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Preface

Translational motion in solution (e.g., diffusion, flow or advection) plays a central
role in science. Self-diffusion can be rightfully considered as being the most
fundamental form of transport at the molecular level and, consequently, it lies at
the heart of many chemical reactions and can even govern the kinetics. Diffusion,
due to its very ubiquity, is encountered in a myriad of scientific studies ranging from
diseases to separation science and nanotechnology. Further, the translational motion
of a species not only reflects intrinsic properties of the species itself (e.g., hydro-
dynamics), but can also shed light on the surrounding environment (e.g., inter-
molecular dynamics or motional restriction). Consequently, being able to study and
ultimately understand the translational motion of molecules and molecular systems
in their native environment is of inestimable scientific value.
Measuring translational motion at the molecular level presents special difficul-

ties since labelling (e.g., radiotracers) or the introduction of thermodynamic
gradients (which leads to mutual diffusion and consequently irreversible thermo-
dynamics) in the measurement process can have deleterious effects on the outcome.
Also, in many instances it is of interest to measure the diffusion of species at quite
high concentrations. Fortunately, nuclear magnetic resonance (NMR) provides a
means of unparalleled utility and convenience for performing non-invasive mea-
surements of translational motion. Of particular significance is that, in general,
the species of interest inherently contain NMR-sensitive nuclei and thus sample
preparation generally requires nothing more than placing the sample into the NMR
spectrometer.
NMR is an inherently quantum mechanical subject, yet translational motion of

molecules lies between the microscopic and the macroscopic and is most conve-
niently described with classical physics. Abiding by Ockham’s razor, this is the path
that will be taken here. This is not an NMR textbook per se, and for the fundamentals
of NMR numerous excellent texts are currently available.1–6 A tabulation of many
of the commonly used NMR acronyms can be found elsewhere.7
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The last two decades have seen the advent of widespread commercial availability
of MRI imagers and magnetic gradient probes and gradient drivers for NMR
spectrometers. Magnetic gradients now pervade almost all areas of NMR ranging
from coherence selection, gradient shimming, selective excitation and signal sup-
pression8–21 in high-resolution NMR to inputting spatial dependencies into NMR
imaging (also known as MRI, and NMRmicroscopy) and NMR diffusion measure-
ments. The use of gradient NMR allows diffusion to be added to the list of standard
NMR observables.
This book grew out of two widely cited pedagogical papers that I wrote sometime

ago on measuring diffusion with NMR22,23 using magnetic field (i.e., B0) gradient
methods. The overall aim of the book is rather modest: to present a clear overview of
this field with particular emphasis on trying to impart a clear physical picture –

ideally such that the literature may become more accessible to readers interested in
expanding their research into this field. Specifically, this book endeavours first to
explain the physical basis of magnetic gradient-based NMR measurements of
translational motion – especially diffusion measurements involving pulsed mag-
netic field gradients. Flow- and imaging-based measurements are closely related
technically and theoretically and so some coverage of these kindred fields is
presented. Secondly, to provide a clear correlation between experimental methodo-
logy and theoretical data analysis and the sorts of applications that are feasible. I have
cited rather more references than is typical in a monograph to give the reader more
chance of understanding the present text and also the opportunity to read further.
I also liberally cite some textbooks that I found particularly lucid – especially in
mathematical areas since many of the readers of this book may not come from a
strong mathematics/physics background and to this end I also include the deriva-
tions of some of the more important equations. Although in general I have tried to
maintain historical lineage, in some cases I have cited a more accessible reference
for a concept than the original reference. As is so often the case, what started as my
attempt to clearly explain an area of science became an exercise in trying to make
myself really understand the area. This area of NMR application, theory and
methodology has grown exponentially in the past three decades. Thus, it is neither
possible nor reasonable to attempt anything approaching a comprehensive cover-
age; further the ordering of the material was made particularly difficult by many of
the studies being justifiably included under more than one of the subheadings.
The outline of this book is as follows: Chapter 1 serves as an introduction to

translational motion with special attention to diffusion and begins with some
introductory remarks on the relationship between diffusion and chemical and
biological phenomena, followed by a detailed exposition on its physical basis and
how it can be mathematically modelled – these concepts will be heavily drawn upon
in later chapters. This basis also allows the final section, where some of the more
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common techniques for measuring diffusion are briefly reviewed, to be placed in
perspective as it allows the strengths and limitations of the different methods of
diffusion measurements to be more clearly understood. Chapter 1 is rather solid and
parts can be skipped on a first read or by those only interested in the NMR
techniques and not the fundamental aspects of diffusion and its modelling.
Chapter 2 introduces the basic concepts behind magnetic gradient–based NMR

diffusion measurements in freely diffusing systems and in particular the workings of
basic pulsed gradient spin-echoes (PGSE), the most common (analytical and
approximate) mathematical procedures for correlating the experimental variables,
diffusion (and flow) with the observed NMR signal. Measurements of samples
containing mixtures of species and aggregating species, but where the exchange is
slow on the measurement timescale, are also considered.
Chapter 3 builds upon Chapter 2 and extends the coverage to the cases of simple

porous systems, that is where a species is confined to a single highly symmetrical
pore of some description. Whereas analytical relations could be given for the
relationship between experimental variables and observed signal in the case of
free diffusion, such analysis even for simple highly symmetrical pores rapidly
becomes mathematically intractable and thus some consideration is given to the
validity of the commonly used mathematical approximations and the various
numerical approaches that are sometimes used.
Chapter 4 continues on from Chapter 3 and considers phenomena such as

exchange, anisotropic and flowing systems and diffusion in polymers. Diffusion
measurements in internal magnetic fields are also given brief mention.
Chapter 5 provides an overview of the additional instrumentation for an NMR

spectrometer needed to conduct diffusion, flow and, by extension to a system capable
of generating magnetic field gradients in three orthogonal directions, imaging-based
measurements.
Chapter 6 details fundamental experimental considerations such as the selection of

delays, gradient parameters and solvent suppression technique in diffusion measure-
ments and how the applied gradient strength might be calibrated. This chapter ends
with a section on how to transform and analyse the PGSE data resulting from simple
freely diffusing samples, complex mixtures and samples involving restricted diffusion.
Chapter 7 concerns most of the issues that thwart attempts to get high-quality data

such as background gradients, eddy currents induced by the rapidly pulsedmagnetic
field gradients and imperfectly generated gradient pulses. The symptoms and
suggestions for obviating or at least meliorating their effects are considered.
Chapter 8 provides an overview of some of the more sophisticated sequences for

measuring diffusion, flow and related phenomena.
Chapter 9 gives an overview of the inclusion of conventional nuclear magnetic

resonance imaging (aka MRI) methodology with diffusion and flow measurements.
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Whereas in the previous chapters the systems being studied might be microscopi-
cally heterogeneous, there was an implicit assumption that they were macroscopi-
cally homogeneous. However, in many cases (biological tissues such as brain being
a prominent example) the sample is also heterogeneous on a length scale that can
be accessed by MRI methodology. The combination of MRI techniques with
gradient-based diffusion and flow-measuring techniques provides powerful tools
for characterising natural and synthetic materials.
Chapter 10 gives a brief overview of the use of radio frequency (i.e., B1) field

gradients to measure translational motion.
Chapter 11 surveys some of the applications to which gradient-based measure-

ments of translational motion have been put.
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Abbreviations and Symbols

A cross-sectional area of a sample tube
a characteristic distance (e.g., radius of a pore or half the inter-

planar separation)
ADC apparent diffusion coefficient (see also Dapp)
aM relaxation length
amin uncertainty in initial and final position during a gradient

pulse
b gradient or diffusion weighting factor
b gradient or diffusion weighting vector
B0 static magnetic field
B1 radio frequency (rf) field
BPP bipolar gradient pulses
BSA bovine serum albumin
C(Z, Δ) diffusion envelope
CORE component resolved spectroscopy
COSY correlation spectroscopy
CPMG Carr–Purcell–Meiboom–Gill sequence
CTPG constant time, pulse, and gradient and amplitude diffusion

experiment
D self-diffusion coefficient
d embedding dimension
Di individual self-diffusion coefficient
D0

i self-diffusion coefficient of the ith oligomeric species at infinite
dilution

〈D〉P population-weighted averaged diffusion coefficient
〈D〉W mass averaged diffusion coefficient
Dh iCW mass averaged diffusion coefficient including obstruction

effects

xv



D self-diffusion tensor
Dlab diffusion tensor in the laboratory axes frame (x′, y′, z′)
Dω diffusion coefficient spectrum or tensor
Dκ fractional diffusion coefficient
Dω frequency-dependent diffusion coefficient
D∞ effective or long-time self-diffusion coefficient
D* asymptotic dispersion coefficient
D(t) (measuring time-dependent) diffusion coefficient obtained in

the SGP limit
D(t) time-dependent diffusion tensor
D0 infinite dilution (or short time) self-diffusion coefficient
Danion anion diffusion coefficient
Dcation cation diffusion coefficient
df dimension of the fractal space
dw random walk dimension
Dapp, Dapp(t) or
Dapp(Δ)

‘apparent diffusion coefficient’ obtained by simplistically
applying the free diffusion solution to the analysis of a more
complicated system

Deff synonymous with D∞

D�
eff effective time-dependent dispersion coefficient

Db bound ligand diffusion coefficient
Df free ligand diffusion coefficient
Di ‘distinct’ diffusion coefficient
D/D0 relative diffusion coefficient
DM mutual diffusion tensor
DM mutual diffusion coefficient
DOSY diffusion ordered spectroscopy
Dpr self-diffusion tensor in the principal axes frame (x, y, z)
DQ double quantum
ds spectral dimension
DCNMR see electrophoretic NMR
DDCOSY diffusion–diffusion correlation spectroscopy
DRCOSY diffusion–relaxation correlation spectroscopy
DDIF diffusion decay in the internal field
DTI diffusion tensor imaging
DWI diffusion-weighted imaging
Δ �P R;Δð Þ1

2
average propagator width at half-height

E elliptic integral of the second kind
E, E(q, Δ) spin-echo attenuation (normally synonymous with EDiff)
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Edc pulsed electric field
EDiff spin-echo attenuation due to diffusion
E(g1) spin-echo attenuation due to B1 gradients (normally synon-

ymous with EDiff)
E(q, ∞) long–time diffusive attenuation
Ephase signal attenuation due to the phase-twist or residual phase-twist
Epoly spin-echo attenuation in a polydisperse system
ERelax spin-echo attenuation due to relaxation
ENMR electrophoretic NMR
F Perrin factor
FT{L(Z)} reciprocal lattice
f friction coefficient
F1 indirectly detected dimension in a 2D NMR experiment
F2 directly detected dimension in a 2D NMR experiment
fs free volume contributed by the solvent
FID free induction decay
FT Fourier transform
g magnetic field gradient (applied) – normally spatially homo-

geneous (i.e., constant)
g0 background or constant magnetic gradient
gapp initial guess of gradient strength
ge encoding gradient
geff effective gradient
gint magnetic gradient arising from internal susceptibility differ-

ences (see background (magnetic field) gradients)
gr read gradient
Gx,y,z gradient used for spatial localisation in MRI
GPD Gaussian phase distribution
H mean square displacement tensor
H Hurst exponent
h reduced permeability (= Ma/D)
HMQC heteronuclear multiple-quantum coherence
HRMAS high-resolution magic angle spinning
HSA human serum albumin
ℑ tortuosity
i, j, k unit coordinate vectors
IMFG internal magnetic field gradient (see background (magnetic

field) gradients)
JA(t) flux associated with species A at time t
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Jn(x) Bessel function of the first kind of order n
jn(x) spherical Bessel function of order n
K modified Bessel function of the third kind
K elliptic integral of the first kind
K mobility factor
k (or k) dephasing strength of gradients when used in imaging (see k,

k-space)
k gradient or diffusion weighting factor, more commonly written

as b
k1 first-order rate constant
k+1 (forward) first-order rate constant
k−1 (reverse) first-order rate constant
Kd dissociation constant
Ke equilibrium constant
l step length or size, length of sample tube, length of receiver coil
L(Z) lattice correlation function
L Laplace transform
LED longitudinal eddy current delay
M relaxivity (or permeability)
M0 thermal equilibrium magnetisation
MAGROFI magnetisation rotating frame imaging
MGSE Modulated Gradient Spectroscopy see OGSE
MAS magic angle spinning
MMME multiple modulation multiple-echo
MOSY mobility ordered spectroscopy
MRI (nuclear) magnetic resonance imaging
MSD, 〈R2〉 mean square displacement
MW molecular weight
Mn number-average molecular weight
Mw weight-average molecular weight
LED longitudinal eddy current delay
n outward surface normal
n number of spatial dimensions
navg average number concentration of counterions in the spherical

shell
n(Rcell) number concentration of counterions at the outer shell boundary
NOE nuclear Overhauser effect
NOESY nuclear Overhauser enhancement spectroscopy
OD obstruction factor

xviii Abbreviations and Symbols



OGSE oscillating gradient spin-echo (sequence)
p coherence order (see also multiple quantum coherences)
Pb bound (fractional) population (of a ligand)
Pe Péclet number
Pf free (fractional) population (of a ligand)
Pn(x) Legendre polynomial of order n
�P R; tð Þ average or mean propagator, the probability that a particle will

move a distance R in time t
P(a) distribution sphere radii
P(x, y) joint probability (e.g., P(Dii,Djj), P(ω, D))
P(ν) distribution of velocities
P(r0, r1, t), P diffusion propagator, the probability of moving from r0 to r1 in

time t
P�, P�(�, t) probability of phase distribution = phase distribution

function
[P]Total total macromolecule concentration
PFG pulsed field gradient
PGSE pulsed gradient spin-echo
PGSTE pulsed gradient stimulated (spin) echo
q dephasing strength of gradients when used for measuring dis-

placement (see q, q-space)
Δq gradient mismatch
qmax maximum value of q used in an experiment
r position of a particle (or voxel)
Δr sample movement
r0 initial position
r1 finishing position
rS Stokes radius (effective hydrodynamic radius)
R dynamic displacement (= r1 – r0)
Ra Rayleigh number
Rcell radius of an electroneutral spherical shell
RS radius of a charged hard sphere
RMS root mean square
RMSD root mean square displacement
RTOP return to origin probability
RTOP0 RTOP in free isotropic solution
RTOPe dimensionless RTOP enhancement
rf radio frequency
S(q) Fourier transform of ρ(r1), signal in MRI
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|S(q)2| power spectrum of ρ(r0), elastic incoherent structure factor or
form factor

|S0(q)
2| average pore structure factor

SE spin-echo (sequence) (or Hahn echo (sequence))
SGP short gradient pulse approximation
SGSE steady gradient spin-echo
SP surface area of a pore
SP/VP surface (area)-to-volume ratio of a pore
STE stimulated echo (sequence)
STRAFI stray-field imaging
te delay for eddy current dissipation
techo time at which echo formation occurs
T temperature
T total time for image acquisition
T1 spin–lattice relaxation time
T2 spin–spin relaxation time
TZQC
2 transverse relaxation time of a zero-quantum coherence

tr reptation time
TRD radiation damping time constant
Ts singlet relaxation time
TOCSY total correlation spectroscopy
u fluctuating part of velocity
v velocity
v kinematic viscosity
v+ velocity of cationic species
v− velocity of anionic species
vmax maximum measurable velocity (see NMR Imaging – max

measurable flow rate)
v0 constant velocity
V total volume (of a system)
Vh partial specific volume of a solvent
VP volume of a pore
Vs partial specific volume of a solute
v (local) spin velocity (see also Lagrangian velocity field)
vi(t) velocity of a particle in the barycentric reference frame
�V average velocity
〈v〉 average velocity
〈v2〉 mean square velocity
〈v(0)v(t)〉 velocity auto-correlation function
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WATERGATE a gradient-based water suppression technique
x, y, z Cartesian coordinates (primes can be used to denote the labora-

tory frame, if required)
(r, θ, �) spherical polar coordinates
z0 initial position for a one-dimensional motion
z1 finishing position for a one-dimensional motion
Z one dimensional dynamic displacement (= z1 – z0)
〈Z〉 average displacement
Z2

u

� �
positional variance

Zu(t) displacement fluctuation
Zn Δð Þh i moments of the average propagator ( �P Z;Δð Þ)

Greek

α thermal expansion
α time-independent scaling constant
Γ(Δ) time-dependent function characteristic of a geometry
γ (chemical) activity coefficient
γ gyromagnetic ratio
γeff effective gyromagnetic ratio
δ duration of the gradient pulse
δh hydration/solvation (grams of solvent/grams of solute)
δnm Kronecker delta
Δ difference
Δ timescale of the diffusion measurement
ΔCPMG effective diffusion time (i.e., effective Δ) in a CPMGmeasurement
Δeff effective diffusion time (i.e., effective Δ) in an OGSE experiment
η magic (gradient) ratio
η viscosity
ηF filling factor
Θ Spectral function
θ occupation probability
θa exponent of anomalous diffusion
κ = 2/dw
κ thermal diffusivity
κ exponent characterising the time dependence of the mean square

displacement
Λ conductivity
Λq pitch of a magnetisation helix due to a pulse of area ‘2πq’
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ρ(r0), ρ(r0,0) equilibrium spin density
λ separation between adjacent sites
μ drift velocity
μ0 permittivity constant (magnetic permeability)
σ length of oscillating gradient pulse
σ standard error
τ a delay in a pulse sequence or discretisation time
τb lifetime of a ligand in the bound state
τc reorientational correlation time
τe extracellular (external to the pore) lifetime
τf lifetime of a ligand in the free state
τi intracellular (internal to the pore) lifetime
τJ time between jumps
τm mixing time
τv velocity correlation time
ν frequency (with respect to spectrometer reference frequency)
νl step rate
Δν linewidth
Δν1/2 linewidth at half-height
ξ dimensionless variable (= DΔ/a2) for characterising restricted

diffusion
ΦFlow change in phase of a spin-echo signal due to flow
� phase angle (phase of spins)
� porosity
� volume fraction
〈�2〉 mean square phase distribution
ω frequency (rad s−1)

xxii Abbreviations and Symbols
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Diffusion and its measurement

1.1 Introduction

This chapter introduces the concept of diffusion and other associated forms
of translational motion such as flow, together with their physical significance.
Measurements of translational motion and their interpretation are necessarily
tied to a mathematical framework. Consequently, a detailed coverage of the
mathematics, including the partial differential equation known as the diffusion
equation, is presented. Finally, the common techniques for measuring diffusion
are discussed.

1.2 Types of translational motion – physical interpretation
and significance

‘Diffusion’ is used in the scientific literature with imprecision and ambiguity as
there are a number of types of diffusion.With respect to molecular motion, diffusion
is used to denote self-diffusion, mutual diffusion and ‘distinct’ (not in the sense of
individual to a species) diffusion coefficients.1–4 Confusion arises since, although
related and having the same units (i.e., m2s−1), these phenomena are physically
distinct.5 The confusion is exacerbated in the NMR literature with the term ‘spin-
diffusion’ which is a distinct NMR cross relaxation – based phenomenon involving
the random migration of magnetisation via mutual spin flips in neighbouring
nuclei,6,7 even though it can be measured using techniques related to those outlined
in this book.8,9 In this book ‘diffusion’ signifies self-diffusion, which will also be
referred to as translational diffusion, although some consideration will be given to
mutual diffusion since many of the alternative methods for measuring diffusion,
especially those based on scattering, provide information on mutual diffusion10

which is often compared with the results of NMR measurements of translational
diffusion.
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1.2.1 Self-diffusion

Translational diffusion, as depicted in Figure 1.1A, is the (stochastic) random
thermal motion of molecules and thus forms the most fundamental form of trans-
port.2,11–21 It can be thought of as Brownian motion without an applied force and
thus on the average no net displacement is observed, yet molecules that start
together in the same vicinity will be separated (i.e., dispersed). It is one of the
principal factors, other than activation energy and orientation, responsible for
almost all chemical reactions since the reacting species must collide before they
can react. Indeed, the kinetics of some fast reactions where the activation energy is
low are thought to be under diffusion control and a great deal of theory has been
developed for such cases.22,23 For example, before protein association can occur, the
protein molecules must align properly via diffusion (and perhaps electrostatic
guidance) to form a reaction complex. Diffusion is also behind the formation of
complex structures in processes involving diffusion-limited aggregation24,25 and is
involved in the formation of cellular aqueous compartments.26 More examples
illustrating the importance of diffusion are given in Chapter 11. Thus, being able
to characterise translational diffusion is of enormous importance in a great number
of applications and theoretical considerations.
The stochastic motion of molecules in a pure liquid at thermal equilibrium is

termed self-diffusion and is characterised by a self-diffusion coefficient D (m2s−1).
For a binary or multicomponent system, the term tracer diffusion arises from using
mixtures of species with different isotopic labelling (e.g., H2

17O in H2O) to study
(‘trace’) diffusion. This is also known as intradiffusion27 since it relates to the
mutual diffusion of two (approximately) chemically equivalent species. The term
tracer diffusion is also applied where the labelled species is not isotopic with any
one of the components (e.g., 23Na in H2O). In this book the terms intradiffusion,

(A) (B)

Figure 1.1 Translational diffusion. (A) Diffusion is the random thermal motion of
the molecules. It is characterised by a diffusion coefficient D (m2s−1). (B) Brownian
motion of a particle in a liquid. In this example, the molecules constituting the liquid
are so small that they effectively form a continuum with respect to the diffusing
solute particle.
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tracer diffusion and self-diffusion are used synonymously. A key point is that in
a multicomponent system each component will have its own individual diffusion
coefficient, Di (m

2s−1), which may not be equal to that of any of the other species.
Self-diffusion coefficients typically range from �10−20m2s−1 for solids up to
�1m2s−1 for dilute gases28,29 and the self-diffusion coefficients of some represen-
tative compounds in solution are given in Table 1.1.
The examples in Table 1.1 reflect isotropic (i.e., equal in all directions) free

diffusion; however, in general, the physical nature (e.g., internal structures in porous
systems) of a system in which a species is diffusing not only affects the rate of its
propagation, but also the pattern of its time-dependence.29 For example, a species
diffusing within a biological cell or within brain tissue or water diffusing along
protein filaments will be restricted in its motion and similarly a species diffusing
within a crystal or liquid crystal will not diffuse isotropically47 and in more compli-
cated systems such as fractals it may diffuse anomalously.48–50 Thus, the study
of diffusion in anisotropic and restricted systems is a source of information about
the underlying microscopic architecture. It is for this reason that MRI-based
studies of diffusional anisotropy is of particular current interest since brain
white matter looks homogeneous in conventional MRI but the diffusional aniso-
tropy provides a means of studying axonal trajectory (i.e., fibre tracts) and thus
brain neuroanatomy. These aspects are covered below.

1.2.2 Mutual and distinct diffusion

Mutual diffusion, also known as interdiffusion, concentration diffusion or transport
diffusion, is characterised by a mutual diffusion coefficient, DM (m2s−1). Specifically,
a concentration inhomogeneity of any component in a multicomponent system will
result in mass fluxes (i.e., cooperative diffusion) to average out the inhomogene-
ity to achieve thermodynamic equilibrium. Hence, the force behind mutual
diffusion is the gradient of the chemical potential (recall that the units of chemical
potential are Jmol−1).51 In the case of a salt concentration gradient in a binary
electrolyte system, the requirement for maintaining electrical neutrality results
in the positive and negative ions moving from regions of higher to lower con-
centration at the same speed. Consequently, in a volume-fixed (or mean volume)
reference frame there is only one mutual diffusion coefficient – whereas the
self-diffusion coefficients of the ions and the solvent are not necessarily the
same as there is no charge neutrality requirement. The different reference frames
used in studying diffusion have been considered in detail by Brady.52 Most
natural systems contain more than one species and such multicomponent mutual
diffusion is described in terms of irreversible thermodynamics1,2 and in general
an n-component system will have (n� 1)2 different mutual diffusion coefficients.2

1.2 Types of translational motion – physical interpretation and significance 3
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Due to the importance of mutual diffusion in many applications there is much
interest in describing mutual diffusion in terms of self-diffusion.1,53 However, the
linkage is fraught with difficulties and the mutual and self-diffusion coefficients can
only be related in the limit of infinite dilution.1 This aspect is further considered in
Section 1.3.3.
‘Distinct’ diffusion coefficients Di (m

2s−1) – not to be confused with individual
diffusion coefficients – are a measure of intermolecular interactions and have
definitions related to mutual diffusion coefficients.53–56 For example, the mole-
cular interactions in a binary system are described by three distinct diffusion
coefficients which can be calculated from the self-diffusion coefficients, mutual
diffusion coefficient, mole fractions and thermodynamic activity coefficients.
Consequently, distinct diffusion coefficients are unable to provide insight into
molecular interactions in a multicomponent system under thermodynamic equili-
brium. However, as will be seen in the Section 1.3.3, hydrodynamic analysis of
self-diffusion coefficients can provide information on molecular interactions.

1.2.3 Flow and higher motion

Flow is the net movement of a species. Diffusion will always be present but when flow
occurs in porous media additional mechanisms to diffusion will be involved in
increasing the rate of dispersion (i.e., the separation of initially adjacent molecules)
of molecules and this flow-induced dispersion will be significantly greater than that
resulting from diffusion alone. Plug flow is an ideal case where every part of the system
has the same constant velocity and is a reasonablemodel for the flow of a liquid inside a
pipe but close to the entrance at low Reynolds number (the Reynolds number is the
ratio of inertial to viscous forces and thus depends on the system under considera-
tion).20,57 Further into the pipe ‘Poiseuille flow’ develops in which the fluid velocity
varies with radial position, with the velocity being exactly zero at the walls. Laminar
flow is where fluid flows in parallel layers but without disruption between the layers.
Laminar flows occur when viscous forces dominate and have low Reynolds numbers
(< 2100). Couette flow refers to the special case of laminar flow between two surfaces
moving with respect to each other (e.g., between planes or between rotating cylin-
ders).58 Turbulent flow is far more complex to describe and occurs at high Reynolds
numbers (> 3000) when inertial forces dominate and produce local flow velocities that
fluctuate randomly generating effects such as vortices and eddies. It is also noted that
thermal gradients in a sample can induce convective flow (‘convection’) in a liquid.59,60

A Lagrangian (i.e., from the viewpoint of following a particle along its trajectory;
in contrast to the Eulerian view of describing the changes at a fixed point) velocity
field, v, can be decomposed into a superposition of an average velocity, �V, and a
fluctuating part, u, such that the local instantaneous velocity is given by61–63
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v tð Þ ¼ �Vþ u tð Þ; (1:1)

where

�V ¼ lim
t!1

vh i; (1:2)

and the angled brackets denote an ensemble average over the distribution of velocity
fields. u(t) reflects the dispersive process in the flow. Equation (1.2) states that the
ensemble is stationary. The reasons for the appearance of fluctuating components will
become clearer when flow in porous media is examined (see Section 1.9).

1.2.4 Ionic conductivity and translational diffusion

Electrolyte theory provides interrelationships between the mobilities of charged
species in electric fields and their translational diffusion coefficients.64,65 For
instance, the molar ionic conductivity of a solution containing a z:z valent electro-
lyte is given by the Nernst–Einstein equation64,65

Λ ¼ zF2

RT
Dcation þDanionð Þ; (1:3)

where F is the Faraday constant andDcation andDanion are the diffusion coefficients of
the cation and anion, respectively. Indeed, it has been commented that ions under-
going Brownian motion have randomly oriented instantaneous velocities of the order
of 102m s−1 but with extremely short mean free paths, and in a field of 103 voltsm−1

the velocity of the ions in the direction of the field would be of the order of 10−4 –
10−6m s−1.66 Thus the motion in the electric field represents a very small directional
biasing of the Brownian motion. As such it can be termed a directed diffusion process
with obvious similarities to mutual diffusion. A key point is that whilst diffusion is an
incoherent motion, the directed migration of ions is a coherent process.

1.3 Mathematical modelling of self-diffusion

1.3.1 Introduction

The modelling of self-diffusion can be performed from two perspectives: (i) at
the molecular level where the velocities, positions and interparticle collisions of the
individual molecules are considered, or (ii) at a more macroscopic level where the
particles are taken as a continuum. The continuum approach, which is based on
Fick’s second law (i.e., the diffusion equation) and appropriate initial and boun-
dary conditions, leads to the concept of diffusion propagators and is considered in
Section 1.4. Although it should be noted that a more general approach is to use the
Smoluchowski equation with a random force.67–69
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Themolecular level approach is described by an ensemble of randomwalkers and
most numerical techniques (e.g., Brownian dynamics) work at this level whereas
most experimental techniques are sensitive to macroscopic behaviour because of the
experimental timescale. Molecular level motion is analysed using either the particle
position or velocity as a function of time. The particle position approach leads to the
propagator formalism. In the velocity approach, the evolution of a particle’s velocity
is described in terms of a velocity auto-correlation function and the diffusion
spectrum. The molecular level details of motion can be related to the macroscopic
behaviour. The coverage is begun by considering the molecular level perspective.

1.3.2 Statistical mechanics

Diffusion, as can be comprehended from Figure 1.1, is a many-body problem;
however, at sufficiently large times this reduces to a one-body stochastic problem
where all of the many-body effects can be characterised by a single number, the
self-diffusion coefficient D,1,53 namely

D ¼ lim
t!1

1

6t
ri tð Þ � ri 0ð Þ½ �2

D E
(1:4)

where ri (t) is the location of particle i at time t and the angled brackets denote
the ensemble average. 〈[ri(t) – ri(0)]

2〉 is known as the mean square displacement
(MSD) which will be discussed in detail in Section 1.6. This reduction to ‘normal’ or
‘Fickian’ diffusion, as implied by the limit in Eq. (1.4), depends on the timescale of the
underlyingmolecular-level motion. Generally, this occurs on timescales far shorter than
the timescale accessible with NMR measurements of translational diffusion (typically
ms). In the case of water, the language of diffusion can be used for times longer than
10ps.70 In highly viscous systems ‘anomalous’ diffusion may be observed since the
underlying motions may occur on a similar timescale to that of the measurement.
Statistical mechanics in the regime of linear response due to a sufficiently weak

perturbation shows that any transport coefficient, A, can be written as an integral of
the form (Green–Kubo relations71)

A ¼
ð1

0

JA 0ð Þ � JA tð Þh idt; (1:5)

where JA(t) is the flux associated with A at time t. Using this formalism, self-diffusion
coefficients are defined in terms of the velocity auto-correlation function as21,53

D ¼ 1

3

ð1

0

vi 0ð Þ � vi tð Þh idt; (1:6)

1.3 Mathematical modelling of self-diffusion 7



where vi(t) is the velocity of particle i in the barycentric (i.e., centre of mass)
reference frame – but as self-diffusion does not result from macroscopic gradients,
as does mutual diffusion, the laboratory and volume-fixed frames coincide with
the barycentric frame. Equation (1.6) is equivalent to Eq. (1.4), and both equations
provide a means for determining self-diffusion coefficients from molecular
dynamic simulations (Eq. (1.6) for short times and Eq. (1.4) for long times). In
contrast to Eq. (1.6), mutual diffusion would be defined in terms of velocity cross-
correlations.
The diffusion coefficient spectrum, Dω(ω), is defined as the Fourier spectrum

(or spectral density function) of the velocity auto-correlation function,72,73

Dω ωð Þ ¼
ð1

�1
v 0ð Þv tð Þh i exp iωtð Þdt: (1:7)

Note Eq. (1.6) is the zero frequency component of Dω(ω). Note, starting from
Eq. (1.1), the velocity auto-correlation function is defined as

v 0ð Þv tð Þh i¼ �Vþ u 0ð Þh i �Vþ u tð Þh ið Þ
¼ u 0ð Þu tð Þh i þ �Vu 0ð Þh i þ �Vu tð Þh i þ �V �Vh i (1:8)

but as �V and u are uncorrelated, the two middle terms are zero and, since �V is
a constant, the last term ( �V �Vh i) is also a constant. Thus, from the perspective
of stochastic motion and without loss of generality �V �Vh i can be set to 0,74

consequently Eqs. (1.6) and (1.7) could have been expressed in terms of ui(t)
instead of vi(t).
In a bulk liquid 〈v(0)v(t)〉 is often assumed to decay exponentially (i.e., an

Ornstein–Uhlenbeck process75), namely19

v 0ð Þv tð Þh i ¼ v2
� �

exp
�t

τv

� �
; (1:9)

where 〈v2〉 is the mean square velocity and τv is the velocity correlation time – that is the
time taken for a particle to ‘forget’ its previous velocity and corresponds to the average
collision time. Thus, inserting Eq. (1.9) into Eq. (1.7) and taking the real part gives

Dω ωð Þ ¼ v2
� �

τv
1þ ω2τ2v

: (1:10)

If ω = 0, Eq. (1.10) reduces to

Dω 0ð Þ ¼ v2
� �

τv ¼ D0 (1:11)

where D0 is the bulk diffusion coefficient. The diffusion spectrum for a bulk liquid
is plotted in Figure 1.2.
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τv
−1 is typically very high for small molecules; however, motions in complex fluids

such as tube disengagement in entangled polymers may give rise to features in the
diffusion spectrum below τv

−1 related to ‘organisational’ frequencies.76 However, the
diffusion spectrum contains no features at low frequencies for systems whose local
motion is Brownian and have boundaries (e.g., in porousmedia; see below) that impose
constraints on a timescale longer than τv, and in such cases the propagator approach is
more appropriate for describing the translational dynamics (see Section 1.4.2).

1.3.3 Diffusion and hydrodynamics

1.3.3.1 Diffusion, viscosity and solvation

Viscosity is the manifestation of the internal friction during motion in a liquid (we
are concerned with the shear viscosity and not the kinematic viscosity which is the
ratio of the viscosity to the density). It gives rise to the irreversible conversion of a
part of the energy of motion to heat. Viscosity, and indeed diffusion, are not purely
thermodynamic properties and there is at least one order of magnitude difference
between various models used to relate them.77 The Einstein–Sutherland equation
will be examined in detail as it is the most commonly used means of relating the two
quantities in the literature.
Consider a two-component system (e.g., a macromolecular solute and solvent);

since there are no external forces applied in the case of free diffusion, the diffusion
force and the frictional force (i.e., the viscosity and hydrodynamics) must be equal,
giving the Einstein–Sutherland equation (also known as the Einstein, Stokes–
Einstein or Einstein–Smoluchowski equation),2,3,14,19,20,78–84

10–3

D
ω(

ω)
/D

0

0.0

0.2

0.4
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10–2 10–1 100

ω τv /2π
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Figure 1.2 The diffusion spectrum of a pure liquid with velocity correlation time
τv, calculated with Eq. (1.10).
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DM ¼ kT

f
1þ @ ln γð Þ

@ ln cð Þ
� �

1� �ð Þ; (1:12)

where k (1.380622× 10−23 JK−1) is the Boltzmann constant, T (K) is temperature,
f (kg s−1) is the friction coefficient and γ and c are the activity coefficient and
concentration (M) of the solute molecule, respectively, and � is the volume fraction
(i.e., the volume of a constituent of a mixture divided by the sum of volumes of all
constituents prior to mixing). The numerator kT (J) corresponds to the available
thermal energy. Equation (1.12) describes mutual diffusion – although it does not
describe it accurately in concentrated solutions.2 At infinite dilution the second term in
the first pair of parentheses approaches zero and the equation reduces to describing
self-diffusion,

D0 ¼ kT

f
: (1:13)

The superscript 0 has been added to signify infinite dilution. In theory, the friction
factors for self-diffusion and mutual diffusion are different as the friction factor can
be concentration-dependent.85 For the simple case of a spherical particle with an
effective hydrodynamic radius (i.e., Stokes radius) rS (m) in a solvent of viscosity η
(Pa s = 10 Poise; the viscosity of water at 298K is 8.9 × 10−4 Pa s), the friction
coefficient is given by

f ¼ fsphere ¼ bπηrS (1:14)

where the dimensionless parameter b reflects the boundary conditions for the
velocity of the solvent particles at the surface of the solute and is defined by1,86,87

b ¼ 6 1þ 2η=βrð Þ
1þ 3η=βrð Þ : (1:15)

The parameter β characterises the friction between the solute and the solvent.
In the limit where there is no interaction between the particle and the solvent
(the ‘slip’ boundary condition), β is very small and thus the lower limit of b is 4.
The other extreme, where the particle interacts strongly with the solvent mole-
cules such that the solvent layer closest to the surface moves at the same
velocity as the particle, is termed the ‘stick’ boundary condition. In this case β
goes to infinity giving an upper limit of b = 6, and in this case Eq. (1.14) is
termed Stokes law. However, as noted below, the underlying assumptions in
these equations are not met and experimentally b is often found to be outside the
physical range of 4–6. When Eq. (1.14) in the form of the Stokes law is used as
the denominator, Eq. (1.13) is most commonly referred to as the Stokes–Einstein
equation.
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To a first approximation, since for a sphere the volume of a molecule is propor-
tional to its molecular weight, it is clear from Eq. (1.13) that

D / 1
ffiffiffiffiffiffiffiffiffiffi
MW3

p ; (1:16)

and thus the diffusion coefficients of two molecules with similar shapes are inver-
sely proportional to the cube roots of their molecular weights:

D1

D2

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
MW2

MW1

3

r

: (1:17)

Importantly, the Stokes radius represents the size of the diffusing unit and not that of
a hard sphere.82,88 Hence, the friction coefficient f is determined by the overall
dimensions of the diffusing species, its hydration (solvation) and the rugosity of the
surface exposed to the solvent.89 In the case of proteins the thickness of hydration
layers has been estimated as being in the range of 0.9–1.2Å thick.90–93 Including the
effects of solvation (hydration), the Stokes radius of a particle is given by14

rsolvated ¼ 3

4π
MW

NA

Vs þ δhVhð Þ
� �1=3

; (1:18)

where NA is Avogadro’s number, δh is the solvation of the solute (grams of bound
solvent per gram of solute) and Vh and Vs are the partial specific volumes of the
solvent and solute, respectively. For example, for proteins inwater typical values ofVh

are 0.70–0.75 cm3 g−1 and δh = 0.3–0.4 g H2O per g protein;93 which increases f by
10–20%. Equation (1.18) is very simplistic since it implies a uniform hydration layer,
yet the estimated thickness of the protein hydration layer is less than the diameter of a
water molecule – indicating that the hydration must be non-uniform. Thus, the real
physical form of the hydration is rather more complex than just a simple shell.94

Thus, very importantly to many physical studies, diffusion provides information on
the interactions and shape of the diffusing molecule and the difference between the
hydrodynamic radius obtained from a diffusion measurement and the value calculated
from the number density or van der Waals radius can be considerable, especially when
there is significant solvation such as in the case of biomolecules.95 Cantor and
Schimmel have considered the limitations of the analysis of diffusion data to deter-
mine the shape and hydration of molecules.14 Differences can also arise out of the
neglect of the free volume of the liquid and this is particularly noticeable in
hydrogen-bonded liquids and electrolyte friction in the case of charged molecules.96,97

Due to the assumptions on which it is based, rigorous data interpretations are
difficult with the Einstein–Sutherland equation. In particular, it is a macroscopic
relation in that it is derived upon the assumptions that the diffusing species is truly
macromolecular and sees the solvent as a continuum (Figure 1.1B) and that the
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diffusing particle is at infinite dilution (no concentration gradient and (equivalently)
no interaction between solute particles). This explains why η refers to the viscosity of
the solvent and not that of the solution. The first condition is only met when the solute
is much larger than the solvent molecules. Although a recent study has indicated that
the equation is valid until the solvent diameter reaches half that of the solute.98 When
the solute is smaller than the solvent (e.g., hydrogen diffusion in water) the Einstein–
Sutherland equation tends to underestimate the diffusion coefficient. A number of
later empirical derivations and modifications exist (see refs. 2,82,88,99–101 and
references therein). Another problem of the Einstein–Sutherland theory is that micro-
scopic attractive and kinetic interactions between the solute and solvent are ignored.87

For example, in measurements of water diffusion coefficients in aqueous albumin
solutions Lamanna et al. observed a protein concentration dependence of the water
Stokes radius.102 However, friction coefficients have also been considered for ions
and ion-induced inhomogeneity.103 Further, complementary data on the shape or
volume of a molecule greatly assist data analysis.

1.3.3.2 Realistic geometries

Spheres are poor approximations for the shapes of most molecular geometries. In
general, frictional coefficients are calculated with the help of the hydrodynamic
equation, particularly the Stokes equation for low Reynolds numbers.104 Apart from
the sphere, exact solutions for f are only available for some other simple geometries
including cylinders and ellipsoids (see Table 1.2). Ellipsoids are in general more
realistic approximations to the shapes of real molecules (e.g., proteins). The surface
area of an ellipsoid is greater than that of a sphere of the same volume. Consequently,
the friction coefficients are greater for both the prolate and oblate ellipsoids than for
the equivalent spheres. The ratio of the friction coefficient of a geometry compared to
that of the sphere of equivalent volume, namely

F ¼ f

fsphere
(1:19)

is known as the Perrin (or shape) factor. The Perrin factor for cylinders and
ellipsoids are given in Table 1.2 and plotted in Figure 1.3.
Analytic solutions for frictional coefficients are generally intractable and estimates

of the friction coefficients have to be numerically determined, most commonly using
bead and shell models based on Kirkwood–Riseman theory89–91,95,110–121 and more
recently boundary elements methods.93 As an example, for a polymer composed ofN
identical subunits of radius awith friction coefficient fmwhere the subunits are widely
spaced by frictional linkers, the frictional coefficient would be

f ¼ Nfm: (1:20)
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Figure 1.3 Perrin factors for two simple geometries: cylinder (- - -) and
ellipsoid (___), using the friction coefficients given in Table 1.2 and Eq. (1.19).

Table 1.2 Friction coefficients for three simple geometries in the stick boundary
condition

Shape Parameters f

Sphere a = radius 6πηa (= fsphere)
Cylindera d = diameter

l = length
p = l/d

a ¼ l
3

16p2

� �1=3
fsphere

2

3p2

� �1=3

ln pð Þ þ #

# ¼ 0:312þ 0:565=p� 0:100=p2

Ellipsoid Oblate b = semi-major axes
c = semi-minor axes fsphere

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p

p1=3 tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p2

p
=p

	 


Prolate p = b/c < 1 oblate
> 1 prolate

a = (b2c)⅓ oblate
a = (bc2)⅓ prolate

fsphere

ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p

p1=3 tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p	 

=p

h i

Note: a denotes the radius of the sphere, or in the case of the non-spherical geometries,
the radius of the sphere of equivalent volume. The value of a given for each geometry is
to be used for calculating the respective value of fsphere.

20,105–109 Unfortunately, there is a
great deal of confusion in the literature regarding the friction coefficients for the ellipsoids
and also for the coefficient for the cylinder.
aThis formula is only valid for p in the range of 2–20. An approximate expression with a
larger range of axial ratio applicability is given elsewhere.110 Whether the cylinders are
open, closed or capped with hemispheres makes only a small difference even at p = 2.111
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Equation (1.20) corresponds to the frictional coefficient in the free draining limit,
that is there is no hydrodynamic interactions between the subunits. This would in
general be unrealistic and a more probable situation would be the non-draining limit
in which there is maximal interaction between the subunits. In this case, and
defining the intersubunit distance, rij, Kirkwood–Riseman theory gives

f ¼ fmN 1þ 1

N

X

i

X

j6¼i

α�1
ij

" #�1

; (1:21)

where αij = rij/a. As expected, calculations with Eq. (1.21) show that the most
compact structures have the smallest frictional coefficients whereas linear confor-
mations have the largest. For expanded structures such as random coil proteins, the
true value would lie somewhere between the two limits. There is also evidence that
the diffusion coefficient in solution is larger than that predicted from the molecular
structures that have been derived from crystallography and this indicates rearrange-
ment or swelling of the subunits upon hydration.93

Polydispersity is commonly encountered in real systems, especially in synthetic
polymers, and typically, the exact populations of the oligomers are not known;
instead they can only be expressed in terms of a distribution (see Section 2.5). As a
first approximation, the subunit-subunit contact in oligomers can be regarded as
hard-sphere contact,89,111 and thus the ratio of the diffusion coefficient of an i-mer,
D0

i , to that of the monomer, D0
1, can be modelled (at infinite dilution) by

D0
i ¼ D0

1

f1
fi
¼ D0

1Fi i
�1=3; (1:22)

and the values of the geometric factor Fi for various geometries are given by Teller
et al. (e.g., dimer: 0.9449; trimer [equilateral triangle]: 0.9555; tetramer [tetra-
hedron]: 0.9772).89 Whilst there is only one possible geometry for dimer formation,
many possibilities exist for higher oligomers. A crude approximation takes all of the
oligomers to be hydrodynamically spherical, thus the friction coefficient increases
according to the inverse cube root of the molecular weight (cf. Eq. (1.17)).43

However, the friction coefficients calculated from the Einstein–Sutherland equation
for reasonable geometrical possibilities for the oligomeric shapes are all quite close
to that obtained for a sphere of equivalent volume.

1.4 Propagation

1.4.1 The diffusion equation

Although we are ultimately interested in propagation due to self-diffusion, we
begin by considering the diffusion equation describing mutual diffusion because it
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will lead to the mathematical formalism needed to describe propagation. In terms
of the number of particles per unit volume, c(r, t) located at r and the mutual
diffusion coefficient, DM, the flux of a particle is given by Fick’s first law of
diffusion to be13,21,122

J r; tð Þ ¼ �DM

Δ

c r; tð Þ: (1:23)

The minus sign indicates that (in isotropic media) the direction of flow is from
higher to lower concentration. Because of the conservation of mass, the continuity
theorem applies and thus,

@c r; tð Þ
@t

¼ � Δ� J r; tð Þ: (1:24)

Equation (1.24) states that ∂c(r, t)/∂t is the difference between the influx and efflux
from the point located at r. Combining Eqs. (1.23) and (1.24) we arrive at Fick’s
second law of diffusion13,21,122 (a parabolic partial differential equation)

@c r; tð Þ
@t

¼ DM

Δ2c r; tð Þ; (1:25)

where

Δ2 is the Laplace operator. Thus, c(r, t) changes with time only when the
second derivatives of c(r, t) with respect to position are not all zero.
In general, the diffusion process is anisotropic and the isotropic diffusion coeffi-

cient DM (i.e., a scalar) in Eq. (1.25) is replaced by a rank two diffusion tensor.122

Note, diffusion tensors will be discussed in more detail below. Thus, for Cartesian
coordinates DM is given by DMij where i and j take each of the Cartesian directions.
Thus accounting for anisotropic diffusion Eq. (1.23) becomes

J r; tð Þ ¼ �DM

Δ

c r; tð Þ; (1:26)

which is shorthand for

Jðx; tÞ
Jðy; tÞ
Jðz; tÞ

2

4

3

5 ¼ �
DMxx DMxy DMxz

DMyx DMyy DMyz

DMzx DMzy DMzz

2

4

3

5

@c x; tð Þ
@x

@c y; tð Þ
@y

@c z; tð Þ
@z

2

666664

3

777775
: (1:27)

The diagonal elements of DM scale concentration gradients and fluxes in the same
direction, the off-diagonal elements couple fluxes and concentration gradients in
orthogonal directions. Similarly, Eq. (1.25) becomes

@cðr; tÞ
@t

¼ Δ� DM � Δ

cðr; tÞ: (1:28)
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If in addition to the diffusion there is a net flowwith a velocity v, Eq. (1.28) becomes

@ cðr; tÞ
@ t

¼ Δ� DM � Δ

cðr; tÞ � Δ� v cðr; tÞ: (1:29)

Normally, and as intimated in the above equations, we are concerned with diffusion
occurring within Euclidean space. However, the theory and even just the definition of
the diffusion equation become more complicated when the space in which diffusion
occurs is not Euclidean in nature and contains derivatives of fractional order.123–125

1.4.2 Diffusion propagators, average propagators
and the equilibrium spin density

As will be seen later, the concept of a diffusion propagator,126,127 P(r0, r1, t) (which
will sometimes be written in abbreviated form as P), also commonly referred to as
the Green function,128–131 is important for analysing NMR diffusion measurements
and its derivation is discussed in detail below. P(r0, r1, t) is the conditional prob-
ability of finding a particle initially at a position r0, at a position r1 after a time t and,
as will be shown below, is given by the solution of the diffusion equation. Of
particular interest is that apart from inelastic neutron scattering, NMR diffusion
measurements are the only other experimental means of directly obtaining access to
this conditional probability density.76,132 Since P(r0, r1, t) is a probability function it
obeys the normalisation condition

ð
P r0; r1; tð Þdr1 ¼ 1: (1:30)

As will be seen below from the solution to the diffusion equation for the case of free
isotropic diffusion (Eq. (1.60)), the propagator is independent of the initial position
r0 and depends only on the displacement R = r1 − r0 (often referred to as the
dynamic displacement). However, in a heterogeneous system the displacement and
thus the propagator depends on the starting position.
Another closely related probability is the equilibrium particle (or ‘a priori prob-

ability’) density defined by

ρ r0ð Þ ¼
ð
lim
t!1

P r0; r1; tð Þ dr1; (1:31)

and thus is independent of r0, because after infinite time the finishing position of a
particle in the system will be independent of the starting position but is representa-
tive of the static structure of the diffusion space. P(r0, r1, t) for free diffusion (see
Eq. (1.60) below) approaches 0 as t→∞, but the ‘effective volume’ (i.e., the integral
over r1) becomes proportionally larger, consequently ρ(r0) stays constant. In the
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case of diffusion in an enclosed pore (i.e., a restricted geometry) ρ(r0) is given by the
inverse of the volume. Also, by definition, we must have133

ð
ρ r0ð Þdr0 ¼ 1: (1:32)

In self-diffusion, in contrast to mutual diffusion, there is no concentration gradient
and instead we are concerned with the total probability, P(r1, t) of finding a particle
at position r1 at time t. This is given by the product of the initial particle density ρ(r0)
and P(r0, r1, t) integrated over all possible starting positions, namely

P r1; tð Þ ¼
ð
ρ r0ð ÞP r0; r1; tð Þdr0: (1:33)

Clearly the integrand

ρ r0ð ÞP r0; r1; tð Þ (1:34)

is the probability of starting from r0 and moving to r1 in time t. The ensemble
averaged (over all of the starting positions, r0) probability that an arbitrarily selected
particle will displace by R during the period t is defined as127,134

�P R; tð Þ ¼
ð
ρ r0ð ÞP r0; r0 þ R; tð Þdr0 : (1:35)

�P R; tð Þ has also been termed the average or mean propagator. Consequently, we
also have the relation

ð
�P R; tð ÞdR ¼ 1: (1:36)

In a heterogeneous sample, the probability function of molecular displacement is a
function of a position and in such cases �P R; tð Þ reflects a mean value over the sample.
P(r1, t) is an ensemble-averaged probability concentration for a single particle

and it is thus reasonable to assume that it obeys the diffusion equation.132 Because
the spatial derivatives in Fick’s laws refer to r1, Fick’s laws can be rewritten in terms
of P(r0, r1, t) with the initial condition

Pðr0; r1; 0Þ ¼ δðr1 � r0Þ; (1:37)

where δ is the delta function131,135,136 (the significance of this will be explained
below). Thus, if in Eq. (1.23) P(r0, r1, t) is substituted for c(r, t), J becomes
the conditional probability flux. Similarly, in terms of P(r0, r1, t), Eq. (1.25)
becomes

@Pðr0; r1; tÞ
@t

¼ D

Δ2Pðr0; r1; tÞ; (1:38)

where D is now the self-diffusion coefficient.
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So far the diffusion propagator has only been considered in terms of general
coordinates and to proceed, the equations must be transformed into the most appro-
priate coordinate system137 to the problem at hand. For example, for problems invol-
ving spherical symmetry, it is convenient to recast Eq. (1.38) into spherical polar
coordinates (see Figure 1.4) as

@P

@t
¼ D

1

r2
@

@r
r2
@P

@r

� �
þ 1

r2 sin θ
@

@θ
sin θ

@P

@θ

� �
þ 1

r2 sin2 θ

@2P

@�2

� �
; (1:39)

where r is the radius from a point to the origin, θ is the polar angle and � is the
azimuthal angle.

1.4.3 Boundary and initial conditions

When solving the diffusion equation we are typically concerned with linear boun-
dary conditions with respect to the surface of the volume of interest (denoted by S)
and they can be divided into the following five classes.129,136,138

(i) The first kind (Dirichlet problem)

PjS¼ f rS; tð Þ; (1:40)

where rS ∊ S and f(rS, t) denote a function over the boundary surface. f(rS, t) is usually
considered to be continuous on S.

z

a

y

x

n

dS

θ

φ

r

r

Figure 1.4 The position of a point r on a sphere of radius a in spherical polar
coordinates. The position of r is denoted by (r, θ, �), where r is the radius, θ is
the polar angle and � is the azimuth (0 ≤ r ≤ a, 0 ≤ θ ≤ π, 0 ≤ � ≤ 2π). n denotes the
outward-pointing normal unit vector to a differential area dS of interest on the
sphere surface.
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(ii) The second kind (Neumann conditions)

@P

@n

����
S

¼ f rS; tð Þ; (1:41)

where
@

@n
denotes differentiation along the outward directed normal (see Figure 1.4);

the special case of (homogeneous boundary condition of the second kind)

@P

@n

����
S

¼ 0 (1:42)

is very commonly encountered in the literature and represents reflection on the
boundary surface.

(iii) The third kind (Robin problem)

L
@P

@n
þMP

� �����
S

¼ f rS; tð Þ; (1:43)

for some constants L andM. This boundary condition is a linear combination of (i) and
(ii) and defines a conservation law for flux between the bulk and through the boundary.
Setting f(rS, t) = 0, Eq. (1.43) represents the radiative or relaxation boundary condi-
tion,139–141 and M specifies the rate of relaxivity or permeability depending upon the
context. M = 0 corresponds to zero relaxivity (or no transport) and thus Eq. (1.43)
reduces to Eq. (1.42).

(iv) The fourth kind

PjS�¼ PjSþ (1:44)

and

D�@P
@n

����
S�
¼ �Dþ@P

@n

����
Sþ
; (1:45)

where the superscripts ‘–’ and ‘+’ denote on the inside and outside of the boundary S,
respectively. Boundary conditions of the fourth kind pertain to diffusion in systems
containing permeable boundaries142 and Eq. (1.44) states that the diffusion propagator,
P, is continuous on the boundary between the internal domain and external medium and
Eq. (1.45) states that the diffusive flux is continuous on this boundary. These boundary
conditions are relevant to some of the models considered in Chapter 4.

(v) Mixed boundary conditions
In this case, different parts of the surface are subject to different boundary conditions,

for example a Dirichlet condition over part of the boundary

PjS1¼ f1 rS; tð Þ rS 2 S1; (1:46)

and a Neumann problem over a different part of the boundary

@P

@n

����
S2

¼ f2 rS; tð Þ rS 2 S2; (1:47)
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where S1and S2 are different parts of the surface such that S1 ∪ S2 = S. Such boundary
conditions are commonly encountered for example in modelling diffusion-controlled
reactions between chemically anisotropic reactants.23

The initial condition that will normally be encountered below (i.e., for studying tracer
diffusion) is given in terms of a delta function135,136

Pðr0; r1; t ¼ 0Þ ¼ δ r0 � r1ð Þ: (1:48)

The imposition of a delta function initial condition means that the solution at time twill
depend only on the particle that was at starting position r0 at time t = 0.

1.5 Solving the diffusion equation

Apart from numerical solutions (e.g., finite element analysis),143 many analytical
methods for solving the diffusion equation exist,13,122,128–131,136,144–146 and it should
be noted that the mathematics of heat conduction, after making the appropriate changes
of notation, is identical to that for describing diffusion.13,144 In general, analytical
solutions exist for only the simplest geometries due to the complexity of handling the
boundary conditions at the pore or obstacle interface. However, semi-analytical solu-
tions exist for particles diffusing in periodic three-dimensional porous media.147–149

Consideration of how to solve the diffusion equation is begun by considering the
one-dimensional diffusion equation for the case of free diffusion. Then some
consideration is given to eigenfunction expansion solutions to solving diffusion in
bounded systems. Eigenfunction expansions form a critical part of the mathematical
toolbox needed to understand diffusion in restricted geometries such as spheres,
which are used to model real systems such as biological cells, and to calculate the
relevant diffusion propagators. Finally, propagators for some relevant simple geo-
metries are given.

1.5.1 Free isotropic diffusion

Wewish to solve the one-dimensional diffusion equation for free isotropic diffusion

@P

@t
¼ D

@2P

@z2
;�15z51; t40 (1:49)

(i.e., P = P(z, t)) subject to the initial condition

P z; 0ð Þ ¼ P0 zð Þ ¼ f zð Þ: (1:50)

The Fourier transform136,150 of P(z, t) with respect to z is defined by

FT P z; tð Þf g ¼ ~P k; tð Þ ¼ 1
ffiffiffiffiffi
2π

p
ð1

�1
P z; tð Þe�ikzdz; (1:51)
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where the transform variable k is real. We remark that there is no general agreement
on the definition of the Fourier transform. Some authors take the kernel to be e−ikz so
that the kernel of the inverse transform (see below) becomes eikz. Similarly, there is
no consensus on the choice of the constant before the integral. Thus, applying
Eq. (1.51) to Eq. (1.49) to obtain

d ~P k; tð Þ
dt

¼ �k2D ~P k; tð Þ: (1:52)

This is an ordinary differential equation with solution

~P k; tð Þ ¼ ~P0 kð Þe�k2Dt (1:53)

where ~P0(k) is the Fourier transform of the initial condition (Eq. (1.50))

~P0 kð Þ ¼ 1
ffiffiffiffiffi
2π

p
ð1

�1
f zð Þe�ikzdz: (1:54)

Taking the inverse Fourier transform of Eq. (1.53) we have

P z; tð Þ ¼ 1
ffiffiffiffiffi
2π

p
ð1

�1

~P k; tð Þeikzdk

¼ 1

2π

ð1

�1
f z0ð Þ

ð1

�1
eik z�z0ð Þe�k2Dtdkdz0 : (1:55)

The integral over k is

G z; t; z0ð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp
� z� z0ð Þ2

4Dt

 !

: (1:56)

We remark thatG(z, t; z0) is called the Green function for the above Cauchy problem
or fundamental solution to Eq. (1.49). And so, Eq. (1.55) becomes

P z; tð Þ ¼
ð1

�1
f z0ð Þ 1

ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp
� z� z0ð Þ2

4Dt

 !

dz0: (1:57)

In our case we are interested in a delta function initial condition given by

P z; 0ð Þ ¼ P0 zð Þ ¼ f zð Þ ¼ δ z� z0ð Þ: (1:58)

This represents a (geometrical) plane source located at z0 (see Figure 1.5), and thus

P z0; z; tð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffi
4πDt

p exp
� z� z0ð Þ2

4Dt

 !

: (1:59)
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For the case of (three-dimensional) diffusion in an isotropic and homogeneous
medium (i.e., boundary condition P(r0, r1, t) → 0 as r1 → ∞), P(r0, r1, t) can be
determined from Eq. (1.38) using Fourier transforms or simply by multiplying three
orthogonal one-dimensional solutions of the form of Eq. (1.59), namely

P r0; r1; tð Þ ¼ P x0; x1; tð ÞP y0; y1; tð ÞP z0; z1; tð Þ

¼ 1

4πDtð Þ3=2
exp � r1 � r0ð Þ2

4Dt

 !

: (1:60)

Equations (1.59) and (1.60) state that the radial distribution function of the species
in an infinitely large system with regard to an arbitrary reference time is Gaussian.
From Eq. (1.60) (and (1.59)) it is evident that P(r0, r1, t) does not depend on the
initial position, r0, but depends only on the net displacement, r1− r0 (= R). This

40
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Figure 1.5 A plot of the displacement distribution function for Z (= z1− z0) versus
time for one-dimensional diffusion calculated using Eq. (1.59). The initial
condition (i.e., a delta function at t= 0) corresponds to the bold line at Z = 0. The
evolving Gaussian nature of the distribution is clearly evident. The corresponding
MSD (calculated using Eq. (1.103)) is also depicted in dark grey on the base of the
plot. The diffusion coefficient used was that of water at 298K (2.3 × 10−9m2s−1).

Note
Ð1

�1
PðZ; tÞdZ ¼ 1.
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reflects the Markovian nature of Brownian motion.75 And for the case of free
diffusion the average propagator (Eq. (1.35))

�P R; tð Þ ¼
ð
ρ r0ð ÞP r0; r0 þ R; tð Þdr0

¼ P r0; r0 þ R; tð Þ
ð
ρ r0ð Þdr0

¼ 1

4πDtð Þ3=2
exp � R2

4Dt

� �
(1:61)

which is identical to Eq. (1.60). In this derivation ρ(r0) = 1 (see above) and the
reason that the propagator (P(r0, r1, t)) does not appear in the integrand in the second
step of the derivation is because, as noted above, the propagator does not depend on
r0 but only the difference R = r1 – r0. For other geometries, as will be seen below,
the situation is not so simple. For completeness, had we started the analysis
including the effects of flow (see Eq. (1.29)), an average propagator

�P R; tð Þ ¼ 1

4πDtð Þ3=2
exp � R � vtð Þ2

4Dt

 !

(1:62)

would have been obtained. Some plots of the one-dimensional propagator are given
in Figure 1.5.

1.5.2 Anisotropic Gaussian diffusion

In the case of anisotropic diffusion, instead of starting with Eq. (1.38) we would start
with (cf. Eq. (1.28))

@Pðr0; r1; tÞ
@t

¼ Δ� D � Δ

Pðr0; r1; tÞ; (1:63)

where D is the self-diffusion tensor

D ¼
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

0

@

1

A: (1:64)

D is positive definite and symmetric (i.e., Dij = Dji) and thus, there are only six
independent elements. We note, however, thatDwould not be symmetric in the case
of charged species placed in a magnetic field but this has an insignificant effect for
our purposes.151–153

Since D is a tensor, the values of the elements change depending upon the choice
of reference frame. The Cartesian directions could correspond to the laboratory
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frame (i.e., those used to define the direction of diffusion measurement in the first
instance), but depending upon the system, the form of D may be simpler by
choosing some three-dimensional rotation of the reference frame. For example, in
the case of liquid crystals, it makes sense to align the x, y or z axis along the director
axis (i.e., the direction of maximum alignment); by so doing D would become a
diagonal matrix containing only the principal diffusivities (i.e., Dxx, Dyy and Dzz)
with the off-diagonal elements all being 0. As an aside we note that in liquid crystals
with axial symmetry, two of the three principal components will be equal and the
symbols D‖ and D⊥ denote diffusion parallel and perpendicular to the director,
respectively. Such a situation commonly occurs in solid crystals too.154 Similarly,
to a first approximation, biological cells can be considered to have a cylindrical
or ellipsoidal shape and thus the principal directions of D correspond to the
orthotopic directions of the cell (or tissue).
To prevent later confusion, where necessary, we will use primed coordinates to

denote laboratory frame (x′, y′, z′) and unprimed coordinates to denote the principal
axes frame (x, y, z) in which the diffusion tensor is diagonalised. Thus, formalising
our comments in the previous paragraph, we can state that a diffusion tensor as
measured in the laboratory frame, Dlab, can be decomposed as

Dlab ¼ UDprU�1; (1:65)

where U = (ε1 | ε2 | ε3) is a matrix of the column of (orthogonal) eigenvectors
(principal coordinate directions) which performs the transformation from (x′, y′, z′)
→ (x, y, z) and Dpr is the (diagonalised) diffusion tensor in the principal eigenvalue
matrix given by

Dpr ¼
λx

λy
λz

0

@

1

A; (1:66)

where λx, λy and λz are the (real) eigenvalues and correspond to the principal
diffusivities (i.e., Dxx, Dyy and Dzz, respectively). Thus, if the coordinate system is
chosen such that it is oriented along the principal axes of the diffusion ellipsoid (see
Section 1.6), also known as the principal reference frame, D becomes a diagonal
matrix since the translational displacements appear to be uncorrelated.
We note that in general for real systems, neither the principal diffusivities nor

the orientation of the principal reference frame (it is not normally coincident
with the laboratory frame of reference) are known a priori. Accordingly, many
more experimental measurements are required to characterise anisotropic sys-
tems. As a further complication, which will be further explored below, many real
samples are not uniformly aligned (e.g., a suspension of red blood cells). The
measured Dlab is then an average of the different orientations. Measuring
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diffusion in three orthogonal directions so as to determine the trace (‘Tr’) of the
diffusion tensor

1

3
Tr Dlab
�  ¼ 1

3
Dlab

x0x0 þDlab
y0y0 þDlab

z0z0
	 


¼ 1

3
Tr Dprð Þ ¼ 1

3
Dpr

xx þDpr
yy þDpr

zz

	 

¼ Dav

(1:67)

is a means of overcoming the anisotropy problems.155,156 Importantly, since the
trace is invariant under rotations, the orientational dependence is removed and
consequently the trace of the diffusion tensor is the same in all reference frames.
However, where the diffusion tensor is observation time-dependent, as in restricted
diffusion (see below), the measured trace can differ from the true trace of the
effective diffusion tensor and the measured quantity is not completely rotationally
invariant.157

Solving Eq. (1.63) gives the solution134,155,158,159

P r0; r1; tð Þ ¼ 1

4π Dj jtð Þ3=2
exp � r1 � r0ð ÞTD�1 r1 � r0ð Þ

4t

 !

; (1:68)

where the superscript ‘T’ denotes transpose and |D| denotes the determinant of D.
Thus, if the coordinate system is chosen such that it is oriented along the principal
axes of the diffusion ellipsoid, Eq. (1.68) becomes

P r0; r1; tð Þ ¼ 1

64π3DxxDyyDzzt3
� 1=2 exp � x1�x0ð Þ2

4Dxxt
� y1�y0ð Þ2

4Dyyt
� z1�z0ð Þ2

4Dzzt

 !

:

(1:69)

Of course, in the case of free isotropic diffusion D is diagonal with all three
elements equalling D and thus Eq. (1.69) reverts to Eq. (1.60). We will consider
further the analysis of anisotropic diffusion in Section 1.6 where we consider the
case that D might be time-dependent (i.e., D(t)).

1.5.3 Eigenfunction expansions

Let us begin by assuming that we can solve Eq. (1.38) in a bounded domain V in the
form of an eigenfunction (aka eigenmode) expansion (or spectral decomposition) in
terms of eigenmodes and eigenfrequencies as obtained, for example, using the
separation of variables technique. Then we will obtain a solution in the form of the
sum (with respect to the eigenvalues, λm � 0) of a product of the spatial eigenfunc-
tions ψm rð Þ relevant to (the Helmholtz equation for) the geometry,137,160 e.g., Bessel,
Legendre and trigonometric in the case of diffusion in a sphere, and an appropriate
function of time Tm(t) which will simply be an exponential function, namely
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P r; t; f rð Þð Þ ¼
X1

m¼0 Spatial

cmψm rð Þ
Time

Tm tð Þ

¼
X1

m¼0

cmψm rð Þ e�Dλmt : (1:70)

The most general solution is a sum or superposition (i.e., a series solution) over all
possible eigenvalues. If Eq. (1.70) converges uniformly the constants cm will be
determined from the initial conditions

f rð Þ ¼
X1

m¼0

cmψm rð Þ: (1:71)

A critically important point is that the eigenfunctions are orthogonal over the
domain V and the inner product of the eigenfunctions is defined as

ψm;ψnð Þ ¼
ð

V

ψm rð Þψ�
n rð Þdr ¼ δmn ψmk k2; (1:72)

where we assume that the weight function is unity and the asterisk denotes complex
conjugate (in our case the eigenfunctions are always real valued and soψm rð Þ ¼ ψ�

m rð Þ)
and δmn is the Kronecker delta (i.e., δmn = 1 if m = n, otherwise δmn = 0). The
corresponding norm of ψn(r) is

ψnk k ¼ ψn;ψnð Þ1=2: (1:73)

The orthogonality property of the eigenfunctions (Eq. (1.72)) allows the values of
cm to be determined as follows: starting from Eq. (1.71), and multiplying by ψ�

m rð Þ
and integrating over the volume, thus

cm ¼ ψmk k�2

ð

V

f rð Þψm rð Þdr : (1:74)

It is expedient to define normalised spatial eigenfunctions (i.e., such that their norms
are unity)

Km rð Þ ¼ ψm rð Þ
ψmk k : (1:75)

Thus, written in terms of normalised eigenfunctions and substituting Eq. (1.74)
containing the delta function initial condition (i.e., Eq. (1.48)) into Eq. (1.70) gives

P r; t; f rð Þð Þ ¼
X1

m¼0

Km rð Þ
ð

V

δ r� r0ð ÞKm rð Þdr e�Dλmt: (1:76)

Now, noting the property of the delta function
ð

V

K rð Þδ r� r0ð Þdr ¼ K r0ð Þ; (1:77)
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Eq. (1.76) becomes

P r; t; f rð Þð Þ ¼ G r0; r; tð Þ ¼
X1

m¼0

Km r0ð ÞKm rð Þ e�Dλmt: (1:78)

Equation (1.78) has special significance in mathematics and is commonly termed
the Green function for the posed Cauchy problem or fundamental solution
G r0; t0; r; tð Þ.128,130,131 If t = 0, Eq. (1.78) becomes

P r0; r; 0ð Þ ¼ G r0; r; 0ð Þ ¼ δ r� r0ð Þ ¼
X1

m¼0

Km rð ÞKm r0ð Þ: (1:79)

Thus, the above Green function is the solution to the diffusion equation given a delta
function initial condition. We note in passing that instead of using Fourier trans-
forms, the free diffusion equation (Section 1.5.1) could have been solved using
eigenfunction expansions.161

By taking the expression for the Green function (Eq. (1.78)) and setting r = r0
(i.e., the same initial and final position) and noting the normalisation condition of
the eigenfunctions it is possible to define another useful expression termed the
Spectral function162–164

Y tð Þ ¼
ð

V

G r0; r0; tð Þdr0 ¼
X1

m¼0

e�Dλmt; (1:80)

which is related to the return to origin probability (RTOP; see Section 1.8.3).

1.5.4 Diffusion in isolated pores

Here we list the diffusion propagators for the three most commonly used ‘closed’
geometries for studying restricted diffusion in isolated pores (i.e., single-site models)
including the case of relaxation boundary conditions. The propagators for many other
geometries can be found in the literature.144 Propagators for multi-site systems with
porous boundaries are discussed in Section 1.8.

1.5.4.1 Parallel planar boundaries

For diffusion between infinitely long reflecting planes (i.e., homogeneous boundary
condition of the second kind (Eq. (1.42))) separated by a distance 2a, i.e.,

@P

@z

����
z¼0; 2a

¼ 0; (1:81)

with a delta function initial condition (Eq. (1.37)), solving the one-dimensional
diffusion equation (Eq. (1.49)), the normalised eigenfunctions are given by
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ffiffi
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� 
n ¼ 1; 2; 3 . . .
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><

>:
(1:82)

with corresponding eigenvalues

λn ¼ n2π2

2að Þ2 ; (1:83)

and the diffusion propagator is given by144

P z0; z1; tð Þ ¼ 1

2a
þ 1

a

X1

n¼1

cos
nπ z0
2a

	 

cos

nπ z1
2a

	 

exp � n2π2Dt

2að Þ2
 !

; (1:84)

where the first (and time-independent) term results from the zero eigenvalue.
Parallel planes are an example of a closed pore. An obvious, but nevertheless
important point is that propagators such as Eq. (1.84) are only valid within their
domain of definition and are equal to zero for values outside this. Plots of the
diffusion propagator and the respective average propagator for diffusion between
reflecting planes are given in Figure 1.6.
For diffusion between planes subject to the radiative or relaxation boundary

condition (Eq. (1.43))
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Figure 1.6 Plots of (A)P(z0 = a, z1, t) using Eq. (1.84) and 〈Z
2〉 using Eq. (1.106) and

(B) �PðZ; tÞ using Eqs. (1.35) and (1.84) for diffusion between (and perpendicular to)
infinitely long reflecting planes at z=0, 2a. Note the time axis is plotted in
dimensionless units (i.e., Dt/a2). At very short timescales the diffusion appears
isotropic; however, even at rather short timescales the effects of the boundaries (i.e.,
at z0/a=0, 2) come into effect and the long-time limit is essentially reached before
Dt/a2 ~0.4 and thus it can be understood that at long times the propagator reflects the
pore shape and this results in an upper limit on the MSD of (2a)2/6 (see Eq. (1.106))
and is in contrast to free diffusion where there is no upper limit (Figure 1.5).
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Dn � Δ

PþMPð Þjz¼a¼ 0 (1:85)

where n is the outward surface normal, z = |z1 | and the positive constantM specifies
the relaxivity, the diffusion propagator is given by140
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(1:86)

and the eigenvalues αn and βm are determined by the equations

αn tan αnð Þ ¼ Ma

D
(1:87)

and

βm cot βmð Þ ¼ �Ma

D
; (1:88)

respectively. Plots of the diffusion propagator and the respective average propagator
for diffusion between partially absorbing planes are given in Figure 1.7.

1.5.4.2 Spherical pores

For diffusion in a reflecting sphere of radius a,
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¼ 0 (1:89)
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Figure 1.7 Plots of (A)P(z0 = a, z1, t) using Eq. (1.86) and (B)P(Z, t) using Eqs. (1.35)
and (1.86) for diffusion between partially absorbing planes (i.e.,Ma/D=2) at z1 =0, 2a.
The effects of the absorbing boundaries are evident in comparison with Figure 1.6.
Note that although Eq. (1.86) pertains to the limits z=a, the position and displacement
axes of these two plots have been shifted to facilitate comparison with Figure 1.6.
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where r = |r1|. Solving the diffusion equation in spherical coordinates (r = (r, θ, �)
as in Fig. 1.4) gives the propagator144,165

P r0; r1; tð Þ ¼ 3
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þ
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n40
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(1:90)

where Pn(x) is a Legendre polynomial, Jn are Bessel functions of the first kind and
μ = cos (θ), where θ is the angle between r and the direction of the measurement (see
Figure 1.4; the direction of measurement is taken as being along the z axis). Note
there is no azimuthal dependence and αnm is the root of the Bessel function equation

n

αnma
J
nþ1

2
αnmað Þ ¼ J

nþ3
2
αnmað Þ: (1:91)

For diffusion in a sphere subject to the radiative boundary condition (i.e.,
Eq. (1.43))

Dn � Δ
PþMPð Þjr¼a¼ 0; (1:92)

where r = |r1 | and the diffusion propagator is given by140
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where the jn are spherical Bessel functions note jnðxÞ ¼
ffiffiffiffi
π
2x

p
Jnþ1

2
ðxÞ

	 

:160 The

eigenvalues are determined by

αnm
j 0n αnmð Þ
jn αnmð Þ ¼ �Ma

D
(1:94)

where j 0nðαnmÞ ¼ n
αnm

jnðαnmÞ � jnþ1ðαnmÞ:160

1.5.4.3 Cylindrical pores

For diffusion in a reflecting cylinder of radius a,
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r¼a

¼ 0 (1:95)
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where r = |r1|. Solving the diffusion equation gives the propagator144,165

P r0; r1; tð Þ ¼ 1
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(1:96)

where n is an integer, θ is the angle between r and the direction of the measurement,
and αnm is the root of the Bessel function equation,

J0n αnmað Þ ¼ 0: (1:97)

Similarly, for diffusion in a cylindrical pore subject to the radiative boundary
condition the diffusion propagator is given by140
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where the eigenvalues are determined by

αnkJ
0
n αnkð Þ=Jn αnkð Þ ¼ �Ma

D
: (1:99)

1.6 Mean square displacement, time-dependent diffusion
coefficients and the diffusion ellipsoid

Self-diffusion is a random process and thus the mean displacement, 〈r1 – r0〉 or 〈R〉,
is equal to zero. A more useful measure of the width of the distribution is given by
the MSD19,166

r1 � r0ð Þ2
D E

¼
ð1

�1
r1 � r0ð Þ2ρ r0ð ÞP r0; r1; tð Þdr0dr1; (1:100)

or equivalently (as the second moment of the average propagator)

R tð Þ2
D E

¼
ð
�P R; tð ÞR2dR: (1:101)
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Equation (1.100) (or (1.101)) presents a relationship between the molecular dis-
placement due to diffusion and the diffusion equation.
By substituting the propagator for 1D free isotropic diffusion (Eq. (1.59)) into Eq.

(1.100) in terms of motion along the z axis only, noting ρ(z0) = 1, and using the
standard integral (e.g., 3.462.8 in ref. 167)

ð1

�1
x2e�μx2þ2νxdx ¼ 1

2μ

ffiffiffi
π
μ

r
1þ 2

ν2

μ

� �
e
ν2
μ arg νj j5π; Re μ40½ � (1:102)

to obtain

z1 � z0ð Þ2
D E

¼ Z2
� � ¼ 2Dt: (1:103)

Equation (1.100) can be calculated for two and three dimensions by writing in polar
and spherical polar coordinates, respectively, and by using appropriate standard
integrals. TheMSD for free diffusion is shown graphically in Figure 1.5. Ultimately,
the MSD for free diffusion in one, two and three dimensions can be written in the
compact form

r1 � r0ð Þ2
D E

¼ R2
� � ¼ nDt; (1:104)

where n = 2, 4 or 6 for one, two or three dimensions, respectively. Equation (1.104)
provides an alternative definition of the diffusion coefficient and is equivalent to
Fick’s first and second laws; it states that for free isotropic diffusion the MSD
changes linearly with time. Diffusive processes for which the MSD scales linearly
with time are said to be ‘Fickian’.
From Eq. (1.104), it can be seen that if theMSD is known it is possible to define a

time-dependent diffusion coefficient (cf. Eq. (1.4))168

D tð Þ ¼ R2
� �

nt
: (1:105)

This definition emphasises that according to how the MSD alters with time the value
of the diffusion coefficient determined may depend on the value of t. As can be
understood from the discussion above, the diffusion coefficient determined by this
method is a constant for free diffusion but is not time invariant in the case of restricted
diffusion. In the literature a diffusion coefficient determined from Eq. (1.105) is
sometimes referred to as an ‘apparent’ diffusion coefficient; however, we prefer to
refer to this as a ‘time-dependent’ diffusion coefficient. This aspect of nomenclature is
further discussed at the beginning of Chapter 2. As an example, theMSD for diffusion
between planes is calculated using the propagator (Eq. (1.84)) and Eq. (1.100) (after
rewriting in Cartesian coordinates) to be
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Z2 tð Þ� � ¼ 2að Þ2
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� 16 2að Þ2
π4
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n¼0

exp � 2nþ1ð Þ2π2Dt

2að Þ2
	 


2nþ 1ð Þ4 (1:106)

(note in the derivation the summation index has changed from n to 2n + 1 to account
for the effects of an alternating series and thus the lower limit of the summation has
also changed). Due to the effects of the planar boundaries, the long-time limit of
〈Z2(t)〉 (i.e., 〈Z2(∞)〉) is bounded and is given by the first term which arises from
ρ(z0) – since at long times all of the particles have lost memory of their initial
conditions and are now uniformly distributed. Substituting 〈Z2(t)〉 into Eq. (1.105),
the time-dependent diffusion coefficient is then given by

D tð Þ ¼ 2að Þ2
12t

� 8 2að Þ2
π4t

X1

n¼0

exp � 2nþ1ð Þ2π2Dt

2að Þ2
	 


2nþ 1ð Þ4 : (1:107)

〈Z2(t)〉 and D(t) are plotted in Figure 1.8. In contrast to free diffusion where D(∞) =
D0, in a completely restricted geometry D(t) → 0 as 1/t → 0.
One-dimensional diffusion is often modelled as a random walk with a step rate of

vl and a step length of l. Hence, the MSD after N steps is then11,21

Z2
� � ¼ Nl2 ¼ N

2D

vl
; (1:108)

and thus

D ¼ l2vl
2

: (1:109)

The MSD can also be determined from the velocity auto-correlation function21,169

Figure 1.8 Plots of 〈Z2(t)〉 and D(t) for diffusion between planes together with
comparisons to limiting cases.
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Z2 tð Þ� � ¼ 2
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or from the diffusion spectrum73

Z2 tð Þ� � ¼ 2t2
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Further, combining Eq. (1.111) with Eq. (1.105) provides the connection betweenD
and D(ω)

D tð Þ ¼ t

π

ð1

0

Dω ωð Þsinc2 ωt

2

	 

dω: (1:112)

In an anisotropic system, it is possible to define an MSD tensor,170,171 namely
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where following Eq. (1.101) the elements of H are defined as

RiRj

� � ¼
ð
RiRj

�P R; tð ÞdR i; j ¼ x; y; z: (1:114)

Further, in analogy to Eq. (1.105), a time-dependent (apparent or effective) diffusion
tensor can be defined170
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Sometimes it is useful to graphically represent D(t) by a ‘diffusion ellipsoid’ in the
principal reference frame13,155,172 (see Figure 1.9) which can be constructed by
setting the quadratic form in Eq. (1.68) to − 1/2 such that

r1 � r0ð ÞTD tð Þ�1 r1 � r0ð Þ
2t

¼ 1: (1:116)

This defines a surface of constant mean translational motion of diffusing species at
time t. Transforming from the reference frame of measurement (i.e., the laboratory
frame, denoted by r′) to the principal frame of reference (denoted by r) using

r ¼ UT r01 � r00ð Þ; (1:117)
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to obtain

r0TDpr�1r0

2t
¼ 1; (1:118)

which when expanded becomes (cf. Eq. (1.69))

x0
ffiffiffiffiffiffiffiffi
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p
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2λ2t

p
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þ z0
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2λ3t

p
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¼ 1: (1:119)

We note from Eq. (1.104) that the major axes of the ellipsoids in Eq. (1.119) are
the root mean square displacement (RMSD) in the three principal directions (e.g.,ffiffiffiffiffiffiffiffi
2λ1t

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2Dxxt

p ¼ ffiffiffiffiffiffiffiffiffiffi
x02h ip

, etc.). An example of a diffusion ellipsoid is given in
Figure 1.9. Determining the principal diffusivities is insufficient for characterising
anisotropic Gaussian diffusion, since the off-diagonal elements of D(t) are necessary
too if the size, shape and orientation of the diffusion ellipsoid are to be specified.
In ordered structures such as muscle fibres and white matter the diffusional

anisotropy is primarily due to restricted diffusion (e.g., consider diffusion within a
cylindrical geometry). Consequently, at very short times the diffusion appears iso-
tropic (cf. Figure 1.6) and thus the ellipsoid would be spherical, but as the effects of
the boundaries become significant on the translational motion the ellipsoid would
become increasingly non-spherical and more evidently prolate. Thus, the principal
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Figure 1.9 An example of an effective diffusion ellipsoid in the principal axis
frame calculated using Eq. (1.119). The parameters used in the simulation were
t= 20ms, Dxx= 0.4 � 10−9m2s−1, Dyy= 1.4 � 10−9m2s−1, Dzz= 1.8 � 10−9m2s−1.
The major axes of the ellipsoid correspond to the RMSDs in each of the principal
axes, respectively. The extremely anisotropic diffusion parameters were chosen to
allow easy visualisation of the ellipsoidal shape.
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frame must coincide with the orthotropic directions of the tissue with the largest
diffusivity corresponding to the tissue’s fibre tract axis.155 Given that, with the
exception of liquid crystals, anisotropic diffusion arises from the presence of aniso-
tropically arranged barriers such as cell membranes which render the diffusion
non-Gaussian, the concept of anisotropic Gaussian diffusion and hence diffusion
ellipsoids are thus only approximations to the actual diffusion propagator.173

Finally, we mention that some materials can be locally anisotropic but macro-
scopically isotropic and are termed polycrystalline. Thus, below some length scale,
termed the domain size, anisotropy is manifested in locally ordered crystalline
domains. Examples of such systems include elastomers, polydomain lyotropic
liquid crystals, polymer melts and semi-dilute solutions and porous media.174

1.7 Measurement timescales and restricted diffusion

Translational diffusion measurements have associated with them a characteristic
timescale (an ‘observation’ or ‘diffusion’ time), Δ, and is generally synonymous
with t in the theory above. In enclosed pores, the duration of Δ determines (and
limits) the type of information obtainable on the dynamics of the system being
studied. To illustrate this, consider a particle undergoing: (i) isotropic free diffusion
and (ii) restricted diffusion in a sphere (i.e., closed spherical pore) of radius a as shown
in Figure 1.10. To characterise the effects of restriction on diffusionmeasurements the
dimensionless variable, ξ , is defined from Eq. (1.104) (i.e., at n=1, t = Δ), namely

� ¼ DΔ
a2

: (1:120)

Diffusion measurements in restricted geometries can be split into three regimes accord-
ing to the size of the MSD compared to the pore size: (i) the ‘short time’ or ‘free
diffusion’ limit (ξ≪ 1 or short values ofΔ); in this limit the particle does not diffuse far
enough during Δ to feel the effects of restriction and measurements performed within
this timescale lead to the true diffusion coefficient (i.e., D0). (ii) the ‘crossover regime’
from the short- to long-time diffusion ξ ≈ 1; in this regime some of the particles feel the
effects of restriction and the diffusion coefficient measured within this timescale will be
a function ofΔ (i.e.,D(Δ)). The fraction of particles that feel the effects of the boundary
will be dependent on the surface-to-volume ratio of the pore, SP/VP. (iii) the ‘long-time’
limit (ξ ≫ 1 or large values of Δ); in this regime all of the diffusing particles feel the
effects of restriction and now the displacement of the particle is independent of Δ and
depends only on a. It is also instructive to view these comments with respect to Figure
1.6. Given the timescales of NMR diffusion measurements (10 –100ms) and for small
rapidly diffusing molecules like water, this typically means that restricted diffusion will
become apparent for structures with length scales 100μm or smaller.
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As depicted in Figure 1.10, the MSD scales linearly with time (see Eq. (1.104)) in
the case of free diffusion and as such reflects the true diffusion coefficient for all
values of Δ. However, for a confined particle the behaviour is very different and the
behaviour in the three time domains is considered in the following three subsections.
We note that Sen has reviewed the use of the time-dependent diffusion coefficient

for probing restricted geometries.176

1.7.1 Short-time limit

In the short-time limit the measured diffusion coefficient will be the same as that
observed for the freely diffusing species (i.e., D0) and the diffusion propagator

Timescale

ξ   1

ξ ≈ 1

ξ   1

Free diffusion

r1

r0

R Z
a

Restricted diffusion

Figure 1.10 A schematic diagram comparing the effect of measurement timescale
when measuring free diffusion with diffusion in a restricted geometry. Imagine an
experiment in which the displacement of a species in the z direction (vertical) is
measured by observing its starting position r0 (○) at t= 0 (open circle) and then at
position r1 (●) at t=Δ (closed circle).R denotes the displacement between the initial
and final positions and the vertical arrows represent displacement, Z, in the vertical
direction. At long times (i.e., ξ≫ 1) the maximum displacement in the restricted
geometry is limited by the boundaries. Importantly the trajectory of the motion
between these two observation points is unknown. Modified from Price.175
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describing diffusion in the restricted system (e.g., Eqs. (1.84), (1.86), (1.90), (1.93),
(1.96) and (1.98)), although perhaps not easily seen, will reduce to that for free
diffusion (Eq. (1.60)). Thus, the MSD is given by Eq. (1.104).

1.7.2 Intermediate times

As Δ increases the values measured for the free and restricted cases increasingly
diverge as more of the confined particles feel the effects of the boundary and the
MSD will not scale linearly with Δ, for example177–179

R2
� � ¼ αΔ�; (1:121)

where α is a time-independent scaling constant and the exponent κ is sometimes
written as 2/dw where dw is termed the random walk (or path or trail) dimension or
κ= 2/(2 + θa) = 2H, where θa is termed the exponent of anomalous diffusion and H
is the Hurst exponent. κ generally lies between 0 and 1. The special case of κ= 1
(i.e., dw= 2) and α= 6D corresponds to unrestricted free diffusion (cf. Eq. (1.104)).
For κ ≠ 1 themeasured diffusion coefficient (i.e.,D(Δ)) will be Δ-dependent and the
diffusion is sometimes referred to as anomalous.
For an isotropic medium analysis of the change in D as a function of Δ for

(non-fractal) boundaries with a finite surface relaxivity (M) leads to the
relationship in terms of powers of the diffusion-length,

ffiffiffiffiffiffiffiffi
D0t

p
(i.e., a scale

parameter),176,180–185 (note ref. 176 has a particularly lucid derivation of this
equation)
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�

; (1:122)

where d is the number of spatial dimensions, R1 and R2 are the principal radii of the
curvature of the interface – chosen so that they are positive for the outside of a
sphere, and o(…) represents higher-order terms. Only particles within the (diffu-
sion) length

ffiffiffiffiffiffiffiffiffi
D0Δ

p
from the surface have had their diffusive path affected by the

boundaries. Consequently, the higher-order terms in
ffiffiffiffiffiffiffiffiffi
D0Δ

p
become increasingly

important at larger Δ since an increasingly large proportion of the spins are so
affected. Thus, D(Δ) deviates from D0 approximately linearly with Δ1/2. As noted
by Candela and Wong,186 these equations require modification when applied to
fractal surfaces.
Anomalous diffusion in the context of general porous media is further considered

in Section 1.8.3.
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1.7.3 Long-time limit

In the long-time limit in a perfectly reflecting geometry (i.e., at M=0) the MSD
is limited by the boundaries and eventually becomes independent of the dynamics
of the system (and thus Δ and D0) and instead reflects only the shape, dimensions and
orientation of the restricting geometry itself. Thus, as t (equiv. Δ) → ∞, the (time-
dependent) second terms in the three propagators for the reflecting boundary conditions
(i.e., Eqs. (1.84), (1.90) and (1.96)) disappear (due to the presence of the negative
exponentials), leaving only the first termswhich result from the zero-eigenvalue. Indeed,
the diffusing particles trapped within a fully enclosing pore (as in Figure 1.10) lose
memory of their starting position (i.e., their final position becomes independent of their
starting position) which is physically reasonable since the diffusing species cannot
escape their confinement and at long times they completely sample their ‘universe’.
Thus at long times the probability of moving from any point to any other within
the geometry is 1/(volume) (≡ ρ(r0); the equilibrium particle density) as shown in
Eq. (1.84), (1.90) and (1.96), and since in these cases P(r0, r1, t) is conservative

P r0; r1;1ð Þ ¼ ρ r0ð Þ ¼ ρ r1ð Þ: (1:123)

In such cases the average propagator in the long-time limit becomes

�P R;1ð Þ ¼
ð
ρ r0ð Þ ρ r0 þ Rð Þ dr0: (1:124)

Thus, �P R;1ð Þ is the auto-correlation function of the molecular density ρ(r0).
Although similar in behaviour at short times, the three propagators for the

relaxation boundary condition (Eqs. (1.86), (1.93) and (1.98)) go to zero at long
times since all spins are ultimately quenched by contact with the boundaries. Of course,
Eqs. (1.84), (1.90) and (1.96) are identically equal to the M=0 cases of Eqs. (1.86),
(1.93) and (1.98), respectively.

1.8 Diffusion in heterogeneous, porous and polymer systems

1.8.1 Introduction

Diffusive processes in real materials and solutions are in general complex. Real
materials are often porous in that they are in essence a ‘solid’ with holes and the
boundary conditions are more complex (Figure 1.11). A porous material is com-
posed of at least two phases: the porous matrix and the pore space which is filled
with a liquid or gas. The porous matrix is not necessarily solid in a rigid sense.
Examples include biological tissues (e.g., brain18), cellulose fibres, ceramics, con-
centrated emulsions, gels, porous rocks, soil and solid catalysts, and zeolites.
Consequently, apart from free solutions, almost all samples of interest come under
the porous material category including concentrated macromolecular solutions that
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will exhibit properties such as obstruction (see below).Most porous substances have
a disordered morphology and it is difficult to specify the geometry of the interface
between the pore space and the matrix. The transport and thermodynamic properties
of fluids in porous media are closely related to the size and connectivity of the
pores.187 A myriad of different physical phenomena occur in porous media ranging
from permeation catalysis to biological perfusion and permeation which relate to a
diverse range of areas including chemistry, physiology and oil recovery.
The length scale being studied is typically very important in porous media since

below some length scale the local structure will be relatively heterogeneous, whereas
over larger length scales it will appear homogeneous. The pore size at a specific point
in a material can be characterised as the radius, a, of the largest sphere that fits into the
pore space. In general there will be a distribution of such pore sizes in a material. The
International Union of Pure and Applied Chemistry (IUPAC) classifies porous
materials into three categories: micropores of less than 2 nm in diameter, mesopores
between 2 and 50 nm and macropores of greater than 50nm.188 In the literature,
nanoporous materials are defined as those porous materials with pore diameters less
than 100nm. Porosity is a measure of the volume fraction of the void space. Thus, the
porosity of a porous material is defined as

� ¼ VP=V; (1:125)

Figure 1.11 A two-dimensional representation of a (in reality three-dimensional)
porous medium with a regular structure. This could also be termed an open
geometry since the pores are not isolated and transport between the pores is
possible. Real porous structures, except zeolites and other regular structures, are
of course disordered and irregular. In this diagram roughly circular pores of radius
a with interpore spacings of b (> 2a) are joined by narrower throats. If three
diffusing molecules were to be in the same throat it would be a case of single file
diffusion since the diffusion of the molecule in the middle would depend largely on
the movement of its neighbours.
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where V is the total volume andVP is the volume of the pore space.Whilst � for a rigid
porousmaterial like rock is a constant, for a soft porousmaterial it can be a function of
the amount of liquid in the pores. In many cases (e.g., catalysts) the surface area of a
porousmaterial is important and it is characterisedby thesurface-to-volume ratioSP/VP.
In a pure liquid (e.g., water) the measured diffusion coefficient corresponds to the

bulk diffusion coefficient (i.e., D0). Following from the above discussion it is clear
that in isolated pores the measured diffusion coefficient in a porous medium will
be less than D0 and also time-dependent. As conceptualised in Figure 1.11, most
porous media consist of interconnected pores (i.e., an ‘open’ geometry) and the
transport between pores is typically of enormous importance. The porosity and the
connectivity in porous media is characterised by the tortuosity, ℑ, which, as will
be detailed in the following section, relates the short-time diffusion coefficient
(i.e., D0) to the long-time value (i.e., D∞; sometimes referred to in the literature as
an effective diffusion coefficient, Deff).
A related, but nevertheless distinct phenomenon to tortuosity that also leads to a

decrease in the measured diffusion coefficient is that of obstruction. At infinite
dilution, as was the case for the Einstein–Sutherland equation, interactions between
large particles were neglected and the solvent particles were treated as a continuum
and dealt with as a randomly fluctuating force; thus the problem was reduced to a
one-body problem. However, the situation is more complex in a macromolecular
solution (e.g., cell cytoplasm, polymer solution, protein solution, emulsions) where
smaller molecules (e.g., water) have to skirt around the larger and generally irregu-
larly shaped ‘obstructing’ molecules thereby lengthening the diffusion path of the
smaller molecule (Figure 1.12). Indeed, in biological cells proteins are typically
present at volume fractions, �, ranging from 0.2 to 0.3. As well as its direct effects
on diffusion, such macromolecular ‘crowding’ can have enormous thermodynamic
consequences.189,190 Thus, obstruction is a complicated many-body problemwhich is
in essence restriction by a time-dependent geometry (the obstructing molecules are
moving too) in which the interactions between the particles need to be considered.
Obstruction results in the observed diffusion coefficient,D(t), being reduced by some
factor, OD (=D(t)/D0) which will depend on the concentration (i.e., �) of the particles
as well as perhaps factors such as electrolyte friction96 and solvation. The effects
leading to obstruction generally operate on very short time and length scales and are
consequently typically well averaged on experimentally available timescales. Thus,
from the perspective of diffusion, obstruction and viscosity are similar in their effects
and closely related and this helps to explain why the measured viscosity can depend
on the size of the probe molecule.35

In many porous media (e.g., chromatographic media) both obstruction and tortu-
osity will be active and lead to reductions in the measured diffusion coefficients.
Similarly, diffusion in polymer systems has elements of diffusion in porous media

1.8 Diffusion in heterogeneous, porous and polymer systems 41



and obstruction. We also note that models for time-dependent diffusion in a dilute
suspension of spheres with partially absorbing boundary conditions have been deve-
loped.191 Depending on the timescale of the measurement the effects of obstruction
can result in anomalous diffusion.

1.8.2 Porous media, measurement timescales and tortuosity

The behaviour of diffusion propagators in permeable porous media is an extension
of Section 1.7. In materials containing permeable pores the crossover from short to
long times is often described in terms of anomalous diffusion and this is discussed in
the Section 1.8.3. At very short timescales the diffusion process is insensitive to the
macroscopic morphology of the system and thus a diffusionmeasurement would not
distinguish between open and closed geometries.192

As the observation time increases, the time-dependence of D(t) increasingly
diverges for impermeable and permeable pores. In contrast to impermeable pores,
in the long-time limit in materials with interconnected media as in Figure 1.11, D(t)
decreases to a plateau value,D∞, reflecting the long range connectivity of the medium
and is related to the tortuosity of the porous medium. Tortuosity describes the average
hindrance of a complex medium relative to an obstacle-free medium and is thus

Figure 1.12 A schematic model of obstruction. In this case the diffusive path of the
observed species (small circle) is affected by the presence of the larger species
(solid ellipses) that it has to skirt around. In reality the system is three-dimensional
and the volume fraction of the obstructing species is represented by �.
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interpreted as a path-length multiplication factor for molecules that have to find their
way around obstacles and is defined by (the relative diffusion coefficient)69,184,193–197

ℑ ¼ D0

D1 : (1:126)

Unfortunately, there is more than one definition for tortuosity and in neurological
literature the definition is identical to Eq. (1.126) except that the square root is taken
on the right-hand side.18

As noted by Valiullin and Skirda,69 ℑ is a measure of the part of the specific
surface that is explored by the diffusing spins before they lose their memory about
the orientation of the surface at their initial position and thus reflects both the
connectivity and curvature of the surfaces in the porous network.195–197. ℑ increases
with increasing curvature and constrictions in the pore space. Although � and SP/VP

are scalar properties, ℑ is in general a symmetric second rank tensor. In many cases
ℑ has cylindrical symmetry (e.g., in wood). Being able to characterise ℑ has proved
very important in understanding many processes in the brain, ranging from ischae-
mia and osmotic stress to delivery of nutrients and drugs.18,198 Indeed, the perme-
ability of a porous medium, which is a transport coefficient relating flux to a
pressure gradient, is clearly related to the tortuosity. Tortuosity can be calculated
for uniform colloidal objects199,200 and periodic porous materials,197,200 but is in
general difficult to calculate especially in biologically relevant geometries.198 In
disordered geometries ℑ has to be determined experimentally.

1.8.3 Return to origin probability

Another commonly used means of interpreting diffusion in restricted geometries is
via the Return To Origin Probability (RTOP), which is related to the spectral function
(Eq. (1.80)) by normalising with respect to the value for unrestricted diffusion164

RTOP Δð Þ ¼ 4πD0Δð Þ3=2
VP

Y Δð Þ: (1:127)

In the case of partially absorbing boundary conditions it is given by164,201,202
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Like the expression forD(Δ) (Eq. (1.122)), the expression of RTOP depends only on
the surface-to-volume ratio. However, the signs of the corrections in the two
equations differ, for example in Eq. (1.128) the sign of the first term including
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SP/VP is positive since the effect of the confinement by the pore is to increase RTOP.
In contrast, the sign of the corresponding term in Eq. (1.122) is negative since
diffusive motion in the pore space is restricted resulting in a reduction in the MSD
travelled by the particles.164 It has been noted that in the long-time limit RTOP is
related to electrical conductivity.164

Whilst at short times both D(Δ) and RTOP provide information on the local
properties of the pore surface, at longer times they provide information on pore
connectivity. For realistic geometries it is difficult to derive an expression linking
the short-time behaviour to the long-time asymptotic behaviour. However, a Padé
approximant can be found that has the correct limiting behaviour and captures the
crossover accurately.184,192,203

It has been suggested that the asymptotic form of the normalised RTOP is given
for the case of M= 0 in periodic three-dimensional geometries by201

RTOP Δ ! 0ð Þ ¼ 1

�

D0

D1

� �3=2

: (1:129)

1.8.4 Anomalous diffusion

Anomalous diffusion and transport properties are in fact quite common125,204 with
examples including the diffusion of protein hydration water,205 diffusion in percolation
clusters,206 water diffusion in human tissue,207 polymers208 and surface diffusion.209

The importance of being able to study anomalous diffusion cannot be underestimated
since it is thought that, for example, the conventional equations for biochemical path-
ways fail to describe the reactions in vivo since the reactions follow fractal-like kinetics
on account of anomalous diffusion and mixing of the biochemical species.210

The time-dependence of the MSD of anomalous diffusion often obeys a power
law relation,29,50,211 as shown in Eq. (1.121). When κ= 3 the motion is termed
‘turbulent’, κ= 2 is ‘ballistic’, κ > 1 is ‘superdiffusive’, κ= 1 is ‘normal’, 0 < κ < 1, as
is generally found in fractal networks and random percolation clusters and is termed
‘subdiffusive’, and finally κ= 0 is termed ‘localised’. Thus it is evident why
anomalous diffusion is sometimes referred to as fractional Brownian motion.
Anomalous diffusion is not invariant against time translation and the MSD does
not change linearly with the observation time. Consequently, the origin of the
timescale cannot be set arbitrarily. This is in contrast to ordinary diffusion, which
is a Gaussian stochastic process, whose increments are uncorrelated. Valiullin and
Skirda69 have commented that the term ‘anomalous diffusion’ should be reserved for
cases where the underlying molecular processes truly exhibit non-Gaussian statistics,
thereby excluding cases commonly termed as anomalous in which Gaussian diffusion
occurs in a regular array of obstructions.
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Anomalous diffusion can be subdivided into two categories based on the
origin:177 (i) Gaussian propagation but where obstruction leads to subdiffusive
behaviour as in ‘single file’ diffusion (see below) and (ii) anomalous diffusion
due to geometrical restriction, since as the effects of boundaries become significant,
the propagation is no longer Gaussian. If the diffusion occurs in a space with a
non-Euclidean fractal-like nature the resulting diffusion is often termed anoma-
lous.50 However, the diffusion may only appear anomalous at some observation
time or length scales.212 It is emphasised that non-integer scaling (see Eq. (1.121)) is
not synonymous with fractality and, for example, diffusion between planes leads to
a non-integral exponent.176

Where molecules are diffusing in a fractal volume, the fractal diffusion propa-
gator has been suggested to take the form213,214

P R;Δð Þ ¼ dw
dsG ds=dwð Þ

1

D�d 2
wΔ

� ��df=dw

exp � Rdw

D�d 2
wΔ

� �
; (1:130)

where Γ is the gamma function,167 Dκ plays the role of the diffusion coefficient and
df is the fractal dimension which is related to the walk and spectral (fracton)
dimension, ds, by

50,207

df ¼ dwds
2

: (1:131)

For normal diffusion ds =d, where d (integer) is the embedding dimension. Starting from
the largely heuristically derived fractional diffusion equation ofMetzleret al.,123Damion
and Packer215 derived the fractal propagator for diffusion in one dimension to be
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For completeness we note that RTOP is given by50,207

RTOPðΔÞ ¼ P R ¼ 0;Δð Þ / Δ�ds=2: (1:133)
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A particularly interesting case of anomalous diffusion is the translational diffusion
in one-dimensional channels in materials such as zeolites which is known as single
file diffusion. Essentially, if mutual passages of molecules in a channel are excluded,
the confinement of a species by the other diffusing species (i.e., self-obstruction)
results in anomalous diffusion of the species even though the pore network itself
may be regular. This is so because a species can only displace in one direction if the
species in front of it also displaces in the same direction. Thus, in the event of a
displacement, there will effectively be a higher concentration in front of the particle
than behind it – and this difference will lead to a higher probability of the subsequent
displacement being in the opposite direction. Taking the displacement to be along
the z-direction, one obtains29

Z2 Δð Þ� � ¼ 2KΔ1=2; (1:134)

where the mobility factor K is given by

K ¼ λ2
1� θ
θ

1
ffiffiffiffiffiffiffiffiffi
2πτJ

p ; (1:135)

where λ is the separation between adjacent sites with a mean time τJ between
subsequent jump attempts and θ is the occupation probability. A jump is only
successful if the target site is vacant.

1.8.5 Propagators in permeable porous systems
and the pore-hopping model

As mentioned previously, in the case of single pores contained within a permeable
boundary, a first approximation in developing a diffusion propagator is to institute a
relaxation boundary condition on the boundary and to relate the relaxation proper-
ties to transport. However, in biological tissues such an approach is in general too
simplistic as the reality is diffusion in compartmentalised spaces with interchange
between the compartments. From the above discussion it is clear that in a permeable
porous system the propagator is Gaussian in both the short- and long-time limits
with the diffusion coefficients D0 and D∞, respectively. Whilst the propagators of
isolated pores have relatively sharp cutoffs, this does not occur with a permeable
porous material.

1.8.5.1 Permeable porous systems

An early model of a porous system was that of Tanner216 in which diffusion
occurred between a series of equally spaced planes of arbitrary permeability (see
Figure 1.13), for which the propagator is given by216
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where the layers are numbered by i and the Xin are the infinite set of eigenfunctions

and βn are eigenvalues of
@2

@x2
þ β2n

� �
Xin ¼ 0, which is discontinuous at the

boundaries, and of the form Xin ¼ cin cos βnx1 þ din sin βnx1. Tanner used this to
give an approximate solution for D(Δ) in a system with 19 layers. D(Δ), in the
direction normal to the planes, decreases monotonically from the free solution value
to its asymptotic value217,218

D1 ¼ D0M2a

D0 þM2a
; (1:137)

where 2a is the interplanar spacing and M is the permeability. In a later work219

exact solutions for the Laplace transforms of the MSD and D(Δ) were derived for
particles diffusing in the system shown in Figure 1.13.

1.8.5.2 Interconnected pores

For more general porous media as depicted in Figure 1.11, the propagator
approach outlined in Section 1.4.2 needs to be extended. Taking r0i to be the
position of the ith pore, a structure of N pores can be represented by a spin density
function given by a superposition of normalised local density functions
ρ0i(r1 − r0i) of the form

132,220,221

ρ r1ð Þ ¼ 1

N

XN

i¼1

ρ0i r1� r0ið Þ; (1:138)

–2i = –1 0
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1 2

Figure 1.13 A system of equally spaced paralllel planes as a model for diffusion in
a biological system. The permeability of the planes is given by M.
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where r0i is the position of the ith pore centre. The connectivity of the pores can be
described by the local conditional probability132,220–222

Pi r0; r1;Δð Þ ¼
XN

j¼1

Cij Δð Þρ0j r1� r0j
� 

; (1:139)

where the Cij(Δ) are connection matrix elements describing the probability that a
particle will move from pore i to j during Δ. For isolated pores Cij(Δ) would be a
diagonal matrix as the off-diagonal elements would be zero. Since 2a is taken to be
less than b, it is presumed that the particles will have equilibrated in each pore in a
much shorter time than that required for migration between pores.220 Assuming a
regular lattice as in Figure 1.11 and sufficiently large distances and long timesCij(Δ)
has the (Gaussian) form132,220,222

Cij Δð Þ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πD1Δ

p exp
� i� jð Þ2b2
4D1Δ

 !

: (1:140)

Note that this is the one-dimensional form of the matrix since the measurements we
will ultimately be concerned with measure diffusion in only one direction (at a
time). In the case of a disordered lattice in which there is no correlation between
lattice spacing and pore size, and defining the one-dimensional displacement in the
direction of the measurement given by Z = (z1 – z0), it is possible to define an
average pore structure factor, C(Z, Δ), equivalent to Eq. (1.140). The relative
positions of the pores can be quantified with a ‘microstructural or lattice correlation
function’, L(Z), which represents the probability that a lattice site will be found at a
displacement Z from a starting point. Using this assumption the propagator can be
written as132,220,222

P Z;Δð Þ ¼ �P Z;1ð Þ 	 C Z;Δð ÞL Zð Þ½ �; (1:141)

where �P Z;1ð Þ is the auto-correlation function of a single pore (i.e., Eq. (1.124))
and ⊗ denotes convolution. Simplistically C(Z,Δ) can be assumed to be
Gaussian; however, a more sophisticated and accurate approach would be to
use the pore-hopping formalism220 that is consistent with the distances between
the pores. Indeed, non-Gaussian features result in systems in which there is a
well-defined interpore distance b. For example, in a 1D porous system in
which L(Z) is a set of delta functions, the propagator has local maxima at
multiples of b.
Although porous media are likely to appear macroscopically isotropic, the pore

structure might nevertheless be microscopically anisotropic. Consequently, it is
possible to define higher propagators such as P(x, y, Δ).223–225
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1.8.6 Obstruction

1.8.6.1 Hard spheres

In general the mathematical problem of calculating the obstruction factor involves the
solution to the steady-state diffusion equation (i.e., Laplace’s equation; Eq. (1.38) but
with the LHS set to 0) under the appropriate boundary conditions.200 Except for trivial
cases this represents a formidable mathematical problem and a common means of
approaching this problem is that of the multipole expansion.200,226 Approximate solu-
tions are known only for some simple cases5,85,97,199,227–233 and these are often only
valid at low volume fractions (�). In general, analysis is performed using numerical
simulations (e.g., off-lattice random flight simulations200) – such simulations can also be
used to check the validity of the various approximate solutions for the obstruction factor.
Here we consider some commonly encountered approximations. Neglecting binding

effects, using a cell model Jönsson et al. derived the obstruction effect for a system
containing evenly spaced spherical mono-disperse obstructing particles is found to be199

OD ¼ DðtÞ
D0

¼ 1

1þ �=2
: (1:142)

Thus, in this case the limiting value of D at � = 1 is 2D0/3. Modelled using the
memory effect or a thermodynamic relaxation approach, Lekkerkerker and Dhont
arrived at the relation227

OD ¼ 1� 2�: (1:143)

Using scaled particle theory Han and Herzfeld derived the relationship230

OD ¼ exp � l

R
3

�

1� �
þ 9

2

�2

1� �ð Þ2 þ
9

4

�3

1� �ð Þ3
 ! !

; (1:144)

where l is the step size and, from the Smoluchowski equation, l/a = 2/3 where a is
the radius of the diffusing particle. Starting from the Navier–Stokes equation
Tokuyama and Oppenheim calculated the relationship234

OD ¼
1� 9�

32

1þH �ð Þ þ �=�0

1� �=�0ð Þ2
; (1:145)

where

H �ð Þ ¼ 2b �ð Þ2
1� b �ð Þð Þ �

c �ð Þ
1þ 2c �ð Þð Þ �

b �ð Þc �ð Þ 2þ c �ð Þð Þ
1þ c �ð Þð Þ 1� b �ð Þ þ c �ð Þð Þ ;

b �ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
9 �=8

p
;

c �ð Þ ¼ 11 �=16;
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and

�0 ¼
4

3

� �3

7 ln 3� 8 ln 2þ 2
:

Free volume theories have been widely used especially in studying the diffusion of
small molecules in polymer solution.97,232,233 Within this framework the diffusion
of a small molecule depends on the probability of encountering a suitable-sized hole
through which it can diffuse through resulting in an obstruction factor of the
form97,232,233

OD ¼ exp
Bg

fs
1� 1

1� �

� �� �
(1:146)

where Bg is a measure of the size of the diffusing molecule and fs is the free volume
contributed by the solvent and � .
Plots of four of these obstructionmodels as a function of � are given in Figure 1.14.

As can be seen from both the plots and the forms of the equations there is consider-
able difference between the degrees of obstruction predicted. Importantly, none
of these models account for the presence of an aggregation process and thus will
likely progressively overestimate the reduction in diffusion as the concentration
(and degree of aggregation) increases. Nevertheless, these equations provide one
means of estimating D0 from diffusion experiments at a finite concentration.
Further, since the degree of obstruction is dependent on the shapes of the obstructing

Figure 1.14 Simulations of the obstruction factor, OD, as a function of the volume
fraction, �, using the models of Jönsson et al. (. . . . . . ; Eq. (1.142)), Lekkerkerker
and Dhont (– � – � – �; Eq. (1.143)), Han and Herzfeld (_____; Eq. (1.144)), Tokuyama
and Oppenheim (_ _ _; Eq. (1.145)). Although there is considerable discrepancy
between the models, the simulations show that as � increases the diffusion
coefficient is significantly reduced by the effects of obstruction.
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particles, better models coupled with very accurate diffusion measurements provide
an additional source of solution structural information.

1.8.6.2 Charged species

In reality many molecules cannot be treated as hard spheres and often the effects of
charge should be taken into account such as in studies involving colloids, which
include protein studies.43 One approach for doing this is based on the Poisson–
Boltzmann–Smoluchowski model for an electroneutral spherical shell of radius
Rcell in which a charged hard sphere of radius RS is surrounded by a charged sphere
of monovalent (oppositely charged) counterions distributed according to a Poisson–
Boltzmann distribution.235,236 For monovalent counterions the reduction in diffu-
sion is given by

OD ¼ χ Rcellð Þ n Rcellð Þ
navg

; (1:147)

where n(Rcell) is the number of counterions at the outer cell boundary, navg is the
average number of counterions in the spherical shell and χ(Rcell) is determined from
the first-order differential equation

rχ0 þ χ 1þ χ � r
@�e

@r

� �
� 2 ¼ 0; (1:148)

with the boundary condition χ(RS) = 0, where �e is the electrostatic potential and r
denotes the distance from the centre of the spherical cell.
More recently, Darwish et al.237 presented a phenomenological modification

of the geometric obstruction model of Amsden238 to model the diffusion of ions
in polyelectrolyte gels. They incorporated electrostatic obstruction effects by
adopting an effective chain diameter from Dobrynin scaling theory for polyelec-
trolytes and by adding an exclusion layer around the charged chains to account
for the electrostatic interaction between the ions and the chains.

1.8.6.3 Solvated species

If solvent molecules are diffusing in the presence of macromolecules then, in
addition to obstruction, should they bind to (or be structured around102) the macro-
molecules their diffusion will be even further decreased. For macromolecules
represented as ellipsoids with semi-major axis a and semi-minor axis b, combining
both effects, the reduction in solvent diffusion is given by239,240

OD ¼ 1� �α�hð Þ 1� δhð Þ
1� �h

; (1:149)
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where

�h ¼
VS þ δh

d 0

VS þ 1

d 0

1� w

w

� � ; (1:150)

f ¼ 1� w

1� w
δh; (1:151)

where d0 is the density of the solvent and w is the weight fraction of anhydrous
macromolecules in solution. The shape factor �α is defined by

�α ¼ 1

3
αa þ αb þ αcð Þ: (1:152)

For the case of a sphere αa = αb = αc = 1.5. In the case of oblate ellipsoids,

αa ¼ 1� p
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and

αb ¼ αc ¼ 2
2� p2

1� p2
� p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� p23
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π
2
� tan�1 p
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(1:154)

For prolate ellipsoids

αa ¼ p2

p2 � 1
� p

2 p2 � 1ð Þ3=2
ln

pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p
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(1:155)

and

αb ¼ αc ¼ 2
p2 � 2

p2 � 1
� p

2 p2 � 1ð Þ3=2
ln

pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � 1

p
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; (1:156)

where p = a/b.
Using a cell model including the effects of obstruction and binding (i.e., hydra-

tion) Jönsson et al.199 determined the observed self-diffusion coefficient which is
given by

OD ¼ 1

1� 1� C1

C2

� �
�

1� β�

1þ β�
2

; (1:157)
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with

β ¼ D2C2 �D1C1

D2C2 þ 0:5D1C1

; (1:158)

whereC1 andD1 are the water concentration and self-diffusion coefficient inside the
spherical particles and C2 and D2 are the same properties but surrounding the
particle. Equation (1.157) reduces to Eq. (1.142) in the limit C1 → 0.

1.8.7 Diffusion in polymers

Diffusion in polymers embraces a huge area of work and we give only a token
coverage. Estimates of friction coefficients for polymers can be obtained using
Kirkwood–Riseman theory as outlined in Section 1.3.3. Discussion of polymer
diffusion is typically categorised into dilute, semi-dilute, and concentrated (or melt)
regimes. Further specialisation can be made for diluents and penetrants in polymers,
large or flexible molecules dissolved in polymers and polymer gels. It is emphasised
that the diffusion of polymers, especially in concentrated solution and melts, is
complicated by entanglement of the polymer chains. Detailed discussion on diffu-
sion in polymer systems can be found elsewhere.2,21,104,177,233,241

Various phenomenological models, free volumemodels andmolar mass (M) scaling
laws have been presented.233 The well-known Rouse model states that the diffusion of
high molecular weight polymers in a dilute solution is expected to scale as242

D � M�1: (1:159)

Reptation theory was introduced by de Gennes104,243 to model diffusion when the
polymer chains are entangled. In this model the polymer chain is considered to be
constrained by the surrounding polymer molecules. Since the polymer molecule is
surrounded by other polymer molecules, the central part of the polymer remains
restricted for a longer time than the extremities of the chain; the polymer is said to be
constrained within a tube and performs wormlike displacements. Consequently,
lateral motion is ignored and only tubular motion is considered. Whereas for high
molecular weight polymers in either concentrated solutions or melts, the resultant
tube diffusion is expected to scale as243

D � M�2: (1:160)

For short observation times (i.e., small Δ), the observed displacement may be
smaller than the end-to-end distance of the polymer chain and thus a polymer
system can be considered as being heterogeneous at short times. The diffusion of
the polymer molecules is restricted by instantaneous tubes formed by the bulk phase
of the surrounding molecules. The reptation time, tr, is defined as the time required
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for a polymer molecule to cover a curvilinear diffusion path of the order of its
contour length. For Δ > tr , the confining tube will be completely uncorrelated with
the previous tube and the observed diffusion coefficient will appear to be constant
(i.e., it will not scale with time). Conversely, for Δ < tr , the motion of the polymer
segments is subject to a correlated confinement. Accordingly, the apparent diffusion
coefficient will decrease with increasing Δ.
In some polymer gel systems the diffusion is described by the particles diffusing

in an isotropic medium while being harmonically bound to an attractive centre (see
Section 4.6).158,159,244

To better describe the temperature dependence of diffusion, diffusion models
which can be considered as thermodynamic models are also used. For example,
Arrhenius equations of the form

D ¼ A exp � EA

RT

� �
(1:161)

where A is a pre-exponential factor, EA is the activation energy and R is the gas
constant are often used to estimate the temperature dependence of the diffusion
coefficient of polymer systems. It is noted that the usage of Eq. (1.161) is not just
restricted to polymer systems.

1.9 Flow in porous media

We can define the velocity correlation time τv for the duration of flow around the
characteristic length scale in a porous medium (Figure 1.15), dp, by

245,246

τv ¼ dp
Vh i : (1:162)

The ratio of the time taken to diffuse across a pore to the time taken to flow across a
pore is given by the Péclet number20

Pe ¼ l Vh i
D0

; (1:163)

where, in the case of packed beads, l is given by the effective pore diameter

l ¼ �dp= 1� �ð Þ; (1:164)

where � is the porosity. At large Péclet numbers (i.e., Pe≫1) the dominating source
of the dispersion of the particle trajectories is the tortuosity determined by the pore
space geometry. In this case incoherent displacements due to tortuous flow dom-
inate Brownian displacements and particle transport tends to be subdiffusive (see
Section 1.8.4).
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1.10 Techniques for measuring diffusion

1.10.1 Traditional techniques

Numerous methods exist for measuring diffusion2 including NMR, light scatter-
ing,10,21 neutron scattering,248 capacity intermittent titration techniques (CITT),249

capillary methods, fluorescence,250,251 attenuated total reflection infrared spectr-
oscopy (ATRIR)252 and centrifuge studies.253 The non-NMR methods in partic-
ular are generally of limited application (e.g., concentration range), extremely
tedious, fraught with experimental difficulty or are invasive in nature.2,14

Neutron scattering, however, is confined to making measurements on the scale
of only 0.01–10 nm and thus is usually confined to single scattering events as it
measured on the timescale of 10−9–10−12 s. Dynamic light scattering (DLS)
depends on concentration fluctuations and measures mutual diffusion and is
non-invasive and non-perturbative.2,10

1.10.2 NMR-based techniques

Due to its non-invasive nature and generally not requiring labelled probe mole-
cules, NMR spectroscopy is a unique tool for studying molecular dynamics in

Figure 1.15 A schematic representation of flow through a porous medium. The
flow is associated with an average velocity (see Eq. (1.1)). The dispersive nature
of the flow can be visualised from the diagram and includes mechanical dispersion
(e.g., bifurcation of streamlines and turbulence) and Taylor dispersion (diffusion
across velocity shear).247
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chemical and biological systems. Importantly, it allows measurements to be
performed under physical conditions, such as high pressure254 and temperature,
where other methods may be precluded. In contrast to virtually all of the tradi-
tional methods, NMR diffusion measurements are applicable at any concentration
that provides a sufficient signal-to-noise ratio (S/N) and being of non-invasive
nature, they do not perturb the thermodynamics of the system.
There are two main ways in which NMR may be used to study self-diffusion

coefficients: (i) through analysis of nuclear spin relaxation data and (ii) through
magnetic field gradient NMR. Relaxation-based measurements of diffusion are
microscopic in nature since relaxation is sensitive to motions on the timescale of
the reorientational correlation time of the species (τc). In the solution state this
corresponds to motions occurring on the ps to ns timescale. In this approach,
relaxation data is analysed to determine τc of a probe species.255 τc can then be
related to the solution viscosity and ultimately to the translational diffusion coeffi-
cient by using the Debye equation256–258

τc ¼ 4πηr3S
3kT

; (1:165)

and the Einstein–Sutherland equation (i.e., Eq. (1.13)). However, a number of
assumptions, which depending upon the system being studied may or may not be
justified, need to be made in performing this analysis. First, the relaxation
mechanism of the probe species needs to be known and it is required that the
intermolecular contributions to the relaxation can be separated from the intra-mo-
lecular contributions.259,260 Secondly, only if the molecule is spherical can its
reorientational dynamics be properly characterised by a single correlation time.
Thirdly, depending on the size of the probe molecules compared to the molecules of
the bulk solution, the probe molecules may not see the solution as being continuous,
and as a consequence one of the basic requirements for the validity of the Debye
equation is violated.261,262 Thus, serious assumptions are involved in applying this
method to, for example, biological milieux when a small probe species is used since
the solution normally has a large macromolecular component (e.g., a large part of
the cytoplasm of red blood cells is composed of haemoglobin). The final problem
with this method is that the Stokes radius of the probe molecule needs to be known
and this, as has been noted above, is in general far from straightforward as will be
seen below.
PGSE NMR provides estimates of the translational self-diffusion coefficient as

against methods such as scattering techniques which actually provide estimates of
the mutual diffusion coefficients. Although we will see in Chapter 9 that NMR
imaging can be used to measure mutual diffusion. The remainder of this book is
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predominantly concerned with the use of magnetic field gradients to measure
diffusion and other aspects of translational motion.
We remark that the two NMR methods are complementary and study motion on

very different timescales. Specifically, gradient-based NMR measurements probe
spin displacement distributions over Δ (i.e. the MSD, the average propagator, the
time-dependent diffusion coefficient and the diffusion spectrum) and diffusion is
just a special case of what can be measured. Gradient-based methods can also be
used to probe Dω(ω).
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2

Theory of NMR diffusion and flow measurements

2.1 Introduction

As soon as the spin-echo was discovered by Hahn in 1950 it was realised that it
could form the basis of self-diffusion measurements.1 Indeed, certainly within the
next decade the concept of spin-echo-based diffusion measurements using static
magnetic gradients (i.e., Steady Gradient Spin-Echo or SGSE NMR) had become
widespread and used in quite sophisticated measurements such as on water2 and
3He.3 Many of the experimental limitations of static gradient measurements were
removed with the suggestion in 1963 by McCall, Douglass and Anderson4 and
experimental introduction in 1965 by Stejskal and Tanner5 of applying the magnetic
gradients as pulses in the spin-echo sequence (i.e., Pulsed Gradient Spin-EchoNMR
or PGSE NMR). Carr and Purcell6 were the first to discuss NMR flow measure-
ments and in 1960NMR flow measurements were considered for the purpose of
measuring sea-water motion.7

Virtually all contemporary NMR diffusion (and flow experiments) are based on
some form of spin-echo.1,6,8–10 Indeed, for all but the simplest cases the dependence
of the observed echo amplitudes on diffusion rapidly becomes very complicated and
this can be exacerbated in pulse sequences where the magnetisation is kept in a
steady state.9,11,12 However, in the following discussions we will assume, unless
otherwise noted, that all pulse sequences start with the spin system being in thermal
equilibrium (i.e., M0). As the diffusing species necessarily contains a nuclear spin,
the terms spin and particle will henceforth become synonymous. This chapter
explains why spin-echoes in NMR are sensitive to translational motion and how,
with the imposition of appropriately placed magnetic field gradient pulses, they
form the basis of NMR diffusion and flow measurements.
The key theory relating spin-echo attenuation to diffusion and the experimen-

tal parameters (e.g., magnetic gradient pulses) is encapsulated in the Bloch–
Torrey equations – however, full solutions starting from these equations become
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mathematically intractable for anything but the simplest systems. Thus, various
approximations are used of which the two most commonly encountered are the
Short Gradient Pulse (SGP) and the Gaussian Phase Distribution (GPD) approx-
imations. The solutions are derived for the case of free isotropic diffusion using
each of these three methods. All three approaches involve solving the diffusion
equation subject to the correct boundary conditions. However, some of the earliest
studies evaluated the effects of diffusion on echo sequences by the conceptually
appealing but cumbersome approach of approximating diffusion as a random walk
of discrete steps.6,9,13 The relationship between the experimental variables and the
workings of the PGSE NMR experiment is most easily and conceptually expressed
using the SGP approximation – consequently, this is the first method for relating
the spin-echo attenuation to the experimental parameters that we examine.
Consideration is given to the most commonly encountered sequences used in

PGSE NMR, namely the Hahn spin-echo sequence (SE) and the stimulated echo
sequence (STE). Coverage is also given of Carr–Purcell–Meiboom–Gill type
sequences (CPMG), and the related oscillating gradient experiments (OGSE).
OGSE sequences, although in essence a subset of the family of spin-echo experi-
ments, probe the shorter timescale of the diffusion spectrum and consequently can
be analysed by a different means; thus their form and analysis is treated separately.
Diffusion measurements of multicomponent systems, although no more difficult

to perform than single component systems, present special difficulties in their
analysis. This is covered in considerable detail. The last section of this chapter
gives a brief overview of the distant dipolar field and multiple echoes.
Finally, we note that although measurements can be performed with either B0

(magnetic) or B1 (rf) gradients, B0 gradients are more commonly used and thus they
form the focus of this chapter. Generally, the theory for B0 and B1 gradients is
analogous; some salient points of B1 gradients and B1 gradient methods are covered
in Chapter 10.

2.2 Nuclear spins, magnetic gradients and motion

2.2.1 NMR coherence orders and signal detection

The analysis of NMR diffusion pulse sequences involves following nuclear spin
coherence pathways through the sequence using density matrix or product operator
formalisms,14–23 and accounting for the effects of diffusion and magnetic gradients
on the bulk magnetisation. Starting from thermal equilibrium, the (initial) long-
itudinal magnetisation has coherence order p = 0 with the coherence order signify-
ing the multiple of the Larmor frequency describing the free precession of the
respective density matrix element. Only rf pulses can change p and a π/2 rf pulse
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will transform longitudinal into transverse magnetisation, which corresponds to
p=+1 and −1 in equal amounts. The evolution of these two transverse coherence
orders is followed through their respective coherence pathways as specified in the
pulse sequence and ultimately only those signals corresponding to p=−1 give rise to
a detectable signal. Importantly, π pulses can change the sign of p. Some examples
of pertinent coherence pathways are given in the depictions of the pulse sequences
below (coherence pathways not contributing to the detected signal are omitted). In a
system of coupled spins or in which the spin quantum number is greater than ½,
although the initial π/2 pulse only generates coherences with p= ±1, subsequent π/2
pulses can generate multiple quantum coherences (i.e., |p| > 1).
The NMR signal detected at the end of a pulse sequence is the projection of the

precessing spin magnetisation (from the p =−1 coherences) onto the x-y plane.
Quadrature detection24,25 detects a complex signal (i.e., the detected signal has a real
and a complex component) which importantly allows the sense of the nuclear spin
precession to be determined. Recalling Euler’s formula

ei� ¼ cos�þ i sin�; (2:1)

it can be seen that the amplitude of the signal from a spin will be proportional to the
real component, i.e., cos �, where � is the phase angle of the spin in the transverse
plane. In an NMR experiment there is an ensemble of spins and at time t after the
initial excitation of the spins, the signal acquired, S(t), will be the volume integral of
the product of the bulk magnetisation at a point r, M(r), times the instantaneous
phase of the magnetisation �(r,t)

S tð Þ ¼
ð
M rð Þei� r;tð ÞdV: (2:2)

M(r) is proportional to B7=4
0 ,13,26 but there must be sufficient phase coherence of the

magnetisation to detect a signal. And similarly, the volume of integration must be
large enough to obtain a measurable signal – this can become a particular problem in
MRI-based experiments when seeking spatially localised information.
In a structurally homogeneous system, the attenuation of the NMR signal due to

the distribution of � is given by6

EðtÞ ¼
ð1

�1
P�ð�; tÞei�d�; (2:3)

where P�(�, t) is the (relative) phase-distribution function; P�(�, t) is normalised
and thus,

ð1

�1
P�ð�; tÞd� ¼ 1: (2:4)
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Thus, when all of the spins are coherently oriented along �= 0 (see Figure 2.1),
which corresponds to P�(�, t) = δ(�) where δ is the delta function, there will be zero
attenuation (i.e., maximum signal), namely

EðtÞ ¼
ð1

�1
δð�Þei�d� ¼ 1: (2:5)

As will be seen below, a likely situation in NMR diffusion measurements is where
the phase distribution is Gaussian, namely

P�ð�; tÞ ¼ 2π �2
� �� ��1=2

exp
��2

2 �2h i
� �

; (2:6)

where 〈�2〉 is the mean-square phase distribution. Using the Gaussian distribution,
and noting the standard integral (3.323 2 in ref. 27)

ð1

�1
e�a2x2�bxdx ¼ e

b2

4a2

ffiffiffi
π

p
a

½Re a240�; (2:7)

the signal attenuation (Eq. (2.3)) becomes

EðtÞ ¼ exp � �2
� �

=2
� �

: (2:8)

2.2.2 Magnetic gradients, nuclear spins and translational motion

In the following it is assumed that B0 is oriented in the z-direction as it is in most
(non-whole body) superconducting magnets. A spatially homogeneous magnetic
field will, according to the Larmor equation, result in all spins of the same type

Gradient
pulse

Projection onto
vertical planeq–1

l

z

y

x

φ

Figure 2.1 Initially coherent transverse magnetisation (spin isochromats, represented
as the five arrows all pointing in the same direction=maximum signal) in a
cylindrical sample of length l is transformed (‘spatially encoded’) into a helix
(i.e., a magnetisation grating)30,32 with pitch q−1 (m) by the application of gradient
pulse of dephasing strength q (see Eq. (2.14)). The solid line marking the helix is a
guide for the eye. The projection of the helix on to a plane containing the z axis is
depicted on the right. The acquired signal corresponds to the vector sum of the
magnetisation and no signal will be obtained when q−1 = l/m where m is an integer.

72 Theory of NMR diffusion



having the same Larmor (or resonance) frequency, ω0, irrespective of their position,
r (m), throughout the sample

ω0 ¼ pγB0; (2:9)

where γ is the gyromagnetic ratio. Formally, Eq. (2.9) should be negative to give the
correct sense of precession about B0 but for simplicity it is neglected as it is
unimportant so long as consistency is maintained in subsequent calculations.
In almost all that follows we will be concerned with the imposition of a spatially

homogeneous (or constant) gradient, g (Tm−1) throughout the sample. The gradient
strength g ( = |g|) is often expressed in G cm−1 (1G cm−1 = 0.01 Tm−1). It will
generally be the case that |g · r| ≪ |B0|, and thus the magnetic field components
perpendicular to B0 can be neglected (i.e., B = (0, 0, Bz)). Thus, g is defined by the
grad of the magnetic field component parallel to B0

g ¼ Δ

Bz ¼ @Bz

@x
iþ @Bz

@y
jþ @Bz

@z
k; (2:10)

where i, j and k are unit vectors of the laboratory frame of reference. Hence in the
presence of such a gradient, the magnitude of the magnetic field at any point is

BðrÞ ¼ B0 þ g � r: (2:11)

Thus, a constant gradient leads to a linear spatial change in the magnetic field in the
direction of the gradient resulting from the scalar (or dot) product (g · r). In the
literature g is often incorrectly referred to as ‘linear’, but a linear gradient would lead
to a curved (i.e., quadratically varying with position) magnetic field.
By modifying the Larmor equation to include the presence of g, ω becomes a

function of the position r,

ωðrÞ ¼ pðω0 þ γðg � rÞÞ: (2:12)

Thus, if a homogeneous gradient of known magnitude is imposed through the
sample, the Larmor frequency becomes a spatial label with respect to the direction
of the gradient. This is the foundation of all gradient-based methods and it also
shows that whilst zero quantum transitions are unaffected by the presence of the
gradient, successively higher quantum transitions are more sensitive to the effects of
the gradient. For heteronuclear multiple quantum transitions, Eq. (2.12) must be
modified to account for the coherent spins (see Section 8.3).
For a spin located at r after the application of a ‘rectangular’ magnetic gradient

pulse of duration δ, the phase � will be given by

�ðrÞ ¼ pγδg � r: (2:13)
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γδg can be looked on as the ‘area’ or the ‘dephasing strength’ of the gradient pulse
with γ acting as a proportionality constant for the nucleus in question. Due to the dot
product only the component of the motion parallel to the direction of the gradient
will cause a change in the phase of the spin. The inclusion of the coherence order, p,
also leads to the concept of an ‘effective gradient’, geff = pg, since the phase change
resulting from a gradient pulse acting on a coherence of order p =−1 is the opposite
of that induced by the same gradient pulse on a coherence of order p= 1.
Consequently, it is important to account for the effects of π rf pulses in pulse
sequences when determining the effects of gradient pulses.
The notation

q ¼ 1

2π
γδg ðm�1Þ (2:14)

is often used to characterise gradient pulses involved in measuring a dynamic
property and leads to the concept of q-space. q and g are often used synonymously.
We note that the definition of q is identical to the definition of k (and k-space) as
used in conventional (i.e., MRI) imaging literature.28 However, in contrast to q
and q-space, k and k-space relate to the gradient pulse being used to provide
information on spatial location. Thus, as will be shown below, q-space involves
the spatial spectrum of nuclear spin displacements and k-space involves the
spatial spectrum of nuclear spin positions.
So far we have only thought of gradient pulses in terms of rectangular pulses;

however, for technical and other reasons other gradient shapes ranging from trape-
zoidal to oscillating sinusoidal gradients are sometimes used. Generalising Eq.
(2.14) to include the possibility of time-dependent gradients and coherence orders
gives

qðtÞ ¼ 1

2π
γ
ðt

0

pðt0Þgðt0Þdt0

¼ 1

2π
γ
ðt

0

geffðt0Þdt0: (2:15)

Although a magnetic gradient can in theory be in any direction, unless otherwise
noted, it will be assumed that any applied gradient is parallel with B0 (i.e., g= gzk).
Although often written as such, a gradient pulse does not ‘randomise’magnetisa-

tion but instead precisely spatially encodes it. For example, as depicted in Figure 2.1
a gradient pulse applied along the long axis of a cylindrical sample of length l
immediately after a π/2 excitation pulse twists the magnetisation into a helix29 (i.e.,
circularly polarised transverse magnetisation) with a pitch of
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Λq ¼ 2π
γδg

¼ q�1ðmÞ: (2:16)

During an NMR pulse sequence consisting of rf pulses and magnetic field gradient
pulses themagnetisation vector field has a complicated temporal and spatial dependence
and is sometimes referred to as a magnetisation grating or multiple magnetisation
modulation due to its periodic structure.10,30−34 For example, the helix in Figure 2.1
when projected onto a vertical plane has the form A cos(qz+�0) where A is a constant
and �0 is the phase offset. Indeed, analogies exist between gradient-based NMR diff-
usion measurements and the diffraction of light from concentration gratings35 and
transient refractive index gratings in optical holographic relaxation experiments.30,36

If signal acquisition was to be performed for a cylindrical sample with the
gradient along the long axis, which corresponds to integrating the phase of the
spins over the sample volume, starting from Eq. (2.13) we find that the signal
attenuation due to the phase twist is given by

EPhaseðgÞ ¼

ðz1

z0

eiγδgzdz

z1�z0
¼

ðl=2

�l=2

eiγδgzdz

l
¼ sinc

γgδl
2

� �
; (2:17)

where sinc(x) = sin(x)/x. Thus, when the spread in phase across l is 360° the vector
sum of the magnetisation is zero and thus no signal is observed when

g ¼ 2mπ
γδl

; (2:18)

or, equivalently, using Eq. (2.14)

ql ¼ m; (2:19)

wherem is an integer. Thus the signal attenuation due to a gradient pulse depends on
the gradient amplitude and direction.
The concept of a magnetisation helix formation is central to the use of gradients

for coherence selection, phase cycling and solvent suppression,37–39 but perhaps
most importantly, the transformation from coherent transverse magnetisation to a
spatially well-defined helix allows the detection of translational motion. The net
component of any translational motion along the direction of the helix (i.e., the same
direction as the gradient) will alter the helix, whereas motion orthogonal to the
direction of the helix will leave the helix unchanged. Specifically, we will see that
diffusive motion will reduce the helix diameter while flow results in a net movement
of the helix. The sensitivity of these geometrical changes of the helix by motion
will be increased with more tightly wound helices (i.e., higher q). Indeed, due to
the finite length of a gradient pulse (δ), the transition from coherent transverse
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magnetisation to magnetisation helix does not happen instantaneously and the
maximum q and maximum sensitivity to diffusive motion occur at the end of the
pulse. Motional restriction (diffusion inside a restricting geometry such as a biolo-
gical cell) will impart a characteristic distortion signature onto the helix. In essence
this book is about how to generate such a magnetisation helix, how translational
motion affects the helix and how such a geometrically altered or distorted helix can
be interrogated to reveal information on the translational motion. Singer has pre-
sented an intuitive description of diffusion and flow measurements termed ‘spin
phase graphing’.40

Helix formation is affected if motion occurs during the gradient pulse (e.g.,
diffusion would result in an attenuation of the helix diameter but the helix
will have the same pitch as if no diffusion had occurred); consequently, the spin
dynamics are more conceptually easy to visualise in the short gradient pulse (SGP)
limit (rigorously, a gradient pulse has the form of a delta function, that is δ→ 0 and
|g| → ∞ while their product remains finite). Further, the SGP limit also means that
any motional corruption during the gradient pulses can be ignored.
More generally the phase shift at time t of a nuclear spin following a path r(t) in a

gradient g(t) is given by

�ðtÞ ¼ γ
ðt

0

pðt0Þgðt0Þ � rðt0Þdt0

¼ γ
ðt

0

geffðt0Þ � rðt0Þdt0: (2:20)

Only the component of the spin’s motion in the direction of the gradient, z(t), is
relevant and this can be expanded in a Taylor series41

zðtÞ ¼ z0 þ @z

@t

� �

t¼0

tþ 1

2

@2z

@t2

� �

t¼0

t2 þ 1

6

@3z

@t3

� �

t¼0

t3 � � � (2:21)

The terms on the right-hand side of Eq. (2.21) correspond to the position z0, velocity

v0 ¼ @z

@t

� �

t¼0

; acceleration a0 ¼ @2z

@t2

� �

t¼0

; jerk j0 ¼ @3z

@t3

� �

t¼0

and higher terms

and thus Eq. (2.20) can be rewritten as

�ðtÞ ¼ γz0M0 þ γv0M1 þ 1

2
γa0M2 þ 1

6
γ j0M3 þ � � � (2:22)

where

Mn ¼
ðt

0

pðt0Þgzðt0Þðt0Þndt0: (2:23)
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Mn is termed the nth moment of gz(t) with respect to t. An important point that will
become evident in measurements of flow, or conversely when particular transla-
tional motions are to be excluded from measurements, is that the moments can be
individually manipulated by appropriate design in NMR pulse sequences. Indeed
Eq. (2.23) reveals that a sequence that has an even number of positive and negative
(or effectively positive and negative due to change in coherence order) gradient
pulses will cause the zeroth moment to become zero.
In the case of uniform flow alone, which would correspond to all moments apart

from M1 being zero in Eq. (2.22), the phase relation is given by

�ðtÞ ¼ γv0M1 (2:24)

or

v0 ¼ �ðtÞ
γM1

(2:25)

indicating that the velocity is proportional to the measured phase.
Often in PGSE measurements we must also consider the effects of ‘background’

gradients (g0) that arise: (i) out of intentional application, (ii) as a result of an
imperfect B0 field (or in MRI-based diffusion measurements from imaging gradi-
ents42) or (iii) due to the sample being magnetically heterogeneous resulting in
internal magnetic field gradients (gint or IMFG). Typically, such background gra-
dients are viewed as a source of artefacts to be accounted; however we will see in
Section 4.8 that the internal gradients can be used to study diffusion in porous
media.

2.2.3 Effects of diffusion and flow in gradient echoes in the short
gradient pulse (SGP) approximation

The conceptually simplest measurement of translational motion is a gradient
spin-echo in the SGP limit as depicted in Figure 2.2. For the moment we neglect
the effects of spin relaxation. In this NMR sequence, a π/2 rf pulse is used to prepare
coherent transverse magnetisation which is then twisted into a helix by the first
gradient pulse. After a delay Δ, a second identical gradient pulse but with negative
amplitude to the first is used to spatially unencode the helix into transverse magne-
tisation. Importantly, the echo occurs when (i.e., t= t echo) the integral (i.e., Eq. (2.20))
of the effects of the gradient (pulses and or static) is equal to zero, namely

qðtechoÞ ¼ 0: (2:26)

Providing the nuclear spins have not moved during Δ (or have returned to their
position at the time of the first gradient pulse) the effects of the first gradient pulse
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will be completely counteracted by the second gradient pulse and all the magnetisa-
tion is returned to a coherent transverse state (i.e., an echo) and is detected giving a
maximum echo signal.
Here we consider the effects of diffusion and flow on the gradient spin-echo

signal. We will see that both phenomena have significant – but distinctly different –
effects on the refocussing mechanism. First consider the case of plug flow
(Figure 2.3) in which all spins will move a distance v0Δ between the two gradient

(A)

(B)

(C)

(D)

π/2x

g

q–1

S

t1 t1 + Δ

q(t)

p

τ τ

δ

0

1

–1
0

Figure 2.2 Schematic diagram of (A) the gradient spin-echo pulse sequence
experiment, (B) the relevant coherence levels, (C) the change in q(t) in the
short gradient pulse limit and (D) the effects of this pulse sequence on a sample
of nuclear spins (arrows). The π/2 rf pulse prepares coherent transverse
magnetisation. Each rf pulse is typically very short � 10 μs. t= 0 is set as
immediately after the π/2 pulse. The first gradient pulse is applied a time t1 later
and winds the magnetisation into a helix. After a delay Δ, which defines the
timescale of the measurement, an identical gradient pulse but of opposite
magnitude refocusses the transverse magnetisation which is then detected (i.e.,
the FID) at techo = 2τ. The amplitude of the NMR signal is proportional to the vector
sum of the magnetisation (i.e., the arrows), which would be a maximum in this case
as they are all pointing in the same direction at the beginning of signal acquisition.
With foresight to consistency with later discussion we define the start of echo
signal acquisition as being at time 2τ.

78 Theory of NMR diffusion



pulses resulting in a net phase shift (Δ�; here Δ means difference) of (from
Eq. (2.24))

Δ�ðΔv0Þ ¼ γδg � v0Δ ¼ 2πq � v0Δ: (2:27)

Consequently, the effect of flow on signal amplitude is given by noting Eq. (2.2)

ΦFlowðΔv0Þ ¼ expði γδg � v0ΔÞ
¼ expði2πq � v0ΔÞ: (2:28)

As this is a complex-valued exponential, it is evident that uniform flow (i.e.,
coherent motion) does not cause signal attenuation, but instead a phase change
since plug flow merely translates the helix along its long axis. If the distance flowed
along the long axis is equal to an integer multiple of the helix pitch the magnetisa-
tion will be completely refocussed by the second gradient pulse. However,
non-integral displacements will result in perfect refocussing of coherent transverse
magnetisation but in a different direction. Thus, experimentally the NMR signal will
be observed to have a complex phase modulation. The sequence becomes more
sensitive to flow at higher q values since the pitch of the helix is tighter.
Diffusion, which is an incoherent motion with each spin moving independently,

decreases the amplitude (or diameter) of the helix so that after the second gradient
pulse, although the magnetisation is transverse it is less coherent resulting in a
reduced signal being detected (see Figure 2.4). Clearly the diameter of a tighter helix

q–1

t = t1
– t = t1 + Δ+

v0Δ

v0
v0

Figure 2.3 A conceptual diagram of the effects of flow at velocity v0 in the
direction of the gradient on a liquid containing nuclear spins in the gradient
spin-echo shown in Figure 2.2 showing the orientation of the spins before the
first gradient pulse (t1

−) and after the second (t1 + Δ+). The spins will move a
distance of v0Δ m in the interval Δ between the gradient pulses which, in the
present example, is approximately equal to 1.5 q−1 which corresponds to a phase
shift of Δ� ≈ 3π. Importantly, only the orientation with respect to the x−y plane
changes while the vector sum of the spins remains the same.
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will decay more rapidly due to diffusion since less displacement is required for spins
to come into regions containing spins with substantially different phases and
thereby reducing the local magnetisation coherence (i.e., vector sum). Thus, in
contrast to the effects of flow which are microscopically reversible, the effects of
diffusion has changed what was a reversible process into an irreversible one. One
can imagine that for any one small segment of the helix the coherence of the
magnetisation will be lost in an incoherent Gaussian-like decay due to the diffusion
of the spins in analogy with the change in displacement probability as depicted in
Figure 1.5 and this ultimately leads to a reduction in the diameter of the helix. Due to
the large number of spins involved and the Gaussian nature of diffusion there is no
net phase change and only signal attenuation, EDiff, is observed. The relationship
between EDiff, the experimental variables and diffusion will be considered in more
detail below. In general, we shall omit the subscript ‘Diff’. Since flow and diffusion
have unique signatures, both effects can be detected simultaneously.
As a prelude of what is to come in our discussion of diffusion in restricted

geometries in later chapters, it can be conceptualised that were this helix winding
and unwinding to occur inside a pore, the geometry of the pore itself will be
reflected in the distortion of the helix and that it will be a more complicated process
than a Gaussian decay of the helical diameter.
We now consider what constitutes the NMR signal in more detail. If the initial

magnetisation is taken to be M0, the signal detected at time 2τ will be given by

Time
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1

6
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t = t1
– t = t1 + Δ+

Figure 2.4 A conceptual diagram of the effects of diffusion on a sample containing
nuclear spins, represented as arrows, in the gradient spin-echo shown in Figure 2.2,
showing the coherent orientation of the spins before the first gradient pulse (t1

−)
and decoherent orientation after the second (t1 +Δ+). The diffusive motion between
the gradient pulses attenuates the magnetisation helix in an irreversible way (note
that there is really an ensemble of spins generating the helix and not just a small
number as depicted at t = t1

− and t1 + Δ+). Specifically, the diameter of the helix is
attenuated but the pitch of the helix is left unchanged. Only the component of the
diffusive motion in the direction of the magnetic gradient (i.e., along the long axis
of the helix) is of consequence. After the second gradient pulse the residual
coherent magnetisation is refocussed. Consequently, the vector sum at t1 + Δ+ is
less than that at t1

− since the spins are now pointing in different directions and this
is reflected as an attenuated echo signal.
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Sðq; 2τÞ ¼ M0ERelaxð2τÞEDiffðq; 2τÞΦFlowðq; 2τÞ; (2:29)

where ERelax(2τ) is the attenuation of the signal due to relaxation (that we have
previously ignored), which in the present case is simply that due to spin–spin
relaxation (time constant T2), namely

ERelaxð2τÞ ¼ exp � 2τ
T2

� �
: (2:30)

Importantly, providing the length of the sequence is constant, the attenuation due
to relaxation will also be constant. Although EDiff(q, 2τ) andΦFlow(q, 2τ) are defined
in Eq. (2.29) as a function of 2τ, providing that only the two purposely applied
gradient pulses as shown in Figure 2.2 need to be considered, both are really only
functions of Δ since only motion during Δ is of consequence.
The derivation of EDiff proceeds as follows: starting from Eq. (2.13) the phase

change of a spin which was at position r0 during the first gradient pulse and at
position r1 during the second is given by

Δ� r1� r0ð Þ ¼ 2πq � r1� r0ð Þ; (2:31)

as depicted in Figure 2.5.
The probability density of a spin starting from r0 and moving to r1 in time Δ is

given by (recall Eq. (1.34))

z

y

x

g

r1

r0

R

R cos θ

θ

Figure 2.5 Schematic representation of a spin diffusing from r0 to r1 and the
resulting dynamic displacement vector, R (= r1 – r0). θ is the angle between R and
the applied magnetic field gradient direction. Here the gradient direction is taken to
be along z. It is the magnitude of the projection of R onto the direction of the
gradient (i.e., R cos θ) that is used in determining the phase change, Δ�,
experienced by the spin.
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ρðr0ÞPðr0; r1;ΔÞ: (2:32)

In the context of a PGSE sequence, ρ(r0) is really the starting spin density ρ(r0, 0)
which is the quantity mapped in conventional (i.e., k-space) imaging, and strictly the
assumption that ρ(r0, 0) = ρ(r0) requires that the first gradient pulse is applied
sufficiently quickly after the initial rf excitation (i.e., the delay t1 is small in Figure
2.2) so that the effects of spin relaxation can be ignored.43 The delta function
initial condition also means that the starting spin density is spatially uniform (i.e.,
M(r0, t = 0+) = 1/VP).

44

Noting Eq. (2.1) the NMR signal is proportional to the vector sum of the
transverse components of the magnetisation and so the signal from one spin is
given by

ρðr0ÞPðr0; r1;ΔÞ ei2πq � ðr1� r0Þ: (2:33)

But in NMR the signal results from an ensemble of spins and thus integrating over
all possible starting and finishing positions to obtain the SGP master equation45,46

EDiffðq;ΔÞ ¼
ð ð

ρðr0ÞPðr0; r1;ΔÞ ei2πq�ðr1� r0Þd r0 d r1; (2:34)

thus the total signal is a superposition of signals (transverse magnetisations), in
which each phase term is weighted by the probability for a spin to begin at r0 and
move to r1 during Δ. Note a negative exponent is commonly encountered in the
literature depending on the definition of the Larmor equation as noted before. In
subsequent discussion we shall assume, unless otherwise noted, that E and EDiff are
synonymous. Equation (2.34) defines a Fourier relationship between E(q,Δ) and
P(r0, r1, Δ) (appropriately weighted over the nuclear ensemble).47 Another impor-
tant property of Eq. (2.34) is that the particle motion, which is contained in P(r0,
r1,Δ) is separated from the phase evolution behaviour. Finally, we note that if the
medium being studied is isotropic it is permissible to write E(q, Δ) for E(q, Δ).
Assuming that the sample is homogeneous such that any variations in the structure
of ρ(r0) across the sample must occur on a length scale much shorter than q−1, it is
possible to rewrite the SGP equation (Eq. (2.34)) in terms of the average propagator
(Eq. (1.35))48,49

Eðq;ΔÞ ¼
ð
�PðR;ΔÞ ei2πq �RdR¼ FTf �PðR;ΔÞg: (2:35)

Equation (2.35) is one of the key equations in NMR diffusion theory and
so-called q-space imaging and much of the following discussion stems from noting
that E(q, Δ) and �P R;Δð Þ are Fourier conjugates.
In conventional (k-space) imaging, k-space is sampled over a finite raster giving28
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SðkÞ ¼
ð
ρðrÞei2πk � rd r; (2:36)

showing that in conventional imaging S(k) and ρ(r) are Fourier conjugates.
Importantly, as the maximum value of k is increased to provide higher resolution
and thus a finer raster, S(k) rapidly decreases since the volume elements (‘voxels’)
are correspondingly smaller. Thus, being able to obtain sufficient S/N per voxel
so that it is observable is in general the limiting factor in obtaining high resolution
in conventional imaging. In stark contrast, we could have written Eq. (2.34) (or
(2.35)) as50

Eðq;ΔÞ ¼ expði2πq �RÞh i; (2:37)

emphasising that the signal in q-space imaging is an (ensemble) average over the
whole sample and not a voxel. The consequences and significance of the Fourier
relationship and the ensemble average implied by Eq. (2.37) will be further dis-
cussed in Chapter 3.
Inserting the diffusion propagator for isotropic free diffusion (Eq. (1.60)) into

Eq. (2.34)

Eðq;ΔÞ ¼ 1

ð4πDΔÞ3=2
ð ð

ρðr0Þe�
ðr1�r0Þ2
4DΔ ei2πq�ðr1�r0Þdr1dr0: (2:38)

In the present case ρ(r0) = 1 and q = qz (we will drop the subscript z, however).
Using spherical polar coordinates (see Figure 1.4) and noting that dR = R2 sin θ dR
dθ d�; also since θ is the angle between R and q we have

Eðq;ΔÞ ¼ 1

ð4πDΔÞ3=2
ð2π

0

d�

ð1

0

e�
R2

4DΔR2

ðπ

0

ei2πqR cos θ sin θ dθ dR: (2:39)

As there is no � dependence it can be integrated out

2π

ð4πDΔÞ3=2
ð1

0

e�
R2

4DΔR2

ðπ

0

ei2πqR cos θ sin θ dθ dR; (2:40)

then by noting that d cos θ = − sin θ dθ we get

2π

ð4πDΔÞ3=2
ð1

0

e�
R2

4DΔR2

ð1

�1
ei2πqRθdθ dR: (2:41)

The integral over θ is then performed and evaluated using Euler’s formula Eq. (2.1)
resulting in

4π

γδgð4πDΔÞ3=2
ð1

0

Re�
R2

4DΔ sin ð2πqRÞ dR: (2:42)
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We note from a table of standard integrals (e.g., 3.952 1 in ref. 27) that
ð1

0

xe�c2x2 sin ðaxÞ dx ¼ a
ffiffiffi
π

p
4c3

e
� a2

4c2 : (2:43)

In our case x = R, c = (4DΔ)−½ and a = 2πq and thus we obtain the final result

Eðq;ΔÞ ¼ exp �γ2g2Dδ2Δ
� � ¼ exp �ð2πqÞ2DΔ

	 

: (2:44)

This is the solution for the PGSE signal attenuation in the SGP limit for spins
undergoing free diffusion and in contrast to the expression for flow this function is a
real exponential. Thus, inserting Eqs. (2.30), (2.28) (assuming that flow is collinear
with g) and (2.44) into Eq. (2.29) the signal amplitude at t = 2τ is

Sðq; 2τÞ ¼ M0 exp � 2τ

T2

� �
exp �ð2πqÞ2DΔ
	 


exp ði2πqv0ΔÞ: (2:45)

Normally experimental PGSE data are normalised to the echo intensity obtained
when g = 0 thereby removing the effects of relaxation (and therefore the dependence
on τ)

Eðq;ΔÞ ¼ Sðq; 2τÞ
Sð0; 2τÞ ¼ exp �ð2πqÞ2DΔ

	 

exp ði2πqv0ΔÞ: (2:46)

Using Eq. (1.103) this can be rewritten in terms of the MSD,

Eðq;ΔÞ ¼ exp �ð2πqÞ2 Z2ðΔÞ� �

2

� �
exp ði2πqv0ΔÞ: (2:47)

The MSD has been denoted by Z2 Δð Þ� �
to make it explicit that it is the MSD on the

timescale of Δ.
So far only an ideal case has been considered andmany aspects have been neglected

including: (i) the tacit assumption that all of the flowing spins stay within the receiver
coil during the measurement, (ii) it is impossible to practically meet the requirements
for the SGP approximation, (iii) chemical shift effects have been ignored, (iv) the
presence of background gradients have been ignored and (v) we have not considered
the effects of restricted diffusion. These aspects are considered below.

2.2.4 Pulsed and steady gradient spin-echoes

2.2.4.1 Hahn and stimulated spin-echoes

More generally practical than a gradient echo for measuring diffusion and indeed
the most commonly used approach is to use either Hahn spin-echo (SE or
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‘Stejskal and Tanner’ sequence) or stimulated-echo (or three-pulse Hahn echo)
sequence (STE) modified to include magnetic field gradient pulses as depicted in
Figure 2.6.1 Detailed descriptions of the basis of spin-echo phenomena are
given elsewhere.1,51,52 The experiment in which a streak of dye is placed in a
viscous liquid between concentric cylinders is made to refocus by reverse
rotation of one of the cylinders provides an intuitive feeling for echo phenom-
ena.53 However, this simplistic model is incapable of showing the essential
non-linearity imposed on the oscillating magnetic moments.51 As a note of
clarification in his original 1950 paper,1 Hahn used π/2x – τ – π/2x – τ –Acq.
(eight-ball echo) and π/2x – τ 1 – π /2x – τ2 – π/2x – τ1 –Acq. for the spin-echo and
stimulated echo, respectively. It was Carr and Purcell6 who introduced the
sequence π/2x – τ – π x – τ –Acq., which is commonly referred to as the Hahn
spin-echo. Importantly, compared to the gradient echo, both the Hahn and stimu-
lated echo sequences refocus static effects such as constant background gradients
and chemical shift effects. The Hahn spin-echo can be viewed as being the STE
sequence in the limit of τ2 → 0. However, whilst the Hahn spin-echo sequence only
generates a single echo signal, the STE sequence produces as many as five echoes
(four spin echoes as well as the stimulated echo)1,52,54 and extensive phase cycling
is required to remove the effects of the other echoes, although the phase cycle can be
greatly reduced by inserting a homospoil (or ‘purge’) pulse into the τ2 delay.

54–57

Whereas the Hahn-echo based sequence was seen to generate a magnetisation helix,
the first two π/2 pulses in the stimulated echo sequence generate a z-magnetisation
grid.30,32 Although, the Hahn and STE sequences are by far the most commonly
used, in principle any type of spin-echo is suitable for measuring diffusion including
multiple quantum coherence transfer echoes (see Section 8.3). Kimmich57 has
presented a particularly lucid overview of spin-echoes and their origin.
In contrast to the gradient echo, in the Hahn echo PGSE sequence a π rf pulse is

inserted at t = τ (i.e., the middle of the sequence) and both gradient pulses now have
the same sign. The signal starting from 2τ (i.e., the second half of the echo) is used as
the FID as shown in Figure 2.6. The π rf pulse acts as a reflection transformation and
reverses the sign of the phase angle acquired during the first τ period (this is in
contrast to a gradient echo which is a reversal phenomenon). Consequently, in
addition to effectively negating the sign of the first gradient pulse – because the
coherence order p is changed from +1 to−1, the π pulse also negates the phase angle
acquired due to chemical shift evolution and frequency dispersion due to residual B0

inhomogeneity and magnetic susceptibility effects in heterogeneous samples. In
contrast, in a gradient-echo, only the phase dispersion resulting from the gradient
pulses is refocussed.
The amplitude of the Hahn spin-echo signal including the effects of the finite

length of the gradient pulses is given by5
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Figure 2.6 (A) The Hahn spin-echo (SE) and (B) stimulated (spin-) echo (STE)–
based PGSE pulse sequences.54,55,58 The relevant coherence levels (p) and the
change in q(t) are also shown. A notable feature of the STE sequence is that for
most of Δ (specifically during the period τ2), the magnetisation is aligned along
z-axis (STE). In both cases the gradient pulses are represented as having finite
length. The second half of the echo (i.e., starting at t= 2τ) is digitised (indicated by
dots) and used as the FID. Hereinafter all signals will be illustrated using solid lines
and it will be assumed from the context that it is clear which part of the signal is
being used as the FID. From the perspective of diffusion measurements, the π pulse
in the Hahn spin-echo and the two π/2 pulses in the stimulated echo is to negate the
amplitude of the first gradient pulse in each sequence. An equivalent way of
describing this is that due to the change in coherence order from p= 1 for the
period in which the first gradient pulse is applied to p= −1 for the second gradient
pulse is applied, it is as if the two gradient pulses have opposite polarity with the
second gradient pulse effectively being negative. The striped gradient ‘purge’
pulse in the stimulated echo removes any transverse relaxation and allows a
significant shortening of the phase cycle.
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Sðg; 2τÞ ¼ M0 exp � 2τ
T2

� �
exp �γ2g2Dδ2ðΔ� δ=3Þ� �

: (2:48)

Or by normalising with respect to the echo intensity obtained when g = 0, to obtain
(the ‘Stejskal and Tanner’ equation)

Eðg;ΔÞ ¼ Eðg; 2τÞ ¼ Sðg; 2τÞ
Sðg ¼ 0; 2τÞ ¼ exp �γ2g2Dδ2ðΔ� δ=3Þ� �

¼ expð�bDÞ: (2:49)

Although expressed as E(g, Δ), on account of Eq. (2.14) (or equiv. Eq. (2.15)), it
could equally well be written as E(q, Δ). Often the arguments will be dropped when
the dependence is clear. In the second line of Eq. (2.49) all of the experimental
parameters have been incorporated into the term b, known as the ‘gradient’ or
‘diffusion weighting factor’ (sometimes also written as k) – a variable commonly
encountered in the clinically oriented literature.
In theory, diffusion can be probed by varying any of the three experimental

variables (i.e., δ, Δ or g) and observing the effects on signal attenuation. An example
set of PGSE attenuation data for CCl4 is presented in Figure 2.7 together with its
analysis giving the diffusion coefficient and its standard error (i.e.,D ± σ). Diffusion
coefficients down to 7.5 × 10−16m2 s−1 have been measured; however, under
favourable circumstances, it is likely that the technique has the potential to measure
diffusion down to less than 10−17m2 s−1.59
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Figure 2.7. (A) 13C PGSE NMR spectra of 13CCl4 at 303K obtained using the
Hahn spin-echo pulse sequence (Figure 2.6). The spectra were acquired with
Δ= 100ms, δ= 4ms and g ranging from 0 to 0.45Tm−1 in 0.05Tm−1 increments.
The spectra are presented in phase-sensitivemodewith a line broadening of 5Hz. As
the intensity of the gradient increases the echo intensity decreases due to the effects
of diffusion. From Price.60 (B) Regression of Eq. (2.49) onto this data gives a
diffusion coefficient of 1.92 ± 0.01 × 10−9 m2 s−1. The slope of the line is –D.
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The methods for relating signal attenuation to the pulse sequence and transla-
tional dynamics including the complete derivation of Eq. (2.48) are considered in
Section 2.2.4.2. Compared to the SGP expression (Eq. (2.45)), Eq. (2.48) contains a
correction factor of – δ/3 to account for the finite length of the gradient pulses. If the
width of the gradient pulse is expanded to fill the τ delay (i.e., δ = Δ = τ) thereby
becoming the steady gradient spin-echo sequence (see Figure 2.8), and Eq. (2.48)
reduces to the well-known expression for the intensity of the Hahn spin-echo
sequence in the presence of a steady (i.e., time-independent) gradient1,6,9,61

Sðg; 2τÞ ¼ M0 exp � 2τ
T2

� �
exp �γ2g2D

2τ3

3

� �
: (2:50)

Simple analysis of the sequence62 using Eq. (2.24) allows inclusion of the effects
of flow

Sðg; 2τÞ ¼ M0 exp � 2τ
T2

� �
exp �γ2g2D

2τ3

3

� �
exp iγv0gτ

2
� �

: (2:51)

Applying the magnetic field gradient in pulses instead of continuously as in the
steady gradient experiment circumvents a number of experimental limitations:5

(i) Chemical shift information is retained since the applied gradient is off during
acquisition and thus the method is suitable for measuring the diffusion coefficient
of more than one species simultaneously. (ii) The rf power does not have to be
increased to cope with a gradient broadened spectrum. (iii) Smaller diffusion
coefficients can be measured since it is possible to use larger gradients. (iv) As
the gradient pulse parameters are independent of τ it is possible to separate the
effects of diffusion from spin–spin relaxation in the case of a single diffusing
species (i.e., see Eq. (2.46)). (v) The time over which diffusion is measured is better
defined because the gradient is applied in pulses; this is of particular importance to

τ τ

πyπ/2x

g

0

S

Figure 2.8 The steady gradient spin-echo sequence. The applied gradient is on for
the entire sequence including the rf pulses and acquisition. Consequently, much
stronger rf pulses are needed to adequately excite what is now a gradient broadened
spectrum and the echo decay becomes increasingly short with increasing gradient
strength with concomitant loss of chemical shift information. Further, as the
diffusion time is now equal to 2τ, any extension of the diffusion time necessarily
entails a greater attenuation of the echo signal due to relaxation.
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studies of restricted diffusion. The reason is, as noted above, that in the steady
gradient experiment – which can be viewed as very long gradient pulses in each τ
period – it takes time for the helix to both wind up and unwind, consequently the
sequence is most sensitive to diffusive motion when it occurs near the π rf pulse.
The STE sequence has similar benefits to the Hahn spin-echo, but the relaxation

attenuation component of the signal additionally includes spin-lattice relaxation
(time constant T1), namely55,58

Sðg; 2τÞ ¼ M0

2
exp � 2τ1

T2

� τ2
T1

� �
exp �γ2g2Dδ2ðΔ� δ=3Þ� �

; (2:52)

where the delays are defined in Figure 2.6. The additional loss of a factor of 2 in the
STE sequence compared to the Hahn spin-echo arises because the second π/2 pulse
only stores half of the magnetisation;1,13 however, as discussed in Section 6.2, the
superior relaxation properties of the STE sequence are often sufficient to outweigh
the initial 50% loss in initial magnetisation. The steady gradient solution for the STE
pulse sequence analogous to that shown for the Hahn echo in Figure 2.8, is9

Sðg; 2τÞ ¼ M0

2
exp � 2τ1

T2

� τ2
T1

� γ2g2Dτ21 τ2 þ 2τ1
3

� �� �
: (2:53)

2.2.4.2 CPMG type sequences

If the single π pulse in the steady gradient spin-echo sequence is replaced by a train
of N π pulses to give the well-known CPMG sequence6,63 (see Figure 2.9A), the
signal intensity is then given by6

Sðg; techo ¼ 2NτÞ ¼ M0 exp � techo
T2

� �
exp �γ2g2D

ðtechoÞ3
12N2

 !

: (2:54)

Clearly, increasing N and proportionally decreasing τ whilst keeping techo constant
decreases the diffusive attenuation of the CPMG echo signal. This can be concep-
tually reasoned by noting that when τ is short only a magnetisation helix with a large
pitch can form which is less sensitive to diffusion.30

Interestingly, analysis of the sequence6,62 using Eq. (2.24) reveals that the even
echoes are unaffected by the effects of flow (or convection) since the first moment of
the gradient (see Section 2.2.2) is nulled at these positions.
The CPMG sequence can be transformed into a PGSE sequence by inserting a

gradient pulse between the π pulses at times mτ and (m + 2)τ, where m is an odd
integer and a second gradient pulse between the π pulses at times (m + 4n + 2)τ and
(m + 4n + 4)τ, where n is an integer. Thus, setting ΔCPMG = (4n+ 2)τ and the timing
ensures that the second gradient pulse occurs after an odd number of π pulses,64 the
spin-echo attenuation is given by
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Eðg; techo ¼ 2NτÞ ¼ M0 exp � techo
T2

� �
exp �γ2gDδ2 ΔCPMG � δ

3

� �� �
: (2:55)

2.3 Correlating the PGSE signal attenuation with diffusion

2.3.1 Introduction

The SGP approximation, as outlined in Section 2.2.3, is an ideal case and does
not account for the necessarily finite nature of the gradient pulses. Although
quantum mechanical (i.e., density matrix) formulations exist,13,65,66 a complete
analysis normally involves the solution of the (macroscopic) Bloch equations includ-
ing terms for diffusion (the Bloch–Torrey equations).67,68 However, analytically
solving the equations becomes intractable for all but the simplest cases. Generally
it is necessary to resort to various approximations or even numerical methods.
Solutions for free diffusion using the Bloch equation and GPD approximation are
given below. Solutions to more complicated geometries and further approxima-
tions and numerical solutions are given in Chapter 3. How the approximations
involved in the SGP and GPD approaches result in deviation from exact solutions
are considered in Section 3.9.
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Figure 2.9 The steady gradient (A) and pulsed gradient (B) versions of the CPMG
pulse sequence. The application of π pulses at odd multiples of τ results in echoes
(not shown) at even multiples of τ – recall that the coherence order alternates
between +1 and −1 with each π pulse. The echo centred at 2Nτ, where N is the total
number of π pulses in the sequence, is used as the FID. The CPMG pulse sequence
is a variation of the Hahn echo in which a series of π pulses, each separated by 2τ
are appended to the sequence. When used as a pulsed gradient spin-echo sequence
it is a requirement that there is an odd number of π pulses in the interval between the
two gradient pulses.
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2.3.2 Macroscopic description and solution for free diffusion

Typically in liquid state NMR the spatial inhomogeneities in the spin state of
molecules is very small over the distance between nearest neighbours and also
with respect to the MSD of the Brownian motion of the molecules. Consequently,
a hydrodynamical description is appropriate which, as noted by Jeener,69 states
that: (i) each molecule carries its spin state in Brownian motion and bulk flow
and (ii) with respect to the distance and timescales the probability distribution for
a future position of any molecule depends only on its present position (and normally
very weakly on its present spin state). By combining the Bloch equations for
the macroscopic nuclear magnetisation with Fick’s second law (Eq. (1.28)), we
obtain45,67–70

@Mðr; tÞ
@t

¼ γM � Bðr; tÞ�MxiþMyj

T2

� ðMz �M0Þk
T1

þ Δ�D � Δ

M� Δ� vM;

(2:56)

where the magnetisation, M(r, t), is considered to be both a time- and
space-dependent function.Mx,My, andMz denote the three orthogonal components
of the magnetisation and M0 is the equilibrium magnetisation due to a static
magnetic field B0 oriented in the z-direction (i.e., B0 = (0, 0, B0)). This is the key
equation for NMR measurements of translational motion.
In the case of isotropic diffusion, the tensor D is replaced by the isotropic

(i.e., scalar) diffusion coefficient D and the second last term simplifies to D

Δ2M
which accounts for the contribution of diffusion to the rate of change of the
magnetisation represented as a macroscopic fluid. The final term accounts for
flow where v is the velocity of the spins due to the flow of the medium in which
they are contained. The solution to Eq. (2.56) must be integrated over the entire
sample to obtain the time-dependent magnetisation, M(t). We note that Jeener also
extended Torrey’s treatment of molecular diffusion in NMR to polyatomic mole-
cules by introducing a position-dependent average density operator.69 Jeener
emphasised that intermolecular nuclear Overhauser effects (NOE) and the collective
effects of radiation damping and the long-range dipolar field (see Section 7.3) can
couple together the spin evolution of molecules of different species.
As an example, the case of a free isotropic solution studied using the Hahn spin-

echo-based PGSE sequence in the presence of a constant background gradient
(Figure 2.10) will be analysed using this macroscopic approach.
If B0 is superposed by a gradient g vanishing at the origin which is parallel to B0

and assuming that the inhomogeneities caused by g are much smaller than B0 we
obtain

Bx ¼ 0; By ¼ 0; Bz ¼ B0 þ g � r ¼ B0 þ gzz: (2:57)
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Noting

M� B¼ðMyBz �MzByÞx iþ ðMzBx�MxBzÞy jþ ðMxBy �MyBxÞz k; (2:58)

and defining the transverse magnetisation as

m ¼ Mx þ iMy; (2:59)

Eq. (2.56), excluding the flow term, simplifies to

@m

@t
¼ �iω0m� iγg � rm�m=T2 þD

Δ2m: (2:60)

In the absence of diffusionm relaxes exponentially with a time constant T2 and thus,

m ¼ ψe�iω0t�t=T2 ; (2:61)

where ψ represents the amplitude of the precessing magnetisation unaffected by the
effects of relaxation. Substituting Eq. (2.61) into Eq. (2.60) we obtain

@ψ
@t

¼ �iγg � rψ þD

Δ2ψ; (2:62)

or, equivalently,
@

@t
þ iγg � r�D

Δ2
� �

ψ ¼ 0: (2:63)

As noted by Grebenkov,71 it is the inclusion of the gradient term (i.e., iγg·r) that
complicates the analysis, since it makes the operator on the left non-Hermitian
(Hermitian operators have real eigenvalues and orthogonal eigenfunctions). Without
this term, Eq. (2.63) merely reverts to the diffusion equation.
In the absence of diffusion the solution for the period from the π/2 pulse to the π

pulse is

ψðr; tÞ ¼ S expð�i2πqðtÞ � rÞ (2:64)

π/2x

δ

πy

τ τ

t1 + Δt1

g0
g

0

S

Figure 2.10 The Hahn spin-echo based PGSE sequence including a background
gradient g0. Simplistically it is assumed that the background gradient is uniform in
magnitude and direction throughout the entire sample during the sequence. The
coherence levels are given in Figure 2.6A.
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where the constant S corresponds to the value ofψ immediately after the π/2 pulse and
q(t) is given by Eq. (2.15) (i.e., including the coherence order, p, which is equal to +1).
However, if S is a function of t in Eq. (2.64) and this is substituted into Eq. (2.62)

directly and solving for S to obtain

SðtÞ ¼ Sð0Þ exp �ð2πÞ2
ðt

0

q2ðt0Þ dt0D
� �

: (2:65)

Sometimes, especially in medically oriented literature, Eq. (2.65) is written as

SðtÞ ¼ Sð0Þ exp ð�bDÞ; (2:66)

where b is defined by

b ¼ ð2πÞ2
ðt

0

q2ðt0Þ dt0: (2:67)

In evaluating Eq. (2.65) the change in coherence order from p=+1 to−1 induced by
application of the π pulse must be accounted for. The form of g(t) and p(t) (and thus,
using Eq. (2.15), q(t)) for the pulse sequence in Figure 2.10 is specified in Table 2.1.
In evaluating Eq. (2.65) it should also be noted that the lower limit of integration

refers to the start of the sequence. For example, using the definition of g(t) in Table 2.1,
q(t) for t1 + Δ < t ≤ t1 + Δ + δ is calculated using Eq. (2.15) as

qðtÞ ¼ γ

2π

ðt1

0

g0 dtþ
ðt1þδ

t1

g0 þ g dtþ
ðτ

t1þδ
g0 dtþ

ðt1þΔ

τ
�g0 dtþ

ðt

t1þΔ
�g0 � g dt

" #

¼ γ

2π
½gðΔþ δþ t1 � tÞ þ g0ð2τ � tÞ�: (2:68)

The use of Eq. (2.65) to calculate the echo attenuation resulting from the effects of
diffusion and applied gradients is straightforward but tedious. An example of the use
of the symbolic algebra package MAPLE72 to evaluate Eq. (2.65) for the sequence
in Figure 2.10 is given in the Appendix and from this we obtain the result5

Table 2.1 Time-dependence of the applied and background
gradients and coherence levels in the Hahn spin-echo-based PGSE
sequence (see Figures 2.6A and 2.10)

Subinterval of pulse sequence g(t) p(t)

0 < t ≤ t1 g0 1
t1 < t ≤ t1 + δ g0+g 1
t1 + δ < t ≤ τ g0 1
τ < t ≤ t1 + Δ g0 −1
t1 + Δ < t ≤ t1 + Δ + δ g0+g −1
t1 + Δ + δ < t ≤ 2 τ g0 −1
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Sð2τÞ ¼ M0 exp

�γ2g2Dδ2ðΔ� δ=3Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g term

þγ 2g � g0Dδ t21 þ t22 þ δðt1 þ t2Þ þ 2

3
δ2 � 2τ2

� 

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g�g0 cross term

� γ2g20D
2

3
τ3

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
g0 term

0

BBBBB@

1

CCCCCA
;

(2:69)

where t2 = 2τ� (t1 +Δ+ δ), S(0) =M0 and the effects of relaxation are neglected. If,
instead, the signal was normalised to the signal acquired at S(2τ) in the absence of
applied gradients, the attenuation of the signal would be given by

Eð2τÞ ¼ Sð2τÞ
Sð2τÞg¼0

¼ exp �γ2g2Dδ2ðΔ� δ=3Þ þ γ2g � g0Dδ t21 þ t22 þ δðt1 þ t2Þ þ 2

3
δ2 � 2τ2

� � �
:

(2:70)

In the literature there is occasional confusion resulting from whether the normal-
isation is performed using (i) the echo signal in the absence of applied gradients
(i.e., g= 0) as in Eq. (2.70) – the normal procedure, (ii) the signal immediately after
the initial excitation (i.e., S(0)), or (iii) the echo signal but excluding the effects of
diffusion.73 To understand the difference that these three approaches make, let us
rewrite Eq. (2.69) in ‘code’ and include the effects of relaxation, we have

Sð2τÞ ¼ M0ERelaxEgEg�g0Eg0 ; (2:71)

where ERelax is attenuation due to spin relaxation and the final three terms represent
the three terms in the exponent in Eq. (2.69). The three different normalisation
approaches retain different terms, namely

Eð2τÞ ¼ Sð2τÞ
Sð2τÞg¼0

¼ EgEg�g0 (2:72)

E0ð2τÞ ¼ Sð2τÞ
Sð0Þ ¼ ERelax EgEg�g0Eg0 (2:73)

EDiffð2τÞ ¼ Sð2τÞ
Sð2τÞD¼0

¼ EgEg�g0Eg0 : (2:74)

Note, if relaxation is ignored S(0) = S(2τ)D = 0. Generally the condition g≫ g0 holds
and thus the g·g0 cross terms can be neglected in Eq. (2.70). Thus, in the absence of
background gradients (g0 = 0) the attenuation only depends on the motion during the
applied gradient pulses and the separation between them
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Eð2τÞ ¼ EðΔÞ ¼ expð�γ2g2Dδ2ðΔ� δ=3ÞÞ
¼ expð�bDÞ; (2:75)

where in this particular case and with reference to Eq. (2.66), b = γ2 g2 δ2 (Δ − δ/3).
So far only rectangular gradient pulses have been considered. Despite being

harder to handle mathematically, non-rectangular shapes (e.g., half sine) are tech-
nically easier to generate and produce less side effects (i.e., eddy currents – see
Section 7.7). Using equation (2.65) the effects of arbitrarily shaped gradient pulses
can be considered74 and the computations can be conveniently performed by simple
modification of the MAPLE worksheet given in the Appendix.
Solutions to theBloch-Torrey equations including flow are considered in Section 4.7.

2.3.3 The Gaussian phase distribution (GPD) approximation

A commonly used method for determining the spin-echo attenuation is by the
Gaussian Phase Distribution (GPD) method which is also sometimes referred
to as the Gaussian phase approximation or truncated cumulant expansion (see
Appendix).1,75–78 As an illustration the method will be applied to the free diffusion
case using the Hahn spin-echo sequence in the following section.
First, noting that g = gz, the total phase shift of spin i at the end of the echo

sequence is given by

�i 2τð Þ ¼ γB0τ þ γ g
ðt1þδ

t1

zi tð Þdt
( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1st τ period

� γB0τ þ γ g
ðt1þΔþδ

t1þΔ
zi t

0ð Þdt0
( )

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
2nd τ period

¼ γ g
ðt1þδ

t1

zi tð Þdt�
ðt1þΔþδ

t1þΔ
zi t

0ð Þdt0
( )

: (2:76)

The phase distribution resulting from the effects of the echo sequence is derived by
noting that zi(t) is described by the one-dimensional diffusion equation which is a
Gaussian for the case of unbounded diffusion (see Eq. (1.59)). Since, as a conse-
quence of the central limit theorem, the probability density for the integral of a
variable (in the present case zi(t)), which itself has a Gaussian probability density, is
Gaussian,6,79–81 we have (Eq. (2.6))

P� �; tð Þ ¼ 2π �2
� �� ��1=2

exp
��2

2 �2h i
� �

; (2:77)

where 〈�2〉 denotes the mean-squared phase change at t = 2τ, which is given by
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�2
� � ¼ γ2g2

ðt1þδ

t1

zi tð Þdt�
ðt1þΔþδ

t1þΔ
zi tð Þdt

( )2* +

: (2:78)

Introducing dummy variables of integration, ta and tb,

�2
� � ¼ γ2g2

ðt1þδ

t1

ðt1þδ

t1

dtadtb � 2

ðt1þδ

t1

ðt1þΔþδ

t1þΔ
dtadtb þ

ðt1þΔþδ

t1þΔ

ðt1þΔþδ

t1þΔ
dtadtb

( )

z tað Þz tbð Þh i : (2:79)

Hence, computation of 〈�2〉 is separated into a spatial part given by the MSD in the
direction of the gradient, 〈z(ta) z(tb)〉, and a temporal part. 〈z(ta) z(tb)〉 which is
expressed as the products of the probability of each motion times the corresponding
displacement in the direction of the gradient, giving77

z tað Þz tbð Þh i ¼
ððð

r1 � r0ð Þz r2 � r0ð Þz ρ r0ð ÞP r0; r1; tað Þ
� P r1; r2; tb � tað Þdr0dr1dr2 tb4ta: (2:80)

Equation (2.80) is then calculated after changing to a coordinate system appropriate
for the problem at hand. Equation (2.79) is then substituted into Eq. (2.8) to give the
echo attenuation.
Or, combining altogether in a more succinct form, the GPD approach can be

written as82

E Δð Þ ¼ exp � g2

2

ðΔ

0

ðΔ

0

f t0ð Þf t00ð ÞK t0 � t00ð Þdt0dt00
� 

; (2:81)

where the correlator is defined as

K tð Þ ¼
ðð

ρ r0ð Þz0z1P r0; r1; tð Þdr0dr1: (2:82)

2.3.4 GPD solution for free diffusion

Using the Green function solution for one-dimensional free diffusion (Eq. (1.59)),
Eq. (2.80) becomes

z tað Þz tbð Þh i ¼
ð1

�1

ð1

�1

ð1

�1
ρ z0ð Þ z1 � z0ð Þ z2 � z0ð Þ 4πDtað Þ�1=2exp � z1 � z0ð Þ2

4Dta

 !

� 4πD tb � tað Þð Þ�1=2exp � z2 � z1ð Þ2
4D tb � tað Þ

 !

dz0dz1dz2: (2:83)
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Setting Z1 = z1− z0 and Z2 = z2 − z0 and thus

ð1

�1
ρ z0ð Þdz0

ð1

�1
Z1 4πDtað Þ�1=2exp � Z2

1

4Dta

� �
dZ1

ð1

�1
Z2 4πD tb � tað Þð Þ�1=2

� exp � Z2 � Z1ð Þ2
4D tb � tað Þ

 !

dZ2:

Noting Eq. (1.32) the integral over z0 is removed and making the substitution
Z

0
2 = Z2− Z1 we obtain
ð1

�1
Z1 4πDtað Þ�1=2exp � Z2

1

4Dta

� �
dZ1

ð1

�1
Z0

2 þ Z1

� �
4πD tb � tað Þð Þ�1=2

� exp � Z 0 2
2

4D tb � tað Þ
� �

dZ0
2: (2:84)

The integral over Z0
2 in Eq. (2.84) can be rewritten as

4πD tb � tað Þð Þ�1=2 Z1

ð1

�1
exp � Z02

2

4D tb � tað Þ
� �

dZ0
2

�

þ
ð1

�1
Z0

2 exp � Z02
2

4D tb � tað Þ
� �

dZ0
2

�
: (2:85)

The first integral in Eq. (2.85) can be evaluated with the standard integral Eq. (2.7).
The second integral in Eq. (2.85) can be evaluated using the standard integral (3.462
6 in ref. 27)

ð1

�1
xe�cx2þ2dxdx ¼ d

c

ffiffiffi
π
c

r
e
d2=c2

Re c40½ �: (2:86)

In our case x ¼ Z0
2, c = (4D(tb – ta))

−1 and d = 0 and so this integral equals 0. Hence
Eq. (2.85) reduces to Z1 and Eq. (2.84) becomes

z tað Þz tbð Þh i ¼
ð1

�1
Z2

1 4πDtað Þ�1=2exp � Z2
1

4Dta

� �
dZ1 (2:87)

Finally, noting Eq. (2.86), we obtain

z tað Þz tbð Þh i ¼ 2Dta; (2:88)

which is equal to theMSD for the one-dimensional diffusion equation (see Eq. (1.104)).
We now come to a subtle point in evaluating Eqs. (2.79) and (2.80): we have to

interchange ta for tb in Eq. (2.80) depending on whether ta > tb or ta < tb. This can be
understood by noting that the exponentials in Eq. (2.80) must have negative
exponents (recall the validity of Eq. (2.80)), hence we get4
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z tað Þz tbð Þh i ¼ z2 tað Þ� � ¼ 2Dta if ta5tb

z tað Þz tbð Þh i ¼ z2 tbð Þ� � ¼ 2Dtb if ta4tb:
(2:89)

Hence, Eq. (2.78) becomes
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� � ¼ γ2g2
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t1
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t1
2Dtb dtb þ

Ð t1þδ
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2Dta dtb
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t1þΔ 2Dta dtb dtaþ
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t1þΔ 2Dtb dtb þ
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2Dta dtb

h i
dta

8
><

>:

9
>=

>;

¼ γ2g22D δ2 Δ� δ=3ð Þ: (2:90)

Finally, substituting Eq. (2.90) into Eq. (2.8) gives

ln Eð Þ ¼ �γ2g2Dδ2 Δ� δ=3ð Þ; (2:91)

which is identical to Eq. (2.75) that was derived starting from the Bloch–Torrey
equations. Thus, despite its limitations, which are further discussed in Section 3.8, a
particular virtue of the GPD approach is that, in contrast to the SGP approach, it
accounts for the finite nature of δ. However, apart from free diffusion, the predic-
tions for the signal attenuation given by the three approaches diverge and this is
further considered in Section 3.8.

2.4 Oscillating gradients, higher-order gradient pulse trains
and probing Dω(ω)

So far only constant, two-pulse gradient (i.e., SE and STE) and CPMG pulsed
gradient modulations have been considered, which are sensitive to displacements
during Δ, but other types of sequence are possible and these are sensitive to Dω(ω)
and dispersive processes due to flow. Here we consider some more complicated
sequences.
Instead of applying gradients as discrete pulses it is also possible to apply them

in a contiguously oscillating sequence (OGSE; oscillating gradient spin-echo, also
known as modulated gradient spin-echo spectroscopy or MGSE) as shown in
Figure 2.11.20,66,83–89 The use of such rapidly time-modulated gradients periodically
modulates the spin phase and consequently the echo amplitude becomes sensitive to
motion occurring at a certain frequency thereby allowing frequency-dependent diffu-
sion coefficient information (i.e., D(ω)), that is unobtainable with normal PGSE
experiments (normal two pulse PGSE experiments mainly probe the zero-frequency
lobe with a frequency width of 1/Δ). In contrast to traditional PGSE sequences with
discrete gradient pulses, the gradient pulses in OGSE sequences do not contribute to
the selection of the coherence transfer pathways in a sequence and consequently
appropriate phase cycling such as EXORCYCLE90 must be used.

98 Theory of NMR diffusion



For an OGSE sequence consisting of n periods of an oscillating sinusoidal
gradient with each ‘pulse’ having a total length of σ, the echo attenuation is given
by83,87

S g; 2τð Þ ¼ M0 exp � 2τ
T2

� �
exp �γ2g2D

3σ3

4π2n2

� �
: (2:92)

Importantly, the attenuation due to diffusion is measured on the shorter timescale of
σ not Δ since, as inspection of Figure 2.11 reveals that unlike the pulse sequences
above, the integral of the gradient ‘pulse’ in each τ period (i.e., Eq. (2.15)) is zero.
Indeed, by comparison of the ‘b-value’ (Eq. (2.67)) for one gradient oscillation lobe
to give an effective diffusion time, Δeff = 3T/8 where T is the period of the sine-
wave.83,88 Due to the instrumental limitations on gradient switching times, OGSE
can probe the diffusion spectrum at frequencies of less than or on the order of
105 Hz.20 The π pulse is necessary in such modulated gradient schemes in which the
magnetisation is encoded for motion rather than position in order to refocus any
phase shift due to absolute spin position.20 Were there to be a steady gradient g0 also
along the z-direction in addition to the oscillating gradient (i.e., a combination of
Figures 2.8 and 2.11), the echo attenuation would be given by83

E gð Þ ¼ exp �γ2D g2
3σ3

4π2n2
þ gg0

nσ2

πn

n

γ
þ 2t1 � τ

� �� � �
(2:93)

and we note that its inclusion introduces a τ-dependence into the attenuation function.
Oscillating gradients are useful for probing the short-time limit of Dapp(t) to

timescales below 1ms in porous materials and the spectrum of the velocity
auto-correlation function in the presence of slow motions (e.g., tube disengagement
in entangled polymers) or wall collisions in restricted geometries.20,85–88,91 The
velocity auto-correlation function has been derived for diffusion and flow in
restricted geometries.92,93

π/2x

T

σ

πy

τ τ

g
t1

0

S

Figure 2.11 A simple oscillating gradient pulse sequence. A sinusoidal oscillating
pulse of duration σ and period T (frequencyω = 2π/T) is contained in each τ period.
This is just one example and other modulated schemes have been examined.20,84
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In contrast to the above analysis it is possible to analyse OGSE sequences from an
entirely different perspective using frequency domain analysis.13,20,66,84,85 We
begin by noting that the local spin velocity is given by

v ¼ @r

@t
; (2:94)

and using this, Eq. (2.20) can be integrated by parts to give

� tð Þ ¼ γ
ðt

0

geff t0ð Þ � r t0ð Þ dt0

¼ �
ðt

0

F t0ð Þ � v t0ð Þ dt0; (2:95)

where F(t) = 2πq(t) (see Eq. (2.15)) and recall the condition for echo formation
(Eq. (2.26)). The echo attenuation will be given by the ensemble average over the
sample

E tð Þ ¼ exp i

ðt

0

F t0ð Þ � v t0ð Þ dt0
� �

: (2:96)

Under the assumption of stochastic spin motion without sudden local phase
changes, it can be shown that the (ensemble) phase distribution from such motion
is Gaussian20 and thus the exponential in Eq. (2.96) can be written in terms of a
cumulant expansion truncated to second order, giving20,50,66,84,85

E tð Þ ¼ exp iα tð Þ � β tð Þð Þ; (2:97)

where α(t) is the phase shift arising from the mean flow or drift and β(t) is an
attenuation factor arising from random particle migration (i.e., the velocity
auto-correlation function). These two terms are defined as

α tð Þ ¼ �
ðt

0

F t0ð Þ � v t0ð Þh i dt0 (2:98)

and

β tð Þ ¼ 1

2

ðt

0

ðt

0

F t0ð Þ � v t0ð Þv t00ð Þh i � F t00ð Þ dt0dt00

¼ 1

2

ðt

0

ðt

0

F t0ð Þ � u t0ð Þu t00ð Þh i � F t00ð Þ dt0dt00: (2:99)

Noting Eq. (1.7), Eq. (2.99) becomes

100 Theory of NMR diffusion



β tð Þ ¼ 1

π

ð1

0

F ωð ÞD ωð ÞF �ωð Þ dω; (2:100)

which for isotropic diffusion reduces to

β tð Þ ¼ 1

π

ð1

0

D ωð Þ F ωð Þj j2dω; (2:101)

where F(ω) is the gradient modulation spectrum defined by

F ωð Þ ¼
ðt

0

F t0ð Þ exp iωt0ð Þ dt0: (2:102)

The echo-attenuation factor for the modulation scheme shown in Figure 2.12A is
given by

β � 1

2
NTγ2g2δ2D 2π=Tð Þ (2:103)

and the associated frequency sampling spectrum is given in Figure 2.12B.
We will see later that frequency domain-modulated gradients have particular

applications in the study of frequency-dependent dispersion coefficients for flow
in porous media in the frequency range from a few Hz to several kHz.94

2.5 PGSE of freely diffusing multicomponent systems

So far only measurements of a sample containing a single species have been
considered. Yet, very often we are interested in studying mixtures of species of
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Figure 2.12 (A) A CPMG-based ‘single lobe’ alternating rectangular modulation
OGSE experiment. (B) A plot of how |F(ω)|2 samples the diffusion spectrum via
Eq. (2.101). Note this modulation scheme samples the diffusion spectrum at a single
frequency. In contrast a normal PGSE sequence results in a lobe at zero frequency.
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various molecular weights. Further, macromolecular systems such as polymers both
synthetic and natural (e.g., proteins) tend to occur as, or form with increasing
concentration, polydisperse systems and this size-polydispersity presents particular
problems to PGSE measurements.95–99 In this section we consider the form of the
PGSE data obtained from samples which are mixtures of freely diffusing species.
For the present, we assume that spins or spin-bearing entities are not exchanging
among species with different diffusion coefficients.
Since the diffusion coefficient of a molecule is related to its molecular weight

through its effective hydrodynamic radius (at least at high dilution where intermo-
lecular effects can be ignored) via the Einstein–Sutherland equation (Eq. (1.13)),
diffusion measurements open up the possibility of working with mixtures of
different species and polydisperse systems of the same species (see Figure 2.13).
Thus, the differences in attenuation between the components can be used to
resolve100,101 (or edit) the spectra of complex systems and has been termed ‘NMR
Chromatography’. Note that although no 2D displays were presented in the 1981
paper of Stilbs,100 this spectral separation based on component-specific PGSE
spectral attenuation is actually the basis of what has later become known as
DOSY (Diffusion Ordered SpectroscopY) which is described below. Although this

1

0.1E

0.01
0.0 0.5 1.0 1.5 2.0 2.5 3.0

γ2g2δ2(Δ-δ/3) ( × 109 m–2
 s)

Figure 2.13 Simulated echo attenuation plots for a rapidly diffusing species (__)
with a diffusion coefficient similar to water (2 × 10−9m2s−1) and a more slowly
diffusing species ( � � � �) with a diffusion coefficient of 1 × 10−10m2s−1, which is
similar to that of a medium-sized protein such as lysozyme. Also shown is the sum
of the two attenuation curves (- · - · -) as would be observed if the resonances of
the two species were overlapped and at equal concentrations. As can be
seen, the attenuation curve of the sum of the two species is distinctly
non-exponential. The simulations were performed using Eq. (2.75) with γ = γ
(1H) = 2.6571 × 108 rad s−1 T−1, Δ = 50ms and δ = 2ms and g ranging from 0 to
0.5 Tm−1.
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approach is not as powerful as HPLC, it is more convenient and in principle it is
possible to combine stopped-flow HPLC-NMR with diffusion NMR to provide
even greater separation.102

The analysis is simplest when the different species appear as isolated resonances
in the spectrum in which case the analysis is no more difficult than that shown in
Figure 2.7. In general, however, the resonances of different species will be over-
lapped. For a discrete system ofND freely diffusing species with individual diffusion
coefficient Di, assuming that each species is characterised by a single relaxation
time, T2i, the echo signal amplitude acquired with a Hahn spin-echo-based sequence
is described by a decaying multi-exponential function

Sðq; 2τÞ ¼
XND

i

M0;i exp
�2τ

T2i

� �
exp �bDið Þ; (2:104)

whereM0,i denotes the equilibriummagnetisation for the ith species. In the case of a
polydisperse sample composed of a single monomer species (such that the same
resonance from each monomer will overlap regardless of aggregation state) M0,i ∝
MWi ni; where MWi is the molar mass of the ith aggregate species, ni is the number
of such molecules present. The analysis of polymeric samples is especially compli-
cated since in general the spectra of the different oligomers are completely super-
imposable – although theremay be linewidth differences. If a stimulated echo sequence
was used the effects of T1 and T2 would have to be included (cf. Eq. (2.52)). In some
cases, however, it is permissible to neglect the effects of relaxation since the depend-
ence of spin relaxation on molecular weight is very weak as local motions in macro-
molecules constitute the dominant spin-relaxation mechanism.103,104

As indicated by Eq. (2.104) the PGSE attenuation curves of mixtures and poly-
disperse105 samples tend to be non-exponential (see also Figure 2.13) – although
depending on the sample (i.e., diffusion differences, degree of polydispersity and
relative populations) this may not be apparent. The different molecular weights and
molecular mobility of polydisperse species lead to different relaxation rates and
hence, the observed echo signal is not weighted by the respective concentrations
alone. Normalising Eq. (2.104) we obtain

E q;Δð Þ ¼ S q; 2τð Þ
S 0; 2τð Þ ¼

PND

i

MWi ni exp
�2τ
T2i

	 

exp �bDið Þ

PND

i

MWi ni exp
�2τ
T2i

	 
 : (2:105)

Intermolecular dynamics such as obstruction and, depending on the species, entan-
glement become operative at finite concentrations. Interestingly, although non-
exponential decays indicative of polydispersity have been observed in synthetic
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polymer systems, it is not always so107 and to the author’s knowledge, curvature has
not been noted in any PGSE measurement of protein systems and only a single
‘average’ diffusion coefficient can be obtained from the data (e.g., see Figure 2.14) –
even for quite concentrated samples of proteins that are known to aggregate such as
lysozyme.108

Thus, at least in some systems, it appears likely that there is some process resulting
in ensemble averaging of the diffusion coefficients of the different oligomeric species
on the microscopic scale. Such an averaging process has been noted in polymer
systems.103 Neglecting the effects of spin-relaxation, the averaging process can be
approximated by taking the cumulant expansion of Eq. (2.105) to second order,

ln E q;Δð Þð Þ ¼ �b Dh iW þ b2

2
Dh i2W � D2

� �
W

	 

; (2:106)

where 〈D〉W is the mass-averaged diffusion coefficient defined by

Dh iW ¼
PND

i¼1

MWi ni Di

PND

i¼1

MWi ni

: (2:107)
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Figure 2.14 A plot of the 1H PGSE attenuation of the integral over the aliphatic
region (~ 0.4−1.7 ppm) of lysozyme (10mM) in 0.15M NaCl at pH 6 at 298K
acquired at 500MHz. The experimental parameters were Δ= 34ms, δ= 5ms and g
ranging in equal increments from 0 to 0.64 Tm−1. The solid line represents
regression of Eq. (2.49) onto the data giving a diffusion coefficient of 6.25 ±
0.02 × 10−11m2s−1. Under these experimental conditions the lysozyme molecules
should be distributed amongst various aggregation states and, in the absence of any
microscopic ensemble averaging, the decay curve should be multiexponential;
however, the experimental attenuation curve is extremely linear when plotted on
a logarithmic scale (R = 0.9999). Modified from Price.106
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The second term (i.e., the ‘variance’) reflects the degree of polydispersity and may
become evident as non-linearity in the attenuation plot (i.e., ln(E) vs. b) especially at
large values of b. Neglecting the quadratic terms, Eq. (2.106) shows that a PGSE
experiment yields the apparent diffusion coefficient, Dh iW, or more accurately
Dh iCW, where the superscript C signifies the inclusion of obstruction effects.
Interestingly, although exchange between different large oligomeric units (e.g.,
proteins) is likely to be slow on the timescale of Δ, the final equation for the apparent
diffusion coefficient (i.e., Eq. (2.106) without the quadratic terms) is mathematically
equivalent to that for the case of fast exchange

E q;Δð Þ ¼ e�b Dh iW : (2:108)

The effects of exchange on PGSE experiments will be considered in more detail in
Chapter 4.
As an example, an isodesmic distribution109 was used to model the association of

lysozyme (see Figure 2.15).108 In this model aggregates grow by the addition of a
monomer unit, L1, thus

Li�1 þ L1 $Ke
Li i ¼ 2::1 (2:109)

where Ke (= K2 = K3 =… = Ki) is the equilibrium constant. The total concentration
of lysozyme (in units of monomers) is given by

C ¼
X1

i¼1

ci i; (2:110)

where ci is the concentration of the ith oligomeric state. Hence the mole fraction of
the i-mer is given by

αi ¼ i KeCð Þi�1 2KeCþ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4KeC

p

2 KeCð Þ2
 !i

: (2:111)

Hence, the theoretical apparent diffusion coefficient for a polydisperse oligomeric
system is given by (MWi ni ∝ ci i)

Dh iCW¼
XND

i¼1

αi D
0
1 i

�1=3 OD �ð Þ; (2:112)

where D1
0 is the infinite dilution diffusion coefficient of the monomer and OD

represents a suitable expression for self-obstruction (see Section 1.8.6).
It is not always possible to neglect relaxation and, in conjunction with the effects

of obstruction, its neglect can lead to seemingly counterintuitive results as shown in
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Figure 2.16 where the measured diffusion coefficient of a saturated lysozyme
solution undergoing self-association increases with time. The reason for this effect
is that as large aggregates form they become NMR invisible due to relaxation
weighting leaving only the smaller oligomers still visible. Also, the effects of
obstruction decrease as aggregation proceeds since more and more of the lysozyme
is contained in the larger aggregates. Such PGSE data provides a means of char-
acterising the kinetics of crystallisation.110

In the case of a truly polydisperse system, in which case there will be a continuum
of D values that must be considered, the summation sign is replaced by an integral
over all of the species and the observed echo signal would then, neglecting relaxa-
tion, be of the form99,103–105,111
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Figure 2.15 Change in lysozyme diffusion coefficients at 298K and pH 4.6 in the
presence of 0.5M NaCl. The solid line represents the non-linear least squares
regression of Eq. (2.112) using the isodesmic model in conjunction with the
Tokuyama and Oppenheim correction for obstruction (see Section 1.8.6). The
results gave D0

1 =1.19± 0.01× 10
−10m2s−1 and Ke= 118± 12M

−1. Modified from
Price et al.108
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E q;Δð Þ ¼
Ð1
0 MW n MWð Þ exp �bD MWð Þð Þ dMW

Ð1
0

MW n MWð Þ dMW
(2:113)

where the distribution function n(MW) is commonly taken as being log-normal

n MWð Þ ¼ 1
ffiffiffiffiffiffiffi
πσ2

p exp � ln MWð Þ � ln MW0ð Þ
σ

� �2
" #

(2:114)

where MW0 is the most probable molar mass and σ is the standard deviation of the
distribution width. The molecular weight-dependence of the diffusion coefficient is
typically accounted for using some form of scaling relationship (e.g.,D(MW) ~MWα

where α is a constant depending on the system; see Section 1.8.7). Poisson distribu-
tions have also been used in the case of some polymers.107 Another approach is to
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Figure 2.16 The change in the PGSE NMR-determined diffusion coefficients,
Dh iCW, of lysozyme samples (3mM, ■; 5mM, •; 6mM, ▴; 7mM, ▾) with time
at pH 6 and 298K in 0.5M NaCl. The open symbols at t= 0 h represent the
corresponding DC

1 values for these concentrations. The horizontal solid line
indicates D�1

C¼1:5mM and the horizontal dashed line indicates �D0
1. The solid lines

represent the regression of a sigmoidal function onto the data. From Price et al.110
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use a stretched exponential (originally introduced by Williams and Watts112 to fit
distributions of dielectric relaxation times) to describe the distribution of diffusion
coefficients in which case the attenuation is given by111,113,114

E q;Δð Þ ¼ exp �bDappð Þβ (2:115)

where Dapp is the apparent diffusion coefficient and β is the stretching exponent
which describes the width of the distribution. It should be kept in mind that when
applied to PGSE data, this approach statistically fits 1/D distributions rather than
those of D-values.
In a PGSE experiment of a sample containing a mixture of species the spectrum

(or ‘bandshape’) of each component, excluding exchangeable resonances, is a
constant and only the spectral intensity of each component is a function of q
according to the respective diffusion coefficient (see Figure 2.17).
Thus, in a polydisperse sample (consisting of ND freely diffusing species), apart

from perhaps increased S/N, there is no advantage to analysing more than one peak
in the spectrum; however, in a sample where not all peaks are equally overlapped it
can be advantageous to perform a multivariate analysis instead of just analysing a
single channel (i.e., univariate analysis). Thus, considering that each species con-
tributes a conventional 1D NMR spectrum, SD(ν)i where ν is frequency, containing
ni resonances the observed spectrum (an extension of Eq. (2.104)) is

0.499

0.168

12 11 10 9 8 7 6 5
(ppm)

4 3 2 1 0 –1 –2

g2 (T m–1)

Figure 2.17 A series of 500MHz 1HPGSTE–WATERGATE spectra (see Figure 6.2)
of a sample containing 2mM lysozyme in water (10:90 2H2O:H2O) at 298K.
Acquisition parameters were number of scans = 32, Δ = 93.7ms, and δ = 4ms with
the strengths of g1 at 0.1 Tm−1 and g2 varying from 0.168 Tm−1 to 0.499 Tm−1

in equal increments. The inter-pulse delay in the ‘W5’ binomial pulses115 was
set to 250 μs. It can be clearly seen that apart from the signal attenuation with
increasing gradient strength that each spectrum is identical to the others.
From Zheng et al.116
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Sðν; qÞ ¼
XND

i¼1

exp �bDið ÞSD νð Þi

¼
XND

i¼1

exp �bDið Þ
Xni

j¼1

S νð Þij; (2:116)

where S(ν)ij represents the lineshape (i.e., including population and relevant relaxa-
tion factors) of the jth resonance of the ith species. Thus, Eq. (2.116) for a single
resonance is identical to Eq. (2.104). Similar to the above, for a truly polydisperse
systemwith a continuum ofD values that must be considered, the summation sign is
replaced by an integral and becomes

Sðν; qÞ ¼
ð1

0

SD ν;Dð Þ exp �bDð Þ dD: (2:117)

Thus, S(ν, q) is the Laplace transform of the Laplace spectrum of diffusion coeffi-
cients, SD(ν, D) (Eq. (2.116) is a discrete representation of the Laplace transform).
As an aside we recall the definition of a Laplace transform41

L F tð Þf g ¼ ~F kð Þ ¼
ð1

0

F tð Þe�ktdt; (2:118)

where k is the transform variable and the key point is that the kernel is now real
(cf. the Fourier transform in Eq. (1.51) which has a complex kernel). Real expo-
nential functions are not orthogonal whereas complex exponential functions (i.e.,
trigonometric functions) are, and it is the non-orthogonality of the real exponential
functions which defeats easy analysis of the inverse Laplace transform. Analysis of
the data from a PGSE experiment of a mixture then proceeds by resolution of
Eq. (2.116) in the case of discrete components or, in the case of a polydisperse
system, the Laplace inversion of Eq. (2.117), to obtain a ‘spectrum’ of diffusion
coefficients which is typically displayed as a 2D ‘DOSY’ plot with chemical shift
on the one axis and the diffusion coefficient on the other (see Figure 2.18).117–120

In the ideal case inversion would lead to delta functions in diffusion space at the
diffusion coefficients of the species. We note that the inverse Laplace transform
is a special case of solving a Fredholm integral equation of the first kind.41,121 And
a number of reviews focussing on the resolution of complex mixtures have
been published.102,120,122–128 Cases in which relatively complex mixtures give
well-resolved spectra where most peaks result from single species allowing good
resolution with respect to diffusion are sometimes referred to as ‘high resolution
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DOSY’ and conversely, cases when the resonances are heavily overlapped or
superimposed limiting the resolution of the diffusion analysis are sometimes termed
‘low resolution DOSY’.102

In the simple case of a discrete sample, each individual resonance arises from
a single freely diffusing and non-exchangeable species and can be fit to a single
exponential as described in the previous section. A 2D plot is then constructed based
on the lineshape properties of each individual peak in the chemical shift dimension
and a normalised Gaussian shape in the diffusion dimension117,118

SD ν;Dð Þ ¼
XND

i¼1

SD νð Þiffiffiffiffiffiffiffiffiffiffi
2πσ2i

p exp
� D�Dið Þ2

2σ2i

" #

: (2:119)

The Gaussian lineshape is of course artificial. The 2D plot in a DOSY display is
distinctly different from that in conventional 2D NMR. Whereas in conventional
2D NMR the positions of the signals in the indirectly detected dimension (F1) are
encoded as phase and amplitude oscillations as a function of an evolution time t1
which can be Fourier transformed and thus separated since the data is in essence
complex, in DOSY the positions must be determined by exponential deconvolution
(‘curve stripping)’ of Eq. (2.116) or via inverse Laplace transform of Eq. (2.117).
Although regression of a single exponential function (e.g., Eq. (2.75)) on single
exponential PGSE data is straightforward, deconvolution of even high S/N data
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Figure 2.18 DOSY contour plot for a solution containing bovine serum albumin
(BSA) (2 g dl−1), sodium dodecyl sulphate (SDS, 2 g dl−1) and β-mercaptoethanol
(0.01M) in phosphate buffer. The unlabelled line represents the reaction product,
HOCH2CH2SSCH2CH2OH. Reproduced from Chen et al.129 with permission.
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which is the sum of two exponentials is fraught with difficulty unless the time
constants of the two exponentials differ by a factor of three or so.130 Even more
challenging is the inverse Laplace transform of Eq. (2.117) (and indeed in related
problems with multiexponential relaxation) which is a non-trivial mathematical/
computational exercise as generally the inversion is mathematically ill-conditioned
and without additional information leads to multiple solutions131–133 and thus small
changes in the amount of noise in the data can lead to very different results and the
approximate bounds of the resolution of Laplace inversion have recently been
considered.134 As a further complication, in general, without prior knowledge of
the sample, it will not be clear whether Eq. (2.116) or Eq. (2.117) pertains to the data
set. Consequently, the amount of additional information that can be supplied such as:
(i) whether the distribution of diffusion coefficients is discrete or continuous (e.g., an
associating polymer system), (ii) if it is discrete how many components, or (iii) if
continuous what is the functional form of the distribution of the intensity variation,
is crucial to the success of the data analysis.135 It is clearly unfortunate that the
numerical inverse Laplace transform is unstable as ideally model-free data analysis
is preferable to having to assume a particular diffusion coefficient distribution.
In many cases, it is possible to remove or at least simplify the analysis of overlapping

resonances spectroscopically by incorporating additional chemical shift information
through homonuclear or heteronuclear correlation experiments, that is by using pulse
sequences in which diffusion encoding is added to usual multi-dimensional NMR
sequences (e.g., COSY). These sequence aspects are covered in Section 8.6.

2.6 The long-range dipolar field and multiple echoes

The equilibrium magnetisation of a strong sample (e.g., water) at room temperature
directly generates a field termed the long-range dipolar field (as will be seen below
‘long-range’ refers to the length scale beyond which there is effective motional
averaging of intermolecular dipolar couplings in an NMR experiment), which is
also known as the ‘distant dipolar field’, ‘bulk susceptibility effect’ or ‘demagnetis-
ing field’. This field is parallel to B0 thereby adding a very weak field to the
externally applied field and can shift the solute signals by ~1Hz depending on
whether the bulk magnetisation is oriented parallel or anti-parallel to B0.

136–138 This
effect depends strongly on the shape of the sample and the spatial distribution of the
spin magnetisation, and consequently can be local or through the entire sample.
The strength of a dipolar interaction is proportional to

3 cos2 θ � 1 (2:120)

where θ is the angle between the interspin vector and B0. Over short distances,
molecular diffusion rapidly averages the interaction between a pair of spins to zero;
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the averaging becomes less complete as the distance between the spin pairs
increases. Although the strength of the interaction decreases dramatically with
distance, the number of contributing spins increases drastically with distance and
thus, the net effects of the couplings between (distant) spins can still be significant.
Ordinarily, the orientation of the magnetisation vector is uniform throughout the
sample and so averaging over all spins at a certain distance makes the net
magnetic field due to the couplings vanish. However, if anisotropy is introduced
by, for example, the application of a magnetic gradient, the long range couplings
might not be completely averaged. The classical demagnetising field is embodied
in the collectivity of these couplings. The demagnetising field can cause a
number of enigmatic effects.138,139 Flow is also known to affect the distant
dipolar field.140

In Eq. (2.12) the Larmor frequency was taken as being linearly related to the
(external) magnetic field gradient; however, due to the effect of the demagnetising
field, the Larmor frequency can become non-linearly related. Essentially, the inter-
nal magnetic flux density of the sample is modified during the pulse sequence.
Pertinent to the subject matter of this book, provided that a magnetic field gradient is
present, multiple echoes can occur in addition to Hahn-type echoes after the Hahn
and STE sequences described in Section 2.2.4.29,57,141–145 Importantly, these effects
become more relevant at higher static magnetic fields. Such effects can have
deleterious effects on PGSE measurements (see Section 7.3), but they can also be
used to measure diffusion (see Section 8.10).
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3

PGSE measurements in simple porous systems

3.1 Introduction

In the previous chapter we considered the various methods for relating echo
attenuation with diffusion in the case of free isotropic diffusion for a single diffusing
species. It was observed that the echo signal attenuation was single exponential with
respect to q2 and the correct value of the diffusion coefficient was determined
irrespective of the measuring time (i.e., Δ). Due to the relatively long timescale of
the diffusion measurement (i.e., Δ), gradient-based measurements are sensitive to
the enclosing geometry (or pore) in which the diffusion occurs (i.e., restricted
diffusion) and an appropriate model must be used to account for the effects of
restricted diffusion when analysing the data. The effects of the restriction can be
used to provide structural information for pores with characterisitc distances (a) in
the range of 0.01–100 μm. Thus, gradient methods are especially suited to studying
the physics of restricted diffusion and transport in porous materials.
Non-single-exponential decays can arise in a number of ways including multi-

component systems, anisotropic or restricted diffusion. These effects are the subject
of the next two chapters (more complex models are studied in Chapter 4). The
relevant analytical formulae for diffusion between planes and inside spheres are
presented (diffusion in cylinders is presented in the following chapter). It is
remarked that these are the commonly used models for benchmarking numerical
approaches.1 We also mention that Grebenkov has recently presented a review of
NMR studies of restricted Brownian motion.2

Diffusion measurements in restricted geometries are typically characterised using
four length scales: a andMSD as noted in Section 1.7; the pitch of the magnetisation
helix (i.e., q−1; see Section 2.2.2); and, in the case of a pore with surface relaxation,
the relaxation length,2

aM ¼ D

M
; (3:1)
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which corresponds to the distance a particle can travel near the boundary before
relaxation significantly reduces its magnetisation.
Ideally, an appropriate model (i.e., diffusion propagator) to the system at hand

will be used to analyse the attenuation data; however, in general there is no prior
knowledge as to what the appropriate geometry is and even if there were, a suitable
model may not exist. Thus, we are in a situation analogous to that in Section 2.5
where we considered the analysis of data from multicomponent freely diffusing
systems, where we have to deduce physical information from the data instead of
merely applying what a priori is known to be the appropriate model (‘forward
modelling’). Thus in working with porous media we are often concerned with
‘inverse methods’.3 One can always calculate an apparent diffusion coefficient,
Dapp(Δ), using the measured signal with the free diffusion formula for the parti-
cular pulse sequence being used. For example, without any knowledge of the form
of a restricted geometry, measurements conducted on a restricted system using
the Hahn spin-echo or STE sequence could be analysed using Eq. (2.49) to yield a
value for Dapp(Δ) irrespective of whether the experiment is conducted within the
SGP limit.4,5

If the experiment is within the SGP limit considerable analysis of the attenuation
data can be performed in a model-free manner starting with only the realisation that
E(q, Δ) and �PðR;ΔÞ are Fourier conjugates (i.e., Eq. (2.35)), namely

E q;Δð Þ ¼
ð

�P R;Δð Þei2π q�RdR: (3:2)

The two model-free approaches are:6 (i) experimental determination of �PðR; ΔÞ
from the inverse Fourier Transform of E(q, Δ) and (ii) experimental determination
of the moments of �PðR;ΔÞ from analysis of the form of E(q, Δ), which at low q
directly leads to information on the (ensemble averaged)MSD and consequently the
time-dependent diffusion coefficient (i.e., D(Δ)). Some of these effects are illu-
strated below using the diffusion between planes model.
While our coverage of the theory is mainly limited to Hahn- and STE-based

PGSE sequences, theory has been developed for CPMG-based PGSE sequences in
the presence of restriction.7 Indeed the effects of restricted diffusion were first noted
by Woessner in SGSE experiments on benzene in rubber.8 Further, the relevant
theory has been developed for obtaining information on porous systems using
(purposely applied) constant magnetic field gradients9–11 and using the internal
magnetic field gradients (IMFG) present in the system as a result of the suscept-
ibility difference between the pore-filling fluid (or gas) and the solid matrix. Some
authors have termed this latter approach ‘diffusion decay in the internal field’
(DDIF). This is given brief coverage in Section 4.8.
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To avert later confusion: in the following chapters we will often be concerned
with diffusion coefficients measured on different timescales (i.e., D0, D(t) and D∞)
as discussed in the previous chapter. We reserve Dapp(t) (i.e., an apparent diffusion
coefficient) for those occasions in which theory is used to analyse data outside its
range of validity (e.g., analysing data from a restricted geometry using theory
related to free diffusion or using theory derived with the SGP approximation to
analyse data acquired outside the SGP limit). Where it is clear from the context
D may be used to refer to any one of D0, D(t), D∞ or Dapp(t).

3.2 Experimental determination of �PðR;ΔÞ
As can be seen from Eq. (3.2) inverse Fourier transformation of E(q, Δ) with respect
to q returns an image of �PðR;ΔÞ, namely

�P R;Δð Þ ¼ 1

2π

ð
E q;Δð Þe�i2π q�Rdq (3:3)

And, in the case of free diffusion, the width at half-height, Δ �PðR;ΔÞ1
2
(nb the first Δ

denotes difference), is directly related to the root mean square of R,12 namely

Δ �P R;Δð Þ1
2
¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D Δð ÞΔ ln 2ð Þ

p
: (3:4)

Thus, providing there is sufficient signal-to-noise and E(q, Δ) has been well sampled
with respect to q, Fourier inversion of E(q, Δ) enables determination of the form of
�PðR;ΔÞ.12,13

3.3 Experimental determination of the moments of �PðR; ΔÞ
For simplicity, assuming that the gradient is directed along z, Z= z1 − z0, and
by performing a Taylor expansion of the exponential in Eq. (3.2),6,14–16

E q;Δð Þ ¼
ð

�P Z;Δð Þ
X1

n¼0

i2π qZð Þn
n!

dZ

¼ 1þ
X1

n¼1

i2π qð Þn
n!

ð
�P Z;Δð ÞZndZ : (3:5)

The n= 0 term is equal to 1 on account of the identity
Ð1
�1 �P Z;Δð Þ dZ ¼ 1

(Eq. (1.36)). Noting that the integral represents the moments of �PðZ;ΔÞ, i.e. ZnðΔÞh i
(cf. Eq. (1.101)), Eq. (3.5) becomes

122 PGSE measurements in simple porous systems



E q;Δð Þ ¼ 1þ i
2πqð Þ Z Δð Þh i

1!
� 2πqð Þ3 Z3 Δð Þ� �

3!
þ . . .

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Coherent Motion

� 2πqð Þ2 Z2 Δð Þ� �

2!
� 2πqð Þ4 Z4 Δð Þ� �

4!
þ . . .

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Diffusion

: (3:6)

This shows that the shape of the attenuation curve is completely determined by the
moments of the mean propagator. For a purely self-diffusive motion the mean
propagator is an even function and thus the odd orders in Eq. (3.5) vanish leaving
a real function. In this case analysis could proceed by fitting a polynomial in (2πq)2

to E(q, Δ). Conversely, for purely coherent motion (e.g., flow or mutual diffusion),
only the odd terms are retained, whereas translational motion involving both
coherent and diffusive motion retains both the even and odd order, and as noted
by Stallmach and Galvosas,6 in such a case Fourier inversion would be a more
prudent approach to data analysis.17

When q is small the higher-order moments in Eq. (3.6) can be ignored, leaving

E q ! 0;Δð Þ � 1þ i2πqZ Δð Þ � 2πqð Þ2 Z2 Δð Þ� �

2!
: (3:7)

Note, that Z2ðΔÞ� �
is the ensemble-averaged MSD and thus, in the case of purely

diffusive motion, and noting Eq. (1.103), this becomes

E q ! 0;Δð Þ � 1� 2πqð Þ2 Z2 Δð Þ� �

2
¼ 1� 2πqð Þ2D Δð ÞΔ: (3:8)

Equation (3.8) is, neglecting flow, the series expansion to second order of Eq. (2.47)
and is very useful since it shows that irrespective of the form of the propagator,
the initial decay of E(q, Δ) with respect to q yields Z2ðΔÞ� �

(or equivalently D(Δ)).
In general the reorientational motion of the species being probed has no direct

effect on the diffusion measurement. However, it has been pointed out when at least
one spatial dimension of the species being studied is larger than the root mean
square displacement associated with the diffusion measurement that reorientational
motions can lead to large apparent diffusion coefficients which depend on Δ.18

Combining Eq. (3.8) with Eq. (1.122) gives15

E q ! 0;Δ ! 0ð Þ ¼ exp � 2πqð Þ2ΔD0 1� 4

3d
ffiffiffi
π

p SP

VP

ffiffiffiffiffiffiffiffiffi
D0Δ

p
� � �

� �� 	
: (3:9)
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In analysing the PGSE data of systems where the propagator is unknown, an
apparent diffusion coefficient is often determined by analogy to the free diffusion
case from the initial slope of the attenuation plot and thus from Eq. (2.47) (this
approach is only valid in the short gradient pulse limit)

D Δð Þ ¼ � 1

4π2Δ
@ ln E q ! 0;Δð Þ½ �

@½q�2 : (3:10)

As noted in Section 1.8.2, studyingD(Δ) can provide significant information on the
surrounding geometry. For example, Szafer et al.19 have presented a model for the
apparent diffusion coefficient for water in isotropic and non-isotropic tissue, in
which the tissue is modelled as a periodic array of boxes surrounded by partially
permeable membranes (cells). Thus, with reference to Eq. (1.121), we obtain

DðΔÞ / Δ��1: (3:11)

Generally κ ≤ 1 (κ= 1 corresponds to normal diffusion). In the case of diffusion
within a reflecting pore Z2ðΔÞ� �

is a constant for long observation times (cf. Figure
1.10) and thusD(Δ)∝ Δ−1 for Δ→∞. When the condition qa≪ 1 (a being the pore
radius for example) is met the behaviour of E(q, Δ) is dominated by the diffusive
motion of the spin. If the condition ξ (=DΔ/a2) < 1 is met then the measured
diffusion coefficient will tend to that of the bulk solution. As ξ increases the effects
of the restricting geometry will become increasingly important. When ξ is greater
than 1, structural information can be obtained directly from the PGSE signal
(i.e., diffraction effects, if the restricting geometry has local order) by varying q
such that qa ≥ 1. Indeed, Brownian dynamics simulations have revealed for the case
of a sphere20 that the long-time limit is already applicable at ξ ≈ 1.
For large q, it has been shown that10,21–23

Eðq;ΔÞ / GðΔÞðSP=VPÞq�4 (3:12)

where Γ(Δ) is a time-dependent function characteristic of the geometry, in analogy
with the Debye–Porod law.

3.4 The spectral function and the return to origin probability

From Eq. (1.80) and the SGP attenuation definition (Eq. (2.34)) and assuming an
isotropic medium, the return to origin probability is given by24,25

RTOP Δð Þ ¼ � Δð Þ ¼ 4πVP

2πð Þ3
ð1

0

E q;Δð Þq2dq: (3:13)
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Thus, RTOP is proportional to the area of the signal attenuation curve and the
inclusion of the q2 term in the integrand weights the probability towards the
more highly restricted molecules as it will be these whose signals will be least
dephased. In practice, the upper limit of the integral over q is determined by
experimental limitations and so ∞ is replaced by qmax. In free isotropic solution,
RTOP is given by

RTOP0ðΔÞ ¼ 1

4πDΔð Þ3=2
(3:14)

And from these two equations a dimensionless RTOP enhancement can be
defined by26

RTOPe Δð Þ ¼ RTOP Δð Þ
RTOP0 Δð Þ : (3:15)

RTOPe(Δ) = 1 for a small value of q since neither restricted nor unrestricted
species can diffuse out of the sphere characterised by large amin (= q−1) within the
diffusion time. However, as q increases and amin decreases, species diffusing
within a restricted environment are more likely to be found within the sphere at
the end of Δ. Consequently, RTOPe(Δ) increases in restricted samples with increas-
ing q or Δ.

3.5 Diffusive diffraction

Equation (2.35) is analogous to the scattering function in neutron scattering
with q corresponding to the scattering wave vector and emphasises the Fourier
relationship between attenuation and displacement in the PGSE experiment.
However, there are major differences in the temporal and spatial timescales of
each type of experiment. Further, E(q, Δ) is measured in the time domain in
PGSE NMR experiments and in the frequency domain in neutron scattering experi-
ments. Indeed, a direct analogy can be made between PGSE NMR of a spin under-
going restricted diffusion in an enclosed pore and scattering experiments such as
optical diffraction by a single slit.12,13,27–32 Appropriate values of q are required to
return information on the required length scale. For a 1H PGSE experiment taking a
maximum value of g to 50 Tm−1 and δ= 2ms gives a value of q of 3 × 107m−1

which corresponds to minimum observable displacements of 10 . . . 100 nm in a
PGSE experiment.33

From Eq. (2.35) and using the Wiener–Khintchine theorem34,35 (i.e., the Fourier
transform of a time auto-correlation function is the frequency power spectrum), we
find that E(q, ∞) is the power spectrum of ρ(r0),

13,28,36
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Eðq;1Þ ¼
ð
�P R;1ð Þei2π q�RdR

¼
ð ð

ρ r0ð Þ ρ r0 þ Rð Þdr0 ei2π q�RdR

¼
ð ð

ρ r0ð Þ ρ r1ð Þdr0 ei2π q� r1�r0ð ÞdR

¼
ð
ρ r0ð Þ e�i2π q�r0dr0

ð
ρ r1ð Þ ei2π q�r1dr1

¼ S� qð ÞS qð Þ
¼ S qð Þj j2¼ �PðqÞj j2; (3:16)

where S(q) is the Fourier transform of ρ(r1). As will be shown in the next section,
this is the origin of diffraction-like effects in PGSE diffusion studies. In quasielastic
neutron scattering |S(q)|2 is known as the elastic incoherent structure factor whilst in
scattering theory it is referred to as the form factor of the confining volume.31 S(q) is
analogous to the signal measured in conventional NMR imaging (aka k-space or
MRI); see Eq. (2.36).36–38 However, whereas conventional (i.e., k-space) imaging
returns the phase-sensitive spatial spectrum of the restricting pore ρ(r0), E(q, ∞)
measures the power spectrum, |S(q)|2. Thus E(q, ∞) is sensitive to average features
in local structure, not the motional characteristics. Since E(q,∞) measures the power
spectrum of S(q), Fourier inversion cannot be used and in consideration of the
diffraction analogy, structural information can be obtained in q-space by using the
characteristic features of the diffraction pattern such as the position of the nodes.
However, as noted in Chapter 2, q-space imaging has the potential to give much
higher resolution than conventional k-space imaging since the entire signal from the
sample is available to contribute to each pixel in R-space (i.e., R, the dynamic
displacement)13 rather than from a volume element (i.e., voxel) as in conventional
k-space imaging. Typically k-space imaging is limited by sensitivity to voxels with
sides of 10 μm or greater; however, the resolution achievable in q-space imaging is
limited only by the magnitude of q, with the shortest length scale that can be probed
being �qmax

−1, where qmax is the maximum value of q used in an experiment.26

While q-space imaging cannot return spatial location, in many porous substances,
such as suspensions of biological cells and emulsions, it is the spatial details of the
small local structures that is of more interest.
It is important to note that the above discussion concerns ‘diffusive (i.e., q-space)

diffraction’ and not ‘Mansfield (k-space) diffraction’.22,39–41 k-space diffraction
depends on the relative positions (i.e., spatial periodicity of concentrations of nuclei)
at fixed time (normal imaging returns an image of ρ(r)) whereas q-space diffraction
depends on the relative displacements from the molecular origin during Δ.
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3.6 An example – diffusion between planes

We begin by analysing the case of diffusion between reflecting (i.e., impenetrable)
planes with a separation of 2a. Inserting the expression for the propagator (Eq. (1.84))
and the spin density (Eq. (1.31); ρ(r0) = 1/(2a)) into Eq. (2.34) to obtain the SGP
solution,42

E q;Δð Þ ¼ 2 1� cos 2πq 2að Þð Þ½ �
2πq 2að Þð Þ2

þ 4 2πq 2að Þð Þ2
X1

n¼1

exp � n2π2DΔ

2að Þ2
 !

1� �1ð Þncos 2πq 2að Þð Þ
2πq 2að Þð Þ2� nπð Þ2

h i2 : (3:17)

This attenuation function is plotted in Figure 3.1.
In the long-time limit ð� � 1Þ, only the first term, which results from the zero-

eigenvalue, remains, namely

0.0 0.2 0.4 0.6 0.8 1.0
0.01

0.1

1

Δ (s)

Εplanes(q,Δ)

Εplanes(q,Δ = ∞)

Εfree(q,Δ)

Ε
(q

,Δ
)

(2a)2/(2D) = 0.54

2a

Figure 3.1 A plot of the PGSE attenuation for diffusion between reflecting planes
versus Δ. The plot was simulated using the SGP approximation Eq. (3.17) with
D= 2.3 × 10−9m2 s−1, q= 15,000m−1 and a= 25μm. At very short values of Δ, the
attenuation is the same as that for free isotropic diffusion (Eq. (2.46)). AsΔ increases
the attenuation plateaus out. However, the signal from unrestricted particles is
completely attenuated. By the time Δ is large enough that the MSD is equal to the
interplanar spacing (vertical line), E(q, Δ) has almost decreased to the long-time
solution E(q, ∞) as given by Eq. (3.18).
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E q; 1ð Þ ¼ S qð Þj j2¼ 2 1� cos 2πq 2að Þð Þ½ �
2πq 2að Þð Þ2 ¼ sinc πq 2að Þð Þj j2: (3:18)

Importantly, this term is independent of diffusion. At low q (�qa< 0.15) this reduces to

E q ! 0;1ð Þ ¼ exp � 2πqð Þ2 2að Þ2
12

 !

: (3:19)

Comparison with Eq. (3.8) and application of Eq. (3.10) yield

Z2
� � ¼ 2að Þ2

6
(3:20)

and

D Δð Þ ¼ 2að Þ2
12Δ

; (3:21)

respectively. Note the last two equations should be compared with Eqs. (1.106)
and (1.107), respectively.
As can be inferred from the attenuation behaviour, as the length of the diffusion

experiment is such that the diffusing spins interact with the enclosing geometry (i.e.,
the RMSD is of the order of the characteristic length of the geometry) the attenuation
profile differs significantly from that of the free diffusion model. Indeed, such
differences can be put to use for discriminating between species inside and outside
such pores (e.g., a suspension of biological cells) since values of q andΔ can be chosen
such that only the intrapore signal remains43 as can be understood from Figure 3.1.
When the interactions with the boundary become significant (Δ ≳ a2/D) an

interesting effect is noted if the attenuation is plotted as a function of q as shown
in Figure 3.2.
Diffusive diffraction effects are evident in the figure and structural information

about the enclosing geometry can be obtained from the characteristics of the
diffraction pattern. In analogy with Eq. (2.19), the diffractive minima occur at
q= n/(2a) (n= 1, 2, 3,…) – also as expected from analysis of Eq. (3.18). The effects
of surface roughness and plane misalignment have also been considered.44,45

The solution for the planar geometry derived using the GPD approximation is
quite different:20

E g;Δð Þ ¼ exp � 8γ2g2 2að Þ4
Dπ6
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n¼0
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where LðtÞ ¼ exp �ð2nþ 1Þ2π2Dt=ð2aÞ2
h i

; which in the steady gradient limit
reduces to46,47

E g;Δð Þ ¼ exp � 8γ2g2 2að Þ4
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1
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(3:23)

which reverts to that for the steady gradient experiment for free diffusion (cf. Eq.
(2.50)) when ξ ≪ 1. In the limit ξ ≫ 1, Eq. (3.23) becomes47

E g;Δð Þ ¼ � 2að Þ4γ2g2
D

1

120
2τ � 17

56

2að Þ2
D

 !

: (3:24)
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Figure 3.2 Experimental PGSE data (■) for waterD = 3.69 × 10−9m2 s−1 diffusing
between planes separated by a distance (2a) of 128.4 μm. The data were acquired
with Δ= 2 s and δ= 2ms, which is very close to SGP conditions with ξ = 0.4. The
data were simulated (solid line) using Eq. (3.17). The dashed line represents the E
(q→0,∞) solution (Eq. (3.19)). The attenuation of freely diffusing water (●) is also
shown for comparison (in this case the dependence on 2a as plotted is of course
artificial). It is emphasised that diffractive phenomena are only evident at high
attenuations (i.e., E < 0.1) and plotting the ordinate on a log scale aids their
visibility. Modified from Price et al.44
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3.7 Diffusion in reflecting spheres

For spins confined to a perfectly reflecting sphere of radius a, the SGP solution
obtained by substituting Eq. (1.90) into Eq. (2.34) is given by20,48

E q;Δð Þ ¼ 3j1 2πqað Þ
2πqað Þ

� �2

þ 6 2πqað Þ2
X1

n¼0

j 0n 2πqað Þ
 �2X1

m¼1

2nþ 1ð Þα2nm
α2nm � n2 � n

exp �α2nm
DΔ
a2

� 

α2nm � 2πqað Þ2
h i2; (3:25)

where αnm is the mth root of the equation j 0nðαnmÞ ¼ nJnþ1=2ðαnmÞ � αnm
Jnþ3=2ðαnmÞ ¼ 0 and j is the spherical Bessel function of the first kind.49 In the
long-time limit, Eq. (3.25) reduces to42

E q;1ð Þ ¼ 3j1 2πqað Þ
2πqa

� �2
¼ 9 2πqað Þ cos 2πqað Þ � sin 2πqað Þ½ �2

2πqað Þ6 ; (3:26)

and thus the first minima occurs at q ≈ 1.43/(2a). At low q this reduces by Taylor
expansion to15

E q ! 0;1ð Þ ¼ exp � 2πqð Þ2 2að Þ2
20

 !

: (3:27)

Similarly, using the GPD approximation, the attenuation function is50

E g;Δð Þ ¼ exp � 2γ2g2

D2

X1

n¼1

2α2nDδ� 2þ 2L δð Þ � L Δ� δð Þ þ 2L Δð Þ � L Δþ δð Þ
α6n R2α2n � 2
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(3:28)

where LðtÞ ¼ exp �α2nDt
� �

and the αn are the roots of ðαnaÞJ03=2ðαnaÞ�
1
2
J3=2ðαnaÞ ¼ 0: As Δ → ∞ with δ ≪ Δ, Eq. (3.28) reduces to Eq. (3.27).47 In

the limit δ→ τ (i.e., the steady gradient limit, see Figure 2.8) Eq. (3.28) becomes47

E g;Δð Þ ¼ exp � 2γ2g2
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n¼1

2α2nDτ � 3þ 4L τð Þ � L 2τð Þ
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 !

; (3:29)

which reverts to that for the steady gradient experiment for free diffusion (cf.
Eq. (2.50)) when ξ≪ 1. In the limit ξ≫ 1 Eq. (3.29) becomes47

E g;Δð Þ ¼ � a4γ2g2

D
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2τ � 581
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� �
: (3:30)
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3.8 Size distributions of the restricting geometry

Real systems containing restricting geometries generally have a distribution of
characteristic length scales. Further, in general, the geometry of the restriction is
not known and the systems may even have a range of geometries. Nevertheless,
as is commonly found in systems such as emulsions, the form of the restriction is
spherical and with an appropriate model, PGSE data can be analysed to give the size
distribution; a number of reviews of the applications of such measurements to
emulsions have appeared.51–54 For example, for spins diffusing inside a polydis-
perse set of isolated spheres (i.e., no exchange) with a distribution of the sphere
radii, P(a), as might be found in an emulsion, the signal attenuation is given by a
volume average of the PGSE attenuation function55

Epoly q;Δð Þ ¼
Ð1
0

a3P að ÞE q;Δð Þda
Ð1
0 a3P að Þda ; (3:31)

where E(q,Δ) is the attenuation function for a reflecting sphere of a particular radius
(e.g., Eq. (3.28)). The a3 term is included to account for the increase in the number
of spins as the radius increases. The distribution function is often taken to be a
log-normal function (cf. Eq. (2.114)) although other distributions such as Gaussians
have been used.56 The use of reflective boundary conditions as against absorbing
boundary conditions contains the implicit assumption that the spin relaxation is
independent of the size of the restriction.57 Similar to the case of analysing a mixture
of freely diffusing components (see Section 2.5), the inversion of Eq. (3.31), a
Fredholm equation of the first kind, to provide P(a) is non-trivial.54,57–59

An improvement based on the recognition that the echo-attenuation data obtained
in the long-time limit contain all the necessary information on the radii distribution
has been presented.60 Fourel et al.61 supplemented Eq. (3.31) by adding an unrest-
ricted diffusion component. The unrestricted component is to either account for the
case where the distribution of radii is not perfectly log-normal or to account for a
freely diffusing component. The coupling of diffusion measurements with CPMG
measurements of transverse relaxation to provide enhanced characterisation of
emulsions has also been suggested.62

In PGSE data of real systems it can be difficult to discern coherence features in
q-space plots. To facilitate the discernment of such phenomena Kuchel et al.63 have
demonstrated the use of a numerical procedure in which the coherence features are
accentuated. Specifically, the raw data are weighted with a bell-shaped window
function, interpolated with a shifting cubic spline, and then the second derivative is
taken prior to Fourier transformation. The window function provides apodisation of
the noisy data at high q-values, then together with taking the second derivative, this
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functions as a high-pass filter removing zero and low frequency components in the
echo-signal attenuation.

3.9 Finite gradient pulses and the validity of the SGP
and GPD approximations

The SGP and GPD approaches are the most commonly used methods for relating
PGSE attenuation to the underlying diffusion processes, and consequently it is
important to understand the implications and limitations of these two approxima-
tions. A conceptual and rather simplistic representation of q-space and the GPD and
SGP approximations are given in Figure 3.3, and an example of the validity of the
two approaches for simulating PGSE attenuation for diffusion between planes is
compared in Figure 3.4.
As its name suggests, the GPD approach requires a Gaussian distribution of spin

phases (i.e., Eq. (2.77)); this condition can be met only when the spins being studied
undergo free (i.e., Gaussian) diffusion on the timescale ofΔ. Consequently, the GPD

Steady gradient
limit

Short gradient
pulse limit

SGP

GPD

0

1

Free diffusion
limit

DΔ/a2

qag,Δ
q* qaδ,Δ

Δg,δ

δ∗

(δ/Δ)

δa2/(DΔ2)

More restricted
Δ

a

g (γ g/2π)~

Figure 3.3 A conceptual representation of ‘q-space’ for a static experimental system
(i.e., the characteristic distance of the restricting geometry, a, is unchanged). The
shaded planes GPD and SGP signify the limits where these two approximations
hold. δ/Δ= 1 denotes the steady gradient limit. The value of q* (i.e., q* = q/Δ) at a
particular point corresponds to the striped area on the GPD plane as marked. In a
PGSE experiment q-space is probed in one of the three directions indicated on the
inset axes by varying either δ, Δ or g (the subscripts denote the experimental
variables are held constant). A PGSE experiment in which Δ is varied (dashed
line) corresponds to sampling q-space in a line orthogonal to ~g ¼ γg=2π and
connecting the GPD and the SGP planes with slope δa2/(DΔ2). To allow for a
more easily intuitive interpretation of data from restricted systems, it is preferable
to plot the data using qa instead of ~g. Adapted from Price and Söderman.64
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approach is also applicable for spins diffusing within a restricted geometry provid-
ing Δ is so short that very few of the spins are affected by the boundary (i.e., ξ
(=DΔ /a2)≪ 1) as previously explained in Section 1.7. When Δ becomes so long
that the probability of being at any position is independent of the starting position, the
change in phase becomes independent of the phase distribution.47 From the central
limit theorem the distribution of the sums of the phase changes becomes Gaussian. It
has been shown that the GPD approximation solution for diffusion within a reflect-
ing sphere (Eq. (3.22)) emulated Brownian motion simulations very well for ξ < 1,
fairly well for ξ ≈ 1 and well for ξ > 1.20 However, as shown in Figure 3.4, the
enforcing of a Gaussian phase condition leads to the loss of interference effects.65,66

Whilst most studies on the validity of the GPD approach have been limited to closed
geometries, Zielinski and Sen have considered its validity in open geometries.5

In contrast to the GPD approach, the SGP approximation is strictly valid for
infinitely small δ such that motion during the gradient pulse can be neglected.
Infinitely narrow gradient pulses are of course a technical impossibility and the
condition is even less closely approximated in sequences designed to remove the
effects of background gradients (see Section 7.6) or where the applied gradients are
weak as in MRI-based studies where δ is typically of the order of Δ.67 The SGP limit
can in general be reasonably met in a freely diffusing system by ensuring δ≪Δ as is
evident by comparison of the analytical solution for PGSE attenuation (Eq. (2.75))
and corresponding SGP solution (Eq. (2.44)). However, for diffusionwithin restricted
geometries the situation is more complicated since even though it may be possible
to ensure that δ≪Δ, depending on the size of the restricted geometry, the diffusing
spins may have significant interactions with the boundaries on the timescale of δ. In
reality, the uncertainty in the initial and final positions due to motion during the

Figure 3.4 PGSE profiles for diffusion between planes simulated using the GPD
(Eq. (3.22)), SGPmod (Eq. (3.17) with Δ substituted by Δ�δ/3), matrix (see Section
3.10.4) and free diffusion formulae (Eq. (2.75)) for δ/Δ = 0.5.
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gradient pulses is characterised by a sphere of radius amin = q
−1 and it is this that

determines the lower limit of length scales that can be probed.26,36,68

Due to the difficulty in meeting the rigorous criteria required for the validity of the
SGP approximation in experiments on many real porous systems (e.g., biological
cells), there is considerable interest in understanding the effects of finite δ on PGSE
measurements in restricted systems and also in extending the SGP approximation
approach to encompass finite values of δ.44,64,69 While with infinitely short gradient
pulses a spin position will be accurately labelled anywhere within a restricted
geometry, with increasing pulse lengths the particle will be labelled as being closer
and closer to the centre of the pore since the entire pore volume has been sampled
during the pulse.70 Consequently, as δ increases the diffraction peaks shift towards
higher q-values (that is to make the pore size appear smaller than the actual size)
with the higher-order minima being more affected than the first minimum as shown
in Figure 3.5.15,65,71 Indeed at finite gradient pulse lengths, the echo amplitude is the
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Figure 3.5 Effects of finite gradient pulse length on 1H PGSE coherence patterns
of water diffusing between planes. The data were acquired with Δ= 2 s, and three
different values of δ (●: 2ms, ▲: 100ms, and ■: 200ms). The data were fit using
2a = 112 μm. The dotted line denotes the SGP fit (Eq. (3.17)) to the data. The solid
lines denote the matrix fits (see Section 3.10.4) and the three solid lines with
shallower minima are Gaussian distributions (σ = 20 μm and number of standard
deviations = 1.4) using the matrix formalism. From Price et al.44
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spatial Fourier transform of a ‘centre of mass’ propagator.72 As expected, as δ→ 0,
the centre of mass propagator reduces to the usual diffusion propagator. Indeed,
from analysis of diffractive phenomena it has been realised that the rather stringent
condition ofDδ/a2≪ 0.02 needs to be met for the SGP approximation to be valid in
which case less than 10% of the signal attenuation will occur during δ and there will
be less than 5% shift of the second minimum in the diffraction pattern.73 Due to the
rapid diffusion it is especially difficult to satisfy the SGP approximation in mea-
surements of gas diffusion.74

Another point of interest with gradient pulses of finite width is the applicability of
Eq. (3.10) to determine D(Δ) since strictly it is valid only in the SGP limit; outside
this limit only an apparent time-diffusion coefficient,Dapp(Δ), is determined. Whilst
in closed geometries Dapp(Δ) and D(Δ) can differ significantly,73 in open restricted
geometries the two quantities deviate by less than 10%.5 Indeed, it was found that
SP/VP and ℑ could be calculated from Dapp(Δ) in open geometries even outside the
SGP limit.5

As noted above, analytic solutions starting from the Bloch–Torrey equations
account for finite gradient pulse effects; however, this approach is in general
mathematically intractable. A simplistic approach that has been used to account
for the finite length of δ has been, by analogy to Eqs. (2.44) and (2.75), to replace Δ
by Δ−δ/3 in the SGP solutions for restricting geometries. However, this substitution
is without physical basis and fails (see Figure 3.4).64 Indeed, if this ‘correction’ is
attempted on molecules undergoing restricted diffusion on the timescale of δ, the
measured MSD will decrease with increasing δ.72,75 Lori et al.67 have presented a
formalism using a modified q-space index for correcting predictions of the displace-
ment distribution if the diffusion being studied is multi-Gaussian free diffusion. As a
result of these limitations more sophisticated approximations and numerical
approaches have been developed for analysing PGSE data and these are overviewed
in the next section.

3.10 Other methods for determining E(q, Δ)

From the above discussion it can be understood that the commonly used approaches
for relating the echo attenuation to the diffusive phenomena (i.e., solution of the
Bloch–Torrey equations and the SGP and GPD approximations) have severe limita-
tions: solutions to the Bloch–Torrey equations for realistic geometries become
exceedingly difficult if not intractable, while the SGP and GPD solutions do not
adequately represent the experimental reality (e.g., finite δ) or the physical reality (e.g.,
non-Gaussian diffusion), respectively. Numerous other theoretical approaches have
been developed in attempts to account for some or all these limitations and they can be
broadly classified into the following categories: solutions to the Bloch–Torrey
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equations, extensions to the SGP approach and Monte Carlo simulations of
Brownian trajectories. Note some of the characterisation in the following subsec-
tions is rather imprecise since some studies involve multiple approaches.

3.10.1 Solution of the Bloch–Torrey equations

In this approach the Bloch–Torrey equations are solved with analytic generalisa-
tions76–79 or numerically using finite difference, finite element and lattice meth-
ods.46,71,80–86 Amongst these efforts, as noted by Grebenkov,2 the work of
Robertson,46 where a quantum mechanical operator formalism was used, is related
to later efficient numerical techniques (see Section 3.10.4).

3.10.2 Propagator and SGP approach

In an attempt to alleviate the mathematical complexity involved in the SGP
approach, Hagslätt et al.1 have used finite element calculations to generate the
appropriate propagator which is then used to calculate the spin-echo intensity
using the SGP equation (Eq. (2.34)).

3.10.3 Monte Carlo approaches

In this approach, Monte Carlo simulations of Brownian trajectories, summed over
simulations of a large number of particles and a sufficient number of steps of
appropriately sized jump distances, are used87 to determine the phase distribution
for the sample, which can then be used with Eq. (2.2) to determine the signal
attenuation. There have been many attempts using this approach.15,20,29,65,72,88–97

3.10.4 Multiple narrow pulse and matrix formalism

A general, and given appropriate numerical precision, analytical solution to model-
ling PGSE attenuation data is given by the matrix formulation of Callaghan69 based
on themultiple propagator approach originally suggested by Caprihan et al.98 In this
approach involving the eigenvalues of the Laplace operator, the Hahn echo-based
PGSE sequence for example is discretised into 2N+1 intervals of length τ such that
the total length of the sequence is (2N + 1)τ as illustrated in Figure 3.6.
Thus at time t = nτ the gradient impulse will be

qn ¼ mnq (3:32)

where

q ¼ 2πð Þ�1γδgstep (3:33)
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and mn is some positive or negative integer multiple of the gradient amplitude
discretising unit gstep, viz.

mn ¼ int
g n τð Þ
gstep

 !

: (3:34)

The SGP master equation (Eq. (2.34)) can be rewritten as

Eðq;ΔÞ ¼
ð ð

ρðr0Þe�i2π q�r0Pðr0; r1;ΔÞei2π q�r1dr0 dr1: (3:35)

For brevity we write

e rið Þ ¼ exp i2πqi � rið Þ; (3:36)

and thus, we can rewrite the SGP equation as

E q;Δð Þ ¼
ðð

ρ r0ð Þe r0ð ÞP r0; r1;Δð Þe r1ð Þdr0dr1: (3:37)

Eq. (3.37) can be expanded to account for a generalised gradient waveform discret-
ised into N time intervals τ each bounded by impulses, qn, qn+ 1, etc. to obtain

E q;Δð Þ ¼
ð
ρ r0ð Þ e r0ð ÞP r0; r1; τð Þ e r1ð ÞP r1; r2; τð Þ e r2ð Þ
� � � e rN�1ð ÞP rN�1; rN; τð Þ e rNð Þ dr0 dr1 � � � drN; (3:38)

and obtaining a solution in terms of an eigenmode expansion (see Eq. (1.78))

P r0; r1; tð Þ ¼
X

k

Kk r0ð ÞK�
k r1ð Þ exp �λktð Þ: (3:39)

As noted in Section 1.5.3, the eigenfunctions are real and so the complex conjugate
is in reality superfluous. Inserting Eq. (3.39) into (3.38) we obtain

δ
M + 1/2

2N +1

mn × gstep 

t
(nτ) 

g(t) (mn)

N – M

N – M

τ

gstep

Figure 3.6 Schematic diagram of the discretisation of the Hahn echo-based PGSE
sequence.
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E q;Δð Þ ¼
ð
ρ r0ð Þe r0ð Þ

X1

k1¼0

Kk1 r0ð ÞK�
k1

r1ð Þ exp �λk1t
� �

" #

e r1ð Þ

	
X1

k2¼0

Kk2 r1ð ÞK�
k2

r2ð Þ exp �λk2t
� �

" #

e r2ð Þ

� � �

	
X1

kN¼0

KkN rN�1ð ÞK�
kN

rNð Þ exp �λkNt
� �

" #

e rNð Þ dr0 dr1 � � � drN : (3:40)

Putting all the summation indices together this becomes

E q;Δð Þ ¼
ð
ρ r0ð Þe r0ð Þ

X

k1;k2���kN
Kk1 r0ð ÞK�

k1
r1ð Þ exp �λk1t

� �
e r1ð Þ

	 Kk2 r1ð ÞK�
k2

r2ð Þ exp �λk2t
� �

e r2ð Þ
� � �
	 KkN rN�1ð ÞK�

kN
rNð Þ exp �λkNt

� �
e rNð Þ dr0 dr1 � � � drN: (3:41)

Setting ρðr0Þ ¼ V�1 and rearranging the ‘pieces’ so that those that depend on the
same rn are grouped together and defining

Akikiþ1
qið Þ ¼

ð
K�

ki
rið ÞKkiþ1

rið ÞeðriÞdri; (3:42)

Rkk ¼ exp �lkτð Þ; (3:43)

and

Sk qið Þ ¼ V�1=2

ð
Kk rið Þ eðriÞdri (3:44)

and noting that exp ði2πqÞ ¼ exp ð�i2πqÞ� and after some rearrangement Eq. (3.41)
becomes

E qð Þ ¼
X

k1;k2���kN
Sk1 q0ð ÞRk1k1Ak1k2 q1ð ÞRk2k2Ak2k3 q2ð Þ . . .RkNkNS

�
kN

�qNð Þ:

(3:45)

The delta function identity (Eq. (1.79)) can be used to obtain
X

kiþ1

Akikiþ1
qið ÞAkiþ1kiþ2

q iþ1

� � ¼ Akikiþ2
q i þ q iþ1

� �
; (3:46)
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which leads to the result

A nqð Þ ¼ A qð Þn: (3:47)

This is a very important result since it allows us to determine only A(q) for the
smallest value used to digitise the waveform. Hence Eq. (3.45) becomes

E q;Δð Þ ¼ S q0ð ÞRA q1ð ÞRA q2ð Þ . . .RA qN�1ð ÞRSy �qNð Þ; (3:48)

where the first S is a row vector and the last S† is a column vector (S†= ST* = S*T).
Thus in the case of a waveform g(t) that begins and ends with zero amplitude and

which has zero time integral at the sampling time in order to satisfy the echo
condition (Eq. (2.26)), setting the initial and final impulses to the minimum value
of q (not a serious error when N is large) gives

E q;Δð Þ ¼ S qð ÞR A qð Þ½ �m2 � � �R A qð Þ½ �mn . . .R A qð Þ½ �mNRSy �qð Þ: (3:49)

Importantly Eq. (3.49) can be evaluated providing the three matrices, A(q), R(τ) and
S(q) are calculated, where q is the smallest impulse to digitise the waveform.
We illustrate the use of this formalism for the case of diffusion between reflecting

planes. For this formulation to be valid, τ must be less than the characteristic
timescales, that is, the following two conditions must be met,99

τ 
 2að Þ2
D

(3:50)

(i.e., the MSD during τ is much less than the planar separation) and

τ 
 γ2g2D
� ��1=3

(3:51)

(i.e., during τ the spins must travel a distancemuch less than that required for them to
dephase by 2π radians).
Using the above discretisation we have

Δ ¼ ðNþ 1=2Þτ (3:52)

δ ¼ ðMþ 1=2Þτ; (3:53)

hence the total effective scattering wave-vector amplitude is

qnet ¼ Mþ 1ð Þqτ ¼ Mþ 1ð Þ 2πð Þ�1γgτ (3:54)

and from Eq. (3.49) the matrix equation for the attenuation in the Hahn
echo-based PGSE sequence as depicted in Figure 3.6 is

Eðq;ΔÞ ¼ S qð Þ RA qð Þ½ �MRN�M RAy qð Þ
 �M
RSy qð Þ (3:55)
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Noting the eigenfunctions (Eq. (1.82)) and eigenvalues (Eq. (1.83)) for diffusion
between planes, the component matrices are given by

S ¼ BS0 (3:56)

A ¼ CyA0C (3:57)

and

R ¼ exp
�k2π2Dτ

ð2aÞ2
 !

; (3:58)

where B and C are diagonal matrices with

B ¼

1
2a ffiffi

2
p
2a

. .
.

ffiffi
2

p
2a

2

666664

3

777775
(3:59)

C ¼

ffiffiffiffi
1
2a

q

ffiffi
1
a

q

. .
.

ffiffi
1
a

q

2

6666664

3

7777775

(3:60)

S0
k ¼

i4a exp i2πqað Þ 4πqað Þ cos 2πqað Þ
4πqað Þ2� kπð Þ2 k odd

4a exp i2πqað Þ 4πqað Þ sin 2πqað Þ
4πqað Þ2� kπð Þ2 k even

8
>>><

>>>: (3:61)

and

A
0
kk0 ¼

1

2
S 0

k�k0j j þ S 0
kþk0

h i
: (3:62)

Examples of the use of this formulation are given in Figures 3.4 and 3.5.
Solutions using this formalism have also been given for planar, cylindrical and

spherical pores including surface relaxation.99–101 Later, this matrix approach was
reformulated by Sukstanskii and Yablonskiy102 in terms of a random walk.
Barzykin proposed an alternative and highly efficient matrix formalism by con-

sidering a stepwise approximation of the temporal gradient profile.103,104 In his
approach, the linear magnetic field operator in the Bloch–Torrey equation is
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expanded in terms of eigenmodes of the diffusion propagator for the relevant
geometry. As a result, the two matrices determining the macroscopic signal depend
solely on the confining geometry and have to be calculated only once. All simple
geometries were solved analytically by this method with and without surface
relaxation. The memory function approximation of Sheltraw and Kenkre66 (see
Section 3.10.5) was obtained in the first order of the general magnetic field operator
expansion. It was proved that the stepwise gradient formulation is mathematically
equivalent to the multiple propagator formulation in appropriate limits. Barzykin’s
approach is computationally superior in situations where the temporal gradient
profile is naturally stepwise, such as for Hahn or Stejskal–Tanner pulse sequences.

3.10.5 Other approaches

Sheltraw and Kenkre66 presented a memory function approximation based on
application of the projection operator method105,106 to the evolution equation of
the system density matrix. Importantly this approach, whilst related to the GPD
approximation, does predict diffraction effects. Other approaches include a lattice
Boltzmann procedure to numerically simulate time evolution of magnetisation in a
porous medium.107 Grebenkov2,108 has recently presented a multiple correlation
function approach which is related to that of Axelrod and Sen.77 We also mention
that artificial neural networks have been used to treat complex geometries.109,110
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4

PGSE measurements in complex
and exchanging systems

4.1 Introduction

A requirement in measuring transport (e.g., transmembrane) or exchange (e.g., ligand
binding) is to be able to identify a measurable NMR parameter that has a different
value in each state. Modulation of this parameter by the transport or exchange
process is examined to characterise the process.1 Traditionally, NMR chemical shifts
or relaxation times have been used for this purpose.2–4 With the advent of PGSE
methods, a difference in diffusion properties (i.e., a difference in diffusion coefficient
between sites or a difference in motional restriction) becomes another measurable
NMR parameter that can be used to probe transport or exchange.
In the simplest case the exchange will occur between two freely diffusing sites

(e.g., a ligand binding to a macromolecule; Figure 4.1); however, in many real
systems (e.g., a suspension of biological cells) one site, or both sites if at higher
cellular volume fractions, may be restricted. In contrast to the previous chapter
where only simple restricting systems with reflecting boundary conditions were
considered and the diffusing species did not interact with other restricting geome-
tries, in real systems (e.g., biological cells, porous systems) it may also be necessary
to consider the effects of a combination of exchange, restriction, obstruction
and polydispersity in addition to surface and bulk relaxation as well as different
bulk diffusion coefficients in each medium (e.g., Figure 4.2). As a consequence,
modelling such systems can be very complicated and various approximations are
necessarily used.
This chapter begins by examining the relatively simple case of exchange between

two freely diffusing regions which are modelled with the well-known Kärger
equations. Then, in the order of increasing complexity, a system in which particles
diffusing within a sphere subject to the absorbing boundary conditions is considered
(Figure 4.2A). The absorbing boundary conditions are equivalent to implying
infinitely fast relaxation in the outer domain and effectively turn a two-site system
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into a mathematically simpler pseudo-one-site system. Finally, the full two-site
system is examined in which the populations in both the (restricted) internal domain
and (freely diffusing) external domain and the exchange between them must be
considered (Figure 4.2B).
Some experimental data for hypophosphite (H2PO

�
2 ) transport in human red

blood cells are presented in Figure 4.3 and Figure 4.4.

Free ligand (Df, Pf, τf, T1f, T2f)

Bound ligand (Db, Pb, τb, T1b, T2b)

Macromolecule
Db

Kd

Figure 4.1 A schematic diagram of a ligand (square) exchanging between free
solution and a macromolecule binding site on a macromolecule with dissociation
constant, Kd. In the free state the ligand has a diffusion coefficient Df, a population
Pf, a lifetime τf, a spin–lattice relaxation time T1f, and spin–spin relaxation time,
T2f. The corresponding parameters for the ligand in the bound state are denoted
with a subscript ‘b’. We note that Db is assumed to be equal to the macromolecule
diffusion coefficient.

(A) (B)

D
Di

De

M
Mi

Me

a a

Figure 4.2 Schematic representations of diffusive transport through a spherical
interface of radius a. The outer domain is taken as freely diffusing. M denotes the
permeability coefficients (m s−1), it is sometimes convenient to write this as a
reduced permeability coefficient, h=Ma/D. The subscripts i and e refer to the
internal and external medium respectively. (A)When eitherDe≫Di or T2(i)≫ T2(e)
(where the number in braces denotes the medium) this model becomes equivalent
to the partially absorbing wall condition. In this model, when a spin reaches the
external medium, its signal is instantly annihilated. Thus, the absorbing wall
conditions result in a pseudo-one-site system. (B) The full two-site system where
the populations and diffusion coefficients in both domains are considered.

148 PGSE measurements in complex and exchanging systems



Figure 4.3 31P PGSE NMR of hypophosphite transport in a suspension of human
red blood cells at 310K. The intra- and extra-cellular species give separate
resonances and the transport can be blocked by the addition of dinitrostilbene.
The experimental parameters wereΔ= 100ms and g = 0.28 Tm−1. The haematocrit
of the cells was�0.7 and the cell volume was about 70 fl, which, assuming the cells
to be spherical, gives an effective radius of about 2.5 μm. ΔS denotes the difference
in signal attenuation of the intracellular species due to transport. The signals of the
extracellular species, which have little obstruction attenuate very rapidly. Adapted
from Price et al.5

1

0.1
0 1 2 3

δ 2(Δ-δ/3) (× 105 s3)

E

4 5 6 7

Figure 4.4 Plots of the hypophosphite attenuation data shown in Figure 4.3 versus
δ2(Δ-δ/3). The intracellular signals from the cells with (◯) and without (●) transport
inhibition. The solid lines are second-order polynomial interpolations. The difference
in attenuation between the two data sets is a result of the transmembrane transport.
Compared to the intracellular medium, the hypophosphite in the extracellular
medium diffused much more rapidly in both samples giving an apparent diffusion
coefficient of Dapp = 5.9 × 10−10m2s−1 (the approximate attenuation of this signal is
depicted by the dotted line). The true diffusion coefficient, as measured in cell-free
supernatant was 1.60× 10−9m2s−1. This indicates the presence of obstruction effects
for the extracellular species. Adapted from Price et al.5
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4.2 Simple binding and exchange: the Kärger equations

The simplest case of exchange between two domains where the exchanging species
are both undergoing free diffusion as depicted for a ligand (L) exchangeably binding
with a macromolecule receptor (P) to form a complex (LP) in Figure 4.1. The ligand
has diffusion coefficients Df and Db, when it is in the free and bound states
respectively. The system is described by the equilibrium reaction6

Lþ PÐ
kþ1

k�1

LP: (4:1)

The dissociation constant of the complex, Kd (M), may be defined in terms of this
stoichiometric equation by the ratio of the reverse first-order rate constant (k-1 (s

−1))
and the forward rate constant (k+1 (M

−1s−1)) by

Kd ¼ L½ � P½ �
LP½ � ¼ k�1

kþ1

: (4:2)

Exchange on the timescale of Δ will be reflected in the magnitude of the observed
diffusion coefficient of the ligand. AlthoughKd is only related to the ratio of k−1 and
k+1 as shown in Eq. (4.2), it is sometimes found that a value of Kd less than 1 μM,
which would constitute tight binding, is correlated with slow exchange.7 In the
case of slow exchange there would be insufficient exchange to modulate the
measured diffusion coefficient and assuming that the bound and free sites had
distinct chemical shifts the experiment would reveal the diffusion coefficients of
both sites and, after accounting for relaxation differences, the relative populations
of the two sites.
The fractional populations (i.e. mole fractions) in the free and bound states are

given by

Pf ¼ L½ �
L½ �Total

;Pb ¼ LP½ �
L½ �Total

; (4:3)

where [L] is the concentration of the free ligand, [LP] is the concentration of the
bound ligand and [L]Total is the total ligand concentration. Hence,

Pf þ Pb ¼ 1: (4:4)

For the above model, taking [P]Total to be the total macromolecule concentration
and assuming the possibility of n equivalent binding sites the bound population is
given by

Pb ¼ α�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
α2 � β

p
; (4:5)
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where

α ¼ L½ �Totalþn P½ �TotalþKd

� �

2 L½ �Total
and β ¼ n P½ �Total

L½ �Total
: (4:6)

The lifetimes of a ligand molecule in the free and bound states are

τf ¼ 1

kþ1 P½ � and τb ¼ 1

k�1

; (4:7)

respectively. A single lifetime is often used to characterise such exchange
processes

1

τ
¼ 1

τf
þ 1

τb
¼ k�1 1þ Pb

Pf

� �
¼ k�1

L½ �Total
: (4:8)

The coupled differential equations describing the echo signal intensities of the
species free and bound sites are, for the Hahn spin-echo based PGSE sequence,8–12

dSf

dt
¼ � 2πqð Þ2DfSf � Sf

τf
� Sf

T2f

þ Sb

τb
(4:9)

and
dSb

dt
¼ � 2πqð Þ2DbSb � Sb

τb
� Sb

T2b

þ Sf

τf
: (4:10)

The initial conditions are given by Sf t¼0j ¼ Pf ¼ 1� Pbð Þ and Sb t¼0j ¼ Pb.
These equations are analogous to those for nuclear relaxation in multiphase
systems.2

Ignoring the relaxation time differences between the two domains, the equation
describing the echo attenuation (in the short gradient pulse limit) is given by a
sum of exponentials.8–11 The individual solutions to Eqs. (4.9) and (4.10) are,
respectively,

Sb q;Δð Þ ¼ Pb � C2ð Þ exp � 2πqð Þ2D1Δ
� �

þ C2 exp � 2πqð Þ2D2Δ
� �

and Sf q;Δð Þ ¼ Pf � C0
2

� �
exp � 2πqð Þ2D1Δ
� �

þ C0
2 exp � 2πqð Þ2D2Δ

� � (4:11)

where

C2 ¼ PfDf � PfD1

D2 �D1

and C0
2 ¼ PbDb � PbD1

D2 �D1

:

D1 and D2 are the apparent self-diffusion coefficients defined by
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D1 2ð Þ ¼ 1

2
Db þDf þ 1

2πqð Þ2
1

τb
þ 1

τf

� �
8
><

>:

� Df �Db þ 1

2πqð Þ2
1

τf
� 1

τb

� �" #2
þ 4

2πqð Þ4τbτf

8
<

:

9
=

;

1=2
9
>=

>;
:

Often individual signals cannot be observed for the free and bound sites and thus the
solution becomes

E q;Δð Þ ¼ Sb þ Sf ¼ P1 exp � 2πqð Þ2D1Δ
� �

þ P2 exp � 2πqð Þ2D2Δ
� �

; (4:12)

where P1 and P2 are the population fractions (relative signal intensities) given by

P1 ¼ 1� P2 (4:13)

and

P2 ¼ PbDb þ PfDf �D1

D2 �D1

: (4:14)

Generally, Df can be determined by measuring the diffusion of the ligand alone. If
the free and bound populations have separate chemical shifts, Pf and Pb can be
determined directly by integrating the spectral resonances and since

Pf

τf
¼ Pb

τb
; (4:15)

either τb or τf can be eliminated, reducing the number of unknowns to just Db and
τb (or τf).
Despite wide application, this approach involves a serious approximation:

transport between different subregions is introduced through the mean residence
times and conditional hopping probabilities, by combining Fick’s second law with
the Chapman–Kolmogorov equations.9 Thus, the space coordinate is applied in a
macroscopic sense, leaving the space unit much larger than the diameters of the
individual subregions. However, this approximation considerably simplifies the
solution of the underlying diffusion problem and can easily be extended to more
than two sites – although without extremely precise experimental data the appli-
cation of such models would be problematic. There are also a number of other
important assumptions whose validity may be questionable including: (a) that the
spin–spin relaxation times are the same in both sites or very much longer than Δ,
(b) that there is no self-association of the macromolecule or the ligand and that the
changes in ligand concentration (NB normally the macromolecule concentration is
constant) do not perturb the solution viscosity and thus the self-diffusion coefficients
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of the free and bound species, and (c) that the above derivation is performed in the
short gradient pulse limit. As discussed in detail elsewhere these assumptions may
not be justified, and corrections for relaxation may need to be included.9,13–16

Usually, rates of chemical exchange are defined relative to the NMR timescale
based on chemical shift differences.17 For example, in a slowly exchanging system
the individual sites can be observed with different chemical shifts (assuming that
there is a difference) as the exchange rate is much less than the frequency difference
between the sites. As the exchange rate (i.e., the inverse lifetimes) increases line
broadening is first observed, followed by coalescence and finally in fast exchange,
where the mean lifetimes in each site are now very short, a motionally narrowed
time-averaged spectrum of the different sites is observed. Ordinarily, the transition
between fast and slow exchange can only be made by changing the concentration of
the participating species or their environment (e.g., temperature). In diffusion
measurements of an exchanging system, however, we are primarily concerned
with events on the timescale of Δ and thus by cogent choice of Δ it may be possible
to change from one regime to another. In the case of slow exchange (i.e., τf, τb→∞)
Eq. (4.12) simplifies to

E q;Δð Þ ¼ Pf exp � 2πqð Þ2DfΔ
� �

þ Pb exp � 2πqð Þ2DbΔ
� �

; (4:16)

whereas in the case of fast exchange (i.e., τf, τb→ 0 and thus D2→∞) and so
Eq. (4.12) reduces to the particularly simple single exponential form

Eðq;ΔÞ ¼ Sb þ Sf ¼ exp �ð2πqÞ2hDiP Δ
� �

; (4:17)

where

hDiP ¼ 1� Pbð ÞDf þ PbDb (4:18)

is the population-weighted average diffusion coefficient. Clearly, under conditions
of slow or fast exchange it is not possible to determine lifetimes directly from
diffusion measurements. The solutions to the Kärger equations are illustrated in
Figure 4.5.
Normally, a series of diffusion measurements at constant macromolecule concen-

tration with various ligand concentrations is performed (theoretically the situation
could be reversed, but the change in solution viscosity with macromolecule concen-
tration would be far greater). In the systems normally studied, the ligand is in fast
exchange between the free and the bound site and so Eq. (4.18) holds. Db and Df can
be determined by measuring the diffusion of pure macromolecule and pure ligand
solutions, respectively. Equation (4.18) in conjunction with Eq. (4.5) is then regressed
on to the data to obtain estimates of Kd and n. An example of such an analysis for the
salicylate-albumin system is given in Figure 4.6.
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Figure 4.5 A surface plot of the solutions to the Kärger Equations as a function of
Δ (black mesh, Eq. (4.12)). The plots were calculated with Db = 1.0 × 10−10m2s−1,
Df = 2.0 × 10

−9m2s−1, Pb = 0.6 and τb = 0.04 s. For comparison, the solutions to the
slow (solid grey, Eq. (4.16)) and fast exchange (dark grey, Eq. (4.17)) limits are
also shown. As can be clearly seen from the figure, the system can be in either fast
exchange or slow exchange (or somewhere in between) on the Δ timescale by the
choice ofΔ. The slow exchange condition is clearly biexponential, whereas the fast
exchange condition is effectively single exponential.
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Figure 4.6 Population-weighted average diffusion of salicylate in the presence of
bovine serum albumin (0.5mM) as a function of [P]Total/[L]Total at 298K. The
curve was obtained by regressing the two-site model (i.e., Eqs. (4.18) and (4.5))
onto the data. From the systematically poor fit of the model to the data, it is evident
that this model is too simplistic and does not truly describe the molecular reality of
salicylate binding to BSA. The sample with the highest salicylate concentration
was excluded from the analysis. Analysis of the diffusion data gave Kd = 0.030 ±
0.004M with n = 33 ± 3. Modified from Price et al.18
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In Section 2.5 we considered diffusion measurements as a means of separating a
mixture of non-exchanging species. However, exchange on the timescale of Δ will
influence the outcome of such a measurement giving a different distribution of
diffusion coefficients. Using analysis based on the Kärger relations, several studies
have examined how exchange will affect the distributions in the case of a two-site
system.19,20

4.3 Exchange between free and restricted sites

4.3.1 The modified Kärger equations

It is easy to imagine that the conceptually appealing Kärger model (Section 4.2)
could be adapted to form an approximate model for transport between two (or
more) domains such as transmembrane transport in biological cells in accordance
with Figure 4.2A. And a number of variations have been attempted.11,21–23 Jespersen
et al.24 have considered the influence of cellular size distribution on modelling
diffusion data with the Kärger equations.
The Kärger model assumes free diffusion in both sites, and thus, if applied to

transmembrane transport, the effects of the restriction must be accounted for. A first
attempt at such a correction is to replace the intracellular diffusion coefficient with an
apparent one using Eq. (3.10). However, as Δ increases such that ξ≫ 1 the amplitude
of the internal site becomes independent of q. Here we consider one approach of
modifying the Kärger equations to model transmembrane exchange:11 Relabelling
Eqs. (4.9) and (4.10) to reflect the internal (i) and external domains (e), and ignoring
relaxation time differences to obtain

dSe

dt
¼ � 2πqð Þ2DeSe � Se

τe
þ Si

τi
(4:19)

dSi

dt
¼ �Si

τi
þ Se

τe
; (4:20)

with the initial conditions given bySe t¼0j ¼ Pe ¼ 1� Pið Þ and, assuming a spherical

restriction of radius a in the long-time limit (Eq. (3.26)), Si t¼0j ¼ P
_

i ¼ Pi
3j1 2πqað Þ

2πqað Þ
h i

.

Thus, the attenuation at time t=Δ takes the same form as Eq. (4.12) but with

P1 ¼ Pe � P
_

i �DePe �DiPe �D1P
_

i

ðD2 �D1Þ (4:21)

P2 ¼ DePe �D1Pe �D1P
_

i

D2 �D1ð Þ (4:22)
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and

D1 2ð Þ ¼ 1
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Equation (4.23) can be further simplified. In the slow exchange limit (i.e., τi, τe→∞)

D1 � 1

2πqð Þ2τe
(4:24)

and

D2 � Di þ 1

2πqð Þ2τi
: (4:25)

In the fast exchange limit (i.e., τi, τe→ 0) we only need to considerD1 (sinceD2→∞
and thus the second term in Eq. (4.12) → 0) and

D1 � τe
τe þ τi

: (4:26)

Even allowing for this modification to better account for the reality of diffusion in
one domain being subject to restricted diffusion, the Kärger approach still involves a
serious approximation. In particular, there is the implicit assumption that exchan-
ging spins sample all points of the sphere before being transported as there is no
consideration of the starting point inside the sphere. Hence, this approach is strictly
only applicable in the case of very slow exchange. However, this approximation
considerably simplifies the solution of the underlying diffusion problem, which is
otherwise extremely complicated even for a two-site system. Further, this theore-
tical approach fails to predict the PGSE diffraction patterns observed in real perme-
able media such as erythrocyte suspensions,25 and consequently more complete
theoretical approaches must be adopted.

4.3.2 Absorbing boundaries

4.3.2.1 Absorbing planes

Various authors have presented the SGP solution for diffusion between a pair of
absorbing planes with the gradient being applied perpendicular to the planes.26–29

Starting from the propagator defined in Eq. (1.86) the signal attenuation is28,29
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E q;Δð Þ ¼ 2
X1

n¼0

1þ sin 2αnð Þ
2αn

� ��1

� 2πqað Þ sin 2πqað Þ cos αn � αn cos 2πqað Þ sin αn½ �2

2πqað Þ2�α2n

h i2 e
�α2n

DΔ
a2

þ 2
X1

m¼0

1� sin 2βmð Þ
2βm

� ��1

� 2πqað Þ cos 2πqað Þ sin βm � βm sin 2πqað Þ cos βm½ �2

2πqað Þ2�β2m

h i2 e
�β2m

DΔ
a2 ; (4:27)

where the eigenvalues αn and βm are given by Eqs. (1.87) and (1.88).
Wall relaxation effects do not significantly perturb the diffraction pattern and the

major effect is to shift the position of the diffraction minima resulting in a reduced
value of a.28 An extension of Eq. (4.27) which includes relaxation before and after
the gradient pulse has also been presented.28

4.3.2.2 Absorbing spheres

For the case of spheres with relaxing walls, the SGP solution is26,29–31

Eðq;ΔÞ ¼ 6
X1

n¼0

X1

m¼0

ð2nþ 1Þ
hðh� 1Þ þ α2nm � nðnþ 1Þ

� αnm ðnþ hÞjnð2πqaÞ � 2πqajnþ1ð2πqaÞ½ �
α2nm � 2πqð Þ2a2

( )2

e
�α2nm

DΔ
a2 ; (4:28)

where h = Ma/D is the reduced permeability and αnm are the positive roots of

ðnþ hÞ jn αnmð Þ ¼ αnm jnþ1 αnmð Þ: (4:29)

The microscopic first-order rate constant for transport through the spherical inter-
face will be given by k1 = 3M/a.31

In a typical experiment the condition DΔ/a2 > 1 holds and only the lowest eigen-
value α=α00 is important. Thus, from Eq. (4.29), α satisfies the following equation

1� h ¼ α cot α: (4:30)

In this long-time limit the normalised echo amplitude is independent ofDΔ/a2 and is
given by

Eðq;1Þ ¼ 1

h

α2

α2 � 2πqað Þ2 ðh� 1Þ sin 2πqað Þ
2πqa

þ cos 2πqað Þ
	 
( )2

: (4:31)
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In the limit of weak permeability (i.e., h → 0, reflecting boundary), the lowest
positive solution of Eq. (4.30) is α2 = 3h, and when 2πqa≪ 1 this reduces to Eq.
(3.26). And in the limit of infinite permeability (i.e., h → ∞, perfectly absorbing
boundary)

Eðq;1Þ ¼ π2

π2 � 2πqað Þ2
sin 2πqað Þ
2πqa

" #2
� exp � 2πqað Þ2ðπ2 � 6Þ

.
3πð Þ2

h i
:

(4:32)

The attenuation profiles for a range of permeability values are plotted in Figure 4.7.
It can be seen that there is only a weak dependence on permeability. Further, there is
a weak decrease in the measured diffusion coefficient as given by the initial slope
(see Eq. (3.10)) as h is increased. The reason for the apparent slowing of diffusion is
that as the permeability increases, more spins leave the sphere and no longer
contribute to the signal. At high permeability values, only those spins survive
which do not reach the surface by time Δ.
In cell or vesicle systems the partially absorbing wall experiment is, in principle,

possible as the relaxation properties of the exterior medium may be manipulated by
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Figure 4.7 A plot of the normalised echo amplitude versus (qa)2 for various values
of the reduced permeability coefficient h for diffusion in a partially-absorbing
sphere. The calculations were performed using ξ = 0.765 which, for instance,
corresponds to D = 1 × 10−10m2s−1, Δ = 60ms and a= 2.8 μm, according to the
values used in an experimental study of bicarbonate diffusion in red blood cells.5

The solid lines were calculated from Eq. (4.28) whereas the dotted lines were
plotted using the long-time limit formula Eq. (4.31). The plot clearly shows that the
positions of the minima are h-dependent. In reality the values of h are always small.
However, we have included a large range of h values so that the effects may be
easily visualised. Adapted from Barzykin et al.31
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addition of relaxation agents. However, it is experimentally difficult to attain the
instant quenching condition,5,31 and the spins in the exterior medium contribute
considerably to the observed echo signal. As shown above, even if the true partially
absorbing boundary condition is achieved, it is only weakly sensitive to transport.
An experimentally more realisable system and similarly a model one-step closer to
the full two-site system is where the spins that transport through the interface are
rapidly relaxed but not instantly quenched.31 In this formulation, the finite lifetime
of the spins in both domains is included. Accordingly, the diffusion equation must
be complemented with a decay term and is given by (here P represents propagator)

@P

@t
¼ D

Δ2P� 1

T2

P: (4:33)

T2 andD are different in each domain (see Figure 4.2) and are denoted below by the
subscripts i and e corresponding to the interior and the exterior, respectively. The
boundary conditions (of the fourth kind) for the Green function are given by

Di
@Pi

@ r

����
r¼a

¼ De
@Pe

@ r

����
r¼a

(4:34)

and

Di
@Pi

@ r
þMiPi �MePejr¼a ¼ 0: (4:35)

At equilibrium, there is no flux across the interface and [Pi/Pe]eq=Me/Mi. The
contribution to the echo signal from the internal domain is

Eiðq;ΔÞ ¼ 6
X1

n¼0

X1

m¼0

ð2nþ 1Þ exp ��iα
2
nm

� �
fnðαnmÞ

� αnm

α2nm � 2πqað Þ2
αnm jnþ1ðαnmÞ

jnðαnmÞ jnð2πqaÞ � 2πqa jnþ1ð2πqaÞ
	 
( )2

;

(4:36)

where αnm are the positive real roots of the equation

αnm jnþ1ðαnmÞ βnmKnþ3
2
ðβnmÞ � ðn� heÞK

nþ1
2
ðβnmÞ

	 


¼ jnðαnmÞ ðnþ hiÞβnmKnþ3
2
ðβnmÞ � nðnþ hi � heÞK

nþ1
2
ðβnmÞ

	 

; (4:37)

βnm ¼ "�1 � ζα2nm
� �1=2

with " ¼ DeT2e=a
2 and ζ ¼ Di=De; hi ¼ Mia=Di; he ¼

Mea=De; K is the modified Bessel function of the third kind,32 and fn(αnm) is
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a constant and is further considered below. It is assumed that at least one root
exists; this requires small T2e and sufficiently small permeability. The latter
condition is normally fulfilled experimentally for most systems of interest. As
the lifetime in the outer domain is decreased (i.e., T2e → 0) βnm tends to infinity,
and the inner component of the echo reduces to Eq. (4.28) as expected. The
contribution to the echo signal from the spins found at time Δ outside the
sphere is31

Eeðq;ΔÞ ¼ 6hiζ
P1

n¼0

P1

m¼0

ð2nþ 1Þ exp ��iα2nm
� � α2nm

~fnðαnmÞ
ðα2nm � 2πqað Þ2Þðβ2nm þ 2πqað Þ2Þ

� αnm jnþ1ðαnmÞ
jnðαnmÞ jnð2πqaÞ � 2πqa jnþ1ð2πqaÞ

	 


�
βnmKnþ3

2
ðβnmÞ

Knþ1
2
ðβnmÞ jnð2πqaÞ � 2πqa jnþ1ð2πqaÞ

" #

: (4:38)

The roots are defined as above. For n = 0, the functions f and ~f are related
via

~f �1
0 ðα0mÞ ¼ ð1þ β0m þ heÞ f �1

0 ðα0mÞ: (4:39)

The outer component vanishes as T2e → 0.
In the long-time limit, only the lowest eigenvalue α= α00 is important which,

from Eq. (4.37), satisfies the following equation

α cot α ¼ 1� hi 1þ he
1þ β

� ��1

; (4:40)

where β= β00. The corresponding constant f0(α) in Eq. (4.36) is given by

f �1
0 ðαÞ ¼ α2 þ hi hi � 1� he

1þ β

� �
1þ he

1þ β

� ��2

þ α2h2e
βð1þ β þ heÞ2

: (4:41)

The overall normalised long-time echo amplitude is again independent of Δ. The
components are given by

Eiðq;1Þ ¼ 1

α2
þ ζ

β2

� ��1
1

h

α

α2� 2πqað Þ2 ðh�1Þ sin 2πqað Þ
2πqa

þ cos 2πqað Þ
	 
( )2

(4:42)

and
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Eeðq;1Þ ¼ 1
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� ��1
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α2 � 2πqað Þ2 ðh� 1Þ sin 2πqað Þ
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: (4:43)

where h= hi/(1 + he/(1+β)). PGSE profiles calculated using these two equations are
given in Figure 4.8 for a range of permeability values. In contrast to the partially
absorbing wall case, finite relaxation rates in the external medium lead to an increase
in the apparent diffusion coefficient given by the initial slope as the permeability
increases and this was experimentally observed in a study of bicarbonate ions diffu-
sing through red blood cell membranes into a Mn2+ doped extracellular medium.5

Even though the external relaxation rate is very fast (but not infinite), a small
population of spins survive at the end of the PGSE experiment and result in a
considerable enhancement in the observed apparent diffusion coefficient. Typically,
two stages are observed: a rapid initial attenuation due to the external component
followed by a slower attenuation due to the internal component. When the ratio of the
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Figure 4.8. PGSE profiles in the long-time limit for spins diffusing through a
spherical interface into a rapidly (but not instantly) relaxing external medium
calculated using Eqs. (4.42) and (4.43). The calculations were performed with
ξ = 0.765, Δ= 60ms, a = 2.8 μm and T2e = 26ms, Di = 1 × 10

−10m2s−1, De = 1 ×
10−9m2s−1. In contrast to the case of a perfectly absorbing external medium (see
Figure 4.7), an increase in hi is accompanied by an increase in the apparent diffusion
coefficient. Smaller values of hi were considered than in Figure 4.7 so that β in Eq.
(4.40)was real. For comparison the correspondingplots of the contribution to the echo
signal from inside the interface (Eq. (4.42)) are also included as dashed lines. Forhi = 0
the lines are coincident. From Barzykin et al.31
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internal and external diffusion coefficients is very small (i.e., ζ≪ 1), the initial stage is
too fast and may not be detected.
The GPD solutions for the spin-echo attenuation for spins diffusing within a

sphere including surface and bulk relaxation have also been derived.33

4.3.3 Permeable boundaries

An important model for analysingmany systems is that of regularly spaced planar or
spherical barriers. Useful solutions must take into account the possibility that a
diffusing spin may transport through several such barriers. Tanner derived an
analytical eigenfunction solution in the SGP limit for an infinite number of regularly
spaced permeable barriers (see Figure 1.13) using Eq. (2.34) and the propagator
given in Eq. (1.136) as,34
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where
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and

Y ¼ sin πqa� βn=2ð Þ
2πqa� βn

and Z ¼ sin πqaþ βn=2ð Þ
2πqaþ βn

: (4:46)

Zientara and Freed35 have presented a finite difference solution of a density matrix/
stochastic Liouville approach to model a similar permeable membrane system. In an
attempt to find an efficient approximate solution, von Meerwall and Ferguson
started with the SGP model for reflecting planes (Eq. (3.17)) and developed an
ansatz-like approximation for barriers of finite permeability and also for permeable
spherical boundaries.36,37 An SGP model for unevenly spaced semi-permeable
membranes has also been presented.38 Van der Weerd et al.39 have presented finite
difference solutions to a model including diffusion and relaxation in multicompart-
ment systems with cylindrical geometry.
Price and Barzykin have presented a two-site model in which the internal domain

is undergoing restricted diffusion within a sphere within the SGP limit and the
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outside domain is undergoing free diffusion such as might be used to model
diffusion data from a cell suspension.11 Similar to the model presented in Section
4.3.2 in which the extracellular spins have a short but finite lifetime, this two-site
model in which there is no restriction on the extracellular lifetime is very sensitive to
transport. In a later work related to the pore-hopping model (see Sections 1.8 and
4.5) Jiang et al.40 developed an approximate model in which the external pores
between the cells in addition to the size and arrangements of the cells was
considered.
Some further aspects of diffusion in complex porous media is considered

under ‘General Porous Media’ in Section 4.5 and in imaging based studies in
Chapter 9.

4.4 Anisotropic and low dimensional diffusion

In an anisotropic system the PGSE signal attenuation will have an orientational
dependence with respect to g since diffusion is now represented by a tensor (i.e., D,
see Eq. (1.64)). Whereas we have previously assumed that the gradient was oriented
along the z axis, now we consider the possibility that it is oriented along any
direction. We also need to consider the possibility that the sample is not homo-
geneously oriented and thus even though we only measure in the direction of the
gradient, the result of the measurement is some form of average over all of the
orientations.
Similar to isotropic restricted system, we note that the amount of information that

can be obtained will depend on whether the system being studied is undergoing
anisotropic Gaussian diffusion or anisotropic restricted diffusion. In the former case
diffusion measurements can lead to the determination of a true diffusion ellipsoid
(see Section 1.6); in the latter case unless the correct propagator is known only an
apparent diffusion ellipsoid can be determined (i.e., Eq. (1.115)). Here we will
consider both possibilities.

4.4.1 Anisotropic Gaussian diffusion

Had we attempted the macroscopic solution for free diffusion as in Section 2.3.2 but
considering anisotropic diffusion, we would have obtained

E qð Þ ¼ exp � 2πð Þ2
ðt

0

q t0ð ÞT�D � q t0ð Þ dt0
� �

; (4:47)

where D is Dlab and q(t) is defined by Eq. (2.15). Assuming that D is
time-independent, we can rewrite this as41,42
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E qð Þ ¼ exp � 2πð Þ2Ð t
0
q t0ð Þq t0ð ÞTdt0 : D

� �

¼ exp �b : Dð Þ
¼ exp �P

i

P

j

bijDij

 !

;

(4:48)

where ‘:’ is the generalised dot product (i.e., the scalar product for rank two tensors).
Note, Eq. (4.48) defines b as a symmetric matrix

b ¼ 2πð Þ2
ðt

0

q t0ð Þq t0ð ÞTdt0: (4:49)

If, for example, the gradients were applied along all three Cartesian directions then
the echo attenuation would be described by

E ¼ exp � bxxDxx þ byyDyy þ bzzDzz þ 2bxyDxy þ 2bxzDxz þ 2byzDyz

� � �
:

(4:50)

Thus, were we to probe the diffusion tensor for anisotropic Gaussian diffusion using
the Hahn- or STE-based sequences the attenuation would be given by

E qð Þ ¼ exp �4π2qT �D � q Δ� δ=3ð Þ� �
; (4:51)

and in particular if diffusion were measured along the z axis using only a z-gradient
this could be written in tensor notation as

E ¼ exp �bzzDzzð Þ
¼ exp �4π2q2zDzz Δ� δ=3ð Þ� �

:
(4:52)

In general, diffusion measurements would be performed in at least six directions
which will be linear combinations of the matrix elements of Dlab with coefficients
corresponding to gradient strength and direction (i.e., the b values) as in Eq. (4.50).
The choice of gradient directions has been considered in detail.43 The resulting data
is in the form of a set of linear equations that can then be solved to obtainDlab which
can then be diagonalised to provide the principal diffusivities and the corresponding
eigenvectors which define the principal axes frame.41,44,45

4.4.2 1D and 2D diffusion and the powder average

Often anisotropic systems are not homogeneously oriented and it is necessary to
perform a ‘powder average’ over the various orientations, or equivalently, assume
that there is only a single domain with a defined direction and that it is the field
gradient randomly oriented, thus Eq. (2.34) becomes9,46–48
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Eðq;ΔÞ ¼ 1

4π

ð
ρðr0ÞPðr0; r1;ΔÞ cos 2πq � r1 � r0ð Þ½ � sin θ dθ d� dr0 dr1; (4:53)

where θ and � are the polar and azimuthal angles, respectively (see Figure 1.4), and
1/(4π) sinθ dθ d� is the probability of q being in the direction defined by θ and �.
Interestingly, if a system contains anisotropic couplings (e.g., quadrupolar or
chemical shift anisotropy) it may be possible to resolve the powder average into
the principal components by investigating the decay of the full spectral shape.49

For polycrystalline systems Eq. (4.53) may be further simplified to48

Eðq;ΔÞ ¼
ð
ρðr0ÞPðr0; r1;ΔÞ sin 2πq r1 � r0j jð Þ

2πq r1 � r0j j dr0 dr1: (4:54)

Importantly, whilst the echo attenuations from the spins in the individual elements in
such anisotropic systems may be Gaussian, the powder average will not be. For
example, in a system such as a liquid crystal with axial symmetry it is possible to
show that50,51

Eðq;ΔÞ ¼ exp �4π2q2D?Δ
� � ð1

0

exp �4π2q2 Dk �D?
� �

Δ x2
� �

dx; (4:55)

where x = cos(θ) and θ define the angle between the lamellae normal and the axis
of the field gradient. Equation (4.55) can be expressed in terms of the error
function (3.321.1 and .2 in ref. 52)

Eðq;ΔÞ¼ 1
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(4:56)

For one-dimensional (or capillary) diffusion (i.e., Dǁ =D and D⊥ = 0), this
becomes48,50,51

Eðq;ΔÞ ¼
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exp �4π2q2DΔ x2
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dx
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�1ð Þn 1

n! 2nþ 1ð Þ! 2πqΔDð Þn; (4:57)

where the integral has been evaluated in terms of a power series expansion of the
error function. Similarly, for two-dimensional (or lamellar) diffusion (i.e., Dǁ= 0
and D⊥=D)48,50,51
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Eðq;ΔÞ ¼ exp �4π2q2DΔ
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The three-dimensional case is, of course, free diffusion (see Eq. (2.44)). Thus,
diffusion in capillary and lamellar systems exhibit characteristic attenuation profiles.
As is often the case for more complicated systems, exact analytical solutions are not
available and Eq. (4.53) must be evaluated numerically (see Section 3.10).47,48

The situation is much more complicated, though, if in the timescale of Δ the
diffusing molecules change from one domain, specified by a unique local director
orientation, into another.48,51 As noted by Callaghan and Söderman51 this problem
is analogous to the curvilinear diffusion of polymers. The echo attenuation for spins
changing N times between differently oriented lamellar domains with a total rms
curvilinear path length of Λ, will for large values of N, reflect Gaussian diffusion
with an apparent diffusion coefficient of 51

D Δð Þ ¼ 2

3

D0λ
ffiffiffiffiffiffiffiffiffiffiffi
4D0Δ

p ; (4:59)

where λ=Λ/N. We shall see in Section 8.7 that experiments that correlate diffusion
over two time-periods may help to better characterise such systems.

4.4.3 A model of anisotropic diffusion – diffusion in a cylinder

As noted previously, anisotropic diffusion can result from restriction in anisotropic pores
such asmuscle fibre cells. Also,many porousmaterials are isotropic on themacroscopic
scale but are locally anisotropic. This local anisotropy can give rise to a spread of
macroscopically observed diffusion coefficients. We begin our consideration of diffu-
sional anisotropy due to restriction by considering diffusion in a cylinder of radius a and
length l and with a (polar) angle, θ, between the symmetry axis of the cylinder and the
static magnetic field (which is also the direction of the gradient; see Figure 4.9). As we
shall see the θ dependence of the attenuation provides an additional structural probe.
Using the propagator given in Eq. (1.96) the GPD approximation for diffusion

perpendicular to the cylinder axis (θ= π/2) is53
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(4:60)
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where LðtÞ ¼ expð�α2nDtÞ and the αn are the roots of J01ðαnaÞ ¼ 0. In the limit
ξ ≫ 1 and δ ≪ Δ, Eq. (4.60) becomes53

E q;1ð Þ ¼ e� 2πqað Þ2 : (4:61)

In the steady gradient limit (i.e., δ → τ) Eq. (4.60) becomes54

E q;Δð Þ ¼ exp � 2γ2g2
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: (4:62)

In the limit ξ ≫ 1 Eq. (4.60) becomes54

E q;1ð Þ ¼ � a4γ2g2

D

7

296
2τ � 99

112

a2

D

� �
: (4:63)

The SGP solution for this geometry is given by55

z´

z

l

a

θ

Figure 4.9. A schematic diagram of diffusion in a cylinder of length l and radius a
with the symmetry axis of the cylinder subtending an angle θ with the direction of
the gradient and static field which is taken to be z. The laboratory or gradient frame
is given by (x′, y′, z′) where z′ coincides with the gradient direction. The director
frame for the cylinder is given by (x, y, z) where z coincides with the symmetry axis
of the cylinder. If this were an elliptic cylinder for example, the director frame
would be uniquely determined. Clearly if θ = 0 the two reference frames coincide.
If θ = 0 and a PGSE diffusion measurement is performed the spin-echo attenuation
will be described by diffusion between planar boundaries (i.e., Eq. (3.17)).
Conversely if θ= π/2 the spin-echo attenuation will be described by diffusion
within a cylinder (Eq. (4.66)).
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(4:64)

where αkm is the kth non-zero root of the equation J0mðαkmÞ ¼ 0 (with α10 = 0) and
the constant Knm depends on the values of the indexes n and m according to

Knm ¼ 1 if n ¼ m ¼ 0
Knm ¼ 2 if n 6¼ 0 andm ¼ 0 orm 6¼ 0 and n ¼ 0
Knm ¼ 4 if n;m 6¼ 0:

(4:65)

If θ = 0 then Eq. (4.64) reduces to the solution for diffusion between planes
(i.e., Eq. (3.17)). Similarly, if θ= π/2, Eq. (4.64) reduces to55

E q;Δð Þ ¼ 4 2πqað Þ2
X1

k¼1

X1

m¼0

K0mα2km J 0
m 2πqað Þ� 2

exp � αkm=að Þ2DΔ
n o

α2km � 2πqað Þ2
h i2

α2km �m2
� � : (4:66)

Ref. 56 contains an alternate but equivalent expression. The echo-attenuation curves for
diffusion in a cylinder versus Δ are plotted for three different values of θ in Figure 4.10.
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Figure 4.10 Plots of the simulated echo attenuation for PGSE diffusion
measurements in a cylinder with the cylinder oriented at three different polar angles
with respect to the gradient, i.e., θ=0 (–––), θ= π/4 (- · - · -) and θ= π/2 (- - - -) versusΔ
calculated using Eqs. (3.17), (4.64) and (4.66), respectively. Also shown is the result
of a powder distribution of polar angles (........) versus Δ. The parameters used in the
simulation are δ=1ms, D=5×10−10m2s−1, g=1Tm−1, a=8μm, l=24μm and
γ(1H) = 2.6571× 108 rad s−1 T−1. As would be expected, since it is an average over
all possible polar angles, the powder average echo attenuation curve is between the
limits of the attenuation curves for θ=0 and θ=π/2. From Price.57
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The corresponding long-time limiting formula is55

E q;1ð Þ ¼ 8a2 1� cos 2πql cos θð Þ½ � J1 2πqa sin θð Þ½ �2
2πqað Þ4l2 cos θ sin θð Þ2 : (4:67)

When θ= 0 this, of course, reduces to the long-time limit for diffusion between
planes as given by Eq. (3.18) and when θ= π/2 this reduces to55

E q;1ð Þ ¼ 2J1 2πqað Þ½ �2
2πqað Þ2 ; (4:68)

and thus the first minima occurs at q ≈ 1.22/(2a). At low q this reduces to56

E q ! 0;1ð Þ ¼ exp � 2πqð Þ2 2að Þ2
16

 !

: (4:69)

The echo-attenuation curves for diffusion in a cylinder are plotted for three different
values of θ in Figure 4.11. It has been noted that in real systems the visibility of such
diffraction patterns is very dependent on θ.58

Using the propagator given in Eq. (1.98) the SGP solution for a relaxing boundary
at a radial distance a from the cylinder centre with the gradient applied across the
polar direction is29
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Figure 4.11 Simulated echo attenuation for PGSE diffusion in a cylinder with
the cylinder oriented at three different polar angles with respect to the gradient,
i.e., θ= 0 (–––), θ = π/4 (- · - · -) and θ = π/2 (- - - -) versus qa calculated using
Eqs. (3.17), (4.64) and (4.66), respectively. Also shown is the result of a powder
distribution of polar angles (........) versus qa. The parameters used in the simulation
were δ = 1ms, Δ= 100ms, D = 1 × 10−9m2s−1, g = 1Tm−1, a= 8 μm, l= 24 μm and
γ (1H) = 2.6571× 108 rad s−1 T−1. From Price.57
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(4:70)

where the eigenvalues are given by Eq. (1.98). Diffusion measurements on water
in 100 μm i.d. capillaries were well described using this formula.59 We note that
Eq. (4.70) reduces to Eq. (4.66) when M=0.

4.4.4 Diffusion tensor

Without any information on the underlying geometry it will always be possible
to determine the apparent diffusion tensor and thus an apparent diffusion ellipsoid by
conducting diffusion measurements with six different gradient directions. If the short
gradient pulse limit can be achieved it will be possible to determine the time-dependent
diffusion tensor (see Eq. (1.115)) by determining the width of the diffusion propagator,
quantified by H, by evaluating the low-q part of the data (cf. Eqs. (3.10) and (4.51))60

E q ! 0;Δð Þ ¼ exp �2π2qT �H � q� �
: (4:71)

When a single apparent diffusion tensor is estimated for the entire sample it is some-
times referred to as ‘diffusion tensor MR spectroscopy’ and when, as is commonly the
case in imaging studies, the estimation is performed for each voxel it is referred to as
‘diffusion tensor MR imaging’.
From the discussion on time-dependent diffusion ellipsoids in Section 1.6, it was

understood that at very shortΔ valuesD(Δ) will become isotropic since the diffusion
of the probe species is unaffected by the boundaries and this can be easily visualised
from the convergence of the echo signal attenuation plots for different values of θ
versus Δ in Figure 4.10.

4.5 General porous media

Porous media, as in rocks, constitute the most general case of restricted diffusion and,
as noted in Chapter 1, analytical solutions are only available for simple cases such as
periodic geometries.61–63 In general, approximations such as the pore-hopping model
or numerical methods are used. We also note that fractal diffusion can be viewed as a
generalisation of diffusive behaviour in porous media.
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4.5.1 Interconnected pores

For a porous medium consisting of isolated pores of radius a and spacing b (see
Figure 1.11), the connectivity matrix is diagonal and Eqs. (1.139) and (3.16), in
analogy to Section 3.5 leads to64

Eðq;1Þ ¼ 1

N

XN

i¼1

S0i qð Þj j2: (4:72)

Thus, in a porous structure a diffusing spin can migrate between pores and this
has the effect of changing the single-slit ‘diffraction’ into a ‘diffusion grating’.65

Information about the pore spacing and connectivity is contained in D(t) and the
tortuosity. The elements of the ‘diffraction grating’ are weighted according to a
diffusion envelope C(Z, Δ) (a Gaussian, Eq. (1.60)), which describes the probability
that a spin will move to another pore a displacement Z parallel to q from the starting
pore after a time Δ. Hence, provided 4a2/D0≪ b2/D∞ (i.e., the pore-equilibration
assumption), P(r0, r1, Δ) becomes a product of the pore density and probability of
jumps between pores. Thus, the attenuation is given by the Fourier transform of
Eq. (1.141)64–66

E q;Δð Þ ¼ S0 qð Þj j2 FT L Zð Þf g 	 FT C Z;Δð Þf g½ �; (4:73)

where |S0(q)|
2 is the average pore structure factor. FT{L(Z)} is the reciprocal lattice

which is broadened by FT{C(Z, Δ)}. This broadening arises because the number of
‘scattering centres’ in the lattice increases with time as the spins diffuse to more
distant pores. If the pore spacing b is irregular the maximum E(q, Δ) will occur at
|q| = b−1. Thus, using small values of q (< b−1), E(q, Δ) will probe D∞, while for
larger values of q, |S0(q)|

2 will be observable as a modulation.
For a model system of monodisperse polystyrene spheres, it was found that

Eq. (4.73) gave a qualitative fit to the data but a more precise fit was obtained
when a pore-hopping formalism was adopted such that65,66

E q;Δð Þ ¼ S0 qð Þj j2 exp � 6D1Δ
b2 þ 3σ2

1� exp �2π2q2σ2
� �� �

sinc 2πqbð Þ
	 


; (4:74)

where σ is the standard deviation of the pore spacing. This model predicts coherence
peaks in E(q, Δ) when qb is an integer. It was noted that D∞ is already effective at
times when a single spin would have only diffused across one pore width, while pore
structure effects are not visible until a spin has had time to visit a neighbouring pore.66

By performing inverse Fourier transforms of the experimental data, Callaghan et al.65

constructed an ‘image’ of the spherically averaged auto-correlation function. In a
later study it was found that the coherence peaks were strongly influenced by the
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sphere size and polydispersity in a more polydisperse set of polystyrene spheres.67 It
has been realised that the length of the gradient pulse can be set to emphasise
pore-hopping maxima.68,69 Using computer simulations Bhattacharya and Mahanti
have examined diffraction in two-dimensional disordered media that can be char-
acterised by a single length scale.70 Their results showed that the diffraction pattern
picks up the dominant mean length scale despite their being a distribution of pore
sizes about the mean.

4.5.2 Diffusion in fractals

Using the GPD approximation Banavar et al.71 derived the attenuation for the SGP
limit of the Hahn-echo-based PGSE sequence to be (note there appears to be a
misprint in this reference as 12 should have been removed from the denominator in
the exponential)

E q;Δð Þ ¼ exp �ð2πqÞ2DΔκ
� �

; (4:75)

where κ= 2/dw and dw is the random walk dimension. This equation reverts to that
for the solution for normal free diffusion when dw= 2 (i.e., κ= 1).
Based on the Bloch equations modified to include a term for describing diffu-

sion in fractal systems based on a scaling law, the validity of which has been
questioned (see refs. 72–74 and references therein) Jug75 derived an expression for
attenuation in the PGSE experiment due to fractal diffusion in agreement with
Eq. (4.75) – after the removal of some inconsistencies.73 In a later paper, Kärger
et al.,74 using the GPD approximation and noting the time scaling of the MSD in
fractal objects (see Eq. (1.121)) derived the PGSE spin-echo attenuation for
diffusion in a fractal network to be

E q;Δð Þ ¼ exp
γ2g2α

3 κ þ 1ð Þ κ þ 2ð Þ δκþ2 � 1
2
Δ� δð Þκþ2þΔκþ2 � 1

2
Δþ δð Þκþ2

h i� �
;

(4:76)

which in the SGP limit returns Eq. (4.75) when the time-independent scaling
constant α = 6D. And the solution for the steady field gradient case has been
derived74

E g; 2τð Þ ¼ exp � 1� 1=2κ

κ þ 1ð Þ κ þ 2ð Þ γ
2g2

α
6

2τð Þκþ2

	 

; (4:77)

which reduces to the solution for the steady gradient experiment for ordinary diffusion
when κ=1 and α=6D (cf. Eq. (2.50)). We also note that solutions for the steady
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gradient case were also derived by Banavar et al.71 and Widom and Chen,76 but the
three solutions only agree in the case of ordinary diffusion (i.e., κ=1).
All of the previous studies71,73–76 have shown the signal attenuation due to

fractional Brownian motion is of the form

E q;Δð Þ � exp �cq2Δκ
� �

; (4:78)

where c is a constant. However, starting with the fractal propagator given by
Eq. (1.132) and substituting into Eq. (2.35), Damion and Packer77 obtained the
expression for the echo attenuation in fractal geometries as
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ffiffiffi
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� �
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(4:79)

where Dκ is the fractional diffusion coefficient and df is the dimension of the
fractal space. For normal Brownian (i.e., df = 3 and κ = 1), Eq. (4.79) reduces to
Eq. (2.44) as expected. In the asymptotic limit, 4πqD1=2

k Δκ=2 
 1, Eq. (4.79)
becomes

E q;Δð Þ � qκ
1
2Δ

κ
2

� �2�df
; 25df53: (4:80)

The power law behaviour of this equation is in contrast to Eq. (4.78).

4.6 Polymer diffusion

Models for analysing polymer diffusion have been reviewed by Ardelean and
Kimmich.78 As noted above, polymer diffusion is complicated as it can contain
both elements of free diffusion and, due to the effects of entanglement, ‘soft’
restriction. Diffusion in a harmonic well is a model of hindered diffusion in the
presence of a ‘soft’ wall with relevance to diffusion in entangled polymer sys-
tems.79,80 The SGP solution for a particle that is diffusing in an isotropic medium
but subject to an additional force pulling it towards the origin in proportion to
its distance from the origin (i.e., F ¼ �βfr; where f is the friction coefficient and β
is defined through the velocity of the particle, v = − βr) was determined by
Stejskal to be81

E q;Δð Þ ¼ exp �4π2q2D 1� e�βΔ
� ��

β
� �

: (4:81)
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Interestingly, attenuation data in accordance with Eq. (4.81) but analysed assuming
normal isotropic diffusion (i.e., Eq. (2.44)) results in a time-dependent diffusion
coefficient

DappðtÞ ¼ D 1� e�βΔ
� ��

βΔ: (4:82)

More recently, the exact solution has been determined for the echo attenuation for
the damped oscillator problem at all timescales.80 This comprehensive solution has
the above SGP solution as one of its limits.
Models have been presented for segment diffusion in the reptation tube

model.82,83

4.7 Flow and velocity distributions

If the Bloch–Torrey equation (Eq. (2.56)) includes a term reflecting plug flow
(i.e., −

Δ

· v0M), where v0 is the velocity of the medium in which the spins are in
and the flow is along the direction of the gradient, a solution of the form81,84

S q;Δð Þ ¼ S 0ð Þ exp � 2πð Þ2
ðt

0

q t0ð Þ2dt0D
� �

exp i2π
ðt

0

q t0ð Þdt0 � v0
� �

(4:83)

is obtained. This, for the Stejskal and Tanner sequence, gives in the case of plug flow
(similar to what was derived in Section 2.2.3)81,84

S q;Δð Þ ¼ Sð0Þ exp �ð2πqÞ2D Δ� δ=3ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

attenuation

þ i2πq � v0Δ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
phase shift

0

B@

1

CA: (4:84)

More generally, and always in the case of laminar flow, there will be a distribution of
velocities, P(v), which depends on the geometry of the flow channel. In this case,
ignoring diffusion, the echo signal response will be85

S q;Δð Þ ¼ S 0ð Þ
ð
P vð Þ exp iqΔvð Þdv: (4:85)

In the case of a circular pipe with the gradient directed along the long axis, Eq. (4.85)
reduces to85,86

S q;Δð Þ ¼ S 0ð Þ sinc 4πqΔ vh ið Þ; (4:86)

where 〈v〉 is the average velocity. Thus, in addition to a net phase shift, when there
is a distribution of velocities, the flow can lead to signal attenuation as there will
be a distribution of phases – similar to the case of diffusion (cf. Eq. (2.3)). Indeed,
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under the assumptions that either the flow is slow or its velocity field is constant in
time, Eq. (4.83) can be extended to cover the case of non-uniform flow including
convection87

S tð Þ � S 0ð Þ exp � 2πð Þ2
ðt

0

q t0ð Þ2dt0D
� �ð

exp i2π
ðt

0

q t0ð Þdt0 � v rð Þ
� �

dr: (4:87)

Despite having a zero average in a closed sample v(r) has a non-zero width,
consequently the second exponent in Eq. (4.87) results in signal attenuation with
increasing q.87

For slow flows, diffusion can cause the spins to sample a range of velocities
with the distribution present (i.e., P(v)), whereas turbulence also introduces a
time-dependence. Similarly, capillary microcirculation in tissue perfusion can
also lead to such time-dependent velocity distributions and as there is generally
no preferred orientation – such diffusion like-processes have been referred to
as pseudo-diffusion.85,88,89 In tissue this effect can lead to pseudo-diffusion
coefficients many times greater than the true diffusion coefficient. Interestingly,
a time-dependent sampling of P(v) during Δ can result in an effectively narrowed
P(v) corresponding to a single averaged velocity.85 For fluid with an average
velocity 〈v〉 undergoing capillary microcirculation where the paths randomly
change direction with a characteristic length scale LC the pseudo-diffusion
coefficient is given by89

DP ¼ vh iLC

6
: (4:88)

A theoretical description of the signal attenuation from a turbulent flowing liquid in
a PGSE experiment has also been developed.90,91

Whereas we have already met diffraction phenomena due to diffusion, it is also
possible to observe them in flow measurements in porous media. Flow diffraction
patterns can result when the displacement of nuclei is correlated with the length
scale of the pore spacing.92,93

Various more complicated correlations with flow are considered in Section 8.7
and Chapter 9.

4.8 Internal magnetic field gradients

In Chapter 2 we learnt that there were a number of sources of background gradients.
Here we are concerned with the internal magnetic field gradients (gint; IMFGs) that
arise from magnetic susceptibility (χ) heterogeneities in samples. IMFGs are thus
prevalent in porous samples. A very simple example is given in Figure 4.12 for the
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gradients in an NMR sample (which can be viewed simplistically as a very large
pore) which arise in the sample out of the difference in susceptibility inside and
outside of the sample. Indeed, for a spherical-shaped pore of radius r and suscept-
ibility difference Δχ, the gradient at the pore surface is94,95

gint � πB0Δχ=r: (4:89)

Thus, the size and homogeneity of the internal gradients are inherently related to the
size, shape and distribution of pores within a sample and importantly their magni-
tude scales with B0. Non-homogeneous internal gradients are common within many
samples. For example, red blood cells have been estimated to have gradients up
to 2 × 10−2 Tm−1,97 and internal gradients can be of the order of 0.2 Tm−1 and
0.5 Tm−1 in zeolite and hydride samples, respectively.98,99 Even minute air bubbles
in apple can lead to large background gradients100 and over very short length scales
just the interface between air and water can generate gradients in the range
of hundreds of Tm−1.101 Similarly, internal gradients in iron(III)-doped kaolin
clay have been found to be of the order of 1–10Tm−1 inside the pores and may
exceed 1000Tm−1 at the pore surface.102 Background gradients can effectively be
made time-dependent by the spins diffusing between different regions of differing
background gradient strength and are encountered in situations such as spins
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Figure 4.12 Simulation of the background gradients in a standard NMR tube of
radius 4.5mm and length 6.2mm and setting χair = 1 and χwater = 0.999991. Each
contour reflects a 0.5 ppm change in the static magnetic field. From Price et al.96
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diffusing in media containing superparamagnetic particles used as contrast agents in
MRI.103

In the present work the coverage of diffusion measurements in porous media
focuses on cases in which the applied magnetic gradient pulses are ideally of a
constant amplitude throughout the sample and IMFGs arising out of magnetic
susceptibility differences are viewed as a source of artefacts and methods to remove
their effects are considered in Section 7.6. However, given that background gradients
exist in all porous media and, in many cases, such as well-logging, it is physically
difficult to get the requisite hardware for generating strong applied magnetic gradients
into position. There is great interest on extracting information on the porous char-
acteristics of many porous media by studying the diffusive decay due to diffusion in
the inherent internal gradients (also known as ‘diffusion decay in the internal field’
(DDIF)104,105). Importantly, because the internal fields are created by the pore
structure, they directly reflect the pore geometry.
The importance of diffusion through inhomogeneous gradients has long been

realised106 and a large body of work exists dealing with it,104,105,107–114 including
continuous Gaussian random fields,115,116 in magnetic fields with parabolic, cosine
and sinusoidal profiles,117–122 restricted diffusion between planes in a cosine mag-
netic field,123 in magic angle spinning (MAS)124 and in grossly inhomogeneous
fields where the rf pulses are weak relative to the field inhomogeneity.125 It is also
noted that diffusion measurements performed with single-sided NMR (e.g., NMR-
MOUSE) also involve non-constant gradients unless great efforts are made to
generate highly uniform gradients.126,127 The analysis of such systems becomes
quite complicated since the effects of diffusion and relaxation are intertwined.
Sukstanskii and Yablonskiy developed the theory of macroscopic signal forma-

tion in the presence of mesoscopic structure-specific magnetic field inhomogene-
ities using the GPD approximation.128,129
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5

PGSE hardware

5.1 Introduction

This chapter details the instrumentation for generating magnetic gradients and related
technical issues. A basic understanding of gradient pulse generation provides insight
into spectrometer limitations and related problems. The basic considerations and
components of NMR probes1–3 and of the generation of high-intensity pulsed field
gradients4,5 have been reviewed elsewhere. Many of the complications that affect
PGSE measurements also apply to imaging experiments, consequently some of the
solutions to the technical problems were developed with imaging in mind.6 Indeed,
the design of a B0 gradient probe for diffusion measurements is essentially similar to
that of an NMR imaging or microscopy probe6,7 except that the gradients used for the
B0 gradient probe are often larger and greater precision is required in gradient pulse
generation (i.e., pairs of gradient pulses need to be matched to the ppm level). Many
high-resolutionNMRprobes come equippedwith gradient coils capable of generating
magnetic gradients in the range of 0.5 Tm−1, whereas modern high-gradient diffusion
probes are capable of generating gradients in excess of 20Tm−1 (Figure 5.1). There is
also an interest in making probes capable of performing measurements on samples at
high temperature and pressure8,9 and for use in solid-state studies.10

To perform PGSEmeasurements, the spectrometermust be equippedwith a current
amplifier under the control of the acquisition computer which can send current pulses
to a gradient coil placed around the sample. The hardware aspects of pulsed field
gradient NMR have been discussed by numerous authors.6,11–15 The additional
hardware that must be added to a spectrometer to generate gradient pulses is sum-
marised in Figure 5.2. Specifically, the spectrometer, in accordance with the pulse
sequence, needs to output either a logic pulse (if only rectangular pulses are required)
or a shaped voltage pulse (thereby affording the possibility of shaped gradient pulses)
to an amplifier. Ideally, the polarity of the gradient pulse will also able to be specified.
In turn, the amplifier outputs a corresponding current pulse to the gradient coil.
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5.2 Gradient coils and fringe fields

Many gradient coil designs exist,14,17–24 including quadrupolar (for gx and gy; see
Figure 5.3),4,25–30 planar array (for gx and gy) coils,

7 saddle coils (for gx and gy) and
at the magic angle.31,32

The simplest commonly used geometry for producing gradients along the z-direction
in superconducting magnets is the Maxwell pair of coils (i.e., anti-Helmholtz) (see

Figure 5.1 A specialised high z-gradient diffusion 400MHz heteronuclear probe
capable of generating gradients up to 30 Tm−1 when coupled to a suitable gradient
amplifier (i.e., providing a current of 60A). The entire gradient coil consists of
various individual cylindrical coils in a multilayer design with channels for water
cooling. The inner diameter of the gradient system (black cylinder at the top of the
probe) is 19mm. The probe can be configured with fixed or with exchangeable
rf-coils up to 10mm inner diameter. By changing the gradient set to one containing
three orthogonal x–y–z-gradient coils, the same probe can be used for investigating
anisotropic diffusion and for imaging studies. In this case the maximum gradient
strength gets reduced to 3Tm−1 at currents of 60A. Photo courtesy of Bruker Biospin.
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Figure 5.4A). The magnetic field strength at a point P = (rp, zp) (see Figure 5.4) from a
single winding can be estimated from the Biot-Savart law33
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where K and E are the elliptic integrals of the first and second kinds, respectively.34

μ0 is the permittivity constant, rp is the radius of the point at which the gradient is
calculated, rc is the radius of the gradient coil and zp is the displacement along the
z-axis from the coil (see Figure 5.4). The gradient at P can then be computed by

Spectrometer
(computer)

Current amplifier

Blanking

Probe
(gradient coil)

Current
pulse

Current
pulse

Logic or shaped
voltage pulse

Logic
(blanking)

Radio frequency

Figure 5.2 A schematic diagram of the instrumentation for performing PGSE NMR
measurements. At the appropriate points in the pulse sequence the spectrometer
sends logic pulses or, on more sophisticated machines, shaped voltage pulses
(waveforms) such as trapezoidal and bipolar pulses or pulses with preemphasis to
the current amplifier. The current amplifier is in turn connected to the gradient
coils placed around the sample in the probe head (see Figure 5.6). More advanced
spectrometers also include current blanking circuitry which prevents ground-loops
(see also Section 5.4). Modified from Price.16
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calculating the magnetic field strength at two points separated by a distance along
the z axis, zd, (i.e., P1 = (rp , zp + zd/2) and P2 = (rp , zp − zd/2)) and dividing by the
distance between the two points

gz;P ¼

P

coil
windings

B rp; zp þ zd
2

� �� B rp; zp � zd
2

� �� �

zd
: (5:2)

The sum in Eq. (5.2) runs over both windings of the Maxwell pair and, due to the
opposite polarity, one coil winding is taken as negative. Ideally, the gradient coils
should produce a perfectly constant gradient, but due to the space constraints inside
the probe and inherent limitations in construction, such as attempting to produce a
continuous magnetic field distribution from a finite number of turns, the gradient
coils never produce a perfectly constant gradient. A field plot for the gradient coils
depicted in Figure 5.4A is given in Figure 5.4B.
The limiting factor in achieving very large magnetic field gradients is the rapid

increase in coil resistance with efficiency since the maximum usable wire diameter
must decrease as the number of coils is increased. Accordingly, much effort has

Figure 5.3 One section of a quadrupolar gradient coil suitable for generating
transverse gradients (i.e. normal to the static field) in a high-resolution diffusion
probe. Two such sections are combined to form a complete cylinder for the
generation of the gradient field. Additional cylinders are usually arranged in a
concentric way to increase the gradient strength and to realise a perfectly constant
gradient in a large volume with perfect shielding properties. The cylinders are
positioned relative to each other with very high precision and potted in epoxy for a
rigid fixation. Diagram courtesy of Bruker Biospin.
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been spent in designing efficient coils such as a four-layer z-gradient coil of
8mm i.d. capable of producing gradients up to 52 Tm−1 with an efficiency of
1.73 Tm−1 A−1, a resistance of 1.8Ω and an inductance of 50 μH.35 Currently, the
strongest gradients achieved on commercially available coils are in the range of
30 Tm−1 (see Figure 5.1). In comparison, the maximum rate of change of the field
(i.e., the stray-field) below a 9.4 T wide bore (89mm) superconducting magnet is
around 60Tm−1.36,37 Special superconducting anti-Helmholtz coils for stray-field
measurements have also been constructed that are capable of generating gradients to
more than 184 Tm−1.38,39 Stray-field gradients, although not switchable, have the
advantage of being very stable and quite homogeneous over reasonably large
sample volumes. Analytical models for the field profile of superconducting magnets
have been developed.40
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Figure 5.4 (A) A schematic depiction of a cross-section through aMaxwell pair. In
computing the gradient using Eqs. (5.1) and (5.2), the coil radius rc is adjusted
according to the actual winding being calculated. The gradient, gz at a point P is
calculated by computing the magnetic field at two points separated by a distance
along the z axis, zd, (i.e., P1 = (rp, zp + zd/2) and P2 = (rp, zp − zd/2), denoted by the
smaller solid circles) and dividing by the distance between them. (B) The
corresponding contour plot of the gradient in the shaded region of the gradient
coil taking rc to be 0.6 cm, lc to be 3 cm, the wire diameter to be 0.5mm and I = 1A.
The numbers on the contours denote the gradient strength in G cm−1. Ideally, the
sample would be restricted to a volume of constant gradient (e.g., the dashed box).
Modified from Price.16
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Ideally, the gradient coils should produce a perfectly constant gradient. However,
deviations are typically in the range of a fraction of a per cent to 5% or more.35,41–44

A simple, but tedious, experimental means of testing the constancy of the gradient is
to perform diffusion measurements using a very small sample at different positions
within the volume where the sample would normally lie. An alternative is to map
the constancy of the gradients using a PGSE sequence with a read gradient (see
Figure 5.5).45 In this approach,which is related to the 1D imaging approach for gradient
calibration discussed in Section 6.4, a diffusion measurement is performed on a strong
sample such as water and a read gradient is applied during acquisition of the echo so
that the resulting signal is a diffusion weighted 1D image along the gradient direction.
As will be explained in Chapter 7, serious spectral disturbances can result from

the induction of eddy currents in conducting materials surrounding the gradient
coils (such as the probe outer shell) due to the rapidly changing magnetic fields. The
most direct solution is to place a shield gradient coil outside the (primary) gradient
coil (see Figure 5.6) to limit the effects of the gradient pulse to the sample volume by
suppressing the (outward directed) magnetic fields from the primary gradient coil.
In this way, no or at least greatly reduced eddy currents are generated, typically to
less than 1%.46 Shielded gradient coils were originally proposed by Mansfield
et al.47–51 and many of the theoretical aspects of shielded gradient coil design and
technical considerations have been summarised elsewhere.6,23,43,52–54 Numerical
optimisation procedures for designing coils have been presented.3,55–60 A negative
aspect of shielded gradient coils is that the shield coils decrease the strength and
constancy of the gradient produced by the primary gradient coil.26 Carlson et al.52

discussed techniques to design shielded gradient-coil systems; specifically they
considered the design compromises between gradient homogeneity, construction
complexity, accessible bore and coil efficiency. Eddy-current effects rapidly

π/2x

δ

πy

τ τ

Δ

g
S

Figure 5.5 Hahn-echo-based PGSE sequence incorporating a read gradient
(striped gradient pulses) to map the gradient constancy.45 By using a strong pair
of diffusion gradients, the resulting 1D image of the NMR sample is now heavily
diffusion weighted.
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attenuate with increasing distance and thus, there is considerable advantage in using
small shielded gradient coils in a wide-bore magnet.

5.3 Current amplifiers

Ideally, we desire infinitely fast rise and fall times of the gradient pulses. In practice,
there are two factors which limit the maximum current switching speed; the first is
that the power supply voltage must equal RI + L dI/dt, where I is the current and L
and R are the load (i.e., gradient coils + leads) inductance and resistance respec-
tively, and the second is the ‘slew rate’ (i.e., the maximum rate of change of the
output voltage) of the power supply. Thus, the amplifier used must have suitable
current and voltage parameters to drive the gradient coil used. Typical rise and
fall times of the gradient pulses in a high-resolution probe are on the order of 50 μs.
Various techniques have been used to determine the temporal evolution of the
gradient waveform including using pickup coils,61 Hall effect current probes,62

and more recently imaging-based techniques.63–66 Simply measuring current flow
through gradient coils is not necessarily sufficiently accurate to monitor the field
as it does not account for the effects of eddy currents.

Insert
glass

rf coil

Shield
gradient

coil

Air Thermocouple

Primary
gradient

coil

Thermal
insulation

Figure 5.6 An example of a shielded magnetic gradient coil system in an NMR
probe head. Only the coil formers are shown. Modified from Price et al.14
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Since the current through a gradient coil induces heating (which can be conside-
rable54), which in turn results in a change in gradient coil resistance, the amplitude
of the gradient pulses might change during the sequence or even cause physical
damage to the coil. Consequently, especially when used with large currents or duty
cycles, gradient coils need to be air and/or water cooled. Similarly, in conducting
variable temperature diffusion measurements, the gas used for heating and cooling
the sample will also have some effect on the gradient coil temperature. The use of a
constant current supply, instead of a constant voltage amplifier, obviates the need to
calibrate the gradient for each sample temperature or particular experimental para-
meters. The negative aspects of a constant current amplifier are that it is difficult to
achieve very low noise figures and rapid settling. A number of amplifier designs
have been discussed.62,67–70 Doty has discussed the various technical considerations
of amplifiers for driving gradient coils.43 We note that in the last decade, largely due
to the investment in MRI, commercially available units generally outperform
home-built amplifiers and thus most PGSE experiments are now conducted using
commercial units.

5.4 Connecting to the spectrometer

In the absence of gradient pulses, there should be zero current flowing through
the gradient coils; however, in practice slight differences in potential difference
between different parts of the spectrometer (e.g., the amplifier and the input line
may not have the same zero voltage) result in a ground-loop71-infected input which
results in currents flowing through the gradient coils between pulses resulting in
non-random gradients. Similarly, the amplifier will also have a noise level resulting
in small currents through the coils. Although very small, such ‘ground loop’ and
noise currents result in troublesome background gradients and can completely
thwart high-resolution diffusion experiments since they will be present during
signal acquisition (similar to bad shimming) as well as attenuating the signal.
Ground-loop currents can be detected by physically disconnecting the gradient
circuit and looking at the effect on the lineshape or shift of the signal in the observed
spectrum or, if available, by the effects on the lock signal.
To prevent the effects of ground-loops and noise, all of the components in

the spectrometer and current amplifier should be earthed to the same point and
ideally the gradient coil should be blanked (i.e., disconnected) from the current
circuit between gradient pulses (see Figure 5.2). Blanking, however, will not
prevent the effects of noise during the gradient pulses. Very small ground-loop
effects can be ‘shimmed out’ if the ground-loop currents result in a steady
gradient.
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5.5 Field-frequency locking

Normally, the 2H (or other suitable nucleus) lock is coupled to a z0 shim coil to
counteract the natural drift of the magnet. A gradient pulse will affect this mechanism
since after a gradient pulse the deuterium signal will be dephased (and thus unlock-
able) and the time required for there to be sufficient deuterium signal to regain locking
will be determined by the longitudinal relaxation rate. Further, the ‘jolt’ given to the
lock by the gradient pulse can result in a shift of the field. A partial solution is to turn the
lock off and with spectrometers based on superconducting magnets, after resolution is
achieved by shimming, running unlocked generally has almost no effect on resolution.
Even experiments requiring high degrees of resolution can normally be performed so
long as the duration of the experiment is not long (~ hours, but strongly dependent on
the magnet type) with respect to the drift rate of the magnet. A better solution is to gate
the lock off before a gradient pulse and then to gate it on at the end of the pulse (after
the dissipation of any eddy-current effects). It is important to centre the B0 field and
adjust the lock phase to minimise field disturbances due to lock gating. The situation
is improved further with the use of bipolar gradient pulses (BPP) (see Section 7.7).

5.6 Temperature control and calibration

The sample temperature can differ significantly from that set on a spectrometer’s
temperature control unit and the deviation between the two values can itself be a
function of temperature. Reasons for this inaccuracy include insufficient air flow
around the sample and the thermocouple being somewhat distant from the sample
(they cannot be placed too close to an rf coil since they can work like an antenna
thereby severely decreasing S/N). Typically, if the probe temperature is changed, at
least 10min must be allowed for the probe and sample temperature to reach equili-
brium. The exact time required will be dependent on the probe, airflow, sample and
sample size. The calibration becomes more problematic when the sample has a high
ionic strength and high-power proton decoupling is used.72 Common methods of
calibrating the sample temperature are to use some compound with temperature-
dependent chemical shifts such as ethylene glycol or methanol73–75 or piezoelectric
thermometers.76 We note that the various methods for measuring temperature using
NMR have recently been reviewed.77
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6

Setup and analysis of PGSE experiments

6.1 Introduction

This chapter is concerned with the practical issues and key considerations involved
in setting up PGSE experiments and the subsequent data analysis. Selection of
PGSE parameters is discussed in Section 6.2 and sample preparation is discussed in
Section 6.3. The variousmethods of gradient calibration are considered in Section 6.4.
Finally, PGSE data analysis and display are considered in Section 6.5. Under favou-
rable conditions it is possible to measure diffusion coefficients with greater than
99% accuracy.1 Indeed simple PGSE experiments have been shown to be reasonably
robust with respect to experimental parameters (e.g., rf pulse flip angle).2 It cannot be
overemphasised that the overall accuracy of a diffusion measurement is intimately
connected to the accuracy of the gradient calibration. It is too easy to confuse the
apparent precision of a diffusion measurement obtained from analysing the PGSE
data with the true overall accuracy. For example, the PGSE data obtained from an
experiment may be highly single exponential, but the gradient calibration or tempera-
ture control may have been inaccurate such that the analysis of the PGSE data leads to
a highly precise but unfortunately a highly inaccurate diffusion coefficient.
Irrespective of the aim of the PGSE experiment, the analysis is always simplified

by starting with a distortion-free data set with good signal-to-noise and, especially
when the system has multiple components, good resolution. Consequently, it can be
advantageous to work at higher field strengths since, in addition to the greater S/N,
the greater chemical shift dispersion may lead to resonances that do not overlap. It
can be beneficial to try and remove the effects of spectral overlap by spectral editing
or the use of multi-dimensional PGSE approaches in which PGSE is combined
with another experiment such as TOCSYor multiple quantum selection as covered
in Chapter 8. However, in polydisperse systems (e.g., synthetic polymers and
proteins) and mixtures of different species, the spectra are crowded and spectral
overlap is generally inevitable. In some circumstances, there may be benefit in using
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heteronuclear PGSE experiments since the increased spectral dispersion available
may allow the resolution of otherwise overlapped resonances. Althoughmost PGSE
measurements are performed using 1H, apart from NMR sensitivity, there is no
difference in working with heteronuclei. However, lower γ nuclei require greater
applied gradient strengths. In addition to averaging sufficient scans simply to obtain
sufficient S/N, it is also important to use purge pulses and an appropriate number of
scans to complete the relevant phase cycle to ensure clean coherence selection.3

The symptoms and physical basis of some of the technical problems that can
be alleviated by prudent experimental setup are covered in detail in Chapter 7.
Specialised PGSE sequences are discussed in Chapter 8.

6.2 Selection of PGSE parameters

Using the Hahn spin-echo based sequence (Fig. 2.6A) as an example, the PGSE
experiment is performed by varying one of the PGSE parameters (i.e., δ, Δ or g) while
τ is generally kept constant so that, at least in the case of a single diffusing species,
relaxation may be factored out (see Eq. (2.49)). Ideally, the PGSE parameters would
be set to values to best probe the system under study. In the simplest case of a
monodisperse single freely diffusing species, it is desirable to study the attenuation
over at least an order of magnitude; however, to probe restricted diffusion it might be
necessary to study the attenuation over a much greater range and to pick Δ on consid-
eration of the MSD with respect to the size of the restricting geometry. To set cogent
values for Δ, δ and g in the experiment, it is prudent to simulate the experiment using
Eq. (2.75) with an approximate value for the diffusion coefficient. The choice
of q spacings has been considered and is akin to the problem of picking spacings in
relaxation measurements, and logarithmic and geometric spacing have been suggested
as better alternatives to linear spacings.2,4–6 Song et al. have also considered experi-
mental design from the perspective of maximising the information obtained from
performing Laplace inversion of the data.7 Clearly, the choice of gradient spacings
becomes even more important when only few q values are used or when the sample
contains a mixture of species with different diffusion coefficients. In theory, a diffusion
measurement can be performed by measuring the echo attenuation at only two q
values – but this requires certainty of the type of diffusion being measured and, of
course, exceptional accuracy in determining the echo amplitudes and consideration
must be given to the balance between sufficient attenuation and not losing the signal in
the noise.8 For free diffusion the ratio of the signal amplitudes obtained for two
different q values should lie between 0.2 and 0.6.9 Problemswith determining diffusion
values from a small number of q values is more commonly encountered in experiments
involving MRI.
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In practice, the applicable range of Δ depends on the spectrometer hardware and
the relaxation properties of the sample. For example, neglecting the length of the
rf pulses – which are normally insignificant compared to the length of δ and Δ,
inspection of the Hahn PGSE sequence (Figure 2.6A) reveals that the minimum
possible value of Δ is given by

Δmin ¼ δ: (6:1)

However, such a short Δwould be unusable as it would not allow sufficient time for
the dissipation of eddy currents arising from the first gradient pulse (see Section 7.7)
prior to the π rf pulse. Similarly, for a given echo time, τ, the maximum possible Δ
would be given by

Δmax ¼ 2τ � δ; (6:2)

which would generally be impracticable as there is no time for the eddy currents
arising from the second pulse to dissipate prior to acquisition. Ultimately, the largest
usableΔ is determined by the maximum usable value of τwhich is, in turn, related to
the spin–spin relaxation time (i.e., T2) of the species being measured. In practice, Δ
is normally between several ms to several seconds.
In general, the analysis of PGSE data is simplified when each scan starts from

thermal equilibrium. Thus, setting a recycle delay ≥ 5 ×T1 is safe, albeit a time-
consuming practice. However, for many experimental systems, setting the recycle
delay shorter than this will still lead to usable results especially if a crusher gradient
is included in the prescan delay; however this needs to be assessed on a system-
by-system basis.10

When studying species for which T1 ≫ T2 (e.g., macromolecules) it is advanta-
geous to use the stimulated echo sequence (Figure 2.6B) since the delays in the pulse
sequence can be chosen so that the magnetisation is ‘stored’ along the z-axis for
most of Δ. A comparison of the relative signal amplitude from the Hahn and STE
sequences is given in Figure 6.1.
There can also be complications from cross-relaxation effects (see Section 7.9)

and scalar coupling (see Section 7.10) and there is a chemical shift dependence of
the amplitude of the first point when the gradient is zero.12

6.2.1 Heteronuclear decoupling

Especially in isotropic systems with large coupling constants, applying hetero-
nuclear decoupling during the PGSE sequence can result in seemingly anomalous
changes in signal intensity from incomplete decoupling during gradient pulses. The
reason being that heteronuclear J-couplings behave as chemical shifts and therefore
any echo sequence will refocus heteronuclear effects. Thus, generally, decoupling
should only be applied during the recycle delay to obtain NOE enhancement and
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acquisition to remove the couplings. S/N problems with heteronuclei may also be
alleviated by using inverse detection and the like (see Section 8.3).
In systems where non-vanishing static dipolar interactions are significant (e.g., in

solids and oriented systems such as liquid crystals), specialised pulse sequences
that reduce the effect of dipolar coupling are required.13,14 Diffusion measurements
involving liquid crystals have recently been reviewed by Furó and Dvinskikh.15,16

6.2.2 Solvent suppression

Many solvents are protonated and give rise to very strong resonances resulting in
numerous difficulties including poor spectral baselines, inadequate digitisation of
small signals, obscuring peaks near solvent resonances and artefacts arising from
radiation damping and the distant dipolar fields as will be discussed in Section 7.3.
Switching to NMR inert solvents (e.g., 2H2O) is not always practicable. In general,
so long as the species being measured are considerably larger than the solvent, the
solvent signal becomes less of a problem as the value of q increases in a PGSE
experiment as its intensity is rapidly suppressed relative to that of the (more slowly
moving) solute.17–19 Neglecting relaxation effects, the relative attenuation of the
solvent to the solute in a PGSE experiment is given by

Figure 6.1 The ratio of the signal obtained from the stimulated echo (STE;
Eq. (2.52)) sequence to that obtained from the Hahn spin-echo (SE; Eq. (2.48))
sequence versus T1/T2 in the absence of gradients. The calculations were performed
assuming that 2τ= T1 in the SE sequence and 2τ1+ τ2 = T1 in the STE sequence. The
simulations were performed for the cases of τ1 = τ2/2 (–––) and τ1 = τ2/4 (

_ _ _ _). The
solid horizontal line indicates the boundary above which the STE sequence gives
better signal-to-noise than the SE sequence. Adapted from Price.11
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ln Esolventð Þ
ln Esoluteð Þ ¼ Dsolvent

Dsolute

: (6:3)

Many non-diffusion-based solvent suppression techniques exist20 but only some of
these are suitable for use with PGSE sequences. The simple presaturation approach
militates against the observation of solute resonances near the solvent frequency and
is a poor choice for use with very high molecular weight solutes due to the effects
of spin diffusion. Gradient-based suppression sequences have proven to be very
useful but it has been noted that these sequences, especially those based on spatial
encoding (see Figure 2.1),21–23 are deleteriously affected by the inadvertent gene-
ration of gradient-recalled echoes due to background gradients and other gradient
pulses in the sequences.24 The generation of gradient-recalled echoes can be pre-
vented by changing the gradient strength and direction (ideally orthogonally) of
successive gradient episodes.25,26 However, the joint action of the two feedback
fields, radiation damping and the long range dipolar interaction (see Section 7.3),
gives rise to chaotic spin dynamics and the resurrection of previously crushed
(i.e., completely dephased) solvent magnetisation.27,28 It is likely that this feedback
mechanism is sometimes confused with gradient recalled echoes in thwarting
suppression. Due to the complexity in working with non-linear spin dynamics it is
simpler to obviate the problem in PGSE measurements by using Q-switching29 as
discussed in Section 7.3.2.
Since PGSE measurements are often conducted on rapidly relaxing samples or

polydisperse samples, the best suppression techniques will not lengthen the sequence
and thus the inclusion of WATERGATE-like elements into Hahn spin-echo and STE
sequences has been very successful (see Figures 6.2 and 6.3).30–32

The echo-attenuation function for the PGSTE–WATERGATE sequence is iden-
tical to that of the standard Hahn-echo-based sequence. However, the attenuation of
the PGSTE–WATERGATE sequence is, for the non-solvent resonances,32

ln Eð Þ ¼ �γ2Dδ2 Δ� 4

3
δ� 2δ2

� �
g2 � g1ð Þ2� 2

3
δ g2�g1ð Þg1 þ 4δ2 þ 4

3
δ

� �
g21

� �
;

(6:4)

and for the solvent resonances,

ln Eð Þ ¼ �γ2Dδ2 Δ� 4

3
δ� 2δ2

� �
g1 þ g2ð Þ2þ 2

3
δ g1þg2ð Þg1 þ 4δ2 þ 4

3
δ

� �
g21

� �
;

(6:5)

and the delays are defined in Figure 6.2B. Importantly, the use of asymmetric
gradients provides coherence selection, allowing only a four-step phase cycle.
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Figure 6.2. The (A) PGSE–WATERGATE and (B) PGSTE–WATERGATE
sequences. The phase cycling and details of the binomial pulses (striped rf pulses)
are given elsewhere.31,32
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Figure 6.3 A series of PGSE–WATERGATE spectra obtained using the sequence
given in Figure 6.2A of a sample containing 80mM salicylate and 0.5mM bovine
serum albumin in water (10:90 2H2O:

1H2O) at 298K. The water resonance gives
rise to the peak at 4.7 ppm and the three peaks to the left originate from salicylate
(from left to right: H-6, H-4, H-3/H-5; also see inset). The water resonance
has been suppressed by more than four orders of magnitude. The effects of
J-modulation are evident on the H-4 and H-3/H-5 resonances. From Price
et al.31
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Another alternative for solvent suppression is through the use of multiple quan-
tum experiments (see Section 8.3); however, these are not generally applicable.
Sequences that include both solvent suppression and convection compensation have
been presented (see Section 7.4).

6.3 Sample preparation

To prevent motional artefacts the sample should be firmly held inside the magnet so
that the sample maintains a constant position with respect to the gradient coil former
(see Section 7.8). The sample should be wholly contained inside the constant region
of the gradient coils and thus the sample is typically contained in a volume less than
1 cm high in a high-resolution probe. Such a sample, though, has large changes in
magnetic susceptibility close to the rf coils and consequently it can be very difficult
to achieve good resolution. A solution is depicted in Figure 6.4. This method,
compared to just coaxially inserting a bulb into an NMR tube, has the advantage in
that it is easy to clean the sample tube or to work with viscous substances. It also gives
a precise shape with no meniscus effect. Susceptibility-matched tubes and inserts are
also commercially available (e.g., Shigemi NMR tubes). An alternative to physically
restricting the size of the sample is to use a slice-selective pulse in the PGSE
sequence.33,34 If the sample contains internal magnetic gradients it is necessary to
use one of the sequences presented in Section 7.6.2.

Figure 6.4 A sample geometry for containing the sample within the constant region
of the magnetic field gradient. The sample is placed in a cylindrical sample tube and
then capped with a vortex plug ideally of the samemagnetic susceptibility. This tube
is then coaxially inserted into a tube containing either an NMR inert solvent with
a similar magnetic susceptibility or the same solvent but without the solute of
interest. Thus the ‘NMR active’ part of the sample is short whilst the sample is
still magnetically long and allows easier shimming (cf. Figure 4.12). This sample
arrangement also confines the sample to a region of highly homogeneous rf.
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High B0 homogeneity is always desirable since background gradients have
deleterious effects on diffusion measurements. If it is necessary to use a short
sample to stay within the constant region of the gradient and susceptibility-
matched NMR tubes or the like are unavailable, the process of shimming becomes
very difficult. Further, the initial lineshape may be so poor that it is impossible to
shim the sample using the lock signal if available. In such circumstances, it is
easier to first shim the probe on a normal long sample and then iteratively shim and
gradually reduce the volume of the sample to the (short) sample to be measured.
After the first shimming of the long sample, the non-spinning shims (i.e., those
without axial symmetry) should be largely correct, but due to the shortness of the
sample the z and z2 shims will require particular attention. It is not uncommon to
have to use very large values for the z2 shim and it is generally easier to shim using
the FID.35,36 In some cases, gradient shimming may also be of use; but some
degree of parameter optimisation is required to work well with the short sample
length.37 Although spinning the sample helps to average out the effect of back-
ground gradients allowing a higher resolution spectrum to be obtained, the spin-
ning may cause motion along the direction of the magnetic gradient in the sample.
However, a ‘stop-and-go’ sample spinner suitable for use in PGSE experiments
has been developed that allows for the spinning to be arrested during the motion-
sensitive part of the experiment and yet spun, to achieve higher resolution, during
acquisition.38

6.4 Gradient calibration

Numerous methods exist for calibrating gradient coils and these are summarised
in Table 6.1 and the methods are considered in detail in the following sections.
In theory, the applied gradient can be calculated from the known dimensions,
geometry and the number of turns of wire in the coil and the current applied (see
Section 5.2). In practice, however, coil calculation gives an estimate with an error
of ≤ 10%. The major reason for this inaccuracy being interaction with nearby
metal in the probe and non-ideal gradient pulse generation problems. Similarly,
manufacturer’s specifications are rarely sufficient to conduct accurate diffusion
measurements. A 1D image is a quick method of experimentally verifying that
the calibration is approximately correct. Typically, if a suitable reference com-
pound exists, this should be used for ‘fine tuning’ the calibration. Ultimately, the
gradient should be calibrated to within 1% of its true value. The final form of the
calibration is a coil constant with unit Tm−1 A−1 or as a function of the spectro-
meter input variable defining the amplitude of the current pulse to the gradient
coil.
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It is important to consider the relationship between the accuracy of the determi-
nation of the gradient and the accuracy of a subsequent diffusion measurement. For
example, if a calibration using a 1D image provides a gradient calibration with an
x% error, the inherent error (i.e., best possible result) in a subsequent diffusion
measurement would be 2x% of the diffusion coefficient determined. Calibration
using a standard sample has an inherent advantage over calibration based on a 1D
image since in using a standard sample the calibration is effectively being performed
on g2 and not g itself – although the accuracy of a gradient calibration ultimately rests
on the accuracy of the original experiment from which the standard diffusion coeffi-
cient was taken. Thus, the overall accuracy of the diffusion measurement will depend
on the accuracy of the gradient calibration and other factors including S/N.Hence, in the
simplest case and assuming the other experimental parameters are ideal, if the gradient
calibration had an error of y% and analysis of the PGSE data gave an error of z% the
total accuracy of the diffusion measurement would be the propagation of y% and z%.39

Another important consideration is that the experimental parameters for control-
ling the gradient pulses, the pulse duration (δ) and the amplitude (g), are linear
functions of the input current pulses, for example the gradient amplifier may be
unable to generate accurately shaped large amplitude pulses as easily as low
amplitude pulses and similarly for various reasons (e.g., increased resistance due
to coil heating) the amplitude of the gradient pulses may not increase linearly with
input current. Hence, calibrations at low gradient amplitudes may not extrapolate to
higher gradient amplitudes.

Table 6.1 Summary of the gradient calibration methods

Method Range of application Comments

Coil calculation Unlimited Can be complicated to perform
Not very accurate

Echo shapea γgl < receiver bandwidth
High S/N

Numerous systematic errors
including misalignment of
sample geometry and gradient

1D image γgl < receiver bandwidth
High S/N

Information on gradient constancy

Gradient pulse
mismatch

Similar to echo shape Similar to echo shape

Standard sample Need to have a relevant standard Simple
Includes gradient nonconstancy
Few suitable and accurate standards
Need accurate temperature control

a l is the dimension of the sample in the direction of the gradient. The echo shape and 1D
image methods are essentially the same due to the Fourier relationship between the two.
Source: Modified from Price11
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The situation can become more complicated when PGSE experiments are incor-
porated into MRI sequences as ‘cross-terms’ between imaging and diffusion gra-
dients need to be considered, otherwise they will lead to incorrect estimates of the
diffusion coefficient.40–42 However, even in straight PGSE experiments, it is pos-
sible to have orthogonal gradients and these have the effect of mixing the diffusion
in various directions proportional to the squares of the respective gradient compo-
nents and thus the effect is scaled by the diffusional anisotropy.1,43

For completeness, we note that if the diffusion probe is equipped with more than
one gradient, the measured diffusion anisotropy in isotropic media can be used as a
basis for calibrating and aligning magnetic field gradients.44

6.4.1 A standard sample with known diffusion coefficient

Themost commonway of calibrating a gradient is to use a ‘standard sample’ of known
diffusion coefficient and suitable standard samples are listed in Table 6.2. More
comprehensive listings can be found elsewhere.45,46 Also, the diffusion coefficients
of a range of alkanes and alcohols with diffusion properties suitable for cross-checking
clinical MRI diffusion sequences have also been published.47 For lower diffusion
coefficients, suitable reference compounds become scarce, and for very low diffusion
coefficients monodisperse polymers are generally used.48 Glycerol has often been
used as a reference but its diffusion coefficient is highly temperature dependent and
greatly affected by water content.18,45

In this method, an initial guess at the gradient strength, gapp, is used to measure
the diffusion coefficient, Dapp, of the standard sample. These two values are then

Table 6.2 Some selected reference compounds and their diffusion coefficients
at 298K useful for calibrating PGSE experiments

Observed nucleus Compound Diffusion coefficient (m2s−1) Reference

1H H2O 2.30 × 10–9 49,50
2H HO2H in 2H2O 1.90 × 10–9 50

2H2O 1.87 × 10–9 50
7Li LiCl (0.25M) in H2O 9.60 × 10–10 45
13C C6H6 2.21 × 10–9 51
19F C6H6F 2.40 × 10–9 45
21Ne Ne (4MPa) in 2H2O 4.18 × 10–9 52
23Na NaCl (2M) in H2O 1.14 × 10–9 53
31P (C6H5)3P (3M) in C6D6 3.65 × 10–10 45
129Xe Xe (3MPa) in H2O 1.90 × 10–9 54
133Cs CsCl (2M) in H2O 1.90 × 10–9 45

Source: Modified from Price11
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used to calculate the true gradient strength, g, from the true diffusion coefficient,D0,
namely

g ¼ gapp
ffiffiffiffiffiffiffiffiffiffi
Dapp

D0

r

(6:6)

Importantly, the same experimental conditions (i.e., sample shape, delays, pulse
lengths and gradient strengths etc.) should be used in a subsequent experiment so
that the calibration automatically includes, to some extent, non-ideal gradient beha-
viour including background gradients. However, because eddy-current effects increase
with gradient strength, a calibration at one current may not extrapolate to another value
of the applied current. Further, because the calibration is very often performed with a
pure liquid (leading to a ‘strong’ NMR signal), radiation damping and long-range
dipolar interactions can thwart calibration measurements (see Section 7.3).

6.4.2 Shape analysis of the spin-echo and one-dimensional images

Relating back to the idea of magnetisation gratings in Section 2.2.2, an FID acquired
in the presence of a read gradient, gr, when Fourier transformed, gives a 1D
projection (i.e., 1D image) of the sample in the direction of the gradient that reflects
both the gradient amplitude and the shape of the sample (see Figure 6.5; note the
example is given using a Hahn-echo with a read gradient, of course the method
could equally well have been performed with an STE-base sequence). Consequently,
the gradient strength can be calculated from the echo shape from a sample of known
geometry,55–59 or indeed from performing a 1D image of a sample of known length,11

or moving the sample by a precise amount between images.60 But this method is
susceptible to systematic errors.58,61–64 To illustrate this method, detailed deriva-
tions are given of both the FID and the corresponding Fourier-transformed spectrum
(i.e., 1D images) for a gradient directed transverse and longitudinal to a right
cylindrical sample of length l and radius a (see Figure 6.5) in the Appendix. To
avoid problems with insufficient rf pulse power (as in the steady gradient PGSE
experiment, see Section 2.2.4), the echo sequence given in Figure 6.5 is used;
nevertheless, even modest gradients require large receiver bandwidths in order to
acquire the signal and a correspondingly large number of scans are required to
obtain sufficient S/N. For example, simple reasoning with the Larmor equation
reveals that for the gradient directed along the cylinder as in Figure 6.5, the spectrum
must be rectangular with a linewidth, Δν (Hz), given by

Δν ¼ γgrl
2π

: (6:7)
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Figure 6.5 A cylindrical sample of length l and radius a used for determining the
gradient strength, and of the Hahn spin-echo sequence incorporating an encoding
gradient of strength ge and read gradient of strength gr used for obtaining
a one-dimensional image of the sample. The echo occurs when tr = δege/gr
(i.e., according to Eq. (2.26)). In the lower half of the figure, two simulated FIDs
are given for the case of ge, gr = gx (upper) or gz (lower). The FID for the gx case has
the characteristic Bessel function profile (see Eq. (A.22)) whilst the FID acquired
in the presence of gz has a sinc function profile (see Eq. (A.33)). In theory, the
gradient strength can be determined by analysing the FID shape (e.g., from the
zeros of the Bessel function in the case of gx), but in practice the Fourier transforms,
which return images of the sample cross-sections with respect to the gradient
directions, are easier to analyse. The Fourier transforms are rapidly oscillating
functions with sharp frequency cutoffs in both cases. The power spectrum makes
the cutoff easier to visualise (right hand spectra). The width (Δν; Hz) of the spectra
are γgra/(2π) and γgrl/(2π) for the spectra acquired with gr (and ge) replaced by gx
and gz, respectively. The power spectra were calculated numerically from the
simulated FID (not from Eqs. (A.29) and (A.44)) which was slightly truncated at
the ends, hence the oscillations at the top of the absolute value of the transform of
the sinc function and also the dip in the middle of both. Experimentally, the FIDs
are often more seriously truncated and as a consequence the oscillation artefacts are
more pronounced. As the number of points used in the transform decrease, the
edges of the absolute value spectra are not so sharp. Further, if the echo is not quite
in the middle of the acquisition, the transformed spectrum appears to have strange
phasing; however, the absolute value spectrum solves the problem. Modified
from Price.11
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The shape of the corresponding FID is given by sinc(γgr(2τ− t)l) (see Eq. (A.33)) and
in theory this can be used to determine the gradient strength. This method is most
useful in the case where the gradient is along the cylinder axis since the shape of the
image should be rectangular as depicted in Figure 6.5. The FID is recorded in the
presence of the gradient for a number of different applied currents, and then by plotting
the width of the spectrum versus the current, the gradient strength can be calibrated
using Eq. (6.7).11 Alternatively, as noted above, the sample could be imaged once and
then imaged again after moving by a precise amount.60 If the transmitter offset is
placed at the resonance frequency of the sample (i.e., in the absence of the gradient)
and if the sample is correctly centred in the gradient, the gradient broadened spectrum
will expand symmetrically around the transmitter offset as the gradient strength is
increased. This method requires that the length of the sample containing cell be known
accurately and the final calibrationwill have an error of less than 5%. This method can
be performed without any knowledge of the sample diffusion coefficient and, so long
as the dimensions of the container holding the sample are insensitive to temperature, it
can be used to cross-check that the gradient strength is not temperature-dependent.
This method also allows some indication of the gradient constancy from the 1D image.
Saarinen and Johnson60 also noted that the period of rapid oscillations in the

frequency spectrum (see Figure 6.5) is given by

ν ¼ gr
geδ

(6:8)

(note gr and ge are collinear) thereby allowing ge to be determined.

6.4.3 Intentional gradient pulse mismatch

Hrovat and Wade8,59,65 suggested using the time displacement of the echo max-
imum caused by the intentional mismatch of gradient pulses with sequence con-
ducted in the presence of a small background gradient (Figure 6.6). In their
procedure several echoes are collected as a function of an intentional mismatch in
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Figure 6.6 The mismatched gradient pulse Hahn-echo sequence of Hrovat and
Wade.59 The second gradient pulse is slightly longer by a duration ε.
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duration, ε, of the gradient pulses. Assuming that g is directed along a cylindrical
sample, the echo occurs at,

techo ¼ 2 τ � g" cos αð Þ
g0

(6:9)

where α is the angle between g0 and g. The echo attenuation is given by (cf. Eq. (A.22))

E ¼ 2 J1 γrg" sin αð Þ½ �
γrg" sin αð Þ ; (6:10)

which is a maximum as expected for ε= 0. The background gradient g0 can be
determined from the lineshape of the spin-echoes (see Section 6.4.2) and then from
Eqs. (6.9) and (6.10) g and α can be determined. From Eq. (6.9) it can be seen that
the sensitivity of techo to ε increases as g0 becomes smaller.

6.4.4 Calibration of very high gradients

The calibration of very high amplitude gradient pulses presents special problems
due to the difficulty in finding reliable diffusion standards and because projection
methods cannot be extended to such gradient amplitudes due to lack of receiver
bandwidth and/or insufficient signal due to the gradient broadening. Wright
et al.66 have presented a two-step method in which the gradient is first calibrated
at low gradient strengths (0 – 4 Tm−1) and then, based on this initial calibration,
higher amplitude gradients (in their case from 4 to 50 Tm−1) are calibrated using
a gradient echo-based technique in which a longer low-amplitude calibrated
gradient pulse is used to calibrate a higher amplitude but shorter gradient pulse
(Figure 6.7). An alternative method of calibration is to use a diffusion standard
containing two receptive nuclei (i.e., with different γs).67

0

π/2x πy

g1

g2

δ1
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τ τ

Figure 6.7 A pulse sequence for the calibration of high amplitude gradients.66

The duration of the second (calibrated lower amplitude) gradient pulse (δ2) is
adjusted until a maximum signal is acquired (i.e., when the two gradient pulses
are matched).

6.4 Gradient calibration 211



6.5 Analysis

6.5.1 Spectrally isolated components

Data analysis begins by transforming all of the data and applying careful phase and
baseline corrections and perhaps reference deconvolution (see Section 7.7).11,68 The
data should be presented in phase-sensitive mode as it provides better resolution
and, if phase-sensitive PGSE spectra are compared as a function of q, it allows the
presence of artefacts such as eddy currents to be identified. Ideally, the same phase
correction should be applicable to the whole data set. Although it might seem
advantageous to use absolute value (also referred to as power or magnitude) spectra
to overcome eddy current–induced phase instability, other gradient generation art-
efacts and the effects of J-evolution (see Section 7.10), the improvement is mainly
artificial and complicates data fitting by making all noise positive.
Baseline corrections can be complicated if, for example, there is a very large

solvent peak that attenuates rapidly with respect to other species leading to the
need for different baseline corrections as a function of q. In some cases, the
‘wings’ of the solvent resonances can spread under those of the species of
interest. Consequently, it is best to have PGSE data with the solvent peaks well
suppressed.
If the spectral lineshapes are Lorentzian and the resonance(s) of interest is (are)

isolated, then using peak heights or integration are both valid means of calcu-
lating the echo attenuation. Although, in cases of spectral overlap (e.g., 1H NMR
spectra of proteins) there may be no choice other than to integrate over the region
and to subsequently attempt to deconvolute the data.69 However, due to the
effects of radiation damping (see Section 7.3), the signal linewidth can vary
with signal amplitude and thus q values and this can lead to an error in the
diffusion coefficient determined if peak heights rather than integrals are used in
the analysis.70

If it is a purely freely diffusing system then a very obvious way to analyse the data
when free diffusion is expected, especially if a ‘rough and ready’ analysis is
acceptable, is simply to plot ln(E) versus γ2g2δ2(Δ− δ/3) (cf. Eq. (2.75)), in which
case the diffusion coefficient can be obtained from the slope (i.e., −D). Todica
and Pop71 have proposed other representations which may have benefits for data
including effects of background gradients (see Section 7.6). However, this approach
gives unequal weighting to the noise, particularly as the signal approaches zero. For
this reason, non-linear least squares regression (e.g., the Levenberg–Marquadt
algorithm72) of the relevant attenuation equation onto the experimental data is
preferred. The final result should be an estimate of the diffusion coefficient and its
standard error (i.e., D ± σ).
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Further, depending upon the system, the presence of restricted diffusion or
exchange may add another layer of complexity to analysing a multicomponent
data set and knowledge of the type of restriction would be greatly beneficial
(e.g., differences in motional restriction could also be used to separate different
species (see Chapter 3)). Neural networks have been used to analyse data from
restricted systems.73 A superposition of Fredholm integrals with different kernels
has been proposed as an alternative to working with the Laplace transform in cases
where the shape of the NMR decay is non-exponential (e.g., due to restricted
diffusion).74

We comment that the analysis of many diffusion studies in the chemical and
biological fields is performed on the basis of the Einstein-Sutherland equation
(Eq. (1.13)). And when attempting to obtain information on hydrodynamic radii
from diffusion measurements it can be difficult to separate changes in hydrody-
namic radii from changes in viscosity. Apart from directly measuring the viscosity
(e.g. with a viscometer), some have suggested the use of an internal, and hopefully
non-interacting, reference standard of known hydrodynamic radius (and similar to
the species of interest) as a means of determining the viscosity.75 Nevertheless, due
to the complexity of the solvent dynamics as discussed in Chapter 1, this is only an
approximate solution to this problem and should be used with caution.

6.5.2 Resolution of complex systems

The various techniques to analyse multicomponent PGSE data sets (see Sections
2.5 (free diffusion) and 3.8 (restricted diffusion)) are detailed below. Amongst
these approaches, CONTIN and maximum entropy are the most suited to analy-
sing polydisperse systems. It should be recalled that whilst these methods will
in general give a ‘result’, this result may not be the physical reality as often
unjustified assumptions are made, for example, about the nature of the distribu-
tions of diffusion coefficients. And so the results of such analysis should be treated
with caution and a degree of scepticism. The approaches can be roughly separated
as follows.

6.5.2.1 Univariate

In univariate methods the signal at each frequency is analysed separately. This class
of methods include biexponential fitting.76 For a discrete number of components the
inversion program DISCRETE can be used.77,78

If there is a distribution of diffusion coefficients the available methods include the
coupled inverse Laplace transform approach (SPLine MODel ‘SPLMOD’),79,80 the
(linear regularisation) program CONTIN,80–82 and non-linear regularisation pro-
grams NLREG83 and GENEREG.83,84 Other approaches include maximum entropy
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processing,85,86 linear prediction using the concept of Hankel diagonalisation87 and
Hopfield neural networks.88

6.5.2.2 Curve (multivariate) resolution methods

These methods, also known as complete bandshape methods, exploit the covariance
between the signals from a given species and specified constraints on the number of
species present to try to resolve the entire spectrum of each component even when
the diffusion coefficients of the component species are close.
Analysing the diffusion data using the whole absorption bandshape with the

global least-squares approach (e.g., Levenberg–Marquardt non-linear least squares
fitting) is known by the acronymCORE (COmponent REsolved spectroscopy).89–92

Analysis is performed at two levels: optimisation for each spectral component and
of the global self-diffusion coefficient. The basic premise is to use prior knowledge
on (or systematically assume and vary to best fit) the number of diffusion coeffi-
cients in the PGSE-multi-component data set and cyclically make a global least
squares fit to all of its frequency and PGSE timing parameters. Its principal
advantage is that it can use knowledge gained from regions of the spectrum that
do not overlap to assist in the interpretation of regions of the spectrum that do
overlap. Corrections to the CORE fitting procedure for gradient non-constancy and
B0 instability have been considered.92

Amultivariate statistical approach (originally based on tools (NIPALS andProcrustes
rotation) developed for optical spectroscopy by Kubista93) was adapted for PGSE
studies by Schulze and Stilbs,94 and later improved into the DECRA family of proce-
dures by Antalek et al.95–97 Antalek98,99 has attempted in a method termed ‘q-DECRA’
to account for spin relaxation in PGSE experiments in order to obtain resolved quanti-
tative spectra frommixtures. In thismethod, based on theSTEpulse sequence, the τ1 and
τ2 delays were varied simultaneously and proportionally thereby allowing extrapolation
of the spectrum without the effects of relaxation. However, chemical exchange, cross-
relaxation and J-modulation lead to non-quantitative conditions. The effects of
non-exponential and multi-exponential decay behaviour were examined and found to
have rather deleterious effects on the performance of DECRA.100

Multivariate curve resolution, which is based on principal component analysis,
by itself and/or in combination with non-linear least square regression68,101–104

unlike DECRA, which assumes exponential decay, makes no such assumption
and thus provide more robust possibilities for analysing multicomponent PGSE
data sets. Positive matrix factorisation,105 information entropy minimisation106 and
other statistical approaches107 have also been tried.
The regularised resolvent transform (RRT)108 has been adapted to solve the

inverse Laplace transform (iRRT)109 and has been used to generate DOSY spectra
of data sets that have poor chemical shift resolution.
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7

PGSE hardware and sample problems

7.1 Introduction

There are a number of potential problems that must be addressed in PGSE
measurements if high quality data is to be obtained. The problems include: (i) rf
interference, (ii) radiation damping and long-range dipolar interactions, (iii) con-
vection, (iv) homogeneity of the applied magnetic field gradient, (v) background
magnetic gradients, (vi) eddy currents and static magnetic field disturbances gener-
ated by the gradient pulses, and lastly (vii) gradient pulse mismatch and sample
movement. Almost invariably these problems lead to increased signal attenuation
and thus overestimates of the diffusion coefficient and misinterpretation of the
experimental data, and it has been noted that all PGSE systems have thresholds
belowwhich artefactual attenuation exceeds diffusive attenuation.1 Here, we consider
the origins of these problems, their symptoms and some methods to alleviate them.

7.2 RF problems

The addition of gradient coils to an NMR probe can have deleterious effects on
probe performance. Due to the proximity of the gradient coils to the sample region,
the gradient coils and leads can, without appropriate precautions, act as antennae
and introduce rf interference. A related problem is the possible strong mutual
inductance between the gradient and the rf coils. Thus, the quality factor Q (= ωL/R
where ω, L and R are the resonance frequency, inductance and resistance, respec-
tively) of the rf coil(s) are diminished resulting in longer pulses for the same flip angle,
poorer decoupling efficiency and S/N.
The effects of non-ideal B1 pulses and B1 inhomogeneity are well-known on spin-

echoes,2–4 but have not been widely considered with respect to NMR diffusion
measurements. This may in part stem from the samples used in diffusion measure-
ments generally being small and thus the sample being contained within more
homogeneous B1 fields.
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7.3 Radiation damping and long-range dipolar field effects

7.3.1 Origin and symptoms

The origin and effects of the demagnetising field were discussed in Section 2.6. The
radiation damping5–11 and long-range dipolar fields11–17 are complicated effects
that are intrinsic in all NMR experiments; however, they only become significant
when there is strong net magnetisation. Thus their effects are amplified at higher
magnetic fields and in high-sensitivity probes18,19 and, similarly, narrower reso-
nances (and better shimmed samples) are more susceptible. Both of these fields
cause the magnetic field during a pulse sequence to become time-dependent which
complicates pulse sequences and can result in artefacts such as frequency shifts. For
example, a strong (solvent) resonance will effectively see a different pulse sequence
than the solute.20–24 The combination of the two feedback fields, radiation damping
and the long-range dipolar interaction, results in chaotic spin dynamics with very
deleterious effects on diffusion measurements.25–27

Radiation damping is the result of coupling between the transverse magnetisation
and the rf coil. The oscillating current that is generated in the receiver coil by the
precessing transverse spin magnetisation in turn generates an oscillating magnetic
field, the radiation damping field. This field, which points in a direction perpendicular
to both B0 and the magnetisation vector,8 acts as a torque on the magnetisation and
tends to rotate the same magnetisation back to its equilibrium position. Bloch equa-
tions modified to include the effects of radiation damping have been presented.28,29

For a single resonance, in the limit of small flip angles ofM0, the exponential damping
due to radiation damping can be characterised by a time constant (in S.I. units)6,10

Trd ¼ 2

γμ0ηFQM0

; (7:1)

where μ0 is the magnetic permeability and ηF is the filling factor of the probe. While
the nutation induced by an applied rf pulse has a constant angular velocity, the
nutation induced by radiation damping is not a constant and is given by

dθ
dt

� �

rd

¼ � sinθ
Trd

; (7:2)

where θ is the angle between the magnetisation and the B0 field.
Radiation damping is a well-known source of problems in NMR experi-

ments8,30,31 and in a PGSE experiment it can effectively relax a strong solvent
signal back to equilibrium many times faster than the intrinsic spin–lattice relaxa-
tion time (Trd< T1; see Figure 7.1) as well as broaden the resonances (Figure 7.2).
In a PGSE sequence, radiation damping can result in the echo signal initially
increasing before decreasing with gradient strength (see Figure 7.3).
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Figure 7.1 The effects of radiation damping on an inversion recovery measurement
(i.e., π–τ–π/2–Acq.) of the 1H longitudinal relaxation of water in a sample of 10mM
lysozyme at 300MHz. In the absence of radiation damping (—), the water has a
relaxation time of about 3.8 s, whereas in the presence of radiation damping (RD),
the effective longitudinal relaxation of the water (- - -) is considerably more rapid
with the null-point of the signal (i.e., Mz=0) occurring before 0.1 s (i.e., apparent
T1 � 140ms). Radiation damping has an insignificant effect on the relaxation of the
(much weaker) protein resonances (●●●●). Modified from Price et al.23

Figure 7.2 PGSE spectrum of aqueous ethanol (90% H2O, 9%
1H2O and 1%

ethanol) in the (A) presence and (B) absence of radiation damping. The spectra
were obtained using the Hahn spin-echo pulse sequence (Fig. 2.6A) with
τ = 141.2ms, t1 = 125.0 ms, Δ = 30ms, δ = 2ms and g = 0.475 Tm−1. Spectrum
B was obtained with Q-switching. From Price and Wälchli.32
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Figure 7.3 Plots of the PGSE attenuation curves of a strong 1H2O resonance
acquired at 300MHz using the Hahn spin-echo sequence (Figure 2.6A) in which
the first gradient pulse was placed immediately after the π/2 pulse and the second
immediately: after the π pulse (▲) and immediately before acquisition (■). The data
is normalised to the first positive value of g = 0.037 Tm− 1 in each case. The former
case is susceptible to the effects of radiation damping for nearly the whole second τ
period since the magnetisation is not spatially encoded after the second gradient
pulse. The rise and fall of the attenuation curve of the data acquired using this
sequence is due to the competition between radiation damping and diffusive
attenuation. The sequence in which the magnetisation is spatially encoded during
the entire sequence is not subject to radiation damping and gives the expected
single exponential decay. Adapted from Price et al.33

7.3.2 Solutions

The keys to solving radiation damping problems lie in Eq. (7.1), specifically to reduce
ηF, Q orM0. One simple solution to reduce ηF, and consequentlyM0, is by using a
very small sample or to de-tune the probe (i.e., lowering Q). As it is the solvent
that is normally the source of the strong signal, another solution is to reconstitute
the sample in an inert solvent (e.g., in 2H2O if observing 1H). In STE-based PGSE
sequences another possibility is to use an initial rf pulse with a smaller flip angle.29

Finally, the addition of a species to produce chemical exchange with the solvent
peak (e.g., adding glycine to aqueous solutions) has also been suggested.34 However,
none of these methods are generally applicable or even perhaps desirable.
More generally, practical solutions include the use of solvent suppression sequences

(see Section 6.2.2). Importantly, when strong signals are suppressed the deleterious
effects of both the radiation damping and dipolar fields are removed. Although as
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noted from Eq. (2.120) the effects of the demagnetising field should also disappear
when magnetic field gradients are applied at the magic angle (i.e., θ=54.7°).20,21,35

Gradient-based methods have become the most widely used for removing effects
of radiation damping and these rely on reducing M through spatial encoding (see
Section 2.2.1). Since a gradient has no effect on magnetisation that is collinear
with it, a z-gradient pulse will not totally eliminate the potential for radiation damping
(i.e., there could be a large net solvent magnetisation directed along �z), but while
the gradient is being applied it will prevent its onset.22,23 Gradient-based methods
for suppressing radiation damping during different parts of pulse sequences include
gradient echoes inserted between the rf pulses of a DANTE train,36 during the
evolution and mixing periods37 and between acquisition of FID data points.38 The
effects of the radiation damping field can also be counterbalanced during the FID
acquisition by adding small flip-angle rf pulses between the acquisition of each data
point.39

The effects of radiation damping can be largely overcome by moving the gradient
pulses within the PGSE sequence so that the magnetisation is spatially encoded for
most of the sequence (i.e., there is no net magnetisation) as shown in Figure 7.3.
However, this makes the sequence more susceptible to eddy currents and also
disallows Δ to be moved independently of the length of the sequence.33 If available,
the incorporation of Q-switching into the PGSE sequence is an ideal and truly
flexible solution (see Figures 7.4 and 7.5).32
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πyτ
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Figure 7.4 Q-switch variants of the (A) Hahn spin-echo and (B) stimulated-
echo-based PGSE sequences. The Q of the probe was set to low during the
checked periods along the bottom of each sequence. The slanted striped pulse in
the STE sequence represents a purge gradient pulse to reduce the phase cycling
requirements. Modified from Price and Wälchli.32
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7.4 Convection and flow compensation

7.4.1 Origin and symptoms

Sample temperature regulation in NMR probes is normally performed by blowing
temperature regulated gas over the sample (see Figure 5.6), thus temperature
gradients generally exist in the sample when measurements are conducted away
from ambient. The severity of the temperature gradient will also depend upon the
efficiency of heat transfer and viscosity in the sample as well as the experimental
factors (e.g., gas flow rate, geometry and size of the sample and interior dimensions
of the probe). If the temperature gradient is large enough convective flows will be
induced40–44 and convective effects have been realised since the earliest days of
NMR diffusion measurements.45 Convection can also be induced by strong rf
irradiation as in heteronuclear decoupling.44,46

The likelihood of convection is determined from the Rayleigh number40

High-Q

Q-switched

100 Hz

Figure 7.5 A series of Hahn spin-echo-based PGSE spectra of the water resonance
in an aqueous ethanol solution acquired with and without Q-switching with the
timings given in the caption to Figure 7.2. The spectra in each series start from
g = 0 with increments of 0.068 Tm−1 (left to right). The spectra acquired without
Q-switching are severely distorted. Modified from Price and Wälchli.32
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Ra ¼ gα
κν

a4ΔT; (7:3)

where g is the acceleration due to gravity, α is the thermal expansion, κ is the thermal
diffusivity of the liquid, ν is the kinematic viscosity, a is the tube radius andΔT is the
temperature gradient. For rigid conducting walls, convection results when Ra

exceeds a critical value Rc, approximately 1700.
The chemical shift of the 59Co resonance of the (very symmetric) complex K3Co

(CN)6 has an extremely large temperature dependence (1.45 ppmK− 1) and is thus a
suitable compound for investigating the presence of thermal gradients.40

Convection is a source of insidious artefacts in PGSE experiments.41,42,46–49

While a net flow of spins along the direction of the gradient is clearly indicated
by the resulting net phase change (see Section 2.2.3), convective currents,42,50–52

which typically occur along the long axis of the NMR tube, do not produce a phase
change since the flow of the spins along the direction of the gradient is exactly
matched by the flow in the anti-parallel direction. However, convection causes a
cosine modulation of the PGSE signal attenuation (for a single diffusing species)47

E q;Δð Þ ¼ exp �γ2g2Dδ2 Δ� δ=3ð Þ� �
cos γgδνΔð Þ; (7:4)

where v is the velocity of the flow. However, convection is generally not apparent
when v2Δ � D and δ � Δ, due to the similarity between the cosine and Gaussian
functions. In such circumstances, the attenuation data appears to be well described
by the usual exponential function giving, to first approximation, an apparent diffu-
sion coefficient of

DappðΔÞ ¼ Dþ Δv2

2
: (7:5)

Consequently, the presence of convection is suspected when the measured diffu-
sion coefficient of a non-exchanging freely diffusing species increases with Δ.
Importantly, whereas diffusion depends on molecular size, convection is mainly
controlled by the solvent and all solutes are equally affected regardless of mole-
cular size.

7.4.2 Solutions

Apart from better probe design to reduce temperature gradients, there exist both
hardware and pulse sequence methods for minimising the effects of convection. The
hardware methods are: (i) using a narrower tube or specially designed tube,53 (ii) in
the case of some samples, glass wool can be placed in the sample (Ernst von
Meerwall, private communication), (iii) surrounding the sample with a fluid of
higher heat capacity42 or (iv) spinning the sample.50–52
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The PGSE pulse sequence solutions are based on gradient moment nulling
(see Section 2.2.2).41 Equation (2.23) provides the basis of the so-called gradient
moment nulling methods and flow compensation. Since it is assumed that the
convection current has a constant laminar flow in the z-direction, this method does
not compensate for turbulent convection. The even echoes in a CPMG sequence
are unaffected by the effects of convection since the first moment of the gradient is
nulled at these positions.
An example of a flow-compensated double-stimulated echo sequence41,54 pre-

ceded by a WET pulse sequence55,56 for multiple solvent suppression is shown in
Figure 7.6 and the signal attenuation due to diffusion for this sequence is

E ¼ exp �γ2g2Dδ2 Tþ 4δ
3
þ 2τ

� �� �
; (7:6)

where T and τ are defined in Figure 7.6. Second-order effects (e.g., flow acceleration)
can be eliminated by nulling higher moments.

A convection compensating sequence is essentially some variation of a double
PGSE sequence. Another, and perhaps more intuitive, way of viewing the convec-
tion compensating effect of a double PGSE experiment such as that depicted in
Figure 7.6 is to realise that (starting from Eq. (2.37)) the echo attenuation will be of
the form57,58

E qð Þ ¼ exp i2πq1 � R1ð Þ exp i2πq2 � R2ð Þh i: (7:7)

Providing the two pairs of gradient pulses are applied with identical Δ, but with the
opposite sense, Eq. (7.7) becomes

E qð Þ ¼ exp i2πq1 � R1 � R2ð Þð Þh i; (7:8)

and thus the scheme will compensate for any motion common (e.g., constant flow)
to both periods.

τ τ τ τ

x y

WET

y y

T/2 T/2 te

π/2x π/2x π/2x π/2xπ/2φ1
π/2φ2

π/2φ3

δ

Figure 7.6 A double stimulated echo sequence that is compensated for flow
including an LED delay, te.

41 The sequence refocusses all constant-velocity
effects. The first moment of the effective gradient over the whole sequence is
zero. The phase cycling for this modified sequence containing a WET suppression
sequence can be found in the paper by Simorellis and Flynn.54
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Various compensating sequences have been presented such as the double
(CPMG) multiple spin-echo sequence with bipolar gradients;59 variations on
double spin-echo and double-stimulated echo sequences with eddy-current sup-
pression;60 CONVEX,61,62 which combines water suppression with convection
compensation and DQDIFF,62,63 which combines convection compensation
with double quantum filtering. OGSE sequences also have inherent convection
compensation properties (see Section 2.4).64

7.5 Gradient constancy

7.5.1 Origin and symptoms

It has been found in practice that a reasonable deviation from perfect gradient
constancy is allowable for many experiments;65–68 however, it has also been
noted that if different regions of the sample volume experience slightly different
gradients, the diffusional decay of the resonance of a single freely diffusing species
will deviate from exponential behaviour in a manner that is indistinguishable from
that of a polydisperse system in the presence of a perfectly constant gradient.69

7.5.2 Solutions

A simple approach is to restrict the effective sample volume using one of the
methods outlined in Section 6.3. In some NMR probes, the receptive volumes of
the rf coil is smaller than the volume of constant gradient, affording the possibility of
using standard NMR tubes without requiring sample volume restriction. In some
cases, as noted in Section 6.3, it is possible to map the spatial distributions of the
gradient strength for a specific probe and account for this in the data fitting.65–67

With this information it is possible to calculate the theoretical form of the PGSE
attenuation as a function of the nominally applied gradient for a specific pulse
sequence. For example, the Stejskal and Tanner equation (Eq. (2.49)) is then
numerically integrated over the sample and the PGSE decay is represented as an
exponential of a power series, namely66,67

S ¼ Sð0Þ exp �
XN

n¼1

cn γ2 g
_2Dδ2ðΔ� δ=3Þ

h i
 !

; (7:9)

where g
_

is now the nominal gradient strength. Implicit in this equation is the
assumption that the MSD of the measured spins is sufficiently small that they stay
within regions of constant gradient during Δ. The coefficients cn are determined
experimentally by using a sample with a known diffusion coefficient in the mapping
experiment. Typically, N ≤ 4 is sufficient. The decay function has also been
parameterised as the sum of two error functions.65
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7.6 Background gradients

7.6.1 Origin and symptoms

In PGSE experiments based on the use of applied magnetic gradients, the presence
of both homogeneous and inhomogenous (i.e., both in direction and magnitude and
perhaps time-dependent) background gradients (Section 4.8) can greatly complicate
measurements, both directly through the inclusion of gradient cross-terms and
indirectly through decreasing the observed T2.

33,70–75 The effects of background
gradients and methods for suppressing them have recently been reviewed.76,77

The salient points of how background gradients affect PGSE measurements can
be understood as follows: in the presence of a uniform constant background gradient
of strength g0 (see Figure 2.10) and neglecting relaxation effects, the PGSE signal of
the Hahn spin-echo sequence is given by (Eq. (2.69))78

S 2τð Þ ¼ M0 exp

�γ2g2Dδ2 Δ� δ=3ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g term

þ γ2g � g0Dδ t21 þ t22 þ δ t1 þ t2ð Þ þ 2

3
δ2 � 2τ2

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g�g0 cross-term

� γ2g20D
2

3
τ3

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
g0 term

0

BBBBB@

1

CCCCCA
;

(7:10)

where t2 ¼ 2τ � t1 þ Δþ δð Þ. Similarly, for the STE sequence79

S 2τð Þ ¼ M0

2
exp

�γ2g2Dδ2 Δ� δ=3ð Þ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

g term

þ γ2g � g0Dδ t21 þ t22 þ δ t1 þ t2ð Þ þ 2

3
δ2 � 2 τ1 þ τ2ð Þτ1

� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g�g0 cross-term

0

BBBBBB@

� γ2g20D
2

3
τ1 τ2 þ 2τ1=3ð Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
g0 term

1

CCCCCCA

; (7:11)

where t2 = τ1 − δ − t1.
Generally, as noted in Section 2.3.2, the g0 term can be normalised out in Eqs. (7.10)

and (7.11). However, unless the condition gδ≫ g0τ holds, or if g0 is non-constant,
gδ≫ g20

	 
1=2
τ, the g·g0 cross-term cannot be neglected. The cross-term can result in

the echo attenuation depending not only on δ and Δ, but also on the other delays in
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the sequence. As shown in Figure 7.7, the cross-term causes the plot of ln(E) versus
γ2g2δ2(Δ� δ/3) to be non-linear, thereby complicating any subsequent analy-
sis.33,75,80 The duration τ in the Hahn-based sequence is generally much longer
than τ1 in the STE sequence, and consequently the effects of the cross-term are
smaller in the STE sequence.81

Since the sign of the g·g0 term depends on the relative direction between the
applied and internal gradients (g·g0 = gg0 cosθ, where θ is the angle between g and
g0) as shown in Figure 7.7, the presence of background gradients can be tested for
by reversing the polarity of the applied gradient.33,73,82 However, if there is a
distribution of background gradients, reversing the polarity of g will only affect
the signal amplitude if the distribution of g0 is not symmetric about g0 = 0.

83,84

Further, apparent anisotropic diffusion could result frommeasurements conducted in
the presence of anisotropic background gradients due to the g � g0 term.85–87 This
type of problem can also result due to cross-terms between the diffusion and imaging
gradients in imaging pulse sequences involving diffusion measurements.88 Lian
and co-workers89 have demonstrated that an image of D or Dg20

	 

can be obtained

without the corrupting g � g0 terms by appending a standard imaging sequence to an
alternating pulsed field gradient sequence90 or a Carr–Purcell sequence.
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Figure 7.7 1H PGSE NMR attenuation data acquired at 300MHz for the residual
water in model system designed to give a background gradient through the sample
consisting of 50 μl of 2H2O in a susceptibility-matched Shigemi tube but without
the plunger. The data were acquired using positive gradient polarity (▴) and
negative gradient polarity (▾). Regression of Eq. (2.49) onto the average of the
normalised positive and negative polarity data (solid line) gives a diffusion
coefficient of 1.831 ± 0.01 × 10− 9m2s− 1. From Price et al.33
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Finally, we stress that in contrast to our simple treatment above, where only
constant background gradients were considered, background gradients will nor-
mally be highly inhomogeneous as in porous media. Thus, if a species moves
between volume elements of different background gradient slowly, such that it
stays within a volume of constant g0 during the sequence, the acquired signal will
be of the form33

S ¼
ð
S g; g0 rð Þð Þ dr: (7:12)

Thus, it is likely that the measured diffusion will be lower than the actual diffusion
coefficient since the measured diffusion is in essence an ensemble average and the
internal gradients will weight this distribution by the time of signal acquisition with
the apparently faster diffusing spins being more attenuated and most of the signal
will be contributed by the apparently slower moving spins.91 This is analogous to
the effect found for spins diffusing in a restricted geometry having an absorbing wall
(see Section 4.3.2). The effects of background gradients can also be mistaken for
restricted diffusion.74 Depending upon the diffusion coefficient and the length
scales of the magnetic inhomogeneities, the background gradients could also be
time-dependent. An obvious example, with relevance to MRI-based studies, is
where spins diffuse around in a medium containing a contrast agent consisting of
superparamagnetic particles.92

7.6.2 Solutions

Where the background gradient arises due to an imperfect B0 field, one solution is to
restrict the sample size either physically using a susceptibility-matched NMR tube
or effectively using slice selection.93 Hong and Dixon have considered the problems
resulting from ‘background gradients’ arising from imaging gradients inMRI-based
diffusion measurements.94

If the distribution of g0 is symmetric about g0 = 0 and not too large, a series
expansion can be used to correct for the background gradients.83 In general, how-
ever, specialised pulse sequences are required to suppress background gradient
problems. The basis of most sequences for the removal of the g0 term is to add
additional π pulses to the PGSE sequence to refocus the dephasing effects of g0 in a
way analogous to the CPMG sequence.84,95 Clearly, such sequences must be designed
with an odd number of π pulses between the gradient pulses (of the same polarity)
since an even number of pulses would simply result in the effects of the second
gradient pulse adding to the dephasing effects of the first gradient pulse.84,95 In 1980,
Karlicek and Lowe90 proposed the use of alternating (bipolar) pulsed field gradients
in a CPMG sequence (see Figure 7.8A) for which the attenuation function is90
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E g; 2nτð Þ ¼ exp � 2

3
γ2D ng20τ

3 þ n� 1ð Þ3g2 τ � δ1 þ δ2ð Þ
2

� �2
" 

� τ þ δ1 þ δ2ð Þ
n� 1ð Þ2

 !#!

;
(7:13)

where the integer n, δ1 and δ2 are defined in Figure 7.8A. In passing, it is noted that
the equation relating attenuation of the Karlicek–Lowe alternating PGSE experi-
ment, but neglecting the effects of the background gradient, has been derived for
diffusion within a sphere using the GPD approximation.96

CPMG-based sequences are limited by T2 and it is desirable to have STE-based
pulse sequences. Cotts and co-workers97 presented three modified STE sequences
incorporating alternating pulsed field gradients (see Figure 7.8B) and later Latour
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Figure 7.8 Sequences for removal of background gradients. (A) The Karlicek and
Lowe sequence,90 (B) the nine-pulse sequence of Cotts et al.,97 and (C) the
improved stimulated-echo sequence of Latour et al.75
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et al.75 presented a pulse sequence that combined features of the Karlicek and
Lowe and Cotts pulse sequences in which the gradient pulses in the normal STE
echo pulse sequence are replaced by a series of short alternating gradient pulses (see
Figure 7.8C).
In later works, VanDusschoten and co-workers81 proposed a variation of theHahn-

echo with the (monopolar) gradient pulses sandwiched between π rf pulses termed
the PGSE multiple-spin-echo (PGSE MSE) pulse sequence, and Sørland and co-
workers98 devised a 13-interval STE-based sequence using asymmetric bipolar gra-
dient pulses to suppress the effects of constant background gradients. Of particular
interest are STE-based PGSE sequences including asymmetric bipolar gradient pulses
with the ability to suppress the effects of non-constant background gradients.99,100

Analysis of the sequence of Sun et al.99 (see Figure 7.9) reveals that if the ratio of the
gradient pulses in the asymmetric pairs is set to a ‘magic’ ratio defined by77,99,101,102

η ¼ g1
g2

¼ � δ21 þ δ1δþ δ2
�
3

δ21 þ δ1δþ δ2
�
3� 2τ21

; (7:14)

then the g � g0 cross-term can be suppressed leaving the echo attenuation given by

E ¼ exp �γ2Dδ2
�
τ2 þ τ1 � δ2 � δ1ð Þ½ � g1 � g2ð Þ2þ 2 τ1 þ δ2 � δ1ð Þg21 �

1

3
δ g21 þ g22
� �

� �
:

(7:15)

Finally, we note that Vasenkov et al.101 have noted that data obtained using a
standard PGSTE sequence in the presence of spatially varying IMFGs can be
analysed by extrapolation of Dapp as a function of τ1 to obtain the true diffusion
coefficients.

2τ1 2τ1τ2

π/2 π/2π/2π π

g2 g1

–g1 –g2

δ1 δ12δ2δ δ

0

Δ

Figure 7.9 The asymmetric bipolar STE-based PGSE sequence of Sun et al.99
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7.7 Eddy currents and perturbation of B0

7.7.1 Origin and symptoms

Out of mathematical simplicity, most PGSE sequences prescribe ‘rectangular’
gradient pulses, but the rapid rise of the gradient pulses can generate eddy currents
in the surrounding conducting surfaces103 and the severity of the eddy currents is
proportional to the time differential of the current generating the gradient pulses
(i.e., dI/dt). Hence, the severity of eddy currents increases with both the intensity
and the rapidity of the rise and fall of the gradient pulses. Eddy currents can have
very deleterious effects on PGSE- and MRI-based104 measurements, including:
(i) phase changes in the observed spectrum and anomalous changes in the attenua-
tion, (ii) gradient-induced broadening of the observed spectrum, (iii) time-
dependent but spatially invariant B0 (and thus frequency) shift effects, and finally
(iv) disturb the field frequency lock.
The minimum delay, te, that must be left after a gradient pulse prior to signal

acquisition or the application of a refocussing rf pulse is determined by the time
required for the dissipation of the eddy currents. If acquisition is begun in the
presence of eddy currents, the resulting spectrum will have a combination of
phase and amplitude distortions.105 Further, for example, if the eddy currents
from the first gradient pulse extends into the second transverse evolution period in
a Hahn-echo sequence, then the integral of magnetic gradients during the second
evolution period will not equal, resulting in an effective gradient pulse mismatch
(see Section 7.8) and both the echo time and amplitude may be affected.106–109

Although there have been attempts to map and characterise eddy currents includ-
ing MRI-based techniques,110–114 to determine if eddy-current effects are signifi-
cant, a simple measurement can be performed on a sample with a diffusion
coefficient lower than that which can be detected with the experimental parameters
in question and for which true diffractive peaks cannot occur (e.g., a very large
monodisperse polymer such as high MW polydimethylsiloxane (MW � 700,000)
has a diffusion coefficient below 10–15m2s− 1).115–117 If no attenuation is observed,
the presence of artefacts can be excluded. Another simple way to determine if
eddy-current effects are present, and in particular to determine te, is to use the
pulse sequence shown in Figure 7.10.107 Some example spectra acquired using this
pulse sequence are shown in Figure 7.11.
Simplistically, assuming that the gradient pulses have infinitely fast rise times but

with exponential falls that represent the eddy currents, and using the method outlined
in Section 2.3.2, the echo signal attenuation in the Hahn-echo PGSE is given by118

EðgÞ ¼ exp �γ2g2D δ2 Δ� δ=3ð Þ þ f tð Þ� �� �
; (7:16)
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where

f tð Þ ¼ 1

k
2δΔ� δ2 þ δ2e�k Δ�δð Þ þ 4δe�k τ�t1�δð Þ τ � Δ� t1 � δ

2

� �� �

þ 1

k2
Δ� 2δþ 4τe�2k τ�t1�δð Þ þ 4 τ � Δ� t1½ �e�k τ�t1�δð Þ�

þ 2τ � Δ� t1½ � e�2k Δ�δð Þ � 4e�k Δþτ�t1�2δð Þ� ��

þ 1

2k3
8e�k τþΔ�t1�2δð Þ þ 8e�k 3τ�Δ�2t1�2δð Þ � 4e�k 2τ�t1�2δð Þ�

�8e�2k τ�t1�δð Þ � e�2k Δ�δð Þ � e�2k 2τ�Δ�t1�δð Þ � 1
�
;

where k is the exponential rate constant. This analysis is simplistic both in the form
of the eddy currents and also as it does not consider the effects of the eddy currents
on signal acquisition. It has been noted that the downward curvature in a plot of
ln(E) versus γ2g2δ2(Δ−δ/3) in a simple freely diffusing system is indicative of
eddy-current effects.108

π/2

te

δ

Figure 7.10 A simple pulse sequence for characterising eddy current dissipation.
Spectra are acquired with successively shorter te delays to determine the minimum
time required for the eddy current effects to decay. Some example spectra are
shown in Figure 7.11.
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Figure 7.11 Experimental spectra acquired using a sample of 13CCl4 and the pulse
sequence given in Figure 7.10 for various values of te. The gradient pulse used had
a duration of 1ms and a strength of 0.45 Tm− 1. Eddy-current effects result in the
spectra appearing to be badly distorted when te ≤ 100 μs. From Price.118

236 PGSE hardware and sample problems



In addition to the direct eddy-current effects, gradient pulses can have serious
effects on the stability of the main magnetic field. The final result is that the main
field may be caused to oscillate or at least shift from its normal value (i.e., a time-
dependent but spatially invariant B0 shift).119 If such B0 shifts continue through
acquisition, ‘ringing’ will be apparent in the observed spectrum.

7.7.2 Solutions

7.7.2.1 Hardware solutions

Ideally, well-designed shielded gradient coils (see Section 5.2) will generate negli-
gible eddy currents and require no further experimental adjustments. However, this
is usually not sufficient and additional means for dealing with eddy currents are
required. Another commonly used approach is termed ‘pre-emphasis’, in which,
according to Lenz’s law, the sign of the fields generated by the eddy currents will be
opposed to the changes which induced them (see Figure 7.12). Thus, the current at
the leading and tailing edges of the gradient pulses is overdriven and in this way the
coils self-compensate for the induced eddy currents. This is generally performed by
adding small exponential corrections of different amplitude and time constants to
the desired current waveform base.119–122 For example, the out-of-phase compo-
nents of FIDs detected after a gradient pulse are used to interactively set the pre-
emphasis variables123 or imaging-based mapping of eddy-current fields to determine
the eddy-current compensation parameters.112 But care must be taken in its implemen-
tation since additional eddy currents can arise out of the pre-emphasis procedure.103 In
performing pre-emphasis, the difference between the desired and the measured

Figure 7.12 A conceptual idea of the pre-emphasis procedure. Ideally the input
waveform (i.e., current pulse; top left) into the gradient coil would produce a
gradient pulse of the same shape. However, due to the generation of eddy currents
the resulting gradient waveform is distorted (top right). A solution is to shape the
input waveform to counteract the eddy current effects (bottom left) and thereby
produce the desired gradient shape.
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gradient waveform indicates the distortion due to the eddy currents. The pre-
emphasis time constants are determined using an iterative approach with the sequence
shown in Figure 7.10. In practice, pre-emphasis is experimentally complicated and
the method is imperfect since the spatial distribution of the fields produced by the
eddy currents in the surrounding metal and those produced by the gradient coils are
not identical,124 nor does it solve the B0 shift problem and can even exacerbate it.125

Nevertheless, pre-emphasis is commonly used even with shielded coil systems to
improve performance.
Since eddy-current severity is proportional to dI/dt, a means of reducing eddy-

current effects is to slow the rise and fall times of the gradient pulses.126,127 The
echo-attenuation functions have been calculated for Hahn-echo PGSE sequences
using nearly rectangular and sinusoidal gradient pulses (see Figure 7.13) and for the
nearly rectangular pulses are found to be of the form128

E gð Þ ¼ exp �γ2g2D δ2 Δ� δ=3ð Þ þ f tð Þ� �� �
; (7:17)

π/2 π
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Δ
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Δ
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τ τ
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Figure 7.13 The Stejskal and Tanner pulse sequence with (A) approximately
rectangular gradient pulses; ε represents the rise and fall times of the gradient
pulses and (B) sinusoidal gradient pulses.
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where f(t) is defined in Table 7.1. The attenuation functions for sequences contain-
ing sinusoidal gradient pulses are given in Table 7.2.

The results show that providing the pulses are nearly rectangular, the precise
shape is unimportant as long as the ‘area’ (i.e., δg) of each pulse is equal to that of
the ideal rectangular pulse. Shaped pulses result in a loss of gradient intensity in
proportion to their integral. As noted by Galvosas and Stallmach,76 the shape of the
ideal gradient pulse depends on the capabilities of the gradient generation system.
The optimised shape has exponential rising and falling edges and gives the max-
imum gradient efficiency available within the bounds of stable feedback, above

Table 7.1 The f(t) term in Eq. (7.17) for various nearly rectangular gradient pulse
shapes in the Hahn-echo sequence

Gradient pulse shape f(t)

Identical rectangular 0
Exponential rise and fall � 2=k2 1=k� δð Þ þ 4= ke"k

� �
"δ� 1=k2 � "2=2
� �

þ 2= k2e2"k
� �� δþ 1=kð Þ

Exponential rise and fall with
overshoot and undershoot

ð�8δ=k2 � 12=k3 þ e�"kð2"2 � 4"2δþ 6"2=k

� 8δ"=kþ 12"=k2 � 8δ=k2 þ 12=k3ÞÞ=g
þ 4e�"kð"2 � "δ� δ=kÞ=ðg2kÞ þ e�2"kð2"2δ
þ 6"2=kþ 4"δ=kþ 6"=k2 þ 2δ=k2 þ 3=k3Þ=g2
þ ð2δ� 3=kÞ=ðg2k2Þ

Sine rise and fall 4"2 "� 2δð Þ=π þ 8"2 "� 3δð Þ=π2 � 64"3=π3

Ramped rise and fall "3=30� δ"2=6
Mismatcheda "2 2τ � t1 � Δ� δ� 2"=3ð Þ

Note: k is the time constant of the exponential function describing the gradient shape.
a In this sequence only one of the pair of rectangular gradient pulses is extended by ε.
Source: From Price and Kuchel.128

Table 7.2 Attenuation equations for various trigonometric gradient pulse shapes in
the Hahn-echo sequence

Gradient pulse shape E

sin(t) exp �γ2g2Dδ2 4Δ� δð Þ=π2� �

sin(t)2 exp �γ2g2Dδ2 Δ=4þ δ=12þ 5δ= 4πð Þ2
� �� �

1� cos 2πt=τð Þ exp �γ2g2Dτ3 2
3
þ 5

4π2

� �� �

Source: From Stejskal and Tanner,78 Price and Kuchel,128 Gross and Kosfeld,129 and
Le Bihan.130
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which the feedback loop of the generation system would no longer be reliable and
gradient mismatch may result.
Dynamic shimming and B0 compensation by pulsing a B0 coil (typically z and z

2

shim coils) simultaneously with the gradient pulse can be used to reduce B0 shift
effects.121,125

7.7.2.2 Pulse sequences

Delaying the acquisition until the eddy currents have dissipated. As noted in
Section 7.7.1, it is important to delay acquisition and refocussing rf pulses until
the eddy currents have dissipated. Early attempts included appending a train of π rf
pulses to an STE sequence to refocus the stimulated echo so as to delay the
acquisition until after the eddy currents had subsided.131 However, since the
magnetisation is transverse during this period it is susceptible to transverse relaxa-
tion, J-modulation and phase distortions from the eddy currents. The well-known
STE-based LED (longitudinal-eddy-current-delay) pulse sequence was proposed
in 1991,132 and its bipolar gradient variant (BPP–LED) sequence in 1995 (see
Figure 7.14 and below).133 The LED approach is useful when the T1’s of the species
in question are longer than te. The echo attenuation for the BPP–LED is133

E ¼ exp �γ2Dg2δ2 Δ� δ=3� τg=2Þ
� �

;
�

(7:18)

and τg is defined in the figure.

A problem common to both the LED sequence and to the STE sequences is
that extensive phase cycling is required. For the LED sequence at least 64 steps are
required – although this can be reduced by inclusion of a homospoil pulse.
However, with modern commercially available actively shielded probes, the time

Δ

te
π/2

δ/2 τg

π

Figure 7.14 The BPP–LED pulse sequence incorporating bipolar gradient
pulses.133 The self-compensating effects of the bipolar gradient pulse ‘sandwiches’
(i.e., g� π� (-g)) largely cancel the generation of eddy currents. The two π pulses
in the bipolar-gradient pulse sandwiches have the beneficial effect of reducing the
active volume of the sample to the region of homogeneous rf. te denotes the delay
included before acquisition for the eddy currents to dissipate.
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required for eddy-current dissipation when using moderate strength gradient pulses
(e.g., 0.5 Tm−1) can be quite short (�100 μs) and thus the extra complexity involved
in sequences such as LED is often not required.

Bipolar gradients. A more elegant and proactive solution than waiting for the
effects of the eddy currents to dissipate, although requiring more sophisticated
gradient control, is the use of bipolar (self-compensating) gradient pulses133,134 as
shown in the BPP-LED sequence in Figure 7.14. The two ‘halves’ of each bipolar
gradient pulse are of opposite sign, but the π rf pulse has the effect of negating the
phase change by the first ‘half’ pulse, thus a bipolar gradient is equivalent to a
gradient pulse of duration δ with the polarity being equal to that of the second
‘half’(i.e., δ/2) of the bipolar pulse pair. Since eddy currents typically have settling
times of the order of tens of milliseconds, the eddy currents generated by the first
pulse will be approximately cancelled by the effects of the second gradient pulse
which is of opposite polarity. An additional advantage in high-resolution studies is
that BPP have much less effect on the lock since the lock (e.g., 2H) resonances are
unaffected by the π pulse; the two gradient pulses in each BPP behave as a gradient
echo and so the lock is functional immediately at the end of the BPP instead of the
time required for resumption of the lock function depending on the deuterium
relaxation rate.

Prepulses. A means of decreasing eddy-current problems is to place additional,
appropriately spaced (i.e., Δ apart), gradient pulses of the same amplitude prior to the
‘start’ of the rf pulse sequence.106,108,117,135,136 However, it has been noted that it may
be prudent to decrease the amplitude of the prepulses as the amplitude of the (diffu-
sion) gradient pulses are ramped up to keep the net energy dissipated constant in each
scan.66 Which approach is better will depend strongly on the experimental
circumstances.

7.7.2.3 Postprocessing

Post-processing methods aim to correct the measured FID for eddy-current effects.
The simplest post-processing scheme is to measure the phase of an on-resonance
signal from a single component spectrum as it evolves following a gradient pulse.125

This ‘reference’ phase angle evolution can then be subtracted from all subsequent
spectra obtained under the same conditions to remove the effect of B0 variation.

137

Other techniques for removing the B0-based distortions include wavelet trans-
forms138 and, if a suitable reference signal is available in the spectrum, reference
deconvolution139–141 to produce high-resolution spectra.
Importantly, post-processing techniques cannot correct for the effects of eddy

currents during the sequence, which may be a problem in itself (perhaps resulting in
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anomalous echo intensities), but merely cosmetically correct the phase distortions in
the acquired signal.

7.8 Gradient mismatch and sample movement

7.8.1 Origin and symptoms

Stable and perfectly reproducible gradient pulses are crucial for accurate PGSE
measurements.106,107,117,142 The defocussing and refocussing effects of the gradient
pulses in the pulse sequence must be very finely matched and the gradient magni-
tude needed to measure a dynamic displacement n orders of magnitude smaller than
the sample dimensions will result in a dephasing of order 10n cycles along the
sample; consequently, the refocussing must be accurate to within a few degrees.143

Thus, at 10− 8m resolution, the matching required in the gradient pulse areas is on
the order of 10 ppm.1 In practice, the gradient amplifier may be incapable of
delivering perfectly reproducible noise-free gradient pulses in quick succession
and this may be further complicated by heating of the gradient coils and consequent
changes in coil resistance during a sequence.136 Due to the additional demands
placed on a current amplifier in generating BPP, it is likely that gradient mismatch
will be exacerbated in BPP sequences, especially with large amplitude gradient
pulses. As noted above, eddy currents can also result in effectively mismatched
gradient pulses. It has also been observed that the refocussing rf pulse (e.g., the π
pulse in the Hahn-PGSE sequence) can induce a signal in the gradient coils which in
turn elicits a small current pulse from the current amplifier.144

The echo attenuation for the Hahn-PGSE sequence, where the second gradient
pulse is mismatched by a duration ε longer than the first pulse (see Figure 7.13A), is
given by Eq. (7.17) and the expression in Table 7.1. Themismatch introduces a τ and
t1 dependence to the equation and ε enters into the equation in second order.106

However, whilst the mismatch may have only a small effect on the attenuation due
to the diffusion, even extremely small mismatches, too small to measure using
conventional techniques (e.g., by oscilloscope), will result in a severe loss in echo
signal intensity due to residual phase twist as will be further examined below.
Mechanical stability is also extremely important since movements on the order of

10 nmwill restrict diffusionmeasurements toD ≥ 10− 15m2s− 1.117,142,145,146 Sample
movement is similar to flow in that, in the case of a rigid sample, all spins receive an
equal phase shift and it can result in greatly increased echo attenuation.146

The possibility of gradient mismatch and vibration artefacts can be checked by
performing a measurement under the same conditions to be used experimentally
with a very largemonodisperse polymer with a diffusion coefficient below the limits
of measurability as described above. If no attenuation is observed, the presence of
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artefacts can be excluded. However, this test does not account for independent
movement of the sample with respect to the sample tube as might occur with an
incompletely compacted powder sample (e.g., zeolite).146

The effects of the gradient pulse mismatch and vibration/sample movement in the
PGSE experiment for the case of a freely diffusing species can be theoretically
considered by rewriting the SGP attenuation expression (Eq. (2.35)) in terms of R
and including a phase-shift, Φ, due to the effects of a gradient mismatch, Δq, and
sample movement, Δr, between the first and second gradient pulses (in Δq and Δr,
‘Δ’ denotes difference) obtaining142

E q;Δð Þ ¼
ð
ρ r0ð Þ

ð
�P R;Δð Þei 2πq�Rþ�½ �dR dr0: (7:19)

Assuming that the gradient is directed along the z-direction and that Δq is parallel to
q (i.e., a magnitude mismatch), the phase term can be expressed as

2πq � Rþ � ¼ 2π qZþ qþ Δqð ÞΔzþ Δqz0½ �; (7:20)

where z0, Z and Δz are the z-components of r0, R and Δr, respectively. Thus,
Eq. (7.19) becomes

E q;Δð Þ ¼
ð
�P Z;Δð Þei2πqZdZ

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
EDiff q;Δð Þ

ei2π qþΔqð ÞΔz� �

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Φ Δzð Þ

ð
ρ z0ð Þei2πΔqz0dz0
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

EPhase Δqð Þ

(7:21)

The first term,EDiff (q,Δ), is merely the usual attenuation due to diffusion (Eq. (2.44)).
The second term,Φ(Δz), is the residual phase-shift due to vibration/samplemovement
and thus has the same form as ΦFlow (Eq. (2.28)). This complex valued function
produces net-phase-shifts and is likely to produce complicated phase behaviour
through the series of spectra in a PGSE measurement since Δz is likely to be a
function of q. The third term (i.e., EPhase(Δq)) is the residual phase-twist resulting
from the gradient pulse mismatch and is given by Eq. (2.17).

7.8.2 Solutions

The simplest solution to sample vibration problems is to securely locate the sample
with respect to the gradient coils and, if the sample is a powder, to completely
compact it. Gradient mismatch problems are reduced by using a better current
amplifier and to provide temperature control of the gradient coil. It has also been
noted that the hum from the mains power supply can be a source of gradient pulse
mismatch and consequently it can be beneficial to trigger the pulse sequence to the
phase of the power supply.76
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We now consider what other approaches can be undertaken to minimise the
problems associated with gradient mismatch and sample vibration that do not
involve changing the spectrometer hardware by considering the SGP model devel-
oped in the previous section (Eq. (7.21)). To begin with, the phase shift term,Φ(Δz),
is position-independent as it depends on Δz and can be removed by individually
phase correcting each spectrum or by computing the absolute value spectrum.142

If Δq is taken as a fixed proportion of q (not an unreasonable assumption), then
EPhase(Δq) is a damped oscillation with the degree of damping and the periodicity
being exquisitely sensitive to the degree of mismatch. If Δq does not become too
large, the residual phase effects will appear as ‘unphysical’ downward curvature in
PGSE attenuation plots. In extreme cases, it can even produce artefactual ‘diffrac-
tion’ peaks.117 EPhase(Δq) cannot be removed by phase correction and computing
absolute value spectra is only a cosmetic improvement. Thus, we are left with the
possibilities of: (i) empirically matching the gradient pulse pairs; (ii) prefixing
the PGSE with a number of Δ-spaced gradient prepulses, as discussed above,
which may also alleviate motional disturbances during the encoding and decoding
gradient pulses, (iii) using shaped gradient pulses (see above) which are easier for
the amplifier electronics to generate reproducibly and are also less likely to produce
vibration of the sample/probe,117 or (iv) to use the imaging-based MASSEY (mod-
ulus addition using spatially separated echo spectroscopy) sequence142 to remove
the phase-twist as discussed below.
The empirical matching of gradient pulses is tedious and difficult due to the very

high precision needed and the correction time depends on g, δ andΔ.109 Further, since
the eddy-current-generated fieldsmay not be even in the same direction as the applied
gradients the empirical matching of gradient pulses may offer no solution.108

The MASSEY sequence142 for minimising phase instability in very high-gradient
NMR spectroscopy in which a read gradient, gr, is incorporated into the Hahn-echo
PGSE sequence is depicted in Figure 7.15. The addition of gr allows the restoration of
spatially-dependent phase shifts as caused by a gradient pulse mismatch. Importantly,
the same gradient coil is used for both generating the gradient pulses and also the read-
gradient.
The requirements for spatially separating the phase shifts using the imaging

process with the read gradient are as follows. Suppose that N points in the k-space
dimension are sampled with a sampling interval of T. The spectral separation of
adjacent pixels in k-space will then be 1/NTwhich corresponds to a spatial separa-
tion of 2π/(γgrNT). Thus, we require that this be less than or equal to the ‘wave-
length’ of the phase twist so that the phase modulation is well resolved. Thus,

gr4
2πΔq
γNT

: (7:22)
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It is desirable to keep the acquisition time as long as possible providing that the pixel
separation is larger than the homogeneous linewidth (Δν½= 1/(πT2)), which sets the
lower bandwidth limit as

1

T
� N

πT2

: (7:23)

The phase twist caused by pulse mismatch is resolved by Fourier transformation of
the whole echo with respect to k (= (2π)− 1 γgrt) (k covers both positive and negative
values)

E q;Δ; kð Þ ¼ EDiff q;Δð Þei2π qþΔqð ÞΔz
ð
ρ z0ð Þei2πΔqz0ei2πkz0dz0; (7:24)

which gives

E q;Δ; zð Þ ¼ EDiff q;Δð Þ ei2π qþΔqð ÞΔz
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
0th order
phase shift

ρ zð Þ ei2πΔqz0|fflfflffl{zfflfflffl}
1st order
phase shift

: (7:25)

This is the 1D projection image of the echo (this is related to the 1D imaging
calibration method given in Section 6.4.2). EDiff(q, Δ) can be recovered because the
phase shifts are resolved in Eq. (7.25). If the S/N is high, the spectrum can be
resolved by autophasing; while for poorer S/N, the absolute value of the spectrum
must be taken, producing EDiff(q, Δ) ρ(z). The signal averaging using absolute value
spectra is, however, less efficient due to the coaddition of noise and the absence of
phase-cycling.142

When k=−Δq Eq. (7.24) reduces to

E q;Δ; kð Þ ¼ EDiff q;Δð Þei2π qþΔqð ÞΔz; (7:26)

and thus at t=−Δ 2πq/(γgr), with respect to the echo centre, the phase-twisted echo
will cause a coherent superposition (whether this is before or after the echo centre

Δ
t1 t1 + Δ 0

π/2

δ

τ τ

gr

π

g

Figure 7.15 The Hahn-echo-based MASSEY sequence which incorporates a read
gradient, gr, for removing phase instability.142
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depends on the sign of the mismatch). Since EDiff(q, Δ) can be recovered, it is
possible to perform signal averaging even though Δq and Δzmay fluctuate between
scans. Since t will vary as Δq fluctuates the phase-twist analysis is performed after
every scan.
Another negative aspect of this method is that since signal acquisition occurs in

the presence of a gradient, this method is not suitable for use with spectra containing
more than one resonance; however, the serious gradient disturbances that warrant
the use of MASSEY are normally only associated with measurements of large
slowly diffusing species (e.g., polymers) and so spectral resolution is less likely to
be an issue.
Based on the MASSEYapproach, Galvosas et al.76,147 developed a procedure for

automatically correcting for gradient pulse mismatch in which the strength of the
correcting (i.e., read) gradient is adjusted on the basis of convoluting the spin-echo
signals obtained with andwithout gradients to generate the auto-correlation function
of the NMR signal at the original position with that shifted by the mismatched
gradient pulses, from which the maximum position can be determined more accu-
rately than directly from the NMR signal. For cases where chemical shift is required,
a small read gradient is used earlier in the sequence but not during the acquisition of
the FID.

7.9 Cross relaxation

Another complication is that of intermolecular nuclear Overhauser effects when
performing diffusion measurements of macromolecular systems using STE-based
sequences.148–150 The problem can be understood as follows. Consider the case
of measuring the diffusion of water in a macromolecule solution. After the first π/2
pulse, both the macromolecule and water magnetisations are in the x-y plane. For
simplicity, we assume that the T2 relaxation time of the macromolecule is much less
than that of the water so that by the end of the τ1 period the macromolecules are
fully relaxed whereas the relaxation of the water magnetisation is insignificant.
After the application of the second π/2 pulse the z magnetisation of the macromo-
lecule will be zero since it was entirely aligned along the z-axis prior to the pulse.
For the water magnetisation, the situation is entirely different, after the pulse the
water magnetisation is proportional to cos(qz). However, as qz ranges over many
periods, the net z magnetisation over the sample is zero. Thus, the local normalised
deviation from equilibrium in the macromolecule phase will be − 1 and for the water
phase cos(qz) − 1. Thus, during τ2 cross-relaxation results from the equilibrium
magnetisation differences in both phases. Consequently, the cross-relaxation rate will
depend on q. Equations have been derived to account for this cross-relaxation in a
two-phase system.148 If significant cross-relaxation occurs, it can affect the measured
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signal intensities thereby complicating diffusion measurements. Under limited
conditions, it is possible to determine the exchange parameters to allow D to be
calculated correctly. It has been pointed out that providing the diffusion experiment is
performed by varying the gradient amplitude (as is usually the case), single exponen-
tial decayswill be observed in the presence of cross-relaxation or exchange – although
the signal amplitude may be severely decreased.150 However, the variation of the
signal attenuation with Δ becomes non-exponential which could be misinterpreted
for restricted diffusion.
Although such cross-relaxation effects are generally seen as sources of experi-

mental artefacts, under some circumstances it can be put to good use such as epitope
mapping of ligand-receptor interactions.151 Importantly, the problem of cross-
relaxation does not apply to Hahn-echo-based sequence.
In a study of the diffusion of hydrogen-bond molecular capsules, it was found

that the choice of PGSE sequence (i.e., SE, STE, LED or BPP–LED) can have a
dramatic effect on the observed diffusion behaviour of the exchanging water mole-
cules.152 The SE and STE sequences resulted in single exponential behaviour of the
water resonance, but bi-exponential behaviour was obtained with the LED and BPP–
LED sequences. Shortening the LED delay in the LED and BPP–LED sequences
resulted in the removal of the (additional) slow diffusing component. It was concluded
that in systems where there is a possibility of NOE between nuclei with considerably
different diffusion coefficients, care should be taken in the choice of sequence.

7.10 Homonuclear scalar couplings

The effects of the evolution of homonuclear scalar couplings153 can result in poor S/N
and peak distortion which considerably complicates the acquisition of good PGSE
data and its subsequent analysis.145 During the echo sequences, the peak phases
and thus the refocussing depend on the magnitude of the spin (or scalar) coupling
constant, J (Hz). Further, the rf pulses exchange the spin states of the coupled nuclei.
For a coupled pair of nuclei, echo maxima occur when (see Figure 2.6, for the STE
sequence τ = τ1)

τ ¼ n=J; (7:27)

and negative maxima occur when

τ ¼ n

2J
; (7:28)

where n is an integer.
In general, echo spectra from J-coupled spin systems cannot be phased into

purely absorption mode spectra. However, if integration is performed it will cor-
rectly predict the diffusional decay, but with greatly reduced S/N. Thus, when
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performing a PGSE experiment, it is important to consider the pulse sequence delays
with respect to J to obtain good S/N. Thus, providing τ1 is kept small (<< 1/J), the
STE sequence is preferable to SE for minimising J-modulation problems, although
cogent choice of echo timings with respect to the coupling constants in the system
may help to minimise J-modulation effects. OGSE sequences (see Section 2.4) allow
more flexibility in the setting of the echo time with respect to the couplings to
minimise J-modulation effects.64 But choice of echo delays is a very restrictive and
imperfect solution; further, in most real samples there may bemore than one coupling
constant and thus no single choice of echo time will provide high quality spectra. The
most general solution is to incorporate anti-phase magnetisation purging elements
at the end of the PGSE sequence such as a spin-lock154 or a chirp based z-filter.155

A ‘postprocessing’ solution is to try to phase such a spectrum; to resemble
absorption mode or take the absolute value of the spectrum; however, as noted in
Section 6.5, such an approach is only of cosmetic value and has quite negative
consequences.
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8

Specialised PGSE and related techniques

8.1 Introduction

This chapter primarily deals with specialised NMR pulse sequences for measuring
diffusion and flow. Sequences for MRI applications are given in Chapter 9. Steady
gradient methods and especially those involving the stray field of superconducting
magnets are outside the scope of the present work and so only a brief coverage
is given in Section 8.2. Multiple-quantum and heteronuclear measurements are
covered in Section 8.3. There has been considerable development of fast diffusion
pulse sequences and these are covered in Section 8.4. Methods for handling samples
that contain overlapping resonances with differences in relaxation time are consid-
ered in Section 8.5.Multi-dimensional methods for mixture separation and diffusion
editing are presented in Section 8.6. Double PGSE and multi-dimensional motional
correlation experiments are discussed in Section 8.7. Flow and Electrophoretic
NMR are covered in Sections 8.8 and 8.9, respectively. Finally, the use of
long-range dipolar interactions and miscellaneous sequences are presented in
Section 8.10.

8.2 Steady gradient and stray field measurements

The earliest gradient-based diffusion measurements were based on the (technically
simple) steady gradient experiments as discussed in Chapter 2. However, due to the
limitations mentioned in Section 2.2.4, PGSE has generally overshadowed SGSE.
However, SGSE approaches can be preferable since (i) there are no eddy-current
problems and when performed in the fringe (or stray) field of superconducting
magnets allows the use of very large stable gradients,1,2 (ii) it may be difficult to
generate gradient pulses with particular samples (e.g., in well logging), or (iii) it is
desired to study a porous (and magnetically heterogeneous) sample on the basis of
internal gradients.
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Norwood and Quilter3 developed a constant time, pulse and gradient amplitude
diffusion experiment (CTPG) which avoids some of the problems associated with
traditional SGSE experiments. And later several new sequences for measuring
diffusion, some of which can be used to measure restricted diffusion and species
having coupled spins and short T2 were presented.4 However, these approaches
have not been widely adopted.
At present, the main interest in SGSE approaches focuses on very large static

field gradients of superconducting magnets and purpose-built superconducting
coils, this is sometimes referred to as stray-field imaging or STRAFI and they
have been summarised in a number of reviews.5–7 Developments in fringe field
approach have allowed the production of relaxation-independent diffusion decays,
multislice experiments, experiments using shaped rf pulses and two-dimensional
variants.8–10

Importantly, the use of such large gradients provides a means of investigating
extremely slow diffusive phenomena. Indeed, by conducting experiments in which
the whole sample was mechanically oscillated in a stimulated echo experiment in
the presence of a 180 T m−1 fringe field, Feiweier et al. determined that the lower
limit of detectable motion was 7 nm.11 Hole-burning diffusion measurements in
high magnetic field gradients (42 Tm−1) have been demonstrated that can image
diffusion along one dimension on a submicron scale.12 Nevertheless, the inherent
properties of using the fringe field are a major drawback. Because of the large field
inhomogeneity, only a thin layer of the sample is on resonance and the S/N is
dramatically reduced. The large gradient also means that the echo will become very
sharp and so it may be difficult to properly digitise the echo. The linewidths of very
slowly diffusing species are often so broad that the loss of chemical shift resolution
becomes less of an issue. We also note that the analysis of the evolution of the
magnetisation is complicated in highly inhomogeneous fields.13–20Also, gradient
calibration is not straightforward and a method based on heteronuclear and
field-profiling STRAFI techniques has been presented.21

Whereas with normal PGSE or SGSE measurements the magnetic field resulting
from the applied gradient is much lower in strength thanB0, with stray-field measure-
ments or when working at the Earth’s magnetic field (�50μT),22,23 this condition no
longer applies and thus the simplifying assumption implied in Eq. (2.10) no longer
holds and this must be accounted for, else incorrect conclusions will be drawn.24,25

In a technique related to both STRAFI and MRI, Callaghan and Stepisnik26

performed spatially distributed pulsed gradient spin-echo NMR experiments using
a single wire through the sample. Since the gradient is produced by a single wire
instead of a (more inductive) coil, they were able to achieve very rapid switching
times with extremely large gradients (�100 Tm−1). It was noted that even larger
gradients should be feasible, allowing measurements of molecular displacements
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smaller than 10 nm. Using this technique, they were able to observe anisotropic
diffusion in a liquid crystal.

8.3 Multiple quantum and heteronuclear

8.3.1 General

It is possible to perform multiple quantum PGSE measurements but there are some
restrictions on the systems that can be studied since the spectrum of the species in
question must exhibit scalar, dipolar or quadrupolar coupling.27–33

In multiple quantum experiments, it is the effective sum of the γ values, γeff, of the
nuclei involved in the coherence which is relevant to the attenuation. Thus, for the
Stejskal and Tanner pulse sequence, the echo signal attenuation is given by

E q;Δð Þ ¼ exp �γeff g
2Dδ2 Δ� δ=3ð Þ� �

: (8:1)

For the normal (i.e., single quantum) experiment γeff = γ
2. For homonuclear multiple

quantum experiments, γeff = (nγ)
2.27,28 For heteronuclear multiple quantum experi-

ments, the definition of γeff is not so straightforward. For I spin-detected heteronuclear
double quantum experiments with an IS spin system, γeff ¼ γI γI þ γSð Þ=γSð Þ2.31
Thus, for example, for a homonuclear double quantum coherence there is a

fourfold decrease in the lower limit of the diffusion coefficient that can be measured
with the same gradient strength or conversely the same degree of attenuation can be
achieved but with smaller gradients and therefore smaller eddy-current problems.
However, a multiple quantum coherence will be more susceptible to eddy-current
effects than a single quantum coherence.

8.3.2 Homonuclear multiple quantum

Multiple quantum filtering can also help to remove spectral crowding by removing
peaks that are not part of a scalar coupled spin system.34,35 Further, in the case of
homonuclear studies, multiple quantum spectra have the added benefit of providing
solvent suppression. Some representative sequences for studying diffusion using
multiple quantum spin-echoes are given in Figure 8.1. Multiple quantum steady
gradient experiments have also been devised including a multiple quantum version
of the CTPG experiment.36

1H double quantum PGSE experiments including magic angle gradients have
been presented as a means of solvent suppression and for suppressing demagnetis-
ing field effects.34,37 However, the method suppresses only singlet resonances. In
the case of quadrupolar nuclei, if the spectrum contains a static quadrupolar splitting
the PGSE experiment can be performed using a quadrupolar echo instead of a
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spin-echo (i.e., the π pulse would be replaced by a π/2 pulse in the Hahn-echo PGSE
sequence together with appropriate phase cycling).38–40

8.3.3 Heteronuclear multiple quantum

Without isotopic enrichment heteronuclei generally have low sensitivity and because
of their low γ values much larger gradients must be used. 13C or 15N labelling is
commonplace in macromolecular NMR studies and that large gains in sensitivity can
be made through using heteronuclear PGSE sequences which invoke polarisation
transfer from protons to the heteronuclei. A number of such sequences have now
appeared including heteronuclear multiple-quantum coherence (HMQC).30,31,41–44

In particular, the use of heteronuclear inverse DEPT (i.e., inverse detection) and
IHETCOR-based sequences have particular advantages.30,31 The DEPT-based
sequence involves polarisation transfer from the I spin (usually 1H) to the S spin.
Whereas the IHETCOR sequence is more suited to the observation of protons
because of the unfavourable polarisation transfer from the less abundant hetero-
nuclear population to the proton population.
A pulse sequence (see Figure 8.2) has been proposed for measuring multiple

quantum coherences involved in the spin operator 8IxIyIzSy of a weakly coupled
SI3 system,45 and demonstrated its use on the 13CH3 group of alanine at natural
abundance (Figure 8.3). The pulse sequence was subsequently modified to include
bipolar gradient pulses.46

t1

t1 T

T

nT

nT

Δ

Δ

MQ
Echoπ/2 π/2 π/2

(A)

(B)
τ/2 τ/2

τ/2τ/2

δ

π π

π/2 π/2 π/2 π/2 θπ/2π

g

δ
g

Figure 8.1 Some representative multiple quantum PGSE sequences based on (A)
the spin-echo sequence by Zax and Pines28 and (B) the STE sequence of van Dam
et al.32 The flip angle θ is optimised for the particular experiment.
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Figure 8.2 The LED-based pulse sequence for MQ diffusion measurements.45 The
delay τ = 1/(2J) and GARP (globally optimised alternating phase rectangular pulse)
is a standard composite pulse method for 13C decoupling. The striped gradient
pulses are for coherence selection.

(γ(1H)δg)2 (Δ–δ/3)(m–2s)

E

0.01

0.1

1

0.0 1 × 104 2 × 104 3 × 104

Figure 8.3 Diffusion plots of the multiple quantum coherences (3I + S, ♦; 3I – S, ●;
I + S, ■) of the 13CH3 group of alanine in 2H2O measured at 400MHz and 303K
using the pulse sequence in Figure 8.2. From Liu et al.45
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Finally, we note that by using heteronuclear stimulated echoes in which the
magnetisation is stored in a 2IzSz state, the Δ delay can be made much longer.47,48

This method has particular application to the study of large proteins.

8.3.4 Zero quantum

A zero-quantum coherence can only be formed in a spin system consisting of at least
two coupled spins and its precession frequency will be the difference in chemical
shifts of the contributing spins but since they are ‘spin-forbidden’ they can only
be excited and observed indirectly.49 As can be seen from Eq. (8.1), zero-quantum
coherences are unaffected by magnetic field gradients and can indirectly be used to
study diffusion and a pulse sequence used for observing zero-quantum coherences is
shown in Figure 8.4.

Diffusion will be encoded with respect to t1. The signal attenuation is given by
50

E ¼ exp � t1

TZQC
2

� 2τ
T2

� γ g0τð Þ2D t1 þ 2=3ð Þτ½ �
" #

; (8:2)

where T ZQC
2 is the transverse relaxation time of the zero-quantum coherence

which evolves during t1. Hence, the decay of the t1 FID signal due to relaxation
and diffusion is given by50

E t1ð Þ ¼ exp � t1

TZQC
2

� γg0τð Þ2Dt1

" #

: (8:3)

Thus the amplitude and linewidths of zero-quantum coherences are diffusion-
dependent. Assuming a Lorentzian lineshape, the linewidth of a zero-quantum
coherence at half peak height due to relaxation and diffusion will be50

t1

π/2

τ τ

π

g0

Figure 8.4. A pulse sequence for detecting homonuclear zero-quantum coherence
in a constant magnetic field (g0).

50 The first τ delay corresponds to the preparation
period, the evolution period is denoted by t1 and the second τ delay corresponds to
the detection period. The two dotted π pulses are included to enable observation
of the zero-quantum coherence without the effects of diffusion.
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Δν1=2 ¼
1

π
1

TZQC
2

þ γg0τð Þ2D
 !

: (8:4)

The diffusion-dependent part can be separated by acquiring a zero-quantum coher-
ence by adding a π pulse to the middle of each τ period of the sequence as shown in
Figure 8.4. The difference in the measured linewidths will be determined solely
by diffusion. There are a few major problems with this method: the method is
time-consuming, high resolution in the indirect dimension (i.e., F1) is required, the
S/N decreases as g0 increases and it has only limited ability to separate individual
components.
More recently, it has been demonstrated that singlet states can be excited for any

pair of homonuclear coupled spins and, provided that the spins are sufficiently
isolated from magnetic interactions that break the symmetry (e.g., intramolecular
couplings to remote protons), the singlet relaxation time, Ts, can be considerably
longer than T1. Thus, when used with a modified stimulated-echo sequenceΔ can be
considerably lengthened.51,52

8.4 Fast sequences

Signal averaging is normally required to achieve sufficient S/N. However, if a
sample is capable of generating a high S/N in a single scan, the speed of measure-
ment may be limited by the need to complete the minimum phase cycle of a pulse
sequence and/or the recycle delay required to regain thermal equilibrium. Further,
impetus to develop faster sequences is found in clinical MRI. The development of
fast sequences also broadens the potential applications of diffusion measurements
such as studying rapid reaction kinetics.
A possibility to rapidly measure diffusion is to perform the experiment using

less or even only two q values as noted in Section 6.2. However, apart from
needing ‘prior knowledge’ of the type of diffusion being studied, this requires
exceptional accuracy. Similarly, in some cases, such as where a ratio of diffu-
sion coefficients is required as in the determination of the ratio of the apparent
to the isotropic diffusion coefficient like in surface-to-volume measurements
(Eq. (1.122)) or in determining tortuosity (Eq. (1.126)), considerable timesav-
ing can be had by just comparing the PGSE intensity at two different Δ values,
but the same b value (e.g., see Eq. (2.75)).53 However, it is to be expected that
greater error would be involved since the intensity is only measured at two
points.
Fast diffusion sequences (i.e., sequences with high S/N efficiency) can be loosely

classified into one-shot and single-shot sequences. A one-shot sequence has a
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reduced phase cycling such that ideally one q-space point is applied in a single scan.
In contrast, a single-shot sequence is where a complete diffusion measurement (i.e.,
multiple q-space points) is conducted in a single scan and is based on a multiecho
(e.g., CPMG) approach. We stress that these rapid techniques generally require very
good S/N and have other drawbacks such as loss of chemical shift information,
difficulty in separation of relaxation and diffusion effects and limited suitability for
studying diffusion in restricted systems.

8.4.1 Single-shot sequence (total measurement in one scan)

Packer54 proposed a modification to the CPMG pulse sequence in which π pulses
are inserted at each echo maximum (e.g., at 2τ, 4τ, 6τ,… in Figure 2.9B). These π
pulses reflect the phase at the echo maxima causing the phase effects of the flow
to be cumulative whilst the effects of diffusion are the same as in the CPMG
sequence. However, this sequence is difficult in practice due to the presence of
the π pulses in the echoes. Packer then proposed a modified CPMG-like sequence,
π/2− τ− π− τ′ − π− τ− π− τ′…, where τ′ > τ, thereby separating the echoes from the
π pulses. In fact, there are two sequences of echoes: one at (2τ + 2Nτ′) and the other
at 2Nτ′, where N= 0,1,2,… which for large N leads to

S tð Þ ¼ M0 exp � t

T2

� �
exp � γ2g2Dt

3
τ02� 3ττ0 þ 3τ2
� �� �

cos γgvt τ � τ0=2ð Þð Þ;
(8:5)

where t = 2Nτ′. Thus, in theory it is possible to determine an estimate for the
diffusion coefficient by monitoring the echo amplitudes in a single shot. Song
et al.55 reported a method closely related to that of Packer based on a modified
CPMG sequence (KCPMG).
A single-shot method based on a CPMG-like sequence with incremented

(pair-wise) gradient pulses in each τ period has been proposed by Li and Sotak,56

and later converted for use in an imaging sequence.57 It was noted that if the gradient
pulses are applied alternatively along three orthogonal directions it can be used
to probe anisotropic diffusion. Mair et al.58 have presented a variation of the
single-shot technique of Li and Sotak56,57 for gas diffusion measurements.
Van Gelderen and co-workers59 have proposed another single-shot diffusion

method based on a spin-echo experiment during which a series of gradient echoes
are created (Figure 8.5). Since each subsequent echo is attenuated by an additional
gradient pair, the total diffusion curve can be acquired within a single experiment. In
the presence of a static field gradient (i.e., B0 inhomogeneity), neglecting g 2

0 terms,
the signal attenuation for the nth echo is given by
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Sn ¼ An exp � γ2D
4

g2nδ3 3= � g0 � g 2τδ2 � nδ3
� �� �� �

for n odd (8:6)

and

Sn ¼ An exp � γ2D
4

g2nδ3=3� g0 � gnδ3
� �

� �
for n even; (8:7)

where An is the amplitude without diffusional attenuation and τ is the echo time. The
difference in dependence of the even and odd echoes on the g0 � g terms may be used
to estimate static local gradients. Also, due to gradient nulling effects, so long as any
bulk motion can be considered as constant over a time interval of 2δ, the even
echoes will be motion-compensated. Diffusion can be determined from the experi-
ment in two ways. In the first method, the experiment is performed twice, changing
only the gradient strength. The ratios of the corresponding echoes can then be
compared to extract the diffusion constant. In the second approach, just one experi-
mental data set is acquired and the ratio of the peaks symmetric in time to the echo
maximum are recorded. However the second method does not account for T2
effects.59 However, the ability of this experiment to retain chemical shift informa-
tion is limited by the digitisation rate of the spectrometer and the maximum gradient
strength available. Doran and Decorps60 used multiple applications of small angle
excitation in the presence of a read gradient followed by a π pulse and then acquired
the multiple echoes in the presence of a read gradient as shown in Figure 8.6. Their
method is related to the Burst imaging technique.61 After some assumptions, it is
found that the attenuation of the lth echo (corresponding to the n-l-1th rf pulse) is
given by

El ¼ exp �γ2g2δ2l Δl � δl 3=ð Þ� �
(8:8)

where δl= lτ + d1, Δl= lτ + d2 and the τ, d1 and d2 are defined in the pulse sequence
diagram. Clearly, the applicability of the sequence is limited since all of the signals
are acquired in the presence of a read gradient. The method also requires a high S/N.

n

π/2

δ

π

g

Figure 8.5 The single-shot diffusion sequence of Van Gelderen et al.59
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Peled et al.62 presented a similar technique based on stimulated echoes and applied
it to the study of laser polarised 3He and 129Xe. Song and Tang63,64 have extended
this approach, in which unequal time spacings are used, to provide more efficient
use of the available signal and removed the limitation of small tipping angles,
relying on multiple echoes, each following a different coherence pathway and
thus each echo has associated with it a different b value. Their method, termed
‘multiple modulationmultiple-echo’ (MMME), can also be used with static gradients.
Tang et al.64,65 extended the MMME method to measure diffusion along multiple
non-collinear directions simultaneously and thus obtained a two-dimensional diffu-
sion tensor.
The method of Sendhil Velan and Chandrakumar66 is a two-scan procedure in

which a modified CPMG sequence (see Figure 8.7) is run with and without gradient
pulses. A large number of echo tops (� 200) are sampled midway between the π
pulses and upon Fourier transformation Lorentzian linewidths at the echo modulation
frequency are analysed to determine the diffusion coefficient. Specifically, the line-
width of the Lorentzian resulting from the sequence run with gradients is given by

Δv1
2
¼ 1

π
1

T2

þ γ2g2δ2D
Δ
τ
� δ
3τ

� �� �
; (8:9)

and the relaxation term in the brackets can be accounted for from the linewidth
measured from the second scan run in the absence of gradient pulses. Clearly, as this
technique depends on linewidth measurements, the systems to which it is applicable
are limited unless deconvolution or chemical shift selective excitation is employed.
In the Difftrain approach,67,68 which is an extension of the alternating pulsed

gradient stimulated-echo sequence of Cotts et al.,69 there is a single encoding step but
then many echoes are acquired with multiple applications of a small angle rf pulse

d1

d2

gr

π

τ

τ

lτ

lτ

Pulse n–l–1

Train of 64 echoes
Echo l

Burst train of 64
low angle pulses

Figure 8.6 The spin-echo Burst pulse sequence.60 The sample is excited in the
presence of a read gradient (gr) by a train of very low amplitude pulses (≲ 1°). The
π pulse and second read gradient result in a series of echoes corresponding to each
rf pulse. The delays are arranged so that the spin and gradient echoes coincide.
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(i.e., θ) gradient subsequence (Figure 8.8). Only cos(θ) of the signal remains long-
itudinal after each θ rf pulse and consequently after n echoes the remaining signal
is dropped to cosn(θ) of M0 – this is in addition to relaxation and diffusion losses.
There is some loss of chemical shift resolution because of the need to acquire
numerous FIDs before the spatially encoded magnetisation is lost to spin–lattice
relaxation. A further limitation is that the observed signal attenuation results from
both diffusion and relaxation which necessitates the use of a control experiment in
addition to a two-step phase cycle. Due to the need for the correction for relaxation
the sequence is unsuitable for polydisperse samples.

π/2 π/2 θ

Δ1

θπ π π θ π

δ/2

Figure 8.8 The Difftrain pulse sequence.67 In this sequence, the spins are encoded
once in the transverse plane and then stored longitudinally. Subsequently, small
aliquots of this magnetisation are sampled using the small angle θ rf pulse and
decoding gradient. After each such acquisition a homospoil gradient pulse (not
shown) is applied to disperse residual transverse magnetisation. This sampling is
typically repeated 16 times. Each echo delay adds to the diffusion time for every
next echo (only the first Δ is depicted).

Δ
n/2

π/2

δ

π π

τ

g

Figure 8.7 The fast multi-spin-echo diffusion sequence of Sendhil Velan and
Chandrakumar.66 This is based on a CPMG sequence with gradient pulses
symmetrically placed around the π pulses. The echo tops are sampled midway
between the π pulses. Note their definition of τ is twice as long as that traditionally
used (see Figure 2.9). Purge gradient pulses (not shown) are used at the end of each
scan to destroy residual transverse magnetisation.
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8.4.2 One-shot sequences (reduced phase cycling)

Millet and Pons70 presented a variant of accordion spectroscopy71 for measuring
diffusion using a single 2D experiment (GAUDI: gradient accordion used for diff-
usion) in which the diffusion information is encoded into the linewidth. This is
achieved by incrementing the strength of the gradients proportionally with the evolu-
tion time (i.e., g= κ t1; where t1 is the evolution time and κ is a constant). Neglecting
relaxation, the signal decay during t1 is related to the diffusion coefficient by

S t1ð Þ ¼ Sð0Þ exp � γδκt1ð Þ2D Δ� δ 3=ð Þ
h i

: (8:10)

After 2D Fourier transformation, both the diagonal- and cross-peaks have a
Gaussian shape in F1 from which the diffusion coefficients can be determined by
regression of the Fourier transform of Eq. (8.10)

S ωð Þ ¼ Sð0Þ 2=ð Þ π

γδκð Þ2D Δ� δ 3=ð Þ

 !

exp � ω2

4 γδκð Þ2D Δ� δ=3ð Þ

" #

; (8:11)

(where ω is the frequency difference with respect to the centre of the peak) onto the
peaks. This technique can be implemented into any 2D experiment with a diffusion
filter and an example of a constant time GAUDI–NOESY sequence is given in
Figure 8.9. This technique suffers from some significant limitations including the
need to correct for intrinsic linewidth, diffusion-broadened lines resulting in lower
sensitivity and resolution, and interference from scalar coupling unless a constant
time version of the experiment is used.

The 1D DOSY experiment of Loening et al.72 uses a non-constant (i.e., z2)
gradient to encode the diffusion information into the lineshape. In a later modifica-
tion of the 1D DOSY approach, Thrippleton et al.73 used chirp rf pulses74 in the
presence of the diffusion gradients (see Figure 8.10) to vary the effect of the
effective gradient at different points in the sample instead of using hard rf pulses

Δ

π/2 π/2 π/2

τm

π/2 π/2

δ

π

g

te

S

(T+t1)/2 (T–t1)/2

Figure 8.9 The constant-time GAUDI–NOESY sequence.70 The vertical striped
boxes represent gradient pulses used for coherence selection. T is a constant delay
and τm is the mixing delay. The te delay acts as a z filter.
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and a constant gradient as in the earlier study.72 Specifically, during the gradient
pulses, spins in different parts of the sample have different offsets and as the
frequency-swept π pulse works by sweeping through a range of offsets, different
parts of the sample are affected at different times during tp. Thus, spins at one part of
the sample immediately experience a π pulse and are then spatially encoded by the
gradient. Spins at the centre of the sample are, in contrast, essentially unaffected by
the gradient during tp since they are gradient encoded for a period tp/2, then experience
a π pulse and are then refocussed unencoded for a period tp/2. Simplistically assuming
that a spin at position z experiences a π pulse the moment it is on resonance at a time
α(z)tp where 0 ≤ α(z) ≤ 1, then the net phase acquired by a spin at position z at the end
of the frequency-swept pulse is

� zð Þ ¼ γgztp 1� 2α zð Þ½ �: (8:12)

Thus, during the swept pulse the spin evolves as if under an effective gradient
strength

geff zð Þ ¼ g 1� 2α zð Þ½ �: (8:13)

A more detailed treatment accounting for the finite duration of the π pulse is given
elsewhere.73

The gradient pulse extends past tp so that all spins experience some degree of
spatial encoding but on account of the frequency swept pulse in combination with
the usual constant (along z) gradient there is a z-dependence of the pitch of the
magnetisation helix. Thus, this is equivalent to the spatial encoding having been
performed by a (in the mathematically correct sense) linear gradient along z. Thus,

Δ

π/2 π/2 π/2

tp

δ
gg

rf

Figure 8.10 A simplistic representation of the 1D DOSY sequence which permits
the measurement of diffusion in a single scan. In the real sequence, additional
gradient pulses are added to effect coherence selection and reduce eddy-current
effects.73 The rectangles with slanted stripes represent adiabatic π chirp pulses
of length tp. Acquisition is performed in the presence of a weak read gradient
(checked rectangle).
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the degree of attenuation in the resulting stimulated-echo sequence will vary along
the sample due to the effectively spatially changing gradient. Acquiring the signal
in the presence of a weak read gradient results in all of the resonances becoming
one-dimensional diffusion-weighted images of the sample. Thus, the method is
restricted to relatively strong samples. Although the read gradient is weak, there is
nevertheless considerable loss of chemical shift resolution which effectively limits
the sequence to relatively simple samples giving uncrowded spectra. The diffusion
coefficient is then determined by lineshape analysis. The method is complicated by
the effects of J-evolution and is only applicable to Fickian diffusion.
The use of asymmetric bipolar gradient pulses allow a great reduction in the

required phase cycle for stimulated echo sequences.75 And at present, this provides
probably the most generally applicable fast means to acquire PGSE data (also see
the related sequence in Figure 6.2B).

8.5 Distributions of relaxation times

Under some circumstances, such as in heterogeneous systems, the resonance of
interest may be superimposed on other resonances but with different relaxation
times. This situation commonly occurs where water is in an emulsion and is thus of
particular relevance to the food industry. An approach to overcoming this is to
apply relaxation-weighting to the diffusion measuring systems in order to winnow
out those resonances not of interest. If the resonance of interest has a longer
relaxation time than the others, the PGSE sequence can just be increased in length
so that the resonance of interest is the only one remaining. Or alternatively, explicit
relaxation-weighting can be added to the sequence (Figure 8.11). Heink et al.78 have
suggested replacing the initial π/2 pulse in the Hahn or STE sequences with either a
primary or STE sequence. The durations in the preparatory sequence may be varied
while leaving the diffusion part of the sequence unchanged. If the signal attenuation
due to the gradients is independent of the durations in the preparatory sequence,
artefacts due to a distribution of relaxation times can be excluded. Instead of simple
relaxation filtering another approach is to explicitly use correlations between spin–
spin relaxation time and diffusion coefficients by combining a PGSE sequence with
a relaxation measurement.79–81 And this type of approach is extended further in
Section 8.7.

8.6 Multi-dimensional mixture separation and diffusion editing

Diffusion encoding gradients can be appended, prefixed or incorporated into essen-
tially any 1D or higher experiment and this can be advantageous when a sample
contains a mixture of compounds as it may facilitate the analysis of resonances that
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overlap in 1D PGSE measurements. In the simplest case, a single value of q can be
used to edit out the most rapidly diffusing (and typically lowest molecular weight)
species (e.g., solvent suppression as in Section 6.2.2). But it can also be used to add
an extra dimension to an experiment when a full diffusion measurement is per-
formed (see Section 2.5). However, adding extra spectral dimensions can result in
dramatic increases in experimental times (e.g., 10–1000 times longer) making the
experiment impractical to perform and it may also preclude the study of systems that
undergo changes on timescales on the order (or less than) of the experimental time.
Diffusion editing can also be contained in more complicated sequences which

also consider differences in relaxation, and differences in coupling constants.82 For
example, by placing a spin-echo before the PGSE sequence, the resonances of
coupled spins can be nulled thereby retaining only the singlets in the 1H NMR
spectrum (Figure 8.12).83

Other examples include inclusion into sequences for generation of multiple
quantum coherences and 1D off-resonance ROESY experiments,84 a modification
of the STE sequence for selectively measuring the self-diffusion of molecules
with 13C–1H bonds using 1H detection,85 and an STE sequence incorporating
WATERGATE and isotope filtering.86

Δ

Δ

(A)

(B)

τnull

δ

δ

τ τ

τnull τ1 τ2 τ1

π

πx π/2x πy

π/2 π/2 π/2

g

g

Figure 8.11 (A) A Hahn spin-echo sequence prefixed with a π pulse and a delay.76

(B) A stimulated-echo sequence prefixed with a π pulse and a delay for nulling
resonances not of interest as introduced by Van Den Enden et al.77
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The literature contains many examples of when diffusion is incorporated into 2D
experiments and the ideal case is where the original 2D sequence contains an echo,
where gradient pulses can be incorporated or a gradient pair separated by a mixing
period. Incorporating the gradient pulses into the sequence is the first choice since
the resulting sequence is shorter leading to less signal loss and perhaps also allowing
a reduction in signal coherence pathways.84,87 Nilsson et al. have suggested the
terminology DOSY-X to indicate a 3D experiment where the diffusion encoding
step precedes the 2D pulse sequence (X), X-DOSY for when the diffusion encoding
succeeds the 2D sequence, or X-IDOSY for when the diffusion encoding is incor-
porated into the sequence.87

A large number of 3D sequences now exist including DOSY–COSYand COSY–
IDOSY (see Figure 8.13),88,89 DOSY–DEPT and DOSY–INEPT,41,90 DOSY–
HMQC and HMQC–IDOSY,41,90,91 HSQC–IDOSY,92 DOSY–NOESY,93

DOSY–TOCSY and TOCSY–IDOSY (see Figure 8.14),84,94–97 2D-J-DOSY
and 2D-J-IDOSY,87,98 and convection-compensated versions of some of these
sequences have also been presented.99 Given the time required to conduct multi-
dimensional experiments, we mention that Hadamard-encoded 1H{13C}-resolved

Δ

π π

τ τ

ππ/2 π/2 π/2 π/2 π/2

Figure 8.12 The GOSE BPP–STE sequence.83 τ is set to 1/4J to null the coupled
spins. The π/2 pulse after the echo is used to tip the refocussed singlet
magnetisation to the z-axis. The first gradient pulse is used to remove any
residual magnetisation from the coupled resonances. The next π/2 pulse returns
the singlet magnetisation for the beginning of the bipolar PGSTE sequence.

Δ

π/2 π/2
t1 + τ

te

Figure 8.13 The COSY–IDOSY sequence with p-type coherence selection. The
short delay te is to allow for field stabilisation.89
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diffusion measurement has been presented that offers something like a factor of 10
reduction in measuring time.100

Moonen et al.101 developed gradient enhanced exchange spectroscopy (GEXSY)
that allows the separation of the effects of exchange from cross-relaxation in order to
better characterise the dynamic matrix in EXSY (or NOESY) experiments and used
it to study amide exchange in the N-acetylaspartate and water system.

8.7 Double PGSE and multi-dimensional correlations

In Section 8.6, we were concerned with multi-dimensional sequences in which a
traditional Fourier domain-based multi-dimensional sequence involving an oscilla-
tory spin phase evolution (e.g., COSY) was combined with a diffusion measurement
(i.e., the sequences probed joint probabilities of the form P(ω, D); where ω is
frequency) and in the diffusion domain the signal merely decays (and is thus

Δ

π/2(A) π/2 π/2 π/2 π/2ππ

te t1
MLEV-17

δ

(a)(B) (b)

(e)(d)

ppm 2 1 ppm 2 1 ppm
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3

2

1
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3

2

1

2 1

(c)
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Figure 8.14 (A) Diffusion-edited TOCSY pulse sequence using the MLEV-17
spin-lock method.94,96 The slanted striped areas indicate areas of water
presaturation and t1 is the two-dimensional increment time.96 (B) Spectra obtained
of human blood plasma using the sequence at 600MHz with Δ=300ms, δ=2ms
and g= (a) 21.3, (b) 95.8, (c) 170.3, (d) 244.8, (e) 319.3 and (f) 393.8mTm−1

showing increasing attenuation of the signal intensities. From Liu et al.96
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amenable to Laplace inversion; see Sections 2.5 and 6.5.2) and thus the analysis
involves mixed Fourier–Laplace dimensions. Note, flow is a special case as it is
oscillatory and thus Fourier analysis is appropriate. We illustrate a key point of the
subsequent analysis using the SGP solution for free isotopic diffusion (Eq. (2.44)),
namely

E q;Δð Þ ¼ exp �γ2g2Dδ2Δ
� � ¼ exp � 2πqð Þ2DΔ

� 	
: (8:14)

Inverse Fourier transformation with respect to q (see Eq. (2.35)) yields the diffusion
propagator (see Section 3.2, a Gaussian probability density in this case – see
Eq. (1.61)), whereas (ideally) inverse Laplace transformation would lead to (see
Section 2.5) delta functions in the diffusion space. Thus, the choice of analysis
depends on the information sought. As noted in Sections 2.5 and 6.5.2, inverse
Laplace transformation, especially of noisy data, is fraught with difficulty. And this
difficulty is augmented when multi-dimensional inverse Laplace transforms are
involved.102–107

Here we consider other types of correlations which probe different sorts of joint
probabilities such as between various combinations of molecular displacements
(i.e., diffusion or advection) measured with applied gradients, diffusion in internal
gradients (gint) and spin relaxation; however, we will only consider those combina-
tions that involve translational motion. Such measurements are performed with
some form of ‘multi-wavevector’ extension of a PGSE sequence – typically a
double PGSE sequence or by combining a PGSE sequence with a sequence for
measuring relaxation (e.g., a CPMG sequence). As noted by Callaghan et al.,108 the
various types of measurement discussed below and those in Section 8.5, together,
span the three categories of multi-dimensional NMR experiments proposed by Ernst
et al.,109 namely correlation, exchange and separation.
In an oblique fashion, we have already come across the idea of using more than

one pair of gradient pulses in an experiment when we considered convection
compensation in Section 7.4. In that case, the two pairs of gradient pulses were
designed to remove the effects of constant motion. However, by having more than
one pair of gradient pulses, additional information on the translational dynamics can
be obtained.110,111 An early attempt by Li and Sotak112 involved a pulse sequence
that combined both a stimulated echo and spin-echo component with two pairs of
gradient pulses with the amplitude of each echo type being dependent on different
pairs of gradient pulses. They noted that this sequence has potential for measuring
anisotropic and restricted diffusion since the two echoes can be used to observe
diffusion in different directions and over different timescales. In a later work, it was
realised that the echo attenuation observed in a sequence containing two indepen-
dent pairs of gradient pulses is more sensitive to the effects of restriction at low q
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values in contrast to a PGSE experiment performed with a single gradient pulse pair.
And that the ‘multiple wave-vector’ extensions of PGSE sequence have the possi-
bility of unambiguously distinguishing between multicompartment diffusion and
diffraction-like behaviour due to restricted diffusion.113 A recent study has indicated
that different forms of diffraction patterns are observed when the PGSE sequence is
extended to a larger number of gradient pulse pairs and that it may allow the
measurement of smaller pore sizes.114

Many experimental variations exist even with just two pairs of gradient pulses
and short contemplation of Figure 8.15 reveals that the gradient pairs could be
arranged with the pairs having different directions either simultaneously or sequen-
tially – with or without a delay between the pairs, the amplitudes of the pairs could
be identical, correlated or completely independent and the settings of Δ1 and Δ2

present additional degrees of freedom. By encoding the same magnetisation again
with a second pair of gradient pulses it becomes possible to correlate the motion at
two different time intervals or to reveal changes in motion that have occurred
between the pairs of gradient pulses.115 Importantly, if the two pairs of gradient
pulses are changed in unison then the result is a one-dimensional experiment (e.g.,
E(q, Δ), where q pertains to both q1 and q2); if they are changed independently, then
the result is a two-dimensional experiment (e.g., E(q1, q2, Δ)).
Below, we give a brief coverage of the following correlations in detail: diffusion–

diffusion, diffusion–relaxation, diffusion–internal magnetic field gradient and dis-
persive flow. But this list is not exhaustive and other correlations are possible
including spin–lattice relaxation,119 flow and relaxation120 and the non-local dis-
persion tensor, which describes the correlation of the flow field at different points in
space and time.121

Δ2

Δ1

τm

δ
g1

g2

π/2x πy πy πy

Figure 8.15 A generic double PGSE sequence based on Hahn echoes. Double
PGSE sequences are also possible based on stimulated echoes. τm denotes an
exchange or mixing time. In the absence of the dotted π rf pulse, the sequence is
compensated for constant flow.116,117 If the two pairs of gradient pulses are applied
independently this sequence generates a two dimensional velocity map and is
termed a VEXSY experiment.118

274 Specialised PGSE and related techniques



8.7.1 Diffusion – diffusion correlation (DDCOSY)

By applying two sequential encoding periods along arbitrary directions it has been
shown that it is possible to probe anisotropy in a pore matrix and local diffusional
anisotropy.110,122,123 In a later work,124 Chin et al. proposed that by simultaneously
applying gradient pulses in two separate directions (but stepped in unison) as in
Figure 8.16 it is possible to determine 2D q-space attenuation maps and transform
the data using 2D Fourier transformation. Using a finite difference model of restricted
diffusion, they simulated maps for water diffusing within pores with various degrees
of asperity. They report that the observed ring patterns (of diffraction minima) reveal
the boundary profiles of the pores and may have application to the study of the
boundary morphology of structured materials and biological cells. By having the
gradient pairs directed in orthogonal directions in the double PGSE sequence, it is also
possible to measure (and construct using double Fourier transformation) 2D propa-
gators (e.g., P(x, y, Δ)) and higher propagators,125–127 which are useful for character-
ising locally anisotropic motion.
The DDCOSY sequence105,128 consists of two successive PGSE sequences with

independent pairs of gradient pulses, gi and gj (Figure 8.17). The directions of the
gradient pairs may be applied collinearly or orthogonally to correlate successive
diffusion along the corresponding axis of the laboratory frame of reference. The
signal attenuation is given by a discrete representation of a 2D Laplace integral

E qi; qj
� � ¼

X
P Dii;Djj

� �
exp �q2i DiiΔ
� �

exp �q2j DjjΔ
� 	

; (8:15)

t1 t1 + Δ

gy

gx

δ

0

π/2x πy

τ τ

Figure 8.16 A PGSE pulse sequence that could be used for 2D q-space imaging.124
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whereP(Dii,Djj) is the joint probability of contribution to the signal from the diffusion
tensor elementsDii andDjj. Inverse Laplace transform ofEq. (8.15) provides a 2Dmap
of diffusion tensor elements in the corresponding spatial directions. Diagonal
peaks correspond to isotropic diffusion behaviour, whereas off-diagonal peaks
appear when the diffusion is described by a tensor. Thus, the DDCOSYexperiment
can be used to investigate the anisotropy of liquid diffusion in porous systems.
The DDCOSY and DRCOSY (covered below) methods have been used to

investigate anisotropic water diffusion in chive leaves.129 The DRCOSY measure-
ment revealed six different peaks corresponding to six different states of water in the
sample. The method proved useful in extracting the diffusion tensor at different
points in the sample. A DDCOSY (see Figure 8.18) was then used to relate the water
peaks to the different cell shapes and orientations.

τm

gj

gi

δ

Δ

Δ

π/2 π/2 π/2 π/2 π/2

Figure 8.17 The DDCOSY sequence105,128 consists of two successive PGSE
sequences such that the mixing time τm is set as short as possible.
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Figure 8.18 DDCOSY map of water diffusion in chopped chive leaves reveals
local diffusional anisotropy by showing the correlations of diffusion in two
different directions. From Qiao et al.129
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The DEXSY pulse sequence (Figure 8.19),105,128 similar to the DDCOSY
sequence, consists of two successive PGSE sequences, but in contrast to the
DDCOSY pulse sequence, the gradients in the DEXSY sequence are collinear and
separated by a mixing time τm. The signal attenuation is given by a discrete
representation of a 2D Laplace integral

E q1; q2ð Þ ¼
X

P D1;D2ð Þ exp �q21D1Δ
� �

exp �q22D2Δ
� �

; (8:16)

where P(D1, D2) is the joint probability of contribution to the signal from the
diffusion coefficients D1 and D2. Off-diagonal peaks in the 2D map resulting
from the inverse Laplace transform of E represent molecules that have changed
their diffusion coefficient during τm, whereas diagonal peaks in the map reflect those
molecules that have not changed their diffusion coefficient during τm.

8.7.2 Diffusion–relaxation correlation (DRCOSY)

The DRCOSY sequence is some combination of a PGSE sequence with a CPMG
sequence80,130 and an example is given in Figure 8.20. The signal attenuation is
given by a discrete representation of a 2D Laplace integral

E q; tð Þ ¼
X

P D;T2ð Þ exp �q2DΔ
� �

exp �t=T2ð Þ; (8:17)

where P(D, T2) is the joint probability of contribution to the signal from D and T2.
Inverse Laplace transformation yields a 2D map in which cross peaks correlate
diffusion coefficients with the corresponding T2.
DRCOSYexperiments have been performed in the fringe field of superconduct-

ing magnets18,131 using, for example, the sequence in Figure 8.20, but omitting the
gradient pulses. However, since these experiments are effectively performed ‘off
resonance’, complicated phase cycling is required to select the correct coherences.
An example of a DRCOSY map for limestone saturated with water is given in
Figure 8.21 and the results indicate a strong correlation between restricted diffusion
and faster spin–spin relaxation.

τm ΔΔ

g1 g2

δ
π/2 π/2 π/2 π/2 π/2 π/2 π/2

Figure 8.19 The DEXSY sequence105,128 consists of two successive PGSE
sequences with collinear gradient pairs g1 and g2 which can be varied independently.
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Marinelli et al.132 have presented a modal analysis of q-space relaxation correla-
tion experiments. And Callaghan et al.130 have presented analytic expressions for
the 2D echo amplitudes for diffusion in planar and spherical pores with relaxation
boundary conditions and presented the relaxation diffusion maps which result for a
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Figure 8.21 Correlation maps of the time-dependent diffusion coefficient, D(t),
versus the effective relaxation time (T2eff) and diffusion time (Δeff) of water in
Indiana Limestone. From Hürlimann and Venkataramanan.131
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Figure 8.20 Pulse sequence for measuring diffusion–relaxation correlations.80

This pulse sequence consists of an initial subsequence (i.e., a stimulated echo) of
length td =Δ + τ1 that probes diffusion diffraction followed by a second (CPMG)
subsequence that measures relaxation effects. The same sequence with the
omission of the gradient pulses can be used in steady gradient experiments, but
in such case the effective diffusion time is now Δeff = 2τ1 + τ2.

131
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range of Ma/D0and D0Δ/a2 values (this work can be viewed as an extension to the
theory discussed in Chapter 4). It was found that even for these simple geometries
the behaviour was quite complex. Their analysis was also instructive in separating
the Brownstein–Tarr modes associated with wall relaxation.133 They remarked that
for inverse Laplace transformation to be meaningful, Δmust be sufficiently small so
that diffraction effects are not apparent.

8.7.3 Correlations with internal gradients

Sequences have also been presented for probing correlations with internal gradients
such as the DICOSY, which probes P(D, g2intD); RICOSY, which probes P(T2, g2intD);
and DRICOSY (see Figure 8.22), which probes P(D, T2, g2intD).107,108,134,135

8.7.4 Dispersive flow

As noted above, a double PGSE sequence can be engineered to remove the effects of
constant motions such as flow, and so conversely, such a double PGSE sequence in
which the amplitudes of the gradient pulse pairs are stepped simultaneously will be
suitable for examining velocity fluctuations.115,116,118,136,137

We illustrate the power of the double PGSE sequence for probing the velocity
auto-correlation by considering dispersive flow in a porous medium such as packed
beads as described in Section 1.9 where the flow around the characteristic length
scale is characterised by a correlation time τv.

116,138 This is related to the OGSE
method outlined in Section 2.4 except that here we will study the velocity correla-
tion function in the time domain instead of the frequency domain. Recalling
Eq. (1.1), namely

v tð Þ ¼ �Vþ u tð Þ; (8:18)

gz
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τ″ τ′ τ

π/2 π/2 π/2 π π π π π

Diffusion
encoding

Internal gradient
encoding

T2 encoding (n echoes)

t1

Figure 8.22 Pulse sequence for the 3D DRICOSYexperiment.107,108 The sequence
is comprised of a PGSE segment and two CPMG segments. The internal encoding
segment consists of a CPMG subsequence of constant length but with a variable
number of π pulses, whilst the T2 encoding segment consists of a train of echoes
separated by τ.
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and considering only displacement parallel to the gradient (taken to be along z), we
can define the associated displacements, 〈Z〉 and Zu(t), by

Zh i þ Zu tð Þ ¼
ðt

0

�Vz þ uz t0ð Þf gdt0: (8:19)

Thus, the echo amplitude is given by

E ¼ exp i2πqZð Þh i
¼ exp i2πq Zh ið Þ exp i2πqZuð Þh i; (8:20)

and by taking the modulus

Ej j ¼ exp i2πqZuð Þh i; (8:21)

which provides access to the fluctuating component alone. As before (e.g., see
Eq. (3.8)), in the limit of low q it is possible to determine the positional variance,
Z2

u


 �
, and thus the effective time-dependent dispersion coefficient

D�
eff ¼

Z2
u


 �

2Δ
: (8:22)

When Δ ≪ τv, D�
eff =D

0 and when Δ ≫ τv, D�
eff =D

* which is then equal to the
asymptotic dispersion coefficient D*(Δ→∞).
We now return to the sequence in Figure 8.15 and examine how if the two pulse

pairs are applied with identical amplitude (i.e., as a one-dimensional experiment) in
a compensated fashion it is possible to probe velocity fluctuations

E qð Þ ¼ exp i2πq vz 0ð Þ � vz τmð Þ½ �Δð Þh i; (8:23)

which due to the cancellation of the 〈V〉 term becomes115,139

E qð Þ ¼ exp i2πq uz 0ð Þ � uz τmð Þ½ �Δð Þh i; (8:24)

which in the limit of small q gives the velocity auto-correlation function

Eðq ! 0Þ � 1� 4π2q2Δ2 u2z

 �� uz 0ð Þuz τmð Þh i� 

; (8:25)

and thus

D�
eff τmð Þ � Δ

2
u2z

 �� uz 0ð Þuz τmð Þh i� 

: (8:26)

In the case of isotropic diffusion u2z

 � ¼ 1

3
u2

 �

and in the limit τm≫ τv, 〈u(0)u(τ)〉=0
and thus115
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D�
eff Δ ! 1ð Þ � Δ

6
u2

 �

: (8:27)

Thus, the auto-correlation function can be extracted from the ratio

D�
eff τmð Þ

D�
eff Δ ! 1ð Þ � 1� uz 0ð Þuz τmð Þh i

u2h i : (8:28)

As noted in Section 1.3.2, the velocity auto-correlation function is often described
by an exponential decay. Examples of such exponential decays are presented in the
paper by Callaghan and Khrapitchev.138

In the two-dimensional velocity exchange experiment116,118,136,137,140,141 for
examining velocity distributions (VEXSY; see Figure 8.15), the displacements Z1
and Z2 are made over two time intervals separated by a mixing time τm. Z1 and Z2
correspond to the classical spectral domains F1 and F2. Thus, the experiment probes
the joint probability P(Z1, Z2). The echo attenuation is given by

E qð Þ ¼ exp i2π q1vz 0ð Þ � q2vz τmð Þ½ �Δð Þh i: (8:29)

The resulting two-dimensional spectrum is reconstructed using Fourier
Transformation in both dimensions. A species travelling at a constant velocity has
identical displacements and consequently appears on the diagonal. Conversely,
off-diagonal peaks arise from species that have migrated from one region of the
displacement spectrum to another during τm. By varying τm the molecular velocities
can be correlated.

8.8 Flow measurements

Flow measurements have been reviewed by numerous authors including refs.
142–145 and consequently we present only a brief coverage of developments in
flow measurements. Sequences which characterise the effects of flow in as short a
timescale as possible are desirable – especially if non-steady state phenomena are to
be observed. As noted in Chapter 2, PGSE sequences have differing dependencies
on flow depending on the gradient moment. Indeed, in the (steady gradient) CPMG
sequence only the odd-numbered echoes are susceptible to flow and this has led to
the development of multiple pulse sequences with applied gradients for studying
flow54,146,147 (see also Section 8.4.1).
Many developments in measuring flow – especially at low velocities – have come

about as a result of developments in measuring ionic drift (see also Section 8.9).148

Frydman et al.149 developed a two-dimensional method for studying flow (see
Figure 8.23) and thus has some relationship to the discussion in Section 8.7. In this
method, a slice-selected spatial distribution of fluid displacements is measured. The
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PGSE echo-shape is analysed noting that the phase encoding of the echo evolves
from a position dependence at the start of this pulse to a displacement dependence at
the echo peak. Thus, the shape of the echo is determined by the joint probability
distribution correlating initial particle positions with displacements occurring
between the first and the second gradient pulses. Fourier analysis as a function of
the gradient is used to extract this distribution. They were able to access Lagrangian
flow statistics in Taylor–Couette flow.
We note that the MMME approach for fast diffusion measurements (see

Section 8.4.1) can be adapted to perform single-shot flow measurements of flow
up to 50 cm s−1.64,150,151

8.9 Electrophoretic NMR

The possibility of measuring ionic velocities in the presence of electric fields was
recognised early on in the history of PGSE by Packer in 196954 and followed by an
unsuccessful experimental attempt in 1972.152 The first successful attempt was by
Holz et al. in 1982153,154 and then further improvements were made by Johnson and
co-workers.155,156 This area of research, which has become known as electrophore-
tic NMR (ENMR), but has also been referred to as DCNMR and magnetic reso-
nance electrophoresis, opens up the possibility of resolving NMR spectra according
to the individual electrophoretic mobilities (or drift velocities; μ) of the ionic species
in the sample and has been widely reviewed.157–161 As noted in Section 1.2.4, there
are also theoretical relationships between electrophoretic mobilities of the indivi-
dual species and their self-diffusion coefficients.
The key difference between a PGSE sequence and an ENMR sequence is

the addition of a pulsed electric field (Edc). μ is related to the measured velocity
(i.e., v) by

Δ/2 Δ/2 τ' = α τ

π/2 π

τ

g

Figure 8.23 The sequence of Frydman et al.149 for obtaining position correlation
spectra.
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μ� ¼ v�
Edc

; (8:30)

where the subscripts ‘+’ and ‘−’ are related to the cationic and anionic species,
respectively. It should be noted that upon application of the electric field the
constant drift velocity is very quickly – but not instantly – obtained and is likely
to be less than an ns.162 Although one recent study on a concentrated battery
electrolyte system indicated that a considerably longer time to reach constant drift
velocity is required.163 However, it is likely that some additional electrokinetic
phenomena may be operative in such systems. Early sequences were based on the
Stejskal and Tanner sequence154,157 and a double-echo convection-compensated
ENMR pulse sequence is depicted in Figure 8.24 and multi-dimensional sequences
such as electrophoretic COSY sequences have also been proposed.164 In order to
deliver the electric field pulses to the sample, the NMR sample tube has to be
constructed in the form of an electrophoretic cell (Figure 8.25). The design of the
cell is critical since it must: (i) avoid any bubbles generated by electrolysis at
the electrode surface from passing through the NMR-sensitive region of the
sample (i.e., the volume enclosed by the rf coils) and (ii) prevent the formation of
macroscopic flow induced by the bubbles. This explains the prevalence of the
U-tube design of electrophoretic NMR cells. Importantly, the design also mini-
mises possibility of the electrodes generating (detectable) rf interference. The
development of better electrophoretic NMR cells and better measurement proce-
dures remains an area of considerable interest.165,166 Detailed considerations of
ENMR instrumentation have been given elsewhere158,159 and we note that at the
time of writing the additional instrumentation required for ENMRwas unavailable
commercially.

Δ

S

Δe

π/2 π π

τ

δ

τ τ τ

τp

g
g

Edc

Figure 8.24 ENMR pulse sequence with convection compensation.167 The line
marked with an Edc denotes the electric field pulses.
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The applied current (I) generates an electric field Edc given by

Edc ¼ I

ΛA
; (8:31)

where Λ is the conductivity and A is the cross-sectional area of the sample tube. In
the ENMR sequence in Figure 8.24, the polarity ofEdc was reversed in each half of the
sequence. The attenuation of the echo signal for a particular species is given by167

E Edcð Þ ¼ exp �8π2q2D Δ� δ=3ð Þ� �
exp i4πqEdcΔμð Þ: (8:32)

The electrophoretic mobility (and direction) is then determined from the complex
phase modulation of the echo signal (Figure 8.26). Were the rf coil to encircle both
arms of the U tube, only a cosine modulation would be observable since the phase
modulation accompanying the magnetic gradient pulses will be opposite on each
arm of the U tube. However, the ability to determine the direction of mobility comes
at the cost of only being able to observe a small fraction of the sample (i.e., a small
filling factor).
Given that only charged species are affected by the pulsed electric field, it is

possible to use ENMR as amobility filter such that in a complex NMR spectrum of a

rf coil

–

–

–+

+

+

Figure 8.25 A U-tube electrophoretic NMR cell with the anode and cathode
electrodes at the top of each arm of the U. The rf coil (in this case a saddle coil)
surrounds part of one arm of the U.
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multicomponent liquid mixture, the resonances of the electrically charged species
can be selectively filtered.168 The method works by subtracting spectra acquired
using an ENMR sequence with and without the pulsed electric field. The signals
from the uncharged species should theoretically be equal in both spectra whilst
those from the charged species should have a phase shift.
Similar to PGSE measurements being displayed as DOSY plots, it is possible

to Fourier transform the ENMR signal to give a 2D plot (i.e., one dimension is
the usual chemical shift and the second dimension is intensity versus Δ or
Edc).

156,159,169–173 Such displays have become known by the acronym MOSY (for
mobility-ordered spectroscopy). In practice, one of the two quantities can be incre-
mented to give the second dimension (i.e., Δ or v – by incrementing Edc). If Δ is
incremented it leads also to greater diffusive attenuation and thus a line broadening
in the second dimension. Hence, it is preferable to increment Edc as this will result
only in a phase modulation (i.e., the second exponential in Eq. (8.32)). Nevertheless,
as it is normally impossible to acquire many oscillations, the undamped signal that
needs to be Fourier transformed is highly truncated and techniques such as linear
prediction156 or the maximum entropy method,174 may need to be employed.
Like diffusion measurements, ENMR is susceptible to a number of phenomena

which can lead to artificial dampening of the echo intensity and thus result in
incorrect interpretation ofmobilities.158–160,165 These deleterious phenomena include
electroosmosis (i.e., the flow of liquid outside a charged surface due to the applic-
ation of an electric field that has components parallel to the surface), convection
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Figure 8.26 ENMR spectra of a solution consisting of 8.6mM tetramethyl
ammonium bromide (TMA) and 0.0071mM PEO (Mw 100,000) in 2H2O at
298K. The signals at 2.9, 3.4 and 4.5 ppm correspond to protons in TMA+, PEO
and HDO, respectively. From Hallberg et al.166
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induced by resistive heating, and increasing diffusion with increase of temperature
or flow due to formation and movement of bubbles in the sample capillary tube. In a
recent paper, Hallberg et al.166 have suggested measurement procedures that com-
pensate for most of these complications. It requires no electroosmotic coating, and
can be readily performed in standard field gradient-equipped probes.

8.10 Multiple spin-echoes and miscellaneous

Diffusion measurements and theoretical advances involving the demagnetising field
andmultiple spin-echoes have been presented. However, they are outside the scope of
the present work and the interested reader should consult the relevant literature.175–185

Measurements involving MAS (including high-resolution MAS; HRMAS) are
becoming increasingly commonplace and it has been shown that accurate self-
diffusion coefficients of liquids can be obtained using PGSE of samples undergoing
MAS on a probe equipped with a magic angle gradient coil, providing that the rotor
volume was kept to a minimum.186

Due to the much more rapid diffusion of gases, it is necessary to study diffusion
on much shorter timescales than those used for liquids in order to study the short-
time PGSE attenuation behaviour. To this end, pulse sequences related to OGSE
sequences but designed to extract time-domain not frequency-domain information at
very short timescales have been developed for studying the diffusion of hyperpo-
larised gases.187 It has recently been realized that fast translational motion can lead to
significant signal intensity prior to the expected time of echo formation.188 This has
been termed a pseudo spin-echo.
Readers interested in diffusion measurements with single-sided NMR techniques

are encouraged to consult the relevant literature.189
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9

NMR imaging studies of translational motion

9.1 Introduction

Most simplistically, mutual diffusion can be probed by imaging diffusion profiles
(e.g., the ingress of a solvent into a material). However, the integration of MRI
techniques with the gradient-based measurements of translational motion that we
have discussed in previous chapters allows for potentially more information to be
obtained – especially from spatially inhomogeneous samples. It also provides
additional techniques for measuring such motions. Diffusion is extremely important
in MRI,1,2 and, amongst other effects, at very high resolutions it determines the
ultimate resolution limit when the distance moved by a molecule is comparable to
voxel dimensions.3 Further, since motion is more restricted near a boundary, the
spins near the boundary are less dephased (attenuated) during the application of
imaging gradients in high resolution imaging, consequently a stronger signal is
obtained near the boundary and this has become known as diffusive edge enhance-
ment.4–10 Relatedly, since the length scales that can be probed with NMR diffusion
measurements encompass those that restrict diffusion in cellular systems, the
combination of PGSE with imaging techniques can result in MRI contrasts.
Whilst there can be diffusion anisotropy at the microscopic level (e.g., diffusion
in a biological cell), the MRI sampling is coarse and thus if there is too much
inhomogeneity of the ordering of the microscopic anisotropic systems, the informa-
tion obtained from the voxel will appear isotropic. Thus, for the measured diffusion
to appear anisotropic in an MRI-based measurement of an anisotropic system also
requires that there be coherent macroscopic arrangement of the anisotropic micro-
scopic architecture.
We have considered almost all of the relevant background theory for under-

standing the combination of PGSE techniques with MRI measurements in previous
chapters and as the area of translational motion measurements in MRI is already
well-covered in the literature,1,11–15 here we only briefly consider this area. We note
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that measurements of translational motion using stray-field imaging were consid-
ered in Section 8.2. Imaging-based techniques for measuring translational motion
are also possible using B1 gradients (see Chapter 10).

9.2 Imaging – basic concepts

9.2.1 Spatial and temporal averaging

As noted with Eq. (2.2) and in Section 2.2.3, the ability to obtain localised
information comes at a high cost of S/N in k-space imaging and sample permitting,
the current highest available resolutions involve voxels of the order of (10 μm)3.
As noted by Fukushima,12 a compromise would be to do a coarse imaging-based
experiment to probe a parameter of the statistical distribution, such as the parameter
width, for each voxel, and thereby obtain knowledge at the imaging scale of the
heterogeneities. In principle, the spatial scales over which such measurements could
take place range from 10−5m (�10−4m for macroscopic flow measurements) to the
effective volume of the rf coil.
MRI techniques are particularly powerful for studying multiphase flows (i.e., those

consisting ofmore than one phase or component) since it is possible to vary both spatial
and temporal averaging. Just as in a PGSE experiment the measurement is on the
timescale of Δ, in an MRI experiment the dynamics of the system is sampled over the
total time taken for image acquisition, T – typically on the order of minutes or longer,
although fast imaging sequences such as echo-planar imaging (EPI) can be used to
narrow temporal resolution. Thus, in a flowmeasurement, the velocitymeasured is12,16

�v rð Þh i ¼ 1

T

ðT

0

v r; tð Þh i dt; (9:1)

where the brackets indicate spatial averaging over the voxel dimension and the
overbar indicates the average over T. The distribution of the velocity, P(v), can be
measured by forfeiting spatial resolution.17 These velocities are averaged over the
sample as well as over Δ, namely12

V ¼
ð
ρ rð Þ 1

Δ

ðΔ

0

V r; tð Þdt
� �

dr: (9:2)

9.3 Combining PGSE measurements with imaging

9.3.1 Dynamic NMR microscopy

‘Dynamic NMR Microscopy’ describes the incorporation of a PGSE pulse sequence
into an imaging experiment (see, for example, Figures 9.1 and 9.2) and the acquisition
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of a sequence of high resolution images such that each corresponds to slices in
q-space.1,18–20 As a result diffusion and flow can be used as sources of contrast
in the image. The spectrum of displacements at each pixel is then calculated using
Fourier methods and maps of the velocity and diffusion can be obtained simulta-
neously with high precision.

π/2 π

δ

Δ

g

Gz 

Gy 

Gx 

rf

Read
gradient

Phase
gradient

Slice
gradient

Figure 9.1 An example of a dynamic NMR microscopy sequence.16

π/2
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Δ τ Δ
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Gx 

rf

Slice
gradient

ππ π π

Figure 9.2 An example of an imaging sequence for velocity-compensated
dynamic NMR microscopy19 which incorporates the Hahn PGSE sequence. The
sequence contains two PGSE trains resulting in flow compensation. The precursor
read gradient is not shown.
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Since the dynamic NMRmicroscopy sequences have elements of both PGSE and
conventional imaging, the signal is modulated in both k- and q-space,18

S k; qð Þ ¼
ð
ρ r0ð Þ exp i2πk � r0ð Þ

ð
P r0; r1;Δð Þ exp i2πq � r1 � r0ð Þð Þdr1dr0

¼
ð
ρ r0ð ÞE q; r0;Δð Þ exp i2πk � r0ð Þdr0: (9:3)

In Eq. (9.3) an infinitesimally small volume dr is assumed and we can consider
E(q, r0, Δ) as the Fourier transform of the local dynamic profile (cf. Eq. (2.35))

E q; r0;Δð Þ ¼
ð
�P R;Δð Þ exp i2πq � Rð ÞdR; (9:4)

where �P R;Δð Þ is now a function of the pixel coordinate and consequently E(q, r0, Δ)
refers to the normalised echo contribution at the pixel coordinate r. q is applied in
only a single dimension (e.g., along z) and from a series of images in which q is
incremented, E(q, Δ) can be calculated for each pixel and thus �P Z;Δð Þ, v andD can
be determined for each pixel in the image. As is evident from Eq. (9.3), dynamic
NMR microscopy contains elements of both a Lagrangian (via motion encoding
by the PGSE sequence) and Eulerian (via the spatial localisation) information
encoding.16

The calculation of the so called b-values in imaging sequences can be rather more
complicated than that outlined in Section 2.3.2 due to the influence of the imaging
gradients.21,22

9.3.2 Diffusion-weighted imaging (DWI) and diffusion tensor
imaging (DTI)

Generally the voxel size used in imaging is sufficiently large that there is some
heterogeneity in the sample and thus variation in D. Thus, MRI measurements of D
return a volume average and this is normally referred to in the literature as an
apparent diffusion coefficient (ADC) or apparent diffusion tensor. There are count-
less variations of imaging approaches to measuring diffusion21,23,24 and we have
only presented two simple sequences above. The interested reader is asked to consult
one of the many review papers.We remark that the measurement of diffusion inMRI
has become extremely important as a source of image contrast and has opened up
new diagnostic possibilities and for characterising microscopic tissue architecture.
DWI and DTI have been the subject of many books and reviews including refs. 15,
25–34. Kingsley has presented detailed reviews of the mathematics related to diffu-
sion tensor imaging.35–37 Somewhat expectedly the presence of noise can have
deleterious effects in diffusion tensor imaging.38
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Other scalar imaging parameters can be derived from D including the mean
diffusivity (= Tr(D)), and many metrics of anisotropy such as the relative anisotropy
and fractional anisotropy have been proposed. Importantly, these features, which may
be used as contrast factors, are rotationally and translationally invariant and are thus
free of orientational artefacts.39–42 We note that higher-order generalisations of the
diffusion tensor models have been developed and the different forms of analysis have
recently been reviewed by Minati and Węglarz.34 Also, better models for diffusion
including tortuosity in brain tissue and solutions linking PGSE attenuation with
anomalous diffusion (see Section 4.5) as a means of describing diffusion in complex
tissue architecture (e.g., brain) are becoming increasingly important from a clinical
perspective in MRI diffusion measurements.43–53

9.3.3 Fibre tracking

An area of increasing importance in MRI-based diffusion studies is in fibre tracking.
In fibre tracking it is assumed that the white matter fibres are oriented along the
direction of greatest diffusion. Hence, a fibre is tracked by following this direction
from a diffusion ellipsoid representation of the diffusion tensor for each voxel.15,54–57

A particular problem with simply using the diffusion tensor approach is the
inability to resolve intravoxel orientational heterogeneity since the tensor approach
only gives a single fibre direction in each voxel due to the implicit assumption that
there is only a single Gaussian diffusion compartment in each voxel. Thus, intra-
voxel fibre crossings cannot be resolved. Since diffusion in tissue is in general
non-Gaussian due to the effects of restriction, the diffusion cannot be fully described
by the diffusion tensor. Whilst the diffusion tensor is evaluated in low q measure-
ments and hence contains information about the width or second moment of the
propagator, attempts to generalise the diffusion tensor by the inclusion of higher
moments have been found to be mathematically inconsistent for non-Gaussian
diffusion.58 This has prompted the development of new methods and theory includ-
ing propagator and q-space approaches which do not make the assumption of
(multi)-Gaussian diffusion.59–62 It has also been noted that diffusion–diffusion
correlation experiments (see Section 8.7) and related experiments may help to
remove such ambiguities as they can prove the existence of local anisotropy and
yield information on the domain size and orientation.63,64

9.4 Imaging-based flow measurements

There are essentially three categories of flow-imaging techniques: inflow/outflow,
tagging and time-of-flight and phase-sensitive methods. As noted by Callaghan, the
range of average velocities, v, that are measurable is limited by vmax ≈ l/techo (where l
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is the length of the receiver coil and techo is the echo time) from above and by the
molecular self-diffusion from below.1 For water at room temperature the minimum
velocity measurable is about 20 μms−1.1 However, rapid-imaging techniques might
extend the applicable range.

9.4.1 Inflow/outflow

Flow-sensitive (or steady-state) techniques rely on the build-up of longitudinal
magnetisation being limited by the transit time.65,66 The rf and gradient pulses are
rapidly repeated such that the saturation recovery or the steady-state free precession
signal amplitude depends on the molecular motion since moving spins will not be
permanently in the excitation slice.

9.4.2 Tagging and time-of-flight

Time-of-flight methods involve the selective destruction (or excitation) of a parti-
cular group of spins (a ‘tag’) and then following their displacement during the pulse
sequence.12,67 As tagging is based on selective saturation the effects only last on
the order of T1. In its simplest form a planar tag is applied in exactly the same way
as slice selection of a 3D object and an example of a time-of-flight pulse sequence
is given in Figure 9.3. This method differs from the flow-sensitive method in
that the slice that is eventually imaged is different from that which was initially
excited. The excited slice is chosen to be normal to the principal flow direction,
whereas the detected slice can be parallel or perpendicular to the flow (e.g., tomeasure
the velocity field in steady pipe flow). More elaborate tagging is also possible

π/2 π π

Gz 

Gy 

Gx 

rf

Slice
gradient

Phase
gradient

Read
gradient

Figure 9.3 An example of a time-of-flight imaging pulse sequence for measuring
spin displacement.
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where multiple tags or even grids are used to visualise more complex flows (see
Figure 9.4).12,67–70 A limitation with tagging methods is that the grid resolution
determines the limit at which flow can be measured quantitatively and thus the
phase evolution methods, as discussed below, afford lower limits of detection of
flow velocities. Nevertheless, tagging techniques have enormous potential for
studying fluid dynamics and are able to provide information such as shear velocity.

9.4.3 Phase-sensitive methods

The phase-sensitive techniques are based on the phase shift of the transverse
magnetisation that occurs in the presence of a magnetic field gradient in the
direction of flow (see Section 2.2.2) and are the most precise of the three methods
for measuring flow.11,12,71 By nulling all moments up to a required order it is
possible to obtain images which detect, for example, acceleration. A typical
flow-selective excitation sequence is π/2x− τ− π/2�x with a bipolar gradient pulse
pair between the rf pulses. Many examples of such gradient waveforms exist.11,72

An imaging sequence incorporating such a flow selection sequence is shown in
Figure 9.5.

Figure 9.4 Spin-tagged MRI image of granular Couette flow between two rotating
concentric cylinders. The shear band shows up as the narrow region of deformed
stripes near the inner rotating cylinder. From Mueth et al.70
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Madio et al.73 have developed a sequence combining bipolar gradients to encode
the velocity with an ultrafast rotating imaging sequence that enables the velocity to
be encoded in 3ms and the imaging in 8ms. Using this sequence they were able to
image turbulent jets in a 15mm i.d. glass tube with a 75% stenosis with Reynolds
numbers from 560 to 3750. In their measurements they were able to determine a
maximal velocity of 59.4 cm s−1.
Buhai et al. have presented a phase-encoding-based imaging technique that

permits direct mapping of local accelerations and demonstrated its use on percola-
tion model objects.74
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10

B1 gradient methods

10.1 Introduction

Although having some distinct limitations (e.g., relatively weak gradients and poor
directionality), B1-based measurements have some particular advantages over B0

gradient-based methods. However, B1-based techniques have so far received only
limited usage and consequently in this chapter we provide only a cursory coverage
of these techniques and the interested reader is referred to the pertinent reviews on
the subject.1–5

10.2 B1 gradients

B1 gradients are more complex than B0 gradients. Apart from purely technical
considerations, there are three main differences between B0 and B1 gradients:6

(i) A B0 field couples only into the spin system along the z-axis, thus the effective
gradient tensor is always truncated into an effective vector (see Section 2.2.2).
Radio frequency fields, however, couple into the spin system from any orientation
within the transverse plane. As a result the B1 gradient generally retains its tensor
form when it couples into the spin system. (ii) When the same rf coil is used for
both excitation and detection, any phase variation is cancelled during the measure-
ment. But when an experiment involves two rf fields at the same frequency this
cancellation no longer occurs and phase variations need to be considered. This
spatial dependence of the phase difference between the two rf fields presents an
additional complication (or opportunity). (iii) The third difference is that B1 fields
are non-secular and so do not commute with internal Hamiltonians. Thus, unlike a
B0 gradient, a B1 gradient cannot be treated additively with respect to internal
Hamiltonians.
A formalism in which the steps of coherence transformation and gradient evolu-

tion are clearly separated has recently been introduced for describing the spin
dynamics of B1 gradient experiments.7 In B0-based experiments only the gradient
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strength is varied spatially. In B1 experiments there are two mechanisms that lead
to spatially varying spin dynamics: the amplitude variation of the gradient rf field
and the phase difference between the gradient and homogeneous rf fields. The
amplitude variation is most directly analogous to B0 experiments. The phase varia-
tion arises from the symmetry of the rf field and current flow through the coils.
Two types of B1 gradients can be employed depending on the coil geometry:

planar or radial (i.e., quadrupolar). The amplitude of a planar field (i.e., dBx/dx)
increases along only one axis in the laboratory frame, while the amplitude of a radial
field (i.e., dBx/dx, −dBy/dy) increases along two orthogonal axes. The dephasing due
to a planar gradient occurs in a plane perpendicular to the rotating frame axis along
which the rf gradient field is applied. For a radial gradient, however, the dephasing,
being the result of both an amplitude and a phase variation has the effect of
scattering the magnetisation over the surface of a sphere. Hence, when trying to
dephase longitudinal magnetisation, a radial gradient is more efficient than a planar
gradient. Also, because of the radial phase distribution, the gradient phase does not
have to be adjusted to the phase of the homogeneous rf coil.
At a technical level, B1 gradients have some significant advantages over their

B0 counterparts. The main advantages are:2,8–10 (i) the switching times are much
shorter, (ii) the lock channel is unaffected, (iii) there is no need for pre-emphasis,
(iv) the lineshape is not distorted, (v) no eddy currents are induced and so there is no
need for shield coils, etc., (vi) they do not suffer from the effects of background
gradients (and thus cross-terms), at least to first order, as do B0 gradients, and (vii)
the gradient is frequency selective. However, at present, the absolute strength of B1

gradients (� 0.75 Tm−1) is far less than that available with B0 gradients.11 And
because B1 gradients generally preserve their tensor form when they couple into a
spin system, the design of truly planar rf gradient fields is difficult.

10.3 B1 gradient diffusion measurements

The use of B1 gradients for flow and diffusion measurements was first proposed
and demonstrated for flow in 1988 by Karczmar12 (and later demonstrated for
diffusion by Dupeyre et al.13) with a method related to the concept of a rotary
spin-echo14 (see Figure 10.1A) and then demonstrated by Canet et al.15,16 using a B1

analogue of the B0-based Stejskal and Tanner sequence (see Figure 10.1B). In a later
work Humbert et al. considered the possible artefacts in B1 diffusion measurements
and presented an improved sequence.17 A one-shot diffusion sequence has also been
presented.18 Also a B1 gradient-based sequence for measuring diffusion using
longitudinal spin orders (2IzSz and 4Iz Iz Iz) of weakly coupled AX and AX2 spin
systems that allow the determination of comparatively low diffusion coefficients has
been presented.19
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The theory used to interpret B1 gradient experiments is essentially the same
as that for B0 gradients.16 And the attenuation function for the sequences in
Figure 10.1 is

Eðg1Þ ¼ exp �γ2g21Dδ2ðΔ� 2δ=3Þ� �
; (10:1)

where g1 is the amplitude of the B1 gradient pulse. Note the correction for the effects
of the finite gradient pulse is now 2δ/3 due to the slightly different convention with
the delay Δ.
Local self-diffusion coefficients can be mapped using B1 gradient-based

sequences.20–22 And it is noted that diffusive diffraction phenomena have recently
been observed in a porous material (72% open porosity polystyrene) using B1

gradients.23

10.4 Miscellaneous

If B0 inhomogeneities exist in addition to B1 inhomogeneities in one or two of the
rf pulses, one or two nutation echoes can result.5,24–27 Scharfenecker et al. have
suggested ways of using these effects to measure diffusion coefficients.28

Another recently introduced technique for measuring diffusion based on rf
gradients is the MAGROFI (magnetisation rotating frame imaging) technique in
which B1 gradients are combined with rotating frame imaging.5,21,29,30

π/2(A) δ

Δ
t1 t1 + Δ

π/2π

Δ

δ

t1 t1 + Δ

(B)

Figure 10.1. B1 Gradient pulse sequences for measuring diffusion: (A) The B1

analogue of the B0 STE sequence and (B) The B1 analogue of the B0 spin-echo
sequence. The B1 gradient pulses are represented as striped rectangles.
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11

Applications

11.1 Introduction and reviews

The applications of NMR techniques to the study of translational motion is enor-
mous and it is impossible to give anything approaching a comprehensive review.
Consequently, only a smattering of papers from the different areas of application is
presented and, in general, instead of citing the first paper with respect to each
application, more recent papers have been chosen and the interested reader should
consult the references listed therein. The classification of different studies is com-
plicated since many studies have significance in more than one area. Numerous
reviews on PGSE NMR have already appeared in the literature including ones of a
general nature.1–13 Similarly, there are many books and review articles devoted
entirely or in part to the use and applications of MRI techniques to study transla-
tional motion and mass transfer including clinical applications and rheological
studies.4,14–25

There are also a large number of more specialised reviews (or reviews on
specialised areas including sections on gradient-based NMR techniques) dealing
with NMR measurements of translational motion on diffusion-weighted spectro-
scopy for studying intact mammalian tissues,26,27 drug binding, exchange and
combinatorial chemistry,28–34 flow,6,35,36 heterogeneous systems,37 liquid crystals,
membranes and surfactants,38–45organometallics,46 polymers,47,48 porous systems
including zeolites,49–52 and solids.53

Reviews have also been presented on the complementarity of the structural
information that can be obtained from NMR diffusion measurements with that
obtained from NOE experiments,54 the use of PGSE NMR in the studies of
physicochemical processes in molecular systems,55 applications to environmen-
tal science,56 ENMR,57–59 the spectral editing of complex mixtures with parti-
cular emphasis on techniques involving diffusion,60 and B1 gradient-based
measurements.61,62
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11.2 Applications to high-resolution NMR

It is of great interest to edit and/or separate complex mixtures on a spectroscopic
basis alone thereby avoiding extensive sample preparation and perhaps changes to
the properties of the species being analysed. Of the NMR observable parameters,
differences in relaxation and diffusion are the most likely means of resolving such
mixtures since both parameters are sensitive to molecular weight. Examples of
studies involving diffusion filters (i.e., where fast diffusing species are edited out)
and mixture separation on the basis of diffusion (where all species are retained in the
spectrum but separated on the basis of diffusion; e.g., see Figure 2.18) are given in
the following two sections.

11.2.1 Diffusion filters

As shown in Figure 2.13, it is possible to set PGSE parameters to screen a mixture
such that only the larger molecules or small molecules with apparently smaller
diffusion coefficients resulting from spending time bound to macromolecules are
recorded. Apart from requiring a sufficient difference in diffusion coefficient
between the solvent and solute, the applicability of PGSE as a means of suppression
is limited by the T2’s of the solute resonances. Nevertheless, diffusion provides a
very powerful means of suppression since, with the exception of resonances origi-
nating from labile spins, all of the resonances of a species are equally attenuated.
When used in this way PGSE NMR is sometimes referred to as affinity NMR.63

A number of sequences for the selective editing of spectra based on diffusion
coefficient differences and on the exchange modulation of diffusion coefficients
which contain PGSE subsequences have been proposed. For example, HMQC type
sequences that contain a PGSE subsequence have been presented.64 The STE-based
WEX filter only allows through those signals that result from exchanged water.65

The non-exchanged water can then be selectively suppressed leaving only those
resonances that result from the exchange of the water. Wider et al.66 presented a 1D
NMR difference experiment, HYDRA, in which a diffusion filter is used to separate
intermolecular water-protein NOEs from intramolecular NOEs. A diffusion-edited
NOESYexperiment was used to suppress the signals of small organic compounds to
facilitate the observation of intermolecular NOEs between N,N-dimethylformamide
(DMF) and lysozyme.67 Gonnella et al.68 have developed a double-editing pulse
sequence which allows direct observation of protein binding ligands. The sequence
edits both by diffusion coefficient and by 13C isotope filtering. The sequence was
demonstrated using 13C-/15N-labelled stromelysin catalytic domain.
PGSE sequences have been combined with TOCSY sequences,69 which have

been used to study the binding of a series of d-amino acid tetrapeptides.70 In a later
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work the PGSE–TOCSY sequence was improved and a heteronuclear diffusion-
edited HSQC presented.71 Diffusion-editing has been used in analysing biofluids
including human plasma.72 An example is given in Figure 8.14. Diffusion-edited
1H HRMAS NMR spectra and COSY spectra have been used to analyse solid-
phase resin resulting in compounds that were not covalently attached to the resin,
including solvent, to be edited out.73

A diffusion-assisted NOE-pumping experiment has been proposed in which a
diffusion experiment is prefixed to an NOE experiment for the unambiguous
detection of ligands that bind to macromolecules.74 The diffusion sequence sup-
presses all of the ligand signals whilst preserving signals from macromolecules.
Thus, any ligand signals observed at the end of the sequence must arise from
polarisation transferred from the macromolecule (i.e., the polarisation reservoir).

11.2.2 Mixture separation

Due in part to now being part of the standard software on many commercially
available spectrometers, DOSY type analysis has been used in a diverse range of
studies including the analysis of polydisperse systems,75 studying equilibria invol-
ving binding, absorption and partitioning in surfactant systems,76 perchloric acid
extracts of gerbil brain,77 non-Newtonian to Newtonian transition in a hexadecyl-
trimethylammonium bromide (CTAB)/sodium salicylate/water viscoelastic micellar
system induced by the addition of a soluble yet slightly hydrophobic polymer.78 By
using sucrose trapped inside vesicles as a marker it was possible to measure the
diffusion coefficients (and thence the size) of vesicles.79 The method also allowed
the determination of the trapped and free fractions of sucrose. 1H and 13C-detected
DOSY spectra have also been used to analyse and assign the spectra of mixtures of
hydrocarbons.80

DOSY type analysis has also been applied to spectral assignment of liquid foods
such as fruit juices and beer,81 and to study a range of Port wine samples of different
ages,82 providing approximate MWestimates for polyphenolic compounds in young
Ports. Thus, such analysis may be able to characterise the evolution of polyphenol
size with age. Nevertheless, limitations of the DOSY technique became obvious in
areas of strong spectral overlap. DOSY has also been performed on natural products
such as mushroom extracts,83 and extracts of organic matter from the surface horizon
of an oak forest soil.84 13C HSQC–DOSY measurements have been used to study
the interactions of charged porphyrins with non-ionic triblock copolymer hosts in
aqueous solution.85 The DOSY–NOESY sequence has been demonstrated on a
sample of a dinucleotide, d(pAG) and a 14-mer duplex d(ACAATATATATTGT)2.

86

DOSY is not restricted to proton detection and Si29 DOSY has been used to study the
speciation of aqueous silicates.87
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It has been shown88 that by adding a typical chromatographic stationary phase
(e.g., silica gel) used in HPLC, HRMAS measurements incorporating PGSE
techniques showed significantly enhanced ability to separate the NMR spectra of
a mixture.

11.2.3 Electrophoresis, electroosmosis and electroconvection

ENMR has been used to study the tetramethylammonium ion, N,N,N′,N′-tetra-
methylenediamine and tetrahexylammonium ion in polyacrylamide gels89 and
surfactant systems including vesicles and micelles,90,91 colloidal particles and
biological macromolecules (e.g., proteins such as albumin, and ubiquitin),92,93

and polyelectrolytes.94 He and Wei used ENMR to study a mixture of l-aspartic
acid and 4,9-dioxa-1,12-dodecanediamine.95 Pettersson et al. investigated the inter-
actions between polyethylene oxide and various surfactants using 1H PGSE mea-
surements and 1H ENMR measurements.96 ENMR has also been used to measure
transference numbers in lithium salt–polymer electrolytes.97 ENMR studies of
porous systems have also been performed.98

Electroosmotic flows have been imaged using NMR techniques,99 and observed
in natural porous media (i.e., fluid saturated sand beds),100 and electroosmotic drag
coefficients have been measured in polymer electrolyte membranes as would be
used in fuel cells.101 Wu et al.102 using one-dimensional flow imaging have
determined the distribution of velocities (actually the distribution of mobilities, μ)
and constructed a flow profile of the electric field–driven flow for an oil-in-water
microemulsion sample containing a non-ionic surfactant and a trace amount of an
ionic surfactant to give a solution of oil-swollen micelles with charged interfaces.

11.3 Biological and pharmaceutical studies

11.3.1 Protein studies

11.3.1.1 Diffusion and hydrodynamics

NMR diffusion measurements have now become one of the basic techniques
in the protein chemist’s arsenal as they have numerous advantages over tradi-
tional techniques including being able to work over large concentration ranges
and in non-standard solvents such as liquid CO2

103 and under high pressure.104

A very large number of protein diffusion studies are now to be found in the litera-
ture including BPTI,103 c-Jun leucine zipper,105 cyclosporin A,103 haemoglobin,106

lysozyme,107 myoglobin,108 myosin light chain 2,109 ovalbumin,110 p53 DNA-
binding domain,111 parvalbumin,112 ubiquitin,105 antifreeze glycoproteins,113 and
others.114 The diffusion of the cis and trans isomers of some proline containing
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peptides was studied and it was found that the cis isomers diffused faster on account
of their more compact shape.115 The protein products of the N-terminal SRCR
domain of human CD5 (a type-I transmembrane glycoprotein) have been studied
using PGSE NMR.116

Cross-linked dextran hydrogels form model systems for protein and peptide
drugs. Aso et al.117 have used PGSE measurements to study the diffusion coeffi-
cients of lysozyme and insulin in such gels. In such systems the diffusion coefficient
of the protein is a measure of the drug release from the gel.

11.3.1.2 Obstruction and hydration

Obstruction has been observed for small molecules moving in protein solutions such
as H2 and H2O in aqueous bovine serum albumin,118 H2O in collagen and carti-
lage.119 Kimmich et al.120 have comprehensively studied the effects of geometrical
restrictions on water diffusion in aqueous protein solutions of bovine serum albu-
min, gelatin and myoglobin.
Protein hydration has been studied both as a bulk property by measuring the

obstruction effect on water diffusion as proposed in the model by Wang (see
Eq. (1.149)) and by using diffusion filters to edit out bulk water, thereby allowing
identification of individual hydration sites on a range of proteins such as BPTI,
lysozyme, albumin and fibrinogen.121,122 Studies of the water diffusion coefficient
in solutions containing two different concentrations of human serum albumin
(HSA) (2.8 and 4.3w/w%) from 273 to 313K revealed a linear trend for D versus
T/η (see the Einstein–Sutherland equation, Eq. (1.13)), but with η being the bulk
solution viscosity measured via Ostwald viscometry.123 However, it was noted the
Einstein–Sutherland equation seems to be violated in the protein concentration
dependence of the effective hydrodynamic radius of water and that the deviation
of the measured water diffusion coefficient and viscosity data from the Einstein–
Sutherland equation was consistent with an enhancement of the solvent structure
around the protein surface. However, the significance of obstruction factors in this
study were not fully investigated and the question arises as to what is the correct
viscosity to consider in the Einstein–Sutherland equation, the bulk viscosity or a
microscopic (‘local’) viscosity. The change in water self-diffusion in casein solu-
tions as a function of casein concentration was analysed using a cell model for
obstruction (see Eq. (1.157)) and it was found that the self-diffusion of the water
was insensitive to the structure of the casein in solution or in a gelled state.124

OGSE has been used to study the diffusion of water in the hydration shells of
myoglobin single crystals and bovine serum albumin.125 It was found that high
mobility is retained even below the freezing point of water and is consistent with
the water diffusing along the surface of the protein. Percolation transitions were
observed with respect to the hydration shells and the free water phase.
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11.3.1.3 Folding and aggregation

Protein folding and protein aggregation are inextricably linked since part of the
aggregation process generally involves conformational changes. These are in gen-
eral thermodynamically delicate processes that generally do not involve covalent
bonds. PGSE NMR diffusion measurements are particularly suited to studying such
processes on account of their non-invasive nature and ability to measure diffusion
over a wide range of protein concentrations.
The last decade has seen an enormous increase in the number of papers dealing

with diffusion measurements of protein association.126,127 Associating protein solu-
tions are crowded systems in that the average spacing between protein molecules is
much less than the RMSD (see Eq. (1.104)) of the particles over the timescale of the
PGSE diffusion experiment (i.e., Δ). For example, the average spacing between
lysozyme molecules in a 0.5mM solution is of the order of 9 nm. Yet, taking the
monomer diffusion coefficient at 298K to be of the order of 1 × 10−10m2s−1,
Δ=30ms, the RMSD is about 4μm. Thus, during Δ there is a high probability for
the protein molecules to collide numerous times. This has two consequences, firstly
even in the absence of aggregation the measured diffusion coefficient of any oligo-
meric species will decrease due to self-obstruction (see Section 1.8.6) and second, as
noted in Section 2.5, there is evidence of an ensemble averaging of the diffusion
coefficients of the different oligomers on the microscopic scale which results in a
narrower distribution of diffusion coefficients than would be expected for an isolated
ensemble of molecules of the same mass distribution.
In a pioneering work in 1968, Moll128 studied the helix to random coil transition

of poly-l-glutamic acid as a function of pH at 298K. Since then the folding and
unfolding of many proteins have been investigated using PGSE NMR, including a
range of peptide 33-mers with some derived from β-sheet domains of interleukin-8
and Gro-α,129 the SH3 domain of the p85α subunit of bovine phosphatidylinositol
3-kinase which is involved in amyloid fibril formation,130 BPTI,131 size distrib-
utions of molecules within an unfolded state of the N-terminal SH3 domain of
the Drosophila signal transduction protein, drk,132 and HSQC–DOSY has been
used to characterise the folding of the collagen triple helix motif.133 The urea-
induced unfolding of lysozyme resulted in a 28% reduction in the diffusion coeffi-
cient which corresponded to a 38% increase in hydrodynamic radius.134 Similar
results were observed for the unfolding of the β-subunit of the heterodimeric
salt-mediated killer toxin (SMKT) from Pichia farinosa.135 Analysis of PGSE
data has been used to determine empirical relationships between the measured
hydrodynamic radius and the number of residues in the polypeptide chain (N).136

For native folded proteins rS = 4.75N
0.29 Å and for highly denatured states

rS = 2.21N
0.57 Å. Thus, PGSE diffusion measurements can be used to analyse the

conformational properties of a range of non-native states of proteins such as
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partially structured molten globule states. Wilkins et al.136 noted the effective
dimensions of the polypeptide chain depend significantly on the level of persistence
of regions of secondary structure or features such as hydrophobic clusters within a
conformational ensemble.

11.3.1.4 Ligand-protein binding

As noted previously, NMR diffusion studies can be used just to screen a mixture to
see if a ligand (or ligands) bind or to characterise the dissociation constant. Some
examples of binding were given in Section 11.2. Diffusion NMR studies of binding
are myriad and here we mention only a few: the binding of (trimethylsilyl)propionic
acid (TSP) to a 17-residue peptide derived from the Alzheimer’s associated Aβ
peptide,137 the association of leucine and methionine enkephalin peptides to SDS
micelles,138 the interaction between the cell-penetrating peptide, penetratin, in
neutral and negatively charged bicelles, in SDSmicelles and in aqueous solution,139

the binding of protein kinase C substrate, NG(28–43) to SDS,140 the binding
of 4-trifluoromethylbenzoic acid, ibuprofen, and flurbiprofen to HSA,141 and the
self-association (monomer-dimer) of bathocuproine and its subsequent binding to
Alzheimer’s associated Aβ peptide.142

From diffusion measurements Ma et al.143 showed that racemic, R− and S+
ibuprofen bound to the low affinity and high capacity binding sites on HSA in a
similar manner. In a later study,144 by measuring the diffusion of ibuprofen as a
function of concentration in the presence of 0.1mM HSA and using the fast
exchange model outlined in Section 4.2, it was determined that the association
constant Kd was about 0.017M and that the number of binding sites was about 50.
The binding of salicylate to albumin has also been studied using diffusion measure-
ments145 as shown in Figures 4.6 and 6.3. The interaction between ibuprofen and
lipoproteins in blood plasma has also been studied.146

31P PGSE NMR has been used to measure the diffusion coefficient of 2,3-
bisphosphoglycerate (DPG) in haemoglobin solutions in both free solution and in
intact erythrocytes.147 The dependence of the measured diffusion coefficients on the
amount of DPG bound to haemoglobin was used to estimate the dissociation
constants for DPG complexed to carbonmonoxygenated, oxygenated and deoxyge-
nated haemoglobin.

11.3.2 DNA and RNA

Similar to the case of proteins, the last decade has seen NMR diffusion measurements
become a major tool for characterising the solution behaviour of DNA and RNA.
For example, diffusion coefficient measurements of nucleic acids have allowed
duplex RNAs to be distinguished from RNA hairpins.148 Measurements on three
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single-stranded DNA dodecanucleotides and the related duplexes allowed a direct
assessment of polymeric and conformational states such as hairpin formation.149 The
diffusion of polyamine spermidine and the polyamine analog N-methylated spermi-
dine in solutions of calf thymus DNA in the presence of different salts has been
measured to determine the importance of electrostatic interactions on polyamine–
DNA association.150

PGSE measurements have been used to study the anisotropic diffusion of 7Li+

and 133Cs+ in hydrated oriented DNA fibres.151 Kaucher et al.152 studied the
influence of cation, solvent and anion on the cation-templated self-assembly of
lipophilic guanosines in organic solvents. In a later work diffusion measurements
were used to clarify the influence of the cation and anion in the supramolecular
structure of self-assembled ionophores from isoguanosine.153

A water-selective one-dimensional diffusion experiment was used to measure
the exchange rates of the rapidly exchanging protons of a 16 base-pair DNA
sequence,154 and the binding of ethidium bromide to a DNA hairpin (dU5-hairpin)
has been studied using diffusion-weighted COSYexperiments.155 Interestingly, the
diffusion of DNA in agarose gels has been observed to display reptational beha-
viour156 and obstruction effects have been observed in PGSE diffusion measure-
ments of polyammonium cations in aqueous solutions of DNA.157

11.3.3 Drugs, biomolecules and biomaterials

The solution properties of many drugs and biomolecules have been studied using
NMR diffusion measurements including the hydration of N-acetylaspartic acid158

and the self-association of the shellfish toxin okadaic acid upon complexation with
potassium ions.159 The results showed that the K+ okadaic acid complex is a dimer.
The diffusion of monensin in chloroform solution has been studied as a function of
concentration and the results explained in terms of free volume theory.160 Parkinson
et al. have used HSQC–DOSY experiments to detect the cluster complexes formed
by a bismuth(III) anti-ulcer complex in aqueous solution.161 Diffusion measure-
ments have revealed that at low concentrations the antibiotic Ramoplanin
in C2H3OD is in an equilibrium between monomeric and dimeric states.162 The
diffusion of psychosine (β-galactosyl-sphingosine) was studied in 2H2O and was
found to be pH-dependent and indicative of aggregation.163 The aggregation of
steroid compounds in solution has been probed using PGSE NMR diffusion
measurements.164

PGSE NMR diffusion measurements have been used to investigate a diverse
range of biomaterials including the diffusion of water in fibrin gels, plasma and
blood clots,165 of metabolites in blood and seminal plasma,166 and of amino acids
in gels.167
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Of relevance to drug release and cell immobilisation and to more generally
provide insight into the diffusion of micelles into hydrogels, the diffusion of small
organic solutes and large micelles has been studied in dextran solutions and gels
revealing drastic reductions in diffusion in the case of Triton X-100 micelles.168

Mistry et al.169 have used 19F NMR diffusion measurements in impurity profiling in
pharmaceutical batches. In particular, the diffusion measurements allowed discri-
mination between monomeric and dimeric impurities.
There have been numerous reports on the use of diffusion measurements, and

combinedwith relaxation editing, to study and simplify the spectra of the International
Humic Substances Society Suwannee River fulvic acid standard.170 Lead et al.171

measured the diffusion coefficient and polydispersity of Suwannee River fulvic acid
as a function of pH and ionic strength using PGSE NMR and compared the results
with those obtained with fluorescence correlation spectroscopy, and flow-field
fractionation. The diffusion coefficients ranged between 1.9 and 3.5 × 10–10m2s−1.

11.3.4 Liquid crystals, lipid membranes and membrane proteins

PGSE NMR has been used to measure lipid lateral diffusion in aligned lamellar
membranes,172 including the effects of microdomains such as cholesterol,173 sphin-
gomyelin174 and raft mixtures.175 Orädd and Lindblom also studied the effects of
obstruction by the transmembrane protein gramicidin D and gel patches on the lateral
diffusion of dimyristoylphosphatidylcholine in oriented bilayers.176 Diffusion
measurements were also used to probe lateral phase separation in dioleoylphospha-
tidylcholine–sphingomyelin bilayers.177 Diffusion has been studied in oriented phos-
pholipid bilayers using fringe field measurements.178

By using MAS NMR in conjunction with magic angle gradients it is possible to
measure lipid translational diffusion without aligning the lipid bilayers179 including
the diffusion of ibuprofen in membranes180 and measurements in bilayers supported
in nanopores.181 However, in an unoriented sample the analysis of the diffusion
measurement must account for the random orientations.180 MAS PGSE has also
been used to study water, ubiquinone and lipid mixtures in cylindrical aluminium
oxide nanotubes.182

11.3.5 Restricted diffusion and obstruction

11.3.5.1 Food, plants and natural products

Yeast cells have been a popular model system from the earliest days of PGSE NMR
with Stejskal and Tanner observing an intracellular water diffusion coefficient
of 6.8 × 10−10m2s−1 and a mean cell size of 4.1 μm.183 In later studies diffusive
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diffraction effects have been observed in yeast giving a characteristic distance of
5 μm.184Most food can be viewed as being a porousmaterial. PGSENMRof oil and
water in peanuts reveals regions of complete restriction for the oil and the cell
structure of the peanuts was identified.185 Diffusion measurements of water in
native potato, maize and pea starch granules have shown that the water is confined
to different types of restricted environments.186 The diffusion of oil and water in
rape seeds has been investigated.187 For Δ > 30ms the diffusion of the oil was
observed to be completely restricted. The results were modelled using a Gaussian
mass distribution of spherical droplets with a mean radius of 0.7 μm. At maximum
moisture content the water diffusion coefficient was 4.2 × 10−10m2s−1. The diffu-
sion coefficients of CO2 in various carbonated beverages (e.g., champagne, beer)
have been measured using 13C PGSE NMR and was found to deviate from that
predicted with the Stokes–Einstein equation.188

Wood, cellulose and starch systems have been widely studied using NMR diffu-
sion techniques. In wood cellulose is in the form of rod like microfibrils about 10 nm
wide and μm length scales. Starch occurs in two major forms: linear amylase
and branched amylopectin. In plants starch is found as rounded granules with radii
of tenths of μm. In an early study Peemoeller et al.189 used PGSE measurements to
study cell diameters and volume fractions in samples of Douglas-fir. Wycoff et al.
used PGSE to study the tangential dimensions of cells in a number of wood samples
including eastern red cedar, eastern white pine, Redwood and sugar pine.190 PGSE
NMR has been used to measure water diffusion and pore volume in cellulose
fibres.191 Two components were observed: one with a self-diffusion coefficient
independent of time and the other with a time-dependent ‘apparent’ diffusion
coefficient. The components were attributed to bulk water between the cellulose
fibres and water in anisotropic pores with lengths from several μm to 20μm within
the fibres. The average pore volume of the pulp fibres was determined to be
1.6 ± 0.3 cm3 g−1. The bulk water diffusion coefficient was about 30% less than
that of pure water and was thought to be due to the effects of (mainly) obstruction
and hydration. In a later study,192 Li et al. used q-space imaging to investigate
molecular displacement profiles of the water in cellulose fibres for Δ ranging
between 5–1200ms. Ek et al. have estimated the pore size and studied the swelling
and tortuosity of highly porous cellulose beads used as pharmaceutical excipi-
ents.193 Water diffusion in starch has also been studied.194 Newling and Batchelor
have studied the diffusion of water and polyethylene glycol (PEG) in the supramo-
lecular structure of wet cotton.195 The data was analysed in terms of the modified
Kärger model in which one site is considered to be restricted (see Section 4.3.1).
Topgaard and Södermann have studied water diffusion in cellulose and starch fibres,
biological porous materials consisting of randomly oriented domains with anisotropic
supermolecular organisation.196

322 Applications



11.3.5.2 Biomedical

Diffusion and MRI studies performed in biological tissues generally exhibit non-
exponential signal decays. This could result from multicomponent Gaussian (i.e.,
free) diffusion or restricted diffusion or a combination of both. Being able to
discriminate the two cases is extremely important for the development of diagnostic
applications of diffusion MRI. In simple cases, examining the dependence of the
measured diffusion coefficient as a function of Δ will allow discrimination between
free and restricted diffusion; however, membrane permeability complicates this
approach. Attempts have been made to separate intracellular from extracellular
components by curve stripping197 and biexponential fitting198 of PGSE data.
However, exchange between compartments during the experiment complicates
the separation of the signals. Malmborg et al.199 have shown that restricted compo-
nents in multiexponential echo decay curves can be identified by varying δ.
In an early study Cooper et al. studied restricted diffusion in various biophysical

systems including blood, heart and liver using PGSE NMR.200 Later studies include
the intracellular diffusion coefficient of water in frog (Rana pipiens) muscle which
was measured and found to be 1.6 × 10−9m2s−1, while analysis of the diffusion
data gave a membrane permeability coefficient of 0.01 cm s−1,201 and 13C PGSE
NMR diffusion measurements of glycine inside human red blood cells.202 The time-
dependent water diffusion measurements has been studied in packed erythrocytes
and it was observed that the long-time diffusion coefficient, D∞, was very sensitive
to the extracellular volume fraction.203 Also from the short-time behaviour of
the diffusion coefficient, the surface-to-volume ratio of the cells was estimated
to be approximately (0.72 μm)−1. The diffusion of phosphocreatine in the cylindri-
cally shaped fibres of rabbit skeletal muscle have been studied using diffusion
measurements in three orthogonal directions enabling the determination of the
trace of the diffusion tensor.204 From this data the radius of the cells was found to
be in the range of 8–9 μm and the phosphocreatine diffusion coefficient to be in the
range of 7–9 × 10−10m2s−1. Diffusional anisotropy of phosphocreatine has also
been observed in fish skeletal muscle.205 De Graaf et al.206 studied the diffusion of
ATP and phosphocreatine in intact rat skeletal muscle using 31P NMR. The apparent
diffusion was measured as a function of Δ. Orientation effects were eliminated by
measuring the trace of the diffusion tensor. The bulk diffusion coefficients and radial
dimensions of the restriction were determined by fitting to the cylindrical restriction
model (Eq. (4.60)). Their estimates of the bulk diffusion values were ~90% of the in
vitro values and the estimates for the diameters of the restriction were ~16 and
22 μm for the ATP and phosphocreatine, respectively –which are both considerably
smaller than the known diameters of rat skeletal muscle fibres (60–80 μm). By
analysing apparent diffusion coefficients obtained in HRMAS measurements of
testicular tissue Griffin et al.207 were able to show that a large proportion of the
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creatine observed was extracellular. The relationship between molecular crowding,
viscosity and the apparent diffusion coefficients of metabolites in subcellular
organelles has also been studied.208

q-Space coherence features have been observed in suspensions of red blood
cells. The features have been assigned to water undergoing restricted diffusion
both inside cells and in the cavities in the extracellular medium.209 These coherence
features are sensitive to factors such as haematocrit, cell size, and the transmem-
brane exchange rate.
Stray-field diffusion measurements conducted on a 9.4 T magnet have been used

to characterise biological tissues and their pathological alterations.210 In particular,
water diffusion was studied in carcinomas, fibrous mastopathies, adipose and liver
tissues. The results provided evidence for the fractal dimension of the underlying
cellular structure of the tissues.
Due to the impeding effects of cell membranes, the effective diffusion tensor

of water in brain tissue is, in general, anisotropic and 2–10 times slower than bulk
water. Stroke is accompanied by the swelling of cells and consequent reduction
in extracellular space which has been suggested to lead to a reduced effective
diffusion coefficient. Latour et al.203 have argued that the effective diffusion
coefficient is dominated by the tortuosity of the extracellular space and that the
tortuosity increases on cell swelling. As would be expected for restricting geo-
metries, strong diffusional anisotropy effects have been noted in studies of
biological cells.211 In fact, the observation of the anisotropy has been noted as
being a useful clinical probe of demyelinating disorders, white matter infarcts,
neoplasms and of neonatal brain and spinal cord development.212 Schoeniger
et al.213 studied water diffusion in neurons. They noted that water in the nucleus
has different diffusion properties than that in the cytoplasm. Similarly, Le Bihan
and co-workers214 have proposed that measurements of diffusion coefficients
have clinical applications including functional assessment, tissue characterisation
and treatment monitoring. 3He diffusion in the lungs has been investigated using
in vivo PGSE measurements and a 1D imaging technique and finite difference
simulations.215

Carlton et al. have performed diffusion-weighted imaging of bacteria colonies
in the STRAFI plane and were able to detect bacteria in concentrations down
to 4 × 109 cellsml−1.216

11.3.6 Multi-dimensional correlations

Numerous studies have attempted to correlate relaxation time with diffusion in
biological samples.217,218 For example, Peled et al.218 measured water diffusion as a
function of T2 in frog sciatic nerve.
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DDCOSY and DEXSY experiments have been used to study anisotropic water
self-diffusion and defects in the mesophases of lyotropic liquid crystals.219

Komlosh et al. have used a double PGSE sequence to measure and assess the
degree of local anisotropy in brain grey matter using nine different combinations
of gradient direction for the two gradient pulse pairs.220 DRCOSY experiments
have been used to distinguish between oil and water in a mixture,221 and to detect
restricted diffusion in porous media such as sandstones and dolomites.222 DEXSY
and DRCOSY have been used to investigate the dynamics of water and oil in food
and microemulsion systems,223 and to investigate the diffusion exchange of
dextran with molecular weights 4.4 and 77 kDa through polyelectrolyte multilayer
hollow capsules consisting of four bilayers of polystyrene sulfonate/polydiallyldi-
methylammonium chloride.224 The DRCOSY experiments revealed that
the diffusion process of dextran 77 kDa exhibits an observation time-
dependence indicative of restricted diffusion. Further, the 77 kDa dextran mole-
cules are in diffusive exchange through the capsules with an exchange time of
around 1 s whereas the diffusion process of the 4.4 kDa dextran is unaffected by
the capsules.

11.3.7 Transport, exchange and binding

Intracellular species tend to diffuse more slowly due to being in a more viscous
environment (the intracellular milieu typically has a high protein concentration)
and also have greater motional restriction due to being enclosed within a pore
with either limited or no permeability. In an early study, Andrasko used differ-
ences in diffusional restriction between the inside of red blood cells and the
extracellular medium to observe intracellular Li+ and thereby study the uptake of
(very slowly permeating) Li ions.225 Jiang et al. have studied water exchange
through red blood cells using PGSE NMR measurements and determined the
water residence time to be 10ms.226 Differences in PGSE attenuation have also
been used to discriminate between the intra- and extracellular milieux to monitor
the intracellular metabolism of human breast cancer cells,197 to separate intra-
and extracellular sodium signals in red blood cells,227 and to measure the cell
density of Pseudomonas cepacia.228 The ionophore mediated transmembrane
exchange of Li+ in liposomes has been studied using PGSE NMR and modelled
using the Kärger equations.229

The partition of adrenocorticotropin peptides in water and SDS and dodecylpho-
sphatidylcholine micelles has been studied using diffusion measurements.230

Using a simple two-site model and assuming fast exchange of the peptides (see
Eq. (4.18)), the diffusion of the bound form was taken to be equal to that of the
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micellar diffusion coefficient and the true diffusion of the free form was extracted
accounting for obstruction by the spherical micelles using Eq. (1.142).
Proton exchange, including amide protons, have been studied in a number of

systems using diffusion NMR, including the amide protons of the acyl carrier
protein,231 the amide protons of viomycine,232 the hydroxyl protons of sucrose,233

and the two amido protons of uracil for which the on rates were determined
to be 8 and 18 s−1 for H1 and H3, respectively.

234 The selective complexation of
the cis-isomer of phenylalanylproline over the trans-isomer with β-cyclodextrin
has been studied using diffusion measurements.235 Diffusion measurements have
been used to study the binding of the zwitterionic opioid peptide d-penicillamine2,5-
enkephalin (DPDPE) to a zwitterionic phospholipid micellar bilayer and
the bound populations were determined using Eq. (4.18).236 Orfi et al. have
studied the association of two simple tripeptides (glycyl-histidyl-glycine and
phenylalanyl-histidyl-phenylalanine) with SDS micelles using 1H diffusion
measurements.237

11.4 Chemical and material studies

11.4.1 Diffusion-based studies

11.4.1.1 Diffusion measurements

Supercooled water has been measured down to 238K in the case of 1H2O
238

and down to 244K for 2H2O.
239 Using a specially constructed probe, Yoshida

et al. have measured the diffusion coefficients of 1H2O and 2H2O in the sub-critical
temperature range 303–623K on the liquid vapour coexisting curve and at the
supercritical temperature of 673K as a function of water density between 0.071–
0.251 g cm−3.240 2H PGSE NMR has been used to study the solution dynamics of
the D4-methane-water system.241 Klenø et al. have studied the diffusion of dimethyl
sulfoxide, 15N-labelled DNO3 and

17O-labelled 2H2O in solutions of 0.6–0.8 weight
fraction D2SO4.

242 Dippel and Kreuer243 measured the diffusion coefficients of 1H
and 17O in different concentrations of aqueous hydrochloric acid in the temperature
range 5–90 °C. The self-diffusion of CCl4 and CS4 has been measured using B1

gradient-based 13C PGSE measurements.244

The diffusion of liquid lithium has been of considerable interest from the very early
days of PGSE NMR.245 In almost isotopically pure samples Murday and Cotts246

determined D(Li6) and D(Li7) to be 6.8 ± 0.7 × 10−9m2s−1 and 5.8 ± 0.6 × 10−9m2s−1

at the melting point of 453K, giving D(Li6)/D(Li7) = 1.18± 0.07, which was slightly
larger than the ratio of 1.09 ± 0.06 obtained by Krüger et al. at 463K.247 This is
interesting from the perspective of the Einstein–Sutherland equation since in both
cases the ratio was less than the viscosity ratio η7/η6 = 1.44.
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Using the steady gradient spin-echo McCall and Douglass studied self-diffusion
in binary solutions (i.e., benzene–cyclohexane, acetone–chloroform, acetone–
benzene and acetone–water) in which one component at a time was deuterated
to allow the measurement of the other. The results were discussed in connection
with mutual diffusion.248 Self-diffusion in binary mixtures of the system benzene-
cyclohexane has been studied at pressures up to 200MPa,249 and in four binary
systems consisting of ammonia with benzene, acetonitrile, 1-pentanol and metha-
nol.250 PGSE has been used to investigate the 1,4-cyclohexanedione-bromate-
acid oscillating system.251

STRAFI measurements were combined with incoherent neutron scattering
experiments to study glycerol for microscopic and mesoscopic wave numbers and
it was possible to discern signs of a crossover between relaxation-like and
diffusion-like motion at q≲ 0.3Å−1.252 The diffusion coefficients of water and
polyethylene glycol were measured in aqueous mixtures of polydisperse poly-
ethylene glycol with various average molecular weights ranging from 200–
10,000Da.253 The aim of the work was to characterise the formation of water-PEG
networks purported to occur under the conditions used for protein crystallisation.
Despite the polydispersity, the diffusion measurements of each sample was
observed to be single exponential. At high concentrations the diffusion of the
PEG molecules approached a constant value indicative of the formation of a
dynamic network between the PEG and the water. Above this concentration the
system can be microscopically described as a double domain: bulk water and a
water-PEG network.
The diffusion of neat CO2 has beenmeasured between 223 and 450K at pressures

up to 200MPa with the diffusion data showed significant deviation from that
expected for a hard sphere fluid.254 The diffusion of five binary systems consisting
of CO2 with benzene, hydrogen, palmitic acid, methyl ester, acetic acid or metha-
nol were measured at low temperature and pressures up to 200MPa,255 and the
diffusion coefficients of both 13CO2 and C16

1H34 were measured in supercritical
CO2-n-hexadecane mixtures.256 The diffusion of the noble gases have also been
measured in water.257

The self-diffusion and mutual diffusion of the cation and anion of sodium
monofluorophosphate and water in silica pastes have been studied using PGSE
and 1D MRI, respectively.258 In trying to model the solidification of metals, Lutz
and Mendenhall259 measured the self-diffusion coefficient of 15N labelled ammo-
nium ions in aqueous ammonium chloride, and the diffusion coefficients of water
and succinonitrile in aqueous succinonitrile and for succinonitrile and acetone in a
mixture of acetone–succinonitrile. The diffusion of the cation and anion of tetra-
butylammonium tetrahydridoborate ((C4H9)4N

+BH4
−) have been studied in

C2HCl3.
260 It was found that the BH4

− ion diffused only slightly faster than the
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((C4H9)4N
+ ion. Interestingly, both ions diffused significantly slower than the

uncharged tetrabutylsilane ion which was of similar size to the tetrabutylammo-
nium ion, indicating that the tight ion pair is the primary diffusive species.
Ionic liquids (molten salts) have been increasingly studied using NMR diffusion

measurements. 1H diffusion measurements have been conducted on chloroaluminate
(e.g., 2:1 AlCl3:1-ethyl-3-methylimidazolium chloride) melts.261 Measurements have
also been performed on phosphoric acids.262

11.4.1.2 Hydrodynamics

The diffusion of the n-alkanes – n-pentane, n-hexane, cyclohexane and o-xylene – at
saturation have been measured in 2H2O at 298K and the data analysed to give
scaling relations for the molecular weight dependence of the self-diffusion coeffi-
cients.263 The diffusion of 15 liquid n-paraffins (C8–C60) in the temperature range
30 to 170 °C has been studied.264 The data was consistent with a scaling relation
D ~Mβwith β changing approximately linearly from −2.72 to − 1.85 with increasing
temperature.
The diffusion of N-methylformamide has been studied at pressures up to

200MPa between the melting pressure curves up to 420K.265 Interestingly, the
self-diffusion coefficient of the cis-conformer was 17% lower than that of the trans-
conformer at the same temperature and pressure. The self-diffusion of C2H4 and
N2H3 over considerable temperature and pressure ranges up to 450K and
200Mpa were studied to investigate dynamic isotope effect (Dr=DX−H/DX− 2H)
in the liquids.266 Dr was determined to be 1.3 and 1.4 for C2H4 (at 150K) and
N2H3 (at 200K), respectively. The Dr values and temperature-dependence could
not be explained by theories for single particle motions nor could the results be
explained on the basis of collective phenomena due to hydrogen bonding since the
hydrogen bonding properties of C2H4 and N

2H3 are quite distinct. Theoretical models
for obstruction have been compared with PGSE data of toluene, aniline and phenol
in polymer solutions in order to separate the effects of binding and obstruction.267

Haselmeier et al.268 have measured the diffusion of C60 and C70 and of the solvent
molecules C6H6 and CS2 in liquid fullerene solutions. In CS2 solution at 298K they
found D(C60) = 1.85 ± 0.18 × 10

−9m2s−1 and D(C70) = 1.56 ± 0.16 × 10
−9m2s−1.

They remarked that C70 may be regarded as an ideal ellipsoidal particle (short
semi-axis = 5.165Å and long semi-axis = 5.775Å) with which to test hydrodynamic
theories. Indeed, their data showed that the long semi-axis of the ellipsoid deter-
mined the diffusional behaviour. Measurements of C60 in Benzene-D6 have also
been reported.269

Feiweier et al.270 used a static gradient STE sequence in the presence of ultrahigh
magnetic gradients generated by superconducting anti-Helmholtz coils (gradients
up to 184 Tm−1) to measure the self-diffusion of 7Li and 1H in the glass forming
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electrolyte LiCl:7H2O (glass transition temperature Tg = 139K). The measurements
were conducted over the temperature range 313K down to 173K over which DLi

and DH changed by five orders of magnitude and the self-diffusion exhibited
strong non-Arrhenius behaviour typical of fragile glass formers. Whilst the lithium
diffusion was closely coupled to other transport modes such as viscosity, electrical
conductivity and water reorientation, as the temperature decreased the ratio DH/DLi

increased indicating decoupling of these diffusion modes with DH decoupling
at T < 1.5 Tg.

11.4.1.3 Carbohydrates

PGSE diffusion measurements have potentially a lot to offer in the field of carbo-
hydrate chemistry. Examples of studies include measurements of a series of carbo-
hydrates that differ in size and branching pattern in dilute aqueous solutions,271

diffusion in aqueous solutions of the linear polysaccharide hyaluronan,272 the
diffusion of 13C-labelled glucose in molasses.273 And in a perhaps more unusual
study it was observed that the sweetness of sugar solutions (sucrose, fructose and
glucose) did not correlate with the translational diffusion coefficients.274

The diffusion of aqueous trehalose solutions has been studied to determine
if strong attractive interactions effect the prevision of the Einstein–Sutherland
theory.275 It was found that the strong trehalose–water attractive interactions result
in significantly reduced friction and that the temperature-dependence of the treha-
lose solution was described by a Vogel–Fulcher–Tamman relationship. The results
confirm that trehalose has a strong destructuring effect on the tetrahedral network
structure of water. Diffusion measurements on sucrose and trehalose in aqueous
solution revealed that although their diffusion coefficients were comparable at
low disaccharide concentrations, they differ from each other with increasing
concentration.276

11.4.1.4 Hydrides and organometallics

PGSE NMR has been used to study hydrogen diffusion in Laves-phase hydrides
over a wide range of temperature and hydrogen ion concentrations.277

PGSE is now widely used in studying organometallic compounds and in con-
junction with other NMR techniques, such as NOE data, has proven to be an
important tool for elucidating problems related to molecular volume, hydrogen
bonding, mass distributions, solvent-dependence and ion pairing which thus
includes problems related to catalysis and coordination chemistry.278 195Pt PGSE
NMRmeasurements were used in studies on the solvent-dependence of aggregation
of the hexachloroplatinate dianion in Na2PtCl6 and H2PtCl6.

279 PGSE NMR studies
of the aggregation of n-butyllithium in tetrahydrofuran enabled dimeric and tetra-
meric forms to be distinguished.280 PGSE NMR has also been used to study the
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distribution of species in solutions of metallomacrocycles.281 Zuccacia et al.282 used
1H PGSE NMR to study the diffusion of the complexes trans-[Ru(PMe3)2(CO)
(COMe)(pz2-CH2)]BPh4 and trans-[Ru(PMe3)2(CO)(COMe)(pz2-BH2)] in nitro-
methane, chloroform and methylene chloride as a function of concentration. They
found indications of ions (in nitromethane), ion pairs (in chloroform at low concen-
tration) and ion quadruples (in chloroform at high concentration). Diffusion meas-
urements of the aggregates of dimethyl- and bis[(trimethylsilyl)methyl]cuprates
in dimethyl ether revealed that aggregates larger than dimers were formed.283

11.4.1.5 Surfactants, emulsions and liquid crystals

PGSE diffusion measurements have found enormous application in the estimation
of droplet sizes and distributions in emulsions (including concentrated emulsions)
as outlined in Section 3.8 and has extensive applications to the food industry,284

cosmetics285 and others. PGSE measurements have also been used to study the
effects of temperature on droplet size and also the effects of freezing.286 Freezing
causes coalescence of the droplets. In a study of water-in-oil emulsions, diffraction-
like effects have been observed in a highly concentrated water/oil emulsion.287

From the experiment the mean droplet size of the emulsion was determined. PGSE
measurements have also been applied to multiple emulsions. Lönnqvist et al.
studied a water-in-oil-in-water (W/O/W) emulsion in which they were able to
obtain the size distribution in the starting emulsion and the double emulsion.288

Intercompartmental exchange and droplet size in W/O/W emulsions have been
studied using PGSE NMR and modelled with the modified Kärger relations.289

Topgaard et al. were able to probe micrometre-sized compartments in water-in-
oil emulsions using OGSE experiments.290 PGSE was combined with imaging
techniques to study the spatial dependence of droplet size in the cream layer of
water-in-oil emulsions.291 Using a stimulated echo 2D imaging sequence and the
inverse Abel transform, Hollingsworth and John292 have demonstrated that it is
possible to measure spatially resolved emulsion droplet sizes in cylinders in which
the emulsion is undergoing laminar flow.
In an early study, Stilbs and Lindman293 studied the micellisation of a cationic

surfactant (decylammonium) with organic counterions (CHCl2COO
−) in 2H2O.

The diffusion of sodium alkylsulfonates in 2H2O has been studied using PGSE
NMR to determine the critical micelle concentration (CMC).294 Solubilised TMS
was used to study the diffusion in the micellar composition concentration range and
it was observed that the diffusion of both the surfactant and the micelles sharply
decreased above the CMC. This decrease was interpreted in terms of obstruction
by the micelles which was thought to be enhanced by the electrostatic repulsion
between the particles. The interaction between non-ionic micelles and a non-ionic
polymer have been studied using PGSE.295 It was found that the micelle diffusion is
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influenced by the polymer in two ways: obstruction by the polymer network and
association of the micelles to the polymer chain.
Xu et al.296 have studied water-in-CO2 (W/C) microemulsion systems formed

with phosphorus fluorosurfactants of bis[2-(F-hexyl)ethyl] phosphate (DiF8) salts
with different counterions at high pressure. The diffusion measurements revealed
that the counterions and the surfactant molecules move together with a diffusion
coefficient associated with that of the microemulsion droplets. The average hydro-
dynamic radius of the ammonium counterion-DiF8 microemulsions droplets was
2 nm at 298K, 206 bar at a water–surfactant mole ratio of 5. Self-diffusion measure-
ments were used to investigate the micellar behaviour of malonamides in the
presence of dodecane.297 Malmborg et al. have studied diffusion in highly concen-
trated emulsions (96% aqueous solutions of salt or other additives with heptane as
the oil phase). They observed that acetic acid/acetate ions could diffuse between the
droplets and had exchange times that were functions of pH. And diffraction peaks
were observed at the same values of q for both water and the acetic acid/acetate
ions (see Figure 11.1).298

The concentration dependence of the self-diffusion coefficient has been investi-
gated for a range of micelle and mixed micelle systems.299 Angelico et al. have
observed curvilinear diffusion of surfactants in giant wormlike micelles.300 The
MSD of the surfactant was found to scale with t1/2. B1 gradients have been used to
measure the self-diffusion coefficient of hydroxyquinoline in aqueous solutions of
micellised SDS, and also to determine its partition coefficient as a function of pH.301

PGSE NMR is now a major tool in the study of liquid crystal systems with
studies including water self-diffusion in polycrystalline lamellar systems,302

hexagonal mesophases303 and smectic liquid crystals.304 Coppola et al.305 studied
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Figure 11.1 Water (•) and acetic acid/acetate ions (♦) in a concentrated (gel) w/o
emulsion of 96 wt% water. The ratio of acetic acid/acetate ions is 5/95. From
Malmborg et al.298
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water self-diffusion in water lithium/perfluorononanoate (LiPFN) and cetyltri-
methylammonium bromide (CTABr) micellar systems. The diffusion of the water
was rationalised by including the effects of hydration and obstruction. Cifelli
et al.306 studied the diffusion of 129Xe in the chiral liquid crystal 1-methylheptyl
4′-(4′′-n-decyloxybenzoyloxy) biphenyl-4-carboxylate (10B1M7) over a range of
temperatures covering the isotropic, smectic, and ferroelectric, ferrielectric and anti-
ferroelectric smectic phases. They observed that the anisotropy (D⊥/D∥) of the diffu-
sion tensor increases with decreasing temperature. In a later study307 they used fringe
field NMR diffusometry measurements to probe from the isotropic to the anticlinic
phase of the ferroelectric liquid crystal 1-methylheptyl 4′(4″-n-decyloxybenzoyloxy)
biphenyl-4-carboxylate.

129Xe diffusion has been studied as a function of temperature in different phases
of the ferroelectric liquid crystal FELIX-R&D.308 In the smectic mesophases
significantly faster diffusion was observed in the perpendicular direction than
in the direction parallel to B0.

129Xe diffusion has also been studied in the so-
called critical mixture of two nematic liquid crystals with opposite diamagnetic
anisotropy as a function of temperature.309 In this mixture the liquid crystal director
rotates 90° from the parallel direction to the perpendicular direction with respect to
B0 as the critical point is approached from the high temperature side.
Solutions of block copolymers are interesting systems for the study of self-

organisation since due to hydrophobic and hydrophilic moieties, the polymer
molecules may form micelles over a certain temperature interval. As a result, the
diffusion of some polymers can have strange temperature dependencies, such as
have been observed with the triblock copolymer PEO-PPO-PEO in 2H2O.

310

Interestingly, it was observed that even for the case of Δ= 3ms the attenuation of
the echo signal was single exponential. Thus, the exchange time of the polymer
molecules between the micelles and monomers must be much shorter than the
observation time. The influence of polydispersity on the micellisation of triblock
copolymers has been investigated using PGSE NMR.311 Ambrosone et al.312 have
studied diffusion of a surfactant confined in a branched cylindrical micellar network
formed from lecithin and small amounts of water in the solvent isooctane. At certain
concentrations and at shorter diffusion times they observed that the MSD of the
surfactant scaled as t½ consistent with curvilinear diffusion.

11.4.1.6 Colloids

The long-time self-diffusion (D∞) of spherical polybutadiene latex particles, which
were highly charged due to the adsorption of anionic surfactant, were measured in
water using PGSE NMR.313 Roberts et al.314 studied the self-diffusion of 7Li+ in a
suspension of sulfonated polystyrene latex particles over a wide range of electrolyte
concentrations. The diffusion of the lithium was considerably less than that in a
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solution of LiClO4 of the same concentration indicating that the Li+ counterions are
electrostatically bound to the large latex particles. Further, the ion-exchange beha-
viour of the latex suspension was able to be characterised by observing the change in
Li+ diffusion with addition of LiClO4.
Schipper and Leyte315 have studied the self-diffusion of the species in a 2H2O

solution of polymethacrylic acid neutralised with tetramethyl ammonium hydro-
xide. At concentrations below 0.01molmonomer kg−1 the polyion self-diffusion
coefficient approaches that of a freely diffusing rod; above this concentration the
diffusion of the polyions and counterions are independent of concentration but at
concentrations greater than 0.1molmonomer kg−1 the diffusion of the solvent count-
erions decrease with concentration due to topological constraints. They found that
the relative counterion diffusion coefficient (i.e., D/D0; the obstruction factor) was
predicted almost quantitatively by the Poisson–Boltzmann–Smoluchowski model
(see Section 1.8.6).
Böhme and Scheler316 used PGSE to study the fractal dimension in the polyelec-

trolyte poly(styrenesulfonate). From the variation of the hydrodynamic radius with
molecular weight for each ionic strength the fractal dimensions were determined.

11.4.1.7 Membranes

PGSE measurements of water and glycerol in cellulose acetate membranes have
been performed and the results compared with simulations of the anomalous (and
anisotropic) diffusion on the membrane using a two-dimensional lattice model.317

Measurements of ethanol–water mixtures in polyacrylic acid-polysulfone composite
membranes318 and in cellulose derivative membranes319 have also been performed.
In a more recent work the diffusion of water and fluorine ions in anion-exchange
membranes and resins was investigated.320

11.4.1.8 Polymer and macromolecules

PGSE can provide an enormous amount of information about polymers both
in solution and in polymer melts. For example, PGSE NMR has recently been
used to measure the critical overlap concentration for polystyrene in tetrachloro-
methane.321 Callaghan and Coy,322 using very large values of q (2πq � (130Å)−1),
have obtained evidence for reptational motion of high molar mass polystyrene in
semidilute solution using 1H PGSE measurements. In perhaps the first spin-echo
study on the diffusion of a polymer melt, in 1959, McCall et al.323 measured the
self-diffusion of low molecular weight polystyrenes. The molecular ‘reptation’
model in polymers as described in Section 1.8.7 has been confirmed with PGSE
NMR for both polymer melts324 and solutions.322 Cheng et al.325 studied the
temperature-dependence of the diffusion of poly(ethylene oxide) in the melt.
Their results were at variance with those predicted by de Gennes (Eq. (1.160)).
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Cosgrove et al.326 observed Rouse-like behaviour (Eq. (1.159)) in blends of linear
and cyclic polydimethylsiloxane melts. Using stray-field-based measurements
Fischer et al. studied the diffusometry of segment displacements in melts of
entangled polymers.327 Appel et al.324 used the fringe field of a superconducting
magnet to measure the self-diffusion of poly(dimethylsiloxane), polybutadiene
and polyisoprene for times smaller than the reptation time. A time-dependent self-
diffusion coefficient was observed.
PGSE NMR has been able to probe internal diffusion modes in semi-dilute

solutions of high molecular weight polystyrene in toluene revealing reptational
scaling laws at length scales as small as 20 nm.328 And the diffusion of block
copolymers has been studied in liquid CO2.

329 The structures of PEG-rotaxa-
(α-cyclodextrin)s and (PEG-rotaxa-αCD)s in dilute DMSO-D6 have been studied
using NMR diffusion measurements. It was found that the diffusion of the (PEG-
rotaxa-αCD)s and PEGs scaled with their respective molecular weights as D(PEG-

rotaxa-αCD) ~ Mn−0.60 ± 0.05 and DPEG � Mn−0.55 ± 0.03.330

Polymeric microgels are quite distinct from polymers. They are semi-rigid and
are unable to penetrate each other. While, similar to polymers, their diffusivity is
determined by mutual interactions and their transport properties are quite different
from polymer chains. In a studywith cross-linked polystyrene beads, it was noted that
with increasing concentration, a large decrease in mobility is observed and the
deviation from ordinary diffusion increased.331 This indicated that the individual
microgels are in a cage formed by their neighbours. However, as the cages are not
perfectly confining at largeΔ, the motion of the microgels appears to occur via normal
diffusion. Rosén et al.332 observed that the diffusion of dodecyl sulphate in cross-
linked gels of ethyl(hydroxyethyl cellulose) above the critical association concentra-
tionwas anomalous. However, below the critical association constant it wasGaussian.
They ascribed the anomalous diffusion to inhomogeneities within the gel.

1H PGSEmeasurements have been used to study the morphology and structure of
polyvinyl alcohol cryogels,333 and to study contact lens hydrogels.334 Anomalous
diffusion and evidence of fractal structure in the dynamics of water in a hydrogel
was observed using 1H fringe field diffusion measurements.335 Skirda et al.336

studied the diffusion of PEG in weakly cross-linked poly(methacrylic acid) hydro-
gel. They found that a fraction of the PEG inside the collapsed gel has diffusion
characteristics similar to the network chains, suggesting the formation of an inter-
polymer complex, while another fraction of the PEG diffused freely. However, in
the swollen gel (PEG concentrations above 5wt%) the diffusion of all of the PEG
molecules was independent of Δ indicating either no interpolymer complex or very
rapid exchange.
PGSE has been used in combination with other physico-chemical techniques

to evaluate the nanomorphology and molecular accessibility of gel-type resins used
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for supporting palladium nanoclusters.337 The dynamics of water and cations (Li
and Na) in gel-type cation exchange resins has also been examined using PGSE
NMR.338 It was found that the diffusion of the water and the cations decreased in the
higher cross-linked resins and evidence of restricted diffusion was observed sug-
gesting a three-dimensional network structure in the gels. Anomalous diffusion has
been observed in an aqueous system of a PEO-PEO-PEO block copolymer during
gelation.339

Meresi et al. have used PGSE to study the diffusion of pentane in a random
copolymer of tetrafluoroethylene (TFE) and 2,2-bis(trifluoromethyl)-4,5-difluoro-
1,3-dioxole (PDD) as a function of the time allowed for diffusion to occur (i.e., Δ).
Using the change in echo amplitude at low values of q they found that the apparent
diffusion at 12.4ms of 2.2 × 10−11m2s−1 decreased to a constant value of
5.87 × 10−12m2s−1 at 1 s.340 This was interpreted in terms of morphological struc-
ture of this completely amorphous glassy polymer on the micron length scale. It is
thought that regions of high free volume are interspersed in lower free volume
regions and that this leads to the observed changes in the measured diffusion
constant as a function of Δ.

11.4.1.9 Diffusion in polymer electrolytes and ionic conductivity
23Na PGSE NMR has been used in conjunction with T1 measurements to study the
relationship between the diffusion coefficient, ionic conductivity and τc of sodium
ions in water–glycerol solutions.341 7Li and other heteronuclei are commonly used
to study diffusion in lithium salt–polymer (esp. poly(ethylene oxide)) electrolyte
systems and there are now an enormous number of studies.342 Golodnitsky et al.343

have used PGSE NMR to investigate the poly(ethylene oxide)–LiI system. Their
results showed that the diffusivity of the Li+ is anisotropic and enhanced in the
direction of the stretched polymer. Li–salt polymer electrolytes have complicated
molecular dynamics and appear to undergo structural rearrangement with age.344

11.4.1.10 Diffusion in dendrimers, nanoparticles and supramolecular polymers

Gorman et al.345 have used PGSE NMR to study two series of redox-active, iron–
sulfur core dendrimers dissolved in DMF and THF and to determine the correspond-
ing Stokes radii. Newkome et al.346 have investigated the pH dependence of the
molecular size distribution of a cascade series of polyacids dissolved in 2H2O with
formula weights ranging from 1341 to 111373 using diffusion measurements. For
each cascade generation they found that the hydrodynamic radius was largest at
neutral pH and smallest at acidic pH. In a later study,347 the diffusion of three series
of cascade polymers possessing identical internal hierarchical structures but with
either acidic, basic or neutral functionality were compared. The results were con-
sistent with the flexible internal structure and coulombic repulsion between the
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terminal groups being responsible for the pH sensitive (‘smart’) behaviour of these
dendrimers. The diffusion of nanoparticles348 and of three different poly(propyle-
neimine) dendrimers with hydrophilic triethylenoxy methyl ether terminal groups
(generations 2, 4 and 5) in poly(vinyl alcohol) aqueous solutions and gels,349 and
the association of homochiral cyclic dimers of 2-ureido-4[1H]-pyrimidinone
(UPy),350 have also been studied using NMR diffusion measurements.

11.4.1.11 Host–guest chemistry

There have been numerous NMR diffusion studies involving crown ethers,351 com-
plexes of γ-cyclodextrin with macrocycles such as 12-crown-4 in the presence and
absence of inorganic and organic salts,352 encapsulation of guests in self-assembled
tetraurea calix[4]arene dimers,353 complexes of cyclohexylacetic acid and cholic
acid with β-cyclodextrin.354 The host–guest complexes of resorcin[4]arenes
with glutaric acid and β-methyl d-glucopyranoside in chloroform were investigated
with a range of NMR methods including PGSE.355 From the results it was inferred
that the complex is a self-assembled capsule of six resorcinarenes that surround
three guest molecules of β-methyl d-glucopyranoside or six of glutaric acid.

11.4.1.12 Porous media

Although our coverage is essentially limited to studies using purposely applied
gradient pulses, it is noted that a large literature exists on studying porous media
based on the presence of the internal gradients. We stress that emulsions and
biological tissues (see above) can also constitute porous media.

Mesoporousandmicroporousmaterials In themesoporous andmicroporous domain
(also sometimes referred to as nanopores), PGSE is only able to provide transport
information on length scales larger than the characteristic distances of the pores.
Consequently, for nanoporous media the information obtained from PGSE studies is
related to averaged fluid–porous matrix interactions.
PGSE diffusion measurements reveal that water diffused anisotropically in (the

porous silicate) MCM-41 and that the data was best represented by an axisymme-
trical diffusion tensor.356 Stallmach et al.357 have studied the diffusion of benzene,
n-hexadecane, propylenecarbonate, ethylbenzene and diethyl ether in ordered
mesoporous materials of type MCM-41. The fast diffusivities observed with ben-
zene, ethylbenzene and diethyl ether in MCM-41 suggest that the transport pro-
cesses for these molecules are governed by gas or vapour phase diffusion, which is
reduced by interactions with the silica walls. Whilst the results for n-hexadecane
revealed that its diffusion in the hexagonal channels of MCM-41 is anisotropic.
In a later study, Valiullin et al.358 have studied the diffusion of cyclohexane in
MCM-41 at different external gas pressures from zero to saturated vapour pressure.
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Single file diffusion has been verified in AlPO4− 5 zeolites and the attenuation
data was well-described by Eq. (4.57),359 and explored in the �500 pm nanochan-
nels in tris(o-phenylenedioxi)cyclophosphazene that persisted for 10s of seconds
using laser polarised 129Xe.360 By analysing short-time diffusion data and extra-
polating to zero observation time, Gjerdåker et al.361 were able to determine the
unrestricted intracrystalline diffusion coefficient for ethane confined in H-ZSM-
5 crystallites. Pampel et al.362 have used MAS PGSE to study the diffusion of n-
butane adsorbed in silicalite-1. They noted that the combination of the techniques
brought two benefits from the additional line narrowing: (i) a prolongation of the
intervals during which the magnetic field gradients may be applied and a corre-
sponding enhancement in the sensitivity towards small molecular displacements,
and (ii) an enhanced chemical shift resolution. Geil et al. have used static field 1H
diffusion measurements to study benzene translational dynamics on zeolite NaY.363

Analysis of the data suggests that the elementary motional process is related to
jumps along well-defined adsorption sites in the guest.

Interconnected pores Many nanoporous materials are produced as particles with
dimensions in the realms of micrometres, although they may be packaged in larger
structures (e.g., chromatographic media). Thus, such systems have both nanopores
andmacropores with the transport properties being dominated by the interconnected
macropores. Importantly, as the pore size increases, the fluid–matrix interactions
decrease which results in longer transverse relaxation times. Much can be deduced
about pore structure from the time-dependence of the measured diffusion coeffi-
cient, and when surface relaxation is not too great, measurement of D∞ and thus the
tortuosity. The situation is made much easier when gases are used as probes and the
use of hyperpolarised gases obviates the loss in sensitivity when moving to gas-
based diffusion studies. The physical parameters determined from PGSE measure-
ments have important practical implications such as catalytic performance in fluid
cracking catalysts.364 Indeed, PGSEmeasurements andMRI experiments have been
used to assess the spatial distribution of voidage, and simulations of diffusion based
on the images to examine the diffusion and tortuosity of water in Al2O3 and SiO2

catalyst support pellets.365

The pore connectivity in rock samples has been studied using the gases methane
and ethane by measuring the diffusion as a function of relaxation time using a
diffusion-editing sequence in which diffusion editing was performed prior to collec-
tion of relaxation data. The increased diffusivities and long relaxation times allowed
greater length scales to be probed.366

Callaghan et al. have used PGSE measurements in the Earth’s magnetic field to
study Antarctic sea ice. The resulting data revealed restricted diffusion of brine water
in sea icewith pore size of the order of 40μm−1 and that thewater can tortuouslymove
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between pores connected by narrow throats.367 Vargas-Florencia et al.368 have studied
the size distribution and permeability of pores in nanostructured TiO2 films using
PGSE measurements in combination with other advanced techniques.
Sørland369 has investigated the use of the short-time diffusion equation (Eq. (1.122))

in a model system consisting of soda-lime glass spheres and observed that a better
fit to the data was obtained when the effects of restricted diffusion during the
gradient pulses were accounted for.370 Latour et al.371 and Hürlimann et al.372 have
used measurements of D(t) and RTOP to study artificial porous media consisting of
polystyrene or glass spheres as well as sandstones.
Unlike model porous materials like packed spheres, carbonate rocks and sand-

stones have smooth and featureless deviations from Gaussian behaviour and do
not generally show clear diffraction behaviour.373 Interestingly, the curves giving
the non-Gaussian behaviour of E(q, Δ) can be collapsed onto each other where the
momentum is scaled by the diffusion length.373 This has been interpreted that on
the timescale of Δ the diffusion is locally Gaussian but anisotropic. Indeed, from the
behaviour of RTOP it has been proposed that diffusion is locally one-dimensional
in some rock samples on the NMR timescale.373

Minerals, construction materials and sediments In general, mineral-based con-
struction materials and sediments pose special experimental difficulties for per-
forming PGSE experiments due to the inclusion of paramagnetic species/large
susceptibility differences. Thus, specialised PGSE sequences that reduce the effects
of background gradients as discussed in Section 7.6 are normally required. However,
Vasenkov et al. have demonstrated using measurements with hexadecane in sand
and n-octanol in doped MgO pastes that true diffusion coefficients can be deter-
mined using a standard PGSTE sequence by extrapolation.374 Nestle et al.375

studied the diffusion of water in white cement pastes at various degrees of hydra-
tion. In a later study, the diffusion of water in porous building materials including
fired clay brick was studied using a constant gradient STE technique, and the
results were used to evaluate the tortuosity of the pore space.376

By measuring the diffusion coefficient of water in samples of glacial sand over
a range of observation times (Δ) from 2.5 to 250ms, Stallmach et al.377 were able
to determine the surface-to-volume ratios and specific surface areas of the grains.
In both cases the quantities exhibited non-integer power-law dependencies as a
function of grain diameter. However, a later paper questioned the analysis and
presented an alternative method for analysing the PGSE data.378 Mutina and
Skirda379 have used DDIF experiments to probe porous geometry and the locali-
sation of tridecane in quartz sand. Specialised imaging equipment for performing
one-dimensional images has been used to study water and salt transport in materials
such as brick during drying.380
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Almost all natural sediments studied necessarily have a well-connected pore
space allowing the introduction of the fluids being probed in the NMR measure-
ments. However, these systems tend to be complex and even using background
suppression sequences, the PGSE amplitudes in porous sandstones and carbonate
rocks do not decay single exponentially due to the effects of randomly orientated
and partially ordered restricted diffusion.381 The diffusion of water and polypropy-
lene oxide in the pores of hardened gypsum and their data were analysed to form a
model of the pore network inside the gypsum.382 Stray-field measurements have
been used to study flow displacement distributions in Bentheimer sandstone.383

Numerous studies have involved measuring the time-dependent diffusion coeffi-
cient to investigate surface-to-volume ratios in water-saturated sedimentary
rocks.372

Takahashi et al.384 observed diffusional anisotropy for water in suspensions of the
colloidal clay mineral Na-montmorillonite using PGSE measurements. They inter-
preted their data to indicate that in strong magnetic fields the Na-montmorillonite
particles aligned with their basal planes parallel to the static field and their nanocrys-
talline c-axes perpendicular to it.

Chromatography PGSE diffusion and flow measurements have been shown to
be useful in characterising the diffusion and flow behaviour in chromatographic
media and thereby relating macroscopic chromatography column performance
with the underlying physico-chemical fundamentals385 including information
on stagnant mobile phase transfer kinetics,386 axial and transverse dispersion
characteristics,387,388 scaling behaviour,389 structure-flow and dispersion correla-
tions,390 and to discriminate between pressure and electrokinetically driven
flows through open and packed columns.391 The evolution of viscous fingering
instability has been investigated in packed chromatography beds using MRI.392

Finally, we note that there have been a number of PGSE NMR studies of the
diffusion of proteins such as conalbumin, lysozyme and ovalbumin in porous
chromatographic media.393

11.4.1.13 Gas diffusion

Low S/N is a particular problem of gas samples due to their extremely low density.
The earliest gas diffusion measurements were performed using thermally polarised
gases.394 The use of optical pumping techniques to produce large nuclear spin
polarisations has led to a surge in applications of gas-phase NMR including diffu-
sion measurements.395 In the simplest case a one-dimensional imaging technique is
used to measure diffusion by observing the signal return to an area that has been
bleached or the evolution of an excited slice.396 Gradient-echo-based methods have
also been used.397 NMR measurements can be complicated by the very long
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relaxation times with T1s greater than 50min being often observed397 and thus either
specialised sequences are used or the gas is mixed with O2 to reduce the relaxation
time. A further complication of experiments involving hyperpolarised samples is
that there is no recovery of magnetisation after an rf pulse. Consequently, speci-
alised variants of the standard diffusion sequences are required. Mair et al.395 have
presented modified PGSE sequences in attempts to obviate these problems includ-
ing a multiple spin-echo single-shot sequence.
Measurements of the time-dependent diffusion of gases in porous media should

be a good probe of multi-pore length scales due to the rapid diffusion of gas and
the weak interaction of gases with surfaces and of surface-to-volume ratios.398

However, such samples are extremely magnetically heterogeneous due to the
presence of gas–solid interfaces and the diffusion sequences that account for such
effects need to be used (see Section 7.6).395 Mair et al.395 have observed time-
dependent gas diffusion in a mixture of thermally polarised xenon and O2 in a
pack of glass beads. From their measurements they determined that the diffusion
coefficient of pure Xe at 1 atm was 5.71 × 10−6 m2s−1. Codd and Altobelli399

studied the probability density for molecular displacement of propane gas flowing
through three types of porous bead packs (PVC particles, glass spheres and
polystyrene spheres) and compared the results to that for water flowing in the
polystyrene pack. They found that the exchange time between the moving and
stagnant portions of the flow is strongly related to the diffusion coefficient of the
fluid.

11.5 Spin-diffusion

In extremely slowly diffusing systems, for example, high molecular weight poly-
mers with sufficiently slow reptational motion, spin-diffusion may play a role in
determining the RMSDs of magnetisation quasi-particles as predicted by
Fatkullin.400 Using PGSENMR spin-diffusion has beenmeasured in a single crystal
of CaF2,

401 in polymer melts,402 and in high molecular mass polystyrene dissolved
in deuterated toluene.403

11.6 Imaging-based studies

As whole body MRI imagers become available at increasingly greater field
strengths the applicability of many of the methods for measuring translational
motion will increase. Interestingly, recent studies have revealed that diffusion
MRI could be used to look at brain activity leading to improved spatial and temporal
resolution compared to previous functional MRI approaches based on observation
of the BOLD effect.404

340 Applications



11.6.1 Diffusion measurement by imaging profiles

Blackband and Mansfield used 1D imaging to study the ingress of water into
blocks of nylon at 100 °C and thereby determine the mutual diffusion coeffi-
cient.405 Similarly one-dimensional proton concentration profiles in Laponite
clay gels prepared from 1H2O/

2H2O mixtures were measured using MRI to deter-
mine macroscopic interdiffusion (i.e., mutual diffusion) coefficients and these
were compared with PGSE NMR measurements of the self-diffusion.406 Song
et al.407 have used 1D MRI-based diffusion measurements to study the diffusion
of laser-polarised Xe gas between planes. Nestle and Kimmich408 used NMR
images to probe the progress of isovalent competitive ion exchange processes in
alginate gels.

11.6.2 Diffusion-weighted imaging

Diffusion-weighted MRI is now widely used to detect and characterise ischaemic,
malignant and neurodegenerative diseases. In a study of myelin deficient rat spinal
cords, Biton et al.409 observed that lack of myelin has a pronounced effect on the
diffusion properties of water in white matter in high b-value q-space diffusion
weighted MRI. A later study found that high b-value q-space diffusion weighted
MRI that emphasises the water component which exhibits restricted diffusion has
potential for diagnosing Alzheimer’s disease and vascular dementia whereas con-
ventional diffusion tensor imaging did not show significant changes between either
of the groups and controls.410 Does et al. combined OGSE with the echo planar
imaging sequence to study water diffusion in normal and globally ischaemic rat
brain.411

Boujraf et al.412 studied anisotropic diffusion in asparagus stems. And Ellegood
et al.413 have measured the mean apparent diffusion coefficient and fractional
anisotropy of metabolites including N-acetylaspartate, creatinine and phosphocrea-
tinine in peripheral nerve using diffusion-weighted magnetic resonance.

11.6.3 Diffusion tensor imaging

Diffusion tensor MRI has been used to investigate the white matter of patients with
focal temporal lobe epilepsy.414 The results suggested that diffusion anisotropy may
reveal abnormalities in such patients. DTI has been used to detect and quantify the
infiltration of tumours into white matter since the destruction of white matter alters
the local diffusion properties.415 Fibre tracking using diffusion tensor MRI has also
been used to gauge brain development since it provides a means of quantifying
changes in neural tissue microstructure (see Figure 11.2).416
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11.6.4 Imaging-based flow studies

MRI-based flow techniques enable measurements to be performed that are
simply not possible with traditional techniques,37 and also provides the possibility
of visualising flow in real time.417 Couette flow has been widely studied.418

Rheometry by NMR has become an area of increasing interest with applications
such as measuring velocity profiles of a Newtonian liquid, a shear thinning liquid
and a suspension undergoing Poiseuille flow in a capillary.419 Britton and Callaghan
have studied non-linear viscosities and observed properties such as apparent slip,
shear thinning, shear thickening, shear banding and yield-stress behaviour in a
range of systems including food substances.420 Using a cone-and-plate rheometer
they verified the uniform shear rate assumption in Newtonian and simple non-
Newtonian fluids but observed anomalous behaviour such as apparent slip, shear
banding and fracture rates in systems including worm-like surfactants, semi-
dilute solutions of 18MDa polyacrylamide and dispersed silica in silicone
grease.421 Xia and Callaghan have imaged velocity profiles in a tubeless siphon
with a visco-elastic liquid of high extensional mobility.422

Multiphase flows in porous media typically involve two liquid phases such as oil
and water. As the two phases generally have quite different NMR relaxation times,
they can be easily distinguished. Alternatively, differences in chemical shifts can be
used to study separate phases in multiphase flows. For example, chemical shift

Figure 11.2 Four different views of fibre tracking of an entire human adult brain.
Coronal sections of T2-weighted images are overlaid. From Watts et al.416
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imaging was used to quantitatively investigate the oil concentration polarisation
layers which formed during hollow fibre membrane filtration.423

In porous media flow imaging studies it is the liquid phase that is imaged as the
solid matrix produces no signal. PGSE and MRI-based measurements of diffusion
and flow have proven to be very powerful methods for characterising chromato-
graphic media. Tallarek et al. used dynamic MRI to study a fluid percolating
through a packed bed of a dynamic radial compression column for liquid chromato-
graphy.424 They were able to determine the distribution of the fluid dynamic
displacement probability at each point of the image, the local axial dispersion
coefficient, the fluid velocity and external porosity. Koptyug et al. have studied
liquid and gas flow in monolithic alumina catalysts using thermally polarised 1H
NMR imaging.425 Klemm et al. have used NMRmicroscopy and velocity mapping
to visualise flow patterns of percolating liquids in porous materials.426 Their
analysis revealed anomalous diffusion.
Magnetic resonance flow imaging has been used to study thermal convection427

and was found to be capable of resolving details at a level comparable to optical
techniques. Weis et al.428 demonstrated that the combined application of Fourier
encoding velocity imaging and multistripe/multiplane tagging imaging allows the
quantitative examination of thermal convection for arbitrary boundary conditions.
In a later imaging study it was shown that convection in a vertical cylindrical tube
lead to axially antisymmetric flow, multiple vertical scrolls and twisted node planes.
Morhorič and Stepišnik have studied the effect of convection in horizontally
oriented cylinder on the distribution of diffusivity using imaging measurements
conducted in the earth’s magnetic field.429 Weber et al. have measured convection
as a function of porosity in random-site percolation model objects.430 They found
that the maximum velocity as a function of the porosity indicated a combined
percolation/Rayleigh–Bénard transition. Convection of laser-polarised 129Xe gas
has also been imaged.431

Diffusion-weighted MRI has proven to be very sensitive to microstructural
changes in brain tissue – especially those resulting from stroke or ischaemic injury.432

Since therapeutically induced changes in tumour water diffusion are detectable
with diffusion MRI, the measured ADCs can be used as an early surrogate marker
of therapeutic efficiency in brain tumours.433 Helmer et al.434 have compared the
use of RTOP and apparent diffusion coefficients in NMR imaging experiments as
indicators of necrosis in tumours. DTI has been used in characterising the nature of
white matter lesions in the brains of multiple sclerosis sufferers.435 Tagging
techniques have application to clinical medicine for studying heart wall motion436

and even to studying coherent and incoherent flows in fertilised bird eggs.437

Noting that due to differences in relaxation rates and quadrupolar splittings the
signals of water in the three different compartments (endoneurium, epineurium and
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axon) of rat sciatic nerve are resolved in 2H double-quantum-filtered NMR spec-
trum, Seo et al.438 were able to measure the water diffusion coefficients in each
compartment. And the diffusion was found to be anisotropic in all three compart-
ments. Parallel to the nerve fibre the average intra-axonal water diffusion coefficient
was 1.11× 10−9m2s−1, while perpendicular to the nerve fibre the diffusion was
heavily restricted. The average perpendicular diffusion coefficient ranged from
0.29 × 10−9m2s−1 to 0.05 × 10−9m2s−1 for Δ=7ms and 50ms, respectively.
Assuming restricted diffusion in non-permeable cylinders, intra-axonal mean dia-
meters of 6.0, 7.4 and 9.0μmwere obtained for nerves taken from three different rats.
The transport of osteoid water across the mineralised matrix of bone has been

studied using 1H NMR imaging to gauge the exchange of tissue water whilst the
bone was immersed in 2H2O.

439

Velocity imaging has been used to probe pipe flow of blood.440 And Loureiro de
Sousa et al.441 have noted that the effect of flow on the distant dipolar field could be
used to obtain information on blood perfusion at an intravoxel scale in MRI
experiments.
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Appendix

Cumulant expansion

A cumulant expansion is a logarithmic function expansion. Here we illustrate
the concept using only a one-dimensional case (the general case is considered
elsewhere1,2).
Let P(x) be a distribution of a random variable x and �(k) be its characteristic

function

�ðkÞ ¼
ðþ1

�1
P xð Þeikxdx: (A:1)

When expanded in a power series this function becomes

� kð Þ ¼
X1

n¼0

ikð Þn
n!

xnh i; (A:2)

where

xnh i ¼
ðþ1

�1
xnP xð Þdx (A:3)

are the moments of the distribution P(x). Thus �(k) is the generating function for
moments. By taking the logarithm of �(k) we obtain another important function
(termed the generating function for cumulants)

Φ kð Þ ¼ ln� kð Þ; (A:4)

which when expanded gives

Φ kð Þ ¼
X1

n¼0

ikð Þn
n!

xnh ih i: (A:5)

The coefficients 〈〈xn〉〉 in Eq. (A.5) are termed cumulants of variable x.
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Maple Worksheet for the Stejskal and Tanner equation

The definitions of the Maple code can be found in the appropriate User’s Guide.
Define the integral used in determining q(t) and b.

> q:=(geff,ti)->gamma*1/(2*pi)*int(geff,td=ti..t): # Eq. (2.14)
> b:=(q,ti)->(2*pi)^2*int(q^2,t=ti..td): # Eq. (2.67)

Define the time intervals and the relevant value of geff for each integral. Then use
these to calculate the values of q(t) and b for each interval remembering that they
contain contributions from all of the intervals from the start of the pulse sequence.

> l1:=0: # start of 1st subinterval
> geff:=g0:
> q1:=q(geff,l1):
> b1:=b(q1,l1):
> l2:=t1: # start of 2nd subinterval
> geff:=g+g0:
> q2:=subs(t=l2,q1)+q(geff,l2):
> b2:=b(q2,l2)+subs(td=l2,b1):
> l3:=t1+delta: # start of 3rd subinterval
> geff:=g0:
> q3:=simplify(subs(t=l3,q2)+q(geff,l3)):
> b3:=simplify(b(q3,l3)+subs(td=l3,b2)):
> l4:=tau: # start of 4th subinterval
> geff:=-g0:
> q4:=subs(t=l4,q3)+q(geff,l4):
> b4:=simplify(b(q4,l4)+subs(td=l4,b3)):
> l5:=t1+Delta: # start of 5th subinterval
> geff:=-g-g0:
> q5:=subs(t=l5,q4)+q(geff,l5):
> b5:=simplify(b(q5,l5)+subs(td=l5,b4)):
> l6:=t1+Delta+delta: # start of 6th subinterval
> geff:=-g0:
> q6:=simplify(subs(t=l6,q5)+q(geff,l6)):
> b6:=simplify(b(q6,l6)+subs(td=l6,b5)):
> l7:=2*tau: # signal acquisition (i.e., echo time)
> S:=S0*exp(-subs(td=l7,b6)*D); # Eq. (2.65)

S :¼S0 e�
1
3
γ2 3g2 δ2 Δþ 2g02 τ3 �3 g g0Δ δ2� 2 g δ3 g0�3g δ g0Δ2þ6g δ2g0 τ�6g δ g0 t12ð

�6 gδ2g0t1�g2δ3�6g δ g0 τ2þ12 g δ g0 τ t1þ12g δ g0 τΔ�6g δ g0 t1ΔÞD
> S:=subs(g0=0,S); # Eq. (2.75)

S :¼ S0 e�
1
3
γ2 3g2δ2Δ�g2δ3ð ÞD
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Derivation of echo shapes and 1D images for gradient calibration

Gradient directed across the cylinder

With the gradient directed across a cylindrical sample (i.e., g= gx in Fig. 6.5), the
phase distribution of spins starting at x0 is

P �ð Þ ¼ g �1ð Þρ x0ð Þ; (A:6)

which is the product of two independent functions where

� ¼ �1 þ γg 2τ � tð Þx0; (A:7)

g �1ð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π �2

1

� �q e
� �2

1

2 �2
1h i: (A:8)

The spin density function, ρ(x0), describes the distribution of chords of a circle, a
semi-ellipse, and is zero for a position outside the sample. Noting that the length of a
chord at a distance of x0 from the centre of a circle of radius r is given using the
Pythagorean theorem by 2(r2 – x0

2)½, we define

ρ x0ð Þ ¼
2

π r2
r2 � x2

0

� �1=2
x0j j�r

0 x0j j4r :

(

(A:9)

and the normalisation factor, 1/πr2, ensures that
ð1

�1
ρ x0ð Þdx0 ¼

ðr

�r

ρ x0ð Þdx0 ¼ 1: (A:10)

Thus,

S 2τð Þ ¼ S 2τð Þg¼0

ð1

�1
P �ð Þ cos� d�

¼ S 2τð Þg¼0

ð1

�1
g �1ð Þd�1

ð1

�1
ρ x0ð Þ cos �1 þ γg 2τ � tð Þx0ð Þdx0:

(A:11)

Starting with the inner integral in Eq. (A.11) and using the trigonometric identity
cos(A+B) = cos A cos B – sin A sin B,
ð1

�1
ρ x0ð Þ cos �1 þ γg 2τ � tð Þx0ð Þdx0 ¼

cos�1

ð1

�1
ρ x0ð Þ cos γg 2τ � tð Þx0ð Þdx0 � sin�1

ð1

�1
ρ x0ð Þ sin γg 2τ � tð Þx0ð Þdx0:

(A:12)
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The second integral is an odd function of x0 (i.e., – f(x0) = f(–x0)) and so equals 0.
Thus, Eq. (A.11) becomes

S 2τð Þ ¼ S 2τð Þg¼0

ð1

�1
g �1ð Þ cos�1d�1

ð1

�1
ρ x0ð Þ cos γg 2τ � tð Þx0ð Þdx0: (A:13)

The integral over x0 in Eq. (A.13) is

ð1

�1
ρ x0ð Þ cos γg 2τ � tð Þx0ð Þdx0 ¼ 2

π r2

ðr

�r

r2 � x20
� �1=2

cos γg 2τ � tð Þx0ð Þdx0;

(A:14)

and set x0 = rt and so dx0 = r dt and thus

¼ 2

π

ð1

�1

1� t2
� �1=2

cos γg 2τ � tð Þrtð Þdt: (A:15)

We use the integral representation of the first order Bessel function (e.g., 8.411.8
in ref. 3)

Jv zð Þ ¼
z
2

� �v

G vþ 1
2

� �
G 1

2

� �
ð1

�1

1� t2
� �v�1=2

cos ztð Þ dt Re v4� 1

2

� �
; (A:16)

with v= 1 and z= γg(τ – t)r, G 1=ð 2Þ ¼ ffiffiffi
π

p
, G 3=2ð Þ ¼ ffiffiffi

π
p

=2 and so Eq. (A.16)
becomes

J1 zð Þ ¼
z
2

G 3
2

� �
G 1

2

� �
ð1

�1

1� t2
� �1=2

cos ztð Þdt

¼ z

π

ð1

�1

1� t2
� �1=2

cos ztð Þdt: (A:17)

Using Eq. (A.17), Eq. (A.14) becomes

2

γg 2τ � tð Þr
γg 2τ � tð Þr

π

ð1

�1

1� t2
� �1=2

cos γg 2τ � tð Þrtð Þdt
� �

¼ 2J1 γg 2τ � tð Þrð Þ
γg 2τ � tð Þr : (A:18)

We now consider the integral over �1 in Eq. (A.13),

ð1

�1
g �1ð Þ cos�1 d�1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2π �2

1

� �q
ð1

0

e
� �2

1

2 �2
1h i cos�1 d�1: (A:19)
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By noting the standard integral (e.g., 3.896.4 in ref. 3)
ð1

0

e�βx2 cos bxð Þdx ¼ 1

2

ffiffiffi
π
β

r
exp � b2

4β

	 

Re β40½ �; (A:20)

where in the present case β= 1/(2〈�1
2〉) and b= 1 and so continuing with Eq. (A.19)

we get
ð1

�1
g �1ð Þ cos�1d�1 ¼ exp � �2

1

� �

2

	 

: (A:21)

Using Eq. (A.18) and (A.21) we finally obtain the solution to Eq. (A.11) as4–6

S 2τð Þ ¼ S 2τð Þg¼0

ð1

�1
g �1ð Þd�1

ð1

�1
ρ x0ð Þ cos �1 þ γg 2τ � tð Þx0ð Þdx0

¼ exp � �2
1

� �

2

	 

2J1 γg 2τ � tð Þrð Þ

γg 2τ � tð Þr : (A:22)

(Note: Refs. 5 and 6 contain misprints; the 2 has been omitted in the numerator).
The exponential term in Eq. (A.22) is a constant (it is the attenuation factor due to

diffusion and does not affect the echo shape, only its initial amplitude) and to

consider the Fourier transform of J1 γg 2τ�tð Þrð Þ
γg 2τ�tð Þr and thereby obtain the frequency

spectrum

S ωð Þ ¼
ð1

�1

J1 γg 2τ � tð Þrð Þ
γg 2τ � tð Þr e�iω tdt: (A:23)

We set a = γgr, x = a(2τ – t), t = 2τ – x/a and dt = –dx/a and so Eq. (A.23)
becomes

S ωð Þ ¼ �
ð1

�1

J1 xð Þ
ax

e�iω 2τ�x
að Þdx

¼ � e�iω2τ

a

ð1

�1

J1 xð Þ
x

eiω
x
adx

¼ � e�iω2τ

a
F ωð Þ:

(A:24)

We set k=ω/a and consider the integral

F ωð Þ ¼
ð1

�1

J1 xð Þ
x

eikxdx: (A:25)

Using Euler’s relation (Eq. (2.1)), this becomes

Derivation of echo shapes and 1D images for gradient calibration 373



F ωð Þ ¼
ð1

�1

J1 xð Þ
x

cos kxð Þdxþ i

ð1

�1

J1 xð Þ
x

sin kxð Þdx: (A:26)

The first integrand is even and the second integrand is an odd function and therefore
goes to zero and so Eq. (A.26) becomes

F ωð Þ ¼ 2

ð1

0

J1 xð Þ
x

cos kxð Þdx: (A:27)

Next, noting the standard integral (e.g., 6.693.2 in ref. 3),

ð1

0

Jν αxð Þ
x

cos βx dx ¼
1
ν cos arcsin β

α

� �
β � α½ �

αν cos νπ
2

ν β þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 � α2

p� �ν β � α½ �

8
>><

>>:
Re ν40½ �; (A:28)

in the present case ν= 1, α= 1 and β =k. Thus, Eq. (A.23) becomes

S ωð Þ ¼ � e�iω2τ

γgr
cos arcsin

ω
γgr

	 
	 

ωj j � γgr½ � (A:29)

and equals 0 otherwise.

Gradient directed along the cylinder

In a superconducting magnet the gradient direction is usually along the z-axis (i.e.,
g= gz in Fig. 6.5). In this case,

ρ z0ð Þ ¼
1
l

z0j j � l
0 z0j j4l:


(A:30)

(i.e., 1/l is the normalisation factor) and performing the same procedure as in the
previous subsection we have

S 2τð Þ ¼ S 2τð Þg¼0

ð1

�1
g �1ð Þ cos�1d�1

ð1

�1
ρ z0ð Þ cos γg 2τ � tð Þz0ð Þdz0: (A:31)

We first consider the integral over z0 in Eq. (A.31),

ð1

�1
ρ z0ð Þ cos γg 2τ � tð Þz0ð Þdz0 ¼ 1

l

ðl

0

cos γg 2τ � tð Þz0ð Þdz0
¼ sinc γg 2τ � tð Þlð Þ:

(A:32)

The integral in Eq. (A.31) over �1 is given by Eq. (A.21) and so becomes
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S 2τð Þ ¼ exp � �2
1

� �

2

	 

sinc γg 2τ � tð Þlð Þ: (A:33)

The first term in Eq. (A.33) is a constant and so we perform the Fourier transform of
sinc(γg(2τ – t)l) to obtain the frequency spectrum

S ωð Þ ¼
ð1

�1

sin γg 2τ � tð Þlð Þ
γg 2τ � tð Þl e�iω tdt: (A:34)

We set a= γgl, x= a(2τ – t), t = 2τ – x/a and dt= – dx/a and so Eq. (A.34) becomes

S ωð Þ ¼ �
ð1

�1

sinx

ax
e�iω 2τ�x

að Þdx

¼ � e�i2τω

a
F ωð Þ;

(A:35)

where k=ω/a. We now consider the integral

F ωð Þ ¼
ð1

�1

sinx

x
eikxdx: (A:36)

Using Euler’s relation (Eq. (2.1)) to obtain

FðωÞ ¼ F1ðωÞ þ iF2ðωÞ; (A:37)

where

F1 ωð Þ ¼
ð1

�1

sinx cos x

x
dx ¼2

ð1

0

sin x cosx

x
dx (A:38)

and

F2 ωð Þ ¼
ð1

�1

sin x sin kx

x
dx ¼ 0; (A:39)

because the integrand is an odd function. Next, noting the identity

sinx cos kxð Þ ¼ 1

2
sin x 1� k½ �ð Þ þ sin x 1þ k½ �ð Þ½ �; (A:40)

Eq. (A.38) becomes

F1 ωð Þ ¼
ð1

0

sin 1� k½ �xð Þ
x

dxþ
ð1

0

sin 1þ k½ �xð Þ
x

dx: (A:41)

Finally, noting the standard integral (e.g., see Eq. 2.5.3.12 in ref. 7)
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ð1

0

sin bx

x
dx ¼ π

2
sgn b; (A:42)

to obtain

F ωð Þ ¼ π
2
sgn 1� kð Þ þ sgn 1þ kð Þ½ �

¼ π
2
sgn γgl� ωð Þ þ sgn γglþ ωð Þ½ �:

(A:43)

Thus, Eq. (A.35) becomes

S ωð Þ ¼ � e�i2τω

γgl
π
2
sgn γgl� ωð Þ þ sgn γglþ ωð Þ½ �: (A:44)

The bracketed term in Eq. (A.44) is non-zero when |ω| ≤ γgl as expected for the
transform of a sinc function and thus gives the same results as Eq. (6.7).
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Index

A
absolute value spectra 209, 212, 244,

245, 248
acetone

acetone-benzene 327
acetone-chloroform 327
acetone-succinonitrile 327
acetone-water 327

acetonitrile-ammonia 327
N-acetylaspartate 272, 320, 341
activation energy 2, 54
activity coefficient 5, 10
acyl carrier protein 326
adenosine triphosphate 323
adipose tissue 324
adrenocorticotropin peptides 325
affinity NMR 314
agarose gel 320
air bubbles 176
albumin 12, 110, 316–17, 319

albumin – salicylate 153, 203, 319
alginate gel 341
alkanes 207, 328, 335–8
alkylsulfonates 330
aluminium oxide nanotubes 321
Alzheimer’s associated Aβ peptide 319
amide exchange (see proton exchange)
ammonia 328

ammonia-benzene 327
ammonia-methanol 327
ammonia-1-pentanol 327

ammonium ions 327
aniline 328
anisotropic

diffusion 3, 15, 22–5, 35–6, 120, 163–70, 186, 258,
263, 273, 275, 276, 320, 325, 333, 335–6,
338–9, 341, 343

background gradients 231
Gaussian diffusion 22–5, 163–4, 338
MRI contrast 296
restricted diffusion 163, 166–70, 324

structure 48

anomalous diffusion 3, 7, 38, 42, 44–6, 300, 333,
335, 343

antifreeze glycoproteins 316
anti-ulcer complex 320
apparent
diffusion coefficient 32, 121, 124, 171, 227, 234,

299, 322–4, 338, 341, 343
diffusion tensor 299
slip 342

area of gradient pulse 73 (see also q)
Arrhenius equation 54
artifacts
B1 diffusion measurements 309
background gradients 230–4
convection and flow compensation 226–7
eddy currents 212, 235–42
electroosmosis 285
electrophoretic NMR 285
gradient constancy 204, 229
gradient-recalled echoes 202
motional 204
phase twist and artifactual attenuation 244
radiation damping 222
solvent 201, 212

asparagus 341
aspartic acid 316
asymmetric bipolar gradient pulses 202, 234, 269
attenuated total reflection infrared spectroscopy 55
attenuation (see echo attenuation)
auto-correlation function (see also velocity,

auto-correlation function)
single pore 48

average pore structure factor 48, 171
average propagator 17, 22, 28–9, 31, 39, 57, 82, 121–3
width at half-height 122

average velocity 5, 55, 174

B
B0 70, 72
shift 235, 237, 240

B1 70, 221
attenuation 310
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B1 (cont.)
diffusion measurements 309–10
diffusion measurements artifacts 309
flow measurements 309
gradient coils 309
gradient methods 308–10
gradients 308–9
gradients – advantages 309
gradients – comparison to B0 gradients 308
inhomogeneity 221
MAGROFI 310
mapping diffusion coefficients 310
non-ideal 221
nutation echoes 310

background (magnetic) gradients 77, 85, 91–4, 133,
175–7, 192, 202, 205, 208, 210, 230–4, 338

confusion with absorbing walls 232
confusion with restricted diffusion 232
contrast agents 232–5
Gaussian random fields 177
grossly inhomogeneous 177
magnitudes 176
parabolic field 177
problems in PGSE 230–2
solutions 232–4

small sample 232
specialised sequences 232–4
extrapolation 234

time-dependent 176, 232
bacteria 324, 325
ballistic motion 44
barycentric reference frame 7
baseline correction 212
bathocuproine 319
benzene (see C6H6)
benzene-cyclohexane 327

BH4
- 327

bicelles 319
binding (ligand) 150–5, 315, 325–6
biofluids 315, 320
biological cells or tissues 24, 39, 41, 46, 299, 323, 324
restricted diffusion 3, 128, 147, 158, 162–3, 166,

275, 276, 296, 323–4, 341, 343
Biot-Savart law 187
bipolar gradient pulses (see gradient (B0 or magnetic)

bipolar pulses)
2,3-bisphosphoglycerate 319
Bloch-Torrey equations 69, 90–5, 135–6, 150, 174
Blood 148, 176, 319
bicarbonate exchange 161
clots 320
diffusive diffraction 324
flow 344
glycine diffusion 314
Li+ uptake 325
plasma 315, 319, 320
sodium 325
water diffusion 323
water exchange 325

BOLD effect 340
bone 344

boundary condition 18–20
absorbing planes 156–7
absorbing spheres 157–62
absorbing wall 147, 156–62, 232
absorbing wall and finite relaxation 161
of the first kind 18
of the second kind 19
of the third kind 19
of the fourth kind 19, 159
permeable boundaries 162–3

bovine serum albumin (see albumin)
BPTI (bovine pancreatic trypsin inhibitor) 4, 316–18
brain

extracts 315
tissue 3, 35, 39, 43, 300, 324–5, 341

brick 338
brine 337
brownian

dynamics 7, 124
motion 2, 22

Brownstein-Tarr modes 279
bulk

relaxation 147
susceptibility effect (see long-range dipolar field)

n-butyllithium 329

C
C6H6 207, 328, 336–7
C6H6F 207
(C6H5)3P 207
C60, C70 4, 328
CaF2 340
cancer 324–5
capacity intermittent titration techniques 55
capillary

diffusion 164–6
methods 55
microcirculation 175

carbon
disulphide 326, 328
tetrachloride 326

Carr-Purcell-Meiboom-Gill (CPMG) (see pulse
sequences)

casein 317
catalysts 39, 337, 343
CD5 (glycoprotein) 317
cell cytoplasm 41, 325
cellulose fibres 39, 322
cement 338
centrifuge studies 55
centre of mass

mass propagator 135
reference frame (see barycentric reference frame)

ceramics 39
cetyltrimethlammonium bromide 331
chaotic spin dynamics 222
Chapman-Kolmogorov equations 152
characteristic

distance 120
lengthscale in a porous medium 54, 57, 120
timescale of diffusion measurement 36, 77, 200
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charged species 51
chemical and materials (studies of) 326–40

diffusion based studies 326–40
diffusion measurements 326–9

chemical potential 3
chemical shift imaging 342
CHIRP rf pulses 267
chive leaves 276
chloroaluminate 328
cholesterol 321
chromatographic media 41, 316, 337,

339, 343
c-Jun leucine zipper 316
clay 176, 339, 341
closed geometry 27
CO2 316, 327, 334

CO2-binary systems 327
carbonated beverages 322
microemulsion 331

coherence orders 70–2
coherence order (p) 70

collagen 317
colloid 51, 332–3
conalbumin 339
concentration diffusion (see mutual diffusion)
conditional probability 16–17, 48 (see propagator)
conductivity 44, 284
cone and plate rheometer 342
connection (connectivity) matrix 27–31, 48, 171
constant time, pulse and gradient and amplitude

diffusion experiment (CTPG) (see pulse
sequences)

constant (background) gradient (see gradient
(magnetic) constancy)

CONTIN 213–14
contrast agent 176, 232–5
convection 226–9

MRI studies 343
rf induced 226
solutions – hardware based 227
solutions – sequence based 228–9, 271,

273, 283
convective flow 226–7
CONVEX 229
CORE 214
cosmetics 330
cotton 322
Couette flow 5, 342
CPMG (see pulse sequences)
creatinine 341
critical micelle concentration 330
cross relaxation 246–7
cross-sectional area of a sample tube 208, 284
crossover regime 36 (see intermediate times)
crowding (see macromolecular crowding)
crown ethers 336
crystal 3
133Cs 320
CsCl 207
cumulant expansion 95, 100, 104, 369
cuprates 330

current amplifier 185, 191–2
constant current 192
constant voltage 192
noise 192

curve (multivariate) resolution 214
curvilinear diffusion (see diffusion)
cyclodextrin 326, 336
cyclohexane 328, 336 (see also benzene-cyclohexane)
1,4-cyclohexanedione-bromate oscillating system 327
cyclosporin A 4, 316
cylindrical pores 30–1, 166–70

D
1D images 208, 338–9
D2O (see 2H2O)
Debye equation 56
Debye-Porod law 124
decoupling (and sample temperature) 193
DECRA 214
decylammonium 330
delta function 72, 138
initial condition 17, 20–1, 26

demagnetising field (see long-range dipolar field)
dendrimers
iron-sulfur core 335

density
function (see equilibrium spin density function)
matrix 70, 90, 124, 141

dephasing strength of gradient pulse 74 (see q)
DEPT (see pulse sequences)
DEXSY (see pulse sequences)
dextran 321, 325
diethyl ether 336
diffractive minima 310, 330–1, 338 see also PGSE

(signal) attenuation – models)
due to flow 175

Difftrain (see pulse sequences)
diffusion 1
1D, 2D 164–6
anisotropic (see anisotropic diffusion)
along protein surface 317
between planes 27–9, 341

GPD solution 128
matrix formalism 139–40
PGSE attenuation 127–30
SGP solution 127, 278

curvilinear 54, 166, 331–2
decay in the internal field (DDIF) 121, 177, 338
diffusion-diffusion correlation (DDCOSY) (see

pulse sequences)
diffusion-internal magnetic gradients correlation (see

pulse sequences)
discrimination between free and restricted diffusion

323
editing 269–72, 314
ellipsoid 24–5, 34–6, 163, 300

apparent 170
envelope 171
equation 14–18, 159

one-dimensional 20
steady state 49
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diffusion (cont.)
filters 314–15
fMRI 340
grating 171
in a cylinder 30–1, 166–70, 323
in fractals 172–3
in gases 263–4, 286, 337, 339–40
in polymers 39–42, 53
in porous systems 39–43
in a sphere 29–30

GPD solution 130, 162
PGSE attenuation 130–1
SGP solution 130, 278

length 38
low dimensional 163–70, 338
measurement timescale 36, 77, 200
methods for measuring 57
MRI contrasts 296
MRI resolution 296
powder average 164–6
pseudo 175
-relaxation correlation (DRCOSY) (see pulse

sequences)
-restricted (see restricted diffusion)
self-diffusion (see self-diffusion)
spectrum 70
tensor imaging (see diffusion tensor; MR imaging)
weighted imaging 299–300, 341
weighting factor or vector 87, 93, 164

diffusion coefficients 4, 207 (see also self-diffusion
coefficient)

accuracy (PGSE) 198
apparent 32, 99, 121–2, 135, 227, 234, 337
correlating with spin-spin relaxation 269
‘distinct’ 1, 5
effective 41 (see also diffusion coefficients –

apparent)
ensemble averaging 104, 318
fractional 45, 173, 341
frequency dependent 8, 34
gradient calibration 206
individual 2
infinite dilution 10, 50
laplace spectrum 109
ligand (bound or free) 150, 174
mass averaged 104
mass averaged including obstruction effects, 105
measurable limit 87
oligomeric species 318
population-weighted average diffusion coefficient 153
pseudo 175
relative 333 (see also obstruction factor)
time-dependent 31–6, 338–9
spectrum 8, 98
standard samples 207

diffusion ordered spectroscopy 102, 109
high resolution 109
low resolution 110

diffusion propagator 16, 28, 42
2D 275
centre of mass propagator 135

cylinder (see diffusion in a cylinder)
fractal 45
higher 48
planes (see diffusion between planes)
sphere (see diffusion in a sphere)
width 170

diffusion tensor 163–70, 323
apparent 170, 324
determination 170, 265, 275
in the laboratory frame 164
intravoxel heterogeneity 300
mathematics 299
mean diffusivity 300
MR imaging 170, 299–300, 341, 343
MR spectroscopy 170
non-Gaussian diffusion 300
time-dependent 34, 170

diffusion time, diffusion measurement timescale 36
effective diffusion time (OGSE) 99
effective diffusion time (CPMG) 99

diffusive diffraction 125–6, 324
Kärger equations 156

diffusive edge enhancement in MRI 296
dimensionless variable (=DΔ/a2) for characterising

restricted diffusion 36
dimethylformamide 314
dimethylsulfoxide 326
dimyristoylphosphatidylcholine 321
dioleoylphosphatidylcholine-sphingomyelin

bilayers 321
dipolar field (see long-range dipolar field)
director 24
Dirichlet problem 18 (see boundary condition of the

first kind)
disease

Alzheimers 341
epilepsy 341
ischaemic 43, 341, 343
malignant 341
multiple sclerosis 343
neurodegenerative 341
stroke 324, 343
tumours 341, 343
vascular dementia 341

dispersion 5, 98, 339, 343
bifurcation of streamlines 55
coefficient (effective time-dependent) 280
Taylor dispersion 55

dispersive processes due to flow (see dispersion)
displacement 16

average 279
fluctuation 279

dissociation constant 150
distant dipolar field (see long-range dipolar field)
distribution

characteristic length scales 131
log-normal 107, 131
of sphere radii 131
Poisson 107
stretched exponential 108
Williams and Watts 108
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DNA 315, 319–20
dodecanucleotides 319
duplexes 319
hairpins 319–20
oriented fibres 320
proton-exchange 320

dodecane 331
DOSY (see pulse sequences)
double CMPG with bpg 229
DQDIFF 229
drift

rate (of magnetic) 193
velocity 282

drk (protein) 318
droplet sizing 330
drug delivery 43, 321
dynamic

displacement 16–17 (see displacement)
isotope effects 328
NMR microscopy 297–9
shimming 240

E
earth loop (see ground loop)
earth’s magnetic field 337, 343
echo

condition for formation 77
planar imaging 341
signal normalisation 84, 94, 103

echo attenuation
due to diffusion 80, 82, 121
due to diffusion – long time 125
due to relaxation 81
in a polydisperse system 131

eddy currents 190–1, 208, 212,
235–42

B0 shift 235, 237
characterisation and mapping 235
eddy current delay 235, 240–1
gradient pulse mismatch 235, 242
lock disturbances 235, 241
multiple quantum coherences 258
phase effects 235
problems and symptoms 235–7
severity 235
shielded gradient coils 237
solutions 237–42
solutions – hardware 237–40
solutions – pulse sequence 240–1
spectral broadening 235

effective gradient 74, 268
effective gyromagnetic ratio 258
effective Δ in a CPMG measurement 89
eggs (flow in) 343
eigenfunction expansion 20,

25–7, 137
eigenmode expansion (see eigenfunction

expansion)
eight-ball echo 85
Einstein equation (see Einstein-Sutherland

equation)

Einstein-Smoluchowski equation (see Einstein-
Sutherland equation)

Einstein-Sutherland equation 9, 56, 213, 317, 322,
326, 329

elastic incoherent structure factor |S(q)2| 126
electrical conductivity 44, 284
electroconvection 316
electrolyte friction 41
electroosmosis 285, 316
imaging 316
microemulsion 316
polymer electrolyte membranes 316
porous media 316

electrophoretic NMR 282–6, 316
cell 283
filtering 284
sample and rf coil configuration 284

electrostatic repulsion/obstruction 51, 330
ellipsoids 51
semi major axis 51
semi minor axis 51

elliptic integrals (of the first and second kinds) 187
embedding dimension 45
emulsions 39, 41, 269, 325, 330–2
highly concentrated 331
water-in-oil-in-water 330

encoding gradient 209
enkephalin peptide 319
ensemble averaging (see diffusion coefficient

ensemble averaging)
entanglement 53
epitope mapping 247
equilibrium
magnetisation 69–70, 224
spin density 16, 39, 47, 82, 126, 371

erythrocytes (see blood)
ethanol 333
ethidium bromide 4, 320
ethylbenzene 336
ethylene glycol (see temperature calibration)
ethyl(hydroxyethyl cellulose) gel 334
Eulerian 5, 299
Euler’s formula 71
exchange 147, 325–6
chemical exchange 224
emulsions 330
free-restricted 155–63
lifetimes 151
multisite 152
permeable boundaries 162–3
populations (free and bound) 150
pseudo one site 147
simple 150–5
timescale 153
two-site (free diffusion) 147–56

experimental (PGSE) setup and analysis
198–214

exponent characterising the time dependence of the
mean square displacement 38

exponent of anomalous diffusion 38
EXSY (see pulse sequences)
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F
fast sequences 262–9
Hadamard encoding 271
impetus 262
limitations 263
oneshot sequences 262
singleshot sequences 262–6
two-q values 262

fibre tracking 341
fibrin gels 320
fibrinogen 317
fibrous mastopathies 324
Fickian diffusion 7, 44 (see normal diffusion)
Fick’s
first law 15, 32
second law 6, 15, 32, 91, 152

field-frequency-locking 193
bipolar gradient pulses 241
blanking 193
gating (see field-frequency-locking – blanking)
unlocked 193

filling factor 222, 224
finite gradient pulse (i.e., finite δ) 98, 132–5
flow 5, 69, 75, 78–9, 281–2
diffractive minima 175
dispersion 98, 279–81
gas 343
imaging-based 300–3, 343
in porous media 54
laminar flow 174–5
measurable flow rates 300–1
multiphase flow and MRI 297
percolation 303, 343
plug flow 78, 174, 344
turbulent flow 303

fluctuating part of velocity 5
fluorescence 55
fluorine 333
fluorosurfactants 331
flurbiprofen 319
flux 7, 15, 17, 43
fMRI (see functional magnetic resonance imaging)
food and drinks 325, 330
beer 315, 322
champagne 322
fruit juice 315
mushroom extracts 315
port wine 315
restricted diffusion 321–2

form factor |S(q)2| 126
forward modelling 121
Fourier
conjugates 121
transform 20, 281, 373, 375
transform (inverse) 21, 273

fractals 3, 44–5, 334
diffusion 44, 170
diffusion coefficient 45
diffusion propagator 45
dimension 45, 173, 333

fractal-like kinetics 44

fractional Brownian motion 44 (see anomalous
diffusion)

fracton dimension 45 (see spectral dimension)
Fredholm

equation of the first kind 131
integrals 213

free
diffusion limit 36 (see short time limit)
isotropic diffusion 3, 20–2, 25
volume contributed by the solvent 50
volume theory 50, 53

frequency dependent dispersion tensor (see diffusion
coefficient spectrum)

fringe field (see gradient (magnetic) fringe field)
friction coefficients 10, 13

cylinder 13
ellipsoid 13
sphere 13

fructose 329
fulvic acid (see humic substances)
functional MRI 340
fundamental solution 27

G
GARP 260
GAUDI (see pulse sequences)
GAUDI-NOESY (see pulse sequences)
Gaussian 22, 48, 72, 95

diffusion between planes 128
diffusion in a cylinder 166–7
diffusion in a sphere 130, 233
diffusion in a sphere including relaxation 162
diffusion in fractals 172–3
distribution of spin phases 132
in inhomogeneous fields 177
phase distribution approximation 70, 95–8
stochastic process 44 (see normal diffusion)
validity 132–5

gelatin 317
gels 39, 316, 341
generalised dot product (:) 164
generating function for

cumulants 369
moments 369

GENEREG 213–14
GEXSY (see pulse sequences)
glass beads/spheres 338, 340
glucose 329
glycerol 327, 333, 335
glycine 4, 224, 323
gradient calibration 205–11

accuracy and diffusion coefficient 206
accuracy 205
alignment and cross-terms 207
cross-terms with MRI gradients 207, 232
diffusion anisotropy 207
eddy current effects 208
known diffusion coefficient 207–8
linearity to input 206
long-range dipolar interactions 208
one dimensional imaging 208–10
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pulse mismatch 210–11
radiation damping 208
shape analysis of the spin-echo 208–10, 371–6
very high gradients 211

gradient echo(es) 77–84, 339 (see oscillating gradient
spin-echo (sequence), higher order gradient
pulse trains)

gradient (B0 or magnetic)
(limitations) accuracy 242
(required) accuracy 242
amplitudes 185, 188–9
background gradients (see background gradients)
bipolar pulses 193, 241
coils 186–91
anti-Helmholtz (see gradient (magnetic) coils –

Maxwell pair)
heating 192
magic angle 186
Maxwell pair 186–9
planar array 186
quadrupolar 186
saddle 186
shielded 190–1, 237
superconducting 189

comparison to B1 gradients 308
constancy 73, 188, 190, 229
gradient mapping 229
solutions 229
small sample 229

cross-terms 207, 230–1
dynamic shimming 240
effective gradient 74, 268
encoding gradient 209
factor 93 (see diffusion-weighting factor)
fringe field 189, 256–8, 277, 321, 324, 327–8, 332,

334, 337, 339
g·g0 polarity 231
generation 185–92
blanking 192
earthing 192

linewidth 208
mapping 229
MASSEY sequence 244–6
moment nulling 228, 281, 302 (see also moment (of

magnetisation))
pre-emphasis 237–8
prepulses 241, 244
pulse area (or dephasing strength) 73 (see also q)
pulse length or duration 73
pulse length or duration (oscillating gradient

pulse) 99
pulse matching 244
pulse mismatch 242–6
checking 242
phase twist 242
problems 242–3
solutions 243–6
hardware solutions 243
sequence or processing solutions 244–6

pulse rise and fall time (i.e., switching
speed) 191

purge (or homospoil) pulse 86, 199
read gradient 208
sample centring 210
shaped gradient pulses 238–40, 244
stray field (see gradient (magnetic) fringe field)
time-dependent 74
uncertainty in initial and final positions during a

gradient pulse 133–4
gradient (B1 or radio frequency) (see B1)
gradient strength, initial guess of 207
gramicidin 321
Green function 16, 21, 27 (see diffusion

propagator)
Green-Kubo relation 7
gro-α 318
ground loops 192
guanosines 320

H
2H 4
H13CO3

- 4
1H2O 4, 207
1H2HO 207
2H2O 4, 201, 207, 224
H2PO2

- 4
3He 69, 264, 324
Hadamard encoding 271
haemoglobin 316, 319
Hahn spin-echo (sequence) 70, 84–9
Hankel diagonalisation 213–14
hard spheres 49
hardware 185–93
problems 221–48

heart wall motion 343
heat conduction 20
Helmholtz equation 25
heteronuclear multiple quantum transitions 73,

259–61
DEPT 259
HMQC 259
IHETCOR 259
polarisation transfer 259

hexachloroplatinate 329
high
pressure 316
resolution DOSY 109
resolution magic angle spinning (HRMAS) (see

pulse sequences)
higher order gradient pulse trains 98 (see oscillating

gradient spin-echo (sequence))
quantum transitions 73

homonuclear
CTPG 258
multiple quantum filters 258
multiple quantum transitions 258–9
scalar coupling 247–8
scalar coupling effects 247
solvent suppression 258

Hopfield neural networks 213–14
host-guest chemistry 336
human serum albumin (see albumin)
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humic substances 321
Hurst exponent 38
hyaluronan 329
hydration layer 11 (see also solvation)
hydrides 176
hydrocarbons 315
hydrochloric acid 326
hydrodynamic
radius 10, 56
studies 328–9

hydrodynamics 9–14
hydrogels 317, 321, 334
hydroxyquinoline 331
hyperpolarised gas diffusion 264, 286, 337,

339–40
hypophosphite (H2PO2

−) ion 148
H-ZSM-5 337

I
2IzSz 261
ibuprofen 319
optical isomers 319

ice 337
IHETCOR 259
imaging based studies 341
diffusion measurements 341
flow studies 342–4

impurity profiling (drugs) 321
(NMR) inert solvents 224
indirect dimension (F1) 262
information entropy minimisation 214
initial condition 17–20
insulin 4, 317
interdiffusion (see mutual diffusion)
interleukin-8 318
intermediate times (see measurement timescale)
intermolecular nuclear Overhauser effects 91
internal (magnetic field) gradients 77, 121,

175–7 (see also background gradients)
magnitudes 176
time-dependent 176
Gaussian random fields 177
parabolic field 177
grossly inhomogeneous 177

intracellular species (see cell cytoplasm)
intradiffusion 2 (see also self-diffusion)
inverse
Fourier transform 21, 122, 273
Laplace transform 109–11, 273
methods 121

ion
pairing 329
quadruples 330

ionic
conductivity 6, 335
drift 281
liquids 328

ionophores 320, 325
ischaemia (see disease)
isodesmic distribution 105
isotropic diffusion 3 (see free isotropic diffusion)

J
jerk 76
joint probabilities 273, 275, 277,

279, 281

K
k or k 74
k-space 74, 82

diffraction 126 (see Mansfield diffraction)
K3Co(CN)6 227
Kärger equations 147–56

limitations 156
modified 155–6, 330
multisite extension 155

kinase C substrate 319
Kirkwood-Riseman theory 12, 53
Kronecker delta 26

L
laboratory frame 23–4, 73
Lagrangian velocity field 5, 282, 299
lamellar diffusion 164–6
laminar flow 5
Laplace

integral (see Laplace transform)
spectrum of diffusion coefficients 109 (see diffusion

coefficients)
transform 109
2D 275, 277

inverse 109–11, 273
multidimensional inverse 273, 277

Larmor equation 72
Larmor frequency 73
laser polarised gas (see hyperpolarised gas diffusion)
latex 332
lattice correlation function 48
Laves-phase hydrides 329
lecithin 332
7Li 320, 325, 335
lifetimes (binding and exchange) 151
ligand diffusion 150, 174
ligand (-protein) binding 147, 319
ligand populations (free and bound) 150
light scattering 55
limestone 277
line width 208

at half-height 245, 264
zero quantum transition 261

linear gradient (see spatially homogeneous gradient or
gradient (magnetic) constancy)

linear prediction 213–14
lipoproteins 319
liquid crystals 3, 24, 36, 165, 258, 325

chiral 332
ferrielectric 332
ferroelectric 332
hexagonal mesophases 331
nematic 332
polycrystalline lamellar 331
smectic 331

lithium chloride 207, 328
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lithium diffusion 326, 332
lithium perfluorononanoate 331
lithium salt polymer electrolytes 335

ENMR measurements 316
liver 324
local spin velocity (see spin velocity)
localised motion 44
lock or locking (see field-frequency-locking)
logarithmic plot 212
log-normal distribution 107
longitudinal eddy current delay (LED) (see pulse

sequences)
long-range dipolar field 70, 91, 111–12, 202, 208,

222–5
diffusion measurements 286
effect of flow 344
suppression 258
symptoms 222

long-time limit 36, 39
low flip angle 224
low resolution DOSY 110
lungs 324
lysozyme 104–6, 314, 316–18, 339

M
Macrocycles (see host-guest chemistry)
macromolecular

crowding 41
solution/systems 41, 102

macromolecules 51, 147
macropores 40
magic angle

angle spinning (MAS) (see pulse sequences)
gradients 244, 258
ratio gradients 234

magnetic field gradients – internal (see internal
(magnetic field) gradients)

magnetic resonance electrophoresis (see electrophoretic
NMR)

magnetic resonance imaging
diffusion limited resolution 296
signal S(q) 126

magnetic susceptibility 85, 121, 175,
338, 340

matched microtubes 204
magnetisation

grating 75, 208 (see also magnetisation helix)
helix 74–80, 85, 89
phase twist 75
pitch 74
thermal equilibrium 69

magnetisation rotating frame imaging
(MAGROFI) (see B1)

magnitude spectra 212
MAGROFI 310
maize 322
malonamide 331
Mansfield (k-space) diffraction 126
Markovian nature 22
mass averaged diffusion coefficient 104

including obstruction effects 105

MASSEY sequence 244–6
automatic 246
limitations 246

maximum entropy processing 213–14, 285
maximum value of q used in an experiment 125–6
MCM-41 336
mean
diffusivity 300
propagator (see average propagator)
square displacement 7, 31–6, 38, 44, 84, 96, 120, 123
square displacement tensor 34
square phase distribution (or change) 72, 95
square velocity 8

measurable
limit (of diffusion coefficient) 87
signal (PGSE and MRI) 71

measurement timescales (see also characteristic
timescale)

intermediate times 38
long-time limit 36, 39
short time limit 36–8

mechanical stability 242
membranes 36, 124, 161, 333 (see also cells, permeable

porous systems)
aligned lamellar 321
anion exchange 333
cellulose acetate 333
hollow fibre 342
polyacrylic acid-polysulfone 333

β-mercaptoethanol 110
mesopores 40
metallomacrocycles 329
methane 326, 328, 337
methanol (see temperature calibration)
N-methylformamide 328
MgO paste 338
micelles 316, 319, 321, 325, 330, 332
concentration dependence of diffusion 331

micropores 40
microstructural correlation function 48 (see lattice

correlation function)
mixed boundary conditions 19
mixture separation
applications 315–16
diffusion based 269–72
electrophoretic 284

MLEV-17 272
mobility factor 46
mobility ordered spectroscopy 285
molasses 329
moment (of magnetisation) 77 (see gradient moment

nulling)
moment of a distribution 369
moments of the average propagator ( �P R;Δð Þor

�P Z;Δð Þ) 122–4
purely coherent motion 123
purely self-diffusive motion 123

monensin 4, 320
monofluorophosphate 327
motional artifacts 204
motional correlation 272–4
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motional restriction 76 (see restricted diffusion)
MRI (see NMR imaging)
MRI studies of translational motion (see NMR imaging

studies of translational motion)
MSD (see mean square displacement)
multicomponent systems 70, 101–11, 120
multidimensional correlation 269, 272–81, 324–5
multiphase flows 342
multiple echoes 111–12
multiple magnetisation modulation 75

(see magnetisation helix)
multiple modulationmultiple-echo (MMME) (see pulse

sequences)
multiple quantum and heteronuclear 258–62
multiple quantum coherences 71, 73, 258–62
eddy currents 258
effective γ 282
heteronuclear 73
restrictions 258

multiple spin-echoes 286
multipole expansion 49
multivariate resolution 214
multi-wavevector (see pulse sequences)
muscle cells 166
muscle fibres 35
mutual diffusion 1, 3–5, 14, 55–6, 296, 327, 341
coefficient 3–5

myelin 341
myoglobin 316–17
myosin light chain 2 316

N
nanoparticles 336
nanoporous materials 40
natural products
restricted diffusion 321–2

Navier-Stokes equation 49
NaY 337
Ne 207
Nernst-Einstein equation 6
nerve 324, 341, 343
Neumann conditions 19 (see boundary conditions of

the second kind)
neural networks 213
neutron scattering 55, 125
Newtonian liquid 342
nitric acid 326
NLREG 213–14
NMR imaging
basic concepts 297
diffusion limited resolution 296
diffusion tensor imaging (see diffusion tensor MR

imaging)
diffusion weighted imaging (see diffusion weighted

imaging)
dynamic contrast 298
flow measurements 300–3
inflow/outflow 301
max measurable flow rate 300
min measurable flow rate 301
measurement timescale 297

multiphase flow 297
PGSE measurements 297–300
phase sensitive methods 302–3
resolution 297
spatial and temporal averaging 297
tagging 301–2, 343
time-of-flight 301–2

NMR imaging studies of translational motion 296–303
mutual diffusion 296

NMR mouse 177
NMR probe 185–91
NMR sample preparation 204–5
noble gases 327 (see also He, Ne, Xe)
NOE enhancement 200 (see also cross relaxation)
NOESY (see pulse sequences)
non-Euclidean geometry 45
non-Gaussian statistics 44 (see anomalous diffusion)
non-linear least squares analysis 212
norm 26
normal 19
normal diffusion 7, 44
normalisation (see echo signal normalisation)
nutrient delivery 43
nylon 341

O
oak forest organic matter 315
observation timescale of diffusion measurement 36,

77, 200
obstruction 41–2, 49–53, 105, 147, 318, 320, 321–4,

328, 330
factor 41

occupation probability 46
okadoic acid 320
oneshot sequences 262, 267–9, 309
open geometry 41
optical diffraction by a single slit 125
ordinary diffusion 44 (see normal diffusion)
organelles 324
organometallics 329
Ornstein-Uhlenbeck process 8
oscillating gradients (see oscillating gradient

spin-echo (sequence))
oscillating gradient spin-echo (sequence) 70, 98, 229,

248, 279, 286, 317, 330, 341
osmotic stress 43
outward directed normal 19 (see normal)
ovalbumin 316
oxygen (O2) 340

P
P53 DNA-binding protein 316
paraffins 328
paramagnetics 338
partial specific volume

solute 11
solvent 11

path dimension 38 (see random-walk dimension)
pathological conditions 324
peanuts 322
Péclet number 54
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Penetratin 319
peptide

cis and trans isomers 316
D-amino acid tetra peptide 314
D-penicillamine-enkephalin 326
glycyl-histidyl-glycine 326
phenylalanyl-histidyl-phenylalanine 326
phenylalanylproline 326

percolation
clusters 44, 303
transition 317

perfusion 175, 344
permeability 19, 43, 323

reduced 157
permeable porous systems 46–7, 124, 162–3
permittivity constant (magnetic permeability) 187, 222
Perrin factor 12
PFG generation (see gradient (magnetic) generation)
PGSE NMR 69, 84–99

accuracy 198
analysis 212–14
B1 gradient-based 308–10
background (magnetic) gradients 230–4
baseline correction 212
choice of Δ 200
choice of delays wrt J-coupling 247
choice of q 199
choice of recycle delay 200
choice of sequence 200
CONTIN 213–14
convection 226–9
CORE 214
cross relaxation 246–7
curve resolution 214

DECRA 214
distributions of relaxation times 269
dynamic NMR microscopy 297–9
earth’s magnetic field 337
eddy currents 235–42
eddy currents – problems 235–7
eddy currents – solutions 237–42
electrophoretic cell 283

experiment setup and analysis 198–214
flow compensation 226–9
GENEREG 213–14
gradient calibration 205–11
gradient constancy 229

gradient pulse accuracy 242
gradient pulse mismatch 210–11, 243
Hankel diagonalisation 213–14

hardware problems 221–48
heteronuclear 198, 258–62
heteronuclear decoupling 200–1
homonuclear scalar coupling 247–8
Hopfield neural networks 213–14
information entropy minimisation 214

integral 212
lengthening Δ 261–2
ligand binding experiments 153
linearised analysis 212
linear prediction 213–14

long-range dipolar field 222–5
maximum entropy processing 213–14

measurements in porous systems 120–41
multidimensional correlation 269, 272–81

diffusion-diffusion 275–7
diffusion-relaxation 277–9
motional correlation 272–4

multiple quantum 258–62, 343
solvent suppression 204

multivariate resolution 214
neural networks 213
NLREG 213–14
NMR imaging (combined with) 297–300
NOE enhancement 200
non-exponential decays 120
non-homogeneous background gradients 232
non-linear least squares analysis 212
parameters (experimental) 199–204
peak height 212
phase correction 212
phase cycling 199, 267–9
positive matrix factorisation 214
postprocessing 241–2
pre-emphasis 237–8

and B0 shift 238
principle component analysis 214
Q-switching 225
radiation damping 222–5

problems 222
solutions 224–5

reference deconvolution 212
regularised resolvent transform 214
relaxation 214
removal of J-coupling 201
resolution of complex mixtures 213–14
rf interference 221
rf problems 221
sample

centring 210
height 204
preparation 204–5
problems 221–48
spinning 205

shaped gradient pulses 238–40
shimming 205
slice selective 204
solvent artifacts 201, 212
solvent suppression 201–4
spectral overlap 198–9
spectrally isolated components 212–13
SPLMOD 213–14
static dipolar interactions 201
temperature gradients 226
univariate analysis 213–14
zero quantum 261–2

PGSE NMR applications to
binding 325–6
biological and pharmaceutical studies

316–26
biomaterials 320–1
biomolecules 320–1

Index 387



PGSE NMR applications to (cont.)
carbohydrates 329
chemical and materials 326–40
chromatography 339
colloids 332–3
construction materials 338–9
dendrimers 335–6
drugs 320–1
emulsions 330–2
exchange 325–6
high resolution NMR 314–16
host-guest chemistry 336
hydrides and organometallics 329–30
lipid membranes 321
liquid crystals 321, 330–2
macromolecules 333–5
membranes 333
membrane proteins 321
minerals 338–9
nanoparticles 335–6
polymers 333–5
polymer electrolytes 335
porous media 336–9
sediments 338–9
supramolecular polymers 335–6
surfactants
transport 325–6

PGSE (signal) attenuation – methods for determining
Bloch-Torrey equations (see Bloch-Torrey equations)
density matrix 124, 141
GPD (see Gaussian Phase distribution

approximation)
lattice Boltzmann procedure 141
matrix formalism 136–41
memory function 124, 141
Monte Carlo approaches 136
multiple correlation function 125, 141
multiple narrow pulse 136–41
neural networks 141
other methods 135–41
projection operator 124, 141
propagator and SGP approach 136
size distributions 130–2

PGSE (signal) attenuation – models
absorbing boundaries 156–62
anisotropic Gaussian diffusion 163–4
capillary (i.e., 1D) diffusion 164–6
complex systems 147–77
convection 227
cosine modulation 227
diffractive minima 128
diffusion between planes 127–30, 139–40, 156–7,

177
diffusion in a cylinder 140, 162, 166–70
diffusion in fractals 172–3
diffusion in a harmonic well 173–4
diffusion in a sphere 130–1, 140, 162, 233
eddy current effects 235–6
emulsions (see PGSE (signal) attenuation – size

distributions)
exchanging systems 147–77

finite lifetime model 159
flow and dispersion 174–5
general porous media 170
inhomogeneous gradients 177
interconnected pores 171–2
Gaussian random fields 177
grossly inhomogeneous 177
lamellar (i.e., 2D) diffusion 164–6
laminar flow 174–5
non-homogeneous background gradients 232
other methods 135–41
parabolic field 177
plug flow 174
polycrystalline systems 165
polymer diffusion 173–4
pore glass 171
pore hopping model 171
powder average 164–6
reptation 174
scattering analogy 125
size distributions 130–2
turbulence 175

PGSE NMR reviews 313
PGSE-WATERGATE 202
PGSTE-WATERGATE 202
phase angle (phase of spins) 71, 73
phase change (shift)

convection 227
flow 227
sample movement 243

phase correction 212
phase cycling

reduction 269
phase sensitive mode 212
phase twist 75, 242–3
phenol 328
phosphatidylinositol 3-kinase 318
phosphocreatine 323, 341
phospholipid bilayers 321, 326
phosphoric acid 328
pitch (of magnetisation helix) 74, 120
planar pores 27–9
plane alignment 128
plants 321–2
plasma (see blood)
plug flow 5
Poiseuille flow 5, 342
Poisson-Boltzmann distribution 51
Poisson-Boltzmann-Smoluchowski equation 51, 333
Poisson distribution 107
polarisation transfer 259
polyacid 335
polyammonium cations 320
polybutadiene 334
polycrystalline 36
polydimethyl siloxane 235, 334
polydisperse systems (see polydispersity)
polydispersity 14, 102, 147, 229, 315, 332
polyelectrolytes 316, 325, 333
polyethylene glycol 322, 327, 334

cyclodextrin derivatives 334
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polyethylene oxide 285, 316, 332–3, 335
polyisoprene 334
polymer(s) 41, 44 (see also macromolecules/

macromolecular systems and individual
polymers such as polystyrene)

block copolymers 315, 332, 335
electrolytes 335
aging 335

internal diffusion modes 334
melt 333, 340
microgels 334
random copolymer 335
segment displacement 334

polymethacrylic acid 333–4
polypropylene oxide 339
polypropyleneimine 336
polystyrene 310, 333–4, 340

beads (spheres) 171, 334, 338, 340
poly(styrenesulfonate) 333
polyvinyl alcohol (cryo)gels 334, 336
pore-hopping model 47–8, 163, 170–1
porosity 40, 343 (see also volume fraction)
porous materials (see porous systems)
porous media (see porous systems)
porous systems 46–8, 336–9

beads (glass, PVC, polystyrene) 340 (see also
polystyrene beads)

ENMR 316
interconnected pores 337–8
mesoporous and microporous media 336–7
nanoporous media 336–7
non-homogeneous background gradients 232

porphyrins 315
positional variance 280
positive matrix factorisation 214
postprocessing 241–2

limitations 241
reference deconvolution 241
reference phase angle 241
wavelet transforms 241

potato 322
powder

average (diffusion) 164–6
law relation 44
series (see Taylor Series)
spectra 212
spectrum of ρ(r0), |S(q)

2| 125
prepulses 241
principal

axes frame 24
component analysis 214
diffusivities 24

probability of phase distribution = phase distribution
function 71

product operator formalism 70
propagation 14
propagator (see diffusion propagator, average

propagator)
propane 340
(trimethyl silyl) propionic acid 319
propylenecarbonate 336

protein(s) 261, 316–19
diffusion and hydrodynamics 316–17
filaments 3 (see also individual proteins such as

lysozyme and macromolecules and
macromolecular systems)

folding and aggregation 318–19
helix to random coil transition 318
hydration 44
hydrodynamic radius 318
molten globule state 318
obstruction and hydration 317

proton exchange 272, 326
psychosine 320
pulsed electric field 282, 284
pulsed gradient spin-echo NMR (see PGSE NMR)
pulse sequences
1D off resonance ROESY 270
1D DOSY 267–9
2D 271
2D-J-DOSY 271
2D-J-IDOSY 271
alternating CPMG 232
background gradient removal 133, 232–4
BPP-LED 240–1
convection (i.e., flow) compensation 228–9,

271, 273
CONVEX 229
COSY-IDOSY 271
Cotts 13-interval 233
CPMG 70, 89–99, 131, 262–9, 277, 279, 281
cross relaxation and choice of sequence 247
CTPG 257
CTPG – multiple quantum 258
DEPT 259
DDCOSY 275–7, 300, 325
DEXSY 277, 325
DICOSY 279
Difftrain 265
dispersive flow 279–81
DOSY 315
1H-13C 315
29Si 315
DOSY-COSY 271
DOSY-DEPT 271
DOSY-HMQC 271
DOSY-INEPT 271
DOSY-NOESY 271, 315
DOSY-X 271
double CPMG with bpg 229
double PGSE 272–81, 325
double-stimulated echo 228
DQDIFF 229
DRCOSY 277–9, 325
DRICOSY 279
electrophoretic COSY 283
electrophoretic NMR 282–6
EXSY 272
fast sequences 262–9 (see also fast sequences)
flow sequences 281–2
fringe field (see gradient (magnetic) fringe field)
GAUDI 267
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pulse sequences (cont.)
GAUDI-NOESY 267
GEXSY 272
Hadamard encoding 271
Hahn (see Hahn spin-echo (sequence))
Hahn vs STE 248
heteronuclear 198
heteronuclear decoupling 200–1
HMQC-IDOSY 271, 314
hole burning 257
HRMAS 286, 316, 323
HSQC, HSQC-IDOSY 271, 315,

318, 320
HYDRA 314
LED 240–1
long-range dipolar field 286
longitudinal spin order 261
(B1) longitudinal spin order 309
(B1) MAGROFI 310
MAS 286, 321, 337
MASSEY sequence 244–6
mixture separation 269–72
MMME 265, 282
MOSY 285
MRI 133
multiple quantum (suppression) 204
multiple quantum 270
(B1) multiple quantum 309
multi-dimensional 269–81
multidimensional correlation 269,

272–81
multiple spin-echoes 286
multi-wavevector 273–4
(diffusion assisted) NOE pumping 315
NOESY 272, 314
nomenclature 271
non-constant background gradients 234
(B1) nutation echoes 310
OGSE
one-shot sequences 267–9
(B1) one-shot sequence 309
PGSE-WATERGATE 202
PGSTE-WATERGATE 202
prepulses 241
quadrupolar echo 258
relaxation filtering 269
RICOSY 279
(B1) rotary spin echo 309
single-shot sequences 262–6, 340
slice selective 204
small angle excitation 264
spectral editing 314–15
STE (see stimulated (spin) echo (sequence))
stray field magnetic resonance imaging

257–8
TOCSY, TOCSY-IDOSY 271, 314
VEXSY 281
WEX 314
X-DOSY 271
X-IDOSY 271

2-ureido-4[1H]-pyrimidinone 336

Q
q or q 74
q – choice of 199
q-DECRA 214
q-space 74, 83
q-space coherence features (see diffusive diffraction)
q-space imaging (see diffusive diffraction)
Q-switching 202, 225
quadrupolar echo 258
Quality factor (Q) 221, 224
quadrature detection 71
quasielastic neutron scattering 126

R
radiation damping 91, 202, 208, 222–5

grad based solution 225
magic angle gradients 244
problems 222
Q-switching 202
small flip angle rf pulses 225
solutions 224–5
solvent suppression 224
Trd 222

radiative boundary condition 19 (see relaxation
boundary condition)

radio frequency (see B1)
radius of an electroneutral spherical shell 51
radius of a charged hard sphere 51
(membrane) raft mixtures 321
random walk 70

dimension 38, 172
rape seeds 322
rate constant

first-order 157
(forward) first-order 150
(reverse) first-order 150

Rayleigh number 226
read gradient 208
reciprocal lattice 171
reference

deconvolution 212, 241
phase angle 241

regularised resolvent transform 214
relaxation

boundary condition 19, 46
bulk 147, 214
length 120
surface 147

relaxivity 19
reorientational

correlation time 56
motion 123

reptation 53, 320, 333
time 53

resin (incl. anion and cation exchange)
333–4

resolution of complex mixtures 213–14
resorcin[4]arenes 336
restricted diffusion 3, 76, 80, 120–1, 147, 273–4, 321–4

(see also biological cells, closed geometry, pore,
vesicles)
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blood 323
confusion with background gradients 232
confusion with cross relaxation 247
heart 323
liver 323
muscle 166, 323
resins 335
size distributions 130–2

return to origin probability 27, 43–5, 124–5,
338, 343

dimensionless RTOP enhancement 125, 141
in free isotropic solution 125

Reynolds number 5
rf

interference 221
problems 221

rheology (see rheometry)
rheometry 342
RNA 319–20

duplex RNA 319
RNA hairpins 319

Robin problem 19 (see boundary condition of the third
kind)

rocks 39, 337
carbonate 338–9
dolomite 325
gypsum 339
sand 338
sandstone 325, 338–9

root mean square displacement 35
rotational (see reorientational)
Rouse model 53, 333
ruthenium complexes 330

S
salicylate – albumin system 153, 319
salt mediated killer toxin (SMKT) 318
sample

centring 210
movement 242–6
checking 242
solutions 243

problems 221–48
spinning 205

scaled particle theory 49
scaling laws/relationship 53, 107, 328, 339
scattering

function 125
wave vector 125

self-diffusion 1, 2
coefficient 2, 17, 18–20, 56
coefficient – long time 42–3, 171, 323,

332, 337
mathematical modelling 6–14
tensor 23

separation between adjacent sites 46
separation of variables 25 (see eigenfunction

expansions)
SGP

limit 121
master equation 82

SGP solution
absorbing planes 156
absorbing sphere 157
capillary (i.e., 1D) diffusion 164–6
diffusion between planes 127
diffusion in a cylinder 167–70
diffusion in a cylinder with relaxing walls 169
diffusion in a sphere 130
diffusion in fractals 173
diffusion in a harmonic well 173–4
diffusion in polymers 173–4
diffusion tensor 170
exchange between domains (low dimensional

diffusion) 166
free-sphere model 162
general porous media 170
interconnected pores 171–2
lamellar (i.e., 2D) diffusion 164–6
laminar flow 174–5
plug flow 174
polycrystalline systems 165
pore glass 171
pore hopping model 171
regularly spaced planar boundaries 162
reptation 174
spherical cell suspension 163
turbulence 175
unevenly spaced membranes 162

SGSE NMR 69, 256–8, 327, 338 (see steady gradient
spin-echo NMR)

advantages 256
CTPG 257

shape factor (see Perrin factor)
shear
banding 342
thickening 342
thinning (liquid) 342
velocity 302

shield gradient (coils) (see gradient (magnetic) coils –
shielded)

shimming 205
short gradient pulse (SGP) approximation (or limit) 70,

76, 153
validity 132–5

short time limit (see measurement timescales)
signal
detection 70–2
MRI 126
normalisation (see echo signal normalisation)

silicate 315 (see also MCM-41)
silicalite-1 337
single
file diffusion 45–6, 337
-shot sequences (see pulse sequences)
slit diffraction (see optical diffraction by a single slit)

singlet
relaxation time 262
singlet states 262

slew rate 191
slip condition 10
small flip angle rf pulses 225
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Smoluchowski equation 6, 49
sodium chloride 207
soil 39
solid phase resin 315
solvated species 51
solvation 9–14, 41 (see also hydration and solvated

species)
of solute 11

solvents – NMR inert 201
solvent suppression 201–4
gradient based suppression sequences 202–4
gradient recalled echoes 202
multiple quantum 258
NMR inert solvents 201
non-diffusion based sequences 202–4
PGSE-WATERGATE 202
PGSTE-WATERGATE 202
presaturation 202
relative attenuation 201
spin diffusion 202

spatial eigenfunctions 25
spatially homogeneous gradient (see gradient

(magnetic) constancy)
specialised PGSE and related techniques 256–86
spectral
decomposition 25 (see eigenfunction expansion)
dimension 45
editing (see diffusion editing)
function 27, 43, 124–5 (see return to origin probability)

spermidine 320
spherical
polar coordinates 18
pores 29–30

sphingomyelin 321
spin density function (see equilibrium spin density)
spin-diffusion 1, 340
spin-echo 69 (see Carr-Purcell-Meiboom-Gill, eight-

ball echo, Hahn echo, pulsed gradient spin-echo,
steady gradient spin-echo, stimulated echo)

spin phase graphing 76
spin velocity 5, 100
SPLMOD 213–14
stagnant mobile phase transfer kinetics 339
starch 322
statistical mechanics 7–9
steady gradient spin-echo NMR 69, 84–99, 121,

256–8
diffusion between planes 129
diffusion in a sphere 130

steady state 69
Stejskal and Tanner equation 87
Maple worksheet 370–1

step length or size 33, 49
step rate 33
steroid 320
stick condition 10
stimulated (spin) echo (sequence) 70, 84–9, 270, 314
cross relaxation 246

Stokes
-Einstein equation (see Einstein-Sutherland equation)
radius (see hydrodynamic; radius)

stray field (see also gradient (magnetic) fringe
field)

magnetic resonance imaging 257–8, 324
failure of high field approximation 257
hole burning diffusion measurements 257
limitations 257
single wire measurements 257

stretched exponentials 108
stroke (see disease)
stromelsyin catalytic domain 314
subdiffusive motion 44–5
succinonitrile 327
sucrose 315, 326, 329
sulfuric acid 326
superdiffusive motion 44
surface

diffusion 44
relaxation 147
roughness 128
-to-volume ratio 36, 135, 262, 323, 338–9

surfactant systems 315–16, 330–2, 342
susceptibility (see magnetic susceptibility)
symbolic algebra 93

T
Taylor-Couette flow 282
Taylor series (Taylor expansion) 76, 122, 130, 131–2,

165, 232, 369
temperature

calibration 193
ethylene glycol 193
methanol 193
piezoelectric thermometer 193

control 193
gradients 226

testicular tissue 323
tetrabutylammonium tetrahydridoborate 327
tetramethyl ammonium bromide 285
tetraurea calix[4]arene 336
thermal

diffusivity 226
equilibrium magnetisation 69–70, 224
expansion 226

thermocouple 193
TiO2 338
time between jumps 46
time-dependent

diffusion coefficient 31–6, 42
diffusion tensor 34
function characteristic of a geometry 124, 141
gradients 74

time-independent scaling constant 38
tissue perfusion 175
toluene 328
tortuosity 41–3, 171, 262, 300, 337–8
total macromolecule concentration 150
total time for image acquisition 297
trace of the diffusion tensor 25, 135, 323
tracer diffusion 2 (see self-diffusion)
trail dimension 38 (see random-walk dimension)
transport 46, 147, 325–6, 344 (see also exchange)
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transport diffusion (see mutual diffusion)
transverse relaxation time of a zero quantum

transition 261
trehalose 329
4-trifluoromethylbenzoic acid 319
tris(o-phenylenedioxi)

cyclophosphazene 337
tube diffusion 53
tubeless siphon 342
turbulent

flow 5, 175, 303
motion 44

two-site exchange 147–56
dissociation constant Kd 150
equilibrium 150
fast exchange 153
lifetimes 151
relaxation corrections 153
slow exchange 153

U
Ubiquinone 321
ubiquitin 4, 316
uncertainty in initial and final position during a

gradient pulse 125, 133
univariate analysis 213–14
unlocked (see field-frequency-

locking)
U-tube (see electrophoretic cell)

V
velocity

anionic (cationic) species 282
auto-correlation function 7–8, 33, 99–101,

279–81
correlation-time 8, 54, 279
cross-correlation 8
- distribution 174, 297
- fluctuation 279–81

exchange spectroscopy (VEXSY) (see pulse
sequences)

mapping 343–4
vesicles 158, 315–16
viomycine 326
viscosity 9–14, 41
kinematic 226
protein solutions 317

viscous fingering 339
volume
elements 83
fraction 10, 49 (see also porosity)

voxels (see volume elements)

W
water (diffusion) 69, 276
human tissue 44
obstruction 317
subcritical 1H2O,

2H2O 326
sulphuric acid 326
supercooled 1H2O,

2H2O 326
water (flow)
sea water 69

wavelet transforms 241
well-logging 177
white matter (see brain tissue)
wide-bore magnet
Wiener-Khintchine theorem 125
wood 43, 322

X
129Xe 4, 207, 264, 332, 337, 340–1, 343

Y
yeast 321

Z
zeolites 39, 46, 176, 337
zero quantum transitions 73, 261–2
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