a modified Bessel equation. Its solutions when R
tends to infinity are modified Bessel functions of the first kind KM :

‰MN .R/ D C
K
MNKM

�
�KjM j;NR

�
; (39)

where �K
jM j;N

D
�
Vm � �

2
jM j;N

�1=2
. The function ‰MN .R/ should vanish at R D b,

be continuous and differentiable at R D a, and normalized. As a result, we obtain
the set of equations for the coefficients CJ

MN , CY
MN and CK

MN and for the energy
�2
jM jN

:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

CJMNJM
�
�jM j;N b

�
C CYMNYM

�
�jM j;N b

�
D 0

CJMNJM
�
�jM j;N a

�
C CYMNYM

�
�jM j;N a

�
D CKMNKM

�
�KjM j;N a

�

�jM j;N

h
CJMNJ

0
M

�
�jM j;N a

�
C CYMNY

0
M

�
�jM j;N a

�i
D �KjM j;N C

K
MNK

0
M

�
�KjM j;N a

�

1Z

b

ˇ̌
‰jM j;N .R/

ˇ̌2
RdR D 1;

:

(40)
Thus, the form of the basis function in the interspherical region of the nanotube and
in the matrix is finally determined.
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As in the case of an isolated nanotube, the LACW inside the MT spheres is
expanded in spherical harmonics Yl;m (Eq. (18)). Coefficients Alm and Blm are
selected so that both ‰ (k,P;M ,N/ and its derivative have no discontinuities at
the boundaries of the MT spheres. However, the analytical form of the cylindrical
wave near the MT spheres of the nanotube remains unaltered in going from the iso-
lated nanotube to the nanotube embedded into the matrix. Therefore, the analytical
expressions for the coefficients Alm˛ and Blm˛ (Eqs. (24) and (25), respectively)
remain valid. Thus, at b � R � a, the LACWs ‰MNP have the same analytical form
as for a separate nanotube, whereas, in the matrix region,

‰PMN.R/ D
CK

MNp
2�c

ei.kCkP /ZeiMˆKM

�
�KjM j;NR

�
; (41)

the analytical expressions for the overlap and Hamiltonian integrals (Eqs. (29) and
(32), respectively) remain valid, but the �jM j;N , CJ

MN and CY
MN values should be

calculated by Eqs. (40).

3.2 Calculation Results

We studied the effect of the crystalline matrix on the electronic states of metal-
lic (n, n/ nanotubes with 4 � n � 12 and semiconducting (n, 0) nanotubes with
10 � n � 25 (n is not a multiple of three). Representative results are shown in
Figs. 11 and 12. To characterize the barrier Vm, we used the dimensionless parame-
ter "m D Vm=�, where � is the position of the Fermi level in an isolated nanotube
relative to the constant interspherical potential. It can be seen that the delocalization
of electrons of a metallic (5,5) nanotube into the matrix region leads to a strong
disturbance of the band structure. The most important matrix effect is the shift of
the ¢ states located at the point � toward higher energies. As a result, the top of the
valence ¢ band �v1 is shifted into the conduction band and ¢ electrons start partic-
ipating in charge transfer. The point of intersection of boundary π bands is shifted
toward the edge of the Brillouin zone, and the full width of the valence band is re-
duced. The metallic character of the band structure of an armchair nanotube persists.
In the pristine nanotube, the Fermi level is located at a minimum, and tunneling of
electrons into the matrix region leads to an increase in the density of states at the
Fermi level.

For semiconducting nanotubes, the minimal gapE11 in the center of the Brillouin
zone is sensitive to the matrix effect. With a decrease in the barrier Vm, the ini-
tial gap E11 of a (13,0) nanotube first slightly increases and then sharply decreases
and collapses. The afore described matrix effect is common to nanotubes of all
diameters.

Metallization of nanotubes under the action of a matrix as predicted by the model
is consistent with the electrical properties of hybrid elements consisting of single-
walled nanotubes in semiconducting layers [37]. In all 20 experimentally studied
elements, the conductivity at room temperature was independent of the gate voltage;
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Fig. 11 Density of states of
the single-walled (5,5) nano-
tube embedded into a crystal
matrix for different barriers
(6, 4, and 2, respectively)

a

b

c

d

i.e., all nanotubes in crystals turned out to be metallic. (According to statistics, one
third of the tubes, i.e., about seven nanotubes, should be metallic, whereas the rest
of them, i.e., about 13 nanotubes, should be semiconducting.)

4 Double-Walled Nanotubes

Double-walled nanotubes are the simplest case of multiwalled nanotubes. They
consist of two concentric cylindrical graphene layers with a strong covalent bond
between C atoms in each layer and a weak van der Waals interaction between
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Fig. 12 Density of states of the single-walled (13,0) nanotube embedded into a crystal matrix for
different barriers (6, 4, and 2, respectively)

the layers. From the standpoint of nanoelectronics, double-walled nanotubes are
of interest since they are molecular analogues of coaxial cables. The interlayer in-
teraction in a double-walled nanotube has an effect on both the optical and electrical
properties of a nanocable [29, 38].

4.1 Computational Method

Let us assume that the atoms of a double-walled nanotube are confined between two
infinite cylindrical barriers impenetrable to electrons �b1 and �a2, beyond which
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Fig. 13 (Top) Cross section of a double-walled nanotube and (bottom) the electron potential along
the line N0M. Here, HT1 and HT2 are the inner and outer nanotubes, respectively; �II;1 and �II;2
are the interspherical regions of these tubes; �˛1 and �˛2 are the muffin-tin (MT) regions of tubes
1 and 2, respectively; �b1 and �a2 are the internal and external cylindrical impenetrable barriers
between the double-walled nanotube and the vacuum regions �v; Vf is the potential energy in the
�f region confined by the cylindrical potential barriers �a1 and �b2

the vacuum region �v is located (Fig. 13). The cylindrical potential barriers �a1

and �b2 on the outer side of the internal tube and on the inner side of the external
tube are penetrable and, hence, tunneling exchange of electrons between the lay-
ers of a double-walled tube is possible. The radii of these barriers a1, b1 and a2,
b2 are selected as in the case of single-walled nanotubes. The potential Vf of the
interlayer region �f in this model is the only parameter. We select it taking into
account the graphite band structure. In graphite, the interlayer interaction splits and
shifts the bands by about 1–2 eV. Calculations of three-dimensional graphite in the
MT approximation and by the full potential method show that disturbances of the
valence π and ¢ bands are 4–2 and 0.5–1.0 eV, respectively [39]. In the double-
walled nanotube with the same interlayer distance, the band splittings and shifts
will be about two times smaller since each graphene layer in graphite interacts with
two nearest layers, whereas there is only one interlayer interaction in the double-
walled nanotube. In addition, the effects of interlayer interaction are expected to
be even smaller as compared to graphite due to the hybridization of the π and ¢
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states caused by the curvature of the tubes. Therefore, the potential Vf , the same
for all double-walled nanotubes, was selected so that the level splitting and shifts in
the (5,5)@(10,10) nanotube were, on average, 0.5 eV; the interlayer distance in this
double-walled tube, 3.4 Å, is the same as in graphite.

In the interspherical region of the nanotube and in the classically impenetrable re-
gion between these spheres, the wave functions are the solutions of the Schrödinger
equation for the free electron motion, which has its previous form (Eq. (3)); how-
ever, the potential U.R/ in this case has a more complicated form:

U .R/ D

8̂
<
:̂

0; b1 � R � a1; b2 � R � a2

1; R < b1;R > a2

Vf ; a1 � R � b2

: (42)

Due to the symmetry of the potential U.R/, the solution of Eq. (3) is again pre-
sented in the form ‰.Z;ˆ;R/ D ‰P .Z/‰M.ˆ/‰MN.R/. The ‰MN.R/ function
describes the radial movement of an electron in the interspherical regions �II;j of
two nanotubes (jD1; 2) and in the classically forbidden region �f . In the region
�II;j , U.R/ D 0, Eq. (7) is the Bessel equation and its solutions are linear combi-
nations of cylindrical Bessel functions of the first JM and second YM kinds:

‰
j

II;jM j;N
.R/ D CJ;j

M;N
JM

�
�jM j;NR

�
C CY;j

M;N
YM

�
�jM j;NR

�
; j D 1; 2: (43)

In the region �f , U.R/ D Vf , and the ‰f;jM j;N .R/ functions must obey the
equation

�
d2

dR2
C
1

R

d

dR
�
�
Vf � �

2
jM j;N

�
�
M2

R2

�
‰f;jM j;N .R/ D 0: (44)

Let us consider the electronic levels of a double-walled nanotube located below the
potential Vf of the classical forbidden region. Equation (44) at Vf > �2

jM j;N
is a

modified Bessel equation [32, 33]. Its solution is a linear combination of modified
Bessel functions of the first KM and second IM kinds:

‰f:jM j;N .R/ D C
K
M;N
KM

�
�
f

jM j;N
R
�
C CI

M;N
IM

�
�
f

jM j;N
R
�
; (45)

where �f
jM j;N

D
�
Vf � �

2
jM j;N

�1=2
. The function‰II;f jM jN .R/ should vanish at the

inner and outer barriers of a double-walled tube:

CJ;1
M;N
JM

�
�jM j;N b1

�
C CY;1

M;N
YM

�
�jM j;N b1

�
D 0; (46)

CJ;2
M;N
JM

�
�jM j;N a2

�
C CY;2

M;N
YM

�
�jM j;N a2

�
D 0; (47)
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be continuous and differentiable at the boundaries between the tubes at R D a1 and
R D b2:

CJ;1
M;N
JM

�
�jM j;N a1

�
C CY;1

M;N
YM

�
�jM j;N a1

�

D CK
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KM
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�
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�
�
f
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�
; (48)
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and normalized: Z a2

b1

j‰IIf;jM jN .R/j
2RdR D 1: (52)

From Eqs. (46)–(52), we can calculate and CJ;j
M;N

and CY;j
M;N

.j D 1; 2/, CK
M;N

, CI
M;N

,
and �jM j;N .

Thus, in the regions �II;1, �II;2, and �f , the form of the basis function ‰IIf ;PMN

is finally determined. Inside the MT spheres ˛ of the j th tube, the LACW ‰PMN of
the double-walled tube is expanded in spherical harmonics Ylm (18).

Both the cylindrical wave ‰II;PMN and the spherically symmetric part ‰I;j˛;PMN

of the augmented cylindrical wave in the MT regions for the double-walled nan-
otubes have the same form as for the constituent tubes. Therefore, the expres-
sions for the overlap and Hamiltonian integrals obtained for the single-walled tube
(Eqs. (31) and (32), respectively) can be rewritten for the double-walled tube:
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The electronic structure of the double-walled tube can be described as consisting
of the band structure of its constituent single-walled nanotubes. Indeed, for the
eigenvalues ‰nk.r/, we can calculate the probabilities wj;nk and wf;nk of electrons
occurring in the j th region of the tube and in the classically impenetrable region:
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At a high barrier Vf , the probabilities wj;nk are close to zero or unity for differ-
ent dispersion curves and are almost independent of the wave vector k. Hence, each
dispersion curveEj;n.k/ of the double-walled tube can be characterized by the num-
ber j of the tube on which the electrons of a given band are mainly localized. The
band structures of double-walled nanotubes can be represented by two structures
corresponding to the state of the inner and outer tubes. The full band structure of
a double-walled nanotube is a superposition of the band structures of the core and
shell tubes.
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4.2 Computational Results

4.2.1 Semiconducting Double-Walled Nanotubes

We calculated semiconducting .n; 0/@.n0; 0/ nanotubes with 10 � n � 23 and
19 � n0 � 32, where n and n0 are not multiples of 3. Table 2 presents the minimal
gaps E11 in double-walled nanotubes and the shifts �E11 of these gaps caused by
the interlayer interaction. The densities of states near the Fermi level of the single-
walled .13; 0/ and .22; 0/ nanotubes can be compared with analogous data for the
core .13; 0/ and shell .22; 0/ tubes in the double-walled system (Fig. 14).In the
.13; 0/@.22; 0/ double-walled nanotube, both the inner and outer tubes belong to
the series of n mod 3 D 1; the minimal optical gap (0.83 eV) of the smaller single-
walled .13; 0/ nanotube is wider than the gap (0.76 eV) of the larger .22; 0/ tube,
which is consistent with the simple approximate equation E11 � d�1. Our calcu-
lations show that the minimal optical gap E11 of the .13; 0/ nanotube increases by
0.19 eV, while that of the .22; 0/ nanotube decreases by 0.19 eV after the formation
of the double-walled system. The density of states curves near the Fermi level show
an analogous decrease in the energy shift of the second gapE22 by 0.3 and 0.4 eV for
the .13; 0/ and .22; 0/ nanotubes, respectively. The interlayer interaction leads to an
even stronger disturbance of the band structure of the inner nanotube as compared

Table 2 Minimal energy gap E11 of the core and shell nanotubes in the double-walled nanotube
and gap shifts �E11, after its formation

E11, eV �E11, eV

Double-walled
nanotube

Inner Outer Inner Outer

(10,0)@(19,0) 0.64 0.65 0.32 �0:15
(10,0)@(20,0) 0.63 0.53 0.32 0:07

(10,0)@(19,0) 0.64 0.65 0.32 �0:15
(10,0)@(20,0) 0.63 0.53 0.32 0.07
(11,0)@(19,0) 0.71 0.65 0.39 �0:16
(11,0)@(20,0) 0.71 0.53 0.39 0.07
(13,0)@(22,0) 1.02 0.55 0.19 �0:19
(13,0)@(23,0) 1.02 0.50 0.19 0.15
(14,0)@(22,0) 0.70 0.56 0.14 �0:19
(14,0)@(23,0) 0.70 0.50 0.14 0.15
(16,0)@(25,0) 0.94 0.52 0.04 �0:18
(16,0)@(26,0) 0.93 0.48 0.04 0.07
(17,0)@(25,0) 0.45 0.52 �0:05 �0:18
(17,0)@(26,0) 0.45 0.48 �0:05 0.07
(19,0)@(28,0) 0.76 0.46 �0:05 �0:20
(19,0)@(29,0) 0.76 0.46 �0:05 0.07
(20,0)@(28,0) 0.42 0.46 �0:05 �0:20
(20,0)@(29,0) 0.42 0.46 �0:05 0.07
(22,0)@(31,0) 0.75 0.40 0.00 �0:22
(23,0)@(31,0) 0.40 0.40 0.06 �0:22
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Fig. 14 Densities of states near the Fermi level: (a) (13,0) single-walled nanotube; (b) (13,0)
core nanotube nested into the (22,0) nanotube; (c) (22,0) single-walled nanotube; and (d) the outer
(22,0) nanotube with the nested (13,0) tube
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to the outer nanotube. The reason for this is that the extra space located between the
barriers �b2 and �a2 accessible for the electrons of the inner .13; 0/ nanotube is
about twice as large as the new accessible region between the �b1 and �a1 barriers
for the outer .22; 0/ nanotube. Upon the formation of the .13; 0/@.22; 0/ double-
walled nanotube, the valence band widthEv D EF�E.�2vs/ of the .13; 0/ nanotube
decreases by 1.40 eV and that of the .22; 0/ nanotube, only by 0.04 eV.

In the double-walled .14; 0/@.22; 0/ nanotube, the inner tube belongs to the
series of n mod 3 D 2. Here, the gap of the inner .14; 0/ nanotube is narrower than
the gap of the outer .22; 0/ single-walled nanotube with n mod 3 D 1. Due to the
interlayer interaction, the gap of the inner tube increase by 0.14 eV and that of the
outer tube decrease by 0.19 eV. For the core and shell nanotubes, the gap shifts�E11
caused by the interlayer interaction are oppositely directed in the double-walled
.13; 0/@.22; 0/ and .14; 0/@.22; 0/ nanotubes: The �E11 values are positive and
negative for the inner and outer nanotubes, respectively.

In the double-walled .13; 0/@.23; 0/ nanotube with the wide-gap inner tube and
the narrow-gap outer tube, the gap shifts �E11 are 0.19 and 0.15 eV, respectively,
i.e., almost equal and positive. The same is true for the .14; 0/@.23; 0/ nanotube,
in which both tubes belong to the series of n mod 3 D 2. Here, �E11 is 0.14
and 0.15 eV for the core and shell nanotubes, respectively.

Table 2 shows that, whatever the type of the inner tube, the energy gap E11
of the outer tube decreases by 0.15–0.22 eV if n mod 3 D 2. On the other hand,
for the outer tube with n mod 3 D 1, the gap shift �E11 is always negative:
�0:15 � �E11� � 0:05 eV. In both cases, the �E11 shifts do not decrease, but
slightly oscillate in going to tube of larger diameter. For the inner tubes, the �E11
shift directly depends on d . For the series with n mod 3 D 2 and n mod 3 + 1 with
10 � n � 16, the �E11 shift is positive, and the maximal �E11 value is equal to
0.39 and 0.32 eV, respectively. In going to inner nanotubes of larger diameter, the
�E11 shift sharply decreases and then varies from �0.05 to 0.06 eV.

4.2.2 Metallic Double-Walled Nanotubes

Let us consider the metallic double-walled .5; 5/@.10; 10/ nanotube. Figure 15
shows the influence of interlayer interaction on the density of states. The inter-
layer interaction does not disturb the metal character of the band structure of
.5; 5/ and .10; 10/ nanotubes. The Fermi level is located between the π bands near
kD.2=3/.�=c/ both in each single-walled nanotube and in the double-walled tube.
The formation of the double-walled nanotube leads to an increase in the valence
band width by 1.3 eV for the .5; 5/ nanotube and only 0.15 eV for the .10; 10/
nanotube. The high-energy shift of the � states from the occupied π states is the
most significant effect of the interlayer interaction in double-walled armchair nan-
otubes. In the center of the Brillouin zone, the highest-lying occupied ¢ states �v1.¢/

are above the highest-lying occupied π states �v1.�/ in all single walled armchair
nanotubes.
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Fig. 15 Densities of states near the Fermi level: (a) (5,5) single-walled nanotube; (b) (5,5) core
nanotube nested into the (10,10) nanotube; (c) (10,10) single-walled nanotube; and (d) the outer
(10,10) nanotube with the nested (5,5) tube
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5 Single-Walled Chiral Nanotubes

For even small-diameter chiral nanotubes, the number of atoms in the translational
unit cell can be very large. For example, the translational cell of the achiral (10,10)
nanotube comprises 40 atoms, whereas the translational cell of the chiral (10,9)
tube of somewhat smaller diameter comprises 1,084 atoms. The basis set required
for convergence rapidly increases with an increase in the number of atoms in the unit
cell, which renders impracticable calculations of chiral tubes. These facts indicate
that all rather than only translational symmetry properties of nanotubes should be
considered in development of the theory of their electronic structure [31, 39].

5.1 Structure of Nanotubes

The atomic structure of any single-walled carbon nanotube is determined by two
indices .n1; n2/ and the bond length between carbon atoms dC�C D 1:42 Å and can
be generated in the following way [12]. Let us consider a cylinder of radius RNT

infinite along the Z axis:

RNT D
dC�C

p
3

2�

�
n21 C n

2
2 C n1n2

�1=2
(57)

Let us select a point at this surface that determines the cylindrical coordinates Z,
ˆ, R of the first atom of the nanotube. The coordinates of the second atom of the
nanotube are obtained by rotation of the coordinates of the first point through the
angle ˆT2 around the Z axis with the translation ıT2 along this axis:

ˆT2 D �
n1 C n2

n21 C n
2
2 C n1n2

; ıT2 D
dC�C

2

n1 � n2�
n21 C n

2
2 C n1n2

�1=2 : (58)

The .n1; n2/ nanotube has an axis of symmetry Cn, where n is the greatest common
factor of the n1 and n2 indices; therefore, the coordinates of another 2(n–1) atoms
are found from the rotational symmetry of the nanotube by means of n–1 rotations
of the coordinates of the first two points around the Z axis through the angle !n D
2�=n. These 2n atoms determine the repeating motif of the nanotube structure.
The arrangement of the other atoms of the nanotube is determined by means of
screw translations S.!, h/ of the coordinates of the 2n atoms. The screw axis of the
.n1; n2/ nanotube is characterized by an angle 0 < ! < 2� and translation h

! D 2�
n1p1 C n2p2 C .n2p1 C n1p2/ =2

n21 C n
2
2 C n1n2

;

h D
3dC�C

2
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n21 C n

2
2 C n1n2

�1=2 D
3
p
3d2C�C
4�

n

RNT
: (59)

where p1 � p2 are integers obeying the equation p2n1 � p1n2 D n.
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Thus, when rotational and screw symmetries are considered, the actual rather
than translational unit cell of any nanotube contains only two atoms. If these sym-
metry properties are taken into account when writing basis wave functions, the
electronic structures of any nanotube can be calculated.

5.2 Computational Method

Let us discuss the symmetry properties of the wave function of the nanotube. Due
to the existence of the n-fold symmetry axis, we can determine the discrete wave
vector kˆ corresponding to the irreducible representations of a cyclic group. The
wave function ‰ should satisfy the equation

‰.Z;ˆC t!n; R/ D e
ikˆt!n‰.Z;ˆ;R/ (60)

where t is an integer. Substituting t D n and using the cyclic conditions ‰.Z;ˆC
2�;R/ D ‰.Z;ˆ;R/, we find that the kˆ values should be integers and can be
written as kˆ D LC nM , where M D 0;˙1; : : : and L D 0; 1; : : : ; n � 1.

An ideal nanotube infinite along the Z axis is also invariant with respect to op-
erations of screw translation S.h; ¨/, which is the displacement h along this axis
with rotation about it through the angle ¨. The screw translations form an Abelian
group isomorphic to the group of primitive translations T .h/; therefore, for the wave
function, the Bloch theorem should be valid:

‰.Z C th;ˆC t!;R/ D eiKP th‰.Z;ˆ;R/; (61)

where
KP D kC kP ; kP D

2�

h
P;P D 0;˙1; : : : (62)

and k is the wave vector in the first Brillouin zone.
Again, the potential is assumed to be spherically symmetric in the vicinity of

atoms and constant in the interatomic space. It is also assumed that the atoms in the
nanotube are located between two cylindrical barriers impenetrable for electrons.
In the interspherical region, the basis wave function can be represented as a sym-
metrized cylindrical wave being the solution of the Schrödinger equation for the
free electron motion in a cylindrical potential well that meets symmetry properties
(Eqs. (60)–(62)):

‰II;PMN.Z;ˆ;Rjk; L/

D
1p

2�h=n
exp i

nh
kC kP � .LC nM/

!

h

i
Z C .LC nM/ˆ

o

�
h
CJ;L
M;N
JLCnM

�
�jLCnM j;NR

�
C CY;L

M;N
YLCnM

�
�jLCnM j;NR

�i
: (63)
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The basis function inside the MT spheres can be represented by a linear combination
of spherical harmonics (Eq. (18)). Then, with the use of the explicit analytical form
of basis functions, we can calculate the overlap and Hamiltonian matrix elements:

h‰P2M2N2 j‰P1M1N1i jk;L D ıP2M2N2;P1M1N1 �
n

h
.�1/n

.M2CM1/

�
X
˛

exp
n
i
h�

kP1 � kP2 � n .M1 �M2/
!

h

�
Z˛ C n .M1 �M2/ˆ˛

io

�

1X
mD�1

h
C
J;L
M2N2

Jm�.LCnM2/

�
�
jLCnM2j;N2

R˛

�

CCY;L
M2N2

Ym�.LCnM2/

�
�
jLCnM2j;N2

R˛

�i
(64)

�
h
C
J;L
M1N1

Jm�.LCnM1/

�
�
jLCnM1j;N1

R˛

�

CCY;L
M1N1

Ym�.LCnM1/

�
�
jLCnM1j;N1

R˛

�i

�

�
I
P2M2N2;P1M1N1
3;m˛ .r˛/

�r4˛

1X
lDjmj

.2l C 1/ Œ.l � jmj/Š�

2 Œ.l C jmj/Š�
S
P2M2N2;P1M1N1
lm;˛ .r˛/

�
;

D
‰P2M2N2 j

bH j‰P1M1N1

E
jk;L

D
h
kC kP2 � .LC nM2/

!

h
C �jLCnM2j;N2

i

�
h
kC kP1 � .LC nM1/

!

h
C �jLCnM1j;N1

i

�ıP2M2N2;P1M1N1 �
n

h
.�1/n

.M2CM1/

�
X
˛

exp
nh�

kP1 � kP2 � n .M1 �M2/
!

h

�
Z˛ C n .M1 �M2/ˆ˛

io

�

1X
mD�1

h
C
J;L
M2;N2

Jm�M2

�
�jLCnM2j;N2R˛

�

CCY;L
M2;N2

Ym�M2

�
�jLCnM2j;N2R˛

�i

�
h
C
J;L
M1;N1

Jm�M1

�
�jLCnM1j;N1R˛

�
C CY;L

M1;N1
Ym�M1

�
�jLCnM1j;N1R˛

�i



166 P. D’yachkov and D. Makaev

�
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(65)

5.3 Results

As typical computation results, the band structure of the (15, 5) nanotube and the
total and partial densities of states are shown in Figs. 16–18. This system has a
fivefold symmetry axis and a screw axis. The translational cell contains 260 atoms;
however, due to taking into account the screw symmetry of the nanotube, only 150
basis functions are required for convergence of electronic levels with an accuracy of
0.01 eV. As the cell contains only two atoms and, thus, only eight valence electrons,
the band structure becomes very simple. The valence band of the nanotube contains
only four dispersion curves that can be attributed to the completely filled s, p1� , p2� ,
and p� atomic states, and the low-energy region of the conduction band contains
only one p�� band. (Figs. 2 and 3).

Due to the introduction of the new quantum number L, the use of the symme-
try properties makes it possible to give a more detailed classification of electronic
eigenstates in nanotubes. The dispersion curves of this system are characterized by
the wave vector k, which enumerates the irreducible representations of the group of
screw translations, and L D 0, . . . , 4, corresponding to the rotational symmetry of
the system. It can be seen that this nanotube is a semiconductor in which the minimal

Fig. 16 Band structure of the (15,5) nanotube calculated using the basis set containing 150
functions
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Fig. 17 Total density of
states of the (15,5) nanotube

optical gap E11 D 0.58 eV corresponds to the direct transition at k 	 0:57.�=h/
and L D 3, the second gap E22 D 1:01 eV corresponds to the direct transition at
k 	 0:86.�=h/ and L D 4, and the third gap E33 D 1:82 eV corresponds to the
direct transition at k 	 0:28.�=h/ and L D 2. Other example of calculations of car-
bon nanotubes, including the .100; 99/ system containing more that 100 thousand
atoms in the unit cell were described in [31, 32].
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Fig. 18 Partial densities of
states of the (15,5) nanotube
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Anharmonicity and Soliton-Mediated
Transport: Thermal Solitons, Solectrons
and Electric Transport in Nonlinear
Conducting Lattices

W. Ebeling, M.G. Velarde, A.P. Chetverikov, and D. Hennig

Abstract We report here results about the excitation and survival of solitons in
one-dimensional (1d) lattices with Morse interactions in a temperature range from
low to physiological or room temperature (ca. 300 K). We also study their influ-
ence on added free electrons moving in the lattice. The lattice units (considered as
“atoms” or “screened ion cores”) are treated by classical (Newton–)Langevin equa-
tions. Then representing the densities of the core (valence) electrons of lattice units
by Gaussian distributions we visualize lattice compressions as enhanced density re-
gions. The local potentials created by the solitonic excitations are estimated as well
as the classical and quantum–mechanical occupations. Further we consider the for-
mation of solectrons, i.e. dynamic electron–soliton bound states. Finally, we add
Coulomb repulsion and study its influence on solectrons. A discussion is also given
about soliton-mediated electron pairing.

Keywords Morse interaction � Polaron � Soliton � Solectron � Electron pairing

1 Introduction

Excitation energy transfer processes in biological systems are problems of basic
and long-standing interest [1–3], and especially the functional primary processes in
photosynthetic reaction centers, drug metabolism, cell respiration, enzyme activities
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and gene regulation have been studied intensively. In this context understanding
the mechanism of electron transfer (ET) in biomolecules has attracted considerable
attention during the last years [4–23]. The exploitation of the ET processes to con-
struct technological devices has already been proposed and for such an achievement
a theoretical understanding of the transfer mechanism in nature is needed and/or it
has to be invented.

Inspired by the success of biomolecule modifications along with the determi-
nation of their three-dimensional structure microscopic theories for energy-transfer
reactions were developed. Data of high resolving X-ray analysis gave the essential
details on an atomic scale needed as input quantities for microscopic theories of ET
in them. This gave insight into the relation between the structure and function for the
energy and particle transfer in biomolecules and it has been shown how their steric
structure can affect electron tunneling. In particular, experiments indicate that the
H-bridges and covalent bonds involved in the biomolecules secondary structure are
vital for mediating ET. On the other hand under physiological conditions (ca. 300 K)
the ET may be activated by couplings to vibrational motion as long ago advocated
by Hopfield [4]. Furthermore, molecular dynamics simulations have predicted that
global molecule motions are very important for biochemical reactions for instance
in light-induced reactions of chromophores accompanied by nuclear motions and
for the ET in pigment protein complexes. In reaction center proteins proceed the
protein nuclear motions coherently along the reaction coordinate on the picosec-
ond time scale of ET as femtosecond spectroscopy revealed. Thus the vibrational
dynamics of biomolecules may serve as the driving force of ET in them. There-
fore investigations of transport mechanisms relying on the mutual coupling between
the electron amplitude and intramolecular bond vibrations in biomolecules are of
paramount importance.

Studies of energy storage and transport in macromolecules on the basis of self-
trapped states have a long history beginning with the work of Landau [24] and
Pekar [25, 26]. They introduced the concept of polaron (or as earlier said elec-
tron self-trapping), i.e. an electron accompanied by its own lattice distortion (a few
phonons in another language) forming a localized quasiparticle compound which
becomes the true electric carrier. In this context an approximate Hamiltonian sys-
tem is often used to model transport of such localized excitations [27, 28]. When
the size of the polaron is large enough so that the continuum approximation can
be applied to the underlying lattice system in a clever combination of physical in-
sight and mathematical beauty Davydov showed that a mobile self-trapped state can
travel as a solitary wave along the molecular structure and he coined the concept
of electro-soliton as electrical carrier and the natural generalization of the polaron
concept [29–32]. Since the work of Davydov the relevance of solitons for the energy
and particle transport in biomolecules has been recognized [33–36]. Similar ideas
to Davydov’s were also advanced by Fröhlich [37–43]; the relationship between the
two approaches was elucidated in [44]. Most of the studies of transport properties
in biopolymers are based on one-dimensional nonlinear lattice models, and recent
two- and three-dimensional extensions with respect to solitonic transport of vibra-
tional energy can be found, e.g. in [45–47]. Recent findings suggest that supersonic
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acoustic solitons can capture and transfer self-trapping modes in anharmonic one-
dimensional lattices [48]. Regarding the enforcing role played by soliton motion in
the functional processes in biomolecules we note that recently it has been proposed
that the folding and conformation process of proteins may be mediated by solitons
traveling along the polypeptide chains while interacting with a field corresponding
to the conformation angles of the protein [49]. Furthermore, in a nonlinear dynamics
approach to DNA dynamics it has been suggested that solitons propagating along
the DNA molecule may play an important role in the denaturation and transcription
process [50–54].

Hence, for a theoretical understanding of ET mechanisms in biomolecule the
models should not only incorporate the static aspect of the protein structure but
also its dynamics [55]. In particular, it has been illustrated that the dynamical cou-
pling of moving electrons to vibrational motions of the peptide matrix can lead to
some biological reactions in an activationless fashion [56]. In this spirit the investi-
gations in [57–65] have been devoted to bond-mediated biomolecule ET using the
concept of breather solutions. The transfer of electrons along folded polypeptide
chains arranged in three-dimensional conformations constituting the secondary he-
lix structure of the proteins has been considered. It has been demonstrated that the
coupling between the electron and the vibrations of the protein matrix can activate
coherent ET.

In view of the above and to better place the work that follows here let us in-
sist on the fact that it is the nonlinearity induced by the electron-(acoustic) phonon
interaction that led Davydov to his electro-soliton concept for otherwise dynam-
ically harmonic lattices. Davydov argued that these excitations could be stable
at finite temperatures and could persist even at physiological or room tempera-
tures. Several authors have checked this conjecture and have shown that Davydov’s
electro-solitons are destroyed already around 10 K lasting at most 2 ps [33–36]. We
shall follow Davydov’s line of thought here but rather than using a harmonic lattice
we shall consider anharmonic lattice dynamics. It is now well established that if
the underlying lattice dynamics involves anharmonic interaction this may result in
the appearance of supersonic (acoustic) solitons running free along the lattice like
in a Toda lattice and in some other cases [66–83]. We shall make use of the Morse
potential [84] (akin to the Toda repulsive interaction and to the Lennard–Jones po-
tential) together with the electron–(acoustic)soliton interaction. As shown in Fig. 1,
these potentials can be scaled around the minimum in such a way that the first three
derivatives are identical what guarantees a close relationship of their nonlinear (soli-
ton) excitations when acting in a lattice. It is also known that these excitations bring
a new form of dressed electrons or electro-soliton dynamic bound states [74–83].
They have been called solectrons to mark the difference with Davydov’s electro-
solitons (for further historical details see [85]). We shall show that due to the added
lattice anharmonicity and the excitation of lattice solitons there is solectron sta-
bility well above 10 K, in fact up to the physiological or room temperature range
(ca. 300 K).

After introducing the model lattice problem in Section 2, we develop in Section 3
a method of visualization of soliton excitations as well as estimation of their life
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times. Discussed also there are the processes of solectron formation, electron pair-
ing and solectron pair formation. In Section 4 using the tight-binding approximation
we further explore how lattice deformations (or relative displacements between
lattice units) affect solectron evolution. We also return there to the question of
soliton-mediated electron pairing. In Section 5 we explore in depth how Coulomb
repulsion affects solectron formation and electron pairing. A summary of results and
comments are given in Section 6.

2 Lattice Dynamics

2.1 Lattice Anharmonicity and Temperature

We shall consider in a mixed classical–quantum description a 1d nonlinear lattice
with added (free) conduction electrons allowing donor-acceptor electron transfer
(ET) or electric current in the presence of an external field. The system consists
of N classical units (atoms or screened ion cores). We shall focus on the case of
periodic boundary conditions on a lattice like a ring of length L. These electrons
are allowed to occupy some 3d volume surrounding the 1d lattice. For the heavier
lattice units (relative to the electrons) we shall consider that have all equal mass m,
and are described by coordinates xn.t/ and velocities vn.t/, n D 1; : : : ; N . We take

Ha D
m

2

X
n

v2n C
1

2

X
n;j

V .xn; xj /: (1)

The subscripts locate lattice sites and the corresponding summations run from
1 toN . The mean equilibrium distance (lattice constant) between the particles in the
lattice is � (� D L=N ). We shall assume that the lattice particles repel each other
with a strong Born repulsive force and attract each other with a weak dispersion
force with a potential which depends on the relative distance r D xnC1 � xn be-
tween nearest-neighbors only. As earlier indicated we shall take the Morse function,
one if not the earliest quantum-mechanics based interaction potential [84]. As Fig. 1
shows its repulsive core is to a good approximation like that of the Toda potential
though the latter possesses an unphysical attractive component. As the Hamiltonian
(Eq. (1)) with V taken as a Toda potential is integrable and we know analytically in
compact form its exact solutions this is of interest to us as we shall be concerned
with relatively strong lattice compressions where what really matters is atomic re-
pulsion. On the other hand it also appears of interest that the Toda interaction yields
the hard rod impulsive force in one limit (the fluid phase) while in another limit it
becomes a harmonic oscillator (the solid lattice crystal-like phase). Thus we take

V D D fexpŒ2B.r � �/� � 2 expŒ�B.r � �/�g : (2)
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Fig. 1 Toda (upper curve),
Morse (middle curve) and
Lennard–Jones L-J(12-6)
(lower curve) potentials suit-
ably scaled around their
minima to have identical
second and third derivatives.
Another L-J potential used by
chemists is the so-called stan-
dard screw L-J(32-6) potential
offering no added advantages
for the purposes of this report
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Exponentials are easily implemented in analog computers and they are also easier
to handle mathematically for our purposes here. For illustration in our computer
simulations we shall useN D 200 and B D 1=� . B accounts for the stiffness along
the lattice and D provides an estimate of the binding/break-up energy of lattice
bonds.

Then in the presence of random forces (hence non zero temperature) and external
forces, H , the evolution of lattice particles is described by the (Newton-)Langevin
equations (n D 1; 2; : : : ; N ) [86]

dvn
dt
C
1

m

@H

@xn
D ��0vn C

p
2Dv �n.t/; (3)

where the stochastic force
p
2Dv �n.t/ models a surrounding heat bath (Gaussian

white noise). The parameter �0 describes the common standard friction frequency
acting on the lattice units or atoms from the surrounding heat bath. The validity of
an Einstein relation is assumed Dv D kBT �0=m, thus binging temperature T ; kB
in Boltzmann’s constant. In most cases we shall use � as the length unit (though in
occasions we may use 1=B) and the frequency of oscillations around the potential
minimum !�10 as the time unit. Typical parameter values for biomolecules are � '
1 � 5Å; B ' 1Å�1; D ' 0:1 � 0:5 eV [87–89]. This means that B� ' 1 (it
could take a higher value) and 1=!0 ' 0:1� 0:5ps. As the energy unit we shall use
2D D m!20�

2=.B�/2, that with B� D 1 reduces to m!20�
2, commonly used by

most authors. This energy will be used also as the unit to measure the temperature
T .kB D 8:6 � 10

�5eV=K; kBT D 2D/.
The specific heat (at constant volume/length) of system Eqs. (1)–(3) is shown

in Fig. 2. Accordingly, the region where anharmonicity plays significant role is
0:75 < Cv=kB < 0:95. This is the multiphonon range or highly deformed-phonons
domain on the way to melting in the system (recall that at high T , Cv D 0:5,
there is transition to a hard-sphere fluid phase). The corresponding temperatures
in our energy units are in the range T ' 0:1–0:5 (and even up to 1–2). Introducing
the binding strength of the Morse lattice, as the Morse potential can be suitably
adapted to the Toda interaction (Fig. 1), we foresee that solitonic effects are to be
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Fig. 2 Toda–Morse lattice.
Specific heat at constant
volume/length (upper curve)
and ratio of potential energy,
U , to kinetic energy, Tkin of
the anharmonic lattice. Note
that we have only the “high”
temperature range
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expected in the range TMsol ' 0:2 � 1:0D. In electron volts this would be the range
TMsol ' 0:01 � 0:1 eV. This range of temperatures includes for biomolecules the
range of physiological temperatures (ca. 300 K).

2.2 Lattice Units as Atoms and Lattice Solitons

We can visualize the time evolution of the lattice atoms and hence the lattice de-
formations or lattice excitations by representing the density of the valence electrons
which are moving bound to the ion cores. This can be achieved by considering,
for simplicity, that each lattice unit is surrounded by a Gaussian electron density
(atomic density) of width, e.g. s D 0:35� . Then the total atomic electron density is
given by

�.x/ D
X
n

1
p
2�s

exp
�
�
.x � xn.t//

2

2s2

�
: (4)

Thus each lattice atom is like a spherical unit with continuous (valence) electron
density concentrated around its center. In regions where the atoms overlap, the den-
sity is enhanced. This permits identifying solitonic excitations based on a color code
in a density plot. This is of course a rough approximation which helps visualization
of the location of dynamic excitations by using the (covalence) electrons density en-
hancements as an alternative to directly locating mechanical lattice compressions.
For our purposes in Sections 2 and 3 this suffices. The mechanical approach is used
in Sections 4 and 5. We show in Fig. 3 the results of computer simulations for three
temperatures T D 0:005 (�10K), T D 0:1 (�2 � 102K) and T D 0:5 (�103K) with
D D 0:1 eV. If we use D D 0:05 eV, then T D 0:5 corresponds to T D 575K.

The diagonal stripes correspond to regions of enhanced density which are freely
running along the lattice, this is the sign of solitonic excitations. Checking the
slope we see that the excitations which survive more than 10 time units move
with supersonic velocity. The pictures shown are quite similar to those described
by Lomdahl and Kerr [33, 36] who gave a life-time of at most 2 ps and being stable



Anharmonicity, Solitons and Transport 177

0

0.6

0.7

4 8 12 16

0.8

0.9

1

ρ′

x/s

ρ′

 0.4

 0.6

 0.8

 1

 0

 4

 8

 12

 16

 100  140  180  220  260 t

x/σ

ρ′

 0.4

 0.8

 1.2

 1.6

 0  40  80  120  160 x/s

ρ′
2
1.5
1
0.5
0

 160

 120

 80

 40

 0 100  140  180  220  260  t

x/σ

ρ′

x/s

 1

 2

 0  50  100  150

ρ′
4
3
2
1
0

 160

 120

 80

 40

 0 100  140  180  220  260  t

x/σ

Fig. 3 Toda–Morse lattice. Visualization of running excitations (phonons and solitons) along the
lattice. For convenience we use �0 D

p
2�s� to account for atomic core (valence) electrons density

(the grey scale coding is in arbitrary units). We study three temperatures (given in units of 2D):
upper set of figures: T D 0:005.�10K): we see only harmonic lattice vibrations or phonons and
no evidence of strong (soliton-like) excitations; center two-figures: T D 0:1.�2:102 K): many
density peaks show solitons (diagonal stripes). The strongest compressions move with velocity
around 1:1vsound; lower two-figures: T D 0:5.�103 K): among the many excitations appearing we
observe solitons running with velocity around 1:3vsound . Parameter values: N D 200 and B� D 1

only up to 10 K. Ours, however, live about 10–50 time units that is for several
picoseconds and survive even at T D 1 which is well above physiological tem-
peratures. This confirms an earlier finding were at T ' 300 K stable solitons and
solectrons could be identified [79, 80]. Recall that Davydov’s electro-solitons and
hence Lomdahl and Kerr’s earlier mentioned work refer to solitons induced by the
presence of originally free (conduction) electrons and subsequent electron–phonon
(polaron-like states) whereas in the case described in this Section the conduction
electrons are yet to be added as we shall do in the following section.
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3 Local Electronic States

Let us now add to the system free electrons surrounding in 3d space the 1d lattice
(Fig. 4).

3.1 Local Pseudo-Potentials and Classical Densities

The lattice creates a field which acts on the free electrons. In order to construct this
field we need to evaluate the interaction between the lattice units and the surround-
ing electrons. The latter form a narrow 3d neighborhood of the lattice with diameter
about the Bohr-radius aB.

We can assume that all lattice atoms (with their valence electrons) which are near
to each other by 1:5� or less contribute to the local potential V.x/ acting on each
conduction electron

V.x/ D
X
n

Vn.x � xn/; r D jx � xnj < 1:5�: (5)

The potential Vn.x�xn/ created by the lattice particles n at the place of the electron
x may be estimated by a pseudo-potential approach [90, 91]. One possible ansatz
for the interaction of electrons with ions is

Vn.y/ D �Ue
hp

y2 C h2
: (6)

The value of the binding energy Ue is in the range Ue ' 0:05 � 0:1 eV. This is a
second (independent) energy unit of the system, in general lower in value than the
earlier mentioned binding energy between lattice units. Let us consider for numeri-
cal convenience Ue ' 0:02 � 0:2D and h D 0:3� . The choice h D 0:3� provides
shallow minima at the location of the lattice atoms with significantly deep local
minima at the location of lattice compressions. In view of the value Ue the electrons
are only weakly bound to the atoms and may transit from one side to the other of a
lattice unit. Accordingly the (free) conduction electrons are able to wander through
the lattice eventually creating an electron current. To place a pair of such electrons
between two lattice particles is in general not favorable in energetic terms, since
the energy of repulsion e2="0r has to be overcome; "0 denotes dielectric constant.
However the electron may bind to more than two lattice atoms thus forming a deep
potential hole akin to a polaron state which is a static structure corresponding to

Fig. 4 Toda–Morse lattice.
Sketch of lattice atoms or ion
cores surrounded by added
free electrons in 3d space

xn x
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favorable energetic configurations. Here we are rather interested in the dynamic or
time evolving phenomena initiated by solitonic excitations in the lattice. However
we have to take into account that both of these items, the local compression by a
static process (polaron formation) and by a running compression (soliton excitation)
are intimately connected.

In the simplest entirely classical approximation we can assume that the evolution
of the conduction electrons is very fast and the corresponding probability density
follows locally a Boltzmann distribution. Note that when the electron density is
sufficiently low, so that the electrons are still nondegenerated we may approximate
the Fermi statistics by the Boltzmann statistics. In a heated lattice the units perform
quite complex motions, we may expect therefore a rather complex structure of the
field acting on the electrons. Let us give now examples of the fields created by
the lattice atoms. The potential energy is given in units of the binding energy Ue .
Taking into account the energy unit 2D.B�/2 (D m!20�

2), the scale is set by the
ratio � D Ue

2DB2�2
D 1

2B2�2
Ue
D

. For B� D 1 the energy scale is therefore � D Ue
2D

. To
estimate any physical quantity the value of � is very important.

The potential V.x; t/ is time-dependent and gives at each time instant a snapshot
of the actual situation. The potential changes quickly and the distribution of the
electrons tries to follow it as fast as possible and hence the electrons are “slaved”
accordingly, thus permitting an adiabatic approximation. We have a situation similar
to that described for free electron statistics in semiconductor theory [92]. Then, we
assume as a first approximation a Boltzmann distribution

n.x; t/ D
expŒ�ˇV.x; t/�R
dx0 expŒ�ˇV.x0; t /�

; (7)

with ˇ D 1=kBT . Here x denotes the coordinate along the lattice. An example of the
estimated density Eq. (26) is shown in Fig. 5. The (relatively high) peaks correspond
to the enhanced probability of a rather strong lattice compression, i.e., a soliton
ready to meet and trap an electron. This defines the solectron as an electron “surfing”
on a soliton for about 10–50 time units (i.e. a few picoseconds) then getting off it
and eventually finding another soliton partner once more to surf-on and so on. For
T D 0:1 we observe several rather stable running excitations (diagonal stripes) with
velocities around 1:2vsound . For T D 1 (not shown in the figure) one can observe
many weak and only a few very stable excitations moving with supersonic velocity
1:4vsound . The probabilities estimated from the Boltzmann distribution are strongly
concentrated at the places of minima. This means that most of the electrons are
concentrated near to solitonic compressions.

3.2 Bound States of 3d Electrons in a Nonlinear Lattice Ring

So far our estimates of the electronic states in the local potential were entirely clas-
sical. The Boltzmann distribution finds the deepest minima of the local potential
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Fig. 5 Heated Toda–Morse lattice. Classical probability distribution of an electron in a heated
anharmonic lattice in the adiabatic approximation according to local Boltzmann distribution. On
the upper figure a snapshot of the distribution is given for a certain time instant. On the lower figure
the actual time evolution of the distribution is displayed. The temperature is T D 0:1. Parameter
values: N D 200, h D 0:3, � D 1 and B� D 1

V .x; t/ acting on an electron. The problem to find the quantum states for an electron
in the anharmonic lattice is more difficult. There exist different situations depending
on the relative values of the four length scales aB , h, � , d , where aB is Bohr-radius,
h is kind of softness scale of lattice particles (according to the pseudopotential
(Eq. (6)), � is the lattice spacing at equilibrium and d is the smallest interatomic
lattice distance at solitonic compressions. As earlier noted, the character of the elec-
tron dynamics depends strongly on the value of h and on the distance � . Figure 6
shows that the choice h D 0:3� depending on the distance between the neighbors in
the lattice allows two kinds of minima. Accordingly, for a compressed lattice with
aB ' h ' � and d < � , solectrons are to be expected.

Let us investigate now the conditions for possible formation of pairs of solectrons
and under which conditions a solectron pair is more stable than a single solectron.
As shown above, the electrons in soliton-bearing lattices move in a fastly chang-
ing potential landscape. The structure of this landscape is similar to the landscapes
known from the theory of disordered systems [93–95]. At variance with the latter
cases, our potential is time-dependent. In typical snapshots of the potential land-
scape acting on the electrons we see relatively flat normal parts showing only small
oscillations of the potential and deep local minima which move approximately with
soliton velocity. Certainly, the character of the bound states which may be formed
depends on the depth of the potential Umin, on the temperature T and on the relation
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Fig. 6 Potential (in units of U0) felt by an electron placed between two ions versus lattice spacing.
If the ions are at equilibrium distance r D � the potential minima are at the center of two nearby
ion cores. Between two compressed ions r D �=5, a new potential minimum appears midway
between two nearest-neighbor ions

between the characteristic quantum time �q / h̄=Umin and the classical time scale
1=!0. Assuming that the classical time scale is much longer, we may work in an adi-
abatic approximation. Let the deep potential minimum (like a potential well) created
by a soliton be approximated by a parabolic profile

U.r/ D U0 C
a0

2
r2 C ::: (8)

where r denotes distance in 3d space. The second derivative is

a0 D U
00.r/jrDr0 '

c

�2
; (9)

with c ' 1. A typical valley includes just a few lattice units. Then the bound states
are approximately given by

"n D U0 C 3h̄!0

�
nC

1

2

	
; n D 0; 1; 2; : : : (10)

where a D m!20 . The ground state wave function is

�0.r/ D .r0/
�3=2��3=4 exp.�r2=2r20 /; (11)

where r20 D .h̄=m!0/. Note that this estimate is valid only for sufficiently deep
minima. These states can in principle be filled by electrons albeit obeying Pauli’s
exclusion principle. In the ground state, if sufficient solitons are available, each of
the solitons can capture two electrons with opposite spin or possibly more electrons
as suggested by classical estimates. However higher occupation is less probable.
Indeed a second electron with opposite spin may be placed on the same level as the
first one, but a third electron in a potential valley cannot occupy the ground state
level any more.
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3.3 Binding Energy and Wave Functions of Solectron Pairs

As we have seen, the potential well created by a soliton may in principle be occu-
pied by pairs of electrons with opposite spins satisfying Pauli’s exclusion principle.
At first sight, these electron pairs, which are Bosons, appear like “bipolarons” or
“Cooper pairs”. However looking at the details we see, that the solectron pairs are
something new. The problem of pairs or clusters of quantum electrons in a parabolic
trap is not new [96–98]. In the case of solectrons the width of the potential well is of
the order of a few equilibrium inter-atomic lattice distances. In a first estimate the
energy of a solectron is about

"n D U0 C
3

2
h̄!min; (12)

and correspondingly the ground state energy of a Coulomb pair is

"0p D 2
�
U0 C

3

2
h̄!0

�
C h

e2

"0rp
i; (13)

where rp is the distance of the electrons in the pair and as earlier "0 is the dielec-
tric constant of the medium. Due to the factor two this energy is in general lower
than the energy of the state of one bound and one free electron. If the term arising
from Coulomb repulsion is weak, pairing is favorable. An estimate follows from the
condition that repulsion and attraction to the center of the well balance each other

m!20r1 D
e2

"0.2r1/2
: (14)

This leads to a classical estimate of the Coulomb shift

�"cl D
e2

2"0r1
D

�
e2

"0

�2=3
.m!20/

1=3: (15)

Within quantum theory we may estimate the Coulomb shift by using perturbation
theory as done in the study of the Helium atom. We take two electrons which are
confined in the field of a spherical potential well given by Eq. (8). The symmetric
ground state wave function of two electrons with opposite spin is given by

�.r1; r2/ D
1

�3r60
exp

�
�
r21 C r

2
2

2r20

�
: (16)

The mean energy calculated with these wave functions is then

"p0 D 2U0 C 3˛h̄!0 C�"qm; (17)
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�"qm D
1

�r60

Z
dr1

Z
dr2

e2

"0jr1 � r2j
exp

�
�
r21 C r

2
2

2r20

�
: (18)

After doing the integral over the angles (Eq. (18)) becomes

�"qm D
16e2

�r60

Z 1
0

dr1r1 expŒ�r21 =r
2
0 �

Z r1

0

dr2r
2
2 expŒ�r22 =r

2
0 �; (19)

or else

�"qm D
e2

"0r0
A0; (20)

where the constant is defined by the integral

A0 D
16

�

Z 1
0

dyy expŒ�y2�
Z y

0

d zz2 expŒ�z2� 	 0:32: (21)

In view of this estimate, the mean distance between the electrons in a solectron pair
is around 3r0, i.e. three times the “size” of the wave function. We expect that the real
Coulomb shift is between the classical and the quantum estimates. In order to find
solectron pairs we need conditions where the Coulomb shift is much smaller than
the gap to the next level which is 3 h̄!0. To be on the safe side we require conditions
such that

maxŒ�"cl ; �"qm� < 3h̄!0: (22)

Under these conditions the formation of a solectron pair is favored.

3.4 Soliton Mediated Electron Pairing

Let us further comment on how electron pairing could be influenced by the presence
of solitons. If one could obtain Boson pairs with sufficient density, then interesting
effects may be expected. Looking at the classical probability distributions in Figs. 3
and 5 we see that there are minima of different types. There are flat and narrow
minima which carry just one electron as in a solectron. Further there are minima
with two electrons and finally deep minima capable of carrying many electrons.
In fact as Figs. 3 and 5 show most of the minima carry 3–10 electrons. However
quantum-mechanical effects rather provide a new picture: (i) quantum solectrons
are in energy just a bit higher than the classical solectrons due to the ground state
energy shift 1:5h̄!0; (ii) a second electron with opposite spin may be placed at the
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Fig. 7 Toda–Morse lattice. Left figure: formation of an electron pair in the potential minimum
created by a solitonic excitation in the lattice. The formation of a trio requires a much higher
energy. Therefore a solectron trio is ruled out except at very high temperatures. Right figure: shape
of the pair wave function near to the minimum of the potential

same level (see Fig. 7). These solectron pairs are rather stable since the binding of a
third electron needs a relatively high amount of energy, namely 3h̄!0.

Let us estimate the chance to form trios. To place another electron into a solitonic
well which is already occupied by an electron-pair needs the overcoming of a gap
with the amount 3h̄!0 between the ground state and the first excited level. Thus if

kBT < 3h̄!0; (23)

the occupation by trios, quartets, etc. (which is classically possible) is more or less
prevented by quantum effects. Indeed we may assume that the extension of a soli-
tonic minimum is about ten times wider than the Morse potential minimum (Fig. 1).
Such minimum corresponds to a frequency about 3 � 1012s�1. Then the frequency of
oscillations around the minimum of the soliton potential is about 1012s�1. This is
about 1 � 2 eV. Accordingly, the inequality (Eq. (23)) implies T < 103K naturally
fulfilled in all interesting cases.

Thus under special conditions, in certain windows of parameter values, the for-
mation of pairs is more favorable than the single solectron. Under quasi-classical
conditions however the system seems to favor electron clusters. In conclusion we
may say that the Pauli exclusion principle has the consequence that instead of
classical clusters we observe quantum–mechanical pairs of solectrons. This sup-
ports the soliton-mediated electron pairing mechanism proposed by Velarde and
Neissner [99] (Fig. 8).
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4 Electron-Lattice Dynamics in Tight-Binding Approximation

Let us now go deeper into the question of solectron formation by describing the
electrons on the lattice using the tight-binding approximation (TBA).

4.1 The Tight-Binding Approximation

The tight-binding approximation replaces the Schrödinger continuum dynamics by
a hopping process along the discrete lattice sites. Assuming that there is only one
atomic state per lattice unit we get for the electrons the following Hamiltonian in
second-quantization formalism [100, 101]

Hel D
X
n

�
En.:::; xn�1; xn; xnC1; :::/c

C
n cn

� Vn;n�1.xn; xn�1/.c
C
n cn�1 C cnc

C
n�1/

�
: (24)
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Recall that (24) refers to initially free or excess electrons added to the lattice with
atoms assumed to be located at sites n. The quantities cn, cCn originally refer to
Fermion destruction and creation operators, respectively, with appropriate anti-
commutation relations but here they are just complex numbers. Purposedly in this
section we shall consider the non-uniformity of the on-site energy levels (diagonal
elements, Vnn, of the transfer matrix). Further assuming that the interaction depends
exponentially on the distance between the lattice units, we set

Vn;n�1 D �V0 expŒ�˛.qn � qn�1/�: (25)

Then the Hamiltonian (Eq. (24)) becomes

Hel D
X
n

˚
.E0

n C ıEn/c
C
n cn

� V0 expŒ�˛.qn � qn�1/�.cCn cn�1 C cnc
C
n�1/



; (26)

where, for convenience in notation, qn denotes a lattice site spatial vibration (relative
displacement) coordinate defined by xn D n�Cqn=B . The termE0

n denotes on-site
energy levels of the unperturbed lattice and ıEn is the perturbation due to the lattice
vibrations (harmonic as well as anharmonic modes may contribute). The simplest
approximation is

ıEn D �.qn=B/; (27)

where the “electron–phonon coupling constant”, �, indicates that the on-site energy
level En, i.e. the local site energy, depends on the displacement of the unit at that
site; qn is dimensionless (unit: 1=B). As shown e.g. in [87–89], this coupling be-
tween lattice deformations and electronic states, leads for large enough values of
the parameter � to the formation of polarons. In view of the above given param-
eter values, the value of the coupling constant is in the range � ' 0:1 � 2 eV/Å.
We have to take into account that our model is translationally invariant and we are
considering relative lattice displacements. Accordingly, we set

ıEn '
�1

2
Œ.qnC1 � qn/C .qn � qn�1/� ; (28)

with �1 D �=B as a new constant. An alternative, using a pseudopotential like
Eq. (6), is the approximation

En D E
0
n � Ue

0X
j¤n

hp
.xn � xj /2 C h2

; (29)

where the over-dash in the sum indicates that it is to be restricted in an appropriate
way by introducing screening effects. For instance, as earlier done, we may cut the
sum at a distance 1:5� from the center of the ion core, or in other words include all
terms corresponding to lattice units which are nearer than 1:5� . Then we assume
that the energy levels are shifted like the field created by the pseudopotentials acting
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on the electron from the side of the neighboring atoms. To linear approximation
we get

ıEn '
hUe�

B.�2 C h2/3=2
Œ.qnC1 � qn/C .qn � qn�1/� : (30)

Comparing Eqs. (28) and (30) we find

� D Ue
2�h

.�2 C h2/3=2
D

�
Ue

�

	
2.h=�/

Œ1C .h=�/2�3=2
: (31)

Then for Ue D 0:1 � 1:0D, h D 0:3� , D D 0:1 � 0:5 eV, and � D 1 � 5Å we
obtain � D 0:001 � 0:1 eV=Å. As the parameter values in this approach are about
one or two orders of magnitude below the earlier indicated values we expect that
here polaron effects are rather weak and hence the system dynamics is dominated
by solitons.

The probability to find the electron at the lattice site or atom located at xn, i.e.
the occupation number pn, is pn D cnc

�
n . Solving the Schrödinger equation for the

components of the wave function cn we get

i
dcn

dt
D �ŒE0

n C ıEn.qnC1; qn�1/�cn

�� fexpŒ�˛.qnC1 � qn/�cnC1
C expŒ�˛.qn � qn�1/�cn�1g ; (32)

where E0
n and ıEn are dimensionless (unit: 2D). The corresponding Newtonian

equations for the lattice units are

d2qn

dt2
D �pn

@ıEn.qnC1; qn�1/

@qn

Cf1 � expŒ�.qnC1 � qn/�g expŒ�.qnC1 � qn/ �
�f1 � expŒ�.qn � qn�1/�g expŒ�.qn � qn�1/ �
�˛V0

˚
expŒ�˛.qn � qn�1/�.cCnC1cn C cnC1c

C
n /

C expŒ�˛.qnC1 � qn/�.cCn cn�1 C cnc
C
n�1/



: (33)

The role of temperature would be considered further below. The problem reduces,
in principle, to solving both Eqs. (32) and (33) coupled together. It is not, however,
the only possible approach to our problem as we shall see below.

4.2 Discussion About Solectronic Excitations and Expected
Consequences

Let us consider one of the possible soliton-mediated processes: single electron trans-
fer (ET) in a soliton-mediated hopping process along the lattice from a donor to
an acceptor. When an added, excess electron is placed at a donor located at site



188 W. Ebeling et al.

−0.4
0
0.4
0.8

 0
 40

 80
 120

 160  0
 20

 40
 60

 80

n

t

vn
pn

 0
 0.01
 0.02
 0.03

 0
 40

 80
 120

 160  0
 20

 40
 60

 80

n

t

pn

0

0.04

0.08

 0
 40

 80
 120

 160  0
 20

 40
 60

n

t

Fig. 9 Toda–Morse lattice. Soliton, electron and solectron. Results of numerical integration of
Eqs. (32) and (33). Upper left figure: ˛ D 0, soliton alone; upper right figure: ˛ D 0, electron
alone; bottom figure: ˛ D 1; 75, solectron (electron dynamically bound to the soliton). The grey
scales (velocity and probability density) are in arbitrary units, just for illustration

n D 100 at time t D 0, Fig. 9 shows our findings: (a) pure anharmonic lattice vi-
bration without electron–lattice interaction (˛ D 0): time evolution of one soliton
as predicted by the Morse Hamiltonian (Eq. (33)), thus illustrating how little we
depart from the Toda solitons; (b) free electron alien to lattice vibrations (˛ D 0):
spreading of the free electron probability density as a consequence of Schrödinger
equation (32); and (c) electron-lattice interaction (˛ D 1;75): soliton-mediated ET
as predicted by Eqs. (32) and (33) coupled together. The electron is dynamically
bound to the soliton which is the solectron excitation.

When the electron–lattice interaction is operating, we see that the electron moves
with the soliton with a slightly supersonic velocity vel � 100

70
vsound and is running

to the right border of the square plot. Let us assume that there an acceptor is lo-
cated. This means that the electron is guided by the soliton from donor to acceptor.
In reality the electron cannot ride on just a single soliton from donor to acceptor.
Several solitons should be involved in transport. We have already mentioned this
kind of promiscuity of the electron. Therefore the above given soliton velocity is an
upper bound for the ET process. In principle this effect may be used as a way to
manipulate the transfer of electrons between donor and acceptor. Clearly in our case
we may have a polaron effect due to the electron–phonon (or soliton) interaction in
addition to the genuinely lattice soliton effect due to the anharmonicity of the lattice
vibrations. Thus, from donor to acceptor, we have not just phonon-assisted ET but
a much faster soliton-assisted ET.
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4.3 Adiabatic Canonical Distributions in the Tight-Binding
Approximation

In a first approximation with non-interacting electrons the canonical equilibrium
distribution is

p0n D expŒˇ. �En/�; (34)

where the chemical potential  is given by the normalization. In the adiabatic ap-
proximation we assume that this distribution is reached in a very short time. Using
the approximation (Eq. (28)) we get

p0n ' exp
�
�
ıEn

kBT

�
D exp

�
�
�.qnC1 � qn�1/

BkBT

�
: (35)

Suppose now that one big soliton is excited by appropriate heating of the lattice to
the temperature T . We assume the following shape of the solution

expŒ�3.qn � qn�1/ D 1C ˇ0 cosh�1Œ�n � ˇ0t �: (36)

Incidentally, the computations by Rice and collaborators [71, 72] show that for
Morse or L-J [L-J(12-6) and L-J(32-6)] potentials a Gaussian profile could also
be used as an reasonably valid approximation to the exact solution (Eq. (36)) of the
Toda lattice.

By introducing this into Eq. (35) we find

p0n ' Œ1C ˇ0 cosh�2Œ�n � ˇ0t ��� Œ1C ˇ0 cosh�2Œ�.nC 1/ � ˇ0t ��� ; (37)

where
� D

�

6BkBT
: (38)

We see that a thermally excited soliton is quite similar to a mechanically excited
soliton except for some kind of a twin structure and a little deformation of the shape
and the amplitude, both temperature-dependent. The velocity of such thermal soliton
is the same as the standard soliton velocity.

Quantum mechanically the canonical equilibrium distribution is given by the
time-dependent energy eigenvalues and hence rather than Eq. (35) we now get

p0n ' expŒ�c.qnC1.t/ � qn�1.t//�; (39)

with c D �=BkBT . The displacements have to be taken from computer simulations
of thermally excited solitons. The distribution is a quickly changing local function of
the displacements. In the adiabatic approximation we assume that this distribution
is reached in a very short time, as shown in Fig. 10. Noteworthy is that this picture of
a canonical quantum distribution is qualitatively similar to the classical distributions
shown in Fig. 5. We may estimate the soliton frequency from the thermal statistics
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Fig. 10 Toda–Morse lattice. Probability distribution of an electron in a heated anharmonic lattice
in the adiabatic approximation according to the quantum canonical distribution. The actual time
evolution of the distribution is displayed. Upper figure: T D 0:1; lower figure: T D 0:5. Parameter
values: B� D 1, ˛ D 1:75, V0 D 1, � D 10 and � D 0:002

of the solitons in the lattice as done in Refs. [70, 73] for Toda interactions: (i) single
solitons with parameter � are described by Eq. (36); and (ii) the density of solitons
depending on parameter � is known. Following [73] we have

n.�; T / D
4a�

�kBT
exp.��/ expŒ�.E.�/ � 2�/=kBT �; (40)

where
E.�/ D

2a

b
Œsinh cosh � � ��: (41)

Since the quantities pn depend on � we get this way the distribution of electron
occupation numbers. In a thermally excited system, the number of solitons depends
on the initial and boundary conditions. In an infinite Toda system (and the like for a
Morse potential) the number of solitons can be approximated by

n.T / ' const T 1=3: (42)
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Thus the number of solitons appears increasing with increasing temperature. On
the other hand their contribution to macroscopic properties, as, e.g. the specific heat
goes down as seen in Fig. 2. Therefore we expect that there exists a kind of “optimal
temperature” where solitons have the strongest influence [70, 81].

5 Coulomb Repulsion and Electron-Lattice Dynamics
in Hubbard Approximation

Let us complete our analysis by considering in more details the role of Coulomb
repulsion between two added excess electrons thus supplementing our findings in
Sections 3.3. and 3.4. We shall do it in the simplest possible way using Hubbard’s
model Hamiltonian [102–104]. Thus shall take the Coulomb repulsion when the
electrons are at their shortest separation distance (local on-site repulsion).

5.1 The Hubbard Hamiltonian

When we add a spin variable and augment (Eq. (24)) with an on-site local
(Coulomb)–Hubbard repulsion we get

Hel D �
X
n;�

�
Vnn�1 Oa

C
n� Oan�1� C VnnC1 Oa

C
n� OanC1�

�
CU

X
n

OaC
n"
Oan" Oa

C
n#
Oan# ; (43)

where the index n denotes the lattice site. Here � accounts for the electron spin
which can be up or down. For clarity we now have made explicit the Fermion oper-
ators OaCn� creates an electron with spin � at site n and Oan� annihilates the electron.
The second term in Eq. (43) represents the on-site electron–electron interaction due
to Coulomb repulsion of strength U (here it has positive values only). The transfer
matrix is like Eq. (25). For Hlattice we take Eq. (1) with Eq. (2).

5.2 Localized Paired Electron-Lattice Deformation States

We start with the exact two-electron wavefunction given by

j .t/i D
X
m;n

	mn .fpmg; fqmg/ Oa
C
m"
OaC
n#
j0i ; (44)

where j0i is the vacuum state (containing no electrons) and 	mn denotes the prob-
ability amplitude for an electron with spin up to occupy site m while an electron
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with spin down is at site n; pn D mvn. The symmetric 	mn D 	nm probability am-
plitudes are normalized

P
mn j	mnj

2 D 1 and depend on the set of lattice variables
.fpng ; fqng/.

To obtain the equations of motion for the probability amplitudes the wavefunc-
tion (Eq. (44)) is inserted into the corresponding Schrödinger equation and the
evolution of the lattice variables is derived from Hamilton’s variational principle
with an energy functional E2 D h jH j i. Suitable choice of scales permits rewrit-
ing the evolution equations in dimensionless form in a similar way as earlier done.
Then we get:

i
d	mn

dt
D �� f expŒ�˛ .qmC1 � qm/ � 	mC1n C expŒ�˛ .qm � qm�1/ � 	m�1n

C expŒ�˛ .qnC1 � qn/ � 	mnC1 C expŒ�˛ .qn � qn�1/ � 	mn�1 g

C NU	mnımn; (45)

d2qn

dt2
D Œ1 � exp f�.qnC1 � qn/ g� expŒ�.qnC1 � qn/ �

� Œ1 � exp f�.qn � qn�1/ g� expŒ�.qn � qn�1/ �
C˛V expŒ�˛ .qnC1 � qn/ �X
m

˚
Œ	�mnC1	mn C 	

�
mn	mnC1�C Œ	

�
nC1m	nm C 	

�
nm	nC1m�




�˛V expŒ�˛ .qn � qn�1/ �X
m

˚
Œ	�mn	mn�1 C 	

�
mn�1	mn�C Œ	

�
nm	n�1m C 	

�
n�1m	nm�



: (46)

Comparing with the equations in Section 4, Eq. (45) replaces Eq. (32), having as-
sumed, for simplicity, that all on-site diagonal factors are equal and hence can be
scaled away by suitable choice of the reference energy level. This suffices for our
purpose in this Section. Correspondingly, Eq. (46) replaces Eq. (33). As in Eqs. (32)
and (33) the parameter � appearing in the R.H.S. of Eq. (45) determines the degree
of time scale separation between the (fast) electronic and (slow) acoustic phonon
or soliton processes. For computational illustration we shall use in what follows:
� D 10, V D 0:1, and ˛ D 1:75. To obtain localized stationary solutions of the
coupled system (Eqs. (45) and (46)) an energy functional is minimized yielding the
lowest energy configuration.

The probability for one electron to be in site n with spin up, respectively spin
down, is determined by

�n" D h j Oa
C
n"
Oan"j i D

X
k

j	nkj
2 ; (47)

�n# D h j Oa
C
n#
Oan#j i D

X
k

j	knj
2 : (48)
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Fig. 11 Toda–Morse lattice. Lattice solitons and the role of Coulomb repulsion for an electron
pair. Left figure: initial profile of the localized lattice deformation; right figure: electron probability
distribution corresponding to a minimum of the variational energy for three different values of the
Hubbard parameter U (values in insets). Other parameter values: ˛ D 1:75 and V D 0:1

Typical electron probability distributions and the corresponding profile of displace-
ments of the molecules are depicted in Fig. 11 for three different values of U
(because of symmetry �n" D �n# and we plot half the electron density at a site
n defined as �n D 1

2

P
k .j	knj

2C j	nkj
2/). The corresponding localized compound

comprises an exponentially localized two-electron state and the associated pair of
kink-shape lattice deformations which represented as exp.�.qn�qn�1// are of bell-
shape. These are the earlier introduced lattice solitons (Eq. (36)). Increasing the
repulsive (Coulomb–) Hubbard-interaction has the impact that the inter-electron
distance (and accordingly also the distance between the centers of the solitons)
widens. At the same time the degree of localization reduces, i.e. broader profiles
of lower peak values result. Notably, the localized solutions are fairly broad width
and thus are expected to be mobile when appropriate kinetic energy is added. While
for low values U � 0:05 the electron probability density is single-peaked increasing
U causes a split up of �n into a double-peak structure. ForU � 0:9 the inter-electron
distance exceeds the width of either of the two peaks of the electron probability den-
sity. Therefore the two electrons can no longer be regarded as paired. Those features
of the electron probability are equivalently exhibited by the soliton patterns, that is
the stronger the repulsive interaction is, the less is the lattice compression reflected
in the width and amplitude of the soliton patterns.

5.3 Moving Electron-Pair Soliton Compounds

Let us now see the evolution of the localized electrons coupled with the corre-
sponding lattice deformations. The motion of the lattice soliton is achieved with
the excitation of the soliton momenta according to
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pn D 2 sinh.�/=� fexpŒ2�.n � 1/�=.1C expŒ2�.n � 1/�/
� expŒ2�.n � l/�=.1C expŒ2� .n � l/�/g

C2 sinh.�/=� fexpŒ2�.n � l � 1/�=.1C expŒ2�.n � l � 1/�/
� expŒ2�.n � l/�=.1C expŒ2� .n � l/�/g : (49)

One should bear in mind that while in this way the lattice is equipped with ki-
netic energy the electrons are presented as a standing state. To investigate whether
a soliton-assisted transport is achievable for two correlated standing electrons in
the lattice suffices to integrate the system (Eqs. (45) and (46)). For illustration this
has been done with N D 61 lattice sites and as in all previous cases with periodic
boundary conditions. The evolution of paired electrons and solitons for repulsive
interaction strength, U D 0:05, is illustrated in Fig. 12. Noteworthy is that for such
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particular values the lattice solitons travel with subsonic velocity along the lattice
retaining their localized profile save an early emission of small radiation to either
side. Likewise the localized shape of the electron pair probability distribution as
well as the inter-electron distance of a single site are maintained throughout the
computation. Apparently part of the energy contained initially in the lattice defor-
mation flows to the electronic degree of freedom with the result that the height of
the electron probability density increases, with consequent lowering of the velocity
of the corresponding solitons. For higher repulsion strengths, U � 0:05, supersonic
moving paired electron lattice solitons compounds can be observed as it is the case
for ˛ D 2 and V D 0:25 for which an inter-electron distance of a single site is
attained.

6 Summary and Concluding Remarks

Davydov’s approach to ET in biomolecules was a clever combination of physical
insight and mathematical beauty. His electro-soliton concept was a fruitful step
forward from the polaron concept due to Landau and Pekar. In both cases the
underlying lattice dynamics is harmonic hence leading to phonons which are linear,
infinitesimal excitations of the lattice crystal. The electro-soliton originates in the
nonlinearity of the electron–lattice coupling. A natural generalization of the polaron
and electro-soliton concepts is possible if consideration of lattice anharmonicity is
added to the electron–lattice interaction. Indeed, if we focus first on the anharmonic
lattice dynamics there are known Hamiltonian cases like the Toda one which be-
ing integrable possess as exact solutions, both solitons and solitonic periodic waves
obtained in analytical compact form. Such lattice solitons are natural “carriers” of
either matter or charge along the lattice crystal [105] and can trap excess, added
electrons thus leading to dynamic bound states which have been called solectrons.
There is a major component in the solectron concept that makes clear-cut distance
with Davydov’s electro-soliton. The underlying lattice excitations are of finite am-
plitude, and not merely infinitesimal.

Davydov’s electro-solitons do not survive above 10 K and do this with just a few
picoseconds lifetimes. In the present report we have shown that at variance with
Davydov’s electro-solitons, at least for Morse–Toda-like interactions thermally ex-
cited solectrons survive well above the physiological or room temperature range
(ca. 300 K) with several picoseconds lifetimes. First we have shown that thermally
excited solitons do survive at such temperatures. This was explored assuming that
lattice units are atoms or screened ion cores and then tracking lattice compressions
by the alternative offered by enhanced (covalent) electron densities. Then adding
excess, free (conduction) electrons we have shown how solectrons are formed and
survive at the physiological or room temperature range. Subsequently, we have con-
sidered pairs of electrons with added Coulomb repulsion albeit in the local, screened
Hubbard approximation. The computer simulations have shown that electron pairs
dynamically bound to solitons can travel along the charged lattice with speeds either
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subsonic or supersonic. It clearly appears that Coulomb repulsion does not alter the
possibility of solectrons being ET carriers or at the origin of a new form of (non-
Ohmic) electric conduction in the presence of an external field [75]. Furthermore,
by allowing electron pairing the results here reported open the path to the study
of solectron pairs as Bosons and whether or not such a system is prone to Bose–
Einstein condensation is an appealing question.

Acknowledgements The authors are grateful to Professors J.J. Kozak, G. Nicolis and G. Tsironis,
for fruitful discussions. This research has been sponsored by the EU under Grant SPARK II-FP7-
ICT-216227 and by the Spanish Government under Grant MEC-VEVES-FIS2006-01305.

References

1. B. Alberts, D. Bray, J. Lewis, M.Raff, K. Roberts, J.D. Watson, Molecular Biology of the Cell
(Garland, New York, 1983)

2. J.A. McCammon and S.C. Harvey, Dynamics of Proteins and Nucleic Acids (Cambridge
University Press, Cambridge, 1987)

3. C. Branden and J. Tooze, Introduction to Protein Structure (Garland, New York, 1991)
4. J.J. Hopfield, Proc. Nat. Acad. Sci. USA 71, 3649 (1974)
5. D.N. Beratan, J.N. Onuchic, J.J. Hopfield, J. Chem. Phys. 86, 4488 (1987)
6. J.J. Hopfield, J.N. Onuchic, D.N. Beratan, Science 241, 817 (1988)
7. J.N. Onuchic and D.N. Beratan, J. Chem. Phys. 92, 722 (1990)
8. D.N. Beratan, J.N. Betts, J.N. Onuchic, Science 252, 1285 (1991)
9. J.N. Onuchic, P.C.P. Andrade, D.N. Beratan, J. Chem. Phys. 95, 1131 (1991)

10. K. Schulten, M. Tesh, Chem. Phys. 158, 421 (1991)
11. J.N. Onuchic, D.N. Beratan, J.R. Winkler, H.B. Gray, A. Rev. Biophys. Struct. 21, 349 (1992)
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41. H. Fröhlich, Phys. Lett. 39A, 153 (1972)
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101. H. Böttger, V.V. Bryksin, Hoping Conduction in Solids (Academie-Verlag, Berlin, 1985)
102. J. Hubbard, Proc. Roy. Soc. (London) A 276, 238 (1963); A 277, 237 (1964); A 281, 401

(1964)
103. A. Montorsi (ed.), The Hubbard Model. A Reprint Volume (World Scientific, Singapore, 1992)
104. D. Hennig, M.G. Velarde, W. Ebeling, A.P. Chetverikov, Phys. Rev. E, 78, 066606 (2008)
105. E. del Rio, M.G. Velarde, W. Ebeling, Physica A 377, 435 (2007)



How Exponential Type Orbitals Recently
Became a Viable Basis Set Choice
in Molecular Electronic Structure Work
and When to Use Them

Philip E. Hoggan

Abstract This paper advocates the use of the atomic orbitals which have direct
physical interpretation, i.e. Coulomb Sturmians and hydrogen-like orbitals. They
are exponential type orbitals (ETOs). Their radial nodes are shown to be essential in
obtaining accurate nuclear shielding tensors for NMR work.

Until 2008, their products on different atoms were difficult to manipulate for
the evaluation of two-electron integrals. The difficulty was mostly due to somewhat
cumbersome orbital translations involving slowly convergent infinite sums. These
are eliminated using Coulomb resolutions. Coulomb resolutions provide an excel-
lent approximation that reduces these integrals to a sum of one-electron overlap-like
integral products that each involve orbitals on at most two centers. Such two-center
integrals are separable in prolate spheroidal co-ordinates. They are thus readily eval-
uated. Only these integrals need to be re-evaluated to change basis functions.

In this paper, a review of the translation procedures for Slater type orbitals (STO)
and for Coulomb Sturmians follows that of the more recent application to ETOs of
a particularly convenient Coulomb resolution.

Keywords Coulomb Sturmian basis � nodal structure � Coulomb resolutions � ab
initio quantum chemistry

1 Introduction

The criteria for choice between Gaussian and exponential basis sets for molecules
do not seem obvious at present. In fact, it appears to be constructive to regard them
as being complementary, depending on the specific physical property required from
molecular electronic structure calculations.

The present work describes a breakthrough in two-electron integral calculations,
as a result of Coulomb operator resolutions. This is particularly significant in that
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it eliminates the arduous orbital translations which were necessary until now for
exponential type orbitals. The bottleneck has been eliminated from evaluation of
three- and four- center integrals over Slater type orbitals and related basis functions.

The two-center integrals are replaced by sums of overlap-like one-electron
integrals. This implies a speed-up for all basis sets, including Gaussians. The im-
provement is most spectacular for exponential type orbitals. A change of basis set
is also facilitated as only these one-electron integrals need to be changed. The
Gaussian and exponential type orbital basis sets are, therefore interchangeable in
a given program. The timings of exponential type orbital calculations are no longer
significantly greater than for a Gaussian basis, when a given accuracy is sought for
molecular electronic properties.

Atomic orbitals are physically meaningful one-electron atom eigenfunctions for
the Schrödinger equation. This gives them as well-known analytical expressions:
hydrogen-like orbitals.

Boundary conditions allow the principal quantum number n to be identified as the
order of the polynomial factor in the radial variable. It must therefore be positive and
finite. It is also defined such that n� l�1 is greater than or equal to 0. This gives the
number of zeros of the polynomial (radial nodes). Here, l D 0, or a positive integer,
which defines the angular factor of the orbital. (i.e. a spherical harmonic, or, more
rarely, its Cartesian equivalent) The number n gives the energy of the one-electron
atomic bound states. Frequently, basis set studies focus on the radial factor. That is,
for our present purposes, the angular factor can be assumed sufficiently defined as a
spherical harmonic.

The key issue is whether to choose basis sets with exponential or Gaussian
asymptotic factors.

Certain physical properties, such as NMR shielding tensor calculations directly
involve the nuclear cusp and correct treatment of radial nodes, which indicates that
basis sets such as Coulomb Sturmians are better suited to their evaluation than
Gaussians [36–38].

There is also evidence to suggest that CI expansions converge in smaller
exponential basis sets compared to Gaussians [45, 46]. Benchmark overlap sim-
ilarity work is available [46, 47].

2 Wave-Function Quality

The following quantity:

�1=2
r�.r/

�.r/

is used to test wave-function quality. It is smooth, to varying degrees, in different
basis sets. Atomic positions must give cusps. The importance for Quantum Monte
Carlo work and DFT applications has been detailed elsewhere [61].

Much molecular quantum chemistry is carried out using Gaussian basis sets and
they are indeed convenient and lead to rapid calculations. The essential advantage
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they had over exponential basis sets was the simple product theorem for Gaussians
on two different atomic centers. This allows all the two-electron integrals, including
three- and four-center terms to be expressed as single-center two-electron integrals.

The corresponding relationship for exponential type orbitals generally led to in-
finite sums and the time required, particularly for four-center integrals could often
become prohibitive.

Recent work by Gill has, nevertheless been used to speed up all three- and four-
center integral evaluation, regardless of basis using the resolution of the Coulomb
operator [15–17]. This work by Gill is used here to reduce the three- and four- center
two-electron integrals to a sum of products of overlap-like (one-electron) integrals,
basically two-centered. This algorithm was coded in a Slater type orbital (STO)
basis within the framework of the STOP package [4] (in fortran) during summer
2008. Note, however, that other exponential or Gaussian basis sets can readily be
used. The set of one-electron overlap-like auxiliary integrals is the only calculation
that needs to be re-done to switch basis functions. They may be re-evaluated for
the basis set that the user selects for a given application. This procedure makes the
approach highly versatile, since a change of basis set requires relatively few simple
new evaluations. A modular or object-oriented program is being designed to do this
efficiently [17, 48, 49].

The present article gives illustrative test results on molecular systems, e.g. the H2

dimer.
The layout of this appraisal of recent work is as follows: the review begins

with a brief recap of basis sets and programming strategy in the next two sections.
Atom pairs are the physical entity used for integral evaluation, both in the Pois-
son equation technique and the Coulomb resolution. Two sections are devoted to
these progressively more powerful techniques which both reduce two-electron to
one-electron integrals. The overlaps required for the Coulomb resolution differ by
a potential factor from orbital overlaps. Their evaluation is nevertheless analytic,
using well-known techniques summarized in the subsequent section. Finally, to il-
lustrate what can be gained by eliminating orbital translations, the translation of
Slater type orbitals is reviewed briefly, from recent work on BCLFs. Translation of
Coulomb Sturmians is briefly outlined to review work on he Shibuya–Wulfman ma-
trix. Both these techniques have been studied by the present author. A few numerical
results are given on the dimer of molecular hydrogen which show progressive speed-
up particularly for the Coulomb resolution given a pre-selected accuracy, which
proves sufficient to provide satisfactory confirmation of experimental vibrational
spectroscopy work on this dimer.

3 Basis Sets

Although the majority of electronic quantum chemistry uses Gaussian expansions
of atomic orbitals [20, 21], the present work uses exponential type orbital (ETO)
basis sets which satisfy Kato’s conditions for atomic orbitals: they possess a cusp at
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the nucleus and decay exponentially at long distances from it [58–60]. It updates a
‘real chemistry’ interest beginning around 1970 and detailed elsewhere [22–33, 51].

Two types of ETO are considered here: Slater type orbitals (STOs) [56, 57] and
Coulomb Sturmians, which may be written as a finite combination thereof [54].
Otherwise, STOs may be treated as multiple zeta basis functions in a similar way to
the approach used with Gaussian functions.

Many exponential type functions exist [54]. Preferential use of Sturmian type
functions is discussed [17].

Coulomb Sturmians have the advantage of constituting a complete set without
continuum states because they are eigenfunctions of a Sturm–Liouville equation
involving the nuclear attraction potential, i.e. the differential equation below.

r2
Er
Smnl .ˇ; Er/ D

�
ˇ2 �

2ˇn

r

�
Smnl .ˇ; Er/:

The exponential factor of Coulomb Sturmians; e�ˇr has an arbitrary screening
parameter ˇ. In the special case when ˇ D �=n with n the principal quantum number
and � the Slater exponent, we obtain hydrogen-like functions, which do not span the
same space and require inclusion of continuum states to form a complete set [54].
Hydrogen-like functions are, however well known as atomic orbitals: the radial fac-
tor contains the associated Laguerre polynomial of order 2lC1 with suffix n� l �1
and the exponential e��r=n as indicated above. The angular factor is just a spherical
harmonic of order l . These functions are ortho-normal. The optimal values of the
ˇ parameters may be determined analytically by setting up secular equations which
make use of the fact that the Sturmian eigenfunctions also orthogonalise the nuclear
attraction potential, as developed by Avery [39].

Z
Smnl .r; 
; 	/Sm

0

n0l 0.r; 
; 	/
dr

r
D ınn0l l 0mm0 :

Alternative ETOs would be Slater type orbitals and B-functions with their simple
Fourier transforms. Strictly, they should be combined as linear combinations to form
hydrogen-like or, better, Sturmian basis sets prior to use.

STOs allow us to use routines from the STOP package [55] directly, whereas
Coulomb Sturmians still require some coding. The relationship to STOs is used to
carry out calculations over a Coulomb Sturmian basis with STOP until the complete
Sturmian code is available. The present state-of-the-art algorithms require at most
twice as long long per integral than GTO codes but the CI converges with fewer
functions and the integrals may be evaluated after Gaussian expansion or expressed
as overlaps to obtain speed up [63]. Recent iterative procedures devised by Nakatsuji
to be published in IJQC during 2009 and independent of basis prove that CI requires
at least three times more Gaussians than Slater type orbitals for an electron pair.

After a suitably accurate electron density has been obtained for the optimized
geometry over a Coulomb Sturmian basis set, the second-order perturbation defining
the nuclear shielding tensor should be evaluated in a Coupled perturbed Hartree
Fock scheme.
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The integrals involved may conveniently be evaluated using B-functions with
linear combinations giving the Coulomb Sturmians.

Smnl .r/ D .2˛/3=2
22lC1

2l C 1/ŠŠ

n�l�1X
lD0

.�nC l C 1/t .nC l C 1/t

t Š .l C 3=2/t
Bm
tC1;l .r/

The techniques exploit properties of Fourier transforms of the integrand.
Note that either HF or DFT can serve as zero order for the present nuclear shield-

ing tensor calculation over ETOs.
A full ab initio B-function code including nuclear shielding tensor work is

expected to be complete shortly.
Some tests show that Slater type orbitals (STO) or B-functions (BTO) are less ad-

equate basis functions that Coulomb Sturmians, because only the Sturmians possess
the correct nuclear cusp and radial behavior.

4 Programming Strategy

Firstly, the ideal ab initio code would rapidly switch from one type of basis function
to another.

Secondly, the chemistry of molecular electronic structure must be used to the
very fullest extent. This implies using atoms in molecules (AIM) and diatomics in
molecules (DIM) from the outset, following Bader (in an implementation due to
Rico et al. [50] and Tully [41] implemented in our previous work [55], respectively.
The natural choice of atomic orbitals, i.e. the Sturmians or hydrogen-like orbitals
lend themselves to the AIM approach. To a good approximation, core eigenfunc-
tions for the atomic hamiltonian remain unchanged in the molecule. Otherwise,
atom pairs are the natural choice, particularly if the Coulomb resolution recently
advocated by Gill is used. This leads us to products of auxiliary overlaps which
are either literally one- or two- centered, or have one factor of the product where a
simple potential function needs to be translated to one atomic center.

The Slater basis set nightmare of the Gegenbauer addition theorem is completely
avoided. Naturally, the series of products required for, say a four-center two-electron
integral may require 10 or even 20 terms to converge to chemical accuracy, when
at least one atom pair is bound but the auxiliaries are easy to evaluate recursively
and re-use. Unbound pairs may be treated using a smaller number of terms since the
integrals can be predicted to be small, using a Schwarz inequality.

Now, the proposed switch in basis set may also be accomplished just by re-
evaluating the auxiliary overlaps. Furthermore, the exchange integrals are greatly
simplified in that the products of overlaps just involve a two-orbital product instead
of a homogeneous density. The resulting cpu-time growth of the calculation is n2

for SCF, rather than n4. Further gains may be obtained by extending the proce-
dure to post-Hartree-Fock techniques involving explicit correlation, since the r12�1

integrals involving more than two electrons, that previously soon led to bottlenecks,
are also just products of overlaps.
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5 Atom Pairs: Solving Poisson’s Equation

All the molecular integrals over CS required for standard SCF may be evaluated us-
ing analytical two-center terms based on the solution of Poisson’s equation for the
Coulomb potential in an ETO basis. This uses the spectral forms (involving incom-
plete gamma functions and regular and irregular solid harmonics) defined initially
in [52, 53, 63] and subsequently generalized to ensure numerical stability as shown
in a brief summary below.

Recalling the definition of a Slater type orbital:

�n; l; m; �.r; 
; 	/ D N1 r
n�1e��r Y ml .
; 	/ :

Define the radial factor g.r/ :

g.r/ D rn�1e��r :

Then, (from the spectral forms in [63]), the potential due to this distribution is
immediately written:

˘l.g/ D r
2F.r/ ;

Where g is short for g(r) and F(r) is given below, with a suitable variable of
integration; u:

F.r/ D

Z 1

0

du g.ru/ ulC2 C
Z 1
1

du g.ru/ u1�l :

This expression is used to write all radially dependent one and two-center inte-
grals in analytical closed form.

The next section describes a more profound advance, that reduces the atom-pair
evaluation to one-electron overlap-like integrals. It is related to the Poisson equation
technique, as detailed in [34, 63].

6 Avoiding ETO Translations for Two-Electron Integrals
over 3 and 4 Centers

Previous work on separation of integration variables is difficult to apply, in contrast
to the case for Gaussians [43] cf. [40]. Recent work by Gill et al. [15] proposes a
resolution of the Coulomb operator, in terms of potential functions 	i , which are
characterized by examining Poisson’s equation. In addition, they must ensure rapid
convergence of the implied sum in the resulting expression for Coulomb integrals
J12 as products of “auxiliaries”, i.e. overlap integrals, as detailed in [15]:

J12 D < �.r1/ 	i .r1/ > < 	i .r2/ �.r2/ > with implied sumation over i (1)
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This technique can be readily generalized to exchange and multi-center two-electron
integrals.

Note, however, that the origin of one of the potential functions only may be
chosen to coincide with an atomic (nuclear) position.

Define potential functions 	i in the scope of a Coulomb operator resolution, as
follows 	i D 23=2Y ml .
; 	/	nl .r/:

	n l .r/D

Z C1
0

hn.x/jl .rx/dx with jl .x/ denoting the spherical Bessel function (2)

Here, hn.x/ is the nth member of any set of functions that are complete and or-
thonormal on the interval Œ0;C1/, such as the nth order polynomial function (i.e.
polynomial factor of an exponential). The choice made in [15] is to use parabolic
cylinder functions (see also another application [64]), i.e. functions with the even
order Hermite polynomials as a factor. This is not the only possibility and a more
natural and convenient choice is based on the Laguerre polynomials Ln.x/: Define:

hn.x/ D
p
2 Ln.2 x/e

�x (3)

These polynomial functions are easy to use and lead to the following analytical
expressions for the first two terms in the potential defined in Eq. (2):

V00.r/ D
p
2

tan�1.r/
r

(4)

V10.r/ D
p
2 Œ

tan�1.r/
r

�
2

.1 C r2/
� (5)

Furthermore, higher n expressions of Vn0.r/ all resemble Eq. (5) (see [16] Eq
(23)):

Vn0.r/ D
p
2
1

r
.1C

nX
1

.�1/k
sin.2 k tan�1.r//

k
/ (6)

and analytical expressions of Vnl .r/ with non-zero l are also readily obtained by
recurrence.

The auxiliary overlap integrals < �.r1/ 	i .r1/ > and < 	i.r2/ �.r2/ > will
involve densities obtained from atomic orbitals centered on two different atoms in
most multi-center two-electron integrals. The integrals required in an ETO basis are
thus of the type:

<  a.r1/  b.r1/ 	i .r1/ > (7)

Such integrals appear for two-center exchange integrals and all three- and four
center integrals. Note that exchange integrals require distinct orbitals  a and  b . In
the atomic case, they must have different values for at least one of n; l;m or �. In
the two-center case, the functions centered at a and b may be the same.

The product does not correspond to a single-center density: it is two-centered.
The above equation then illustrates the relationship to the one-electron two-center
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overlap integral, although it clearly includes the extra potential term from the
Coulomb operator resolution.

The overlap integrals may be evaluated by separating the variables in prolate
spheroidal co-ordinates, following Mulliken and Roothaan [42] and using recur-
rence relations in [19]:

S.n1; l1;m; n2; l2; ˛; ˇ/ D ˛
n1C1=2ˇn2C1=2 Œ.2n1/Š .2n2/Š�

�1=2 s.n1l1mn2l2˛ˇ/

D N.n1; n2; ˛ˇ/s.n1; l1;m; n2; l2; ˛ˇ/

where: ˛ D k1R and ˇ D k2R. The k1; k2 are Slater exponents. The core overlaps
are given by:

s.n1; l1;m; n2; l2; ˛; ˇ/ D

Z 1
1

Z 1

�1

exp

�
�
1

2
.˛ C ˇ/ �

1

2
.˛ � ˇ/�

�

.C �/n1. � �/n2T .; �/dd�

 D
ra C rb

R

� D
ra � rb

R

ra and rb are the instantaneous position vectors of the electron from the two centers
labeled a and b, respectively and separated by a distance R. We also define, using
the normalised spherical tensors S:

T .; �/ D Sml1 .; �/aS
m
l2
.; �/b

The core overlaps then take the form:

s.n1; l1;m; n2; l2; ˛; ˇ/ D Dl1;l2;m

�X
ij

Y �ij Ai

�
1

2
.˛ C ˇ/

�
Bj

�
1

2
.˛ � ˇ/

�

Y �ij is a matrix with integer elements uniquely determined from n; l and m. It is
obtained as a generalised binomial coefficient, in the expansion of:

.ra � rb/
n .ra C rb/

n

Dl1;l2;m is a coefficient that is independent of the principal quantum number. It is
obtained upon expanding the product of two Legendre functions in this co-ordinate
system. Symmetry conditions imply that only m1 D m2 D m lead to non-zero
coefficients.

Ai

�
1

2
.˛ C ˇ/

�
D

Z 1
1

exp

�
�
1

2
.˛ C ˇ/

�
id
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Bj

�
1

2
.˛ � ˇ/

�
D

Z 1

�1

exp

�
�
1

2
.˛ � ˇ/�

�
�j d�

Here, recurrence relations on the auxiliary integrals A and B lead to those for the
requisite core integrals [18, 19].

This assumes tacitly that the potential obtained from the coulomb operator reso-
lution be centered on one of the atoms. Whilst this choice can be made for one pair
in a four-center product, it cannot for the second. There remains a single translation
for this potential in one auxiliary of the two in a product representing a four-center
integral and none otherwise. The structure of these potential functions obtained by
recurrence from Eq. (6) shows that the translation may be accomplished readily
in the prolate spheroidal co-ordinates. This point is addressed in detail in a recent
publication [17].

This method obviates the need to evaluate infinite series that arise from the or-
bital translations efficiently. They have been eliminated in the Coulomb operator
resolution approach, since only orbitals on two centers remain in the one-electron
overlap-like auxiliaries. These can be evaluated with no orbital translation, in prolate
spheroidal co-ordinates, or by Fourier transformation [16, 17].

7 How Slater Type Orbitals Were Translated

The Barnett–Coulson–Löwdin functions (BCLFs see [2]) arise as coefficients in the
series expansion of a Slater type orbital centered at a distance a from the origin,
placed on an atomic nucleus where a set of Slater type orbitals are centered [11, 14].
This allows the one- and two-electron multi-center integrals to be evaluated at a
given origin in the molecule. The series expansion obtained is infinite, since the
molecular geometry variable a (usually 1–20 a.u.) is fixed for an electronic structure
calculation, whereas the instantaneous electron position variable r is independent of
it and 0 < r <1. They are both radial vectors and generally cannot be aligned.

Much work is already available on BCLFs [5, 7–10, 12, 35, 36] and references
therein. Nevertheless, two bottlenecks are yet to be efficiently resolved when Slater
type orbital translations are required:

(i) Rapid and accurate generation of the BCLFs themselves
(ii) Acceleration of the convergence of the infinite series generated, which typically

do not converge quickly

In the present work, the first item, (i) is thoroughly addressed.
The value of the screening parameter � generally exceeds 1 and should not exceed

the atomic number. In practice, the lower limit for � is related to the first ionization
potential I in atomic units, i.e., � must not be less than

p
2 I . These limitations are

helpful in establishing the numerical behavior of the BCLFs.
In this work, we treat the problem of efficient computation of BCLFs. Our aim

is to develop a computational procedure by which a whole sequence of BCLFs can
be computed fast and accurately. In Section 8, we present an up-to-date review of
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properties of BCLFs. In more complete work on the subject [62], we discuss and
evaluate possible strategies for computing them, and conclude that recursion rela-
tions can be used efficiently for this purpose, provided that the modified spherical
Bessel functions InC1=2.x/ and KnC1=2.x/ can be computed fast and accurately.

A method by which a whole array of BCLFs can be computed simultaneously,
quickly and accurately is also detailed in previous work [62]. In this recent work,
we also discuss the details of the programming of our method. It is important to note
that, in our method, we do not compute InC1=2.x/ and KnC1=2.x/ directly. Taking
into account the asymptotics of I�.x/ and K�.x/ as � ! 1, we compute some
appropriately scaled versions of these functions instead. The scaling we use enables
us to avoid the underflows and overflows that may occur in direct computation of
InC1=2.x/ and KnC1=2.x/ for large values of n; it is thus an important ingredient of
our method. This also allows us to scale the BCLFs appropriately. In order to end
up with BCLFs that have double-precision accuracy, in our method, we compute
both the functions InC1=2.x/ and KnC1=2.x/ and the BCLFs in extended precision
arithmetic, the idea being that the quadruple-precision arithmetic is shown to suffice
and it is offered with some high-level programming language compilers used for
scientific applications, e.g. Fortran 77 and C. As the number of arithmetic opera-
tions required is very small (of the order of wN , where N is the number of BCLFs
computed and w is a small integer), the use of quadruple-precision arithmetic cannot
increase the cost of the computation time-wise. We provide an error analysis for the
procedure we use to compute the scaled modified spherical Bessel functions, which
shows that the procedure is indeed very accurate in previous work [62].

Finally, in [62], we also provide three appendices that contain several results that
seem to be new. In the first, we analyze the asymptotic behavior of the modified
Bessel functions I�.x/ andK�.x/ as � !1. We derive two sets of full asymptotic
expansions that have some quite interesting properties. The scalings we use in [62]
are based on the results of this appendix. In the second, we obtain explicit power
series expansions for products of modified spherical Bessel functions. In the third
appendix of [62], we derive asymptotic expansions of BCLFs as their order tends to
infinity.

8 Review of BCLFs

8.1 Definition and Properties of BCLFs

Let n be a non-negative integer, a and r two real positive numbers, � a real positive
number. Of these, a and � are finite, while r assumes values from 0 to infinity. With
R defined as in

R D
p
a2 C r2 � 2ar cos 
 (8)

consider the function Rn�1e��R. Letting x D cos 
 so that x 2 Œ�1;C1�, its
expansion in Legendre polynomials P�.x/ may be expressed as
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Rn�1e��R D
1
p
ar

1X
�D0

.2�C 1/An�C1=2.�; a; r/ P�.x/; �1 � x � 1; (9)

An�C1=2 being the BCLFs. From this relation, it is seen that Rn�1e��R serves as a
“generating function” for the BCLFs. Since

Z C1
�1

P 2
� .x/ dx D

2

2�C 1
; � D 0; 1; : : : ; (10)

we immediately deduce from Eq. 9 that

An�C1=2.�; a; r/ D

p
ar

2

Z C1
�1

Rn�1e��RP�.x/ dx; � D 0; 1; : : : : (11)

Clearly, the An�C1=2.�; a; r/ are symmetric functions of a and r , that is,

An�C1=2.�; a; r/ D A
n
�C1=2.�; r; a/; (12)

because the function Rn�1e��R is.

A simple expression for BCLFs with n D 0 and � D 0; 1; : : : ; is known (see [1,
p. 445, formula 10.2.35]):

A0�C1=2.�; a; r/ D I�C1=2.��/K�C1=2.��
0/I � D minfa; rg; �0 D maxfa; rg:

(13)

Here, I�C1=2.x/ and K�C1=2.x/ are the modified spherical Bessel functions: [The
functions I�C1=2.x/ and K�C1=2.x/ satisfy three-term recursion relations in � that
are given in this work, and are defined for all integer values of �. Those I�C1=2.x/
with � � 0 are called modified spherical Bessel functions of the first kind, while
those with � < 0 are called modified spherical Bessel functions of the second kind.
The K�C1=2.x/ are called modified spherical Bessel functions of the third kind.
Each of the two pairs [I�C1=2.x/ and I���1=2.x/] and [I�C1=2.x/ and K�C1=2.x/]
is a linearly independent set of solutions of the modified spherical Bessel equation
of order �. See Abramowitz and Stegun [1, Chapter 10]]. of order �, of the first
and third kind, respectively. Because I�C1=2.x/ and K�C1=2.x/ are defined for all
integer values of �, we let (13) define A0�C1=2.�; a; r/ for � < 0 as well. This is an
important step that enables us to define An�C1=2.�; a; r/ for � < 0 as well, which is
what we consider next (see [6]).

From the integral representation in Eq. (11), it follows that, for n � 0,

AnC1�C1=2.�; a; r/ D �
@

@�
An�C1=2.�; a; r/; (14)

and hence
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An�C1=2.�; a; r/ D .�1/
n @

n

@�n
A0�C1=2.�; a; r/ : (15)

From Eq. (13), it is obvious that A0�C1=2.�; a; r/ D A0�C1=2.1; �a; �r/. By a
simple manipulation of the integral representation in Eq. (11), it can be shown anal-
ogously that An�C1=2.�; a; r/ satisfy the “homogeneity relation”

An�C1=2.�; a; r/ D �
�nAn�C1=2.1; �a; �r/; n � 0: (16)

This relation shows that An�C1=2.�; a; r/ are actually functions of two variables,
namely, of �a and �r , and can be computed directly from the functions NAn�.a; r/
that are defined as in

NAn�.a; r/ D A
n
�C1=2.1; a; r/: (17)

From Eqs. (16) and (17), it follows that An�C1=2.�; a; r/ can be computed from
NAn�.a; r/ via

An�C1=2.�; a; r/ D �
�n NAn�.�a; �r/: (18)

Invoking Eq. (18), it is easy to show that Eq. (14) can be rewritten as

NAnC1� .a; r/ D n NAn�.a; r/ �

�
a
@

@a
C r

@

@r

	
NAn�.a; r/; n � 0: (19)

Translation of Coulomb Sturmians requires the procedures described in the next
two sections which are given, for comparison. Much work by Avery and others is
already available [70–73, 75, 77, 78].

9 Definition of the Shibuya–Wulfman Integrals

Coulomb Sturmian basis sets are sets of solutions to the one-electron wave equation

�
�
1

2
r2 �

nk

r
C
k2

2

�
�nlm.x/ D 0 (20)

where k is held constant for the entire set. It can be seen that Eq. (20) is the same
as the equation obeyed by hydrogen-like orbitals, except that Z=n has been replaced
by the constant k. Thus Coulomb Sturmians have the same form as hydrogen-like
orbitals, except that Z=n is everywhere replaced by k. A set of Coulomb Sturmian
basis functions obey the potential-weighted orthonormality relations

Z
d3x ��n0l 0m0.x/

1

r
�nlm.x/ D

k

n
ın0nıl 0l ım0m (21)
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By projecting momentum-space onto the surface of a 4-dimensional hypersphere,
V. Fock [76] was able to show that the Fourier-transformed Coulomb Sturmians

�tnlm.p/ D
1p
.2�/3

Z
d3x e�ip�x�nlm.x/ (22)

can be very simply expressed in terms of 4-dimensional hyperspherical harmonics
[65, 80] through the relationship

�tn;l;m.p/ DM.p/Yn�1;l;m.u/ (23)

where

M.p/ �
4k5=2

.k2 C p2/2
(24)

and

�1 D
2kp1

k2 C p2

�2 D
2kp2

k2 C p2

�3 D
2kp3

k2 C p2

�4 D
k2 � p2

k2 C p2
(25)

Extending Fock’s method, Shibuya and Wulfman [79] found momentum–space
solutions to the one-electron many-center wave equation

"
�
1

2
r2 �

X
a

Za

jx � Xaj
C
k2

2

#
'.x/ D 0 (26)

These authors started with the momentum-space counterpart of Eq. (26), and they
showed that if the molecular orbitals are built up as superpositions of Coulomb
Sturmians,

'.x/ D
X
k;l;m;a

�n;l;m.x � Xa/Cn;l;m;a (27)

then the coefficients in the superposition are given by the solution of the secular
equation

X
n;l;m;a

ŒKn0;l 0;m0Wn;l;m.Xa0 � Xa/ � kın0;nıl 0;l ım0;mıa0;a� Cn;l;m;a D 0 (28)
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where

Kn0;l 0;m0In;l;m.Xa0 � Xa/ �

r
Za0Za

n0n
Sn0;l 0;m0In;l;m.Xa0 � Xa/ (29)

and
Sn0;l 0;m0In;l;m.Xa0 � Xa/ �

Z
d˝eip�RY �n0�10;l 0;m0.u/Yn�1;l;m.u/ (30)

with R � Xa0 � Xa.

10 Evaluation of Shibuya–Wulfman Integrals

The structure of the matrix of Shibuya–Wulfman integrals is closely related to the
composition properties of the 4-dimensional hyperspherical harmonics. When two
of these hyperspherical harmonics are multiplied together, the result can be ex-
pressed as a sum over single harmonics:

Y �n0�10;l 0;m0.u/Yn�1;l;m.u/ D
X
n00;l 00

Yn00�1;l 00;m�m0.u/C Œfn00; l 00g; fn0; l 0; m0g; fn; l;mg�

(31)
where

C Œfn00; l 00g; fn0; l 0; m0g; fn; l;mg� D

Z
d˝ Y �n00�1;l 00;m�m0

.u/Y �n0�10;l 0;m0.u/Yn�1;l;m.u/ (32)

In general, there can be several terms in such a sum. This is important for the
structure of the Shibuya–Wulfman integrals because these integrals are defined by
Eq. (30). It can be shown using a Sturmian expansion of a plane wave [74, 79, 81]
and using generalized Wigner coefficients [66, 67, 80] that

Z
d˝eip�RYn�1;l;m.u/ D .2�/3=2 fnl .s/Ylm.Os/ (33)

where Os � k OR is a unit vector and

k3=2fnl .s/ � Rnl.s/ �
1

2

s
.n � l/.nC l C 1/

n.nC 1/
RnC1;l .s/

�
1

2

s
.nC l/.n � l � 1/

n.n � 1/
Rn�1;l .s/ (34)

Rnl.s/ �

8<
:
Nnl .2s/

le�sF Œl C 1 � nI 2l C 2I 2s� n > l

0 otherwise
(35)
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with

Nnl D
2k3=2

.2l C 1/Š

s
.l C n/Š

n.n � l � 1/Š
(36)

while

F ŒaI bI x� � 1C
a

b
x C

a.aC 1/

2b.b C 1/
x2 C � � � (37)

By comparing Eqs. (30), (31) and (33) we can see that the Shibuya–Wulfman inte-
grals can be written in the form:

Sn0;l 0;m0In;l;m.Xa0 � Xa/ D .2�/
3=2

X
n00;l 00

fn00;l 00.s/Yl 00;m�m0.Os/

C Œfn00; l 00g; fn0; l 0; m0g; fn; l;mg� (38)

If we introduce the notation

Yl;m.Os/ � Yl;m.
R/eim	R (39)

where 
R and 	R are the angles associated with the vector R � Xa0 � Xa, we can
see that that ei.m�m

0/	R can always be factored out. Thus we can write:

Sn0;l 0;m0In;l;m.Xa0 � Xa/

.2�/3=2
D ei.m�m

0/	R
X
n00;l 00

fn00;l 00.s/Yl 00;m�m0.
R/

C Œfn00; l 00g; fn0; l 0; m0g; fn; l;mg� (40)

The coefficients C Œfn00; l 00g; fn0; l 0; m0g; fn; l;mg� can be evaluated by using the
powerful angular and hyperangular integration theorem [68, 74]

Z
d˝ F� D

8̂
<̂
ˆ̂:

2�d=2r�.d � 2/ŠŠ

� .d=2/�ŠŠ.d C � � 2/ŠŠ
�

1
2 �F� � D even

0 � D odd

(41)

Here F� is any homogeneous polynomial of degree �, while d is the dimension of
the space (in our case 4). The operator � is the generalized Laplacian operator

� �

dX
jD1

@2

@x2j
(42)

and d˝ is the generalized solid angle element. In order to evaluate the hyperangular
integral that appears in Eq. (32), we convert the product of three 4-dimensional
hyperspherical harmonics into a homogeneous polynomial in the coordinates of a
4-dimensional space by multiplying inside the integral by an appropriate power of
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the hyperradius and dividing by the same power outside. Then we simply apply
the hyperangular integration theorem (Eq. 31). Mathematica and Maple programs
which calculate the Shibuya–Wulfman integrals using this method may be found on
the website http://sturmian.kvante.org

11 Numerical Results Compared for Efficiency

Consider the H2 molecule and its dimer/agregates. In an s-orbital basis, all two-
center integrals are known analytically, because they can be integrated by separating
the variables in prolate spheroidal co-ordinates. A modest s-orbital basis is therefore
chosen, simply for the demonstration on a rapid calculation, for which some exper-
imental data could be corroborated.

The purpose of this section is to compare evaluations using the translation of a
Slater type orbital basis to a single center (STOP) [55] with the Poisson equation
solution using a DIM (Diatomics in molecules or atom pair) strategy and finally to
show that the overlap auxiliary method is by far the fastest approach, for a given
accuracy (the choice adopted is just six decimals, for reasons explained below).

H2 molecule with interatomic distance of 1.402d0 atomic units (a.u.) (Table 1)
assembles the full set of all Coulomb integrals; with one and two-centers evaluated
using STOP, Poisson and overlap methods. Exponents may be found from the atomic
integrals which do not include the constant factor (5=8 here).

The two-center integrals are dominated by an exponential of the interatomic dis-
tance and thus all ave values close to 0.3. The table is not the full set. All ‘15’ terms,
involving 1sa1.1/ 1sb1.2/ are given, to illustrate symmetry relations.

Note that this is by no means the best possible basis set for H2, since it is limited
to l D 0 functions (simply to ensure that even the two-center exchange integral has
an analytic closed form).

The total energy obtained for the isolated H2 molecule is �1.1284436 Ha as
compared to a Hartree-Fock limit estimate of�1.1336296 Ha. Nevertheless, the Van
der Waals well, observed at 6.4 a.u. with a depth of 0.057 kcal/mol (from Raman
studies) is quite reasonably reproduced [82].

Table 1 Coulomb integrals in H2

AOs (zeta) 1sa1 1sa2 2sa1 2sa2

1sa1 1.042999 1.042999 0 0 0
1sa2 1.599999 0.934309 1.599999 0 0
2sa1 1.615000 0.980141 0.870304 1.615000 0
2sa2 1.784059 0.901113 0.923064 1.189241 1.784059
1sb1 1.042999 3.455363 0.364117 0.659791 1.621644
1sb2 1.599999 0.433097 0.332887 0.635867 1.541858
2sb1 1.615000 0.323691 0.248050 0.529300 1.276630
2sb2 1.784059 0.402387 0.324872 0.636877 2.014196
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Table 2 Atomic exchange integrals (six distinct single center values between pairs of different
AOs)

AOs (zeta) Label [a(1)b(2)a’(2)b’(1)] Value Comment
1sa1 1.042999 1 1212 0.720716 –
1sa2 1.599999 2 1313 0.585172 –
2sa1 1.615000 3 1414 0.610192 –
2sa2 1.784059 4 2323 0.557878 –
1sb1 1.042999 5 2424 0.607927 –
1sb2 1.599999 6 3434 0.602141 –
2sb1 1.615000 7 2121 0.720716 D 1212
2sb2 1.784059 8 3232 0.585172 D 2323

Table 3 Two-center ex-
change integrals. All pair
permutations possible. Some
are identical by symmetry

Labels Value Comment
1515 0.319902 –
1516 0.285009 D 1525
1517 0.325644 D 1535
1518 0.324917 D 1545
1527 0.291743 D 1536
1528 0.293736 D 1547
1538 0.329543 D 1548
2525 0.260034 –
2516 0.254814 –
2517 0.290533 –
2518 0.290149 –

Dimer geometry: rectangular and planar. Distance between two hydrogen atoms
of neighboring molecules: 6 au. Largest two-center integral between molecules:
4.162864 10�5. (Note that this alone justifies the expression dimer—the geome-
try corresponds to two almost completely separate molecules; however, the method
is applicable in any geometry).

Timings on an IBM RS6000 Power 6 workstation, for the dimer (all 4-center
integrals in msec): STOP: 12 POISON: 10 OVERLAP: 2.

Total dimer energy: �2.256998 Ha. This corresponds to a well-depth of 0.069
kcal/mol, which may be considered reasonable in view of the basis set. The factor
limiting precision in this study is the accuracy of input. The values of Slater expo-
nents and geometric parameters are required to at least the accuracy demanded of
the integrals and the fundamental constants are needed to greater precision.

12 Conclusions

A remarkable gain in simplicity is provided by Coulomb operator resolutions [15],
that now enables the exponential type orbital translations to be completely avoided
in ab initio molecular electronic structure calculations, although some mathematical
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structure has been emerging in the BCLFs used to translate Slater type orbitals and
even more in the Shibuya–Wulfman matrix used to translate Coulomb Sturmians.

This breakthrough that Coulomb resolutions represent (in particular with the con-
venient choice of Laguerre polynomials) in the ETO algorithm strategy stems from
a well-controlled approximation, analogous to the resolution of the identity. The
convergence has been shown to be rapid in all cases [16].

The toy application to H2 dimer Van der Waals complexes uses a general code
within the STOP package [55]. Numerical vales for the geometry and interaction
energy agree well with complete ab initio potential energy surfaces obtained using
very large Gaussian basis sets and data from vibrational spectroscopy [82].
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Cation Hydrolysis Phenomenon in Aqueous
Solution: Towards Understanding It by
Computer Simulations

M. Holovko, M. Druchok, and T. Bryk

Abstract Molecular dynamics studies of the influence of ionic charge on hydrated-
hydrolyzed structure and dynamic properties of highly charged cations are reviewed.
In order to clarify the influence of ion charge a simple model cation MZC called
primitive cation was introduced. The investigations demonstrate a wide variety of
hydrated-hydrolyzed forms of primitive cation, including aquo, hydroxo-aquo, hy-
droxo, oxo-hydroxo, and oxo forms. A transition between these forms is regulated
by a value of cation charge Z. For correct description of cation hydrolysis we also
modeled effects of charge redistribution on hydrolysis reaction products, that essen-
tially modifies hydrated–hydrolyzed structures and initiates a partial dehydration of
cation. Self-diffusion coefficients and spectral densities of hindered translation mo-
tions of primitive cation and oxygens of first hydration shell demonstrate a strong
correlation with hydrated–hydrolyzed structure of cations.

Aqueous solutions of real cations Al3C and UO2C
2 are modeled too. The alu-

minium ions are characterized by a strict octahedral arrangement of neighbors
in hydration shell with tendency to hydrolysis. For the case of uranyl solution a
bipyramidal pentacoordinated arrangement of UO2C

2 ion is found. It is shown that
the influence of pH level can modify uranyl hydration shell from UO2C

2 (H2O)5 to
UO2C

2 (OH�)5. Finally, uranyl–uranyl distribution functions are obtained and the
mechanisms of formation of polynuclear ions are discussed.

Keywords Molecular dynamics � Water � Cation hydrolysis � Hydration � Polynu-
clear ion formation � pH influence

1 Introduction

Cation hydrolysis reactions in aqueous solutions of metal ions are important in many
natural and industrial processes. The initial steps involved in a cation hydrolysis
in aqueous solutions lead to a decay of water molecules in the hydration shell of
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a cation MZC and can be considered as a chain of HC-eliminating (acid disso-
ciation) reactions, which turn hydrated cation complexes [M(H2O)n]ZC into new
ionic species [MOnH2n�h].Z�h/C. Here n is a number of water molecules in the
cation hydration shell, so-called hydration number, while h is a number of protons
lost by water molecules from the cation hydration shell, so-called the molar ratio
of hydrolysis [1, 2]. Usually the process does not stop at this stage and as a re-
sult of condensation reaction, polynuclear ions appear [2, 3]. The nature of these
hydrated–hydrolyzed ionic species is of fundamental interest in chemistry of inor-
ganic solutions and of particular importance in many areas ranging from nuclear
technology to environmental chemistry [4].

For the last decades our knowledge of ionic hydration of metal cations has been
essentially increased due to availability of more accurate experimental data [5–7].
The impressive progress has been also achieved in a computer modeling of the
structure of hydration shells of monovalent alkaline and divalent alkaline earth
cations [8]. It was shown that for divalent cations the electrostatic repulsion be-
tween cation and protons of water molecules can cause notable modification of
an intramolecular geometry of water molecules in hydration shell. One can sup-
pose that it can be sufficiently strong to repel protons of water molecules from
the hydration shell causing the hydrolysis effect. However, despite their consid-
erable importance, computer studies of hydration of cations with hydrolysis effect
are scarce. This can be explained by inapplicability of standard water models for
hydrolysis effect treatment and by difficulties of quantum mechanical calculations
of hydrated–hydrolyzed complexes with a sufficient degree of reliability for fur-
ther use in computer simulations [9]. In computer simulations, in order to treat a
cation hydrolysis effect explicitly, water should be considered in the framework of
a non-constrained flexible model such as the central force (CF) model [10, 11] or
polarizable model [12, 13].

The modeling of cation–water interaction is more complex and is rather compu-
tationally intensive task even for the case of systems with only metal ion and water
molecules. It should contain numerous details connected with the treatment of a
many-body cation–water interaction, the covalent bond effects caused by specific
features of cation electronic configuration etc. During the last years the interaction
potentials between highly charged cations and water molecules have been largely
developed by ab initio calculations. It was shown that they provide correct descrip-
tion of ionic hydration shell and dynamical properties for cations Al3C [14, 15],
Zn2C [16], Cu2C [17], Pb2C [18], Cr3C [19–21], Ti3C, Co3C [21], and Tl3C [22].
Due to strong hydration of the highly charged cations in some of these inves-
tigations the hydrated complexes [M(H2O)n]ZC were considered as new species
and computer modeling was performed in the form of hybrid quantum mechani-
cal/molecular mechanical (QM/MM) simulations [16–20]. In this technique a cation
with its hydration shell is treated quantum mechanically, while the rest of the sys-
tem is described by classical potentials. Nevertheless in spite of large efforts to
describe ion–water interactions more correctly and applications of enough sophis-
ticated models no hydrolysis effects are taken into account directly in relevant
simulations. We can mention only the success in the treatment of the problem of
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the hydrolysis for trivalent cation Fe3C [23, 24]. In [23] molecular dynamics (MD)
simulations were performed for a combined model: the pair potential for iron–water
interaction was derived from ab initio calculations, while water was described in the
framework of a polarizable model. In [24] the density functional technique for elec-
tronic structure of hydrated-hydrolyzed complexes [Fe(H2O)n�h(OH)h]Z�h (n D 6;
h D 0; 1; 2) in combination with a dielectric continuum model was used. In both
cases adequate results for the first hydrolysis constant .h D 1/ were obtained, but
the second hydrolysis constant .h D 2/ was highly overestimated.

The driving force of cation hydration and hydrolysis is a strong cation–water
interaction, in which the electrostatic interaction dominates and increases with in-
creasing of the ion valency Z and/or decreasing of ion size. The prevalent role of
electrostatic cation–water interaction in stability of hydrated–hydrolyzed complexes
of cations in aqueous solutions is confirmed by the existence of a linear relation be-
tween the first hydrolysis constant pKa and a ratio of cation charge to cation–oxygen
interatomic distance for metal ions of main and transition groups [1]

pKa D A � 11:0 � .Z=d/ (1)

where d is the metal–oxygen interatomic distance (in Å). Typical values for the con-
stant A are 22.0 for metal ions with inert electronic configuration and AD 19:8 for
transition and post-transition metal ions. Recently such a linear correlation between
pKa and binding energy of hydrated cations was also derived from electronic den-
sity calculations [25]. Consequently, the cations with small ionic radius and high
charge are extensively hydrolyzed in aqueous solutions. Most of the trivalent and
quadrivalent cations hydrolyze water molecules in their hydration shells, while this
occurs only for Be2C, the smallest of the divalent cations.

However, the hydrolysis also involves a bond-breaking process, where quantum
mechanical effects are important [26–28], because the proton dynamics should be
treated within quantum theory rather than by classical Newtonian equations. Very
impressive achievements were recently reported in path integral molecular dynamics
modeling of proton dynamics [26].

The complexity of problems appeared in microscopic modeling of hydrated–
hydrolyzed forms of highly charged cations suggests the idea of formulation of
a simplified model, in which a contribution of electrostatic interaction between
cation and water molecules will be separated from other contributions, which are
connected with the influence of ionic sizes, non-additivity of ion–water interac-
tions, the peculiarities of cation electronic configuration etc. Theoretical study of
such model can give us the information about the role of electrostatic interaction in
molecular mechanism of creation of hydrated-hydrolyzed forms of highly charged
cations in dependence on cationic charge. For this aim in this study we performed
the molecular dynamics simulation for the model of primitive cation MZC, which
was introduced by us previously [29–34]. In this model for the description of the
influence of cation charge Ze (e is the elementary electric charge) onto intramolec-
ular structure of water molecules we use the non-rigid model of water CF1 [35, 36],
which is a slightly modified version of the original CF model in order to ensure
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more realistic value of pressure. The interaction of primitive cation MZC with water
molecules is similar to the interaction of cation NaC with water [37] with assump-
tion that the ion can possess the different valency Z. Since the cation NaC has the
hydration structure close to the octahedral one can expect that with increasing of va-
lency Z the octahedral hydration structure of primitive cation will became stronger.
We hope that the use of the term “primitive cation” will not evoke any mislead-
ing due to specific meaning of the word “primitive” in the theory of electrolyte
solutions, where this word is connected with the charged hard sphere model, the
so-called primitive model of electrolyte (look, for e.g. [38]). Here we use the term
“primitive cation” only in the meaning that we do not attempt to reproduce any real
ions for Z > C1.

In our previous investigations [29–34] an effect of proton loss by some water
molecules of hydration shell was noticed, which was treated as the hydrolysis of
water molecules caused by highly charged cations. In Section 2 a molecular dy-
namics study of the influence of ion charge on hydrated–hydrolyzed structure and
dynamical properties of multivalent cations in aqueous solutions is reported. Our
investigation demonstrates a wide variety of hydrated–hydrolyzed forms around
primitive cation, including aquo, hydroxo-aquo, hydroxo, oxo-hydroxo, and oxo
forms. The transition between these forms is defined by a value of cation charge.
In order to take into account the effect of charge redistribution between hydrolysis
products the model of primitive cation MZC is improved by introduction of effective
charges for oxygens and hydrogens dependent on O–H distance of dissociated water
molecules, which roughly takes into account quantum mechanical effects in cation
hydrolysis. It is shown that the charge redistribution between hydrolysis products
reduces the number of exchanges between the bulk and coordination shell and leads
to a partial dehydration of cation.

In Section 3 we report the results of a molecular dynamics investigation of struc-
tural and dynamic properties of hydrated–hydrolyzed forms of aluminium Al3C [39]
and uranyl (UO2)2C [40] in aqueous solutions. For the uranyl case we extended our
investigation by a study of the influence of pH level on uranyl hydration shell. We
also discuss the possibility of creation of polynuclear uranyl complexes.

2 Primitive Model for Cation Hydrolysis

2.1 Model and Computer Simulation Details

This study of cation charge influence on the structure of cation hydration shell is
performed in the framework of a model of a primitive cation MZC [29–34]. Water
is described by the CF1 model [35, 36]. Within the CF1 model the water molecules
are treated as a binary mixture of oxygen and hydrogen atoms bearing effective
charges ZH D 0:32983, ZO D �2ZH and interacting via pairwise potentials
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where C1 D 0:9, C2 D 1=1:025. Distances are measured in Å, and energies in
kcal/mol.

The interaction between the model cation MZC with water molecules is pre-
sented by the following potentials

UMO.r/ D
331:671ZMZO

r
�
36:677

r2
C 116862 e�4:526r

UMH.r/ D
331:671ZMZH

r
C
7:479

r2
C 99545 e�7:06r (3)

where ZM is the cation valency.
As it was mentioned above in the case ZM D 1 interaction potentials coincide

with the ones of NaC ion in CF1 water and were successfully used for computer
modeling of aqueous solution of NaCl salt in [37]. They were derived from quan-
tum chemical calculations [41] by subtracting the coulombic contributions from the
energy values for a greater number of energetically favorable and a smaller number
of less probable ion-water arrangements and fitting the remainder to the analytical
expression (3) [42]. For ZM >1 the model does not correspond to any real cation
and is rather a toy model, which permits one to study an effect of increasing elec-
trostatic cation–water interaction with a fixed non-Coulomb short-range interaction
on the formation of hydrated-hydrolyzed complexes of cations in water. In contrast
to Ref. [37], where the water–water interaction is described by the Bopp–Jancso–
Heinzinger (BJH) model [43], in this study we used the CF1 model. Both models
are identical for description of the intermolecular interaction but differ in the in-
tramolecular part of interaction. The intramolecular terms in BJH are represented
by anharmonic expansion, which would never permit the hydrolysis effect.

At the first step [29, 30] it was assumed the charges on products of hydrolysis
reaction

H2O ! HZ�C C .OH/Z
�� (4)

are equal to effective charges of CF1 model. Since in the CF1 model hydrogens
and oxygens in water molecules carry effective charges due to an intramolecular
screening by electronic density one has to take into account that during the hydrol-
ysis, when proton leaves the “native” water molecule, it should change its charge
from Z� D 0:32983 to Z� D 1. Correspondingly the charge on (OH)Z

�� group
should be of the same value but of opposite sign. In order to take into account this
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phenomena at the second step we take into account the charge redistribution ef-
fect between the hydrolysis reaction products by using the functional dependence
of proton charge on proton–oxygen distance OHi (iD 1,2) in the following form:

Z�Hi D Z
CF
H C .1C tanh..rOHi � r0/=w// � .1 �ZCF

H /=2 (5)

which is characterized by two parameters r0 and w. The r0 localizes a charge re-
distribution region relatively to the proton–oxygen distance, w defines a width of
this region. ZCF

H D 0:32983 – hydrogen charge within the water molecule in CF1
model. According to Eq. (5) after the hydrolysis reaction (at high rOH distances) lost
protons will possess a charge C1, while the charge of oxygens of their native water
molecules will be changed too. The electroneutrality condition is:

Z�O D �.Z
�
H1
CZ�H2/ (6)

In this model the short-range part of the interaction potentials does not change
during the charge redistribution process. One also should note that the mechanism
of dissociation of water molecules is rather complex and consists of a few steps.
In accordance with ab initio molecular dynamics simulations [44] it includes the
stretching of O–H bond at rOH D 1 � 1:1 Å, following conversion from O–H bond
to hydrogen bond at rOH D 1:1 � 1:3 Å, separation of dissociation products at
rOH D 1:4 � 1:5 Å and finally the formation of free dissociation products at rOH D

1:7 � 1:8 Å. It is clear that the description of charge redistribution between cation
hydrolysis products according to Eq. (5) is rather a simplification of dissociation
process. We should also take into account that the processes of dissociation of free
water molecules and in the presence of highly charged cation are not identical. The
parameters of charge redistribution function (Eq. (5)) were set equal to r0 D 1:7 Å,
w D 0:25 Å. Such a choice of parameters provides the CF1 effective charge for
hydrogen in water molecule and the valueZH D 1, when it leaves the molecule and
hydration shell.

We should note that the CF1 as a non-constrained flexible model possesses such
properties as the proton affinity of water and the hydroxide affinity of water. Like-
wise in the case of Stillinger–David polarizable model [12] the proton and hydroxide
affinities of CF1 model leads to a creation of complexes H3OC, H5OC2 and H5O�3
or more complex clusters. In the presence of the cation MZC due to the repulsion
between the hydrolyzed protons and cation the proton affinity of water will be inten-
sified. The attraction between OH� group and a cation can form the “hydroxo-aquo”
[M(OH)n(H2O)n�h].Z�Z

�h/C (h < n) or “hydroxo” complexes [M(OH)n].Z�Z
�n/C

(h D n). Moreover a strong electrostatics field of cation MZC can initiate the
reaction

.OH/Z
�� ! HZ�C CO2Z�� (7)

and formation of “oxo-hydroxo” [MOh�n(OH)2n�h].Z�Z
�h/C (n<h<2n) and

“oxo” complexes [MOn].Z�Z
�2n/C (h D 2n).
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After improvement of the CF1 model by the charge redistribution procedure the
absolute values of charges on hydrolyzed proton and oxygen in considered com-
plexes increase and these species principally differ from the non-hydrolyzed ones.
Due to this the hydrolyzed proton attracts oxygens and repels protons of water
molecules in complexes H3OC, H5OC2 , etc. stronger. It is also repelled more strongly
by the cation. Similarly the hydrolyzed oxygen is attracted more strongly by the
cation. One can expect that taking into account of the charge redistribution effect
will modify the hydrated–hydrolyzed structure of cations.

The MD simulation was performed for a system of 1,727 water molecules and
a single cation of different charge ZM at normal conditions: pressure 1 atm and
temperature 298 K, which were controlled by means of Nose–Hoover barostat and
thermostat in isotropic NPT ensemble [45]. All the particles were placed into rect-
angular box with periodic boundary conditions with sides length Lx W Ly W Lz D 1 W

1 W 1:375. Production runs were performed over 2 � 105 time steps for each cation
charge. We used the velocity Verlet algorithm with a time step � D 10�16 s to inte-
grate the classical equations of motion of the system [46]. The correct treatment of
the long-range interactions is very important for the description of ion hydration. For
example, in aqueous solution the Born correction for free energy of ion hydration of
monovalent ions for 10 Å cutoff is about 10 kcal/mol [47]. The role of long-range
interactions increases for multivalent cations. In this study long-range interactions
extend beyond the box were they are treated by Ewald summation technique with
a convergence parameter � D 0:372 Å�1 and maximal summation parameters in
reciprocal space jnxj D jny j D 11 and jnzj D 15 [48] in the framework of standard
DL POLY package [49]. Although this treatment is time-consuming it provides al-
most exact accounting of electrostatic contributions for ion hydration.

2.2 Structural Properties

The effect of cation charge on the hydrated-hydrolyzed structure of cations was ex-
amined by the comparison of the radial distribution functions (RDF) cation–oxygen
gMO.r/ and cation–hydrogen gMH.r/ and corresponding running coordination num-
bers nMO.r/ and nMH.r/

nM˛.r/ D 4��˛

rZ

0

gM˛.r
0/r 02dr0 (8)

for primitive cations MZC withZM D 1; 2; 3; 4; 5; 6; 7. ˛ D O, H, �˛ is the number
density of atoms of species ˛. As a starting point of our investigation we consider
the influence of hydrated–hydrolyzed structure of cation MZC neglecting the effects
of charge redistribution on hydrolysis products. The effects of charge redistribution
will be discussed later.
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Table 1 Estimated parameters of hydration structure of cations MZC

rmax1 g.rmax1 / rmin1 n.rmin1 / rmin2 n.rmin2 /

MCO 2.33 8.11 3.03 6.08 5.28 22.73
MCH 2.98 3.30 3.63 14.69 6.23 69.45

M2CO 2.08 16.75 2.48–2.83 6.05 5.23 24.45
M2CH 2.88 5.73 3.28 12.12 5.83 58.97

M3CO 2.03 18.52 2.68 6.65 4.98 23.52
M3CH 2.78 6.97 3.38 13.34 5.78 55.08

M4CO 1.93 21.21 2.43 7.07 4.93 25.55
M4CH 2.77 8.53 3.18 13.76 5.83 57.95

M5CO 1.77 44.14 1.98–2.97 6.00 5.08 27.43
M5CH 2.73 8.12 2.98–3.38 6.00 5.74 56.60

M6CO 1.63, 1.73 21.99, 36.52 1.88–2.28 6.00 3.87 13.31
M6CH 2.71 6.49 2.90–3.28 4.00 4.45 23.41

M7CO 1.64 59.52 1.85–2.73 6.00 3.98 13.88
M7CH 0 0 3.28 0 4.60 15.68

For all considered cations the M-O radial distribution functions reveal two well
defined hydration shells. The M-H radial description functions also show two clearly
distinguishable peaks. The characteristic data of hydration structure of primitive
cation from ZM D 1 up to ZM D 7 are summarized in Table 1. It includes the
positions of the first maxima rmax1 , the values of the radial distribution functions
g.rmax1/, the first and second hydration numbers n.rmin1/, n.rmin2/, which were
drawn by integration of gMO.r/ and gMH.r/ up to the first and second minima rmin1
and rmin2 correspondingly. The obtained results demonstrate the general tendency of
the influence of cation charge on the hydration structure of cation. With the increase
of cation charge the first peaks of gMO.r/ and gMH.r/ functions shift towards smaller
distances and become more legible and narrow. The cation hydration structure be-
comes more stable. Its size decreases as a consequence of growing electrostatic
interaction between cation and water molecules. The influence of cation charge on
the hydrated–hydrolyzed structure of multivalent cations is also illustrated by Fig. 1,
where the instantaneous configuration of hydration shells of primitive cation MZC

for seven different charge states are shown.
In the monovalent case ZM D 1 the model of the primitive cation MC reduces

to the model for cation NaC. A non-strict first peak of gMO.r/ and gMH.r/ for this
case demonstrates a possibility of exchange of water molecules between the first
and second hydration shells. For divalent cation M2C the first and second hydra-
tion shells are well separated so the function nMO.r/ has a plateau at the value 6,
while nMH.r/ has a plateau at 12. It means that for cation M2C the strong cation–
water electrostatic interaction leads to formation of stable structure constituted by
six water molecules octahedrally arranged around the cation.
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ZM D 1 ZM D 2

ZM D 3 ZM D 4

ZM D 5 ZM D 6

ZM D 7

Fig. 1 Snapshots of instantaneous configurations of hydration structure of cations MZC
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For cations M3C and M4C the balance between cation–oxygen attraction and
cation–hydrogen repulsion slightly modifies octahedral configuration of cation hy-
dration shell. For these cations the running coordination numbers nMO.r/ and
nMH.r/ do not have a plateau like in the case of M2C. The cation charge for M3C and
M4C is high enough to attract the seventh water molecule but there is not enough
space to form stable symmetric structure. That is why the hydration shell of cation
M3C is constituted by six or seven closest neighbors with possibility of exchange
with bulk water molecules. In order to reduce these exchanges and stabilize the oc-
tahedral configuration of the hydration shell of cations M3C and M4C one should
additionally take into account non-additive ion–water interaction [50].

A new phenomenon was observed for cation M4C. Due to increasing of repul-
sion between M4C and protons of water molecules one proton of water molecule
can leave the hydration shell. The corresponding snapshot of hydration structure of
cation M4C is shown in Fig. 1. The hydration shell of cation M4C is consisted of
six water molecules and one OHZ�� group, where Z� is the effective charge of
hydrolyzed protons in the framework of considered model. We interpret this phe-
nomenon as the cation hydrolysis effect. It is convenient to describe the hydrolysis
effect by the quantity

h D 2nMO.rmin/ � nMH.rmin/ (9)

More strong hydrolysis effect was observed for cations M5C, M6C and M7C. For
these cations the octahedral configuration of the first hydration shell is stabilized
again. The first and second hydration shells are strongly separated and the function
nMO.r/ is characterized by legible plateau with the value 6. However due to the
cation hydrolysis the function nMH.r/ has a plateaus at values smaller than 12. As
we can see from Fig. 1 and Table 1 for cation M5C six protons leave cation hydration
shell and the hydration shell is constituted by six OHZ�� groups. For cation M6C

eight protons leave the hydration shell and the cation is surrounded by four OHZ��

groups and two O2Z�� ions. Due to this the first maximum of gMO.r/ has two peaks
at 1.63 and 1.73 Å. The first of them corresponds to O2Z�� ions and other one is
connected with OHZ� - groups. Finally, for cation M7C all 12 protons leave the
hydration shell and cation is surrounded by six O2Z�� ions. As a result the gMH.r/

is zero in the region of first hydration shell.
The second hydration shell due to the increase of cation charge shifts to smaller

distances similar as the first one. But in contrast to the first hydration shell the second
one is not so strongly separated from the bulk. With the increase of cation charge
the number of water molecules in second hydration shell slightly increases from
	23 for monovalent cation MC to 	27 for cation M5C. However, for cations M6C

and M7C the number of water molecules in the second hydration shell decreases by
about two times comparatively to the cations with lower charges. This is a conse-
quence of strong repulsion between hydrolyzed O2Z�� ions in the first hydration
shell and oxygens of water molecules in the second one.
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2.3 Dynamical Properties

The influence of cation charge on dynamical properties of multivalent cations and
oxygens in their hydration shells was investigated via an analysis of the velocity
autocorrelation functions (VACF) of cations and oxygens in cation first hydra-
tion shell:

�˛.t/ D<
�!v ˛.0/

�!v ˛.t/ >; (10)

where v˛.t/ is the velocity of a particle ˛ DM, O at time t .
The self-diffusion coefficients have been calculated by integrating the VACFs in

accordance with the Green–Kubo relation:

D˛ D
1

3

Z 1
0

< �!v ˛.0/
�!v ˛.t/ > dt; ˛ DM;O: (11)

Two opposite tendencies determine the dependence of self-diffusion coefficient of
ionDM on cation charge. The first one is connected with the stabilization of the first
and second hydration shells due to increasing of electrostatic ion–water interaction.
It leads to a decrease of self-diffusion coefficient. The second tendency is connected
with destabilization of the cation hydration structure and decreasing of the number
of water molecules in the second hydration shell due to increasing of the repulsion
between hydrolyzed oxygens of the first and oxygens of water molecules in the
second hydration shells. These two effects lead to increasing of self-diffusion co-
efficient DM . The dependence of the self-diffusion coefficients of cation MZC and
oxygens in cation first hydration shell on cation charge ZM is presented in Fig. 2.
As we can see the self-diffusion coefficient of cation MZC is almost two times
smaller than for MC. This is a consequence of stabilization of hydration structure.
The slight increase of DM for M3C is caused by destabilization of octahedral hy-
dration structure before hydrolysis effect. A decrease of DM for M4C and M5C is
connected with a strengthening of cation hydration structure due to the increase of
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Fig. 2 Dependence of the self-diffusion coefficients of cation MZC (DM ) and oxygens in cation
hydration shell (DO ) on cation charge ZM
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cation charge. Finally, the increase of DM for M6C and M7C is a result of decreas-
ing of the number of water molecules in the second hydration shell. The dependence
of the self-diffusion coefficient DO of oxygens in the cation first hydration shell
on cation charge ZM is strongly correlated with DM dependence, being by about
10–20% higher than DM . Such a behavior of DO confirms the strong stability of
hydrated-hydrolyzed structure of cations. However the oxygens have more degrees
of freedom in the hydration shell than the cation.

Another important dynamical property we consider is the spectral density of hin-
dered translation motions of cation fM .!/ and oxygens in the first hydration shell
fO.!/. ! D 2�� is a frequency of hindered translation motions. These spectra are
calculated by Fourier transform of normalized VACFs:

f˛.!/ D

Z 1
0

< �!v ˛.0/
�!v ˛.t/ >

< .�!v ˛.0//2 >
cos.!t/dt; ˛ DM;O (12)

The functions fM .!/ and fo.!/ for cases of cation MZC with ZM D 1; 2; 3; 4; 5; 6
were presented by us previously in [33], and ZM D 7 in [34]. The functions fM .!/
and fO.!/ are characterized by a broad distribution of frequencies. With increas-
ing of cation charge both these distributions are extended to higher frequencies
region. Both functions fM .!/ and fO.!/ have a couple of characteristic peaks,
which become more pronounced with the increase of cation charge. The values
of these characteristic frequencies on spectral densities fM .!/ for different cation
charges are collected in Table 2. For monovalent cation MC fM .!/ has only one
peak at about 30 ps�1. The appearance of three spectral maxima for cation M2C is a
consequence of stabilization of its octahedral configuration. The destabilization of
hydration structure by cation M3C provokes the modification of fM .!/, which has
two smaller and wider peaks, the third one is not well distinguishable. The func-
tions fO.!/ for cations MC, M2C and M3C have the form of vibrational spectrum
for pure water but they are partially modified by the presence of cations.

For highly charged cations M4C, M5C, M6C and M7C the functions fM .!/ and
fO.!/ in high frequency region have two common characteristic peaks !2 and !3,
which can be attributed to the normal modes of hydrated cation complex. The val-
ues of these characteristic frequencies increase with the increase of cation charge.

Table 2 Characteristic frequencies of the spectral densities of the hindered translation motions of
cations MZC

!1, ps�1 !2, ps�1 !3, ps�1

MC 30.28 – –
M2C 41.16 82.31 109.75
M3C 59.14 88.70 –
M4C 14.72 73.57 161.86
M5C 28.37 85.10 184.38
M6C 24.56 125.10 223.70
M7C – 159.28 245.62
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The functions fM .!/ for cations M4C, M5C and M6C in low frequency region
are characterized by a peak, which for the cation M7C is not well defined. Such
a behavior of fM .!/ agrees with the conclusion of our investigation of cation hy-
dration structure about the formation of very stable hydrated-hydrolyzed aggregates
around cations. The persistence of the hydration shells and existence of local hy-
dration structures around cations was confirmed recently by investigation of Raman
spectra and also by inelastic neutron scattering experiments for aqueous solutions
of aluminium halides [51]. The measurements show three peaks, which had been
assigned to the three predicted Raman modes of Al-O vibrations in octahedral
Al3C(H2O)6 clusters. The cation with its hydration shell is highly stable aggre-
gate, whose internal vibrations can be considered independently from the rest of
solution, anions, ion concentration and even water molecules in second hydration
shell. The Raman spectra measured for concentrated aqueous solutions of AlCl3
and AlBr3 demonstate three characteristic frequencies !1D 66 ps�1, !2D 88 ps�1,
and !1D 105 ps�1 [51], which are comparable with characteristic frequencies for
primitive cations M2C and M3C (Table 2). The cation hydrolysis phenomenon ob-
served in the case of M4C leads to the essential increase of !3 and decrease of !1.
For M6C and M7C the frequency !2 increases too, that can be explained by hy-
drolysis of second protons from oxygens in hydration shell. Thus the behavior of
frequencies !1, !2, !3 could be an indirect proof of hydrolysis and its intensity.

2.4 Effects of Charge Redistribution Between the Cation
Hydrolysis Products

We have shown above that the model cations M4C, M5C, M6C, and M7C have
the hydration shell in form M4C(H2O)6OH�, M5C(OH�)6, M6C(OH�)4O2�

2 , and
M7CO2�

6 correspondingly. It means that the charges of these cations are high
enough to repel some protons of water molecules from the first hydration shell
of the cation. We interpreted this phenomenon as the cation hydrolysis effect.
However since in CF1 model the hydrogen and oxygen of water molecules carry
effective charges one has to take into account that during the hydrolysis, when
one of the protons leaves the “native” water molecule it should change its charge
from ZH D ZCF

H D 0:32983 to ZH D 1. Correspondingly the charge of OHZH�

group should be of the same value but of opposite sign. To improve the description
of hydrolysis reaction products we expanded the regular CF1 model by inclusion
of charge redistribution effects due to Eq. (5)–(6). Such redistribution procedure
leads to difference between hydrogens HZ�C as hydrolysis products and hydrogens
of non-hydrolyzed water molecules. There is also non-equivalence of oxygens in
OHZ�� groups obtained in result of hydrolysis and oxygens in water molecules.
This causes sufficient modifications of structure of cation hydration shell comparing
to the results discussed above.

For cation M4C only one proton leaves the first hydration shell. More strong
hydrolysis effect was observed for cation M5C, so we carried out more detailed
study how the effect of charge redistribution changes the structural and dynamical
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Fig. 3 Snapshots of instantaneous configurations of hydration shells of cation ZM DC5 with
five (left) and four (right) neighbors after charge redistribution

Table 3 The characteristics of hydration shell of cation M5C in the framework of the model with
charge redistribution between hydrolysis products. “5O”, “4O” sections denotes configurations
with five and four neighbors

rmax1 g.rmax1 / rmin1 n.rmin1 / rmin2 n.rmin2 /

M–OOH 1.48 36.09 1.58–1.82 3.00 3.65 8.93
“5O” M–OH2O 2.02 7.10 2.38–2.48 5.00

M–HOH 2.38 6.74 2.53 3.00 4.13 14.89
M–HH2O 2.78 2.46 3.12 7.00

“4O” M–OOH 1.47 69.03 1.62–2.38 4.00 3.68 7.63
M–HOH 2.42 8.70 2.62 4.00 4.09 13.53

properties of cation M5C and its hydration shell. Several MD runs yielded two types
of stable hydration shell instead of octahedral configuration. The corresponding
snapshots are presented in Fig. 3. One of these configurations demonstrates five
neighbors in the shell: three OH� groups in equatorial plane and two axial H2O
molecules. The second configuration is characterized by tetrahedral arrangement of
four OH� groups. During long simulation run we noticed an attempt of transition
from configuration M5C(OH�)3(H2O)2 to M5C(OH�)4, but not the opposite transi-
tion. It implies that the second configuration is more stable.

Structural data for two hydration structures of M5C cation are summarized
in Table 3. Data in “5O” and “4O” sections correspond to configurations
M5C(OH)�3 (H2O)2 and M5C(OH)�4 . Comparing Tables 2 and 3 one can see that
the increase of charge on the oxygen of .OH/Z

�� group results in appearance of
two peaks (instead of one peak for model with no charge redistribution) on gMO.r/

at distances 1.48 and 2.02 Å for M5C(OH�)3(H2O)2 configuration. The first peak
of gMO.r/ corresponds to three oxygens of (OH)Z

�� groups. Second maximum
stands for two oxygens of non-hydrolyzed water molecules. Due to higher charge
on oxygen the (OH)Z

�� group can approach the cation closer, while oxygens
of non-hydrolyzed water molecules are attracted weaker and the octahedral ge-
ometry of hydration shell is broken. Total number of neighbors is equal to five
instead of six neighbors for the regular model with no charge redistribution. For
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Table 4 Self-diffusion coefficients of cation M5C (DM ) and oxygens in cation hydration
shell (DO ) for the model with charge redistribution between hydrolysis products. “5O” and “4O”
correspond to configurations M5C(OH)�3 (H2O)2, M5C(OH)�4

Configuration DM � 10
5, cm2/s DO � 10

5, cm2/s
“5O” 0.77 0.88
“4O” 1.08 1.32

the configuration M5C(OH�)4 there is only one peak on gMO.r/ at the distance
1.47 Å and one peak on gMH.r/ at 2.42 Å. These peaks correspond to four (OH)Z

��

groups. Non-hydrolyzed water molecules are absent in the first hydration shell for
this configuration.

The charge redistribution between the hydrolysis products leads also to a strong
modification of second cation hydration shell. The second hydration shell shifts to
the smaller distances and number of water molecules in it decreases significantly.
This is the result of the increased charge on the hydrolysis products. After the charge
redistribution the charge on oxygen in a group OH� increases significantly. This
implies the growth of repulsion between OH� group and water molecules, which in
turn leads to reduction of a number of water molecules in second hydration shell.
Due to a higher repulsion between hydrolyzed hydrogen and cation the hydrogen
moves to the bulk water.

The charge redistribution between the hydrolysis products is also important for
dynamical properties of hydrated–hydrolyzed cation complexes. The influence of
the charge redistribution on the self-diffusion coefficients of cation M5C DM and
oxygens from its hydration shell DO is presented in Table 4. As we can see (com-
paring with results presented in Fig. 2) the self-diffusion coefficient of cation M5C

in configurations M5C(OH�)3(H2O)2 and M5C(OH�)4 increases by two and three
times respectively. Very similar increase of the self-diffusion coefficients of oxygens
in cation hydration shell was also found. This result can be explained by reformation
of the second hydration shell after charge redistribution on hydrolysis products. A
strong decrease of number of water molecules in a second hydration shell is respon-
sible for such strong increasing of diffusion coefficients DM and DO . The spectral
densities of the hindered translation motions of cation M5C for both configurations
M5C(OH�)3(H2O)2 and M5C(OH�)4 are presented in Fig. 4. In these figures for
comparison we also shown by dashed line the fM .!/ obtained without considera-
tion of the charge redistribution effects. The values of characteristic frequencies on
spectral densities of cation M5C for both configurations are collected in Table 5.
As one can see for both configurations the function fM .!/ has two parts. One of
them is characterized by a broad distribution of frequencies up to 200–250 ps�1 with
three characteristic peaks. The peak at 13.7 ps�1 is approximately of the same mag-
nitude for both configurations and characterizes a “breathing” of hydration complex
of cation. Vibrations between the cation and OH� groups and between the cation
and water molecules in configuration M5C(OH�)3(H2O)2 lead to a splitting of the
second peak of fM .!/. It is interesting to note that the peak, which corresponds to
the vibration between the cation and oxygens of OH� groups is located almost at
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Fig. 4 Spectral densities of the hindered translations of cation fM .!/ and oxygens in first hydra-
tion shell fO.!/ for cation charge ZM D C5 with inclusion of charge redistribution effect (solid
line) compared to the case ZM D C5 but without charge redistribution: configuration with five
neighbors (left), configuration with four neighbors (right)

Table 5 Characteristic frequencies of the spectral densities fM .!/ of the hindered translation
motions of cation MZC for the model with charge redistribution between hydrolysis products.
“5O” and “4O” denote configurations M5C(OH)�3 (H2O)2, M5C(OH)�4

Configuration !1, ps�1 !2, ps�1 !3, ps�1 !4, ps�1

“5O” 13.66 95.61 177.57 327.82
122.94

“4O” 13.69 95.82 164.27 301.16

the same frequencies (95.6 and 95.8 ps�1) for both configurations. The third peak
of fM .!/ is located at ! D 177:6 ps�1 for configuration M5C(OH�)3(H2O)2 and
at ! D 164:3 ps�1 for configuration M5C(OH�)4. The separated peak at frequency
!4 D 327:8 ps�1 for configuration M5C(OH�)3(H2O)2 and at !4 D 301:2 ps�1 for
configuration M5C(OH�)4 is the second part of function fM .!/. This new feature
of fM .!/ describes the cation motion between two oxygens in hydration shell and is
connected with strong stability of considered complexes due to charge redistribution
between the hydrolysis products.

Similarly to fM .!/ the function fO.!/ has a part with a broad distribution of fre-
quencies up to 200–250 ps�1 and second part with separated peaks. The broad part
of fO.!/ has four peaks which characterize different motion of the oxygen strongly
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coordinated by cation and other oxygens. The second part of fO.!/ includes two
separated peaks. The first of them is located at !D 250 ps�1 for configuration
M5C(OH�)3(H2O)2 and at !D 240 ps�1 for configuration M5C(OH�)4. This peak
characterizes the influence of cation on O–O stretching motion of the oxygens in
hydration shell. The second separated peak exactly coincides with position of the
separated peak of fM .!/. This again confirms the strong stability of considered
hydrated–hydrolyzed complexes. The existence of common separated peaks at a
high frequency region for fO.!/ and fM .!/ was also observed in MD simulation
of Cr3C hydration [19].

Due to a charge redistribution effect the charge of hydrolyzed protons H� changes
from the value C0:32983e in CF model to Ce and the charge of hydrolyzed group
OH� changes from the value �0:32983e to �e. The OH� groups are strongly
bonded to the cation, while hydrolyzed protons left cation hydration shell and
formed some complexes with water molecules. In particular in our simulation we
observed two types of aqua-complexes, with protons H�, which were created af-
ter hydrolysis. The first complex (H5O2)C is linear and consists of two water
molecules and a proton between them. The H�–O lengths are 0.9 and 1.36 Å, which
slightly differ from corresponding values from ab initio MD calculations: 0.98 and
1.23 Å [28]. The second configuration (H7O3)C is planar and consists of three water
molecules and a proton in the center. The angles between H�–O arms are close to
120ı, while all three lengths are equal to 1.36 Å. In addition one should note that
the single proton being a result of hydrolysis has a small size and chargeC1 can be
a source of hydrolysis of another water molecule. After that the hydrolyzed proton
changes its charge from ZH D 1 to ZH D ZCF

H while a new hydrolyzed proton
changes its charge fromZH D Z

CF
H toZH D 1. This process can be repeated many

times and leads to a proton relay transfer in aqueous solution.

3 More Realistic Models for a Cation Hydrolysis

The study of the primitive model of cation hydrolysis gives us a possibility to un-
derstand the role of electrostatic ion–water interaction in the formation of hydrated-
hydrolyzed forms of highly charged cations in water. This approach utilizes a
short-range part of the interaction potential, which was previously developed for
NaC ion in water. The increase of a charge on real cations leads to shortening of
distances between cation and closest water molecules, this in turn intensifies the
hydrolysis tendency and stabilizes hydrated–hydrolyzed form of highly charged
cations. This means that the primitive cation MZC even underestimates the electro-
static interactions in comparison with NaC, Mg2C, Al3C, ... in a row of the periodical
table of elements, since the sizes of these cations decrease through the sequence.
So the role of the electrostatic interaction in a formation of hydrated–hydrolyzed
complexes of real cations in the considered sequence will be even intensified.
In this section we will analyze the hydrated–hydrolyzed structure and dynamical
properties of one of the simplest realistic cations — Al3C and more complex one
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— the uranyl ion (UO2)2C. Like in the case with primitive cation in previous section
water molecules are considered in the framework of the flexible CF1 model [35, 36].

3.1 A Molecular Dynamics Study of Al3C Hydration

Ion Al3C is one the simplest realistic trivalent cations. Due to a comparatively small
size and high valency of Al3C the electrostatic cation–water interaction is strong
enough for hydrolysis triggering. The aqueous speciation of Al3C is very important
for many industrial processes such as waste water treatment, pharmaceutical design,
catalysis optimization, remediation of wastes from plutonium production, etc. [52].
However, in spite of large efforts to describe the cation–water interaction correctly
no hydrolysis effects are taken into account directly in previuos computer simula-
tions of Al3C in water [14, 15, 53]. Our results of molecular dynamics study of Al3C

in water were reported in [39]. In this investigation the description of the interaction
between Al3C and water molecules is chosen in the form

UAlO.r/ D �
656:95

r
�
596:09

r2
C 63533:01 � e�3:89948r

UAlH .r/ D
328:47

r
C
38:37

r2
C 68:66 � e�0:35461r (13)

which was drawn from quantum chemical calculations [54]. In Eq. (13) the energies
are given in kcal/mol, distances are in Å. For simplification we neglect the effects
of charge redistribution on hydrolysis products.

In Fig. 5 we present the Al3C-water RDFs and coordination numbers. The main
peak of gAl�O.r/ distribution is located at 1.78 Å. This result slightly underesti-
mates the values range 1.8–1.97 Å yielded from calculations at various levels of
theory in [14, 15, 55], while the experimental results collected in [6] are within the
range 1.87–1.9 Å. However the number of oxygens in the first hydration shell in
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our calculations coincides with the Al–O coordination numbers reported from all
mentioned investigations and is equal to 6. A well defined plateau on the nAl�O.r/
indicates that no exchange processes between the first and second hydration shells
were observed during simulation time.

The Al–H distribution is characterized by gAl�H.r/, nAl�H.r/ functions. The
position of the first peak of Al–H RDF is at 2.71 Å. Different theoretical ap-
proaches [14, 15] yielded for rmax a range of values 2.47–2.59 Å. The deviation
of our result can be easy explained if one will take into account that our water
model is non-rigid (in contrast to the ones used in above references). The strong
electrostatic repulsion between Al3C and hydrogens stretches the O–H bonds of the
aluminium cation hydration shell neighbors. In [14] stretching of O–H bonds in wa-
ter molecules in the first hydration shell was noticed too. The corresponding running
coordination number nAl�H.rmin/ indicates that the number of protons in the first
hydration shell is equal to 8, instead of 12. This result we treat as the cation hydrol-
ysis: strong electrostatic repulsion between Al3C and protons pushes four of them
outside the first hydration shell. Due to separation of the first hydration shell from
the second one both first peaks of gAl�O.r/ and gAl�H.r/ are separated by gaps
making the well-defined plateaus on the profiles of running coordination numbers.
The structural details of hydration shell of Al3C are collected in Table 6. A snap-
shot of aluminium cation first hydration shell is presented in Fig. 6. One can clearly
see two water molecules, four OH� groups and four protons appeared as a result of
hydrolysis. Four protons are located in the second hydration shell and are strongly
bonded to the first one. This is a consequence of neglect of the charge redistribution

Table 6 Structure of Al3C hydration shell

rmax1, Å g.rmax1/ rmin1, Å n.rmin1/

Al-O 1.78 40.99 2.02–2.52 6
Al-H 2.71 5.95 2.98 8

Fig. 6 Instantaneous configuration of Al3C cation hydration shell
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Fig. 7 Spectral densities of hindered translation of aluminium cation and oxygens of hydra-
tion shell

effects, since non-redistributed charges are too weak to repell protons from cation,
like it happens in case of primitive cation. All the neighbors are octahedrally ar-
ranged around the aluminium ion.

Another aspect of our investigation is connected with dynamical properties of
Al3C and oxygens in first hydration shell. The spectral densities fAl .!/, fO.!/ of
hindered translational motions are presented in Fig. 7. The Al3C ion distribution
of frequencies is characterized by three main peaks approximately at: 25, 80 and,
170 ps�1; one additional peak is located near 120 ps�1. In the spectrum of oxygens
one can see four peaks approximately at: 20, 70, 120, and 165 ps�1. Obviously there
is a correlation between the spectra of central cation and oxygens, furthermore the
characteristic frequencies coincide, that allows us to conclude that the motion of
Al ion is strongly coupled with the motion of water molecules and OH� groups in
hydration shell.

As we noted in previous section the observable characteristic peaks in Raman
spectra [51] are located far from the values yielded from MD simulation. They are
more closer to the values obtained for primitive cation M3C. The reason for such a
difference is in very strong hydrolysis effects found in case of Al3C in contrast to
experimental study where aluminium salts where chosen to avoid hydrolysis effect.
The self-diffusion coefficient of aluminium ion, calculated in [39] is equal to 0:46�
10�5 cm2/s. In [15] a set of results for the self-diffusion coefficient of aluminium ion
for different models is reported. It varies within the range 0:17� 0:47� 10�5 cm2/s,
while the experimental value taken from [56] is 0:6 � 10�5 cm2/s.

3.2 A Molecular Dynamics Study of Uranyl Hydration

In this subsection we study the aspects of cation hydrolysis in aqueous solutions
of actinides such as uranium U, plutonium Pt, neptunium Np, etc. This investi-
gation has connection with the problem of contact of nuclear fuel wastes with
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water. Understanding of complexation processes in such systems can provide one
with important information for chemical technology, medicine, environmental ecol-
ogy [57]. The actinides An in water usually have a valency ZD 6 and easily form a
corresponding complex cation (AnO2)ZC called actynil. Both AnDO bond lengths
are usually 1.7–1.8 Å and ODAnDO angle is close to 180ı. Actynil is usually
hydrated by five water molecules, so-called ligands, located in equatorial plane (nor-
mal to ODAnDO axis) at the distances 2.5–2.6 Å. This finding was confirmed by
quantum chemical investigations. In particular in [58, 59] it is shown that the num-
ber of ligands of uranyl, neptunyl and plutonyl is equal to five. It was also found
that hydrolysis reaction with one proton loss from one of five uranyl ligands is en-
ergetically favorable. However the quantum chemical calculations can not give a
detailed understanding of a role of environment beyond the hydrated-hydrolyzed
complex, which is essential for correct interpretation of many structural, dynamic,
and thermodynamic properties of these complexes [60]. In Refs. [61–63] molecular
dynamics simulations were carried out for aqueous solutions of actinides using rigid
TIP3P or SPC water models. Neither deformation of water molecules nor hydrolysis
effects in hydration shell were observed because of the constrained rigid model of
water molecules. No hydrolysis evidence was also found in recent investigation of
uranyl hydration by ab initio molecular dynamics simulation [64].

Next we review our recent molecular dynamics study of uranyl hydration per-
formed in the framework of CF1 model for water [40]. For the uranyl–water
interaction we made use of potentials from Ref. [63]. These potentials are of “1-
12-6” type:

Eij D
ZiZj

r
C
AiAj

r12
�
BiBj

r6
(14)

The corresponding potential parameters are listed in Table 7.
In order to preserve uranyl intramolecular geometry additional constraints are

also used for UDO bond length in the form Eij � .r � 1:75/2 and for ODUDO
angle in the form Eij � .
 � 180/2. The distances are measured in Å, angles—
in degrees, energies—in kcal/mol. We also take into account the effect of charge
redistribution between hydrolyzed products utilizing Eqs. (5) and (6).

For convenience the oxygens in uranyl we note as O�. The results for radial dis-
tribution functions gUO.r/, gUH.r/, gO�O.r/, and gO�H.r/ are presented in Figs. 8.
From Fig. 8 it can be clearly seen that the first peak of gUO.r/ function is divided
into two ones at positions 2.275 and 2.582 Å. These distances are close to the value
2.42 Å obtained from the X-ray data [65–67]. One should note that the experi-
ments were performed under conditions excluding hydrolysis effect. The absence

Table 7 Potential parameters for uranyl-water interaction

Z A (kcal Å12/mol)1=2 B (kcal Å6/mol)1=2

O in H2O �0.65966 793.322 25.010
H 0.32983 0.1 0.0
U 2.50 629.730 27.741
O in UO2 �0.25 793.322 25.010
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of hydrolysis effect in results of ab initio simulation [64] explains the difference
in results with [40]. Near rUO D 3:175 Å there is a region where gUO D 0.
Due to this the nUO.r/ function demonstrates at corresponding distances a shoul-
der and plateau with values approximately equal to 1 and 5. This means that the
uranyl first hydration shell is separated from the bulk and consists of five neighbors,
one of these is positioned closer to uranium than the others. The U–H distribution
demonstrates a well-pronounced first peak at 3.281 Å and minimum at 3.712 Å.
Comparing the first peak positions of gUO.r/ and gUH.r/ functions one can con-
clude that water molecules have their hydrogens oriented in direction opposite to
uranium. Integration over the first peak of gUH.r/ function yields the number of
closest neighbors equal to 9. This indicates that in the first hydration shell there
are four H2O molecules and one (OH)� group. Obviously repulsion of proton from
uranium overcomes attraction of proton in its native water molecule. We treat this
phenomenon as hydrolysis reaction. After such a short analysis it is also easy to
explain two peaks of gUO.r/. During the hydrolysis process new ions ((OH)� and
HC) appear. The distance between (OH)� and HC increases and when proton leaves
the uranium first hydration shell because of charge redistribution effects the charges
on ions are �1 and +1 respectively. This in turn differs the oxygens of (OH)� group
from the oxygens of regular water molecules described in the framework of CF1
model. The increase of the oxygen charge makes the uranium–oxygen attraction
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Table 8 Structure of uranyl hydration shell

rmax1 Å g.rmax1/ rmin1 Å n.rmin1/

U–O 2.28 3.30 2.41 1.00
2.58 6.37 3.18 5.00

U–H 3.28 2.64 3.71 9.13
O�–O 3.07 3.39 3.79 8.20
O�–H 3.84 1.56 4.56 21.02

stronger and as a consequence the (OH)� group becomes located closer to uranium
than the other four molecules. In Table 8 we present a few most important results
of radial distribution functions and running coordination numbers. Two lines for the
U–O distribution correspond to two peaks of gUO.r/ function.

In Fig. 8 we also present the radial distribution functions for coordination of wa-
ter around uranyl oxygens O� - gO�O.r/ (bottom left) and gO�H.r/ (bottom right).
For the comparison we also show the coordination of water around water oxygens
gOO.r/ and gOH.r/. Wider and higher first peak of gO�O.r/ (solid line) at 	3:1 Å,
comparatively to gOO.r/ (dashed line), is shifted to larger distances. This implies
some weaker coordination of water oxygens around uranyl oxygens. The corre-
sponding running coordination numbers nO�O.r/ demonstrate a smeared plateau
at the value 	8 in the region 3:5 � 3:7 Å. Five equatorial uranyl neighbors and two
or three non-equatorial water molecules contribute to the first peak of gO�O.r/ dis-
tribution. The first peak is not separated from the rest of distribution by a zero-gap
with gO�O.r/ D 0, that means that non-equatorial neighbors can be exchanged by
bulk water molecules.

Similar analysis can be drawn for the uranyl oxygen–hydrogen distribution
gO�H.r/ (solid line) in comparison with water oxygen–hydrogen gOH.r/ (dashed
line). The wide first peak of gO�H.r/ is located in the region from 3 to 4 Å. Par-
tial contribution to this peak comes from hydrogens of five equatorial neighbors,
while the rest is due to waters from non-equatorial plane. Exchanges between non-
equatorial neighbors and bulk prevent from zero-gap appearance on gO�H.r/ and
plateau on the running coordination numbers nO�H.r/. These findings allow one to
conclude that non-equatorial neighbors of uranyl are not bound tight with hydrated–
hydrolyzed complex.

The instantaneous configuration of uranyl and its first hydration shell will be
presented below in Fig. 10 (top right configuration). All the ligands in the first hy-
dration shell are located in a plane equatorial to the uranyl ODUDO axis. Such a
bipyramidal pentacoordinated structure of hydration shell is in agreement with the
data from quantum chemical and experimental studies [58, 59, 65].

In Fig. 9 the spectral densities of hindered translation motions fU .!/, fO�.!/,
fO.!/ are presented. One can see all spectral functions are characterized by a com-
mon peak at 	26 ps�1, which implies common vibrations of the particles within
hydrated-hydrolyzed complex. Another common peak at 	60 ps�1 in spectra of
uranium and water oxygens indicates correlated vibration of these particles. The
high-frequency peak at	115–120 ps�1 in spectra of uranium and uranyl oxygens is
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Fig. 9 Spectral densities of hindered translation motions of uranium fU .!/, uranyl oxygens
fO� .!/, and water oxygens fO.!/ from uranyl first hydration shell

Table 9 Characteristic frequencies of spectral densities of uranyl and oxygens of first hydration
shell; corresponding self-diffusion coefficients

!1, ps�1 !2, ps�1 !1, ps�1 D� 105 cm2/s
U 26.38 65.20 118.91 0.58
O� 28.02 – 114.22 0.69
O 25.98 59.88 – 0.91

a consequence of additional interaction terms used for preserving uranyl intramolec-
ular geometry. Characteristic frequencies of spectral densities fU .!/, fO�.!/,
fO.!/ and self-diffusion coefficients DU , DO� , DO are collected in Table 9.

3.3 Influence of the pH Level on Uranyl Hydration

The tendency for cation hydrolysis also depends on the pH value of aqueous so-
lution. Intuitively it is clear that in alkaline solution the cation hydrolysis will be
stronger than in acidic solution. However the investigations of pH influence on
cation hydrolysis on the molecular level are very scarce. One should mention a
recent study of Al3C hydrolysis under neutral, alkaline, and acidic conditions by
constrained molecular dynamics [68]. An analytical semiempirical approach was
also used for a description of pH influence on a formation of hydroxocomplexes of
actinides [69].

Above we reported the hydrolysis effects only in solutions with neutral pH level,
in other words, with no additional extra HC or (OH)� ions. On the model level
a problem of investigation of a pH influence can be formulated in the following
manner: one needs to study time-dependent changes in uranyl hydration shell if the
solution will include different amount of HC or (OH)� ions. Interaction potentials



Cation Hydrolysis Phenomenon in Aqueous Solution 245

can be taken in the form as in previous subsection, but for simplification we will
neglect the effect of charge redistribution between hydrolysis products.

Molecular dynamics simulations were performed for a few alkaline and acidic
solutions, which differed by number of (OH)� or HC ions. Every considered al-
kaline system consisted of 1,600 water molecules, 1 uranyl ion, and 20/40/60/80
(OH)� groups. Analogically a series of acidic solutions were modeled too, but with
HC ions instead of (OH)� groups.

In previous subsection we have shown that in the solution with no additional
HC or (OH)� ions uranyl hydration shell consists of five neighbors: four water
molecules and one hydrolyzed (OH)� group. As a result the whole complex of
uranyl and its hydration shell changes into (UO)2C2 (H2O)4OH�. Our studies of alka-
line and acidic solutions indicate a strong dependence of the composition of uranyl
hydration shell on pH level. The modeling of acidic solution have shown that pres-
ence of extra HC ions in the bulk prevents hydrolysis reaction in uranyl shell and
stabilizes the complex (UO2)2C(H2O)5. As one can expect the modeling of alka-
line solutions demonstrated an opposite effect: water molecules in first hydration
shell of uranyl are exchanged by (OH)� groups from bulk, changing the complex
(UO2)2C(H2O)5 into (UO2)2C(OH�)5 form. In Fig. 10 we present snapshots of these
configurations of uranyl and its hydration shell.

Fig. 10 Snapshots of instantaneous configurations of uranyl and its hydration shell



246 M. Holovko et al.

It is also convenient to analyze structural results in terms of radial distribution
functions. In Fig. 11 (left panel) the RDFs for a series of configurations from
(UO2)2C(H2O)5 to (UO2)2C(OH�)5 are shown. One can see that the first peak of
gUO.r/ becomes narrower and shifts to smaller distances for configurations with
more (OH)� groups in the uranyl hydration shell. This can be explained by a
stronger attraction between uranyl and (OH)� groups in comparison with the uranyl-
water interaction. A zero-gap between the first peak the rest of distribution becomes
wider indicating increased stability of configurations with more (OH)� groups. Our
conclusion about increased stability of configurations with more (OH)� groups is
confirmed by widening of plateau on nUO.r/ for these complexes. In Fig. 11 (right
panel) an evolution of radial distribution functions gUH.r/ for a set of configura-
tions is shown. It can be seen that first peak of gUH.r/ becomes narrow and lower,
which reflects a decrease of number of hydrogens in uranyl neighborhood. A shift
of the first peak of gUH.r/ to larger distances indicates that (OH)� groups prefer to
be oriented with hydrogens outside the hydration shell.

In Fig. 12 we present a time dependence of composition of uranyl hydration shell
for different numbers of (OH)� groups in solution where Shell NOH is the number
of (OH)� groups in uranyl hydration shell. It is clear that the more (OH)� groups
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added to a solution the faster uranyl shell is being modified and filled by (OH)’s. For
the case with out (OH)� groups we yield previous result for neutral solution: uranyl
can hydrolyze one water molecule. The result for acidic solutions is not shown here
since extra HC ions prevent hydrolysis reaction and no (OH)� groups were found
in the uranyl hydration shell.

3.4 Formation of Polynuclear Complexes

Creation of hydrated–hydrolyzed cation structure is only the first step, however usu-
ally the process does not stop at this stage and at the finite ionic concentrations
polynuclear ions can appear as a result of condensation reaction [2, 3]:

pŒM.H2O/n�
ZC C qH2O !MpŒ.OH/qH2Opn�q�

.pZ�q/C C qH3O
C (15)

The process of polynuclear ion formation can be described in the framework of
polymer associative theory operating with a parameter m. It has a meaning of mean
chain length defined by the equation [3, 70–72]:

m.m � 1/ D 2�cKCCg
CC
00 .dC/ (16)

where KCC is the parameter of intercation associative interaction, c – ionic con-
centration, gCC00 .dC/ is the contact value of the cation–cation distribution function,
d is the cation size. For low ionic concentrations according to Eq. (16) m �

p
c

and has concentration dependence similar to inverse Debye length � �
p
c [38].

Depending on the value ofm the effect of polynuclear ions formation can be signif-
icant and can lead to a strong deviation from the Debye–Huckel limiting behavior
for the osmotic coefficients and activity coefficients [3]. As it was shown by Ram-
say [73] from light and neutron scattering measurements on relatively concentrated
solutions (more than 0.1 mol/l) Al3C ions create chains with mean length	30 ions,
while Zr4C ions can create chains consisting of 	200 ions. Considering Eq. (16)
one can show that mAl3C ' 3 at the concentration 0.001 mol/l and mZr4C ' 2

at the concentration 10�6 mol/l. For a more dilute solutions, according to Eq. (16),
m! 1 and only mononuclear ions exist.

In order to understand the mechanisms of polynuclear ion formation we per-
formed molecular dynamics simulations of uranyl aqueous solution at finite ionic
concentration with the same interaction potentials. The MD cell consisted of 1,600
water molecules and 16 uranyl ions, modeling a solution with neutral pH. To study
pH influence we also considered a system with 100 extra (OH)� groups.

In this particular problem uranium–uranium, uranium–oxygen, and oxygen-
oxygen radial distribution functions are of special interest since they provide the
information about most favorable distances between these particles during for-
mation of polynuclear complexes. These functions are collected in Fig. 13. The
uranium–uranium RDF (top) demonstrates first peak in the region 5.4–7.5 Å with
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the maximum at 6.3 Å. The function which describes distribution of uranyl oxy-
gens around uranium (center) has two peaks at 5.3 and 7.4 Å. Distribution of uranyl
oxygens (bottom) has two peaks at distances 6.3 and 8.7 Å. In such a way we have
estimated the most probable interparticle distances when two uranyl ions approach.
One should also note that the RDFs for alkaline solutions are higher than the RDFs
for neutral conditions. This indicates that in alkaline solutions uranyl ions can ap-
proach one another easier than under neutral conditions.

One of the important quantities describing formation of polynuclear complexes
is the mutual orientation of ions and their hydration shells. For such an orientational
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Fig. 14 Mutual orientation of two uranyl ions and characteristic angles
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Fig. 15 Probability distribution for uranyl–uranyl mutual orientation under alkaline (left panel)
and neutral (right panel) conditions

analysis we store the coordinates of all uranyl ions and oxygens in their hydration
shells. At every simulation step one can assign a vector along uranyl axis O–U–O.
We also consider a vector between two uranium ions when the distance between
them is less than 7.5 Å (position of the first minimum of U–U RDF). Description
of mutual uranyl orientations can be treated in terms of two angles ˛, ˇ between
each of O–U–O axis and U–U vector (see Fig. 14). These angles were collected
during simulation time. The corresponding symmetrized probability distributions
are shown in Fig. 15. Left panel stands for the alkaline solution, right—for the
neutral one. Both distributions demonstrate very low probability (dark regions in
the distribution maps) for configurations with two uranyl ions oriented axially or
configurations with both angles less than 25ı. More probable are the orientations
with one of the angles within the region 10–25ı, while the second angle is in the
region of 40–80ı. Most favorable configurations (bright regions) appear when both
angles are close to 55ı. One should also note that “neutral” distribution is more
smeared, indicating less strict orientation of uranyl ions.

Besides the structural properties we built a probability distribution fUU.t/ of
lifetimes of polynuclear complexes, since this quantity allows one to judge how
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stable in time these complexes are. The same condition was used to decide whether
a pair of uranyl ions is in “bonded” state: distance between uranium ions should be
less than 7.5 Å. The shape of both distributions is almost the same, except fUU.0/,
which has a meaning of the probability that in any moment an arbitrary uranyl ion is
in “bonded” state. In neutral solution it is equal to 40%, for “alkaline” solution it is
	30%. This probability decays comparatively fast: a half of uranyl complexes lives
during 0.7 ps, a quarter of them survives till 2 ps, and only 3% of ionic pairs reach
10 ps. Maximal lifetimes are 	70 ps for neutral solution and 	80 ps for alkaline
one. The mean lifetime tUU over the distribution fUU.t/ is:

tUU D

Z 1
0

tfUU.t/dt (17)

For neutral solution the mean lifetime is 	10 ps, while in case of alkaline solution
	12 ps. In other words, in neutral solution more uranyl complexes can form pairs,
but in alkaline solution pairs live longer.

4 Summary

In this chapter molecular dynamics studies of an influence of ion charge on hydra-
tion structure and dynamic properties of highly charged cations in aqueous solutions
are reviewed. A special attention is focused on the investigation of cation hydrolysis
phenomena. Through this study the water molecules are described in the framework
of the flexible non-constrained model CF1 [35, 36]. For a clear understanding of the
influence of cation charge on the hydrated–hydrolyzed structure of cation we intro-
duced a simple “toy” model of so-called primitive cation MZC in water, which in
case of ZD 1 describes NaC ion in water [37]. It is shown that the increase of cation
charge significantly decreases the size of the first hydration shell and stabilizes its
octahedral arrangement.

The electrostatic repulsion between highly charged cation and protons of wa-
ter molecules leads to a notable modification of intramolecular geometry of water
molecules in hydration shell. Further increase of ion–water electrostatic interaction
causes the loss of some protons from hydration shell. This is interpreted as the cation
hydrolysis effect. Such treatment formally coincides with the concept of “aquo-
acidity”, which describes the cation hydrolysis as a stepwise sequence of proton
removals from water molecules of cation hydration shell [1, 2]. As a result a hy-
drated aquo-ion form [M(H2O)n]ZC is transformed into hydrated–hydrolyzed form
[MOnH2n�h].Z�Z

�h/C. Only one proton is lost from the hydration shell of cation
M4C and it has a typical hydroxo-aquo form [M(H2O)6OH].4�Z

�/C. The cations
M5C, M6C and M7C have an octahedral hydrated-hydrolyzed configuration but with
different degrees of hydrolysis. In particular, six protons are lost from the hydration
shell of cation M5C and it is characterized by a hydroxo form [M(OH)6].5�6Z

�/C.
Eight protons are lost by the hydration shell of cation M6C and it has a typical
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oxo-hydroxo form [M(OH)4O2].6�8Z
�/C. All 12 protons are lost from the hydration

shell of cation M7C and it has an oxo form [MO6].7�12Z
�/C.

Stabilization of the cation hydration structure through the sequence M3C, M4C,
M5C leads to the decreasing of self-diffusion coefficients DM and DO . However
for the cases of cations M6C and M7C due to formation of the oxo-hydroxo and oxo
ionic forms the number of water molecules in the second hydration shell decreases
significantly and self-diffusion coefficients DM and DO increase. We observed for
cases of M4C and higher charged cations that the spectral density of hindered trans-
lation motions of cations and oxygens in the first hydration shell have common
characteristic frequencies in the high frequency region, which was interpreted as the
presence of normal modes of highly stable hydrated–hydrolyzed complexes.

For correct description of cation hydrolysis the considered model is improved
by taking into account charge redistribution effects between oxygens and hydro-
gens of hydrolyzed water molecules. A functional dependence of proton charge on
proton-oxygen distance was chosen, which provides a monotonic change of hydro-
gen charge from CF1 value (when water molecule is not hydrolyzed) to the value
ZH D 1 (when proton leaves its “native” molecule). According to the electroneu-
trality condition the charge of oxygen is changed consistently. It is shown that the
charge redistribution between hydrolysis products essentially modifies and stabi-
lizes the hydrated–hydrolyzed structure of cation. In particular, the hydration shell
of cation M5C demonstrates two different types of configurations. First of them
consists of two axial non-hydrolyzed water molecules and three OH� groups in
equatorial plane. The second configuration is characterized by the tetrahedral ar-
rangement of four OH� groups.

For real cations an increase of charge leads to a shortening of distances between
cation and neighboring water molecules. Due to this a role of electrostatic ion-water
interaction in the formation of hydrated–hydrolyzed structures of real cations is
more important than for the primitive cation. This is demonstrated by a molecular
dynamics study of Al3C hydration. The results of this study show a strict octahedral
arrangement of the aluminium hydration shell with tendency to cation hydrolysis.

Another realistic cation – anisotropic uranyl UO2C
2 ion – is considered. The

simulations show that the uranyl hydration shell is characterized by a bipyrami-
dal pentacoordinated arrangement of neighbors and a hydrolysis of one of the water
molecules is observed. It is shown that the influence of pH level can modify the
uranyl hydration structure from UO2C

2 (H2O)5 to UO2C
2 (OH�)5. In particular the hy-

drolysis reaction is inhibited under acidic conditions, while the alkaline conditions
intensify it. Finally, the intercation correlations between uranyl ions are considered
and the possibilities of a formation of polynuclear ions are discussed.

We have to mention here that the CF1 model, although was not specially de-
signed for hydrolysis treatment, provided qualitatively correct results. In order to
obtain good quantitative agreement with experimental data on the hydration shell of
highly charged cations, the CF1 model must be revised towards adjusting the depth
of potential wells responsible for confining oxygens and hydrogens in the flexible
molecules to be in agreement with the hydrolysis energy data. It is hoped, that this
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kind of improvement of the potential model will be a step forward from the actual
description of cation hydrolysis.
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Davydov’s Solitons in DNA

Victor D. Lakhno

Abstract Charge transfer in homogeneous nucleotide chains is modeled on the ba-
sis of Holstein Hamiltonian. The path length of Davydov solitons in these chains is
being studied. It is shown that in a dispersionless case, when the soliton velocity V
is small, the path length grows exponentially as V decreases. In this case the state
of a moving soliton is quasisteady. In the presence of dispersion determined by the
dependence �2 D �2

0 C V
2
0 ›

2 the path length in the region 0 < V < V0 is equal
to infinity. In this case the phonon environment follows the charge motion. In the
region V > V0 the soliton motion is accompanied by emission of phonons which
leads to a finite path length of a soliton. The latter tends to infinity as V ! V0 C 0

and V !1. The presence of dissipation leads to a finite soliton path length.
An equilibrium velocity of soliton in an external electric field is calculated. It

is shown that there is a maximum intensity of an electric field at which a steady
motion of a soliton is possible. The soliton mobility is calculated for the stable or
ohmic brunch.

Keywords Phonon emission � Landau–Pekar polaron � Quasisteady states �
Dispersion

1 Introduction

An idea of modern molecular nanoelectronics is to use molecular chains as wires
[1–4]. This highlights the problem of conducting properties of such molecular wires.
In the pioneering works by Davydov [5–10] it was shown that the main carriers of
excitation in molecular wires are solitons (or polarons). Though to date an extensive
literature has been accumulated on the subject, it is a gross exaggeration to say that
everything is absolutely clear now.
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Let us consider a molecular chain consisting of biatomic molecules in which
atoms can displace from their equilibrium positions. This approximation is known as
a Holstein model [11] which represents one of the simplest models of a deformable
chain. It is widely used in describing charge transfer in DNA where the role of
biatomic molecules is played by Watson–Crick nucleotide pairs [11–15]. Notwith-
standing its simplicity the model does not have an analytical solution.

For the first time, the points to be clarified in the context of this problem were
brought to notice by Landau [16]. According to Landau, even at zero temperature,
an electron moving over such a chain can cause the chain’s deformation which can
catch the electron to form a localized state. In Pekar’s works this localized state was
called a polaron [17]. Polaron states have been studied for more than half a century
and still remain to be understood.

One of the questions to be answered was that of whether a polaron state can
move over the chain. It would seem, an unequivocal and principal answer was given
in the paper by Landau and Pekar [18]. According to Landau and Pekar, the case of
a deformable chain differs from the case of a rigid one in that in the former case a
polaron moves as a whole while in the latter one an electron does.

This conclusion was doubted by Davydov and Enolskii [19–21]. They paid at-
tention to the fact that in the case of optical phonons their group velocity is equal
to zero and, in the absence of dispersion, the deformation induced by the electron
cannot follow it. According to Davydov and Enolskii, a steady motion of solitons
over a chain is possible only if the chain dispersion is taken into account.

From these considerations, the authors of [22–25] concluded that in a dispersion-
less case, any arbitrarily weak interaction such as, for example, an external electric
field, which would force the electron to move, would lead to its destruction and
transformation into Bloch state.

The conclusion of the instability of polaron states in response to weak external
influences is in contradiction with the fact that a polaron state is energetically more
advantageous than delocalized Bloch states.

As will be shown in this work, this contradiction results from the fact that the
state of a uniformly moving polaron, considered by Landau and Pekar is, actually,
not the eigen state of the initial Hamiltonian. When moving along the chain, the
electron will inevitably actuate the chain’s atoms, leaving behind a “tail” of oscillat-
ing molecules. This will lead not to destruction of the polaron, but to its stopping.
Therefore the question arises of how suitable is the concept of moving polaron states
in describing the transfer processes in polynucleotide chains.

The paper is arranged as follows.
In Section 2 we introduce a semiclassical Holstein model for a molecular chain.

An expression is obtained for the Green function of the classical equation of the
chain motion with regard for dissipation. In the absence of dissipation it transforms
into the equation obtained by Davydov and Enolskii in [19].

In Section 3 we show that in a molecular chain with dispersionless phonons an
excess electron can be in a “quasisteady” moving soliton state, the electron path
length tending to infinity exponentially as the soliton velocity tends to zero. This
fact justifies the idea of the possibility of “quasisteady” states of solitons in the case
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of small velocities. It is shown that when the soliton moves at a finite velocity, its
stopping is caused by the oscillation excitations behind it.

In Section 4 we show that when dispersion is taken into account, the picture
considered changes qualitatively. According to Davydov’s results, in this case as
V < V0, the soliton does not emit phonons and represents the eigen state of the
Hamiltonian. The soliton path length then goes into infinity.

In Section 5 we consider the soliton motion in the presence of dissipation. An
expression is obtained for the soliton mobility in the absence of dispersion at zero
temperature.

In Section 6 we investigate the steady motion of a soliton in an electric field. It is
shown that there exists a maximum value of the electric field intensity at which the
steady motion is possible. A general expression is obtained for the dependence of
the soliton equilibrium velocity on the field intensity. The dependence contains two
branches, one of which is stable ohmic, and the other is unstable nonohmic.

In Section 7 we obtain an expression for the mobility of moving soliton with
regard for dispersion for T D 0.

In Section 8 we present a general scheme for calculation of the soliton mobility
for T ¤ 0.

In Section 9 we apply the obtained results for homogeneous polynucleotide
chains.

In Section 10 we discuss the results obtained.

2 Motion Equations of Davydov’s Soliton in the Continuum
Approximation

Following [19], let us write down Hamiltonian H describing the electron motion in
a molecular chain in the continuum approximation as:

H D He C Hint C Hph; (1)

He D �
1

a

Z
‰� .x; t/

h̄2

2m

@2

@x2
‰ .x; t/ dx; (2)

Hint D
¦

a

Z
j‰ .x; t/j2 u .x; t/ dx; (3)

Hph D
M

2a

Z "�
@u .x; t/
@t

	2
C�2

ou
2 .x; t/C V 2

0

�
@u .x; t/
@x

	2#
dx: (4)

In Eqs. (1)–(4) the energy is reckoned from the bottom of the conductivity band,
‰.x; t/ normalized electron wave function:

1

a

Z
j‰ .x; t/j2 dx D 1 (5)
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where a is the lattice constant. Unless otherwise specified, integration in Eqs. (1)–(5)
and all the ensuing expressions is carried out in the infinite limit. The quantity m
is the electron effective mass, ¦ is the constant for the electron interaction with the
chain displacements u.x; t/, M is the reduced mass of an elementary cell, �0 is
the frequency of intramolecular oscillations of the chain, V0 has the meaning of the
minimum phase, or maximum group velocity of the chain oscillations. Notice that
Hamiltonian OH is a continuum analog of the discrete model descriptive of an excess
electron inserted in a homogeneous polynucleotide chain [12–15].

Motion equations corresponding to Hamiltonian (Eqs. (1)–(4)) have the form:

@2u
@t2
C�0

@u
@t
C�2

0u � V
2
0

@2u
@x2
C
¦

M
j‰j2 D 0; (6)

i h̄
@‰

@t
C
h̄2

2m

@2‰

@x2
� ¦u‰ D 0; (7)

The term �0@u=@t in the left-hand side of Eq. (6) describes oscillations attenuation
due to friction, �0 is the frequency of the oscillations damping.

For the steady solutions of the form:

u .x; t/ D u .Ÿ/ ; ‰ .x; t/ D ® .Ÿ/ exp i
h̄

�
mVx �

�
W C 1

2
mV 2

�
t
�
;

Ÿ D .x � V t/ =a;
(8)

Eqs. (6) and (7) are written as:

�©�2
0

d2u
dŸ2
� 2�2

0 δ
du
dŸ
C�2

0uC
¦

M
j®j2 D 0; (9)

�
h̄2

2ma2
d2®

dŸ2
C ¦u® D W ®; (10)

where:

δ D
�0V

2�2
0a
; © D

�
V 2
0 � V

2
�
=a2�2

0 (11)

Equation (9) is solved with the use of the Fourier transform. As a result u.Ÿ/ will
take the form:

u .Ÿ/ D �
¦

M�2
0

Z
dŸ0¨

�
Ÿ0 � Ÿ

� ˇ̌
®
�
Ÿ0
�ˇ̌2 (12)

¨ .Ÿ/ D
1

2π

Z
dq

eiqŸ

©q2 C 2iδq C 1
(13)

Calculation of Eq. (13) yields:

¨ .Ÿ/ D
& .Ÿ/q
j©j � δ2

e
� δ
j©j
Ÿ sin

Ÿ

j©j

q
j©j � δ2 (14)
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if © < �δ2;

¨ .Ÿ/ D
2π& .Ÿ/q

δ2 � j©j
e
� δ
j©j
Ÿch

�
Ÿ

j©j

q
δ2 � j©j

	
(15)

if �δ2 < © < 0;
¨ .Ÿ/ D δ .Ÿ/C i& .Ÿ/ e�Ÿ=2δ (16)

if © D 0;

¨ .Ÿ/ D
1

2

q
δ2 C j©j

�
& .Ÿ/ e

�
Ÿ
j©j

�p
δ2Cj©j�δ

�
C& .�Ÿ/ e

Ÿ
j©j

�p
δ2Cj©jCδ

��
(17)

if © > 0, where δ .Ÿ/ is the Dirac δ-function, &.Ÿ/ D 1, if Ÿ > 0, &.Ÿ/ D 0, if
Ÿ < 0. For δ D 0, i.e. in the absence of dissipation, these expressions go over into
those obtained in [19]. The sign of the argument of & -function in Eq. (14) differs
from the sign of the corresponding argument in [19] due to the fact that as © < 0 the
complex summand in the denominator of integrand (Eq. (13)) has a different sign.

3 Soliton Path Length in the Absence of Dispersion
and Dissipation

The authors of [19–21] reasoned that in a molecular chain without dispersion a
steady motion of a soliton formed by an excess electron is impossible. The ar-
guments were based on the fact that phonons obeying the dispersion law �2 D

�2
0CV

2
0 k

2 have a zero group velocity as V0 D 0 and therefore the phonon environ-
ment cannot follow the soliton motion.

Of interest here is to find the length of a path that a soliton having at the initial
moment the velocity V travels until it finally stops. In this section we will deal with
the case of the absence of dissipation (δ D 0) and absence of dispersion (V0 D 0).

Using Eq. (14) we express ¨.Ÿ/ as:

¨ .Ÿ/ D
& .Ÿ/p
j©j

sin
Ÿp
j©j
; © < 0 (18)

As © D 0, Eq. (10) is reduced to a stationary nonlinear Schrödinger equation, the
normalized solution of which has the form:

® .Ÿ/ D
1
p
2r

ch�1 .Ÿ=r/ ; r D 4M .h̄�0/
2 =m¦2a2 (19)
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In the absence of dispersion and small soliton velocity, when j©j << 1, from Eqs. (12)
and (18) we get:

u .Ÿ/ D c sin
�
Ÿ=
p
j"j
�
; Ÿ < c1r (20)

c D �πr¦=2M�2
0a j©j sh

�
πr=2

p
j©j
�

(21)

where c1 is a constant of the order of 1.
From Eq. (20) follows that for Ÿ D .x � V t/=a a soliton moving along a path in

positive direction leaves behind a “tail” of the chain oscillations loosing on the way
its kinetic energy Ekin D m��V 2=2 where

m�� D
1

30

m3a4

h̄6
¦8

�10
0 M

4
(22)

is the soliton effective mass, until it finally stops.
The distance L which a soliton will travel is found from the condition:

Eph D Ekin (23)

Eph D
M

2

c1rZ

�L=a

"�
V 2 C V 2

0

�

a2

�
du
dŸ

	2
C�2

0u
2

#
dŸ (24)

Substituting expression (20) into Eq. (24) and using Eq. (3) for small © we express
the soliton path length as:

L

a
D

1

120π2
m5¦10a4V 6

M5�16
0 h̄

10
sh2

�
πra�0

2V

	
(25)

The quantity L, thus defined, is the distance at which soliton velocity changes sig-
nificantly.

So, in the absence of dispersion, as V ! 0, the soliton path length L=a tends to
infinity � exp.π r a �0=V / This fact justifies the idea of the possibility of “quasis-
teady” states of solitons and polarons at small V , for which all the calculations of
the effective mass were made.

The physical reason why the emission of phonons by a moving soliton is ex-
ponentially small is that, according to Eq. (13), in the absence of dissipation,
contribution into the emission is made by q satisfying the Cherenkov condition:

qV D �0a

As V ! 0 this condition is fulfilled for q ! 1. For a localized state, in this limit
case, the Fourier component of the electron density is exponentially small. So, in
this limit case only an exponentially small portion of the electron distribution will
take part in the phonon emission.
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4 Soliton Path Length in the Presence of Dispersion
and Absence of Dissipation

To have the general pattern of the dependence of the soliton path length on the
velocity V in the case on nonzero dispersion (V0 ¤ 0) let us consider some limit
cases.
©< 0. When © < 0, the distribution of displacements over the chain is determined

by Eq. (18). Since in this case the soliton velocity exceeds the maximum group
velocity V0, the soliton leaves behind a “tail” of the chain oscillations which leads
to a finite path length of the soliton. For .V �V0/=V0 << 1, the path length will be:

L=a � exp
π r a �0q
V 2 � V 2

0

(26)

As V0 D 0 expression (26) transforms into Eq. (25).
In another limit case of large velocities (π r a �0=2V << 1), when

V >> 2π
M

m
.h̄�0/

2 �0

¦2a
> V0 (27)

the soliton path length is written (Eqs. (20)–(24)) as:

L=a D
1

30

� m
M

�3 a2¦6V 4

�10
0 h̄

6
(28)

So, at large V the path length grows as �V 4. The physical reason is that in the
case of V ! 1 from Cherenkov condition it follows that q ! 0. As q ! 0 a
portion of electron distribution taking part in the phonon emission is independent
of V . Accordingly, the soliton path length will tend to infinity as V !1.
©> 0. When © > 0, the soliton velocity is less than the maximum group velocity

of the chain V0. Using Eqs. (17) and (12) we express u.Ÿ/ as:

u .Ÿ/ D �
1

2
p
j©j

¦

M�2
0

Z
dŸ0e�jŸ

0�Ÿj=
p
j©j
ˇ̌
®
�
Ÿ0
�ˇ̌2

(29)

From Eq. (29) follows that in a steady case the displacements propagate both behind
the moving soliton and in front of it, dying out exponentially with distance from
the soliton. In this case the quantity Eph has a finite value even if the limits of
integration in integral of Eq. (24) are infinite and corresponds to the energy of the
phonon environment accompanying the charge motion along the chain. Then the
path length will be infinite.
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5 Soliton Path Length in the Presence of Dissipation—Soliton
Mobility

In the presence of dissipation the soliton path length always has a finite value. As
δ ¤ 0 the loss of energy by a soliton dH/dt due to dissipation is determined by the
balance energy equation:

dH

dt
D �2F; F D

γ
2a

Z �
@u
@t

	2
dx; (30)

where F is a dissipative function, γ D M�0 is a friction coefficient. From Eqs. (8)
and (30) follows:

dH

dt
D �

M�0

a2
V 2

Z �
du
dŸ

	2
dŸ (31)

When the soliton moves at a small velocity, its energy can be presented as [19]:

H D H0 C
1

2
m��V 2; (32)

m�� D
M

a2

Z �
du
dŸ

	2
dŸ; (33)

where m�� is the soliton effective mass. With the use of Eqs. (32) and (33) balance
Eq. (31) takes the form:

dV 2

dt
D �2�0V 2 (34)

From Eq. (34) follows the expression for the soliton velocity:

V .t/ D V .0/ e��
0t (35)

where V.0/ is the soliton initial velocity. From Eq. (35), the soliton relaxation time
will be τr D 1=�0.

Using Eq. (35) we express the soliton path length as:

L D

1Z

0

V .t/ dt D V .0/ =�0 (36)

Now let us discuss the motion of a soliton at a small velocity in an external electric
field E. Given an electric field, in the steady case the loss of energy due to dissipation
( PH D �2F ) will be counterbalanced by a gain in energy obtained by the soliton
from the external field ( PH D eEV ). As a result, the balance energy will take the
form:

eEV D �0m��V 2 (37)
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Whence the soliton mobility � is:

� D eτr=m
�� (38)

This is the ordinary expression for the electron mobility where effective mass of
soliton stands in place of the effective mass of electron and the relaxation time is
τr D 1=�

0. We will turn back to this point in Sections 7 and 8.
Notice that according to Eq. (38), the soliton mobility is determined only by

dissipation which leads to stopping of the soliton. According to the analysis carried
out above, the contribution of phonon emission into the mobility vanishes in the
limit considered V ! 0. Below we will take the case of a finite soliton velocity
when the contribution of emission into its value plays a decisive role.

6 Motion in an Electric Field

To calculate the equilibrium velocity of a soliton in an external electric field of in-
tensity E we will proceed from the energy dissipation expression (30). In the steady
case the rate of energy dissipation is counterbalanced by the energy gained by the
particle moving in an electric field E at the velocity V :

�
dH

dt
D eEV (39)

Expanding j®.Ÿ/j2 into Fourier series:

j® .Ÿ/j2 D N�1
X
k

eikŸCk (40)

and using relations (12)–(14) and (39)–(40), we express the energy dissipation
rate as:

dH

dt
D

γ
2πa2

¦2�
M�2

0

�2
Z

k2V 2CkC�k

.©k2 C 2iδk C 1/ .©k2 � 2iδk C 1/
dk (41)

From Eqs. (19) and (38) we get:

Ck D
π
2

kr

sh .πkr=2/
(42)
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Using relations (37), (41), and (42) we obtain the following general expressions for
the dependence of the soliton velocity on the electric field intensity:

(1) when ¨0 < 2¨, v > v0=
q
1 � .¨0=2¨/2:
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(3) when ¨0 > 2¨: for any v the dependence E.v/ is determined by the formulae of
case (2).

In expressions (43) and (44) use is made of dimensionless quantities: E, η, ¨, ¨0,
›, v, which are related to the dimensional quantities as:

E D E
eaτ
h̄
; η D

h̄τ
2ma2

; ¨ D �0τ; ¨0 D �0τ;

›¨2 D τ3¦2=Mh̄; v D V τ=a; v0 D V0τ=a; (45)

where τ is an arbitrary time scale.
Recall that expressions (43) and (44) are not the exact solution of the problem

(Eqs. (9) and (10)) for all the parameter values. The reason is that when deriving
Eqs. (43) and (44) we used approximate expression (19) and its corresponding ex-
pression (42). Calculation experiments demonstrate that expression (19) is still a
good approximation even at r�1, when the chain discreteness is essential [26]. Up
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to rather high velocities, the soliton shape turns out to be close to that described by
Eq. (19). So, we may hope that relations (43) and (44) are valid within a wide range
of the model parameters variation. At the same time it should be noted that Eqs. (43)
and (44) are invalid, for example, in the limit case �0 D 0 which corresponds to
the limit j©j ! 1. It is easy to show that any localized soliton states are lacking in
this case (acoustic phonon spectrum) and the solution of Eqs. (10) and (29) will be
delocalized electron states. Hence, taking account of dispersion for �0 ¤ 0 leads
to enlargement of the soliton, i.e. deviation of its shape from that given by Eq. (19).
Notice that as v D v0, nothing unusual peculiarity arises, in particular, the electric
field intensity necessary to impart this velocity to the soliton, according to Eqs. (43)
and (44), is equal to:

E D
π2

60

›4v20¨
0

¨2η3

In the limit case v0 D 0, i.e. when dispersion is absent, for cases (1) and (3) we get
from Eqs. (43) and (44) the following expressions:

E D ›¨2¨0vI (46)
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;

for ¨ > ¨0=2. In the case of a damped motion, when friction is large, we get the
following expression of I :

I D
2η
›v4

1Z

0

x4=sh2x�
x2 C c21

� �
x2 C c22

�dx (48)

c1 D
2πη
›v

0
@¨0
2
�

s�
¨0

2

	2
� ¨2

1
A ;

c2 D
2πη
›v

0
@¨0
2

2

C

s�
¨0

2

	2
� ¨2

1
A ;

for ¨0 > 2¨.
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Fig. 1 The dependence of soliton velocity v on electric field E for different values of parameter
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Let us consider the limit case of the lack of friction ¨0 D 0. From Eqs. (46) and
(47) it follows:

E D 2π2
¨2η2

›

1

v4
1

sh2 .2πη¨=›v/
(49)

So, according to Eq. (49), even in the absence of friction, for a soliton to move
steadily along the chain, a nonzero field E should be applied. This result is in full
agreement with the analysis carried out above. As ¨0 D 0, the work of an electric
field is necessary for a moving soliton to induce oscillations in the chain.

Figure 1 shows dependencies of the soliton velocity on the intensity of the elec-
tric field E determined by Eqs. (46)–(48) for various values of the parameter ¨0 in
the absence of dispersion.

The limit case of ¨0 D 0, determined by Eq. (49) corresponds to curve 1 in Fig. 1
and the limit case of¨0D1 corresponds to the ordinate axis. As is seen from Fig. 1,
a steady motion of a soliton is possible only within the interval 0 < E < Emax.¨

0/.
On each curve, the branch for which dv=dE D v0E > 0 corresponds to a steady
motion of a soliton, while the branch for which v0E < 0 corresponds to its unsteady
motion.

From Eqs. (46)–(48) it follows that the occurrence of friction (¨0 ¤ 0) gives rise
to an ohmic branch, i.e. a linear dependence of v.E/ (for small E) on the stable
regions of v.E/ curves.
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7 Soliton Mobility for T D 0

At zero temperature and v0 ¤ 0, (Eq. (44)) yields the following expression for the
soliton mobility:

� D
ea2

h̄

v40
2¨2¨0ηIb

(50)

where

Ib D

1Z

0

x4=sh2x

.x2 C b2/
2
dx; b D

2πη¨
›v0

(51)

From Eqs. (50) and (51) it follows that in the limit v0 !1:

� D 4
ea2

h̄

v30
¨¨0›

(52)

As v0 D 0, from Eq. (44) we get the following expression for the soliton mobility:

� D 240
ea2

h̄

η3¨2

›4¨0
(53)

which coincides with earlier obtained expression (38).
Figure 2 shows in greater detail linear portions of the v.E/ dependencies corre-

sponding to curves in Fig. 1.
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Fig. 2 Linear portions of v.E/ curves
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Figure 2 suggests that the portions of linear dependence lengthen as ¨0 grows.
For ¨0 � 0,1 the regions of v.E/ linear dependence spread up to the critical value
of the field intensity at which a steady motion of a soliton becomes impossible. In
this case Ohm’s law holds up to very high values of the field intensity.

To understand the meaning of expressions (50)–(53) for the soliton mobility let
us calculate the soliton effective mass m�� with the use of Eq. (33). When from
v0 ¤ 0 (Eq. (33)) we get:

m��
ı
m D

�
1=120

� �
›4
ı
η2¨2

�
(54)

Substitution of Eq. (54) into Eq. (38) yields expression (53). So, the soliton mobility
is described by an ordinary equation in which the effective mass is replaced by the
soliton mass and the relaxation time—by the quantity 1=�0. Hence, for V0 D 0, the
soliton effective mass is equal to:

m��
ı
m D

4η2¨2Ibıv40 (55)

8 Soliton Mobility at Finite T

To calculate the soliton mobility at finite temperatures let us find an average length
of the soliton path in the presence of dissipation with due regard for phonon emis-
sion. Let us proceed from the balance equation

dH
dt
D

d

dt

�
m��V 2ı

2

�
(56)

Writing down dH=dt in the form of Eq. (41) we will express the time dependence

of the soliton velocity v, providing ¨0 < 2¨, v > v0=
q
1 � .¨0=2¨/2, in the form:

dv2

dt
D �2A¨2¨0

ηv2

.v0 � v2/2

1Z

0

x4sh�2x

.x2 C c1/
2
C c22

dx (57)

where A D 2h̄τ=m2a2, and quantities c1, c2 are determined by relations (43).

In the case of ¨0<2¨, v < v0=
q
1 � .¨0=2¨/2, the time dependence of the

soliton velocity is written as:

dv2

dt
D �2A¨2¨0

ηv2

.v0 � v2/2

1Z

0

x4sh�2x
.x2 C c1/

�
x2 C c22

�dx (58)

where c1 and c2 are determined by formulae (44).
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As ¨0 < 2¨, for any V the time dependence of the soliton velocity is determined
by Eq. (56).

Equations (57) and (58) determine the dependence v.t; v.0// for a given initial
velocity of a soliton v.0/. Then for an average length of the path NL .T /, at finite
temperature T; we get:

NL .T / D

Z
L .v .0// fM .v .0//dv .0/ (59)

where

L .v .0// D

1Z

0

V .t; v .0//dt (60)

fM is a Maxwell distribution of solitons over initial velocities v.0/.
The temperature dependence of the mobility is given by the expression

� .T / D
eNτ .T /
m��

; Nτ .T / D
NL .T /

NV .T /
; (61)

where NV .T / is the mean thermal velocity of a soliton.
By way of illustration let us consider the case of low temperatures, when
NV .T / << V0. In this case the quantities c1 and c2 in Eq. (58) are equal to:c22 	
c21 	 .2πη=›/2 ¨2=V 2

0 . Since the main contribution into integral (59) is made by
V 	 NV .T /, then c1, c2 >> 1.

As a result, v.t/, by Eq. (58), will be:

V .t/ D V .0/ exp .�ct/ ; where c D
1

240

h̄

m��a2
¨0

¨2

�
›=η
�4
:

Using this expression and also expressions (59)–(61) we will describe the mobility
by Eq. (53) which is valid on condition that:

T << m��V 2
0 (62)

v20 << .2πη=›/¨2 (63)

From Eq. (57)–(61) it follows that for ¨0 D 0, T ¤ 0, as in the case of T D 0,
the soliton mobility becomes infinite. Of course, the above reasoning refers to the
temperature which is considerably less than that of soliton decomposition [27].
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9 Application to Polynucleotide Chain

Recently, modeling of the motion of a charged particle in molecular chains of var-
ious types has been the topic of considerable investigation (books and reviews [9,
28–31] and papers cited therein). A new type of conducting quasi-one-dimensional
system is polynucleotide chains inter twisted into a double helix of DNA
molecule.

Recall, that DNA consists of four types of nucleotides designated as A (ade-
nine), T(thymine), C(cytosine), an G(guanine) which unite into complementary
pairs in such a way that nucleotide A always pairs with T and nucleotide C al-
ways pairs with G. These nucleotide pairs are arranged in a stack to form a
DNA double helix. Nowadays long sequences with a prescribed set of nucleotide
pairs can be synthesized artificially. Of great interest are chains composed of uni-
form pairs which could serve as molecular wires in nanoelectronic devices [1].
In the majority of experiments on charge transfer in DNA the charge is carried
not by electrons, but by holes. If a nucleotide in nucleotide chain be freed from
electron, the hole which would arise would have a potential energy U such that
UG < UA < UC < UT :

Overlapping of electron π-orbitals of neighboring pairs will lead to delocaliza-
tion of the hole over the chain and its capture by nucleotides with lower oxidation
potential. Since, according to the above inequality, guanine has the lowest oxidation
potential, the hole will travel over guanines while all the other nucleotides will act
as potential barriers.

In our approach Hamiltonian of a regular deformable nucleotide chain is consid-
ered in continuum approximation. To carry out numerical estimates we choose the
following parameter values. For a homogeneous PolyG/PolyC chain the value of
the matrix element �GG is equal to 0.084 eV which corresponds to η D 1;276:

The values of matrix elements for DNA calculated by quantum chemical meth-
ods in [32, 33], are in good agreement with experimental data on relative charge
transfer rates in DNA. The values ¦ D 0:13 eV/Å, �0 D

p
K=M D 1012s�1,

�0 D �=M D 6 � 1011s�1 are chosen the same as in [14]. Notice, that the value
of ¦ used by us is close to that found by quantum chemical methods in [34]:
¦ D 0;2349 eV=Å. For τ D 10�14 s these parameter values correspond to di-
mensionless quantities › D 4, ¨ D 10�2, ¨0 D 0;006. The value of mobility �
calculated by formula (53) for the distance between nucleotide pairs a D 3:4 Å in a
PolyG=PolyC chain is � 	 5:7 � 10�2cm2=V s. The characteristic size of a soliton
is r 	 1:3, which corresponds to the energy of the particle W0 reckoned from the
bottom of the conduction band: W0 D �h̄=2m

�r2 	 �5 � 10�2 eV and the soliton
energy E0 D W0=3 D �1:7 � 10

�2 eV. The soliton effective mass calculated by
formula (54) ism�� 	 1:3� 104m� where the band mass of a holem� D �h̄=2�a2

is equal to 3:94m0, m0 is the electron mass in vacuum.
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10 Discussion of Results

In Bogolubov–Tyablikov strong coupling theory [35, 36] which is presently consid-
ered the most consistent theory of a strong coupling polaron (see, for e.g., review
[37]), at V ¤ 0 some resonance denominators appear which lead to divergence.
The results obtained here provide an explanation for this contradiction. In the case
under consideration we could have proceeded from. Froehlich Hamiltonian for the
Holstein model and get resonance denominators (see, for e.g., discussion of this
problem in [31]). So, the presence of resonance denominators stems from the fact
that a moving polaron state is nonstationary, i.e. it is not the eigen state of Froehlich
Hamiltonian. This implies an important methodological conclusion—in translation-
invariant systems, among which is Froehlich Hamiltonian, a moving polaron state
may not be its eigen state.

In a semiclassical model in a dispersionless case, a moving polaron always emits
phonons. In a quantum case this emission occurs on the conditionm��v2=2 > h̄�0.
One would think that in a quantum case, as distinct from the classical one, there
exists a minimum velocity vmin D 2 h̄�0=m

��, at which the emission is possible.
However, the very inequality from which vmin was obtained is fulfilled only in the
strong coupling limit, when quantum description becomes semiclassical. Since in
the strong coupling limitm���›4, where ›!1, then vmin�1=›

4 ! 0 in complete
agreement with a semiclassical approach.

The general picture of the soliton motion along the chain at T D 0 in the absence
of dissipation looks as follows. For r >> 1, a soliton, irrespective of the model
parameters, has a large path length which goes into infinity as v ! 0 and v ! 1.
In the presence of dispersion when v < v0 the soliton path length is L D 1. When
v < v0 the path length is finite and tends to infinity as v!1.

We emphasize that despite the fact that the value of path lengthL at given V > V0
is finite, the total soliton path for a soliton to reach the velocity V0 is always infinite.
It is clear that as the soliton is slowing down, i.e. its velocity decreases, the local
amplitude of the phonon tail vanishing at V ! V0. Accordingly the soliton path
length tends to infinity at V ! V0 and an infinite time is required for a soliton to
reach the velocity V0.

When r << 1, a soliton cannot move along the chain. The deformation produced
by it “chains” it to the site (molecule) where it is localized (when considered dis-
cretely). Formally, in the continuum model, which is invalid in this case, the soliton
path length becomes very small: L � r . The reason why the deformation “chains”
the charge to the site in the case of interest, is that the ratio of the deformation energy
Epot to the oscillator energy: Epot=h̄�0 D ›=2¨ is very large: ›=2¨ >> 1 and
in passing to the neighboring site the charge must do some work so that to produce
an equilibrium deformation at this site. For Ekin < Epot this process is forbidden
by the energy conservation law: when Epot D ¦2=2M �2

o > m��V 2=2 a soliton
cannot move to the neighboring site.

In the quantum model, when r � 1, the description is carried out in terms
of a small radius polaron (SRP). Agreement with the semiclassical description is



272 V.D. Lakhno

achieved, as in the case of a large radius soliton, by passing to the limit › ! 1 in
the equation vmin D 2 h̄�0=m

��, where m�� is SRP effective mass.
So, for a SRP vmin ! 0 as ›!1. It follows that at T D 0 the polaron band, the

concept of which was first introduced for a SRP by Tyablikov [38], does not exist.
As was pointed out above, the translation invariance of the Hamiltonian, on which
Tyablikov’s theory relies, does not guarantee the existence of the band.

From all has been said it follows that any experimental attempts to find the band
of a small radius polaron (SRP) at T D 0 have no prospects. Traditionally, the dif-
ficulty in finding the SRP band is associated with its narrowness when any external
excitation leads to its destroy and formation of a localized state (see discussion of
this problem in [39]). According to our results, even in the absence of any external
effects the band will destroy by a phonon emission of a moving polaron which leads
to its immediate localization.

This work was supported by RFBR, grant No 07-0700313.
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Potential Energy Surfaces for Reaction
Catalyzed by Metalloenzymes from Quantum
Chemical Computations

Monica Leopoldini, Tiziana Marino, Nino Russo, and Marirosa Toscano

Abstract For several decades quantum mechanical (QM) computational methods
have been developed and refined so that it was possible to extend their applicability
field enormously. Today, they are used generally to supplement experimental tech-
niques because the theory also affords deeper understanding of molecular processes
that cannot be obtained from experiments alone. Due to their favorable scaling when
compared to the ab initio methods, density functional theory (DFT) approach allows
the treatment of very large systems such as the biomolecules. Thus, now it is pos-
sible, for instance, to study the difficult and critical reactions catalyzed by enzymes
in biological systems. Here, a brief account of the studies performed on different
metalloenzymes is given, focusing on methods and models used to describe their
reaction mechanisms.

1 Introduction

Enzymes are biological catalysts that perform very complicated and specific
reactions in mild conditions and with high efficiency and accuracy. They work
enhancing considerably reaction rate, unmatched by any other type of catalyst.
Metalloenzymes constitute a diverse class of enzymes that require a catalytic metal
ion for activity and catalyze a wide variety of biological reactions. In some metal-
loenzymes the metal ion acts mainly as a Lewis acid and in these cases the cation
does not suffer oxidation state change nor, generally, its protein ligands. However,
many redox enzymes exist that catalyse the oxidation or reduction of a substrate or
a group of substrates.

The study of the reaction pathway as it proceeds within the protein walls is the
focal point of chemistry that deals with biological systems.
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During enzymatic reactions, bonds are broken and formed, and intermediates and
transition species originate. To correctly describe these events, quantum mechanical
tools are expected to be utilized. In fact, enzymes mainly function by lowering tran-
sition state energies. The transition state for an enzyme-catalyzed chemical reaction
represents a short-lived species having high-energy. No spectroscopic method avail-
able can detect a transition-state structure, thus a theoretical approach is often the
only way to achieve molecular information that chemists seek.

Today there are computational methods for modelling molecules and reactions
that can obtain results at almost any accuracy desired.

Among these tools, the density functional theory (DFT) based methods can give
information about structures, properties and energetics with an accuracy compara-
ble to the very expensive ab initio methods but with minor computational efforts.
However, enzymes are proteins with an high molecular weight so that they cannot
be entirely studied without introducing significant approximations or using chemi-
cal models to represent their usually large active region. Of course, results must be
interpreted in light of the above mentioned computational limitations.

In this work, a brief summary of the computational studies performed in our
laboratory on some representative metalloenzymes is presented. These studies can
give insight into the elucidation of different reaction mechanisms and, in the cases
these are matter of discussion or are unknown, can contribute to clarify some aspects
and propose possible reaction pathways.

2 Methods and Models

2.1 Density Functional Methods

All the computations were performed with Gaussian 03, revision C02, code [1]
using the DF method mainly in its B3LYP [2–5] formalism. The hybrid B3LYP
functional was more frequently chosen since its performance in describing en-
zymatic mechanisms is widely supported by literature papers [6–9]. However,
new functionals were developed during the last decade and tested towards several
chemical properties, including the determination of barrier heights [10], such as
MPWB1K [11], BHandHLYP [2, 3, 5], BB1K [12] and PBE1PBE [13]. Among
them, the hybrid-meta MPWB1K was found to be an effective tool for calculating
barriers height, thermo-chemical kinetics and non-bonded interactions, so we have
chosen to use it in some case.

Solvent effects were introduced as single point computations on the optimized
gas phase structures in the framework of Self Consistent Reaction Field Polariz-
able Continuum Model (SCRF-PCM) [14–16] in which the cavity is created via
a series of overlapping spheres. United Atom Topological (UA0) model applied on
atomic radii of the UFF force field [17] was used to build the cavity, in the gas-phase
equilibrium geometry. The dielectric constant value © D 4 was chosen to take into
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account the coupled effect of the protein itself and the water medium surrounding
the protein, according to previous suggestions [6–9].

2.2 Construction of Chemical Models

The quantum mechanical (QM) studies performed on metalloenzymes use chemical
models for the active sites since proteins are macromolecules that cannot be stud-
ied on the whole through theoretical methods. The developing of these models is not
trivial but requires a deep analysis. First of all, X-ray structures of the proteins them-
selves and in complex with substrates and/or inhibitors should be available with a
good resolution, so that direct information about the architecture of the active site
as well as the binding mode of the substrate can be drawn. Site-specific mutagen-
esis of particular amino acids, together with kinetic studies, allow to identify some
residues on which catalysis depends. Subsequently, a detailed analysis of the cat-
alyzed reaction must be carried out, also making comparisons with other enzymes
that catalyze similar reactions for which the work mechanism is known. This step is
important not only to propose a reaction pathway but also to identify in the active
sites functional groups and residues necessary to catalysis. For example, hydrolysis
reactions require a nucleophilic agent that must be identified. Once we had collected
all these data, the active site must be divided into two parts, the quantum mechanical
cluster and the environment, that is the portion surrounding the catalytic region not
involved in catalysis.

The quantum mechanical cluster is made up by the metal ion and its first coordi-
nation sphere, to which some nearby residues recognized as fundamental in catalysis
are added. Ligands are represented by the functional part of the side-chains only (im-
idazole rings for histidines, acetates for aspartates or glutamates). One of the atoms
of each amino acidic residue is usually kept frozen at its crystallographic position in
order to mimic the steric effects produced by the surrounding protein and to avoid
an unrealistic expansion of the cluster during the optimization procedure.

The environment not explicitly included in the quantum cluster has a double
effect: steric and electrostatic. As mentioned before, the first one can be brutally
reproduced by fixing some crystallographic positions. Instead, the electrostatic ef-
fect can be introduced assuming it being a homogeneous polarizable medium with
a dielectric constant usually chosen to be equal to 4.

Information about the influence of the protein environment on active site struc-
tures and reactions energetics can be obtained applying the ONIOM hybrid method
(QM/MM) of Morokuma and co-workers [18–24] that enables different levels of
theory to be applied to different parts of a system and combined to produce a con-
sistent energy expression. The underlying idea is that the various parts of the system
each play their own role in the process under investigation, and therefore require
different accuracies. According to ONIOM terminology, the full system treated at
low level of theory is called “real” while the inner layer is called “model” and it
is treated at both low and high level of theory. The hybrid QM/MM methods are
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strongly dependent on parameters and proper calibration used. In order to obtain a
description that does not feel of these effects, the Orbital-Free Embedding approach
of Wesolowski et al. [25, 26] can be used. Practically, using the Orbital-Free Embed-
ding method, the system can be partitioned into two regions, one of which treated
by a full density functional calculation and the second one by a frozen density, al-
lowing us to evaluate the interactions between the active site and the environment
quantum mechanically. Kohn–Sham-like equations are solved to obtain the electron
density of a fragment (i.e. active site of enzyme), which is embedded in a larger
frozen system (protein environment). The fact that the subsystem is embedded in a
microscopic environment is represented by means of a special term in the effective
potential (Vemb/. Vemb is system-independent since it uses the universal function-
als of electron density. It is expressed as a function of two variables ¡A and ¡B
(the electron densities of the embedded system and its environment). It is, therefore,
orbital-free. The explicit analytic form of Vemb is not known but it can be expressed
using approximations to the non additive kinetic energy functional (the difference
between the kinetic energy of the total electron densities of the two subsystems) and
the exchange-correlation functional defined in KS formalism.

3 Results and Discussion

In this section we will shortly report the result obtained in our previous studies for
a series of reaction catalyzed by metal containing enzymes.

3.1 Nitrate Reductase

Nitrate reductase belongs to the class of mononuclear molybdenum enzymes
(molybdoenzymes), characterized by having in the active site an organic cofac-
tor containing a dithiolene moiety, i.e. the bis-molybdopterin guanine dinucleotide
(MGD) [27]. Nitrate reductase catalyses the reduction of nitrate to nitrite, thus
assuming an important role in nitrogen assimilation [28].

The dissimilatory (respiratory) enzyme obtained from the microorganism Desul-
fovibrio desulfuricans consists of four domains involved in cofactor binding [29].
One of these domains is responsible for the binding with an Fe4S4 cluster that acts
as an electrons pump in the catalytic cycle. The MoVI metal center is coordinated
to four sulphur atoms coming from the two dithiolene groups, the sulphur atom of
side chain of Cys140 residue and a hydroxo/water molecule. Several residues, such
as Arg354, Asp155, Glu156, Asp355, Ala142, Val145, Val149, Leu359, Leu362
Gln346, Met308 and Met141 are present in the proximity of active site. For Arg354,
a role in the anchor of the negative charged nitrate substrate has been proposed [29].

The nitrate reductase catalytic cycle is described in Scheme 1. The five coordi-
nated MoIV (MoIVSCys.SR/4/ binds to a nitrate ion. The bond of NO3

� with the
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metallic centre through one oxygen atom leads to a weakening of N–O bond. The
MoIV is oxidized to MoVI and NO2

� is released. MoIV is restored in another step,
by two protons coming from water molecules present in the active site, and two
electrons coming from the Fe4S4 cluster [29].

Two models were used for enzyme active site simulation. The first one (model
1 of Fig. 1) is the [MoIV.S2C2CH3/2.SCH3/], used elsewhere for the simulations
of the molybdoenzymes active site [30]. The second model (model 2 of Fig. 1) was
obtained adding to the model 1 the conserved residues Arg354, Gln346, Met308 and
Met141, according to their crystallographic positions [29].

The B3LYP optimized geometry for the model 1 in its singlet electronic state,
was found to be square pyramidal with Mo–S dithiolenes average distances of 2.36
Å, and with a Mo–SCys bond length of 2.35 Å in agreement with data reported in the
experimental work of Holm and coworkers for phenoxy analogous complexes [31].

The equivalent system in the triplet electronic state presents a distorted trigonal
bipyramidal geometry in which dithiolenes sulphurs occupy both equatorial and
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axial positions (equatorial Mo–S mean distance is 2.46 Å, axial Mo–S mean distance
is 2.36 Å). Low- and high-spin energetic gap was found to be only 4.7 kcal/mol at
B3LYP level, being the singlet the ground state.

Energetic profiles (PES) for the nitrate reduction performed for the model 1 for
both spin states are reported in Fig. 2 and the geometries of stationary points in
Fig. 3.

The reaction starts with the formation the enzyme-substrate complex (ES) in
which the NO3

� is linked to metallic centre through one of its oxygen atoms
(Mo–Onitrate distance is 2.27 and 2.26 Å in the singlet and triplet state, respectively),
leading to a lengthening of the O–N bond length in the substrate. The coordination
geometry around molybdenum is dependent on the electronic state since it appears
to be trigonal prismatic and nearly octahedral, for singlet and triplet, respectively.

The low-high spin splitting relative to this intermediate was computed to be 0.1
kcal/mol, being also here the low spin the ground state.

In the transition state (TS) the Mo–Onitrate and Onitrate–Nnitrate distances assume
the values of 1.91 (1.89) and 1.65 (1.68) Å, for singlet (triplet) spin states, respec-
tively. The geometry in the low- and high-spin TSs appears to be very distorted
with respect to the ideal trigonal prismatic and octahedral geometries of the start-
ing ES complexes. The imaginary frequencies (589 cm�1 for singlet and 722 cm�1

for triplet) correspond to the stretching vibration mode of the Mo–Onitrate and
Onitrate–Nnitrate bonds. The singlet and triplet TSs lie at 19.3 and 19.8 kcal/mol with
respect to the ground state ES complex, respectively.

The final products (EOx of Fig. 3) possess a distorted geometry and lie at 62.9
kcal/mol (singlet) and at 60.1 kcal/mol (triplet) below the reference point. Mo–O
bond has a length of 1.72 and 1.71 Å, for ground and excited state, respectively.

The transfer of the oxygen atom from the bound substrate to the metal centre
represents the rate-limiting step.
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On model 2, ONIOM and Orbital-Free Embedding computations [31], were
performed.

ONIOM procedure [18–24] was applied to the model 2 that was divided into
an inner layer consisting of the MoIV thiomethyl bis dithiolenes complex, nitrate
substrate and nitrite product molecules, and an outer layer made up by Arg354, Met
141, Met308 and Gln346 amino acids at their crystallographic positions.

ONIOM energetic profiles for the enzyme in the singlet and triplet electronic state
were reported in Fig. 4, while equilibrium structures on the PESs were depicted in
Fig. 5.

In the ES complex, the Mo–Onitrate and Onitrate–Nnitrate distance values (2.18 and
1.38 Å for singlet and 2.15 and 1.39 Å for triplet) suggest that the interaction be-
tween the metal and the substrate oxygen atom is stronger than that found in the
analogous complex with model 1. The trigonal prismatic and octahedral arrange-
ments around molybdenum in the low and high spin complexes appear to be much
more distorted than in model 1. The ONIOM gap between the ES complexes in the
singlet ground state and in the excited triplet is 2.2 kcal/mol. This value compared to
data obtained for model 1 indicates a certain dependence of the gap on the presence
of protein environment.
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The transition states for the singlet and triplet species are characterized by
Mo–Onitrate and Onitrate–Nnitrate distances that are shorter and longer with respect to
those of ES complexes, respectively. Imaginary frequency values of 252 (singlet)
and 444 (triplet) cm�1 can be attributed to the Mo–Onitrate and Onitrate–Nnitrate bonds
stretching vibrational mode.

Transition states lie at 11.6 (singlet) and 14.3 (triplet) kcal/mol above the ES
reference. The presence of the amino acids residues reduces, as can be noted, the
barrier heights.

At 10.9 and 7.2 kcal/mol below the ES complex, for low- and high-spin case,
respectively, we found the final products (EOx).
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Fig. 5 Optimized geometries of stationary points belonging to model 2 reaction profile

The low- and high-spin complexes EOx exhibit a similar octahedral geometry
around molybdenum. The Mo–Onitrate distance is 1.73 and 1.72 Å, for singlet and
triplet, respectively.

In the ONIOM treatment, the energy value of the product corresponds to a sum-
mation of the energy value of infinitely separated species (E.EOx/ C E.NO2

�//.
Since in the computations with model 1 no geometry convergence was obtained in
the presence of a long range interaction between nitrite and oxo MoVI complex, a
direct comparison of the energetics obtained with the two different models cannot
be done as far as products are concerned.

ONIOM computations demonstrate that the protein environment has not influ-
ence on the mechanism followed by the enzymatic reaction but affects above all the
kinetics, by lowering the activation barriers. In agreement with the “entatic princi-
ple” proposed by Morokuma, this can be explained by considering that the strain
to which the active site is subjected in the presence of the protein environment that
acts as a device to accumulate energy, used later to overcome barriers.

The equilibrium geometries obtained at ONIOM(B3LYP:UFF) level were used
to perform an orbital-free embedding analysis on model 2 [31]. This completely
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quantum-mechanical method uses two electronic densities for the inner and
outer layers. Single point evaluation was obtained using GGA/PW91 exchange-
correlation functional [32–36].

Because of the differences between the used methodology, functional and basis
set, no comparison is possible with ONIOM data, thus only the qualitative aspects
of these last results will be discussed.

The potential energy profiles obtained applying the orbital-free embedding
procedure for both singlet and triplet states are depicted in Fig. 4b.

As in the previous cases, reaction proceeds most favorably along the singlet path.
Only 0.7 kcal/mol separate the low spin ES complex from the same species hav-

ing the triplet multiplicity. The transfer of oxygen requires an activation energy of
8.8 kcal/mol for the low-spin and 11.0 kcal/mol for the high-spin. Products lie at 7.8
kcal/mol (singlet) and 15.9 kcal/mol (triplet) below the singlet ES complex.

ONIOM and orbital-free embedding results appear to be qualitatively very sim-
ilar. However, it is worth to underline that the data obtained by the second treat-
ment are characterized by the reliability peculiar to a totally quantum mechanical
description.

3.2 Peptide Deformylase

During the elongation of the polypeptide chain in prokaryotes protein synthesis, the
formyl group at the first formylmethionine is hydrolytically removed by the enzyme
peptide deformylase (PDF) [37]. This post translational deformylation of peptides
occurs only in bacterial cells but not in eukaryotes, thus peptide deformylase can be
a potential target for designing new antibiotics [38].

Characterization by overexpression of deformylase gene in Escherichia coli [39,
40] revealed the presence of typical zinc-binding motif, HEXXH (H D histidine,
E D glutamate, X D any amino acid) even if other metals than zinc were identified
in the protein coming from different microorganisms [41]. So, a certain debate about
the identification of the catalytic metal ion originated.

The metal ion in the active site has a tetrahedral coordination [42–44]. Ligands
are the S”-atom of a cysteine residue (Cys 90), the N©2-atoms of two histidines (His
132 and His 136) and the oxygen atom of a water molecule. The glutamate residue,
Glu 133 of the HEXXH motif, does not bind the metal but it is required for catalysis.

In the suggested catalytic cycle [45] (see Scheme 2) the formylated peptide binds
the metal through the carbonyl oxygen of the formyl group yielding to an enzyme-
substrate complex. Several H-bonds with nearby residues support the nucleophilic
attack of the metal bound water/hydroxide on the carbon of the formyl group, that
leads to a tetrahedral intermediate. The proton of the hydroxide is then transferred
to the amide at the N-terminus, with the probable aid of Glu133. The protonation of
the amide group determines the C–N bond cleavage and the release of the products.



Potential Energy Surfaces for Reaction Catalyzed by Metalloenzymes 285

M M

O

+ OH2

– HCOOH
– formylpeptide

O

H H

HO
HO

N(His136) N(His136)
S(Cys90) S(Cys90)N(His132) N(His132)

NH NH

peptide peptide

ES 

M

OO

H

H

N(His136) S(Cys90)
N(His132)

NH

peptide

TS2 M

O

H

N(His136) S(Cys90)
N(His132)

HO

NH

peptide

INT

TS1 

Scheme 2 Catalytic mechanism of peptide deformylase enzyme

In this work [46], a study of the hydrolysis of a formamide substrate performed
by different metal forms (Zn(II), Fe(II), Ni(II) and Co(II)) of peptide deformylase
active site models, is carried out with the aim to elucidate the catalytic function of
metal ions.

Three models for the active site reported in the Fig. 6 were employed. The model
1 consists of a divalent metal ion (Zn, Fe, Ni, Co) coordinated to two imidazole
rings and to a –SCH3 group that simulate the histidine (His132 and His136) and the
cysteine (Cys90) residues, respectively. In the model 2, an acetic acid molecule is
added in the active site to emulate the Glu133 residue. In model 3, Gly45, Gln50 and
Leu91 were further added to provide the H-bonding network involved in substrate
binding. The peptide substrate was modeled by a formamide molecule. The nu-
cleophilic attack on formamide was provided by the metal-bound hydroxide rather
than the metal-bound water molecule owing the fact that the first species is generally
accepted to be the nucleophile.

The first step in the catalytic reaction is the barrierless formation of a complex
(ES) between the active site and the substrate. Irrespective of the metal center, model
1 ES is characterized by a bond between the carbonyl oxygen of formamide and the
M2C ion that becomes five-coordinated (see Fig. 7). The –OH lone pair establishes
a hydrogen bond with the –NH2 terminal group of the substrate of 1.62, 1.67, 1.56
and 1.64 Å, for zinc, iron, nickel and cobalt, respectively.
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The transition state TS1 for the nucleophilic attack of hydroxyl on the carbonyl
carbon atom of formamide is reached when the HO–Csub distance (the subscript
sub refers to atoms in the initial substrate) assumes the values of 1.90 (Zn2C/,
1.83 (Fe2C/, 1.92 (Ni2C/ and 1.94 Å (Co2C/, while the C–N and Osub–Csub bonds
lengthen on average (considering all the four metals) of 0.06 and 0.03 Å. Imaginary
frequency values of 257 (Zn2C/, 306 (Fe2C/, 253 (Ni2C/ and 292 (Co2C/ cm�1

corresponds to the stretching of the HO–Csub bond. In the intermediate, INT, the
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bond between the oxygen of the hydroxide and the carbon of the formamide is com-
pletely formed (the HO–Csub average distance is Š 1:44 Å). The M2C goes back to
a four coordination after the cleavage of the bond between the –OH group and the
metal. The proton transfer from the hydroxide to the amide nitrogen occurs through
the transition state TS2. The O–H and OH–Nsub average distances are Š 1:32 and
1.24 Å, respectively. Imaginary vibrational mode whose frequency is 1,628 (Zn2C/,
1,635 (Fe2C/, 1,643 (Ni2C/ and 1,636 (Co2C/ cm�1, respectively, sees the hydro-
gen atom moving between two atoms. In the final complex EP, the C–N bond is
completely broken, the ammonia leaving group is still held at about 2.00 Å by a
hydrogen bond with the formate that is still coordinated to the metallic centre.

The potential energy profiles obtained for zinc, iron, nickel and cobalt containing
model 1 are schematically depicted in Fig. 8.

Nucleophilic addition requires an activation energy of 22.4, 21.8, 19.8 and 22.6
kcal/mol, for Zn, Fe, Ni and Co, respectively. The rate-limiting step can be recog-
nized in the proton transfer process that converts INT into EP. It requires an amount
of energy of 24.4 (Zn2C/, 25.7 (Fe2C/, 28.2 (Ni2C/ and 26.3 kcal/mol (Co2C/, when
computed with respect to the intermediate INT.

Computations with model 2 were performed for the Zn- and the Fe-containing
enzymes because these two metal ions have received major attention in literature as
potential catalytic ions.

Also for the model 2, reaction starts with the formation of the ES complex, in
which the substrate binds the metal by its carbonyl oxygen, while the metal bound
–OH forms a hydrogen bond with the hydroxyl of acetic acid (Fig. 9).

The transition state (TS1) for the first ES! INT1 interconversion step occurs
for an HO–Csub distance value of 1.99 Å for zinc and 1.95 Å for iron. Imaginary
vibrational mode (frequency at 303 (Zn2C/ and 229 (Fe2C/ cm�1/ clearly shows the
formation of this new bond. The Glu133 residue changes significantly its orientation
with respect to that in the ES complex, as to establish a further hydrogen bond
(1.65 Å for zinc and 1.80 Å for iron) in which the substrate nitrogen atom acts as
acceptor.
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The nucleophilic attack leads to the intermediate INT1 characterized by an
HO–Csub distance of 1.42 Å for both zinc and iron. Two hydrogen bonds are present,
involving the –OH group of glutamate and the –NH2 lone pair (1.62 Å for zinc,
1.64 Å for iron), and the –OH group of the substrate and the Glu133 carbonyl oxy-
gen (1.86 Å for zinc and iron).

In this model 2, the protonation of –NH is mediated by the Glu133 residue,
through the transition state TS2 (imaginary frequency at 773 and 691 cm�1, for zinc
and iron, respectively) referring to the HC shift from Glu to NH, leading to the INT2
of Fig. 9, and through the transition state TS3 (imaginary vibrational frequency of
215 (Zn2C/ and 223 (Fe2C/ cm�1/, in which the cleavage of the C–N bond in the
substrate is coupled with the proton shift from the original –OH to Glu133.
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In the final complex EP, ammonia appears to be bound to Glu133 through a
hydrogen bond (2.17 and 2.16 Å for zinc and iron). The glutamic acid residue is
again produced and the formate group is strongly coordinated to the metallic centre.

As can be noted from the energetics profiles reported in the Fig. 10, the protona-
tion of nitrogen in the substrate demands lower amounts of energy in the model II
with respect to the model 1. The barrier heights for the HC transfers are very small
when amino acids in the active site works as mediators.

The barrier heights for the HC transfers are very small when amino acids in the
active site works as mediators. In fact, Glu133 acts lowering the activation energy
required for transferring the proton on the substrate nitrogen, splitting the proton
shift into two distinct processes. No influence on the relative energy of the nucle-
ophilic addition is observed as far as the Glu133 residue is concerned.

By adding second shell amino acids to the active site as in the model 3, one
should reproduce the H-bonding network able to stabilize intermediates and transi-
tion states. The Gly45, Gln50 and Leu91 residues were added to the model 2 and
computations were performed for zinc and iron. The enzyme–substrate complex
(ES) when compared with the model 2 one shows that three additional stabilizing
hydrogen bonds are present (see Fig. 11). No significant differences are encountered
in going from zinc to iron ES complexes.

The main difference encountered in going from model 2 to model 3 is that now
the nucleophilic addition occurs in a concerted way with the shift from the neutral
Glu133 to the amide nitrogen in the substrate. The critical distance HO–Csub as-
sumes the value of 1.82 for Zn2C and 1.83 Å for Fe2C. Vibrational analysis gave
a low imaginary frequency at 297 cm�1, for zinc, and at 291 cm�1 for iron, whose
corresponding vibration mode indicates the simultaneous occurrence of the stretch-
ing of the heavy atoms in the HO–Csub bond, and the approaching of the hydroxyl
of Glu133 residue to the nitrogen atom of the –NH2 group of the substrate. The next
point after the TS1 along the model 3 reaction path is an intermediate that shows a
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Fig. 11 Optimized geometries for Zn and (Fe) containing model 3

protonated nitrogen atom and a stable hydroxyl–carbon bond in the substrate. The
carbon-nitrogen bond in the substrate is quite long (1.60 and 1.59 Å, for zinc and
iron, respectively) as compared to a covalent ¢ C–N bond. Because of the estab-
lished hydrogen bonds with the substrate (OH–Oglu and Oglu–HNH2 distances are
1.57 and 1.84 Å in the case of Zn2C, and 1.54 and 1.85 Å in the case of Fe2C/,
the unprotonated Glu133 residue is fixed at a good position to accept the hydroxyl
proton.
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The conversion of the INT into the product complex EP occurs via the tran-
sition state TS2, in which the unprotonated Glu133 group easily takes the proton
from the hydroxide (Oglu–HO distance is 1.04 Å, for both zinc and iron cation).
Consequently, the Csub–Nsub bond lengthens up to 1.81 Å (Zn2C/ and 1.74 Å (Fe2C/.

In the EP structure, the formate is coordinated to the metal cation, with a pro-
tonated glutamate residue and ammonia molecule interacting with the Gly45 and
Glu133 residues via two hydrogen bonds.

Within model 3 computations, the nucleophilic addition on the substrate carbon
is the rate-limiting step, requiring an activation energy of 15.6 and 17.0 kcal/mol,
for Zn2C and Fe2C, respectively (see Fig. 12). The INT species lies at 13.7 and 15.6
kcal/mol above the ES minimum. The transition state TS2 is responsible for both the
heterolytical dissociation of Csub–Nsub bond and for the HC transfer from the –OH
nucleophile to the oxygen atom of Glu133 residue. A feature of model 3 energetic
profile is that the Zn and Fe TS2 lie more or less at the same energy of INT species.
This can be translated into a single step mechanism for peptide deformylase, as it
occurs for other metallopeptidases.

Upon comparison between the PESs obtained for models 2 and 3, it is worth
to note that the presence of additional amino acids surrounding the active site de-
creases the energy of the rate-determining transition state TS1, passing from 33.2 to
15.6 kcal/mol, and from 28.3 to 17.0 kcal/mol, for zinc and iron, respectively. Fur-
thermore, the HC transfer process from Glu133 –OH to –NH2 group in the substrate
becomes concerted with the nucleophilic attack. The C–N bond cleavage, mediated
by HC movement from the –OH to the Glu133 carboxyl group in the intermediate,
becomes a barrierless process, implying that once the TS1 is overtaken, the tetrahe-
dral complex directly collapses into products.

The protonation of the substrate may be recognized as the rate-limiting step when
no assistance by amino acidic residues is present, demanding an higher amount
of energy with respect to the nucleophilic attack of the substrate carbonyl carbon
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Fig. 12 Gas-phase PES obtained by peptide deformylase model 2
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atom. If it is assisted by Glu133, the barrier decreases so it becomes lower than that
required for the tetrahedral intermediate formation.

Adding the nearby residues Gly45, Gln50 and Leu91 the rate-limiting hydroxide
attack activation energy decreases of about 	 10 kcal=mol, reproducing a biologi-
cally reasonable reaction rate.

3.3 Methanol Dehydrogenase

The pyrroloquinoline quinone (PQQ, see Fig. 13) containing enzymes belong to
the quinoproteins dehydrogenase class, involved in the conversion of alcohols and
amines to the corresponding aldehydes and lactones [47].

Methanol dehydrogenase is found in the periplasm of methylotrophic and au-
totrophic bacteria where it catalyzes the oxidation of methanol (or other primary
alcohols) to the corresponding aldehydes, with the release of two protons and two
electrons. Apart from the PQQ cofactor, MDH requires a divalent calcium cation
for its catalytic activity [48–50].

The X-ray structure of methanol dehydrogenase from the Methylophilus methy-
lotrophus W3A1 (M . W3A1) [51] revealed in the active site a Ca2C cation and a
PQQ cofactor not covalently bound to the protein. The oxygen atoms of the PQQ
are involved in several hydrogen bonds with the residues Glu55, Arg109, Thr153,
Ser168, Arg324, Asn387. The calcium ion is coordinated to the O5, N6 and O7’

atoms of PQQ, the O1© and O2© of Glu171, O1• of Asn255 and the O1© of Asp297.
For MDH, two mechanisms were proposed (see Scheme 3): the addition-

elimination (A) [52–54] and the hydride transfer (B) [54, 55].
Mechanism (A) involves the nucleophilic addition of the methanol oxygen to the

PQQ carbonyl C5, followed by the protonation of the cofactor and the HC abstrac-
tion from the substrate CH3 by the PQQ oxygen attached to C4, and the concomitant
formation of a C4–C5 double bond in the PQQ, reduced to PQQH2. In the mecha-
nism (B), a direct transfer of the H� to the C5 in the PQQ entails the direct formation
of the product. The reduction of the cofactor to PQQH2 is achieved through an
internal enolization step.

In both mechanisms, Asp297 residue acts as acid/base catalyst, i.e. as a base by
abstracting the HC from the substrate hydroxyl, and as an acid by donating the same
proton to the cofactor.

Fig. 13 PQQ cofactor
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Fig. 14 Model cluster used
to simulate methanol dehy-
drogenase active site
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Even if several experimental studies have been devoted to the identification of the
real mechanism, literature data are still not sufficient to clearly identify the catalytic
mechanism followed by PQQ MDH.

With the purpose to highlight the favoured catalytic mechanism of MDH among
the previously proposed ones, a model system including the PQQ cofactor, Ca2C

coordinating groups and some nearby residues, was used (see Fig. 14) to build the
Potential Energy Surfaces (PESs) for both mechanisms [56].

The B3LYP gas-phase PESs for both mechanisms (A) and (B) are is reported in
Fig. 15.

The Michaelis–Menten complex (ES) between the substrate and the catalytic
centre shows a substrate oxygen interacting with the calcium cation, establishing
a coordination bond of 2.51 Å. The substrate proton is involved in a H-bond with
the negatively charged oxygen of the Asp297 (1.90 Å) [56].

As far as the addition–elimination mechanism is concerned, a saddle point for
the nucleophilic addition of the substrate oxygen on the PQQ C5 carbon is found
(TS1a) at 1.4 kcal/mol below the reference (E+S). The formation of a Omet–C5 bond
(critical distance is 1.80 Å) occurs in a concerted way to the shift of a proton from
the alcoholic –OH group to the O1© atom of Asp297 coordinating to the cation.
The normal vibration mode corresponds to the coupled stretchings of the incoming
Omet–C5 and H–O1© bonds, even if the low value of the imaginary frequency of
160 cm�1 seems to indicate that the TS1a is mainly characterized by the motion of
heavy atoms while the potential energy surface for the transfer of the HC is very
flat. The activation energy is computed (with respect to the ES species) to be 11.5
kcal/mol [56].

The tetrahedral intermediate INT1a is characterized by a Omet–C5 ¢ bond is of
1.48 Å and suggests a hexa-coordinated calcium cation because of a consistent



Potential Energy Surfaces for Reaction Catalyzed by Metalloenzymes 295

–20

0

20

40

60

E + S
TS3b

E-H2 + CH2OTS4'bTS3'b INT3'bINT2bTS2bINT1bTS1bES

(65,6)

(–10,0)

(–5,5)

(–8,5)

(13,0)

(0,7)

(3,9)

(1,3)

(19,4)

(–12,9)

(0,0)

MECHANISM B 
(HYDRIDE TRANSFER)

ΔE
(k

ca
l/m

ol
) 

reaction coordinate 

–20

0

20

40

60

TS3'aINT2'aTS2'a
E + S E-H2 + CH2O TS3aINT2aTS2aINT1aTS1aES

MECHANISM A
(ADDITION-ELIMINATION)

MECHANISM C

(–7,9)

(–16,6)

(13,8)

(–10,0)

(25,3)

(–9,3)

(2,8)

(–2,2)

(–1,4)

(–12,9)

(0,0)

ΔE
(k

ca
l/m

ol
) 

reaction coordinate

Fig. 15 Gas-phase PES for methanol oxidation according to mechanism A (top) and B (bottom)

weakening of Ca2C–OAsp bond (2.82 Å in the INT1a versus 2.38 Å in the ES
adduct) [56].

The next point along the potential energy profile is the proton transfer from HO–
Asp to the PQQ C5–O carbonyl oxygen that occurs through the transition state TS2a
[56]. The proton is shared between the oxygen atoms of the PQQ and the Asp297
(1.21 and 1.19 Å, respectively), while the Asp297 oxygen atom moves again closer
to the metallic centre (Ca2C–OAsp distance is 2.53 Å). The imaginary frequency
at 1;416 cm�1 refers to the stretching vibrational mode of the OAsp– and H–OPQQ
bonds. The energy required to overcome this TS2a is 5.0 kcal/mol as computed with
respect to the INT1a intermediate (solid line). From the TS2a, another intermediate
along the reaction profile, INT2a, is found in which the –CH3 group of methanol
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approaches the PQQ oxygen atom attached to C4 so that the latter is in good position
to favour the breaking of the H–CH2 bond in the substrate (the distance Hmet–OPQQ
is 2.72 Å) [56].

The transition state TS3a that finally leads to the PQQH2 reduced species, is
found for C–H and H–O distance values of 1.31 and 1.32 Å, respectively [56]. The
bond between Omet and C5 in the cofactor, lengthens up to 2.13 Å underling that it is
going to breaking. The imaginary frequency at 1;402 cm�1 corresponds to the move-
ment of the HC between the carbon and the oxygen atoms. The amount of energy of
34.6 kcal/mol required to overcome this barrier indicates that this step, responsible
for the cleavage of the ¢ C–H bond in the substrate, is the rate-determining one.

The reaction products, that is the reduced EH2 species and CH2O, are found 10.0
kcal/mol below the Ref. [56].

In the hydride transfer mechanism (B) (see Scheme 3), the formation of the
Michaelis–Menten complex ES is followed by a direct transfer of an hydride ion
from the alcohol to the C5 in the PQQ system. The H� transfer should be concerted
with the proton abstraction by the O1© atom of Asp297 residue, so that formalde-
hyde is immediately produced.

The first transition state TS1b that refers to the hydride addition, shows an imag-
inary frequency at 1;413 cm�1 corresponding to the stretching of the bond between
a substrate methyl hydrogen and the C5 atom of PQQ coupled with the methanol de-
protonation by Asp297 [56]. As in the TS1 on path A, also in this case the potential
energy surface for the methanol deprotonation is very flat. Activation energy was
computed to be 32.3 kcal/mol (with respect to the ES). The cleavage of the covalent
C–H bond in the methanol is energetically very expensive. The height of the barrier
underlines that the hydride transfer step is quite slow.

TS1b evolves into the INT1b intermediate lying at 1.3 kcal/mol where the
formaldehyde product already formed is leaving the active site. The C5 carbon es-
tablishes a covalent bond with the substrate hydrogen of 1.12 Å. The C5O bond
lengthens up to 1.37 Å [56].

The next step along the reaction profile, that is the HC transfer from the Asp297
residue to the oxygen attached to C5, occurs through the transition state TS2b that
lies at 3.9 kcal/mol. The normal vibration mode at 1;410 cm�1 corresponds to the
shift of the proton from the Asp297 oxygen to the PQQ C5O one.

The INT2b intermediate formed after the proton transfer is characterized by a
tetrahedral C5 carbon atom and by a network of hydrogen bonds that involve the
PQQ oxygen atoms [56].

The enolization process leading to the final reduced PQQH2 cofactor occurs by
transferring the hydrogen bound to C5 to the C4O carbonyl oxygen. The transition
state TS3b for the direct hydrogen transfer on C4O oxygen atom occurs when the
CH–O and C–HO critical distances assume the values of 1.34 and 1.47 Å, respec-
tively [56]. The imaginary frequency at 2;260 cm�1 is assigned to the stretching of
these bonds. TS3b is a highly stressed species, so that its formation, requiring 65.6
kcal/mol, is energetically prohibitive.
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Alternately, the enolization process may be mediated by Asp297 residue (red line
on the bottom of Fig. 15), emphasizing the role of this amino acid as catalytic base.
Two steps are necessary in this case: one that transfers the HC from the quinone to
the O2© of the aspartate, and another in which the protonation of the C4O oxygen
atom by the same residue occurs.

The transition state TS3’b, in which we can observe the incipient breaking and
formation of C5–H and O2©–H (in the Asp297) bonds, respectively, is characterized
by an imaginary frequency of 1;851 cm�1. The proton appears to be shared between
the two C5 and O2© atoms (C5–H and O2©–H distances are 1.44 and 1.25 Å, re-
spectively) [56]. The energy cost for this process is 12.3 kcal/mol. From TS3’b, a
stable intermediate INT3’b lying 8.5 kcal/mol below the reference, originates. The
Asp297 residue is now involved into two hydrogen bonds with the PQQ oxygen
atoms. Through the transition state TS4’b, the second proton is transferred from
the O2© of Asp297 to the negatively charged oxygen atom attached to C4 atom of
PQQ, finally leading to the PQQH2 reduced species. The imaginary frequency at
1;474 cm�1 refers to the stretching of the two O2©–H (1.20 Å) and C4O–H (1.24 Å)
bonds [56]. The computed energetic expense to overcome this transition state is of
3.0 kcal/mol.

A look to the paths in Fig. 15 shows that the enolization may occur only if medi-
ated by the aspartate residue.

As we have seen from the PESs reported in the Fig. 15, both the proposed
mechanisms (A) and (B) lead to two energetic profiles kinetically very slow and
in particular out of rates characterizing the enzymatic catalysis. This fact puts us in
doubt that the suggested mechanisms may not represent the real ones. Thus, we have
revised the literature proposal, addressing particular to the addition–elimination pro-
cess in which we have foreseen some possibility of improvement.

The new reaction sequence is depicted in the Scheme 4. The optimized structures
of the stationary points belonging to the new reaction profile (traced in Fig. 15 with
a red dashed line on the top) are depicted in Fig. 16.

In this mechanism, named (C), we propose that the proton shift from the aspartate
residue to the PQQ oxygen atom belonging to the C5O carbonyl group (TS2a), can
occur after the substrate C–H bond cleavage. On the other hand, no experimental
evidences can thwart this hypothesis.
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Fig. 16 Optimized geometries of the stationary points belonging to the modified addition elimi-
nation mechanism C

If we assume the protonation of the cofactor as the last step, the obtained PES be-
comes quite different with respect to before (red dashed line of the top of Fig. 15).
Starting from the INT1a intermediate, the transition state (TS2’a) describing the
C–H bond breaking by the oxygen atom linked to C4 (imaginary frequency at
1;389 cm�1/, lies at 16.0 kcal/mol (dashed line). In this species the C–H and a H–O
distances are of 1.33 and 1.30 Å, while the Omet–C5PQQ bond is 2.37 Å. The lower
energy of TS2’a with respect to that of TS3a, corresponding to the breaking of C–H
in the mechanism (A), can be explained by considering that the negative charge of
the cofactor makes easier the abstraction of the HC from the substrate CH by the
C4O carbonyl oxygen and that the instability of INT1a with respect to INT2a in
the previous reaction path, due to a weaker bond between the calcium cation and a
protonated aspartate, reduces the energetic cost to break the substrate CH bond. The
barrier height (16.0 kcal/mol) may be now compatible with an enzymatic catalysis.
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From the TS2’a, an intermediate (INT2’a), in which the C5O is negatively
charged and the C4O is protonated, is found 16.6 kcal/mol below the reference point,
with CH2O product leaving the metallic centre.

Finally, through the transition state TS3’a lying at 8.7 kcal/mol above INT2’a,
responsible for the protonation of the PQQ C5O oxygen atom, the reduction of the
cofactor to the PQQH2 is complete.

Both mechanisms (A) and (B) were proven to be not compatible with the kinet-
ics requirements of the enzymatic processes. In fact, too high energy barriers (34.6
kcal/mol for addition–elimination, and 32.3 kcal/mol for hydride transfer) that ex-
ceed considerably the usual limits of 15–20 kcal/mol, were found in correspondence
of the rate-determining step that is, in both cases, the cleavage of the covalent C–H
bond in the substrate.

The third mechanism that we propose [47] as an “addition–elimination–
protonation” process (mechanism C), in which the sequence of the steps sees
the cleavage of the C–H bond in the substrate to occur before the cofactor proto-
nation by the Asp297 amino acid residue, was found to be more reliable being the
activation energy in the rate-determining step 16.0 kcal/mol in the gas-phase, and
11.1 kcal/mol in the protein environment simulations.

The mechanism (C) proposed [56] can be regarded with confidence as the pre-
ferred reaction path followed by the PQQ containing methanol dehydrogenase
enzyme.

3.4 Formate Dehydrogenase

Formate dehydrogenase is a molybdoenzyme belonging to the anaerobic formate
hydrogen lyase complex of Escherichia coli microrganism, that catalyzes the oxi-
dation of formate to carbon dioxide [57]. The first crystal structure of both oxidized
and reduced forms revealed a molybdenum, a Fe4S4 cluster and a selenocysteine
residue central to the catalytic activity [57]. In the reduced Mo(IV) form, the
molybdenum in the active site is coordinated by four sulphur atoms coming from
the cofactors bis-molybdopterin guanine dinucleotide (MGD), as encountered for
nitrate reductase, and by the selenium atom of the SeCys140 residue. Recently, an-
other formate-reduced E. Coli FDH crystal structure was solved [58] and has shown
a selenium atom of the SeCys140 away from the molybdenum, implying that the
selenium is not a metal ligand in the reduced form of the enzyme.

From these experimental evidences, two reaction mechanisms for the oxidation
of the formate were proposed (see Scheme 5).

Mechanism A [59] implies the coordination of the formate substrate by its oxy-
gen atom to the molybdenum, probably by replacing an –SH ligand. The selenium
atom abstracts the proton by cleaving the C–H bond in the substrate while two elec-
trons are transferred to the Mo center. The Mo (VI) form is restored in another step,
with the two electrons traveling to the Fe4S4 cluster through the MGD moiety.
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In the mechanism B [60], the formate binding displaces the selenocysteine ligand
that away from the metallic centre abstracts the proton from the substrate leading to
the CO2 product, that is released from the active site, and to the Mo(IV) form of the
enzyme. The two mechanisms, A and B, differ in the role played by the SeCys140
residue as a Mo ligand or as unbound form during catalysis.

With the aim to determine which one may represent the preferred reaction
path followed by FDH enzyme among the two proposals, we performed a density
functional based study [61] on formate oxidation by a Mo containing cluster as sim-
plified model of the active site (Fig. 17).

For both mechanisms, two spin multiplicities, singlet and triplet, for the active
site were found close in energy.

The Potential Energy Surfaces (PESs) for both oxidation mechanisms A and B
of the formate substrate by the Mo containing cluster are reported in the Fig. 18.



Potential Energy Surfaces for Reaction Catalyzed by Metalloenzymes 301

–10

0

10

20

30

40

EPbTSbESb

MECHANISM B

–5.8

–8.6

23.1

19.2

8.0

0.0

singlet
triplet

ΔE
(k

ca
l/m

ol
)

reaction coordinate

0

15

30

45

EPaTSaESa

35.6

24.0

33.9

38.6

a

b

0.9

0.0

MECHANISM A

ΔE
(k

ca
l/m

ol
)

reaction coordinate

singlet
triplet

Fig. 18 Gas-phase potential energy surfaces for formate oxidation according to (a) mechanism A
and (b) B

In both cases, the oxidation reaction starts with the formation of a complex be-
tween the substrate and the active site occurring by the coordination of formate
oxygen atom to the metal [61]. The next abstraction of the proton from the for-
mate carbon by the selenium atom of the SeCys140 residue, leads finally to the
products [61].

For both reaction paths, the rate-determining step is the H abstraction from the C
atom of the substrate performed by the selenium belonging to the SeCys residue.

As far as the mechanism A involving the SeCys140 residue as Mo ligand is
concerned, the two ESa complexes in the different multiplicities are practically de-
generate (the energetic gap is only 0.9 kcal/mol), so they may coexist. The TSa is
found at 35.6 (singlet) and 38.6 (triplet) kcal/mol, above the initial minimum. Prod-
ucts complexes lie at 24.0 and 33.9, for singlet and triplet, respectively.

Although the energetic profile seems to be more favorable for the reaction in
the ground state, the activation energies required to oxidize the substrate to carbon
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dioxide are in both cases very high (34.7 and 38.6 kcal/mol, for singlet and triplet,
respectively). In addition, the complex between the reduced active site and the CO2,
in which the latter is still bound to Mo, is decidedly less stable than ESa, so that the
reaction results to be very endothermic.

In the mechanism in which the SeCys140 is in the unbound form (mechanism
B), the energy gap between the singlet and triplet ESb species is 8 kcal/mol, being
the latter the minimum energy structure. Transition states are found at 23.1 and 19.2
kcal/mol, for singlet and triplet, respectively. Finally, products are found 5.8 and
8.6 kcal/mol below the minimum. The triplet potential energy profile lies below that
obtained for the low-spin state, thus representing the minimum energy path.

In the mechanism B the height of the barriers for the formate oxidation are lower
than those computed for mechanism A (19.2 for triplet, and 23.1 kcal/mol, for sin-
glet). In particular, that computed in the high-spin path, is now in the range normally
accepted for the enzymatic catalysis. The formation of the EPb product is exother-
mic for both electronic states.

A simple explanation for the reliability of the mechanism B with respect to the
mechanism A can be found in the different values of net charge exhibited by se-
lenium. When Se is coordinated to the molybdenum (mechanism A), the lone pair
necessary to abstract the proton from the substrate is not fully available, but involved
in the bonding with the cluster (Se net charge is 0.149 and 0:062jej, in the ESa sin-
glet and triplet species, respectively). In the case of mechanism B, the net charge on
Se assumes values of �0:242 for singlet ESb and �0:319jej for the triplet ESb. This
different charge value accounts for the better character of catalytic base exhibited
by the SeCys140 residue in the mechanism B.

Thus, we can conclude that the selenium atom is a better base in performing the
proton abstraction from the substrate when it is not bound to the metallic centre since
in this case the lone pair present on the negative selenocysteine is more available.

In the Table 1, gas-phase activation energies computed for the mechanism B at
different levels of theory are reported. They are computed as far as the high spin
electronic state is concerned. H-GGA BH and HLYP and PBE1PBE provide an
activation energy of 17.9 and 19.9 kcal/mol, respectively. These values are very
similar to those obtained with B3LYP (19.2 kcal/mol), being the PBE1PBE the one
marking mostly. This is quite expected since the behaviour of B3LYP functional is
closer to the one of PBE1PBE rather than to the BH and HLYP. The values obtained
with the HM-GGA functionals are 23.6 kcal/mol, for MPWB1K, and 22.8 kcal/mol,
for the BB1K, with a difference of 0.8 kcal/mol between them. The resemblance of
these two methods in determining barrier heights is in agreement with the available
literature data.

H-GGA methods are found to provide the smallest activation energies with re-
spect to the HM-GGA ones, that seem to overestimate barrier heights. Taking into
account the most recent benchmarking studies, also for this investigation the B3LYP
functional seems to provide lower activation energies.

Based on these findings, the “unbound SeCys” mechanism [61] can be regarded
with confidence as the preferred reaction path followed by the Mo containing for-
mate dehydrogenase enzyme.
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Table 1 Activation energy
(in kcal/mol) for the formate
oxidation by formate dehy-
drogenase at different DF
levels

Activation energy
(kcal/mol)

B3LYP 19.2
BHandHLYP 17.9
MPWB1K 23.6
BB1K 22.8
PBE1PBE 19.9

3.5 Cadmium Carbonic Anhydrase

Carbon dioxide (CO2/ represents a key metabolite in all living organisms. It exists
in equilibrium with bicarbonate (HCO3

�/, which unlike CO2 is poorly soluble in
lipid membranes. Carbon dioxide can freely spreads in and out of the cell, while
bicarbonate must be transported. The interconversion of carbon dioxide and bicar-
bonate proceeds slowly at physiological pH, so organisms must produce enzymes
to accelerate the process [62]. Carbonic anhydrases are enzymes that catalyse the
reversible hydration of CO2.

H2OC CO2  ! HC C HCO�3

Carbonic anhydrases were found in all kingdoms of life [62]. Their essential roles
consists in facilitating the transport of carbon dioxide and protons in the intracel-
lular space, but are also involved in many other processes, from respiration and
photosynthesis in eukaryotes to cyanate degradation in prokaryotes. Carbonic anhy-
drase (CA) isozymes are metalloenzymes consisting of a single polypeptide chain
(Mr�29;000) complexed to an atom of zinc. They are incredibly active catalysts,
with a turnover rate (kcat) of about 106 reactions per second! Three distinct classes
of CA are known (called ’, “ and ”) that show very little sequence or structural sim-
ilarity, yet they all have the same function and require a zinc ion at the active site in
their catalytic activity. CA from mammals belong to the ’ class, the plant enzymes
belong to the “ class, while the enzyme from methane-producing bacteria that grow
in hot springs forms the ” class.

The Zn2C ion is the second most abundant transition element in biology (after
iron) and although it is an integral component of more than 400 enzymes involved
in different vital processes, in CA it can be replaced with other divalent transition
metal ions such as Co2C, Mn2C, Ni2C, Hg2C, Cd2C and Cu2C that conserve in part
the catalytic activity of enzyme [61, 62]. The substitution in CA of the native zinc
with other metal ions as those above mentioned was used to gain structural details
about the Zn–CA [61, 62].

Evidence of in vivo utilization of Cd2C in CA in some marine organisms was
published by Price and Morel [63] and Morel et al. [64]. Only in the 2000, Lane and
Morel [65] arrived at the surprising result of the identification of the first special
cadmium carbonic anhydrase (Cd–CA) on behalf of the same marine diatom under
conditions where the zinc concentration is low [66–68].
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The mechanism of action of the mammalian zinc ion containing carbonic an-
hydrase was studied in depth at both experimental [69–76] and theoretical [77–86]
levels. The enzymatic cycle consists of a two-step mechanism: the first step is a
nucleophilic attack of a zinc-bound hydroxide ion on carbon dioxide; the second
step consists in the ionisation of the zinc-bound water molecule and the removal of
a proton from the active site for its regeneration.

Because of the presence in literature of a previous theoretical investigation on
the Zn–CA system [86], we have undertaken a comparative study of the catalytic
mechanism of the cadmium carbonic anhydrase performed at same level of theory
of Zn–CA and devoted to establish the main structural and energetical differences
present in the catalytic reactions governed by the two different transition metal
ions [87].

To simulate the Cd–CA active site we have used the same model (Fig. 19)
employed in the previous investigation of the Zn2C–carbonic anhydrase mecha-
nism [86]. It includes a Cd2C cation linked to an –OH group and to three imidazole
rings belonging to the three histidine residues His94, His96 and His119 present in
the inner coordination shell of the ion. In addition, the active site interacts with
the protein via the side chains of Glu106, Thr199. These residues, as suggested by
Thoms [75], could act as acceptors of the proton released by the zinc-bound water
molecule instead of the imidazole ring of the His64, as previously indicated [77, 86].
In addition, another water molecule named ‘deep water’ is present. In order to re-
duce the computational efforts, the residue Glu106 was replaced with an acetate
fragment.

The B3LYP/DZVP reaction profile is reported in Fig. 20 together with that ob-
tained by Bottoni et al. in their study on the human Zn–CA [86].

The nucleophilic attack of an –OH lone pair of the M0 (naked enzyme) on the
carbon atom of CO2 gives rise to the intermediate M1 (see Fig. 21) without acti-
vation barrier. Contrarily to what happens for Zn–CA, in which M1 is located at
–6.03 kcal/mol, in the case of Cd–CA, this species results to be strongly stabilized
(it lies at –34.33 kcal/mol below M0 and CO2 separated reactants energy taken as
reference).

Fig. 19 Model used to simu-
late carbonic anhydrase active
site
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Fig. 20 B3LYP potential energy profile obtained for Cd–CA (top) in comparison with the one of
Zn–CA [86] (bottom)

The comparison of Zn– and Cd–M1 geometrical features (Fig. 21) shows clearly
the different coordination chemistry of the two metal ions. The cadmium ion appears
to be tetracoordinated. The distance between the O and C atoms is, in the case of
cadmium containing enzyme, much shorter than in the case of Zn–CA [86] (1.481
versus 2.630 Å, respectively) and the Cd2C–O and Cd2C–Oa bonds are 2.437 and
3.161 Å long, respectively.

A charge transfer of about 0.41e from the –OH group to CO2 moiety occurs as
evidenced by the NBO analysis. A strongly polarized ¢ bond is formed between O
and C, with 72.67% contribution from oxygen), in which the carbon and oxygen
atoms use an orbital sp and p, respectively. The oxygen atoms of the CO2 fragment
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Fig. 21 Optimized geometry for M1 Cd–CA (left) and Zn–CA [95] (right)

are differently charged (qOa D �0:873e and qOb D �0:792e) corroborating the al-
ready happened nucleophilic attack. On the contrary, in the case of the Zn2C ion
the Mulliken population analysis indicated the predominantly electrostatic nature of
the interaction between the –OH and CO2 groups [86]. Consequently, the activation
energy required for the evolution of the process, is in the case of Cd–CA consider-
ably higher (54.34 kcal/mol) than that required by the Zn–CA. In TS1, the distance
between –OH group and carbon atom of CO2 is 1.476 Å. The hydrogen carbonate
fragment, lying out from the molecular plane, is practically monocoordinated to the
Cd2C ion (Cd2C–O D 2:239 Å) since the Cd–Oa distance is still quite long (2.809
Å). For Zn–CA, TS1 is rashly defined as a barrier because of the small energy dif-
ference with respect to M1 (only 0.04 kcal/mol). Bottoni et al. [86] explained this
low barrier with the presence of a stabilizing H-bond network, that is absent in Cd–
CA. It is worth noting that Cd–TS1 is substantially different from Zn–TS1. In fact,
in Cd–TS1 the imaginary vibrational frequency is associated to the stretching mode
of the incoming Cd2C–Oa bond coupled to the out of plane of the HCO�3 fragment
that assumes a planar disposition with respect to the metal center. The Cd2C ion is
pentacoordinated in Cd–TS1 and the Cd2C–Oa bond is shorter than in M1. Instead,
Zn–TS1 represents the transition state for the C–O bond formation [87].

The tendency to the pentacoordination of Cd2C is still evident in M2, the next
minimum encountered on the potential energy surface [87].

M2 can be connected to the M4 intermediate, through two distinct reaction chan-
nels. The first, M2 ! TS4 ! M4, is a one-step process, whereas the second,
M2! TS2! M3 and M3! TS3! M4, proceeds in two steps.

In the former channel, the M2 ! M4 interconversion occurs through an inter-
nal rotation (TS4) of the bicarbonate moiety around the C–Oa bond. The rotation
requires a very big amount of energy (about 77.94 kcal/mol) because it is accom-
panied by several geometrical modifications. In TS4, the cadmium ion becomes
tetracoordinated since the Cd2C–O bond is broken and the hydrogen carbonate
group remains anchored to Cd2C through the Oa atom (Cd2C–Oa D 2:344 Å).
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Imaginary vibrational frequency corresponds to the torsion of bicarbonate around
the C–Oa bond. In M4, the Cd2C ion is still linked to the Oa atom with a distance
shorter (2.248 Å) than in M2. The water molecule, bond to the Ob atom in TS4, is
now attached to Oa atom (2.008 Å) likewise than in M2. It is found in a suitable ori-
entation to attack the cadmium ion, that now presents a free coordination position,
in order to restore the catalyst [87].

In the second reaction channel, the transition state TS2 connects the M2 and M3
intermediates. The conversion, occurring through two simultaneous proton transfers
involving the two threonine and glutamate residues and bicarbonate, requires 69.52
kcal/mol. Vibrational imaginary mode confirms these motions. The geometrical fea-
tures of TS2 show a Cd2C ion linked to the Oa and O atoms with distances of 2.445
Å and 2.302 Å, respectively. The water molecule forms a H-bond with Ob oxygen
of the bicarbonate fragment (2.018 Å) that presents a negative charge due to the
proton loss. The M3 intermediate lies at 27.40 kcal/mol above M2. In this species,
the metal center appears to be still pentacoordinated (the Cd2C–O and Cd2C–Oa dis-
tances are of 2.325 and 2.390 Å, respectively). The deep water molecule is, like in
the transition state TS2, involved in a H-bond with the Ob atom (1.834 Å). Starting
from M3, a barrier of about 35 kcal/mol should be overcome to reach the final M4
complex. TS3 appears as a four-coordinated species where the Cd2C–Oa distance
is shortening (2.215 Å) and the Cd2C–O bond is completely broken (4.109 Å). The
product of the bicarbonate rearrangement (M4) is 42.97 kcal/mol more stable than
M3 [87].

Although also for Zn–CA, two different reaction channels leading from M2 to
M4 were hypothesized [86], the results are significantly different from that obtained
in the case of the Cd–CA [87]. The differences concern both the mutual stability of
intermediates and the height of barriers that should allows to pass from a minimum
to another (path b of Fig. 20). Contrarily to the reaction path of Zn–CA [86], the one
of Cd–CA is characterized by deep holes and high barriers thus, despite the major
exothermicity of the reaction with respect to the most common Zn–CA, the Cd–CA
enzyme is prevent from carrying out its activity easily. This fact was underlined by
the experimental studies on cadmium CA present in literature [88, 89] that attribute
the different activity of cadmium and zinc enzymes to the different coordination
chemistry of metal ions that in turn depends on their size. Furthermore, they point
their attention to the minor acidic character of cadmium with respect to zinc.

The fact that the Cd2C is a Lewis acid weaker than Zn2C and that it has a mi-
nor polarizing effect on its environment can decide if the fourth metal ion ligand,
in the initial form of enzyme, can be present as an –OH group or a water molecule.
However, although we knew that the cadmium–hydroxide intermediate is gener-
ally present at more basic pH values, we have chosen to consider the same starting
geometry for both enzymes. This means that in our case, the minor acidity of the
cadmium ion can have significance only as far as the strength with which the metal
cation binds the CO2 is concerned. In fact, in the case of cadmium ion, the oxygen
atom of the –OH group in M0 has a charge more negative than that on the same
atom in the zinc M0 (�1.312e versus –1.010e, respectively), and thus can establish
with the substrate a more strong bond. This is confirmed by NBO analysis and by
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the greater stability of all cadmium intermediates with respect to those of zinc along
the whole reaction path [87].

Our findings are in agreement with the experimental observations that indicate
how the Zn–CA be decisively more active than Cd–CA (the activity of Cd–CA was
estimated to be only the 2% of that of Zn–CA [90]).

Really, is sufficient to stop to the first intermediate M1 and to the following tran-
sition state TS1 to understand that, too large modifications in the geometry and
hence a very big amount of energy are necessary to continue the next transforma-
tions until M4. TS1 represents the rate determining step of Cd–CA mechanism for
all the two possible channels, while, in the case of Zn–CA, the crucial steps are TS1
or TS4 depending if the transformation of M2 occurs through the first or the second
channel.

As evident, the coordination chemistry of the two cations plays an important role
in determining the catalytic activity of the CA enzyme [87]. The more flexible coor-
dination geometry, the major rapidity in ligand exchange, the lack of redox activity
and the more marked role as Lewis acid are just a few examples to explain the better
performance of zinc with respect to cadmium ion. This can be really observed in the
comparison of two catalytic paths where the limits of cadmium ion are evidenced by
the presence of high interconversion barriers between intermediates having different
coordination.

4 Conclusions

In this summary, computational approaches and chemical models applied to the
quantum chemical studies of reactions catalyzed by metalloenzymes were presented
and discussed. The studied enzymes cover a wide range of biological processes,
such as oxidation of small molecules involved in nitrogen fixation, hydrogen pro-
duction and energy accumulation, hydrolysis of peptides, transport of carbon diox-
ide and protons.

Even if accurate quantum chemical treatment of transition metals containing en-
zymes is a relatively new area, it is becoming a powerful tool for description of
intermediates and transition states originating during chemical reactions, that inte-
grates classical experimental methodologies.

The protocols used here were proven to give results that are usually in very good
agreement with experimental indication.
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Gold in Hydrogen Bonding Motif—Fragments
of Essay

Demonstration of Nonconventional Hydrogen Bonding
Patterns Between Gold and Clusters of Conventional
Proton Donors

Eugene S. Kryachko

Abstract These are the fragments of essay that highlight the proneness of gold
to form nonconventional hydrogen bonds with the conventional proton donor
molecules and the fair relationship of the computational model with the ex-
periments on anion photoelectron spectroscopy for the gold–water complexes
ŒAu.H2O/1�n�2�

�.

1 Introduction

The hydrogen bonding interaction is the well-recognized and widely studied phe-
nomenon that manifests in the formation of a so-called conventional hydrogen
(:D H–) bond. According to Pimentel and McClellan [1] (see also [2–17]), “a hy-
drogen bond is said to exist when (1) there is evidence of a bond, and (2) there
is evidence that this bond sterically involves a hydrogen atom already bonded to
another atom”. This definition assumes that a conventional hydrogen bond is at
least a three-party interaction. One party is a proton donor atom or molecule X.
It donates the hydrogen atom H, a second party, or speaking precisely, the hy-
dron HCδ (0 < Cδ � 1) bonded to X at the bond length R(X–H), to the third
party which is a proton acceptor group Y. The latter, while interacting with X–H,
yields the complex X–H � � �Y hydrogen bond. The above word “complex” means
that Y is bound to X–H and therefore, this hydrogen bonding interaction is attrac-
tive. Energetically, it implies that the binding energy EbŒX–H � � �Y� of the complex
X–H [ Y WD X–H � � �Y is defined in a standard way as the energy difference
�EŒX–H � � �Y� WD EŒX–H � � �Y�–.EŒX–H�C EŒY�/. The ZPE-corrected binding en-
ergy EZPE

b ŒX–H � � �Y� WD EŒX–H � � �Y� – .EŒX–H� C EŒY�/ C ZPEŒX–H � � �Y� �
.ZPEŒX–H�C ZPEŒY�/.
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Geometrically, the X–H � � �Y bond is characterized by the bond length R(X–H),
the H-bond separation r.H � � �Y/, and the bond angle ∠XHY. By definition, the
H-bond X–H � � �Y is formed if the following conditions are satisfied [1–17]:

(i) There exists a clear evidence of the bond formation—this might be, e.g., the
appearance of the H-bond stretching mode �¢.X � � �Y/;

(ii) There exists a clear evidence that this bond specifically involves a hydrogen
atom (hydron) bonded or bridged to Y predominantly along the bond direction
X–H (see particularly [13, 15]);

(iii) The X–H bond elongates relative to that in the monomer, i.e.

�R.X–H/ WD Rcomplex.X–H/ � Rmonomer.X–H/ > 0I

(iv) The H-bond separation r.H � � �Y/ defined as the distance between the bridging
proton and the proton acceptor Y is shorter than the sum of van der Waals
radii of H and Y, that is, shorter than the so-called van der Waals cutoff (see
particularly Refs. [9, 10, 14] and also Ref. [21] 2 [15]):

r.H � � �Y/ < wH C wY

where wZ is the van der Waals radius of Z (Z = H, Y). Note that wH varies and
is usually taken the value either equal to 1.20 Å (see e. g. [18a]) or to 1.10 Å
[18b]. wAu D 1:66 Å. The distance r.X � � �Y/ between the proton donor X and
the proton acceptor Y is often referred to as the H-bond length;

(v) The stretching vibrational mode �.X–H/ undergoes a red shift with respect to
that of the isolated X–H group, that is,

��.X–H/ WD �complex.X–H/ � �monomer.X–H/ < 0;

and its IR intensity significantly increases;
(vi) The proton nuclear magnetic resonance .1H NMR/ chemical shift in the

X–H � � �Y hydrogen bond is shifted downfield compared to the monomer.

It is worth mentioning that the conditions (iii)–(vi) can also be treated as some
indirect justification of validity of (ii).

Throughout a hydrogen bridge, a hydrogen bond connects together X and Y
whose electronegativities must be larger than the hydrogen one. Hence, X and Y
can be particularly chosen as the following atoms: F (3.98), N (3.04), O (3.44), C
(2.55), P (2.19), S (2.58), Cl (3.16), Se (2.55), Br (2.96), and I (2.66) where the
Pauling electronegativity is given in parentheses. The latter possess a lone pair of
electrons and that is why they cast as typical conventional proton acceptors Y under
the formation of conventional hydrogen bonds [19].

The above definition of the attractive hydrogen bond interaction is rather general
and allows to unify many types of interaction under the “hydrogen bonding” cat-
egory, thus considerably extending its conventional manifold (see in particular
[20–40] and references therein), either its X- or Y-submanifolds, or both. Few
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directions are particularly undertaken [20–24]. One is to include the X–H � � �H–Y
dihydrogen bond which is formed between a conventional hydrogen bond donor
such as an N–H or O–H bond as the weak acid component and the hydride bond
as the weak base component where X can be a transition metal or boron [20, 21,
23–25]. The other is to deal with the π-hydrogen bond as formed, for instance, be-
tween water and aromatic moieties [26].

Since the 1990s, the conventional Y-submanifold is largely extended by includ-
ing transition-metal “nonconventional” proton acceptors [21–24, 27–39] such as Co,
Rh, Ir, Ni, Pd, Pt, Ru, and Os, which are prone to cast as the proton acceptors and
are thus capable to form nonconventional hydrogen bonds. Though, they do not pos-
sess free pairs of electrons, in contrast to the conventional ones. The specific criteria
which additionally characterize such nonconventional hydrogen bonds are formu-
lated by Brammer and coworkers [21, 24]: .’/ the bridging hydrogen is bonded to
a rather electronegative element; .β/ the acceptor metal atom is electron-rich (e. g.
late transition metals) with filled d shells (see also [5]); .γ/ the bonding arrangement
is approximately linear (see also [39]).

What about gold — the “cornerstone” of nanoscience due to the discovery of
more than two decades ago that gold nanoparticles supported on metal oxides reveal
the exclusively high catalytic activity for CO oxidation [41]? Whether gold can
belong to the Y-submanifold? Or put in the other words: Whether the gold atom or
clusters of gold are prone to play, interacting with conventional proton donors such
as the O–H and N–H groups, a role of a proton acceptor and hence to participate in
the formation of nonconventional hydrogen bonds?

2 Gold as Nonconventional Proton Acceptor

2.1 Introductory Background

The Pauling electronegativity of the noble, coinage metal atom Au is equal to 2.54,
that is, it is greater in comparison with H. It obviously obeys the foregoing condition
.β/. We may therefore raise a question of whether the gold atom or clusters of gold
are prone to play, interacting with conventional proton donors such as the O–H and
N–H groups, a role of a proton acceptor and hence to participate in the formation of
nonconventional hydrogen bonds?

The story of answering this question goes back to the end of 2004 when the
work [42] which reports a strong computational evidence of the propensity of a tri-
angular gold cluster to behave as a proton acceptor with the O–H group of formic
acid and the N–H one of formamide, was submitted. What precisely was demon-
strated in this work was that the triangular Au3 cluster forms the cyclic and planar
complexes with formamide and formic acid by means of two bonding ingredients:
the anchoring bond that anchors the gold atom to the carbonyl oxygen and the
N–H � � �Au or O–H � � �Au contact between Au and the amino group of formamide
or the hydroxyl group of formic acid. It was argued therein that the latter contacts
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share all the common features (i)–(vi) of the conventional hydrogen bonds and they
can therefore be treated as their nonconventional analogs.

Since this work [42], the existence of the X–H � � �Aun nonconventional hydro-
gen bond was computationally demonstrated for a wide variety of molecules in
different charge states Z D 0;˙1 [43–52], ranging from the Aun–DNA bases and
Aun–DNA duplexes [43–45, 53, 54], to Aun–.HF/m [46], ŒAun–.H2O/m�Z [47, 51],
and ŒAun–.NH3/m�

Z [48–50] complexes. The latter family also includes the smallest
nano-sized tetrahedral gold cluster Au Z

20 .Td / [55] (see also [56] for current review
and references therein). The charge-state specificity of the bonding ingredients of
the ŒAun–.NH3/m�

Z complexes unveiled in [48, 49] has recently been explored to
formulate the bonding encoding approach for molecular logic [50].

2.2 O–H � � � Au and N–H � � � Au Neutral Hydrogen Bonds

Recalling the work [42], in Table 1 we reproduce the key features of the bonding
patterns of the original Au3–formamide (FO) and Au3–formic acid (FA) complexes
on the background of those that exist in the corresponding lower-gold complexes
of Au1�n�2–FO and Au1�n�2–FA. These bonding patterns are composed of two
concomitant bonding ingredients. One is the Au–O anchoring that dominates and
governs the major part of the charge transfer between the interacting species. No-
tice that the Au–O anchoring bond of the Au3–FO complex is shorter by 0.026
Å compared to that of the the Au3–FA one, and this mainly determines a higher
stability of the former complex. Another bonding ingredient is the H-bonding that
involves the proton donor X–H group and the gold atom of the Au3 cluster different
from that anchors O of FO or FA. True, its existence is evidently predetermined by
the anchoring, though it, as acting cooperatively through the Au–Au bonds within
the clusters Au2 and Au3, apparently reinforces the former. Table 1 also illustrates
the maintenance of the above criteria .’/ and .γ/ in the nonconventional hydrogen
bonds with gold as a proton acceptor and the dependence of their strength on the
size of a given gold cluster.

To conclude this section and to make a closer link to the next section, we present
in Table 2 the complexes Au3–FO and Au3–FA in the ZD -1-charge state which, as
appears, are exclusively bound by the nonconventional X–H � � �Au hydrogen bond.
This however is expected. The reason is rather simple: the X–H � � �Au hydrogen
bond is strengthened in the -1-charge state since the gold cluster acquires the neg-
ative charge that reinforces its proton acceptor capability compared to the neutral
case. This is precisely the case with ŒAu3–FA�� which ���.O–H/ as the most sig-
nificant hallmark (v) of the H-bond formation increases from 520 to 616 cm�1. It is
however not the case with ŒAu3–FO�� which���.N–H/ decreases, on the contrary,
from 221 to 212 cm�1. This implies that the anionic charge state is the necessary
but not the sufficient precondition of strengthening of the nonconventional hydro-
gen bond—in the other words, it endorses this nonconventional hydrogen bonding
interaction. The anchoring bond is a different one that however does not exist in
ŒAu3–FO��.
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Table 1 The representative features of the complexes Au1�n�2–FO and Au1�n�2–FA [51] cal-
culated within the following computational methodology. The Kohn–Sham self-consistent field
formalism with the hybrid density functional B3LYP potential is used in conjunction with the basis
set comprised of the standard Pople basis set 6–312CG.d; p/ for non-gold atoms and the energy-
consistent 19 � .5s25p65d106s1/ valence electron relativistic effective core potential (RECP)
developed by Ermler, Christiansen and coworkers with the primitive basis set (5s5p4d ) [57] for
the gold (see also [58]). The harmonic vibrational frequencies and unscaled zero-point energies
(ZPE) are also calculated. The ZPE-corrected binding energies Eb

ZPE are given in kcal �mol�1,
�R.X–H/, r.H � � �Au/ and R.Au–O/ in Å, ∠XHAu in degrees, and ��.X–H/ in cm�1 .X D N
for FO and O for FA)

Au1�n�2–FO X D N n D 1 W n D 2 W

Au

N

O

C
H

Au

Au

O

C
H

N

�E ZPE
b 1.3 13.6

�R.N–H/ 0.005 0.006
���.N–H/ 70 73
r.H � � �Au/ 2.740 2.722
∠NHAu 120.6 114.1
R.Au–O/ 2.513 2.238

Au1�n�2–FA X D O n D 1 W n D 2 W

Au

O

O

C H

Au
Au

O

O

C H

�E ZPE
b 0.6 10.9

�R.O–H/ 0.014 0.015
���.O–H/ 289 291
r.H � � �Au/ 2.446 2.451
∠OHAu 140.4 129.7
R(Au–O) 2.641 2.278

2.3 Experimental and Computational State of Art

On the experimental side, the hydrogen acceptor propensity of the gold atom
and some its clusters has been experimentally detected for the complexes
ŒAu.H2O/��–Arn [59], ŒAu.H2O/nD1;2�� [60], and ŒAu.H2O/�� [61], the crown
compound [Rb([18]crown-6).NH3/3�Au–NH3 [62–64], for the complexes of small
gold clusters with acetone [65] and with amino acids [66, 67], and for the gold(III)
antitumor complex [68]. The latter work reports the synthesis and properties
of the Au(III) compound of tridentate ligand 1,4,7-triazacyclononane (TACN)
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Table 2 The complexes Au3–FO and Au3–FA. For the notations see Table 1

Au3–FO XD N n D 3 W Z D 0 Z D �1

Au

Au

Au

N

C

O
H Au Au Au

C

N

O

�E ZPE
b 17.2 9.5

�R.N–H/ 0.014 0.013
���.N–H/ 221 149a, 212b, 148c

r.H � � �Au/ 2.714 2.708
∠NHAu 172.3 167.4
R(Au–O) 2.214

Au3–FA X D O n D 3 W Z D 0 Z D �1

Au

Au

Au

O

O

C H

O

Au Au Au

C
O

�E ZPE
b 14.4 8.1

�R.O–H/ 0.026 0.031
���.O–H/ 520 616
r.H � � �Au/ 2.493 2.288
∠OHAu 173.8 176.0
R(Au–O) 2.240

ŒAu.TACN/Cl2�ŒAuCl4�. In its cationic state, the Au(III) atom is bound by two N
atoms of TACN and two atoms of Cl. The unbound amine group of TACN forms
with Au(III) the Au(I)–H(3C) (in the notations of [68]) bond length of 1.91 Å. As
concluded therein, “but as far as we know, no Au(III)–H short contact has ever been
discussed before except for some relevant calculations on Au(O)–H or Au.I/–H00

performed in [44].
The experimental works [59–64] are focused on the nonconventional

X–H � � �Au� hydrogen bonds that involve the auride anion Au�. The latter be-
haves very similar to the heavier halides Br� and I� which are known as rather
good proton acceptors in hydrogen-bonded systems [14]. The bonding patterns
of the compound [Rb([18]crown-6).NH3/3�Au–NH3 [62, 63] comprise of the hy-
drogen bonds which are formed between neutral ammonia molecules playing as
proton donors, on the one hand, and auride anions as proton acceptors on the other.
Four NH3 molecules are coordinated to Au� and simultaneously three of them,
characterized by the distance r.N � � �Au�/ D 3:73 Å, are coordinated to Rb centers.
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The fourth is uncoordinated to the latter and separated from Au� by r.N � � �Au�/ D
3:63 Å. The corresponding bridged hydrogen atom is distanced from Au� by
r.H � � �Au�/ D 2:581 Å and forms the bonding angle ∠NHAu� D 158:1o. Thus,
the geometric criteria (i)–(iv) are obeyed for the X–H � � �Au� contact that is then
definitely the hydrogen bond. Moreover, the auride anion has the 5d shell filled with
the 5d106s2 valence electrons (see e.g. [47])—that is, the condition .β/ is also satis-
fied. Besides, the proton donor N atom is highly electronegative [condition .’/], and
the angle ∠NHAu� is within the range determined by the condition .γ/ [62]. Nuss
and Jansen [62] then concluded: “To our knowledge, only theoretical investigations
on gold as an acceptor in hydrogen bonds exist up to now. Kryachko and Remacle
have reported DFT studies on N–H � � �Au interactions between formamide or DNA
bases as donors and gold atoms from small Aun .n D 3; 4/ clusters as acceptors.
: : : the experimental values agree very well with the calculations.”

To pursue this theme and to particularly explain the above experimental ob-
servations, let consider a quite large class of the nonconventional X–H � � �Au�

hydrogen bonds formed in the complexes D1;2–Au� with D D HF; H2O, and
NH3, displayed in Figs. 1 and 2, and compare the proton acceptor propensity of
the auride anion with that of Ag�. Before summarizing in Table 3 the computa-
tional data for these nonconventional X–H � � �Au� and X–H � � �Ag� H-bonds, let
us make few preliminary comments. First: in general, the bonding patterns between
the molecules such as HF, .HF/2, H2O, .H2O/2, NH3 and .NH3/2 and the gold
cluster Au Z

n where n � 1 and Z D 0;˙1 are governed by the Au–X anchoring
and by the nonconventional X–H � � �Au hydrogen bonding interactions and exhibit
distinct characteristics as the Z-charge state of the gold cluster varies [47–49].
Second: if n D 1 and Z D �1, the nonconventional hydrogen bonding likely plays
the leading role. And third: as demonstrated in Table 3 and in Fig. 2, the potential
energy surfaces, or PESs for short, of the interaction of the coinage anions Au�

and Ag� with the dimers .HF/2 and .NH3/2 comprise of two nearly iso-energetic
conformers which can be considered either as involving a whole dimer (type I) or
two separated monomers (type II), whereas the PESs involving .H2O/2 consist of a
single conformer of the type I.

As particularly follows from the computational data reported in [51], the bond
length r.H � � �Au�/ D 2:581 Å and the bonding angle ∠NHAu� D 158:1ı which
together characterize the nonconventional N–H � � �Au� H-bond in the compound
[Rb([18]crown-6).NH3/3�Au–NH3 [62, 63] fairly agree with r.H � � �Au�/ D 2:690
and 2:565 Å and ∠NHAu� D 157:4ı and 177:6ı of the complexes Au�–NH3 and
Au�–.NH3/2

I, respectively.
The full agreement between experiment and theory or computation, if speaking

precisely and can say so, has also been recently confirmed by the anion photo-
electron spectroscopy measurements of ŒAu.H2O/�� and ŒAu.H2O/2�� conducted
by Bowen and coworkers [60]. That is why the next section provides a number of
computational mise-en-scènes behind these experiments on small gold–water com-
plexes ŒAu.H2O/1�n�2�

� and extend the latter to the larger ones, ŒAu.H2O/3�n�5�
�.

These complexes exist only due to the nonconventional X–H � � �Au� hydrogen
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Fig. 1 Schematic representation of the complexes D–Az� with the nonconventional hydrogen
bond involving the Az atom (z D u, g and D D HF, H2O, and NH3/
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Fig. 2 The complexes D2–Az� with the nonconventional hydrogen bond involving the Az atom
as a proton acceptor (z D u, g and D D HF, H2O, and NH3). If D D HF and NH3, D2–Az� admits
two conformations, whereas if D D H2O, D2–Az� exists in a single conformation

bonds that glue together the auride anion and water clusters. It is worth mention-
ing in this regard that, as recently shown in [69], the anionic dimer Pt�2 does not
form any hydrogen bond with NH3.
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Table 3 The selected characteristics of the nonconventional hydrogen bonds formed in the com-
plexes Y1;2–Au� and Y1;2–Ag� with Y D HF, H2O, and NH3, and Y2 D .HF/2, .H2O/2, and
.NH3/2. The ZPE-corrected binding energies E ZPE

b are given in kcal �mol�1, �R.X–H/ and
r.H � � �Az�/ in Å, ∠AHAz in degrees (z D u or g), and ��.X–H/ in cm�1. �EI�II is the differ-
ence in energy (in kcal�mol�1/ between the conformers I and II, if any. The asymptotic dissociation
limit is chosen as Az� C Y2 for the conformer I and Y–Az� C Y for the conformer II

�EZPE
b �R.X–H/ ���.X–H/ r.H � � �Az�/ ∠XHAz

Az�HF .X D F/
Au� 20.3 0.052 1,076 2.156 178.2

Ag� 18.6 0.042 901 2.291 179.7

Az�–.HF/2
Au�

I 31.2 0.097 1,806; 499 1.985 178.5
II 14.9 0.044, 0.044 943, 858 2.190, 2.190 176.6, 176.6

�EI�II D �0:7

Ag�

I 28.6 0.075 1,498; 432 2.116 178.4
II 13.9 0.037, 0.037 812, 774 2.305, 2.305 175.6, 175.6

�EI�II D �0:6

Az�–H2O .X D O/
Au� 11.9 0.024, 0.001 394, 82 2.444, 3.406 156.3, 79.8
Ag� 12.4 0.016, 0.004 243, 135 2.637, 3.215 138.2, 94.6

Az�–.H2O/2
Au�I 18.9 0.029, 0.012 525, 43, 196, 50 2.348, 2.758 160.1, 148.1

Ag�I 19.0 0.023, 0.010 281, 17, 197, 81 2.488, 2.955 149.8, 144.8

Az�–NH3.X D N/
Au� 6.0 0.015 160 2.690 157.4

Ag� 7.0 0.012 119 2.835 145.6

Az�–.NH3/2

Au�

I 10.7 0.018, 0.007 169, 155 2.565, 3.070 177.6, 146.2
II 5.2 0.013, 0.013 140, 134 2.705, 2.705 158.9, 158.9

�EI�II D �0:3

Ag�

I 10.1 0.015, 0.006 174, 56 2.689, 3.254 168.6, 141.5
II 5.3 0.009, 0.011 107, 100 2.877, 2.856 149.5, 149.2

�EI�II D �0:3

3 Hydrogen Bonding Patterns Between Auride Anion
and Clusters of Water

The key computational facts about the most stable anionic complexes
ŒAu.H2O/1�n�5�

� are collected in the left column of Table 4. It is worth
mentioning that the computational electron affinity of the gold atom is high, namely,
EAtheor.Au/ D 2:129 eV:
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Table 4 The computational mise-en-scènes of bonding between the auride anion (left column) or
the gold atom (right column) and the selected clusters of water molecules .H2O/1�n�5 [52]. The
vertical detachment energies, VDE, and adiabatic detachment energy, ADE, are given in eV. The
ZPE-corrected binding energies Eb

ZPE and energy differences are given in kcal �mol�1, R(O–H)
and r.H � � �Y/ in Å, ∠XHY in o, and �.X–H/ in cm�1. The reference asymptote for the complex
ŒAu.H2O/n�Z is the infinitely separated AuZ and .H2O/n where Z D �1; 0 and .H2O/n designates
the ground-state cluster of n molecules of water. The exception is n D 4, as indicated below by
asterisk, when the R-sided conformer ŒAu.H2O/4�RZ is treated with respect to AuZ and the corre-
sponding water cluster .H2O/ 3D

4 which is displayed in Fig. 3. The quantities chosen to characterize
the nonconventional hydrogen bonds O–H � � �Au� are underlined. The MP2 values are presented
in curly brackets

Z D �1 Z D 0

n D 1

VDE D 2:71 .VDEexptD 2:76 Œ60�/
ADEZPED 2:61
qM.Au/ D �0:902 qM.H2O/ D �0:098

R.O–H/ D 0:9865 f0:9796gI 0:9631 f0:9615g

�R.O–Hbonded/ D 0:0244 r.Hbonded � � �Au/ D 2:437

f2:464g∠OHbondedAu D 157:3

�.O–H/ D 3;403I f3;556gI 3;849 f3;849g

��.O–Hbonded/ D �414

�Eb
ZPE D 12:30 f12:92g (14.32 [61a]; 12.43 [59])

qM.Au/ D �0:053 qM.H2O/ D 0:053

R.Au–O/ D 2:670 f2:634g

R.O–H/ D 0:9640 f0:9618g

�sym;asym.O–H/ D 3790; 3897 f3852; 3973g

�Eb
ZPE D 1:21 f1:30g (2.61 [61a]; 1.11 [71])

n D 2

VDE D 3:17 .VDEexptD 3:20 Œ60�/
ADEZPED 2:84
qM.Au/ D �0:839 qM.H2O/ D �0:117;�0:044

R.O–H/ D 0:9925 f0:9878g; 0:9738

f0:9698gI 0:9703

f0:9668gI 0:9635 f0:9616g

qM.Au/ D �0:097 qM.H2O/ D 0:108; 0:011

R.Au–O/ D 2:520 f2:411g

R.O–H/ D 0:9778 f0:9733gI 0:9663

f0:9622gI 0:9637 f0:9616g; 0:9630 f0:9609g

r.H � � �O/ D 1:840 f1:828g

∠OHO D 160:6 f164:9g

(continued)
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Table 4 (continued)
Z D �1 Z D 0

�R.O–H/ D 0:0296; 0:0127I�0:0004

r.Hbonded � � �Au/ D 2:346 f2:322g; 2:745 f2:762g

r.H � � �O/ D 2:095 f2:096g

∠OHbondedAu D 161:1 f161:3g; 148:8 f149:8g

∠OHO D 152:3 f152:4g

�.O–H/ D 3279 f3369g; 3643 f3742gI

3727 f3;830gI 3;846 f3;916g

��.O–H/ D �535;�171;C21

�Eb
ZPE D 19:72 f20:74g

�.O–H/ D 3;563 f3665gI 3774 f3862gI 3855

f3924g; 3890 f3;977g

��.O–H/ D �143

�Eb
ZPE D 3:24 f3:61g

n D 3

VDE D 3:56
ADEZPED 3:03
R.O–H/ D 0:9789I 0:9716

�R.O–H/ D 0:0179I�0:0040

r.Hbonded � � �Au/ D 2:577 r.H � � �O/ D 2:120

∠OHbondedAu D 149:8

�.O–H/ D 3527; 3530; 3555I 3681; 3707; 3;709

��.O–H/ D �361;� 363;� 339IC121;C89;C80

�Eb
ZPE D 22:70

R.Au–O/ D 2:602

R.O–H/ D 0:9845; 0:9756; 0:9717

�R.O–H/ D 0:0044; 0;�0:0039

r.H � � �O/ D 1:792; 1:918; 2:018

∠OHO D 155:1; 145:2; 142:5

�.O–H/ D 3439; 3620; 3690I

3857; 3888; 3895

��.O–H/ D �121;C2;C61

�Eb
ZPE D 1:93

n D 4

L-sided isomer:

(continued)
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Table 4 (continued)
Z D �1 Z D 0

VDE D 3:98

ADEZPED 2:93

R.O–H/ D 0:9848; 0:9805; 0:9761; 0:9688;

0.9729, 0.9720, 0.9703, 0.9679

r.Hbonded � � �Au/ D 2:363; 2:414; 2:547; 2:988

r.H � � �O/ D 2:091; 2:103; 2:103; 2:363

∠OHbondedAu D 146:0; 160:7; 152:7; 147:4

�.O–H/ D

3407; 3510; 3595; 3679; 3699, 3705, 3763, 3777

�Eb
ZPE D 20:45

R.Au–O/ D 2:604

R.O–H/ D 0:9937; 0:9851; 0:9824; 0:9778

�R.O–H/ D 0:0100; 0:0014;

�0:0013;�0:0059

r.H � � �O/ D 1:696; 1:758; 1:787; 1:851

∠OHO D 168:4; 165:5; 165:2; 163:3

�.O–H/ D 3252; 3424; 3491; 3576I

3853; 3880; 3881; 3886

��.O–H/ D �123;�45;C22;C59

�Eb
ZPE D 1:94

R-sided isomer:

VDE D 3:96

ADEZPED 3:11

R.O–H/ D

0:9881; 0:9794; 0:9743; 0:9679; 0.9736, 0.9732,

0.9727; 0.9639

r.Hbonded � � �Au/ D 2:393; 2:523;

2:726; 3:014

r.H � � �O/ D 2:025; 2:026; 2:045

∠OHbondedAu D 160:8; 155:3; 141:9; 145:8

�.O–H/ D 3354; 3522; 3621I

3665, 3677, 3685; 3769, 3843

�E.R–L/ 	 0:09 �EZPE.R–L/ 	 0:12

�Eb
ZPE D 27:15�

R.Au–O/ D 2:473

R.O–Hbonded/ D 0:9736

r.Hbonded � � �Au/ D 2:548

∠OHbondedAu D 155:5 �.O–Hbonded/ D 3631

R.O–H/ D 1:0026; 0:9759; 0:9709; 0:9692I

0.9639, 0.9628, 0.9614

r.H � � �O/ D 1:651; 1:867; 2:048; 2:111

∠OHO D 164:8; 160:5; 138:0; 140:0

�EZPE.R–L/ D 4:08 �Eb
ZPE D 4:44�

(continued)
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Table 4 (continued)
Z D �1 Z D 0

n D 5

VDE D 3:71
ADEZPED 3:07
R.O–H/ D

0:9848; 0:9842; 0:9780; 0.9926, 0.9903, 0.9792,

0.9768, 0.9760;

r.Hbonded � � �Au/ D 2:451; 2:462; 2:606

r.H � � �O/ D 1:732; 1:755; 1:910; 1:930; 1:933

∠OHbondedAu D 156:2; 166:1; 155:2

�.O–H/ D

3269; 3316I 3431; 3446; 3528; 3581, 3599, 3624;

3874, 3877

�Eb
ZPE D 23:63

R.Au–O/ D 2:624

R.O–H/ D 0:9936; 0:9878; 0:9858; 0:9841;

0.9796

r.H � � �O/ D 1:685; 1:720; 1:737; 1:751; 1:807

∠OHO D 173:3; 175:5; 174:3; 174:2; 174:8

�.O–H/ D 3250; 3362; 3418; 3465; 3542I

3856, 3878, 3881, 3886, 3893

�Eb
ZPE D 1:82

The experimental value of EAexpt.Au/ D 2:30 ˙ 0:10 eV according to [70a];
2:308664 ˙ 0:000044 eV according to [70b]; and 2:927 ˙ 0:050 eV according
to [70c]. EAtheor.Au/ D 2:33 eV [70d] and 2.166 eV [70e]. With the used basis
set, MP2 yields 1.536 eV. The EAtheor.Au/ D 1:86 eV was calculated at the MCPF
computational level in [70f]. The PW91PW91 density functional potential in con-
junction with the basis set [57] yields 2.25 and 2.31 eV with the LANL2DZ basis set,
as reported in [70g]. Therefore, the gold atom of ŒAu.H2O/1�n�5�

� where the most
excess electron charge is located on. This is witnessed by the Mulliken charges of
gold which are e.g. equal to qM

nD1.Au/ D �0:902 and qM
nD2.Au/ D �0:839, and

therefore, as anticipated, the gold atom mainly exists in ŒAu.H2O/1�n�5�
� as the au-

ride anion. The latter casts as the strong proton acceptor, even stronger in some cases
than the oxygens of the studied water clusters: this can readily be seen by juxtapos-
ing the stretching frequency �.O–H.� � �Au// D 3; 279 cm�1 of the hydron Hbonded,
which belongs to the proton–donor water molecule of the water dimer and H-bonded
to Au� in ŒAu.H2O/2��, and the �.O–H.� � �O// D 3; 727 cm�1 of the H (comparing
with the ground-state water dimer, this stretching mode �.O–H/ is red-shifted
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by only 21 cm�1.), that bridges the water dimer within ŒAu.H2O/2��. It is worth
mentioning that the aforementioned stretching vibrational mode �.O–H.� � �Au// of
ŒAu.H2O/2�� is the lowest one among the considered series of complexes. The fol-
lowing two straightforward and rather important conclusions can be drawn from the
fact that the auride anion functions as the strong proton acceptor in the complexes
ŒAu.H2O/1�n�5�

�:
1. This predetermines rather large, by the absolute value, binding energies

E ZPE
b . As demonstrated in Table 4, the latter range from 12:3 kcal � mol�1 for

nD 1 to �19:7–22:7 for nD 2–4, and apparently approaches the saturation thresh-
old of ca. 23:6 kcal � mol�1 for nD 5. Note that the presented computational
E ZPE

b are consistent with the experimental E ZPE�expt
b [60], for instance, with

E ZPE�expt
b .ŒAuH2O��/D 10:4 kcal � mol�1 and with the stabilization energy of
ŒAu.H2O/2�� taken with respect to the asymptote ŒAuH2O�� C H2O. The latter, as
estimated in [60] as equal to ca. 10:2 kcal � mol�1, fairly agrees with our value of
10:9 kcal �mol�1.

Actually, the strength of the nonconventional hydrogen bonds of the studied
complexes is underestimated because they mainly involve so-called “free” O–H
groups of water clusters that do not participate in the water–water hydrogen bonds.
Consider for instance the complex ŒAu.H2O/3��. Its water trimer is considerably
enlarged in comparison to the equilibrium one in the neutral charge state in or-
der to accommodate the auride anion. The difference in energy between these two
forms of water trimer, equal to 10:78 kcal �mol�1, is the additional contribution that,
together with E ZPE

b .ŒAu.H2O/3��/, determines the strength of the three nonconven-
tional O–H � � �Au� hydrogen bonds of ŒAu.H2O/3��.

2. The auride anion is a strong proton acceptor that, while interacting with a water
cluster, significantly perturbs it. This perturbation manifests in a number of ways.

One of them is spectroscopic—it is the formation of a wide infrared window
��w.O–H/ of ca. 450 cm�1 in ŒAu.H2O/�� between the most red-shifted O–H
stretching mode(s) and the next one(s). This window narrows to �80 cm�1 in
ŒAu.H2O/2�� and to �130 cm�1 in ŒAu.H2O/3�� and is superimposed with the
stretches of the conventional O–H � � �O hydrogen bonds in larger complexes.

The other is that the auride anion can also be a “breaker” of the water–water
hydrogen bonds as e.g. occurs under the formation of the complexes ŒAu.H2O/4;5��.

4 Mapping the Experiment: Electron Detachment
in Auride–Water Clusters

Let us now turn to the computational mise-en-scènes which are gathered in the right
column of Table 4 and which are served for deeper understanding of the experiments
on anion photoelectron spectroscopy of gold–water complexes [60]. Since gold is
the key carrier of the excess electron charge of the complexes ŒAu.H2O/1�n�5�

�,
a removal of this charge, formally implying the alternation Z D �1 ) Z D 0

of the charge states, converts the auride anion into the neutral gold atom. Despite
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the high electron affinity of the latter, Au may only induce a small charge transfer
from the adjacent oxygen atom and, as a result, forms with the latter the so-called
Au–O anchoring bond (see [45] for more detailed discussion and for the related
references). This anchoring bond appears to be very weak that is reflected in the
corresponding binding energies. For n D 1–5, the shortest Au–O anchoring bond of
2.520 Å is formed in ŒAu.H2O/2� – naturally, its formation is characterized by the
relatively large binding energy E ZPE

b .ŒAu.H2O/2�/ D 3:2 kcal �mol�1.
Nevertheless, despite its weakness, the anchoring bond enables to re-polarize the

adjacent O–H bond of the neighboring water molecule and substantially activates it
within the O–H � � �O hydrogen bond if n � 2. For n D 2, �R.O–H/ D 0:008 Å,
�r.H � � �O/ D �0:093 Å, and ��.O–H/ D �143 cm�1, relative to the gas-phase
water dimer. Since the anchoring interaction is weak, the relaxation of the water
cluster within ŒAu.H2O/1�n�5� is not significant, in contrast to the anionic charge
state. For example, the energy difference between the equilibrium water trimer and
that of ŒAu.H2O/3� amounts only to 0:4 kcal �mol�1.

The experiments on anion photoelectron spectroscopy of ŒAu.H2O/�� and
ŒAu.H2O/2�� that are conducted in [60] measure the vertical detachment ener-
gies, VDE expt

1 D 2:76 eV and VDE expt
2 D 3:20 eV which correspondingly agree

with the computational ones, VDE theory
1 D 2:708 eV and VDE theory

1 D 3:187 eV.
From the viewpoint of the chemical bonding patterns that are formed in the studied
gold–water complexes, the charge state alternation Z D �1 ) Z D 0, which can
be achieved either by using different metallic supporters or/and applied voltage,
the NeNePo (“A Negative ion–to Neutral–to Positive ion”) experimental technique
(see [72] and references therein), the resonant photoionization [73], or by varying
pH in different solvents [74], executes a simple switch-type operation. In the most
studied cases, the latter transforms the nonconventional O–H � � �Au hydrogen bond-
ing interaction to the Au–X anchoring one, except the cyclic R-sided conformer
ŒAu.H2O/4�RZD0 which is stabilized by both the anchoring and nonconventional
hydrogen bonding interactions.

The total relaxation of the studied systems under the charge state alternation
Z D �1) Z D 0 is rationalized in terms of the adiabatic detachment energy or
shortly ADE. As follows from Table 4, the VDE-ADE difference amounts to
0:15 eV for n D 1, 0.36 eV for n D 2, 0.53 eV for n D 3, then rises to 1.05 eV
for n D 4 and falls to 0.62 eV for n D 5. On the one hand, this difference can be
interpreted as the effect of solvent on the electron detachment that causes the sig-
nificant relaxation of the solvent molecules. On the other, it implies that the concept
of VDE is not generally true, as far as larger solvent clusters are on the stage. The
latter solvation, as is remarkably seen from the case of n D 4, results in that the
bottom of the solvent potential energy surface is quite dense, accommodating many
conformers with nearly equal energies. Nevertheless, their VDEs and ADEs can be
essentially different as in the present case of n D 4 when the �VDE.L–R/ is only
0.02 eV, whereas �ADE.L–R/ D �0:18 eV.

As was noticed above, the key source of that VDE drastically distinguishes
from the ADE is the considerable solvent relaxation that is actually a breakage
of the hydrogen bonding patterns of water clusters by the auride anion. This is
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0.9717

0.97020.9627

0.9610

0.9765

0.96140.9816

2.019

1.897
1.816

1.914

178.7
142.8

151.7

154.9

Fig. 3 The lower-energy 3D water tetrameric cluster .H2O/ 3D
4 . The selected bond distances are

given in Å and bond angles in degrees. Its stretching frequencies �.O–H/ are the following: 3,483;
3,595; 3,671; 3,744; 3,816; 3,885; 3,893; and 3; 918 cm�1. For comparison, the corresponding
frequencies of .H2O/

ring
4 : 3,375, 3,469 (doublet), 3,507, 3,884 (quartet). Interestingly, the latter

spectrum possesses a large window of �380 cm�1 between 3,507 and 3; 884 cm�1. In the gas
phase, the water cluster .H2O/ 3D

4 lies naturally higher the .H2O/
ring
4 by�EZPE D 6:58 kcal�mol�1.

Their enthalpy difference �H D 7:45 kcal � mol�1. Due to the large entropy difference, �S D
9:88 cal �T�1�mol�1, the Gibbs free energy difference is lowered to �G D 4:51 kcal�mol�1.
Furthermore: the total dipole moment of .H2O/ 3D

4 is rather large, i.e., 3.63 D, compared to that
.H2O/

ring
4 is non-polar. This implies that the 3D cluster .H2O/ 3D

4 can be energetically favorable in
polar environment

transparently observed for the L-sided isomer of ŒAu.H2O/4�L� when the wa-
ter tetrameric ring is broken to accommodate the auride anion. The number of
nonconventional hydrogen bonds is equal to 4. And remarkably, all hydrogen are
involved in the hydrogen bonds of ŒAu.H2O/4�L� and ŒAu.H2O/4�R�, either con-
ventional or nonconventional. It is worth to mention that herein we exploit two
isoenergetic isomers, ŒAu.H2O/4�L� and ŒAu.H2O/4�R� which however take differ-
ent pathways under the electron detachment. If the former proceeds to the conformer
ŒAu.H2O/4�L where water molecules arrange in the well-known tetrameric ring
structure .H2O/4ring with the planar oxygen frame [75], the latter adapts the 3D
shape .H2O/43D, as demonstrated in Fig. 3.

Summarizing: in these essay’s fragments, we have demonstrated what mat-
ters and relevant to the experiments on anion photoelectron spectroscopy for the
gold–water complexes and, especially, the computational evidence of interesting
synergetic effect between the nonconventional O–H � � �Au hydrogen bonding in-
teraction and the Au–X anchoring one that both govern the gold–water complexes
in the charge states Z D �1 and Z D 0. What about Z D C1‹ For example, the
recent work [75] reveals a rather surprising dumbbell-type structure around AuC ex-
hibiting two Au–O anchoring bonds, each ended by rigid tetrameric rings of water.
Then, let us pose the question of how many nonconventional hydrogen bonds with
water the auride anion enables to form simultaneously? Comparing with maximum
two anchoring Au–O bonds that the gold atom can form at once [76], Fig. 4
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Fig. 4 The cluster ŒAu.H2O/12�� with six blue nonconventional O–H � � �Au� hydrogen bonds. Its
electronic energy is equal to�1; 053:751779 hartrees and ZPE D 190:04 kcal �mol�1 [52]. Yellow
ball designates the gold atom, the oxygen atoms are indicated by red and the hydrogens by light
blue balls. The nonconventional hydrogen bonding patterns of this cluster are summarized in the
following table where the bond distances are given in Å, bond angles in degrees, and concomitant
stretching frequencies in cm�1

R(O–H) r.Hbonded� � �Au/ ∠OHbondedAu �.O–H/
0.9819 2.469 170.2 3,465; 3,476
0.9752 2.572 162.7 3,604
0.9740 2.610 163.1 3,500; 3,582; 3,635; 3,656
0.9739 2.644 164.1 3,635; 3,637; 3,656
0.9738 2.632 165.1 3,635; 3,637; 3,656
0.9732 2.539 174.1 3,476; 3;550; 3,519; 3,550

demonstrates that at least six nonconventional O–H � � �Au� hydrogen bonds the au-
ride anion can form with 12 molecules of water to hold the cluster ŒAu.H2O/12��

bound. It is a belief that this fascinating feature of gold is awaiting its experimental
proof.
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Interatomic Potential for Platinum
and Self-Diffusion on Pt(111) Surface
by Molecular-Dynamics Simulation

N.I. Papanicolaou and N. Panagiotides

Abstract We present a many-body interatomic potential for Pt within the
second-moment approximation of the tight-binding model by fitting to the vol-
ume dependence of the total energy of the metal, computed by first-principles
augmented-plane-wave calculations. This was used, in conjuction with molecular-
dynamics simulations, to study the diffusion of Pt adatoms and dimers on Pt(111)
surface. The diffusion coefficient of the adatoms and dimers was computed and was
found to present Arrhenius behavior. The migration energies and pre-exponential
factors for hopping diffusion mechanism were determined as well and compared
with experimental data obtained by scanning tunnelling microscopy, field ion mi-
croscopy methods and previous calculations. Both quantities were found to be in
good agreement with measurements. At high temperatures we have also investigated
a concerted exchange adatom diffusion mechanism, where there is a participation
of two surface atoms belonging to nearest-neighbour rows.

Keywords Interatomic potentials �Molecular dynamics simulation � Surface diffu-
sion � Adatoms � Dimers � Vibrations � Platinum

1 Introduction

The diffusion of adatoms on metal surfaces plays an essential role in epitaxial crystal
growth, heterogeneous catalysis, surface reconstruction, reactivity and other sur-
face processes [1–5]. Experimental techniques such as field ion microscopy (FIM)
and scanning tunnelling microscopy (STM) are important methods for investigating
surface diffusion [1–3]. In parallel, atomistic simulations have played an impor-
tant role in this area by providing information on different elementary diffusion
mechanisms, migration energy barriers and pre-exponential factors associated with
each diffusion process [6, 7]. The description of interactions between atoms is very
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crucial in any atomistic simulation, ranging from first-principles electronic structure
calculations to semi-empirical methods. Ab-initio techniques are superior, accu-
rate and can supply information on diffusion barriers, but they are limited by high
computational costs. They are therefore used for relatively short time scales and
small systems. In order to simulate longer time scales and larger systems parameter-
based empirical methods such as the many-body potentials of the embedded-atom
method (EAM) [8, 9], Finnis–Sinclair [10] potentials and the second-moment ap-
proximation (SMA) of the tight-binding (TB) method [11–15] are found to be very
efficient. The semi-empirical methods, although less accurate, are very fast and able
to simulate the dynamical character of diffusion and reveal different elementary
processes (e.g., hopping or adatom-surface exchange). In particular, the TB-SMA
expression [13–15] of the total energy of a metallic system is based on a small set
of adjustable parameters, which can be determined by adjusting to experimental
data [15, 16] or ab-initio results [6, 17, 18].

The aim of the present work is firstly to construct a reliable TB-SMA atom-
istic potential for Pt, with parameters determined from ab-initio calculations rather,
than from experimental quantities; secondly, to use this interatomic potential in tan-
dem with molecular-dynamics (MD) simulations to study self-diffusion on Pt(111)
surface at various temperatures. Our goal is to investigate different diffusion mech-
anisms, to determine the relevant migration energies and pre-exponential factors for
each process and compare with FIM [19], STM experiments [20] and previous com-
putations. In order to test the transferability of the new potential, we computed the
bulk modulus, elastic constants, linear thermal expansion coefficient, zone boundary
phonon frequencies, as well as the surface relaxations of the metal. The simulated
data are compared with available experimental results.

The paper is structured as follows: in Section 2 we present the computational
scheme. The obtained results are presented and discussed in Section 3. Finally our
conclusions are given in Section 4.

2 Computational Method

The electronic band structure of Pt was calculated self-consistently by the aug-
mented plane wave (APW) method [21]. The calculations were scalar relativistic
and used the Hedin–Lundqvist exchange-correlation functional [22] of the local-
density approximation (LDA). The computations were done for both the fcc and bcc
structures of the metal; we used a mesh of 89 k points in the irreducible Brillouin
zone for the fcc and 55 k points for the bcc structure. The total energy was calculated
for six different lattice constants and the resulting volume dependence of the energy
was fitted to a parabolic function [23].

The total energy of the system within the TB-SMA model [13–15] is given by
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Where the first sum over j represents a pair-potential repulsive term of the Born-
Mayer type, and the second sum corresponds to the attractive band-energy term. In
the above expression rij is the distance between atoms i and j, r0 D 2:78021 Å stands
for the calculated APW value of the nearest neighbor distance for Pt, and the sums
over j include interactions up to fifth neighbors. There are four adjustable param-
eters, A, Ÿ, p and q in this scheme. These have been determined by simultaneous
fitting to the APW total-energy curves as a function of volume for both the fcc and
bcc structures. We note that, before performing the fitting procedure, we uniformly
shifted the two curves, so that to match at the minimum of the fcc structure the
experimental cohesive energy of Pt (E D 5:85 eV) [24].

As a test of the quality of our parameters, we have calculated the bulk modulus
of Pt by using the method proposed in Ref. [23], as well as the elastic constants at
room temperature. Details of the computational procedure for the elastic constants
are reported elsewhere [17].

Using the above interatomic potential, we performed MD simulations in the mi-
crocanonical ensemble for a system of 2,880 particles arranged on an fcc lattice. The
equations of motion were integrated by means of the Verlet algorithm and a time
step of 5 fs. Periodic boundary conditions were applied in the space and two free
surfaces parallel to the (111) planes were constructed. The latter were obtained by
fixing the dimensions of the supercell size to a value twice as large as the thickness
of the crystal in the direction normal to the surface. The phonon dispersion curves
were calculated by Fourier transform of the velocity autocorrelation function [17].

The self-diffusion of adatoms and dimers on the (111) face of Pt was studied by
putting them on each free surface of the slab. Simulations of 2 ns were performed
in the temperature range of 300–2,000 K, in order to achieve reliable statistics for
the determination of the diffusion coefficient. The latter was, furthermore, calcu-
lated using the Kubo integral of the velocity autocorrelation function [25]. The static
activation energy for the diffusion process was obtained by a quasi-dynamic min-
imization method integrated in the MD code. Details of the above computational
methods can be found in [6, 17, 25, 26].

3 Results and Discussion

In Fig. 1 we present the first-principles computed cohesive energy of Pt (with oppo-
site sign) as a function of the volume in the fcc and bcc structures (solid lines) after
the uniform energy shift, as described in Section 2. The dashed lines in the same
graph show the results of the fit using the expression (Eq. (1)). From this procedure
we have determined the potential parameters of Eq. (1), which are listed in Table 1.

The parameters of Table 1 have been used to calculate some physical quantities
of Pt within the TB-SMA scheme. In Table 2 we report the calculated properties of
the element in comparison with available experimental values. We find that the com-
puted lattice parameter is within 0.3% of the experimental value [24]. In addition,
the calculated values of the bulk modulus and the elastic constants C11 and C12 are
in very good agreement with the measurements [27], comparable with the accuracy
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Fig. 1 Calculated cohesive energies of Pt (with opposite sign) as a function of volume. Solid lines
correspond to the APW results; dashed lines refer to the results of fit (expression (1))

Table 1 Potential parameters
of Eq. (1) for Pt Ÿ .eV/ A (eV) q P

1.89706 0.09238 2.57947 16.00033

Table 2 Calculated properties of Pt within the present TB-SMA scheme in comparison with
experimental data

Pt Calculation Experiment

Lattice constant (Å) 3.912 3.924 [24]
Bulk modulus (GPa) 303 288 [27]
C11 (GPa) 434 358 [27]
C12 (GPa) 238 254 [27]
C44 (GPa) 253 77 [27]
Coefficient of linear thermal expansion 1.02 0.89 [24]
near room temperature (10�5 K�1)

of first-principles calculations, while the elastic constant C44 shows a rather large
discrepancy. Furthermore, we have computed the temperature dependence of the
lattice constant of Pt by using the MD simulations and we found that the coefficient
of linear thermal expansion near room temperature is in very good agreement with
the experimental value [24] (Table 2).

In Table 3 we report the computed phonon frequencies at the points X and L
of Brillouin zone at 90 K, along with the corresponding experimental values [28].
We observe a fair accuracy of our model, especially for the transverse modes, while
there is a slight overestimation of about 1.0 THz for the longitudinal modes. This
is compatible with the inaccuracy found in our calculated value of C44. In addition,
we have computed the relative thermal relaxation of Pt (111) surface atoms in the
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Table 3 Comparison between computed and experimental [28] phonon frequencies (in THz) at X
and L boundaries of Brillouin zone for Pt at 90 K

X (long) X (trans) L (long) L (trans)
Computation 6.90 4.75 6.85 3.20
Experiment 5.80 3.84 5.85 2.90
Abbreviations: Long, longitudinal; trans, transverse modes.
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Fig. 2 Arrhenius diagram of the diffusion coefficient of Pt adatoms on the Pt(111) surface for the
hopping diffusion mechanism in the temperature range 300–1,500 K. The solid line corresponds to
least-squares fit

normal to the surface direction, with respect to bulk interlayer spacing at 300 K
and we found a value of –1% in fair agreement with the experimental value of
1:1˙ 0:5% [29].

In the following we will discuss the 3-D adatom motion on the surface. In Fig. 2
we provide the Arrhenius diagram of the diffusion coefficient D of Pt adatoms on
the Pt (111) surface for the hopping diffusion mechanism in the temperature range
300–1,500 K. The computed values follow a straight line with an energy barrier of
Em D 194meV according to the expression:

D D D0 exp.�Em=kT/ (2)

where D0 is the pre-exponential factor.
A careful analysis of the trajectories showed that at low temperatures the dom-

inant diffusion mechanism is the simple hop to the neighbouring energy minima.
On the other hand, at temperatures above 1,000 K, the adatoms hop with long and
correlated jumps.

In Table 4 we give the computed migration energy Em, the pre-exponential factor
D0 associated to the hopping diffusion mechanism, and the static energy barrier Es.
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Table 4 Static diffusion barriers Es, migration energies Em and pre-exponential factors D0 of Pt
adatom diffusion on the Pt (111) surface

Pt/Pt(111) Es.meV/ Em.meV/ D0.10
�3 cm2=s/

Present work 178 194˙ 6 0.36
Experiment (STM) [20] 260˙ 10 1
Experiment (FIM) [19] 260˙ 3 2.�1:4˙1/
Experiment (FIM) [30] 250˙ 20
Ab-initio LDA, GGA [31] 420, 390
Ab-initio, LDA, GGA [32] 330
Ab-initio, LDA [33] 290
EAM (semi-empirical) [7] 78 0.35
Effective medium theory (EMT) (semi-
empirical) [34]

160

TB-SMA (semi-empirical) [35] 176

The experimental data of STM studies [20], FIM measurements [19, 30] and
previous calculations or simulations [7, 31–35] are also listed in Table 4. Firstly,
we note that there is an excellent agreement between our value for Es and the static
energy barrier from previous TB-SMA simulations [35], using parameters from fit
to experimental data. Moreover, our static energy Es agrees well with our computed
migration energy Em. The energy difference between the hcp and fcc sites of the
adatom is only 5 meV. Secondly, our Em is closer to the corresponding experimental
values, compared to the previous semi-empirical computations [7, 34, 35] as well as
to some first principles values [31, 32]. The computed value for D0 agrees, further-
more, very well with the estimation of EAM calculation [7], and it is close to the
experimental pre-exponential factors [19, 20].

We have also observed concerted exchange diffusion mechanisms at tempera-
tures above 1,500 K, where there is a simultaneous motion of the adatom with two
surface atoms belonging to nearest-neighbor rows. This has been also proposed in
previous works using the EAM or TB-SMA methods in tandem with MD sim-
ulations [6, 35, 36]. These events require much higher energy than the hopping
diffusion mechanism. At each temperature we have calculated the frequency of these
events and then the corresponding diffusion coefficient, which is proportional to the
frequency. In Fig. 3 we report the Arrhenius plot of the diffusion coefficient of Pt
adatoms on the Pt (111) surface for the exchange diffusion mechanism at temper-
atures above 2,000 K. From a least-squares fit, we deduced a migration energy of
3.2 eV and a pre-exponential factor of 15 cm2=s. Our value for this diffusion bar-
rier can be compared with the value of 2.1 eV computed by static calculations in
Ref. [35].

Concerning Pt dimer diffusion on Pt(111) surface, we made a registration of the
velocities of the center of mass of the dimer as a function of time for tempera-
tures between 500 and 1,200 K and we have deduced the diffusion coefficient as
explained in Section 2. In Fig. 4 we show the Arrhenius diagram of the diffusion
coefficient of Pt2 on Pt(111) surface. Working in the same way as for the single
adatom diffusion, we obtain a migration energy for dimer diffusion Em D 320meV



Interatomic Potential for Platinum and Self-Diffusion on Pt(111) Surface 341

5.55.04.54.0

10-5

10-6

10-7

1/kT(eV-1)

D
(c

m
2 /
s)

Pt/Pt(111) - exchange mechanism

Em=3.2 eV

D0=15cm2/s

Fig. 3 Arrhenius plot of the diffusion coefficient of Pt adatoms on the Pt (111) surface for the
exchange diffusion mechanism at temperatures above 2,000 K. The solid line corresponds to least-
squares fit
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Fig. 4 Arrhenius diagram of the diffusion coefficient of a Pt dimer on Pt(111) for temperatures
between 500 and 1,200 K. The solid line is least-squares fit

and a pre-exponential factor D0 D 3:8� 10
�4 cm2=s, which are listed in Table 5. In

Table 5 we also provide the corresponding experimental data from FIM studies [19]
as well as the static diffusion barrier from LDA calculations [37]. We note that the
simulation results for Pt2 diffusion are, within the experimental errors, in very good
agreement with the measured values.

Finally, we have studied the dimer dissociation on Pt(111). In order to obtain the
dimer dissociation energy we have performed two different procedures. The first one
is static calculation. According to this method, we computed the difference between
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Table 5 Migration energies Em, and pre-exponential factors D0 of Pt dimer diffusion, along with
dissociation barriers Edis of Pt2 on the Pt(111) surface

Pt2/Pt(111) Em .meV/ D0.10
�4 cm2=s/ Edis .meV/

Present work 320˙ 20 3.8 685, 740
Experiment (FIM) [19] 370˙ 20 1:9.�4:5˙1/
Ab-initio, LDA [37] 370
Experiment (FIM) [38] 490˙ 10
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Fig. 5 Arrhenius diagram of the dissociation frequency of a Pt dimer on Pt(111) for temperatures
between 1,000 and 1,400 K. The solid line is least-squares fit

the total energy of the slab with two well separated Pt adatoms on Pt(111) surface
and the total energy of the slab with a Pt dimer on the surface. From this calcu-
lation we found Edis D 685meV. The second method is dynamical computation.
According to this procedure, we executed several simulations for each temperature
in the temperature range between 1,000 and 1,400 K. The aim was to obtain a mean
time of dissociation as a function of temperature. The inverse of this time, the dis-
sociation frequency, f, has been found to follow Arrhenius behavior against 1/kT.
In Fig. 5 we provide the Arrhenius diagram of the dissociation frequency of Pt2
on Pt(111). Applying the linear fitting procedure we obtain f0 D 1; 500GHz and
Edis D 740meV. The computed dissociation energies are reported in Table 5, along
with the corresponding value of 490 meV from FIM experiments [38]. It should be
mentioned that our calculated data overestimate the dissociation energy by 40%.

4 Conclusions

We have presented an interatomic potential of Pt in the framework of the second-
moment approximation to the tight-binding model by adjusting to the volume
dependence of the total energy, computed by first-principles APW calculations. We
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have applied this scheme to calculate the bulk modulus and elastic constants of the
metal and we have obtained a good agreement with experiment. We also have per-
formed molecular-dynamics simulations using the above semi-empirical potential
and we have deduced the coefficient of thermal expansion at room temperature and
the phonon spectrum at 90 K, where a satisfactory accuracy was obtained. We have
computed, furthermore, the Pt(111) surface relaxations and we have obtained a fair
agreement with experiment.

In addition, we have studied the self-diffusion of single adatoms and dimers on
Pt (111) surface. The diffusion coefficient of Pt adatoms and dimers associated with
the hopping diffusion mechanism presents Arrhenius behavior. The proposed model
provides reliable values for the migration energies and pre-exponential factors of the
hopping mechanism compared with STM and FIM studies. At high temperatures we
have also observed a concerted exchange adatom diffusion mechanism where there
is a participation of two surface atoms belonging to nearest-neighbor rows. The cor-
responding migration energy was found to be about 15 times higher than the energy
of the hopping diffusion mechanism. We have finally obtained the dimer dissocia-
tion energy, which is somewhat overestimated compared with FIM measurements.

Despite the simplicity of the present scheme, it was found to be very useful by
providing reliable results of diffusion of adatoms and dimers on Pt(111) surface.
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Gap-Townes Solitons and Delocalizing
Transitions of Multidimensional Bose–Einstein
Condensates in Optical Lattices

Mario Salerno, F. Kh. Abdullaev, and B.B. Baizakov

Abstract We show the existence of gap-Townes solitons for the multidimen-
sional Gross–Pitaeviskii equation with attractive interactions and in two- and three-
dimensional optical lattices. In absence of the periodic potential the solution reduces
to the known Townes solitons of the multi-dimensional nonlinear Schrödinger equa-
tion, sharing with these the property of being unstable against small norm (number
of atoms) variations. We show that in presence of the optical lattice the solution
separates stable localized solutions (gap-solitons) from decaying ones, character-
izing the delocalizing transition occurring in the multidimensional case. The link
between these higher dimensional solutions and the ones of one dimensional non-
linear Schrödinger equation with higher order nonlinearities is also discussed.

Keywords Matter-waves � Gap-Townes soliton � Collapse � Delocalizing transition

1 Introduction

One interesting phenomenon occurring in ultracold atomic gases trapped in peri-
odic potentials is the possibility to localize matter in states which can stay for a
long time due to an interplay between nonlinearity, dispersion and periodicity. Such
states (also called gap-solitons) have been observed in Bose–Einstein condensates
(BEC) and in arrays of nonlinear optical waveguides [1–4]. For attractive atomic
interactions in BEC and in absence of a periodic potential, stable localized solutions
are possible only in a one-dimensional (1D) setting since in two (2D) and three (3D)
dimensions the phenomenon of collapse appears [5]. More precisely, one observes
that when the number of atoms exceeds a critical threshold, the solution collapses
in a finite time (blow-up) while for number of atoms below the critical threshold
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there is an irreversible decay of the state into background radiation. For the higher
dimensional nonlinear Schödinger (NLS) equation, however, it is known that there
exists an unstable localized solution, the so called Townes soliton [6], which sepa-
rates decaying solutions from collapsing ones. Townes soliton, however, exists only
for a single value of the number of atoms, being unstable against fluctuations around
it (for slightly overcritical or undercritical number of atoms the solution collapses
or decays, respectively). The situation is drastically changed in presence of an op-
tical lattice (OL). To this regard, it has been shown that stable 2D and 3D solitons
can exist in OLs both in BEC and nonlinear optics contexts [7–11]. Moreover, it is
known that while the periodic potential can only marginally shift the critical value
for collapse, it can substantially move the delocalizing transition curve, thereby in-
creasing the soliton existence range in parameter space from a single point to a
whole interval [12]. The typical situation with 2D and 3D BEC solitons in OLs is
therefore the following: in the parameter space the stable localized solutions are
confined from above by the collapse curve and from below by the delocalizing tran-
sition curve, thus, in contrast with the one dimensional case where there are no
limits for the existence of localized states, strict limitations for soliton existence ap-
pear in multidimensional cases. From this point of view it is clear that for possible
experimental observation of multidimensional BEC solitons the parameter design
becomes very important. Since the collapse curve is only marginally affected by the
periodic potential, to enlarge existence ranges of solitons it is of interest to give a
full characterization of the delocalizing curve in parameter space.

The aim of this paper is just devoted to this, i.e. we characterize 2D and 3D
delocalizing curves of gap-solitons in terms of an unstable solution of the multi-
dimensional Gross–Pitaeviskii equation (GPE), which we call gap-Townes soliton.
This solution can be viewed as a separatrix (it separates gap soliton states from
extended (Bloch) states) and reduces to the known Townes soliton when the strength
of the OL goes to zero. Similar solutions were found also for the 1D NLS equa-
tion with higher order nonlinearities in [13] , where they were called gap-Townes
solitons, and in [14] where they were termed Townes solitons. Conditions for the
occurrence of the delocalizing transition phenomenon of one-dimensional local-
ized modes of several nonlinear continuous periodic and discrete systems of the
nonlinear Schrödinger type were also recently discussed in [15]. For the periodic
multidimensional GPE the delocalizing curve has been characterized in [12] as the
critical threshold for the existence of one bound state in an effective potential. The
characterization given here, however, is more general since it is valid also for 1D
NLS with higher order nonlinearities. To this regard we remark that in absence of
confining potential the 2D and 3D GPE behaves similarly to the 1D NLS with quin-
tic and septic nonlinearities, respectively. The interplay between dimensionality and
nonlinearity has been used to investigate collapse in lower dimensional NLS on the
basis of pure dimensional arguments. In particular, the critical condition for collapse
has been characterized asD.n�1/�4 D 0, where n is the order of the nonlinearity in
the equation andD is the dimensionality of the system [16]. In the following we take
advantage of this interplay to construct approximate gap-Townes soliton solutions of
the GPE with multidimensional separable OLs, in terms of products of exact gap-
Townes solutions of the 1D NLS with higher nonlinearities. Remarkably, we find
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that, except for strengths of the optical lattices very small, our approach produces
very accurate gap-Townes solutions of multidimensional GPE with OL, thus giv-
ing an evident computational advantages. The results obtained in this paper can be
seen as a generalization of the existence of gap-Townes solitons in the quintic NLS
discussed in [13, 14] to the case of the multidimensional Gross–Pitaeviskii equation.

We finally remark that the obtained results can also be applicable for photonic lat-
tices with Kerr type of optical nonlinearity where the existence of a critical threshold
for the lattice solitons has been observed [17].

The paper is organized as follows. In Section 2 we introduce the model equa-
tions and discuss the link between multidimensional GPE with a separable trapping
potential and the corresponding 1D NLS equation with higher order nonlinearity.
We use a self-consistent approach to approximate gap-Townes solitons of the GPE
with products of exact gap-Townes soliton of the corresponding 1D NLS equation
with higher order nonlinearity. In Section 3 we discuss the existence of localized
solutions in the multidimensional GPE with OL by means of a variational approach
(VA) and compare 2D and 3D results with those obtained from the VA applied to
the quintic and septic NLS, respectively. In Section 4 we perform a numerical in-
vestigation of the existence (delocalizing) threshold for gap-Townes solitons of the
2D and 3D GPE. Finally, in the last section we briefly summarize our main results.

2 Model Equations and Existence of Gap-Townes Solitons

Let us consider the following Gross–Pitaevskii equation in d -dimensions (d D
1; 2; 3;) as a model for a BEC in an optical lattice [12]

i t Cr
2
d C "

"
dX
iD1

cos.2xi /

#
 C � j j2 D 0; (1)

where r2d denotes the d -dimensional Laplacian,
Pd

iD1 cos.2xi / denotes a square
optical lattice with strength ", � is the coefficient of nonlinearity, and xi D x; y; z
for i D 1; 2; 3, respectively. Here we will be mainly interested in cases d D 2

and d D 3. The existence of localized solutions of the multidimensional GPE
with periodic potential and positive and negative nonlinearities (atomic scattering
lengths), has been previously investigated both by variational analysis and by direct
numerical simulations. In the following we concentrate on a topic which was not
discussed in previous works, namely the existence of gap-Townes solitons in the
multidimensional GPE and its link to the phenomenon of delocalizing transition.
Due to the instability properties of these solutions it is difficult to find them without
an analytical guide. To this regard we take advantage of the fact that the periodic
potential is separable and in spite of the nonlinearity of the system we look for
factorized stationary solutions of the form

 .x1; :::; xd / D

dY
iD1

	i .xi /e
�it : (2)
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In 2D case (d D 2) the substitution of the factorized ansatz into Eq. (1) gives:

	1xx
	1
C
	2yy

	2
C "Œcos.2x/C cos.2y/�C � j	1j2j	2j2 D �: (3)

This equation can also be written as

	1xx C " cos.2x/	1 C
�

2
j	2j

2j	1j
2	1 D �1	1;

	2yy C " cos.2y/	2 C
�

2
j	1j

2j	2j
2	2 D �2	2; (4)

with 1 D 2 D =2. By assuming 	1 D 	2 � 	 and adopting a diagonal co-
ordinate x D y � � we have that Eqs. (4) become equivalent to the following 1D
eigenvalue problem

	�� C " cos.2�/	 C
�

2
j	j4	 D �



2
	: (5)

From this we see that there is a link between the 2D cubic NLS and the 1D quintic
NLS which implies a rescaling of parameters as: � ! �

2
; ! 

2
.

The above equations can be easily extended to the 3D GPE with periodic poten-
tial. In this case Eq. (5) will be replaced by the following 1D NLS equation with
septic nonlinearity

	�� C " cos.2�/	 C
�

3
j	j6	 D �



3
	; (6)

from which we see that in this case parameters must be rescaled according to:
� ! �

3
; ! 

3
.

It is appropriate to mention that a factorized solution of the form Eq. (2) with
the components solutions of the nonlinear eigenvalue problem Eq. (5) cannot be an
exact solution of the 2D or 3D GPE, since, due to the nonlinearity, the problem is
obviously not exactly separable. On the other hand, by imposing the coincidence of
the solutions along the diagonal axis may be a constraint for a reasonable approxi-
mate solutions of the 2D and 3D problems, especially when the nonlinearity is small.
In analogy with the 1D NLS with quintic nonlinearity investigated in Ref. [13] we
expect that the delocalizing curve coincides with the existence curve of gap-Townes
solitons for which it was shown that the critical number of atoms decreases with
increasing the strength of the OL. This means that in a deep OL the effective nonlin-
earity required for the existence of a gap-Townes soliton is smaller and the problem
may become effectively close to separable.

To check the correctness of this argument we construct factorized solutions (2)
of the 2D GPE by means of a self-consistent method which allows to solve the
1D quintic NLS eigenvalue problem exactly (similar results can be obtained for the
3D case).
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Fig. 1 Gap-Townes soliton (top panel), gap soliton (lower left panel) and Bloch state (lower right
panel) of the GPE for parameter values " D 5, � D 1. The critical number of atoms in normalized
units for the gap-Townes soliton is Nc D 0:4261. The gap soliton and the Bloch state in the lower
panel are obtained for slightly overcritical (N D 0:4347) and undercritical (N D 0:4176) values,
respectively

In the top panel of Fig. 1 we show a 2D gap-Townes soliton obtained from
the product ansatz using exact (self-consistent) gap-Townes solitons of the corre-
sponding quintic NLS equation in Eq. (5). The lower left and right panels show,
respectively, the gap soliton and the extended Bloch state found at energy slightly
below and slightly above (bottom of the lowest band) the one of the gap-Townes
soliton. To check the reliability of the factorized ansatz we have computed the time
evolution under the original 2D GPE equation using the factorized solution as ini-
tial condition. This is shown in Fig. 2 where the time evolution of the gap-Townes
soliton in Fig. 1 (central panel) and the ones obtained for slightly overcritical and
undercritical numbers of atoms are shown. We see that while the product solution
constructed from the quintic NLS remains localized for a long time, a slight increase
or decrease of the number of atoms produces shrinking or decay of the solution, re-
spectively. This clearly shows the existence and role of gap-Townes solitons of the
2D GPE with optical lattice in characterizing the delocalizing threshold.

3 Variational Analysis and Existence of Localized States

The existence of localized states in multidimensional GPE with OL and in 1D NLS
with higher order nonlinearities can be investigated by means of the variational ap-
proach. To this regard we first consider Eq. (1) and search for stationary solutions
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Fig. 2 Time evolution of the gap-Townes soliton shown in Fig. 1 with critical number of atoms
(central panel) and for slightly overcritical (left panel) and undercritical (right panel) number of
atoms

of the form  D Ue�it and consider the Lagrangian density associated with the
equation for the stationary field U

L D 1

2
.rdU /

2 �


2
U 2 �

"

2

"
dX
iD1

cos.2xi /

#
U 2 �

�

4
U 4: (7)

By taking a Gaussian ansatz for U

U D Ae�
a
2

Pd
iD1 x

2
i ; (8)

and performing spatial integration we obtain the following effective lagrangian
Leff D

R
Ldx for parameters A; a

Leff D
A2

2

��
a

� d
2

�
d

2
a �  � d"e�1=a �

A2�

2
d
2C1

�
; d D 1; 2; 3: (9)

Variational parameters A; a, indicating the amplitude and inverse width of the local-
ized state, are linked to the number of atoms by the relation N D A2.�

a
/d=2. From

the conditions of stationarity of the effective lagrangian @Leff =@a D @Leff =@A D 0,
we get the following equations relating N with a and the chemical potential 

 D
d

2
a � d"e�1=a �

�N

2d=2

� a
�

�d=2
; (10)

N D
4�d=2

�

�
2

a

	 d
2�1

�
1 �

2"

a2
e�1=a

	
; d D 1; 2; 3:

In Fig. 3 we depict the (N;) curves obtained from the above transcendental equa-
tions for fixed values of " and for the cases d D 1; 2; 3. We see that for the 1D case
dN=d is always negative, this means, according to the Vakhitov–Kolokolov (V-K)
criterion [18], that the solution exists and is stable for any value of " without limi-
tations on the effective nonlinearity N� . In the 2D case, a threshold in N� appears
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Fig. 3 Left panel. VA existence curves for the 1D case (d D 1 in Eqs. (15)) for different values of
". The inset shows an enlargement for small values of . Curves refer to " values increased in steps
of 0:5 starting from " D 0:5 (upper curve and most left curve in the inset) to " D 2:0 (lower curve
and most right curve in the inset). Central panel. Same as for the left panel but for the 2D case
(d D 2 in Eqs. (15)). The inset shows an enlargement for small values of  close to the threshold
N D 4� . Right panel. Same as for the left panel but for the 3D case (d D 3 in Eqs. (15)). The
upper inset shows an enlargement of the curves close to the  D 0 axis, while the lower inset
displays the curves close to the N� D 0 axis, on a larger scale

which is predicted by VA to be exactly 4� for " D 0. Also notice that in this case
dN=d < 0 is still satisfied for most branch curves, meaning that the solution is
usually stable. The situation is quite different in the 3D case, where there is no lim-
iting threshold for existence but most of the curves display a positive slope meaning
that the solution is unstable. In particular, from the upper inset of the right panel we
see that for curves close to the  D 0 axis, dN=d change signs at N� 	 70 and
becomes positive for higher values of N� . The almost horizontal curves for lower
values of N� are displayed in the lower inset of the figure, from which we see that
dN=d changes from negative to positive after the curves have reached a maximum
at values of  which depend on ".

Notice that for the 3D case the above equations predict for " D 0 the number of
atoms dependence on the chemical potential as

N D
4�
p
�

�
p
�

:

Similar dependence N vs.  was previously obtained for stationary solutions of
3D NLS with cubic and quintic nonlinearity [19]. Also notice that according to
V-K criterion this solution is unstable. From the condition N � 0, we obtain the
limitation on the soliton width as
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2"

a2
e�1=a � 1; (11)

while for " >> 1 we obtain that the soliton exists if the width satisfies the condition

a < ac1 	
1

2.log.ı/C log.log.ı///
; ı D 2

p
2"; (12)

and a > ac2 	
p
2" � 1=2. For " D 5, for example, we obtain ac1 D 0:2, while the

exact value is ae 	 0:17.
In view of the analogy of the 2D and 3D GPE with the 1D NLS with quintic

and septic nonlinearity, respectively, it is of interest to compare the above VA equa-
tions with these cases. To this regard, we consider the 1D GPE with a high order
nonlinearity of the type � j j˛ with ˛ D 2; 4; 6

i t C  xx C � j j
˛ C " cos.2x/ D 0: (13)

Using the same approach as before, one can readily show that the effective
lagrangian in this case is

Leff D
A2

2

��
a

�1=2 "1
2
a �  � "e�1=a �

A˛�
�
˛C2
2

�3=2
#
; (14)

from which the following VA equations are derived

 D
a

2
� "e�1=a �

�N˛=2

. ˛C2
2
/1=2

� a
�

�˛=4
; (15)

N˛=2 D
2a

˛�

�
˛ C 2

2

	3=2 ��
a

�˛=4 �
1 �

2"

a2
e�1=a

	
;

here ˛ D 2; 4; 6. We see that the case ˛ D 2 coincides with the case d D 1

considered above, and the case ˛ D 4 with the quintic VA equations derived in [13].
Notice that for " D 0 Eq. (13) admits exact solutions also for ˛ D 4; 6. For the

septic case, indeed, we have, using  D ueimt ; m D � > 0, that

 D .
4m

�
/1=6sech1=3.3

p
mx/; (16)

is an exact solution with a norm

N D
21=3� 2. 1

3
/

3� . 2
3
/�1=3m1=6

; (17)

where � .x/ is the gamma function. The Hamiltonian for this solution is equal to
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H D

Z 1
�1

.j xj
2 �

�

4
j j8/dx D 0:44

m5=6

�1=3
:

From the above VA equations for the 2D case, one can derive the value of Nc for
small values of " ¤ 0 as: Nc D 4�.1 � 8" exp.�2//: For " D 0:2 we obtain
Nc D 9:845 which is in reasonable agreement with the value 10:8 obtained from
numerical simulations of the 2D case. We remark that for small values of " the
soliton is very extended in space and resembles a Bloch wave modulated with an
envelope. In this case an effective mass approximation may be appropriate which
allows to replace the GPE field equation with a nonlinear Schrödinger equation with
effective mass m� and nonlinearity ˇ. In the 2D case we have

iut C ˛.uxx C uyy/C ˇjuj2u D 0; (18)

where ˛ D m�=m;m�.�1/ D .@2E=@k2/kD0 and ˇ D .2�=L2/
R
d2r j	1;0j

4 (a
similar equation can be written also for the 3D case) . In this approximation the
norm of the gap Townes soliton can be evaluated as N D NT

˛ˇ
. For deep optical

lattices (" > 5) ˛ can be approximated as ˛ 	 "1=4 and the norm N 	 NT
"1=4ˇ

.

4 Numerical Study of Gap-Townes Solitons
and Delocalizing Transitions

In this section we investigate the existence curve of gap-Townes solitons in the
.N; "/ plane. As mentioned before, this curve coincides with the delocalizing transi-
tion curve which separates stable localized solutions from decaying ones. Its knowl-
edge is therefore important for experimental investigations of multidimensional
solitons. To this regard we remark that for the observation of multidimensional
BEC solitons parameters should be chosen between the delocalizing and the col-
lapsing curves. In the following we investigate the delocalizing curve by means of
direct numerical integrations of the 2D and 3D GPE with periodic potential and by
the corresponding 1D NLS systems with quintic and septic nonlinearities discussed
above, respectively. The existence of gap-Townes solitons is then shown by direct
numerical simulations of the multidimensional GPE using as initial conditions the
above mentioned product states, which are found by solving the 1D GPE with higher
nonlinearities by means of the self-consistent method described in [20]. In Fig. 4
we depict the existence curve of gap-Townes solitons of the 2D GPE for � D 1

as obtained from numerical integrations of the 2D GPE. The corresponding curve
obtained from the 1D quintic NLS approximation by means of a self-consistent ap-
proach is also shown. We see that for " > 1 the 1D quintic NLS curve agrees very
well with that of the 2D GPE, the deviations becoming evident only for strengths
of the OL which are less than " 	 1 (one recoil energy). This fact can be easily
understood from the observation that for a fixed value of " there is one value of N
for which the gap-Townes soliton exists and that by increasing " the corresponding
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Fig. 4 Left panel: Existence curve of gap-Townes solitons of the 2D GPE for � D 1. The contin-
uous line represents the delocalizing curve as obtained from the 1D quintic NLS approximation.
The dots joined by thin dotted line represent numerical results obtained from direct integrations of
the 2D GPE. Right panel: Existence curve of gap-Townes solitons of the 3D GPE for � D 1. The
line represents the delocalizing curve as obtained from the 1D quintic NLS approximation, while
the dots represent numerical results obtained from direct integrations of the 3D GPE

value of N decreases. This implies that for gap-Townes solitons in a strong OL the
nonlinear interaction is effectively small, due to the potential barriers which prevent
tunneling of matter into adjacent wells. On the contrary, in a shallow optical lattice
the matter can easily tunnel through the barriers and the effective (attractive) non-
linearity can be larger. Since the separability ansatz used to link the 2D GPE to the
1D quintic NLS works well when the nonlinearity is small, it is clear that a discrep-
ancy can arise at small values of ". The fact that the quintic NLS equation deviates
from the 2D GPE only for " < 1, however, makes the mapping between these two
equations very convenient for practical calculations. A similar situation seems to be
true also for the 3D case. In the right panel of Fig. 4 we depict the existence curve
of gap-Townes solitons of the 3D GPE for � D 1 as obtained from the 1D septic
NLS approximation by means of a self-consistent approach. Due to the long com-
putational times required in 3D simulations we have presented verification for only
few points of the curve. A more complete analysis will require further investigation.
In particular, the prediction of our analysis are checked by means of numerical inte-
grations of the 3D GPE in correspondence of the two filled dots depicted in the right
panel of Fig. 4 at " D 2, just above and below the delocalizing curve obtained from
the septic 1D NLS equation. In Fig. 5 we show the time evolution of the y-section of
a 3D gap-Townes soliton obtained for " D 2 in correspondence of these slightly un-
dercritical (left panel) and overcritical (right panel) points. We see that, in analogy
to what we observed in 2D case, the initial condition with an undercritical number
of atoms leads to the complete delocalization of the state, while in the overcritical
case a gap soliton state which remains stable over long time is formed. It is appropri-
ate to mention that the exact profile of the 3D gap-Townes soliton, which separates
these two behaviors is more difficult to obtain with the separability ansatz than for
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Fig. 5 Time evolution of the y-section of a 3D gap-Townes soliton obtained for " D 2with slightly
undercritical (left panel) and overcritical (right panel) number of atoms, corresponding to points a
and b in Fig 4, respectively

Fig. 6 Oscillations of the gap-Townes soliton when it collapses into the final gap state, according
to Eq. (1) with initial state taken as the product solution constructed from two quintic NLS with a
total norm increased by 1%. Shown is the y D 0 cross section of the 2D profile

the previous 2D case, since in the 3D case this ansatz appears to be less accurate.
The signature of the gap-Townes soliton state, however, is very clear as one can see
from the early stages of the time evolution depicted in Fig. 5 (notice from the left
panel that the undercritical state remains stable up to a time t D 20 before starting
to decay). This behavior strongly suggests the existence of gap-Townes solitons also
in the 3D case.

We now address to another important property of the gap-Townes soliton which
shows up in the transition to a gap soliton state for overcritical number of atoms. As
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it was already mentioned, even a slightly overcritical norm gives rise to a rapid
shrinking of the gap-Townes soliton. Although at initial stage of evolution this
behavior is similar to the collapse of ordinary Townes soliton, the final state is
different. Specifically, gap-Townes soliton approaches the (final) gap state via long-
lasting oscillations, as shown in Fig. 6. Each “reflection” from the broad state is
accompanied by emission of linear waves, which can be viewed as a tunneling of
matter from the localized mode into the extended one. This process also contributes
to the damping of the oscillations. We remark that these oscillations, having a very
regular behavior, could be used to detect the existence of gap-Townes solitons in a
real experiment.

5 Conclusions

In this paper we have shown the existence of gap-Townes solitons in the multi-
dimensional (2D and 3D) Gross–Pitaevskii equation with a periodic potential and
discussed its link with the phenomenon of delocalizing transition. These solutions
have the peculiarity of being unstable under small fluctuations of the number of
atoms and separate localized (soliton like) states from extended (Bloch like) ones.
The existence curve in the parameter space of this particular solution is very useful
since it provides the lower threshold for the existence of localized states. The gap-
Townes solitons discussed in this paper are a natural generalization of the Townes
solitons of the nonlinear Schrödinger equation (without periodic potential). The
existence of Townes solitons in a nonlinear glass sample modelled by the NLS equa-
tion was experimentally demonstrated in Ref. [21]. The fact that the transition from
a gap-Townes soliton to a gap soliton is always accompanied by regular oscillations
gives the possibility to indirectly observe the multidimensional gap-Townes solitons
discussed in this paper in real experiments. In particular we expect these solitons to
be observed both in multidimensional BECs in OL and in nonlinear optics systems,
including 2D and 3D photonic crystals and arrays of nonlinear optical waveguides.
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Hydration Effects on Photophysical
Properties of Collagen�
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Musumeci, Giuseppe Privitera, Maurizio Tedesco, Antonio Triglia, and
Larissa Brizhik

Abstract Collagen structure, in which water molecules mediate some networks of
intra-chain and inter-chain hydrogen bonds, appears to be a promising model system
to investigate in great detail the relationships between biological organization and
the characteristics of Delayed Luminescence (DL), the phenomenon consisting of
the prolonged ultra-weak emission of optical photons after excitation of the system
by illumination. Samples of type I collagen molecules from tendons have been stud-
ied on varying their hydration state. Comparison of their dielectric properties with
the DL response, along with the acquisition of excitation and emission spectra of
tendon collagen, in its native and dried state have gathered additional information
allowing to test hypothesis on the origin and/or the mechanisms of photoinduced
DL emission. The peculiar structure of collagen, where a relevant role is played by
the hydrogen bonded water network, suggested that collective excitations could be
generated in this macromolecule. Upon hydration, changing of the phonon spec-
trum could significantly affect the type of the ground electron states which can be
excited in the collagen, as evaluated by applying a variational method. Changing in
the ground electron states could take into account for the different regimes of the
DL decays, in turn.
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1 Introduction

Most of the biological and other materials emit, on being illuminated, optical pho-
tons characterized by an ultraweak intensity and relatively long duration. This
low-level post-illumination emission is usually termed Delayed Luminescence (DL)
and is something like 103–105 times weaker than fluorescence. Its first observations
from biological systems date back to the 1950s, when Arnold and Strehler unex-
pectedly noticed a light emission from green plants lasting even for seconds after
illumination [1]. Later on, the work of several researchers has proved that such post-
illumination emission of light is typical not only of green plants, indeed it has been
measured also in seeds, yeasts and mammalian cells and tissues [2].

In general DL is less ‘popular’ than fluorescence [3], probably because it is ex-
tremely polyphasic (the lifetime spectrum extends from about 10�7 s to more than
10 s, so that the signals have to be followed over many time decades) and because
it is inherently a weak signal prone to noise contamination. Nevertheless a growing
interest has been manifested toward DL phenomena especially after a long exper-
imental work that has established that DL is a sensitive indicator of the biological
state of the system. In some cases it has been possible to express this connection
through an analytical relationship between some biological parameters and some
parameters connected to the DL of the system under study. This particular aspect is
of obvious interest for the applications.

DL emitted from biological samples is dependent on the kind of sample, on
its state and on the characteristics of the illumination, still, some general charac-
teristics have been observed which appear common to several systems [4]. The
experimental dependence of DL intensity as a function of the time elapsed from
the end of excitation is usually fitted by a hyperbolic decay or Bequerel empirical
law I D I0=.1C t=t0/

m. In Ref. [4] this is shown for DL from very different sys-
tems (unicellular algae, yeast cells, pepper seeds and tomato fruits) for values of
the elapsed times ranging from 0.1 to 100 s. This property holds only approximately
when the temporal range is increased, say, starting from about 10�s. In this case,
the trend can be fitted over the whole experimental range only taking into account
the sum of more hyperbolas [5], their product or other empirical functions. We can
therefore state that the decay of DL from biological system can be fitted by a hyper-
bolic trend in limited intervals of time, only.

It’s worth to remember that the hyperbolic trend has been introduced to explain
the non-exponential decay of luminescence in crystallophosphors, i.e. a kind of
luminescence arising from an ordered spatial structure rather than from isolated
molecule levels. The possibility to apply such a model, based on the long-range
order present in solid state systems, also to biological systems, is generally under-
valued due to the lack in the latter of such time-independent order [6]. On the other
hand, it should be considered that biological systems contain ordered metastable
structures with dimensions of the order of tens of nanometers and this could in prin-
ciple influence the behavior of the electronic orbitals relative to the single molecules.
In Ref. [6] this solid state approach has been validated by comparing some features
of the DL from a simple unicellular organism with that from some solid state
systems.
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In order to better understand the properties of DL in the biological systems it
is preferable to deal with relatively simple systems or pure substances. In this re-
gard collagen is a protein which presents a well defined elementary structure but
nonetheless it can be found hierarchically organized until a macroscopic level, as
for instance in tendons, in order to fulfill its biological functions.

Moreover collagen is frequently selected as the model protein due to its special
molecular structure [7] in order to study the role of water in living systems: protein
hydration and protein induced water structuring determine chemical behavior. Cell
biologists have proposed phenomenological models which suggest that water inside
cells has properties differing from water in the bulk state [8].

Collagen in tendon is primarily a one-dimensional system, with long range order
and capability of self-organization, so it has offered a great opportunity for funda-
mental biophysical research [9].

In order to explain the main properties of collagen Delayed Luminescence and
its drastic changes when structural water is removed, we considered collagen as a
solid-state system possessing long range order essentially in one direction. These
macromolecular collagenous structures support existence of the collective electron
states, in particular, solitons and small polarons, that can be excited in the photo-
illumination process. We show that the kinetics and quantum yield of the DL depend
significantly on the content of water in the sample and that these characteristics can
be correlated with the properties of the ground electron states in macromolecular
structure. Upon drying a sample, the phase transition takes place corresponding to
different parts of the parametric diagram of the ground electron states, namely, to
polaron and soliton parts. The properties of these two types of charge carriers dif-
fer significantly and this could take into account for the difference observed in the
parameters of the DL collagen from native state to dry one.

2 Materials and Methods

2.1 Collagen from Tendon: Sample Preparation

The sample has been prepared according to the following procedure [10]. The ten-
dons were provided by the slaughterhouse, immediately after the animals were
butchered. Tendons were stripped of the external sheath and washed in bidistilled
water. After washing, the tendons were cut into pieces, which were rinsed in bidis-
tilled water and immersed in a 1 M solution of NaBr for 4 h. Then they were
immersed in ether for 2 h, washed in four changes of bidistilled water, dipped in
bidistilled water and stored at low temperature (about 11ıC). This procedure allows
to obtain a simplified structure composed only by collagen chains and bounded wa-
ter. To perform the measurement the pieces were cut into slices perpendicular to the
long axis of about 1 mm thick and about 10 mm diameter.
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Slices of native tendon were then dehydrated gently at room temperature, keeping
them flat by gently compressing them between rigid plastic plates covered by filter
paper. A suitable holder system was designed to improve the natural convection of
surrounding air, in order to reduce the inhomogeneity of the material during the
drying process. The relative tendon water content h has been calculated using the
following equation:

h D
�
W �Wdry

�ı
Wdry (1)

where W is the weight of a sample at a certain humidity and Wdry is its weight after
maximum dehydration. The samples were weighted prior and after DL measure-
ment.

2.2 Collagen Gel Preparation

In order to compare DL from a collagen hydrogel with that of a solution of collagen
the following protocol has been observed. The acid-soluble collagen from calf-skin
(Collagen Solution, 3 mg/ml Ultra Pure Bovine, SIGMA C4243) has been mixed on
ice with NaOH 0.1 M, in such a way to adjust PH value at about 7.5. After vortexing
the collagen concentration was 2.7 mg/ml. Immediately after preparation, a volume
V D 25�l from the mixture has been pipetted into the sample holder (see Section
2.3) and incubated for 1 h at 37ıC. In this way gels were rapidly formed. The ‘sol’
sample was obtained substituting the NaOH with an equal volume of bi-distilled
water. In such a way, after mixing on ice and vortexing, the collagen concentration
was again 2.7 mg/ml while PH didn’t change appreciably. Also in this case, imme-
diately after preparation a sampling volume V D 25�l was pipetted into the sample
holder and DL measurements were performed.

2.3 Delayed Luminescence Experimental Setup

DL measurements have been performed by using an improved version of the appa-
ratus called ARETUSA setup [11, 12], whose general scheme is shown in Fig. 1.

The source of the experimental setup is represented by a high-intensity pulsed
nitrogen laser (Laserphotonic LN203C) providing pulses at � D 337 nm, used to
directly illuminate the sample or to pump a dye-laser which can emit at several
wavelengths. The pulses of the laser have duration of a few nanoseconds and the
maximum energy for every pulse is about 100�J. During the measurements the laser
pulse power can be checked by a standard energy-measuring head (Power Meter
Ophir PE10-V2).

The detector of the setup is a photomultiplier tube (PMT) enhanced for sin-
gle photon counting (Hamamatsu R-7206–1, multialkali, spectral response 300–
850 nm) which can be cooled down to �30ıC using a circulating cold liquid in
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Fig. 1 Scheme of the detection setup

direct contact with its surface. In general during the laser pulse, used to excite DL
in the sample, a large quantity of photons diffused by the sample would be able to
reach the photocathode. This would normally damage in an irreversible way. In or-
der to prevent the dimpling of the photomultiplier during the sample illumination,
the setup is provided of an electronic system able to turn on and off the PMT in
the microsecond range acting as an electronic shutter. Thus DL emission has been
observed in a dynamic window ranging from about 10�s and lasting until the signal
was well above the background.

The low level of the emitted intensity in general does not allow to detect signals
with a high spectral resolution. In our case, the spectral analysis is performed by a
set of broad band (80 nm FWHM) Thermo-Oriel interference filters, put in a suitable
wheel, between the sample and the photomultiplier.

The whole data acquisition process is performed and controlled by a personal
computer through a multi-channel scaler (Ortec MCS PCI) plug-in card. A smooth-
ing procedure is used in order to reduce random noise: experimental points are
sampled in such a way that it results �ti=ti D constant, so that data will result
equally spaced over a logarithmic time axis. The sensitivity factor of the apparatus,
that is the product between the optical transmittance of the filtering system and the
quantum efficiency of the photomultiplier, has been evaluated and used to correct
the emission spectra.

To enhance the collection efficiency the excitation light is sent to the specimen
through one branch of a double-branched fiber bundle whereas the photo-induced
emission, coming out from the same irradiated specimen area, is collected by the
inner part of the same bundle and carried up through a second branch to the detector.

In order to perform measurements on liquid samples, a novel kind of sample
holder have been realized (Fig. 2). In this novel configuration the sample consists of
a small liquid drop (volume D 25�l) with liquid sample suspended in. The drop
is sustained only by contact with the border of a circular hole, performed on top of
a hollow cylinder (Fig. 2). The fiber probe is held at a fixed distance slightly above
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Fig. 2 Photographs (up) and schematic drawings (down) of the novel sample holder which has
been used for measurements on liquid samples

the sample. Diameter of the hole is about 3.5 mm, larger than the spot generated by
excitation light coming out from the fiber probe. This configuration allows to use
small sample quantities and avoid unwanted background signals coming out from
any solid material underlying liquid sample. In this case to evaluate the background
of the setup, the signal obtained from a sample made of only bi-distilled water has
been registered too.

3 Delayed Luminescence from Type I Collagen

Collagen is the major structural component of connective tissues. It is the most abun-
dant protein in animals, comprising approximately one-third of the total protein by
weight. At least 19 fibrillar and non-fibrillar, genetically different, types of collagen
have been distinguished [13].

The monomeric building unit for the collagen fiber, referred to as a collagen
molecule, is composed of three polypeptide chains, two identical ’1 chains and
one distinct ’2 chain, assembled in a triple helix with a coiled coil conformation.
The primary structure of this unit protein is made mostly of repeating Gly-X-Y
triplets, where Gly is the aminoacid Glycine and X and Y are often the iminoacids
Proline (Pro) and Hydroxiproline (Hyp). The role of the rod-like triple helix lies in
its capacity to self-associate in a variety of forms as well as its ability to bind a wide
range of ligands. The extensive hydrogen-bonded water network, together with the
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high content of sterically restricted imino acids, are the major contributors to the
stabilization of triple helices, whereas electrostatic and hydrophobic interactions
define intermolecular association and ligand binding. Moreover, mutations in the
repeating Gly-X-Y sequences of triple helices have been shown to cause a variety
of human diseases [14].

In contradistinction to other proteins, the collagen family possesses characteristic
structural and chemical properties which permit its definitive identification. Colla-
gen occurs in dense fibrous tissue of high tensile strength, as in tendons, or less
tightly woven tissue, as in skin, or in more sparse distribution as in the loose con-
nective tissue. The fibrous protein occurs in various hierarchies of size: fibers of
micrometric diameter, fibrils with width of the order of tens to hundreds of nanome-
ters, protofibrils (which are the unit columnar arrays that associate laterally to form
fibrils) and finally the collagen macromolecules. In particular tendons are composed
of crystalline arrays of type I collagen molecules as indicated by a number of X-ray
diffraction studies [15, 16], and tendon collagen is considered a model system for
the investigation of protein–water interaction in biological systems.

3.1 Spectral and Kinetic Properties of Collagen DL

Delayed Luminescence from bovine Achilles’ tendon has been shown to depend
strongly on the state of this system. Figure 3 reports the emission and excitation
spectra of native and dry collagen sample. The emission spectrum has been obtained
under excitation at the wavelength �exc D 337 nm and considering the total number
of photons emitted in the observed time window. In the same graph the spectrum
of fluorescence from the same sample is reported for comparison. The fluorescence
spectrum, obtained under excitation at the same wavelength �exc D 337 nm and us-
ing a standard spectrophotometer, is peaked between 400 and 450 nm according to

Fig. 3 DL excitation spectrum (�), DL emission spectrum (histogram) and fluorescence emission
spectrum (dotted line) for (a) native and (b) dry collagen
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what is reported in Literature [17, 18]. The DL emission is clearly shifted towards
longer wavelengths with respect to the fluorescence emission. The excitation spec-
trum for DL has been obtained fixing the emission wavelength at �em D 763 nm
and is reported in Fig. 3a along with the other spectra. This spectrum decreases very
rapidly towards 400 nm in a fashion similar to the excitation spectrum of collagen
fluorescence [17].

The same kind of spectra have been acquired for samples of dry bovine
Achilles’ tendon collagen (FLUKA-27662, Collagen from bovine Achilles’ tendon,
lyophilized) and reported in Fig. 3b. It can be seen that the fluorescence emission
spectrum and the DL excitation spectrum do not differ substantially from those
shown in Fig. 3a. Instead the emission spectrum of DL from dry collagen appears
to be shifted towards shorter wavelengths with respect to that of the native sample.
The spectral analysis performed in native and dry collagen shows that there is a
remarkable difference on the shape of the emission spectrum of DL whereas the flu-
orescence spectrum is unaltered in the two samples. Indeed, in native collagen, DL
intensity increases almost monotonically towards near-infrared wavelengths while,
in the dry sample, it has a peak between 600 and 700 nm. The different behaviour
of fluorescence and DL has to be probably ascribed to the different origin of the
emission, the first one being due to single fluorophores and thus being relatively
insensitive to the collective structure of the system. On the other hand the emission
spectra indicate that DL properties can be extremely sensitive to changes in the
structure of the system, and this is even more evident by taking also into account
the time dependence of the DL signal (see below).

The decay trends of five different DL spectral components have been reported in
Fig. 4 for the native and dry samples respectively. The trends of the single compo-
nents are not easily described by simple hyperbolic-like curves.

Significant differences can be observed in the relaxation kinetics of DL from na-
tive and dry collagen. Even though the time dependence is not simple to be analyzed,
it is possible to note that the corresponding spectral components reported in Fig. 4
evolve versus time in a remarkably different manner. This is an indication that, in
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Fig. 4 Decay trends of the different spectral components of DL from (a) native and (b) dry colla-
gen samples
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the native and in the dry state, there is also a significant variation of the probability
of decay of the excited states responsible for the DL emission, apart from variations
in the spectra observed yet. From Fig. 4 it is also evident that different spectral com-
ponents of DL, in both native and dry samples, do not follow the same relaxation
kinetics. For instance, in the case of dry collagen, shorter wavelength components
appear to follow a trend which is more similar to a power law (linear in a log-log
scale) with respect to the one followed by the longer wavelength components.

3.2 Dependence on the Structure: Sol-gel Transitions

Collagen in tendon is hierarchically organized from molecules to fibers and water is
involved in the interaction between collagen macromolecules so that the removal of
water from tendon may alter noticeably its physical properties.

Measurements of DL on tendon collagen suggest that the structure of the system,
strongly influenced by protein–water interaction, determines the spectral and kinet-
ics properties of DL. This evidence agrees with the idea that DL originates from
the excitation and subsequent decay of collective electronic states in the biological
macromolecules (see Section 4.2) rather than from specific fluorophores.

According to this point of view, DL from collagen should be sensitive to ex-
periments involving directly the state of aggregation of the collagen molecules. So
DL has been investigated in collagen solutions and gels, which probably represent,
also from the chemical point of view, the most simple and controllable example of
collagenous systems. In particular the sol-gel transition has been considered.

In order to monitor the DL signal during the sol-gel transition, the sample of PH-
adjusted collagen solution (see Section 2.2) has been left to polymerize at constant
temperature in the measuring chamber. DL was measured at intervals throughout
the gel formation.

The kinetics of collagen precipitation is generally described by temperature- or
other parameter-dependent sigmoid-like curves, so two different incubation temper-
atures, T D 23ıC and 30ıC respectively, have been considered and in Fig. 5 the
spectrally unresolved intensity of the DL (i.e. the signal detectable in the spectral
sensitivity range of the photomultiplier, without any band-pass filter), integrated in
the time interval 10�s–0:1 s, is reported as a function of the time elapsed from the
sample preparation.

In both cases there is a lag phase, i.e. a period during which the relative increase
of the signal per unit time is very low, followed by a sigmoid portion or growth
period, in agreement with the general behavior reported in literature [19]. The two-
step nature of collagen precipitation in solution has been discussed [19] in terms of
a nucleation model. The first step, occurring in the lag period, consists mainly of the
formation of nuclei whereas the second consists of the growth of these nuclei into
fibrils. The time of half-growth t0:5 of the sigmoid portion takes approximately the
value t0:5 D 265 and 240 min, for T D 23ıC and 30ıC respectively. These values
appear quite long if compared with those reported in Ref. [19], however, as it has
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Fig. 5 Total number of DL
counts as a function of the
polymerization time for sam-
ples kept at T D 23ıC (dots)
and T D 30ıC (triangles)

Fig. 6 Typical microscope
image of a sample of collagen
gel after drying. Bar length is
50�m

been pointed out yet, collagen polymerization kinetics is very sensitive to changes
in various physical–chemical parameters, so that differences in the used protocol
may justify the observed discrepancies.

Morphological characterization of the three-dimensional structure of the collagen
network was out of the scope of the present work. However, as an additional control,
at the end of the measurement the gel samples have been completely dried under a
laminar flow hood in such a way that only a very thin film remained suspended
in the sample holder. Such film could be easily observed with a standard optical
transmission microscope, and ordered structures like those reported in Fig. 6 could
be detected. The DL time decay from this dry sample has been measured as well,
and reported in Fig. 7.

As shown in Fig. 5 when the system switches from the sol to the gel state, there is
a dramatic increase of the DL signal. Such an increase is better expressed in Fig. 7
where the raw spectrally unresolved DL signals obtained for the ‘sol’ and ‘gel’
samples are reported. The data represent the average of measurements performed
on four independent samples, after subtraction of the background signal. It appears
that the signal from the collagen solution is very weak, slightly above the exper-
imental background of the setup. On the other hand, it is clear that a remarkable
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Fig. 7 Time dependence
of the spectrally unresolved
signal of DL coming from
a collagen solution (open
squares), a collagen-based
hydrogel (white dots) and the
same gel after drying (white
triangles). The DL decays
relative to samples of native
(black dots) and dry (black
triangles) tendon are reported
for comparison

increase of the DL intensity accompanies the gel formation, i.e. the spontaneous
creation of the more complex structure made up of molecules associated in the form
of interconnected fibrils and fibers which characterizes the collagen network.

Due to the weakness of the signals, only the spectrally unresolved signal has
been considered. The trend can be described in the first approximation as a power
law decay of the form I DA=tm (corresponding to the tail of a hyperbolic decay
I D I0=.1C t=t0/

m for t� t0/, with m	 1:10. The DL trend of the same sample
after drying, also reported in Fig. 7, is not remarkably different, and fitting with the
same function yields the value m 	 1:15. Significant differences have not been de-
tected in the decay curves as a function of the incubation time, neither as a function
of different temperatures (fitting parameter m takes the value m	 1:1 for both gels
formed at TD 23ıC and 30ıC).

These results show that even if the single protein monomers do not exhibit
Delayed Luminescence, the self-assembled structure can instead give rise to a non-
negligible signal. Indeed when monomers are brought together in a more complex
structure a great number of covalent or non-covalent bonds come into play, giv-
ing rise to new kinds of electronic states which are suitable to describe the ground
state of the system. Worth to note that while DL doesn’t seem to change consid-
erably after gel drying, a strong difference has been observed between DL from
native and dry tendon (see Fig. 7). In the case of tendon, the structure is more com-
plicated and its dehydration probably could not be assimilated to the gel drying.
It’s worth to note that, in the case of the gel, we are dealing with a system with a
very high starting water content (�99%) but a final residual quantity which remains
largely undetermined. Thus it’s not possible to make a real comparison between
dry gel and dry tendon, since that in only in the latter case the quantity of water
present in the system can be monitored with enough precision, as we shall see in the
following.
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3.3 The Role of Water Content in the Complex
Structure of Tendon

We pass now to examine the same collagen protein in the more complex, hierarchi-
cal structure of tendon, investigating in more detail the DL emitted by this system.

Several high resolution X-ray diffraction studies on native or molecular ana-
logues of collagen have been performed [20–26] and it has been proposed that a
water bridge network surrounds the collagen molecule. A molecular model consis-
tent with these experimental evidences supports the existence of three categories of
water bridges, as confirmed also by NMR experiments [27].

Accordingly to literature the most tightly bound water fraction consists of one
highly immobilized water bridge per every three protein residues. Since the aver-
age mass per aminoacid in collagen is 91.2 Da, the water content corresponding to
this tightly “bound water” fraction can be estimated as hb D 18Da=.3�91:2Da/ D
0:0658 gwater=gprotein [21, 28]. A second, less immobilized, fraction is represented by
three additional “cleft water” molecules per tripeptide which reside in the groove-
like depressions between the chains of the triple helix. In this case hc D 3 � hb D

0:197 gwater=gprotein. Up to now we have considered four water molecules per tripep-
tide or a partial water content equal to hb C hc D 0:263 gwater=gprotein. These water
molecules constitute linear chains which twist around forming a triple helix of wa-
ter in the clefts of the collagen triple helix, according to the original hypothesis
formulated by Berendsen [29].

The total water content of fully hydrated tendon in its native state has been
measured [30] and is about htot D 1:62 gwater=gprotein Š 6 � .hb C hc/. So the
remaining water constitutes a third fraction which has been shown to reside in the
first “interfacial monolayer”, corresponding to a water content him D 5 � 0:263 D

1:315 gwater=gprotein. This layer corresponds to five additional chains of water per
groove, so the total amount of water can be accounted for by considering about six
chains of water per groove [27].

Indeed, removal of vicinal water, i.e. water that interacts with the protein, is ex-
pected to induce alterations in the structural properties of the protein and therefore
in the spectral and/or kinetic properties of Delayed Luminescence (DL). In order to
save time, only two spectral components (�em D 460 nm and �em D 645 nm) of DL
have been registered for every humidity value.

The decay trends of the DL intensity obtained for the two spectral components
are reported in Figs. 8 and 9 respectively. Luminescence kinetics appears to be also
sensitive to variations in the relative humidity of the tendon.

Only six curves, corresponding to six hydration level from native to dry state,
have been reported for the sake of clarity. It appears that the drying process is ac-
companied by the change in the decays slope.

Moreover, the total number of DL counts increases drastically at a certain value
of water content, and correspondingly a blue-shift is observed in the emission
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Fig. 8 Experimental time dependence of DL from bovine Achilles’ tendon at different water con-
tent for the spectral component at �em D 645 nm

Fig. 9 Experimental time dependence of DL from bovine Achilles’ tendon at different water con-
tent for the spectral component at �em D 460 nm

spectra of dried samples with respect the native ones. More precisely (data not
shown) it happens when the water content is close to the value corresponding to
the tightly bound and cleft water forming the Berendsen linear chain [29].

Removal of this vicinal layer appears to affect the spectral properties of DL,
and it is expected to affect strongly the dielectric properties of the collagen macro-
molecules, too.
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3.4 Delayed Luminescence and Dielectric Properties of Collagen

Several researchers have investigated the dielectric properties of biological sys-
tems over the years [31]. Biological materials are characterized by high dielectric
permittivity at low frequency which falls off in distinct steps with increasing fre-
quency. Three main dispersion regions are individuated: extra low frequencies
(’-dispersion), radiofrequency (β) and microwave frequencies (γ), and in each re-
gion a different mechanism is responsible for the characteristic dispersion law. In
order to understand the role of water network in collagen structure, measurements
of Dielectric Spectroscopy (DS) have been performed on bovine Achilles’ tendon
as a function of the water content and variations in the dielectric permittivity can be
compared with variations in the DL [10, 32].

The reported results can be summarized as follows. The dielectric permittivity
of native tendon has a value of the order of 105 at 1 kHz and then decrease on
increasing the frequency reaching a value of the order of 102 at 1 MHz, in agreement
with previously reported results [33].

Dielectric permittivity at different frequencies depends on the relative water con-
tent h as shown in Fig. 10. For h > 0:5 dielectric permittivity is strongly dependent
on the frequency but not on the water content. At higher frequencies the value of
dielectric permittivity is comparable to that of water while for lower frequencies it
becomes very large. For values of h between 0.1 and 0.5 there is a transition, more
evident at low frequency, towards lower values of the dielectric permittivity.

This dependence of the dielectric permittivity on the water content can be
compared with the analogous trend obtained from measurements of spectrally unre-
solved DL from bovine Achilles’ tendon. Also in this case, in fact, a transition can
be observed in the properties of DL moving from the native toward the fully dried
state (see for instance Figs. 8 and 9), taking into account the strong variations in
the total number of emitted photons and in the decay kinetics of the luminescence
signal. In Fig. 11 the total number of emitted photons and the dielectric permittivity
measured at 5 kHz are compared: it appears that on drying both quantities show an
abrupt change when the more tightly bound water, corresponding to the Berendsen

Fig. 10 Dielectric permit-
tivity as a function of the
collagen water content h for
different values of the fre-
quency: 500 Hz (thick solid
line), 5 kHz (dashed line),
50 kHz (dot-dashed line) and
10 MHz (light solid line)
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Fig. 11 Comparison of DL
and DS measurements as
a function of the tendon
water content: total number
of DL photons emitted in
arbitrary units (ı) and inverse
of dielectric permittivity at
5 kHz (�)

linear chain of water (see Section 3.3), is removed. This correspondence stresses
once again the central role of hydration of the triple helix structure in determining
the observable properties of collagen.

4 Modeling Delayed Luminescence from Collagen

The intriguing structures of biological systems have always attracted the interest of
physicists, and since earlier times physical methods have been applied to investigate
the nature of biological components [34, 35]. A living organism is made up of a
large number of interwoven molecular networks, which primarily involve proteins,
the macromolecules that enable and control virtually every chemical process that
take place in the cell. Understanding how intra-molecular interactions determine
the collective behavior of the protein, i.e. its native physical conformation and its
correct functioning, is only one step in the more general problem of understanding
how a living system, hierarchically organized from molecules to cells and tissues,
actually works.

Several researchers have attempted to apply solid state theory to the problem
of describing biological processes at the molecular level. The approach is partly
inspired by the ordered structures observed in the biological world, as for instance
the periodic structure of protein and DNA molecules, the translational symmetry
observed in the chloroplast matrix, the quasi-crystalline arrangement of proteins in
certain membranes, and so on.

Methods of solid state physics have been applied in particular in the investigation
of the central issue in bioenergetics, that is the origin of the high efficiency of the
storage and transfer of energy, electrons and protons within and between molecules.

The transfer of energy in protein structures has been discussed in the framework
of the electronic states which describe the possible excited states of a molecular
crystal [36, 37]. On the other hand, when dealing with a crystal the possibility of
luminescence from collective electronic states should be also taken into account.
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Since several experimental evidences indicate that Delayed Luminescence (DL)
is dependent on the state of the biological system under consideration, it appears
reasonable trying to connect this phenomenon with the participation of collective
states of these structures.

4.1 Collective Excitations in Low-Dimensional Biological Systems

The original idea that a novel mechanism could be involved in the localization and
transport of vibrational energy in proteins was put forward in 1973 by A. S. Davydov
[38, 39].

According to his original idea, the vibrational energy of the CDDO stretching
(also called Amide-I) oscillators that is localized on the alpha-helix structure acts
via a phonon coupling effect to distort the helix structure. The helical distortion
reacts to trap the Amide-I oscillation energy preventing its dispersion. This effect is
called self-trapping of the excitation.

This idea was of great importance for biochemistry and later on a huge amount
of theoretical and experimental work has developed around what has been called the
Davydov’s soliton [40–45].

The mathematical procedures involved in the analysis of Davydov’s soliton are
similar to those developed in the polaron theory.

The Davydov’s soliton is propagated in the ’-helix because of its particular struc-
ture, displaying the three chains of H-bonds connecting the peptide groups along the
helix axis. This structure is a special case of quasi one-dimensional molecular crys-
tal, as many other examples could be found among the biological macromolecules.

In order to recall briefly the main points of the theory, let assume that a molecular
chain consists of N molecules, such as peptide groups in the polypeptide chain
(unit cells), aligned along the z-axis at equilibrium distance R from one another
and that internal (electronic or vibrational) excitations of isolated molecules are
characterized by energy " and electric dipole moment Ed at an angle 
 to the z-axis.

The Hamiltonian for the collective excitations is thus written as the sum of three
terms

Hsol D Hex CHph CHint (2)

containing the operator for internal excitation Hex , the operator Hph for the dis-
placements of the molecules and the interaction operator Hint , expressed respec-
tively as:
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where the summation is carried out over the N molecules of the chain, BCn and Bn
denote respectively the creation and annihilation operators for the excitation on the
nth site (the Amide-I vibration in the case of Davydov’s soliton in ’-helix), J is the
resonance interaction energy, –D is the energy of the chain deformation interaction,
M is the mass of the molecule, � is the elasticity coefficient for the chain, pn is the
momentum operator and � is the exciton–phonon coupling parameter.

After some calculations it can be shown that the Hamiltonian Eq. (2) leads to the
system of equations which can be reduced to a form of the non-linear Schrödinger
equation, which is known to admit solutions in the form of solitary waves [37].

The main properties of DL in biological systems indicate that this phenomenon
can be connected with coherent electron states in macromolecules. Biological cells
contain several kinds of low-dimensional macromolecules as, for instance, alpha-
helical proteins, actin and other cytoskeleton filaments, etc., whose structure is
represented by arrays of parallel quasi-1D polypeptide chains formed by repeat-
ing peptide units. In general these chains are characterized by strong exchange
and/or resonance interaction between neighboring molecules of the same chain and
relatively weaker inter-chain interaction. Regarding the electronic structure, these
macromolecules behave as semiconductor-like quasi-1D systems so that it appears
reasonable to admit the existence of coherent collective (exciton or soliton) states.
A model which connects DL to the formation of such states has been formulated
and tested for simple biological systems able to perform photosynthesis [46–49].

4.2 Delayed Luminescence Arising from Collective States
in the Collagen Macromolecules

The experimental evidences on Delayed Luminescence from biological systems are
not confined to plants or organisms capable of photosynthesis. In view of these
considerations, it appears interesting to test the validity of a general model, based
on the formation of collective excited states in the biological macromolecules, able
to describe at least some of the properties of DL on the basis of physical principles.

As it has been mentioned above, the primary structure of collagen is formed by
the sequence .Gly–X–Y/n, where the first component is the amino acid glycine
(Gly) and X and Y are in most cases the iminoacids proline (Pro) and hydrox-
yproline (Hyp) respectively. The triple helix model for the secondary structure,
containing three polypeptide chains, was proposed in order to accommodate these
amino acid features and fit the fiber diffraction pattern. In this model, each polypep-
tide chain adopts a left-handed helix stabilized by a high iminoacid content. A set
of three helical chains are staggered by one residue with respect to each other and
are supercoiled about each other in a right-handed manner such that adjacent chains
are linked by H-bonds between the groups CDDO and H–N of X and Gly residues
respectively. The Gly–X–Y sequence requirement is generated by the close packing
of the three chains with interchain hydrogen bonds, which can occur without distor-
tion only if Gly is the every third residue [50]. Unlike ’-helical and β-sheet protein
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structures, which are stabilized by the participation of every backbone carbonyl and
amide group in N–H � � �C D O hydrogen bonds, the triple-helix shows a serious de-
ficiency in this regard. The only direct H-bonds of the type fGly/N–H � � �C D OfXg
leaves the carbonyl group of the Gly residues and the carbonyl of the residue in the Y
position with no amide hydrogen bonding partners. In addition, the hydroxyl group
of Hyp points out from the triple helix and cannot directly bind via hydrogen bond to
any other group within the molecule. As a result, an extensive and ordered water net-
work [51]) forms intra- and inter-chain hydrogen bonds with the available carbonyl
and Hyp hydroxyl groups. Variations in the number of water molecules involved in
water-mediated H-bonding are seen in the crystal structure, and the water-mediated
H-bonds are not fully occupied. However, on the average, collagen binds in hy-
drophilic position one or more molecules of water [51].

In order to investigate the formation of collective excitations in the collagen
macromolecule, one can model it as a simple quasi-1D molecular periodic system,
taking into account the role of hydration. In the absence of water, the three peptides,
Gly, X and Y, form the repeating unit of a strand in terms of the crystal structure. Ev-
ery Gly forms a soft H-bond with the X of another chain. We can therefore model, in
the first approximation, dry collagen as a single chain with a three-peptide unit cell
with one optical mode of vibrations, which accounts for the direct hydrogen bond.

In the presence of water, a complex hydration network surrounds the collagen
molecule. As a result, the unit cell of a hydrated collagen strand has more than
one hydrogen bond, and, therefore, the phonon spectrum displays more than one
optical branch (one intrinsic mode and others due to hydrogen bonding to water
molecules). Moreover, the effect of biopolymer–water interaction on the collective
modes of vibration of some proteins has been investigated [52–54]. Low-frequency
collective acoustic modes have been determined experimentally and in some cases
assigned to the collagen hydration monolayer [54]. Therefore, we model hydrated
collagen as a simple chain with two optical modes at the low level of hydration and
with optical and acoustic modes at sufficiently higher hydration level.

The variations of the phonon spectrum, induced by the different degree of hy-
dration, are significant from the point of view of the type of the ground electron
states which can be excited in such a chain, that represents our simplified collagen
model. The ground state of a quasi-particle (exciton, electron or hole) interacting
with optical and acoustic phonons in a one-dimensional chain, can be conveniently
investigated using a variational method [55–58]. There are three types of ground
states corresponding to the three principal approximations used in the Hamiltonian
(Eq. (2)):

1. Weak coupling approximation, leading to an almost free quasiparticle state.
2. Strong coupling approximation, leading to the small polaron state which corre-

sponds to the autolocalization of a quasiparticle within one lattice site and local
chain deformation.

3. Large polaron approximation valid at the intermediate values of coupling con-
stant and leading to the autolocalization of a quasiparticle within several lattice
sites. Such states are described within the zero adiabatic approximation when ki-
netic energy of lattice vibrations is small, and correspond to the spontaneously
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localized states with the broken translational symmetry. This case is especially
interesting for one-dimensional systems in which the soliton-like states can exist
and be responsible for charge and energy transport in the form of exceptionally
stable non-spreading quasiparticles.

It is convenient to use two dimensionless parameters g and � describing respectively
the electron–phonon coupling strength and non-adiabaticity of the system. In the
case of a quasi-particle interacting with optical phonon modes they are defined as:

gopt D
Ebind

2J
D

�2opt

2J h̄�0

(6)

�opt D
h̄�0

J
(7)

where Ebind is the lowering of the quasi-particle energy due to electron-phonon in-
teraction, �opt is the coupling constant for the optical mode, ˝0 is the frequency of
optical phonon mode, J is the resonance interaction energy. In the case of interac-
tion with acoustic phonons they are defined as:

gac D
�2ac
2J�

(8)

�ac D
h̄Vac

2JR
(9)

where �ac is the coupling constant for the acoustic mode, � is the elasticity coeffi-
cient, R is the lattice constant and Vac D R

p
�=M is the velocity of sound in the

chain, with M being mass of a unit cell of the chain (note that following standard
notation, �opt and �2ac

ı
� have the same energy units). Then the ground electron state

diagrams are plotted depending on the values of the two dimensionless parameters
g and � which correspond to the ratio between the characteristic energies of the
phonon modes and electron band.

We estimated the values of the dimensionless parameters g and � of these modes
from the experimental and/or theoretical values of the physical constants appearing
in Eqs. (6–9) which are reported in literature [37, 40, 53, 54, 59–61] and which are
referred to collagen or other polypeptides.

For the optical modes we have that the dimensionless parameters are of the fol-
lowing order of magnitude (see Appendix for parameters evaluation): gopt � 0:5

and �opt � 50, while for the acoustic mode the parameters have approximately the
value gac � 0:5 � 1:5 and �ac � 0:5.

Following the numerical evaluation procedure described in Refs. [55–57], for
each set of the dimensionless parameters g and � , the most probable kind of state
for a quasi-particle interacting with two phonon modes in a one-dimensional chain
has been determined. In the ground state diagrams the three regions can be individu-
ated: almost free quasi-particle state (I), large polaron or soliton state (II) and, small
polaron state (III).
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In the case of interaction with two optical modes, which models the dry collagen,
the values estimated for the non-adiabaticity parameter �opt are too high to allow the
formation of the spontaneous self-localized state. In Fig. 12a there is reported the
ground state diagram obtained assuming that gopt;2 D gopt;1 and �opt;2 D 0:2 �opt;1.
According to the diagram, since �opt;1� 1 the spontaneous self-localization of the
state appears highly improbable.

In the case of the quasi-particle interacting with one optical phonon mode and
one acoustical phonon mode, which, in our simplified model, should correspond to
hydrated collagen, the picture is quite different. Even if the optical mode is strongly
non-adiabatic, the coupling with lower energy acoustic phonon modes opens the
possibility to the formation of large polaron states inside a certain range of �ac and
gac values. The ground state diagram obtained fixing the dimensionless parameters
of the optical mode to the values gopt D 0:5 and �opt D 50 is reported in Fig. 12b.
According to our rough estimation of gac and �ac (shaded region in Fig. 12b), the

Fig. 12 Ground state diagrams for a quasi-particle interacting (a) with two optical phonon modes
and (b) with one optical mode and one acoustical mode. (I) almost free quasi-particle, (II) large
polaron (soliton), (III) small polaron. Fixed absolute or relative values of the dimensionless param-
eters g and � are indicated in the figures following the notation used in the text
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possibility of formation of a self-trapped large polaron (soliton) state in collagen
can be taken into account as well as the possibility of a state transition during the
de-hydration process.

5 Conclusions

The experimental studies reported in this work have shown that the response of bio-
logical systems to the stimulating light is sensibly related to the physiological state
of the system and to the environment conditions and Collagen could represent a
useful model system to test the hypothesis on the origin and/or the mechanisms of
photoinduced DL emission. Particularly interesting has been the dependence of the
DL from bovine Achilles’ tendon at different level of dehydration on the hierarchical
complexity of the system. In this respect there are relevant the results acquired dur-
ing the polymerization process of collagen (the sol-gel transition): the spontaneous
creation of the more complex structure is accompanied by increasing DL signals,
so assessing the tight relationship between DL and ordered structures present at a
mesoscopic level in biological sample.

This points out to the long range interactions observed in the organism, which,
according to Fröhlich, lead to collective properties of the whole biological multi-
component systems, thus creating the functional order. So the collectivization of
electronic and/or molecular states in the macromolecular structures, in a way ana-
logue to excitons in regular crystals, appears possible.

The observed correspondence between dielectric permittivity and DL photon
emission behaviors as a function of the water content suggests that some features of
collagen DL could be understood considering the possibility that collective excita-
tions can be generated in this macromolecule. From the theoretical study reported
in this paper it seems that the soliton excitation may be typical of native biological
systems, and change in the type of collective excited state accompanies denatura-
tion, as the loss of water during the drying process, which in turn affects the DL
characteristics. This is of course just an intuition, to be explored and confirmed in
future studies, but appears as a first possible picture. At least, the hope is that the
present study could be useful as a small step in understanding the role of solitons
among the energy excitations in biological systems and can contribute to assessing
the possibility of using DL measurements in order to closely investigate the bio-
physics of a living organism as a whole complex system.

Appendix

First of all let’s focus on the acoustic mode. In measuring vibrational spectra of type
I collagen fibers, and the model polypeptide .PPG/10 .prolyl-prolyl-glycine/10, Mid-
dendorf et al. [54] observed, in the low frequency region, a maximum at 45 cm�1.
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In calculations of density of states for PGII (left-handed helix polyglycine II), the
maximum due to longitudinal modes is seen at 13 cm�1 in the isolated molecule,
but is displaced upward to 40 cm�1 when hydrogen-bonding to neighboring chains
is taken into account. So they identified the 45 cm�1 peak in collagen and .PPG/10
spectra with this maximum for longitudinal acoustic modes in PGII-like chains
hydrogen-bonded and supercoiled to form the collagen triple helix. On the other
hand an acoustical band around 50 cm�1 was observed in hydrated samples, that cor-
responds to an acoustic band observed in pure H2O ice. So the longitudinal acoustic
phonon frequency in the polypeptide matches that of its associated interhelical ice
shell, raising the possibility of coupling between solvent and polypeptide modes.

This value of the acoustic mode accords the observation of sound velocity in col-
lagen. It was found [53] that the water of hydration “softens up” the long-wavelength
excitations probed, in the sense that their velocity decreases from just under 4,000–
2,500 m/s.

So considering the value of the average helical pitch of the collagen a D 9:5 Å,
the characteristic frequency of phonon can be evaluated as rVac=a D 0:263 �

10�21 J D 13:3 cm�1. Such frequency can be associated to a harmonic oscillator of
mass of one peptide group, M D 91 amu, and elastic constant � D MV 2

ac=a
2 D

1:05N=m.
By assuming for the coupling constant for acoustical modes the value [37] �ac D

0:2 0:3 � 10�10 N and for the resonance interaction energy the value determined
for parallel-chain pleated-sheet structure J D 13:6 cm�1 [59], one gets:

�ac D
1

2J

h̄Vac

a
D 0:5

and

gac D
1

2J

�2ac
�
D 0:71 1:6

We will now consider the values for optical mode. According to Middendorf
et al. [54] all collagen spectra are very complex in the high frequency region and the
dry collagen spectra reveal significantly more intensity in the 600–800 cm�1 region.
If one considers the intra-triple strand hydrogen bond, between glycine NH on one
chain and proline CO on a neighboring supercoiled chain, the effect of triple-helical
supercoiling is to shift the amide V mode of the Gly-Pro linkage, together with
skeletal deformation and CDO in-plane bending modes of the Pro-Pro linkages,
downward to the region of 590 cm�1.

Theoretical normal mode analyses have predicted significant effects of minor an-
gle variation and hydrogen bonding length on amide V modes. It raises the question
of coupling between low frequency modes and high frequency peptide backbone
modes. Low frequency dispersive modes can significantly alter local supercoiling
and hydrogen bond length. Such anharmonic coupling may be an important mecha-
nism of energy transport in biological systems [40], and amide V has been recently
identified as a markedly anharmonic mode, and a candidate for such coupling, in
acetanilide.
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So considering such frequency for the optical phonon,r�op D 590 cm�1 and the
above said value for the resonance interaction energy determined for parallel-chain
pleated-sheet structure [59], one gets:

�op D
h̄�op

J
D 43

Instead, in order to evaluate the electron-phonon coupling constant, we assume the
value �op D 6:2 � 10�11 N for the coupling constant of the optical mode as de-
termined for acetanilide (ACN) [60], and considering the elasticity of the hydrogen
bond, w D 13N=m, one gets:

gop D
Eb

J
D
1

J

�2op

2w
D 0:55

for the non-adiabaticity constant.
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Cluster Quantum Chemical Study
of the Grignard Reagent Formation

A.V. Tulub and V.V. Porsev

Abstract The main stages of the Grignard reagent formation are described in a
framework of quantum chemical cluster model. We have established two kinds of
the adsorption of CH3Hal on Mgn clusters, one of which leads to radical formation
and the second is responsible for radical free dissociate adsorption. The charge re-
distribution in cluster CH3MgnHal result to the strong electrostatic interaction with
ether and Grignard reagent formation without any activation barrier.

Keywords Grignard reagent formation � Magnesium clusters � Quantum chemical
study

1 Introduction

The Grignard reaction has been known for more than a century and currently re-
mains one of the most widely used reactions in synthetic organic chemistry. The
structure of the Grignard reagent (GR) in different solutions is mostly known, some
gaps, nevertheless, remain in the understanding, at the molecular level, of sequence
of reactions, which final stage is the formation of GR. The activation of magnesium
surface, which is normally covered by MgO, occurs through chemical or mechanical
treatment followed by appearing the strongly disordered surface. In this connection
the cluster model approach seems to be quite adequate for current numerical sim-
ulations, earlier it was applied in [1] for studying interaction between CH3Cl and
magnesium, Mgn, clusters of different size. As a radical R, computations choose
R D CH3.

The monatomic model of Mg C CH3Cl interaction predicts a too high activa-
tion energy barrier [2–4], with the increase in the size of Mgn cluster for n	 20 the
reasonable value of the activation energy of about 10 kcal/mol [1] is close to that
observed in the experiment [5]. The reaction of an alkyl halide with Mgn represents
an example of dissociate adsorption and leads to appearance of a new cluster, but not
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to GR. Different experimental methods, including EPR, indicates that GR formation
for alkyl halides involves the formation of radical intermediates, the later according
to [6] are in the adsorbed form at the magnesium surface. The kinetic data are more
consistent with the hypothesis of existence of free radicals in the solution [7], and
literature therein. Presence of radicals is not a permanent condition for GR forma-
tion, they can be found in a very small amount as in the case of R D C6H5 (Ph).

Calculations were performed in the DFT approach: B3LYP/6-31C G
 with the
GAMESS PC program package [8], in the unrestricted version. The changing of ba-
sic set from 6-31CG� to 6-311CCG�� did not give noticeable changes in geometries
and energies. Activation barriers are in the problem of GR formation of great impor-
tance; their calculations represent a rather delicate problem sensitive to the atomic
basis and to the method used to account the electron correlation. The B3LYP ap-
proximation has a tendency to underestimate barrier heights, from our own studies
it can give by the fragmentation of the ionic systems wrong charge values [9] for the
products. Different approximations in the field of DFT methods are systematically
studied in the recent review article [10]. By comparing the theoretical predictions
with experiment we prefer to use the difference of the activation barrier values.

Two main problems are remained unsolved and considered below, namely (1)
the origin of radicals, (2) the role of ether in the reaction of GR formation. Nu-
merical simulations have been performed in a framework of the Mgn cluster model
for nD 1  10 for the RMgHal as a mostly known GR with R D CH3 (methyl),
QN6H5 (phenyl), as radicals and (CH3/2O as ether for Hal D F, Cl, Br. The Grignard
reagent formation takes place only in the presence of ether; some number of ether
molecules should be included in the quantum mechanical system. The interaction
with two ether molecules is stronger compared with the one, it was also demon-
strated by direct computations [11].

For the finding of reasonable sequence of reactions we compare first the binding
energies of Mgn cluster with CH3Hal and with the two ether molecules. The geomet-
ric and energetic properties of Mgn clusters are available from the literature [12, 13],
the given geometric values were used below as starting for the finding of the opti-
mized geometry for Mgn�2(CH3/2O as well as for CH3MgnHal clusters. The clusters
Mg4 and Mg10 are chosen as the most stable among Mgn for n � 10 [12]. Some
chemical reactions with Mgn with n D 4, were also described in [14].

The optimized geometry for Mgn�2(CH3/2O cluster is represented on Fig. 1. The
binding energy for one ether molecule with magnesium Mgn cluster is equal to 3.1
kcal/mol for nD 4 and 6.8 kcal/mol in the case of nD 10. The binding energies
for Mgn and CH3Cl are much greater and equal correspondently to 47.7 and 53.3
kcal/mol.

Keeping in mind this observation we consider main reactions in the following
sequence:

1. CH3Hal CMgn ! CH3MgnHal
2. CH3MgnHal C 2(CH3/2O!Mgn�1 C CH3MgHal�2(CH3/2O.

The second reaction would give by the suitable choose of the initial geometry of
CH3MgnHal cluster the desired product, the GR.
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Fig. 1 Complexes Mgn�2(CH3/2O

2 The Reaction Mgn C CH3Hal

The potential energy surface (PES) for Mgn C CH3Hal reaction have in general
some number of local stable states, one kind of the transition states (TS) for various
n � 21 was discussed in [1] for HalDCl. We have found the reaction path with
the TS described in [1] as well as the new TS [15]. The reality of obtained TS for
Mgn C CH3Hal reaction was verified by CI calculations at separate points of the
reaction path in the space of about 2:7 � 105 configuration state functions (CSFs)
obtained in the CASSF approach in the 6-31C G� basic set with ten active orbitals
occupied by eight electrons. For the larger clusters DFT (B3LYP) approach was
used with the full optimizations of the geometry. The correspondence between the
products and reagents was determined by descending from a transition state along
the intrinsic reaction coordinate. Two main reaction channels and corresponding
TSs are described as ionic (TSi/ and the other as radical (TSr/:

RHal…Mgn(r)

RHal+Mgn

RMgnHal(r)

RHal…Mgn(i) TSi

TSr

i

r

Ri

Rr

R…MgnHal

Pi

Pr

RMgnHal(i)

The main energetic quantities are: Ereag is energy of reagent formation; Ea is the
activation energy, upper index indicate the channel; �E is the reaction energy,
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Ereag
i D E(Ri/ � E(Mgn) � E(RHal)

Ea
i D E(TSi/ � E(Ri/

�Ei D E(Pi/ � E(Ri/

Ereag
r D E(Rr/ � E(Mgn/ � E(RHal)

Ea
r DE(TSr/�E(Rr/

�E1r DE(R)C E(MgnHal) � E(Rr/

�E2r D E(Pr/ � E(Rr/

The both channels represent an example of the dissociation absorption of CH3Cl on
Mgn cluster. It can be noted charge redistribution for fragments CH3 and Hal and the
negative total charge on Mgn. Name “ionic” reflects the fact, that no radicals would
be formed at this channel—only charge redistribution takes place.

The major feature of the transition state TSi is that the symmetry axis of the
methyl halide is parallel to some Mg–Mg bond. The second reaction path has quite
another geometry of it’s TSr, C–Hal bond is perpendicular to the Mg–Mg bond
formed by two neighbour to Hal magnesium atoms. The geometries of TS’s are
similar for all halogen and given below only for HalDCl, the both TSi and TSr

are represented on Fig. 2. The geometric characteristics of the TS’s are given in the
Table 1.

The activation energy for CH3Hal molecule in the radical channel Ea
r is approx-

imately one half of the value Ea
i for the ionic reaction path, the difference is about

9–15 kcal/mol and remains fast the same for all Hal and clusters. This observa-
tion explains the appearance of radical intermediates as a permanent co-product in
the reaction of GR formation. The activation energy is decreasing in a sequence
F–Cl–Br for all clusters; the numerical values are given in the Table 2. We see also
from the Table 2 the tendency of the activation energy decreasing, when the data for
Mg4 and Mg10 clusters are compared, the tendency corresponds to the conclusion
derived in [1] for Hal D Cl as well as to experimental data. The large activation
energy for F explains its little activity on the contrary to Br with its small activation
energy.

Fig. 2 Transition states for reaction of magnesium clusters with H3Hal, n D 10, Hal D Cl
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Table 1 Geometry of the transition states

Distances, Å CH3Hal, n D 4 CH3Hal, n D 10 C6H5Cl,

F Cl Br F Cl Br n D 4

RHal

r(Hal–C) 1.40 1.81 1.96 – – – 1.76

TSr

r(Hal–C) 1.82 2.30 2.46 1.78 2.21 2.35 2.29
R(Hal–Mg1) 2.16 2.82 2.86 2.12 2.77 2.87 2.71
r(Hal–Mg2/ 2.16 2.69 2.84 2.19 2.74 2.86 2.71
r(Mg1–Mg2/ 3.24 3.19 3.19 3.07 3.07 3.07 3.19

TSi

r(Hal–C) 1.85 2.26 2.37 1.86 2.24 2.37 2.09
r(Hal–Mg1/ 1.99 2.69 2.86 1.94 2.49 2.65 2.67
r(C–Mg1/ 3.04 3.14 3.24 2.94 3.35 3.38 4.71
r(C–Mg2/ 2.83 2.81 2.74 2.84 3.47 3.32 2.84
r(Mg1–Mg2/ 4.66 4.17 4.29 4.25 4.36 4.25 4.24

Table 2 Energetic values for different reaction path

Energy, CH3Hal, n D 4 CH3Hal, n D 10 n D 4,
kcal/mol C6H5Cl

F Cl Br F Cl Br
Reactant (R)

Ereag
i �1:0 �0:1 �3:6 �2:1 �0:2 �5:7 	0

Ereag
r �1:0 �0:1 �3:5 �2:3 �0:5 �5:7 	0

Transition state (TS)

Ea
i 31.2 24.3* 19.3 25.9 18.9 14.6 22.0

Ea
r 15.7 13.7 7.5 12.3 9.7 3.7 19.8

Products (P)

�Ei �52:2 �51:4 �50:7 �49:4 �50:6 �50:2 �49:4
�E1r �10:5 �0:5 1-1.5 �20:6 �10:2 �9:5 11.0
�E2r �57:4 �47:7 �149:3 �63:9 �53:3 �53:8 �45:5

Ea
i(Hal D Cl. n D 4/ D 23:7 kcal/mol [1]. All values corrected for ZPE.

The structure of the reaction product of ionic channel was obtained by descend-
ing from the transition state and differs from the structures suggested in [1]. The
products for Hal D F, Cl, Br are very similar.

Transition to the final state can be associated in the case of the larger clusters
with a number of locally stable states on the PES and it can be thought as a diffu-
sion process with some characteristic time. That means that for a small time interval
a halogen and the methyl group can be still kept together what is favorable for GR
formation. Diffusion process takes place near the real metallic surface, the evalua-
tion of characteristic time represents rather difficult problem.

The product state for Mg10 cluster has an interesting structure, the dissociate ab-
sorption is accompanied by of some Mg–Mg bond breaking as represented of Fig. 3.
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Fig. 3 Products of reaction of magnesium clusters with H3Hal, n D 10, Hal D Cl
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Fig. 4 Energetic scheme for ionic channel, n D 4, Hal D Cl

The same rearrangement seems to be valid for the larger clusters and resembles the
surface destruction. The general view on ionic reaction path is represented on Fig. 4.

The general view of radical channel on the initial, intermediate and final states
are given on Fig. 5 which contains at the final stage some “gedanken” product Pr

which appearance can be explained as following. Consider the radical intermediates
in which the radical CH3 moves away from the cluster to a considerable distance,
Fig. 5. The picture represents the possible events in a gas, not in the solution. In
the later case the radical CH3 would spend some time in the ether solution and
then it can return back to his “home” cluster or to any other “foreign” cluster, the
process corresponds to that, observed in the collision induced dynamical nuclear
polarization (CIDNP). The radical CH3 with a corresponding space orientation has
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Fig. 5 Energetic scheme for radical channel, n D 4, Hal D Cl

Table 3 Effective charges for product state Pr in the radical channel

CH3Hal q(Hal) q(CH3) q(Mg1) q(Mg2) q(Mgn)
Mg4

CH3F �0:968 �0:715 0.179 1.367 1.682
CH3Cl �0:868 �0:710 0.172 1.244 1.578
CH3Br �0:832 �0:713 0.166 1.204 1.545

Mg10
CH3F �0:978 �0:727 0.093 1.292 1.705
CH3Cl �0:861 �0:727 �0:017 1.150 1.589
CH3Br �0:819 �0:733 �0:039 1.099 1.552

a chance to be reabsorbed. Having in mind the interaction with ether we consider
the case when the final product has the geometry represented in Fig. 3.

When one Mg atom is connecting with CH3 as well as with the halogen, we have
the CH3MgHal group inside the total cluster. The charge distribution in this case is
of a special interest and it is given in the Table 3 for the product state Pr.

3 Grignard Reagent Formation Without Radical Appearance

Consider the case Ph radical for which, as for the methyl radical, the two reaction
paths where established, they are compared for TS for the ionic (left) and radical
(right) channels on the Fig. 6.

The geometric properties of TSs are represented in the Table 1 and energetic
in the Table 2. The replacement of CH3 group by Ph radical leads to decreasing
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Fig. 6 Transition states for reaction of Mg4 with phenyl chloride

activation energy of ionic channel to the value 22.0 kcal/mol. On the contrary the
activation energy for the radical channel is increasing to 19.8 kcal/mol. The energy
difference �E D .Ea

i � Ea
r/ for the two channels is equal �E (CH3Cl) D 10.6

kcal/mol and for the phenyl radical�E (CH3Cl)D 2.2 kcal/mol in the case of n D 4.
As result the ionic reaction path can be preferable for (Ph), the radicals would appear
in a very small quantities if the same tendency remains for the larger clusters.

It can be awaited in real conditions that the both reaction path can be realized,
much is depended upon the details in structure of radical, the radical channel ex-
plains as before the appearance of co-products [7], and references therein.

4 Energetic Characteristics of Radical Channel

The radical reaction

CH3HalCMgn ! CH3 CMgnHal

is characterized by the energy release �Erad

�Erad D E.CH3/C E.MgnHal/ � E.CH3Hal/ � E.Mgn/;

for which calculation it is necessary to find first the energy E(MgnHal). The opti-
mized geometric parameters for the later cluster are given on Fig. 7 for Hal D Cl.
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Fig. 7 Geometry of clusters MgnHal, Hal D Cl

The interaction with one Mg atom is energetically unfavourable, the detail picture
for different PES obtained in a framework of CI calculations contains examples of
avoided crossings for the singlet as well as for the triplet electronic states, as it
is demonstrated on Fig. 8 [4]. The energy difference between these states remains
small at the TS in the case of magnesium clusters and remembering the mentioned
underestimation of barrier heights in the B3LYP approximation for the singlet PES
we can not exclude the possibility of crossing. It was a suggestion that at least two
magnesium atoms should be responsible for the appearance of radicals [16].

The energy dependence �Erad upon the size of Mgncluster is represented for
Hal D F, Cl, Br at Fig. 9. The dependence�Erad is similar for of the phenyl radicals
to that for the methyl radical. The energy shift for R D C6H5 is to be noted, it has
the important consequence for the understanding of radical particles absence.
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5 Interaction with Ether

We have already demonstrated that the interaction Mgn with ether is relative weak.
The question arise about the properties of a new cluster (CH3MgnHal) which are
responsible for it quite noticeable interaction with ether. Consider the charge value
on the Mg(2) atom of Pr at Fig. 3. Mg(2) is strongly bound to the both CH3 and Hal
and has large positive charge, what creates some kind of active site on the cluster.
Weak interaction of Mgn with ether would be replaced in the case of MgnCH3Hal
by strong one due to the negative effective charge on ether oxygen.

Our next step is the interactions of methylmagnesium chloride with the ether
[17]. Some increasing of the interaction energy is known when one dimethyl ether
molecule is replaced by two ether molecules. The reaction

CH3MgnClC 2.CH3/2O! CH3MgCl�2.CH3/2OCMgn�1 ! GR : : :Mgn�1;

GR D CH3MgCl�2.CH3/2O � Grignard reagent:

is very sensitive to an initial relative position of ether molecule and CH3MgnCl
cluster. It was found some domain in the initial geometry parameters responsible for
the ether–CH3MgnCl interaction process developing without any activation barrier.
The optimized geometry structures are represented on Fig. 10 and give an idea for
the step-by-step elimination of GR from Mgn�1 cluster.
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Fig. 9 Dependence �Erad on cluster size. (a) R D CH3; (b) R D Ph

In the “transition state” the group CH3MgCl�2(CH3/2O becomes partly isolated
from Mgn�1 cluster what is in a correspondence with the proposal of Bronsted-
Evans-Polanyi on the largerly resemlence of TS of the reaction to the product state,
see Fig. 10. The increase of the cluster size is non favorable for GR formation, as
it follows from Fig. 11. This statement reflects the known fact that the increase of
magnesium cluster leads to the increase of the binding energy per one atom [12, 13]
and as consequence to the decrease of the solvation energy of GR. We note once
more that the charge redistribution, Table 3 in reactant CH3MgnCl with the suitable
positions of CH3 and Cl is responsible to the strong interaction with ether and GR
formation. The numerical simulations are performed for gas phase, GR in a solution
is to be thought in general as surrounded not only by two, but by some number of
ether molecules.
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Fig. 10 Grignard reagent formation, n D 10, Hal D Cl

Fig. 11 Dependence �Esolv on cluster size

6 Outlook

We have realized from the given scenario the following points.

1. Two kinds of the dissociate adsorption of CH3Hal on Mgn clusters.
2. Appearance of active sites on RMgnHal clusters, leading to strong electrostatic

interaction with ether.
3. GR can arise due the interaction RMgnHal with ether without activation barrier.
4. Radical-free GR formation for some organic halides, aryl for example.
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The activity of different halogens as well as radicals is in general in a correspon-
dence with experimental data. Only the simplest GR was considered above, it is of
interest to investigate also more complicated GR structures as well as more compli-
cated surfaces, bimetallic instead of monometallic.

Our work is dedicated to the memory of Alexander S. Davydov, whose works in
the theory of wave propagation in molecular crystals, in liquid water and in biopoly-
mers are so important for the understanding of self-organization processes. A. S.
Davydov was a great teacher, what is clear not only from his pioneer investigations,
but also due to a number of books, among them is “Quantum Mechanics”, it is still
the best known in the world. His fascinating lectures as well as his bright personality
remain in the memory of peoples, which knew him personally; among them is one
of the author (A.V.) of this work.
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