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Preface

The aim and scope of this work are set out in the first chapter. Here I explain the
conventions that I have used and thank those who have been kind enough to criticize
my efforts.

The work is based on primary printed sources. A few letters and other informal
documents have been used but only if they have already been printed. Secondary
sources are given when they refer directly to the matter in hand or when they seem
to be particularly useful. No attempt has been made, however, to cite everything
that is relevant to the background of the subject since this would have led to the
inflation of an already long bibliography. This policy has led to a fuller coverage of
the 18th century than of the 19th where the secondary literature is potentially vast. In
contrast, there are almost no directly useful secondary sources for the 20th century,
but here the number of primary sources is impossibly large. It would have been easy
to have given ten or more times the number listed. The choice is inevitably biased
by the recent aspects of the subject upon which I have chosen to concentrate; others
might have made other choices, but no one could give a comprehensive coverage
of the last century.

The references are listed in four main groups, one at the end of each of the
Chapters 2 to 5. There is so little overlap between those in each chapter that this
method seemed less clumsy than a consolidated list for the whole book and leaves
each chapter almost self-contained. The form in which the titles of journals is
abbreviated follows the usual conventions. A few journals that are often known by
their editor’s name are shown by inserting this name in brackets before the title,
e.g. (Silliman’s) Amer. Jour. Sci. Arts. The journal that is now called the Annalen
der Physik was often abbreviated, after its editors, Pogg. Ann. or Wied. Ann. etc.
during the 19th century, and was formally the Annalen der Physik und Chemie
until 1899, when Paul Drude became the editor; the simple form Ann. Physik is
used here throughout. The dates at which some journals appeared differ from the
nominal date on the volume. This problem is particularly acute for the publications
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viii Preface

of the French Academy. Here the nominal date is used and the actual date of the
appearance of the paper is noted if this relevant. The Annual Reports of the British
Association are dated by the year in which the meeting was held; they were usually
published a year later. The place of publication of books is given but not the name
of the publisher. Cross-references to ‘Collected Works’ are given for some foreign
authors but not for most British ones such as Maxwell or William Thomson.

Experimental work is described in the units of the time when it was made but a
translation into the current units of the Système International is added. The ångström
has, however, been retained to describe intermolecular separations. This unit is more
convenient than the correct SI unit, the nanometre (10 Å = 1 nm), since almost all
the distances quoted are in the range of 1 to 10 Å.

The index of names covers only those whose scientific work is being discussed;
authors of secondary sources are not indexed, although I admit that the distinction
between primary and secondary is not easily defined. Biographical references are
given for the major workers in the field who had died by the end of the 20th century
in December 2000, but not for those believed to be still alive. These references are
given at the point in the text where the scientist’s work first becomes important to
this narrative, and so not necessarily at the first citation. If he or she is one of those
in The Dictionary of Scientific Biography, ed. C.C. Gillispie, 18 vols., New York,
1970–1981, then a reference to that work is generally thought to be sufficient;
it is abbreviated DSB. Additional sources are given only if they are particularly
important for the subject of this book, or have been published later than the DSB
article. If the scientist is not in this work then the next source is the volumes of
J.C. Poggendorff, Biographisch-Literarisches Handwörterbuch zur Geschichte der
exacten Wissenschaften, Leipzig, now Berlin, 1863 onwards. This is abbreviated
Pogg. References to the British Dictionary of National Biography are abbreviated
DNB but details are omitted since the work is ordered alphabetically and since a
new edition is now being prepared.

I thank those who have been good enough to read parts of the book and give
me advice on how they might be improved: Robert Fox, Ivor Grattan-Guinness,
Rupert and Marie Hall, Peter Harman, John Heilbron, John Lekner, Anneke Levelt
Sengers and Brian Smith. Others are thanked in the references for more specific
information.

Oxford J.S.R.
October, 2001



1

Introduction and summary

Some problems have always been with us. No one knows when man first asked
‘What is the origin of our world?’ or ‘What is life?’, and progress towards sat-
isfactory answers has been slow and exceedingly difficult. One aim of this study
is to take such a perennial theme, although one narrower than either of these two
problems, and see how it has been tackled in the Western world in the last three
hundred years. The topic is that of cohesion – why does matter stick together? Why
do gases condense to liquids, liquids freeze to solids or, as it has been put more
vividly, why, when we lift one end of a stick, does the other end come up too? Such
questions make sense at all times and the attempts to answer them have an intrinsic
interest, for the subject of cohesion has at many times in the last three centuries
been an important component of the physical science of the day. It has attracted
the attention of some of the leading scientists of each era, as well as a wide range
of the less well known. It is a part of our history that is worth setting out in some
detail, a task that I think has not yet been attempted.

This study has, however, a wider aim also. Historians have rightly given much
attention to the great turning-points of science – Newton’s mechanics, Lavoisier’s
chemistry, Dalton’s atomic theory, Maxwell’s electrodynamics, Planck’s quantum
theory, and Einstein’s theories of relativity, to name but half a dozen in the physical
sciences. These are the points that Thomas Kuhn described as revolutions [1]. The
study of cohesion shows no such dramatic moments, the closest being, perhaps,
the discovery of the quantal origin of the universal force of attraction between
molecules in 1927–1930. This is, therefore, an account of a branch of ‘normal’
science that exemplifies how such work is done.

Science is not a logical and magisterial progress in which experimental discov-
eries lead directly to new theories and in which these theories then guide new
experimental work. The practitioners know this on a small scale. Research workers
can see how their progress is helped or hindered by chance discoveries, misleading
experiments, half-remembered lectures, chance finds in the ‘literature’, unexpected
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2 1 Introduction and summary

discussions at a conference, and all the other perturbations of laboratory life. More-
over science can be fun. Investigations can be made just out of curiosity even when
it is clear that the answer, when found, will solve no particular experimental or
theoretical problem. We shall see that similar disorderliness marks progress on a
larger scale. Matters move forward rapidly for a decade or so, and then stagnate for
many decades. Here three broad periods of advance have been identified and named
after Newton, Laplace and van der Waals. They were, of course, not the only gen-
erators of the advances but their contributions were decisive and, perhaps, stretch
the concept of normality to its limits. Their names may, however, conveniently be
used to identify their periods.

It is of interest to seek for the causes of this punctuated advance. Some of the
periods of stagnation are related to weaknesses in the contemporary infra-structure,
either experimental or, more usually, theoretical. Thus we shall see that many of
the natural philosophers of the 18th century were hampered by their inadequate
knowledge of mechanics and of the calculus. What Newton and Leibniz had cre-
ated needed to be completed by the Bernoullis, Euler and others before it passed
into general scientific circulation. This passage occurred notably in the institutions
established in ‘revolutionary’ France at the end of the century, and it is not surpris-
ing that a second period of advance in understanding came with Laplace. There
were also other less direct reasons for the relative stagnation of the 18th century.
Some were cultural. One cannot imagine a present-day undergraduate or research
student being told by his or her teacher that there was a worrying metaphysical
problem with forces between molecules acting at a distance, or with a model sys-
tem of hard spheres undergoing elastic collisions, but these were very real concerns
in the 18th century. By the 19th they were not so much banished as ignored. An
indifference to metaphysical problems seems to be one of the features of normal
science. We shall see that scientists have a well-developed defensive mechanism
when faced with theoretical obstacles. They ignore them, hope that what they are
doing will turn out to be justified, and leave it to their deeper brethren or to their
successors to resolve the difficulty. In the 18th century and beyond, this proved to be
the right way forward both for gravity and for interparticle forces; they functioned
for all practical purposes as if they acted at a distance. It was not until the 1940s
that the problem of how this intermolecular action was transmitted had to be faced.
This defensive mechanism can go wrong; we shall see that in the early years of the
20th century there were repeated attempts to seek a classical electrostatic origin for
the intermolecular forces, in spite of what is to us, and perhaps should have been
to them, clear evidence that these were bound to fail.

Another problem in the 18th century that we can broadly call cultural was what
we now see as an inadequate way of assessing new theories. The same metaphysical
bias that objected to action at a distance without a discernible mechanism to effect
it, led to theories that laid too much emphasis on plausible mechanisms, and not
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enough on means of testing the theories or of seeing if they had any predictive power.
By the end of the century (again judging by our notions) matters had improved, and
this change, coupled with the ‘revolutionary’ mathematics of the French, meant
that by the early 19th century theoretical physics had taken a form in which we can
recognise many of the ways of working that we still use.

But beyond these internal weaknesses and metaphysical doubts there remains
an unexplained cause of the flow and stagnation of progress that we can only call
fashion. It was obvious to Réaumur as early as 1749 that science was as prone to
fashion as any other human activity [2], and these swings may be strongest when
there are few in the field. The spectacular experiments that could be made in the
18th century in electricity, and the solid advances in the study of chemistry and
of heat, attracted the best men, and left only a few, mainly of the second-rank,
to study capillarity and other manifestations of cohesion. To call this fashion is
perhaps to go too far in imputing irrationality. Research programmes do degenerate
and are justifiably overtaken by rising fields in which progress is easier. Science
is like a rising tide; if certain areas are perceived to be open to flooding then
the practitioners rush in, leaving other research programmes as unconquered and
ignored islands of resistance. But once this is said there remains an element, if not
of irrationality, than of adventitiousness about scientific advance.

There are also in the background those changes in the sociological, political,
religious and economic aspects of each era whose influence on the science of the
day is now the main concern of many historians. If I have not pursued these with
the rigour that current practice seems to demand it is not because I doubt their
importance but because it becomes hard to discern their effects in a specialised
and ‘philosophic’ subject such as cohesion. In the 18th and 19th centuries religious
convictions certainly influenced philosophical thought but I have not seen a direct
or strong enough link to the problem of cohesion to follow the subject beyond an
occasional remark. No doubt others would tackle the subject differently.

The 19th century is more complex than the 18th but analysis is helped by the
greater attention paid to it by historians. Laplace and his colleagues had much
success in the first twenty years of the century, in which his solving of the prob-
lems of capillarity is the one that is the most central to our story. Then came about
what has been called ‘the fall of Laplacian physics’ [3]. His belief in a corpus-
cular theory of light, in matter as a static array of interacting particles, and of
heat as a caloric fluid that was responsible for the repulsive component of the
force between the particles, all told against him and his followers when physics
advanced beyond these ideas. But it was again the competition of the rising fields
of electricity, magnetism, optics, and later, thermodynamics that attracted the at-
tention; the one field where Laplace’s ideas were still important was that of the
elasticity of solids, a subject in which the imperfections of his physics were of little
consequence.
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The big struggle of the 19th century was that between the picture of interacting
particles of matter, each surrounded by a vacuum, that had been held by Newton and
Laplace, and the continuum picture of matter and space that came to be embodied
in field theories. This was not a competition between different scientists, for many
adopted both views at different times, or even apparently at the same time, but it was
a competition between methods of interpretation. For example the classical ther-
modynamics of the 1850s and 1860s, a subject apparently independent of any view
of the structure of matter, grew up alongside the developing kinetic theory of gases
which required a corpuscular theory. The continuum mechanics that proved most
successful in describing the elastic properties of solids lived in uneasy conjunction
with the Laplacian attempts to interpret these properties in terms of interparticle
forces. Cauchy could switch from one view to the other within a few months.

The struggle between field theories and particulate theories is only one example
of the great debates that are relevant to the subject of cohesion but whose full
discussion would take us too far from the main line. Here we can only follow what
was found at the time to be successful in practice. Not until 1954 did a field theory of
cohesion appear, and even now it is only of specialist interest. This account is there-
fore weighted towards those who believed in interparticle forces and so drove the
subject forward. Other cognate topics that might have been explored but are not, are
18th century chemistry, which overlaps with what we now call physics, the theory
of the optical aether which inspired much of the 19th century work on elasticity, and
the final resolution of the atomic debates in the early years of the 20th century.

By the early 19th century chemistry and physics were regarded as distinct sub-
jects. The physical aspects of chemistry had a brief Laplacian flourish at the hands
of Berthollet, Gay-Lussac and Dumas but then fell out of fashion under the competi-
tion from the electrochemistry of Davy and Berzelius, and the successes of organic
chemistry and the problems of atomic weight and molecular structure. Physical
chemistry revived towards the end of the century, first as the chemistry of solutions,
ions and electrolytes, and then more widely under the impact of quantum theory in
the first half of the 20th century. Most of those working on intermolecular forces in
the second half of the century would describe themselves as physical or theoretical
chemists, not as physicists.

The 20th century brought new dangers. The number of scientists grew rapidly
and with this growth came the problems of specialisation. When a field fell out of
fashion, as did that of cohesion in the early part of the century, then important work
could be forgotten when the next generation returned to the field. The achievements
of van der Waals and his school were ignored from about 1910 onwards; work on
cohesion and the properties of liquids could not compete with the great develop-
ments of the day in quantum theory on the one hand and the experimental work
on radioactivity and fundamental particles on the other. The work of many of the
leading physicists of the passing generation, published in hundreds of papers in
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the leading journals of the day, became almost overnight a forgotten backwater of
physics. This was not the field where great discoveries were to be made, reputations
to be gained, and honours to be won. The same thing still happens, if not so dra-
matically. The topic of intermolecular forces, a matter of great debate in the 1950s,
1960s, and early 1970s, has now dropped from the front rank. This exit followed
one important success, the accurate determination of the force between a pair of
argon atoms, but that achievement left plenty of work still to be done. Nevertheless
the subject was thought to have gone off the boil, and in the 1980s and 1990s few
of those earning the star salaries in American universities were to be found in this
field.

With increased specialisation came also a certain arrogance. One can sense in the
writing of some of those active in the 1930s and later, a reluctance to believe that
anything of importance could have happened before the great days of quantum
theory in the 1920s. Spectroscopy is a field that generated many interesting numer-
ical results in the 19th century but which owes its quantitative theory to quantum
mechanics. Its practitioners made some late but valuable contributions to the deter-
mination of simple intermolecular forces, but they did not bother with the older field
of statistical mechanics, and their interpretation of their results was often flawed.
These had to be analysed by others before their value could be appreciated. At
the very end of the century, however, the spectroscopists made one spectacular ad-
vance with the determination of the forces between two water molecules, a system
so complicated that it had defied the efforts of those who had been trying to find
these forces from the macroscopic properties of water. Little is said here, however,
about experimental advances or problems since throughout its history cohesion has
been a subject where the experiments have usually been simple but their interpre-
tation difficult. There are exceptions, of which the most obvious is, perhaps, the
absence of direct evidence of the particulate structure of crystals which hampered
19th century attempts at a theory of elasticity. But, as so often, this difficulty was
resolved by a totally unrelated discovery – that of x-rays and the realisation that
they were electromagnetic waves.

Making generalisations about how science is done from the example of one
rather narrow field is hazardous. Many may dispute those drawn here, even on the
evidence provided, but they are put forward as an attempt to show how this field
has advanced over three hundred years. I would not wish to be dogmatic; others
should try to draw their own conclusions from this field, and other fields may lead to
different conclusions. One can read Popper, Kuhn, Lakatos and other philosophers
of science and recognise there many truths that call to mind instances of how it is
done, but it is difficult to fit even one physical science into their moulds. Science
does in practice seem to move in less logical ways than philosophers would wish.
Feyerabend would surely find here examples with which to justify his claim that
“Science is an essentially anarchic enterprise” [4].



6 1 Introduction and summary

It is, of course, the common-sense view of practising scientists that the movement
of science is an advance, and that, although the advance itself may be irregular,
the result is a coherent structure. This narrative would not make sense without
that belief. That the advance is not always logical, rarely neat, and occasionally
repetitious, is not a theme that can be summarised in the trite phrase ‘history repeats
itself’. That does happen; a curious example is the repetition in the second half of
the 20th century of arguments about the representation of the pressure tensor that
duplicate, in ignorance, and almost word for word, some of those of a hundred
years earlier. But such repetitions are, I think, curiosities of little consequence.
I end, however, with some quotations that show that a certain simile came to mind
repeatedly for 150 years, and then apparently disappeared for the next 130. Why,
I cannot say, unless it be that astronomy has lost something of its former prestige,
so these quotations are offered for their interest only.

We behold indeed, in the motions of the celestial bodies, some effects of it [the attraction]
that may be call’d more august or pompous. But methinks these little hyperbola’s, form’d
by a fluid between two glass planes, are not a-whit less fine and curious, than the spacious
ellipses describ’d by the planets, in the bright expanse of Heaven.

(Humphry Ditton, mathematics master at Christ’s Hospital, 1714) [5]

Peut-être un jour la précision des données sera-t-elle amenée au point que le Géomètre pourra
calculer, dans son cabinet, les phénomènes d’une combinaison chimique quelconque, pour
ainsi dire de la même manière qu’il calcule le mouvement des corps célestes. Les vues que
M. de la Place a sur cet objet, & les expériences que nous avons projétées, d’après ses idées,
pour exprimer par des nombres la force des affinités des différens corps, permettent déjà de
ne pas regarder cette espérance absolument comme une chimère.

(A.L. Lavoisier, 1785) [6]

Quelques expériences déjà faites par ce moyen, donnent lieu d’espérer qu’un jour, ces lois
seront parfaitement connues; alors, en y appliquant le calcul, on pourra élever la physique
des corps terrestres, au degré de perfection, que la découverte de la pesanteur universelle a
donné à la physique céleste.

(P.-S. Laplace, 1796) [7]

We are not wholly without hope that the real weight of each such atom may some day
be known . . . ; that the form and motion of the parts of each atom, and the distance by
which they are separated, may be calculated; that the motions by which they produce heat,
electricity, and light may be illustrated by exact geometrical diagrams. . . . Then the motion
of the planets and music of the spheres will be neglected for a while in admiration of the
maze in which the tiny atoms turn.
(H.C. Fleeming Jenkin, Professor of Engineering at Edinburgh in a review of a book on
Lucretius, 1868, repeated by William Thomson in his Presidential Address to the British
Association, 1871, and quoted from there, in Dutch, by J.D. van der Waals as the closing
words of his doctoral thesis at Leiden in 1873) [8]
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19th century.



2

Newton

2.1 Newton’s legacy

The natural philosophers of the eighteenth century knew Newton’s work [1] through
his two books, the Principia mathematica of 1687 [2] and the Opticks of 1704 [3].
His belief in a corpuscular philosophy is clear in both, and is particularly prominent
in the later editions of the Opticks, but the cohesive forces between the particles
of matter are not the prime subject of either book. Together, however, they contain
enough for his views on cohesion to be made clear. We, who are now privy to
many of his unpublished writings, know how much more he might have said, or
said earlier in his life, had he not been so fearful of committing himself in public
on so controversial a topic. He was not the first to speculate in this field but his
views were better articulated than those of his predecessors [4] and, what is perhaps
more important, they carried in the 18th century the force of his ever-increasing
authority. It was his vision that was transmitted to the physicists of the early 19th
century, and we examine first the legacy that he left to his philosophical heirs. The
account is restricted to the subject in hand; that is, how does matter stick together,
and wider aspects of Newton’s thought remain untouched.

In the Preface to the Principia he describes the success of his treatment of
mechanics and gravitation, and then continues:

I wish we could derive the rest of the phaenomena of Nature by the same kind of reasoning
from mechanical principles. For I am induced by many reasons to suspect that they may
all depend upon certain forces by which the particles of bodies, by some causes hitherto
unknown, are either mutually impelled towards each other and cohere in regular figures, or
are repelled and recede from each other; which forces being unknown, philosophers have
hitherto attempted the search of Nature in vain. But I hope the principles here laid down
will afford some light either to that, or some truer, method of philosophy. [5]

Here he alludes not only to the short-ranged forces of attraction that he held to be
responsible for the cohesion of liquids and solids but also to those other forces that

8



2.1 Newton’s legacy 9

he was to propose later in the book as a possible explanation of the pressure of a
gas as a repulsion between stationary particles [6]. Readers of the Principia were
to learn little more about the cohesive forces although he had at one time intended
to take the subject further. In a draft version of the Preface, he had described the
cohesion between its parts as being responsible for mercury being able to stand in
a Torricellian vacuum at a height greatly in excess of the atmospheric pressure of
thirty inches, and he had intended to enquire further into these forces. Then, in a
phrase he was to use more than once, he wrote:

For if Nature be simple and pretty conformable to herself, causes will operate in the same
kind of way in all phenomena, so that the motions of smaller bodies depend upon certain
smaller forces just as the motions of larger bodies are ruled by the greater force of gravity. [7]

His comment on the relative sizes of the forces betrays a looseness of thought that
he was to correct before he published anything in this field.

He made a second attempt to say more about cohesive forces and the forces that
lead to solution, to chemical action, to fermentation and similar processes, in a draft
Conclusion that was also intended for the first edition of the Principia. In this he
expressed the same thoughts but now couched more as hopes than intentions. “If
any one shall have the good fortune to discover all these [causes of local motion],
I might almost say that he will have laid bare the whole nature of bodies so far
as the mechanical causes of things are concerned.” [8] He discussed the rise of
liquids in small tubes, a phenomenon that was later to play an important role in the
study of cohesion since it was such an obvious departure from the known laws of
hydrostatics. He (like Robert Hooke [9]) thought then that the rise was caused by
a repulsion of air by glass, a consequent rarefaction of the air in the tube, and the
rise of liquid to replace it.

Newton was holding back twenty-five years later when Roger Cotes [10] was
preparing the second edition of the Principia. He wrote to Cotes on 2 March
1712/13: “I intended to have said much more about the attraction of small particles of
bodies, but upon second thoughts I have chose rather to add but one short paragraph
about that part of philosophy. This Scholium finishes the book.” [11, 12] Again there
are draft versions of this Scholium that go beyond what was printed [13].

In spite of these hesitations and withdrawals the Principia of 1687 contains
much that hints at the tenor of his thoughts. This material is often in the form
of mathematical theorems that could have been used to discuss cohesion, but the
application is never made. Thus Section 13 of Book 1 contains in Proposition 86
the statement that for forces that “decrease, in the recess of the attracted body,
in a triplicate or more than triplicate ratio of the distance from the particles; the
attraction will be vastly stronger in the point of contact than when the attracting
and attracted bodies are separated from each other though by never so small an
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interval.” [14] In Proposition 91 the discussion is extended to “forces decreasing in
any ratio of the distances whatsoever”, and in Proposition 93 he shows that if the
particles attract as r−m , where r is the separation, then a particle is attracted by a
slab composed of such particles by a force proportional to R−m+3, where R is the
distance of the particle from the planar surface of the body. Similarly his discussion
of the repulsive forces between contiguous particles in a gas [6] is generalised to
forces proportional to r−m which, he shows, lead to a pressure proportional to the
density to a power of (m + 2)/3, so that what we now call Boyle’s law requires
that m is 1. Propositions 94–96 of Section 14 of Book 1 are “Of the motion of
very small bodies when agitated by centripetal [i.e. attractive] forces tending to the
several parts of any very great body”, but it is soon clear that the application he has
in mind is to optics; the “very small bodies” are his particles of light.

John Harris [15], in the first volume of his Lexicon technicum of 1704, com-
mented accurately that the word ‘attraction’ is “retained by good naturalists and,
in particular, by the excellent Mr. Isaac Newton in his Principia; but without there
determining any thing of the quale of it, for he doth not consider things so much
physically as mathematically.” [16] This was true in 1704 but six years later, in his
second volume, when he had read the Latin edition of the Opticks, he changed his
mind and accepted the physical reality of these forces. He was briefly a Secretary
at the Royal Society and had seen the experiments performed there, often under
Newton’s direction as President.

When, in thePrincipia, Newton does discuss the physical consequences of forces
steeper than inverse square then his thoughts turn more naturally to magnetism than
to cohesion. In Book 3, Proposition 6, Theorem 6, Cor. 4 of the 1687 edition he
says of magnetism that “it surely decreases in a ratio of distance greater than the
duplicate.” [17] By the time of time of the second edition of 1713 he is more precise,
and in what is re-numbered Cor. 5, he writes that the force “decreases not in the
duplicate, but almost in the triplicate proportion of the distance, as nearly as I could
judge from some rude observations.” [18] His early remarks may have been based on
some observations of Hooke [19] but his later ones stemmed from the experiments
made at the Royal Society by Brook Taylor [20] and Francis Hauksbee [21] that
started in June 1712 [22]. Taylor deduced that “at the distance of nine feet, the power
alters faster, than as the cubes of the distances, whereas at the distances of one and
two feet, the power alters nearly as their squares”. The interpretation of these results
is not simple. Newton speaks of “magnetic attraction”, which might imply the force
of attraction between two magnets, but Taylor and Hauksbee measured the field of
the magnet (in modern terms) by observing the deflection of a small test or compass
magnet at different distances from the lodestone. The distances were measured both
from the centre of the lodestone or, more usually, from its “extremity”, and it is not
clear what function of the angle of deflection is taken as a measure of the “power”,
presumably the angle itself. Such far from simple results did not hold out much
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hope that the less easily studied forces of cohesion would prove to have a simple
algebraic form.

Within a few years of the publication of the Principia Newton was collecting
his papers for the book that was to become the Opticks of 1704. In some frank but
unpublished notes, which were probably written about 1692, he says why he could
afford now to be more open about the cohesive forces:

And if Nature be most simple and fully consonant to herself she observes the same method
in regulating the motions of smaller bodies which she doth in regulating those of the greater.
The principle of nature being very remote from the conceptions of philosophers I forbore
to describe in that book [i.e. the Principia] lest I [it?] should be accounted an extravagant
freak and so prejudice my readers against all those things which were the main designe of
the book: but and yet I hinted at it both in the Preface and in the book it self where I speak
of the inflection of light and of the elastick power of the air but the design of that book
being secured by the approbation of mathematicians, I have not scrupled to propose this
principle in plane words. The truth of this hypothesis I assert not, because I cannot prove
it, but I think it very probable because a great part of the phaenomena of nature do easily
flow from it which seems otherwise inexplicable. [23]

This passage is from the second of five hypotheses that were intended to provide
the conclusion of a fourth book of the Opticks “concerning the nature of light and
the power of bodies to refract and reflect it”. Nothing of this appeared, however,
in the first edition of 1704, in which the Queries in Book 3 are strictly ‘optical’,
but we see in these hypotheses the germs of those Queries that appeared first in
the Latin edition of 1706. The best known of these, Query 23, dealt with cohesive
and chemical forces and it was the last form of this, Query 31 of the later English
editions [24], that became, in the eyes of Newton’s followers, the final distillation
of his views on cohesion. It opens:

Quest. 31. Have not the small particles of bodies certain powers, virtues, or forces, by
which they act at a distance, not only upon the rays of light for reflecting, refracting, and
inflecting them, but also upon one another for producing a great part of the phaenomena of
Nature? For it’s well known, that bodies act one upon another by the attractions of gravity,
magnetism, and electricity; and these instances shew the tenor and course of Nature, and
make it not improbable but that there may be more attractive powers than these. For Nature
is very consonant and conformable to her self. How these attractions may be perform’d,
I do not here consider. What I call attraction may be perform’d by impulse, or by some
other means unknown to me. I use that word here to signify only in general any force
by which bodies tend towards one another, whatsoever be the cause. For we must learn
from the phaenomena of Nature what bodies attract one another, and what are the laws and
properties of the attraction, before we enquire the cause by which the attraction is perform’d.
The attractions of gravity, magnetism, and electricity, reach to very sensible distances, and
so have been observed by vulgar eyes, and there may be others which reach to so small
distances as hitherto escape observation; and perhaps electrical attraction may reach to such
small distances, even without being excited by friction. [25]
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This introduction is followed by a long section of some 3000 words in which a
substantial part of chemistry is dissected by means of questions that are phrased in
a way that almost compels the reader’s assent. Some forces are stronger than others
and so apparent repulsions, such as that between oil and water, can be explained
in terms of different strengths of attraction, a simple form of what later came to
be formalised by chemists as the doctrine of ‘elective affinities’. The heat that
accompanies many chemical changes is ascribed to rapid movement, “. . . does not
this heat argue a great motion in the parts of the liquors?” His enthusiasm for
chemistry is clear on every page, and it was in this subject that he foresaw many
applications of his doctrine of corpuscular attractions, once his successors had
worked out the quantitative details [26]. He returns eventually to problems that
we should call physical rather than chemical, noting, by way of transition, that the
diffusion of a solute through a solution argues that there is an effective repulsion
between its particles, “or at least, that they attract the water more strongly than they
do one another.” The crystallisation of a salt from a liquor suggests a regularity in
the forces between the particles of the salt, so that in the crystal “the particles not
only ranged themselves in rank and file for concreting in regular figures, but also
by some kind of polar virtue turned their homogeneal sides the same way.” We are
now back to cohesion which, he says some (he means Descartes and his followers)
have explained by

. . . hooked atoms, which is begging the question; and others tell us that bodies are glued
together by rest, that is, by an occult quality, or rather by nothing; and others, that they stick
together by conspiring motions, that is by relative rest amongst themselves. I had rather
infer from their cohesion, that their particles attract one another by some force, which in
immediate contact is exceeding strong, at small distances performs the chymical operations
above-mention’d, and reaches not far from the particles with any sensible effect.

He believed matter to be porous; its basic units all identical:

. . . it seems probable to me, that God in the beginning form’d matter in solid, massy, hard,
impenetrable, moveable particles, of such sizes and figures, and with such other properties,
and in such proportion to space, as most conduced to the end for which he form’d them; and
that these primitive particles being solids, are incomparably harder than any porous bodies
compounded of them; even so very hard, as never to wear or to break in pieces; no ordinary
power being able to divide what God himself made one in the first Creation.

The compound particles of, say, water or gold are formed from arrays of these
primitive particles with greater or less proportions of empty space to matter. He did
not at this point explain how these compound particles might be constructed but he
had, earlier in the book, considered a possible ramified structure [27], one that he
had discussed in December 1705 with David Gregory [28, 29].



2.1 Newton’s legacy 13

In Query 31 he infers a force of attraction also from the “cohering of two polish’d
marbles in vacuo”, and, as earlier, from the fact that mercury when “well-purged
of air” can stand at a height of 70 inches or more in a barometer tube. This was an
observation based originally on work by Christiaan Huygens but, more directly, on
a demonstration by Hooke before the Royal Society in 1663 [30]. He then moves
naturally into the field of capillary rise, such a baffling but striking manifestation of
the cohesive tendency of matter (to use a neutral term) that it became throughout the
18th century the testing ground for theories of corpuscular attraction for those that
believed in such theories, and a means of refuting them for those that did not. In this
field Newton draws heavily on the experiments carried out under his supervision
and often at his suggestion by Francis Hauksbee [21], who was the demonstrator at
the Royal Society from 1704, shortly after Newton’s election to the Presidency, until
Hauksbee’s death in 1713. Most of his first experiments were electrical and have
been credited with reviving Newton’s belief in an aether in his later years [31], but in
1709 and 1712 he carried out important experiments on capillarity. In an early paper
[32] he had corrected Newton’s opinion that capillary rise was due to a lowering
of air pressure in a narrow tube; he did this by showing that the same rise is found
in vacuo as in air, a result that had been found as early as 1667 at the Accademia
del Cimento, and later by others [33]. He then established, apparently for the first
time, that water also rises between parallel vertical plates of glass and that the rise
was proportional to the separation of the plates [34]. In the same series he made a
simple but potentially decisive experiment which showed that it was only the forces
emanating from the innermost layer of glass in the tube that attracted the water:

I found, that neither the figure of vessel, nor the presence of the air did in any ways assist
in the production of the forementioned appearance [i.e. the rise]. To try therefore whether a
quantity of matter would help unriddle the mistery; I produc’d two tubes of an equal bore,
as near as I could, but of very unequal substances, one of them being at least ten times the
thickness of the other; yet when I came to plunge them into the premention’d liquid the
ascent of it seem’d to be alike in both. [34]

He is intrigued by the analogy with magnets, which also retain their potency when
broken into smaller pieces, and we shall see that only hesitantly does he draw the
natural implication of the short range of the forces.

In his Query 31 Newton states clearly that the rise between parallel plates is
inversely proportional to their separation. His obviously rough figure of a rise
of water of about one inch for plates separated by one-hundredth of an inch is
only about half what is expected for clean plates that are perfectly wetted by the
water. He says that the rise between plates is equal to that in a tube “if the semi-
diameter of the cavity of the pipe be equal to the distance between the planes, or
thereabouts.” This important result is not to be found in Hauksbee’s papers nor in the
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later experiments before the Royal Society made by James Jurin [35, 36], which
are discussed below. Hauksbee showed that the rise between plates is inversely
proportional to their separation and Jurin states the same result for tubes in such
a way as to make it seem then to be an accepted truth. Neither claims the relation
between the two configurations but it is hard to imagine that Newton’s source was
any but the experiments carried out before the Society.

Perhaps surprisingly, Newton ignores Hauksbee’s experiments with tubes of
different wall thicknesses, but he does devote some space to one experiment that
we know he had proposed himself [37]. In this a drop of ‘oil of oranges’ or other
liquid is placed between two large plates of glass that touch along a horizontal
edge and make a small angle with each other. If the lower plate is horizontal, and
the upper therefore nearly so, the drop of liquid moves rapidly towards the line
where the two plates touch. The experiment consists in finding how much the pair
of plates must be tilted, keeping a fixed angle between them, for the force of gravity
to balance the force of attraction and the drop to be maintained at a fixed distance
from the line of contact of the plates [38]. Hauksbee makes no calculation of the
strength of the forces, perhaps because such a calculation was not his province, or
perhaps because of the onset of his final illness, but in Query 31, by an argument
that is not there made clear, Newton says that the attraction between the oil and the
glass “seems to be so strong, as within a circle of an inch in diameter, to suffice to
hold up a weight equal to that of a cylinder of water of an inch in diameter, and two
or three furlongs in length.” He follows this estimate with the exhortation that:

There are therefore agents in Nature able to make the particles of bodies stick together by
very strong attractions. And it is the business of experimental philosophy to find them out.

The basis of his estimate is to be found in an unpublished manuscript of 1713,
De vi electrica [39]. His measure of the adhesion of liquid to glass as a pressure
was paralleled a hundred years later by Young and Laplace, but his estimate of the
magnitude, about 40 to 60 bar in modern units, is nearly a thousand times smaller
than was thought reasonable early in the 19th century. He does not commit himself
explicitly to an estimate of the range of the forces, except to say that it is exceedingly
small. He discusses the adhesion of a liquid layer whose thickness is that of the
innermost black zone of the light fringes between two curved glass surfaces, namely
“three eighths of the ten hundred thousandth part of an inch”, so this may be his
best guess at the range of the forces; it is about 100 Å in modern measure.

In his book Hauksbee attempts to explain capillary rise by the horizontal force of
attraction between the glass wall and the contiguous particles of water (aa and bb
in Fig. 2.1), but without saying how this horizontal force is converted to a vertical
force that lifts the liquid (particles ee and gg) [40]. He is also uncertain about the
range of the forces, saying first that his experiments with tubes of different wall
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Fig. 2.1 Hauksbee’s picture of the rise of particles of a liquid in a capillary tube; from his
Physico-mechanical experiments [38].

thicknesses show that “the attractive power of small particles of matter acts only on
such corpuscules as are in contact with them, or remov’d at infinitely little distance
from them.” On the next page, however, he supposes that the particles of water
at the centre of the tube (dd in Fig. 2.1) “are near enough to be within the reach
of the powerful attraction of the surface.” He does not tell us whether the bore of
his tubes was greater or less than the thickness of the wall of his thinner-walled
tube so his experiment was not entirely conclusive, but his intention was clearly to
show that it was only the innermost layer of glass that acted on the water and the
converse is that only the outermost layer of water is affected by the glass. No doubt
the assumption that all the water was attracted was needed to save his theory, but it
was a confusion of thought that was to persist; better mathematicians than he such
as Clairaut and Lalande were later led into the same apparent contradiction which
they were to justify by saying that it needed experiments with tubes whose wall
thickness is less than their internal radius to be quite certain that the forces could
not reach the liquid at the centre of the tube.

Hauksbee’s last experiment, of which Newton makes no mention in Query 31
although it is described in De vi electrica, is to confirm a rough result of Brook
Taylor [41] by showing that the rise of water between two glass plates that meet
along a vertical (or even tilted) edge leads to a bounding liquid surface or meniscus
that is part of a hyperbola [42]. Humphry Ditton, the mathematics master at Christ’s
Hospital [43], tried to explain the form of this curve by treating the wedge-shaped
space between the plates as a set of ever narrower capillary tubes [44].

A further experiment of Taylor’s was attached, almost as an afterthought, to a
short paper on magnetism [45]. It aroused little interest at the time but was to be
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revived later in the century as ‘Dr Taylor’s experiment’ and was then much repeated
and extended. He wrote:

I took several very thin pieces of fir-board, and having hung them sucessively in a convenient
manner to a nice pair of scales, I tried what weight was necessary, (over and above their
own, after they had been well soak’d in water) to separate them at once from the surface
of stagnating water. I found 50 grains to separate a surface of one inch square; and the
weight at every trial being exactly proportional to the surface, I was encourag’d to think the
experiment well made. The distance of the under surface of the board from the surface of
the stagnating water, at the time they separated, I found to be 16/100 of an inch; though
I believe it would be found greater, if it could be measured at a greater distance from the
edge of the board, than I could do it, the water rising a little before it came quite under the
edge of the board.

There was to be much speculation about the significance of this force of detachment.
Repulsive forces feature less in Newton’s exposition; many apparent effects of

repulsion were, as we have seen, attributed to the effects of unequal attractive forces
[46]. The ‘elastic’ properties of air called for a repulsive force which he assumed
to be general:

And as in algebra, where affirmative quantities vanish and cease, there negative ones begin;
so in mechanicks, where attraction ceases, there a repulsive virtue ought to succeed. . . . The
particles when they are shaken off from bodies by heat or fermentation, so soon as they are
beyond the reach of the attraction of the body, receding from it, and also from one another
with great strength, and keeping at a distance, so as sometimes to take up a million of times
more space than they did before in the form of a dense body. . . . From the same repelling
power it seems that flies walk upon water without wetting their feet; and that object glasses
of long telescopes lie upon another without touching; and that dry powders are difficultly
made to touch one another so as to stick together, . . . . [47]

Newton does not say so but presumably this moderately long-ranged repulsion
changes again and becomes a gravitational attraction at even larger distances. There
is here the germ of an idea that was to be expressed more explicitly later in the
century by Rowning and Boscovich.

A repulsive force at short distances might seem to be necessary to account for the
space-filling properties of solid and liquid matter, but as long as his particles had
volume and were held to be almost incompressible, and as long as he did not enquire
into the elasticity of solids or into the small and then unknown compressibilities of
liquids, he could ignore this refinement. It was a point of view that could still be
held well into the 19th century.

We need not enter deeply into Newton’s private speculations on the cause of
gravity and, by implication, on the cause of cohesion. He was not prepared to accept
that gravity was an inherent property of matter, and attraction at a distance, without
a mediating cause, was as absurd a notion to him as it was to his Continental critics.
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In 1692 Richard Bentley, then Chaplain to the Bishop of Worcester, was preparing
the first set of Boyle Lectures, and wanted advice. Newton wrote to him: “You
sometimes speak of gravity as essential and inherent to matter: pray do not ascribe
that notion to me, for the cause of gravity is what I do not pretend to know. . . .” He
believed that it is “unconceivable that inanimate brute matter should (without the
mediation of something else which is not material) operate upon, and affect other
matter without mutual contact, . . .”, and that: “Gravity must be caused by an agent
acting constantly according to certain laws; but whether this agent be material or
immaterial, I have left to the consideration of my readers.” [48] John Locke echoed
the same sentiments and, in a parenthetical phrase (originally medieval [49]) that
was to be repeated throughout the 18th century, laid down that it was “impossible
to conceive that a body should operate on what it does not touch (which is all one
to imagine it can operate where it is not).” [50]

In his early years, influenced by his reading of chemical, theological, and magical
authors, Newton believed that an aether was the effective cause of gravity [26]. In his
middle years he was more inclined to put his faith in the literal omnipresence of God,
whose actions filled all space and so effected the attraction [28]. A memorandum
of David Gregory of 20 February, 1697/8 records that: “Mr C. Wren says that
he is in possession of a method of explaining gravity mechanically. He smiles at
Mr Newton’s belief that it does not occur by mechanical means, but was introduced
originally by the Creator.” [51] Alas, we hear no more of Wren’s mechanical theory.
In his later years, influenced by Hauksbee’s spectacular electrical experiments,
Newton returned to an aether, or to

. . . a certain most subtle spirit, which pervades and lies hid in all gross bodies; by the
force and action of which spirit, the particles of bodies mutually attract one another at near
distances, and cohere, if contiguous. . . . But these are things that cannot be explain’d in a
few words, nor are we furnish’d with that sufficiency of experiments which is required to an
accurate determination and demonstration of the laws by which this [electric and elastic]†

spirit operates.

These are the closing words of the last edition of the Principia.
These twists and turns of Newton’s thoughts [52] make it hard to summarise his

views but it was as an exponent of attractive forces between independent particles
that he was to be remembered in later times. His changes of emphasis arose in
part from his sensitivity to the views of his critics, particularly Leibniz [53] and
his followers who thought that Newton’s gravitational force, without a mechanical
explanation, was a resurrection of those ‘occult qualities’ that they believed had
been banished from natural philosophy in the 17th century. Newton had demolished

† The words ‘electric and elastic’ are not in the Latin text of the third edition but were added by the translator,
Andrew Motte, from a hand-written addition by Newton in his own copy of the second edition.
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the best-known mechanical explanation, the great vortices [tourbillons] of invisible
material that Descartes had supposed carried the planets round the Sun [54], but
the demand for a mechanical cause did not go away and was to plague Newton’s
followers for many years after his death.

2.2 Newton’s heirs

First in Edinburgh and then in Oxford and Cambridge, Newtonian philosophy made
its way into the universities. In 1683 David Gregory [55, 56] succeeded his uncle,
James, as professor of mathematics at Edinburgh and at once started teaching the
mathematics and astronomy he had learned from the works of Descartes and Wallis.
After the publication of the Principia in 1687 he became “the first who introduced
the Newtonian philosophy into the schools” [56]. With the support of Newton and
Flamsteed he was appointed to the Savilian chair of astronomy at Oxford in 1691,
where he was joined three years later by his pupil, John Keill (or Keil) [56, 57],
who in 1699 became the deputy to Thomas Millington, the Sedleian professor of
natural philosophy [58].

Both Gregory and Keill were soon familiar with Newton’s as yet unpublished
thoughts on matter and its cohesion [28]. Gregory’s discussions with him took place
in London; Newton’s only visit to Oxford was not until 1720, in the company of Keill
[59]. Gregory is known to have had a copy of Newton’s unpublished manuscript
De natura acidorum [29, 60]. In his lectures as Millington’s deputy or in his rooms
in Balliol College, Keill introduced experiments into his teaching, using equipment
that he had paid for himself. He was, wrote Desaguliers [61], the “first who publickly
taught natural philosophy by experiments in a mathematical manner . . . instructing
his auditors in the laws of motion, the principles of hydrostaticks and opticks, and
some of the chief propositions of Sir Isaac Newton concerning light and colours”
[62], to which Keill’s biographer adds that this “yet had not ’till then been attempted
in either university” [56]. (Burchard de Volder had introduced experiments into
the course at Leiden as early as 1675, on his return from London where he had
seen them performed before the Royal Society [63].) Keill’s lectures were first
published in Latin in 1702, and in English in 1720, with many later editions in both
languages [64]. In his published lectures he confined himself to Newton’s mechanics
and its applications; astronomy he left, at that stage of his career, to Gregory, and
cohesion he omitted. This omission was soon repaired in two ways; first, through a
paper that he published in the Philosophical Transactions of 1708 (issued in 1710)
which contained thirty theorems on matter and its cohesion [65, 66], and secondly,
through some lectures, soon to be followed by a book, by his colleague John Freind,
the reader or professor of chemistry [56, 67].
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In his paper of 1708 Keill laid down three principles, two of which, the existence
of a vacuum and the mutual attractions of the particles of matter, followed Newton’s
views, and a third which did not: a belief in the infinite divisibility of matter [68];
it seems, however, to play no part in his theorems. The first three of these repeated
Newton’s arguments for a porous structure of matter, and the fourth asserted that:

Besides that attractive force [i.e. gravity], . . . there is also another power in matter, by
which all its particles mutually attract; and are mutually attracted, by each other, which
power decreases in a greater ratio, than the duplicate ratio of the increase of the distances.
This theorem may be proved by several experiments: but it does not yet so well appear
by experiments, whether the ratio, by which this power decreases, as the particles recede
from each other, be in a triplicate, quadruplicate, or any other ratio of the increase of the
distances.

Theorems 5 to 11 point out, as Newton had done, that the attractive forces dominate
the gravitational force at short distances, and that it is only the forces between the
immediate points of contact that contribute to the cohesion of two bodies. These
clear arguments then pass, in the remaining theorems, into less precise but still
essentially Newtonian explanations of how fluidity, elasticity, diffusion, solution,
precipitation, etc., can be explained in terms of these forces. He is clear, however, on
the distinction between what we now call elastic and plastic bodies. In the first, an
applied force moves the particles a little, without destroying their configuration and
leaving them subject to the restraining force of their mutual attractions. Plastic, or
‘soft’ bodies, as he calls them, have the configuration of their particles destroyed by
weak applied forces. A more fully developed version of this idea was put forward
by Coulomb [69] in 1784, in a paper that can now be seen as the link between the
simple ideas on elasticity of the early 18th century and the more detailed corpuscular
theories of Navier, Poisson and Cauchy in the early 19th [70].

One of the last phenomena that Keill sought to reduce to a mechanical explanation
was the rising of sap in trees, thus foreshadowing the later attempts to extend
Newton’s philosophy into biological and botanical fields made by his younger
brother James [56, 71] and by Stephen Hales [72, 73].

In 1704 John Freind gave nine lectures in the Museum at Oxford which, when
he published them five years later (probably in revised form), he acknowledged
were based on Keill’s ideas [74]. His aim was to derive chemistry from Newtonian
principles. He reduces Keill’s thirty theorems to eight and, like his mentor, is clear
that the attractive force responsible for cohesion falls off “in a ratio of increasing
distances, which is more than duplicate.” [75] Melting is caused by particles of fire
insinuating themselves into matter and so weakening the attraction. Since lead melts
at a lower temperature than many less dense metals it follows that the attractive
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forces are not proportional to mass, and so they are not gravitational. Later in
the century more subtle French minds were to find such arguments unconvincing.
Solution and precipitation are reduced to the effects of differential attractions,
and distillation is assisted by a rarefaction of the liquid by air. Perhaps his most
ambitious attempt to reduce chemistry to mathematical laws is his explanation
of why aqua fortis dissolves silver but not gold, while aqua regia dissolves gold
but not silver, a paradox that had engaged Newton’s attention in Query 31, and
also that of others [76]. Freind’s explanation is in terms of differences in the sizes
of the particles and of the strengths of the attractions, all expressed in algebraic
symbols [77]. Crystallisation is a result of the forces being stronger on one side
of the particles than the other. The geometric shape of crystals was therefore, he
thought, a consequence of the different shapes of the particles [78]. He closes on a
cautionary note:

There remain indeed many other things, which cannot be accounted for, without great
difficulty; but we hope the difficulty, sometime or another, may be surmounted, when people
take the pains to pursue these inquiries in a right method. . . . but if these can’t be reduc’d to
the laws of mechanism, we had better confess, that they are out of our reach, than advance
notions and speculations about ’em, which no ways agree with sound philosophy. [79]

Freind’s lectures of 1704 were too early to have been influenced by Newton’s pub-
lished words, and he was abroad from 1705 to1707, but there is no doubt that he
benefited indirectly from Newton’s contacts with Gregory and Keill, and the pub-
lication of the lectures came after the Latin edition of the Opticks. Thomas Hearne
of the Bodleian Library went so far as to accuse “some Scotch men, (who would
make a great figure in mathematical learning)” of stealing Newton’s results [80],
and it is now known that Gregory used Newton’s manuscripts, presumably with
permission, in preparing his own book on astronomy [81]. Certainly the whole of
Freind’s book is imbued with the spirit of Query 31 and, as his translator in 1712
(‘J.M.’, not identified) puts it in his Preface, by “the principle of attraction, which so
happily accounts for the phaenomena of Nature”. Freind’s lectures were the most
ambitious attempt yet to reduce the operations of chemistry to mechanics, but this
was not to be the way forward; the world was not yet ready for quantitative physical
chemistry.

Most of Newton’s followers in Cambridge were less ambitious than Keill and
Freind; they were in the main translators, editors, and textbook writers [82]. Samuel
Clarke, a Fellow of Gonville and Caius College [83], translated the Cartesian
textbook of Jacques Rohault into Latin in 1697 and embellished it with Newtonian
comments that often contradicted the sense of the original text. Roger Cotes, who
became the first Plumian professor of astronomy in 1706 was an original mathemati-
cian but his main contribution to physics was as editor, and writer of a Preface, for
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the second edition of the Principia in 1713. Cotes died three years later, with little
in the way of thanks from Newton for his considerable labours, and was succeeded
by his cousin, Robert Smith [84], who wrote a thoroughly Newtonian account of
geometrical optics in which he adduced arguments to show that the force of attrac-
tion of matter for the particles of light was “infinitely stronger than the power of
gravity” [85]. William Whiston [86] succeeded Newton as Lucasian professor in
1701 but was ejected from the chair for heresy in 1710; his interests were more in
theology and popular astronomy than in mathematics and physics. He was involved
with Humphry Ditton in a hare-brained scheme for determining longitude at sea by
discharging cannon from lines of ships moored in mid-ocean [87].

Little more was done experimentally at the Royal Society in the field of cohe-
sion after the death of Hauksbee in 1713. He was succeeded as demonstrator by
J.T. Desaguliers [61, 88], the son of a Huguenot refugee. He had been educated
at Oxford and had succeeded Keill at Hart Hall when Keill had gone abroad in
1710; there he learnt to lecture and demonstrate. His experiments before the Royal
Society were many and ingenious but were mainly optical, electrical and mechan-
ical; his Course of experimental philosophy [62] became an important Newtonian
textbook. He was one of the first to appreciate that Newton’s ‘force’ (generally our
momentum) and Leibniz’s ‘force’ (the vis viva, or twice our kinetic energy) were
different constructs, and that many of the arguments about the much-used word
were misconceived.

James Jurin [35], a physician educated at Cambridge and Leiden, was a Secretary
of the Royal Society during the last six years of Newton’s Presidency. In 1718
he made an important experiment that added a new fact to those discovered by
Hauksbee; the height to which water rose in a tube depended only on the diameter
at the position of the meniscus. A tube that was wide at the bottom but narrow
at the top could therefore hold in suspension a greater volume of water than one
of uniform bore. This fact undermined Hauksbee’s not very coherent explanation
that the rise was due to a diminution of the “gravitating force” by a horizontal
attraction of the whole of the glass wall, in essence the same view that Newton had
expressed inDe vi electrica [39]. Jurin claimed to have found “the real cause of that
phaenomenon, which is the attraction of the periphery, or section of the surface of
the tube, to which the upper surface of the water is contiguous and coheres” [36].
He expounded six propositions: such as, for example, that water particles attract
water but not as strongly as they are attracted to glass, whereas mercury attracts
mercury more strongly than mercury is attracted to glass. He established that the
depression of mercury in a capillary tube, like the rise of water, is as the reciprocal
of the bore.

Ephraim Chambers published his Cyclopaedia in the year after Newton’s death
[89]. In opening his article on ‘Attraction’ he seems to subscribe to the view that
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attractive forces are innate; he writes, “Attractive force, in physicks, is a natural
power inherent in certain bodies, whereby they act on other distant bodies, and
draw them towards themselves.” In the fifth edition of 1741 he (or his editor, he
died in 1740) showed that this view was not the one then held by changing the
word ‘physicks’ to ‘ancient physics’. He then outlines the opinions of Newton,
Keill and Freind, surmises that the last two may have gone too far (“but this seems
a little too precipitate”) and then sets out 25 theorems. These derive from the 30 in
Keill’s paper of 1708, either directly, or from the 19 in Harris’s Lexicon of 1710.
His article on cohesion opens: “The cause of this cohesion, or the nexus materiae,
has extremely perplex’d the philosophers of all ages. In all the systems of physicks,
matter is suppos’d originally to be in minute, indivisible atoms.” The rest of the
article consists of long quotations from Newton’s writings. On ‘Capillary tubes’
he writes: “The ascent of water etc. in capillary tubes is a famous phaenomenon
which has long embarrass’d the philosophers.” These phrases were to be repeated
throughout the century, and the opening of the article on cohesion was, as we shall
see, to be distorted by d’Alembert for the French Encyclopédie of 1751.

Repulsive forces played even less part in the expositions of Keill and Freind than
they did in that of Newton, but they were given a more prominent role by Stephen
Hales and Desaguliers. The former, perhaps the most original of the Cambridge
Newtonians, took seriously the ‘fixation’ of air in solid bodies, from which it could
be expelled again by heat or fermentation. It was a thesis of his Vegetable staticks
[73] that such fixation was not merely the accommodation of ‘airs’ within the the
solid but that it required the annulment of the repulsive forces. Later his work on
airs was an important influence on Continental ‘pneumatic chemistry’, particularly
on Lavoisier, via Buffon’s translation of Vegetable staticks in 1735 [90].

Desaguliers, who wrote a long abstract ofVegetable staticks for thePhilosophical
Transactions [91], took the matter further by considering the relevance of repulsive
forces to the apparently unrelated phenomena of the evaporation of liquids [92] and
the elasticity of solids [62, 93]. He notes first that Newton “has demonstrated” that
the elasticity of air arises from the repulsion of contiguous particles, claims that he
and Henry Beighton [94] had shown that water increases in volume by a factor of
“about 14000” on boiling, and then tries to marry these ideas to a repulsive force
at short distances. He says that such a force is needed because water is known to
be incompressible. He writes that this property of resisting compression

. . . must be intirely owing to a centrifugal [i.e. repulsive] force of its parts, and not its want
of vacuity; since salts may be imbib’d by water without increasing its bulk, as appears
by the encrease of its specifick gravity. . . . The attraction and repulsion exert their forces
differently: The attraction only acts upon the particles, which are in contact, or very near it;
in which it overcomes the repulsion so far, as to render the fluid unelastick, which otherwise
would be so; but it does not wholly destroy the repulsion of the parts of the fluid, because
it is on account of that repulsion that the fluid is then incompressible. [92]
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His facts are not quite correct; his estimate of the increase in volume of water on
boiling is too large by a factor of about 8, but the same erroneous figure was still
being quoted twenty years later in the widely used textbook of the Abbé Nollet
[95]. Salts do not (in modern language) have zero partial volumes in solution, al-
though these volumes are often much smaller than the volumes of the solid salt.
The problem of how the supposed pores in water could take up solutes was one that
received spasmodic attention throughout the century. Daniel Bernoulli claimed that
the dissolution of sugar in water also led to no increase in volume [96]. Richard
Watson of Cambridge established the facts most clearly in 1770; the solution occu-
pies more space than pure water but less than the sum of the volumes of the water
and the solid solute [97]. He attempted no explanation of this result.

Evaporation of a liquid into air continued to be a puzzle for some time after its
discussion by Hales and Desaguliers. Hugh Hamilton [98], in Dublin, ascribed it
to an attraction between the particles of air and those of water, and added that he
had been told the Abbé Nollet held the same view. When his paper was sent to
the Royal Society in 1765 it was remembered that Benjamin Franklin had placed
similar views before the Society nine years earlier, and so his paper was appended
to Hamilton’s. Franklin had added a Newtonian repulsion of the air particles to the
air–water attraction [99].

Ten years after his paper on evaporation and solution Desaguliers extended his
ideas on repulsive forces to the field of the elasticity of solids [93]. He believed that
attractive forces alone between spherical particles would result in the material form-
ing an easily deformed spherical body. He went beyond Keill’s ideas in thinking that
something more than attraction was needed to explain, for example, the elasticity
of a blade of steel. He opened his paper with the ringing Newtonian declaration:
“Attraction and repulsion seem to be settled by the Great Creator as first principles
in Nature; that is, as the first of second causes; so that we are not solicitous about
their causes, and think it enough to deduce other things from them.” [93] He then
mentions Hales’s experiments on the release of fixed air by distillation, a reference
that suggests that he was not entirely clear on how repulsive forces could act at
both large and small distances, with attraction in between, and (presumably) again
at very large distances as gravity takes over. The repulsive forces he introduces are
polar, and probably magnetic; only such different-sided forces could account for
the preference of an array of particles to adopt a linear configuration, and for that
line to resist bending.

Desaguliers was, perhaps, the first to suppose that the concept of impenetrability
could be replaced by the potentially more quantifiable concept of a short-ranged
repulsive force, and his later work may have owed something to a clearer expression
of this proposal in a recently published popular account of Newtonian philosophy.
In hisCompendious system of natural philosophy, the Revd John Rowning [100] of
Anderby in Lincolnshire, and sometime Fellow of Magdalene College, Cambridge,
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had written that “matter . . . has also certain powers or active principles, known by
the names of attraction and repulsion, probably not essential or necessary to its ex-
istence, but impressed upon it by the Author of its being, for the better performance
of the offices for which it was designed.” [101] His words are similar to those used
later by Desaguliers. Two facts, Rowning says, show the existence of “the attraction
of cohesion”; the rise of a liquid in a capillary tube and the joining of two small
spheres of mercury to form one. He sets out the rules of attraction as, first, that it
acts only on contact or at very small distances, second, that it is proportional to the
“breadth of the surfaces of the attracting bodies, not according to their quantities of
matter”, and, third, that “’tis observ’d to decrease much more than as the squares of
the attracting bodies from each other increase”. [102] All this follows, he says, from
Keill’s work. Later, when writing on hydrostatics, he goes further and says that

. . . since it has been proved that if the parts of fluids are placed just beyond their natural
distances from each other, they will approach and run together; and if placed further asunder
still, will repel each other; it follows, upon the foregoing supposition that each particle of a
fluid must be surrounded with three spheres of attraction and repulsion one within another:
the innermost of which is a sphere of repulsion, which keeps them from approaching into
contact; the next a sphere of attraction diffused around this of repulsion, and beginning where
this ends, by which the particles are disposed to run together into drops; the outermost of all, a
sphere of repulsion whereby they repel each other, when removed out of that attraction. [103]

This is an extension of Newton’s dictum that where attraction ends there repulsion
starts. The repulsion is not only between the particles of air but also between grosser
bodies, such as that which enables a fly to walk on water. This favourite instance was
repeated, for example, in the first edition of the Encyclopaedia Britannica, where
was added also the case of a needle that “swims upon water” [104]. Rowning’s
synthesis differs little from the more fully articulated one developed a few years
later by Boscovich.

Rowning’s discussion of capillary rise [103] is fully referenced with citations
of the works of Hauksbee, Jurin, van Musschenbroek and the French savants (see
below), but his conclusions are not wholly in accord with their results. He assumes
that the rise is proportional to the wetted area of the tube (notwithstanding Jurin’s
experiment) and that the size of the sphere of attraction is comparable with the
radius of the tube, which is what Hauksbee said, but is contrary to Rowning’s
own reading of Keill. If this were so, then he acknowledges that tubes of different
thicknesses but with the same bore should show different rises, but “no one has as
yet been so accurate as to observe it”.

Desaguliers turned Newton’s conjecture about repulsion between air particles
into established fact. He said also that the views expressed in the Queries were not
mere conjectures but facts confirmed by “daily experiments and observations” [62].
Cotes made another advance beyond Newton’s usual public position on the cause
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of gravity in his Preface to the second edition of the Principia, although Newton
then tacitly endorsed it. In the General Scholium Newton committed himself only
to the statement: “And to us it is enough that gravity does really exist and act
according to the laws we have expressed. . . .” [105] Henry Pemberton [106], the
editor of the third edition, was the disciple who kept closest to Newton’s public
view. He relegated the topic of cohesion, however, to the last paragraphs of his own
exposition of Newton’s work, and wrote there:

From numerous observations of this kind he makes no doubt, that the smallest parts of
matter, when near contact, act strongly on each other, sometimes being mutually attracted,
at other times repelled. The attractive power is more manifest than the other, for all parts of
all bodies adhere by this principle. And the name of attraction, which our author has given
to it, has been very freely made use of by many writers, and as much objected to by others.
He has often complained to me of having been misunderstood in this matter. What he says
upon this head was not intended by him as a philosophical explanation of any appearances,
but only to point out a power in nature not hitherto distinctly observed, the cause of which,
and the manner of its acting, he thought was worthy of a diligent enquiry. To acquiesce in
the explanation of any appearance by asserting it to be a general power of attraction, is not
to improve our knowledge in philosophy, but rather to put a stop to our farther search.

FINIS [107]

This careful ‘quasi-positivistic’ [108] attitude to gravity and cohesion was often
impatiently brushed aside by Newton’s followers; to them the attractive forces were
facts of nature and they did not care how they were effected. It was a cavalier attitude
that offended contempory Continental philosophers but which was to pay dividends
in the hands of Laplace and his school. Even in Britain it did not always command
approval, as we have seen from Pemberton’s mild rebuke. Others went further and
put it more strongly;Biographia Britannicawrote of James Keill carrying his use of
attractive forces further than was warranted by “the principles of true philosophy”,
and added that “he is not the only person, who instead of reflecting honour has
thrown a blemish on this point of Newtonian philosophy” [109]. Not only this
attitude to the forces but also the wide range of applications of the philosophy came
in for criticism. Others in Britain attacked Newton’s philosophy per se, often on
theological grounds, but their influence was small in ‘philosophical’ circles.

2.3 On the Continent

The question of how Newton’s thoughts on cohesion were received on the Continent
is easily answered; they were ignored until what were seen as more urgent problems
with his physics had been resolved. From the time of the publication of thePrincipia
in 1687 he was recognised as one of the leading mathematicians of the day, but his
physics was unacceptable to the Cartesians in France and in the Netherlands, and
to Liebniz and later to Wolff [110] in Germany.
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There were two stumbling blocks. The first was the introduction of the two
‘occult’ qualities of action at a distance and a vacuum, which was seen as a return
to the primitive days before Descartes had filled space with aetherial vortices. The
mechanistic philosophy of Descartes had, however, scarcely ousted the scholastic
by the time the Continent became fully aware of Newton. D’Alembert [111] was
to claim in 1751, with some exaggeration, that “. . . scholastic philosophy was
still dominant there [in France] when Newton had already overthrown Cartesian
physics; the vortices were destroyed even before we considered adopting them. It
took us as long to get over defending them as it did for us to accept them in the first
place.” [112]

In one of earliest foreign reviews of the Principia, the writer in the Journal des
Sçavans commended Newton’s mathematics but said that he must give us a physics
that matched the power of his mechanics [113]. Huygens was equally dismissive
in private, even before he had studied the Principia. He wrote on 11 July 1687 to
Newton’s friend Fatio de Duillier: “I should like to see Newton’s book. I am happy
for him not to be a Cartesian providing that he does not pass on to us suppositions
such as that of attraction.” [114] Forty years later, Fontenelle, the Secretary of the
French Academy, wrote in his Éloge for Newton: “Thus attraction and vacuum
banished from physicks by Des Cartes, and in all appearance for ever, are now
brought back again by Sir Isaac Newton, armed with a power entirely new, of
which they were thought incapable, and only perhaps a little disguised.” [115] We
have seen that Newton shared the Cartesians’ disbelief in action at a distance but his
honest declaration that he thought it proper to make full use of the inverse-square
law of gravitation, even although he could not account for it physically, did not
satisfy his Continental critics [116]. Leibniz, in particular, with his strong belief
in the continuity of all natural things, could conceive of pull at a distance only as
a sequence of pushes. Johann Bernoulli shared the same view [117]. It was the
gravitational attraction at which Newton’s critics directed their fire; the relatively
minor matter of Query 31 was at first ignored in the condemnation of the greater sin.
The fullest exposition of Leibniz’s opposition is in his correspondence with Samuel
Clarke. Here there is much on gravity, on metaphysics and theology, something on
mechanics, but only a passing mention of cohesion [118].

The second stumbling block to the acceptance of Newton’s physics was the
disagreement between the work of Edme Mariotte [119] and others in France
and Newton’s work on the dissection of white light into colours. It was not
until 1716–1717 that Dortous de Mairan [120] and Jean Truchet [121] in France
and Desaguliers in England showed decisively that Newton was correct [122].
Nevertheless those who, following Huygens, held to wave theory of light, could
not accept his particles of light streaming through a vacuum.

Newton’s ideas on cohesion seem to have attracted notice abroad first in the
guise of Keill’s publications [123] and of Freind’s book of chemical lectures. The
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Latin edition of this work was reprinted in Amsterdam in 1710 and so became the
subject of a highly critical review by Wolff, published anonymously in the Leipzig
journal Acta eruditorum [124]. Freind’s reply to this review is revealing since it
shows how soon some of Newton’s followers in Britain abandoned their master’s
cautious stance. He wrote, in obvious exasperation: “Such a principle of attraction
they are pleas’d to call a figment; but how any thing shou’d be a figment, which
really exists, is past comprehension.” [125]

In France the work on cohesion was at first more ignored than criticised [126].
Mariotte [127] had observed the adhesion between floating bodies on the surface
of water, and in the early years of the century several sets of observations of cap-
illary rise were reported in the Memoirs of the Academy, but they were less well-
designed than those of Hauksbee and Jurin, guided by Newton. Such a comparison
is an example of the familiar fact that experiments guided by a well-articulated
theory, even if it be not wholly correct, are more useful than those conducted more
aimlessly.

Louis Carré [128], assisted by E.-F. Geoffroy [129], measured the rise of water in
three tubes of diameter 1/10, 1/6, and 1/3 ligne, and found rises of 21/2, 11/2 pouces
and 10 lignes respectively (12 lignes = 1 pouce ≡ 2.71 cm). These figures, like that
quoted by Newton in the Opticks, are only about half that expected for clean glass
tubes that are perfectly wetted by the water, a discrepancy that shows the difficulty
of removing the last traces of grease from the glass. In a partial vacuum they found
a slightly larger rise than in the open air [130].

Dufay (or du Fay) [131], who was later to make his name by his electrical
researches, studied both the rise of water and the depression of mercury in capillary
tubes. Fontenelle notes that he ascribed the depression of mercury to the fact that it
did not wet the glass because of a film of air between the liquid and the solid, and
so deduced that there would be no depression in a vacuum. Dufay tried to convince
himself that this was so by reporting that the meniscus in a Torricellian vacuum was
flatter than that in air [132]. Petit, a physician [133], complicated matters by using a
narrow tube inside a wider one, so that the water rose in the annular space between
them. He believed that the strength of the adherence of water was proportional to
the density of the solid wall – a false analogy with gravitation, but one that showed,
perhaps, that Newton’s ideas were beginning to be treated with respect [134].

These French philosophers made few attempts to account for their findings,
writing only in the most general terms of a ‘stickiness’ (Mariotte, who used the word
viscosité), or a ‘sympathy’ (Carré), or an ‘adhesion’ (Fontenelle), or an ‘adherence’
(Petit) between the water and the glass, avoiding all mention of the Newtonian
‘attraction’. Some years later, Desmarest [135] divided theories of capillarity into
three classes: first, those where there is “an unequal pressure of a fluid [i.e. air or an
aetherial fluid] which acts with less advantage in the narrow confines of a capillary
tube”, second, those in which there is an “adherence or innixion [i.e. pressing] of
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the liquids on the walls of the tubes”, and, third, those in which there is a “mutual
attraction of the capillary surfaces and the particles that comprise the liquids”. In
the first class he places Dufay, Dortous de Mairan and Johann and Jakob Bernoulli,
in the second, Carré, and in the third, Hauksbee, Jurin and Clairaut.

Fontenelle describes how Dortous de Mairan explained the depression of mercury
by the fact that it does not wet the glass but then interpreted this as a consequence
of the struggle between the opposing vortices of a subtle magnetic material in the
annular space between the mercury and the glass. Even to Fontenelle, a convinced
Cartesian, this explanation did not carry conviction [132]. It had what we now
think of as a characteristic weakness of many early 18th century theories. They
were thought to have done their job if they provided a plausible account of a
possible mechanism that did not contradict any known fact, and which satisfied the
metaphysical creed of the proposer. It was not held to be necessary that theories
should be falsifiable nor that they had predictive power, notwithstanding Boyle’s
claim that one criterion of a good theory was “That it enable a skilfull naturalist to
foretell future phenomena.” [136] The need for more searching criticisms of theories
became apparent in the second half of the century; it is reflected, for example, in
d’Alembert’s ‘Discours préliminaire’ to the Encyclopédie of 1751 [112].

The French savants made no mention of the work in London. The paper of
Carré and Geoffroy was too early to have been influenced by Hauksbee’s work,
but Geoffroy, a Fellow of the Royal Society since 1698, was fluent in English and
on cordial terms and correspondence with Hans Sloane, a Secretary of the Society
until 1713. Dufay made notes on Hauksbee’s work [131] which was known to him
and his contemporaries through an Italian translation of the first edition, published
at Florence in 1716 [137].

Perhaps Geoffroy’s most original contribution related to the field of cohesion was
his table of ‘affinities’ of 1718, the first of many such tables compiled in the next
eighty years. These showed the comparative strengths of the chemical affinities of
one substance for another (usually elements in the modern sense of the word), so
that it could be seen at a glance which substance would readily displace another
from a chemical combination [138]. Geoffroy accepted a corpuscular theory and
spoke in his lectures of water particles being smooth and oval: “An oval figure seems
more agreeable to the fluidity and motion of water than a spherical, and likewise
to the solidity we observe in ice; the points of contact being too few in spherical
bodies to form so strong a cohesion.” [139] Although these musings resemble some
of those of Freind and others, they probably derive more from Descartes than from
Newton. His affinities, or ‘rapports’ as he calls them, are closer in name to the term
‘sociableness’ that Newton used in his earliest work before he moved to the more
explicit ‘attraction’ [140]. Geoffroy’s translator wrote that, “These affinities gave
offence to some particular people, who were apprehensive that they might be only
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attractions disguised, and so much the more dangerous, as some persons of eminent
learning had already cloathed them in seducing forms.” [141] Such tables became
popular with chemists in the second half of the century. Geoffroy’s cautious word
‘rapports’ was abandoned for the more committing ‘affinité’ or even ‘attraction’,
although this last word was always more popular with the natural philosophers
than with the chemists [142]. Maupertuis [143], when writing ‘Sur l’origine des
animaux’ in 1745, was one of the first to assert that “these rapports [of Geoffroy]
are nothing but what other more bold philosophers call attraction.” [144]

Newton’s Opticks became available in French in 1720 and ’s Gravesande’s book
on Newtonian physics (see below) was published in Latin at Leiden in 1720–1721
[145] to a hostile review in the Jesuit Journal de Trévoux [146]. A few years later
Freind’s chemical lectures were plundered to make an anonymous book entitled
Nouveau cours de chimie suivant les principes de Newton et de Sthall, 1723. The
first reviewer, in the Journal des Sçavans, ascribed it to J.-B. Senac, later the King’s
physician [147], an ascription that has been accepted [148].

None of these works converted the French to Newtonian physics. The first move in
that direction came from a group of whom Voltaire was the eldest and the best known
[149]. It comprised himself, his mistress, Émilie, Marquise du Châtelet [150], and
the natural philosophers Maupertuis and Clairaut [151]. Voltaire became the first
to accept the Newtonian theory of attraction when he was in England in 1727 at
the time of Newton’s death; they never met but he attended the funeral. It was
from his friend Samuel Clarke that he learnt what Newton had achieved [152]. His
association with Mme du Châtelet began in 1733. She was the better mathematician,
having already had instruction from Maupertuis; he had to struggle to master the
principles if never the practice of Newton’s work. In the years 1734 to 1738 “the
poet definitely became the philosopher.” [153] He announced his conversion to his
compatriots in his Letters concerning the English nation of 1733, which appeared
in French the next year as Lettres philosophiques [154]. He noted in his 14th Letter
that in England attraction prevailed “even in chemistry”, and in his 15th, which is
‘On attraction’, he mentions Newton’s ramified structure of matter, but generally
he confined himself to gravitational attraction, as he did a few years later in his
Elements of Sir Isaac Newton’s philosophy. At one point in that work he mentions
that bodies in contact are “attracted in the inverse cubes of their distances, or even
considerately more” [155], but that is in the context of a discussion of the inflection
(or diffraction) of light. In the edition of 1741, the first produced under his own
control, he adds a final chapter in which he discusses the attraction of small bodies,
but he makes no advance on what had already been achieved elsewhere.

Meanwhile Maupertuis had almost taken the plunge. He had been in London in
1728, at the same time as Voltaire, but any Newtonian views that he may then have
acquired were soon restrained under the Leibnizian influence of Johann Bernoulli,
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the elder, whom he visited in Basel the next year [156]. He was, however, a con-
vinced Newtonian by 1731 when his paper ‘De figuris quas fluida rotata . . .’ was
read at a meeting of the Royal Society on 8 July [157]. On 31 July he wrote
somewhat apologetically to Bernoulli to explain that he was publishing in England
because that was where attraction was taken seriously [156]. This paper was fol-
lowed by, and contained in, a small book on the shape of the heavenly bodies [157]
which was meant to give the impression of an even balance between Descartes and
Newton, but which, in fact, came down very much on the side of Newton, as he
confessed in a letter to Bernoulli of 10 November 1732 [156]. Bernoulli himself
had, however, become less of a convinced Cartesian by 1735 [158]. Maupertuis
later told Bernoulli that a new theory never convinced the partisans of the old; one
could only hope to convince the bystanders. (Planck was to observe that one had to
wait for the supporters of the old to die [159].) Voltaire studied Maupertuis’s book
before he wrote his Lettres philosophiques.

In the early part of hisDiscoursMaupertuis was at pains to establish that there was
nothing metaphysically inadmissible in the notion, which he ascribed to Newton,
that attraction was an inherent property of matter. In the later chapters he examined
the shape of fluid bodies that gravitate and rotate, under different assumptions about
the dependence on distance of the force betwen any two parts. His study of powers
of the separation other than −2 seems, however, to have been no more than an
academic exercise in generality. He did not, at this stage, have cohesive forces in
view, but he was able to show that, under all reasonable assumptions, a rotating fluid
body would be flatter at the poles, as Newton had claimed, and not at the equator,
as was claimed by the Cartesians, on the basis of what Maupertuis himself showed
by his journey to Lapland to be flawed earlier French evidence of the shape of the
Earth.

Two years later he returned to the question of the attraction of bodies with
powers of the separation other than −2; this time he was interested in applications
to cohesion – Keill and Freind are both mentioned – but again the whole work is an
exercise in applied mathematics rather a serious piece of physics: “I do not examine
if the attraction contradicts or accords with the true philosophy. I treat it here only
as in geometry; that is, as a quality, whatever it may be, of which the phenomena
are calculable. . . .” [160] For a solid sphere he reproduces Newton’s result for the
inverse-square law and speculates that the particularly simple properties of this law
may have been the reason why God chose it as the force that governs the motions
of the planets. He shows that for a cubic law the force has a term proportional to the
logarithm of the distance of a particle from the nearest point of an attracting sphere,
a result that Newton had stated with less explicit detail in Proposition 91 of the
Principia [161]. This paper attracted the attention of Fontenelle who, as Secretary
of the Academy, reviewed it in the History [162]. He gives there a fair account of
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Newtonian theory but without any commitment to support it. He notes that what
makes the determination of the cohesive forces “difficult, and perhaps impossible,
is that the experiments or the phenomena yield only extremely complicated facts.”
He finishes somewhat sardonically by noting that “the physicists need have no fear
of lack of work to do, but the mathematicians may run out of occupation more
quickly.”

Mme du Châtelet’s opinions changed with time. She was, presumably, a
Newtonian when Voltaire was, with her help, writing hisElements; in the dedicatory
poem he speaks of her as “the pupil, friend of Newton, and of truth”. In 1738–1739
she was more of a Leibnizian, in part under of the influence of Samuel König
[163] who had learnt his metaphysics from Wolff, and who was introduced into her
company at her château at Cirey by Maupertuis [164]. Her Institutions de physique
appeared first anonymously in 1740 and was wholly Leibnizian in its metaphysics
and even its mechanics. The ‘principle of sufficient reason’ is invoked repeatedly
to counter Newton’s views. She says that the coherence of matter is “one of the nat-
ural effects, the explanation of which has most puzzled [embarrassée] the natural
philosophers” [165]. (Was there a copy of Chambers’s Cyclopaedia at Cirey?) Her
16th chapter, ‘On Newtonian attraction’, records that Newton’s disciples invoke
forces that fall off as the inverse cube of the separation (or more strongly), that
Freind has “put forward a chemistry totally based on this principle” [166], but then
she, like Fontenelle, puts her finger on a weak point when she remarks that each
new phenomenon seems to need a new force.

She eventually abandoned these Leibnizian “imaginations” and embarked on
what is still the only French translation of the Principia. This, and her commentary,
were finished before her death in childbirth in 1749, after discussions with Clairaut,
but they were not published for another seven years [167]. She had had access to
Newton’s second edition as early as 1737 and was seeking another copy in “a
fine edition” in 1739 [168]. The ‘Privilege du Roy’ of the published book is dated
7 March 1746. Work went on beyond that date and was probably in some disarray in
1747–1748 when Clairaut thought that the motion of the lunar apse was inconsistent
with a pure inverse-square law of gravitation (see below). By the time this problem
was resolved Mme du Châtelet was approaching her final confinement. When the
book did appear it had, at the end of the second volume, a series of exercises on
the attracting spheres and spheroids according to different force laws, rather in the
manner of Maupertuis, although he is not mentioned, and with a similar lack of
physical applications.

The cultural links between Britain and the Netherlands were stronger than those
between Britain and France and Newton’s ideas were received favourably there
during his lifetime [169]. Herman Boerhaave [170] became the professor of botany
and medicine at Leiden in 1709 and also the professor of chemistry in 1718. He
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was a convinced ‘corpuscularian’ and an admirer of Newton whom he praised
particularly for an insistence on the primacy of experiment in the lecture he gave
in 1715 on retiring as Rector Magnificus [171]. His Elementa chemiae of 1732
showed, however, that he had no particular commitment to or use for Newtonian
attraction [172]. He was probably not unsympathetic to the efforts of Newton and
his followers; he is known to have had a copy of the 1710 Amsterdam edition of
Freind’s lectures [173], and it may be significant that Fahrenheit discussed naturally
with him the “attraction or adhesion of the particles”, a topic that does not occur
in Fahrenheit’s letters to Leibniz [174]. Boerhaave, in his turn, wrote to Fontenelle
praising Newton’s work on magnetic and other attractions and on elasticity [175].
Nevertheless he did not ultimately accept Newton’s attempt to reduce chemistry
to physics and was, perhaps, the most influential writer of his time to insist that
chemistry was an autonomous science [176]. Shaw’s translation of his Chemistry
gave it a Newtonian slant that is not in the original; Freind’s lectures, for example,
appear as a recommended work only in this English edition. A pseudonymous
writer in the Gentleman’s Magazine for 1732 said that Boerhaave’s and Freind’s
“systems and way of reasoning are as different as that of alkali and acid.” [177]

Boerhaave’s view of heat was also not that of Newton; he rejected the view that
it was nothing but the rapid motion of the particles and put forward the hypothesis
that it was a material but weightless fluid whose movement constituted the heat.
Heat as a weightless but usually static fluid was a view that became increasingly
influential as the century wore on, eventually to be subsumed into the caloric theory
of Lavoisier and others [178].

It was Boerhaave’s younger colleague, W.J. ’s Gravesande [179], and Boerhaave’s
former pupil, Pieter van Musschenbroek [180], who brought Newtonian physics to
the Netherlands. Voltaire made the distinction correctly when he wrote in a letter
of 1737: “I have come to Leiden to consult Dr Boerhaave about my health and
’s Gravesande about Newton’s philosophy.” [181]

In 1715 the Dutch sent an embassy to London for the coronation of George I, and
’s Gravesande, then a young lawyer, was one of the secretaries. He met Newton,
became a friend of Keill and Desaguliers, was elected to the Royal Society and, on
his return to the Netherlands, became the professor of mathematics and astronomy
at Leiden. He declared his colours at once; the second half of his inaugural lecture
of 22 June 1717 is devoted to the physics and astronomy of “the celebrated Newton,
this great mathematician and restorer of the true philosophy”. [182] He lost no time
in producing the first Newtonian textbook of physics to be written on the Continent,
which was translated into English by Desaguliers [183]. In this book he says that
vacua exist “as is proved by the phaenomena” and, following Keill rather than
Newton, that a “body is divisible in infinitum”, since “There are no such things as
parts infinitely small; but yet the subtility of the particles of several bodies is such,
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that they very much surpass our conception.” His views on attraction are orthodox
Newtonian doctrine with but one slight gesture to the Leibnizians:

By the wordAttraction I understand, any force by which two bodies tend towards each other;
tho’ perhaps it may happen by impulse. But that Attraction is subject to these laws; That it
is very great, in the very contact of the parts; and that it suddenly decreases, insomuch that
it acts no more at the least sensible distance; nay, at a greater distance, it is changed into a
repellent force, by which the particles fly from each other.

His explanation of the roundness of drops does not sit easily with his views on the
range of the attractive forces:

. . . in attraction, the greater the number is of particles which attract one another between
two particles, the greater is the force with which they are carried towards one another; which
produces a motion in the drop, till the distance between the opposite points in the surface
become everywhere equal; which can only happen in a spherical figure. [184]

This view of the cohesion of drops by the tension in linear arrays of particles
becomes more explicit in his treatment of the elasticity of solids, which he ascribes
to the stretching of fibres within the body or, at least, that it “may be conceived as
consisting of such threads.” [185] Stretched threads were then the standard method
of explaining the laws governing the rupture of beams [186], but the extension of
the idea to liquids was a novelty that was to be used again later in the century.

From the expansion of bodies by heat “it is evident that the particles of which
bodies consist, from the action of the fire, acquire a repellent force, by which they
endeavour to fly from each other.” [187]

If two pieces of cork or two hollow glass beads, or similar bodies that are wetted
by water, float on the surface of the water in a glass vessel, then it is seen that they
come together and adhere to each other and to the walls of the vessel. At first sight
this looks like a simple case of attraction between the bodies or between one of
them and the wall, but ’s Gravesande explained correctly (as had Mariotte before
him [127]) that it was the capillary effect of the distortion of the liquid surface by
the floating bodies that was the true cause, not the direct effect of attraction between
them [184]. There is a similar coming together of two non-wetting bodies, and a
repelling if one is wetted and one is not. Mariotte’s and ’s Gravesande’s explanation
did not prevent the naive interpretation being put forward again later in the century.

’S Gravesande’s younger colleague, van Musschenbroek, who was first at Utrecht
and later at Leiden, was initially more sceptical about attractive forces but was
eventually convinced:

That attraction obtains in all bodies whatever I am sufficiently assured by a multiplicity of
experiments. I do not advance this as an hypothesis, nor maintain it out of prejudice, or in
complaisance to any party: for formerly I exploded it as a fiction, as many learned men have
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done. But a multitude of experiments since made upon bodies, repeated examinations of the
phenomena, and serious and continued meditations on the subject, have now convinced me
of the truth of this principle of attraction. . . . But what this attractive force is, how it inheres,
in what manner it operates upon other bodies, and in what proportion of the distance it
constantly acts, we cannot by any means conceive clearly. [188]

He is not convinced by the argument of Keill and ’s Gravesande that matter is
infinitely divisible because a geometric figure has this property; the matter is one
of physics not of mathematics. He returns instead to Newton’s concept of the
particles being composite structured entities, composed of different arrangements
of unknowable “first elements”.

He gives more attention than most of his contemporaries to the physical properties
that result from attraction, such as the forces between magnets and the phenomena
of capillarity, subjects to which he devoted two long dissertations packed with new
experimental results [189]. The magnetic work did not have any decisive outcome
but the capillary work was more accurate than anything that had gone before. He
must have cleaned his tubes carefully since he found rises of water much greater
than those found previously. His eight series of experiments repeated much of the
work of Hauksbee, Jurin and Petit, but in his first series he found that the rise in
different tubes of the same diameter but of different lengths was a little greater in
the longer tubes, thus showing, he believed, that the attraction of the whole length
of the tube was the cause of the rise [190].

In his textbook he retains throughout a healthy scepticism about the depth of
our understanding of cohesive forces, “but here we want sure and accurate experi-
ments”, and of the underlying structure of matter, it is “an ample field for making
experiments that we must leave to posterity” [191]. His is perhaps one of the most
balanced account of the attractive cohesive forces in the century between Newton’s
Opticks and the revival of the subject by Young and Laplace.

Thus Newton’s concepts of corpuscular impenetrable matter, of the existence of
vacua, of attractive forces acting at a distance through these vacua (however they be
caused) and, more tentatively, of repulsive forces between the particles of air, made
their way slowly in France but were accepted more readily in the Netherlands.
Germany and Switzerland never fell under the spell of Boyle, Locke and
Newton, but followed Descartes or Leibniz. Russia was essentially a German–Swiss
outpost in the years following the founding of the Academy at St Petersburg in
1725–1726 [192]. The Cartesian exposition of capillarity there by Bilfinger [193]
attracted criticism from Jurin, whose paper [194] was published with liberal foot-
notes by Bilfinger; perhaps inevitably their disagreement spread to the field of grav-
itation. Ten years later Josias Weitbrecht [195] adopted a more Newtonian stance at
St Petersburg. Like Keill, he had thirty theorems on the attraction of bodies and the
rise of water in capillary tubes. He committed himself to no definite statement about
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the range of these forces except to say that it was very short [brevissimus] between
water and glass. He saw that this supposition led to a problem if the tube was wider
than the range of the forces but solved this by supposing that the cylindrical layer
of water next to the wall was attracted to the glass and raised by it, and that this
cylinder then acted on the next layer of water inside it, and so raised that.

In Italy even the Copernican system was suspect until about 1740 when the more
liberal Pope Benedict XIV came into office. Newtonianism soon followed, mainly
in the form of of the Latin editions of ’s Gravesande and van Musschenbroek [196].

2.4 A science at a halt

Newton’s views of interparticle forces, as expressed in Query 31, are now known
to have been substantially correct, although not, of course, written in the language
of modern physics. Under his supervision, Hauksbee and Jurin had established
with qualitative correctness and reasonable accuracy, all the important laws of
capillarity. The Keills, Freind and Hales had tried to extend his ideas into other
areas of physics, chemistry, botany and physiology. These attempts had met with
varying success, but an extension into geology was a step too far – attraction is not
the power that causes “the ascent of water to the tops of high mountains” [197].
Desaguliers had had some perceptive thoughts about the elasticity of solids, and
he and Rowning had proposed substituting a short-ranged repulsive force for the
more qualitative concept of impenetrability. Only Newton’s tentative theory of the
repulsion of static particles of air was to prove seriously amiss. But after all these
advances and intellectual ferment the study of the cohesion of matter fell out of
the main stream of scientific enquiry. After about 1735 little new was done for the
next seventy years, and much of what was done was the work of those not of the
first rank [198]. Pemberton in England, and Voltaire and du Châtelet in France
had little to say about this aspect of Newton’s work, and Maclaurin in Scotland
restricted himself to a few words [199]. Desaguliers and van Musschenbroek were
more interested, but it was only Robert Helsham in Dublin who went so far as to
open his course of lectures with two on cohesion before turning to electricity and
gravitation [200].

In the first half of the 18th century Newtonianism meant, first, a commitment
to experiment as the true source of knowledge of the physical world, second, the
eschewing in public of metaphysical ‘systems’ (other than a belief in a corpuscular
structure of matter), third, his laws of mechanics, fourth, the gravitational theory,
fifth, his theory of colours and a corpuscular theory of light, and finally, the existence
of short-ranged attractive forces between the particles of matter. The gravitational
force and, when the Newtonians thought of them, the cohesional forces also, were
usually treated as deductions from observations and many cared little, or regarded
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as unknowable, what was the mechanical source of these forces or whether they
were inherent to matter. David Hume summed up this point of view in 1739:

Nothing is more requisite for a true philosopher, than to restrain the intemperate desire
of searching into causes, and having establish’d any doctrine upon a sufficient number of
experiments, rest contented with that, when he sees a farther examination would lead him
into obscure and uncertain speculations. [201]

Freind and a few others went further, and Daniel Bernoulli, in a letter to Euler of
4 February 1744, said that God could well have “imprinted in matter a universal
attraction” [202], but most would have subscribed to Whewell’s ruling of a hundred
years later, that gravity was “a property which we have no right to call necessary
to matter, but every reason to suppose universal.” [203]

After about 1740 aetherial explanations began to multiply, but much of the mo-
tivation for these lay in the wish to explain the more fashionable phenomena of
electricity, magnetism and heat, rather than the neglected cohesive forces [204].
The obvious distinction and even antagonism between the Newtonians and the fol-
lowers of Descartes and of Leibniz became less marked as the century advanced,
with many taking their views from more than one camp. It is, however, convenient
to retain the names as useful labels to identify the metaphysical bias of each natural
philosopher.

The undeniable success of the gravitational theory led to its more rapid acceptance
than that of the doctrine of the cohesive forces, but there was a moment of doubt
in 1747. Euler, then in Berlin, had had a problem with the Moon’s orbit [205] and
now he, Clairaut and d’Alembert, in Paris, all tried, independently, to calculate the
annual change in the position of the apses of its orbit, and all obtained an answer
that was only half the observed value [206]. It was Clairaut who, in a paper read
to the Academy on 15 November 1747, tried boldly to remove the discrepancy by
adding a correction term to the inverse-square law of attraction. He supposed that
the force of gravitation might vary with separation r as (ar−2 + br−4), where awas
proportional to the product of the masses of the bodies, but b was a new coefficient,
still to be determined [207]. He supposed that the second term might be related to
the cohesive and capillary forces, but added in a footnote that if it were to have an
effect at the distance of the Moon it might prove to be too strong for the purpose and
to lead to too great a gravitational force at surface of the Earth. Euler had already
written to him on 30 September to point out that such a term was also incompatible
with the regular motion of Mercury [208]. On 6 January 1748 Euler admitted that
Newton’s law seemed to be at fault, “but I have never thought of correcting the
theory by making changes in the expression for the forces” [209]. D’Alembert
wrote on 16 June to Gabriel Cramer [210] in Geneva, a friend and correspondent of



2.4 A science at a halt 37

all the parties, to say that he thought the force between the Earth and the Moon did
not depend only on their distance apart and he wondered if a magnetic force might
be involved. Nevertheless he was reluctant to criticize Newton in public [211].

There was a further complication when Pierre Bouguer [212], who was to make
his name in photometry, revised a prize essay that he had submitted to the Academy
in 1734. The second edition of this work [213], for which Clairaut was the asses-
sor appointed by the Academy, was published in 1748. Bouguer considered rays
emanating from a spherical body. If the rays maintained their strength as they
moved out then their increasing separation would lead to an inverse-square law,
but if they became more feeble as they spread then the force would fall off more
rapidly. He believed that Newton, and after him Keill and Freind, had argued that
“an infinite number of phenomena which strike the eyes of naturalists” require an
inverse-cube law, so he simply added this to produce (ar−2 + br−3): “We cannot
use any other expression, as soon as we embrace the principles of Mr Newton,
fully understood.” Bouguer suggested, without calculation, that his inverse-cube
term might solve Clairaut’s problem with the motion of the Moon. Clairaut also
considered such a term, and in a letter to James Bradley even toyed with a series of
inverse powers of the separation [214].

If Euler had his doubts about such proposals, Buffon [215] was outraged by this
tampering with the inverse-square law and there was a rapid exchange of notes
between him and Clairaut in the Memoirs of the Academy [216]. Clairaut was
probably the better mathematician and Buffon did not try to refute him directly
but resorted to metaphysical arguments. For him gravity was a single effect and so
needed only a single algebraic term; each term in a series had to correspond to a force
réelle or a qualité physique. If there were to be two terms, what was to determine
the relative sizes of the coefficients? He clearly did not accept the common French
view of Newtonian doctrine that it required the strength of the cohesive forces to be
proportional to the product of the densities of the attracting bodies. Clairaut patiently
rebutted Buffon’s arguments; for him metaphysics was not the right weapon to bring
to the field, and it must therefore have been particularly galling for him when, in
his penultimate note, he had to admit that, after all, the inverse-square law sufficed.
He and his colleagues had not taken their calculations to a high enough degree of
approximation; once this was done the anomaly disappeared. His withdrawal, he
wrote to Cramer, had caused “something of a scandal” [217].

This episode confirmed in Buffon’s mind the conviction that the cohesive forces
were also inverse square, and that the apparent change to higher inverse powers at
short distances arose from the shapes of the particles. Only for spheres does the
inverse-square law between the particles lead to the same law between larger bodies
down to the point of contact; for cubes, cylinders, etc., the law would change. He
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attempted no calculations, however. His definitive statement on the subject is to
be found bizarrely prefaced to a volume of his Histoire naturelle that deals with a
range of animals from the giraffe to the hamster. There, in italics, he writes:

All matter is attracted to itself in inverse ratio of the squares of the distance, and this
general law does not seem to vary in particulate attractions, except by reason of the shape
of the constituent particles of each substance, since this shape enters as a factor into each
distance. [218]

He argues that if we knew, for example, that the apparent law of attraction was
inverse cubic then we should be able to reason backwards and deduce the shape of
the particles. The chemist Guyton de Morveau [219] was a friend and follower of
Buffon and shared his views on this subject. He attempted, as an example of the
effect of shape, to calculate the force between two tetrahedra, each composed of an
array of ten close-packed spheres. He had an unusual and, what was surely even
then, a heterodox view of how to sum the interactions of the spheres. He supposes
that the ‘attraction’ of one sphere for another at a certain separation is a, and so
“since we know that the action is reciprocal, it follows that the two particles will be
attracted one towards the other with a force 2a”. Each tetrahedron has one apical
particle, three in the next layer, and six in the base. He assumes that when an apical
particle interacts with three or six in the other tetrahedron the force is to be counted
four or seven times, that is, as (1 + 3) or (1 + 6). When two trios interact the force
is counted six times, or (3 + 3), etc. In spite of his remark about reciprocity he sees
the force as a property residing in each particle, and not as a mutual property of
a pair of particles. His final numbers have little meaning, but his conclusion that
two tetrahedra approaching tip-to-tip follow a different law from those approaching
base-to-base is sound [220].

Buffon’s view was shared later by the Dutch natural philosopher J.H. van
Swinden [221], by the Swedish chemist Torbern Bergman [222], and the French
physicien Antoine Libes [223], who ranked Buffon’s contribution to the field as
highly as Newton’s [224]. The conviction that all the underlying forces were in-
verse square was strengthened by the discovery, first, that magnetic poles, and,
later, that electric charges follow this law, although Buffon did not try to include
electric forces in his original scheme of things. As long as the only magnets avail-
able were natural lodestones it had proved impossible to find the ‘true’ law of
magnetism; Hauksbee, Jurin and van Musschenbroek all tried and failed. Artificial
magnets became available from the middle of the century, thanks first to the efforts
of Gowin Knight [225] and the astronomer John Michell [226], whose shortTreatise
of artificial magnetswas published in 1750 [227]. He inferred, and others were then
able to show, that the total force between two magnets was explicable as an inverse-
square force between well-characterised poles, a result that was soon followed by
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the more important discovery of Cavendish and Coulomb that the same law held
for electric charges [228].

Diderot [229] had also worried about the identity or otherwise of the gravitational
and cohesive forces. In 1754 he wrote that “all phenomena, whether of weight,
elasticity, attraction, magnetism, or electricity, are only different facets of the same
affection”. At the same time, he stated explicity what others had tacitly assumed,
that the presence of a third body has no effect on the force between the first two
[230]. That the attractive forces were a property of a pair of particles was so widely
accepted that it comes as a surprise to find Guyton de Morveau dissenting. It was a
view that was spelled out more clearly in the next century; Maxwell ascribes the first
explicit statement to Gauss [231]. In 1874 Wilhelm Weber [232] set it out formally;
single particles have only the properties of mass and permanence, pairs of particles
have these properties plus those of mutual attraction and repulsion, and groups of
three or more particles have no properties that are not found in the constituent pairs.
This was put forward in the context of his attempt to interpret electrodynamics and
magnetism in terms of an action-at-a-distance model, but it only put formally what
many had assumed for more than a hundred years.

In an anonymous article in the Journal de Trévoux of 1761 Diderot discussed
more fully the difficulty of deciding between one universal inverse-square law and
a possible multiplicity of laws for cohesive forces. He came down in favour of the
former, but his attempt to show that such a law would lead to strong attractions
between close spheres is fallacious [233].

Kant [234], arguing on metaphysical grounds, decided that the forces between
the parts of matter could be both attractive and repulsive. The former was Newton’s
inverse-square law and the latter, he believed, was inverse-cubic. To these he added
that heat contributed an inverse first-power force of repulsion between contiguous
parts, a notion that clearly derives from Newton’s hypothesis for gases. Heat as a
source of repulsion was an idea that became more formally established in the work
of Laplace and his followers. Kant argued that the concept of impenetrability was
an occult one that should be banned, and the assumption of repulsive forces was
one that promised the chance of future explanations. He had little problem with the
idea of action-at-a-distance [235].

D’Alembert distinguishes between a passive force of adhesion that acts only
between the points of particles actually in contact, and an active force that pulls
them together from a distance. He regards the second as the more important and
notes that it would lead to the particles compressing a liquid “from the outside
inwards”; at one point he seems to be coming close to what we now call Laplace’s
equation for the excess pressure within a drop [236]. He was one of the few writers
on hydrodynamics who had anything useful to say on cohesion and capillarity. Euler
had little interest, and although Daniel Bernoulli speaks of the mutual attraction of
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particles of mercury and its capillary depression, he was content to follow his uncle
Jakob in ascribing the capillary rise of water to a lower density, and so a lower
pressure, of ‘aero-aetherial’ particles within the tube than above the level surface of
the water outside it [237]. He did, however, think of himself as a good Newtonian
[202]. The macroscopic approach to hydrodynamics was based on the concept of
pressure in a fluid, initially a scalar entity, which was to be subsumed into the
wider concept of a tensorial stress in an elastic body. In this way the subjects could
advance on firm foundations, but the lack of enquiry into the microscopic forces
that underlay pressure and stress left many dissatisfied, and was to be the cause of
much argument in the next century.

The chemist P.J. Macquer [238] was one of those who appeared to conflate the
two phenomena of gravity and chemical attraction. In his Dictionnaire de chymie
he wrote that “the causticity of a body is nothing but its dissolving power, or its dis-
position to combine with other bodies; and this disposition is nothing other than the
attraction, which is one and the same thing as gravity.” But in his article on ‘Gravity’
[Pesanteur] he showed that he interpreted this term widely, discussing many as-
pects of physical and chemical association. He wrote that: “The law that gravitation
follows at small distances does not yet appear to have been well determined.” [239]
He was clearly willing to entertain laws other than the inverse-square.

Thus there was a range of broadly Newtonian views in the middle and second half
of the 18th century. There were those who believed that cohesive forces were the
same as gravitational and that they maintained their inverse-square character down
to the smallest distances, any apparent departure from this law being ascribed to the
non-spherical shape of the attracting particles. There were those who believed that
cohesive forces were gravitational but thought that the inverse-square law changed
into something steeper at short distances, and there were those who thought that the
two forces were distinct. Some of the last class thought that they might be related
to electric or magnetic forces. Only the first two classes necessarily believed that
the strength of the forces was proportional to the product of the masses or densities
of the attracting bodies, but some of the last class implicitly assumed it.

These Newtonian philosophers thought it proper to try to find the mathematical
form of the law of attraction but only a few went further and speculated on the
causes or underlying mechanism. Such speculation was more in the tradition of
Descartes than of Newton and had a long tradition in France. As early as 1680,
Claude Perrault [240], an architect and physician, supposed that air was composed
of three kinds of particles of decreasing size, the partie grossière, the partie subtile,
and the extremely small partie etherée. Those of the second kind pressed against
solids and were responsible for their adhesion since they could not insert themselves
into the gap between two solid blocks until the gap was as wide as their diameter
[241]. Boyle had had a similar triple set of particles, and Newton had, in his early
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days, speculated that cohesion might arise from the aether being less dense between
particles [242], but only a few of the 18th century philosophers followed up these
ideas.

Dortous de Mairan used supplementary particles to explain cohesion but in a
different way from his predecessors. His Dissertation sur la glace had originally
been submitted to the Academy of Bordeaux for a prize offered in 1716, but was
revised substantially for a new edition in 1749 [243]. He, like many later writers in
French, uses the term parties intégrantes for the massy corpuscules, and thematière
subtile, or the molécules of this matter, for the smaller particles of an aether. He
suggested that these moved more slowly between the massy particles than they did
in free space, rather as a wind does in a forest than over the open ground outside it,
and he thought that the cohesion was due to the lowering of the pressure consequent
on this motion.

In 1758 the Academy of Sciences at Rouen offered a prize for an essay on
the improvement of Geoffroy’s scheme of chemical affinities, and for finding “a
physico-mechanical scheme” that would explain them. There were at least four
entries, one of which “deals fully with the first part of the question, but says nothing
about the second; [its author] does not even believe, in spite of the approval of
the Academy, that the discovery of the mechanism is possible.” This author was
J.P. de Limbourg, a physician from Theux, near Liège [244]. In his essay he stresses
the analogy between chemical affinities and cohesive forces, cites with approval
Newton, van Musschenbroek and Nollet, but leaves open the question of whether
the forces are to be ascribed to “the sole decree of the Creator, or depend on some
internal principle that which acts by pulling one [body] towards another, or if it is
only the effect of heat, or of the air, or of some other more subtle matter.” [245] His
approach is in the tradition of Newtonian chemistry [246].

A second entry tackled boldly the question of mechanism with a proposal that
was more sophisticated and apparently more convincing than that of Dortous de
Mairan; it came from G.-L. Le Sage [247]. His father had been a French Protestant
refugee in England early in the century who had moved to Geneva, where the
younger Le Sage became a pupil of Cramer. His proposal was essentially the same
as one put forward by Bouguer in 1734 and again in 1748 [248], and is close to that
of the young Newton in a letter to Boyle [242], but Le Sage was unaware of these.
His proposal is remembered today as Le Sage’s theory of gravitation but its first
appearance was as a theory of cohesion. The Academy awarded prizes both to de
Limbourg for his Newtonian chemistry and to Le Sage for his Cartesian physics.

In his essay [249] Le Sage envisages the particles of matter as hollow spheres
with arrays of holes in their walls (Fig. 2.2) which, as in Dortous de Mairan’s model,
are subject to bombardment by a dense cloud of rapidly moving tiny bodies. These
he calls corpuscules ultramondains, since they are not acted on by the gravitational
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Fig. 2.2 Le Sage’s picture of attraction between particles of matter [249].

field. The apparent attraction of the particles of matter is now a consequence of
each of a nearby pair partially shielding the other from this bombardment. (This
achievement of an attraction by means of forces that are themselves only repulsive is
what we now call a depletion force, or an entropic attraction, and it has re-appeared
in the second half of the 20th century; see Section 5.6.) By adjusting the size and
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number of holes he can adjust the reduction of density between each pair and so
explain different intensities of attraction, so that, for example, the mutual attraction
of two particles of water (top) or two of oil (middle) exceeds that of water and
oil (bottom). Such a theory, like Dortous de Mairan’s explanation of why mercury
does not wet glass, does everything that was expected of it in the first half of the
century; it was plausible, apparently consistent with known facts and with the laws
of mechanics, but it was not falsifiable and had no predictive power.

Le Sage had known that the same model could be used to explain gravitation and
this became the focus of a second exposition more than twenty years later [250].
The bombarding particles are now called atomes gravifiques. It was this second
application of his theory that attracted attention in the next century, and it was
as a theory of gravitation, not of cohesion, that it is now remembered [251]. A
similar theory of cohesion was proposed in Russia in 1760 by M.V. Lomonosov
[252], a pupil of Wolff, and Le Sage’s theory was commended by De Luc [253],
but both soon faded from the main stream of physical thought. Le Sage himself
may have had second thoughts for in some philosophical notes published after his
death he refers disparagingly to “the hypotheses of vortices, and all other hypoth-
eses by which physics has been disfigured for a century”; they are but “chimeric
fictions” [254].

In what seems to have been little more than a mathematical jeu d’esprit, Le Sage
did propose an all-embracing law of attraction a few years after his Rouen essay
[255]. He supposed that the attractive force varied not as the inverse square of
the separation r , but as the inverse of the ‘triangular numbers’, 1

2 r (r − 1), where
the diameter of the particles is taken to be unity. The apparent power by which
the force changes with distance is (1 − 2r )/(r − 1); that is, the force changes as
r−2 at infinite separation, so satisfying the gravitational law, as r−3 at r = 2, as
r−4 at r = 3

2 , etc., becoming infinitely steep as r approaches 1. The force changes
sign at r = 1 and is therefore repulsive at shorter distances. It was ingenious, not
without faults in our eyes [256], but neither he nor anyone else seems to have taken
it seriously at the time.

Many French clerics remained perceptive critics of Newtonian doctrine which
they associated with Voltaire and the Enlightenment. Their wrath fell particularly
on Pierre Sigorgne, a professor at the Collège de France until his dismissal in 1749
for criticising the King [257]. An uncritical Newtonian, he added the cohesive force
to the gravitational, to give again the “general law of attraction” as (ar−2 + br−3),
and in his book of 1747 he noted, as Newton had done, that there was then an
infinite force on a particle in contact with a sphere [258]. He has a long chapter on
‘Capillary tubes: how this effect comes from attraction’. He is familiar with what
has already been done, and explains Jurin’s observation that the rise of the water
is determined only by the diameter of the tube at the height of the liquid surface
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by supposing that, in a tube of conical shape, the sloping walls contribute to the
suspension of the liquid. He has a series of propositions on the relative strength of
the forces between water, glass and mercury that seems to derive from the work
of Keill and Freind. In his later years he took on himself the job of interpreting
chemistry in a Newtonian fashion that was no longer fashionable [257].

Sigorgne’s first critic was Giacinto Gerdil, a Savoyard, and a Barnabite priest,
the professor of philosophy at Turin, who later became a cardinal [259]. He had
already, in 1747, complained about those who ascribed to Newton the view that
gravity was inherent to matter, and he had invoked microscopic vortices to explain
capillary rise [260]. In 1754 he returned to the attack, criticizing Keill and Sigorgne,
and making the powerful point that the infinite force on contact that followed from
an inverse-cubic (or higher) law was incompatible with the fact that bodies can be
pulled apart [261]. This point was seized upon in an anonymous and neutral review
of Gerdil’s book in the Journal des Sçavans [262]; it was one that the Newtonians
were unable to counter and so generally ignored.

Gerdil’s most original contribution was the set of experiments he made with
mercury in metal tubes which are reported in a further dissertation [263]. He opens
with a sentence that shows the importance of capillary rise in 18th century attempts
to understand cohesion: “Nothing is more commonplace in the eyes of the vulgar
than the phenomena of capillary tubes; nothing more astonishing in the eyes of a
philosopher.” He has tubes of gold, silver and tin, of which the gold have internal
diameters of 1

2 and 1
3 ligne, and the others, by implication, are similar. He notes

that the densities of the metals are in the increasing order of tin (less than 7), silver
(11), mercury (14), and gold (18). He believed that Newtonian theory required that
the strength of the attraction be proportional to the product of the densities of the
materials. He argued therefore that mercury should rise in gold tubes but fall in
those of silver and tin. His results were not so simple. Mercury at first fell in the
gold tubes, but after a short time some of it became incorporated into the gold
and then it showed a small rise. The silver and tin tubes behaved similarly. It is
probable that there was a thin contaminating film on the inner surfaces of the tubes
that prevented the immediate amalgamation of the solid metal with mercury, but it
is easy to see why Gerdil thought that he had refuted Newtonian doctrine.

He makes other points, many of which were concerned with the rate of rise or fall
of the liquids. He observes, for example, that water rises more slowly in a long tube
than in a short one of the same diameter. We can see that it is more difficult to expel
the air from a long tube and so account for his observation, but the assumption
of a naive theory of attraction, and perhaps a memory of van Musschenbroek’s
results with long and short tubes, could lead one to expect the opposite result. His
own attempts to explain capillarity centre on differences in the pressure of air or
of some other subtle fluid inside and outside the tube, and on the internal friction
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[ frottement] in mercury. He dismisses the fact that the same rise is found in a
vacuum as in air by saying that even the best pumps cannot remove all the air. He
carried his opposition to Newtonianism to great lengths and it may be that he was
the author of two pseudonymous and fraudulent papers (in the names of Coultaud
and Mercier) that alleged that the apparent weight of a body increased with its
height above sea level. The fraud was unmasked by Le Sage who knew the area of
the Alps where the experiments were supposed to have been made [264].

Sigorgne came under attack also from Aimé-Henri Paulian, a Jesuit who was
professor of physics at the Collège d’Avignon [265]. It was his aim to establish
peace between the Cartesians and the Newtonians and he did this by adopting
a stance that was common on the Continent around the middle of the century;
in celestial physics Descartes was mistaken and Newton was correct, but in the
physics of everyday matter Newton’s ascription of all phenomena to ‘attractions’
was wrong, and he listed Sigorne’s 22 propositions without any attempt to endorse
them [266]. His principal criticism depends, as with Gerdil, on the failure of the
assumption that the attraction is proportional to the product of the densities; an
assumption that fits the trio water, glass and mercury, but which fails with metal
tubes. His own explanation of capillary rise is to ascribe it to small asperities on
the inner walls of the tubes which can support the particles. He invokes also the
viscosities of the liquids, but uses these more to explain the dynamics of the rise
rather than its occurrence.

Gerdil’s work was also cited with approval by Bonaventure Abat [267], a
Franciscan friar in Marseille whose Amusemens philosophiques [268] contain a
long and effective criticism of Newtonian attraction as an explanation of capillarity.
Abat, like Sigorgne and Bouguer, believed that Newtonian theory required that the
cohesive forces fell off as the inverse cube of the separation but his principal crit-
icisms are independent of this gratuitously precise assumption. He divides liquids
into two classes, humid and dry, noting that a given liquid can fall into one class
or the other according to the nature of the solid with which it is in contact. Humid
liquids wet the surface of the solid and rise in capillary tubes, dry liquids do not
wet the walls and fall. (The word ‘humid’ had been used previously in this context
by G.E. Hamberger in his Elementa physices of 1727 [269].) Abat finds that water
falls in the fine quills from the wings of sea-birds and of a partridge, but after a
few hours this fall is reversed and the water rises, a change that he says is quite
inexplicable on any theory of attraction. Gerdil’s experiments with mercury in gold
tubes showed the same behaviour, presumably, although Abat does not make the
point, because the gold is initially unwetted by the mercury but becomes wetted
when amalgamation sets in [270]. Moreover if one invokes attraction to explain
why two drops of a liquid coalesce on contact, how does one explain why two
bubbles in a liquid behave in just the same way? [271]
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The criticisms of Gerdil, Paulian and Abat have substance; they show the dif-
ficulties that a simple theory of attraction can lead to in the absence of a clear
concept of surface tension and an understanding of how this tension arises from
the attractive forces. Their works were critical rather than constructive, for they
made no systematic attempts to develop an alternative theory. Even the Newtonians
were content for many years to leave their explanations in the qualitative form
of Hauksbee and Jurin. Clairaut was the first to try to give the theory an adequate
mathematical form. His book of 1743, Théorie de la figure de la Terre, deals mainly
with the recently controversial subject of the flattening of the Earth at the poles,
and so with the hydrostatics of sea level at different latitudes. Into this he inserts,
rather incongruously, a chapter ‘On the rise and fall of a liquid in a capillary tube’
[272]. He writes:

In this research I shall consider the particles of fluid as perfectly smooth and infinitesimally
small by comparison with the diameter of the tube. I shall suppose the material of the tube to
be perfectly homogeneous and the surface perfectly smooth. Moreover I shall use the same
function of the distance to express the attraction of the material of the tube as the attraction
of the particles of the fluid, distinguishing these attractions only by their coefficients or
intensities. . . . Finally, I suppose that the function of the distance that expresses the law of
attraction, both of the glass and the water, be given, and that it has been established.

After this precise and promising start his analysis quickly goes astray. He assumes
that all the liquid in a tube of, say, one-twentieth of an inch in diameter is within the
attractive range of the glass walls, an assumption tentatively made by Hauksbee in
spite of the evidence of his own experiments. Clairaut’s analysis has other faults:
an arbitrary choice of the points in the liquid where these forces act, and a neglect
of inconvenient terms. He is unable to show that the rise is inversely proportional
to the diameter of the tube, and he does not ask why the rise in a tube is the same
as that between parallel plates at a separation equal to the radius of the tube, an
omission for which he was later criticised by Laplace. His principal result which he
arrives at by a route that seems to be adjusted to lead him to the answer he wanted,
is that liquids rise only if the attraction of their particles by the glass is half or more
of that between the particles of the liquid. This result is correct, on his premises,
and a simple route to it, in the spirit of the later work of Young, is given in the
Appendix to this chapter.

A few years later another attempt at a theory of the behaviour of liquids in contact
with solids arose from work on the properties of water in bulk. János-Andràs Segner
was a Hungarian who was professor of mathematics and physics at Göttingen
from 1735 to 1755, when he moved to Halle [273]. Around 1750 he invented the
improved water-wheel or turbine that now bears his name. This invention led to
a long correspondence with Euler who worked out the theory of the device, and
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in one of these letters Segner touched on the loosely related topic of the shape
of liquid drops [274]. On 23 April 1751 he had been enrolled into the newly-
founded Royal Society of Göttingen and he celebrated his election with a long
paper in the first volume of its Proceedings on the shape of a sessile drop of
liquid, that is, of one resting on a flat surface [275]. He knew of Clairaut’s work
only by repute and says that he had been unable to get a copy of his book. He
introduced for the first time the explicit notion of a surface tension but unfortunately
believed that it acted only if the shape of the surface departed from circular, when he
thought that the hypothetical filaments in the surface would be extended. Thus for a
sessile drop, whose shape is determined by the interplay of surface and gravitational
(or bulk) forces, his filaments exert forces only in the vertical sections since, by
symmetry, the horizontal sections are circular. His calculations of the tensions in
these filaments follows from his own observations on drops of mercury and from van
Musschenbroek’s on water. He commits himself to no opinion on the range of the
forces responsible for the tension. The idea of filaments in tension may have been
derived from ’s Gravesande’s work; he cites only Clairaut and van Musschenbroek
but probably knew of ’s Gravesande’s work also. His notion of a surface tension
was a valuable one but it was flawed; it was to be another forty years before it was
to be formulated more correctly by Monge and Young.

The lack of progress throughout the 18th century is shown by the way that the
same topics were repeatedly brought forward, often in ignorance of what had gone
before, and often with errors that had already been refuted. A striking illustration is
that of the adhesion of two glass balls floating on the surface of water. Mariotte and,
more particularly, ’s Gravesande in 1720, had explained that this phenomenon was
a secondary consequence of the distortion of the liquid surface and not a primary
effect of attraction between the floating bodies. Nevertheless many still plumped
wrongly for the naive explanation; they form an interesting list: Helsham in a
posthumous book of 1739 [276], Hjortsberg in 1772 [277, 278], the first edition of
Encyclopaedia Britannica in 1773 [104], and Atwood in his lectures at Cambridge
in 1784 [279]. By the end of the century matters were improving; Godart [280] gets
it right in 1779, as do Bennet [281] and Banks [282] in 1786, Monge [283] in an
influential paper in 1789, an anonymous article in the Philosophical Magazine of
1802 [284], and Cavallo [285] in his popular exposition of physics in 1803 [286].
Banks is the only one who refers to ’s Gravesande’s work.

A second subject that became fashionable again in the later part of the century
was what was usually called ‘Dr Taylor’s experiment’, that is, Brook Taylor’s
measurement of the force needed to lift a floating strip of wood from the surface
of water [45]. Père Bertier [287] revived interest in the experiment in about 1764,
when he showed again that the excess force was proportional to the area of contact
and independent of the mass of the floating body [288]. He was an Oratorian, and
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like many of the clergy, had little sympathy with Newtonian attraction, preferring to
invoke an “invisible fluid” to explain the weak adhesion of slabs of marble in vacuo,
arguing for the presence of such a fluid from the stronger adhesion in the presence of
a tangible fluid such as air. He had earlier tried to measure the interaction between
suspended needles of wood, iron, or paper, and other bodies brought near them
[289]. Like the fictitious Coultaud and Mercier, he also claimed to have shown that
weight of a body increased with its altitude [264]. Louis XV is said to have called
this Cartesian physicien ‘le père aux tourbillons’, while Rousseau enjoyed his good
humour in spite of his pedantry [290].

Taylor’s experiment was repeated also by G.F. Cigna [291] in 1772. He was the
professor of anatomy at Turin and, with the support of his confrère Lagrange [292],
then in Berlin, he held that what he was measuring was the adherence caused by the
pressure of the overlying air [293]. He confirmed this conclusion by repeating the
experiment with a glass slide coated with grease, when he still found an apparent
attraction although it was known that water and grease do not attract. Guyton de
Morveau rebutted Cigna’s conclusion by noting that different surfaces give different
attractions, so the effect cannot be due solely to the atmospheric pressure; moreover,
the effect, like the rise of liquids in tubes, persists in a vacuum [294]. E.-F. Dutour
[295] and Père Bésile [296] took up the subject and by putting one liquid inside
a narrow tube claimed to be able to measure the force of adhesion between two
liquid surfaces. The most comprehensive single set of results was obtained by
F.C. Achard in Berlin; he was later a pioneer of the sugar-beet industry [297]. He
studied, often at more than one temperature, most combinations of 30 liquids and
20 solids. He emphasised the importance of keeping the plate truly horizontal, of
removing all bubbles of air from below the plate, and of adding the last weights
in small increments as the point of detachment is approached. He found that the
adhesive force did not scale with the densities of the solid or liquid but must depend
on the shapes and number of the points of contact between the constituent particles
of each partner, and he tried to estimate these in terms of those of his standard pair,
water and glass [298].

In October 1768 the astronomer J.J. Lalande [299], stung by the frequent oppo-
sition to attractive forces, made a passionate defence of capillary effects as a source
of information about cohesion. He wrote:

It seems to me that we have here the considerable advantage of becoming well-informed
about the general attraction of matter, a subject in dispute for too many years. Capillary
tubes place in our hands a tangible clue to the generality of that law which is the key to
physics, the greatest power in Nature, and the prime mover of the Universe. [299]

He dismisses the objections of Gerdil and his followers and the theories of Hauksbee
and Jurin. His own view is not original, being essentially that of Clairaut, as he
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acknowledges, but his paper is of value for his explicit discussion of the range
of the attractive forces. He wrote: “Some may think, perhaps, that if the sphere
of attraction of the glass is very small, for example a quarter of a ligne, then it
[the liquid] should ascend the tube only for a quarter of a ligne.” This clearly was
not the case and this range, about 0.1 mm, is probably already greater than most
Newtonians would have chosen. Its size accounts for the physical (as distinct from
the mathematical) flaws in Clairaut’s work. Lalande knew of Hauksbee’s experiment
with tubes of different wall thicknesses but says, correctly, that this showed only that
the forces were shorter in range than the thinnest wall used. If it were practicable to
use a tube with a wall thickness of less than a quarter of a ligne, then a smaller rise
might be seen. There is nothing wrong with Clairaut’s and Lalande’s reasoning on
this point but they should not have assumed that the liquid in the centre of the tube
was within the range of the forces from the glass since a rise is found in a tube of
an internal diameter of 5 ligne or more. Lalande’s paper marks, perhaps, the last
flourish of the French Newtonian era in the treatment of capillarity. His sentiments
on the importance of this “key to physics” were to be revived forty years later by
Laplace who shared Newton’s devotion to the attractive forces.

In the middle of the century there appeared two very different books on cohesion.
The first, by Gowin Knight, is a long obscure exposition of his views on attraction
and repulsion, in part Cartesian but mainly Newtonian. It is replete with Proposi-
tions, Corollaries, etc., and often seems to be a caricature of the Principia [300].
As a contribution to this field it is evidence only of a subject that is beyond its
intellectual prime. His treatment of magnetism is of more value for here he had
done some important original work.

The second book is altogether more serious. In 1758 the Jesuit priest Rudjer
Bošković [301], or Roger Boscovich as his name is usually transcribed in English,
had published in Vienna the first edition of his Theoria philosophiae naturalis.
He was from Ragusa (Dubrovnik) but spent most of his life in Italy, Austria and
France. He was not satisfied with the Vienna edition of his book and a second
version, prepared under his supervision, was published at Venice in 1763; it is this
edition that is now taken to be the authoritative source of his theory [302].

His declared aim was to reconcile Newtonian attractions at a distance with
Leibniz’s doctrine of continuity of cause and effect. To achieve this he postu-
lated a force between the particles of matter that is a continuous function of their
separation r . At the largest separations the force is attractive and varies as r−2, that
is, it is gravitational; at intermediate distances the force undergoes several oscil-
lations from attraction to repulsion and back again as r diminishes. This range of
r is where the force accounts for cohesion and related properties: “the alternation
of the arcs, now repulsive, now attractive, represent[s] fermentations and evapo-
rations of various kinds, as well as sudden conflagrations and explosions.” [303]
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He admits, however, that “There are indeed certain things that relate to the law
of forces of which we are altogether ignorant, such as the number and distances
of the intersections of the curve with the axis, the shape of the intervening arcs,
and other things of that sort.” [304] At short distances his curve becomes steeply
repulsive and tends to a positive infinite value as r goes to zero. This feature is the
most original aspect of his work (although Gowin Knight had had similar ideas);
he dispensed with particles of rigid impenetrability and replaced them with massy
points that repelled each other ever more strongly as their separations diminished.
It is in this aspect that his work goes beyond that of Rowning, of which he probably
knew nothing [305], since Rowning had retained hard central cores in his repelling
particles. Boscovich emphasises that his system of particles can never form a hard
body, there must always be some compressibility. He writes: “It is usual to add a
third class of bodies [to soft and elastic ones], namely such as are called hard; and
these never alter their shape at all; but these also, according to general opinion,
never occur in Nature; still less can they exist in my theory.” [306] This was an
unsettled question at the time. In 1743 the Abbé Nollet had cited the 17th century
experiments of the Accademia del Cimento which appeared to show that water
was incompressible, but warned that the work was inconclusive and said that he
thought that all bodies were compressible in some degree [307]. D’Alembert had,
however, no qualms about taking the experiments at face value [308]. The matter
was settled in 1762 when John Canton succeeded in measuring the coefficient of
compressibility of water with what we can now see was remarkable accuracy [309].
The fact that both water and solids transmit sound at (presumably) finite speeds
[310] is evidence of their compressibility, but when was this inference first drawn?
It is in Brisson’s Dictionnaire of 1781 but may have been noted earlier [311].

Boscovich takes the standard Newtonian stance on the question of the meaning
of the forces:

The objection is frequently brought forward against mutual forces that they are some sort
of mysterious qualities or that they necessitate action at a distance. . . . I will make just
one remark, namely that is quite evident that these forces exist, that an idea of them can be
easily formed, that their existence is demonstrated by direct reasoning, and that the manifold
results that arise from them are a matter of continual ocular observation. [312]

Boscovich’s theory, like Rumford’s cannon-boring experiment, acquired a greater
significance in the 19th century than it had for most of his contempories. He was not
on the closest terms with many European mathematicians and philosophers. He was,
for example, a contempory of Euler, and they were interested in many of the same
problems, but in over 3000 letters to and from Euler, Boscovich receives only four
passing mentions; many lesser men are more strongly represented [208]. He was
a friend of Lalande but antagonised Lagrange, d’Alembert and Laplace. Lagrange,
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in a letter to d’Alembert, refers scathingly to ‘la briga fratesca’, the intrigue of
monks, when discussing Boscovich [313]. The earliest to take a more positive view
of Boscovich’s theory were Joseph Priestley [314], the astronomer John Michell
(Priestley’s neighbour in Yorkshire), and the Scottish philosophers [315]. When
David Brewster published the textbook of his fellow Scot, John Robison, who
had died in 1805, the section on Boscovich’s theory nominally occupied over a
hundred pages of the first volume [316]. In the early 19th century the concept of
Boscovichian particles was sometime used rhetorically in opposition to Daltonian
atoms [317], and Kelvin used the noun ‘Boscovichianism’ as late as 1905 for the
doctrine of an atom as a point source of force [318]. Today we are at ease with the
idea of chemically indestructible atoms that are, nevertheless, the source of force
fields, but in the 18th and early 19th centuries these were apparently opposing
views. Either atoms were hard, inelastic, massy, and indestructible, or else they
were a source of fields with, possibly, a massy point at their centres. The latter view
fitted more with the prevailing field theories of matter and its interaction that were
held by Faraday and many other British physicists in the 19th century.

In some unpublished papers read at Bath in 1780, William Herschel adapted
Boscovich’s model to the interaction of the particles of matter with those of light
[319]. His particles had an inner zone of attraction in which the cohesive forces act;
these are “in the inverse ratio of some very high power of the distance”; this zone
is surrounded by one of repulsion, which governs the reflection of light, by one of
attraction for refraction, then by another of repulsion for diffraction, and finally by
the attractive zone in which gravity acts. He wisely did not try to include Newton’s
repulsion of gas particles into this scheme, and he insisted that he differed from
Boscovich in requiring a small hard core in his particles.

The encyclopaedias that became a notable feature of the intellectual life of the
18th century reflect the changes of opinion with time and place. The French ones
were the most important since the scientific articles in them were written by the
leading savants of the day. The British and German were less influential until, in the
early 19th century, the successive editions of Encyclopaedia Britannica attracted
the leading physicists as contributors. Harris’s Lexicon [16] of 1704 was followed
by the Cyclopaedia of Ephraim Chambers in 1728 [89]. He was a convinced if
not very perceptive Newtonian. A few years later a twenty-five year old Leipzig
bookseller, J.H. Zedler [320] embarked on the first volume of hisUniversal Lexicon
[321]. By an accident of the alphabet the articles on ‘Attractio’, ‘Capillares tubi’,
and ‘Cohaesio’ all appeared in the early years. The first deals mainly with gravi-
tation; the second is a long and even-handed description of the experimental work
published up to 1733 and is agnostic on the cause of the attachment of water to
glass. The third is more sympathetic to Newtonianism, quoting freely both from
Query 31 and from Hamberger’sElementa physices [269], indeed, it is possible that
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Hamberger was the author, although he is generally held to have been more of a
Leibnizian.

The most influential work of the century was the great French encyclopaedia of
Diderot, d’Alembert and their colleagues, the first volume of which was published
in 1751. In his ‘Discours préliminaire’, d’Alembert summarised the position in
France in the middle of the century by saying that Descartes who had previously
had disciples without number was now reduced to apologists [322]. The original
proposal for the work had been for a translation of Chambers’s Cyclopaedia, and
this influence is apparent particularly in the articles written by d’Alembert himself
[323]. In that on ‘Attraction’ he shows a Newtonian bias by having 24 theorems
on short-ranged attractions [324]. He is not willing to claim that they can explain
all of chemistry, although he suggests that such an explanation is “less vague” than
any alternative. On ‘Cohesion’ [325], he opens by running together the first two
sentences of Chambers’s article, so altering their meaning: “In all times the cause
of cohesion has puzzled philosophers in all systems of physics”. An apt summary
of the 18th century, this phrase was still being used, without attribution, as late
as 1800 [311]. In other articles, notably that on ‘Capillaire’ [326], it is clear that
although he is wholly convinced of the correctness of the gravitational theory he
has not quite the same confidence in the attractive forces of cohesion. Diderot
was less of a Newtonian than d’Alembert, and the many articles on chemistry by
G.-F. Venel of Montpellier are firmly non-Newtonian in tone [327].

TheEncyclopédie méthodiquewhich started to appear in 1784 was a revision and
extension of the Encyclopédie of 1751. Its ‘method’ was the division of knowledge
into its constituent areas, with groups of volumes on mathematics, on physics,
chemistry, pharmacy, metallurgy, etc. Its lack of method is evident, however, in
the repetition of articles. There are, for example, different articles on ‘Attraction’
in the mathematics, physics and chemistry volumes, and on ‘Adhésion’ in physics
and chemistry. The mathematical article on ‘Attraction’ is by d’Alembert; it was
published posthumously and is little changed from that of 1751 [328]. The physics
article on ‘Attraction Newtonienne’ [329] appears to be by Monge, one the authors of
this set of volumes. It describes ‘Taylor’s experiment’ and Monge’s work on the
attraction of floating bodies. Both in this article and in the chemical volumes there
is a distinction between adhesion and cohesion, which was not new [330], but
which is here given more than usual emphasis. Adhesion is the sticking together
of bodies brought together, as in Taylor’s experiment, while cohesion is that which
prevents the breaking into their parts of solid and liquid bodies. It is ‘stronger’ than
adhesion.

The first volume of the chemistry series started to appear in 1786; it was written
by Guyton de Morveau. His article on ‘Adhérence, Adhésion’ [331] came out in
1789. In it he describes at length his own and Achard’s repetitions of Taylor’s
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experiment and, as befits a chemist, he concentrates on those in which mercury is
in contact with another metallic surface. He regrets that Achard had not chosen his
pairs of substances with chemistry more in mind. Fourcroy pointed out that some
of the precise figures for the strength of adhesion of mercury to other metals could
be in error since amalgamation could have changed the weight of the disc [332].
Fourcroy was responsible for the second volume on chemistry in 1792, but the article
on ‘Attraction’ is still by Guyton [333]. He is now in a position to recognize the
importance of Coulomb’s proof of the inverse-square law for electrical attraction
and so is convinced that attractive forces really exist, but still confesses to the
difficulty of envisaging a mechanism without “impulsion”. Not for the first nor for
the last time do we hear the dictum that a body cannot act where it is not. His long
article on ‘Affinité’ has already been cited for his calculation of the force of attraction
of two tetrahedra each composed of mutually gravitating particles. Later in the
article he admits that there are difficulties in the assumption of a pure inverse-square
law, but is uncertain what to suggest. He believes that adhesion and chemical affinity
are closely related, notwithstanding the fact that there is strong adhesion between
bodies such as water and glass which have no chemical affinity. (We have seen
that Newton had not differentiated between physical and chemical attraction in his
Query 31, and the position was little changed at the end of the century; the chemical
aspects have been discussed more fully elsewhere [140, 142].) The stronger effect
of cohesion is, for Guyton, a different phenomenon and may follow a different law.
This distinction, with him as with others, remained a purely verbal one; nothing
useful flowed from it. The chemical article on ‘Cohésion’ did not appear until 1805
when the subject was treated by Fourcroy who regarded cohesion as something to be
overcome before chemical action could start [334]. ‘Tubes capillaires’ were reached
in the physics series only in 1822, when the whole subject had been transformed
by Laplace.

2.5 Conclusion

It is hard to discern any real progress after the work of Newton and his immedi-
ate heirs. Those who thought that adhesion and cohesion were the result of
short-ranged forces of attraction between exceedingly small particles were to be
proved correct, but they failed to find any convincing mechanism by which such
forces brought about their most spectacular effect, capillary rise. Desmarest, a con-
vinced Newtonian, summed it up in 1754: “It is not sufficient to say, in a vague
way, that attraction is the cause of the suspension of water in capillary tubes; one
must explain how the attraction acts, and there lies the difficulty.” [335] Those who
objected to the invocation of attractive forces acting at a distance made valid crit-
icisms of the Newtonians’ efforts, and often had a keener sense of the importance
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of the distinction between wetting and non-wetting systems. Their own explana-
tions, when they offered them, were less convincing even than those they opposed.
D’Alembert said of one of their efforts that “an explanation so vague condemns
itself” [336].

It is not hard to find reasons for this failure to take the subject forward. Firstly,
many natural philosophers put forward mechanically impossible schemes to explain
cohesion, and the general understanding of mechanics was inadequate to cope with
these deficiencies. It was well into the middle of the century before the distinction
between the vector conservation of momentum and the more restricted scalar con-
servation of kinetic energy (to use the modern terms) was satisfactorily resolved
[337]. Secondly, the modern abstraction of a perfectly hard but nevertheless elastic
particle (the plaything of those who have used computers to simulate the dynamics
of fluids for the last forty years) was held to be self-contradictory, since elasticity
implied deformation and this implied parts that could move with respect to each
other, and these hard atoms had no parts [338]. A hard but elastic body is a concept
that can only be reached as the mathematical limit of a continuously varying or
Boscovichian force. To us, taking such a limit is a natural step, but it is an inter-
esting comment on the present neglect of metaphysics among the practitioners of
‘normal’ science that no one now using a model of hard elastic spheres would ask
if it raised any formal problem. Thirdly, there was in the 18th century no use of a
potential field from which the vector force could be derived by taking the gradient
at each point. Such a field is not necessary for handling molecular dynamics but
its use greatly simplifies the calculations. It was not known to those working on
attractive forces. During the course of the century these and other deficiencies were
made good, and ‘Newtonian mechanics’ was put into the form that we now associ-
ate with that phrase by the efforts of the Bernoullis, Euler, d’Alembert, Lagrange
and Laplace.

At the conceptual level the most obvious gap in the thinking of the natural
philosophers was the absence of a clear idea of surface tension. It seems so natural
an idea to us, and one that follows from so many elementary observations, that it
difficult for us to see why the idea moved forward so slowly from ’s Gravesende’s
‘threads’ to Segner’s notion that there was a tension but only in surfaces of changing
curvature. At the end of Monge’s paper published in 1789 on the forces between
floating bodies we find the first formulation of a surface tension that is “constant in
all directions” [283]. He did not, however, exploit this idea in the way that Young
did a few years later, although he is known to have been interested in capillarity
since as early as 1783 [339].

We can see in retrospect how these theoretical deficiences held the subject back,
but there were other less direct hindrances. The most obvious is, perhaps, that the
leading philosophers of the day had other, and in their view, more important things to
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do, and there were in the early part of the century few to do them [340]. Astronomy
retained throughout the century and beyond its place as the most prestigious branch
of applied mathematics. Electricity and magnetism were the rising physical subjects
where new and spectacular experiments were pouring forth. The science of heat,
hovering uncertainly between physics and chemistry, was a field in which there
was great progress in establishing the basic facts; the distinction between heat and
temperature was resolved quantitatively, scales of temperature were established, and
specific and latent heats were recognised and measured. There was no agreement
on the interpretation of this wealth of new work; there were one- and two-fluid
theories of electricity, heat as a movement of particles fell out of fashion and heat
as subtle fluid came in, and ‘imponderable fluids’ were to be found in many fields.
Different opinions were held at all times [341].

One of the metaphysical debates of the early years was resolved in Newton’s
favour. Gravity was allowed to act at a distance and it was agreed not to pursue the
unprofitable question of how it acted. Pragmatically this was the right way forward
and for two hundred years physicists were content to accept action-at-a-distance
as a de facto feature of gravitational forces. The proper but sterile worries of the
Cartesians were of little interest to most physicists until the 20th century – Maxwell
being one of the exceptions. By implication and analogy the same point of view
came eventually to be accepted also for the interparticulate forces and, because of
the short distances involved, it generally suffices even today to treat intermolecular
forces as acting instantaneously at a distance. The first correction for the finite speed
of propagation was not made until 1946 (see Section 5.4).

Newton and Freind had tried to bring chemistry within the purview of corpuscular
physics, and their ideas were taken up by some French chemists in the second half
of the 18th century, but this was not to be the way forward for many years to
come. Chemistry had first to establish itself as a reputable and independent science.
Boerhaave in Leiden and Cullen in Glasgow [342] were both good Newtonians
in that they believed in a corpuscular structure of matter and they put experiment
and deduction from it before metaphysical systems, but both were adamant that
chemistry was an autonomous branch of science. Even Peter Shaw, Boerhaave’s
Newtonian translator, came to this view in his own writings [343]. This stance was
justified when Lavoisier and Dalton, in their different ways, put chemistry on the
path it was to follow so successfully in the 19th century. Both were interested in
physical problems but their chemistry owed nothing to Newton. A few chemists,
such as Guyton de Morveau and lesser known men such as Hjortsberg and Sigorgne,
kept alive the link between adhesion and chemical affinity. Guyton’s views influ-
enced Berthollet and Laplace, and, through them, Gay-Lussac and Dulong, who
were to contribute experimental and theoretical work that we recognise as physical
chemistry, but this branch did not establish itself as a strong and continuing field in
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the first half of the 19th century. It was eclipsed particularly by the rise of organic
chemistry. This failure is linked to what has been called the fall of Laplacian physics,
which will be discussed in the next chapter.

So the study of cohesion failed to prosper in the 18th century under the internal
difficulties of its own subject matter and the external competition of other more
exciting branches. “Everything has its fashions, even philosophy has its own”,
wrote Réaumur in 1749 [344], and cohesion became an unfashionable subject for
many of the leading figures of the day. Euler, the most productive mathematician of
his time, is an extreme example. Only one of his 234 Letters to a German princess
is on cohesive attraction and he dismisses it with the words:

Were there a single case in the world, in which two bodies attracted each other, while the
intermediate space was not filled with subtle matter [matière subtile], the reality of attraction
might very well be admitted; but as no such case exists, we have, consequently, reason to
doubt, nay, even to reject it. [345]

A contrast, and a fitting end to the 18th century, is provided by two papers, one
in 1802 by John Leslie [346], who was soon to be elected Professor of Natural
Philosophy at Edinburgh, and a more important one in 1804 by Thomas Young
[347], until recently at the Royal Institution in London. Leslie opens with a robust
defence of action-at-a-distance, noting that Laplace had recently “proved” that
gravity acts instantaneously and riding roughshod over the metaphysical squeamish-
ness of those who had difficulty with this idea [348]. He treats interparticle force
in the same way as Boscovich, adding that it “is indifferent whether we consider
the elementary portions of matter as points, atoms, particles or molecules. Their
magnitude, if they have any, never enters into the estimate.” He laments that much
of the work in this field has “been left to the culture of a secondary order of men”,
and then proceeds to give his own explanation of capillary rise. He insists that it
can only be lateral forces between the particles of glass and water that are respon-
sible for the vertical rise, and then tries to explain this paradox by emphasising the
spreading of water on a glass plate, whatever its orientation, as a consequence of
the force on the particles in the layers of water not immediately next to the wall
and their consequent movement to places where they can be in positions closer to
the glass. He thus comes nearer than his contemporaries to using the concept of
potential energy. He makes no firm statement on the range of the forces but his
mechanism seems to require one that is comparable with the radius of the tube.
In this he shows no advance on Hauksbee, Clairaut and Lalande, but he is able
to produce a plausible argument for the rise in a tube being equal to that between
plates at a separation equal to that of the radius of the tube, and he correctly explains
Jurin’s results with tubes of variable diameter by noting that the pressure depends
only on the height and not on any other dimension. But without a clear idea of
surface tension he could go no further.
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Two years later, on 20 December 1804, Thomas Young read a paper to the Royal
Society in which he brought together in a masterly way the ideas that lay behind
the work of Clairaut, Monge and Leslie [349]. He criticises Segner’s notion of a
tension only in surfaces of variable curvature and recognises that Monge had said
that there was a tension whatever the shape of the surface. He couples this idea
with the assertion that there is a fixed angle of contact between any given pair of
liquid and solid, an assertion which he describes (probably correctly [350]) as “one
observation, which appears to be new, and which is equally consistent with theory
and with experiment”. He uses these two facts to produce the first satisfactory
phenomenological treatment of capillary rise. He writes:

It is well known, and it results immediately from the composition of forces, that where a
line is equably distended, the force that it exerts, in a direction perpendicular to its own, is
directly as its curvature; and the same is true of a surface of simple curvature; but where the
curvature is double, each curvature has its appropriate effect, and the joint force must be as
the sum of the curvatures in any two perpendicular directions. For this sum is equal, whatever
pair of perpendicular directions may be employed, as is easily shown by calculating the
versed sines of two equal arcs taken at right angles in the surface.

(The versed sine of an angle θ is (1 − cos θ ). This theorem had been proved by
Euler [351].) If now he could have overcome his well-known aversion to using
explicit algebraic expressions and equations he could have written this result in the
form of the equation usually ascribed to Laplace [352], namely that the difference
of pressure, �p, across a surface of tension σ and principal curvatures R1 and R2, is

�p = σ
(
R−1

1 + R−1
2

)
.

It follows that if the combined effect of gravity and a fixed angle of contact of the
liquid with the solid wall produce a curved surface, then the pressure in the liquid
under this curved surface must be lower or higher than that in the liquid at a point
remote from the wall. The liquid will therefore rise or fall until the difference of
hydrostatic pressure compensates for this surface-tension-induced difference. The
change of height is proportional to the curvature. He writes that “the curvature must
be every where as the ordinate [i.e. height]; and where it has double curvature, the
sum of the curvatures in different directions must be as the ordinate.”

These two results, first Young’s assertion of constancy of the angle of contact,
and secondly, the Young–Laplace equation for the difference of pressure across a
curved surface in tension, are what we need in principle to solve all the problems
of capillarity. Some of the more obvious are tackled by Young in the rest of his pa-
per. His exposition is, however, “unduly concise and obscure”, as even his friendly
editor and biographer is compelled to admit [353], or, in part, faulty, as a more
hostile critic claims [354]. He was, as another biographer puts it, a mathematician
“of an older school” [355]. Nevertheless he makes a fair attempt at treating the rise
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Fig. 2.3 The forces exerted by particles A and B on particle C, at the surface of a drop,
according to the ideas of Thomas Young.

of water in tubes and between parallel plates, of the mutual attraction of floating
bodies, of Newton’s ‘oil-of-oranges’ experiment, of ‘Dr Taylor’s experiment’, and
of Clairaut’s result that a liquid would neither rise nor fall if the liquid–solid at-
traction is half that of the liquid–liquid. He showed for the first time why the rise
in a fine tube is inversely proportional to the diameter, and equal to that between
parallel plates at a separation equal to the radius of the tube. The paper ends with
what we now call Young’s equation (see the Appendix to this chapter); if the surface
of the liquid meets the solid wall at an angle θ , and if the tensions of the solid–gas,
liquid–gas, and solid–liquid surfaces are σsg, σlg and σsl, then

σsg = σsl + σlg cos θ.

All these results depend on the existence of a surface tension. To what does he ascribe
this tension? Here his account becomes less satisfactory. He assumes that there is a
constant force of attraction that extends to an unspecified distance. He takes from
Newton the idea that the pressure of a gas arises from a repulsive force that is “in
simple inverse ratio of the distance of the particles from each other”, but he ignores
Newton’s necessary restriction that such a force can act only between immediate
neighbours if it is not to lead to wholly unacceptable physical consequences. With
these two forces he explains the inward force on a particle on the convex surface
of a liquid, as follows (Fig. 2.3). Particles A and B exert equal attractive forces on
C, as shown by the arrows to the left. The repulsive force from B is stronger than
that from A, as shown by the arrows to the right, and the net effect on C is a force
acting towards the interior of the drop. This argument suggests that the unbalanced
force and so the tension might vary with the curvature or even vanish at a planar
surface, but since he does not discuss the effects of the particles in the interior of
the drop there is no way of settling these points.

Two years after this paper appeared in the Philosophical Transactions, Young
published the lectures that he had prepared earlier for the Royal Institution. He
repeats his 1805 paper but also includes Lecture 49, ‘On the essential properties of
matter’, and Lecture 50, ‘On cohesion’ [356]. These repeat many of the arguments
of the earlier paper but he now notices Newton’s restriction of the repulsive force to
neighbouring particles, and realises that the small compressibility of water implies a
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much stronger repulsive force than one that varies as the reciprocal of the separation.
Both here and in the articles he wrote for the Encyclopaedia Britannica [357] he
is less dogmatic about the form of the forces than he had been earlier, but as late
as 1821 he was still maintaining “that the mean sphere of action of the repulsive
force is more extended than that of the cohesive”, a conclusion which, he admits,
is “contrary to the tendency of some other modes of viewing the subject” [358].

The 1807 Lectures include also an account of the modulus of elasticity of solids,
but his definition differs from what we now call ‘Young’s modulus’. He throws no
further light on the cohesion of solids other than to repeat an earlier assertion that
“lateral forces” are called into play [359].

The papers of Leslie and, more particularly, of Young mark the limits of
Newtonian or 18th century science in handling the problem of cohesion. Young’s
work was, and would have been seen by his predecessors as a triumphant success.
The next advance came at once; it required Laplace’s combination of physical
insight and a mathematical grasp which grew from the resurgence of French
mathematics at the turn of the century. This was guided first by the teaching of
such men as Coulomb and Monge, and then by the new institutions for higher edu-
cation in mathematics and engineering that were fostered in revolutionary France.

Appendix

Clairaut tried to show in 1743 that a liquid would neither rise nor fall in a capillary tube
if the force of cohesion between two of its particles were twice that between one of them
and one in the wall. His attempt can scarcely be called a proof; it is more a sketch of an
argument that looks as if it were designed to lead to a result that he had already reached
intuitively. A simple derivation, more in the spirit of Young than of Clairaut, runs as
follows.

Let aij be a measure of the strength of the cohesive force between a particle of species i
and one of species j. A measure of the affinity of a liquid of pure i for one of pure j might
be the difference (2ai j − aii − a j j ). If this is zero or positive the two will mix freely since
the balance of forces is either neutral or favourable. If the difference is negative then
complete mixing will not occur since there is a penalty to be paid on replacing i i and j j
contacts by i j contacts. The more negative the difference the greater will be the tension σ
at the boundary between the two liquids. Let us therefore put

σi j = k(aii + a j j − 2ai j ) ≥ 0, (A.1)

where k is a constant that is assumed to be the same for all substances. Consider now three
phases in equilibrium as shown in Fig. 2.4. Phase 1 is a solid with a vertical wall. If the
point of contact of the fluid phases 2 and 3 with the solid is not to move, then by resolving
the forces vertically (Young’s argument) we have

σ13 − σ12 − σ23 cos θ = 0, (A.2)

or
a33 − a22 − 2a13 + 2a12 − (a22 + a33 − 2a23) cos θ = 0. (A.3)
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Fig. 2.4 Young’s description of three phases, 1 to 3, meeting along a horizontal line (shown
here in section as a point) at which the three surface tensions, σ12, σ13 and σ23, are in balance.

We now suppose that phase 2 is a liquid and phase 3 is air or a vacuum, so that
a13 = a23 = a33 = 0, or

a12 = 1
2a22(1 + cos θ ) = a22 cos2 (θ/2). (A.4)

Thus if a12 = 0, the liquid has no attraction for the wall and θ = π , or the wall is not
wetted by the liquid, which would therefore fall in a capillary tube. Mercury in a glass
tube comes quite close to this limit. If a12 = 1

2a22, then θ = π/2, or the liquid surface is
perpendicular to the wall and the liquid neither rises nor falls in a capillary tube (Clairaut’s
result). If a12 = a22 then θ = 0, or the wall is fully wetted by the liquid, since its particles
have as strong an attraction for the wall as they have for each other. The liquid then rises
in the tube. Water in a clean glass tube reaches this limit.

These results are plausible but they have no strict validity since eqn A.1 is only a crude
representation of the relation between the forces and the surface tension.

One cannot resolve the forces horizontally; the force σ23 sin θ has to be balanced by an
elastic deformation of the solid that is outside the scope of this simple description.
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Universelle and by a neutral one in the Acta eruditorum; see J.T. Axtell, ‘Locke’s
review of the Principia’, Notes Rec. Roy. Soc. 20 (1965) 152–61.

114 C. Huygens to N. Fatio de Duillier, Letter 2473 in Oeuvres complètes de Christiaan
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Prigogine, Paris, 1991, pp. 134–9; U. Klein, Verbindung und Affinität. Die
Grundlegung der neuzeitlichen Chemie an der Wende vom 17. zum 18. Jahrhundert,
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française du dix-huitième siècle, Paris 1969, v. 1, p. 215, list only the one work and
give no dates of birth or death. The sources listed by H. and B. Dwyer, Archives
biographiques françaises, London, 1993, add only that he was a member of the
Academy at Barcelona and of the Royal Society of Montpellier. His work on
capillarity is discussed by Fischer, ref. 195, and that on spherical mirrors by
J.E. Montucla (in fact, J.J. de Lalande), Histoire des mathématiques, Paris, 1802, v. 3,
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‘L’Oratoire de France et ses collèges’, chap. 3, pp. 66–100 of Enseignement et
diffusion des sciences en France au xviiie siècle, ed. R. Taton, Paris, 1964.
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estime la force d’adhésion des surfaces, et détermine l’action du verre sur le mercure
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Laplace

3.1 Laplace in 1805

In the field of capillarity it is usual to consider together the work of Young and
Laplace, and it is true that they both obtained some of the same important results
within a year of each other. Their aims and methods were, however, quite different.
In reading Young we are reading 18th century natural philosophy; in reading Laplace
we are reading 19th century theoretical physics [1]. This ‘sea-change’ in the early
years of the new century is as dramatic as that of the ‘scientific revolution’ of the
17th century, and was due to the efforts of the great French school of mathematical
physics of that time [2]. This is not the place to discuss the origin of this second
revolution but to concentrate only on how it led to a revival of the subject of cohesion
and to a second period of advance. The man responsible was Laplace [3].

The prevailing opinion in France at the end of the 18th century was that of
Buffon and his followers; the cohesive forces were probably gravitational in origin
and so followed the inverse-square law at large distances but departed from that
law at short distances where the shapes of the particles affected the interaction. In
1796 Laplace discussed this view in the first edition of his Exposition du système
du monde, noting, however, that the particles of matter would have to be of an
inconceivably high density and extremely widely spaced if matter was to have its
observed degree of cohesion and its known density [4]. In 1816, Laplace’s protégé,
J.B. Biot [5] was still supporting a gravitational origin with the specific rider that
the influence of shape changed inverse square to inverse cubic at short distances [6].
Antoine Libes, less able mathematically than Laplace or Biot, argued in 1813 for
inverse square at all distances [7]. Laplace said nothing further on the subject in the
second edition of his book in 1799, but much more in the third and later editions
from 1808 onwards [8]. His interest in cohesion had by then been aroused by two
problems, the first of which was his friend Berthollet’s wish to interpret chemistry
in terms of Newtonian attractions [9].
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One of Berthollet’s great contributions to chemistry was his realisation that the
course of chemical reactions depends as much on the amounts of substances in-
volved as on their ‘affinities’. This realisation led him to the concept of la masse
chimique, and it was the ground of his criticism of Torbern Bergman in a tract
conceived during his days in Egypt with Napoleon’s expedition [10]. The impor-
tance of mass in this context may have disposed him to relate chemical reactions to
gravitation. He takes up this theme at the opening of his Essai de statique chimique
of 1803 [11]:

The powers that produce chemical phenomena are all derived from the mutual attraction
of the particles of bodies, to which one gives the name affinity to distinguish it from astro-
nomical attraction. It is probable that both are one and the same property; but astronomical
attraction exerts itself only between masses placed at a distance at which the shape of the
particles, their separations and their particular affections have no influence.

He goes on to say that chemical attractions are so altered by such particular cir-
cumstances that we can say little about their form with any assurance. He would
welcome a mathematical theory of chemistry but accepts that its time has not yet
come. Laplace was equally pessimistic when Davy put the idea forward at their
meeting in 1813 [12]. By 1810, however, Berthollet was, under the influence of
Laplace’s work, affirming publicly that “the attractive force that produces capillary
phenomena is the true source of chemical affinities” [13]. This view was not in-
consistent with his identification of gravitational and chemical forces and was one
that he had been expressing informally in his lectures at the École Polytechnique
as early as 1803; he repeated it in about 1812 in a manuscript that was intended to
be the basis of a never-to-be-published second edition of his Essai of 1803 [14].

Laplace contributed two notes to his friend’sEssai. Their content suggests that he
had not, in 1803, thought deeply about forces other than astronomical. In the first,
Note V, he postulates that the repulsive force of heat between the particles of a gas is
independent of their separation. His argument is that if one doubles the density of a
gas one doubles the number of particles in the layer next to the wall and so doubles
the pressure without any need to suppose that the forces themselves change with
distance. Later in the book, Note XVIII, he says that his previous Note had been
written in haste, and he now adopts the view that the force is as the reciprocal of the
distance and so as the cube root of the volume [15]. This was a return to Newton’s
hypothesis. He adds that the force is also “proportional to the temperature”. The
scale is not specified although elsewhere he accepts that Gay-Lussac’s work in
1802 implies that the air thermometer is the true measure of temperature; a ratio
of 1.375 for the air pressure at 100 ◦C to that at 0 ◦C leads to a zero of the scale
at −266.7 ◦C [16]. There were, however, many views among the supporters of
the caloric theory on how this zero should be fixed and it was some years before
Laplace firmly committed himself to this conclusion [17].



3.1 Laplace in 1805 85

Berthollet and Laplace used the word molécule to denote the small particles in a
fluid but its use did not imply an acceptance of the modern (or Dalton–Avogadro)
view of molecules and their constituent atoms; it has been translated throughout
this chapter by the less committing word ‘particle’. Dalton himself complained
about the imprecision in the use of such words as ‘particle’ and ‘integrant part’ or
‘integrant particle’. He seemed content with the notion that such entities are the
smallest that can be identified with the substance in question, e.g. water, with any
further division into ‘constituent particles’, or his ‘atoms’, leading to entities of a
different kind, e.g. hydrogen and oxygen [18]. The modern meaning of the word
‘molecule’ came into use only later in the century.

The second source of Laplace’s interest in cohesion, and so in capillarity, was,
as for Newton and Clairaut, an acceptance of a corpuscular theory of light and so a
need to understand how light is refracted (that is, attracted) by matter, and in par-
ticular by the Earth’s atmosphere. This was a matter of importance to astronomers,
and Laplace first turns to it in 1805 in Book 10 of his Mécanique céleste, which
concluded the fourth and, for the time being, final volume of this treatise. This book
is something of a miscellany in which he collects together various topics that have
arisen earlier in the work but which have not yet been dealt with. One of these was
‘Des réfractions astronomiques’ [19], and in it he introduces φ, the short-ranged
but unknown force between a particle of light and one of air. The integral of φ

with respect to the separation, r , and its higher moments or the integrals of φrn ,
where n > 0, arise naturally in his treatment of this problem. The mathematical
methods and the functions involved are those that he used shortly afterwards in his
better-known and, as we can now see, better-judged treatment of capillarity. Thus
by 1805 Laplace had settled on a Newtonian view of the attractive forces – they
were short-ranged but of unknown functional form. He also brought to his thoughts
on the structure of matter and its interactions the usual beliefs of the time in impon-
derable fluids, and notably in caloric which he held to be the agent of repulsion that
stopped matter collapsing by keeping its particles apart. The corpuscular theory of
light and a belief in imponderable fluids were aspects of Laplace’s physics that were
to be found wanting in the first part of the 19th century, and a younger generation
of physicists, although raised in his methods, was soon to outgrow them [20]. This
‘new physics’ did not invalidate his work on capillarity but it was to overshadow it
and to turn it once again into an unfashionable area of science.

Laplace held also to the static picture of gases and liquids that was the ‘standard
model’ of the time; his particles did not move, at least when he was discussing
the effect of the attractive forces between them on their cohesion. Daniel Bernoulli
had put forward a kinetic theory of gases in 1738, but the idea was not a fruitful
one at that time and it had generally been ignored [21]. The difficulties with static
models of gases and liquids was not apparent until later in the century and played
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no part in what is usually seen as the downfall of Laplacian physics in the 1820s and
1830s.

3.2 Capillarity

Young read his paper on capillarity to the Royal Society on 20 December 1804.
A year later, on 23 December 1805, Laplace read before the First Class of the
Institut de France, the ‘revolutionary’ successor of the Académie Royale, his paper
on the theory of capillary action. A summary of it appeared the next month in
the Journal de Physique, the successor to Rozier’s Observations [22], and a full
account was published as a supplement to Book 10 (in the fourth volume) of his
Mécanique céleste [23]. This was quickly followed by a second supplement whose
aim, as stated in its opening sentence, was to perfect the theory already given and to
extend its application [24]. In these works he carried out successfully what Clairaut
had attempted, namely a derivation of the laws of capillarity from a supposed force
of attraction between the particles. His success depended on his specific rejection of
Clairaut’s assumption that the range of the forces was comparable with the radius
of the tube. He follows what he thought to be Hauksbee’s deduction that the range
was negligible in comparison with this distance [25].

There is no reason to suppose that Laplace knew of Young’s paper, notwith-
standing Young’s later ill-chosen insinuations [26]. Nor apparently did he know of
Leslie’s paper although it was written at Versailles on 9 October 1802, when Leslie
was in France during the brief Peace of Amiens. Communication between Britain
and France was slow after the resumption of war in 1803. Laplace had, however,
read Young by the time of his second Supplement of 1807, and mentions him and
Segner briefly in his closing words. He must surely have known of Monge’s paper
of 1787 but he ignores it, perhaps because Monge, like Young, did not seek an ex-
plicit connection between the attractive forces and the capillary effects, or perhaps
because of his personal dislike of Monge; Clairaut is the only one he acknowledges
as having addressed this problem [27]. In the Introduction to his first paper [23] he
makes a reference to an earlier and presumably unpublished attack on the problem,
and then describes his present approach:

A long while ago, I endeavoured in vain to determine the laws of attraction that would
represent these phenomena [i.e. those of capillarity]; but some late researches have rendered
it evident that the whole may be represented by the same laws, which satisfy the phenomena
of refraction; that is, by laws in which the attraction is sensible only at insensible distances;
and from this principle we can deduce a complete theory of capillary action. [28]

He writes that “the attraction of a capillary tube has no other influence upon the
elevation or depression of the fluid which it contains, than that of determining the
inclination of the first tangent planes of the interior fluid surface, situated very
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near to the sides of the tube . . .” [29]. This is a key point of both his and Young’s
work. Neither justifies it in detail; with Laplace it was a self-evident assertion that
each solid–fluid pair would have a fixed angle of contact; with Young it was a
consequence of his assumption of the three surface tensions, gas–liquid, gas–solid
and liquid–solid. Laplace adds another assertion, also found much later to be sub-
stantially correct: “it is natural to suppose that the capillary attraction, like the
force of gravity, is transmitted through other bodies” [30]. He implicitly assumes
that the particles of matter are so small that he can sum their interactions by the
mathematical operation of integration, an assumption that Poisson and others
were later to question (see below). His picture of the cohesive forces has now
left the gravitational model behind; he requires only that the forces are “sensible
only at insensible distances”, a phrase that he was to use often. Their origin and
their form are unknown and, as he is to show, need not be known, although their de-
pendence on the separation of the particles must be rapid enough for his integrals of
the force and of some of its higher moments to converge. In his second Supplement
he observes that for a force that falls off exponentially all the moments are finite,
but this is only an example, not at the time a serious proposal for a force of this
form [31]. A.T. Petit also invoked an exponential form in a thesis of 1811 in which
he generalised some of Laplace’s results [32]. Fourteen years later Laplace dis-
cussed an inverse-square law damped by an exponential as a possible modification
of Newton’s law of gravitation when the attraction took place through intervening
layers of matter, but found that “the attraction of the particle placed at the centre of
the Earth, acting at a point on its surface, is not diminished by a millionth part by
the interposition of terrestial layers” [33].

With these preliminaries in place, Laplace tackles the problem of capillarity
by first calculating the attractive force between a spherical liquid drop and a thin
vertical ‘canal’ of liquid outside it and perpendicular to its surface (Fig. 3.1). M is
the centre of the drop and at Q there is a volume element u2du sin θdθdω, where u
is the distance MQ, θ is the angle PMQ, and ω is the azimuthal angle between
the plane of MPQ and a fixed vertical plane that contains MP. Let φ( f ) be the
(positive) force of attraction of a particle at Q for one at P in the column, where f
is the separation of P and Q. Let PM be represented by r , then

f 2 = u2 + r2 − 2urcos θ. (3.1)

The vertical force on P of the particles in the volume element at Q is

ρu2dusin θdθdω cosα ϕ( f ), (3.2)

where α is the angle MPQ and ρ is the number density of the particles in the drop,
that is, the number of particles per unit of volume. Laplace tacitly takes this to be
unity, ignoring the niceties of dimensional correctness, and so omits it; let us do the
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Fig. 3.1 Laplace’s calculation of the force of attraction of a sphere for a thin ‘canal’ of
material outside it.

same. (If the water is incompressible, then at first sight there is little to be gained
by including this factor.) Now

(d f/dr ) = (r − ucos θ )/ f = cosα, (3.3)

so the force can be written

u2dusin θdθdω(d f/dr )ϕ( f ), (3.4)

which is the derivative with respect to r of

u2dusin θdθdω[C − �( f )], (3.5)

where

�( f ) =
∫ ∞

f
ϕ( f') d f'. (3.6)

The function (3.5) is the potential at P due to the element of volume at Q, although
Laplace does not use this name. The constant C is an arbitrary baseline or zero for
the potential. We now integrate (3.5) over the angles ω from 0 to 2π , and θ from
0 to π . By differentiation of eqn 3.1 we have

f d f = ursinθdθ, (3.7)

so the potential at P from a spherical shell of radius u and thickness du is

4πu2duC − 2πudu

r

∫ r+u

r−u
f�( f ) d f. (3.8)
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He introduces another symbol for this integral:

ψ( f ) =
∫ ∞

f
f'�( f') d f'. (3.9)

If ϕ( f ) has a small or ‘insensible’ range then so, he assumes, do its higher moments,
�( f ) and ψ( f ). The first term in eqn 3.8 is independent of r and so contributes
nothing to the force that is obtained by differentiation with respect to r ; we omit it
henceforth. The remaining term in eqn 3.8 is

2π (u/r )du [ψ(r + u) − ψ(r − u)]. (3.10)

The force on the whole column from a to b is therefore obtained by differentiating
eqn 3.10 with respect to r to get the force, and then integrating it again to get the
effect of the whole column. (We should now insert another factor, ρ, for the number
density within the column but, again following Laplace, we omit it.) The result of
this double operation is a force of

2π (u/a)du [ψ(a + u) − ψ(a − u)] − 2π (u/b)du [ψ(b + u) − ψ(b − u)].
(3.11)

Now a, b, and (a − b) are all large with respect to the range of the force, ϕ( f ),
and so the terms with ψ(a + u), ψ(a − u), and ψ(b + u) are negligible. We are
left with the positive force of attraction of the shell of thickness du on the column
from a to b of

2π (u/b)duψ(b − u) (3.12)

which is itself appreciable only when u is almost as large as b. The final integration
over u, from 0 to b, gives the attractive force between the whole of the drop and
the essentially infinitely long column touching it. This force is

2π

b

∫ b

0
uψ(b − u) du. (3.13)

We substitute u = b − z in the integrand and write eqn 3.13 as two terms:

2π
∫ b

0
ψ(z) dz − 2π

b

∫ b

0
zψ(z) dz. (3.14)

The integrands are negligible except when z is small so the upper limits can be
replaced by ∞. Thus the force of attraction between a drop of radius b and the thin
column of unit area touching it can be written as K − (H/b), where

K = 2π
∫ ∞

0
ψ(z) dz and H = 2π

∫ ∞

0
zψ(z) dz. (3.15)

Laplace now uses an argument based on the symmetry of two touching spheres
with respect to the tangent plane between them to repeat the derivation for a column
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within the drop, and so shows that the ‘action’ of the sphere on the column, per unit
area, is

K + (H/b), (3.16)

a quantity that was later called the ‘internal pressure’ within the drop. He generalises
this result to obtain the internal pressure within a portion of liquid bounded by a
surface with two principal radii of curvature, b1 and b2; namely [34],

K + 1
2H [(1/b1) + (1/b2)]. (3.17)

The second term in this expression is the excess pressure just inside a curved
surface over that inside a plane surface, for which b1 and b2 are both infinite. It is
therefore the same as the result that Young had obtained, and expressed in words,
if we identify 1

2H with Young’s surface tension. This was an identification that
Laplace could not make in his first paper since he did not then know of Young’s
work, and in his later papers Laplace retained the symbol H but avoided the phrase
‘surface tension’.

Laplace has now two tasks; first, to show that this expression for the pressure
inside a curved surface leads to a satisfactory explanation of the known capillary
phenomena, and, second, to give his interpretation of the two terms K and H .
The first task had already been carried out in outline by Young on the basis of
this expression and the constancy of the angle of contact of a given liquid–solid
pair. Laplace carries it out again with great thoroughness. He shows that the rise in
sufficiently narrow capillaries is inversely proportional to their diameters, that the
rise between close parallel plates is the same as that in a tube of a radius equal to their
separation, he gives a detailed explanation of Newton’s ‘oil of oranges’ experiment,
remarking that his advance on the work of that “great mathematician . . . shows the
advantages of an accurate mathematical theory” [35], he explains the forces between
floating objects that are or are not wetted by the liquid [36], and he calculates the
force needed to lift a solid disc from the surface of a liquid. This last calculation
was for ‘Dr Taylor’s experiment’, and Gay-Lussac [37], then a young protégé of
Berthollet, contributed some new experiments on this topic. Laplace obtains also
the general form of the differential equation that describes the shape of the meniscus
in a tube under the combined effects of capillary attraction and gravity, but notes
that this cannot be solved analytically except in special cases, such as for a tube so
narrow that the meniscus forms part of the surface of a sphere. A few years later he
was to use this impressive set of results to justify his credo:

One of the greatest advantages of mathematical theories, and one that best establishes
their correctness, is their bringing together phenomena that seem to be disparate, and in
determining their mutual relations, not in a vague or conjectural way, but by rigorous
calculations. Thus the law of gravity relates the flux and reflux of the tides to the laws
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of the elliptical movement of the planets. It is the same here, the theory set out above relates
the adhesion of discs to the surface of liquids to the rise of the same liquids in capillary
tubes. [38]

For experimental work he relies in his first Supplement on measurements of the
capillary rise of water carried out, at his request, by the Abbé R.-J. Haüy, assisted
by J.-L. Trémery and (although Laplace does not mention him) the Italian, M. Tondi
[39]. They found that, for three tubes, the product of the diameter and the height
to which the water rose was about 13.5 mm2. This was equivalent to Hauksbee’s
results, as quoted by Newton, for the rise between parallel plates, but it had been
known since van Musschenbroek’s experiments that it was only about half the
rise in thoroughly clean tubes. For his second Supplement, Laplace called on
Gay-Lussac for some new experiments that had “the correctness of astronomical
observations” [40], and which showed a rise of twice that of Haüy and his col-
leagues – a change on which Young did not fail to comment. Gay-Lussac introduced
the method, often used today, of determining the diameter and uniformity of the
bore by measuring the length of a thread of a known weight of mercury. His results
were corrected for the small departure of the water meniscus from a hemi-spherical
shape and led to a surface tension, in modern units, of 74.2 mN m−1 at 8.5 ◦C [41],
in excellent agreement with the value accepted today of 74.7 mN m−1.

A point of some practical importance was the calculation of the depression of
mercury in a barometer tube of known diameter. Laplace had designed the barom-
eter used by Biot and Gay-Lussac to measure the heights in their balloon ascents
in August and November 1804 [42]. Both Young and Laplace now had the math-
ematical and physical kit needed to calculate the depression, namely a knowledge
(or presumption) of the constancy of the angle of contact of mercury and glass,
and the relation, eqn 3.17, between the curvatures of the surface and the pressure
difference across it. They had a reasonable knowledge of all the physical quan-
tities involved: the density of mercury, the acceleration due to gravity, the angle
of contact, and the surface tension or 1

2H . There were, moreover, some measure-
ments of the depression in tubes of different diameters made many years earl-
ier by Lord Charles Cavendish and published in a paper by his more famous
son Henry in 1776 [43]. In Fig. 3.2 these results are shown together with the
curves calculated by Young in 1805 [44] and by Laplace in 1810 and 1826 [45].
Some years later Young revised his calculations and obtained results closer to those
of Laplace [46]. Their curves have roughly the same shape as that found experimen-
tally by Cavendish and are even closer to the modern results of Gould [47]. These
calculations represent a great advance in the theory of capillarity over anything that
had been accomplished in the previous century, and the credit for them certainly
belongs to Young. Until 1804 there was no convincing explanation even of the
proportionality of the capillary rise or fall, �h, to the diameter of a narrow tube, d .
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Fig. 3.2 The product of the depression of mercury, �h, and the diameter of the capillary
tube, d, as a function of d . The circles are the experimental points of Lord Charles Cavendish
(before 1776) [43] and the vertical bars are the results of F.A. Gould (1923) [47]. The dashed
line is that calculated by Young in 1805 [44] and the full line that by Laplace in 1810 [45].

The limiting constancy of the product d�h is now represented by the simple fact
that the calculated curves have a finite non-zero intercept at d = 0, and the whole
of the course of the curve and of the experimental results is the application of the
new theory to tubes of appreciable diameter. The intercept of d�h at d = 0 is
related to the surface tension, σ , and the angle of contact, θ , by

(d�h)d=0 = 4σ cos θ/ρg, (3.18)

where ρ is the density of the liquid and g is the acceleration due to gravity. The
angle of contact for mercury is about 145◦ and so an intercept of −10 mm2 implies
a surface tension of 410 mN m−1. The best modern value for clean mercury is
500 mN m−1, but 410 is probably a fair value for the slightly oxidised mercury
found in most barometer tubes.

Laplace’s second task is the interpretation of his results for the cohesion of
liquids, that is, of the magnitudes of the integrals K and H of eqn 3.15. He notes
first that K is much larger than H/b, “because the differential [i.e. integrand] of
the expression of H/b is equal to the differential of the expression K multiplied
by z/b; and since the factor ψ(z), in these differentials, is sensible only when the
value of z/b is insensible, the integral H/b must be considerably less than the
integral K .” [48] He does not, at this point, attempt an estimate of the length H/K ,
but returns to this point at the end of the second Supplement where he writes, “It is
almost impossible to determine, by experiment, the intensity of the attractive force
of the particles of bodies [i.e. K ]; we only know that it is incomparably greater
than the capillary action.” [49] He then attempts a theoretical estimate, based on his
belief that the particles of light are deflected by molecular forces. The conclusion,
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that the ratio of K to the force of gravity is a distance greater than 10 000 times
the distance of the Earth from the Sun, is so extreme that he at once dismisses it,
contenting himself only with repeating that K is clearly very large [50]. He does
not deduce explicitly that the ratio H/K is a measure of the mean length, 〈z〉, over
which the force ϕ(z) is active but it seems to be implicit in his discussion. Young,
as we shall see, was to have a better physical grasp of the magnitude of K and so
of the range of the forces.

The large size of K and the small size of H led to the natural interpretation
that the former is the quantity responsible for the cohesion of solids and liquids,
and, by extension, for their chemical attractions, while the latter describes a mod-
ification of this cohesion that is responsible for the much weaker capillary forces
and the delicate phenomena that they cause. All this is set out in the ‘General
Considerations’ that conclude the second Supplement. Quoting Berthollet’s results,
Laplace extends his argument into chemistry. He is now confident that the
phenomena of cohesion and capillarity “and all those which chemistry presents,
correspond to one and the same law [of attraction], of which there can be no doubt.”
[51] He gives what was by then the standard explanation of the elasticity of solids
in terms of small displacements of the particles from their positions of equilibrium,
and attributes the viscosity of liquids to the restraining influence of the attractive
forces on their free flow, an influence that can be reduced by the repulsive force
of heat. He rightly regards the viscosity as a hindrance in observing capillary phe-
nomena, not a stickiness that causes it, as had often been thought previously. In
one of several summaries of his work on cohesion that he wrote towards the end
of his career he regretted that he had been able to make no progress in under-
standing the flow of liquids at a molecular level [52]; the position is little better
today.

At the end of the second Supplement he mentions Segner’s and Young’s work,
but emphasises the point that whereas they had merely postulated the existence of a
surface tension, he had correctly deduced its existence as a consequence of a short-
ranged force of attraction between the particles, and, moreover, he had obtained
an explicit relation between the force ϕ(r ), where r is the separation of a pair of
particles, and the tension 1

2H . It was a difference of aim and achievement of which
he was right to be proud. He did not like to use such words as ‘surface tension’
or ‘membrane’ to describe the source of capillary effects; he was content with the
integral H . Benjamin Thompson, by then Count Rumford and living in Paris [53],
was of the older school. He confessed that he could not understand Laplace’s
mathematics but, on 16 June 1806 and 9 March 1807, he read at the Institut two
parts of a memoir in which he pointed out how the concept of a membrane at the
surface of water explained many problems of the flotation of small bodies more
dense than water [53]. The discussion between him and Laplace must have been a
dialogue of the deaf [54].
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The distinction between the two points of view was noticed but not fully appre-
ciated by Young, who thought that Laplace’s extensive derivations involved “the
plainest truths of mechanics in the intricacies of algebraic formulas” [55]. Elsewhere
he wrote anonymously that they were a mere “ostentatious parade of deep in-
vestigation . . .more influenced on some occasions, by the desire of commanding
admiration, than of communicating knowledge.” He continued:

The point, on which Mr. Laplace seems to rest the most material part of his Claim to origi-
nality, is the deduction of all phenomena of capillary action from The simple consideration
of molecular attraction. To us it does not appear that The fundamental principle, from which
he sets out, is at all a necessary Consequence of the established properties of matter. [56]

Young had, as we have seen, heterodox views on how the forces depended on the
separation of the particles, but he neither thought it necessary, nor probably had he
the skill, to relate the tension to an integral over these forces. Laplace’s achievement
was, however, something of a pyrrhic victory in that a knowledge of the integral, H ,
tells us nothing of the integrand, that is, of the forces themselves. Knowing both
H and K provides more information but Laplace felt unable to estimate K with
any confidence.

One inconsistency in Laplace’s treatment was noted some years later by Poisson,
who, after Laplace’s death in 1827, became publicly more critical of the details of
his mentor’s work [57]. Particles at the surface of a liquid are subject to forces from
one side only and so cannot be at equilibrium if the density is uniform up to a sharp
surface at which it drops abruptly almost to zero. Laplace had mentioned this point
in his discussion but apparently did not think it important [58]. In the Nouvelle
théorie de l’action capillaire of 1831 [59], Poisson said that if equilibrium was to
be maintained then the density must fall from its value in the bulk liquid to almost
zero in the gas over a distance comparable with the range of the attractive forces.
Gay-Lussac had found that the density of a powder was the same as that of the bulk
solid, so the range of the forces was ‘insensible’, but not necessarily negligible
[60]. If, therefore, as Laplace had supposed, the density changes abruptly, then the
range of the forces is zero, the integral H becomes zero, and the surface tension
vanishes. Poisson dresses the argument in more elaborate mathematical form, but
this simple point is its basis. He also introduces correctly the factor ρ2 in front
of the integrals H and K in Laplace’s original derivation, where ρ is the density
of the particles in the bulk liquid. Bowditch, Laplace’s translator, was convinced by
Poisson’s argument against a sharp interface and, in his footnotes to theMécanique
céleste, he repeats Laplace’s derivation but now with the factor [ρ(z)]2 inside the
integrals H and K , this being a natural way of incorporating both of Poisson’s
amendments [61]. He claims that this change leaves Laplace’s results unaltered in
form but merely changes the numerical values of H and K, and so the quantitative
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relation between the attractive forces and the capillary rise. James Challis, the
professor of astronomy at Cambridge, was asked to review the subject of capillarity
for the fourth meeting of the British Association at Edinburgh in 1834 [62], and
so was led to think about Poisson’s objection. He concluded that the thickness of
the surface layer was comparable with the size of the molecular cores which, he
believed, was small compared with the range of the attractive forces. He was, in
fact, wrong in both assumptions, but these were points not finally settled until many
years later. In a report to the fifth meeting of the British Association, in Dublin in
1835, William Whewell also dismissed Poisson’s objection, but now on essentially
the same grounds as Bowditch [63].

Poisson’s criticisms were taken more seriously on the Continent. Arago [64]
wrote in his obituary of Poisson:

One asks oneself how it is possible that Laplace can go so far as to represent quantitatively
the phenomena of capillary rise, while neglecting in his calculation the true, unique cause
of these phenomena. I declare that this is a great mathematical scandal which should be
resolved by those who have the time and talent needed to decide between those two great
men, Laplace and Poisson. [65]

H.F. Link, in Berlin, came to a similar conclusion: “The results of these [Poisson’s]
investigations cannot be happy for physics. A mathematician of the first rank,
Laplace, overlooks those important conditions, which, one can now see, put his
formulae in opposition to all experience.” [66] But by the 1830s the subject had
dropped out of the mainstream of physics, and when the subject was taken up again
sixty years later there were better ways of resolving the problem. Even a substantial
paper by Gauss, in which he dealt more directly than Laplace had done with the
question of the constancy of the angle of contact of liquid and solid, failed to arouse
real interest (see below) [67].

A second difficulty with Laplace’s results was his neglect of any discussion of the
short-ranged repulsive forces. He says explicitly that his integrals H and K are to
be taken from zero to infinity, and properly observes that if they are not to diverge at
the upper limit then a restriction is needed on the range of the attractive force or, at
least, on the way it becomes ‘insensible’ at large distances. He says, however, noth-
ing about the behaviour of the integrands at the lower limit. He knew, of course, that
he could not take an integral of a function of the form −ar−n down to r = 0, and so
he must have supposed some form of repulsion to have intervened, but he says noth-
ing about it beyond a general attribution to a supposed caloric fluid. Young, whose
own views on the repulsive forces were provocatively unconventional, reproached
him for this neglect [68]. Laplace replied some years later:

In Nature, the particles of bodies are acted on by two opposing forces: their mutual attraction
and the repulsive force of heat. When liquids are placed in a vacuum, the two forces are
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found to be almost in equilibrium; if they follow the same law of change with distance
the integral that expresses the capillary effect will become insensible; but if their laws of
change are different, and if, as is necessary for the stability of the equilibrium, the repulsive
force of heat decreases more rapidly than the attractive force, then the integral expression
of the capillary effects [i.e. H ] is sensible, even in the case where the integral expression of
the chemical effects [i.e. K ] has become zero, and the capillary phenomena take place in a
vacuum just as in air, in conformity with experiment. The theory that I have given of these
phenomena includes the action of the two forces of which I have just spoken, in taking for
the integral expression of the capillary effect the difference of the two integrals relating to
the molecular attraction and the repulsive force of heat, which disposes of the objection
of the learned physicist Mr Young, who has criticised this theory for its neglect of the latter
force. [69]

His assumption of a repulsive force of shorter range than the attractive is consistent
with the picture of Boscovich and of many other writers; it is one that we accept
now almost without thought. He still does not deal, however, with the mathematical
problem of the divergence of the integrals H and K at the lower limit of zero
separation, if the repulsive force has there become infinite in order for the particles
to have size. This was a question that he never faced squarely; indeed, since it was
never put to him by Young or any other critic, it may be that he did not see it as a
problem but was content with the notion of a repulsion arising from the caloric
attached to each particle.

In his last writings on the forces betwen the particles of matter, in the fifth and
final volume of the Mécanique céleste, published in parts between 1823 and 1825,
he sets out his conclusions as follows:

Each particle in a body is subject to the action of three forces; 1st, the attraction of the
surrounding particles; 2nd, the attraction of the caloric of the same particles, plus their
attraction for its caloric; 3rd, the repulsion of its caloric by the caloric of these particles.
The first two forces tend to bring the particles together; the third to separate them. The
three states, solid, liquid and gaseous, depend on the relative efficacy of these forces. In the
solid state the first force is the greatest, the influence of the shape of the particles is very
considerable and they are joined in the direction of their greatest attraction. The increase in
caloric diminishes this effect by expanding the body; and when the increase becomes such
that the effect is very small, or zero; the second force predominates and the body assumes
the liquid state. The interior particles can then move relative to each other; but the attraction
of each particle by the particles that surround it and by their caloric, retains the ensemble in
the same space, with the exception of the particles at the surface, which the caloric removes
in the form of vapours, until the pressure of these vapours stops the action. Then, on a further
increase of caloric, the third force overcomes the other two; all the particles of the liquid, in
the interior as well as on the surface, separate from each other; the liquid acquires suddenly
a very considerable volume and force of expansion; it will dissipate itself into vapour unless
it is forcibly restrained by the walls of the vessel or tube that contains it. This is the state of
highly compressed gas to which M. Cagnard-Latour has reduced water, alcohol, ether, etc.
In this state the first two forces are still effective, but the density of the fluid does not follow
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Mariotte’s law. One can see that for this to be satisfied, and also the laws of MM. Dalton
and Gay-Lussac, it is necessary that the fluid be reduced to the aeriform state in which the
third force alone is effective. [70]

This passage is of interest from several points of view. It shows, firstly, his continuing
belief in heat as the agent of repulsion in all three states and so is at one with his
caloric theory of gases which had an internal consistency that enabled it to hold
its own until well into the 19th century [17]. He was, for example, able to use
this theory in his well-known resolution of the problem of calculating the speed
of sound in air by appealing to the difference between what we now call adiabatic
and isothermal compression. Secondly, we see that the passage does not resolve the
problem of the integrals over the repulsive forces; indeed, it seems to compound it.
He believes that all three forces are short-ranged, and he had said earlier that the
repulsive forces are shorter than the others, but he requires also that the caloric–
caloric repulsion is the dominant force in the gas when the particles, although clearly
full of caloric, are much more widely separated than in the liquid. It may be possible
to produce a quantitatively satisfactory picture that resolves this paradox, but he
does not attempt it. Thirdly, he has recognised the importance of the rather crude
experiments of Baron Cagniard de la Tour [71] which first showed the existence of
what we now call the gas–liquid critical point (see Section 4.1). Finally, in this
passage he repeats his belief that the attractive forces in a solid are specific and
localised. We still accept that molecular shape has a great effect on the temperature
of melting. The forces are more general and diffuse in a liquid where they arise from
the particle–caloric attraction. Earlier he had put this thought into different words:

Then each particle [in a liquid], in all positions, suffers the same attractive forces and the
same repulsive force of heat; it yields to the slightest pressure, and the liquid enjoys a perfect
fluidity. [72]

This belief that, in a liquid, each particle swims in a smooth force-field of attraction
arising from all (or many) of the other particles, is an important one that was first
formulated explicitly by Laplace. It was to become of increasing importance as
the 19th century advanced and even now is often used as the first approximation
in treating a new problem. Modern statistical mechanics knows it by the name of
the ‘mean-field approximation’, and we shall refer to it often.

We have seen that Laplace thought that his integral K was exceedingly large but,
since it played no role in capillarity, he did not try to make a realistic estimate of
it. Young, rushing in where Laplace feared to tread, did make an estimate of the
value of what he called “the corpuscular attraction”, saying, “. . . there is reason to
suppose the corpuscular forces of a section of a square inch of water to be equivalent
to the weight of a column about 750 000 feet high, at least if we allow the cohesion
to be independent of the density.” [46] In modern units this makes the attractive
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force, expressed as a pressure, equal to 25 kbar. The corpuscular attraction, or
Laplace’s K , has no precise equivalent in modern theory, but the property closest to
it is the change of internal energy,U , with the volume, V , that is, (∂U/∂V )T , which
is about 1–5 kbar for most liquids. Dupré (see Section 4.1) later used the latent heat
of evaporation per unit volume which is of similar value. Young’s estimate is there-
fore a reasonable one although somewhat high. Unfortunately he does not tell us how
he arrives at this figure, but the most likely route is from Canton’s measurement
of the compressibility of water, which he mentions briefly in the same article,
and from his belief that compressibility is related to tensile strength [73]. Later in
the article he uses the word ‘elasticity’ for the same property, and in another article
he gives “850 000 feet” as the modulus of elasticity of ice [74]. He could now have
identified his “corpuscular attraction” with Laplace’s K , and his surface tension
with 1

2H , and so obtained a mean range of the attractive force, 〈z〉, from the ratio
H/K , but to have done this would have been an admission of the usefulness of
his rival’s “algebraic formulas”. He therefore arrives at essentially the same result
by a parallel but more obscure argument, at the end of which he deduces that “the
contractile force is one-third of the whole cohesive force of a stratum of parti-
cles, equal in thickness to the interval, to which the primitive equable cohesion
extends.” [46] (The adjective ‘equable’ refers to his assumption that the cohesive
force is constant at all separations within its range.) His estimate of the range is
therefore (3 × surface tension ÷ corpuscular attraction) or “about the 250 millionth
of an inch”. If we take, in modern units, a surface tension of water of 70 mN m−1,
which he knew accurately, and his estimate of the corpuscular attraction which is
23 × 108 N m−2, then this range is 10−10 m, or 1 Å. A modern estimate of the
range would be about 5 Å, so Young’s physical intuition had guided him to what
we would see as a reasonable estimate. This remarkable result is the first quantita-
tive estimate of any aspect of interparticle cohesion that we can recognise as having
been derived by a physically sound method of reasoning. The tentative efforts of
two greater men, Newton and Laplace, had been guided by their commitment to
particular theories, notably a corpuscular theory of light, that resulted in numerical
values that we can now see are wrong. Unfortunately Young published this work as
a pseudonymous article in a supplementary volume of Encyclopaedia Britannica,
so it neither brought him any credit nor did it have any discernible effect on the
development of the field.

He then went on to draw a natural but false conclusion. He supposed that the
stationary particles in saturated water vapour were at a separation at which the
attractive forces were just strong enough to overcome the repulsive, and so cause
the vapour to condense to a liquid. He estimates that at 60 ◦F (15.6 ◦C) the reduc-
tion in volume in going from vapour to liquid is a factor of 60 000, which implies
a reduction in the mean separation of the cube root of this, or a factor of 39.
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He deduces, therefore, that the range of the attractive force is about 40 times the
diameters of the particles, so that any one particle in a liquid is under the influence of
many others, an argument that can be used to justify the assumption of a mean-field
approximation. His ratio of 40 would have been very different if he had chosen
a different temperature; thus at the normal boiling point it would have been 12.
He was worried by this apparent dependence of the range on temperature since he
knew that the vapour pressure of a liquid changed more rapidly with temperature
than did its surface tension or elasticity, but decided that

. . . on the whole it appears tolerably safe to conclude, that, whatever errors may have affected
the determination, the diameter or distance between two particles of water is between the
two thousand and the ten thousand millionth of an inch [i.e. 0.1 to 0.02 Å]. [46]

A more realistic estimate of the upper limit of particle size could have been ob-
tained from the many experiments on thin films and, in particular, from Benjamin
Franklin’s famous experiment of 1773 of the stilling of water waves by pouring a
little oil on the surface [75]. He found that a teaspoonful (2 cm3?) spread rapidly over
half an acre (2000 m2) of the two-acre pond on Clapham Common near London.
He attributed the rapidity of the spreading to a repulsion between the particles of oil
but made no comment on the implication of the thinness of the layer, about 10 Å,
which we now know is about the length of a typical molecule of a vegetable oil. The
thinness to which gold leaf could be beaten had often been cited as a measure of
the smallness of the particles, so this line of argument was probably known to him,
but clearly an estimate of an upper limit to their size was not his aim and, in view of
his comments on the mutual repulsion of the oil particles, he may not have thought
that his layer was continuous and compact, that is, there may have been no lateral
contact between the particles [75]; if so, he would have been correct but it was not
until the end of the next century that this question was resolved (see Section 4.5).
Young saw it somewhat differently:

The attractive power of water being greater than that of oils, a small portion of oil thrown
on water is caused to spread on it with great rapidity by means of the force of cohesion;
for it does not appear that want of chemical affinity, between the substances concerned,
diminishes their cohesive power. . . . [76]

James Ivory [77] was, perhaps, one of the first British mathematicians to master the
new French mathematics and, in particular the Mécanique céleste of Laplace. He
wrote on capillarity in the same Supplement to the Encyclopaedia Britannica that
had carried Young’s work, but he almost ignored Young’s contributions, crediting
him only with the observation that the angle of contact is constant. Instead all
is ascribed to Leslie, his fellow student at St Andrews and at Edinburgh, and to
Laplace. His conclusion reads:
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. . . but if the truth is to be told, it may be affirmed that; reckoning back from the present
time to the speculations of the Florentine academicians, the formula of Laplace, and the
remark of Professor Leslie relating to the lateral force, are the only approaches that have
been made to a sound physical account of the phenomena. [78]

It was a biased verdict but one made understandable by the obscurity of Young’s
writing and reinforced by Ivory’s distrust of many of his contemporaries, including
Young.

In Italy a young physicist at Pavia, Giuseppe Belli [79], took up the subject of
molecular attraction in 1814, apparently under the influence of Laplace’s papers
[80]. He starts from the fact that the force of attraction between two metal plates is
independent of their thickness, a fact that he quotes from Haüy’s textbook [81]. He
then calculates the force between two plates on the assumption that the interparticle
force follows an inverse integral power of the separation. The observed indepen-
dence of thickness requires that the power be greater than 4. If it were 4 exactly
then his exposition becomes “defective”. It is easy to show that this borderline
case leads to a logarithmic dependence on thickness, but he does not do this [82].
A force of power −4 corresponds to an interparticle potential of −3. The fact that
potentials are inadmissible unless they decay more rapidy than the inverse power
of the dimensionality of the space of the system is now a central feature of clas-
sical statistical mechanics. It is implicit in Newton’s calculations in the Principia
(see Section 2.1) but Belli seems to have been the first to discuss the point clearly.
Eighteenth century calculations of the force between particles and spheres, and
Belli’s extension of them to that between two spheres, raise other difficulties, which
Belli does not escape [83].

He then moves, in proper Laplacian manner, to consider the two phenomena of
the refraction of light and of capillarity. For the second he maintains that the lower
limit of the inverse power of the force must be 5 not 4, presumably because of
the extra factor of separation in the integral H , but his argument is hard to follow
because of the faulty labelling of his diagrams.

He refutes the proposition that the attractive forces are gravitational, modified
at short distances by the non-spherical shapes of the particles, by making explicit
calculations of the gravitational force between non-spherical bodies. He considers
the force on a particle at the bottom of a drop of liquid suspended below a horizontal
plate. If the gravitational attraction of the Earth were to be balanced by the opposing
gravitational attraction of the drop then, he maintains, the density of the drop would
have to be 12 × 109 times that of the Earth. Laplace had raised a similar point
earlier [4].

We can recognise some valid theoretical points in this paper, and some that are
now less convincing, but a first publication by a hitherto unknown 22-year-old
physicist from Pavia attracted little or no attention at the time. With, however,
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the involvement of men such as Young and Laplace the subjects of cohesion and
capillarity had recovered from Leslie’s jibe that their pursuit had been left “to the
culture of a secondary order of men.” Laplace’s policy of reducing physics to the
study of the attractions between particles (of matter and of light) that were mediated
and supplemented by the actions of imponderable fluids, was one followed by
French physicists during the early years of the century. He was able to set the
agenda not only by reason of his intellectual domination but also by the patronage
he could exercise in the filling of salaried posts and in the choice of subjects in
which the First Class of the Institut would award prizes and allocate funds. Thus
Biot, a protégé of Laplace, and his younger colleague Arago undertook for the
Institut a substantial experimental and theoretical study of the refraction of light
by gases in which they tried to estimate the strength of the forces between the
particles of matter and those of light. They believed that this study would prove to
be a practicable route to the measurement of the forces responsible for Berthollet’s
chemical affinities [84].

Biot and Arago were part of the young team, many trained at the École Polytech-
nique, that Laplace and Berthollet gathered around them at Arcueil, to the south of
Paris, where they had neighbouring houses and where they built a laboratory [85].
The dominance of Laplace’s view of physics in the decade from 1805 to 1815
was exerted largely through this circle. It was, for example, in the Memoirs of the
Society of Arcueil that Étienne Malus published his discovery of the polarisation of
light by reflection, of which he gave a corpuscular explanation in terms of repulsive
forces [86].

In 1808 the Emperor Napoleon, himself a member of the First Class of the
Institut, called for ‘An historical report on the progress of the mathematical and
physical sciences since 1789’. A deputation led by the President, Bougainville,
waited on him in February. Delambre [87] gave the report on the mathematical
sciences and Cuvier [88] that on the physical. Delambre confined himself, in the
main, to a factual summary of the achievements of the last twenty years in what
we should now call applied mathematics and experimental physics. He praised
Laplace’s work and made note of that on capillarity. Cuvier, after an excessively
flowery introduction, came to the heart of the Laplacian programme:

The prodigious number of facts which extends from the simple aggregation of the particles of
a salt to the structure of organic bodies and to the most complex functions of their life, seems,
however, to be attributed most directly to the general phenomenon of molecular attraction,
and we could not choose a more convenient thread to guide us through this maze. [89]

He then starts his report with two subjects, the theory of crystals and the theory
of affinities, “two sciences entirely new and born in the period that we have to
review”. With crystals he was on sure ground; it was essentially a new science.
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Crystallography, the structure and symmetry of crystals, was a subject then flying
from the Laplacian nest, but the theory of the elasticity of solids was to prove to be
the one field where Laplacian physics was to remain fruitful and where it survived,
although much criticised, when the rest of his scheme fell under the assaults of the
Young Turks from 1815 onwards. With the subject of affinities, Cuvier was less
fortunate in his prognosis. He says that it had had a primitive origin but he claimed
that it been revolutionised by Berthollet. In fact Berthollet’s treatment was to mark
the end of the Newtonian chemical tradition that had started with Freind a hundred
years earlier. It had not been, for a long time, a useful tool even in the hands of
those who had nominally adhered to it. They had been more concerned to establish
chemistry as an autonomous science and, once Berthollet’s short-lived influence
had waned, this was to be the way forward in the 19th century.

3.3 Burying Laplacian physics

Both the weaknesses of Laplace’s programme and the loss of his powers of
patronage became increasingly apparent after the restoration of the monarchy in
1815 [20]. The corpuscular theory of light was the first casualty, to be followed by
a slow loss of faith in the reality of the caloric fluid. In chemistry, Dalton’s atomic
theory and the electrochemistry of Davy and Berzelius soon proved to be more
fertile guides to research than Berthollet’s affinities. New branches of physics arose
that did not fit into Laplace’s programme, notably the magnetic forces of electric
currents which did not conform to the picture of central forces between particles.
The first mathematicians and physicists to bring forward mechanical and optical
views that did not fit his picture were those outside his circle and his influence:
Fresnel [90], Fourier [91], Sophie Germain [92] and later Navier [93]. They were
joined eventually by those from his entourage: Biot, Arago and Petit; only Poisson
kept the faith, even when he was querying some of the mathematical methods.

The abandoning of Laplace’s views in these new branches of physics led ulti-
mately to the generation of the field theories that were such a prominent feature
of the second half of the 19th century, but the change was gradual. Both Fresnel
and Cauchy [94] envisaged a molecular aether and a German school backed for a
time an electromagnetic theory that rested on forces between moving particles [95].
None of this new physics had anything to contribute to the problem of cohesion in
liquids where we can see, with hindsight, that Laplace’s ideas were broadly correct.
A modern physicist recognises his treatment of capillarity as a simple mean-field
approximation for a system with pairwise additive intermolecular forces; it is the
legitimate ancestor of much current work in the field [96]. Nevertheless the sheer
volume and exuberance of the physics of light, electromagnetism and, later, heat,
inevitably buried Laplace’s achievement with his failures.
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Even a field in which we should see some scope for discussing the role of the
intermolecular forces, the thermal conductivity of solids, developed in a way that
not so much contradicted Laplace as ignored him. Fourier’s mature views are set
out in his Théorie analytique de la chaleur of 1822 [97]. As early as 1807 he
had presented to the Institut a phenomenological treatment of heat conduction in a
solid. This was criticised by Lagrange and Laplace for mathematical faults in the
derivation and solution of his differential equations, but a revised version won the
prize in the competition set by the First Class in 1810. Poisson publicly reviewed
Fourier’s papers of 1807 and 1815, and provided his own alternative derivation on
strict Laplacian lines for the transmission of heat from particle to particle [98]. The
submission of Fourier’s prize essay overlapped with another series of competitions
on the elasticity of plates which is more germane to our field (see below). Here
again the prize went eventually to a non-Laplacian essay, and here again Poisson
provided a Laplacian counter-effort.

Fourier is not against all corpuscular explanations – at one point he gives a
standard account of the displacement of the particles in a solid from their positions
of equilibrium by external forces [99] – but he is clear that ‘heat’ cannot be reduced
to ‘mechanics’ [100]. He does not commit himself to the nature of heat, and does
not need to, since, as he emphasises, his equations are valid independently of any
such assumption [101]. He acknowledges, however, that heat

. . . is the origin of all elasticity; it is the repulsive force which preserves the form of solid
masses and the volume of liquids. In solid masses, neighbouring particles [molécules] would
yield to their mutual attraction, if its effect was not destroyed by the heat which separates
them. [99]

Nevertheless, when it comes to developing his treatment such Laplacian notions are
discarded. Hismolécules, it is clear, then become merely locations at which the tem-
perature is recorded, or infinitely small elements of volume (dxdydz), “la molécule
rectangulaire” [102]. This was a usage that Laplace himself had adopted in his early
work, writing in 1796 that “the volume of any molecule remains constant, if the
fluid is incompressible, and depends only on pressure, following a fixed law, if the
fluid is elastic and compressible.” [103]

Fourier opens his book with a ‘Preliminary Discourse’ of which the first sentence
is: “Primary causes are unknown to us; but are subject to simple and constant
laws, which may be discovered by observation, the study of them being the object
of natural philosophy.” [104] This sentence naturally aroused the admiration of
Auguste Comte [105] who was to make similar declarations about the limited aims
of the natural sciences. Such positivism was foreign to the Laplacian programme
but it was to become the dominant mode of thought in France and, to a lesser degree,
in other countries also [106].
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In the early 18th century those who tried to interpret cohesion in terms of forces
between the intimate particles of matter had to contend with the criticism of the
Cartesians and Leibnizians that they had not produced a plausible mechanism by
which such forces could act. When the parallel criticism of the gravitational force
collapsed in the face of its irrefutable success in accounting for the observations of
the astronomers, then the objection to molecular attraction at a distance was muted
or tacitly abandoned. But now, when Laplace had carried the Newtonian programme
forward with a satisfactory resolution of all the capillary problems that had so in-
trigued the natural philosophers of the 18th century, the counter-attack came from
the opposite direction; such interpretations were unnecessarily specific in their
mechanisms and should be abandoned in favour of phenomenological descriptions
that avoided all appeal to molecular attraction or other microscopic mechanisms.
The force remained but the particles were to be abandoned. A quest for descriptions
that avoided particulate mechanisms was not wholly new; such ideas had been put
forward during the 18th century by both physicists and philosophers (in the modern
sense of these terms) [107]. Thus ‘pressure’ was an unspecified surface force for
Euler and for Lagrange, while for Laplace it was the bulk consequence of molecular
and caloric interactions, only to become for most physicists a macroscopic stress
again in the 19th century [108]. ‘Heat conduction’ went through a similar cycle.
What was new from about 1820 onwards was that a macroscopic and often posi-
tivist description (using that word in a broad sense) became the dominant mode of
thought.

So the Laplacians lost the battle, or left the field, in the areas of electricity and
magnetism, of light, and, later, of heat and thermodynamics; but what of the subject
of the properties of matter? They could make little more progress with the properties
of gases and liquids since they were restrained by a static molecular picture of mat-
ter and a corpuscular theory of heat. Solids are, however, a state of matter in which
heat, and so the motion of the molecules, plays only a secondary role, and here they
did not abandon the field. Throughout the century a battle was fought between the
molecular and macroscopic interpretations of the elasticity of solids. This was a
field of great practical importance to the civil and mechanical engineers of the time
and these practical men were decidedly non-molecular in their prejudices. Indeed
the vigour of the engineering profession and of its works probably had as decisive
an influence on the abandoning of Laplacian ideas as any metaphysical preferences
of the positivists. This emphasis on practical affairs was strong in mechanics and
thermodynamics [109]. Carnot [110], Navier and Clapeyron [111] were all en-
gineers and Joule [112], a Daltonian chemist by training, came from a practical
background. His early physical work was largely free from molecular speculations,
as was that of William Thomson [113], a devotee of Fourier’s work. Cauchy, another
engineer by training, alternated between molecular and non-molecular treatments
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of the elasticity of solids. Let us turn therefore to this field and see how the battle
was fought, but with first a brief account of what was known or believed about the
crystal structure of solids.

3.4 Crystals

The properties of solids had played a less important role than those of liquids in the
study of cohesion in the 18th century. There were two distinct lines of study that
were to coalesce much later but which were separate at the start of the 19th century.
The first was that of speculation on the shapes and arrangements of the constituent
particles of well-defined crystals [114] and the second was that of the elasticity of
solids [115]. The first was rooted in mineralogy and so ultimately in chemistry, and
the second arose from the concerns of the engineers. We need to know a little about
the first before tackling the second.

In the 17th century Robert Hooke and Christiaan Huygens had had realistic
ideas about how crystals of well-defined geometrical shapes could be assembled
by packing together arrays of spheres or ellipsoids. They did not require that the
entities that they chose filled all space; contact between them was sufficient. Freind
had summarised this approach in his Chymical lectures of 1712:

And since the force of attraction is stronger in one side of the same particle than another,
there will constantly be a greater concretion of salts upon those sides, which attract most
strongly. From hence it may easily be demonstrated, that the figure [i.e. shape] of the least
particles, is entirely different from that which appears in the crystal. But we must leave this
to the mathematicians lest we shou’d seem to encroach upon their province. [116]

The opposite view, namely that the particles occupy all space and so must have
shapes that are related to those of the crystals, was also held in the 18th century. In
1777 Guyton de Morveau wrote that:

Every regular solid body produced by crystallisation can be composed only of particles that
have a form compatible [une forme génératrice] with that which results from their union: it
is impossible that any number of cubes whatever can have the appearance of a sphere, since
we suppose the need for the most perfect contact between all the elements: this principle,
as we have said, can one day serve to determine the shape of the constituent particles of all
crystalline solids. [117]

Such ideas were developed more fully by Haüy, who drew on the observation of
Romé de l’Isle [118] that the angles of a crystal of a given material are constant
even if the overall habit of the crystal is not. Haüy recognised that the individual
chemical elements could not be the building blocks of such geometrically perfect
forms; he believed that assemblies of the elements formed what he first called
in 1784 the molécules constituantes [119]. In his more fully developed Traité de
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minéralogie of 1801 [120] he changed his notation and distinguished between
the molécules élémentaires (e.g. one part of soda and one of muriatic acid, in
common salt) and the molécules integrantes (also Laplace’s term) formed from
these, whose geometric faces were parallel to the natural joints revealed by cleaving
the crystal (simple cubes for common salt). These played a role similar to that
of the unit cell in modern crystallography. The differing overall shapes of crystals of
the same substance he attributed to the removal of parts of layers of these units. The
ratio of the length of tread to riser in the resulting staircase was a small integer, a
‘rationality of intercepts’ that later came to be called the law of rational indices.
One can see in its implications a parallel for solids with Gay-Lussac’s law of
combining volumes for gases. Haüy’s molécules integrantes generally filled all
space like Guyton de Morveau’s units, but he found occasionally that they could
only be packed together so that they touched on edges thus leaving some unfilled
space [121]. Once such exceptions were admitted then the argument for the precise
geometric shapes of these units became less compelling.

In 1813 W.H. Wollaston gave the Bakerian lecture to the Royal Society [122] and
chose as his subject the formation of crystal structures by the packing of spheres.
He was obviously embarrassed when told that the scheme was not original, as he
had thought, but had been put forward over a hundred years earlier by Hooke. He
nevertheless went ahead with his lecture, with acknowledgements to Hooke, and
so laid the foundation for many later 19th century schemes of the same kind [123].
L.A. Seeber, the professor of physics at Freiburg, added to this picture the obser-
vation that the thermal expansion of crystals could not be explained by the static
packing of inert spheres but required that there be attractive and repulsive forces
between the units [124].

In the changing climate of opinion after 1815 it was not surprising that such
Laplacian views of crystal structure were challenged, nor that the opposition came
again from outside Paris. C.S. Weiss [125], the professor of mineralogy at Berlin,
had worked with Haüy and had translated his work into German, with some criti-
cal comments. He rejected its atomistic basis, being concerned rather to establish
the geometrical side of crystallography on abstract principles of symmetry [126].
A similar path was followed with greater rigour by the better-known Friedrich
Mohs of Freiburg [127] in his textbook of mineralogy of 1822–1824 [128], which
was translated into English by his former assistant Wilhelm Karl Haidinger [129].
Mohs saw minerals as part of natural history and his classification was based on
considerations of symmetry, geometry, colour and other physical attributes; he re-
garded the chemical composition as of secondary importance and, like Weiss, did
not discuss molecular building blocks. This macroscopic view was to be the way
forward for crystallography in the 19th century. Speculations on the atomic struc-
tures of crystals were to be unfruitful, with the restricted exception of the principle
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of isomorphism. It was to be a hundred years before x-ray diffraction was to give the
crystallographers a tool with which to determine the molecular facts. Arguments
based on symmetry are always powerful in the physical sciences and were soon to
make their presence felt in the hitherto unrelated field of the elasticity of solids.

3.5 Elasticity of plates

In February 1808 Cuvier had defended the Laplacian programme in general and
crystallography in particular before the Emperor Napoleon. A few months later a
different aspect of the properties of solids came to the fore. The German physicist
and musician, E.F.F. Chladni [130] visited Paris and demonstrated before the First
Class of the Institut and before Napoleon the great variety of the vibratory states of
glass plates. He held these at two or more points around their edges and set them
vibrating by stroking the edge with a violin bow. The nodes of the vibrations were
made visible by the lines on the surface along which a powder sprinkled on the
plates came to rest. These nodal lines formed a great number of patterns although
each was repeatable if the points of clamping and the frequency of the exciting
vibrations were reproduced accurately. (Ørsted was making similar experiments in
Copenhagen at this time, for which he offered an electrical explanation [131].)

Here was a problem for the mathematical physicists; what equations governed the
modes of vibration of circular plates, and could they be solved? Hitherto, problems
of elasticity and the strength of materials had been the province of the practical men,
and although Euler, d’Alembert and others had contributed some theoretical results
these had been mainly for stretched cords, beams and other one-dimensional prob-
lems. At the direct request of Napoleon, and almost certainly at the prompting of
Laplace, the Institut offered a prize outside its usual series for a disquisition on
the theory of the elasticity and vibration of plates and a comparison with Chladni’s
results [132]. Laplace probably saw here a chance for his young protégé, the 27-year-
old Siméon-Denis Poisson, to show his abilities. The preamble to the announcement
of the prize notes that Poisson had recently read before the First Class, of which
he was not yet a member, a paper on the vibration of sound in tubes. Laplace soon
made his own views clear in a long note he attached to a memoir on the passage of
light through a transparent medium [133]. The memoir was read before the First
Class on 30 January 1808, so presumably the note was added after Chladni’s visit
to Paris. In it he wrote:

To determine the equilibrium and motion of an elastic sheet that is naturally rectilinear, and
is bent into any curve whatever, one has to suppose that at each point, its spring [ressort] is
in inverse ratio to the radius of curvature. But this rule is only secondary, and derives from
the attractive and repulsive action of the particles, which is a function of their separation.
To put this derivation forward, one must conceive that each particle of an elastic body is in
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equilibrium in its natural state, subject to the attractive and repulsive forces it experiences
from the other particles, the repulsive forces being due to heat or other causes.

Laplace was naturally one of the judges for the prize and intending competitors
could not have had a clearer hint of how he thought the problem should be tackled.
Another judge, Lagrange, was, however, not committed to this molecular approach.

In the event Poisson did not compete for the prize and the only entry received
by the closing date of 1 October 1811 was from Sophie Germain, a 35-year-old
lady who had learnt her mathematics by private study and by correspondence,
first with Gauss on number theory and then with Legendre [134] on elasticity,
notwithstanding the fact that Legendre was also one of the judges. She based her
treatment on the earlier work of Euler on the bending of rods and on theMéchanique
analitique of 1788 of Lagrange [135]. She assumed, by a simple generalisation of
Euler’s result for a thin rod (repeated by Laplace as his “secondary rule”) that the
restoring force on a surface, initially planar and now bent, is proportional to the
sum of the reciprocals of the two principal radii of curvature. She did not defend
this generalisation and the sixth-order differential equation that she obtained did
not follow from it. The most noteworthy feature of her entry was, however, that
she never mentioned Laplacian particles, a natural consequence of her lack of an
entrée into his school, and her choice of Euler and Lagrange as models to follow.

On 4 December 1811, Legendre wrote to her warning her that she would not
receive the prize and telling her that Lagrange had derived from her (unproved)
assumption a fourth-order differential equation for the deflection z as a function
of the planar coordinates, x and y, and the time t . He showed that this equation
reduced to Euler’s one-dimensional result for a thin rod if dz/dy = 0, which hers did
not [136]. Lagrange’s equation, with appropriate boundary conditions, is accepted
today as the correct description of the motion of the central portion of a vibrating
plate [137].

The competition was set again and new entries were required by 1 October 1813.
By then Lagrange had died and Poisson, who had joined the First Class in 1812 on
the early death of Malus, became one of the judges. Again Sophie Germain was
the only competitor. She knew now the equation she was aiming for and she duly
arrived at it, but her analysis was still faulty and her starting point still without
the primary justification that Laplace and Poisson would have liked. She did make
useful progress in solving Lagrange’s equation under appropriate conditions and
her entry, although not awarded the prize, received an honourable mention.

The competition was set for a third time with a closing date of 1 October 1815. By
then Poisson had taken up the subject (but not within the competition) and had
naturally treated the problem of elasticity as one of the change in the forces between
neighbouring particles [138]. His analysis of the bending of a surface without
thickness, in which all the particles are initially in the same plane, was based on the
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assumption that the bending reduced the interparticle separations and so increased
the repulsive forces. Its principal aim was to arrive at Lagrange’s equation, which,
although not yet in the public domain, he knew was of more than passing interest
since Germain had used it to reproduce some of Chladni’s results.

Germain was not deterred by Poisson’s intervention; in her third entry she again
simply argued that, for small deformations, the elastic force had to be proportional
to the difference of shape of the deformed and the undeformed surfaces. She ex-
tended her discussion to (and made some experiments on) surfaces whose natural
or undeformed state was already curved. The judges were still not satisfied with
her derivation of the differential equation but decided that her comparisons with
Chladni’s results and her own new work on curved surfaces justified the award of
the prize. The Institut never published her essay but it is close in content to her
own publication, written a few years later, after some advice from Fourier who had
returned to Paris from the provinces in 1815 [139].

She later extended her treatment to surfaces of varying thickness and now, for
the first time, mentioned “the particles that comprise the thickness of a solid”, but
by restricting the discussion to solids “of which the thickness is very small” she
was able to resolve the problem into one of thin sheets and so to continue to discuss
it in terms of changes of curvature [140]. Her last contribution to the field was a
short paper in the Annales de Chimie et de Physique which she submitted in 1828
in an attempt to intervene in an argument that was developing between Poisson
and Navier; they ignored her comments [141]. She still maintained that the only
incontestable fact about the forces of elasticity is the tendency of bodies endowed
with such forces “to re-establish the form that an external effect has caused them
to lose.” She is not convinced that we need interparticle forces but if they are
introduced they cannot be repulsive only, as Poisson had apparently implied in
his 1814 memoir and had just repeated in the Annales [142]. Both attractive and
repulsive forces are needed; they balance in the natural state, and if the particles
are pushed together the repulsive increase more strongly than the attractive.

Her unwillingness to invoke molecular hypotheses and intermolecular forces
arose from her choice of mentors, Euler, Legendre, and, later, Fourier. It was an
unwillingness common to many 19th century ‘elasticians’, some of whom shared
her broadly positivist views but were little influenced by her example. These views
were most apparent in an essay published by her nephew in 1833 after her early
death [143], and it was these views rather than her mathematics that led to the
publication of her works in 1879 [144]. Some French elasticians did not abandon
the Laplacian approach and, throughout the century, there was a conflict between
those who were content with the macroscopic concepts that came to be called
(in English) stress and strain, and those who hankered after a deeper interpretation
in terms of interparticle forces [145]. The division paralleled the later one between
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those who were satisfied with the apparent certainties of classical thermodynamics
and those who sought a deeper interpretation of its laws in the molecular mechanics
of the kinetic theory.

The first substantial attack on the problem of the elasticity of solids, as distinct
from that of rods and plates [146], came from Navier, Cauchy and Poisson. The
last was always a Laplacian but the other two kept a foot in both camps.

3.6 Elasticity of solids

Navier was the first to tackle the problem of the elasticity of solid bodies [147].
He had joined the staff of the École des Ponts et Chaussées in 1819, at the age
of 34, as instructor in mechanics, and at once entered the field. On 23 November
1819 he read at the Academy, of which he was not yet a member, a paper on
the elasticity of bent rods, and on 14 August 1820, a paper on the bending of
loaded plates. These were later published, the second in abstract [148], and this
one was also circulated among his confrères on lithographed sheets [149]. Both
papers acknowledge that the cause of elasticity is the interparticle forces, and in
the second he introduces what was to become his basic hypothesis, namely that the
net force between a pair of particles [150] vanishes in the natural state of the body
and is proportional to their change of separation in the strained state. His general
attack is, however, essentially macroscopic, particularly in the earlier lithographic
version of his memoir on plates [151].

These papers were preliminaries to his attack on the general problem of solids of
arbitrary shape, which was the subject of the memoir that he read to the Academy
on 14 May 1821, a memoir which is sometimes regarded as the birth of the modern
theory of elasticity [152]. This also appeared in abstract [153] but publication of the
full texts of all three memoirs was held up by the reviewing panels appointed by the
Academy. These included Poisson and Fourier but not Cauchy, as Navier believed.
He complained in vain at this delay but it was only in 1827, three years after his
own election to the Academy, that the most important, that on solids, appeared in
print [154]. Parallel papers on fluids, read on 18 March and 16 December 1822
appeared at once in abstract [155], but again full publication was delayed until
1827 [156].

In this work on solids Navier’s approach was molecular, a choice that led to
opposite reactions from his two rivals in the field, Poisson and Cauchy. The former,
who regarded himself as the authority on the Laplacian style of physics, was led
to make a similar attempt at a theory of the elasticity of solids. Cauchy, on the
contrary, produced papers that aimed to free the theory from an explicitly molecular
basis. He was the quicker off the mark. Inspired by Navier’s memoir of May 1821,
which he had heard read at the Academy, by parallel work by Fresnel on the
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propagation of light through an aether treated as an elastic solid, by his own ideas
on the mechanics of fluids, and by the need, as he saw it, to put the teaching of
his engineering classes on a sound mathematical basis, he developed a theory of
elasticity that did not rest on a molecular hypothesis. He reported on this work at
a meeting of the Academy on 30 September 1822 and prepared an abstract of it
the next year [157]; the full text appeared in revised form in 1827 to 1829 in his
Exercices de mathématiques [158].

Poisson did not enter the fray until 1 October 1827 when he read a short paper
at the Academy on ‘corps sonores’ [159]. He was followed in the discussion that
day [160] by Cagniard de la Tour who said that he was making experiments in this
field, and by Cauchy who sketched his own non-molecular theory and deposited a
sealed packet that contained an outline of three of his papers that were to appear
in his Exercices [161]. Poisson followed his short paper with another in which he
introduced what we now call ‘Poisson’s ratio’, that is, a measure of the change in
the diameter of a rod on stretching it [162]. Then came his book-length memoir
of 14 April and 24 November 1828 [142] in which he tried to trump Navier and
outflank Cauchy.

Navier felt badly used by both Cauchy and Poisson. He believed that Cauchy
had held up his memoir of 14 April 1821 in order to publish his own work [163],
and he thought that Poisson had not given him credit for his work of 1820 to 1821.
The conflict with Poisson led to a long exchange of notes in the Annales de Chimie
that started with Navier’s letter of 28 July 1828 and ran until early the next year
when Arago, the editor, put an end to it [164]. Saint-Venant later defended Navier;
he thought that Poisson’s and Arago’s criticisms were either “without foundation
or exaggerated” [165].

This vast body of work from Navier, Poisson and Cauchy cannot be described
here in full, nor is that necessary [147]. What is attempted is an elucidation of
the assumptions about the origin of elasticity that each made at different stages
of his thinking and a short explanation of how these assumptions led to different
expressions for the elastic behaviour.

Poisson’s position is the easiest to summarise for he never deviated from the
Laplacian assumption of short-ranged forces between pairs of particles. He usually
made no assumption about the form of these forces but occasionally gave hypo-
thetical examples. He could sometimes be cavalier about whether the forces were
attractive or repulsive or a difference betwen the two. This was a point on which he
was criticised by both Germain and Navier, but it is clear that he properly regarded
both as necessary to achieve equilibrium in a dense fluid or a solid, and his care-
lessness about which he used was only a matter of convenience in discussing the
particular problem he had in hand. His most explicit discussion of the forces is in his
memoir read at the Academy on 12 October 1829, which was published in abstract



112 3 Laplace

in the Annales de Chimie and in full in the Journal de l’École Polytechnique [166].
Essentially the same ideas, but not so fully articulated, are in his great memoir of
April 1828. He starts by saying that the force between the particles is “attractive
or repulsive: it depends on the nature of the particles and their quantity of heat”.
(The word ‘or’ is ambiguous and it was such phraseology that offended Germain
and Navier.) He then introduces an important idea. We have seen that Laplace,
in his second Supplement of 1807, had made an assumption that we should now
call a mean-field approximation [167]; Poisson now specifies the condition needed
for such an approximation to be valid, but does not mention Laplace’s earlier use
of it:

Bodies are formed of disjoint particles [molécules], that is, of portions of ponderable matter
that are of insensible size, separated by empty spaces or pores whose dimensions are also
imperceptible to our senses. The particles are so small and approach each other so closely
that a portion of a body that contains an extremely large number can also be supposed to
be extremely small, and the size of its volume to be insensible.

Later he writes:

In all cases we shall suppose that the sphere of activity at each point in a body, although
its radius be insensible, contains nevertheless an extremely large number of particles. This
hypothesis, the only one that I have made in my new Memoir, will, without doubt, be
admitted by physicists as being in conformity with nature. [168]

The supposition that the size of the particles is much smaller than the range of the
attractive forces, and that both are ‘insensible’ was, perhaps, in Laplace’s mind
as early as 1796 [169] but he did not repeat it explicitly in his statement of the
mean-field approximation of 1807. It was derived by Young in 1816, as we have
seen, on the basis of what we now know to be an unsound argument, but Poisson
could not have known of its publication in 1818. Poisson repeated this supposition
in 1831 in hisNouvelle théorie [59], and from there it made its way into the English
literature via Challis’s review of 1834 [62]. It was plausible at the time but was to
give rise to trouble later in the century when it was realised that the range of the
attractive forces did not greatly exceed the diameters of the molecules.

Poisson then suggests an explicit form for the forces. Two particles of mass m
and m' containing amounts of caloric c and c' respectively, and separated by a
distance r exert on each other a force R, where

R = cc'γ − mm'α − mc'β − m'cβ', (3.19)

or

R = Fr − f r, (3.20)

where F(r ) and f (r ), as we should now write them, are the repulsive (+) and
attractive (−) forces. The first arises from the repulsion of the two portions of caloric,
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and the latter from the mutual attraction of the masses and from the attraction of
matter for caloric. This all followed Laplace’s ideas. The function of r represented
by γ is universal, but α, β and β' are specific to each species of matter. He does
not imply that the term (−mm'α) is the gravitational force but is merely using
the masses as measures of the amount of matter. He notes that the force R may
not lie along the line of the “centres of gravity” since the force fields may not
be spherically symmetrical. For crystalline, and therefore generally non-isotropic
solids, he adds “secondary forces” that are not central and are responsible for
holding the particles in a regular array [170]. Such forces were responsible also for
“chemical decompositions”.

Poisson had, in 1828, given an example of a possible form for the attractive or
repulsive force as a function of the separation, r , of the particles namely

ab−(r/nα)m ,

where b is greater than unity and may conveniently be set equal to e, the base of
natural logarithms, since he calls this function an exponential. Here α is the mean
separation of the particles and m and n are large numbers. Such a force remains
finite, and equal to a, when the separation r becomes zero. A finite limit does
not accord with the concept of ‘impenetrability’ which, in its simplest form,
requires the force to become infinite at some separation r0, greater than zero. Such
a concept, however, played little part in the Laplacian scheme; it was probably
thought of as an unnecessary piece of 17th or 18th century metaphysical baggage
that should be ignored.

His most disturbing criticism of all earlier work, including his own, was to
challenge the replacement of sums of the actions of his “disjoint particles” by
integrals over their positions. It might be thought that his new hypothesis that the
range of the interactions was long compared with the sizes and so with the mean
spacing of the particles was one that led naturally to the replacement of sums by
integrals, but that was not how he saw it. He repeated this criticism in the final
appendix of his Nouvelle théorie of 1831. He obtained expressions for what it is
convenient to call the stress [171] by expanding in a Taylor series a function of the
interparticle force, r−1 f (r ), about a neighbouring position, r'. His leading term for
the stress was proportional to a coefficient, K , and the first-order term to a second
coefficient, k, where

K = 2π

3α6

∫ ∞

0
r3 f (r ) dr, and k = 2π

15α6

∫ r=∞

r= 0
r5d[r−1 f (r )] (3.21)

An integration by parts gives K + k = 0, if r4 f (r ) is zero at r = 0 and at r = ∞.
(Poisson wrote that f (r ) must be zero at both limits but was corrected by Navier.)
If there is to be no stress in an unstrained solid then K = 0, and hence k = 0 also,
which implies the absurd result that there is no stress in a strained solid. He was
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challenged on this point by Navier who observed, correctly, that there are many
possible forces for which the limit of r4 f (r ) is not zero at r = 0. Poisson’s own
exponential functions satisfy this criterion but a truly impenetrable particle, with
f (r ) positive infinite within some hard core, does not. They never resolved this
point between them and Poisson himself was not consistent in his avoidance of
integrals [172]. It is now accepted that it is legitimate to replace sums by integrals
within a mean-field approximation.

Navier made use of interparticle forces in most of his work although he was
close to Fourier and to positivist circles. He accepted that the forces were of short
range [173] but went beyond Poisson in saying that since there is no force on a
particle in a body in its natural state then the force on it in a slightly strained
state is proportional to the distance the particle has been moved. At first sight this
statement seems to be no more than (in modern terms) the statement that a particle
in an unstrained body at equilibrium is at the minimum of a parabolic potential
well, so that the force is analytic and initially linear in the displacement, given
that the displacement is measured with respect to the local environment of each
particle. The statement [174] was criticised by Poisson who objected that it went
beyond the simple purity of the Laplacian hypothesis, and who may have seen a
flaw in the unclear way that Navier expressed it. In a static classical mechanical
treatment a particle in a solid is at a potential minimum of the total field from all
surrounding particles, but it is not at the minimum of its pairwise interaction with
its nearest neighbours; rather it is repelled by them and this repulsion is balanced
by the attraction of the more distant particles, and so the nearest-neighbour forces
are not proportional to the displacements in a strained body. Navier did not at first
make this distinction and Poisson did not explicitly adduce it, but it is brought out
more clearly by Arago in the note with which he closed the discussion in the pages
of the Annales de Chimie. In his reply in another journal [164], Navier says that he
has an open mind on the question of the equilibrium arising from pairs of particles or
from the whole assembly. (William Thomson later fell into the same error as Navier
on this point, although only in an informal discussion of molecular packing [175].)

There is a close analogy between the equations that govern the elastic dis-
placements in solids and those that describe the viscous flow of liquids. Navier
studied both phenomena and in adapting his interparticle forces to his work on
liquids he introduced a term that depended also on the speed of separation of the
particles [155, 156]. This hypothesis played no part, however, in his treatment of
elasticity.

Neither Poisson’s nor Navier’s method of attack on the problem is satisfactory
because of the lack of generality of their concept of stress. It led them both to the
view that one constant is sufficient to describe the elasticity of an isotropic body
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composed of particles that interact only in pairs by means of forces that act along
the lines joining each pair; this was Poisson’s k and an equivalent constant that
Navier denoted by ε. This conclusion was to prove, throughout the 19th century,
a much-debated point between those who might be called the neo-Laplacians,
who accepted it, and a less molecularly-minded group who were to insist on two
independent constants for an isotropic solid and more for crystals of cubic or lower
symmetry. Cauchy set the scene by first eschewing the molecular approach to obtain
stress–strain relations for a continuum elastic solid in a form that is today accepted
as satisfactory and, indeed, necessary for a proper treatment of the problem. He
then introduced a system of central interparticle forces and showed how this led to
a reduction in the number of independent coefficients of elasticity. The argument
then centred on the conditions needed for Cauchy’s reduction to be valid. His work,
even more than that of Navier in 1821, marks the start of a mathematical theory of
the elasticity of solids.

His first improvement on Navier’s work came in the 1823 abstract of his early
work on continua [157]. He criticises Navier’s assumption that the forces acting on
a portion of solid act perpendicularly to its surface. This is true for a fluid at equilib-
rium but in a solid the force can act “perpendicularly or obliquely to the surface”.
He says that Fresnel had told him of a parallel generalisation for the forces acting
on a solid optical aether in a body that exhibits double refraction. Navier replied at
once to say that his assumption was both legitimate and necessary [163].

Cauchy’s generalisation of the concept of pressure or stress requires that it be
expressed by what we now call a second-rank tensor. His approach became clear
in the definitive article that he wrote in 1828 [158(e)]. This opens with the uncom-
promising statement:

In research on the equations that express the conditions of equilibrium or the laws of internal
motion of solid or fluid bodies, one can consider these bodies either as continuous masses
the density of which changes from one point to another by insensible degrees, or as a system
of distinct material points, separated from each other by very small distances. . . . It is from
the [first] point of view that we shall here now consider solid bodies.

Let us therefore see, in modern notation, what Cauchy, and after him Lamé, Green
and others, achieved with this continuum approach.

In a right-handed system of orthogonal axes, x1, x2 and x3, the stress, or force
per unit area, on a small flat area in the x2x3 plane is a normal stress of σ11 in
the x1 direction and two transverse stresses, σ12 and σ13, in the x2 and x3 directions
respectively. If the turning moment of the forces acting on a small prism with sides
parallel to the axes is to be zero then the stress tensor must be symmetric, σi j = σ j i ,
so that it has in general six components:σ11,σ22,σ33,σ12,σ13 andσ23. In a condensed
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notation introduced by Voigt [176] in 1910 and now generally used [177], these
are denoted by the subscripts 1, 2, 3, 6, 5 and 4, respectively. Similarly, the strain
in the body can be described also by a second-rank tensor. If the displacement of a
portion of a body at point x is defined by a displacement field t(x), then the tensor
with components ∂ti/∂x j describes the relative displacements. The symmetric part
of this tensor, with elements

2εi j = (∂ti/∂x j ) + (∂t j/∂xi ) (3.22)

is called the strain tensor, and the anti-symmetric part describes rotational displace-
ments. The six symmetric terms ε11, ε22, ε33, ε12, ε13 and ε23 are again abbreviated
in Voigt’s notation to ε1, ε2, ε3, 1

2ε6, 1
2ε5 and 1

2ε4. These six elements are, however,
not independent since they are derivatives of a single vector field t(x). This differ-
ence between the stress and the strain tensors will become relevant much later in
the story (Section 5.5). The relation between stress and strain was taken by Cauchy
to be a generalisation of Hooke’s law, that is,

σm =
∑

cmn εn, or more briefly, σm = cmn σn, (3.23)

where in the second equation we have used Einstein’s summation convention; the
sum is taken over each index that is repeated on the right-hand side, that is, over n
in this case. The elastic constants cmn are 36 in number but if the work of straining
a body is to be a perfect differential of the elements of strain then there is again a
symmetry condition, cmn = cnm , so that there are, in general, only 21 independent
elastic coefficients.

If the material is isotropic, as Poisson, Navier, and Cauchy assumed, then the
work of deformation, w, which is second order in the strain,

dw = σm dεm = cmn εn dεm, (3.24)

must be independent of the orientation of the axes. The tensor formed from ε1 . . . ε6

has then only two quadratic invariants, the square of the dilation ∆ and a quantity
sometimes denoted by Θ where

∆ = ε1 + ε2 + ε3, Θ = ε1ε2 + ε2ε3 + ε3ε1 − 1
4

(
ε2

4 + ε2
5 + ε2

6

)
. (3.25)

The work of deformation is a function of these quantities and can be written

w = (
1
2λ + µ

)
∆2 − 2µΘ. (3.26)

The coefficients λ and µ are the two independent constants of elasticity of an
isotropic medium in the notation introduced by Lamé [178] in his Leçons of 1852
and now widely used [179]. The reduction of 21 to 2 elastic constants can be
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expressed in terms of the coefficients cmn as follows:

c11 = c22 = c33 = λ + 2µ,

c12 = c13 = c23 = λ,

c44 = c55 = c66 = µ, (3.27)

with all other constants equal to zero. The stress–strain relation for an isotropic
solid can be written in the double-suffix notation as

σi j = λ(ε11 + ε22 + ε33)δi j + 2µεi j , (3.28)

where δi j is Kronecker’s delta which is equal to unity if i = j , and is zero otherwise.
Cauchy’s symbols K and k, which differ from those defined by Poisson with these
symbols, are given in terms of Lamé’s symbols by K = λ and k = 2µ.

A two-constant theory of the elasticity of an isotropic solid was achieved by
Cauchy in 1828 [158(e)], and later by George Green and others [180]. Cauchy could
recover Navier’s one-constant theory if he put one of his constants equal to twice
the other; k = 2K , or λ = µ. Bodies of lower symmetry have more independent
elastic constants; thus a cubic crystal has three, conventionally chosen to be c11, c12,
and c44. In the isotropic case these are linked by the equation c44 = 1

2 (c11 − c12).
The inverse of eqn 3.23 expresses the strains in terms of the stresses and the

elastic moduli or compliance constants smn;

εm = smn σn, where smn = snm and slmcmn = δln, (3.29)

so that if the elastic constants are known the compliance constants can be calculated,
and vice versa. In the isotropic case we have now s44 = 2(s11 − s12) and, in terms
of Lamé’s constants,

s11 = (λ + µ)/µ(3λ + 2µ), s12 = −λ/2µ(3λ + 2µ), s44 = 1/µ. (3.30)

If a wire or other body of uniform cross-section is stretched then we have σ1 > 0
and all other σi = 0. We have then the strains,

ε1 = s11 σ1, ε2 = s12 σ1, ε3 = s13 σ1, ε4 = ε5 = ε6 = 0, (3.31)

and so for (the modern definition of ) Young’s modulus for an isotropic solid [181],

E = σ1/ε1 = 1/s11 = µ(3λ + 2µ)/(λ + µ), (3.32)

and for Poisson’s ratio, the ratio of the lateral contraction to the extension,

ν = −ε2/ε1 = −ε3/ε1 = λ/2(λ + µ). (3.33)

The compressibility of an isotropic solid is

κ = 3ε1/σ1 = 3(s11 + 2s12) = 3/(3λ + 2µ), (3.34)



118 3 Laplace

since the suffixes 1, 2, and 3 are equivalent for uniform compression. The modulus
of elasticity that corresponds to pure shear is µ.

We again recover Poisson’s one-constant theory if we putλ = µ, so that Poisson’s
ratio becomes equal to 1

4 , as he deduced in 1827 [162]. In general, however, the
constants are not simply related to each other but they are constrained in their
magnitudes by the need for the work of deformation to be positive. This condition
requires that

µ > 0, and (3λ + 2µ) > 0, or E > 0, κ > 0, and 1
2 > ν > −1.

(3.35)

The limit of λ → ∞, κ → 0, ν = 1
2 , and E = 3µ is that of an incompressible

solid. In practice ν is positive (except for some unusual composite materials) and
generally lies between Poisson’s value of 1

4 and its upper limit of 1
2 .

The elasticians of the time made much of the parallelism between a deformed
isotropic elastic solid and a flowing liquid. This is most clearly expressed, in modern
symbols, by writing the stress tensor in a liquid, σi j , in terms of a velocity-gradient
tensor, υi j ,

σi j = −pδi j + πi j , where πi j = η'(υ11 + υ22 + υ33)δi j + 2ηυi j , (3.36)

and where p is the static pressure and the second equation is the analogue of eqn
3.28. The two coefficients η and η' are coefficients of viscosity and are the analogues
of µ and λ. The first is the coefficient of shear viscosity, and that of bulk viscosity is
conventionally defined as (η' + 2η/3). The viscosity of liquids was, however, and
still is, too difficult a subject for it to throw any light on the intermolecular forces.

Cauchy followed his paper on the elasticity of a continuous medium [158(e)]
with others [158(f), (g)] in which, without explanation or apology, he reverted to
a molecular approach. One outcome was that the assumption of pairwise additive
central interparticle forces did indeed lead to a reduction in the number of indepen-
dent elastic constants – in general from 21 to 15, through what are now called the
‘Cauchy relations’ [182]:

c12 = c66, c13 = c55, c14 = c56,

c23 = c44, c25 = c46, c36 = c45. (3.37)

(Voigt called them the ‘Poisson relations’ [183], and, later, the ‘relations of Poisson
and Cauchy’ [184].) Considerations of symmetry can reduce the number 21 to a
much smaller figure. Thus in a cubic crystal

c11 = c22 = c33, c12 = c23 = c13, c44 = c55 = c66, (3.38)

and all the other constants are zero. Thus there are in general 3 independent constants
in a cubic crystal, but in one with pairwise additive interparticle forces the Cauchy
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relations provide a further reduction to 2, through the condition c12 = c44. As we
have seen, in the isotropic case the reduction is from 2 to 1 through the condition
λ = µ.

Cauchy’s other work on the molecular model was not so successful. He obtained
two sums over the interparticle forces which he called G and R. If the range of
the force was large compared with the interparticle spacing then these sums could
be reduced to integrals and from these he deduced that G = −R. To agree with
Navier’s results for an isotropic solid the ratio G/R had to approach zero. He never
did resolve this problem, although he further generalised the continuum approach
before leaving the field for a time when he went into voluntary exile from France
after the revolution of 1830. Saint-Venant later analysed Cauchy’s confusion on
this point [185].

Two more engineers entered the field in 1828. Gabriel Lamé and Émile Clapeyron
were graduates of the École Poytechnique who in 1820 had gone to St Petersburg
where they had worked on practical problems of iron bridges and similar structures.
Now, in a memoir in which they describe themselves as ‘Colonels de Génie au
service de Russie’, they joined in the attack on the problem of elasticity, about
which Lamé later wrote: “We think that this problem, unfortunately very difficult
and not yet fully solved, is the most important that can be tackled by those engineers
who concern themselves with the physical sciences.” [186] Their memoir [187]
contains little that is wholly new and it is not clear what they knew of the work of
Navier and Cauchy; there are no references. It is important, however, for it marks
Lamé’s entrance into the field; Clapeyron was to concern himself in the 1830s more
with steam engines and, after his ‘discovery’ of Carnot’s work, with what came to
be called thermodynamics.

Their memoir is in two main parts, the first of which is essentially a repetition of
Navier’s work with the minor exceptions that they require the particles to be equally
spaced and that the force of attraction is proportional to the sum of the masses of the
interacting particles and not to their product, as was usual. They make no comment
on or use of this innovation which may have been a slip of the pen, or it may
have followed the usage of a mathematically similar paper by Libes in 1802 [7].
The second part of their memoir is closer to Cauchy’s continuum treatment in that
they introduce the six components of the stress tensor. They clearly preferred the
continuum model to the molecular and, in his Leçons of 1852, Lamé, having used
the molecular hypothesis earlier in the book, came to an outspoken conclusion. The
book ends by him asking whether

. . . all questions concerning molecular physics have been retarded, rather than advanced, by
the extension – at least premature if not false – of the laws of celestial mechanics. Mathe-
maticians, preoccupied by the immense work needed to complete Newton’s discoveries, and
accustomed to finding a mathematical explanation of all celestial phenomena in the principle
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of universal gravity, have ended by persuading themselves that attractions, or ponderable
matter alone, should be able to offer similar explanations of most terrestial phenomena.
They have taken it as a point of departure for their researches into different branches of
physics, from capillarity to elasticity. It is no doubt probable that the progress of general
physics will one day lead to a principle, analogous to that of universal gravity (which would
be only a corollary of it), which would serve as the basis of a rational theory and include at
the same time both celestial and terrestial mechanics. But to presuppose [the existence of]
this unknown principle, or to try to deduce it wholly from one of its parts, is to hold back,
perhaps for a long time, the epoch of its discovery. [188]

Thus battle was joined. The continuum theory led to a plethora of elastic constants –
there were 21 in general, 3 for a cubic crystal, and 2 for an isotropic solid. If the
material were deemed to be formed of particles acting on each other with short-
ranged central forces then the number was reduced – to 15 in general, 2 for a cubic
crystal, and 1 for an isotropic solid. The equations needed to effect this reduction
were the Cauchy relations. But was the reduction justified? The ideas of Laplace,
although at the time virtually confined to this specialised branch of physics, were
not without their supporters throughout the 19th century. This party was called by
Pearson the supporters of the ‘rari-constant’ theory, and they were opposed by those
who supported the ‘multi-constant’ theory [189]. In the first camp he put Poisson,
Navier, Cauchy (with reservations), Rudolf Clausius [190], F.E. Neumann [191]
and Barré de Saint-Venant, and in the second, Lamé, G.G. Stokes [192], William
Thomson and J.C. Maxwell. Even those in the continuum camp often regarded the
use of the multi-constant theory as something forced upon them if they were to de-
scribe adequately the physics of real solids, and did not think that the use of this the-
ory precluded them from using molecular language and methods elsewhere in their
papers. There was a similar situation in the fields of thermodynamics and hydro-
dynamics. Classical thermodynamics was a powerful theoretical tool in the middle
and second half of the 19th century which had initially no molecular foundations.
With the development of the kinetic theory of gases the question arose of how to
give a molecular foundation to thermodynamics by invoking the advances made in
kinetic theory. Some wished to maintain the macroscopic ‘purity’ of the classical
theory, others sought for the deeper understanding of its results that seemed to flow
from a molecular interpretation. Similarly, in hydrodynamics it was perceived that
the subject demanded a continuum treatment, but it was hard to see what caused
the viscosity of a liquid, for example, without supposing a molecular constitution
of matter. Josef Stefan in Vienna was one who struggled long with this problem
without resolving it [193].

The criticisms of the multi-constant party were threefold; first, that the hypothesis
of forces between pairs of particles was unproved, second, that the analysis of the
rari-constant party was faulty, and third, that the experimental evidence was against
them. William Thomson and P.G. Tait managed to encapsulate all three criticisms



3.6 Elasticity of solids 121

into one sentence when they wrote: “Under Properties of Matter, we shall see that
an untenable theory (Boscovich’s), falsely worked out by mathematicians, has led
to relations among the coefficients of elasticity which experiment has proved to be
false.” [194] The first criticism need not detain us; few of those who freely used
interparticle forces would have denied that the reality of these was a hypothesis
that was open to challenge, however strong their conviction that it was correct. The
second and third are more serious.

An early criticism of the analysis came from Stokes in 1845. He did not hold
with Poisson’s distinction between the effects of near and distant neighbours of the
molecule whose displacement was under consideration [195]. He had apparently
not read Cauchy’s work at this time. Technical criticism came also from Thomson
who told Stokes in 1856 that he could devise a mechanical system of particles
which, he said, conformed to the molecular hypothesis but did not satisfy the
Cauchy relations [196]. In his Baltimore Lectures of 1884 he belatedly made good
that promise with a model of particles linked by wires and cranks [197], but, as
Pearson remarked, his model lacked all conviction [198]. It may have been inspired
by Maxwell’s first mechanical model for his electromagnetic theory. Lamé [199]
and Samuel Haughton in Dublin [200] both thought that it was the improper use
of integrals in place of sums that was responsible for the reduction in the number
of constants. The rari-constant theory not surprisingly attracted the contempt of
Duhem who attacked both the hypothesis and the analysis in 1903 [201].

A technical defence of Cauchy’s molecular analysis was given by Clausius in
1849 [202]. Rather than abandon central forces between the particles he assumed
that experiments that contradicted the rari-constant theory were affected by inelastic
(or ‘after-effect’) displacements of the particles. He also emphasised the importance
of Cauchy’s definition of the word ‘homogeneous’ [203]. This point proved to be the
crux of the matter. Cauchy had defined the homogeneous state of a body as one in
which, in modern terms, each particle is at a centre of symmetry or inversion point
of the whole lattice, but his definition was not generally understood and continued
to give trouble. Saint-Venant tried to put the matter straight in 1860 when he wrote:

We know the distinction established by M. Cauchy between an isotropic body and one that
is simply homogeneous. It is isotropic if the same molecular displacements lead everywhere
and in all directions to the same elastic responses. It is merely homogeneous if its matter
shows the same elasticity at all points in corresponding directions [directions homologues]
but not in all directions around the same point. Thus regular crystalline materials are homo-
geneous without being isotropic. [204]

He held, all his life, to a belief that he thought almost self-evident, that theory should
start from the assumption that the energy of an assembly of particles was the sum of
their kinetic energies of translation and configurational potential energy (our terms)
and that the latter was itself a function only of the interparticle separations [205].
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This is satisfactory, as far as it goes, but it does not get to the root of Cauchy’s
restriction on the molecular constitution that is needed to achieve what he meant by
homogeneity. The importance of Cauchy’s restriction in any derivation of the rari-
constant theory was not obvious at a time when ideas of crystal symmetry were
little developed, but Thomson, independently of Clausius, came to realise what
the problem was. He had, as we have seen, originally dismissed the rari-constant
theory with contempt – “a theory which never had any good foundation” [206] –
but he eventually modified his opposition and asked instead if there were condi-
tions under which it might be expected to hold. He considered a simple molecular
model, an array of close-packed spherical particles in which each has 12 nearest
neighbours [207]. William Barlow, in his first crystallographic paper of 1883, had
pointed out that there were two different regular ways of packing spheres at the max-
imum density (when they occupy the fraction (π/3

√
2) = 0.740 of the space) [208].

One of these, the cubic close-packed structure, has a centre of symmetry, but the
other, the hexagonal close-packed, does not, although, as Thomson observed, it
can be regarded as two interpenetrating lattices each of which is centro-symmetric.
Thomson did not use the words ‘centre of symmetry’, but he showed that only the
first structure was homogeneous in the sense of that word used by Cauchy and those
who followed him. Nevertheless he was only able to obtain a rari-constant theory
for this structure by assuming that the central forces decreased with distance in a
particular way.

The theoretical problem was not settled until the 20th century. In 1906
A.E.H. Love at Oxford gave a modern version of Cauchy’s derivation which has
occasionally been cited as the authoritative source [209]. Most writers, however,
ascribe the first full and satisfactory treatment of the problem to Max Born in his
monograph of 1915, Dynamik der Kristallgitter [210]; it was an ascription that he
himself accepted [211]. This was the first book in the field after the x-ray exper-
iments of von Laue and the Braggs had shown beyond doubt that crystals were
composed of repeating atomic units. Born showed in general what Thomson had
shown for a particular case, namely that crystal lattices can be regarded as formed
of a number of simpler interpenetrating lattices. These can have centres of sym-
metry when the overall lattice does not. This book did not end the argument which
rumbled on until the middle of the 20th century [212]. There then appeared the
best and most accessible treatment in the chapter that K. Huang wrote for Born and
Huang’s Dynamical theory of crystal lattices [213]. Some physicists now speak of
the ‘Cauchy–Born relations’ [214].

The result of a hundred years of debate is that it is now established that the Cauchy
relations hold for a system of particles to which classical (not quantum) mechanics
apply, which owes its cohesion to pairwise additive central forces, which adopts
a stable structure in which each particle is at a centre of symmetry of the whole
lattice, and which initially is in a state free from strain. These are conditions with
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which Laplace or Poisson would surely have felt quite comfortable and which were,
on the whole, implicitly adopted by the rari-constant party. This party can be seen,
at least in this context, as Laplace’s 19th century heirs when they studied elasticity
in the hope that it might throw more light on the intermolecular forces than had
Laplace’s treatment of capillarity. This aim was summed up by Pearson in 1893
when he wrote that the theory was “tending to introduce us by means of the elastic
constants into the molecular laboratory of nature – indeed this is the transcendent
merit of rari-constancy, if it were only once satisfactorily established!” [215]

But do real solids satisfy these conditions or, to put the question the other way
round, do the elastic constants of real solids satisfy the Cauchy relations? For some
years the experimental evidence was slight. Poisson had, in 1827, relied on the
single experiment of Cagniard de la Tour to back his theoretical estimate of 1

4 for
the ratio of the lateral contraction to the extension of an isotropic cylinder subject
to a unidirectional stress, that is of ‘Poisson’s ratio’ [162]. This ratio was the first
parameter chosen to test the rari-constant theory. For an isotropic solid for which
Cauchy’s relations hold it is 1

4 , but if they do not hold it can be as large as 1
2 .

It is, however, a difficult property to measure and it was not clear which bodies
were isotropic. The difficulty of obtaining such bodies was first underlined by Félix
Savart’s careful analysis, in 1829, of the modes of oscillation of rock crystal (quartz)
taken in different different crystallographic directions. It was soon clear that the
elastic constants were not the same in all directions [216].

The single experiment cited by Poisson did not carry much conviction with
dispassionate observers. A more systematic attack on the problem of Poisson’s
ratio was mounted by Guillaume Wertheim in the 1840s. He was German-born (and
baptised Wilhelm) but moved to Paris in 1841 at the age of 26, where he became a
naturalised French citizen [217]. His first work in this field appeared in 1842 when
he accepted the rari-constant theory and was led by it to some vague speculations on
the relation between mechanical properties and interparticle forces [218]. A series of
further papers led to his memoir of 1848 on Poisson’s ratio for a range of metals and
alloys [219]. He showed that the ratio is significantly larger than 1

4 and often close
to 1

3 , but instead of concluding that his results showed that his materials required a
two-constant theory, he suggested that the one-constant theory be retained but with
λ = 2µ, which leads to a Poisson’s ratio of 1

3 . This conclusion satisfied neither
party; it was not acceptable as a one-constant theory since it had no theoretical
basis (although Cauchy saw no objection to it [220]), and it did not at first sight
support those who were arguing for a two-constant theory. His results raised doubts
about the isotropy and/or homogeneity of his materials. The experiments were
accepted, and indeed still are [221], but his deductions from them were criticised
by Clausius [202] and by Saint-Venant [222].

Later results confirmed the message; for most, but not all, materials the ratio is
larger than 1

4 . In the 1880s, E.-H. Amagat [223] made a careful set of measurements
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as an adjunct to his work on the compressibility of gases and liquids. For tubes of
glass and ‘crystal’ (fused quartz) he found, after choosing “the most regular parts
possible”, mean values of the ratio of 0.245 and 0.250 respectively [224]. For most
metals he found values of 0.3 to 0.4, as had Wertheim, but for lead [225] the ratio
was 0.425–0.428 and for rubber [226] it was almost 0.5 [227]. He argued that the
approach of the ratio to its upper limit of 1

2 in lead and rubber was evidence for
their more liquid-like character; that is, he proposed that this limit could be reached
not only for an incompressible solid, for which λ → ∞, but also by a material that
cannot resist shear, for which µ → 0.

The early experiments of Woldemar Voigt confirmed the rari-constancy of an-
nealed glass [228], and he went on to make more extensive measurements of the
several elastic constants of well-defined crystals with the aim of testing Cauchy’s
relations directly [183]. He followed his mentor Franz Neumann, under whose
supervision he had written his thesis at Königsberg, in making experiments that
took explicit account of the symmetries of the crystals; most of his predecessors
had worked with glassy or polycrystalline materials. For the cubic crystals he found
that the elastic constants c12 and c44 were equal for sodium chloride (Steinsalz), for
which c12/c44 = 1.02, but not for calcium fluoride (Flusspath), for which this ratio
was 1.32. He deduced that since “Poisson’s relation c12 = c44 is not fulfilled for
fluorspar, the material must consist of strongly polar molecules”, that is, ones for
which the intermolecular forces are not central. His many other experiments led to
similar conclusions. Thus by the end of the 19th century there was ample evidence
that most materials did not satisfy the Cauchy relations, nor have a Poisson’s ratio
of 1

4 , but that a few carefully chosen materials did conform to the rari-constant
rules. The more practical elasticians and engineers concluded correctly that the
rari-constant theory was of little use to them, and that remains the position to this
day. It can even be briskly dismissed as “an error”, or even as “absurd” [229]. Some
of the more theoretically inclined elasticians even added their voices to the opposi-
tion to the idea of interacting point atoms, an opposition that had some considerable
following at the end of the century. Thus Love wrote in 1906:

The hypothesis of material points and central forces does not now hold the field. This change
in the tendency of physical speculation is due to many causes, among which the disagree-
ment of the rari-constant theory with the results of experiment holds a rather subordinate
position. . . . It is now recognized that the theory of atoms must be a part of a theory of
the aether, and that the confidence that was felt in the hypothesis of central forces between
material particles was premature. [230]

Others were less pessimistic and, as we have seen, explored instead the conditions
under which Cauchy’s relations might be expected to hold, and the types of materials
that could be shown to conform to them. This led in the 20th century to a brief
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revival of interest in the elastic constants and the light that they could throw on the
intermolecular forces, but that discussion belongs to a later chapter.

The study of cohesion as a fundamental part of physics has, in this chapter, been
left in the 1820s while we have pursued the clash between the advocates of the rari-
and multi-constant theories. Today the study of the elastic properties of materials
is both a specialised branch of applied mathematics and a practical subject of
importance to mechanical and civil engineers, but it is not an important component
of courses of physics [231]. In the 19th century it occupied an unusual position. It
was important enough to attract serious work from many of the leading physicists of
the time, such as Clausius, Franz Neumann, Voigt, Lamé, Regnault, Amagat, Stokes,
William Thomson and Maxwell, to name but three each from Germany, France and
Britain. Some of this importance arose from the parallels that they saw between
the elastic properties of solids and of the aether as a medium for the propagation
of light waves, and some from the needs of the great engineering enterprises of the
time. Pearson, writing in 1886, said of the decade 1840–1850: “Not in one country
alone, but throughout the length and breadth of Europe we find men foremost in
three of the great divisions of science (theoretical, physical and technical) labouring
to extend our knowledge of elasticity and of subjects akin to it.” [232] In spite of
this importance it remained, nevertheless, a curiously detached branch of science.
Of those physicists listed above, Clausius and Maxwell were the founders in the
1860s of the kinetic theory of gases, and Thomson followed that subject closely,
yet none made any effort to integrate their work in the two fields, although the
kinetic theory made no sense without molecules and forces between them. Part of
the problem was a reluctance to believe that the nature of matter, particulate or
otherwise, was the same in all three phases, solid, liquid and gas. As we shall see,
Clausius firmly believed this but the others were not so sure. Even today, when we
accept that the same molecular entities are present in the three states of, say, argon,
we use rather different theoretical methods in solids for translating the effects of the
forces between these entities into the observed physical properties. One reason is
the greater importance of quantal effects in solids, but the difference is not confined
to this problem. Even in the 19th century physicists apparently saw little advantage
in trying to integrate the study of solids with that of liquids and gases.

It is interesting to compare the different form of the debates in the 18th and the
19th centuries between those who believed in particles with forces between them
that apparently acted at a distance, and those who refused to countenance such
ideas. In the late 17th and in the 18th centuries the second party included some
noteworthy figures – Huygens, Leibniz, Euler and, at times, some members of the
Bernoulli family – but their opposition never cohered into an alternative doctrine.
In the 19th century the opposition was less single-minded since many physicists
adopted both hypotheses at different times or for tackling different problems, but
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those who insisted that the elastic properties of solids could not be explained by
central forces between particles had a good case which was cogently argued and
which was justified by the behaviour of most materials.

Laplace’s fundamental notion of interparticle forces “sensible only at insensible
distances” fuelled the debate between the elasticians. His ideas were not lost in
what is sometimes called the fall of Laplacian physics, but were buried in this
specialised branch of the subject. They remained central to the ideas of Poisson,
Cauchy, Saint-Venant and Clausius. They returned, at the hands of van der Waals
and others, to the mainstream of physics later in the century, when they had been
fruitfully united with a kinetic view of matter.
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1–40. Petit’s thesis is discussed by I. Grattan-Guinness, Convolutions in French
mathematics, 1800–1840, 3 vols., Basel, 1990, v. 2, pp. 447–9.

33 Laplace, ref. 16, 1825, v. 5, Book 16, chap. 4; OC, ref. 8, v. 5, pp. 445–60, see p. 451.
34 Laplace, ref. 23, p. 18; Bowditch, ref. 16 [9301]. Van der Waals repeated Laplace’s

derivation in his thesis of 1873, see Section 4.3. For other modern derivations, see
Dhombres, ref. 22, Grattan-Guinness, ref. 32, v. 2, pp. 442–7, and Heilbron, ref. 20,
pp. 158–61.

35 Laplace, ref. 23, p. 7; Bowditch, ref. 16, [9209].
36 For a modern account of his work on this topic, see J.J. Bikerman, ‘Theories of

capillary attraction’, Centaurus 19 (1975) 182–206.
37 J.L. Gay-Lussac (1778–1850) M.P. Crosland, DSB, v. 5, pp. 317–27.
38 Laplace, ref. 4, 3rd edn, 1808, p. 309.
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Phys. Inst. France 7, 2me partie (1806) 301–87.

85 Crosland, ref. 9.



132 3 Laplace

86 E. Malus (1775–1812) K.M. Pedersen, DSB, v. 9, pp. 72–4; E. Malus, ‘Sur une
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élastiques’, Bull. Sci. Soc. Philomathique Paris (1823) 177–81.
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(e) ‘Sur les équations qui expriment les conditions d’équilibre, ou les lois du
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condensation ou à la dilation des corps’, 237–44; 4th year (1829): (i) ‘Sur les
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1852, p. 50.
180 G. Green (1793–1841) P.J. Wallis, DSB, v. 15, pp. 199–201; D.M. Cannell, George

Green, mathematician and physicist, 1793–1841: The background to his life and
work, London, 1993; G. Green, ‘On the laws of reflexion and refraction of light at
the common surface of two non-crystallized media’, Trans. Camb. Phil. Soc. 7
(1839) 1–24, 113–20, reprinted in Mathematical papers of the late George Green,
ed. N.M. Ferrers, London, 1871, pp. 245–69. The paper was read before the Society
on 11 December 1837.

181 Truesdell, ref. 147, 1968, ascribes the first use of this modulus to Euler.
182 The modern use of this phrase seems to be due to Love, in the second and later

editions of his Treatise, ref. 146. The second edition is virtually a new book and
contains in Note B, at the end, a modern version of Cauchy’s work in ref. 158(g).
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Leçons.

201 P.-M.-M. Duhem (1861–1916) D.G. Miller, DSB, v. 4, pp. 225–33. Duhem’s
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(1844) 385–454.
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4

Van der Waals

4.1 1820–1870

The half-century that followed the decline of Laplace’s influence in the 1820s was
an exciting if confusing time for both physicists and chemists. Laplace and his
contemporaries had created many of the mathematical tools that would be needed
by the rising generation of theoretical physicists but these tools were to be used in
decidedly non-Laplacian ways in the flourishing fields of thermodynamics, optics,
electricity and magnetism. The men who were responsible for these developments
were mainly German and British; French influence declined rapidly from about
1830. An important early figure was Franz Neumann but it was the brilliant gen-
eration that followed who were to lead these fields – Stokes (b.1819), Helmholtz
(1821) [1], Clausius (1822), William Thomson (1824), Kirchhoff (1824) [2], and
Maxwell (1831) [3]. Some of the views that they were to articulate were held in-
stinctively by Faraday [4], the modest but acknowledged leader of the experimental
scientists. The physicists often maintained that every theory should ultimately be
reducible to mechanics but they nevertheless created theoretical structures that did
not lend themselves to such a reduction. The fertility of field theories led, in Britain
at least, to a disparagement of theories based on action at a distance, but in Germany
matters were less polarised. The influence of Kant’s philosophy led Helmholtz in
particular to retain this concept, and Clausius and Boltzmann were later to be equally
happy with it, at least as a pragmatic basis for molecular modelling. An example of
its use is the velocity- and acceleration-dependent forces between charged particles
with which Weber tried to save electrodynamics from the embrace of field theory [5].
Clausius and Boltzmann tried to reduce the second law of thermodynamics to
mechanics and although their efforts were unsuccessful Boltzmann’s work became
the starting point for the development of non-equilibrium statistical mechanics.

Outside the specialised field of the elasticity of solids there was little work from
the major workers in the years up to 1857 that was relevant to the understanding
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of the cohesion of matter. We can see, in retrospect, both external and internal
reasons for this neglect. The external competition from more fashionable fields was
strong and, in the cases of thermodynamics and of electricity and magnetism, was
reinforced by the need to solve the practical problems of the steam engine and of
electrical telegraphy. The often positivist spirit of the times was against molecular
speculation. John Herschel, in his Presidential Address to the British Association
in 1845, said:

The time seems to be approaching when a merely mechanical view of nature will become
impossible – when the notion of accounting for all the phaenomena of nature, and even of
mere physics, by simple attractions and repulsions fixedly and unchangeably inherent in
material centres (granting any conceivable system of Boscovichian alternations), will be
deemed untenable. [6]

The internal problem was, as usual, the lack of understanding necessary to underpin
the next advance. The biggest obstacle was the static view of matter of Laplace and
his school, with the concomitant lack of understanding of ‘heat’, which often in-
cluded a belief in a caloric mechanism of molecular repulsion. There was, moreover,
the continuing uncertainty among both physicists and chemists about the reality of
atoms and their relation, if any, to the particles or ‘molécules’ of Laplace’s school.
But obstacles that are clear in retrospect are not as clear at the time. The usual
reaction of scientists when they see that a field is not making progress is not to
question why, but to go and do something else; science is “the art of the soluble”.
In this case the major scientists went to other more profitable fields and those who
were to lay the groundwork for the next advance were often men from a practical
background who were looking at problems only remotely connected with cohesion.
This Section is an all too brief summary of the relevant work from about 1820 to
1860 and an attempt to show how, by the decade of the 1860s, the field was again
ripe for development.

The first moves towards tackling the difficulties that lay in the way of a theory of
matter and its cohesion came from Leslie’s ‘secondary order of men’, those outside
the main stream of physicists. Newton had said that ‘heat is motion’, although he
did not believe in a kinetic theory of gases in the modern sense of that phrase. It
was often an uncritical veneration for his views that inspired some of the Britons
who aspired to make their mark in theoretical physics. Thus a kinetic theory in
which the pressure of a gas was ascribed to the bombardment of the walls of the
vessel by rapidly moving and widely spaced particles was again put forward. Daniel
Bernoulli was overlooked and Newton was the inspiration of John Herapath [7], a
teacher turned journalist, and of John James Waterston [8], an engineer. The tragi-
comedy of their efforts to publish their kinetic theories is now well known [9]; one
of the problems was the attitude reflected in Herschel’s address. Nevertheless their
ideas slowly reached the wider physical world. The subject was kept alive by James



4.1 1820–1870 143

Joule [10], who was not widely known in the 1840s, and by August Krönig [11], a
somewhat isolated figure as a teacher in a technical college in Berlin. These were
all men whose vision outran their mathematical skills and much of their work is
a confused mixture of real insight and inadequate or even wrong physics. Joule
learnt something from Herapath, and Krönig most probably from Waterston. It was
Krönig’s paper of 1856 that spurred Clausius into action, so the pioneers were not
without influence. The subject came to maturity with the work of Clausius and
Maxwell, after the development of thermodynamics and a realisation of the central
importance of energy. The early work on the kinetic theory of gases is not described
here in detail – it is a well-documented story – but the observations that arose from it
that are relevant to molecules and their interaction are extracted as they are needed.
More will be said later about molecular forces in liquids which is a lesser-known
topic and one that does not lend itself so readily to quantitative analysis. The work of
Clausius and Maxwell is deferred to Section 4.2, since not only did they put kinetic
theory on a sound footing, but they also summarised what could be said (with some
confidence by Clausius and with more hesitancy by Maxwell) about molecules
and their interactions and about the relation of this synthesis to the experimental
behaviour of gases and liquids.

The field that came to be called thermodynamics was also started by those out-
side the main stream. Sadi Carnot’s brilliant book of 1824 was misleading on one
vital point; he held then that heat was a conserved quantity [12]. The book had
little influence outside French engineering circles until the 1840s [13]. Then the
experiments of Joule on the conversion of work into heat, and the calculations of
J.R. Mayer and others [14] convinced physicists that it was energy, not heat, that was
conserved. Out of the synthesis of this work and that of Carnot emerged the first and
second laws of thermodynamics at the hands of Clausius and William Thomson,
with off-beat contributions from W.J.M. Rankine [15]. Helmholtz’s pamphlet of
1847, On the conservation of force [16], marked an important step in the accep-
tance of the doctrine of the conservation of energy (as we now call it). In it he took
the mechanical expression of this doctrine to be equivalent to the hypothesis that
all forces in nature are attractive or repulsive forces acting along the lines joining
the particles of matter, but he did not speculate on the nature of these particles,
and he was later to modify this view. He introduced the idea of potential energy
[die Spannkraft] between the particles, an innovation that recognised the value
of this concept outside the fields of gravitation and electrostatics to which it had
hitherto been confined, if we except fleeting appearances in Laplace’s theory of
capillarity and in some of the papers on elasticity.

The acceptance by the pioneer thermodynamicists of the law of the conservation
of energy implied a belief that the energy that ‘disappears’ as heat, and which can
emerge again, in part, as work, is an energy of motion, but they were not always
explicit about what it was that was moving. Helmholtz and Joule were clear in 1847
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that it was a motion of the atoms (initially a rotational motion in Joule’s case) that
constituted the energy; Clausius shared the same view. Rankine invoked molecular
vortices in an aether, but Thomson and Maxwell were more cautious about the
implications of the laws of thermodynamics and, from 1860, of the kinetic theory
of gases. Thomson came forward eventually in 1867 with his own theory of atoms
as vortices in an aetherial fluid, only later to abandon that idea also.

It might be said that what Clausius and Thomson did for thermodynamics around
1850, Clausius and Maxwell did for kinetic theory in 1857–1860; that is, they gave it
a proper theoretical foundation and brought out its consequences in a way that was to
shed light on the emerging view of the structure of matter. The presence of Clausius’s
name in both fields is not coincidental for it was thermodynamics that was to rescue
kinetic theory from the ‘outsiders’ and bring it into the mainstream of physics. The
phrase ‘mechanical theory of heat’ was used at first to denote what we now call
thermodynamics but it came also to embody the congruence of thermodynamics
with the ideas of kinetic theory. This conflation is clear, for example, in Émile
Verdet’s book Théorie mécanique de la chaleur and, in particular, in the valuable
bibliography by J. Violle which it includes. Both book and bibliography cover what
we now call thermodynamics and kinetic theory [17].

Before following the physicists further let us see briefly what the chemists had
contributed to physical theory by 1860. The chemist Lothar Meyer, writing in
1862 [18], from a good grounding in physics [19], acknowledged that Berthollet
had had the right idea in wanting to interpret the processes of chemistry by means of
interparticle forces, but said that little or no progress had been made in that direction.
For most of the 19th century the emphasis was on questions of composition and
mass; forces generally received less attention. Berthollet’s work was to mark the end
of the Newtonian tradition that had started with the Opticks and Freind’s lectures a
hundred years earlier. Once his short-lived influence had waned chemical theories
were to evolve on quite different lines. Two of the most striking of these were the
electrochemical theories of Davy and Berzelius [20]. In his influential Bakerian
Lecture of 1806 Davy brought forward the idea that the formation of chemical
compounds from their elements was a consequence of electrical attraction between
them. He said of electrical energy that “its relation to chemical affinity is, however,
sufficiently evident. May it not be identical with it, and an essential property of
matter?” [21]. Berzelius developed this idea further and with more effect since
he believed in Daltonian atoms in a way that Davy never did [22]. His creed is
summarised in two sentences:

. . . [in] the corpuscular theory, union consists of the juxta-position of the atoms which
depends on a force that produces chemical combination between heterogeneous atoms and
mechanical cohesion between homogeneous. We shall return later to our conjectures on the
nature of this force. [23]
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All is revealed thirty pages later where he writes:

. . . that in all chemical combination, there is a neutralisation of opposite electricities, and
that this neutralisation produces fire [feu], in the sameway as it is produced in the discharges
of a Leyden jar [boutielle électrique], of the electric battery, and of thunder, without being
accompanied by chemical combination in the last cases. [24]

He ordered the known elements into an electrochemical series that ran from oxygen
as the most negative, through hydrogen near the middle, to potassium as the most
positive. The entities that combined were ranked in orders; in the first order there
were simple compounds such as water or sulfuric acid, formed from a radical plus
oxygen, in the second simple salts such as calcium sulfate, formed from a positive
CaO and a negative SO3, and in the third and fourth, double salts and salts with water
of crystallisation. This scheme did much to rationalise the combinations exhibited
by inorganic substances but soon proved less successful with the organic. Belief
in its universality never recovered from Dumas’s discovery that he could replace
the ‘positive’ hydrogen by the ‘negative’ chlorine in the methyl group (to use the
modern name) without any substantial change in its properties [25]. Whatever
the initial hopes of Davy and Berzelius, their scheme contributed nothing to the
understanding of cohesion.

Dalton had come to chemistry from meteorology and the study of gases whose
properties he interpreted in the same way as Lavoisier and Laplace, that is, as an
array of static particles or atoms each surrounded by a sheath of caloric which was
attracted to the atoms but which repelled other caloric. To explain the diffusion
of gases, and what we now call his law of partial pressures, he had to assume
that gas atoms of different chemical species did not repel each other, and he was
led from this conclusion and from the differing solubilities of gases in water to
some rather inconclusive speculations on the sizes of atoms. From these physical
considerations came the notion that atoms had masses in fixed ratios that could be
determined, and so to the justification of this theory from the chemical principle of
constant combining proportions [26]. He and Davy both made passing mention in
their textbooks of the forces of attraction as the origin of cohesion, but their hearts
were not in this subject [27]. This attitude persisted for some years in textbooks of
chemistry. Thus in 1820 James Millar devoted a chapter of 15 pages (of his 466)
to the subject of ‘Affinity’, which comprised gravitation, adhesion, cohesion, the
formation of crystals, and chemical affinity, but this chapter had no discernible
influence on the descriptive material that followed [28]. As late as 1847 the young
Edward Frankland, in his first lectures at Queenwood College in Hampshire, opened
the course proper with ‘specific gravities’. He said something on cohesion and
repulsion in his 4th and 5th lectures, but his notes show that his understanding was
slight and the titles of the remaining lectures suggest that this was no more than
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a formal bow to Newtonian tradition, although more than most pupils would have
learnt of these subjects at the time [29].

In France J.B. Dumas set out his views in the Spring of 1836 in a course of lectures
he gave at the Collège de France [30]. He traces the descent of the idea of affinity
from the beginning of the 18th century, and then divides the attractive forces into
three classes, which may all be different or which may be only modifications of one
particular force. The first is the weakest; it is ‘the cohesion of the physicists’, it acts
between particles of the same kind and is capable of infinite replication – a crystal
can continue to grow indefinitely if there is an adequate source of material. The
second is ‘the force of dissolution’, which acts between similar bodies; it is stronger
than the first force but is limited in its extent – no more solid can be dissolved in a
saturated solution. The third is ‘affinity’, which is the strongest force; it leads to the
formation of chemical compounds, but it is the most discriminating in its action.
Gay-Lussac had a more committed approach in which he continued to seek physical,
and hence ‘attractive’ explanations of chemical phenomena. In a review of 1839 he
implicitly followed Dumas by giving a sympathetic but ultimately critical account
of the work of Geoffroy, Bergman and Berthollet [31]. He went on to discuss many
of the phenomena that were to become the bread-and-butter of physical chemistry at
the end of the century. Thus he noted that the elevation of the boiling point of water
on dissolving a salt in it is related to the lowering of the vapour pressure at a given
temperature, and that the vapour pressure of a solid at its melting point is equal to
that of the liquid then formed. He ascribed this fact to a difference in molecular
repulsions, since he believed that the attractive forces are clearly much stronger in
the solid. In an earlier paper he had shown that the solubility of a solid is often total
at its melting point; that is, there is complete miscibility of solute and solvent [32].

Thus the detachment of chemistry from physics was more marked in Britain
than in France where the Laplacian tradition lingered. An early and engaging in-
stance of this is Jane Marcet’s book of elementary instruction, Conversations on
chemistry [33]. She distinguishes between two quite different powers, the attraction
of cohesion which acts between particles of the same kind, and the attraction of
composition which leads to chemical reaction between particles of different kinds.
When a French translation of her book appeared in Geneva in 1809 (she and her
husband, a physician and chemist, were both of Swiss descent) it was reviewed
by Biot [34]. He chided her for holding the doctrine of elective affinities and for
ignoring Berthollet’s recent revisions, and he criticised her particularly for her
false distinction between the two kinds of attraction. He held then to the orthodox
Laplacian view that the forces were the same but were to be distinguished from
gravitation.

Chemists almost disappear from our story for much of the 19th century. They
felt that they had to defend the autonomy of their subject, and even when they
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believed in atoms they did not necessarily try to identify these with the particles
that some physicists believed in. This feeling was probably more widespread than is
apparent from published books and papers, but it can be found in print. It surfaced,
for example, in the critical attitude of chemists to the hypothesis of Avogadro and
of Ampère that equal numbers of molecules were to be found in equal volumes of
gases [35]. An interesting example is furnished by William Prout who, in 1834,
expressed some views on heat and light that were old-fashioned by the physical
opinions of the day, but then added in a footnote:

We are aware that this opinion is opposed to that of most mathematicians, who favour the
undulatory theory of light, and with good reason, so far as they have occasion to consider
it; but we are decidedly of the opinion that the chemical action of light can be explained
only on chemical principles, whatever these may be. Whether these chemical principles will
hereafter explain what is now so happily illustrated by undulae, time must determine. [36]

Such a view was not perverse – the chemical action of light was to be a problem
for the wave theory until the advent of quantum mechanics – but Prout’s con-
scious detachment of chemistry from physics explains why chemists had so little
to contribute to the subject of cohesion.

In 1860 the Karlsruhe Conference led, in principle, to the resolution of the long-
standing problems of the chemists over atomic weights and so over the atomic
constitution of the simpler gases and organic molecules. In practice it was an-
other decade before some chemists were convinced, but the Conference marked
the beginning of the appreciation of the power of Avogadro’s hypothesis. With this
resolution came the conviction, in the minds of most scientists, that the chemists’
molecules, N2, O2, CO2, etc., were also the molecules of the physicists’ kinetic
theory. Although chemistry still retained its own separateness, the time was not far
off when the new subject of physical chemistry would make the boundary between
physics and chemistry more one of academic administrative convenience than of
internal logic. The hesitant start of the reconciliation of chemistry and physics in the
1860s is reflected in the chemistry textbooks. Thus W.A. Miller of King’s College,
London, published a book with the title of Chemical physics, but even in the fourth
edition of 1867, the last before his death in 1870, there is little real chemical engage-
ment with physical principles [37]. He ignores thermodynamics and was probably
unaware of the initial attempts in the 1860s of the physicist Leopold Pfaundler and
others to interpret the rates of chemical reactions in terms of the collisions of rapidly
moving molecules [38]. A contrast is the evolution of Thomas Graham’s Elements
of chemistry [39]. The first 101 pages of Volume 1 of the second edition, published
in 1850, are on ‘Heat’, a subject then regarded as much the province of the chemist
as of the physicist. The treatment is still old-fashioned; the section on the nature
of heat being essentially unchanged from the first edition of 1842 [40]. There is no
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mention of Joule’s work, indeed there is a positive statement that liquids cannot be
heated by friction, and there is support for the Laplacian view of heat as the agent of
repulsion between the particles of matter [41]. By 1858, when the second volume
appeared, all is changed. In a ‘Supplement’ there is a clear account of the mechani-
cal theory of heat (but not of the second law) and of the kinetic theory of matter [41].
The treatment of this last subject derived directly from Krönig and from Clausius’s
great paper of 1857 (discussed below). This was probably the first exposition of
the theory in a textbook. Graham was assisted in this volume by Henry Watts, the
Editor of the Journal of the Chemical Society and a skilled translator from German.
It was probably he who was responsible for the inclusion of Clausius’s theory [42].
A contrasting pair of German textbooks appeared in 1869. That by Friedrich Mohr
has a long and promising title [43], but is quite out of date. The author contents
himself with bald statements that lead nowhere, such as “Capillarity is a form of co-
hesion. One can produce no motion by cohesion. Hardness and difficulty of melting
often go in parallel, but not always.” In the same year, and from the same publisher
(Vieweg), appeared what is probably the first German chemical text to include an
up-to-date account of thermodynamics and kinetic theory: Alexander Naumann’s
Grundriss der Thermochemie [44]. Like Graham (or Watts) he follows Clausius in
his discussion of molecular motions and interactions [45], and, later in the book,
distinguishes between atomic compounds (e.g. H2O) and molecular compounds
with either fixed ratios of components (e.g. BaCl2 · 2H2O) or variable ratios, as in
solutions (e.g. NaCl in H2O) [46]. His discussion of the heat changes in chemical
reactions includes what we should now describe as changes in potential energy in
the condensed phases but which he describes in terms of Clausius’s ‘disgregation’
(see below). Perhaps the last word on the detachment of chemistry from physics
should rest with Maxwell who attempted a classification of the physical sciences
in 1872 or 1873. He wrote:

I have not included Chemistry in my list because, though Physical Dynamical Science
is continually reclaiming large tracts of good ground from the one side of Chemistry,
Chemistry is extending with still greater rapidity on the other side, into regions where the
dynamics of the present day must put her hand upon her mouth. But Chemistry is a Physical
Science . . . . [47]

From this brief summary of some of the relevant background in physics and
chemistry let us now move to a more detailed account of the experimental work
on gases and liquids that is related to cohesion, and to the theoretical deductions
that flowed from it. It was work on the bulk properties that proved to be the most
productive. Capillary studies, which had played so important a role up to the time
of Laplace, were now less important, at least until the 1860s. A mathematically
more rigorous version of Laplace’s theory by Gauss in 1830 was little more than a
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tidying-up operation in which he proved, rather than assumed, that a given pair of
liquid and solid has a fixed angle of contact at a fixed temperature [48]. It was his
first excursion into physics and may have arisen from his work three years earlier on
the mathematics of curved surfaces. He distinguished clearly between cohesive and
gravitational forces, noting that the relevant integrals diverged for an inverse-square
law, but he retained, nevertheless, the notion that the cohesive forces were propor-
tional to the product of the masses of the interacting particles. This was little ad-
vance on what had already been done. Solids, as we have seen, became a detached
branch of science that had little contact with the study of gases and liquids.

Boyle’s law states that the pressure of a gas is inversely proportional to its volume
at a fixed temperature; it had been known since the 17th century. At the end of
the 18th and early in the 19th, Charles, Gay-Lussac and Dalton showed that the
pressure, p, at a fixed volume, V, is a linear function of the temperature as measured,
say, on the scale of a mercury thermometer [49]. An extrapolation of that linear
relation placed the zero of pressure at about −270 ◦C. The two laws, Boyle’s and
Charles’s, could be combined into a single equation that described what came to
be called the perfect or ideal gas law [49];

pV = cT, (4.1)

where T is a temperature measured on a scale whose zero is at about −270 ◦C, and
c is a constant that is proportional to the amount of gas. Avogadro’s hypothesis im-
plies that this constant is proportional to the number of molecules in the sample of
gas. This equation, to which the common simple gases nitrogen, oxygen and hydro-
gen conform closely at temperatures near ambient and pressures near atmospheric,
was the guiding principle of early workers on the kinetic theory of gases. (Herapath
thought, however, that the temperature was a measure of the scalar momentum
of the particles, not of their energy, and so wrote (T ∗)2 in place of T, where T ∗ is
the ‘true’ temperature.)

For many years it had been known that the perfect-gas law was not exact; pressures
could be a little higher or a little lower than that calculated from this equation. If
the molecules had a non-zero size then the effective volume in which each moves
is less than the observed volume of the gas, and so the pressure is higher than the
ideal pressure, if the kinetic theory be correct. This deduction was made first by
Daniel Bernoulli and was repeated in Herapath’s work. He was delighted when
he found [50] that experiments by Victor Regnault on hydrogen confirmed his
prediction. Hydrogen was, according to Regnault, “un fluide élastique plus que
parfait” [51]. Other gases, for example, carbon dioxide and steam, had pressures
that fell below that calculated from the perfect-gas equation. The implication that
this deficit is evidence for (Laplacian?) attraction between the molecules was drawn
by Herapath who ascribes the reduction of pressure to an incipient condensation or
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clustering of the molecules [52]. Nothing quantitative could at that time be deduced
from this inference, in the absence of a kinetic theory of interacting molecules.

The French state had provided funds from the 1820s onwards for the experimental
study of gases, particularly steam, at high pressures. Dulong and Arago carried out
the early work but from the 1840s it became the life work of Victor Regnault. The
results in his first full monograph of 1847 [51] were accepted as the authoritative
work in the field. They proved difficult to interpret, or even to fit to empirical
equations. Regnault tried to do this and it was one of the last tasks that, in 1853,
Avogadro set himself [53]; neither had any real success.

A gas that conforms to Boyle’s and Charles’s law has an energy, U, that is
independent of volume at a fixed temperature. In modern notation,

(∂U/∂V )T = −p + T (∂p/∂T )V = T 2(∂/∂T )V (p/T ), (4.2)

and from eqn 4.1 the ratio p/T is c/V . This result is one of classical thermody-
namics, that is, it is not dependent on any molecular hypothesis except that which
may, according to taste, be used as a theoretical basis of the empirical eqn 4.1. Joule
observed, in 1845, that there was no change of temperature on a free expansion of
air at 22 atm pressure into an evacuated and thermally-insulated vessel; that is, he
found that δT/(V2 − V1) = 0, where V1 and V2 are the initial and final volumes [54].
If the system is thermally insulated and if the gas does no work then, by what came
to be called the first law of thermodynamics, the expansion is one at constant energy.
Joule’s result may therefore be expressed, after using eqn 4.2,(
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)
U
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)
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(
∂p

∂T

)
V

]
≈ 0, (4.3)

where CV is the heat capacity of the gas at constant volume. This demonstration
that the energy was indeed independent of the volume was, therefore, one of the
foundations of the first law. It was realised that the energy, U , is a state function,
that is, it depends only on the present volume and temperature of a fluid, and not
on its past history or how it came to be in its present state. For a perfect gas, the
energy depends on the temperature alone.

A more sophisticated series of experiments was carried out by Joule between
1852 and 1853, with the theoretical guidance of William Thomson who had come
to accept by 1851 that it was the energy that was conserved in physical changes
and not the heat [55]. Joule and Thomson expanded the gas in a continuous flow
down a well-insulated pipe in which there was a constriction in the form of a porous
plug of cotton wool or, on one occasion, of Joule’s silk handkerchief. The pressure
falls from p1 to p2 on passing the obstruction and Joule observed that there is
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generally a small fall of temperature of the gas, that is, δT/(p1 − p2) < 0. The
fall was negligible with hydrogen, observable with air, and substantial with carbon
dioxide; it decreased with increase of initial temperature. This expansion is not
one of constant energy because of the work expended in passing the gas through
the obstruction. It modern terms it is an expansion at constant enthalpy, where the
enthalpy, H , is defined as U + pV [55]. We have, therefore,(
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where Cp is the heat capacity at constant pressure. This key equation, the basis for
modern discussion of the ‘Joule–Thomson effect’, appears only in the Appendix to
the fourth and final paper that they published in the Philosophical Transactions.
The discussion in the earlier papers, while essentially sound, is less clear owing to
the primitive state of development of thermodynamics in the 1850s. For a perfect
gas it follows that the differential coefficient (∂T/∂p)H is zero, as in the parallel
case of (∂T/∂V )U of eqn 4.3. Hence Joule’s observation of cooling, like the deficit
of pressure from that required by Boyle’s law, is evidence for the existence of
attractive forces between the particles. The 1850s were, however, not the time to
draw this conclusion. Joule and Thomson were more concerned to use their re-
sults to validate the laws of thermodynamics and to establish the absolute scale
of temperature. Maxwell, a close friend of Thomson, took little notice of their
results, describing the change as “a slight cooling effect” [56]. Clausius ignored
the effect, although he introduced in 1862 the concept of ‘disgregation’ to describe
the thermal effects of changing the separation, or more generally, the arrange-
ments of the particles of a fluid. This term has vanished from modern thermody-
namics; it became redundant once the concept of entropy was accepted [57]. In
modern terms it is the configurational part of the entropy, as was first shown by
Boltzmann [58].

It might be asked why it was that, in 1845, Joule found no change of temperature
in a free expansion, which measures (∂T/∂V )U , but, nine years later, found a
cooling in a flowing expansion, which measures (∂T/∂p)H . In a real or imperfect
gas the first coefficient is zero in the limit of zero pressure, while the second tends
to a non-zero limit. This is, however, not the root of the difference, for the two
coefficients (∂T/∂p)U and (∂T/∂p)H are of similar size. If we add an empirical
correction term, B(T ), to the equation of state of a perfect gas we can write (with
the modern choice of R for the gas constant)

pV = RT (1 + B(T )/V ). (4.5)
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In the limit of zero pressure we find that

(∂T/∂p)U = (T/CV )[T (dB/dT )],

(∂T/∂p)H = (T/Cp)[T (dB/dT ) − B]. (4.6)

In general both expressions are non-zero and of similar size. Rankine had proposed
an equation of the form of eqn 4.5 in a letter to Thomson of 9 May 1854, with
B(T ) having the particular form −α/T [59]. The reason that Joule did not detect
a non-zero value of (∂T/∂p)U in 1845 was that the thermal capacity of his iron
gas-vessels was too large. He himself pointed this out later [60], and it was perhaps
a fortunate circumstance that he detected no change of temperature at the time, for
such a change would have made more difficult the establishment of the laws of
thermodynamics!

Joule and Thomson found in 1862 that for air and carbon dioxide the cooling
effect, (∂T/∂p)H , was proportional to the inverse square of the absolute tempera-
ture. They were therefore able to integrate eqn 4.4 to obtain an equation of state of
the form [61]

pV = RT − αp/T 2, (4.7)

where R is the constant of integration and α is a measure of the strength of the
cooling. At low pressures this equation has the same form as eqn 4.5 with B(T ) =
− α/T 2. This is similar to the form proposed by Rankine eight years earlier, but with
a stronger dependence on temperature. Previously [60] they had found results that
were equivalent to the more complicated form B(T ) =α −β/T + γ /T 2, which is
closer to our current ideas on the form of this function, for, as we shall see, the
coefficient B(T ), now called the second virial coefficient, is an important measure
of the form and strength of the intermolecular forces and one that was to play an
important role in the 20th century.

The study of liquids made less progress than that of gases in the first half of the
19th century since there was no simple limiting law comparable with the perfect-
gas law and no simple theory comparable with the struggling kinetic theory of
gases. The basic facts were known; liquids have a fixed vapour pressure at a given
temperature which is independent of the fraction of the (pure) liquid that is in the
vapour state; this vapour pressure rises rapidly with temperature and the density of
the liquid falls but more slowly; and the change from liquid to saturated vapour is
accompanied by a large intake of heat – ‘the latent heat of evaporation’. Solids are
more dense than the liquids formed on melting, and this melting is accompanied by
the absorption of a smaller latent heat. The exceptional behaviour of ice and water
between 0 and 4 ◦C was well known but no explanation of this behaviour was agreed;
it was generally ignored, although John Tyndall made a tentative suggestion that
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the energy absorbed between 0 and 4 ◦C went to increasing the speed of rotation of
the water molecules [62]. It was known that the ‘heavier’ vapours such as chlorine,
hydrogen sulfide, carbon dioxide and sulfur dioxide could be liquefied by cooling,
or compression, or both, and it was freely conjectured that the so-called permanent
gases, nitrogen, oxygen and hydrogen, might be liquefied if their temperature could
be sufficiently lowered.

Faraday was one of the first to study systematically the liquefaction of gases.
After his first experiments in 1823 [63] he became aware of the sporadic efforts
of his predecessors and published a short summary of them the next year [64].
He returned to the subject in 1844 and then wrote a long paper [65] in which he
reported the condensation of a wide range of gases by a combination of pressures
up to about 100 atm and temperatures down to that of a pumped bath of ether and
carbon dioxide. He estimated the temperature of this to be about −166 to −173 ◦F, or
−110 to −113 ◦C, or 160 to 163 K on the later thermodynamic or ‘absolute’ scale.
He failed to liquefy nitrogen, oxygen, and hydrogen, noting presciently that they
could probably be liquefied only at lower temperatures, and that increasing the
pressure would not suffice. He obtained his solid carbon dioxide from supplies of
220 cu.in. (3.6 litres) of liquid made for him by Robert Addams [66]. The solid
had first been prepared in bulk by Thilorier [67] who had realised the usefulness
of a mixture of solid carbon dioxide and ether as a refrigerant. Addams improved
Thilorier’s apparatus.

When a liquid is heated in contact with its saturated vapour it is observed that the
pressure rises rapidly, the density of the vapour rises equally rapidly, and the density
of the liquid falls more slowly. It is natural to wonder what would happen if the
heating were continued. The first answer was provided by Cagniard de la Tour who,
in the 1820s, heated ether, alcohol and water in separate sealed glass tubes [68]. He
found that a point was reached when the liquid, after a considerable expansion, was
apparently converted into vapour. He was also the first to notice what we now call
‘critical opalescence’, for when his tubes were cooled from the highest temperatures
liquid was suddenly formed again in “un nuage très épais”. His estimate of this point
of apparent vapourisation of ether, a pressure of 37–38 atm and a temperature of
150 ◦R = 188 ◦C, is close to what we now call the critical point of ether, 36.1 atm
and 194 ◦C. Faraday, in his 1845 paper [65], wrote, “I am inclined to think that at
about 90 ◦ Cagniard de la Tour’s state comes on with carbonic acid”. This estimate,
32.2 ◦C, is also close to the modern result of 31.04 ◦C.

Herschel [69] argued on general grounds that Cagniard de la Tour’s work was
evidence for the lack of a sharp distinction between the three states of matter:

Indeed, there can be little doubt that the solid, liquid, and aëriform states of bodies are
merely stages in a progress of gradual transition from one extreme to the other; and that,
however strongly marked the distinctions between them may appear, they will ultimately
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turn out to be separated by no sudden or violent line of demarcation, but shade into each
other by insensible gradations. The late experiments of Baron Cagnard de la Tour may be
regarded as a first step towards a full demonstration of this (199.).

The reference to § 199 of his book is to

. . . that general law which seems to pervade all nature – the law, as it is termed, of continuity,
and which is expressed in the well known sentence ‘Natura non agit per saltum’.

In November 1844 Faraday wrote to William Whewell at Cambridge [70] asking
him to suggest a better name for the ‘Cagniard de la Tour state’. His description of
it is more accurate than anything that has gone before:

. . . the difference between it [the liquid] & the vapour becomes less & less & there is a point
of temperature & pressure at which the liquid ether & the vapourous ether are identical in
all their properties. . . . but how am I to name this point at which the fluid & its vapour
become one according to a law of continuity? [71]

Whewell replied:

Would it do to call them [the fluids] vaporiscent, and this point, the point of vapor-
iscence[?] . . . Or if you wish rather to say that the liquid state is destroyed, you might
say that the fluid is disliquified. [71]

Faraday was not satisfied with these suggestions:

. . . for at that point the liquid is vapour & the vapour liquid, so that I am afraid to say the
liquid vaporisces or that the fluid is disliquefied. [71]

In 1861 Mendeleev [72] introduced another name when he wrote:

We must consider that point to be the absolute boiling temperature at which (1) the cohesion
of the liquid becomes zero, and a2 = 0, at which (2) the latent heat of evaporation is also
zero, and at which (3) the liquid is transformed into vapour, independently of pressure and
volume.†

His choice of words shows that Mendeleev had an unsymmetrical view of the
phenomenon; liquid was changed into vapour.

These confusions were resolved in the 1860s by Thomas Andrews, the first
Professor of Chemistry at Queen’s College, Belfast [73]. His first results, on carbon
dioxide and nitrous oxide, were sent informally to W.A. Miller for inclusion in
the third edition of his textbook [74]. By then Andrews had found that the liquid
meniscus lost its curvature as the temperature approached that at which the liquid
disappeared, 88 ◦F = 31.1 ◦C for carbon dioxide. He did not then draw the conclu-
sion that the surface tension vanishes at this point. The flattening of the meniscus

† The length a is called the ‘capillary constant’. The ratio a2/r is the height to which a fully-wetting liquid rises
in a narrow capillary tube of radius r . The capillary constant of water is 3.9 mm at its freezing point.
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had been observed previously by Wolf and by Waterston, who attributed it to a fail-
ure of the liquid to wet the glass, and not to a vanishing of the surface tension [75].
Andrews saw also the opalescence of the fluid which he described as “moving or
flickering striae throughout its entire mass”. By 1869 he had mapped out in de-
tail the relations between volume, temperature and pressure, and the boundaries
in V,T,p-space of the liquid and gaseous phases of carbon dioxide. He arrived at
the important conclusion that it was not the case that liquid was transformed into
vapour but, as Faraday had surmised, that both approached a common fluid state
at what he christened ‘the critical point’. He published this work in his Bakerian
Lecture to the Royal Society of June 1869 , ‘On the continuity of the gaseous and
liquid states of matter’ [76]. In the text he demonstrates this continuity by means
of a passage in V,T,p-space that passes from a typical liquid state around the crit-
ical point to a typical gas state without there ever being a dividing meniscus. He
wrote:

The ordinary gaseous and ordinary liquid states are, in short, only widely separated forms
of the same condition of matter, and may be made to pass into one another by a series of
gradations so gentle that the passage shall nowhere present any interruption or breach of
continuity.

And for a fluid above its critical temperature, he added:

. . . but if any one ask whether it is now in a gaseous or liquid state, the question does not,
I believe, admit of a positive reply.

He “avoided all reference to the molecular forces brought into play in these
experiments”, but said enough to show that he thought that there was “an internal
force of an expansive or resisting character” and also “a molecular force of great
attractive power”. He thought that these were “modified” in the passage from gas
to liquid.

Others were not so reticent as Andrews and in the years up to 1870 some frag-
mentary views were expressed on molecular forces and on the cohesion of fluids.
These did not form a coherent doctrine and, as with the development of kinetic
theory, the first moves came from those outside the main stream.

The increasing interest in electricity led some neo-Laplacians and others to try to
interpret cohesion in terms of electrostatic or magnetic forces, rather the gravita-
tional force or a modification of it. These attempts seem to be quite uninfluenced by
the earlier electrochemical ideas of Davy and Berzelius. O.F. Mossotti, a professor
first in Buenos Aires and then on Corfu, made such an attempt in a pamphlet pub-
lished in Turin in 1836 [77]. This aroused Faraday’s interest, since any attempt to
unify electrical and gravitational forces was a theme close to his heart in the 1830s
and 1840s. He therefore arranged for an English translation in a new journal to be de-
voted to foreign memoirs. Mossotti maintained that forces should act only between
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independent pairs of particles (‘two-body forces’, in modern jargon), and believed
that they changed with temperature. His paper contains an interparticle potential
(he does not use that name) that is formed by damping a (1/r ) term with an expo-
nential of the form exp(−αr ), where r is the separation of the particles. This form of
potential has a long history; it is now called the Yukawa potential, and Mossotti’s
use of it may be the earliest instance, although Laplace had previously used an
exponentially-damped force [78]. It was the Laplace–Poisson equation of electro-
statics that led Mossotti to this form of potential. He believed also that in a dense sys-
tem the attractive forces should lead to a contribution to the pressure proportional to
the square of the density. This supposition had also been made previously by Laplace
in 1823 [79]; it is one that several simple lines of approximation lead to, and was to
recur later in the century. Mossotti’s main thesis – an attempt to explain the struc-
ture and stability of a dense electrically-neutral system under Coulombic forces –
led to a controversy in which he was supported by Philip Kelland, the Professor of
Mathematics at Edinburgh (of whose work the young William Thomson had a poor
opinion) and in which he was criticised by Samuel Earnshaw and Robert Ellis [80].
The most positive outcome of these exchanges was ‘Earnshaw’s theorem’ that no
static system of inverse-square power forces can be at equilibrium.

Waterston later claimed to follow Mossotti in some of his early ideas on
‘molecularity’, developed before he had fully articulated his kinetic theory. In a
book with the unpromising title of Thoughts on the mental functions he drew an
intermolecular force curve of the kind that we now use regularly (Fig. 4.1), with a
positive repulsive branch and a negative attractive branch, the sum of the two lead-
ing to a minimum (i.e. greatest energy of attraction) at some particular separation.
He believed then that the relative position of the two branches changed with the
state of matter, so that the positive or repulsive branch moved to larger separations
in the gas, thus making the minimum disappear [81].

Élie Ritter [82] taught mathematics at a school, the Institut Topffer in Geneva. His
interests were mainly astronomical but in 1845 he read a paper to the local Physical
and Natural History Society, of which he was the Secretary, on ‘elastic fluids’
[83]. This is entirely in the Laplacian tradition. His particles are static with a mean
separation ε and, following explicitly the lead of Laplace [79] and of Poisson [84],
he arrives, like Mossotti, at an ‘attractive’ contribution to the pressure that varies as
ε−6, or as the square of the density. His replacement of sums by integrals leads also
to minor terms that vary as ε2n where n= 1, 0,−1,−2, etc., but he argues these
away as unimportant [85]. It is easy to believe that he knew the result he wanted and
was not going to be distracted by minor terms even if they seemed to be divergent.
For gases at moderate pressures, we have seen that Rankine, Thomson and Joule
soon arrived empirically at an equation of state that carries the same implication of
an energy that varies as the square of the density. At the end of the century, when
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Fig. 4.1 Waterston’s view of intermolecular forces, illustrated here by a modern intermolec-
ular potential. The full line shows the potential in the liquid state with an attractive ‘bowl’ of
depth, ε. The force is zero when the two particles are at the separation of the minimum, it is
repulsive to the left of it and attractive to the right. In the gas he supposed that the repulsive
part of the force or the potential is moved to larger distances. Here this is illustrated by
moving the repulsive branch of the potential to the right by half of the original diameter, d.
This move eliminates most of the attractive bowl, leaving the force almost wholly repulsive.

van der Waals had established this result as the norm, Émile Sarrau cited the French
physicists Poisson and Cauchy as early proponents [86].

By 1860 belief in the reality of atoms and of the physicists’ molecules was
becoming sufficiently strong for new attempts to be made to estimate the sizes and
energies of these particles. The few previous attempts had borne little fruit. Edmond
Halley had estimated a maximum size for the atoms of gold from the minimum
thickness to which sheets of gold could be hammered out; more could have been
made of Franklin’s experiments of spreading oil on water; and Young’s ingenious
estimate of the range of the interparticle forces from the ratio of the surface tension
to the cohesive energy was apparently unknown to or ignored by all. None of this
work influenced the attempts that grew from the kinetic theory of gases from the
middle of the 19th century.

The first ‘microscopic’ result that was derived from the new kinetic theories
was the speed of the molecules in a gas. Herapath showed to his own, and indeed
perhaps also to our surprise, that one can get this speed without any ‘microscopic’
knowledge. The equation that he should have obtained is

pV = Mc2/3, (4.8)
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where p is the pressure of a mass M of gas in a volume V, and c is the molecular
speed. This equation is correct if we interpret c2 as the mean of the square of the
speeds. He obtained something similar first in 1836 [87] but it apparently only
became generally known when he included it in his book Mathematical physics in
1847, when he wrote:

At first sight one would imagine that the conditions given are insufficient for the solution
of this problem. The size of the particles, the direction of their motions, or something of
the kind, seems at an off-handed view to be indispensable; such at first I considered to be
necessary. However, it happens from the concurrence of circumstances that nothing of the
sort is wanting. [88]

He was, in fact, trying to calculate the speed of sound but since he assumed that
sound is transmitted through a gas by molecular motion he expected the value of c to
be that of the speed of sound in air; he would, however, have found it to be somewhat
larger. His attempt to correct his result by introducing a factor of (1/

√
2), the cosine

of 45◦, the average angle of collision of a molecule with the wall of the vessel, is
quite wrong and was unlikely to have seemed convincing to his contemporaries,
but he deserves the credit for the first calculation of what we now call the root-
mean-square speed of molecules. He went further and pointed out, not for the first
time, that there was a natural zero of temperature at which all motion ceases.

Joule’s first thoughts on this subject were not as clear as those of Herapath, since
he, like Davy before him, thought at first that the ‘heat’ in a gas was accounted for
by the rotatory motions of the molecules. In a lecture on 28 April 1847, just before
the publication of Herapath’s book, he made, however, the unsupported statement
that the “velocity of the atoms of water, for instance, is at least equal to a mile
per second of time.” [89] This guess is too high by a factor of three. He returned
to the subject after reading Herapath’s book, admitted that the attribution of heat
to translational molecular motion was a simpler hypothesis than his own, and so
arrived at a speed of hydrogen ‘atoms’ of 1906 m s−1 at 15.6 ◦C (in modern units),
a figure close to the now-accepted root-mean-square speed of hydrogen molecules
of 1891 m s−1 [90]. Waterston had also obtained a correct figure for what he more
precisely defined as the ‘mean square velocity’ in his great manuscript of 1845,
but this languished in the stack of rejected papers at the Royal Society until Lord
Rayleigh rescued it and published it in 1893 [91].

To go more deeply into the problem and obtain estimates of molecular sizes and
energies is more difficult. The first of the new attempts were along lines similar to
that followed by Young, although clearly in ignorance of his result [92]. Waterston
followed his earlier ‘thoughts on molecularity’ and his unpublished paper on kinetic
theory with some experiments on capillarity. These were carried out in India, where
he was teaching naval cadets, but were published only after his return to Scotland in



4.1 1820–1870 159

1857 [75]. His interpretation of the cause of capillary rise is muddled and naive; it
resembles most closely the ideas of Jurin and he seems to have had little knowledge
of what Young and Laplace had achieved. Nevertheless he stumbles through an
argument that parallels that of Young in 1816, using surface tension and latent
heat of evaporation for, in effect, Laplace’s H and K , to arrive at a figure of
214 778500 layers of water molecules in a cubic inch of water; that is, a thickness
of each layer of 1.2 Å, which therefore becomes his estimate of the diameter of a
molecule. Twenty years later N.D.C. Hodges of Harvard followed a similar line of
reasoning to arrive again at a diameter of 1.0 Å [93]. Twenty years later again the
young Einstein’s [94] first paper included another variant of this approach [95]. He
then believed that the intermolecular potential function was a universal function of
separation, but later retracted this opinion [96]. Meanwhile, as we shall see below,
van der Waals had, in 1873, given a more ‘modern’ and more satisfactory version
of Young’s argument.

Waterston did not distinguish, as Young and Laplace had been careful to do,
between the size of the molecule and the range of the intermolecular force. We now
know that the two are of similar magnitude but this was not the view at the beginning
of the 19th century and no more evidence had come forward by the middle of the
century. The belief that the range of the force greatly exceeded the size was used
by the Laplace school as a justification for their ‘mean-field’ approximation, but
there is no evidence that Waterston appreciated this point.

Herapath and Waterston were, perhaps, the last who contributed to the problem of
molecules and their interaction without an appreciation of the power and constraints
of the new field of thermodynamics. G.-A. Hirn [97] was an engineer from Alsace
who, from his early work on steam engines, was one of those who arrived at a value
for the mechanical equivalent of heat, and so was led to thermodynamics. In the first
edition of his book on heat in 1862 he rejects the new kinetic theory, admitting only
that the forces between molecules would cause them to move; he did not clearly
say how [98]. This is, of course, very different from the free thermal movement
of the kineticists which is independent of the intermolecular forces. In a second
edition, three years later, he deals more fully with the intermolecular forces [99].
In Laplacian style, he says that the pressure of a gas is composed of two terms, a
‘répulsion calorifique’ and an ‘ensemble d’actions internes’ that he denotes by R.
He corrects the volume of a gas by subtraction of Ψ, ‘la somme des volumes des
atomes d’un corps’, and so arrives at an equation of the form,

(p + R) (V − Ψ) = constant · T . (4.9)

He speculates on the form of R, saying that it is likely to vary inversely with volume,
and that he accepts “as a first approximation that R constitutes a homogeneous sum
exclusively a function of V ”, but then Poisson-like doubts creep in and he covers
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himself by saying that “In reality, and rigorously speaking, R is almost always
heterogeneous and therefore no longer a function only of V ”.

Those who wrote before van der Waals lacked the insight or courage or, perhaps,
the encouragement provided by Andrews’s work on the continuity of the states,
to apply a common theory to gases and liquids. Hirn was no exception. He had
a chapter entitled ‘Theory of liquids and solids’ [100] but it is a translation of an
excerpt from a book by G.A. Zeuner [101] whose approach is entirely macroscopic.
Zeuner opens by contrasting what he calls the system of Redtenbacher [102] with
that of Clausius, that is, in essence, of the Laplacian versus the kinetic interpretation
of the properties of gases. But he does not follow this up; the nearest he comes to a
molecular comment is his assertion that the heat of fusion of a solid represents the
work done in overcoming cohesion [103]. In a third edition, Hirn notices Andrews’s
work but draws no inference from it. He now uses Regnault’s results to estimate Ψ,
the volume of the molecules, and R, which he now calls “la pression interne”. He
finds this to vary with volume roughly as V−1.3 [104].

A route similar to Waterston’s was followed by Athanase Dupré, the Professor
of Physics at Rennes [105]. In a series of papers in the Annales de Chimie et de
Physique and in the Comptes Rendus of the Academy (of which he was never a
member) he explored a number of related problems on the physics of gases and
liquids. He received help from his younger colleague, the engineer F.J.D. Massieu
[106] who was skilled in thermodynamics. Dupré summarised his work in his
book Théorie mécanique de la chaleur of 1869 [107]. His work is an advance on
Waterston’s in that, either because of his wider reading, his innate skill, Massieu’s
advice, or the mere lapse of time, he was more careful in his handling of thermody-
namic functions. He was, however, far from careful in his arithmetic. He discusses
gases in the Laplacian manner, that is in terms of forces between static particles, and
introduces what we should now call the configurational part of the energy or that
part that arises from the intermolecular forces. This he calls ϕ, “le travail interne”,
and he shows by a thermodynamic argument that [108]

(∂ϕ/∂V )T = T (∂p/∂T )V − p, (4.10)

although, as was then customary, he writes the equation with ordinary derivatives
not partial ones and does not show the variables to be held constant in the two
differentations. He notes that if ϕ is a function of volume only then (∂2 p/∂T 2)V is
zero, and that (∂p/∂T )V is also a function of volume only. This leads him, by an
argument that is far from rigorous, to what he calls his ‘law of co-volumes’ [109],

p = αT/(V + c), (4.11)

where α and c are constants; the latter being what he calls the co-volume. This name
has passed into common usage with the understanding that the constant represents
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the correction of V to allow for the effect of molecular size, a usage that requires c
to be negative in the equation as Dupré wrote it. For him it was merely a measure
of the departure of a real gas from the perfect-gas law. He does not claim that it
is an exact measure for he writes: “In what follows we shall use Mariotte’s law
as the law of first approximation, and that of co-volumes as the law of second
approximation.” [110]

It is significant that he regards his laws as equally applicable to liquids and gases,
insisting that he differs from Hirn on this point. When he turns to liquids, however,
he uses different methods, and his conviction that both states can be handled by the
same law is not followed into practice [111]. He considers first the “attraction au
contact”, that is the force holding two portions of liquid together, per unit area of
their plane surface of contact. To this he gives the symbol A, but it is clearly the
same as Laplace’s K . He shows that this attraction is proportional to the square of
the density – as indeed follows from Laplace’s derivation if this is done carefully
(see Section 3.2). From the attraction at contact he proceeds to a calculation of the
work needed to break up a portion of matter into its separate molecules, ‘le travail
de désagregation totale’, which he shows is the product AV , that is, an energy. The
more transparent of the two justifications that he gives for this result is that pro-
vided by Massieu, who is responsible also for a derivation of what are, in essence,
Laplace’s equations of capillarity [112]. Dupré is now in a position to repeat Young’s
calculation of the range of the intermolecular forces although, since he regards this
range and the separation of the molecules as essentially the same, he arrives instead
at a minimum value for the number of molecules per unit volume. He quotes numer-
ical values of F , the surface tension of water, as 7.5, and of A of 2.266 × 107 [113].
He gives no units but his usual unit of length is the millimetre and the numbers
quoted correspond to modern values of the surface tension and latent heat of 7.35 dyn
mm−1 and 2.465 × 107 erg mm−3 at 15 ◦C. He takes the latent heat to be the ‘work of
total disaggregation’ but he (or, rather, Massieu) notices correctly that a work term,
equal to pV of the gas, should be subtracted from the latent heat, but it is small and
he ignores it. He finds that he is led to unacceptable conclusions if he assumes an
attractive force proportional to the inverse cube of the molecular separation [113]
and turns instead to what is, in effect, Young’s method. He shows that the work
needed to peel off a layer of liquid one molecule thick leads to a value of N , the
number of molecules per unit volume that must exceed (A/2F)3. His figures should
therefore give N a minimum value of 3.45 × 1021 molecules per cubic millimetre
or, in a more conventional form, 6.21 × 1025 molecules in 18 cm3 or 1 mole of water.
The figure is too large by a factor of 100, and corresponds therefore to an under-
estimate of the linear separation of the water molecules by a factor of about 5.
Unfortunately this is not the result obtained by Dupré. In his paper in Comptes
Rendus [114] he has 0.125 × 1021 molecules per cubic millimetre, and in his book
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what seems to be the same calculation leads to 0.225 × 1021. These are not mis-
prints for each figure is repeated in words, but neither seems to follow from the
values of F and A.

It is interesting to compare this result with Young’s, which was of course not
known to Dupré. Young’s ‘force at contact’ was a pressure of 23 kbar, which is
equivalent to a ‘work of total disaggregation’ of 2.3 × 107 erg mm−3, the same as
Dupré’s figure, but their arguments are different. Young does not use the energy
of the liquid but, insofar as his argument is explicit, relies on his understanding of
stress. His figure for the range of the intermolecular force, about 1 Å, is therefore,
as should Dupré’s have been, too low by a factor of about 5.

Thus Young, Waterston and Dupré followed the same broad route, each using
similar figures for water, and each arriving at a distance that we can now see is
of the right order of magnitude, although in each case too small. Their arguments
are physically sound for rough order-of-magnitude calculations, and are flattered
by the taking of the cube root in going from the actual subject of the calculation,
a volume, to a length of separation. We now know that a static picture of a liquid
is adequate for such rough calculations and so Young and Dupré were not misled
by their lack of a kinetic picture of matter. Young took his figure to be the range of
the forces, Dupré took it to be the mean separation of the molecules. Both thought
that the actual ‘size’ of the molecules was smaller and could justify the use of a
mean-field approximation. Waterston’s diagram of the change of intermolecular
force with separation shows that he believed that the ‘range’ and the ‘size’ differed
by only a factor of about two, so his picture would not justify the use of such an
approximation, but then neither did he appreciate the need for it.

4.2 Clausius and Maxwell

The return of ‘molecular science’ to the forefront of physical research was brought
about by Clausius and Maxwell. The lines of descent of the kinetic theory of gases
are now clear; Herapath influenced Joule, Waterston almost certainly influenced
Krönig, Clausius made his own approach to the subject but published nothing until
prompted by the appearance of Krönig’s paper, while Maxwell knew of Herapath’s
and Joule’s work but did not seriously interest himself in the field until he read
Clausius’s first two papers. The subject then grew to become, within a few years,
an active branch of physics in its own right and one which was to throw much light
on molecules and their interactions.

The contributions of Clausius and Maxwell were pivotal not only because they
established the kinetic theory of gases on a sound basis and drew quantitative con-
clusions from it, but also because their wider vision led them to put forward, if only
in words, the implications of the molecular–kinetic view of matter for liquids and
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solids. Here Clausius was the more convinced advocate. Maxwell was always more
hesitant and, as we shall see repeatedly, the more conscious of the difficulties and
the unresolved problems. Gibbs summarised their styles by saying that Clausius’s
work was in mechanics and Maxwell’s in the theory of probability [57]. Theirs
was a synthesis in which, for the first time, we can recognize a description of the
microscopic structure of the three phases of matter with which we are wholly com-
fortable [115]. In this respect it forms a notable contrast with that in the reviews
of Joule and Helmholtz of twenty years earlier, written before the development of
thermodynamics and kinetic theory [116]. It was a view that was not without its
critics, at least until the early years of the 20th century, but it was the dominant
view that drove a progressive research programme that has been maintained to this
day [117]. Clausius and Maxwell never seriously tackled liquids, however, which
remained in the neo-Laplacian limbo of Ritter, Hirn and Dupré until they were
rescued by a hitherto unknown Dutch schoolmaster.

Clausius tells that he had been thinking of the relation of heat to molecular
motion since the time of his first paper in 1850 on what came to be called
thermodynamics [118]. He properly did not wish to compromise his development
of thermodynamics, an essentially macroscopic subject, with speculations on its
possible molecular foundations. This was a trap that Rankine fell into when he made
his thermodynamics depend on a prior assumption of a particular view of matter
as molecular vortices; an error of judgement that made his influence on the subject
less than it might have been, then and since [119]. Clausius himself criticised
Helmholtz’s pamphlet of 1847 on the grounds that he had made his conclusions
depend on an assumption of a central force acting between the particles of matter
[120]. It was only after Clausius had seen Krönig’s paper of 1856 [11] that he put
forward his own views in the Annalen der Physik [115]; he had by then moved to
Zürich [121].

His paper falls into into two parts; in the first he explains his ideas on molecular
motion, rotation and vibration, and how these movements lead to the existence of
matter in gaseous and condensed phases. If the molecules are of minute size and
moving rapidly then the pressure caused by their impacts on the walls lead to a
gas obeying what we call Boyle’s, Charles’s and Avogadro’s laws. The last law
leads him to propose that the common elementary gases have diatomic molecules,
a conclusion then novel among the physicists and one that had been discussed,
but not always accepted, by the chemists. The known heat capacities of these
gases could not be reconciled with the assumption that all their energy of motion
was translatory (the vis viva); rotation and vibration must also be involved. In
solids the molecules continue to move but only about fixed sites. In liquids the
motion is similar in the short term to that in solids but the sites about which they
move are continually being exchanged so that, although always hemmed in by close
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neighbours, the neighbours themselves change and the molecules slowly diffuse.
This description is followed by a detailed ‘kinetic’ picture of the evaporation and
condensation of a liquid in apparently static equilibrium with its vapour, and of the
phenomenon of latent heat.

The second part of his paper puts the kinetic hypothesis into quantitative form
for an ideal gas, leading again to the basic equation 4.8. He ends with a calculation
of the proportion of molecular energy that is accounted for by the translational
motion; it is, in modern notation, 3(Cp − CV )/2CV = 3R/2CV , where Cp and CV

are the two heat capacities per mole, or “per unit volume”, as Clausius puts it. For
simple gases such as nitrogen and oxygen this proportion is 0.6315, which implies
a ratio of Cp/CV , denoted by γ, of 1.421.

If the molecules of a gas move at speeds of the order of 500 m s−1, as he had
just calculated, why do they not diffuse into one another in milliseconds rather
than in minutes? This natural objection to the Krönig–Clausius hypothesis was
raised by the Dutch physicist, C.H.D. Buys Ballot of Utrecht, who was best known
as a meteorologist [122]. He had earlier worked on capillarity and speculated on a
‘unified theory of matter’, taking his atoms to be Boscovichian centres of force, but it
was just this difficulty over the rate of diffusion that led him to assume that their mo-
tion was oscillatory, not translational. In rebutting this criticism Clausius broke new
ground in the kinetic theory [123]. He abandoned molecules of infinitesimally small
size and assumed instead only that they were small, and so travelled only a finite
distance before colliding with another molecule. He could estimate neither their sup-
posed diameter, s, nor the mean free path, l, that they traversed between collisions,
but he could show that there were plausible ranges of s and l that were consistent with
the gases showing only small departures from Boyle’s law and having sufficiently
small rates of diffusion. His kinetic theory, in which all molecules were supposed
to travel at the same average speed, c, led to an equation that connected s and l;

4πNls2 = 3V, (4.12)

where there are N molecules in a volume V. The assumption that all the molecules
had the same speed was clearly a weak point in his derivation of this equation,
and one that was soon picked up by Maxwell, who showed, by a less than perfect
argument, that there was a wide spread of speeds which followed the well-known
‘law of errors’ [124]. With this correction, the numerical factor of (4/3) in eqn 4.12
becomes

√
2, but the change is unimportant for the calculations that could be made

at the time. Equation 4.12 determines only the product Nls2; further information
is needed if we are to be able to calculate any of the three factors themselves. The
first step in this direction was taken by Maxwell in 1860. He used the postulates
of kinetic theory (or dynamical theory as it was then usually called) to calculate
the rate of transfer of momentum between two layers of gas moving at different
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speeds, and so obtained an expression for the shear viscosity;

η = ρl〈c〉/3, (4.13)

where ρ is the mass density and 〈c〉 is the mean speed, which he showed is a little
less than the root-mean-squared speed, 〈c2〉1/2

, which is the speed that properly
occurs in eqn 4.8. This equation can then be written,

p = ρ〈c2〉/3, where 3π〈c〉2 = 8〈c2〉. (4.14)

A measurement of the viscosity gives, therefore, a direct route to the mean free
path, l, if, indeed, the molecules can be treated as hard elastic spheres, as was done
in the early versions of the kinetic theory.

Unfortunately the viscosity of a gas is hard to measure. Maxwell asked Stokes for
a value for air, and Stokes, relying on some old measurements of the damping of the
motion of a pendulum by Francis Baily [125], gave him a figure of

√
(η/ρ) = 0.116.

This obscure result [126] makes sense only if one knows that the implied units are
inch and second. For the viscosity Maxwell uses grains as the unit of mass, where
there are 7000 grains in 1 lb = 0.454 kg. The density of air was then well known;
Maxwell does not say what figure he uses but a modern figure for air at 60 ◦F or
15.6 ◦C is 1.220 kg m−3 or 0.3085 grain in−3. The Baily–Stokes result therefore
implies a viscosity of 0.004 15 grain in−1 s−1. (Maxwell’s figure is 0.004 17.) This is
a viscosity of 1.059 × 10−5 kg m−1 s−1 or, in micropoise, 106 µP. A few years later
Maxwell, helped by his wife, measured the viscosity of air from the damping of a
stack of oscillating discs. He obtained 0.007 802 grain in−1 s−1 or 199 µP [127].
An extensive investigation by O.E. Meyer [128], a physicist at Breslau and the
younger brother of the chemist Lothar Meyer, yielded figures of 104, 275 and
384 µP from previous measurements that he quoted, and 305 and 360 µP from his
own early measurements. The range of values shows the difficulty of measuring
this quantity; the modern value is 179 µP at 16 ◦C, so Maxwell has proved to be
the best experimenter. The value of the mean speed is readily found from eqn 4.14;
Maxwell quotes 1505 ft s−1( = 458.7 m s−1) and so, from eqn 4.13 and a viscosity
of 106 µP, we get a mean free path, l, of 5.68 × 10−6 cm, which is Maxwell’s figure
of 1/447 000 in. This he confirmed by a figure of 1/389 000 in that he calculated
from the rate of diffusion in gases as measured by Thomas Graham [127].

The product Ns2 is now calculable but we need another hypothesis before we can
calculate each factor separately. This was supplied by Joseph Loschmidt in Vienna
in 1865 [129]. He assumed that the liquid formed by condensing a gas is an array
of touching spherical molecules. He denoted the ratio of the volume of the liquid
to that of the gas by ε, the ‘condensation coefficient’, and so deduced the relation

s = 8εl. (4.15)
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Air had not been liquefied in 1865 and, indeed, cannot be liquefied at ambient
temperatures, so he had to estimate its hypothetical volume from the approximate
additivity of the atomic volumes of liquids. This additivity had been established
some years earlier by Hermann Kopp [130]. He used Kopp’s figures, with slight
modification, to obtain ε= 8.66 × 10−4. For l he chose Meyer’s value of 1.4 × 10−4

mm, which he preferred to Maxwell’s value, and so obtained s= 9.7 × 10−7 mm,
or about 10 Å, admitting readily that “this value is only a rough estimate, but it
is surely not too large or too small by a factor of ten”. He quoted eqn 4.12 in his
paper but did not use it explicitly to calculate N , the number of molecules per unit
volume which, for a gas at 0 ◦C and 1 atm pressure, we now call ‘Loschmidt’s
number’. His figures give N = 1.8 × 1018 cm−3 at ambient temperature. Had he
used Maxwell’s measurement of the mean free path his figures would have given
s= 3.9 × 10−7 mm, or 4 Å, and N = 2.7 × 1019 cm−3, which is close to the modern
figure of 2.54 × 1019 cm−3 for an ideal gas at 1 atm and 60 ◦F.

Loschmidt’s work was consolidated by Lothar Meyer [131] who showed that the
volume ω of one of the assumed spherical particles [Teilchen] could be expressed,
according to the equations found by Clausius and Maxwell,

ω = F (T )m3/4η−3/2, (4.16)

where F (T ) is a function of temperature that is the same for all gases. He was thus
able to show that the ratios of molecular volumes calculated from the viscosity of
gases were close to that of the molar volumes of the liquids for a wide range of
substances.

The kinetic theory that Maxwell put forward in 1860 was not exact but it was
adequate for the calculation of the viscosity of a gas in terms of its molecular
characteristics. It was, however, flawed for the calculation of the rate of diffusion
and of the thermal conductivity. The root of the problem is the calculation of the
distribution of the molecular velocities. At equilibrium these follow the the ‘law of
errors’, as he had found correctly, but by a not wholly convincing argument, in
1860. If, however, the gas or gas mixture is at equilibrium then there is no viscous
drag, no diffusion, and no conduction of heat. It is only when the distribution
departs from ‘Maxwellian’ that these processes occur, and he did not know how to
calculate this departure. He returned to the problem in 1867 with a much improved
treatment [132]. Here he established, for the first time, the modern view of an
inhomogeneous gas, and dispensed with the theoretical use of the mean free path.
At elastic collisions between hard spherical particles there are three conserved
quantities: mass and energy, which are both scalar, and momentum, which is a
vector. To each there is a corresponding ‘transport property’, measured, for a gas of
one component, by the coefficients of self-diffusion, D, of thermal conductivity, λ,
and the more complex property of viscosity; η is the coefficient of shear viscosity.
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Between these properties there are the simple relations,

λ = k1ηCV and D = k2η/ρ, (4.17)

where CV is the heat capacity at constant volume and k1 and k2 are dimensionless
constants of the order of unity. In 1867 Maxwell found that k1 = 5/3 and that
k2 = 6/5. Boltzmann showed later that k1 is 5/2 [133].

The experimental predictions of the kinetic theory are surprising. Since l is
inversely proportional to the density, ρ, it follows from eqns 4.14 and 4.17 that η
and λ are independent of the gas density, and D inversely proportional to it. All vary
with the temperature as T 1/2, if the heat capacity is independent of temperature,
as is the case for hard spheres and for air at ambient temperature. It was the first
prediction that led Maxwell and his wife to measure the viscosity of air in 1866 and
to confirm that this improbable prediction held for pressures between 0.5 and 30 in
of mercury (0.02 to 1.0 atm), so providing strong support for the infant theory [127].
The variation with temperature was potentially more interesting. The first exper-
imental results produced a viscosity varying not as T 1/2 but closer to T 1. One of
the more dramatic results of Maxwell’s 1867 paper was that the problem of not
knowing the departure of the velocity distribution from the equilibrium form could
be evaded if the law of force between the molecules was an inverse fifth-power
repulsion. For such particles the viscosity varies as the first power of the temper-
ature. Since his experimental results came close to this behaviour he thought for
a time that real molecules might have this law of force, although he was always
more cautious than Clausius in attributing a real existence to the particles of kinetic
theory. He was, however, never committed to the Newtonian view that molecules
must have hard cores. Whewell had called this doctrine “an incongrous and unten-
able appendage to the Newtonian view of the Atomic Theory” [134], and Maxwell
shared this opinion; the solidity of matter in bulk did not imply that two atoms
could not be in the same place [135]. In his referee’s report on Maxwell’s 1867
paper Thomson had criticised the use of an inverse fifth-power repulsion between
the molecules on the grounds that it was incompatible with the known values of
the heat capacities [136]. This criticism could have been made of any system of
simple spherical particles. It is interesting that Thomson did not then say that it was
also incompatible with the cooling observed in the ‘Joule–Thomson’ expansion, a
cooling that requires the presence of attractive forces between the molecules. This
was pointed out by Meyer and by van der Waals in 1873 [137].

Maxwell’s theoretical result could be summarised by saying that if we have an
intermolecular potential of the form u(r ) = a(r/s)−n , where r is the separation, then
n= 4 implies thatη varies as T 1, and that the limit n= ∞ implies a variation as T 1/2.
These results suggest that we have in the viscosity and other transport properties a
new tool for studying intermolecular forces by seeing how their coefficients vary
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with temperature. This route could not be exploited in the middle of the 19th century
since only these two isolated limits could be resolved. A general attack on the prob-
lem required a determination of the form of the of the velocity distribution function
for a gas not at equilibrium, and that problem was not solved adequately until
1916. Its solution was to lead to the viscosity, in particular, becoming a prime
source of information about intermolecular forces in the 20th century. Meanwhile
one minor observation whetted the appetite for what might be achieved. In 1900
Rayleigh found that if, as theory and experiment agreed, the viscosity was indepen-
dent of the gas density, then a dimensional argument shows that a simple repulsive
potential with an inverse power of n implies that the viscosity varies with tem-
perature as the power (n+ 4)/2n; this result includes the two known special cases
of n= 4 and n=∞ [138]. Meyer had summarised the results for air in 1877 [139]
and by 1900 Rayleigh was able to call on his own results for argon, which has a truly
spherical molecule. Meyer found that a power of temperature of 0.72 was closer
to experiment than Maxwell’s power of unity, and Rayleigh found 0.77 for argon.
The latter figure is consistent with n= 7.4 but, as Rayleigh knew, this assignment
is too simplistic since it ignores the effects of the attractive forces.

Maxwell’s proposal of a force repelling the molecules as the inverse fifth power
of their separation led to further speculations. Stefan, in Vienna, suggested that
the continuous repulsions might arise from dense clouds of aether surrounding the
hard spherical cores. A continuous repulsive force leads to an effective molecular
diameter that decreases with temperature since at high temperatures the molecules
collide with a higher average speed of approach. He thought that this effect would
increase the apparent power of the temperature with which the transport properties
increased [140]. The same thought occurred also to Meyer [141]. Boltzmann, noting
the small compressibility of water and the high speed of the molecules, calculated
that “two molecules that approach along their line of centres with the speed of the
mean kinetic energy approach to a distance that is about 2

3 of the distance apart of
two neighbouring molecules in liquid water.” [142] Other contemporary attempts
to establish atomic or molecular sizes were made by Stoney [143], Lorenz [144],
Thomson [145] and others [146]. Thomson’s support of the kinetic theory was
influential in Britain, although his short article is typical of his obscurities and
reservations on molecular matters. He starts by saying categorically “For I have
no faith whatever in attractions and repulsions acting at a distance between centres
of force according to various laws”, but two pages later seems to be discussing
just such forces. No doubt he resolved the apparent contradiction in terms of his
favourite picture of atoms as vortices in the aether. He had put this model forward
three years earlier and was to support it for another fifteen [147]. It was an idea that
attracted both Maxwell and Tait [148]; the former was always uneasy with ‘action
at a distance’ and here was a way of avoiding that problem if one could calculate
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the force betwen the vortices. Unfortunately that proved to be impossible. Tait’s
interest was more in the scope that such entities gave for the application of the
vector and quaternion calculi and the entry that the subject gave him into the new
field of mathematical topology [149]. Maxwell made little or no further use of the
inverse fifth-power repulsion; he always had difficulty with any theory of matter
that emphasised force at the expense of inertia [150].

By 1870 the experimental basis for the use of gases for the study of intermolecular
forces had been truly laid, but could not be exploited because of the primitive state of
kinetic theory. If the premises of this theory are accepted then the known departures
from Boyle’s law and the existence of the Joule–Thomson effect are evidence of
interactions, usually of attractions, between the molecules. Indeed both are, in fact,
the same evidence since the two effects are linked by macroscopic thermodynamic
arguments that are independent of any molecular or kinetic assumptions. If one
knows the departures of a gas from Boyle’s law over a range of pressure and
temperature then one can calculate the isothermal Joule–Thomson coefficient, that
is (∂H/∂p)T . With rather more difficulty the calculation can also be carried out in
the reverse direction. Neither effect is easy to measure but acceptable values were
available. The qualitative implications were clear but theory had yet to provide a
quantitative link to the intermolecular forces. The three transport properties were
also known to be linked to the molecular interactions via the assumptions of kinetic
theory but again this theory was not sufficiently developed to exploit the link; indeed
the relation was often counter-intuitive, for the viscosity, rate of diffusion, and rate
of conduction of heat of a gas of point molecules without interaction are all infinite.
Again accuracy was a problem, for none of these properties is easy to measure.
Concern over accuracy became a particular interest of Meyer who, as a student of
Franz Neumann, had been brought up in a school that was fanatical in its devotion
in hunting down errors, probably to the detriment of what might otherwise have
been accomplished [151].

There was one worrying problem that hindered the acceptance of the kinetic
theory, and this arose not from the interactions of the molecules but apparently
from their internal constitutions. If, as was generally assumed, the molecules were
modelled by structureless elastic spheres then the heat capacity of a gas at constant
volume arises from their translational motion only. Each orthogonal direction of
motion contributes 1

2 R to the molar heat capacity, where R is the universal constant
of the perfect-gas law, thus giving a total heat capacity of (3R/2). The heat capacity
at constant pressure exceeds that at constant volume by R for all perfect gases. Thus
the ratio of the heat capacities, γ =Cp/CV , is 5/3 or 1.67. The first experimental
confirmation of this figure came in 1875 with the measurement of the speed of
sound in mercury vapour [152]. Mercury was known to form a monatomic vapour
and its atoms were presumably spherical. This result provided a drop of comfort
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in the discussion of what was otherwise seen as an insoluble problem, for no
common gas conformed to this figure nor, indeed, to any figure for which a generally
acceptable explanation could be given. For oxygen and nitrogen, and hence also
for air, the ratio γ was found to be 1.40 or 7/5. It was generally accepted by
then that these gases had diatomic molecules, O2 and N2, which presumably could
rotate, but this presumption only led deeper into the mire. Each ‘squared term’ in
the energy, in Hamilton’s formulation of mechanics, contributes 1

2 R to the heat
capacity. A diatomic molecule, it was argued, can rotate about each of its three
axes of symmetry and so has, in addition to its translational energy, three terms in
the square of the angular momentum about each axis. Hence CV would be 3R, Cp

would be 4R and γ would be 4/3 or 1.33, which is smaller than the observed value.
It is possible to argue, as Boltzmann did [153], that there is no rotation about the line
of centres of a diatomic molecule since the molecule looks ‘monatomic’ about this
axis. This assumption leads to the correct value of 7/5 and is, indeed, the modern
interpretation of the anomaly, but in a quantal not classical mechanical framework.
Maxwell never accepted this sleight of hand [154] and it was the main ground on
which he sometimes doubted the reality of the kinetic theory; in a discussion of
1867 he called it “under probation” [155]. Moreover a diatomic molecule should
be able to vibrate since there is no reason to suppose that the bond between the
two atoms is wholly rigid. Any departures from perfect rigidity would add more
terms to the energy and so reduce the calculated value of γ for air still further.
There was evidence that more complicated molecules did have internal motions;
for steam, for example the value of the ratio was 1.19. Beyond these problems of
rotation and vibration there lay the nightmare of even more complicated internal
motions revealed by the rich optical spectra that could be excited in all molecules.
These, as Tyndall foresaw [156], were to lead to our deep understanding of atomic
and molecular structure, but neither they nor the heat capacity anomalies were
to be unravelled until the advent of quantum mechanics. Meanwhile those with
less tender consciences than Maxwell wisely decided to put these problems out of
their minds and concentrate on what could be achieved with the experimental and
theoretical weapons to hand. It is a tactic that most scientists adopt instinctively.

Liquids remained, by comparison with gases, an unknown theoretical territory.
By adding thermodynamic arguments to their armoury, but staying within the
Laplacian tradition, Ritter and Dupré had deduced that the large internal pres-
sure of a liquid, Laplace’s K, depended on the square of the density of the fluid, and
they and others had obtained by variants of Young’s argument rough estimates of
the size of molecules or the range of the attractive forces; the two were not always
distinguished. Young’s own result re-surfaced in 1890 when it was exhumed by
Rayleigh in a paper on capillarity [157]. These estimates were neither as soundly
based nor, as we can now see, as accurate as those derived from gas theory. It is
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significant, however, that there was no correlation of the two types of estimates, in
part because those working on liquids were not convinced of the correctness of the
kinetic viewpoint. Thomson mentions capillarity in his short paper of 1870 [145]
but did not use it constructively as Waterston and Dupré had done. This failure
to tackle liquids seriously arose from a general lack of a real conviction that the
properties of gases and liquids could be explained in terms of a common molecular
model. Even Andrews, who did most to establish experimentally the continuity of
the two states, was not convinced of this [76]. Maxwell often wrote as if he were
willing to use a common model, notably in his lecture to the British Association
in September 1873 [158]. His mature view, however, is in his article ‘Atom’ of
1875 [135]. He wrote there:

There is considerable doubt, however, as to the relation between the molecules of a liquid
and those of its vapour, so that till a larger number of comparisons have been made, we
must not place too much reliance on the calculated densities of molecules.

Nevertheless, he was inclined, on balance, to think that the molecules of a gas were
the same as those of a liquid. Clausius and Boltzmann had probably the strongest
views on the matter before van der Waals, but neither showed much interest in
quantitative work on liquids. G.H. Quincke, in Berlin, had made an early and bold
claim for the identity of the forces in gas and condensed phases when he opened a
paper of 1859 [159] with the italicised premise:

There is therefore a condensation of gaseous substances on to the surfaces of solid bodies
that increases proportionally to their area and density, if the law of attraction as a function
of separation, is the same for the gas molecule as for the solid.

He clearly believes that this is the case but one sees also here the residuum of the
belief, not entirely banished until the 20th century, that intermolecular attractions
are linked in some way to gravitational, a view held also at that time, and indeed
twenty years later, by Thomson [160].

One publication of 1870 that excited Maxwell’s interest three years later, and
which may have helped to persuade him that the combination of kinetic theory
and attractive intermolecular forces was a key to the understanding of the simple
properties of matter, was a remarkable paper of Clausius [161]. It is remarkable
because it contains a theorem that nothing then known gave any hint of. Gibbs
came also to admire it calling it “a very valuable contribution to molecular science”
[162]. Clausius established that the mean kinetic energy of a system of particles is
equal to what he called the ‘virial’; that is, in modern notation

〈
1/2 miv

2
i

〉 = 〈r i · Fi 〉, (4.18)

where mi , vi , r i , and Fi are the mass, speed and position of particle i and the force
on it. The theorem applies to systems in which both the positions and the speeds are
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bounded. If the motions are irregular, as with a molecular system, then the averages
are taken over a long enough time for them to become steady. The forces include
those exerted by the bounding wall of the vessel which were known to contribute
3pV/2N to the term on the right. If the molecules are spherical particles with forces
acting between each pair then the contribution of any one pair to the virial of the
whole system can be written,

ri · fi + rj · f j = r i · f i j − r j · f i j = −ri j fi j , (4.19)

where fi j = fi = −f j is the mutual force between i and j , which acts in the same
direction as ri j = ri − r j . The virial theorem, as it is now called, can therefore be
written ∑ 〈

miv
2
i

〉 = 3pV +
∑

〈ri j fi j 〉, (4.20)

where the first sum is to be taken over all molecules and the second over all pairs
of molecules. Clausius was seeking, as for a time Boltzmann was also, for a purely
mechanical basis for the second law of thermodynamics. When he failed to find it
in this theorem he apparently took little further interest in it [163]. The equation
had, however, other potentialities, for here, at last, was an exact and, indeed, simple
equation between the mean kinetic energy of a molecular system, its pressure, and
the sum of the forces acting between its molecules. Only one problem remained to
be solved before this equation could be exploited to study intermolecular forces –
what was the relation between the mean kinetic energy and the temperature? For a
perfect gas, for which fi j = 0, it was accepted that we have the simple relation∑ 〈

miv
2
i

〉 = 3pV = 3RT, (4.21)

where T is the absolute temperature, measured on a scale whose zero is at −273 ◦C,
and R is a constant, proportional to the amount of gas, and the same for all gases
if V is the volume that contains a mass of gas equal to its ‘molecular weight’ in
grammes. So much was generally accepted in 1870, but it was not obvious then
(as it is now) that the same relation between the mean kinetic energy and the
absolute temperature holds also for interacting molecules, since the forces between
them clearly change the instantaneous value of the molecular speeds. There was,
nevertheless, a growing body of opinion that held that the outer part of eqn 4.21
was true for real gases, for liquids, and maybe also for solids. As early as 1851
Rankine, in expounding a ‘rotational’ theory of the motion of heat, distinguished
between the ‘real’ and the ‘observed’ specific heats, identifying the former with
the motions [164]. More explicitly, Clausius in 1862 distinguished between the
‘heat in the body’ and the ‘disgregation’, and wrote in italics that “The quantity
of heat actually present in a body depends only on its temperature, and not on
the arrangements of its component particles” [165]. Sixteen years later, Maxwell,
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when reviewing Tait’s Thermodynamics, expressed his amazement at finding this
statement of Clausius in a footnote, and described it as “the most important doctrine,
if true, in molecular science” [166]. In the concluding paragraphs of his Theory of
heat of 1871 [56], Maxwell had speculated that the molecules in a liquid might
move more slowly than those in its vapour at the same temperature, a speculation
that survived in all later editions of the book, down to the tenth, in 1891 which
was edited and revised by Lord Rayleigh whose failure to remove it, or at least
to comment on it, was perhaps an oversight, although Rayleigh was not wholly
willing to commit himself on that point at that time [167].

Maxwell and Rayleigh were not the only agnostics; those arch-enemies Tait and
Tyndall had doubts also. Tait upbraided Clausius for muddying the clear waters
of thermodynamics by introducing his molecular quantities ‘die innere Arbeit’ and
‘die Disgregation’. He was still arguing the point in a paper of 1891 that he reprinted
without comment in 1900 [168]. Tyndall, in a lecture course of 1862, could affirm
only that “most well-informed philosophers are as yet uncertain regarding the exact
nature of the motion of heat” [169]. Others were more confident about equating
the mean kinetic energy and temperature. In 1872, M.B. Pell, the professor of
mathematics at Sydney, affirmed without proof, in a Boscovichian description of
matter, that in all states “the temperature may be assumed to be proportional to
the mean vis viva” [170], an assumption that, as we shall see, van der Waals was to
make to great effect the next year. Maxwell summarised the doubters’ position in
a letter to Tait of 13 October 1876:

With respect to our knowledge of the condition of energy inside a body, both Rankine and
Clausius pretend to know something about it. We certainly know how much goes in and
comes out and we know whether at entrance or exit it is in the form of heat or work, but what
disguise it assumes when in the privacy of bodies . . . is known only to R, C, and Co. [171]

From our privileged modern position we can see that the problem of the mean
kinetic energy in any state of matter is a trivial one. The translational energy of
the molecules at any time is a term in the classical Hamiltonian, or total energy,
that is independent of their internal motions of rotation and vibration and of their
mutual interactions, and which can be expressed as a sum of squared terms in the
instantaneous values of the linear momenta. In the partition function of classical
statistical mechanics we can integrate at once over these linear momenta to give
a contribution to the total thermodynamic energy that is independent of the state
of aggregation. It is therefore equal, in any state, to its value in the dilute gas,
or 3RT/2. This was shown, but not of course in this language, by Boltzmann
in 1868–1871 [58], but it was many years before it became a truth universally
acknowledged. No doubt Clausius, who was already convinced of the truth, saw
no need to comment on these papers of Boltzmann’s, while Maxwell probably
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saw their titles, and since he knew that thermodynamics could not be reduced to
mechanics, read no further at that time. But the ways by which this important point
was established are still far from clear and could well be a subject for further study.

4.3 Van der Waals’s thesis

Johannes Diderik van der Waals was a schoolmaster in The Hague for eleven years
from 1866 to 1877 [172]. When he started there he had no university degree but
he soon began to attend lectures at Leiden and passed his doctoral examinations in
December 1871. Eighteen months later he submitted his thesisOn the continuity of
the gaseous and liquid state [173]. It carries the date 14 June 1873, which was the
day of his public defence of it. The ‘promotor’ was P.L. Rijke, whose speciality was
experimental work in electricity and magnetism, so it is clear that the choice of sub-
ject was van der Waals’s own. Like the early 19th century workers in kinetic theory,
he was very much the ‘outsider’ and brought to the subject a new vision, but unlike
them he was well versed in mathematics and physics and so was able to handle his
subject in a way that commanded respect even when it attracted criticism.

He tells us at the opening of his thesis, and again in his Nobel lecture of 1910
[174], that his choice of subject was inspired by Clausius’s papers on the kinetic
theory of gases and a desire to understand the large but mysterious pressure in a
liquid that was represented by the integral denoted K by Laplace. He had a clear
and simple conviction of the real existence of molecules and wrote that “I never
regarded them as a figment of my imagination, nor even as mere centres of force
effects” [174]. This conviction led him to a synthesis of the molecular theory of
gases and liquids that had escaped his predecessors. There is evidence in the thesis
that he had arrived at the form of his famous equation of state by simpler arguments
than those that follow from his discussion of the work of Clausius and Laplace, but
it was these that he used in his public defence of his derivation.

He has, as he sees it, two problems to solve. First, how to take account of the effect
on the pressure of attractive forces of unknown form but, he believes, of essentially
short range, that is, of a range comparable with the sizes of the molecules. He and
O.E. Meyer [137] were, it seems, the first to emphasise that the cooling of gases on
expansion observed by Joule and Thomson was direct evidence for the existence of
attractive forces in gases; the statement of this truth is the subject of the first two-
page chapter of his thesis (§§ 1–5, see also pp. 70–1). His simplest calculation of the
effect of these forces on the pressure comes in Chapter 7 (§ 36); the molecules at the
surface of a fluid are pulled inwards and the effect on the pressure, p, is proportional
both to the number pulled per unit volume and to the number in the interior doing
the pulling. In other words, the corrected pressure to be used in an equation of state
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is the observed pressure plus a term proportional to the square of the molecular
density, (p+ a/V 2). A correction term of this form follows also from Laplace’s
theory when this is carried out carefully and, as we have seen, it was a form that
had also been reached by other arguments in the time since Laplace; it would have
been surprising if he had arrived at any other form. His second problem is to calcu-
late the amount by which the observed volume must be reduced by the space taken
up by the molecules so as to give an effective volume in which they move, and which
can be used in the equation of state. He is adamant that there are no repulsive forces;
his molecules are hard objects which have size, and he had no sympathy with mod-
els such as Maxwell’s fifth-power repulsion, although he did not then appreciate
fully the contents of Maxwell’s papers. Whenever his predecessors had thought
of this second problem they had rather casually assumed that the effective volume
was the actual volume less the sum of the volumes of the molecules. He showed,
by an argument based on Clausius’s mean free path in a gas of particles of non-zero
size, that the effective volume is (V − b), where b is four times the sum of the
volumes of the molecules (Chapter 6). It is to the parameter b that Dupré’s name
‘co-volume’ is now attached, although van der Waals did not use this word.

In his thesis these two justifications of the effects of the attractive forces and of
molecular size are preceded by a fuller and more sophisticated discussion of the
attractive forces. There are three points to note.

He repeats in full Laplace’s derivation of his integrals K and H (Chapters 3 and 4),
including correctly the insertion of the factor of the square of the molecular density.
This enables him to identify K with his correction term a/V 2 (Chapter 9). The late
appearance of this identification and its surprisingly tentative form is not consistent
with the opening sentence of the Preface: “The choice of the subject which furnished
the material for the present treatise arose out of a desire to understand a magnitude
which plays a special part in the theory of capillarity as developed by Laplace”.
No doubt the emphasis he placed on different parts of the work changed over the
years he spent in preparing it, and after he realised what a rich set of results he had
produced. He makes no reference to Ritter or Dupré although the work of the latter
must have been accessible to him since he cites other papers from the Annales de
Chimie et de Physique.

The second point to note is that in obtaining Laplace’s results he has recourse, as
Laplace did also, to integrations over an assumed uniform distribution of molecules
in space. In Laplace’s day this assumption had been justified by the belief that the
forces, although only of microscopic range, were nevertheless long compared with
the diameters of the hard cores of the molecules. Van der Waals did not share this
belief and, as we shall see, obtained quantitative evidence to rebut it, so this com-
forting justification of what we call the mean-field approximation was denied to
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him. He certainly held, however, to the mean-field view itself, writing in words
reminiscent of Laplace: “On the particles of a gas no forces act; on the particles
within a liquid the forces neutralise each other. In both cases the motion will go on
undisturbed so long as no collisions occur.” (§ 9) His justification differs from that
of Laplace, who had a static picture of matter; for van der Waals it is the molecular
motion that produces the averaging over positions needed to justify the approxima-
tion. He seems also to ascribe a repulsive effect to this motion, writing: “It is the
molecular motion that prevents the further approach of these particles.” (§ 23) We
now know that both points are incorrect, the first for reasons adduced at the end of
the previous Section. The strict separation in classical mechanics of translational
motion from configurational interaction means that one cannot simplify expressions
for the latter by invoking the former. His inadequate justification of the mean-field
approximation was to lead to criticism from Kamerlingh Onnes eight years later
and, more forcibly, from Boltzmann some twenty years later. It is one of the few
cases where van der Waals’s instinct for the correct ‘physics’ of a problem, even
if not always for the correct ‘mathematics’ with which to handle it, led to a deep
flaw in his work. This became apparent many years later in considering the detailed
behaviour of fluids near their critical points.

The third point to note in his discussion of his correction to the pressure is his
account of Clausius’s virial theorem, which he derives and discusses in Chapter 2.
He was the first to appreciate the value of this theorem for the study of intermolecular
forces, but before he could use it he had to tackle the problem of relating the mean
kinetic energy of the molecules in a liquid to the temperature. He makes as little of
this difficulty as had Clausius. Indeed, he evades it by saying simply that since
the mean energy increases with what is usually called the temperature, it can be
replaced by it: “This may be considered to give our definition of temperature.” (§ 36)
This is an evasion, not a solution, since he does not show that the temperature of
a liquid, so defined, is the same as that of the absolute scale of the second law of
thermodynamics, or of its equivalent, the perfect-gas scale. Nevertheless his instinct,
like that of Clausius, proved to be right when he supposed that “the kinetic energy
of the progressive motion is independent of the density; [and] that, for instance,
a molecule of water and a molecule of steam at 0 ◦C have the same velocity of
progressive motion.” (§ 36) He is now in a position to combine the augmented
pressure and the effective volume to obtain his well-known equation of state of
gases and liquids,

(p + a/V 2)(V − b) = RT . (4.22)

He knows that the equation is not exact. The co-volume, b, must itself diminish
with increasing density since it is equal to four times the sum of the volumes of the
molecules only in the dilute gas. Moreover there is chemical and thermal evidence
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(Chapter 5) to show that molecules are more complicated entities than the hard
spheres that he had assumed. He is more confident about the a/V 2 term.

To test his equation he used first the extensive results that Regnault had pub-
lished in his monographs of 1847 and 1862 for air, hydrogen, sulfur dioxide and
carbon dioxide [175]. His discussion of the last gas is curtailed since he had fortu-
nately become aware of Andrews’s results. These were to provide him with a much
more convincing demonstration of the power of his equation than he had been able
to find from the rather inconclusive comparison with Regnault’s results. It is not
clear when he first saw Andrews’s results. He cites the long abstract in German pub-
lished in 1871 in a supplement to the Annalen der Physik [176]. He had presumably
missed the original publication of 1869 [76] and probably the French abstract in
the Annales de Chimie et de Physique and an English one in Nature, both in 1870
[177], although he was later (Chapter 12) to quote from a paper that appeared in
the Annales in 1872. Once he knew of Andrews’s work and the discussion of it by
Maxwell in his Theory of heat of 1871 [56] he realised its importance, and he bor-
rowed, without acknowledgement, the title of Andrews’s Bakerian Lecture for his
thesis [178].

Andrews had shown that carbon dioxide has a critical temperature of 31 ◦C.
Above that there is one fluid state with a fixed density for each pressure and tem-
perature. Below the critical temperature there are two densities for each pressure
and temperature on the vapour-pressure line, the higher being that of the liquid and
the lower being that of the vapour in equilibrium with it. Van der Waals’s equation
is a cubic in the volume (or density) at a fixed pressure and temperature and so has
either one or three real roots. The first case occurs when the temperature is above a
value of (8a/27Rb), and the second when it is below this critical value. The lowest
and highest real roots correspond to gas and liquid states but the third root at an inter-
mediate density has no real existence for it is a state in which (∂p/∂V )T is positive,
and so is mechanically unstable. Such a state, if formed, would spontaneously break
up into a mixture of gas and liquid states (Fig. 4.2). It was from Maxwell’s book that
van der Waals learnt that James Thomson, William’s elder brother, had, on seeing
Andrews’s results, suggested just such a continuous cubic curve to interpolate be-
tween gas and liquid [179]. Andrews’s results show, of course, not a cubic curve but
a straight horizontal line joining the co-existing gas and liquid states at a constant
pressure, that is, at the ‘vapour pressure’ appropriate to the chosen temperature.
None of them, Andrews, Thomson, Maxwell or van der Waals, then knew how to
use the form of the isothermal curve to decide where this line should be drawn.
Maxwell’s first attempt at this problem was a failure [180], but he gave the correct
answer in a lecture before the Chemical Society in 1875; the line is to be drawn so
that it cuts off equal areas above and below the cubic curve [181]. This result rests
only on thermodynamic considerations; no molecular arguments are needed.
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Fig. 4.2 Van der Waals’s representation of the relation between pressure and volume of
a fluid. Three isotherms are shown: one at a temperature above that of the critical point
(marked c), one at the critical temperature, and one below this temperature. The last isotherm
shows a maximum and a minimum but what is seen experimentally is the horizontal line
joining the liquid state, marked l, and the gas state, marked g. Maxwell showed that this
line has to be drawn so that the two areas, 1 and 2, are equal.

Van der Waals chose his parameters a and b for carbon dioxide by fitting his
equation to Regnault’s results but then used them to calculate the course of the
isotherms measured by Andrews. In modern units he chose

a = 0.445 Pa (m3 mol−1)
2
, b = 51 cm3 mol−1.

His equation gives for the three critical constants,

RT c = 8a/27b, V c = 3b, pc = a/27b2, (4.23)

whence

T c = 311 K = 38 ◦C, V c = 153 cm3 mol−1, pc = 63.4 bar = 62.5 atm.

Van der Waals obtains 306 K, 153 cm3 mol−1, and “about 61 atm”, but the minor
discrepancies are a consequence of the two-figure accuracy with which he could
estimate a and b. Andrews’s experimental results were 30.9 ◦C, 145 cm3 mol−1,
and “about 70 atm”. (Modern figures are 31.0 ◦C, 94 cm3 mol−1, and 72.8 atm.)
The agreement with Andrews’s results is closer than the experimental accuracy of
Regnault and Andrews and the approximations inherent in his equation deserve.
We can deduce directly from the equation that the critical ratio (pV/RT )c is 3/8
or 0.375. Andrews’s results give 0.40, but the only comment that van der Waals
makes (§ 56) is to say that the crude results of Cagniard de la Tour for ethyl ether
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lead to a ratio of about 0.3, which is closer to the truth; modern values lie in the
range 0.22 to 0.29, with carbon dioxide at 0.27.

The importance of van der Waals’s achievement lies not so much in the quanti-
tative agreement with Andrews’s results as with the fact that, for the first time, the
properties of both gases and liquids were derived from a unified theory and related
directly to the two essential properties of molecules; they occupy space and they
attract each other. The implications of Andrews’s observation of the unity of the gas
and liquid states and of van der Waals’s relating it to the two features of molecular
interaction was potentially far-reaching, although neither experiment nor theory
was always accepted at first. Maxwell alone had the genius to recognise at once
the implications of what was being proposed although, as we shall see, he was not
convinced of the rigour of van der Waals’s reasoning.

A second important result that flowed from his equation was the information that
can be derived from the numerical values of his two parametersa and b (Chapter 10).
These are related to the properties of the molecules and their interaction and so
complement the information that Maxwell had probably realised was potentially
locked up in the transport properties. From the parameter a van der Waals estimated
the range of the attractive forces and from b the diameter of the hard core.

He first identifies a/V 2 with Laplace’s K and then notes that the surface tension
(Laplace’s 1

2H) is the first moment of “the force” which is the integrand of K . The
ratio (H/K ) is therefore the effective range of the attractive force – a more precise
but physically equivalent argument to that of Young. He has no means of measuring
the surface tension of liquid carbon dioxide so he turns to the five liquids ethyl ether,
ethyl alcohol, carbon bisulfide, water and mercury. We may take the results for ether
as typical, and for this the ratio (H/K ) yields an effective range of 2.9 × 10−10 m,
or 2.9 Å.

From b he can obtain at once the volume of the molecules in a given mass of fluid,
but to obtain the volume of one molecule he needs to know Loschmidt’s number or
its equivalent. He introduces, therefore, Maxwell’s estimate of the mean free path
in air at 1 atm and 15 ◦C [124], which he scales appropriately for other gases, and
so obtains a diameter of a molecule of ether of 4.0 Å. He comments (§ 68) that:

It is certainly surprising to find s [the diameter] even at all greater than x1 [the effective
range of the attractive force]. In all these calculations, however, we are only dealing with
approximate values; and we have been altogether dependent on Maxwell’s value of l [the
mean free path] for air.

He draws the conclusion that the range of the attractive force is little greater than
the size of the core:

By this I do not mean to say that there is no attraction at other distances, but that the attraction
at this distance is so much greater, that it is alone necessary to consider it in the calculation.
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This was the view that he held for the rest of his life and since his reasoning and
his data were essentially correct, his conclusion was also.

The calculation of the molecular diameter gives him also a measure of
Loschmidt’s number (he does not use that name), and for air at 0 ◦C and 1 atm
pressure he deduces a density of 5 × 1019 molecules per cubic centimetre, which is
about twice the modern value. He had no way of testing independently the accu-
racy of his deductions but he was confident that they were more soundly based than
earlier estimates of molecular size, as, for example, that of Stoney whose value of
Loschmidt’s number is 20 times larger [143], or Quincke’s estimate of the range of
the attractive force from capillary phenomena which is 100 times his [182]; these
are the only examples that he cites.

The rest of the thesis is ‘thermodynamic’ rather than ‘molecular’. In Chapter 11
he calculates the cooling of a gas at low densities associated with the Joule and with
the Joule–Thomson expansions, that is (∂T/∂p)U and (∂T/∂p)H . His equation of
state can be arranged to give the second virial coefficient (as we now call it), B(T )
of eqn 4.5, as

B(T ) = b − a/RT, (4.24)

whence the expansion coefficients are readily found from eqn 4.6. His calculation
of the Joule–Thomson cooling of carbon dioxide is about two-thirds of that found
experimentally, a discrepancy larger than he would have expected. He is conscious
of the criticisms that have been made of those who drag molecular considerations
into thermodynamic arguments but boldly sets out his own view (§ 72):

It is the boast of thermodynamics that its laws do not rest on any assumptions as to the
structure of matter, and consequently embody truths which are in so far unassailable. If,
however, we are prevented from making more searching investigations into the nature of
bodies through fear of leaving the region of invulnerable truths, then it is clear that by so
doing we wantonly cut ourselves off from one of the most promising paths to the hidden
secrets of nature.

In a resounding peroration he refers to the molecular forces as “nothing but the
consequences of a Newtonian law of attraction”, but it is clear from what has gone
before that he means here only a force that apparently acts at a distance and which
varies with the separation, not one that is specifically proportional to the inverse
square of the separation. Dutch theses end with a set of stellingen, or propositions
not directly related to the subject in hand but chosen by the candidate to air his
views on cognate matters. Van der Waals had 19 of these [183], one of which
was Newton’s declaration in his letter to Bentley [184] that action at a distance was
“inconceivable”. We do not know if the examiners asked him to defend Newton’s
opinion, nor what he might have replied. He ends his thesis with a quotation from
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William Thomson’s Presidential Address to the British Association in 1871, in
which Thomson, quoting from an anonymous book review by his friend Fleeming
Jenkin, the Professor of Engineering at Edinburgh, once again looks forward to
that age when the subject of atoms, their motions and their forces, may rival in its
precision and richness the field of celestial mechanics.

A Leiden thesis in Dutch by a schoolmaster who was quite unknown outside the
Netherlands would have passed unnoticed had it not been circulated to the leaders
of the field. Who was the sender, or senders, we do not know; it could have been
van der Waals himself or, more likely, his colleague and mentor at the Hague,
Johannes Bosscha, or his thesis ‘promotor’, Professor Rijke. Copies certainly went
to Andrews, Maxwell, and the Belgian physicist, J.A.F. Plateau, and probably also to
James Thomson and to Clausius, who was now in Bonn [185]. Only Maxwell rose to
the challenge with a full review inNature [186] in which he praised the author for his
insight and originality but had specific criticisms about the way that he had derived
his equation. His first point was that, having introduced Clausius’s virial theorem,
whose significance Maxwell had not previously appreciated, van der Waals should
have used it consistently to treat both the attractive and repulsive forces. Maxwell
adopted the modern view that the intermolecular force field is an entity and not
something to be split, as van der Waals and most of his predecessors had done,
into an attractive field and a space-filling core. Some years later, H.A. Lorentz,
the first professor of theoretical physics at Leiden, carried out Maxwell’s proposal
and treated all forces by means of the virial theorem [187]. Maxwell made his
own calculation of the co-volume, b, and found it to be 16 times the volume of
the molecules. Whether he obtained this from the virial theorem was not explained
here but this seems to be the case from what he wrote in an unpublished manuscript
[186]. The result, however, is wrong, and van der Waals, for all the crudity of
his calculation from the mean-free path, had arrived at the right answer. Maxwell’s
second criticism was a re-iteration of his opinion that we are not justified in equating
the mean translational energy of the molecules in the liquid state to 3RT/2. He
had not studied Boltzmann in detail but doubts were perhaps beginning to assail
him for he was careful to add that “the researches of Boltzmann on this subject are
likely to result in some valuable discoveries”.

Andrews was asked to give a second Bakerian Lecture in 1876 in which he
described further measurements on the equation of state of carbon dioxide [188].
He fitted them only to a simple empirical function of his own devising and ignored
van der Waals’s equation, perhaps convinced by Maxwell’s criticisms that it was
flawed. Stokes, the Secretary at the Royal Society, had sent the text to Maxwell to
referee before it appeared in print. In his comments Maxwell made it clear that
he supported van der Waals’s equation as an empirical representation of the results
and then he went on to apply the virial theorem to the problem of the equation of
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state [189]. He followed Boltzmann in writing the probability of finding a molecule
at a position in a gas where the energy is Q as proportional to exp(−Q/aT ), where
a is “an absolute constant, the same for all gases”. If Q arises from the potential
energy between a pair of molecules, and if the density is sufficiently low for us to
be able to neglect interactions in groups larger than pairs, then he is able to show
that the leading correction to Boyle’s law is proportional to the integral

Ar = 4π
∫ r

0
(e−u(r )/aT − 1) r2dr , (4.25)

where u(r ), or Maxwell’s Q, is the potential energy of a pair of molecules at a
separation r, and where the symbol r also does duty as the upper limit of the
integral, where it is the range of the attractive force. An integration by parts leads to
an alternative form of the integral in which the force (−du(r )/dr ) appears explicitly;
Ar = Br/3aT , where

Br =
∫ r

0
4πr3 [du(r )/dr ]e−u(r )/aT dr. (4.26)

Clausius’s virial theorem now leads to the result that the leading correction to
Boyle’s law, which we now call the second virial coefficient, B(T ) of eqn 4.5, is

B(T ) = − 1
2 Ar = −Br/6aT . (4.27)

He makes a slip in writing the virial theorem and so obtains a result that is too large
by a factor of (3/2), but had he used these results to re-calculate the co-volume,
b, he would at least have recognised that his earlier result was seriously wrong.
We obtain van der Waals’s result by writing u(r ) as the potential of a hard core of
diameter s;

u(r ) = ∞ (r < s), u(r ) = 0 (r ≥ s), (4.28)

whence

Ar = −4πs3/3 or B(T ) = b = 4[4π (s/2)3/3]. (4.29)

But Maxwell never took the calculation this far and never, apparently, retracted his
erroneous expression in his review in Nature. He had discovered, in eqns 4.25 and
4.26, the most direct connection between an observable physical property, B(T ),
and the force or potential acting between a pair of molecules. There is a minor
problem in fixing the value of the constant a, later to be known as ‘Boltzmann’s
constant’, k, and equal to R/NA, where R is the molar gas constant and NA is
Avogadro’s constant, whose value was still uncertain in 1876 but which was then
becoming increasingly better known. Boltzmann’s constant is, however, needed
only to convert the intermolecular energy from a scale of temperature to one in
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more conventional units. Maxwell’s equations were a link that was to be exploited
to the full in the 20th century, and Maxwell’s failure to use this link or, at least, to
publish it so that others could use it, is one of the great missed chances of this field.

If Clausius’s paper of 1857 and his popular lecture of the same year [115] mark
the birth of the modern molecular–kinetic view of the states of matter then van der
Waals’s thesis, and Maxwell’s formal completion of it in 1875 [181] with his rule
for determining the vapour pressure at each temperature, mark its coming of age.
For the next thirty years there were critics of the molecular–kinetic interpretation of
the properties of matter but henceforth it was the orthodoxy from which physicists
departed at peril to their future reputations.

4.4 1873–1900

Maxwell’s review in Nature ensured that van der Waals’s work was soon known
in Britain, even if not fully understood or appreciated, but it made its way more
slowly in Germany. If Clausius had had a copy in 1873 he cannot have then read
it for he calculated the value of the co-volume, b, in November 1874, and made it
eight times the volume of the spherical molecules [190]; van der Waals quickly cor-
rected him [191]. Six years later, when he had read the thesis, Clausius published a
second paper [192] which contained his own derivation of Maxwell’s ‘equal-areas
rule’ for fixing the value of the vapour pressure. At the same time he modified the
equation of state, for he supposed that the attractive forces might change with tem-
perature. This supposition arose from a confused discussion of molecules “rushing
towards each other” and forming aggregates, a discussion that shows that, notwith-
standing his earlier introduction of the concept of ‘disgregation’, he had not fully
appreciated the consequences of Boltzmann’s separation of the kinetic and poten-
tial energies. He replaced van der Waals’s term a/V 2 for the ‘internal pressure’
with α/T (V +β)2. This introduction of a third adjustable parameter allowed him
to claim an improved representation of some experimental results, including those
of Andrews. The mathematician D.J. Korteweg, a colleague of van der Waals, was
later to claim that E.-H. Amagat’s results for carbon dioxide, obtained in 1873, were
better fitted by van der Waals’s original equation than by Clausius’s modification
of it, that is, the factor of T was not needed and β was best put equal to zero [193].
The apparently greater flexibility of the modified equation and, no doubt, Clausius’s
greater reputation, meant that it was for some years used more often than the origi-
nal version. Maxwell had stressed the empirical virtues of van der Waals’s equation
and had criticised its theoretical basis, so there was little reason not to use a second
empirical equation with an even less secure theory behind it.

Boltzmann seems first to have known of the thesis from a long abstract of it that
Eilhard Wiedemann published in the first issue of the Beiblätter of the Annalen der
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Physik [194]. One crude measure of the cohesion of a liquid is the height above
atmospheric pressure that can be sustained in a barometer tube before the liquid
column splits leaving a vacuum [195]. Boltzmann was led from a consideration of
this topic to a new determination of the range of the intermolecular attraction [196].
He notes first that the minimum thickness of liquid films appears to give a figure
of the order of 500 Å, but then says that van der Waals got a very different result
from the ratio of Laplace’s two integrals, H and K , and so devised his own method.
He estimated the energy needed to separate two molecules by considering the
‘unbalanced’ force at the surface of a liquid, as measured by the surface tension, and
the maximum value of the force between two molecules from the tensile modulus
of the solid. Since the energy is an integral of the force with respect to distance, the
ratio of these two quantities is a length which he takes to be the effective range. For
six metals he thus gets figures that lie between 15 Å for copper and 63 Å for zinc.
The corresponding values that he quotes for the internal pressures are equivalent to
4000 atm for copper and 1300 atm for zinc. Neither in method nor, as we can now
see, in numerical results, is this an advance on the clearer notions of van der Waals.

In truth, the four great theorists of the developing fields of kinetic theory and
statistical mechanics, Clausius, Maxwell, Boltzmann and Gibbs, never gave their
full attention to the problem of the attractive forces. Clausius set out the virial
theorem but never used it; he turned soon to work on electrical problems where he
developed a variant of Weber’s theory of central forces between particles that depend
on their motions as well as their positions. Maxwell derived the expression for the
second virial coefficient, but only when pushed by having to referee Andrews’s
paper, and he never exploited it. In his last years – he died of cancer in 1879 at the
age of 48 – his main interest in this field was the behaviour of highly rarefied gases.
Boltzmann’s real concern was the newly developing field of statistical mechanics,
a generalisation of kinetic theory, and so with the link between mechanics and
thermodynamics. This led him into the great problem of irreversibility [197] –
how are the time-reversible laws of mechanics compatible with the irreversible
operations of thermodynamics? He continued also to worry about the problem of
the heat capacities of gases, a problem that was not to be solved in his lifetime. His
most influential contribution to the field of cohesion was the perceptive commentary
on van der Waals’s work in the second volume of his book on gas theory [198].
Gibbs came to the field with his masterly studies of classical thermodynamics in the
1870s and only later turned his attention to statistical mechanics [199]. When he
did, his concern was with the foundations of the subject, not with its application to
the properties of gases and liquids. Like Maxwell, he was sufficiently worried by the
problem of the heat capacity of gases to doubt if his deductions had a wider range
of applications than to the formal models that he had set up. There was, moreover,
the distraction (as it turned out) of the views of the positivists, the ‘energeticists’
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and the anti-atomists. Their opinions were influential in France and Germany at
the end of the 19th century and were not fully overcome until the first decade of the
20th [200]. This movement is relevant to the study of cohesion only in that those
who did not accept the need for atoms and molecules could not work on the problem
of the forces between them. There is, logically, no reason why they could not have
tried to develop a non-particulate theory of the cohesion of liquids, as some of the
‘elasticians’ had for solids, but none seems to have made the attempt.

The problems that drew the attention of the major theorists were more pressing
and more topical than those raised by van der Waals’s work; cohesion was not a new
topic at the end of the 19th century! Most physicists, then and now, would think also
that these other problems were deeper and more important. So for the forty years
after the publication of the thesis, the problems it raised became the major concern
primarily of the growing Dutch school of physicists. Some of their efforts were
defensive, for the Andrews–van der Waals picture of continuity between the gas and
liquid states was not everywhere accepted at once. There was resistance particularly
in France and in Italy, and new experiments cast doubt on the simple picture. These
doubts were reinforced by widespread scepticism about the identity of the ‘particles’
in the two states, a view that went with the notion that the liquid state persists above
the critical point as a solute dissolved in the compressed gas [201]. William Ramsay
was one of the first doubters [202] but he later recanted [203] and his collaborator,
Sydney Young, made some of the most precise measurements that we have on the
relation between pressure, volume and temperature in the critical region [204].
The sources of the errors that seemed to refute Andrews’s work were several:
impurities, density gradients arising from the great compressibility of fluids near
their critical points, and the slowness of these states to reach equilibrium because
of the impurities and the high heat capacities of critical fluids. It was well into the
20th century before the situation was clarified, the brunt of the refutation falling on
the experimental school established at Leiden by Kamerlingh Onnes [205] who had
succeeded Rijke in 1882. A major step in unmasking the effects of impurities was a
systematic study of binary mixtures and the development of the theory of their phase
behaviour by van der Waals [206]. Even when some measure of agreement about the
correctness of the Andrews–van der Waals picture had been restored the identity of
the particles in the two phases was not universally accepted. As late as 1904, Émile
Mathias, who had done good experimental work in the field, wrote to van der Waals
to say that he thought that this idea was flawed: “The great defect, in my view, of
your theory of the identity of the liquid and gaseous molecules is that one cannot
understand at all the simple phenomenon of the liquefaction of gases.” [207]

Van der Waals’s equation, when supplemented by Maxwell’s equal-area rule,
leads in principle to a complete determination of the vapour pressure of the liquid
as a function of temperature, and of the co-existing or orthobaric densities of liquid
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and vapour. In practice, the calculation cannot be made explicitly, as van der Waals
soon found out after some trials. (A parametric solution for Clausius’s modified
equation was found by the young Max Planck in 1881, and is easily adapted to the
original equation [208].) In the course of his struggles van der Waals discovered
that the vapour pressures and orthobaric densities of different liquids resembled
each other more closely than they conformed to the predictions of his equation.
This resemblance became apparent if he plotted the dimensionless ratio (pσ/pc) as
a function of (T/T c), where pσ is the vapour pressure. His own equation could
be expressed in terms of such ratios in a universal or reduced form. If we define
π = p/pc, ω= V/V c, and τ = T/T c, then his equation can be written

(π + 3ω−2) (3ω − 1) = 8τ. (4.30)

(Such a reduction can be made for any equation of state that contains only two
adjustable parameters and the universal gas constant, R [209].) Of more value,
however, than this explicit form was what came to be called the principle or law of
corresponding states, namely that π is a function of ω and τ that is, approximately,
the same for all substances; or, formally,

π = f (ω, τ ), (4.31)

where the function f (ω, τ ) is a universal function, although not necessarily of the
form of eqn 4.30. This law was obtained and applied by van der Waals in 1880
as an outcome of his struggles to fit vapour pressures to his original equation. The
long papers in Dutch [210] became more widely known through the abstracts in the
Bleiblätter [211]. These were the work of Friedrich Roth at Leipzig, who published
in the next year a complete translation of the thesis itself, with some revisions by
the author [212]. It was from this time that van der Waals’s work became to be more
fully known outside the Netherlands.

The practical value of the law of corresponding states was immense; one had for
the first time a reliable, but not exact, method of predicting any of the thermodynamic
properties of a hitherto unstudied substance from a very sparse set of observations,
most simply from two of the critical constants, for example, pc and T c, but other
sets, not necessarily critical, could be used. The law proved invaluable in estimating
the conditions needed to liquefy hydrogen and later helium, so that James Dewar,
a pioneer in gas liquefaction, called it the most powerful physical principle in the
field to be discovered since Carnot’s theorem [213]. But what were the theoretical
principles that lay behind this powerful law? Kamerlingh Onnes, then a young
assistant to van der Waals’s friend Johannes Bosscha at Delft, had heard of van der
Waals’s results by word of mouth and soon perceived that behind this principle of
similarity of the macroscopic physical properties there must be a similarity in the
underlying molecular force fields [214].
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He starts by making three assumptions that are to be found in van der Waals’s
thesis: the necessary assumption that the temperature is a measure of the mean
kinetic energy of the molecules in all states of matter, that the effects of the attractive
forces can be subsumed into a pressure of the form a/V 2, and that the molecules can
be regarded as miniature solids, by which he and van der Waals [215] understood
that they were perfectly elastic bodies that retained their size and shape in all
physical encounters. These considerations led him to a generalised form of van der
Waals’s equation,

RT = (p + a/V 2)V"(m,V ), (4.32)

where m is the volume of a molecule and V the volume of a fixed amount of
substance, e.g. one mole in modern language, and " is an unknown function. It is,
however, not a function of m and V separately but only of their ratio, so he wrote it

"(m, V ) = (1 − rm/V )χ(m/V ), (4.33)

and he proposed that the function χ be expressed as an expansion in powers of the
density,

χ (m/V ) = 1 + B(m/V ) + C(m/V )2 + · · · (4.34)

Van der Waals’s equation is recovered if one puts r = 4 and χ(m/V ) = 1. We
have here, in this equation of 1881 an incomplete form of what he was to develop
twenty years later, the modern ‘virial equation of state’. The first general expansion
of the pressure in powers of the molecular density was, in fact, made in 1885,
by M.F. Thiessen, a German working at the International Bureau of Weights and
Measures at Paris [216]. He wrote

p = RTρ (1 + T1ρ + T2ρ
2 + T3ρ

3 + · · ·), (4.35)

where Ti are functions of temperature only. He obtained also expansions of the heat
capacities in powers of the density and inverted these to get expansions in powers
of the pressure. He estimated T1, our second virial coefficient, from Regnault’s
results for carbon dioxide, but made no attempt at a molecular interpretation of
his equation which seems to have had little influence.

Kamerlingh Onnes does not, at this stage, try to go beyond eqn 4.34. After a long
discussion of the kinetic explanation of evaporation and condensation he comes to
what he describes as his “second step” beyond van der Waals. He touches first on
the justification for the use of the mean-field approximation, namely that there is an
internal pressure of the form a/V 2 only if the range of the attractive force is large
compared with the molecular size – the condition that was clear to Laplace and
Poisson but which van der Waals had obscured. He notes that van der Waals had
provided the evidence that the condition is not fulfilled and adds firmly: “But if the
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decrease in the law of attraction is so rapid for it to be felt only at a collision, then
our argument is no longer applicable”. He does not elaborate, perhaps out of respect
for the views of van der Waals who was submitting his paper to the Royal Academy
of Sciences. He goes on instead to discuss the distinction between physical and
chemical association of molecules into groups:

By physical associations I mean those for which we can ignore the mutual interactions of
parts of molecules, so that we can consider, to a sufficient approximation, the motion of one
molecule with another as the sole result of actions emanating from the similarly situated
points [217] in the molecules that we take to be the centres of molecular attraction. Under
these circumstances the chemical constitution of the molecule has no effect. On the contrary,
in chemical associations – which can be classed with the phenomenon of crystallisation –
the points from which the forces emanate that cause the association are no longer those
similarly situated points . . .

(We note here a persistence of the notion that we first met in the work of Newton and
his followers, that crystallisation involves a lack of spherical symmetry; that is, prop-
erties of ‘sidedness’ or ‘polarity’ are required. There is a confusion here, which the
French ‘elasticians’ would probably not have made at this time, between the fact that
a molecule in a crystal is not in a spherically symmetrical environment while, on the
average, a molecule in a liquid is, and the erroneous implication that a non-spherical
force field is needed to induce crystallisation.) Kamerlingh Onnes continues:

By the nature of our hypothesis we do not consider chemical associations. Thus the law
we shall establish will apply only when the molecules can be considered as similar bodies,
acting on each other through forces emanating from similarly situated points. So that the
departures that we shall observe from this law should be attributed to the fact that the
molecules are no longer similar elastic solids of almost constant dimensions, and that their
mutual actions are not inversely proportional to a certain power of the separation of the
similarly placed points, but the influence of a difference of constitution in different parts of
the molecule, and the resultant chemical interactions, make themselves felt in the laws of
molecular motions. . . . Thus we arrive at the following law: by choosing appropriate units
of length, time, and mass, it is possible, according to our new hypothesis concerning the
molecular forces, to deduce from the state of motion of one substance an allowed state of
motion of the same number of molecules of another substance. The speeds and external
pressure should therefore be replaced by corresponding values. If the isotherms have the
property of correspondence then the ratios of reduction are equal to the ratios of the pressure,
volume, and absolute temperature of the critical state. . . . It seems to me, therefore, that in
what is said above we have given the simplest explanation of the law discovered by Prof.
van der Waals, by means of the principle that similarity of the isotherms and of the [liquid–
vapour] boundary curves is the immediate expression of the similarity of the molecular
motions. [218]

He then suggests that the principle might be applied to comparisons of capillary
constants, viscosity and thermal conductivity of fluids. Thirty years later, when he
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and his eventual successor at Leiden, W.H. Keesom [219], were writing an article
on the equation of state for the Encyklopädie der mathematischen Wissenschaften,
they expressed his conclusions more concisely and, indeed, more clearly:

First, that the molecules of different substances are completely hard elastic bodies of a
common shape; second, that the long range forces that they exert emanate from similarly
situated points and are proportional to the same function of the corresponding separation of
these; and thirdly, that the absolute temperature is proportional to the mean kinetic energy
of the translational motion of the molecules. [220]

Van der Waals at once perceived the value of these ideas and communicated the
paper to the Academy on 24 December 1880. He had apparently not known of
Kamerlingh Onnes until then, but the contact between them grew into a close
personal and professional friendship. When Kamerlingh Onnes went to Leiden in
1882 he established there the leading physics laboratory for the study of fluids and
fluid mixtures at high pressures and down to low temperatures. This effort was
balanced by the theoretical developments of van der Waals in Amsterdam on the
equation of state of pure and mixed fluids and on capillarity.

Ideas similar to those of Kamerlingh Onnes, but more obscurely expressed, were
put forward by William Sutherland [221], a free-lance theoretical physicist who
worked in Melbourne. As early as 1886, when he was 26, he was writing to his
brother: “My head is churning now with theories of molecular force for liquids and
solids – hyperbolic and parabolic for gaseous molecules and elliptical for liquids;
but in solids the law changes and the question is how?” [222]. He apparently then
thought that there were different forces in different states of matter, the view that van
der Waals was fighting against. His notions on hyperbolic and parabolic trajectories
were to see the light of day twenty years later in a paper that comes closer to
Kamerlingh Onnes’s position [223]. It is not as clear as even Kamerlingh Onnes’s
first attempts but it is evidence that the idea that intermolecular forces had a ‘family’
resemblence to each other was in the air; other similar enquiries into the origin of
the law of corresponding states are cited by Kamerlingh Onnes and Keesom [220].
In the intervening years Sutherland had published a long series of papers in the
Philosophical Magazine in which he had put forward a range of ideas of varying
merit. He tried at first to convince his readers that the attractive force varied always
as r−4, where r is the separation of the two molecules. He knew that this form of
force generated a term in the energy of the fluid that was logarithmic in the volume,
and that the laws of thermodynamics did not allow for such a term, but he tried to
argue the problem away. Only one of his ideas struck a chord at the time, and indeed
is remembered to this day [224]. If molecules have hard spherical cores and are
surrounded by attractive fields then, he argued, two molecules in free flight in a gas
might be drawn into a collision that would not have occurred in the absence of the
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attraction. This likelihood is greater the slower the speeds of the molecules and so
we expect their apparent collision diameters to increase as the temperature falls. If
the attractive forces are weak the viscosity of such a gas can be expressed

η = (1 + S/T )−1η0, (4.36)

where η0 is the viscosity of a gas of plain hard spheres which was known to vary
as T

1/2 , and where S is proportional to the potential energy of a pair of molecules
in contact. This result can be written in a different form,

(dln η/dln T ) = 1
2 + S/(S + T ), (4.37)

to show that the apparent power of T with which η varies, changes from 1
2 at

infinite temperature to 1 at T = S. Such a variation comes closer to matching the
experimental results than any other expression of its day and, for all its simplicity,
is perhaps the most important advance in relating viscosity to temperature that was
made from Maxwell’s time to the 1920s. A similar proposal, but with the factor
for the increased number of collisions in the form exp(S/T ), was made by Max
Reinganum, a young German physicist trained at Leiden and Amsterdam who was
killed in the First World War [225].

The theory of the equilibrium properties of the imperfect gas advanced as slowly
as the kinetic theory of the transport properties, but with less reason since there were
no formidable mathematical difficulties in the way. The Dutch school explored the
extension of van der Waals’s equation to mixtures, a rich field that revealed many
fascinating kinds of liquid–liquid–gas phase equilibria and critical lines. The Dutch
rarely went beyond the closed form of the van der Waals equation and so were
unable to extract any more information about the intermolecular forces than he had
done in his thesis. Here his increasing reputation probably inhibited progress. The
systematic study of the deviations from the perfect-gas laws at low densities, where
the molecules interact only in pairs, would have unlocked new information on
the intermolecular forces, as Maxwell had shown in his referee’s report on
Andrews’s paper of 1876, but this route was followed only slowly, with hesitation,
and initially by those outside the Netherlands. The very success of van der Waals’s
equation was again a handicap for it led to most effort being put into improving
it and devising other closed-form equations. This was a natural way forward at a
time when it was supposed that a sufficiently diligent search would reveal the one
true equation of state of gases and liquids. New forms were tried and improvements
were made, although many of these were trivial, but it was a long time before it
was accepted that there was no universal equation to be found, and that a study of
the leading terms of a simple expansion of the pressure in powers of the density
would reveal more about the range and intensity of the intermolecular forces.
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Maxwell’s expression for the second virial coefficient was re-discovered after
twenty years, published by Boltzmann in 1896 [226], and exploited by Reinganum
[227], who wrote the leading correction to the perfect-gas laws in the form

p(V + B) = RT, (4.38)

so that his B is the negative of our second virial coefficient. Let us move to the
modern convention and write, from Maxwell’s first integral;

B(T ) = −2πN
∫ ∞

0
(e−u(r )/kT − 1)r2dr, (4.39)

where B is the second virial coefficient for N molecules, and u(r ) is the intermolec-
ular potential energy of two molecules at a separation r . Reinganum’s model was
that of hard spherical molecules of diameter σ , surrounded by an attractive force
field that varies as r−m . He argued first that m was equal to 4, as Sutherland had
done, but then chose m to be equal to 4 + δ, where δ is a small positive constant,
in order to avoid the logarithmic divergence in the total energy and in B. Let us
choose the index more generally and work in terms of the intermolecular potential
u(r ) rather than its derivative, the force, and so write

u(r ) = +∞ (r < σ ) and u(r ) = −αr−n (r ≥ σ, n > 3). (4.40)

We can now expand the exponential and integrate term by term to get

B(T ) = 2
3πNσ 3 − 2πN

∑
i=1

(α/kT )iσ 3−in

i! (in − 3)
, (4.41)

where the first term, van der Waals’s b, is four times the volumes of the molecules.
Reinganum proceeded slightly differently. For separations greater than σ he separ-
ated the integral into two terms, the exponential and the term −1; he then integrated
the first by expanding the exponential, and integrating by parts from σ to an upper
limit, l. He combined the second term with the integral from 0 to σ . After the upper
limit becomes infinite, he obtained

B(T ) = 2
3πNσ 3 e−u(σ )/kT − 2

3πN
∑
i=1

n(α/kT )iσ 3−in

(i − 1)! (in − 3)
. (4.42)

Since u(σ ) is negative he wrote the first term exp(c/T ). He chose this route to
emphasise, as Sutherland had done, that molecules are brought into collision by the
attractive force and so the positive term in B, the co-volume, is larger at low temper-
atures. The two expressions for B can be shown to be equivalent by expanding the
exponential in eqn 4.42 and re-arranging the terms. The second form is not now used.

Sydney Young had made some precise measurements of the pressure of iso-
pentane gas as a function of density [228], from which Reinganum calculated the
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Fig. 4.3 The second virial coefficient of isopentane. The circles are the values calculated
by M. Reinganum [227] from the measurements of the pressure by S. Young [228], and the
triangles are the more recent measurements of K.A. Kobe and his colleagues [229]. The line
is the value calculated from a van der Waals equation that has been fitted to Reinganum’s
value of B(T ) at the critical temperature.

deviations from the perfect-gas laws and compared them with his new theoretical
expression, eqn 4.42, and with the corresponding expression that follows from van
der Waals’s equation, namely

B(T ) = b − a/RT . (4.43)

He observed that the experimental results for B changed more rapidly with tem-
perature than this equation permits. Figure 4.3 shows the values of B calculated
from Young’s results, and some more modern ones [229]. Reinganum’s point can
be illustrated by choosing b to be V c/3, as van der Waals’s equation requires, and
then choosing a to fit the observed value of B at, say, the critical temperature. It is
seen that eqn 4.43 does not give a sufficiently rapid variation with temperature. It
is only when u(σ ) is much smaller than kT that eqns 4.41 and 4.42 reduce to the
form of eqn 4.43, namely

B(T ) = (2πNσ 3/3) [1 + 3u(σ )/(n − 3)kT ], (4.44)

and this condition is not satisfied at temperatures as low as the critical. The condition
that

| u(r )| � kT, (r ≥ σ ) (4.45)
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is one that ensures the correctness of the mean-field treatment of van der Waals, but
as Kamerlingh Onnes and (as we shall see) Boltzmann had already pointed out, it
is not one that real molecular systems satisfy at and below the critical temperature.

Reinganum did not try to take the matter further in 1901; in particular, he did
not try to fit his theoretical expression, eqn 4.42, to Young’s experimental results.
Possibly he was deterred by the difficulty of fixing uniquely the three unknown
parameters, σ , α and the index n. It was a difficulty that was always going to plague
this field. Possibly he also went no further because of a common feature of normal
science, as generally carried out by rank-and-file scientists, namely that whenever
one makes an advance one is too easily satisfied with that step, and does not consider
what further might be done. (The enormous number of papers published today
emphasises the small incremental advance made by each of them.) In a later paper
he supposed that forces between electric dipoles in the molecules might be the
origin of attractive force and tried, without much success, to interpret the viscosity
of a gas in terms of a ‘Sutherland’ factor of exp(c/T ), where c now arises from the
dipole–dipole potential [230]. Such electric interactions were to be much discussed
in the first twenty years of the new century.

The range of the attractive forces soon again became a matter of discussion and
even of controversy. We have seen that van der Waals, arguing from the ratio of
Laplace’s integrals H and K , had deduced that it was little longer than the size of
the molecular core. Kamerlingh Onnes had tentatively pointed out that a mean-field
approximation required that u(r ) be everywhere less than kT and so that the range
had to be large if the integral of u(r ), essentially the parameter a of van der Waals’s
equation, is not to be negligible. Boltzmann made the point more forcibly in 1898,
after having disagreed with van der Waals during a visit to the Netherlands [231].
The matter came up again in the context of the thickness of the surface layer of
a liquid, a discussion that marked the return to the scene of the phenomenon of
capillarity. We have seen that Poisson criticised Laplace’s assumption that he could
treat the surface of a liquid as a sharp boundary at which the density falls abruptly
from that of the liquid to that of the vapour, and had argued, correctly, that the
change of density must take place over a distance comparable with the range of the
attractive force. Neither he nor Maxwell, who was of the same opinion, contributed
anything useful to the problem of determining this thickness [232], which is not
easily measurable. The mirror-like surface of a still liquid shows that it is much
less than the wavelength of visible light which is around 0.6 µm or 6000 Å for the
yellow part of the spectrum. A lower limit was proposed by Quincke [182], who
prepared glass slides each coated with two tapering layers of silver of continuously
varying thickness, this thickness being almost zero along the line at which the two
silver wedges met. By studying the rise of water in the lens-shaped capillary tube
formed from two of these slides placed with their silvered faces together he was
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able to find how thick the intervening layer of silver needed to be before the strong
molecular forces between glass and water became negligible. This distance was
about 500 Å, and he found similar distances for the minimum range of the forces
of other triplets of materials. Van der Waals had quoted, and implicity discarded,
these estimates in his thesis, noting that Quincke himself had little confidence in
his rather indirect experiments [233]. Maxwell, however, accepted them at face
value and dismissed van der Waals’s figures as wrong – “so we cannot regard these
figures as accurate” [232]. He ignored Boltzmann’s estimates which were closer
to those of van der Waals [196]. Some years later, A.W. Rücker, a chemist who
studied surface films, wrote an extensive review of the field, and backed Quincke
and Maxwell [234]. The first clear evidence from thin films that molecular size and,
by implication, the range of the forces, were as advocated by van der Waals came
in the 1890s when Agnes Pockels [235] and, more explicitly, Lord Rayleigh [236]
showed that films of olive oil, etc., on water could be compressed to a point where
the the surface tension changed abruptly to an “anomalous” value. The area of
the film at this point was recognised by Rayleigh as that at which the surface
was covered by a close-packed monomolecular film. He and Pockels both arrived
at a thickness of about 10 Å and Rayleigh deduced that this was the size of a
molecule of olive oil. Thus we were left with a clash of experimental evidence
over the range of the forces, and with the theoretical paradox that van der Waals
had experimental evidence for a short range but a valuable equation of state that
Boltzmann and also Rayleigh [167] insisted required a long range. Kamerlingh
Onnes had tentatively allied himself with Boltzmann but a clearer acceptance of
the validity of Boltzmann’s criticism came from a member of the Dutch school
when P.A. Kohnstamm, then van der Waals’s assistant in Amsterdam, wrote in a
review in 1905:

If the radius of the sphere of action is large with respect to the molecular diameter, the
primitive form of Prof. van der Waals completely retains its validity for high densities; for
large volumes, the constant a of the equation of state becomes a function of temperature,
tending, as the temperature rises, to a limiting value; the dependence on volume remains
however as Prof. van der Waals has established; it is only at intermediate densities that there
is a transition region where a depends on volume and temperature. [237]

The first part of this sentence is an acceptance of Boltzmann’s point; the second
part, the “large volume” limit, shows an awareness of Reinganum’s findings but
overlooks the fact that these describe the real world, not one in which the attractive
forces are of long range, when a is truly a constant. He adds that if the range is
not large then the conclusions are no longer exact. And there, for the moment, the
matter had to be left without any satisfactory resolution. One by-product was a
point of nomenclature; it was Boltzmann who, in 1898, first wrote that “we call this
attractive force the van der Waals cohesive force”, and the ‘van der Waals force’
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it has remained to this day. Kamerlingh Onnes and Keesom found it necessary,
however, to distinguish between the real short-ranged “van der Waals forces” and
the hypothetical long-ranged “Boltzmann–van der Waals forces” [238]. Today we
recognize the distinction but do not use the second term. It was only after the precise
formulation of statistical mechanics by Gibbs in 1902 [239] and its application to
fluids by L.S. Ornstein in his Leiden thesis of 1908 [240] that a proper founda-
tion could be laid for calculating the “discontinuous distribution of the attractive
centres” [167] needed to tackle the problem of a fluid with short-ranged attractive
forces.

Van der Waals himself made only one attempt at guessing the form of the at-
tractive potential. He accepted the correctness of Poisson’s argument that the sur-
face of a liquid has a thickness of the range of this potential, and therefore that
Laplace’s theory, with its sharp interface, was incomplete. He set about develop-
ing a theory of the surface tension of a liquid with a diffuse interface. He was
not the only one to tackle this problem; Karl Fuchs, the professor of physics at
Pressburg (now Bratislava) [241] and Rayleigh [242] had had very similar ideas,
but van der Waals’s version was the most complete and it was he who worked out
the consequences [243]. His work marked a great advance in the theory of cap-
illarity and, as we can now see, in the development of the statistical mechanical
theory of non-uniform systems in general. We are concerned here, however, with
the particular law of force between molecules to which this work led him. He asked
what is the intermolecular potential, u(r ), that leads to the field outside a uniform
semi-infinite slab of material (e.g. a liquid surface) falling off exponentially with
distance z from the face of the slab [244]. It is perhaps surprising that this problem
is related to the solution of the Laplace–Poisson equation that Mossotti had stud-
ied (see Section 4.1); in both cases the solution is what we now call the Yukawa
potential [78]. An intermolecular potential of the form

u(r ) = −A(λr )−1e−λr (4.46)

between the molecules of the slab generates a field φ(z) acting on a molecule at
height z above the surface of the slab, where

φ(z) = −2π A(ρ/λ3)e−λz, (4.47)

and where ρ is the uniform number density of the molecules in the slab. The length
λ−1 is a measure of the range of both u(r ) and φ(z). If one now calculates Laplace’s
integrals for a slab with a sharp interface then one finds K = λH , thus again showing
that λ−1 is the range of the potential. The fact that the same form, eqn 4.46, satisfies
van der Waals’s problem and the Laplace–Poisson equation,

(∇2 − λ2) u(r ) = 0, (4.48)
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is more than a trivial coincidence is shown by the fact that the same identity holds
in spaces of all dimensions. The generalised Yukawa potential in a space of dimen-
sionality d is

u(r ) = −A(2/π )
1/2 (λr )−νKν (λr ), (ν = 1

2d − 1) (4.49)

where Kν is the modified Bessel function of order ν [78]. If ν = 1
2 then eqn 4.49

reduces to eqn 4.46. The Yukawa potential shares with Newton’s gravitational
potential the property that the total potential between two spheres with this inter-
molecular potential acts as if all the material were at the centre of the spheres.
For a short time van der Waals believed that eqn 4.46 was the true intermolecular
potential, but he did not use it again and it is possible that he came to realise that
it could not be the answer. His follower Gerrit Bakker used it, however, in a long
series of papers on capillarity from 1900 onwards [245] and J.R. Katz used it in
studying the adsorption of gases on the surface of a solid [246]. It then fell out
of favour but became fashionable again in the second half of the 20th century as
an admittedly unrealistic model potential whose attractive mathematical properties
make it useful for exploring theoretical ideas.

4.5 The electrical molecule

An intimate relation between electrical forces and chemical bonding had been a
commonplace of theoretical discussion throughout the 19th century. It stemmed
initially from the experiments and speculations of Davy and Berzelius, but it soon
became clear that such forces were only part of the chemical story, applicable to
many inorganic compounds but of little use in interpreting the composition and
structure of organic compounds. The relationship between atoms and electricity
was put on a quantitative footing with Faraday’s laws of electrolysis of 1832–1833
[247]. These laws carry the important implication that if matter is composed of
discrete atoms then electricity must also be ‘atomic’. This was brought out most
clearly, at least for British scientists, by Stoney in a paper to the meeting of the
British Association in Belfast in 1874 that was published in 1881 [248], and by
Helmholtz in his Faraday Lecture to the Chemical Society, also in 1881 [249].
Arrhenius’s work extended the understanding of conducting and non-conducting
aqueous solutions and it was this fruitful field that led to the coming of age of the new
discipline of physical chemistry, which is conventionally marked by the appearance
in February 1887 of the first issue of the new international journal, the Zeitschrift für
physikalische Chemie of Ostwald and van ’t Hoff. Such work created a theoretical
background in which electrical forces between atoms came to be accepted but it
had, at first, little impact on the discussion of cohesive molecular forces. Here the
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trigger was J.J. Thomson’s identification of the electron as a sub-atomic particle in
1897–1899 [250].

In the early years of the 20th century the younger generation of physicists working
in statistical mechanics was appreciating the limitations of van der Waals’s equation
and realising that it was unlikely that any simple closed form of equation would
describe fluids exactly. The density expansion of the pressure of a gas, advocated
by Kamerlingh Onnes and now written,

pV/RT = 1 + B(T )/V + C(T )/V 2 + D(T )/V 3 + · · · , (4.50)

led to a measurable coeffcient, B(T ), that was by then known to be rigorously
related to an integral of the potential between a pair of molecules. His definitive
paper on this ‘virial expansion’ came at just the right moment to reinforce the point
[251]. As we have seen, Reinganum had exploited the link between the second virial
coefficient and the intermolecular potential, and in his commentary he supposed
that there was an electrical origin to the potential that he wished to measure, but
his grounds for doing this were little more than the assertion that if atoms con-
tained electrons they must also contain positively charged entities if they were to
be overall neutral. The young Dutch physicists with whom he worked made this
connection also and the first twenty years of the new century were marked by a
stream of papers in which electrical models of molecules were devised and their
validity, or otherwise, tested by comparison of their integral with the observed
values of the second virial coefficient. There was one obvious difficulty; the ob-
served coefficient, as a function of temperature, is an integral of the potential over
separation, whereas what is really needed is an expression for the potential as an
integral (or other function) of the virial coefficient over temperature. There is no
simple way of making this inversion and the problem was, apparently, not given any
serious attention until the second half of the 20th century. Progress could therefore
be made only by guessing the form of the electrical forces involved, calculating
the virial coefficient by integration, and seeing if the calculated function had the
same magnitude and dependence on temperature as the known experimental results,
which were necessarily of less than perfect accuracy and were confined to a limited
range of temperature. The danger of this trial-and-error procedure is that there is no
guarantee that an incorrectly chosen potential may not yield a coefficient that is suf-
ficiently close to the observations for the potential to be deemed ‘in agreement with
experiment’.

Another problem which called for some complicated geometrical analysis, was
the calculation of the corrections to van der Waals’s parameterb at high gas densities,
a problem that we now phrase as the calculation of the higher virial coefficients,
C , D, etc., of eqn 4.50, for a system of hard spheres. This was tackled by van der
Waals himself but his efforts led only to partial results and to errors [252]. The work
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was completed by Gustav Jäger [253], Boltzmann [226] and J.J. van Laar [254]. At
the end of the day the third and fourth coefficients had been calculated correctly for
a system of hard spheres; no higher coefficient is known exactly even now. Such
results were important for calculating the free or available volume in a fluid of high
density but did not touch on the more pressing problem of the origin and form of the
attractive forces. Now that the battle over the correctness of the molecular-kinetic
theory was being won it became obvious that further advances of the theory required
some definite notion of the origin of the intermolecular forces. Van Laar was led
from a consideration of the hard-sphere problem to that of the attractive forces. He
estimated the second virial coefficient of a gas with an intermolecular force that was
attractive at large separations, became repulsive at shorter, and contained within
it a hard repulsive shell [255]. His model was more realistic or at any rate more
flexible than that of Reinganum but his integrations were carried out more crudely
and, like Reinganum, he made no useful comparison of theory and experiment.

Van der Waals’s son, also J.D. van der Waals, had succeeded his father as
the Professor of Physics at Amsterdam in 1908, having previously held a chair
at Groningen [256]. In the same year he took up the electrostatic interaction of
molecules. If, as was generally agreed, molecules contained charged sub-atomic
particles but were overall electrically neutral, then the simplest picture of the charges
was as an electrical doublet or dipole. This comprises a pair of equal and opposite
charges separated by a short distance. Its ‘strength’, µ, is measured by the product
of the magnitude of either charge and their separation. The energy of two dipoles at
a separation r depends on their mutual orientation, where the direction of a dipole
is conventionally represented by the line running from the negative to the positive
charge. The mutual energy of two equal dipoles at a centre-to-centre distance r ,
large compared with the charge separation within each molecule, can be expressed
in the modern system of units,

u(r ) = (µ2/4πε0r
3) f(ω), (4.51)

where ω denotes symbolically the orientations of the two dipoles with respect to
the line joining their centres. If the direction of one of the dipoles were to be
reversed then u would be changed in sign but unaltered in magnitude. It follows,
therefore, that the average of f(ω) over all orientations is zero. At first sight it would
seem that the dipole–dipole energy would make no net contribution to the second
virial coefficient since the integration to give B, eqn 4.39, has to be taken over
all orientations as well as all distances for non-spherical potentials. This is not so,
however, since u(r ) occurs in the exponential (or Boltzmann) factor and so there is
a net negative or attractive contribution to B. This much was known to Sutherland
and Reinganum and was put forward again by van der Waals Jr as a possible source
of the attractive intermolecular potential. The leading term in this potential can be
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found by expanding the exponential in eqn 4.39 and averaging over all orientations:

(e−u(r )/kT − 1) = − µ2〈f(ω)〉
4πε0r3kT

+ 1

2

µ4〈f(ω)2〉
(4πε0)2r6(kT )2

− · · · , (4.52)

where the angle brackets denote the average over all orientations. The first term
vanishes since 〈f(ω)〉 = 0, but the second contributes a negative or attractive term
to the potential and so to B. This effective potential falls off rapidly with distance,
namely as r−6, but there is a worrying complication in that it also falls off rapidly
with increasing temperature, namely as T−2, whereas the van der Waals expression,
eqn 4.43, varies only as T−1. Reinganum had shown that higher inverse powers
of temperature were needed to fit the experimental results, but it was not expected
that there would be no term in the first power. Van der Waals Jr argued that the
discrepancy, if there be one, might be misleading since we do not know how, if at
all, the dipoles change with temperature [257]. His father, who had submitted his
paper to the Academy, was lukewarm in his support for the increasingly popular
electrical dipoles. In an unusually metaphysical vein he had characterised the ability
of molecules to occupy space as one that was a property necessary and inherent
to matter but that the attractive forces, although apparently universal, were not
necessary. He said that these forces were not proportional to mass and so there was
no reason for the forces between unlike molecules to be the geometric mean of
those between like molecules. Experiment bore him out, for the values found for
a2

12 were not generally equal to the product a11a22, where 1 and 2 denote different
molecular species [258]. Such a relation would, however, be required if the forces
were due to the interaction of electric dipoles since, from eqn 4.51, we would
have u12 proportional to the product µ1µ2, while for the like interactions uii is
proportional to µ2

i .
Keesom tackled the problem of the dipole–dipole energy more systematically.

He, like Reinganum, followed Boltzmann’s treatment of statistical mechanics,
although Ornstein, in his Leiden thesis of 1908 [240], had shown the Dutch school
how to use the (to us) more transparent methods of Gibbs. Keesom checked, how-
ever, that his results agreed with those of Ornstein that were common to their two
methods of working. He found again that a spherically symmetrical attractive po-
tential generates a second virial coefficient in which the leading term is proportional
to T−1, and where all higher powers are present, while a dipole–dipole potential
leads to an expansion that contains only the inverse even powers of the tempera-
ture. He introduced the device, soon to become a standard procedure, of checking
the usefulness of theoretical calculations by superimposing experimental and the-
oretical log–log plots of B as a function of T . It is, however, a device that can be
misleading since the strong singularity in such a plot at the Boyle point (the tem-
perature at which B= 0) can distort the way in which the eye sees the agreement
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at other temperatures. The method fell into disuse after the 1930s. In this way he
obtained reasonable agreement between the dipole model and the observed virial
coefficients of hydrogen and oxygen, but not of nitrogen [259].

It was about this time that serious doubts became irresistible. Molecules are
formed of atoms, and atoms contain electrons, but there was at first no agreement
on how these electrons were arranged within the atom or where the balancing pos-
itive charges were placed. The whole picture became clearer when Rutherford’s
nuclear model with planetary electrons received impressive support from Bohr’s
quantal treatment of the optical spectrum of hydrogen atoms. The model was clas-
sically unstable, for the rotating planetary electrons, being subject to a continuous
centripetal acceleration, would radiate energy, lose speed, and collapse into the
nucleus. This problem was dismissed by quantal fiat, to the horror of many. Paul
Ehrenfest in Leiden wrote to Lorentz, in May 1913, “If this is the way to reach
the goal, I must give up doing physics.” [260] Nevertheless the representation
was here to stay. Its theoretical implications of spherically symmetrical atoms and
cylindrically symmetrical diatomic molecules, such as hydrogen and oxygen, con-
firmed new incontrovertible experimental evidence from the polarisation of gases
in electric fields that such molecules did not possess the supposed electrical dipoles.

The behaviour of matter in electric fields is a difficult problem that had exercised
the minds of physicists since the days of Faraday and Mossotti. The efforts of
Clausius [261], Lorentz, then in Leiden, and Lorenz, in Copenhagen [262] had led
to an equation relating the polarisation of a molecule to the dielectric constant of the
material. This constant, εr, is the ratio of the electric permittivity of the material, ε,
to that of a vacuum, ε0, and so is readily measured as the ratio of the capacity of
a condenser containing the material to that in a vacuum. The Clausius–Mossotti
equation, in modern notation, is

(εr − 1)/(εr + 2) = Nα/3ε0V, (4.53)

where α is the polarisability of a molecule, that is, the ratio of the strength of the
dipole moment induced in it to that of the local electric field, and where there are
N molecules in a volume V. According to Maxwell’s electrodynamics εr is equal to
the square of the refractive index, n, so that eqn 4.53 can be written

(n2 − 1)/(n2 + 2) = 4πNαV /3V, (4.54)

where αV =α/4πε0 is the polarisability in units of volume. It was this second form
of the equation that Lorentz and Lorenz obtained, and they and others confirmed that
the function of the refractive index on the left of the equation is proportional to the
density of a gas or liquid, and independent of the temperature. The volumesαV were
found to be similar (generally within a factor of two) to the volumes of molecules
estimated from kinetic theory or from van der Waals’s equation [263].
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The first form of the equation holds for some but not all gases and liquids;
water and its vapour being notable exceptions. For such fluids the left-hand side
of the equation is large and increases further as the temperature falls. These are
the materials whose molecules have permanent electric dipoles. Peter Debye, a
Dutchman then working in Zürich [264], adapted a treatment that Paul Langevin
had used previously for magnetic dipoles to show that if the electric dipoles were
free to react independently to the electric field then eqn 4.53 becomes

(εr − 1)/(εr + 2) = (N/3ε0V )[α + (µ2/3kT )], (4.55)

where µ is the strength of the permanent dipole. The last term in this equation
reflects the small average orientation of the permanent dipoles in the applied field,
this orientation being opposed by the random thermal motions whose energy is
proportional to kT [264]. The term inµ is not present in eqn 4.54, even for molecules
with permanent dipoles, since at optical frequencies the dipoles do not have time
to re-orient themselves in the electromagnetic field and so do not contribute to
the overall polarisation. In liquids the molecules are too close together for their
dipoles to react independently to the applied field, but in gases Debye’s equation is
confirmed and allows one to measure the permanent dipole moments. In this way
it was shown that the simpler diatomic molecules, such as hydrogen, oxygen and
nitrogen, have no permanent dipole. Heteronuclear diatomic molecules do possess
such moments, a large one in hydrogen chloride and a small one in carbon monoxide,
for example. It was originally thought that carbon dioxide had a weak permanent
moment but we now know that its molecule is linear and centro-symmetric, so it
has no moment [265].

These results for the homonuclear diatomic molecules knocked away the foun-
dations of the work of Reinganum, van der Waals Jr and Keesom. The last was not
discouraged, however, and returned with an alternative hypothesis – perhaps such
molecules have a permanent quadrupole, that is, an array of four equal charges,
two positive and two negative, arranged so that the dipole moment of the array is
zero. Such an array was compatible with the presumed cylindrical symmetry of
the homonuclear diatomic molecules. He showed that two quadrupoles at a separ-
ation r have a mutual potential energy of a form similar to that of eqn 4.51, but
proportional to r−5 and with an orientational function, f(ω), of different form but
one which again averages to zero when integrated over all orientations. This leads
by an expansion similar to that of eqn 4.52, to an effective potential proportional
to r−10, and again to a leading term in the second virial coefficient proportional
to T−2 [266]. He noted, moreover, that an empirical expression devised by Daniel
Berthelot [267] was of the form B=β −αT−2. It was found later that this ex-
pression when written in terms of the critical constants is remarkably successful in
fitting the second virial coefficients of not-too-polar organic vapours [268].
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Debye observed that a permanent quadrupole in one molecule would induce a
dipole in a nearby polarisable molecule and that the energy of these two charge
distributions is always negative. It contributes therefore directly to the second virial
coefficient, with a leading term inT−1, without the need to average over a Boltzmann
distribution in order to get a non-zero term [269]. In practice, however, this term
was found to be smaller than the direct quadrupole–quadrupole term of Keesom
[270]. Of more importance is the interaction of a permanent dipole, if present, and
an induced dipole; the leading term in B is again proportional to T−1. Such terms
were first studied by Debye’s student Hans Falkenhagen [271].

There was, however, one great theoretical obstacle in the way of all this work that,
for many years, received no recognition from the leading practitioners. Debye had
undermined the dipole–dipole interaction as the origin of all intermolecular forces
by showing that many simple molecules had no dipoles. He and others then turned to
quadrupoles, which could not then be measured directly, but which were plausible
and compatible with the known or presumed shapes of the homonuclear diatomic
molecules and that of symmetrical linear molecules such as carbon dioxide. These
quadrupole moments became measurable in the 1950s. The most direct method was
that of David Buckingham and R.L. Disch who measured the optical birefringence
induced in carbon dioxide by an electrical field gradient – the quadrupolar analogue
of the Kerr effect [272].

It was clear, however, from the time of their discovery that the inert gases, argon,
neon and, later, helium [273], could be condensed to liquids and even to solids
quite as readily as hydrogen, nitrogen and oxygen. There are therefore attractive
forces between their molecules. The second virial coefficients of the inert gases
were measured at Leiden from 1907 onwards, and later also elsewhere [274]. Such
monatomic molecules have, it was correctly presumed, true spherical symmetry
and so no dipole, quadrupole, or any higher multipole, if these electric moments
are expressed by traceless tensors of the form needed to describe their electro-
static interactions. None of the electrostatic calculations that had been made could
describe the behaviour of these substances. Another flaw in the calculations was
that they could not account for the strong cohesion of the liquids. Such success as
the gas calculations had had rested on the favourable alignments of each colliding
pair. Such alignments are not possible between all pairs in a dense liquid or solid
where each molecule can have up to 12 nearest neighbours. The fact was that ‘the
emperor had no clothes’, but this was accepted only slowly and with reluctance.
Thus Debye recognised that molecules with what we call ‘traceless’ quadrupoles
could have no electrical interaction potential, and that one would have to go to the
next term, that is, an octopole, although he did not then name it [264]. His associ-
ate Fritz Zwicky thought that this might be the first non-vanishing moment for
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argon, ignoring the fact that a spherically symmetrical distribution of charge has no
non-vanishing moments [275]. Such a regress to ever-higher moments was not a
happy route to follow and Debye turned instead to polarisability terms, but without
being able to specify the nature of the charge distribution that was doing the polar-
ising. He rightly observed, however, that a spherical distribution of charge would
have no repulsive force either and, in 1920, tried at last to remedy the situation with
a dynamic model of a hydrogen atom with an electron moving around a nucleus,
so that it was only on a time average over its orbit that the atom had spherical
symmetry and so no dipole moment [276]. This was a shrewd guess at what turned
out to be the ultimate quantal resolution of the problem. It was a later suggestion
by Debye that led to this resolution but even his dynamic model could not solve the
difficulty in a classical electrical context.

Keesom seems never to have considered seriously the electrostatic impasse posed
by the inert gases. In his early work of 1912 he had explored an empirically chosen
attractive potential proportional to r−n , where r is the separation, and had found
that n was apparently about 4 or 5 for argon [277]. In a footnote ten years later he
used this result to argue against the high inverse powers of r required by Debye’s
multipoles [278], but he never faced the real problem of the inert gases.

Such unwillingness to ‘face the facts’ is a common and often justifiable tactic of
research. Science would advance more slowly if its practitioners worried at each
stage about every real or apparent obstacle or inconsistency. We have seen earlier
instances of this strategy. In the 18th century and later some worried about ‘action
at a distance’ in both gravitational and cohesive forces; others accepted that it
seemed to occur and went on to explore the consequences of this supposition. In
the 19th century the inconsistency between the classical law of the equipartition of
energy and the observed heat capacities of gases was held by some to be a strong
argument against the kinetic theory of gases; others shrugged their shoulders and
continued to use the theory. In the early years of the 20th century the ‘planetary’
structure of the atom was clearly unacceptable in classical electrodynamics, but it
seemed to fit the facts and was soon rescued by the early quantum theory, obscure
though the basis of that was. Such ‘clouds’ over classical theory, as Kelvin termed
them [279], were eventually to lift, but those studying intermolecular forces with
classical electrostatic models were not so lucky; they were facing a real difficulty.

Chemists too had their problems, for the origin of the forces of chemical bonding
was as obscure as that of cohesion. Within Nernst’s group in Berlin there again arose
the Newtonian suggestion that the two might be the same or closely related [280].
Friedrich Dolezalek, a Hungarian-born student of Nernst’s, tried to interpret the
excess thermodynamic properties of liquid mixtures in terms of chemical bonding
between the components [281]. A few of his examples involved what we now call
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‘hydrogen bonding’ [282], but most of his cases were better explained by a lack
of balance between the intermolecular or van der Waals forces between the like
and unlike molecules. This point was made strenuously by van Laar, perhaps the
most combative member of the Dutch school [283]. All these physical and chemical
problems were to be resolved by the new quantum mechanics from 1925 onwards.

Disillusion with the electrostatic models led to a partial retreat to a position
that Laplace would have appreciated. The evidence was that the cohesive forces
were strong compared with the gravitational, weak compared with the Coulombic
force between two electrons, and of shorter range than either. The simplest attractive
potential that met these criteria is one proportional to −r−m , in which the index m
is chosen to be large with respect to unity. The non-zero compressibility of liquids
and, even more convincing, of solids at low temperatures is evidence not for
a hard core but for a Boscovichian repulsive potential proportional to + r−n ,
with n > m. The whole potential could therefore by represented by a trial function
of the form

u(r ) = αr−n − βr−m, (4.56)

where α, β, m and n are four adjustable parameters. For convenience this form is
abbreviated to an (n,m) potential.

The first use of this function is commonly ascribed to Gustav Mie in a paper of
1903 [284], although matters are not quite so clear-cut. He proposed a model of
liquids and solids in which the monatomic molecules sit on or near the sites of a
fixed lattice. The energy of the system is expressed in terms of a Taylor expansion in
the displacements from the lattice sites. This leads him, via a repulsive potential of
the form of the first term of eqn 4.56, to a contribution to what we should call the neg-
ative of the configurational energy of the system [die innere Verdampfungsenergie]
of the form −AV−n/3. He notes that a van der Waals treatment of the contribution
of the attractive energies gives a term of the form BV−1, and so writes, in effect,
the sum as −(AV−n/3 − BV−1). He finds that for the heavier metals n seems to be
about 5. He does not, however, suggest explicitly that the form of the second term
implies thatm= 3, since he presumably knew that this choice leads to unacceptable
consequences – the energy of a solid would depend on its shape and the second
virial coefficient of the gas would be infinite. Grüneisen used the same form of
the energy in his papers on the relations between the compressibility, heat capac-
ity and coefficient of thermal expansion of metals [285], and he notes explicitly
the divergence implied by m= 3. Only Simon Ratnowsky, a student of Debye’s
at Zürich, was rash enough to assume that an energy of the van der Waals form
led to an attractive potential of the inverse third power [286]. All were hoping, as
Einstein had been earlier [287], that the form of the intermolecular potential would
be universal, that is, if it were of the form of eqn 4.56 then the indices m and n
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would be the same for all substances. By 1912 Grüneisen was convinced that this
was not so, at least for the metals, but it was an idea that was to be resurrected thirty
years later in applications of the law of corresponding states to the inert gases and
the simpler molecular substances.

Fritz Zwicky made the first attempt at calculating the second virial coefficient for
an (n,m) potential in 1920 [288]. He favoured larger values than those working on
solid metals, possibly influenced by Debye’s multipole models, choosingm= 8 and
thinking that n was probably about 9 or 10. He made, however, only crude numer-
ical integrations for m= 8 and n= 9. This model potential came of age when J.E.
Lennard-Jones [289] used it more systematically in a series of papers that started in
1924. His first calculation was of the viscosity of a gas with an (n, 2) potential. It had
only recently become possible to get at the information on intermolecular forces
that was known to be locked up in the transport properties of gases and gas mixtures:
viscosity, mass and thermal diffusion, and thermal conductivity. The problem, as
we have seen, was that of calculating the departure of the velocity distribution
from that of the equilibrium state. For many years no general solution could be
found, in spite of some serious effort; even the great mathematician David Hilbert
made little progress [290]. During the first World War two independent solutions
were found for the general case of an arbitrary intermolecular potential: one by
Sydney Chapman, then at Greenwich [291], and one by David Enskog in Uppsala
[292]. Chapman’s solution derived from Maxwell’s work [293] and Enskog’s from
Boltzmann’s [294]; fortunately they agreed, apart from some easily corrected minor
errors of Chapman’s. The implementation of these solutions required the calculation
of the angles of deflection of colliding molecules and the insertion of these angles
into some formidable multiple integrals. This was a job that was undertaken only
slowly and unsystematically. C.G.F. James, in Cambridge, took a potential of the
form (∞,m), now called Sutherland’s potential since it is a hard core surrounded
by an mth power attractive potential. He calculated the integrals for m from 3 to 8
but only at high temperature, that is, in the limit where |u(σ )/kT | � 1, where u(σ )
is the energy at contact [295]. Chapman himself calculated the integrals for a
purely repulsive potential, with n= 4, 6, 8, 10, 15 and ∞ [296]. Lennard-Lones
was a junior colleague of Chapman’s at Manchester in the early 1920s and it was he
who adapted Chapman’s solutions to obtain the viscosity of an (n, 2) gas [297]. He
chosem = 2 because it simplified the calculation, although he knew that such a low
index was physically inadmissible for the equilibrium properties of the gas, such
as its energy and second virial coefficient. He found that the viscosity of an (n, 2)
gas with weak attractive forces varies with temperature in a way that we can
express as

η ≈ T
1/2{S/T + [T0(n)/T ]2/n}−1, (4.57)
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where T0(n) is a temperature that changes with n but which remains finite when n
becomes infinite, when eqn 4.57 reduces to Sutherland’s expression. Much more
useful were the results that he obtained in the second part of his paper where he
calculated exactly, by a series expansion in reciprocal temperature, the second
virial coefficient for an arbitrary (n,m) potential. The powers of temperature in
the series are − (1/n)[3 + j(n − m)], where j = 0, 1, 2, etc., and so the expansion
is less simple than those found for the electrostatic or multipole interactions.

By 1924 the inert gases had become the first choice for testing new gas theories
since their molecules are truly spherical and their collisions perfectly elastic. Of
these, argon was the most plentiful and the gas for which there was the widest range
of experimental results. The second virial coefficient had been measured at low
temperatures (below 20 ◦C) by Kamerlingh Onnes and his student C.A. Crommelin
in 1910 [298], and over a wide range by Holborn and Otto in Berlin in 1924 [299].
These last results became available just in time for Lennard-Jones to use them. The
viscosity of the gas had been measured in Halle [300] and in Leiden [301], and
finally the crystal structure had recently been determined in Berlin; it was a face-
centred cubic structure, one of the two close-packed arrays, with a lattice spacing
of 5.42 ± 0.02 Å at 40 K [302], a figure that implies a nearest-neighbour distance
less by a factor of

√
2, that is a distance of 3.83 ± 0.02 Å.

Lennard-Jones’s first conclusion was that the gas properties alone did not deter-
mine uniquely the four parameters of an (n,m) potential. He chose m= 4, appar-
ently since this was the value favoured by Keesom, and found that n was probably
between 10 and 13, two of the values for which he had computed the virial coeffi-
cient, with a preference for the higher figure. His viscosity calculations for an (n, 2)
potential were of no value to him here. When, however, he introduced Simon’s
measurement of the nearest-neighbour distance in the crystal, which he took to be
3.84 Å, then he had a firm figure for the minimum of the potential. This is not
exactly at this distance but is somewhat greater because of the mutual attractions
of the atoms that are not nearest neighbours, but the correction is calculable. The
calculation was, however, based on the assumption that the atoms are at rest on their
lattice sites at zero temperature, a false assumption that quantum mechanics was
soon to destroy. He now found that no potential fitted both Kamerlingh Onnes’s
values of the virial coefficient and Simon’s lattice spacing, but that Holborn and
Otto’s values and the lattice spacing were consistent with a (13, 4) potential, which,
he concluded, was probably close to the true form.

Simon did not try to marry his crystal work with the gas work but tried to extract
information about the intermolecular potential of argon by exploiting the methods of
Mie, Grüneisen and Max Born [303] for solids composed of atoms with an (n,m)
potential that perform (classical) vibrations about their equilibrium lattice sites.
Such vibrations are controlled by the curvature of the potential near its minimum
but the coefficients of thermal expansion and isothermal compressibility depend in
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greater detail on the shape of the potential well in the crystal. The two approximate
relations that Simon and von Simson drew from Born’s analysis are

nm = 9V/κU, (4.58)

and

(n + m + 3)/6 = γ ≡ αV/κCV , (4.59)

whereU andCV are the lattice energy and heat capacity of a crystal of volumeV , and
α and κ are the coefficients of thermal expansion and isothermal compressibility.
The dimensionless parameter, γ , defined by the second half of eqn 4.59, is called
Grüneisen’s constant and is found to change little with temperature for many metals.
Simon and von Simson deduced from some measurements by Arnold Eucken of
the speed of sound in the crystal that this constant is about 4 or 5 for argon, which
is about twice that for a typical metal. The lattice energy could be estimated from
the change with temperature of the vapour pressure of the crystal, and κ , rather
crudely, from the Einstein frequency of the lattice vibrations determined from the
departure of the heat capacity from the classical value of 3R of Dulong and Petit.
These rough calculations gave them a value of 135 for the product nm which, with
Grüneisen’s constant, led to the figures n= 15 and m= 9. These are considerably
higher than Lennard-Jones’s preferred figures of 13 and 4. Then, and for the rest of
the century, this field was often to suffer from calculations that took only a limited
range of information and drew conclusions from it that were incompatible with the
information from other properties that were known, or should have been known to
the authors of the calculations.

The ‘reduction’ championed by Clausius and van der Waals required that the
same molecular entities, with the same forces between them, occurred in all three
states of matter. This view became implicitly accepted in the early part of the 20th
century with the rout of the anti-atomists. It was reinforced in the 1920s by the
careful work of Lennard-Jones. He could do nothing quantitative with liquids, the
theory of which had not advanced beyond that of van der Waals, but he was careful
to consider all the evidence from the equilibrium and transport properties of the gas
and the equilibrium properties of the crystal. His early work on crystals, like the
approximations of Born, Grüneisen and others, was based on the two assumptions of
the validity of classical mechanics and the ascription of the intermolecular energy to
a sum of the pair potentials acting between the molecules. No other course was open
to him but neither proved to be adequate after the advent of quantum mechanics,
and the consequences of these restrictions are discussed below in Sections 5.4
and 5.2 respectively.

Lennard-Jones’s use of the transport properties of gases was hampered by the
absence of calculations of the integrals needed for realistic (n,m) potentials. Some
progress was made when his colleague H.R. Hassé [304], accepting the preferred
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value of m= 4, calculated the viscosity for (∞, 4) and (8, 4) potentials [305]. The
first is the Sutherland potential, freed from the restriction to high temperatures
or weak attractive forces. The second was not chosen for any particular realism
in Hassé’s or Lennard-Jones’s eyes but because 8 is twice 4, a circumstance that
simplified the calculations. Both potentials fitted quite well the viscosities of seven
gases, but there was an unresolved problem. The parameters of the second, more
realistic, potential for argon which fitted the viscosity were not those that fitted the
second virial coefficient. The discrepancy was large – about 66% in the strength of
the attractive potential. Hassé and Cook noted at the very end of their paper that
their method of calculation could be used also for a (12, 6) potential but there was,
at that time, no reason to prefer 6 to 4 and it was nearly twenty years before this
suggestion was followed up.

A parallel problem to that of the inert gases was that of the physical properties
of certain cubic crystals in which the molecular entities were known to be simple
charged particles, or ions, that are iso-electronic with the atoms of the closest inert
gas in the chemists’ Periodic Table, for example, Na+ with neon, K+ and Cl− with
argon, and similarly for the doubly-charged ions Ca2+ and S2− which are both also
iso-electronic with argon. Born and Landé tried first to use Bohr’s atom model
to explain the structure and properties of these ionic crystals but found that it led
to too-high values of the compressibility [306]. They turned therefore to a (9, 1)
model in which the attractive term is the strong Coulomb potential between ions
of opposite charge; this term is, of course, repulsive between ions of the same
sign but these are much farther apart [307]. Polarisation forces between an ion
and the dipole it induces in a nearby ion could generally be neglected since their
effect is nullified by the high symmetry of the crystal. Born and Landé’s repulsive
index of 9 conflicted with the value of 14 that Lennard-Jones had deduced from
the properties of KCl and CaS [308], and had again found satisfactory for the
repulsive potentials of helium and neon [309]. In a later paper he proposed n= 10
for the neon-like ions and n= 9 for the argon-like, but with the proviso that the
effective value rose from 9 to 14 at larger distances in order to bring Ar, K+, and
Cl− into a common form [310]. At this point he considers briefly m= 6, only to
dismiss it.

The progress made with the inert gases and with simple ionic crystals did not
disguise the fact that the main problem remained unsolved. In spite of many in-
genious calculations for Sutherland potentials, for electrical dipole and multipole
potentials, and for empirically chosen (n,m) potentials, no sound conclusions had
been reached about the form of the van der Waals attractive force or the repulsive
force, both of which were a universal feature of molecular systems.

The Faraday Society had always prided itself on its ability to choose for its
General Discussions topics that were ripe for a detailed exploration but in November
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1927 they made an unfortunate choice by deciding to discuss Cohesion and related
problems [311] at a time when, had they but known it, the subject was about to be
transformed. The papers presented were a miscellany. A few speakers lamented the
lack of real progress and fell back on ideas that had been around for many years,
such as T.W. Richards with a paper on the internal pressure in fluids [312] and
A.W. Porter whose paper [313] on the law of molecular forces used ideas from
surface tension in a way that would have seemed crude to van der Waals and his
school. Many of the contributors were more interested in the practical problems of
the strength of metals and other materials and this part of the meeting provoked
the most lively discussion. A few raised the hope that the new quantum mechanics
might solve their problems but the subject was still too new and unfamiliar for it
yet to be relevant. (A curious instance of this unfamiliarity is in a late note submitted
to the discussion by Lennard-Jones, presumably in handwriting, in which he refers
to the very recent papers of Heitler and London on the quantum mechanics of the
chemical bond [314]. The editor ascribes these papers to the unknown German
authors Heitten and Loudon.)

A final commentary on the confusion that prevailed in 1928, on the eve of the first
quantal treatment of the problem, was provided by G.A. Tomlinson of the National
Physical Laboratory at Teddington [315]. He cited different authorities who had
maintained, since 1900, that the attractive potential varied with the inverse of the
separation to the powers of 1, 2, 3, 4, 5, 7 or 8. The only number missing from this
sequence is 6 which was soon to prove to be the right answer. His own attempt to
find the correct solution by a direct measurement of the force of adhesion between
two quartz fibres was ingenious but not decisive and, as we shall see, had it been
successful it would have given a misleading answer.

Cohesion was not the only unsolved problem of the 1920s; of greater interest
was the question of the origin of the forces that led to chemical bonding. These
were much stronger than the van der Waals forces but equally mysterious. Indeed,
the distinction between chemical and physical forces of attraction was to remain
a subject of contention until the clarification brought about by the new quantum
theory, as is shown by the long discussion of the point by Irving Langmuir in
1916–1917 [316]. Ignorance of the origin of the chemical forces was, however, not
a bar to progress, since for most chemical purposes it sufficed to know that a bond
could be formed between two particular atoms and that the strength of that bond
could be characterised by a single fixed energy. If it were necessary to know how the
energy changed with distance near the minimum then the resources of infra-red and
Raman spectroscopy were coming to the rescue. A more detailed knowledge of how
the energy changed with distance over wider ranges of separation is needed only
if one wishes to study the ‘chemical dynamics’ of bond formation and breaking,
and that was a subject that was only starting to become practicable just before the
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second World War, and one that only became an active field of research in the
second half of the 20th century.

The more delicate problems of gas imperfection, of the transport properties of
gases, of the condensation of gases to liquids, of the tension at the surface of liquids,
and of the structures and properties of crystals are all ones that demand a detailed
knowledge of how the attractive and repulsive forces change with distance over
a wide range of separations, and this knowledge was not forthcoming. Classical
mechanics and its ad hoc modification by the quantal ideas of Planck, Einstein
and Bohr was not up to the job. There seem to be no published attempts to use
the ‘old’ quantum theory to tackle the problem of the intermolecular forces; one
reported, but apparently abortive effort, was made by Oskar Klein at the urging
of Niels Bohr in 1921 [317]. All these difficulties were to be overcome, at any
rate in principle, in the glorious years of 1925 to 1930 when quantum mechanics
burst on the molecular scene and revolutionised our understanding, or at least our
ability to relate these physical phenomena to a new unified and coherent basis of
mechanics.
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‘Zur Geschichte der kinetischen Wärmetheorie mit biographischen Notizen zu August
Karl Krönig’, Gesnerus 18 (1961) 45–70; E.E. Daub, ‘Waterston’s influence on
Krönig’s kinetic theory of gases’, Isis 62 (1971) 512–15; A. Krönig, ‘Grundzüge
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Poggendorff. He was at the École Polytechnique from 1815 to 1816, and twenty years
later was described as the ‘ausgezeichneten Mechaniker’ in an anonymous article on
his apparatus; ‘Apparat zur Verdichtung der Kohlensäure’, (Liebig’s) Ann. Pharm. 30
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d’Hist. Nat. Genève 11 (1846–1848) 99–114. Ritter devised also an equation of
state for solids, based on the caloric theory, but similar to that of Grüneisen in 1926,
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‘Zur Grösse der Luftmolecüle’, Sitz. Math. Naturwiss. Classe Kaiser Akad. Wissen.
Wien, Abt.2 52 (1865) 395–413. See also R.M. Hawthorne, ‘Avogadro’s number:
early values by Loschmidt and others’, Jour. Chem. Educ. 47 (1970) 751–5. Maxwell
later extended Loschmidt’s calculations by using Loschmidt’s measurements of
diffusion to estimate molecular diameters, on the assumption that, as for spheres, the
cross-diameter for unlike molecules is the arithmetic mean of the like diameters,



220 4 Van der Waals

see J.C. Maxwell, ‘On Loschmidt’s experiments on diffusion in relation to the
kinetic theory of gases’, Nature 8 (1873) 298–300.
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T.F. Roth, Leipzig, 1881.
213 J. Dewar (1842–1923) A.B. Costa, DSB, v. 4, pp. 78–81; J. Dewar, Presidential

address, Rep. Brit. Assoc. 72 (1902) 3–50, see 29.
214 H. Kamerlingh Onnes, ‘Algemeene theorie der vloeistoffen’, Verhand. Konink. Akad.

Weten. Amsterdam 21 (Dec. 1880 and Jan. 1881) No. 4, in three parts, 24 pp., No. 5,
14 pp., No. 6, 9 pp. There was later a partial translation into French, ‘Théorie
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de son doctorat, The Hague, 1900, pp. 574–82. (The Lorentz Festschrift is a
supplementary volume of the Archives Néerlandaises.) The work on the ‘second
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5

Resolution

5.1 Dispersion forces

The understanding of cohesion has two main strands; first, what are the forces be-
tween the constituent particles of matter and, second, how does the operation of
these forces give rise to the transformation of gases into liquids, liquids into solids,
and to all other manifestations of cohesion, of which the elasticity of solids and
the surface tension of liquids have, throughout the years, been the two that have
attracted most attention. We have seen that in the 18th century there were some
interesting speculations about the form of the forces, in particular that they fell off
with r, the separation of the particles, as r−n, where n is greater than 2, its value
for the law of gravitation. The second strand received some attention at this time
but little progress was made. The situation was reversed by Laplace who found
that he had to dismiss speculation about the nature or form of the forces with the
dictum that all we could know of them was that they were ‘insensible at sensible
distances’. He made, however, a substantial contribution to the second strand of
the problem with his theory of capillarity and, in the hands of his followers, his
ideas proved fruitful, if controversial, in the interpretation of the elastic proper-
ties of solids. No further progress could be made until the kinetic theory and the
laws of thermodynamics had been established. The time was then ripe for van der
Waals to resume the Laplacian programme; first, to advance our understanding of
the condensation of gases to liquids and, second, to make the first real advance in the
theory of surface tension since the time of Laplace. The success of van der Waals’s
programme re-awakened interest first among his Dutch followers, and then more
widely, into the origin of the forces themselves, to which Boltzmann soon attached
van der Waals’s name. Classical mechanics and electromagnetism proved unable
to explain why the simplest substances, the monatomic inert gases, should cohere,
and provided only unconvincing suggestions to explain the coherence of substances
such as hydrogen, nitrogen and oxygen. This failure was only one aspect of a much
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wider problem; why do some pairs of atoms exhibit only the weak cohesive ‘van der
Waals’ attraction while other pairs are violently attracted and form strong chemical
bonds? Theoretical physics and chemistry could make little progress until such
questions could be answered. In 1895 Boltzmann wrote:

For a long time the celebrated theory of Boscovich was the ideal of physicists. According to
his theory, bodies as well as the ether, are aggregates of material points, acting together with
forces, which are simple functions of their distances. If this theory were to hold good for all
phenomena, we should still be a long way off what Faust’s famulus hoped to attain, viz. to
know everything. But the difficulty of enumerating all the material points of the universe,
and of determining the law of mutual force for each pair, would only be a quantitative one;
nature would be a difficult problem, but not a mystery for the human mind. [1]

Boltzmann’s mystery was resolved in the early years of the 20th century, although
not in a way that he or Boscovich would have suspected. The realisation that classical
mechanics was inappropriate for atomic systems grew steadily after first Planck and
later Einstein, Bohr and others, found that the quantisation of energy removed many
of the ‘clouds’ (to use again Kelvin’s term) that were obscuring the understanding
of the optical, electrical, mechanical and thermal properties of matter. The rules
for quantisation were at first ad hoc, each was invented to rationalise a particular
phenomenon, but a coherent basis for a new mechanics was developed in 1925
and 1926. The most fruitful form – Erwin Schrödinger’s wave mechanics – was
applied with astonishing speed and success to a wide range of physical and chemical
phenomena in the next five years. As early as 1929 Paul Dirac made a claim that
echoed Boltzmann’s expectations. He wrote:

The underlying physical laws necessary for a mathematical theory of a large part of physics
and the whole of chemistry are thus completely known, and the difficulty is only that the
exact application of these laws leads to equations much too complicated to be soluble. [2]

Since 1929 the history of quantum mechanics, as applied to most of physics and
all of chemistry, has been the search for ever better solutions of Schrödinger’s
wave equation. Implicit in this programme is the formal abandonment of the par-
ticle models that had come down to us from Newton and Boscovich. Heisenberg’s
‘uncertainty principle’ and the ‘Copenhagen’ interpretation of quantum mechanics
require that we think about electrons and, at least formally, also about atomic nuclei
in new ways, as both waves and particles. Fortunately for many problems, including
the calculation of the cohesive forces, we can use the fact that the large masses of
the nuclei, compared with that of the electrons, means that we can conceptually
place the nuclei in fixed positions and confine the quantal calculations to the solu-
tion of the wave equation for the electrons as they move around the fixed nuclei.
This simplification is called the Born–Oppenheimer approximation [3]. Once this
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has been done and we know the forces as a function of intermolecular separation
and orientation then we can usually use this information in a purely classical way
to calculate the properties of matter. Only for the lightest molecules, hydrogen and
helium, must we use quantal methods also for the calculation of these properties,
and then only at low temperatures or when we need high accuracy. All this, of
course, is in an ideal world in which the quantal calculation of the forces and
the classical calculation of the properties can actually be made. We consider both
problems in this chapter.

The first advance that is directly relevant to the problem of intermolecular forces
arose from a suggestion made by Debye on a visit to New York in 1927. John Slater
[4] wrote later that he had been told by H.A. Kramers that Wolfgang Pauli had earlier
made a similar suggestion in his lectures, but it was Debye’s that bore fruit. We have
seen that Debye had thought that electrons oscillating about a positive nucleus might
be the mechanism by which atoms attracted each other, but a classical electrostatic
calculation shows that the net effect of the interaction of two such systems is
zero. At Columbia University he met a research student, S.C. Wang [5], whom he
persuaded to repeat the calculation with the new wave mechanics. Wang proposed
a crude model of a pair of hydrogen atoms as two electron oscillators confined to a
common plane [6]. With this he obtained the important result that there is indeed an
attractive force at (atomically) large distances, which is proportional to r−7, where
r is the atomic separation. The potential energy of this force can be written

u(r ) = −C6r
−6, (5.1)

where his estimate of C6 was 8.2 × 10−79 J m6 or, in the so-called ‘atomic units’,
C6 = 8.6 a.u. These units are convenient to use in this field since not only do they
remove the inconveniently high positive and negative powers of ten needed with
conventional units, but the actual calculations are made in them. The atomic unit
for C6 is (e2a5

0/4πε0) = 0.9574 × 10−79 J m6. Here e is the charge on the electron,
a0 is the Bohr radius of the hydrogen atom, a0 = ε0h2/πmee2 = 0.529 18 Å, ε0

is the permittivity of free space, 4πε0 = 1.112 65 × 10−10 C2 J−1 m−1, h is Planck’s
constant, 6.6261 × 10−34 J s, andme is the mass of the electron, 9.1094 × 10−31 kg.
Wang saw that his value ofC6 was of the right order of magnitude since the energy at
a separation of 2 Å is about three times the translational energy of a molecule at 0 oC,
but it is, as we now know, not quite the correct result for two hydrogen atoms [7].
He offered no more in the way of interpretation but his result was important since
it showed, for the first time, that two atomic systems with no permanent electric
multipoles should, according to the rules of the new quantum mechanics, attract each
other with a force that was apparently strong enough to explain the phenomenon
of cohesion.
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At the same time as Wang was tackling the problem of the long-range forces
between hydrogen atoms, Fritz London [8] was working with Walter Heitler in
Zürich on what turned out to be a different kind of force at much shorter separations,
although their original aim had also been to understand the van der Waals attractive
force [9]. They made the dramatic discovery that the short-range force is repulsive
if the electrons on the two hydrogen atoms have their spins in a parallel orientation,
but changes sign and is attractive if they are anti-parallel [10]. At extremely short
distances there is an even stronger repulsion in both cases which could be explained
as the classical Coulomb repulsion between the two positively charged nuclei when
they are so close that they are no longer shielded by the orbiting electrons. The
attractive force with the anti-parallel electrons arises from a term in the interaction
that represents the possibility of the electrons switching from movement around one
nucleus to movement around the other. It has no classical analogue; they called it the
‘exchange energy’ [Austauschenergie] and found that it leads to a deep minimum
in the potential energy as a function of separation which is comparable with the
energy of the covalent chemical bond between the two atoms in the hydrogen
molecule. For helium, where each atom has two electrons with no net spin on the
atom, there is no possibility of forming a chemical bond. They had therefore solved
at last, in principle, two major theoretical problems. First, they had shown how,
and under what circumstances, two atoms could share a pair of electrons and so
form a covalent bond. Chemists had known empirically for ten years that sharing
a pair of electrons is the essence of covalent bonding but had not been able to
explain how this came about [10]. Second, they had shown that where there are
no available electrons with anti-parallel spins then the energy is large and positive,
a consequence of Pauli’s exclusion principle of quantum mechanics that forbids
the overlap of electron clouds with no anti-parallel pairing. This positive energy
or repulsive force explains why many atoms and most molecules repel each other
at short distances, or, in simpler terms, why they have size. This repulsive energy
dies away exponentially with distance and so is ultimately less in magnitude than
the universal attractive energy in r−6 discovered by Wang. The total energy, u(r ),
as a function of r , has therefore a weak minimum at (atomically) moderately large
distances for all chemically unreactive pairs of atoms and molecules, as is required
to explain the cohesive properties of all matter.

To produce an attraction between atoms with anti-parallel electron spins Heitler
and London had used first-order quantal perturbation theory, in which the mutual
Coulombic energies between the electrons and protons on different atoms are
treated as a perturbation of the energies of the isolated atoms. The consequences of
this perturbation are found by averaging it over the known wave function (i.e. the
electron distribution) found by solving Schrödinger’s equation for the isolated
or unperturbed atoms. The weaker effect discovered by Wang does not appear at
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this order of approximation. London, by then in Berlin, first mentioned Wang’s
work in a review he wrote for an issue of Naturwissenschaft commemorating
the 50th anniversary of Planck’s doctorate [11]. He quoted from a later paper of
Wang’s and said that the calculated depth of the energy minimum in a hydrogen
molecule was −3.8 eV at a separation of 0.75 Å and added, but without giving the
source of his estimate, that for a pair of atoms with parallel spins a “more exact
calculation shows a much weaker attraction of some thousandths of a[n electron]
volt at a separation of about 5 Å”. (The thermal energy, kT , at 25 ◦C, is 0.0257 eV;
1 eV = 1.6021 × 10−19 J.)

In Berlin, London met Robert Eisenschitz [12] who was working at the laborat-
ories of the Kaiser-Wilhelm-Gesellschaft. Together they tackled again the problem
of two hydrogen atoms with parallel spins, using now second-order perturbation
theory. This, as Wang had found, is significantly more difficult than the first-order
theory since it requires a knowledge of the energies and wave functions of all the
excited states of the two unperturbed atoms, and not only those of the ground state,
as suffices for the first-order theory. They were able to carry through the calculations
using methods that have since been greatly simplified. They verified Wang’s con-
clusion that there is an attractive potential at large distances that varies as −C6r−6,
and found a value ofC6 of 6.47 a.u., a result similar to, but significantly smaller than
Wang’s estimate of 8.6 a.u. Lennard-Jones immediately confirmed this result by a
simpler perturbation calculation [13], while Hassé [14] and Slater and Kirkwood
[15, 16] used the other main branch of approximated quantum mechanics, varia-
tional theory, to find a value of 6.4976 a.u. It is of the essence of this second method
that one chooses a wave function for the interacting pair of atoms or molecules,
of whatever form seems to be appropriate, with a set of initially undetermined
parameters. These are then varied so as to minimise the energy, since we know that
there is a rigorous theorem that says that the minimum so found is never lower
than the true energy. In this case the variational method was slightly better than the
second-order perturbation theory. Pauling and Beach found the definitive result for
this artificially simple system a few years later [7]; C6 is 6.499 03 a.u.

The origin of the attraction is purely quantal – it arises from the application of the
rules of quantum mechanics established in the 1920s – and so a verbal description
of it is even more imperfect than one for a classical electrostatic force. For hydrogen
atoms it can be ascribed to the motion of the two electrons around their two nuclei.
At any instant each atom has a dipole moment, although the time average of the
moment is zero. The instantaneous dipole on one atom produces a field at the second
atom proportional to r−3, where r is the separation of the nuclei. This field modifies
the dipole moment of the second atom by an amount proportional to this field. The
energy of the whole system is reduced by an amount proportional to the product of
this change of moment and the energy of interaction of this change with the first
or inducing moment, an energy which is also proportional to r−3. The reduction
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of the energy of the two atoms is therefore proportional to r−6. The fact that the
mutual action of the two oscillating dipoles is always a reduction of energy implies
that there is a coupling of the phases of their motions, and so might be thought to
lead to the same difficulty as was clear with classical induction effects, namely that
what is effective in an isolated pair becomes neutralised in a symmetrical cluster
of atoms. To some extent this is true but it is not sufficient to prevent a substantial
extent of ‘additivity’ of pair potentials in condensed systems. A group of three
molecules at the corners of an equilateral triangle at their equilibrium separations
has typically an energy that is 95% of the sum of the three pair-energies. If the three
molecules are in a straight line then there is a small enhancement of the coupling
and the attractive energy is a little stronger than the sum of the three pair-energies.
We return to this point later.

The simplest theoretical description of this attractive force was put forward by
London [17] within a few months of his paper with Eisenschitz. It is based on a
model of an atom or molecule that is usually associated with Paul Drude, although
his picture was pre-quantal and, indeed, pre-electronic [18]. The spherical molecule
is supposed to comprise a massive charged nucleus about which there oscillates a
body of smaller mass m and charge q, equal and opposite to that on the nucleus.
If the force constant of the oscillatory motion is c then the frequency of the simple
harmonic oscillation is ν0, where

2πν0 ≡ ω0 = (c/m)
1/2, (5.2)

where ω0 is the often more convenient angular frequency. An electric field ξ dis-
places the charge q through a distance s, proportional to ξ, thus creating a dipole
µ, where

ξq = cs and µ = qs = ξq2/c, (5.3)

so that the polarisability of the molecule, α, which is the ratio of the scalar quantities
µ/ξ , is

α = q2/c = q2/mω2
0. (5.4)

Consider now two such molecules, a and b, whose centres are separated by r and
where, at a given time, the displacements of the two equal charges qa = qb = q from
their centres are r a and rb. When the separation of the two molecules is large then
Schrödinger’s equation for the wave function ψ is

(h2/8π2m)
(∇2

a + ∇2
b

)
ψ + (

E − 1
2cr

2
a − 1

2cr
2
b

)
ψ = 0, (5.5)

where E is the energy and ∇2 are the operators

∇2
a = ∂2/∂x2

a + ∂2/∂y2
a + ∂2/∂z2

a, (5.6)
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and xa, ya, and za are the cartesian components of r a. This wave equation is sep-
arable into two independent equations for identical three-dimensional harmonic
oscillators. The ground state of the system has therefore the energy of six oscil-
lators each of energy hω0/4π ; that is, E = 3hω0/2π . This result holds when the
separation of the two molecules, r , is infinite. When r is finite then we must insert
the energy of interaction of the two instantaneous dipoles into the wave equation;
it is

(q2/4πε0r
3)(xaxb + yayb − 2zazb),

where the z-axis is chosen to lie along the line joining the centres. The new wave
equation is obtained by adding this term into the second, or energy term in eqn 5.5.
A change to normal coordinates transforms this into another equation for six one-
dimensional oscillators, but now not all of the same frequency. Let

R = (r a + rb)/
√

2, S = (r a − rb)/
√

2, (5.7)

when the equation becomes

(h2/8π2m)
(∇2

a + ∇2
b

)
ψ + (

E − 1
2c

+
x R

2
x − 1

2c
+
y R

2
y − 1

2c
+
z R

2
z

− 1
2c

−
x S

2
x − 1

2c
−
y S

2
y − 1

2c
−
z S

2
z

)
ψ = 0. (5.8)

The six frequencies are therefore

ω±
x = (

c±
x /m

)1/2
, ω±

y = (
c±
y /m

)1/2
, ω±

z = (
c±
z /m

)1/2
, (5.9)

or (
ω±
x

)2 = (
ω±
y

)2 = (c/m)(1 ± q2/4πε0r
3),

(
ω±
z

)2 = (c/m)(1 ± q2/2πε0r
3), (5.10)

and the energy is

E = (h/4π )(ω+
x + ω+

y + ω+
z + ω−

x + ω−
y + ω−

z ). (5.11)

Inserting eqn 5.10 into eqn 5.11, and expanding the square roots, since r is large,
gives the energy of the ground state of the system as

E = (3hω0/2π )[1 − (q2/8πε0r
3)2]. (5.12)

The second term is the energy of interaction of the two molecules which can be
written more simply in terms of the unperturbed frequency and the polarisability
of eqns 5.3 and 5.4;

u(r ) = −3hω0α
2
V /8πr6 = −3hν0α

2
V /4r6, (5.13)
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where αV =α/4πε0 is the polarisability expressed in the dimensions of volume.
This is the simplest form of the interaction energy, obtained by London in 1930.
The supposed frequency of oscillation of the Drude model, ω0, is related to the
dispersion of light in this model, that is to the change of the refractive index with
the frequency of the light. This change is associated in real molecules with the out-
ermost electrons since they are the most polarisable. London therefore christened
this attractive term the ‘dispersion energy’, and the term is now used generally; an
alternative is the ‘London energy’. The factor hω0/2π , or hν0, can be replaced, to a
rough approximation, by the ionisation energy, I , the energy needed to remove an
electron from the molecule, since this is determined primarily by the tightness of
the binding of the outer electrons. Hence, as London observed, the attractive energy
can be calculated approximately from two observable physical properties, the polar-
isability and the ionisation energy. Slater and Kirkwood’s variational treatment,
when similarly approximated, leads to the slightly different result that the dispersion
energy varies not as Iα2 but as (Nα3)

1/2 , where N is the number of electrons in
the outer shell of the atom. This Drude model is only a simple but convenient
representation of the quantum mechanics behind the dispersion forces. The actual
calculations for light atoms such as hydrogen and helium were, from the first days,
more fundamentally based on a proper quantum mechanical basis.

The oscillating electrons in a molecule generate not only instantaneous dipoles
but also quadrupoles and higher multipoles. It is to be expected, therefore, that
the London dispersion energy is only the first term in a series expansion for the
attractive energy;

u(r ) = −C6r
−6 − C8r

−8 − C10r
−10 − etc. (5.14)

This extension was first considered by Henry Margenau [19] who found that the
inclusion of the higher terms lowered the minimum of the He–He potential by
a factor of about 3/2 [20]. A large correction was also found also for H–H by
Pauling and Beach [7], but the change was believed to be much smaller for heavier
atoms and molecules, such as in the Ar–Ar potential [21]. Quantitative work was
difficult and for practical purposes it was assumed that a single term in r−6 was an
adequate representation of the potential, at least at separations equal to or greater
than that of the minimum in the total potential. It was a reasonable assumption at
the time, but one that was later found to be flawed.

In the early 1930s quantal calculations of the dispersion forces could not go
beyond approximations such as those of London or Slater and Kirkwood. The re-
pulsive forces needed to balance these at short distances and give the molecules
‘size’ were even more of a problem. Heitler and London had shown that the
origin of these lay in the Pauli exclusion principle that prevented the electron
clouds from overlapping when there were no unpaired electron spins to lead to
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chemical bonding, but quantitative calculations were difficult except for hydrogen
atoms which had only one electron on each atom. The simplest case that could
be studied experimentally was helium, with two spin-paired electrons on each
atom. An early triumph of the new theory was the good agreement between the
purely quantal calculations of the attractive and repulsive parts of its potential and
the parameters of a Lennard-Jones (12, 6) potential determined from the physical
properties of the gas. The quantal calculation of Slater and Kirkwood [16] gave a
potential

u(r ) · 1017/J = 7.7 exp(−2.43r/a0) − 0.68(r/a0)−6, (5.15)

where a0 is again the Bohr radius of the hydrogen atom. This potential is essentially
that of Slater in 1928 but with an attractive parameter of 0.68 rather than 0.67.
Kirkwood and his former research supervisor at the Massachusetts Institute of
Technology, F.G. Keyes, calculated the second virial coefficient for this potential
and showed that there was reasonable agreement (∼5%) with experiment [22].
Meanwhile Lennard-Jones, in work that he reported in a lecture to the Physical
Society in May 1931, had compared this potential with the (12, 6) potential that he
had already fitted to the second virial coefficient [23]. Similar comparisons were
made by R.A. Buckingham in 1936 and 1938 [24]. Table 5.1 shows a comparison
of some of the pre-War calculations.

Here d is the ‘collision diameter’, or the separation at which the attractive and
repulsive potentials are in balance, that is u(d) = 0, rm is the separation at the mini-
mum energy where the attractive and repulsives forces are in balance,u′(rm) = 0, ε is
the depth of the energy minimum, conveniently expressed in kelvin by dividing it by
Boltzmann’s constant, k, and C6 is the coefficient of r−6 expressed in atomic units
(Fig. 5.1). The quantal calculations in Table 5.1 are those by Slater and Kirkwood,
eqn 5.15, and of C6 (only) by Baber and Hassé [25]. (The accepted value of this
coefficient is now 1.4615 ± 0.0004 a.u. [26]. It is smaller than that calculated for
two hydrogen atoms, for although helium has two electrons to hydrogen’s one,
they are more tightly bound.) The ‘experimental’ values of the parameters were
obtained by fitting the (12, 6) potential to the second virial coefficient [24] and

Table 5.1

Source d/Å rm/Å (ε/k)/K C6/a.u.

1931 quantal calculation, eqn 5.15 2.62 2.95 9.10 1.56
1937 quantal calc., Baber and Hassé – – – 1.43
1931 exp. second virial coeff., via (12, 6) 2.60 2.92 7.33 1.30
1938 exp. Joule–Thomson coeff., via (12, 6) 2.57 2.88 9.56 1.59
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Fig. 5.1 The conventions used to describe the parts of a spherical intermolecular potential,
u(r ), which is a function only of the one variable, the separation, r . The potential is zero at
the collision diameter, d , and has its minimum value of −ε at a separation rm. It is at this
separation that the intermolecular force is zero.

the Joule–Thomson coefficient at low pressures [27] with, in the second case, a
correction for the quantal departures from the classical values that arise from the
light mass of the helium atom [28]. As we saw earlier (Section 4.2), the infor-
mation provided by the Joule–Thomson coefficient is formally the same as that
provided by the second virial coefficient, since they are directly related by the laws
of thermodynamics.

The agreement shown for the parameters of the He–He potential obtained in
different ways is surprisingly good in view of the approximations made in the
quantal calculations, the neglect of quadrupole and higher multipole terms, and the
restriction imposed on the interpretation of the experimental results by the use of a
(12, 6) potential. It is seen that the parameters ε and C6 obtained in the last line of
Table 5.1, in which quantal corrections have been applied in the interpretation of the
physical property, are closer to those calculated theoretically in lines 1 and 2 than are
the uncorrected classically obtained parameters in line 3. Thus for the interaction
that gives what we can write as He2, the simplest ‘van der Waals molecule’, there was
at last a convincing link between calculations that started only from the assumption
that a helium atom has two electrons and a relatively massive nucleus (and the laws
of quantum mechanics) and a macroscopic physical property that can be measured
in the laboratory. Newton had declared that it was the business of experimental
philosophy to discover the “agents in Nature” that made matter stick together, and
‘in principle’, as Boltzmann and Dirac might have said, that aim was achieved in the
early 1930s. In practice much remained to be done. Even for helium the agreement
between theory and experiment was imperfect, although good enough to show that
the interpretation was on the right lines. No other molecule is as simple as the helium
atom; molecular hydrogen might be thought to be similar since it too has only two
electrons, but it is not spherical. The second virial coefficient and its equivalent, the
Joule–Thomson coefficient at zero pressure, are the simplest macroscopic physical
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properties and the only ones that could be calculated in this way in the 1930s, since
statistical mechanics provides, as Maxwell and Boltzmann had shown, an exact
route from u(r ) to this physical property, for which the necessary integral had been
calculated. The other information-rich properties of gases, the viscosity and the
coefficients of self- and thermal-diffusion, did not receive the same attention as the
second virial coefficient in the 1930s. We have seen (Section 4.5) that Hassé and
Cook had, in 1929, calculated the viscosity for an (8, 4) potential and had pointed
out that their method was applicable to any (n, 1

2n) potential, but after 1927, when
quantum mechanics led to 1

2n= 6, their hint was not followed up; it is hard to
see why. Instead, H.S.W. Massey and C.B. Mohr, then both 1851 Exhibitioners at
Trinity College, Cambridge, went straight to a quantal calculation of the angles of
deflection of two colliding helium atoms between which there acted the Slater–
Kirkwood potential of eqn 5.15 [29]. Their calculated values of the viscosity were
too high by 7% at room temperature and too high by 20% below 20 K. A standard
textbook of the time said that such agreement would not normally be considered
very good but noted the approximations in the theory and again stressed that all that
had been assumed was that the helium “nucleus is much heavier than an electron
and carries a charge numerically twice as great” [30]. These results could not be
extended to other molecules.

There was, therefore, a big programme ahead before what had been achieved in
principle could be shown convincingly in practice. First, molecules more compli-
cated than helium must be tackled and, if possible, with greater accuracy. Second,
the whole range of physical properties discussed in previous chapters must be
brought within the scope of kinetic and statistical mechanical calculations. All this
was what Kuhn has called ‘normal science’; the problems were difficult but the
principles were now known. Progress was, however, neither as rapid nor as steady
as we, looking back from seventy years later, might have expected. The wayward-
ness that marks the progress of science was again apparent. Distractions of different
fields, fashionable and attractive ideas about the structure of liquids that were later
shown to be wrong, and the small number of leading players, all contributed to the
hesitancy of the advance.

The extension of theory from helium and hydrogen to more complicated atoms
and molecules, and the struggle to extend statistical mechanics to more important
physical properties than the second virial coefficient, can both be demonstrated by
taking argon as an example, as was suggested by Nernst as early as 1913 [31]. It has
an atom with enough electrons to challenge the quantum mechanics community,
but one that is spherical and heavy, so that those working in classical statistical
mechanics could not ask for an easier system. Moreover it is readily available
from the distillation of liquid air, so measurements of every physical property of
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interest were made in the early years of the 20th century. Restricting our choice
to argon leads naturally to what came to be the two matters of prime importance
in the years after the end of the Second World War, the accurate determination
of the intermolecular pair potential and the development of a satisfactory theory
of the liquid state. The contribution to the intermolecular forces of the classical
electrostatic effects so extensively discussed by Keesom, Debye and others early
in the century is therefore ignored for the moment, not because the substances in
which such forces act are uninteresting – one of them is water – but because the
essence of the problems is best exemplified by the properties of the inert gases and
of argon in particular. This was the way that the matter was seen at the time, and is
the way that is most natural for a retrospective discussion.

5.2 Argon

The physical properties of argon were thought to be well known by the 1930s. The
structure, lattice spacing, and energy of evaporation of the crystal had apparently
been established by Simon and von Simson [32] and F. Born [33], although, as we
now know, not with quite sufficient accuracy for acceptable deductions to be made
about the intermolecular forces. The second virial coefficient had been measured
several times; the most widely quoted results were those of Holborn and Otto in
Berlin which extended from −100 ◦C to +400 ◦C [34]. The viscosity of this gas
(and of many others) had been measured up to 1000 K by Max Trautz and his
associates at Heidelberg [35]. These were thought to be the most reliable and most
extensive then available, but were later found to have misleading errors. The vapour
pressures of the liquid and the solid had been established in Leiden by 1914 [36],
and the x-ray diffraction pattern of the liquid was studied by Keesom and De Smedt
in 1922 [37]. The interpretation of this pattern as a pair distribution function, g(r ),
for the atoms in the liquid, followed in 1927 when Zernike and Prins showed how
to use a Fourier transform to obtain this function from the x-ray pattern [38]. The
function g(r ) measures the normalised probability of finding a molecule with its
centre at a distance r from any chosen molecule. It is now the most commonly
used measure of the structure of a liquid but, as we shall see in Section 5.5, it was
some years after 1927 before its use became widespread. In fact little use could
then be made of any of the structural or thermophysical properties of the liquid
state because of the primitive state of that branch of statistical mechanics. Only for
gases and solids were there thought to be safely navigable paths from experiment
through theory to intermolecular information.

Theoretical results for argon were more sparse. The strength of the dispersion
force could be estimated from the atomic polarisability via Slater and Kirkwood’s
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expression, from the ionisation potential which is approxiately equal to hω0/2π
in London’s expression, eqn 5.13, or from the dispersion coefficients themselves,
which was London’s preferred route. There was no way of testing the accuracy of
these approximations. The dipole–quadrupole dispersion force, that is the coeffi-
cient C8 of eqn 5.14, could be estimated similarly but with even less confidence.
It was often convenient to express the importance of this term in the attractive
potential by calculating a modified dipolar dispersion term, C∗

6 , defined by

C∗
6 = C6 + C8r

−2
m , (5.16)

where rm is the separation of the molecules at the minimum of the potential. The
coefficients are defined to be positive so the amount by which C∗

6 exceeds C6 is
a measure of the dipole–quadrupole term. There was no way of calculating the
repulsive potential for a system with as many electrons as a pair of argon atoms,
so this part of the potential was estimated by comparing the predictions of model
potentials containing several adjustable parameters with the equilibrium physical
properties of the gas and solid.

Let us consider first the attractive potential where the consensus (Table 5.2) was
that C6 was about 60 a.u. and C∗

6 about 70 a.u. The only dissent from these and
similar results was a value of C6 nearly twice as large as these figures found by
Alexander Müller at the Royal Institution from a route due originally to Kirkwood,
via the diamagnetic susceptibility of the argon atom, but he himself said that the
value was clearly too high [41].

It was recognised by this time that an inexact knowledge of the second virial
coefficient over a finite range of temperature does not determine a unique form of
potential. The usual procedure was to require the chosen potential to yield also the
correct lattice spacing and energy of evaporation of the crystal, extrapolated to zero
temperature. It was tacitly assumed that the crystal energy could be found by adding
the interactions of all pairs of atoms, with no multi-body effects. It was known that
the observed energy at zero temperature would be numerically smaller than this
sum because of the zero-point energy of oscillation of the atoms about their lattice

Table 5.2 a

Source C6/a.u. C∗
6/a.u.

1937 London, from dispersion coefficients [39] 58.0 –
Buckingham, from polarizabilities [40] 66.3 76.4

1939 Margenau, from dispersion coefficients [21] 58.0 66.5
Margenau, from Slater–Kirkwood approx. [21] 72.6 –

a The values of C∗
6 have been calculated with rm = 3.824 Å.
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sites, a quantal effect that could be adequately accounted for in terms of the Debye
frequency of the lattice vibrations. It was known also that the lattice spacing was not
exactly at the minimum of the pair potential because of the attractions of the non-
nearest neighbours (which reduces the lattice spacing), and the anharmonic nature
of the zero-point oscillations (which increases the spacing); the second effect is the
greater [42].

Two kinds of empirical functions were used to represent the whole intermolecular
potential function, attractive and repulsive. The first was the Lennard-Jones (n, 6)
potential, in which n was often given the convenient and apparently acceptable
value of 12. The second was a more realistic function much used by Buckingham
and generally associated with his name and that of John Corner [43]:

u(r ) = A exp(−r/ρ) − C6r
−6 − C8r

−8. (5.17)

If the term in r−8 is omitted, as in the Slater and Kirkwood equation for helium,
eqn 5.15, then this is usually called the (exp, 6) potential. The work of Heitler
and London, and others, had suggested that the repulsive or overlap branch of
the potential could be represented by a polynomial in r multiplied by a rapidly
decreasing exponential factor. In practice, the polynomial was replaced by a single
constant, A. This potential, eqn 5.17, like the (n, 6) potential, has three adjustable
parameters if the ratioC8/C6 is fixed, but the repulsive branch rises less steeply than
in a (12, 6) potential if ρ is given the often-used value of (rm/14). Some of the results
of fitting these potentials to the experimental properties of gaseous and solid argon
are given in Table 5.3. Herzfeld and Goeppert Mayer used two (exp, 6) potentials in
which two different values were chosen for the parameter ρ in eqn 5.17. They took
these from work on the properties of the salt KCl, since the ions K+ and Cl− are
iso-electronic with Ar and so might be supposed to show similar repulsion between
their overlapping electron clouds [49]. Kane’s two sets of figures follow from the
same two choices of ρ. Lennard-Jones in 1937 (and Corner in 1939 [42]) used a
(12, 6) potential. The others used (exp, 6) or (exp, 6, 8) potentials. Some of the

Table 5.3

Source d/Å rm/Å (ε/k)/K C6/a.u. C∗
6/a.u.

1934 Herzfeld and Goeppert Mayer [44] 3.48 3.83 120 82 –
3.43 3.94 103 116 –

1937 Lennard-Jones [45] 3.41 3.83 120 108 –
1938 Buckingham [46] 3.40 3.82 135 107 –
1939 Kane [47] 3.48 3.83 134 91 –

3.43 3.94 115 131 –
1948 Corner [48] 3.43 3.87 125 95 114
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figures are not in the original papers but have been calculated from the parameters
quoted there.

The most notable feature of Table 5.3 is the consistency of the results, obtained
from three different forms of potential, over a 14-year period. By 1950 it had be-
come generally accepted that the Ar–Ar potential had a depth of about 120 K at
a separation of 3.82–3.86 Å. A second feature of the results in the table is that
the values of C6 are substantially larger than the theoretical values calculated from
the dispersion coefficients. The former are in the range 80–130 a.u. and the latter
about 60–70 a.u. This discrepancy was often ignored but when it was noted it
was ascribed either to the approximations needed to obtain the theoretical results,
or to faults in the forms of the fitted potentials, such as the inadequacy of the
repulsive part of a (12, 6) potential, or to the neglect of the C8 term. The first
argument could not easily be faulted since, as with many quantal calculations,
the approximations needed could not be independently assessed. Neither part of
the second argument holds water, however, since the discrepancy is present also
with exponential repulsion and with the inclusion of the C8 term. Two further
possible origins of the discrepancy received less attention. One was that the exper-
imental properties of the gas and the solid were not known as accurately as was
believed, and a second was that the energy of the crystal could not be calculated
by adding the pair interaction energies but that there were significant contribu-
tions from three-body and maybe higher terms. Both effects were later found to be
significant.

The results in Table 5.3 are not a complete account of all attempts to find the
pair potential for argon but they are typical of work up to 1954, a year that saw
the publication of a massive treatise: Molecular theory of gases and liquids, by
J.O. Hirschfelder, C.F. Curtiss and R.B. Bird of the University of Wisconsin [50].
This book of 1219 pages marked the end of an era. It set out all that had been
achieved in the 1920s and 1930s and brought it up to date with the substantial
amount of new work that been done in the nine years since the end of the War,
much of it at Wisconsin. It had as great an influence in the 1950s and 1960s as
R.H. Fowler’s books had had in the 1930s and 1940s. It probably did more than
any other single text to establish a belief in the correctness of the parameters shown
above for argon, and to reinforce the view that the properties of simple substances
could, for all practical purposes, be calculated from a model that used the (12, 6)
or the (exp, 6) potential. The former is the easier to use and became the model of
choice for most research. Hirschfelder and his colleagues noted the discrepancy
between the values of the coefficient C6 calculated quantally, and those determined
empirically, for all simple substances except hydrogen and helium, for which the
aggreement was reasonable. They wrote:
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The significance of this deviation is not understood. It may be that the short-range forces
fall off faster than the 1/r12 term in the Lennard-Jones (6-12) potential would indicate, so
that the attractive forces need not be so large in order to give the same total potential. [51]

We have seen, however, that this explanation was not supported by experience with
the (exp, 6) potential.

One obvious property was missing from the study of argon in the 1930s, the
viscosity of the gas. The natural step of extending Hassé and Cook’s calculation
for the (8, 4) potential to the (12, 6) was not taken. These years were marked
by many fruitful applications of the new quantum mechanics to a great range of
molecular problems; classical statistical mechanics and kinetic theory were rel-
atively neglected except for a few workers in the U.S.A. and a small body of
enthusiasts at Cambridge. This gap in our theoretical armoury became obvious
after the War and in three laboratories there were independent calculations of the
transport integrals for the (12, 6) potential in the years 1948–1949 [52]. These
workers had, in fact, been preceded by a Japanese team in Tokyo in 1943 but that
calculation was unknown to them until their work was finished [53]. These theo-
retical results were soon compared with the experimental work of Trautz [35]
and with some more recent measurements of the viscosity of argon at low tem-
peratures [54]. The conclusion was that the viscosity could be fitted to (12, 6)
parameters similar to those that fitted the second virial coefficient [55]. A few
years later, E.A. Mason, also then at Wisconsin, calculated the transport integrals
for the (exp, 6) potential [56] and he and W.E. Rice used them, the second virial
coefficient, and the properties of the crystal to obtain (Table 5.4) a new set of
parameters [57]. The results are essentially the same as those obtained in the 1930s
and 1940s, before it was possible to use the viscosity of the gas as a source of
information.

Another satisfying confirmation of these parameters came from the newly in-
troduced technique of the computer simulation of molecular systems [58]. Such
simulations were first made during the second World War for studying the problem
of the rate of diffusion of neutrons in a nuclear reactor and, from 1947 onwards,
were applied to the problem of the equation of state and structure of simple fluids.
The method is straightforward in principle; a model intermolecular potential is

Table 5.4

Source d/Å rm/Å (ε/k)/K C6/a.u.

1954 Hirschfelder, Curtiss and Bird (12, 6) 3.418 3.837 124 114
1954 Mason and Rice (exp, 6) 3.437 3.866 123.2 104
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chosen, an assembly of such molecules is ‘created’ in the computer memory, and
the physical state of the system is found either by solving Newton’s equations of
motion to see how the system evolves with time, or by using a weighted sampling
method (the Monte Carlo method) that generates molecular configurations with
the same frequency of occurrence as is found in such a model fluid at equilibrium.
Such simulations quickly became an invaluable tool in the development and testing
of theories of the liquid state, the state of matter for which statistical mechanical
theories had made little advance since the time of van der Waals. The simulations
generated pseudo-experimental values for the macroscopic physical properties such
as density, vapour pressure, energy and heat capacity for systems of prescribed in-
termolecular potentials. Hitherto the testing of any theory of liquids or dense gases
had been a hazardous business because of the uncertainty in our knowledge of the
intermolecular forces. Any failure could either be one in the statistical mechan-
ical theory or one of an inappropriate choice of intermolecular potential, or, of
course, of both. The method of computer simulation eliminated the second source
of uncertainty.

An early and influential application of this method was a Monte Carlo simulation
of a (12, 6) fluid undertaken by W.W. Wood and F.R. Parker at Los Alamos, who
calculated the pressure as a function of gas density for a reduced temperature
of kT/ε= 2.74. The first results were obtained in October 1954 [58] but their
paper did not appear until September 1957 [59]. They chose this temperature since
if ε/k is 120 K it corresponds to a laboratory temperature for argon of 55 ◦C,
and at that temperature there were measurements of the density to high pressures.
P.W. Bridgman at Harvard had measured the density up to 15 000 atm in 1935 [60]
and A. Michels at Amsterdam, with what appeared to be greater accuracy, to 2000
atm in 1949 [61]. The simulated results fitted the isotherm of Michels and his
colleagues but fell below that of Bridgman, by up to 30% in the pressure at the
highest density. This result was held to confirm the higher accuracy of the Dutch
results and to validate the choice of the (12, 6) potential.

The principle of corresponding states provided further evidence that a (12, 6)
potential might be adequate. When we left the discussion of this principle it was
an empirical correlation put forward by van der Waals behind which Kamerlingh
Onnes had discerned a principle of mechanical similitude in the intermolecular
forces. Within either Boltzmann’s or Gibbs’s formulation of classical statistical
mechanics this perception could readily have been made more precise by a simple
manipulation of the known form of canonical partition function at any time onwards
from the earliest years of the 20th century. Such a step was not taken, however, until
1938 and 1939 when first J. de Boer and A. Michels [62] and then K.S. Pitzer [63]
showed independently that the molecular condition for the principle to hold is that
the (assumed spherical) intermolecular potential of all substances can be written in
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a common form;

u(r ) = εf(r/d), (5.18)

where ε is an energy and d a length, both characteristic of any substance. They
may conveniently be chosen to be the depth of the minimum of the potential and
the collision diameter; u(rm) = −ε and u(d) = 0 (Fig. 5.1). The principle holds for
any group of substances if the function f(r/d) is the same for all of them. It had
been observed that argon, krypton and xenon conform closely to the principle in all
three phases of matter, and that neon shows small departures at low temperatures
and helium large ones, as would be expected for systems for which quantal effects
cannot be neglected [64]. If the potential is of the (n,m) form then the principle
requires that n and m be the same for all conforming substances. The attractive
index, m, was known to be 6 for all substances, so the conformation of argon,
krypton and xenon argued for a common value of n, and 12 seemed to be the best
choice. The argument is only indicative; there is no requirement for the function
f(r/d) to be of the (n,m) form – many other functions could be devised – but at
least the evidence from the principle of corresponding states was consistent with
the choice of a (12, 6) potential for the inert gases.

A second quantal calculation led to another discrepancy which became appar-
ent after the War, but to which most in the field turned a blind eye. London had
established the crucial distinction between the attractive exchange force and the
much weaker attractive dispersion force. The first ‘saturates’, that is, once it has
formed a chemical bond between a pair of atoms it cannot use the same electrons to
form further bonds. The second does not saturate, that is, an atom that is attracting
a second one is not precluded from acting as strongly with a third, or a fourth,
etc. This distinction was accepted throughout the 1930s, but during the War two
attempts were made to test the validity of the second proposition, that is, what we
now call the principle of pair-wise additivity. B.M. Axilrod and his then research
supervisor, Edward Teller, in Washington, took London’s perturbation theory to
third order and calculated the energy of a group of three atoms [65]. The same cal-
culation was made independently in Japan by Yosio Muto [66]. Both parties found
that this energy departed from the sum of the two-body (or second order) terms by
a three-body dipole–dipole–dipole energy:

u3(r12, r13, r23) = (
9Iα3

V /16r3
12r

3
13r

3
23

)
(1 + 3 cos θ1 cos θ2 cos θ3), (5.19)

where I is the ionisation energy, αV is the polarisability volume, and θi is the angle
of the triangle formed by the three atoms, at the corner of atom i . The corresponding
expression for each of the three dipole–dipole energies is, from eqn 5.13,

u2(r12) = −3Iα2
V /4r6

12. (5.20)
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For three atoms at the corners of an equilateral triangle we have for the ratio of the
three-body term to the sum of the three two-body terms:

u3/
(
−

∑
u2

)
= 11αV /32r3, (5.21)

where r is the length of the side of the triangle. For three atoms in a straight line
with the two nearest neighbours at a common separation r , we have

u3/
(
−

∑
u2

)
= −4αV/43r3. (5.22)

For argon αV /r3
m is 0.031, so the three-body term is positive and 1% of the sum of

the two-body terms for the equilateral triangle, and negative and −0.3%, for three
atoms in a line. At first sight these figures look reassuring; the effect of the three-
body term is going to be negligible. In the crystal, however, the atoms are closely
packed and the total effect is more serious. Axilrod estimated that the overall effect
is then positive and that the magnitude of the crystal energy is diminished by about
2% in neon, 5% in argon, and 9% in xenon. His principal concern, however, was not
the magnitude of these changes in the crystal energy, but whether this three-body
effect could explain a minor anomaly of the crystal structures of the inert-gas solids.
There are two close-packed lattices for spherical particles, the face-centred cubic
(or fcc) lattice and the hexagonal close-packed (or hcp) lattice. Helium crystallises
in the hcp structure but the others in the fcc structure. A simple summation of the pair
energies shows that for static atoms the fcc is the less stable; its energy is higher
by 0.01%. This small but irritating anomaly is not removed by calculations that
allow for the vibrational energy of the atoms about their lattice sites. Axilrod had
thought that the triple-dipole energy might remove the anomaly, but found that it did
not. There is still no simple and convincing explanation, but there are many small
higher-order terms in both the attractive and repulsive energies that have not been
discussed here. One suggestion has been that the strength of the dispersion forces
is changed by the presence of p-orbitals in neon and the heavier atoms, and that this
change stabilises the fcc lattice [67], but the point is not settled and many dismiss
the anomaly as too small to be worth worrying about. It may, however, have been
the distraction of hunting down this minor problem that led to insufficient attention
being paid to the quantitative effect on the calculated lattice energy of argon (5% as
estimated by Axilrod, and now believed to be about 7%) and the consequences of
this change for the many determinations of the intermolecular potential that relied
on the crystal energy as an important input into the calculations.

There were therefore at least two problems for the (12, 6) and (exp, 6) potentials
lurking in the wings in the early 1950s: the large discrepancy between the quantal
and the ‘experimental’ values of the dispersion coefficient C6, and the need to
include the triple-dipole term, and perhaps other minor terms, in the calculation
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of the crystal energy. The first serious doubt was raised by E.A. Guggenheim of
Reading University at the Jubilee Meeting of the Faraday Society in London in
April 1953 [68]. His criticism was based on a belief that the (12, 6) potential
gave the wrong curvature of the potential at its minimum. He later found that he
appeared to be wrong on this point, but his forceful criticisms opened up the subject
for discussion. Seven years later he fulfilled his promise of 1953 to make a more
detailed study of the problem and now his criticisms were more cogent [69]. He
and M.L. McGlashan accepted the quantal value of C6 and so were led to a deeper
minimum in the potential than the generally accepted value of ε/k of 120 K; they
found 138 K at a separation of 3.81–3.82 Å. This distance was close to that of the
(12, 6) and (exp, 6) potentials. An over-simplified treatment of the viscosity of the
gas at high temperatures (the known measurements of which were, in fact, in error)
led them, however, to conclude that that the diameterd , at which the potential is zero,
was 3.1–3.2 Å, a value that was much lower than anything previously proposed,
and which is now known to be wrong. Their whole analysis rested heavily on the
properties of the crystal but they made no use of, or even mention of, the three-body
term of Axilrod and Teller.

It is difficult to give a comprehensive account of the often conflicting experimental
evidence and fluctuating theoretical views on the argon potential from 1953 until
about 1972; only representative papers can be cited. These came from a small
number of centres in the United States and in the United Kingdom, with some
important contributions from Australia and Japan. Continental Europe stood aside.
By 1972 the problem of the argon potential was substantially solved although
minor improvements followed for another few years, when the consensus was
reviewed in a substantial monograph of 1981, Intermolecular forces: their origin
and determination, by G.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeman
[70]. Smith was in Oxford and the other three authors in London; Maitland and
Rigby had been research students with Smith.

Confidence in the (12, 6) and (exp, 6) potentials was slowly undermined by new
and apparently more accurate measurements of some of the physical properties,
and doubts about some of the older measurements. Mason and Rice had found
in 1954 that the viscosity of the gas at high temperatures calculated from the
(exp, 6) potential lay above the experimental values [57]. This was probably the
first tentative indication that the experimental values might be in error. Such a
discrepancy implied a steeper repulsive potential than the one they had chosen, but
such a change conflicted with Mason’s own measurements, when working with
I. Amdur at the Massachusetts Institute of Technology, of the scattering of high-
energy beams of argon atoms off other argon atoms [71]. These required a repulsive
wall of the potential at short separations that was softer than any hitherto proposed;
it varied approximately as r−8.3. Mason and Rice noted also that at low temperatures
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the calculated viscosity fell below the observed values, but said that “we can think of
no explanation for this”. Some years later it was shown that the limiting behaviour
of the viscosity at low temperatures, which is related directly to the coefficient C6,
is consistent with the quantal calculations but not with the larger values required
by the (12, 6) and (exp, 6) potentials [72]. A similar problem arose with the second
virial coefficient. Michels and his colleagues in Amsterdam measured this down to
118 K and found that their results were lower than those calculated from the (12, 6)
potential that they had used to fit successfully their results at ambient and higher
temperatures [73]. The discrepancies became worse when measurements down to
80 K became available [74].

The first attempts to solve these problems came from an unexpected direction,
namely from attempts to devise potentials for polyatomic molecules. In molecules
such as CH4, CF4 and SF6 the polarisable electrons are disposed symmetrically
about the central atom and at some distance from it. It was a simple and obvious step
to asume that such molecules could be described by a shell from which a potential
of (12, 6) or similar form ‘emanated’. Several such shell models were devised [75],
the most detailed of which was that of Taro Kihara in which the force was assumed
to arise from the points on the two shells that had the smallest separation. This
potential became widely known through his review of 1953 [76]. It was not his
intention to apply this model with a spherical shell to the inert gases. It was an
italicised conclusion of that review that the potential for argon had a “wider bowl
and harder repulsive wall” than that of the conventional (12, 6) potential, whereas
it is characteristic of shell models that they have deeper and narrower bowls when
these are described in terms of the centre–centre separation of the molecules. Some
years later, however, A.L. Myers and J.M. Prausnitz at Berkeley [77] found that
the low-temperature measurements of the second virial coefficient that Michels had
found to be incompatible with the conventional (12, 6) potential could be fitted with
a Kihara shell model;

u(r ) = ε[(ρm/ρ)12 − 2(ρm/ρ)6], ρ = r − 2a, (5.23)

where the shell radius a= 0.175 Å. The minimum of the potential they found to
be at a separation of rm = ρm + 2a= 3.678 Å and at a depth of ε/k= 146.1 K.
They were not the first to suggest a depth about 20% greater than the conventional
120 K; as we have seen Guggenheim and McGlashan had suggested 138 K two
years earlier, and in 1961 D.D. Konowalow and J.O. Hirschfelder had proposed
145 K [78], but neither of these potentials was in the main line of development.
Guggenheim and McGlashan had tried to determine the form of the potential only
near its minimum, and Konowalow and Hirschfelder had used a Morse potential – a
double exponential form that lacked any r−6 term and so was suitable for a chemical
bond but not for the potential of the van der Waals forces. What was becoming clear,
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Table 5.5

Source a/Å d/Å rm/Å (ε/k)/K C6/a.u.

Barker et al. [79] 0.168 3.363 3.734 142.9 63
Sherwood and Prausnitz [80] 0.184 3.314 3.675 147.2 56

however, was that algebraically simple forms of potential were unlikely to suffice.
More than two adjustable parameters were needed for an accurate potential that
fitted all the experimental evidence.

The second virial coefficient at low temperatures showed clearly that a depth of
not less than 140 K is needed, but a full test cannot be made from one physical
property alone. When the transport integrals were calculated it was evident that the
potential of Guggenheim and McGlashan did not fit the viscosity of the gas, but that
the Kihara (12, 6) potential, eqn 5.23, although not perfect, was an improvement on
the Lennard-Jones (12, 6) potential [79]. Two sets of figures for Kihara potentials
from 1964 are given in Table 5.5.

The values derived forC6, the coefficient of the dipole dispersion force, are close
to those of the quantal calculations of the 1930s listed in Table 5.2, but this apparent
agreement has no significance since the Kihara potential has a spurious r−7 term.
These potentials could not themselves account for the properties of the crystal. The
greater depth of the Kihara potential led to an overestimate of the magnitude of the
crystal energy of about 15%. This change was of the right sign to be accounted for
by the triple-dipole term but was two to three times the expected magnitude for this
correction.

More subtle tests of the Lennard-Jones and Kihara potentials arose from the
interrelation of three properties of the liquid state that could be used for this purpose
even in the absence of a fully-developed theory of the liquids. The three properties
are, first, u(r ), the pair potential, second, its logarithmic derivative, the pair virial
function, v(r ), and, third, the logarithmic derivative of the virial function, w(r ),
which has no name:

v(r ) = r [du(r )/dr ], w(r ) = r [dv(r )/dr ]. (5.24)

The corresponding instantaneous values of the sums of these functions in a macro-
scopic portion of matter are U ∗, V ∗, and W ∗, where

U ∗ =
∑∑

u(ri j ), V ∗ = −(1/3)
∑∑

v(ri j ),

W ∗ = (1/9)
∑ ∑

w(ri j ), (5.25)

where the double sums are taken over all pairs of molecules. If we ignore any
multi-body potentials then the mean or thermodynamic values of U ∗ and V ∗ are



256 5 Resolution

well known;

〈U ∗〉 = U, 〈V ∗〉 = pV − NkT, (5.26)

whereU is the internal or configurational energy of the system, and p is the pressure
of N molecules in a volume V at a temperature T . The mean value of W ∗ is not
so easily accessible, but if the potential u(r ) is of the Lennard-Jones (n,m) form
then

〈W ∗〉 = −(nm/9)U + [(n + m)/3](pV − NkT ). (5.27)

This result is exact in a classical system of (n,m) particles [81]. A similar, but not
quite so rigorously derived result holds for a Kihara (n,m) potential:

(1 − γ 2)〈W ∗〉 = −(nm/9)U + [(n + m + γ )/3](1 − γ )(pV − NkT ), (5.28)

where γ = a/d [82]. A purely thermodynamic discriminant, based on the mathe-
matical necessity for the average value of certain mean-square fluctuations to be
positive, puts a lower bound on 〈W ∗〉, and so on the value of n, if m is put equal
to 6. The minimum value of 〈W ∗〉 that is acceptable for liquid argon at its triple
point is 4.49 × 104 J mol−1, while a Lennard-Jones (12, 6) potential yields the un-
acceptable value of 4.33 × 104 J mol−1 [83]. Kihara’s potential, with γ = 0.1, gives
a value of 5.40 × 104 J mol−1 which satisfies the thermodynamic discriminant.
There is, however, an experimental route to 〈W ∗〉 that requires only that U ∗ is
composed of pair potentials. This route requires the knowledge of a quantal effect,
the differences of the ratios of the abundance of the isotopes of argon of different
mass in the liquid and in its co-existent vapour [84]. Its use needs only a value for
the collision diameter, d, which is fortunately the least uncertain of the molecular
parameters. This route yields 〈W ∗〉 = 4.53 × 104 J mol−1. This satisfies the ther-
modynamic discriminant, that is, it is greater than 4.49 × 104 J mol−1, but it differs
significantly from that calculated from Kihara’s potential. The conclusion from the
two tests, the simple one of the energy of the crystal and the less direct one of the
thermodynamic discriminant for the liquid, is that neither the Lennard-Jones nor
the Kihara (12, 6) potential satisfies the properties of the condensed phases. The
obvious culprit is again the neglect of the multi-body potentials, and, in particular,
the three-body triple-dipole potential.

The most direct experimental route to the three-body potential is a measurement
of the third virial coefficient of a gas. If we write the equation of state in the virial
form,

pV/NkT = 1 + B(N/V ) + C(N/V )2 + D(N/V )3 + · · · , (5.29)

then the second coefficient, B, is determined by the force between a pair of
molecules; the higher coefficients, C , D, etc., are similarly, and exactly, related to
the forces within clusters of three, four, etc., molecules. So if we seek to understand
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the three-body force we should measure the third coefficient, C , as a function of
temperature. Unfortunately this is difficult to do. The pressure of a gas at low den-
sities can be measured accurately and leads to a value of B that, with care, is good
to ±1%. At higher pressures it is not easy to determine C since the contribution
of the terms in D, E , etc., is difficult to ‘remove’, and since any error in fixing B
leads to a larger error in C . Nevertheless reasonable reliable values (±10%) were
available for argon over a wide range of temperature, principally from the work of
Michels and his colleagues. These were larger, by 50 to 100%, than those calculated
from the conventional (12, 6) and (exp, 6) potentials, but could be accounted for
by quantal estimates of the triple-dipole potential [80, 85]. Such results confirmed
what was becoming clear from the study in parallel of the crystal and the dilute gas,
that a pair potential that fitted the gas could not account unaided for the properties
of the crystal. Throughout the 1960s many made the provisional compromise of
using a (12, 6) potential as an ‘effective’ pair potential that gave a reasonable ac-
count of the properties of all three phases of matter without having to invoke the
awkward three-body term [86]. This attitude was reinforced when the technique
of computer simulation became sufficiently routine to generate a body of pseudo-
experimental properties of the condensed phases [87]. These results for a (12, 6)
potential were increasingly used to test statistical theories of liquids without worry
about the unresolved difficulties of the three-body potential.

Any improvement in our knowledge of the true two-body potential must there-
fore come from the precise study of two-body properties, that is the second virial
coefficient and the viscosity of the gas at low pressures. The assistance that it was
hoped to find from the properties of the solid had proved to be misleading. Other
two-body properties such as the thermal conductivity and the coefficients of self-
and thermal-diffusion of the gas are, in principle, also available and were occasion-
ally used but they could not be measured with the same accuracy as the primary pair.
By the middle of the 1960s it was agreed that the (12, 6) potential was inadequate
but there was no agreement over what should take its place. The Kihara (12, 6)
potential was an improvement but did not account completely for the viscosity at
high and low temperatures, and its form, with a spurious term in r−7 on expansion,
was theoretically unappealing.

Better quantal calculations soon gave more confidence in the reliability of the
size of the coefficient of the dispersion force. In 1964 A.E. Kingston found a value
of C6 of 65.4 a.u. and wrote that the “absolute error [is] certainly less than 10% and
may be considerably smaller” [88]. This and similar calculations were confirmed
the next year by measurements of the scattering cross-section of an argon atom
when it meets another at a low speed. The cross-section is then determined only by
the long-ranged part of the potential; one of the form −Cmr−m gives a cross-section
proportional to C2/(m−1)

m . In this way E.W. Rothe and R.H. Neynaber in California
found, after an initial false start, a value of C6 of 72 a.u. [89]. The accuracy was
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probably not high since the result depends on the experimentally measured area
to the power of 2 1

2 , so errors are magnified, but the figure was consistent with the
best quantal calculations. Attempts were made to reconcile this value of C6 with
the observed values of the second virial coefficient and the viscosity. Some progress
was made with potentials less simple than the Lennard-Jones and the Kihara but
no consensus was reached [90]. This can be seen from the papers at a Discussion
of the Faraday Society at Bristol in September 1965 [91]. There R.J. Munn of that
University made, in discussion, the suggestion that one problem might be simply
that the experimental results for the viscosity at high temperatures were wrong [92].

A breakthrough came in 1968 when J.A. Barker and A. Pompe in Melbourne
decided that this solution of the problem was the only way forward [93]. It was a
bold step to take since there were two independent sets of measurements that agreed
well. Trautz was the accepted authority in the field and his measurements up to 1000
K [35] led smoothly into those that Virgile Vasilesco made in Paris during the War,
and which extended to 1868 K [94]. Little was known of this (Romanian?) physicist
but his experiments seemed to have been well performed and gained acceptance
because of their agreement with those of Trautz. The only disagreement came from
results obtained in 1963 by Joseph Kestin at Brown University which were up to
2% higher than Trautz’s, but which extended only to 550 K [95]. Barker and Pompe
were encouraged in their decision by early knowledge of experimental work from
Los Alamos that suggested that the accepted values of the viscosity of helium were
too low, and before their paper was published they were able to add a ‘Note in proof’
to say that they now had had confirmation that new and higher values for argon were
about to be published from Los Alamos [96]. These followed the next year [97].
R.A. Dawe and E.B. Smith in Oxford soon confirmed this revision of the accepted
values with measurements up to 1600 K [98]. The errors of the older work were
found to be large – up to 8% at 1900 K. Barker and Pompe combined the quantal
calculation ofC6, the observed second virial coefficient, the viscosity to 600 K, and
information from beam scattering at high energies, which probes the repulsive wall
of the potential, to produce an algebraically complicated potential, but one that fitted
all the established ‘two-body’ results. It had a collision diameter, d, of 3.756 Å, and a
depth, ε/k, of 147.7 K. They calculated successfully the properties of the crystal by
adding the triple-dipole term. Other three-body terms had been suggested, such as a
three-body repulsive or overlap term [99], but they found no evidence that they were
needed and later work has confirmed this simplification. It may well be that each of
the other three-body terms is not negligible but that there is a mutual cancellation.
The situation has not been explored systematically; scientists are as happy as anyone
else to let sleeping dogs lie. After a little further refinement Barker and his colleagues
decided that 147.7 K was too big and reduced the depth to 142.1 K, with the distances
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a little larger in compensation, d = 3.361 Å and rm = 3.761 Å [100]. These figures
were now based in part on the properties of the liquid, as modelled by a computer
simulation, with allowance for the triple-dipole energy.

At this point another physical technique entered the picture. The bulk properties
of matter are determined by the intermolecular forces, but the links are far from
simple. The newly introduced technique – spectroscopy – probes the interactions
more directly. It was known from mass-spectroscopic studies that the van der Waals
forces lead to a small part of gaseous argon being composed of dimers, Ar2, not of
single Ar atoms [101]. Such dimers have a vibrational energy which is quantised,
and so there are discrete bound states, each with a different amount of vibrational
energy. Is it possible to observe transitions between such states and so obtain directly
information about the pair potential? Such measurements had been made for nearly
fifty years on chemically bound diatomic molecules, and had produced a mass
of precise information. Unfortunately the Ar2 dimer has no dipole moment and
so transitions between different vibrational levels neither emit nor absorb infra-
red radiation. Moreover the concentration of the dimer is low, less than 1% at
120 K and atmospheric pressure. Y. Tanaka and K. Yoshino at the U.S. Air Force
Laboratory in Massachusetts overcame both difficulties; the first by observing the
ultra-violet excitation of Ar2 to a high electronic state, when the precise energy
of the transition depends on the ground vibrational state that the excitation starts
from, and the second by using long path-lengths in the gas by means of multiple
reflections between parallel mirrors [102]. In theory a knowledge of the vibrational
energy levels of the dimer tells one how wide is the ‘bowl’ of the potential as a
function of the height above the minimum. Tanaka and Yoshino did not try to extract
the information in this form but fitted a Morse curve, a sum of two exponentials,
to their results. This is a curve that is appropriate for a chemically bound pair of
atoms but not for what is now usually called a van der Waals molecule. They
obtained a depth of the minimum, ε/k, of 132 K. Spectroscopists sometimes think
of themselves as an élite and are apt to overlook old-fashioned measurements
of gas imperfection or viscosity made by the ‘rude mechanicals’. Their potential
was totally at variance with the known values of the second virial coefficient.
Maitland and Smith realised the value of the information in the results of Tanaka
and Yoshino and made a proper ‘inversion’ of these to get the bowl as a function
of energy, constraining their fitting, however, to satisfy the traditional information
from the virial coefficient and the viscosity [103]. The potential that they obtained
had d =3.555 Å, rm = 3.75 Å, and a depth of 142.1 K. It was virtually the same
as that of Barker, Fisher and Watts [100]. A few years later E.A. Colbourn and
A.E. Douglas in Ottawa obtained a better spectrum in which the rotational lines
of the vibronic transition were resolved [102]. An inversion could now be carried
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out to extract even more information. This they did, reporting a well-depth with a
claimed precision of one part in 104 but, being spectroscopists, they again did not try
a check by computing the bulk properties of the gas. Their potential, d = 3.347 Å,
rm = 3.75 Å, and ε/k= 143.2 K, was no advance on that of Barker or Smith and
their associates. There have been a few improvements since then but the problem
of the argon potential was essentially solved by 1971.

One further method of attack came just in time to help with the refinements. We
have seen repeatedly how the determination of intermolecular potentials from bulk
physical properties has been hampered by the fact that the only feasible routes were
from the potentials to the properties. It was therefore always necessary to guess at
model forms of potential, calculate the properties, and see if these agreed with what
had been measured. In a Popper-like way this technique could show that a model
was wrong, but it could never give assurance that it was correct, however good the
apparent fit to the experiments. For the spectroscopic measurements there was an
established inverse route, from the properties to the potential, or at least to some
features of the potential. It had been known at least since 1950 that there is also,
in principle, an inverse route from the second virial coefficient to the pair potential
[104]; this seems to have been first noticed publicly by J.B. Keller and B. Zumino
in 1959 [105]. The coefficient can be written, from eqn 4.39,

B(T ) = −(2πN/3)eε/kT
∫ ∞

0
(r3

+ − r3
−)e−xdx, (5.30)

where x = [u(r ) + ε]/kT , and r+ and r− are the outer and inner separations in the
potential bowl for all negative values of u(r ). In the repulsive region of the potential
r+ is taken to be zero. This expression has the form of a Laplace transform of
(r3

+ − r3
−) and, since Laplace transforms can be inverted, there seems to be here a way

of obtaining directly (r3
+ − r3

−) as a function of x and so of the energy u. This route
was first followed in practice for the simple case of helium for which the negative
region of u(r ) is so small that it was possible to ‘correct’ for its presence and so
obtain directly the repulsive separation as a function of energy [105]. Unfortunately,
for argon, and for other substances for which the attractive part of the energy is
at least as important as the repulsive, the direct inversion of the Laplace transform
proved to be unstable; it would require a precision of one part in 104 in the virial
coefficient for the method to succeed [106]. All was not lost, however, since it proved
possible to find empirically ways of suppressing the instability and obtaining useful
results [106]. It has also been possible to devise an iterative scheme for inverting the
viscosity and other transport properties [107]. The potentials so obtained confirmed
those arrived at by the older and less direct methods in 1971. These inversions have
also proved useful for other less exhaustively studied systems [108].

Little use was made in these determinations of quantal calculations of the repul-
sive branch of the potential which arises from the overlap of the electronic orbits
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Table 5.6

d/Å rm/Å (ε/k)/K C6/a.u.

1953 3.41 3.82 120 110
1977 3.36 ± 0.05 3.76 ± 0.02 143 ±1 65

around each of the atoms. Such calculations are difficult because of the correlation
of the motions of the electrons arising from their Coulombic repulsions. There is
no difficulty of principle but the computational problems are formidable. By the
1970s the best calculations were approaching the same order of accuracy as the de-
terminations from spectroscopy, beam scattering and from the physical properties
of the dilute gas, but they did not displace these properties as determinants of the
potentials of choice [109].

Thus, after a long and tortuous process, the argon problem was solved by the
early 1970s. It is interesting, Table 5.6, to compare the accepted values of 1953, that
is those of the Lennard-Jones (12, 6) potential, with the consensus of 1970–1977.
The new potential could account, almost always within experimental error, for
such molecular properties as the spectrum of the dimer and the beam-scattering
cross-sections, for the macroscopic two-body properties such as the second virial
coefficient and transport properties (of which only the most important, the viscosity,
has been discussed here), and for the structural and thermodynamic properties of the
liquid and solid when augmented with the triple-dipole term. One nagging doubt
remains. This three-body term deals well with the difference found between the
observed crystal energy and third virial coefficient and the values calculated from
the now well-established pair potential, but many apparently reliable quantal cal-
culations and some spectroscopic evidence suggests that the three-body exchange
energy is equally important and of the opposite sign. The agreement obtained
with the triple-dipole term alone seems too good to gainsaid, and is provisionally
accepted, but the doubt remains [110].

Argon is not the most important molecule that we encounter, indeed it must be
one of the least important for most physicists and chemists. It was something of
an accident, born of convenience, simplicity, and habit, that made it the chosen
test-bed for experiments and theories on intermolecular forces. For twenty years
the ‘argon problem’ attracted much of the effort of a relatively small but dedicated
group of physical chemists. Many of them made important contributions in other
fields also, principally in statistical mechanics, but they returned time and time again
to argon. The wider group of physicists and chemists were often not in sympathy
with this obsession. One senses something almost of a mild exasperation in the
opening and closing papers at the Faraday Discussion on intermolecular forces of
1965. These were given by H.C. Longuet-Higgins and C.A. Coulson respectively,
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both of whom worked primarily in quantum mechanics, and both of whom tried to
raise the discussion to wider issues [111]. Nevertheless the solution of the problem
of argon was a necessary step in the quantitative study of intermolecular forces,
and those who worked on the problem were certainly not wasting their time on a
triviality.

It is one of the comforting self-delusions to which some academic scientists are
prone, to believe that once a problem is solved in principle it is straightforward to
extend that principle to other applications, or, if not entirely straightforward, then
that such extension is unrewarding work that can safely be left to others. It was
natural to feel that with the satisfactory determination of the argon potential the
field had lost its most exciting moment. Those who had laboured hard here did not
put the same effort into other practically more important cases although the lessons
that had been learnt from argon could be and usually were applied to the other
inert gases. Beyond argon and the inert gases lie the diatomic molecules, hydrogen,
nitrogen, oxygen, etc., and then the polyatomic molecules such as the hydrocarbons,
the polar molecules such as hydrogen fluoride and hydrogen chloride, and, more
important, ammonia and water. Beyond these lie the even more complex problems of
polymers, micelles, colloids, and the interactions in biologically important systems.
These fields are immense and much work is now being done, but progress towards
their solution (in the argon sense) is slow and necessarily far from elegant. Here,
however, we shall shelter behind the delusion that the accurate determination of
the force between two argon atoms is the breakthrough ‘in principle’, and not
pursue the complications of the real world. Indeed, the writing of the history of
the interaction of more complicated molecules cannot yet be done, for the whole
field is still one of intermittent action, tentative conclusions and innumerable loose
ends. Only one example will be given, that of water whose importance justifies the
possibly premature attempt. One of the byways of the interaction of more complex,
and indeed of macroscopic entities, is, however, also worth exploring since it led
to a resolution of the old problem of action-at-a-distance in this field. We return to
that subject after the discussion of water.

5.3 Water

Water is unique in its importance and in its properties. No other substance has
been the subject of so much study and speculation, nor has any been harder to
understand at a molecular level. The contrast with argon could not be greater, for
in studying argon we are studying matter and its cohesion at its simplest, the very
essence of the problem before us; in studying water we are studying a substance so
atypical that every inch of progress is peculiar to it and often has no relevance to
any other substance. The force between a pair of argon atoms is a function of one
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variable, the separation of the nuclei; the force between a pair of water molecules
is a function of their separation and of the five angles needed to describe their
mutual orientation. In saying that five angles are needed we are presuming that
we know that the molecule is H2O and that it has a triangular shape. The con-
stitution was well established by the start of the 20th century but the shape was
not. Kossel was arguing for a linear structure in 1916 [112], but a symmetrical
linear structure with the central oxygen atom equidistant from each hydrogen is
not compatible with what was then known of the infra-red absorption spectrum
of the vapour, which required that the molecule has three different moments of
inertia [113], nor with the fact that the molecule has a strong dipole. The evidence
for this dipole became available early in the century. In 1901 Bädeker measured
the ‘dielectric constant’ (now called the relative permittivity) of the vapour as a
function of temperature [114]. His range was small, from 140.0 to 148.6 ◦C, but
it was sufficient to show a rapid change with temperature. He did not then know
how to interpret this result and fitted his experimental points to a function of the
form (a+ bT ). Langevin and Debye had yet to show that the appropriate form was
(a+ c/T ) where, as we have seen, the parameter c is proportional to the square of
the dipole moment, µ. This interpretation of his result was made by J.J. Thomson in
1914 and by Holst in 1917 [115], who derived from it values of the dipole moment
of 2.1 and 2.3 D respectively [116]. Holst sought also to determine the moment by
seeing what value was needed to fit the second virial coefficient if this was to be
interpreted in terms of Keesom’s model of a hard sphere with a dipole at its centre;
this calculation gave him a moment of 2.62 D. A more reliable value became avail-
able two years later when Jona measured the dielectric constant from 117 to 178 ◦C
and showed that this led to a value of µ of 1.87 D [117]. The value accepted today is
1.84 D. It was possible that the molecule could have been linear but unsymmetrical
and so have had a non-zero dipole moment and only one moment of inertia, but
this seemed unlikely, and Debye claimed in 1929 that such a structure would be
unstable [118].

The x-ray diffraction pattern of the crystal shows only the position of the oxygen
atoms. These are arranged in an open structure with each atom having four nearest
neighbours. William Bragg [119] interpreted this structure in 1922 as one composed
of negatively charged oxygen ions, with the hydrogen ions, or protons, at the mid-
points of the lines joining them. No doubt he was attracted to this interpretation
by his son’s success in determining the structure of the crystal of common salt and
showing that it was formed not of NaCl molecules but of Na+ and Cl− ions, a result
that upset some of the more traditionally minded chemists. For water, however,
Bragg’s proposal was a step too far; the ice crystal is formed of discrete H2O
molecules but these are orientated so that the hydrogen atoms are along the lines
joining the oxygen atoms, as he surmised.



264 5 Resolution

This structure, with the OH bond of each molecule directed towards the O atom
of a neighbouring molecule, was consistent with what the chemists had deduced
from other evidence. In 1912 T.S. Moore [120] showed that the degree of ionisation
of aqueous solutions of amines could be understood if there were a weak bond or
attraction between the H atom of a water molecule and the N atom of, for example,
trimethylamine. This link could be represented N · · · H−O, where the full line is
the covalent bond in the water molecule (the second bond not being shown) and the
dashed line is the weaker attraction between the H and N atoms. This link could be
be understood if there were a positive charge on the H atom and negative one on the
nitrogen atom. The next year P. Pfeiffer suggested a similar link within one molecule
[innere Komplexsalzbindung], in this case between the O atom of a carbonyl group
and a nearby HO group in the same molecule [121]. Similar ideas arose, apparently
independently, a few years later at Berkeley, first in an unpublished undergradate
thesis of M.L. Huggins and then in a paper by Latimer and Rodebush [122] that
is often taken as the first authoritative account of what now came to be called the
‘hydrogen bond’ [123]. The strength of this ‘bond’, typically about 20 kJ mol−1,
is large compared with the thermal energy, kT , at room temperature, 2.5 kJ mol−1,
and with the minimum potential between two argon atoms, 1.2 kJ mol−1, but much
smaller than that of a chemical bond, for example, 460 kJ mol−1 for the mean energy
of the OH bond in water. Its origin is therefore primarily a classical electrostatic
attraction between the partial positive charge on the hydrogen atom, which is here a
proton with two electrons to one side of it and only partly shielding it, and a partial
negative charge on the O, N, or F atom to which the bond is directed. The large
size of the hydrogen-bond energy, compared, say, with the Ar–Ar energy, means
that useful quantal calculations and estimations of the electrostatic interactions can
be carried out more easily for this complicated molecule and its dimer than for the
apparently simpler inert gases. This advantage goes a little way in compensating
for the greater number of variables needed to define a potential.

A landmark was reached in 1933 with a long paper from Bernal and Fowler [124]
on the structure and physical properties of liquid water which was published in the
first volume of what soon came to be accepted as the leading journal for work in
this field, the American Journal of Chemical Physics. It was agreed that in ice the
oxygen atoms are arranged in a tetrahedral structure, that the angle of the HOH
bonds in the isolated molecule (104.5◦) was close enough to the tetrahedral angle
(2 cos−1(1/

√
3) = 109.5◦) for the hydrogen atoms to lie along the O−O lines, but

there was no direct evidence for the precise position of the hydrogen atoms. Bernal
and Fowler rejected Bragg’s ionised structure and argued that the infra-red spectrum
of the solid was close enough to that of the single molecule for it to be more likely
that the H2O molecule retained its integrity in both ice and water (Fig. 5.2). They
interpreted the x-ray diffraction pattern of the liquid in terms of the then novel



5.3 Water 265

Fig. 5.2 A perspective sketch of five water molecules in ice. The oxygen atoms, shown by
the large open circles, form a tetrahedral array in which each molecule has four nearest
neighbours. Each of the hydrogen atoms, a small closed circle, is bonded to an oxygen
atom, as is shown by a full line, and each of these bonds is directed towards another oxygen
atom, so as to form a ‘hydrogen bond’ with it, as shown by a dashed line. The central
water molecule is therefore linked to its four neighbours by two donor hydrogen bonds
and two acceptor bonds. The arrangement shown in one of the many ways of assigning
the hydrogen atoms to the O−O lines and in practice the molecules flip rapidly from one
configuration to another in ice at the melting point, only becoming locked into one of the
many alternative arrangements at low temperatures.

angle-averaged pair distribution function (see below, Section 5.5) and showed that
its structure was predominantly of the quartz type, with a small fraction of the
tridymite (or wurtzite) form near the freezing point, but that it changed into a more
close-packed structure at higher temperatures. They were thus able to rationalise
the occurrence of the density maximum at 4 ◦C and were able to give convincing
accounts of the magnitude of the latent heat and a host of other properties, by
supposing that the intermolecular potential was of a Lennard-Jones (12, 6) type
with the addition of the electrostatic interaction of three discrete charges on each
molecule, one positive one on each of the hydrogen atoms and a double negative
charge on the far side of the oxygen atom. This was not quite consistent with the
four charges arranged tetrahedrally that they used to justify the structure of ice
and liquid water (Fig. 5.2). There are many different ways of orientating the water
molecules in such a tetrahedral lattice, even with the restriction that there is only one
hydrogen atom on each O−O line, and, unless this disorder is removed on cooling
the crystal, there will be a residual entropy at 0 K. It was found that there was such
an entropy, and Pauling showed in 1935 that its magnitude was accounted for by
this disorder in the hydrogen bonds [125].
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It is surprising that throughout the 1920s and 1930s there was no calculation of a
second virial coefficient for a Lennard-Jones (n,m) potential with a point dipole at
its centre. This natural advance was made by W.H. Stockmayer, then at M.I.T., in
1941 [126], and this potential is now known by his name. He chose a repulsive index,
n, of 24 and fitted it to the then accepted values [127] of the second virial coefficient
of water. Margenau had argued the case for including a quadrupole in the potential
but had supported it only by crude calculations [128]. When Stockmayer’s results
became available Margenau tried again, but was constrained to use the angular form
of the dipole–dipole potential for a single quadrupole–dipole interaction [129].
(The water molecule has three quadrupole moments.) A more correct angular inte-
gration, but with still a restriction to a single quadrupole moment that was supposed
to have cylindrical symmetry, was made a few years later, and a 4-charge model was
chosen to be consistent with the lattice energy of ice and the existence of its residual
entropy [130]. All this work was undermined, however, when the quantal calcula-
tions of the electronic structure of the water molecule became sufficiently reliable
for the resulting values of the three quadrupole moments to be trusted, and for the
spectra to give a value for the average of the moments. Glaeser and Coulson [131]
calculated the three moments about each of the axes of the molecule, and the mean
of their values was soon confirmed from the spectra which yield the average 〈r2〉,
where r is the distance of each electron from the centre of mass [132]. A more direct
spectroscopic determination of the three moments followed a few years later [133].
These results were not consistent with what had been assumed in the calculations of
the second virial coefficient but they confirmed, at least qualitatively, the 4-charge
models.

From this time forward there were two different lines of advance. One group,
who were interested primarily in the structure of liquid water, took advantage of the
increasing power of computers to simulate its structure and calculate its properties.
For this they needed a two-body intermolecular potential, but since an important part
of this is the energy arising from the polarisation of one molecule by the electric field
of its neighbour, and since this energy is far from pair-wise additive, the potentials
that they devised to fit the structure were not true pair potentials but ‘effective
potentials’ suitable for the problem in hand. There were a series of these, typically
of the form of a Lennard-Jones (12, 6) potential centred on the oxygen atom with
3 or 4 charges appropriately distributed [134]. These were generally successful
in reproducing many of the structural and thermodynamic properties of the liquid
although usually not so successful with dielectric and transport properties. It was
not surprising that an attempt to use one of these effective potentials to calculate a
true pair property, the second virial coefficient of the gas, failed by a factor of two
[135]. The aim of some of this work was to lead to molecular models of water that
could be used in simulations of systems of biological interest [136], but the status



5.3 Water 267

of effective potentials is never wholly clear and these endeavours attracted fewer
devotees after the 1980s.

The second line of advance was a spectroscopic attack on the water dimer, (H2O)2.
We have seen that spectroscopy made a late but not negligible contribution to the
problem of the Ar–Ar potential. With water, however, the position was different.
Here the true pair potential, a function of six variables, can never be determined from
the macroscopic properties alone. Fortunately both water and its dimer are polar and
have information-rich microwave and infra-red spectra. For some years the spectra
of what are usually called ‘van der Waals molecules’ have been studied in detail
and have proved a powerful source of information on the potentials of some molec-
ular pairs. Originally these pairs were naturally chosen for their ease of study and
interpretation, and so told us a lot about interactions that were, however, of only spe-
cialised interest, such as Ar–CO [137]. The spectra are at their simplest if only one
of the pair, CO in this example, has a dipole, and if the molecules are cooled to low
temperatures so that they are in low vibrational and rotational states. This is brought
about by expanding the mixed gases through a pinhole into a vacuum when a high-
speed molecular beam is produced in which the random translational kinetic energy
of the molecules and molecular clusters, which is a measure of their temperature, is
converted into the ordered motion of the stream. Soon the ambitions of those work-
ing in this field went beyond the simplest cases and the water dimer was tackled. The
first infra-red studies were inconclusive, but microwave spectroscopy, which mea-
sures transitions between rotational levels, showed more promise [138]. Later work
involved highly resolved infra-red spectra and their detailed analysis. The culmina-
tion of this work was the determination of the pair potential of ‘heavy water’, D2O,
by R.J. Saykally in Berkeley and C. Leforestier of Montpellier, and their colleagues
in 1999 [139]. Their potential was based on one originally derived from quantal cal-
culations [140] and has no less than 72 parameters. It is a sign of the times that these
were not given in the body of the paper but were listed on the Internet. (Heavy water
has almost the same intermolecular potential as common water but a spectrum that
is easier to interpret.) This impressive potential has the great virtue of yielding good
values of the second virial coefficient, a delicate test that spectroscopists had often
previously ignored. It is possible to prepare molecular beams with different ratios
of single molecules, dimers, trimers, etc., by adjusting the pressure of the gas before
expansion, and the size of the pinhole. In this way Saykally and his colleagues have
obtained and analysed also the spectra of clusters containing three, four and five
water molecules, but naturally the interpretation of these has not been carried out in
the same detail as that of the dimer [141]. The power of these new spectroscopic tech-
niques is only now being extended to other molecular systems and the exuberence
of the field is shown in the increasing length of each of the three issues of Chemical
Reviews that have been devoted to the subject of van der Waals clusters [137].
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How far do these beautiful spectroscopic studies help us to understand the co-
hesion of liquid water or of other liquids for which it is possible to determine the
multi-dimensional potential surfaces of the dimer? In 1994 D.H. Levy addressed
this question at the end of the Faraday Discussion on van der Waals molecules,
and concluded that there was still a gap in our knowledge that we could not yet fill
but that we were making progress [142]. The success of work on the water dimer
confirms this but in 2001 there seems to be still some way to go.

5.4 Action at a distance

The natural philosophers of the late 17th and 18th centuries were much concerned
with the metaphysical problem of action at a distance. They settled the matter by
accepting that gravitational attraction was too successful a theory to be denied,
but that there was no point in trying to understand what mechanism gave rise
to it. Tacitly, and with less whole-hearted conviction, most came by the end of
the 18th century to accept that cohesion is the result of attractive forces between
some unknown basic particles out of which matter is formed. Laplace and his
school became the most successful exponents of this idea. The counter-revolution
started when it was found that electric and magnetic forces between moving charges
or currents did not act along the lines joining the bodies in question. In Britain,
Faraday’s lines of force filled all space and were enshrined in mathematical form
by Maxwell. William Thomson tried to replace the hard massy atoms by vortices in
the aether. The current of ideas began to flow back again towards a Laplacian picture
with the successes of the kinetic theory of gases from the middle of the 19th century
onwards. By this time many scientists had lost interest in the metaphysical problem
and were content to build theories as close as they could to the experimental facts.
Maxwell was one who retained a concern with the question and was in a unique
position to see the merits and defects of the kinetic model that relied on an apparent
action at a distance between particles. In a Friday evening Discourse at the Royal
Institution on 21 February 1873 he took the same pragmatic view that Newton had
taken in his ‘Query 31’:

If we are ever to discover the laws of nature, we must do so by obtaining the most accurate
acquaintance with the facts of nature, and not by dressing up in philosophical language the
loose opinions of men who had no knowledge of the facts which throw most light on these
laws. [143]

He outlined the arguments in favour of and against the idea of action at a dis-
tance, laying most emphasis on Faraday’s view that even where there appears to be
only empty space there can be lines of force with elastic properties. Had he been
questioned closely it is almost certain that he would have prefered ‘field’ forces to
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simple ‘action at a distance’ but he is careful to balance the arguments and he ends
cautiously: “Whether this resolution is of the nature of explication or complication,
I must leave to the metaphysicians.”

In the early 20th century there was little interest in the problem among those who
were trying, without success, to determine the nature and form of the cohesive
forces. They tacitly assumed that Coulombic interactions, like gravitational, acted
at a distance, and that there was little to be gained by asking how they did it.
When London found the quantal origin of the attractive forces then it was seen
that they were electrical, and that they depended on the matching of the phases
of the oscillating dipoles. It was assumed, therefore, although rarely explicitly
stated, that they were propagated at the speed of light. The speed of light is ‘large’
and the separation of molecules in a solid or liquid is ‘small’, and so it was not
thought necessary to raise the question of the time taken for the transmisssion of
the interaction. The measures of largeness and smallness could easily have been
quantified, and perhaps were, although never prominently. The relevant energy
is approximately that of the ionisation energy, I , of the molecules involved, for
example, 15.76 eV for argon. The distance at which one might have to ask about
the time taken for the transmission of the interaction is therefore of the order
of hc/2π I , where h is Planck’s constant and c is the speed of light. This distance
is 125 Å for argon and is so much larger than the effective range of the force, about
6 Å, that it is irrelevant.

Soon, however, there arose a situation in which the distance was relevant. During
the 1930s and throughout the War there was a group in the Phillips Laboratories
at Eindhoven who studied the problem of colloid stability. Colloidal particles are
sometimes described as mesoscopic; they are small compared with the macroscopic
lengths that characterise the surface behaviour of materials (for example, the cap-
illary length of water at 3.8 mm) but large compared with the size of molecules.
A typical colloidal particle might have a diameter of 1 µm, although the range of
sizes and shapes is large. The forces between such particles in a liquid suspension
are complicated since their surfaces are generally charged and these charges in-
teract with each other and induce other electrostatic forces in the liquid. A major
component of the forces between the particles is, however, the sum of the attrac-
tive dispersion forces between all the molecules in each. Once Wang and London
had shown that the potential of the dispersion force fell off as the inverse sixth
power of the separation of the molecules, with a coefficient that could be calcu-
lated, then it was a straightforward matter to find, by integration, the total disper-
sion force between two spherical colloidal particles. Prompted by London, such
a calculation was made in 1932 by Kallmann and Willstaetter in Berlin [144],
and also by Bradley in Leeds, who tried to measure directly the force of adhe-
sion between two quartz spheres [145]. The best-known and most widely cited
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of such calculations was that made by H.C. Hamaker of the Phillips group and
reported to the van der Waals centennial meeeting in Amsterdam in 1937; his
name is now given to the constant or parameter that describes the integrated effect
[146]. Bradley had considered attractive potentials proportional to r−m , although
he recognised that m= 6 was the appropriate value. Hamaker restricted himself to
the sixth power. His colleagues continued their study of colloidal systems during
the War, paying particular attention to the electrical forces and their modifica-
tion in the presence of dissolved electrolytes. In the course of this work [147],
J.Th.G. Overbeek came to the conclusion that the dispersion force between meso-
scopic particles was much weaker than that calculated by integrating over all the
inverse sixth-power potentials, as Hamaker had done. He thought that at large dis-
tances the dispersion force might be weakened because it was not an instantaneous
action at a distance but must be transmitted at the speed of light. He put this point
to his colleagues H.B.G. Casimir and D. Polder who confirmed that his hypothesis
was correct [148].

It was not easy to understand this ‘retardation’ of the force since fourth-order
perturbation theory is needed, in contrast to London’s theory which requires only
second order. Many routes to Casimir and Polder’s result have now been found
but none is simple. The physical origin can again be put into words in terms of
Drude’s model. The oscillating dipole in the first molecule interacts, in phase,
with the oscillating dipole in the second, and it is this interaction that produces
the r−6 potential at short separations. When the separation is large enough for the
time taken for the signal to be transmitted from one molecule to the other to be
an appreciable fraction of the reciprocal of the frequency of oscillation of either
dipole then the oscillators can no longer remain in phase. The lag that ensues
results in a weakening of the interaction and leads to a dispersion potential that
falls as r−7. The effect can be observed directly only if one can measure the force
of attraction between mesoscopic or macroscopic bodies that contain a sufficiently
large number of molecules for the force to be appreciable at large distances. A
strictly quantitative study would then have to deal also with the fact that the sum
over the two-body forces is an inadequate way of dealing with condensed matter.
A treatment that encompassed this problem also was devised by E.M. Lifshitz in
Moscow in 1954 [149]. He considered electrical fluctuations in bulk matter and did
not break these down into their molecular components.

The experimental hunt for these retarded forces started soon after Casimir
and Polder’s paper of 1948. In the Institute of Physical Chemistry in Moscow,
B.V. Deryagin and his student I.I. Abrikosova studied the force of attraction
between a glass hemi-sphere and a flat plate, and found a force that fell off with
l, the size of the gap, as l−3, as required by Casimir and Polder’s potential [150].
Other early experiments were attempts to study the adhesion of bodies ‘in contact’,
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but that is an ill-defined state and they were not very informative [151]. One cannot
polish glass to produce a surface without irregularities of at least 100 Å, and so
useful quantitative results could be obtained only for gaps of the order of 1000 Å
or more. At this distance the force is weak but fully retarded and Abrikosova and
Deryagin were soon claiming good agreement with theory [152]. Similar and con-
temporary experiments by Overbeek and his student at Utrecht, M.J. Sparnaay, led
to appreciably stronger forces than would be expected even without retardation,
which they did not mention in their first note [153]. Deryagin ascribed this failure
to their inability to remove all electric charges from the surfaces and to a lack of
sensitivity of their apparatus [154]. Independent measurements at Imperial College
in London, with an apparatus similar to that of Overbeek, agreed broadly with
Deryagin’s results [155], which were also confirmed later by further measurements
at Utrecht [156].

The real advance in technique came some years later when David Tabor in
Cambridge replaced the glass surfaces with cleft sheets of mica bent into the shape
of two crossed cylindrical surfaces. Split mica is smooth on an atomic scale over
a length of the order of a few millimetres, and so the cylinders could be brought
to within 15–20 Å. This reduction of working distance not only greatly increased
the strength of the force to be measured but also allowed him and his students to
explore the transition from the normal to the retarded force [157]. They were able
to show that below about 100 Å the force is normal and that above about 200 Å
it is fully retarded, a transition range that is consistent with the transmission of
the interaction at the speed of light. This powerful technique was soon extended
by spreading layers of other materials on the mica sheets, and by immersing the
cylinders in water and in solutions. In this way much has been learnt by direct
experiment of the cohesive forces in many systems of great physical, technological
and biological interest [158].

With the work of Deryagin, Overbeek, Tabor and their associates, cohesive forces
have been measured at what Laplace might just have recognised as ‘sensible dis-
tances’. As so often in scientific arguments, both sides in the action-at-a-distance
debate have been proved right. Descartes, Locke, Newton and Leibniz have all been
vindicated in thinking that ‘a body cannot act where it is not’; an electromagnetic
mechanism has been found for the transmission of cohesive attraction from one body
to another at the speed of light. Yet those innumerable scientists from Newton and
Freind onwards who claimed that knowledge would be best advanced by ignoring
such metaphysical niceties have also been amply justified. It is only a rare prob-
lem in physics, chemistry or biology for which the retardation of the dispersion
forces must be taken into account. The position parallels that with the gravitational
force where practical and theoretical astronomy flourished for centuries before any
plausible mechanism for the transmission of this force could be devised [159].
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5.5 Solids and liquids

We have seen that the investigation of intermolecular forces has been a two-way
process. The experimental study of matter as gas, liquid and solid provides the
evidence for the existence of the forces and, in principle, a means of measuring
them but, conversely, this measurement can be carried out only if we have already
a good theoretical picture of what properties of matter are implied by a given
system of intermolecular forces. So far in this chapter we have looked only at the
problem of the form and strength of the forces, using as evidence mainly the simply
interpretable properties of the gas at low densities. We must now complete the
picture by seeing how a knowledge of these forces was used in the 20th century to
interpret the properties of solids and liquids.

During the 18th century, from Newton to Laplace, the study of the forces was
primarily a study of their manifestation in the properties of liquids and, in particular,
in those surface properties that result in capillarity. In the early and middle of the
19th century attention switched to the elastic properties of solids and to the propriety
of interpreting these in terms of the attraction of Laplacian particles. Towards the
end of the century gases and, to a lesser degree, liquids came to the fore, and in
the early years of the 20th century it was realised that it was the properties of
gases at low densities that provided the most direct and unambiguous link to the
force between a pair of molecules. This realisation would doubtless have come
sooner had the relevant properties of gases been easier to measure with a useful
accuracy. Solids then played a minor role and one that was blighted by ignorance of
the fact that classical mechanics, although adequate for most gases and liquids, is
not so appropriate for solids. Liquids were generally ignored by the leaders of the
field since they recognised the imperfections of theory in this area. Lesser lights,
however, wrote innumerable papers on their physical properties in the early years
of the 20th century and made many attempts to interpret these in terms of the
properties of the molecules. The simple picture of van der Waals and his school
had given a strong impetus to this part of the field. It had led to the best estimates
yet of the range and the strength of the intermolecular forces and had established
in the minds of most scientists that all three states of matter should, in principle, be
explicable in terms of the same one set of molecules and the forces between them.
But it had no rigorous foundation in the newly developing subject of the statistical
mechanics of Boltzmann, Gibbs, Einstein and Ornstein, and so the simple picture
could not be developed further.

With the establishment of the quantal theory of crystals in the 1920s and 1930s
the way was apparently open again for the properties of non-metallic solids to
contribute quantitatively to the study of intermolecular forces. (Metals raise other
problems, outside the scope of this study.) The most useful properties of the inert
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gas crystals were, as in the classical picture, the lattice spacing and the crystal
energy, which are related reasonably directly to the separation at the minimum of
the pair potential and to its greatest depth. These properties are simplest to interpret
if available for the crystal at zero temperature [160], and since they change little
with temperature, such extrapolated values are easily found. As we have seen, these
properties were used by Lennard-Jones in the 1920s and 1930s, and by Corner in
the 1940s (among others) and became a part of the evidence that the (12, 6) and
(exp, 6) potentials were apparently good representations of the inert gases in both
gas and solid states. Later work showed the inadequacy of that conclusion [161].

The use of other mechanical and thermal properties is more difficult. Some
obvious ones, like the strength of a solid, cannot be used since, even for a single
crystal, the strain that occurs before breakage is too complicated to be interpreted
directly in terms of the intermolecular forces [162]. Other properties such as the
coefficient of thermal expansion and the heat capacity vanish at zero temperature
and an interpretation of their values at non-zero temperatures needs a knowledge
of the modes of vibration of the atoms in the crystal which, in turn, depend on the
intermolecular forces. This interpretation is a non-trivial quantal problem to which
the early and partial solutions of Einstein, Debye and of Born and von Kármán
[163] were not a sufficient answer. It was inevitable that measurements of the heat
capacity were used more to refine our knowledge of the frequency spectrum of the
lattice vibrations than as a tool for studying the intermolecular forces, although
some did attempt the second task [69, 164].

The elastic constants of a crystal are a more direct route to the intermolecular
forces and, in particular, those at zero temperature are related to the curvature of
the potential near its minimum. There are, however, two experimental problems
here. The first is that the two most useful tools for measuring these constants for
a material as difficult to work with as solid argon are the speed of sound and
the inelastic scattering of neutrons. Both measure the adiabatic coefficient not the
more useful isothermal coefficient. (The same distinction is found in liquids and
gases and led to Laplace’s correction of Newton’s calculation of the speed of sound
in air.) The second experimental difficulty is that the elastic constants change rapidly
with temperature and so it is hard to extrapolate them to zero temperature. The
compressibility of solid argon at its triple point of 84 K is nearly three times as
large as the extrapolated value at zero temperature. Both difficulties can be overcome
if measurements can be made at sufficiently low temperatures, generally 10–20 K,
since the extrapolation becomes easier, and the difference between the adiabatic
and isothermal coefficients vanishes at zero temperature. Barker and others used
such results as were to hand but the really useful measurements were not made
until the question of the argon potential had been virtually settled. In 1974 a team
at the Brookhaven National Laboratory measured the elastic constants of argon at
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10 K by using neutron scattering [164]. Argon has a cubic crystal and so has three
independent elastic constants, c11, c12 and c44. The reciprocal of the isothermal
coefficient of compressibility (or bulk modulus), κ−1

T , is a weighted mean of the
first two;

κ−1
T = −V (∂p/∂V )T = (c11 + 2c12)/3. (5.31)

The Brookhaven results were

c11 c12 c44
1
2 (c11 − c12)

36Ar (10 K) 42.4 ± 0.5 23.9 ± 0.5 22.5 ± 0.1 9.3 kbar

These figures imply a value of κ−1
T of 30.1 kbar which is a little larger than a

contemporary directly measured value of 28.6 kbar at 4 K [165].
The question that naturally arises is what do these figures tell us about the hotly

debated problems of the 19th century of the stability, isotropy, the Cauchy relations
and the Poisson ratio of the crystal (see Section 3.6). The first is no problem;
stability requires only that c11 > c12 > 0, and these inequalities are amply satisfied.
A cubic crystal has a certain isotropy in the sense that a spherically symmetrical
or hydrostatic stress induces a spherically symmetrical strain, but at a more subtle
level it may be anisotropic. The elastic constants that govern the two possible shear
modes of deformation are c44 and 1

2 (c11 − c12) and it is seen that these are not
equal. The Cauchy relation for a cubic crystal is c12 = c44, and this is close to
being satisfied. Poisson’s ratio for the polycrystalline solid, extrapolated to zero
temperature, had been measured in 1967 and was found to be 0.253 ± 0.006 [166],
that is, it has the value of 1

4 deduced for an isotropic material. The ratio for xenon is
similar, and those for neon and krypton about 0.27. A neo-Laplacian could not ask
for more! A Poisson’s ratio of 1

4 is consistent only with c11 = 3c12 = 3c44, and the
Brookhaven results for a single crystal do not satisfy the first of these equations.
Thus the polycrystalline material seems to have a gross isotropy that is not present
in the individual crystal. If we return to the theoretical criteria that Born and his
predecessors established as the conditions to be satisfied for Cauchy’s relation
to hold then we see that argon would conform to them only if we were justified
in using classical mechanics and if we could neglect the three-body term in the
intermolecular energy. In practice we cannot do this. It seems as if the effect of the
three-body term on the elastic constants is similar to its effect on the crystal energy,
about 7% in the difference between c12 and c44, but the difference here seems less
important since we are not aiming at so high an accuracy.

The properties of the inert-gas solids made, in the end, a useful contribution to the
determination of the two- and three-body potentials, but with liquids the position
was reversed; they were borrowers from, not contributors to, the stock of knowledge
of the potentials. The phrase ‘theory of liquids’ is used to describe the calculation
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of structure and macroscopic properties of simple liquids from a knowledge of their
intermolecular potentials. Its history from the early years of the 20th century until
about 1970 has been a curious one [167].

A portion of liquid at equilibrium and well removed from its surface and its
bounding solid walls is both isotropic (that is, the same in all directions) and ho-
mogeneous (the same at all points) on a macroscopic scale, that is on a scale of,
say, 1000 Å or more. On a microscopic scale of 1–20 Å it is neither isotropic nor
homogeneous at any instant of time, but again has both properties if an average
is taken over an interval of greater than about 1 ns. We must ask, therefore, in
what sense a liquid can be said to have a structure, and how can that structure be
observed. The answer, briefly mentioned at the opening of Section 5.2, is found
by considering any one molecule and asking how, on average, the other molecules
are distributed around it. If the molecules are spherical, as in argon and as will be
assumed here, then this distribution is again isotropic; it has spherical symmetry.
It is not, however, microscopically homogeneous. The average local density is a
function of the distance from the first or test molecule. If we take an element of
volume dr, at a distance r = |r| from the test molecule that is large compared with
the range of the intermolecular force, then the chance of finding another molecule
with its centre in dr is (N/V )dr, where there are N molecules in a total volume V .
The ratio (N/V ) is the number density and is denoted n. If the distance r is within
the range of the intermolecular force then the chance may be greater or less than this
random value. The ratio of this chance or probability to the random value is called
the radial or pair distribution function and is denoted g(r ). We can infer at once
some of the characteristics of this function. If r is small compared with the size of
the molecule then g(r ) is zero; we cannot have two molecules with their centres
in the same or nearly the same place. If r is close to the distance, rm, at which the
pair potential u(r ) has its minimum then g(r ) is larger than unity, both because the
attractive potential makes it more likely that two molecules will be close together
(the same effect that makes the second virial coefficient negative at most accessi-
ble temperatures) and because the packing of spherical molecules in a liquid, at a
density not much above that of a close-packed solid, requires that each molecule
is surrounded by a ‘shell’ of up to 12 nearest neighbours. This packing effect is
equally strong in a dense fluid of hard spheres without attractive forces when, as
we shall see, it can be interpreted as the consequence of an indirect ‘potential of
average force’. Just beyond this shell g(r ) dips below its random value of unity,
and may then show weaker oscillations until it finally reaches the random value of
unity, as r becomes infinite (Fig. 5.3).

The pair distribution function, at a given pressure and temperature, is a function
of only one variable, the separation, r , of two points in the liquid one of which
contains the centre of a molecule. It is the simplest measure of the structure of a
liquid; it generally tells us all we need to know, and it is experimentally accessible.
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Fig. 5.3 A typical pair distribution function in a liquid, g(r ), as a function of the separation,
shown here in units of the collision diameter, d .

It is, however, not the only measure. We can ask for the probability of finding three
molecules with their centres in dr1, dr2 and dr3 and how this probability is related
to its random or long-range value, n3dr1dr2dr3. We need to know this probability
if there are three-body forces in the liquid, but this a refinement that we can ignore
for the moment. For most of the 20th century the phrase ‘theory of liquids’ was
understood to mean a satisfactory route from the intermolecular pair potential to
the structural and macroscopic properties and, in particular, to g(r ).

Van der Waals’s picture of a liquid was a body with no structure; the molecules
are distributed at random with only the restriction that two of them could not be at
the same place at the same time since they had ‘size’. This restriction was embodied
in the co-volume, b, and the lack of structure in what we now recognise as a mean-
field approximation, namely that the pair distribution function has its random value,
g(r ) = 1. We can see how this assumption leads to his equation, as follows. The
cohesive or internal energy of a system of molecules between which there is a pair
potential, u(r ), can be written

U = 1
2 (N/V )2

∫ ∫
u(r12)g(r12) dr1dr2. (5.32)

Within the integral we have g(r12), the probability of finding a pair of molecules in
dr1 and dr2, and the energy u(r12) that such a pair contributes to the system. The
integrations are taken over the volume of the liquid, and the factor of 1

2 prevents the
double counting of the energy of each pair. The differential elements can be written
dr1d(r2 − r1), where the second element of volume is now in a coordinate system
in which molecule 1 is at the origin. We take this integration first and let molecule
2 move through all space around molecule 1, then we take the first integration and
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let molecule 1 move through the whole volume. Since both u and g depend only
the scalar distance r12 the second element of volume can be written in spherical
coordinates as 4πr2

12dr12, and since u(r12) goes rapidly to zero as r12 increases
we can now again invert the order of the integrations and take first that over dr1.
Hence

U = 1
2 (N 2/V )

∫ ∞

0
u(r12)g(r12)4πr2

12dr12. (5.33)

The upper limit can be taken to be infinite since u(r ) is sufficiently short-ranged. We
do not know exactly how g(r ) depends on the separation, r , nor how it changes with
density and temperature, and so cannot proceed further with the integration without
some additional information or approximation. Van der Waals’s assumption is that
g(r ) is unity for all distances beyond a collision diameter, d, and zero at shorter
distances. We have therefore,

U = −a/V, (5.34)

where a is a positive constant,

a = −2πN 2
∫ ∞

d
u(r )r2dr. (5.35)

By purely thermodynamic reasoning we have

(∂U/∂V )T = T 2(∂/∂T )V (p/T ) = a/V 2, (5.36)

and by integrating the second equation,

(p + a/V 2) = T · f(V ), (5.37)

where f(V ) is the constant of integration with respect to temperature, which van
der Waals took to have its limiting form at low densities of R/(V − b).

Van der Waals did not, of course, introduce g(r ) into his derivation; the usefulness
of this function was not apparent until after Ornstein’s work in 1908–1917 [168].
Ornstein, however, seems never to have written down eqns 5.32 and 5.33; his
interests moved rapidly to the interpretation of density fluctuations in liquids in
terms of the pair distribution. In a liquid at equilibrium the molecules are moving
rapidly and so, on a small scale of length, there are rapid changes in the local
density and other properties. The pair distribution function, g(r ), is an average over
times that are long on a molecular scale. The study of these fluctuations became
an active branch of physics in the first decade of the 20th century, after Gibbs and
later Einstein had shown how to handle them within the new branch of science,
statistical mechanics. In an open system, Gibbs’s ‘grand ensemble’, a portion of fluid
of volume V is described by the two intensive properties, the chemical potential, µ,
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and the temperature, T . The number of molecules in the system, N , can fluctuate,
although the changes are not significant if V is of macroscopic size. In 1907 the
Polish physicist Marian Smoluchowski showed that the fluctuations are proportional
to the compressibility [169];

〈(N − 〈N 〉)2〉/〈N 〉2 =−(kT/V 2)(∂V/∂p)T , (5.38)

where 〈N 〉 is the average number, and the left-hand side of this equation is the con-
ventional measure of how far the instantaneous number in the system, N , departs
from this average value. In a perfect gas the right-hand side is 〈N 〉−1, which even
in a portion of gas at atmospheric pressure as small as 1 mm3 is only 4 × 10−17.
In a liquid the compressibility is smaller and the mean fluctuation is only about
2 × 10−21 for 1 mm3. Fluctuations in number in a fixed volume imply fluctua-
tions in density and so in the refractive index, which, in turn, leads to the scat-
tering of light. However even in a volume of liquid with the linear dimensions of
the wavelength of light there is an increase in the mean fluctuation from that for
1 mm3 only by a factor of about 1010, which is not enough to produce an easily
observable effect. This accords with experience; liquids refract light but scarcely
scatter it. If, however, we heat a liquid towards its gas–liquid critical point then its
compressibility rises dramatically and, indeed, becomes infinite at the point itself.
A critical fluid can scatter light so strongly that it appears totally opaque, as had
been observed since the experiments in the early 19th century. It was an attempt to
understand this phenomenon more deeply that led Ornstein and his younger col-
league, Frits Zernike [170], to make the next advance. They were dissatisfied with
Smoluchowski’s use of eqn 5.38 near a critical point since its derivation assumes
that fluctuations in neighbouring sub-volumes are independent. This is not so; a
molecule that leaves one sub-volume enters a neighbouring one and this complica-
tion cannot be ignored when the fluctuations are large. They were, however, able
to relate the fluctuations to the departure of the distribution function, g(r ), from
its random value of unity [171]. This departure is now called the total correlation
function and denoted h(r );

h(r ) ≡ g(r ) − 1, (5.39)

〈(N − 〈N 〉)2〉/〈N 〉2 =〈N 〉−1 + V−1
∫
h(r ) dr . (5.40)

The first term on the right-hand side of eqn 5.40 is the perfect-gas term. In a liquid
it is largely cancelled by the second term. Thus in a one-dimensional van der Waals
fluid [172] we have in a mean-field approximation,

h(r ) = −1, r < d, and h(r ) = 0, r > d, (5.41)
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so that the right-hand side of eqn 5.40 is 〈N 〉−1(1 − b/V ). The volume of a van
der Waals liquid at zero temperature is b and its compressibility is zero, so that the
fluctuations vanish. Conversely, at the critical point the second term on the right-
hand side is positive and infinite in size. Since h(r ) itself cannot be infinite, indeed
it is always of the order of unity, this condition requires that its range becomes so
large that the integral diverges. It is when h(r ) has a range of 4000 Å or more that
light becomes strongly scattered.

Ornstein and Zernike were not satisfied with a correlation function that had this
divergence and sought to break it down into simpler components. To this end they
introduced another correlation function which we now call the direct correlation
function and denote c(r ). As they put it succinctly in the summary at the end of
their first paper:

Two functions are introduced, one relating to the direct interaction of the molecules [i.e.
c(r )], the other to the mutual influence of two elements of volume [i.e. h(r )]. An integral
equation gives the relation between the two functions. [171]

This equation, which we now call the Ornstein–Zernike equation and which defines
c(r ), is

h(r12) = c(r12) + n
∫
c(r13) h(r23) dr3, (5.42)

where n is again the number density, (N/V ). The equation cannot be solved directly
to give h in terms of c, or vice versa, since both functions appear within the integral.
This integral is a ‘convolution’ of h and c and so the equation can be solved, as
they showed, by taking the Fourier transform of each side. The ‘meaning’ of the
equation becomes a little clearer if we substitute repeatedly for h within the integral.
We get then

h(r12) = c(r12) + n
∫
c(r13)

[
c(r32) + n

∫
c(r24) h(r34) dr4

]
dr3

= c(r12) + n
∫
c(r13) c(r32) dr3

+n2
∫ ∫

c(r13) c(r34) c(r42) dr3dr4 + · · · , (5.43)

that is, h can be decomposed into a direct correlation between positions 1 and 2,
c(r12), and a series of indirect correlations of chains of c, through position 3, through
positions 3 and 4, through positions 3, 4 and 5, etc. The value of the direct correlation
function in the eyes of Ornstein and Zernike is that it has generally only the range
of the pair potential, u(r ). They believed that this limitation on the range held good
even at the critical point where h(r ) is divergent. In this they were not quite correct
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for we now know that c(r ) is also divergent at the critical point, although only very
weakly. Their assumption is again a manifestation of a mean-field approximation.

Their paper, published in Dutch and English in the Netherlands during the first
World War, attracted little notice. They themselves said in 1918 that their work was
“clearly not well known” and they published a summary of it in a leading German
journal [173]. This repeats explicitly the fact that c(r ) has the virtue of a range no
longer than that of u(r ), but this paper also seems to have had little effect on those
working in statistical mechanics.

In a simple liquid at low temperatures the main features of g(r ) or h(r ) lie in the
range of 1–10 Å; h(r ) is close to zero beyond about 20 Å. To study these short-range
functions experimentally we need to probe the system with radiation of similar
wavelength and study the scattered radiation. We need, therefore, to use x-rays
whose wavelengths are typically 2 Å or less. In 1916 Debye and Scherrer studied
the scattering pattern from liquid benzene, but this has a complicated molecule and
the pattern arises not only from scattering from pairs of atoms in different molecules
but also from pairs of carbon atoms in the same molecule [174]. Potentially more
useful was the diffraction pattern of liquid argon obtained by Keesom and De Smedt
in 1922–1923 [37]. Little quantitative could be done with this until Zernike and
Prins [38] showed that h(r ) was a Fourier transform of the x-ray scattering pattern.
Zernike did not use this result to obtain any explicit values of h(r ); that came a few
years later when Debye and Menke exploited it to obtain this function for mercury,
another monatomic liquid [175].

The seven-year spacing of these papers, 1916 to 1923 to 1930, is itself evidence
that liquids were no longer at the centre of physicists’ attention, at least outside this
group of Dutch scientists. Critical points were also not an active area of research in
the 1920s and Ornstein and Zernike’s work was ignored. Fowler’s great monograph
on Statistical mechanics of 1929 has a chapter on ‘Fluctuations’ but he makes no
mention of their work [176]; it is similarly missing from the later version of this
book with Guggenheim in 1939 [24], and from the texts of Tolman in 1938 [177]
and of Mayer and Mayer in 1940 [178], who have a chapter on the critical region.
Gases and solids were more fruitful fields of research in the 1920s and early 1930s.
When liquids were discussed they were regarded as disordered versions of the better
understood crystals. Thus even when the pair distribution function was determined
from x-ray scattering patterns it was assimilated into the dominant physics of the
solid state by attempts to interpret it as an average over random orientations of an
array of micro-crystals [179].

Those interested in determining the structures of liquids were a different group
from the small group working on the statistical mechanics of gases. The main
task of this second group in the 1920s and early 1930s was putting Kamerlingh
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Onnes’s virial expansion on a proper theoretical footing; first, so that it could
be used to obtain information about the intermolecular forces and, second, in the
unrealised hope that something useful could be made of the higher coefficients. The
second was a difficult task at which even Fowler confessed to have failed [180].
H.D. Ursell [181] first found out in 1927 how to express the higher coefficients in
terms of products of Boltzmann factors of the form exp[−u(r )/kT ]. Mayer and his
colleagues amplified this work ten years later [182], and it was through Mayer’s
efforts that the virial expansion of the pressure and of the pair distribution function
became widely known. The expansion of the latter in powers of the density was
also found independently by J. Yvon in 1937 [183] and by J. de Boer in 1940 [184],
but their work was not so accessible.

Thus in the 1930s and in the years immediately after the second World War there
were two different approaches to the liquid state. The first tried to build on the
resemblance of liquids to solids. Its experimental basis lay in the x-ray studies of
the Dutch–German school and in particular in attempts to interpret their results as
evidence for liquids as disordered solids. The statistical mechanics of this group in
the late 1930s and after the War was based mainly in Cambridge and at Princeton.
This was the dominant approach. There was, however, a less well-organised group
who were trying to build on the successes of the statistical mechanics of gases
and extend these to liquids via the virial expansion. There were a few others at
work, not so skilled in statistical mechanics, but with an instinctive feeling that
the analogy with solids was a misleading one. However the line of thought that
had started with van der Waals, and which had generated the pregnant papers
of Ornstein and Zernike, was almost ignored. Both the liquids-as-solids and the
liquids-as-gases schools had, at the time, good reasons for their approaches and it
is only with hindsight that we can see that they had strayed from what was to prove
the successful path. The solid school held the field for nearly thirty years and their
work was to become one of the great dead-ends of modern physics.

The solid-like or lattice theories, as they came to be known, started with chemists’
attempts to understand the change in thermodynamic properties on mixing two
liquids. This was both an academic subject of some popularity and a matter of
practical importance in the operation of distillation columns. In 1932 Guggenheim
put forward a model of a liquid mixture in which the molecules were confined to
the neighbourhoods of an array of fixed sites of an unspecified geometry [185]. The
need for a more explicit description of the supposed structure came a few years later
when he went beyond a mean-field treatment with what he called a ‘quasi-chemical’
approximation [186]. This work marked the opening of a long series of papers,
initially from the Cambridge school, on the combinatorial problem of assigning
molecules of different energies and sizes to one or more sites of a lattice of given
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geometry [187]. The combinatorial problems were fascinating in their own right
and, in Onsager’s hands, played a crucial role in the theory of the critical point
of a two-dimensional magnet, but they were not to prove a useful route to the
understanding of the thermodynamics of liquid mixtures.

The parallel work on lattice theories of pure liquids started in 1937 with Lennard-
Jones and Devonshire in Britain [188] and Eyring and Hirschfelder in America
[189]. The field grew rapidly after the War with increasingly sophisticated models,
in the later versions of which the lattices served mainly as mathematical devices to
assist in trying to evaluate the statistical mechanical partition function. A review of
this work just before the War was given by Fowler and Guggenheim who wrote:

We are therefore driven to the conclusion that a liquid is much more like a crystal than
like a gas, and the structure which we shall accept as the most plausible for a liquid is
conveniently referred to as quasi-crystalline. . . . the number of nearest neighbours has a
fairly well-defined average value, and, although there are fluctuations about this average,
these fluctuations are not serious, and the geometrical relationship of each molecule to its
immediate neighbours is on the average very similar to that in a crystal. [190]

A book written in comparative isolation during the War by Ya.I. Frenkel was pub-
lished in 1946. The Preface opens with similar words:

The recent development of the theory of the liquid state, which distinguishes this theory
from the older views based on the analogy between the liquid and the gaseous state, is
characterised by the reapproximation of the liquid state – at temperatures not too far removed
from the crystallization point – to the solid (crystalline) state. . . . The kinetic theory of liquids
must accordingly be developed as a generalisation and extension of the kinetic theory of
solid bodies. [191]

By 1954 the amount of work in this field justified a review of fifty pages in the
treatise of Hirschfelder, Curtiss and Bird [192], and in 1963 it received its final
summary in Barker’s monograph, Lattice theories of the liquid state [193]. By then
it was clear that lattice theories were not the way forward, although, as always, the
deficiences were not fully realised until better theories were developed. The obvious
success of solid-state physics was, as we have seen, one of the starting points for
the attempt to extend lattice theories to liquids, but there seems also to have been
an obstinate refusal to learn from earlier work. In 1936 the Faraday Society held
a meeting in Edinburgh on Structure and molecular forces in (a) pure liquids and
(b) solutions [194], and the next year saw the Dutch celebration in Amsterdam of
the centenary of the birth of van der Waals [195]. Reading the more theoretical
papers presented at these meetings gives one an impression of a certain arrogance;
it seems as if their authors believed that physics had started again in 1925 with the
new quantum mechanics and that one could safely ignore anything done before
then. Only two of the papers at Amsterdam were on the liquid–vapour transition
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and one of these was Lennard-Jones’s opening acccount of a lattice theory which
was certainly not in the van der Waals–Ornstein tradition.

Theories are not abandoned because they fail but because they are superseded by
better ones. There was a slim trail of papers from the middle 1930s that did not follow
the dominant lattice models but tried to calculate the pair distribution function, relate
it to experiment, and use it to calculate the thermodynamic properties. The energy,
for example, is given by the transparently obvious eqn 5.33, and the pressure by
the parallel equation that is an expression of the virial theorem:

p = NkT/V − 1
6 (N/V )2

∫ ∞

0
r [du(r )/dr ]g(r )4πr2dr. (5.44)

(This is usually called the virial equation for the pressure, but is not to be confused
with Kamerlingh Onnes’s virial expansion for the pressure which is the expansion
of p in terms of the gas density, eqn 5.29.) Ornstein and Zernike had used g(r ) in
statistical mechanical theory but it was only with its experimental determination in
the late 1920s that it made its hesitant way into the main stream of the statistical
literature. Only the low-density limit of eqn 5.44 is to be found in Fowler’s book
of 1929 [196], that is, the limit in which g(r ) is replaced by exp[−u(r )/kT ]. The
general form was given by Yvon in 1935 [197]. Equation 5.33 seems to have been
written down first by Hildebrand in 1933 [198], who used it some years later to
find the intermolecular potential of mercury from an experimental determination
of g(r ) [199]; it too was given by Yvon. Hildebrand was one of those who had
grown up in the van der Waals and van Laar tradition, and who had an instinctive
distrust of ‘solid’ theories of liquids. But he was not a skilled specialist in statistical
mechanics and so his insight was not as fertile as it might have been.

Equations 5.33 and 5.44 show how g(r ) should be used, but do not tell us how it
should be determined theoretically. In Gibbs’s canonical ensemble the probability
of all N molecules being simultaneously in volume elements dr1dr2dr3 . . . drN is
proportional to the Boltzmann factor exp[−U ∗(r N )/kT ], whereU ∗(r N ) is the con-
figurational energy of the system when the molecules are so situated. By integrating
this relation over all positions dr3 . . . dr N we obtain the probability that there are
molecules in positions dr1 and dr2; that is, we obtain g(r12). The equation is

g(r12) = V 2
∫
. . .

∫
exp[−U ∗(r N )/kT ]dr3 . . . drN∫

. . .
∫

exp[−U ∗(r N/kT ]dr1 . . . drN
. (5.45)

This equation appears in a less transparent notation in Fowler’s 1929 treatise,
where –kT ln g(r ) is called the potential of average force in the system [200]. This
potential reduces to u(r ) in the dilute gas and is now used more often for com-
plex systems than for simple monatomic liquids. The more modern form, that is,
eqn 5.45, appeared in two papers of 1935 that we can now see as the foundation of an
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alternative approach to the theory of liquids that eschews the assumption of a lattice
structure. One, by Yvon [197], appeared in an obscure French series of occasional
publications and was overlooked for many years, the other by Kirkwood appeared
in what was rapidly becoming the leading journal in this field [201]. Equation 5.45,
although exact, is not immediately useful since neither integral can be evaluated
as it stands. Yvon and Kirkwood both found ways of simplifying the right-hand
sides so that g(r ) is expressed by an integro-differential equation that involves only
g(r12) and the three-body distribution function g(r12, r13, r23). Their equations were
different but equivalent. Yvon’s equation was obtained independently after the War
by Bogoliubov in Moscow [202] and by Born and Green in Edinburgh [203]. To
solve either of these equations for g(r ) needs an approximation for the three-body
function, the simplest of which is Kirkwood’s ‘superposition approximation’ which
represents the three-body function as a product of two-body functions:

g(3)(r1, r2, r3) = g(2)(r1, r2)g(2)(r1, r3)g(2)(r2, r3). (5.46)

The theory of liquids was not in a happy state in the ten years after the second
World War. The lattice theories over-emphasised the analogy with solids and were
not producing quantitatively acceptable results. Their neglect of the ‘continuity’
of the gas and liquid states was their weakest point; in their simplest form (that of
Lennard-Jones and Devonshire) they led, for example, to a zero value for the second
virial coefficient of the gas. They were, however, theories that lent themselves to
many ingenious schemes for their improvement [204] and so they attracted many
devotees. The ‘distribution function’ approach of Kirkwood, Yvon, Bogoliubov,
and Born and Green was based firmly on an attack from the gas side. It gave exact
values for the second and third virial coefficients (with the use of eqn 5.46) but
failed at higher densities. It was regarded as the more difficult theory, one that did
not lead easily to numerical results, and one that was hard to improve by ad hoc
adjustments. It was not, therefore, in a position to challenge the dominant lattice
theories in the early 1950s. The position changed with the re-discovery of the work
of Ornstein and Zernike and the realisation that the direct correlation function, c(r ),
is a simpler entity than the total function, h(r ) ≡ g(r ) − 1, and one that lends itself
more readily to plausible approximation. The direct correlation function had been
ignored in the 1920s, 30s and 40s. It is mentioned but not used constructively in a
paper on critical phenomena in 1949 [205] and appears as an aside in a book on
The theory of electrons in 1951 [206], but the credit for its re-introduction into the
main stream of statistical mechanics belongs to Stanley Rushbrooke and his student
H.I. Scoins, in Newcastle [207]. Rushbrooke’s first work on liquids had been in
the lattice tradition of Cambridge and of his first research supervisor, Fowler, then
came his ’prentice work on the pair distribution with Coulson [208], but in his paper
with Scoins he opened up a new and productive channel.
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The Ornstein–Zernike equation, eqn 5.42, defines c(r ) in terms of h(r ), but gives
no hint as to how either function might be determined theoretically. Progress comes
from the authors’ belief that c(r ) is short-ranged, that is, of the range of u(r ). We
can write

c(r ) = [1 − eu(r )/kT ]g(r ) + d(r ), (5.47)

where d(r ) is a new function, defined by this equation, and so still to be
determined. The form of the first term on the right-hand side is chosen because
g(r )exp[u(r )/kT ] is a function that is always a continuous and, indeed, smooth
function of r even at those points where u(r ) and hence g(r ) have discontinuities,
such as at the diameter of a hard sphere. The range of the first term is clearly that
of u(r ) since it vanishes when u(r ) = 0. In their pioneering paper, Rushbrooke and
Scoins approximated c(r ) by {exp[−u(r )/kT ] − 1}, which has the same range;
but this is too simple. A better way of achieving Ornstein and Zernike’s aim is to
put d(r ) = 0 in eqn 5.47. This, in effect, was the what J.K. Percus and G.J. Yevick
brought about in 1958 [209]. Their argument was based on quite different grounds
but it soon came to be seen [210] that their result could be expressed most simply
in terms of the Ornstein–Zernike equation with the approximation d(r ) = 0.
This connection was amplified in two long articles in 1964 in a collective work
on The equilibrium theory of classical fluids [211]. A surprising feature of the
Percus–Yevick (or PY) equation of state that follows from this approximation
is that it can be expressed in simple closed forms for a fluid composed of hard
spheres. There are two commonly used routes to the pressure from c(r ) or g(r );
the first is the virial route of eqn 5.44, and the second, due to Ornstein and Zernike,
follows from Smoluchowski’s fluctuation expression, eqn 5.38:

kT (∂n/∂p)T = 1 + n
∫
h(r ) dr. (5.48)

This is now usually called the compressibility equation. Since the Percus–Yevick
approximation of putting d(r ) = 0 is not exact, the pressure calculated from the
virial expression, pV, does not agree with that found from the compressibility
equation, pC. For hard spheres we have [212]:

(p/nkT )V = (1 + 2η + 3η2)(1 − η)−2,
(5.49)

(p/nkT )C = (1 + η + η2)(1 − η)−3,

where η is a reduced density which is the ratio of the actual volume of N
spheres of diameter d to the volume V ; η=πNd3/6V . On expansion, these
two expressions agree as far as the third virial coefficient, but differ thereafter.
When they are compared with the results of computer simulations, it is found
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Fig. 5.4 The compression ratio, p/nkT , for an assembly of hard spheres, as a function of η,
the reduced density. This density is defined so that η is unity at a density at which the volume
of the system is equal to that of the spheres. In practice, such a density is unattainable and
the maximum value of η is (π

√
2/6) = 0.7405, the density of a close-packed crystalline

solid. The lower part of the curve represents the fluid state; crystallisation sets in at a reduced
density of about 0.47 and is complete by 0.53. The upper curve represents the solid state
and approaches an infinite value of the compression ratio as the density approaches the
close-packed limit of 0.7405.

that the compressibility equation yields a pressure that is a little higher than the
‘experimental’ while the virial equation lies below it.

Interest in the hard-sphere model fluid had revived after the War because of the
development of the technique of computer simulation which is at its simplest and
most efficient for such a potential. There had been a few attempts to model mechan-
ically the structure of such a fluid in the 1930s, either in two dimensions with round
seeds or ball-bearings poured on to a flat plate [213], or in three dimensions with
a suspension of coloured spheres of gelatine in water [214], but such experiments
could tell us nothing of the thermodynamic properties of the system. Computer
simulations not only yielded the structure, that is, g(r ), but also the pressure. It was
found, moreover, that the fluid phase crystallised to a close-packed solid when the
density η exceeded about 0.47 (Fig. 5.4). The notion that a system with a purely
repulsive potential could crystallise was not new. Kirkwood had suggested it in
1940 from a study of his integral equation for g(r ) but the theory was not then
good enough for the prediction to carry much weight [215]. A fluid of hard spheres
shows no separation into gas and liquid phases, and so has no critical point; for
that the attractive forces are needed also, as had been appreciated since the time
of van der Waals. Indeed the critical temperature is itself a rough measure of the
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maximum energy of attraction, ε, of a pair of molecules; in general ε≈ 0.9 kT c.
In a hard-sphere fluid the temperature is an irrelevant parameter that serves only to
scale the pressure. The phase behaviour is governed by one parameter only, which
can be taken to be either the density, η, or the ratio (p/T ). A change of phase
occurs when there can be a move, at a fixed temperature and pressure, to a state of
equal Gibbs free energy, G=U − T S+ pV , where U is the energy and S is the
entropy. The energy of a system of hard spheres is purely kinetic, 3NkT/2, and so
is the same in any possible phase at a given temperature. The crystallisation of a
hard-sphere fluid at a fixed pressure occurs therefore when the change �G, from
liquid to solid, is zero, or when �S= (p/T )�V . Since �V is negative it follows
that the entropy of the solid is less than that of the co-existing fluid. If, however,
we were to compress the fluid to a metastable state in which its density was the
same as that of the crystal then the irreversible change to the solid state would be
accompanied by a fall in the Helmholtz free energy, F =U − T S, and, since �U is
again zero, there is now an increase of entropy. Such a change is counter-intuitive
for those brought up to think of the entropy as a measure of the disorder in the
system, since the geometrical order of a crystal is certainly greater than that of
the fluid of the same density from which it has been formed. The configurational
order of statistical thermodynamics is, however, not a matter of simple geometry
but takes account also of the freedom of motion, or ‘free volume’, of the particles in
the system. At the density at which crystallisation sets in, η≈ 0.47, this freedom is
greater if the particles are moving around the sites of an ordered lattice (for which
the free volume goes to zero only when η reaches 0.74) than if they are moving
in a dense amorphous or glassy state (for which the free volume goes to zero at
η≈ 0.64) [216].

The assumption that d(r ) is zero in eqn 5.47, which underlies the PY equation
of state, is not the only approximation that was tried, nor was it the first after the
early choice of Rushbrooke and Scoins in 1953. Another choice followed in 1959,
first from de Boer and his colleagues [217], but soon also from others in France,
Japan, the U.S.A. and from Rushbrooke himself in Britain. This was

d(r ) = y(r ) − 1 − lny(r ); y(r ) = g(r )eu(r )/kT . (5.50)

This became known as the ‘hyper-netted chain’ or HNC approximation, from the
nature of the chains of linked molecules in the integrals used to express g(r ).
Superficially it is more attractive than the PY approximation, rationalised in 1963
as d(r ) = 0, since it includes more of these integrals and so makes an attempt to
estimate the tail of c(r ) that extends beyond the range of the pair potential. For hard
spheres, however, the HNC approximation is worse than the PY. The two values
of the pressures calculated from eqns 5.44 and 5.48 are further apart and neither is
close to the pressure found by computer simulation. For more realistic model fluids,
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such as a Lennard-Jones (12, 6) liquid at low temperatures, the HNC is better than
the PY. Once it was found that approximations for the direct correlation function
were a good route to reasonable forms of g(r ), and so to the physical properties,
then the field was open to further and more realistic approaches, which generated
an active line of research in the 1960s.

Assemblies of hard spheres are, however, model systems that apparently had little
relation to real liquids. The results obtained by PY, HNC, and related theories for
these systems were good enough to banish any lingering interest in lattice theories
but did not, by themselves, constitute a theory of liquids. Direct solution of the
equations for more realistic models is difficult and the results did not have the
success of the hard-sphere models. A rather different way of using these results
was needed.

We have seen that the essence of van der Waals’s theory was the ascription to
the system of a free volume in which the molecules moved at random subject only
to the restriction imposed by their hard spherical cores, and that this movement
took place in a uniform energy field, provided by the molecular attractions, and
everywhere proportional to the overall density of the system, N/V . That is, the
structure of the system is imposed by the hard cores; the attractive energy holds the
system together but does not disturb this structure. In one sense this was also the
view of those generating the lattice theories, but where we can now see that they went
wrong was in supposing that this structure resembled closely that of a solid. It was
not always the view of those who first developed the distribution-function theories,
for they often believed that the attractive forces were also powerful determinants of
the liquid structure [218]. Soon, however, the PY and later approximations began
to generate pair distribution functions for hard spheres in which one could have
reasonable confidence since they agreed with those found by computer simulation.
It was then noticed how similar were the results of both the simulations and the
theories to the pair distribution functions found for real simple liquids, such as
argon, as found by x-ray scattering experiments. The large first peak in g(r ) in real
liquids was not as sharp as that in a hard-sphere fluid but its similar size showed
that it owed as much to the simple geometrical consequence of the dense packing
of the molecules around any chosen molecule as to the direct effect of the attractive
forces. The view grew in the early and middle 1960s that the way forward was a
perturbation theory, in the general spirit of van der Waals, but based not on the total
absence of structure beyond the collision diameter [i.e. g(r ) = 1, for r > d] but on
the realistic forms of g(r ) generated by computer simulation or by PY and other
theories for the hard-sphere fluid [219].

Two steps are needed to turn a hard-sphere potential into a reasonably realistic
one, such as a Lennard-Jones potential. First we must add the attractive part of the
potential and, secondly, we must soften the repulsive core from that of a sphere



5.5 Solids and liquids 289

[in effect, (r/d)−∞] to a more realistic form, say (r/d)−n , where n≈ 12. Neither
of these steps greatly perturbs the structure and it is this stability that makes
perturbation theory appropriate. The first step was one that was well known in
principle [220]. We can write the configurational part of the free energy, Fc, in
Gibbs’s canonical ensemble as

exp(−Fc/kT ) = (1/N !)
∫

· · ·
∫

exp
[

−
∑∑

u(ri j )/kT
]
dr N , (5.51)

where u(ri j ) is the potential energy of a pair of molecules, i and j , at a separation
ri j , and the double sum is over all pairs of molecules. The integrations are over all
positions of all molecules within the volume V . The pressure and other thermo-
dynamic properties follow at once from Fc, when this is known as a function of
N , V , and T ; for example, p= − (∂Fc/∂V )T . We can now divide u(r ) into two
parts, a positive or repulsive part, u+(r ), and a negative or attractive part, u−(r ). In
a Lennard-Jones (n,m) potential these could be, for example, the terms in r−n and
r−m respectively, but other divisions are possible. A better division in practice is to
take u+ as the whole of the potential for r < d , the collision diameter, and u− to be
the whole of the potential for r > d . With this second choice u− is always bounded
and so we can expand that part of the exponential in eqn 5.51 that contains u− in
powers of (u−/kT );

(N !)exp(−Fc/kT ) =
∫

· · ·
∫ ∏ ∏

exp[−u+(ri j )/kT ]dr N

−
∫

· · ·
∫ ∏∏

[u−(ri j )/kT ]exp[−u+(ri j )/kT ]dr N

+ · · · terms in T−2, T−3, etc., (5.52)

where the double products are again to be taken over all pairs of molecules. The first
term is the exponential of the free energy of a system without attractive forces; the
second is the average value of the attractive energies in a system whose structure
is determined by the repulsive potentials only. Higher terms incorporate the small
changes in this structure caused by the attractive forces. These are needed for an
accurate representation of the properties of a liquid since (−u−/kT ) can be as large
as 2 near the freezing point.

A different method of perturbation is needed for the second step, that is, to assess
the effect of going from a true hard-sphere potential to a more realistic repulsive
potential such as r−n. The first attempt was to expand the integrand in powers of n−1

since n−1 = 0 represents a hard sphere and n−1 = 1/12 is a small number [221]. This
attempt met with only partial success; a more ingenious solution to the problem
was needed by finding how to choose a temperature-dependent collision diameter
and to combine this choice with a separation of u into u+ and u− that led to a rapid
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convergence of the expansion in eqn 5.51. This was first achieved by Barker and
Henderson in 1967. Their results were given informally at the Faraday Discussion
on The structure and properties of liquids held in April at Exeter. Henderson, who
was at the meeting, read each morning a telegram from Barker in Melbourne in
which the progress of the work was described. A short account of this appeared in
the published proceedings [222] and a full account later in the year [223]. Other and
even better ways of dividing u into u+ and u− followed soon afterwards [224], but
Barker and Henderson’s work was the decisive effort; for the first time one could
go from a reasonably realistic model potential, in this case a (12, 6) potential, to a
quantitatively acceptable determination of the structure of the liquid, as represented
by g(r ), and of its thermodynamic properties. The ‘experimental’ values of these
were provided by computer simulations since, by 1967, it had become clear that
the (12, 6) potential is not an accurate representation of the interaction of real
molecules, even those as simple as argon atoms. But what could be done for the
(12, 6) potential could be done also for the more complicated potentials of the
1970s. Adding in the effects of the three-body potential is a little more difficult but,
since it is much weaker than the two-body term, this is also a problem that can be
handled by a perturbation treatment.

Thus by the early 1970s the core problems of ‘cohesion’ had been solved in prin-
ciple. The attractive or dispersion forces could be calculated from a well-founded
theory (quantum mechanics), the form and magnitude of the rest of the intermolec-
ular potential could be found from the properties of the dilute gas, and this potential
could be used in another well-founded theory (statistical mechanics) to calculate
the properties of solids and, at last, of liquids also.

Only with the gas–liquid critical point was there still a problem. Here the per-
turbation methods break down since g(r ) has a range that becomes infinite at this
point, in a complicated way. The solution of this difficulty required the importation
into statistical mechanics of mathematical techniques hitherto quite foreign to the
field. The details of the intermolecular forces become irrelevant; they determine
the position of the critical point, that is, the values of pc, V c and T c, but not how
the physical properties behave as functions of (p− pc), (V − V c) and (T − T c);
this behaviour is said to be ‘universal’. This work also came to a satisfactory con-
clusion in the the early 1970s but the details need not be discussed here since the
‘universality’ means that the experimental characteristics of fluids near their critical
points tells us nothing specific about the intermolecular forces [225]. It was in his
treatment of the critical point that van der Waals’s ideas have proved to be least
correct. He insisted, rightly, that the force, or the potential u(r ), is of short range
but did not know that such a force is incompatible with a simple analytic form of
the equation of state of the kind that he put forward. Such equations become correct



5.5 Solids and liquids 291

only if the attractive potential is everywhere weak but of infinite range, or if the
potential is of short range but we live in a world of four or more dimensions.

The other important phase change, that from liquid to solid, still lacks a satis-
factory interpretation in terms of the intermolecular forces. There are now good
theories of both solid and liquid states, so that we can calculate the free energy of
each state separately and then equate them to find the melting point where the two
states are in equilibrium. But the theories of the two states are different and, indeed,
incompatible, since one supposes a lattice structure that the other now eschews. The
equating of the free energies, although effective in practice, is aesthetically displeas-
ing. One would like to see a common treatment in which both states arise naturally
from a particular assumed form of the intermolecular potential. Such a theory is
under development as, for example, the so-called density-functional theory, which
can be crudely thought of as an attempt to reverse the ideas of the lattice theories
of liquids and instead treat the solid as a more structured form of the liquid. Some
success has been achieved, but the matter is still ‘unfinished business’ [226].

Another problem that has been solved only partially is a theory of the structure
and physical properties of the liquid–gas interface, which is the key to understanding
the old problem of capillarity that played such an important rôle in the early years
of the study of cohesion.

Laplace had identified correctly the link between the interparticle forces and the
surface tension. His treatment was restricted by his static view of matter (his particles
did not move), by what we can now recognise as a mean-field approximation
(his liquid had no structure), and by his assumptions that the interface had negligible
thickness and the gas density was zero (his density profile was a step-function).
There were no direct attempts to remedy these defects in Laplace’s treatment for
over a century. Poisson had criticised the third assumption but his attempts to remedy
it were not carried out effectively and led him to the mistaken conclusion that
Laplace’s assumption of a sharp interface led to a zero value of the surface tension.
Maxwell discussed this point [227] but made no attempt to tackle the problem. In
the 1930s there were some crude attempts to calculate the surface energy of a liquid,
possibly made in the belief that this is easier to calculate than the surface tension,
which is a surface free energy. This belief is not correct, but these papers [228], like
many of those on the bulk properties of liquids in the same years, paid scant attention
to what had been done previously. Laplace’s second restriction was removed by
Fowler in 1937 when he introduced the pair distribution for the uniform bulk liquid,
g(r ). He obtained for the surface tension

σ = (n2/32)
∫
r2u′(r )g(r ) dr , (5.53)
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where n is the number density, (N/V ), and u′(r ) is the derivative of the potential,
that is, the negative of the intermolecular force [229]. He left untouched the third
restriction; his interface was still of zero thickness. We get Laplace’s result again
by putting g(r ) = 1 in eqn 5.53, and integrating by parts,

σ = −(n2/8)
∫
ru(r ) dr , (5.54)

which correctly includes the factor of the square of the density, and where the
integration must now be restricted to configurations in which the molecular cores
do not overlap and in which u(r ) is therefore negative. The exact expression for the
surface tension, to which these results are approximations, was found by Kirkwood
and his then research student, Frank Buff, in 1949 [230]. They specified the structure
of the fluid in the interface by a generalised two-body density n(2)(r1, r2) which
reduces to n2g(r12) in the bulk liquid or the bulk gas, where n is the liquid or gas
density. Their expression for the surface tension is

σ = π

∫ +∞

−∞
dz1

∫ ∞

0
r12u

′(r12)
(
r2

12 − 3z2
12

)
n(2)(r1, r2) dr12, (5.55)

where r12 is the distance between r1 (= x1, y1, z1) and r2 (= x2, y2, z2), and
z12 = z2 − z1. The whole contribution to the integral comes from the surface layer
since, by symmetry, the mean value of 3z2

12 in a homogeneous liquid or gas is r2
12.

Fowler’s result is recovered if one puts

n(2)(r1, r2) = n(z1)n(z2)g(r12), (5.56)

where n(zi ) is the density at height i and becomes zero if zi lies in the gas phase.
Eqn 5.55 is a formal solution of the problem, but not by itself a practically useful
one until one knows something of the two-body density n(2)(r1, r2), that is, of the
probability of finding molecules in these positions when r1 or r2 or both lie in
the inhomogeneous surface layer between the liquid and the gas. Unlike g(r ) in
the homogeneous liquid, this function cannot be determined directly from x-ray or
neutron diffraction [231].

Quite a different route to the surface tension of an interface in which there is a
continuous variation with height from the density of the liquid to that of the gas
was found in the years 1888 to 1893, when Karl Fuchs, the Professor of Physics
at Pressburg (now Bratislava in Slovakia), Lord Rayleigh, and van der Waals all
realised that the energy of a molecule in such an interface would depend not only
on the local density at that height but also on the densities of molecules in the layers
above and below it, out to the range of the intermolecular force [232]. Since they
knew that the thickness of the interface, away from the critical point, is of the same
order as this range, they realised that the effect is a serious one; a molecule within



5.5 Solids and liquids 293

the interface interacts with others below it in the dense liquid and with others above
it in the gas. Van der Waals’s treatment was the most thorough, being based on
thermodynamic not mechanical arguments, that is, he explicitly recognised that the
equilibrium in such a system is a dynamic one between moving molecules, not a
static or mechanical one as the models of Fuchs and Rayleigh envisaged.

Laplace had obtained two integrals, the first of which, K , is a measure of the
energy of a liquid, and the second of which, H , is a measure of its surface tension.
In modern notation

K = − 1
2n

2
∫
u(r ) dr , H = − 1

4n
2
∫
ru(r ) dr . (5.57)

Thus K is the volume integral of u(r ) and H is the integral of its first moment,
ru(r ).The treatment of Fuchs, Rayleigh and van der Waals in 1888 led to a different
and apparently contradictory result. Since their profile of the fluid density was a
continuous function they could expand the local energy density at height z, ϕ(z), in
terms of the derivatives of n(z) with respect to z. By symmetry, the result contains
only the even derivatives:

ϕ(z) = 1
2n

2
∫
u(r ) dr − 1

12n(z)n′′(z)
∫
r2u(r ) dr + O[n′′′′(z)]. (5.58)

The first term is again just Laplace’s K , but his H is missing, and the next term
is proportional to r2u(r ), or the second moment of the intermolecular potential.
Since it is H that is the surface tension on Laplace’s model it seems at first sight
that, contrary to what Poisson surmised, it is the surface with a non-zero thickness
that has zero surface tension. This however is not so; the two models cannot be
compared so simply since a Taylor expansion of the kind of eqn 5.58 cannot be
made if the density profile is a step-function. Van der Waals calculated the surface
tension from the second term of eqn 5.58 and found it to be comparable with
Laplace’s H ; as he put it, “these difficulties are imaginary” [233]. Rayleigh also
noted the paradox and tried to resolve it [232], but a full explanation was not
possible until there were exact expressions for the tension by both routes, the one
that started with Laplace and the one that started with van der Waals. The first route
was successfully followed by Kirkwood and Buff in 1949 and led to eqn 5.55, and
the second route had already been reached by then, although few knew of it. Yvon
had reported to a meeting in Brussels in January 1948 that the surface tension could
be expressed as an integral that contained the product of the density gradients at
two different heights in the interface [234], but he did not give a full derivation. The
first derivation to be published was that of D.G. Triezenberg and Robert Zwanzig in
1972; this was followed at once by an alternative route to the same result by Ronald
Lovett, Frank Buff and their colleagues [235]. This second exact expression for the
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surface tension is

σ = 1
4kT

∫ +∞

−∞
n′(z1) dz1

∫ (
x2

12 + y2
12

)
n′(z2)c(r1, r2) dr2, (5.59)

where x12 and y12 are the transverse components of the vector (r2 − r1), and where
c(r1, r2) is the direct correlation function between points r1 and r2. No more is
known of this function than of the two-body density function in eqn 5.55, so
the practical value of this expression is limited to approximations. The question
naturally arose, however, of the equivalence of the two expressions, eqns 5.55 and
5.59, since by their derivations both claimed to be exact. They are the natural ends
of the lines of argument that started with Laplace and with van der Waals. Many
attempts were made to answer this question which was resolved only in 1979 when
Peter Schofield at Harwell in Britain [236] showed that they were indeed equiva-
lent, and so van der Waals was correct, if premature, in saying that the difficulty of
reconciling his approach with that of Laplace was “imaginary”.

There is a third way of formulating the surface tension and that is in terms
of the stress or pressure at each point in the gas, liquid and interface. When the
method is made precise it leads again to the ‘virial’ or Kirkwood–Buff expression,
eqn 5.55, but for many years the method had an independent life of its own. Such a
formulation is implicit in the very concept of surface tension and goes back to the
work of Segner and Young, but it was only after the ‘elasticians’ of the 19th century
had treated stress with proper mathematical rigour that this became a formal route
to the surface tension. In a three-dimensional body the stress, or its negative, the
pressure, can be expressed as a dyadic tensor with nine components. If the system is
homogeneous, isotropic, and at equilibrium then the three diagonal terms pxx , pyy ,
and pzz are all equal, and the off-diagonal terms, pxy, pyz , etc., are zero. That is,
the pressure tensor can be written

P(r ) = p1, (5.60)

where p is a constant (i.e. ‘the pressure’) and 1 is the unit tensor. If the system is at
equilibrium but not homogeneous or isotropic, as is the case in a two-phase system
of gas and liquid separated by an interface, then we know only that the gradient of
the pressure tensor, itself a vector, is everywhere zero;

∇ · P(r ) = 0. (5.61)

For a planar interface between gas and liquid in the x–y plane this condition and
the symmetry of the system require again that the off-diagonal terms are zero and
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that,

pxx (z) = pyy(z), and that pzz(z) = constant. (5.62)

The last component, pzz , is the pressure normal to the interface and is equal to
the common value of the scalar pressure, p, in the bulk gas and liquid phases. It is
usual to write pN(z) for this component and pT(z), for ‘transverse’, for pxx and pyy .
The transverse components are again equal to p in the bulk phases but are large
and negative, often around −100 bar, in the interface itself. The surface is now the
integrated difference of the normal and transverse pressures (or stresses) across the
thickness of the interface;

σ =
∫

[pN − pT(z)]dz. (5.63)

Such an approach is implicit in the work of some of van der Waals’s school, notably
that of Hulshof, who derived this equation [237], but the formal use of the pressure
tensor came later; it is to be found, for example, in Bakker’s treatise of 1928 [238].

The tension pT(z) produces a moment about an arbitrarily chosen height, z, but
there will be a certain height, zs, called the ‘surface of tension’ about which this
moment is zero. This is defined by a second integral across the interface,

σ zs =
∫
z[pN − pT(z)]dz, (5.64)

and may be regarded as the height at which the surface tension is presumed to act.
We are now entering deep waters since these formal equations, 5.63 and 5.64, are
useful only if we know how to calculate pN and pT from the intermolecular forces.
The first presents little difficulty since it is equal to the pressure in the homogeneous
gas and for that we have an adequate theory, for example the virial equation of state.
The second, however, presents not only the problem of its calculation but even of
its definition. Forces act on discrete molecules, but the concept of pressure or stress
is one of continuum mechanics that calls for its definition at each point in space,
whether there is a molecule there or not. In a homogeneous system this is no problem
since every self-consistent way of summing and averaging the intermolecular forces
gives the same answer, namely the ‘virial’ expression of eqn 5.44 for a system with
forces acting centrally between spherical molecules. There is, however, no way
of averaging the forces in an inhomogeneous system to give a uniquely-defined
pressure tensor.

The first way the problem was tackled was to define the pressure across an
element of area, dA, of given position and orientation, by erecting a cylinder on
dA, perpendicular to its plane, and then calculating the interaction of the molecules
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Fig. 5.5 Two ways of describing which pairs of molecules contribute to the stress (or
pressure) across a small element of area in a surface. In the first case (left) it is the forces
between the molecules in the thin column of material above and perpendicular to the element
and all those in the bulk material below it (cf. Laplace’s representation in Fig. 3.1). In the
second case (right) it is the forces between all pairs of molecules, one above and one below
the element, whose lines of centres pass through the element.

(or, more generally, of the matter) within this cylinder with all those in the half-space
below dA (Fig. 5.5, left). This definition was adopted by Poisson [239], Cauchy
[240], and Lamé and Clapeyron [241]. Its origin is not given but it may have
derived from Laplace’s treatment at the opening of his Sur l’action capillaire (see
Section 3.2 and Fig. 3.1). A second way of calculating the pressure arose, according
to Saint-Venant, from the parallel problem of the flow of heat across an element of
area, as treated by Fourier [242]. Here one takes into account the forces between
all pairs of molecules whose lines of centres pass through the element of area
(Fig. 5.5, right). When he heard of this way of calculating the stress Cauchy wrote
that it seemed to him to be “more exact” for a system of molecules interacting in
pairs [243]. For the sake of definiteness, we may call the earlier pressure tensor
the first, and the later the second. The first is, perhaps, the more natural if one
is considering the stress arising from matter as an interacting continuum, and the
second if one is considering it as composed of molecules interacting in pairs, but
either may be used with both suppositions. It was the appearance of Cauchy’s short
paper that prompted Saint-Venant to give a brief history of the subject, saying
that he had used the second definition since 1834, and that Duhamel had used it
briefly in 1828 before reverting to the older one of Poisson and Cauchy [244]. In a
homogeneous fluid they are equivalent, as Poisson proved in 1823 for the parallel
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problem of heat flow [245]. They differ if there is a density gradient, as in the
interface between liquid and gas. The two expressions to which the definitions lead
are, as follows [246]:

pT(z) = kT n(z) − 1
4

∫
u'(r12)

[(
x2

12 + y2
12

)/
r12

]
n(2)(r12, z, z + z12)dr12, (5.65)

pT(z) = kT n(z) − 1
4

∫
u'(r12)

[(
x2

12 + y2
12

) /
r12

]

×
∫ 1

0
n(2)(r12, z − αz12, z + (1 − α)z12)dαdr12, (5.66)

where n(2)(r12, z', z'') is the probability of finding a pair of molecules at (x1, y1, z')
and at (x2, y2, z'') and separated by the distance r12. We can see at once that the
first expression is formally simpler than the second. If z is situated in either of the
homogeneous phases, gas or liquid, then n(2) becomes simply n2g(r12) and both
expressions reduce to eqn 5.44. Within the interface, however, eqns 5.65 and 5.66
lead to different results. If they are inserted into eqn 5.63 they lead to the same
value of the surface tension, but in eqn 5.64 they give different values for the height
of the surface of tension, zs. The uncertainty in zs is small, less than the range of
the intermolecular force or the thickness of the interface, but the difference shows
the arbitrariness of the choice of the definition of the pressure.

The same ignorance of the past that afflicted the statistical mechanics of liquids
in the 1920s, 1930s and 1940s was now again apparent. The definitions of the elas-
ticians of the 19th century were unknown to the physicists who, in the 1950s, turned
again to the problems of capillarity. Kirkwood and Buff used the first form of pT(z)
in their first paper of 1949 in which they obtained eqn 5.54, but a more ‘statistical
mechanical’ derivation of this equation, free from any explicit introduction of the
pressure tensor, soon followed [247]. McLellan used the same form of the tensor in
1953 [248]. In 1950 Irving and Kirkwood [249] introduced the second form. Some
years later Harasima discussed both forms and, unknowingly echoing Cauchy, de-
scribed the second as the “more reasonable” [250]. It is now conventional in this
field to call the two forms of the tensor the Harasima pressure, pH(z), which is the
first form, and the Irving–Kirkwood pressure, pIK(z), which is the second. It is a
convenient convention even if it does not do justice to the history of the 1950s, and
still less to that of the 19th century.

If there are two possible and apparently equally valid ways of defining the pres-
sure, then does it follow that this concept is of little meaning in an inhomogeneous
system? This seemed to be the case when, in 1982, P. Schofield and J.R. Henderson
showed that there were arbitrarily many ways of defining the tensor, all of which
led to the same value for the surface tension which is the only thermodynamic
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property of the interface that can be measured [251]. The root of the difficulty
is that forces act on molecules and molecules occupy definable positions, at least
in a classical mechanical system, whereas the tensor tries to define the pressure
everywhere, whether there is a molecule there or not. Attempts are still being made
to define the pressure in planar and curved interfaces in ways that overcome this
difficulty, for example by arbitrarily requiring the components of the tensor to be
derivatives of a vector field, as is necessary for the strain tensor (see Section 3.6),
and other restrictions of this kind. These are still matters of unresolved discussion.

5.6 Conclusion

Is there a conclusion? In one sense there is not; no field of science can ever be
said to be exhausted, and in the field of cohesion there are still many unsolved
problems. We know the origins of the intermolecular forces, and in a few simple
cases can calculate their magnitude from first principles. We can use this knowledge
to calculate the properties of the monatomic gases at low and moderate densities,
and the equilibrium properties of these gases at high densities and of liquid and solid
substances composed of not-too-complicated molecules. Beyond these limits we
are struggling. We cannot calculate with acceptable accuracy the viscosity, thermal
conductivity and other transport properties of monatomic gases at high densities
or of monatomic liquids. Even the transport properties of polyatomic gases at low
densities are beyond us. Nevertheless the common perception is that the field is not
at the moment one of the exciting areas of research. There are these fundamental
limitations on our abilities to make accurate calculations, which no one yet knows
how to overcome, and which few are willing to tackle. Much of the interest in
the more active parts of the field is in the application of the theoretical knowledge
that we now have to biological problems and to those of material science. Indeed
much has already been done that has not been discussed here in such fields as
the strength of metals, ceramics and composite materials and in understanding the
phase behaviour of liquid crystals, colloids and other mesoscopic systems. The
interpretation of such systems often requires an understanding of subtle indirect
effects of the intermolecular forces. Here two examples may be cited from fields
that are currently fashionable.

The first is what is called the hydrophobic effect, which describes the change
in the structure of water on disolving in it molecules which, in whole or in part,
have little affinity for forming hydrogen bonds. Such entities might be the lower
hydrocarbon gases or molecules with a hydrocarbon chain attached to a strongly
polar group. It is found that the structure of water around the non-polar groups is
modified in ways that were difficult to predict and that one consequence of such
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modifications can be an apparent attractive force between the non-polar parts of
different molecules. The results of the study of this effect has led to some advance
in our understanding of the way that some systems of biological interest order their
structures and, indeed, it is those interested in such problems as the folding of
proteins who have driven much of the work in this field, although the first studies
were on much simpler systems [252].

The second topic that involves indirect effects is what is now usually called the
depletion force. We have seen (Section 5.5) that in a dense fluid the probability of
finding two molecules at a separation of a little greater than their collision diameter
is larger than random, and that this increase is found even in the absence of a
direct attractive force between the pair. In 1948 de Boer pointed out that this effect
occurs even for a system of two molecules in the presence of a third since at short
distances each of the pair partially shields the other from collisions with the third,
thus generating a value of the pair distribution function g(r ) larger than unity, or
a negative or attractive value for the potential of average force, −kT ln g(r ) [253].
The effect is stronger at high densities and stronger still in a dense assembly of
large hard spheres in a ‘sea’ of smaller ones if the ratio of the diameters is about
10 to 1. It was first suggested by Biben and Hansen that the average force of
attraction between the large spheres in such a system was strong enough to induce
a separation into two fluid phases [254]. It now seems unlikely that this happens
in an equilibrium state – the large spheres crystallise first as the density is raised –
but it would probably occur in a metastable phase [255]. An example from the real
world was put forward by Asakura and Oosawa in 1954, and independently by
Vrij in 1976 [256]. Here the ‘large spheres’ were colloidal particles and the role
of the small ones was taken by polymer molecules that could not insert themselves
between the colloidal particles if these were close together. It is this lowering of
the concentration of the particles of the smaller component in the space between
the larger that gives rise to the attractive average force between the larger, and so
to the name of ‘depletion force’. Since the effective attraction has been produced
without any direct attractive energy the effect is sometimes described as an entropic
attraction. It is a modern version of Le Sage’s theory of interparticle attraction
(Section 2.4) with the polymer molecules playing the role of his ‘ultramondane
particles’.

Experimental advances are hard to predict since they often come from discoveries
in fields remote from those under study. It is already clear, however, that the recent
advances in molecular spectroscopy have opened the field of van der Waals or
molecular clusters to a more detailed examination than seemed possible only a few
years ago. It will, however, be our understanding of more complex systems that will
benefit most from advances such as atomic force microscopy, scanning tunnelling
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microscopy, the ability to manipulate single atoms with intense laser beams – the
so-called ‘optical tweezers’– and other methods that may be devised for studying
molecular systems directly in the laboratory.

It is hard to say how much we shall learn from computer modelling since the
power of computers seems to grow without limit, but here I sense a feeling of
satiation, at least for straightforward molecular systems. Much has been learnt, and
simulation played a crucial role in solving many past problems, but today’s work
does not seem to have quite the same brightness and promise associated with the field
twenty years ago. Again it is complex systems that are now attracting most attention,
in which some of the ‘fine-grained’ molecular detail is suppressed and the model
is chosen to do justice only to broad features of the system on a meso-molecular
scale. There has, for example, been a recent announcement from the computer
company IBM of a dedicated machine to predict the folding patterns of proteins
from a knowledge of their sequence of amino-acids. When we remember that an
accurate modelling of the water–water potential required 72 parameters then we
can appreciate that the simulation of the interactions of chains of amino-acids in the
presence of water can only be undertaken by essentially empirical methods. It will be
interesting to see how far the modellers can go down such roads as protein folding.

Prophecy is impossible, however, and all that can be recorded is that the field
of cohesion, which has had an episodic history of starting and then pausing again
for the last three hundred years, has now reached, certainly not a conclusion, but
a natural break in its development where the next advances will come in applica-
tions rather than in fundamental changes in our understanding. The most important
attractive force, London’s dispersion force, has been understood since 1930, and
it is in this sense that this last chapter has been entitled ‘Resolution’. The direct
electrostatic forces that were so widely studied at the beginning of the 20th century
also now present no fundamental problems. No doubt this is not the end of the story
but new theories, and advances in understanding, supplement rather than supplant
the old theories. Most of our day-to-day physical problems can still be resolved in
terms of Newtonian mechanics and Maxwell’s electromagnetic theory. These were
subsumed into the quantum mechanics of the 20th century but they were not ren-
dered false or obsolete. Quantum mechanics has changed fundamentally the way
we think about things on a small scale but its limiting behaviour for atomically large
masses and distances still allows us to retain many of our old ideas without leading
us into error. We know now that the domain of validity of Newton’s and Maxwell’s
work is limited but within their limits they retain their correctness and usefulness.
The dispersion forces are outside the scope of the classical theories but they, in turn,
can be adequately understood in terms of present-day quantal theory. When this
eventually becomes absorbed into a ‘theory of everything’ [257], then we shall have
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a deeper understanding, but we shall surely still use the same conventional quantum
mechanics and statistical mechanics for our calculations of intermolecular forces
and the properties of gases, liquids and solids, in the same way that we continue to
use Newtonian mechanics for the solution of the problems of the motion of planets
and billiard balls.
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kinetische Theorie der Materie und der Elektrizität, Leipzig, 1914, pp. 61–86,
see p. 66.

32 F. Simon and C. von Simson, ‘Die Kristallstruktur des Argons’, Zeit. f. Phys. 25
(1924) 160–4.
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64 A. Byk, ‘Das Theorem der übereinstimmenden Zustände und die Quantentheorie der
Gase und Flüssigkeiten’, Ann. Physik 66 (1921) 157–205; ‘Zur Quantentheorie der
Gase und Flüssigkeiten’, ibid. 69 (1922) 161–201.

65 B.M. Axilrod and E. Teller, ‘Interaction of the van der Waals type between three
atoms’, Jour. Chem. Phys. 11 (1943) 299–300; B.M. Axilrod, ‘The triple-dipole
interaction between atoms and cohesion in crystals of the rare gases’, ibid. 17 (1949)
1349. Detailed calculations followed later, see B.M. Axilrod, ‘Triple-dipole
interaction. I. Theory’, ibid. 19 (1951) 719–24; ‘. . . . II. Cohesion in crystals of the
rare gases’, ibid. 724–9.

66 Y. Muto, Letter to Axilrod in March 1948, see Axilrod, ref. 65 (1949). Muto’s work
was published in Japanese: Y. Muto, [The force between nonpolar molecules],
Nihon Sugaku Butsuri Gakkaishi [Jour. Phys.-Math. Soc. Japan] 17 (1943) 629–31.
The often-quoted reference to the European language journal, Proc. Phys.-Math. Soc.
Japan, is incorrect. I thank Richard Sadus of Melbourne for a copy of Muto’s paper
and for the observation that there is an error of sign in his result, eqn 15.

67 K.F. Niebel and J.A. Venables, ‘An explanation of the crystal structure of the rare gas
solids’, Proc. Roy. Soc. A 336 (1974) 365–77.

68 E.A. Guggenheim (1901–1970) F.C. Tompkins and C.F. Goodeve, Biog. Mem. Roy.
Soc. 17 (1971) 303–26; E.A. Guggenheim, [no title] Discuss. Faraday Soc. 15
(1953) 108–10. The evidence in favour of the (12, 6) potential was reviewed by
J.S. Rowlinson, [no title] ibid. 108–9.

69 E.A. Guggenheim and M.L. McGlashan, ‘Interaction between argon atoms’, Proc.
Roy. Soc. A 255 (1960) 456–76. Guggenheim gave the substance of this paper in his
Baker Lectures at Cornell in 1963 and repeated it in his Applications of statistical
mechanics, Oxford, 1966. Max McGlashan (1924–1997), Guggenheim’s only Ph.D.
student, was later Professor of Chemistry at Exeter and at University College, London.
What is essentially a revision of this calculation but with similar conclusions is in
M.L. McGlashan, ‘Effective pair interaction energy in crystalline argon’, Discuss.
Faraday Soc. 40 (1965) 59–68.

70 G.C. Maitland, M. Rigby, E.B. Smith and W.A. Wakeman, Intermolecular forces:
their origin and determination, Oxford, 1981. There is a short history of recent work
in Chapter 9 which is valuable since it was written by those in the thick of things. This
account makes use of it. The same authors, but now Rigby, Smith, Wakeham and
Maitland, later published a simpler version of this monograph as The forces between
molecules, Oxford, 1986.



306 5 Resolution

71 I. Amdur and E.A. Mason, ‘Scattering of high-velocity neutral particles.
III. Argon–argon’, Jour. Chem. Phys. 22 (1954) 670–1.

72 R.J. Munn, ‘On the calculation of the dispersion-forces coefficient directly from
experimental transport data’, Jour. Chem. Phys. 42 (1965) 3032–3; J.S. Rowlinson,
‘Determination of intermolecular forces from macroscopic properties’, Discuss.
Faraday Soc. 40 (1965) 19–26.

73 A. Michels, J.M. Levelt and W. de Graaff, ‘Compressibility isotherms of argon
at temperatures between −25◦C and −155◦C, and at densities up to 640 Amagat
(pressures to 1050 atmospheres)’, Physica 24 (1958) 659–71. After her marriage,
Levelt published under the name of Levelt Sengers.

74 B.E.F. Fender and G.D. Halsey, ‘Second virial coefficients of argon, krypton, and
argon–krypton mixtures at low temperatures’, Jour. Chem. Phys. 36 (1962) 1881–8;
R.D. Weir, I.W. Jones, J.S. Rowlinson and G. Saville, ‘Equation of state of gases at
low temperatures. Part I. Second virial coefficient of argon and krypton’, Trans.
Faraday Soc. 63 (1967) 1320–9; M.A. Byrne, M.R. Jones and L.A.K. Staveley,
‘Second virial coefficients of argon, krypton and methane and their binary mixtures at
low temperatures’, ibid. 64 (1968) 1747–56. The change of the speed of sound with
gas pressure can be measured with a higher accuracy than the change of density and
yields the ‘second acoustic virial coefficient’ which can be expressed in terms of B(T)
and its first two derivatives with respect to temperature. It has proved difficult to use it
directly to determine intermolecular potentials but it serves as a valuable check; see,
for example, M.B. Ewing, A.A. Owusu and J.P.M. Trusler, ‘Second acoustic virial
coefficients of argon between 100 and 304 K’, Physica A 156 (1989) 899–908.

75 T. Kihara, ‘The second virial coefficent of non-spherical molecules’, Jour. Phys. Soc.
Japan 6 (1951) 289–96; J.S. Rowlinson, ‘Intermolecular forces in CF4 and SF6’, Jour.
Chem. Phys. 20 (1952) 337; S.D. Hamann and J.A. Lambert, ‘The behaviour of fluids
of quasi-spherical molecules, I. Gases at low densities’, Aust. Jour. Chem. 7
(1954) 1–17; A.G. De Rocco and W.G. Hoover, ‘Second virial coefficient for the
spherical shell potential’, Jour. Chem. Phys. 36 (1963) 916–26.

76 T. Kihara, ‘Virial coefficients and models of molecules in gases’, Rev. Mod. Phys. 25
(1953) 831–43. This review was written on a visit to Hirschfelder’s laboratory at
Wisconsin.

77 A.L. Myers and J.M. Prausnitz, ‘Second virial coefficients and Kihara parameters for
argon’, Physica 28 (1962) 303–4.

78 D.D. Konowalow and J.O. Hirschfelder, ‘Intermolecular potential functions for
nonpolar molecules’, Phys. Fluids 4 (1961) 629–36.

79 J.A. Barker, W. Fock and F. Smith, ‘Calculation of gas transport properties and the
interaction of argon atoms’, Phys. Fluids 7 (1964) 897–903. For J.A. Barker
(1925–1995) see J.S. Rowlinson, Biog. Mem. Roy. Soc. 42 (1996) 13–22. John
Barker of Melbourne worked later in Canada and then in California, with
I.B.M.

80 A.E. Sherwood and J.M. Prausnitz, ‘Third virial coefficient for the Kihara, exp-6, and
square-well potentials’, Jour. Chem. Phys. 41 (1964) 413–28; ‘Intermolecular
potential functions and the second and third virial coefficients’, ibid. 429–37.

81 W.B[yers]. Brown, ‘The statistical thermodynamics of mixtures of Lennard-Jones
molecules’, Phil. Trans. Roy. Soc. A 250 (1957) 175–220, 221–46. Equation 5.27 is
clearly related to the two equations of Simon and von Simson, eqns 4.58 and 4.59,
but I do not think that the connection has been explored.

82 J.S. Rowlinson, ‘A test of Kihara’s intermolecular potential’, Molec. Phys. 9 (1965)
197–8.



Notes and references 307

83 W.B[yers]. Brown and J.S. Rowlinson, ‘A thermodynamic discriminant for the
Lennard-Jones potential’, Molec. Phys. 3 (1960) 35–47.

84 J.S. Rowlinson, ‘The use of the isotopic separation factor between liquid and vapour
for the study of intermolecular potential and virial functions’, Molec. Phys. 7 (1964)
477–80.

85 A.E. Sherwood, A.G. De Rocco and E.A. Mason, ‘Nonadditivity of intermolecular
forces: Effects on the third virial coefficient’, Jour. Chem. Phys. 44 (1966) 2984–94.

86 See, for example, McGlashan, ref. 69, for the use of an ‘effective’ potential.
87 A. Rahman, ‘Correlation in the motions of atoms in liquid argon’, Phys. Rev. 136A

(1964) 405–11.
88 A.E. Kingston, ‘Van der Waals forces for the inert gases’, Phys. Rev. 135A (1964)

1018–19. More recent calculations confirm this result. The consensus now is that C6 =
64–65 a.u.; A.Kumar and W.J. Meath, ‘Pseudo-spectral dipole oscillator strengths and
dipole–dipole and triple-dipole dispersion energy coefficients for HF, HCl, HBr, He,
Ne, Ar, Kr and Xe’, Molec. Phys. 54 (1985) 823–33; M.P. Hodges and A.J. Stone,
‘A new representation of the dispersion interaction’, ibid. 98 (2000) 275–86.

89 E.W. Rothe and R.H. Neynaber, ‘Atomic-beam measurements of van der Waals
forces’, Jour. Chem. Phys. 42 (1965) 3306–9. An earlier experiment had erroneously
led to a value of C6 that was at least as large as that from the conventional (12, 6)
potential, see E.W. Rothe, L.L. Marino, R.H. Neynaber, P.K. Rol, and S.M. Trujillo,
‘Scattering of thermal rare gas beams of argon. Influence of the long-range dispersion
forces’, Phys. Rev. 126 (1962) 598–602.

90 R.J. Munn, ‘Interaction potential of the inert gases. I’, Jour. Chem. Phys. 40 (1964)
1439–46; R.J. Munn and F.J. Smith, ‘. . . . II’, ibid. 43 (1965) 3998–4002; E.A. Mason,
R.J. Munn and F.J. Smith, ‘Recent work on the determination of the intermolecular
potential functions’, Discuss. Faraday Soc. 40 (1965) 27–34; J.C. Rossi and F. Danon,
‘Molecular interactions in the heavy rare gases’, ibid. 97–109; J.H. Dymond,
M. Rigby and E.B. Smith, ‘Intermolecular potential-energy functions for simple
molecules’, Jour. Chem. Phys. 42 (1965) 2801–6; J.H. Dymond and B.J. Alder, ‘Pair
potential for argon’, ibid. 51 (1969) 309–20.

91 See the papers in the Faraday Discussion in refs. 69, 72 and 90, and the discussion
of them.

92 R.J. Munn, [no title], Discuss. Faraday Soc. 40 (1965) 130–2.
93 J.A. Barker and A. Pompe, ‘Atomic interactions in argon’, Aust. Jour. Chem. 21 (1968)

1683–94.
94 V. Vasilesco, ‘Recherches expérimentales sur la viscosité des gaz aux températures
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Dupré, A.L.V., 98, 160–2, 163, 170, 171, 175. 4: 105,

107–14
Durande, J.-F., 3: 117
Dutour, E.-F., 48. 2: 295
Dyke, T.R., 5: 138
Dymanus, A., 5: 133
Dymond, J.H., 5: 90
Dzyaloshinskii, I.E., 5: 149, 152

Earnshaw, E., 156. 4: 80
Ehrenfest, P., 200. 4: 260
Einstein, A., 159, 204, 210, 235, 272, 273, 277. 4: 94,

95–6, 239, 287; 5: 163
Eisenberg, D., 5: 132
Eisenschitz, R.K., 238–9. 5: 12
Elizalde, E., 5: 148
Ellis, R.L., 156. 4: 80
Elrod, M.J., 5: 110, 141
Enskog, D., 205. 4: 290, 292, 294
Epstein, P.S., 3: 212
Eucken, A., 207. 5: 113
Euler, L., 2, 36–7, 46, 50, 54, 56, 57, 104, 107, 109,

125. 2: 192, 202, 205, 208–9, 249, 273–4, 345, 351;
3: 1, 164, 181

Evans, R., 5: 255
Ewell, R.B., 5: 27
Ewing, M.B., 5: 74
Eyring, H., 282. 5: 189

Fahrenheit, D., 32. 2: 174
Falkenhagen, H., 202. 4: 271
Faraday, M., 51, 141, 153–5, 196, 200, 268. 2: 317;

4: 4, 63–6, 71, 247; 5: 143
Fatio de Duiller, N., 26. 2: 114
Fay, du, see Dufay, C.-F. de C.
Fellers, R.S., 5: 139
Fender, B.E.F., 5: 74
Finney, J.L., 5: 216
Fisher, R.A., 259. 5: 100
Flamsteed, J., 18

Flygare, W.H., 5: 132
Fock, W., 5: 79
Fontenelle, B. le B. de, 26–8, 30–2. 2: 115, 130, 132,

141, 162
Fourcroy, A.F., 53. 2: 332, 334
Fourier, J.B.J., 102-4, 109, 110, 114, 296. 3: 91,

97–102, 104, 139, 187; 5: 242
Fowler, P.W., 5: 111
Fowler, R.H., 248, 264–5, 280, 281, 282–4, 291–2.

4: 258, 295, 310; 5: 24, 42, 46, 124, 176, 180, 187,
190, 196, 200, 229

Frankland, E., 145–6. 4: 29
Franklin, B., 23, 99, 157. 2: 88, 99; 3: 75
Franks, F., 5: 252
Franz, H., 3: 227
Freind, J., 18–20, 22, 26–32, 35–7, 44, 55, 102,

105, 144, 271. 2: 56, 67, 74–5, 77–9, 124–5;
3: 116

Frenkel, Ya.I., 282. 5: 20, 191
Fresnel, A.J., 102, 110. 3: 1, 90, 163
Fuchs, K., 195, 292-3. 4: 241; 5: 232
Fujii, Y., 5: 164

Gauss, C.F., 39, 95, 108, 148–9. 3: 67; 4: 48
Gay-Lussac, J.L., 4, 55, 84, 90, 91, 94, 97, 106, 146,

149. 2:138; 3: 37, 41; 4: 31–2, 49, 54
Geoffroy, E.-F., 27–9, 41, 146. 2: 129, 138–40, 141
Gerdil, G., 44–6, 48. 2: 259, 260–3
Germain, S., 102, 108–9, 111–12. 3: 92, 139–41,

143–4, 151
Gerry, H.T., 5: 127
Gibbs, J.W., 163, 171, 184, 195, 199, 250, 272, 277.

4: 57, 162, 199, 239
Glaeser, R.M., 266. 5: 131
Godard, see Godart, G.-L.
Godart, G.-L., 47. 2: 280
Goeppert Mayer, M., see Mayer, M.G.
Goldbach, C., 2: 205
Gordon, R.G., 5: 26
Gough, D.W., 5: 107
Gould, F.A., 91–2. 3: 47
Graaff, W. de, 5: 73
Graham, T., 147–8, 165. 4: 39, 40–1, 127
Gravesande, W.J. ’s, 29, 32–5, 47, 54. 2: 168, 179,

182–5, 187, 196
Gray, C.G., 5: 224
Green, G., 115, 117. 3: 180
Green, H.S., 284. 5: 203
Greene, R., 2: 101
Gregory, D., 12, 17, 18, 20. 2: 28, 55, 56
Gregory, J., 18
Grilly, E.R., 5: 54
Groeneveld, J., 5: 217
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Encyclopédie méthodique, 52–3
energy, configurational, see internal

conservation of, 143, 150
dispersion, see force
exchange, 237, 251, 261
internal, 98, 160, 204, 276–7
ionisation, 241, 269
kinetic, 21, 54, 123, 163, 172–3, 187, 189
potential, 54, 56, 121, 143

engineering, 104, 111, 119, 125, 142–3, 159
enthalpy, 151
entropy, see also disgregation, 151, 287

residual, 265–6
equal-areas rule, 177–8, 183, 185
ethanol, 96, 153, 179
ether, see aether and ethyl ether
ethyl ether, 96, 153–4, 178–9
evaporation, see liquids

Faraday Discussions, 208–9, 253, 258, 261, 268, 282,
290

fermentation, 9, 16, 22, 49

field theories, 4, 51, 102, 141, 268–9
Flory–Huggins equation, 310
fluctuations, 277–80, 282, 285
force, see also energy and intermolecular potential

attractive, passim
average, potential of, 275, 283, 299
Boscovichian, 51, 54, 56, 121, 142, 164, 204, 235
Casimir, 312
depletion, 42, 299
dispersion, 234–54, 257–8, 261, 269, 300
electrostatic, see also dipole moment and

quadrupole moment, 2, 144, 155, 193, 196–210,
245, 265–6, 300, 309

entropic, see force, depletion
exponential, see also intermolecular potential,

(exp, 6) and Yukawa, 87, 113
gravitational, see gravity
impulsive, 11, 26, 33, 42, 53, 299
induced, 202–3
London, see force, dispersion
magnetic, see magnetism
pair-wise additive, 39, 156, 239, 246, 248, 251,

266
polar, see also force, electrostatic and force,

induced, 12, 23, 124, 188
range of, 10–15, 33, 34–5, 46–7, 49, 56, 86, 93–4,

98–100, 159, 161–2, 179–80, 187–8, 193–5
repulsive, 16, 22–4, 39, 49–50, 58, 95–7, 109,

156–7, 167–8, 175, 237, 241–2, 260–1
retarded, 270–1
speed of propagation, 55, 269–71
three-body, 39, 239, 251–2, 255–8, 261, 274, 276,

290
van der Waals, 194–5, 234–5

gases, see also air, kinetic theory and virial
coefficients, 9, 58, 145, 149

adsorption, 171, 196
diffusion, 145, 164–7, 169–70, 205, 244, 257
heat capacity, 150–2, 163–4, 169–70, 184, 203
liquefaction, 153–5, 164, 186
mean free-path, 164–6, 179, 181
rarified, 184
refractive index, 201
solubility, 145
thermal conductivity, 166–7, 169, 205, 257, 298
viscosity, 165–9, 190, 205, 208, 244–5, 249, 253,

257–8, 298
geology, 35, 69
gold, 12, 19, 44–5, 99, 157
Gordon Conferences, 317
gravity, 2, 9, 16–17, 25–6, 29, 35–43, 100, 119–20,

268
a cause of cohesion, 40, 83–4, 155, 171
speed of propagation, 56, 81–2
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