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. . . “to see a world in a grain of sand
and Heaven in a wildflower
hold infinity in the palm of your hand
and eternity in an hour . . . ”

William Blake “Auguries of Innocence”

INTRODUCTION

Our wonderful world

Colours! The most beautiful of buds – an apple bud in my garden changes colour
from red to rosy after a few days. Why? It then explodes into a beautiful pale rosy
flower. After a few months what was once a flower looks completely different: it
has become a big, round and red apple. Look at the apple skin. It is pale green,
but moving along its surface the colour changes quite abruptly to an extraordinary
vibrant red. The apple looks quite different when lit by full sunlight, or when placed
in the shade.

Touch the apple, you will feel it smooth as silk.
How it smells! An exotic mixture of subtle scents.
What a taste: a fantastic juicy pulp!
Sounds . . . the amazing melody of a finch is repeated with remarkable regularity.

My friend Jean-Marie André says it is the same here as it is in Belgium. The same?
Is there any program that forces finches to make the same sound in Belgium as
in Poland? A woodpecker hits a tree with the regularity of a machine gun, my
Kampinos forest echoes that sound. Has the woodpecker also been programmed?
What kind of program is used by a blackbird couple that forces it to prepare, with
enormous effort and ingenuity, a nest necessary for future events?

What we do know

Our senses connect us to what we call the Universe. Using them we feel its pres-
ence, while at the same time we are a part of it. Sensory operations are the direct
result of interactions, both between molecules and between light and matter. All
of these phenomena deal with chemistry, physics, biology and even psychology.
In these complex events it is impossible to discern precisely where the disciplines
of chemistry, physics, biology, and psychology begin and end. Any separation of
these domains is artificial. The only reason for making such separations is to focus

XXI
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our attention on some aspects of one indivisible phenomenon. Touch, taste, smell,
sight, hearing, are these our only links and information channels to the Universe?
How little we know about it! To feel that, just look up at the sky. A myriad of stars
around us points to new worlds, which will remain unknown forever. On the other
hand, imagine how incredibly complicated the chemistry of friendship is.

We try to understand what is around us by constructing in our minds pictures
representing a “reality”, which we call models. Any model relies on our perception
of reality (on the appropriate scale of masses and time) emanating from our expe-
rience, and on the other hand, on our ability to abstract by creating ideal beings.
Many such models will be described in this book.

It is fascinating that man is able to magnify the realm of his senses by using so-
phisticated tools, e.g., to see quarks sitting in a proton,1 to discover an amazingly
simple equation of motion2 that describes both cosmic catastrophes, with an inten-
sity beyond our imagination, as well as the flight of a butterfly. A water molecule
has exactly the same properties in the Pacific as on Mars, or in another galaxy. The
conditions over there may sometimes be quite different from those we have here
in our laboratory, but we assume that if these conditions could be imposed on the
lab, the molecule would behave in exactly the same way. We hold out hope that a
set of universal physical laws applies to the entire Universe.

The set of these basic laws is not yet complete or unified. Given the progress and
important generalizations of physics in the twentieth century, much is currently un-
derstood. For example, forces with seemingly disparate sources have been reduced
to only three kinds:

• those attributed to strong interactions (acting in nuclear matter),
• those attributed to electroweak interactions (the domain of chemistry, biology, as

well as β-decay),
• those attributed to gravitational interaction (showing up mainly in astrophysics).

Many scientists believe other reductions are possible, perhaps up to a single
fundamental interaction, one that explains Everything (quoting Feynman: the frogs
as well as the composers). This assertion is based on the conviction, supported by
developments in modern physics, that the laws of nature are not only universal, but
simple.

Which of the three basic interactions is the most important? This is an ill con-
ceived question. The answer depends on the external conditions imposed (pres-
sure, temperature) and the magnitude of the energy exchanged amongst the in-
teracting objects. A measure of the energy exchanged3 may be taken to be the
percentage of the accompanying mass deficiency according to Einstein’s relation
�E = �mc2. At a given magnitude of exchanged energies some particles are stable.

1A proton is 1015 times smaller than a human being.
2Acceleration is directly proportional to force. Higher derivatives of the trajectory with respect to time

do not enter this equation, neither does the nature or cause of the force. The equation is also invariant
with respect to any possible starting point (position, velocity, and mass). What remarkable simplicity
and generality (within limits, see Chapter 3)!

3This is also related to the areas of operation of particular branches of science.
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Strong interactions produce the huge pressures that accompany the gravitational
collapse of a star and lead to the formation of neutron stars, where the mass de-
ficiency approaches 40%. At smaller pressures, where individual nuclei may exist
and undergo nuclear reactions (strong interactions4), the mass deficiency is of the
order of 1%. At much smaller pressures the electroweak forces dominate, nuclei
are stable, atomic and molecular structures emerge. Life (as we know it) becomes
possible. The energies exchanged are much smaller and correspond to a mass de-
ficiency of the order of only about 10−7%. The weakest of the basic forces is gravi-
tation. Paradoxically, this force is the most important on the macro scale (galaxies,
stars, planets, etc.). There are two reasons for this. Gravitational interactions share
with electric interactions the longest range known (both decay as 1/r). However,
unlike electric interactions5 those due to gravitation are not shielded. For this rea-
son the Earth and Moon attract each other by a huge gravitational force6 while
their electric interaction is negligible. This is how David conquers Goliath, since at
any distance electrons and protons attract each other by electrostatic forces, about
40 orders of magnitude stronger than their gravitational attraction.

Gravitation does not have any measurable influence on the collisions of mole-
cules leading to chemical reactions, since reactions are due to much stronger elec-
tric interactions.7

A narrow margin
Due to strong interactions, protons overcome mutual electrostatic repulsion and
form (together with neutrons) stable nuclei leading to the variety of chemical ele-
ments. Therefore, strong interactions are the prerequisite of any chemistry (except
hydrogen chemistry). However, chemists deal with already prepared stable nuclei8

and these strong interactions have a very small range (of about 10−13 cm) as com-
pared to interatomic distances (of the order of 10−8 cm). This is why a chemist
may treat nuclei as stable point charges that create an electrostatic field. Test tube
conditions allow for the presence of electrons and photons, thus completing the
set of particles that one might expect to see (some exceptions are covered in this
book). This has to do with the order of magnitude of energies exchanged (under
the conditions where we carry out chemical reactions, the energies exchanged ex-
clude practically all nuclear reactions).

4With a corresponding large energy output; the energy coming from the fusion D+D→He taking
place on the Sun makes our existence possible.

5In electrostatic interactions charges of opposite sign attract each other while charges of the same
sign repel each other (Coulomb’s law). This results in the fact that large bodies (built of a huge num-
ber of charged particles) are nearly electrically neutral and interact electrically only very weakly. This
dramatically reduces the range of their electrical interactions.

6Huge tides and deformations of the whole Earth are witness to that.
7It does not mean that gravitation has no influence on reagent concentration. Gravitation controls the

convection flow in liquids and gases (and even solids) and therefore a chemical reaction or even crystal-
lization may proceed in a different manner on the Earth’s surface, in the stratosphere, in a centrifuge
or in space.

8At least in the time scale of a chemical experiment. Instability of some nuclei is used in nuclear
chemistry and radiation chemistry.
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On the vast scale of attainable temperatures9 chemical structures may exist in
the narrow temperature range of 0 K to thousands of K. Above this range one
has plasma, which represents a soup made of electrons and nuclei. Nature, in its
vibrant living form, requires a temperature range of about 200–320 K, a margin
of only 120 K. One does not require a chemist for chemical structures to exist.
However, to develop a chemical science one has to have a chemist. This chemist
can survive a temperature range of 273 K± 50 K, i.e. a range of only 100 K. The
reader has to admit that a chemist may think of the job only in the narrow range10

of 290–300 K, only 10 K.

A fascinating mission
Suppose our dream comes true and the grand unification of the three remaining
basic forces is accomplished one day. We would then know the first principles of
constructing everything. One of the consequences of such a feat would be a cat-
alogue of all the elementary particles. Maybe the catalogue would be finite, per-
haps it would be simple.11 We might have a catalogue of the conserved symme-
tries (which seem to be more elementary than the particles). Of course, knowing
such first principles would have an enormous impact on all the physical sciences.
It could, however, create the impression that everything is clear and that physics is
complete. Even though structures and processes are governed by first principles,
it would still be very difficult to predict their existence by such principles alone.
The resulting structures would depend not only on the principles, but also on the
initial conditions, complexity, self-organization, etc.12 Therefore, if it does happen,
the Grand Unification will not change the goals of chemistry.

Chemistry currently faces the enormous challenge of information processing,
quite different to this posed by our computers. This question is discussed in the
last chapter of this book.

BOOK GUIDELINES

TREE
Any book has a linear appearance, i.e. the text goes from page to page and the page
numbers remind us of that. However, the logic of virtually any book is non-linear,
and in many cases can be visualized by a diagram connecting the chapters that

9Millions of degrees.
10The chemist may enlarge this range by isolation from the specimen.
11None of this is certain. Much of elementary particle research relies on large particle accelerators.

This process resembles discerning the components of a car by dropping it from increasing heights from
a large building. Dropping it from the first floor yields five tires and a jack. Dropping from the second
floor reveals an engine and 11 screws of similar appearance. Eventually a problem emerges: after land-
ing from a very high floor new components appear (having nothing to do with the car) and reveal that
some of the collision energy has been converted to the new particles!
12The fact that Uncle John likes to drink coffee with cream at 5 p.m. possibly follows from first princi-

ples, but it would be very difficult to trace that dependence.
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(logically) follow from one another. Such a diagram allows for multiple branches
emanating from a given chapter, particularly if the branches are placed logically on
an equal footing. Such logical connections are illustrated in this book as a TREE
diagram (inside front cover). This TREE diagram plays a very important role in
our book and is intended to be a study guide. An author leads the reader in a
certain direction and the reader expects to know what this direction is, why he
needs this direction, what will follow, and what benefits he will gain after such
study. If studying were easy and did not require time, a TREE diagram might be
of little importance. However, the opposite is usually true. In addition, knowledge
represents much more than a registry of facts. Any understanding gained from
seeing relationships among those facts and methods plays a key role.13 The primary
function of the TREE diagram is to make these relationships clear.

The use of hypertext in information science is superior to a traditional linear
presentation. It relies on a tree structure. However, it has a serious drawback. Sit-
ting on a branch, we have no idea what that branch represents in the whole dia-
gram, whether it is an important branch or a remote tiny one; does it lead further
to important parts of the book or it is just a dead end, and so on. At the same time,
a glimpse of the TREE shows us that the thick trunk is the most important struc-
ture. What do we mean by important? At least two criteria may be used. Important
for the majority of readers, or important because the material is fundamental for
an understanding of the laws of nature. I have chosen the first. For example, rela-
tivity theory plays a pivotal role as the foundation of physical sciences, but for the
vast majority of chemists its practical importance and impact are much smaller.
Should relativity be represented therefore as the base of the trunk, or as a minor
branch? I have decided to make the second choice not to create the impression
that this topic is absolutely necessary for the student. Thus, the trunk of the TREE
corresponds to the pragmatic way to study this book.

The trunk is the backbone of this book:

• it begins by presenting Postulates, which play a vital role in formulating the foun-
dation of quantum mechanics. Next, it goes through

• the Schrödinger equation for stationary states, so far the most important equa-
tion in quantum chemical applications,

• the separation of nuclear and electronic motion,
• it then develops the mean-field theory of electronic structure and
• finally, develops and describes methods that take into account electronic corre-

lation.

The trunk thus corresponds to a traditional course in quantum chemistry for un-
dergraduates. This material represents the necessary basis for further extensions
into other parts of the TREE (appropriate for graduate students). In particular,
it makes it possible to reach the crown of the TREE, where the reader may find
tasty fruit. Examples include the theory of molecule-electric/magnetic field inter-

13This advice comes from Antiquity: . . . “knowledge is more precious than facts, understanding is more
precious than knowledge, wisdom is more precious than understanding”.
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actions, as well as the theory of intermolecular interactions (including chemical re-
actions), which form the very essence of chemistry. We also see that our TREE has
an important branch concerned with nuclear motion, including molecular mechan-
ics and several variants of molecular dynamics. At its base, the trunk has two thin
branches: one pertains to relativity mechanics and the other to the time-dependent
Schrödinger equation. The motivation for this presentation is different in each
case. I do not highlight relativity theory: its role in chemistry is significant,14 but not
crucial. The time-dependent Schrödinger equation is not highlighted, because, for
the time being, quantum chemistry accentuates stationary states. I am confident,
however, that the 21st century will see significant developments in the methods
designed for time-dependent phenomena.

Traversing the TREE
The TREE serves not only as a diagram of logical chapter connections, but also
enables the reader to make important decisions:

• the choice of a logical path of study (“itinerary”) leading to topics of interest,
• elimination of chapters that are irrelevant to the goal of study.15

Of course, all readers are welcome to find their own itineraries when traversing
the TREE. Some readers might wish to take into account the author’s suggestions
as to how the book can be shaped..

First of all we can follow two basic paths:

• minimum minimorum for those who want to proceed as quickly as possible to get
an idea what quantum chemistry is all about16 following the chapters designated
by (�).

• minimum for those who seek basic information about quantum chemistry, e.g.,
in order to use popular computer packages for the study of molecular electronic
structure,17 they may follow the chapters designated by the symbols � and �.

Other paths proposed consist of a minimum itinerary (i.e. � and �) plus special
excursions: which we term additional.

• Those who want to use computer packages with molecular mechanics and mole-
cular dynamics in a knowledgeable fashion, may follow the chapters designated
by this symbol (♠).

• Those interested in spectroscopy may follow chapters designated by this symbol
(�).

14Contemporary inorganic chemistry and metallo-organic chemistry concentrate currently on heavy
elements, where relativity effects are important.
15It is, therefore, possible to prune some of the branches.
16I imagine someone studying material science, biology, biochemistry, or a similar subject. They have

heard that quantum chemistry explains chemistry, and want to get the flavour and grasp the most im-
portant information. They should read only 47 pages.
17I imagine here a student of chemistry, specializing in, say, analytical or organic chemistry (not quan-

tum chemistry). This path involves reading something like 300 pages + the appropriate Appendices (if
necessary).
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• Those interested in chemical reactions may follow chapters designated by this
symbol (�).

• People interested in large molecules may follow chapters designated by this sym-
bol (�).

• People interested in exact calculations on atoms or small molecules18 may follow
chapters designated by this symbol (�).

• People interested in solid state physics and chemistry may follow chapters des-
ignated by this symbol (�).

For readers interested in particular aspects of this book rather than any system-
atic study, the following itineraries are proposed.

• Just before an exam read in each chapter these sections. “Where are we”, “An
example”, “What is it all about”, “Why is this important”, “Summary”, “Questions”
and “Answers”.

• For those interested in recent progress in quantum chemistry, we suggest sec-
tions “From the research front” in each chapter.

• For those interested in the future of quantum chemistry we propose the sections
labelled, “Ad futurum” in each chapter, and the chapters designated by (�).

• For people interested in the “magical” aspects of quantum chemistry we suggest
sections with the label (�).
– Is the world real? We suggest looking at p. 38 and subsequent material.
– For those interested in teleportation please look at p. 47 and subsequent ma-

terial.
– For those interested in the creation of matter, we suggest p. 134 and subse-

quent material.
– For those interested in tunnelling through barriers, please look at p. 153 and

subsequent material.

The target audience

I hope that the TREE structure presented above will be useful for those with vary-
ing levels of knowledge in quantum chemistry as well as for those whose goals and
interests differ from those of traditional quantum chemistry.

This book is a direct result of my lectures at the Department of Chemistry,
University of Warsaw, for students specializing in theoretical rather than exper-
imental chemistry. Are such students the target audience of this book? Yes, but
not exclusively. At the beginning I assumed that the reader would have completed
a basic quantum chemistry course19 and, therefore, in the first version I omitted
the basic material. However, that version became inconsistent, devoid of several

18Suppose the reader is interested in an accurate theoretical description of small molecules. I imagine
such a Ph.D. student working in quantum chemistry. Following their itinerary, they have, in addition
to the minimum program (300 pages), an additional 230 pages, which gives about 530 pages plus the
appropriate Appendices, in total about 700 pages.
19Say at the level of P.W. Atkins, “Physical Chemistry”, sixth edition, Oxford University Press, Oxford,

1998, chapters 11–14.
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fundamental problems. This is why I have decided to explain, mainly very briefly,20

these problems too. Therefore, a student who chooses the minimum path along the
TREE diagram (mainly along the TREE trunk) will obtain an introductory course
in quantum chemistry. On the other hand, the complete collection of chapters pro-
vides the student with a set of advanced topics in quantum chemistry, appropriate
for graduate students. For example, a number of chapters such as relativity me-
chanics, global molecular mechanics, solid state physics and chemistry, electron
correlation, density functional theory, intermolecular interactions and theory of
chemical reactions, present material that is usually accessible in monographs or
review articles.

In writing this book I imagined students sitting in front of me. In discussions with
students I often saw their enthusiasm, their eyes showed me a glimpse of curiosity.
First of all, this book is an acknowledgement of my young friends, my students,
and an expression of the joy of being with them. Working with them formulated
and influenced the way I decided to write this book. When reading textbooks one
often has the impression that all the outstanding problems in a particular field
have been solved, that everything is complete and clear, and that the student is just
supposed to learn and absorb the material at hand. In science the opposite is true.
All areas can benefit from careful probing and investigation. Your insight, your
different perspective or point of view, even on a fundamental question, may open
new doors for others.

Fostering this kind of new insight is one of my main goals. I have tried, whenever
possible, to present the reasoning behind a particular method and to avoid rote
citation of discoveries. I have tried to avoid writing too much about details, because
I know how difficult it is for a new student to see the forest through the trees.
I wanted to focus on the main ideas of quantum chemistry.

I have tried to stress this integral point of view, and this is why the book some-
times deviates from what is normally considered as quantum chemistry. I sacrificed,
not only in full consciousness, but also voluntarily “quantum cleanness” in favour
of exposing the inter-relationships of problems. In this respect, any division be-
tween physics and chemistry, organic chemistry and quantum chemistry, quantum
chemistry for chemists and quantum chemistry for biologists, intermolecular in-
teractions for chemists, for physicists or for biologists is completely artificial, and
sometimes even absurd. I tried to cross these borders21 by supplying examples and
comparisons from the various disciplines, as well as from everyday life, by incorpo-
rating into intermolecular interactions not only supramolecular chemistry, but also
molecular computers, and particularly by writing a “holistic” (last) chapter about
the mission of chemistry.

My experience tells me that the new talented student who loves mathematics
courts danger. They like complex derivations of formulae so much that it seems
that the more complex the formalism, the happier the student. However, all these
formulae represent no more than an approximation, and sometimes it would be

20Except where I wanted to stress some particular topics.
21The above described itineraries cross these borders.
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better to have a simple formula. The simple formula, even if less accurate, may
tell us more and bring more understanding than a very complicated one. Behind
complex formulae are usually hidden some very simple concepts, e.g., that two
molecules are unhappy when occupying the same space, or that in a tedious it-
eration process we approach the final ideal wave function in a way similar to a
sculptor shaping his masterpiece. All the time, in everyday life, we unconsciously
use these variational and perturbational methods – the most important tools in
quantum chemistry. This book may be considered by some students as “too easy”.
However, I prize easy explanations very highly. In later years the student will not
remember long derivations, but will know exactly why something must happen.
Also, when deriving formulae, I try to avoid presenting the final result right away,
but instead proceed with the derivation step by step.22 The reason is psychological.
Students have much stronger motivation knowing they control everything, even by
simply accepting every step of a derivation. It gives them a kind of psychological
integrity, very important in any study. Some formulae may be judged as right just
by inspection. This is especially valuable for students and I always try to stress this.

In the course of study, students should master material that is both simple and
complex. Much of this involves familiarity with the set of mathematical tools re-
peatedly used throughout this book. The Appendices provide ample reference to
such a toolbox. These include matrix algebra, determinants, vector spaces, vector
orthogonalization, secular equations, matrix diagonalization, point group theory,
delta functions, finding conditional extrema (Lagrange multipliers, penalty func-
tion methods), Slater–Condon rules, as well as secondary quantization.

The tone of this book should bring to mind a lecture in an interactive mode.
To some, this is not the way books are supposed to be written. I apologize to any
readers who may not feel comfortable with this approach.

I invite cordially all readers to share with me their comments on my book:
piela@chem.uw.edu.pl

My goals

• To arouse the reader’s interest in the field of quantum chemistry.
• To show the reader the structure of this field, through the use of the TREE

diagram. Boxed text is also used to highlight and summarize important concepts
in each chapter.

• To provide the reader with fundamental theoretical concepts and tools, and the
knowledge of how to use them.

• To highlight the simple philosophy behind these tools.
• To indicate theoretical problems that are unsolved and worthy of further theo-

retical consideration.
• To indicate the anticipated and most important directions of research in chem-

istry (including quantum chemistry).

22Sometimes this is not possible. Some formulae require painstaking effort in their derivation. This
was the case, for example, in the coupled cluster method, p. 546.
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To begin with

It is suggested that the reader start with the following.

• A study of the TREE diagram.
• Read the table of contents and compare it with the TREE.
• Address the question of what is your goal, i.e. why you would like to read such a

book?
• Choose a personal path on the TREE, the suggested itineraries may be of some

help.23

• Become acquainted with the organization of any chapter.

CHAPTER ORGANIZATION

Once an itinerary is chosen the student will cover different chapters. All the chap-
ters have the same structure, and are divided into sections.

• Where are we
In this section readers are made aware of their current position on the TREE

diagram. In this way, they know the relationship of the current chapter to other
chapters, what chapters they are expected to have covered already, and the re-
maining chapters for which the current chapter provides a preparation. The cur-
rent position shows whether they should invest time and effort in studying the cur-
rent chapter. Without the TREE diagram it may appear, after tedious study of
the current chapter, that this chapter was of little value and benefit to the reader.

• An example
Here the reader is confronted with a practical problem that the current chap-

ter addresses. Only after posing a clear-cut problem without an evident solution,
will the student see the purpose of the chapter and how the material presented
sheds light on the stated problem.

• What is it all about
In this section the essence of the chapter is presented and a detailed exposi-

tion follows. This may be an occasion for the students to review the relationship
of the current chapter to their chosen path. In surveying the subject matter of a
given chapter, it is also appropriate to review student expectations. Those who
have chosen a special path will find only some of the material pertinent to their
needs. Such recommended paths are also provided within each chapter.

23This choice may still be tentative and may become clear in the course of reading this book. The
subject index may serve as a significant help. For example a reader interested in drug design, that is
based in particular on enzymatic receptors, should cover the chapters with � (those considered most
important) and then those with � (at the very least, intermolecular interactions). They will gain the
requisite familiarity with the energy which is minimized in computer programs. The reader should then
proceed to those branches of the TREE diagram labelled with �. Initially they may be interested in
force fields (where the above mentioned energy is approximated), and then in molecular mechanics
and molecular dynamics. Our students may begin this course with only the � labels. However, such a
course would leave them without any link to quantum mechanics.
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• Why is this important
There is simply not enough time for a student to cover and become familiar

with all extent textbooks on quantum mechanics. Therefore, one has to choose
a set of important topics, those that represent a key to an understanding of the
broad domains of knowledge. To this end, it often pays to master a complex
mathematical apparatus. Such mastery often leads to a generalization or sim-
plification of the internal structure of a theory. Not all chapters are of equal
importance. At this point, the reader has the opportunity to judge whether the
author’s arguments about the importance of a current chapter are convincing.

• What is needed
It is extremely disappointing if, after investing time and effort, the reader is

stuck in the middle of a chapter, simply for lack of a particular theoretical tool.
This section covers the prerequisites necessary for the successful completion of
the current chapter. Material required for understanding the text is provided
in the Appendices at the end of this book. The reader is asked not to take this
section too literally, since a tool may be needed only for a minor part of the
material covered, and is of secondary importance. This author, however, does
presuppose that the student begins this course with a basic knowledge of math-
ematics, physics and chemistry.

• Classical works
Every field of science has a founding parent, who identified the seminal prob-

lems, introduced basic ideas and selected the necessary tools. Wherever appro-
priate, we mention these classical investigators, their motivation and their most
important contributions. In many cases a short biographical note is also given.

• The Chapter’s Body
The main body of each chapter is presented in this section. An attempt is

made to divide the contents logically into sub-sections, and to have these sections
as small as possible in order to make them easy to swallow. A small section
makes for easier understanding.

• Summary
The main body of a chapter is still a big thing to digest and a student may be

lost in seeing the logical structure of each chapter.24 A short summary gives the
motivation for presenting the material at hand, and why one should expend the
effort, what the main benefits are and why the author has attached importance
to this subject. This is a useful point for reflection and consideration. What have
we learnt, where are we heading, and where can this knowledge be used and
applied?

• Main concepts, new terms
New terms, definitions, concepts, relationships are introduced. In the current

chapter they become familiar tools. The reader will appreciate this section (as
well as sections Why is this important and Summaries) just before an examination.

24This is most dangerous. A student at any stage of study has to be able to answer easily what the
purpose of each stage is.
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• From the research front
It is often ill advised to present state of the art results to students. For exam-

ple, what value is it to present the best wave function consisting of thousands
of terms for the helium atom? The logistics of such a presentation are difficult
to contemplate. There is significant didactic value in presenting a wavefunction
with one or only a few terms where significant concepts are communicated. On
the other hand the student should be made aware of recent progress in generat-
ing new results and how well they agree with experimental observations.

• Ad futurum. . .
The reader deserves to have a learned assessment of the subject matter cov-

ered in a given chapter. For example, is this field stale or new? What is the prog-
nosis for future developments in this area? These are often perplexing questions
and the reader deserves an honest answer.

• Additional literature
The present text offers only a general panorama of quantum chemistry. In

most cases there exists an extensive literature, where the reader will find more
detailed information. The role of review articles, monographs and textbooks is
to provide an up-to-date description of a particular field. References to such
works are provided in this section, often combined with the author’s comments
on their appropriateness for students.

• Questions
In this section the reader will find ten questions related to the current chap-

ter. Each question is supplied with four possible answers. The student is asked
to choose the correct answer. Sometimes the answer will come easily. In other
cases, the student will have to decide between two or more similar possibilities
that may differ only in some subtle way. In other cases the choice will come
down to the truth or an absurdity (I beg your pardon for this). Life is filled with
situations where such choices have to be made.

• Answers
Here answers to the above questions are provided.

WEB ANNEX http://www.chem.uw.edu.pl/ideas

The role of the Annex is to expand the readers’ knowledge after they read a given
chapter. At the heart of the web Annex are useful links to other people’s websites.
The Annex will be updated every several months. The Annex adds at least four
new dimensions to my book: colour, motion, an interactive mode of learning and
connection to the web (with a plethora of possibilities to go further and further).
The living erratum in the Annex (with the names of those readers who found the
errors) will help to keep improving the book after it was printed.
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Chapter 1

THE MAGIC OF
QUANTUM MECHANICS

Where are we?

We are at the beginning of all the paths, at the base of the TREE.

An example

Since 1911 we have known that atoms and molecules are built of two kinds of parti-
cles: electrons and nuclei. Experiments show the particles may be treated as point-like
objects of certain mass and electric charge. The electronic charge is equal to −e, while
the nuclear charge amounts to Ze, where
e = 1�6 · 10−19 C and Z is a natural num-
ber. Electrons and nuclei interact according
to the Coulomb law, and classical mechan-
ics and electrodynamics predict that any atom
or molecule is bound to collapse in a matter
of a femtosecond emitting an infinite amount
of energy. Hence, according to the classical
laws, the complex matter we see around us
(also our bodies) should simply not exist at
all.

However, atoms and molecules do exist,
and their existence may be described in detail

Charles Augustin de Coulomb
(1736–1806), French military
engineer, one of the founders
of quantitative physics. In
1777 he constructed a torsion
balance for measuring very
weak forces, with which he
was able to demonstrate the
inverse square law for electric
and magnetic forces. He also
studied charge distribution on
the surfaces of dielectrics.

by quantum mechanics using what is known as the wave function. The axioms of quantum
mechanics provide the rules for the derivation of this function and for the calculation of all
the observable properties of atoms and molecules.

What is it all about

History of a revolution (�) p. 4

Postulates (�) p. 15

The Heisenberg uncertainty principle (�) p. 34

The Copenhagen interpretation (�) p. 37

How to disprove the Heisenberg principle? The Einstein–Podolsky–Rosen recipe (�) p. 38

Is the world real? (�) p. 40
• Bilocation

1
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The Bell inequality will decide (�) p. 43

Intriguing results of experiments with photons (�) p. 46

Teleportation (�) p. 47

Quantum computing (�) p. 49

Any branch of science has a list of axioms, on which the entire construction is built.1

For quantum mechanics, six such axioms (postulates) have been established. The postulates
have evolved in the process of reconciling theory and experiment, and may sometimes be
viewed as non-intuitive. These axioms stand behind any tool of quantum mechanics used
in practical applications. They also lead to some striking conclusions concerning the reality
of our world, for example, the possibilities of bilocation, teleportation, and so on. These
unexpected conclusions have recently been experimentally confirmed.

Why is this important?

The axioms given in this chapter represent the foundation of quantum mechanics, and justify
all that follows in this book. In addition, our ideas of what the world is really like acquire a
new and unexpected dimension.

What is needed?

• Complex numbers (necessary).
• Operator algebra and vector spaces, Appendix B, p. 895 (necessary).
• Angular momentum, Appendix F, p. 955 (recommended).
• Some background in experimental physics: black body radiation, photoelectric effect (rec-

ommended).

Classical works

The beginning of quantum theory was the discovery, by Max Planck, of the electromag-
netic energy quanta emitted by a black body. The work was published under the title: “Über
das Gesetz der Energieverteilung im Normalspektrum”2 in Annalen der Physik, 4 (1901) 553.
� Four years later Albert Einstein published a paper “Über die Erzeugung und Verwand-
lung des Lichtes betreffenden heuristischen Gesichtspunkt” in Annalen der Physik, 17 (1905)
132, in which he explained the photoelectric effect by assuming that the energy is absorbed
by a metal as quanta of energy. � In 1911 Ernest Rutherford discovered that atoms are
composed of a massive nucleus and electrons: “The Scattering of the α and β Rays and the
Structure of the Atom”, in Proceedings of the Manchester Literary and Philosophical Society, IV,

1And which are not expected to be proved.
2Or “On the Energy Distribution Law in the Normal Spectrum” with a note saying that the material had

already been presented (in another form) at the meetings of the German Physical Society on Oct. 19
and Dec. 14, 1900.
On p. 556 one can find the following historical sentence on the total energy denoted asUN : “Hierzu ist es
notwendig, UN nicht als eine stetige, unbeschränkt teilbare, sondern als eine diskrete, aus einer ganzen Zahl
von endlichen gleichen Teilen zusammengesetzte Grösse aufzufassen”, which translates as: “Therefore, it is
necessary to assume that UN does not represent any continuous quantity that can be divided without any
restriction. Instead, one has to understand that it as a discrete quantity composed of a finite number of equal
parts.
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55 (1911) 18. � Two years later Niels Bohr introduced a planetary model of the hydrogen
atom in “On the Constitution of Atoms and Molecules” in Philosophical Magazine, Series 6,
vol. 26 (1913). � Louis de Broglie generalized the corpuscular and wave character of any
particle in his PhD thesis “Recherches sur la théorie des quanta”, Sorbonne, 1924. � The first
mathematical formulation of quantum mechanics was developed by Werner Heisenberg
in “Über quantentheoretischen Umdeutung kinematischer und mechanischer Beziehungen”,
Zeitschrift für Physik, 33 (1925) 879. � Max Born and Pascual Jordan recognized matrix
algebra in the formulation [in “Zur Quantenmechanik”, Zeitschrift für Physik, 34 (1925) 858]
and then all three [the famous “Drei-Männer Arbeit” entitled “Zur Quantenmechanik. II.”
and published in Zeitschrift für Physik, 35 (1925) 557] expounded a coherent mathematical
basis for quantum mechanics. � Wolfgang Pauli introduced his “two-valuedness” for the
non-classical electron coordinate in “Über den Einfluss der Geschwindigkeitsabhängigkeit der
Elektronenmasse auf den Zeemaneffekt”, published in Zeitschrift für Physik, 31 (1925) 373,
the next year George Uhlenbeck and Samuel Goudsmit described their concept of particle
spin in “Spinning Electrons and the Structure of Spectra”, Nature, 117 (1926) 264. � Wolfgang
Pauli published his famous exclusion principle in “Über den Zusammenhang des Abschlusses
der Elektronengruppen im Atom mit der Komplexstruktur der Spektren” which appeared in
Zeitschrift für Physik B, 31 (1925) 765. � The series of papers by Erwin Schrödinger “Quan-
tisierung als Eigenwertproblem” in Annalen der Physik, 79 (1926) 361 (other references in
Chapter 2) was a major advance. He proposed a different mathematical formulation (from
Heisenberg’s) and introduced the notion of the wave function. � In the same year Max
Born, in “Quantenmechanik der Stossvorgänge” which appeared in Zeitschrift für Physik, 37
(1926) 863 gave an interpretation of the wave function. � The uncertainty principle was dis-
covered by Werner Heisenberg and described in “Über den anschaulichen Inhalt der quanten-
theoretischen Kinematik und Mechanik”, Zeitschrift für Physik, 43 (1927) 172. � Paul Adrien
Maurice Dirac reported an attempt to reconcile quantum and relativity theories in a series
of papers published from 1926–1928 (references in Chapter 3). � Albert Einstein, Boris
Podolsky and Natan Rosen proposed a test (then a Gedanken or thinking-experiment, now
a real one) of quantum mechanics “Can quantum-mechanical description of physical reality be
considered complete?” published in Physical Review, 47 (1935) 777. � Richard Feynman, Ju-
lian Schwinger and Shinichiro Tomonaga independently developed quantum electrodynam-
ics in 1948. � John Bell, in “On the Einstein–Podolsky–Rosen Paradox”, Physics, 1 (1964)
195 reported inequalities which were able to verify the very foundations of quantum me-
chanics. � Alain Aspect, Jean Dalibard and Géard Roger in “Experimental Test of Bell’s
Inequalities Using Time-Varying Analyzers”, Physical Review Letters, 49 (1982) 1804 reported
measurements which violated the Bell inequality and proved the non-locality or/and (in a
sense) non-reality of our world. � Akira Tonomura, Junji Endo, Tsuyoshi Matsuda and
Takeshi Kawasaki in “Demonstration of Single-Electron Buildup of an Interference Pattern”,
American Journal of Physics, 57 (1989) 117 reported direct electron interference in a two-slit
experiment. � Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher
Peres and William K. Wootters, in “Teleporting an unknown quantum state via dual classical
and Einstein–Podolsky–Rosen channels” in Physical Review Letters, 70 (1993) 1895 designed
a teleportation experiment, which has subsequently been successfully accomplished by Dik
Bouwmeester, Jian-Wei Pan, Klaus Mattle, Manfred Eibl, Harald Weinfurter and Anton
Zeilinger, “Experimental Quantum Teleportation” in Nature, 390 (1997) 575.
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1.1 HISTORY OF A REVOLUTION

The end of the nineteenth century saw itself as a proud period for physics,
which seemed to finally achieve a state of coherence and clarity. Physics at
that time believed the world consisted of two kingdoms: a kingdom of parti-

James Clerk Maxwell (1831–
1879), British physicist, pro-
fessor at the University of Ab-
erdeen, Kings College, Lon-
don, and Cavendish Profes-
sor in Cambridge. His main
contributions are his famous
equations for electromagnet-
ism (1864), and the earlier
discovery of velocity distribu-
tion in gases (1860).

cles and a kingdom of electromagnetic
waves. Motion of particles had been de-
scribed by Isaac Newton’s equation, with
its striking simplicity, universality and
beauty. Similarly, electromagnetic waves
had been accurately described by James
Clerk Maxwell’s simple and beautiful
equations.

Young Planck was advised to aban-
don the idea of studying physics, because
everything had already been discovered.
This beautiful idyll was only slightly in-

complete, because of a few annoying details: the strange black body radiation, the
photoelectric effect and the mysterious atomic spectra. Just some rather exotic prob-
lems to be fixed in the near future. . .

As it turned out, they opened a New World. The history of quantum theory, one
of most revolutionary and successful theories ever designed by man, will briefly be
given below. Many of these facts have their continuation in the present textbook.

Black body radiation

1900 – Max Planck

Max Planck wanted to understand black body radiation. The black body may be
modelled by a box, with a small hole, Fig. 1.1. We heat the box up, wait for the
system to reach a stationary state (at a fixed temperature) and see what kind of
electromagnetic radiation (intensity as a function of frequency) comes out of the
hole. In 1900 Rayleigh and Jeans3 tried to apply classical mechanics to this prob-
lem, and calculated correctly that the black body would emit electromagnetic radi-
ation having a distribution of frequencies. However, the larger the frequency the
larger its intensity, leading to what is known as ultraviolet catastrophe, an absurdUV catastrophe

conclusion. Experiment contradicted theory (Fig. 1.1).
At a given temperature T the intensity distribution (at a given frequency ν,

Fig. 1.1.b) has a single maximum. As the temperature increases, the maximum
should shift towards higher frequencies (a piece of iron appears red at 500 ◦C, but
bluish at 1000 ◦C). Just like Rayleigh and Jeans, Max Planck was unable to derive

3James Hopwood Jeans (1877–1946), British physicist, professor at the University of Cambridge and
at the Institute for Advanced Study in Princeton. Jeans also made important discoveries in astrophysics
(e.g., the theory of double stars).
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Max Karl Ernst Ludwig Planck (1858–1947),
German physicist, professor at the universi-
ties in Munich, Kiel and Berlin, first director of
the Institute of Theoretical Physics in Berlin.
Planck was born in Kiel, where his father was a
university professor of law. Max Planck was a
universally talented school pupil, then an out-
standing physics student at the University of
Berlin, where he was supervised by Gustaw
Kirchhoff and Hermann Helmholtz. Music was
his passion throughout his life, and he used to
play piano duets with Einstein (who played the
violin). This hard-working, middle-aged, old-
fashioned, professor of thermodynamics made
a major breakthrough as if in an act of scien-
tific desperation. In 1918 Planck received the
Nobel Prize “for services rendered to the ad-
vancement of Physics by his discovery of en-
ergy quanta”. Einstein recalls jokingly Planck’s
reported lack of full confidence in general rela-
tivity theory: “Planck was one of the most out-

standing people I have ever known, (. . . ) In re-
ality, however, he did not understand physics.
During the solar eclipse in 1919 he stayed
awake all night, to see whether light bending
in the gravitational field will be confirmed. If he
understood the very essence of the general rel-
ativity theory, he would quietly go to bed, as I
did”. (Cited by Ernst Straus in “Einstein: A Cen-
tenary Volume”, p. 31).

John William Strutt, Lord Rayleigh (1842–
1919), British physicist, Cavendish Professor
at Cambridge, contributed greatly to physics
(wave propagation, light scattering theory –
Rayleigh scattering). In 1904 Rayleigh re-
ceived the Nobel Prize “for his investigations
of the densities of the most important gases
and for his discovery of argon in connection
with these studies”.

black body

classical theory (ultraviolet catastrophe)

experiment

Fig. 1.1. Black body radiation. (a) As one heats a box to temperature T , the hole emits electromagnetic
radiation with a wide range of frequencies. The distribution of intensity I(ν) as a function of frequency
ν is given in Fig. (b). There is a serious discrepancy between the results of classical theory and the
experiment, especially for large frequencies. Only after assuming the existence of energy quanta can
theory and experiment be reconciled.
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this simple qualitative picture from classical theory – something had to be done. On
14 December 1900, the generally accepted date for the birth of quantum theory,
Planck presented his theoretical results for the black body treated as an ensemble
of harmonic oscillators. With considerable reluctance he postulated4 that matter
cannot emit radiation otherwise than by equal portions (“quanta”) of energy hν,quanta

proportional to the frequency ν of vibrations of a single oscillator of the black body.
The famous Planck constant h followed soon after (h= 6�62607 · 10−34 J s; but inPlanck constant

this book, we will use a more convenient constant5 h̄ = h
2π ). It is exactly this hy-

pothesis about energy quanta that led to the agreement of theory with experiment
and the elimination of the ultraviolet catastrophe.

Photoelectric effect

1905 – Albert Einstein

The second worrying problem, apart from the black body, was the photoelectricphoton

effect.6 Light knocks electrons7 out of metals, but only when its frequency exceeds
a certain threshold. Classical physics was helpless. In classical theory, light energy
should be stored in the metal in a continuous way and independent of the frequency
used, after a sufficient period of time, the electrons should be ejected from the metal.
Nothing like that was observed. Einstein introduced the idea of electromagnetic
radiation quanta as particles, later baptised photons by Gilbert Lewis. Note that
Planck’s idea of a quantum concerned energy transfer from the black body to the
electromagnetic field, while Einstein introduced it for the opposite direction with the
energy corresponding to Planck’s quantum. Planck considered the quantum as a
portion of energy, while for Einstein the quantum meant a particle.8 Everything
became clear: energy goes to electrons by quanta and this is why only quanta ex-

4He felt uncomfortable with this idea for many years.
5Known as “h bar”.
6Experimental work on the effect had been done by Philipp Eduard Anton Lenard (1862–1947),

German physicist, professor at Breslau (now Wrocław), Köln and Heidelberg. Lenard discovered that
the number of photoelectrons is proportional to the intensity of light, and that their kinetic energy does
not depend at all on the intensity, depending instead on the frequency of light. Lenard received the Nobel
Prize in 1905 “for his work on cathode rays”. A faithful follower of Adolf Hitler, and devoted to the
barbarous Nazi ideas, Lenard terrorized German science. He demonstrates that scientific achievement
and decency are two separate human characteristics.

7The electron was already known, having been predicted as early as 1868 by the Irish physicist George
Johnstone Stoney (1826–1911), and finally discovered in 1897 by the British physicist Joseph John
Thomson (1856–1940). Thomson also discovered a strange pattern: the number of electrons in light
elements was equal to about one half of their atomic mass. Free electrons were obtained much later
(1906). The very existence of atoms was still a hypothesis. The atomic nucleus was to be discovered only
in 1911. Physicists were also anxious about the spectra of even the simplest substances such as hydro-
gen. Johann Jacob Balmer, a teacher from Basel, was able to design an astonishingly simple formula
which fitted perfectly some of the observed lines in the hydrogen spectrum (“Balmer series”). All that
seemed mysterious and intriguing.

8It is true that Einstein wrote about “point-like quanta” four years later, in a careful approach iden-
tifying the quantum with the particle. Modern equipment enables us to count photons, the individual
particles of light. The human eye is also capable of detecting 6–8 photons striking a neuron.
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Gilbert Newton Lewis (1875–1946), the great-
est American chemist, who advanced Amer-
ican chemistry internationally through his re-
search and teaching. In a 1926 article in
Nature Lewis introduced the name of the
“photon”. He also developed an early the-
ory of chemical bonding (“Lewis structures”)
based on counting the valence electrons and
forming “octets” from them. The idea that
atoms in molecules tend to form octets in order
to complete their electron shells turned out to
be surprisingly useful in predicting bond pat-
terns in molecules. A drawback of this con-
cept is that it was not related to the ideas
of theoretical physics. It is an example of an

extremely clever concept rather than of a co-
herent theory. Lewis also introduced a new
definition of acids and bases, which is still in
use.

ceeding some threshold (the binding energy of an electron in the metal) are able
to eject electrons from a metal.

1911 – Ernest Rutherford

Rutherford proved experimentally that an atom has massive nucleus, but it is how-
ever very small when compared to the size of the atom. The positive charge is
concentrated in the nucleus, which is about 10−13 cm in size. The density of the
nuclear matter boggles the imagination: 1 cm3 has a mass of about 300 million
tonnes. This is how researchers found out that an atom is composed of a massive
nucleus and electrons. atomic nucleus

The model of the hydrogen atom
1913 – Niels Bohr

Atomic spectra were the third great mystery of early 20th century physics. Even
interpretation of the spectrum of the hydrogen atom represented a challenge. At
the age of 28 Bohr proposed (in 1913) a simple planetary model of this atom, in
which the electron, contrary to classical mechanics, did not fall onto the nucleus.
Instead, it changed its orbit with accompanying absorption or emission of energy
quanta. Bohr assumed that angular orbital momentum is quantized and that the
centrifugal force is compensated by the Coulomb attraction between the electron
and the nucleus. He was able to reproduce part of the spectrum of the hydrogen

In 1905, the accuracy of experimental data was too poor to confirm Einstein’s theory as the only
one which could account for the experimental results. Besides, the wave nature of light was supported
by thousands of crystal clear experiments. Einstein’s argument was so breathtaking (. . . particles???),
that Robert Millikan decided to falsify experimentally Einstein’s hypothesis. However, after ten years of
investigations, Millikan acknowledged that he was forced to support undoubtedly Einstein’s explanation
“however absurd it may look” (Rev. Modern Phys. 21 (1949) 343). This conversion of a sceptic inclined
the Nobel Committee to grant Einstein the Nobel Prize in 1923 “for his work on the elementary charge
of electricity and on the photo-electric effect”.
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Niels Hendrik Bohr (1885–1962), Danish physi-
cist, a professor at Copenhagen University,
played a key role in the creation and interpre-
tation of quantum mechanics (see end of this
chapter). Bohr was born in Copenhagen, the
son of a professor of physiology. He graduated
from Copenhagen university and in 1911 ob-
tained his doctorate there. Then he went to
Cambridge to work under the supervision of
J.J. Thomson, the discoverer of the electron.
The collaboration did not work out, and in 1912
Bohr began to cooperate with Ernest Ruther-
ford at the University of Manchester. In Man-
chester Niels Bohr made a breakthrough by in-
troducing a planetary model of hydrogen atom.
He postulated that the angular orbital momen-
tum must be quantized. Using this Bohr repro-
duced the experimental spectrum of hydrogen
atom with high accuracy. In 1922 Bohr received
the Nobel Prize “for his investigation of the
structure of atoms”. In the same year he be-
came the father of Aage Niels Bohr – a future
winner of the Nobel Prize (1975, for studies of
the structure of nuclei). In October 1943, Bohr
and his family fled from Denmark to Sweden,

and then to Great Britain and the USA, where
he worked on the Manhattan Project. After the
war the Bohr family returned to Denmark.

atom very accurately. Bohr then began work on the helium atom, which turned out
to be a disaster, but he was successful again with the helium cation9 He+.

Niels Bohr played an inspiring role in the development and popularization of
quantum mechanics. His Copenhagen Institute for Theoretical Physics, founded in
1921, was the leading world centre in the twenties and thirties, where many young
theoreticians from all over the world worked on quantum mechanical problems.10

Bohr, with Werner Heisenberg, Max Born and John von Neumann, contributed
greatly to the elaboration of the philosophical foundations of quantum mechan-
ics. According to this, quantum mechanics represents a coherent and complete
model of reality (“the world”), and the discrepancies with the classical mechanics
have a profound and fundamental character,11 and both theories coincide in the
limit h→ 0 (where h is the Planck constant), and thus the predictions of quantum

9Bohr did not want to publish without good results for all other atoms, something he would never
achieve. Rutherford argued: “Bohr, you explained hydrogen, you explained helium, people will believe you
for other atoms”.
10John Archibald Wheeler recalls that, when he first came to the Institute, he met a man working in

the garden and asked him where he could find Professor Bohr. The gardener answered: “That’s me”.
11The centre of the controversy was that quantum mechanics is indeterministic, while classical me-

chanics is deterministic, although this indeterminism is not all it seems. As will be shown later in this
chapter, quantum mechanics is a fully deterministic theory in the Hilbert space (the space of all possible
wave functions of the system), its indeterminism pertains to the physical space in which we live.
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mechanics reduce to those of classical
mechanics (known as Bohr’s correspon-
dence principle).

“Old quantum theory”

1916 – Arnold Sommerfeld

In 1916 Arnold Sommerfeld general-
ized the Bohr quantization rule beyond
the problem of the one-electron atom.
Known as “old quantum theory”, it did
not represent any coherent theory of
general applicability. As a matter of
fact, this quantization was achieved by

Arnold Sommerfeld (1868–
1951), German physicist, pro-
fessor at the Mining Academy
in Clausthal, then at the Tech-
nical University of Aachen, in
the key period 1906–1938,
was professor at Munich Uni-
versity. Sommerfeld consid-
ered not only circular (Bohr-
like) orbits, but also elliptical
ones, and introduced the an-
gular quantum number. He
also investigated X rays and
the theory of metals. The sci-

entific father of many Nobel
Prize winners he did not get
this distinction himself.

assuming that for every periodic variable (like an angle), an integral is equal to
an integer times the Planck constant.12 Sommerfeld also tried to apply the Bohr
model to atoms with a single valence electron (he had to modify the Bohr formula
by introducing the quantum defect, i.e. a small change in the principal quantum
number, see p. 179).

Waves of matter

1923 – Louis de Broglie

In his doctoral dissertation, stuffed with mathematics, Louis de Broglie introduced
the concept of “waves of matter”. He postulated that not only photons, but also
any other particle, has, besides its corpuscular characteristics, some wave properties dualism

(those corresponding to light had been known for a long, long time). According to
de Broglie, the wave length corresponds to momentum p,

Louis Victor Pierre Raymond de Broglie (1892–
1987) was studying history at the Sorbonne,
carefully preparing himself for a diplomatic ca-
reer. His older brother Maurice, a radiogra-
pher, aroused his interest in physics. The first
World War (Louis did his military service in a
radio communications unit) and the study of
history delayed his start in physics. He was
32 when he presented his doctoral disserta-
tion, which embarrassed his supervisor, Paul
Langevin. The thesis, on the wave nature of all
particles, was so revolutionary, that only a pos-
itive opinion from Einstein, who was asked by
Langevin to take a look of the dissertation, con-

vinced the doctoral committee. Only five years
later (in 1929), Louis de Broglie received the
Nobel Prize “for his discovery of the wave na-
ture of electrons”.

12Similar periodic integrals were used earlier by Bohr.
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p= h

λ

where h is again the Planck constant! What kind of momentum can this be, in view
of the fact that momentum depends on the laboratory coordinate system chosen?
Well, it is the momentum measured in the same laboratory coordinate system as
that used to measure the corresponding wave length.

Electron–photon scattering

1923 – Arthur Compton13

It turned out that an electron–photon collision obeys the same laws of dynamics
as those describing collision of two particles: the energy conservation law and the
momentum conservation law. This result confirmed the wave–corpuscular picture
emerging from experiments.

Discovery of spin

1925 – George E. Uhlenbeck and Samuel A. Goudsmit

Two Dutch students explained an experiment (Stern–Gerlach) in which a beam of
silver atoms passing through a magnetic field split into two beams. In a short paper,
they suggested that the silver atoms have (besides their orbital angular momentum)
an additional internal angular momentum (spin), similar to a macroscopic body,
which besides its centre-of-mass motion, also has a rotational (spinning) motion.14

Moreover, the students demonstrated that the atomic spin follows from the spin
of the electrons: among the 47 electrons of the silver atom, 46 have their spin
compensated (23 “down” and 23 “up”), while the last “unpaired” electron gives
the net spin of the atom.

Pauli Exclusion Principle

1925 – Wolfgang Pauli15

Pauli postulated that in any system two electrons cannot be in the same state (includ-
ing their spins). This “Pauli exclusion principle” was deduced from spectroscopic
data (some states were not allowed).

13Arthur Holly Compton (1892–1962), American physicist, professor at the universities of Saint Louis
and Chicago. He obtained the Nobel Prize in 1927 “for the discovery of the effect named after him”, i.e.
for investigations of electron–photon scattering.
14Caution: identifying the spin with the rotation of a rigid body leads to physical inconsistencies.
15 Pauli also introduced the idea of spin when interpreting spectra of atoms with a single valence elec-

tron. He was inspired by Sommerfeld, who interpreted the spectra by introducing the quantum number
j = l± 1

2 , where the quantum number l quantized the orbital angular momentum of the electron. Pauli
described spin as a bivalent non-classical characteristic of the electron [W. Pauli, Zeit. Phys. B 3 (1925)
765].
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Matrix quantum mechanics

1925 – Werner Heisenberg

A paper by 24 year old Werner Heisenberg turned out to be a breakthrough in
quantum theory.16 Max Born recognized matrix algebra in Heisenberg’s formu-
lation (who, himself, had not yet realised it) and in the same year a more solid
formulation of the new mechanics (“matrix mechanics”) was proposed by Werner
Heisenberg, Max Born and Pascual Jordan.17

Schrödinger equation

1926 – Erwin Schrödinger

In November 1925, Erwin Schrödinger delivered a lecture at the Technical Uni-
versity in Zurich (ETH), in which he presented the results of de Broglie. Professor
Peter Debye stood up and asked the speaker:

Peter Joseph Wilhelm Debye, more exactly,
Peter Josephus Wilhelmus Debye (1884–1966),
Dutch physicist and chemist, professor in the
Technical University (ETH) of Zurich (1911,
1920–1937) as well as at Göttingen, Leipzig
and Berlin, won the Nobel Prize in chemistry in
1936 “for his contribution to our knowledge of
molecular structure through his investigations
on dipole moments and on the diffraction of X-
rays and electrons in gases”. Debye emigrated
to the USA in 1940, where he obtained a pro-
fessorship at Cornell University in Ithaca, NY
(and remained in this beautiful town to the end
of his life). His memory is still alive there. Pro-

fessor Scheraga remembers him as an able
chair in seminar discussions, in the tradition of
the Zurich seminar of 1925.

16On June 7, 1925, Heisenberg was so tired after a bad attack of hay fever that he decided to go and
relax on the North Sea island of Helgoland. Here, he divided his time between climbing the mountains,
learning Goethe’s poems by heart and (despite his intention to rest) hard work on the spectrum of the
hydrogen atom with which he was obsessed. It was at night on 7 or 8 June that he saw something –
the beginning of the new mechanics. In later years he wrote in his book “Der Teil and das Ganze”: “It
was about three o’clock in the morning when the final result of the calculation lay before me. At first I was
deeply shaken. I was so excited that I could not think of sleep. So I left the house and awaited the sunrise on
the top of a rock.” The first man with whom Heisenberg shared his excitement a few days later was his
schoolmate Wolfgang Pauli, and, after another few days, also with Max Born.
17Jordan, despite his talents and achievements, felt himself underestimated and even humiliated in his

native Germany. For example, he had to accept a position at Rostock University, which the German
scientific elite used to call the “Outer-Mongolia of Germany”. The best positions seemed to be reserved.
When Hitler came to power, Jordan became a fervent follower. . .
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Max Born (1882–1970), German physicist,
professor at the universities of Göttingen,
Berlin, Cambridge and Edinburgh, born in
Breslau (now Wrocław) to the family of a
professor of anatomy in Breslau. Born stud-
ied first in Breslau, then at Heidelberg and
Zurich. He received his PhD in physics and
astronomy in 1907 at Göttingen, where he
began his swift academic career. Born ob-
tained a chair at the University of Berlin in
1914, and returned to Göttingen in 1921,
where he founded an outstanding school of
theoretical physics, which competed with the
famous institute of Niels Bohr in Copenhagen.
Born supervised Werner Heisenberg, Pascual
Jordan and Wolfgang Pauli. It was Born who
recognized, in 1925, that Heisenberg’s quan-
tum mechanics could be formulated in terms of
matrix algebra. Together with Heisenberg and
Jordan, he created the first consistent quantum
theory (the famous “drei-Männer Arbeit”). After

Schrödinger’s formulation of quantum mechan-
ics, Born proposed the probabilistic interpreta-
tion of the wave function. Despite such seminal
achievements, the Nobel Prizes in the thirties
were received by his colleagues. Finally, when
in 1954 Born obtained the Nobel Prize “for his
fundamental research in quantum mechanics,
especially for his statistical interpretation of the
wave-function”, there was a great relief among
his famous friends.

“You are telling us about waves, but where is the wave equation in your talk?”
Indeed, there wasn’t any! Schrödinger began to work on this and the next year
formulated what is now called wave mechanics based on the wave equation. Both
formulations, Heisenberg’s and Schrödinger’s18 turned out to be equivalent and
are now known as the foundation for (non-relativistic) quantum mechanics.

Statistical interpretation of wave function

1926 – Max Born

Max Born proposed interpreting the square of the complex modulus of Schrödin-
ger’s wave function as the probability density for finding the particle.

Uncertainty principle

1927 – Werner Heisenberg

Heisenberg concluded that it is not possible to measure simultaneously the posi-
tion (x) and momentum (px) of a particle with any desired accuracy. The more
exactly we measure the position (small �x), the larger the error we make in mea-
suring the momentum (large �px) and vice versa.

18And the formulation proposed by Paul A.M. Dirac.
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Electron diffraction

1927 – Clinton Davisson, Lester H. Germer, George Thomson19

Davisson and Germer, and Thomson, demonstrated in ingenious experiments that
indeed electrons do exhibit wave properties (using crystals as diffraction gratings).

The birth of quantum chemistry

1927 – Walter Heitler, Fritz Wolfgang London

Walter Heitler and Fritz Wolfgang London convincingly explained why two neutral
atoms (like hydrogen) attract each other with a force so strong as to be comparable
with the Coulomb forces between ions. Applying the Pauli exclusion principle when
solving the Schrödinger equation is of key importance. Their paper was received
on June 30, 1927, by Zeitschrift für Physik, and this may be counted as the birthday
of quantum chemistry.20

Dirac equation for the electron and positron

1928 – Paul Dirac

Paul Dirac made a magnificent contribution to quantum theory. His main achieve-
ments are the foundations of quantum electrodynamics and construction of the
relativistic wave equation (1926–1928) which now bears his name. The equation
not only described the electron, but also its anti-matter counterpart – the positron
(predicting anti-matter). Spin was also inherently present in the equation.

Quantum field theory

1929 – Werner Heisenberg and Wolfgang Pauli

These classmates developed a theory of matter, and the main features still sur-
vive there. In this theory, the elementary particles (the electron, photon, and so
on) were viewed as excited states of the corresponding fields (the electron field,
electromagnetic field and so on).

19Clinton Joseph Davisson (1881–1958), American physicist at Bell Telephone Laboratories. He dis-
covered the diffraction of electrons with L.H. Germer, and they received the Nobel Prize in 1937
“for their experimental discovery of the diffraction of electrons by crystals”. The prize was shared with
G.P. Thomson, who used a different diffraction method. George Paget Thomson (1892–1975), son of
the discoverer of the electron, Joseph John Thomson, and professor at universities in Aberdeen, Lon-
don and Cambridge.
20The term “quantum chemistry” was first used by Arthur Haas in his lectures to the Physicochem-

ical Society of Vienna in 1929 (A. Haas, “Die Grundlagen der Quantenchemie. Eine Einleitung in vier
Vortragen”, Akademische Verlagsgesellschaft, Leipzig, 1929).
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Discovery of anti-matter (the positron)
1932 – Carl Anderson21

One of Dirac’s important results was the observation that his relativistic wave equa-
tion is satisfied, not only by the electron but also by a mysterious unknown particle,
the positive electron (positron). This anti-matter hypothesis was confirmed by Carlanti-matter

Anderson, who found the positron experimentally – a victorious day for quantum
theory.

Quantum electrodynamics
1948 – Richard Feynman, Julian Schwinger, Shinichiro Tomonaga22

The Dirac equation did not take all the physical effects into account. For example,
the strong electric field of the nucleus polarizes a vacuum so much, that electron–
positron pairs emerge from the vacuum and screen the electron–nucleus interac-
tion. The quantum electrodynamics (QED) developed independently by Feynman,
Schwinger and Tomonaga accounts for this, and for similar effects, and brings the-
ory and experiment to an agreement of unprecedented accuracy.

Bell inequalities
1964 – John Bell

The mathematician John Bell proved that, if particles have certain properties be-
fore measurement (so that they were small but classical objects), then the measure-
ment results would have to satisfy some inequalities which contradict the predic-
tions of quantum mechanics (further details at the end of this chapter).

Is the world non-local?
1982 – Alain Aspect

Experiments with photons showed that the Bell inequalities are not satisfied. This
means that either there is instantaneous communication even between extremely
distant particles (“entangled states”), or that the particles do not have some definite
properties before the measurement is performed (more details at the end of this
chapter).

Teleportation of the photon state
1997 – Anton Zeilinger

A research group at the University of Innsbruck used entangled quantum states
(see p. 39) to perform teleportation of a photon state23 that is, to prepare at a

21More details in Chapter 3.
22All received the Nobel Prize in 1965 “for their fundamental work in quantum electrodynamics, with

fundamental implications for the physics of elementary particles”.
23D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390 (1997) 575.
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distance any state of a photon with simultaneous disappearance of this state from
the teleportation site (details at the end of this chapter).

1.2 POSTULATES

All science is based on a number of axioms (postulates). Quantum mechanics is
based on a system of axioms that have been formulated to be as simple as possible
and yet reproduce experimental results. Axioms are not supposed to be proved,
their justification is efficiency. Quantum mechanics, the foundations of which date
from 1925–26, still represents the basic theory of phenomena within atoms and
molecules. This is the domain of chemistry, biochemistry, and atomic and nuclear
physics. Further progress (quantum electrodynamics, quantum field theory, ele-
mentary particle theory) permitted deeper insights into the structure of the atomic
nucleus, but did not produce any fundamental revision of our understanding of
atoms and molecules. Matter as described at a non-relativistic24 quantum mechan-
ics represents a system of electrons and nuclei, treated as point-like particles with
a definite mass and electric charge, moving in three-dimensional space and inter-
acting by electrostatic forces.25 This model of matter is at the core of quantum
chemistry, Fig. 1.2.

The assumptions on which quantum mechanics is based are given by the fol-
lowing postulates I–VI. For simplicity, we will restrict ourselves to a single particle

particle 1

particle 3

particle 2

particle 1

Fig. 1.2. An atom (molecule) in non-relativistic quantum mechanics. A Cartesian (“laboratory”) co-
ordinate system is introduced into three-dimensional space (a). We assume (b) that all the particles
(electrons and nuclei) are point-like (figure shows their instantaneous positions) and interact only by
electrostatic (Coulomb) forces.

24Assuming that the speed of light is infinite.
25Yes, we take only electrostatics, that is, Coulomb interactions. It is true that a moving charged par-

ticle creates a magnetic field, which influences its own and other particles’ motion. This however (the
Lorentz force) is taken into account in the relativistic approach to quantum mechanics.
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moving along a single coordinate axis x (the mathematical foundations of quantum
mechanics are given in Appendix B on p. 895).

Postulate I (on the quantum mechanical state)
wave function

The state of the system is described by the wave function�=�(x	 t), which
depends on the coordinate of particle x at time t. Wave functions in general
are complex functions of real variables. The symbol �∗(x	 t) denotes the
complex conjugate of �(x	 t). The quantity

p(x	 t)=�∗(x	 t)�(x	 t)dx= ∣∣�(x	 t)∣∣2 dx (1.1)

gives the probability that at time t the x coordinate of the particle lies in the
small interval [x	x+ dx] (Fig. 1.3.a). The probability of the particle being in
the interval (a	b) on the x axis is given by (Fig. 1.3.b):

∫ b
a |�(x	 t)|2 dx.

The probabilistic interpretation of the wave function was proposed by Maxstatistical
interpretation Born.26 By analogy with the formula: mass = density × volume, the quantity

�∗(x	 t)�(x	 t) is called the probability density that a particle at time t has posi-probability
density tion x.

In order to treat the quantity p(x	 t) as a probability, at any instant t the wave
function must satisfy the normalization condition:normalization

∫ ∞

−∞
�∗(x	 t)�(x	 t)dx= 1� (1.2)

probability probability

Fig. 1.3. A particle moves along the x axis and is in the state described by the wave function �(x	 t).
Fig. (a) shows how the probability of finding particle in an infinitesimally small section of the length dx
at x0 (at time t = t0) is calculated. Fig. (b) shows how to calculate the probability of finding the particle
at t = t0 in a section (a	b).

26M. Born, Zeitschrift für Physik 37 (1926) 863.
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All this may be generalized for more complex situations. For example, in three-
dimensional space, the wave function of a single particle depends on position r=
(x	 y	 z) and time: �(r	 t), and the normalization condition takes the form

∫ ∞

−∞
dx
∫ ∞

−∞
dy
∫ ∞

−∞
dz�∗(x	 y	 z	 t)�(x	 y	 z	 t)≡

∫

�∗(r	 t)�(r	 t)dV

≡
∫

�∗(r	 t)�(r	 t)d3r= 1� (1.3)

When integrating over whole space, for simplicity, the last two integrals are given
without the integration limits, but they are there implicitly, and this convention will
be used by us throughout the book unless stated otherwise.

For n particles (Fig. 1.4), shown by vectors r1	 r2	 � � � 	 rn in three-dimensional
space, the interpretation of the wave function is as follows. The probability P , that
at a given time t = t0, particle 1 is in the domain V1, particle 2 is in the domain V2
etc., is calculated as

P =
∫

V1

dV1

∫

V2

dV2 � � �

∫

Vn

dVn�∗(r1	 r2	 � � � 	 rn	 t0)�(r1	 r2	 � � � 	 rn	 t0)

≡
∫

V1

d3r1

∫

V2

d3r2 � � �

∫

Vn

d3rn�
∗(r1	 r2	 � � � 	 rn	 t0)�(r1	 r2	 � � � 	 rn	 t0)�

Often in this book we will perform what is called the normalization of a function, normalization

which is required if a probability is to be calculated. Suppose we have a unnormal-

Fig. 1.4. Interpretation of a many-particle
wave function, an example for two particles.
The number |ψ(r1	 r2	 t0)|2 dV1 dV2 repre-
sents the probability that at t = t0 particle
1 is in its box of volume dV1 shown by vec-
tor r1 and particle 2 in its box of volume dV2
indicated by vector r2.
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ized function27 ψ, that is
∫ ∞

−∞
ψ(x	 t)∗ψ(x	 t)dx=A	 (1.4)

with 0<A 	= 1. To compute the probability ψ must be normalized, i.e. multiplied
by a normalization constant N , such that the new function � = Nψ satisfies the
normalization condition:

1=
∫ ∞

−∞
�∗(x	 t)�(x	 t)dx= N∗N

∫ ∞

−∞
ψ∗(x	 t)ψ(x	 t)dx=A|N|2�

Hence, |N| = 1√
A

. How isN calculated? One person may choose it as equal toN =
1√
A

, another:N =− 1√
A

, a third:N = e1989i 1√
A

, and so on. There are, therefore, an
infinite number of legitimate choices of the phaseφ of the wave function�(x	 t)=phase

eiφ 1√
A
ψ. Yet, when �∗(x	 t)�(x	 t)	 is calculated, everyone will obtain the same

result, 1
Aψ

∗ψ, because the phase disappears. In most applications, this is what will
happen and therefore the computed physical properties will not depend on the
choice of phase. There are cases, however, where the phase will be of importance.

Postulate II (on operator representation of mechanical quantities)

The mechanical quantities that describe the particle (energy, the compo-
nents of vectors of position, momentum, angular momentum, etc.) are rep-
resented by linear operators acting in Hilbert space (see Appendix B). There
are two important examples of the operators: the operator of the particle’s
position x̂ = x (i.e. multiplication by x, or x̂ = x·, Fig. 1.5), as well as the
operator of the (x-component) momentum p̂x =−ih̄ d

dx , where i stands for
the imaginary unit.

Note that the mathematical form of the operators is always defined with respect
to a Cartesian coordinate system.28 From the given operators (Fig. 1.5) the oper-
ators of some other quantities may be constructed. The potential energy operator
V̂ = V (x), where V (x) [the multiplication operator by the function V̂ f = V (x)f ]
represents a function of x called a potential. The kinetic energy operator of a single

particle (in one dimension) T̂ = p̂x
2

2m =− h̄2

2m
d2

dx2 , and in three dimensions:

T̂ = p̂2

2m
= p̂x

2 + p̂y2 + p̂z2

2m
=− h̄

2

2m
�	 (1.5)

27Eq. (1.2) not satisfied.
28Although they may then be transformed to other coordinates systems.
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Mechanical Classical Operator
quantity formula acting on f

coordinate x x̂f
def= xf

momentum
px p̂xf

def= −ih̄ ∂f∂xcomponent

kinetic
T = mv2

2 = p2

2m T̂f =− h̄2

2m�fenergy

Fig. 1.5. Mechanical quantities and the corresponding operators.

where the Laplacian � is

�≡ ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (1.6)

and m denotes the particle’s mass. The total energy operator, or Hamiltonian is
the most frequently used: Hamiltonian

Ĥ = T̂ + V̂ � (1.7)

An important feature of operators is that they may not commute,29 i.e. for two
particular operators Â and B̂ one may have ÂB̂− B̂Â 	= 0. This property has im-
portant physical consequences (see below, postulate IV and the Heisenberg uncer-
tainty principle). Because of the possible non-commutation of the operators, trans-
formation of the classical formula (in which the commutation or non-commutation
did not matter) may be non-unique. In such a case, from all the possibilities one
has to choose an operator which is Hermitian. The operator Â is Hermitian if, for
any functions ψ and φ from its domain, one has commutation

∫ ∞

−∞
ψ∗(x)Âφ(x)dx=

∫ ∞

−∞
[Âψ(x)]∗φ(x)dx� (1.8)

Using what is known as Dirac notation, Fig. 1.6, the above equality may be
written in a concise form:

〈ψ|Âφ〉 = 〈Âψ|φ〉� (1.9)

In Dirac notation30 (Fig. 1.6) the key role is played by vectors bra: 〈 | and ket: bra and ket

| 〉 denoting respectively ψ∗ ≡ 〈ψ| and φ≡ |φ〉. Writing the bra and ket as 〈ψ||φ〉
29Commutation means ÂB̂= B̂Â.
30Its deeper meaning is discussed in many textbooks of quantum mechanics, e.g., A. Messiah, “Quan-

tum Mechanics”, vol. I, Amsterdam (1961), p. 245. Here we treat it as a convenient tool.
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∫

ψ∗φdτ ≡ 〈ψ|φ〉 Scalar product of two functions

∫

ψ∗Âφdτ ≡ 〈ψ|Âφ〉 Scalar product of ψ and Âφ or

or 〈ψ|Â|φ〉 a matrix element of the operator Â

Q̂= |ψ〉〈ψ| Projection operator on the direction of the vector ψ

1=
∑

k

|ψk〉〈ψk| Spectral resolution of identity. Its sense is best seen

when acting on χ:
χ=∑k |ψk〉〈ψk|χ〉 =

∑

k |ψk〉ck.

Fig. 1.6. Dirac notation.

denotes 〈ψ|φ〉, or the scalar product of ψ and φ in a unitary space (Appendix B),
while writing it as |ψ〉〈φ| means the operator Q̂= |ψ〉〈φ|, because of its action on
function ξ= |ξ〉 shown as: Q̂ξ= |ψ〉〈φ|ξ= |ψ〉〈φ|ξ〉 = cψ, where c = 〈φ|ξ〉.

The last formula in Fig. 1.6 (with {ψk} standing for the complete set of func-
tions) represents what is known as “spectral resolution of identity”, best demon-
strated when acting on an arbitrary function χ:

χ=
∑

k

|ψk〉〈ψk|χ〉 =
∑

k

|ψk〉ck�

We have obtained the decomposition of the function (i.e. a vector of the Hilbertspectral
resultion of
identity

space) χ on its components |ψk〉ck along the basis vectors |ψk〉 of the Hilbert
space. The coefficient ck = 〈ψk|χ〉 is the corresponding scalar product, the basis
vectors ψk are normalized. This formula says something trivial: any vector can be
retrieved when adding all its components together.

Postulate III (on time evolution of the state)

time evolution
TIME-DEPENDENT SCHRÖDINGER EQUATION
The time-evolution of the wave function � is given by the equation

ih̄
∂�(x	 t)

∂t
= Ĥ�(x	 t)	 (1.10)

where Ĥ is the system Hamiltonian, see eq. (1.7).
Ĥ may be time-dependent (energy changes in time, interacting system) or time-

independent (energy conserved, isolated system). Eq. (1.10) is called the time-
dependent Schrödinger equation (Fig. 1.7).
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�(x	 t0)
↓

Ĥ�(x	 t0)
↓

ih̄

(
∂�

∂t

)

t=t0↓
�(x	 t0 + dt)=�(x	 t0)− i

h̄
Ĥ�dt

Fig. 1.7. Time evolution of a wave function. Knowing �(x	 t) at a certain time t = t0 makes it pos-
sible to compute Ĥ�(x	 t0), and from this (using eq. (1.10)) one can calculate the time derivative
∂�(x	t0)

∂t = − iĤ�(x	t0)
h̄

. Knowledge of the wave function at time t = t0, and of its time derivative, is

sufficient to calculate the function a little later (t = t0 + dt): �(x	 t0 + dt)∼=�(x	 t0)+ ∂�
∂t dt.

When Ĥ is time-independent, the general solution to (1.10) can be written as

�(x	 t)=
∞
∑

n=1

cn�n(x	 t)	 (1.11)

where �n(x	 t) represent special solutions to (1.10), that have the form

�n(x	 t)=ψn(x)e−i
En
h̄ t 	 (1.12)

and cn stand for some constants. Substituting the special solution into (1.10) leads
to31 what is known as the time-independent Schrödinger equation: time-

independent
Schrödinger
equationSCHRÖDINGER EQUATION FOR STATIONARY STATES

Ĥψn =Enψn	 n= 1	2	 � � � 	M� (1.13)

The equation represents an example of an eigenvalue equation of the operator;
the functions ψn are called the eigenfunctions, and En are the eigenvalues of the
operator Ĥ (M may be finite or infinite). It can be shown that En are real (see
Appendix B, p. 895). The eigenvalues are the permitted energies of the system,

31ih̄ ∂�n(x	t)∂t = ih̄ ∂ψn(x)e
−i En

h̄
t

∂t = ih̄ψn(x) ∂e
−i En

h̄
t

∂t = ih̄ψn(x) (−i Enh̄ )e−i
En
t = Enψne−i

En
h̄
t . How-

ever, Ĥ�n(x	 t) = Ĥψn(x)e
−i En

h̄
t = e

−i En
h̄
t
Ĥψn(x)	 because the Hamiltonian does not depend

on t. Hence, after dividing both sides of the equation by e−i
En
h̄
t one obtains the time independent

Schrödinger equation.
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and the corresponding eigenfunctions �n are defined in eqs. (1.12) and (1.13).
These states have a special character, because the probability given by (1.1) does
not change in time (Fig. 1.8):

pn(x	 t)=�∗n(x	 t)�n(x	 t)dx=ψ∗n(x)ψn(x)dx= pn(x)� (1.14)

Therefore, in determining these states, known as stationary states, one can applystationary states

the time–independent formalism based on the Schrödinger equation (1.13).

Postulate IV (on interpretation of experimental measurements)
This postulate pertains to ideal measurements, i.e. such that no error is introduced
through imperfections in the measurement apparatus. We assume the measure-
ment of the physical quantity A, represented by its time-independent operator Â
and, for the sake of simplicity, that the system is composed of a single particle (with
one variable only).

• The result of a single measurement of a mechanical quantity A can only
be an eigenvalue ak of the operator Â.

The eigenvalue equation for operator Â reads

Âφk = akφk	 k= 1	2	 � � � 	M� (1.15)

The eigenfunctions φk are orthogonal32 (cf. Appendix on p. 895). When the
eigenvalues do not form a continuum, they are quantized, and then the corre-quantization

sponding eigenfunctions φk, k = 1	2	 � � � 	M , satisfy the orthonormality rela-
tions:33

∫ ∞

−∞
φ∗k(x)φl(x)dx≡ 〈φk|φl〉 ≡ 〈k|l〉 = δkl ≡

{

1	 when k= l	
0	 when k 	= l	 (1.16)

where we have given several equivalent notations of the scalar product, which
will be used in the present book, δkl means the Kronecker delta.

• Since eigenfunctions {φk} form the complete set, then the wave function of the
system may be expanded as (M is quite often equal to ∞)

ψ=
M
∑

k=1

ckφk	 (1.17)

32If two eigenfunctions correspond to the same eigenvalue, they are not necessarily orthogonal, but
they can still be orthogonalized (if they are linearly independent, see Appendix J, p. 977). Such orthog-
onal functions still remain the eigenfunctions of Â. Therefore, one can always construct the orthonormal
set of the eigenfunctions of a Hermitian operator.
33If φk belong to continuum they cannot be normalized, but still can be made mutually orthogonal.
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Fig. 1.8. Evolution of a starting wave function � for a system shown as three snapshots (t = 0	1	2) of
|�(x	 t)|2. In cases (a) and (c) it is seen that |�(x	 t)|2 changes considerably when the time goes on:
in (a) the function changes its overall shape, in (c) the function preserves its shape but travels along
x axis. Both cases are therefore non-stationary. Cases (b) and (d) have a remarkable property that
|�(x	 t)|2 does not change at all in time. Hence, they represent examples of the stationary states. The
reason why |�(x	 t)|2 changes in cases (a) and (c) is that �(x	 t) does not represent a pure stationary
state [as in (b) and (d)], but instead is a linear combination of some stationary states.

where the ck are in general, complex coefficients. From the normalization con-
dition for ψ we have34

M
∑

k=1

c∗kck = 1� (1.18)

34〈ψ|ψ〉 = 1=∑M
k=1

∑M
l=1 c

∗
k
cl〈φk|φl〉 =

∑

k	l=1 c
∗
k
clδkl =

∑M
k=1 c

∗
k
ck .
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According to the axiom, the probability that the result of the measure-
ment is ak, is equal to c∗kck.

If the wave function that describes the state of the system has the form givencollapse

by (1.17) and does not reduce to a single term ψ = φk, then the result of the
measurement of the quantityA cannot be foreseen. We will measure some eigen-
value of the operator Â, but cannot predict which one. After the measurement is
completed the wave function of the system represents the eigenstate that corre-
sponds to the measured eigenvalue (known as the collapse of the wave function).
According to the axiom, the only thing one may say about the measurements
is that the mean value a of the quantity A (from many measurements) is to be
compared with the following theoretical result35 (Fig. 1.9)

a=
M
∑

k=1

c∗kckak =
〈

ψ
∣
∣Âψ

〉

	 (1.19)

where the normalization of ψ has been assumed.

If we have a special case, ψ = φk (all coefficients cl = 0, except ck = 1),
the measured quantity is exactly equal ak. From this it follows that if
the wave function is an eigenfunction of operators of several quantities
(this happens when the operators commute, Appendix B), then all these
quantities when measured, produce with certainty, the eigenvalues corre-
sponding to the eigenfunction.

The coefficients c can be calculated from (1.17). After multiplying by φ∗l andmean value

integration, one has cl = 〈φl|ψ〉, i.e. cl is identical to the overlap integral of the
function ψ describing the state of the system and the function φl that corre-
sponds to the eigenvalue al of the operator Â. In other words, the more the eigen-
function corresponding to al resembles the wave function ψ, the more frequently
al will be measured.

35
〈

ψ
∣
∣Âψ

〉 =
〈
M
∑

l=1

clφl

∣
∣
∣
∣
∣
Â

M
∑

k=1

ckφk

〉

=
M
∑

k=1

M
∑

l=1

c∗kcl
〈

φl
∣
∣Âφk

〉

=
M
∑

k=1

M
∑

l=1

c∗kclak〈φl|φk〉 =
M
∑

k=1

M
∑

l=1

c∗kclakδkl =
M
∑

k=1

c∗kckak�

In case of degeneracy (ak = al = · · ·) the probability is c∗
k
ck + c∗l cl + · · · . This is how one computes

the mean value of anything. Just take all possible distinct results of measurements, multiply each by its
probability and sum up all resulting numbers.
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Fig. 1.9. The results of measurements of a quantityA are the eigenvalues of the operator Â: E1 and E2.

Postulate V (spin angular momentum) spin

Spin of elementary particles. As will be shown in Chapter 3 (about relativistic
effects) spin angular momentum will appear in a natural way. However, in nonrel-
ativistic theory the existence of spin is postulated.36

An elementary particle has, besides its orbital angular momentum r×p, an
internal angular momentum (analogous to that associated with the rotation
of a body about its own axis) called spin S= (Sx	Sy	 Sz). Two quantities are
measurable: the square of the spin length: |S|2 = S2

x + S2
y + S2

z and one of
its components, by convention, Sz . These quantities only take some partic-
ular values: |S|2 = s(s + 1)h̄2, Sz =msh̄, where the spin magnetic quantum
number ms =−s	−s+ 1	 � � � 	 s.

36This has been forced by experimental facts, e.g., energy level splitting in a magnetic field suggested
two possible electron states connected to internal angular momentum.
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Enrico Fermi (1901–1954), Italian physicist,
professor at universities in Florence, Rome,
New York, and in 1941–1946 at the Univer-
sity of Chicago. Fermi introduced the notion
of statistics for the particles with a half-integer
spin number (called fermions) during the Flo-
rence period. Dirac made the same discovery
independently, hence this property is called the
Fermi–Dirac statistics. Young Fermi was notori-
ous for being able to derive a formula from any
domain of physics faster than someone sent
to find it in textbooks. His main topic was nu-
clear physics. He played an important role in
the A bomb construction in Los Alamos, and
in 1942 he built the world’s first nuclear reactor
on a tennis court at the University of Chicago.

Fermi was awarded the Nobel Prize in 1938
“for his demonstration of the existence of new
radioactive elements and for results obtained
with them, especially with regard to artificial ra-
dioactive elements”.

The spin quantum number s	 characteristic of the type of particle37 (often called
simply its spin), can be written as: s = n

2 , where n may be zero or a natural number
(“an integer or half-integer” number). The particles with a half-integer s (e.g., s =
1
2 for electron, proton, neutron, neutrino) are called fermions, the particles withfermions

an integer s (e.g., s = 1 for deuteron, photon;38 s = 0 for meson π and meson K)
are called bosons.bosons

The magnetic39 spin quantum number ms quantizes the z component of the
spin angular momentum.

Satyendra Nath Bose (1894–
1974), Indian physicist, pro-
fessor at Dakka and Calcutta,
first recognized that parti-
cles with integer spin number
have different statistical prop-
erties. Einstein contributed to
a more detailed description of
this statistics.

Thus, a particle with spin quantum
number s has an additional (spin) de-
gree of freedom, or an additional co-
ordinate – spin coordinate σ . The spin
coordinate differs widely from a spatial
coordinate, because it takes only 2s+ 1
discrete values (Fig. 1.10) associated to
−s	−s+ 1	 � � � 	0	 � � � 	+s.

Most often one will have to deal with
electrons. For electrons, the spin coor-
dinate σ takes two values, often called

“up” and “down”. We will (arbitrarily) choose σ =− 1
2 and σ =+ 1

2 , Fig. 1.11.a,b.

37Note, the length of the spin vector for an elementary particle is given by Nature once and for all.
Thus, if there is any relation between the spin and the rotation of the particle about its own axis, it has
to be a special relation. One cannot change the angular momentum of such a rotation.
38The photon represents a particle of zero mass. One can show that, instead of three possible ms one

has only two: ms = 1	−1. We call these two possibilities “polarizations” (“parallel” and “perpendicu-
lar”).
39The name is related to energy level splitting in a magnetic field, from which the number is deduced.

A non-zero s value is associated to the magnetic dipole, which in magnetic field acquires 2s + 1 ener-
getically non-equivalent positions.
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Fig. 1.10. Main differences between the spatial coordinate (x) and spin coordinate (σ) of an electron.
(a) the spatial coordinate is continuous: it may take any value being a real number (b) the spin coordi-
nate σ has a granular character (discrete values): for s = 1

2 it can take only one of two values. One of

the values is represented by σ =− 1
2 , the other to σ = 1

2 . Figs. (c,d) show, respectively, two widely used
basis functions in the spin space: α(σ) and β(σ)�

Fig. 1.11. Diagram of the spin angular momentum vector for a particle with spin quantum number

s = 1
2 . The only measurable quantities are the spin length

√
s(s+ 1)h̄=

√
3

2 h̄ and the projection of the
spin on the quantization axis (chosen as coincident with the vertical axis z), which takes only the values
−s	−s+ 1	 � � � 	+s in units h̄, i.e. Sz =− 1

2 h̄	
1
2 h̄ (a). Possible positions of the spin angular momentum

with respect to the quantization axis z (b) since the x and y components of the spin remain indefinite,
one may visualize the same by locating the spin vector (of constant length

√
s(s+ 1)h̄) anywhere on a

cone surface that assures a given z component. Thus, one has 2s+ 1= 2 such cones.

According to the postulate (p. 25), the square of the spin length is always the
same and equal to s(s + 1)h̄2 = 3

4 h̄
2. The maximum projection of a vector on

a chosen axis is equal to 1
2 h̄, while the length of the vector is larger, equal to√

s(s+ 1)h̄ =
√

3
2 h̄. We conclude that the vector of the spin angular momentum
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makes an angle θ with the axis, with cosθ = 1
2/
√

3
2 = 1√

3
. From this one obtains40

θ= arccos 1√
3
≈ 54�74◦. Fig. 1.11.b shows that the spin angular momentum has in-

definite x and y components, while always preserving its length and projection on
the z axis.

Spin basis functions for s = 1
2 . One may define (see Fig. 1.10.c,d) the complete

set of orthonormal basis functions of the spin space of an electron:

α(σ)=
{

1 for σ = 1
2

0 for σ =− 1
2

and β(σ)=
{

0 for σ = 1
2

1 for σ =− 1
2

or, in a slightly different notation, as orthogonal unit vectors:41

|α〉 =
(

1
0

)

; |β〉 =
(

0
1

)

�

Orthogonality follows fromα and β spin
functions

〈α|β〉 ≡
∑

σ

α(σ)∗β(σ)= 0 · 1+ 1 · 0= 0�

Similarly, normalization means that

〈α|α〉 ≡
∑

σ

α(σ)∗α(σ)= α
(

−1
2

)∗
α

(

−1
2

)

+ α
(

1
2

)∗
α

(
1
2

)

= 0 · 0+ 1 · 1= 1

etc.
We shall now construct operators of the spin angular momentum.Pauli matrices

The following definition of spin operators is consistent with the postulate
about spin.

Ŝx = 1
2 h̄σx

Ŝy = 1
2 h̄σy

Ŝz = 1
2 h̄σz ,

where the Pauli matrices of rank 2 are defined as:

σx =
(

0 1
1 0

)

σy =
(

0 −i
i 0

)

σz =
(

1 0
0 −1

)

�

40In the general case, the spin of a particle may take the following angles with the quantization axis:
arccos ms√

s(s+1)
for ms =−s	−s+ 1	 � � � 	+s	.

41In the same spirit as wave functions represent vectors: vector components are values of the function
for various values of the variable.
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Indeed, after applying Ŝz to the spin basis functions one obtains:

Ŝz|α〉 ≡ Ŝz
(

1
0

)

= 1
2
h̄

(

1 0
0 −1

) (

1
0

)

= 1
2
h̄

(

1
0

)

= 1
2
h̄|α〉	

Ŝz|β〉 ≡ Ŝz
(

0
1

)

= 1
2
h̄

(

1 0
0 −1

) (

0
1

)

= 1
2
h̄

(

0
−1

)

=−1
2
h̄|α〉�

Therefore, functions α and β represent the eigenfunctions of the Ŝz operator

with corresponding eigenvalues 1
2 h̄ and − 1

2 h̄. How to construct the operator Ŝ
2
?

From Pythagoras’ theorem, after applying Pauli matrices one obtains:

Ŝ2|α〉 = Ŝ2
(

1
0

)

= (Ŝ2
x + Ŝ2

y + Ŝ2
z

)
(

1
0

)

= 1
4
h̄2

⎧

⎪⎪⎨

⎪⎪⎩

(

0 1
1 0

)(

0 1
1 0

)

+
(

0 −i
i 0

)(

0 −i
i 0

)

+
(
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The function |β〉 gives an identical
eigenvalue.

Therefore, both basis functions α
and β represent the eigenfunctions of
Ŝ2 and correspond to the same eigen-
value. Thus, the definition of spin opera-
tors through Pauli matrices gives results
identical to those postulated for S2 and
Sz , and the two formulations are equiva-
lent. From Pauli matrices, it follows that
the functions α and β are not eigenfunc-
tions of Ŝx and Ŝy and that the following
relations are satisfied42

[Ŝ2	 Ŝz] = 0	 [Ŝx	 Ŝy ] = ih̄Ŝz	
[Ŝy 	 Ŝz] = ih̄Ŝx	 [Ŝz	 Ŝx] = ih̄Ŝy 	

Wolfgang Pauli (1900–1958),
German physicist, professor
in Hamburg, at Technical Uni-
versity of Zurich, Institute for
Advanced Studies in Prince-
ton (USA), son of a physical
chemistry professor in Vienna
and a classmate of Werner
Heisenberg. At the age of
20 he wrote a famous 200-
page article on relativity the-
ory for Mathematical Encyclo-
pedia, afterwards edited as a
book. A year later Pauli de-
fended his doctoral disser-
tation under the supervision
of Sommerfeld in Munich.

The renowned Pauli exclu-
sion principle was proposed
in 1924. Wolfgang Pauli re-
ceived the Nobel Prize in
1945 “for the discovery of
the Exclusion Principle, also
called the Pauli Principle”.

42These formulae are easy to memorize, since the sequence of the indices is always “rotational”, i.e.
x	y	 z	x	 y	 z	 � � �
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which is in agreement with the general properties of angular momenta43 (Appen-
dix on p. 955).

Spin of non-elementary particles. The postulate on spin pertains to an elemen-
tary particle. What about a system composed of such particles? Do they have spin?
Spin represents angular momentum (a vector) and therefore the angular momen-
tum vectors of elementary particles have to be added. A system composed of a
number of elementary particles (each with its spin si) has as a measurable quantity
(an observable quantity), the square

|S|2 = S(S + 1)h̄2

of the total spin vector,

S= s1 + s2 + · · · + sN	
and one of the components of S (denoted by Sz =∑N

i=1 siz = h̄
∑N
i=1msi):

Sz =MSh̄	 for MS =−S	−S + 1	 � � � 	 S	

where the number S stands (as in the case of a single particle) for an integer or
half-integer non-negative number. Particular values of S (often called simply the
spin) and of the spin magnetic number MS depend on the directions of vectors
si. It follows that no excitation of a non-elementary boson (that causes another
summing of the individual spin vectors) can change the particle to a fermion and
vice versa. Systems with an even number of fermions are always bosons, while these
with an odd number of fermions are always fermions.

Nuclei. The ground states of the important nuclei 12C and 16O correspond to
S = 0, while those of 13C, 15N, 19F have S = 1

2 .

Atoms and molecules. Does an atom as a whole represent a fermion or a boson?
This depends on which atom and which molecule. Consider the hydrogen atom,
composed of two fermions (proton and electron, both with spin number 1

2 ). This
is sufficient to deduce that here we are dealing with a boson. For similar reasons,

43Also, note that the mean values of Sx and Sy are both equal to zero in the α and β state, e.g., for the
α state one has

〈α|Ŝxα〉 ==
〈

α

∣
∣
∣
∣

1
2
h̄

(

0 1
1 0

)(

1
0

)〉

= 1
2
h̄〈α|β〉 = 0�

This means that in an external vector field (of direction z), when the space is no longer isotropic, only
the projection of the total angular momentum on the field direction is conserved. A way to satisfy this
is to recall the behaviour of a top in a vector field. The top rotates about its own axis, but the axis
precesses about the field axis. This means that the total electron spin momentum moves on the cone
surface making an angle of 54�74◦ with the external field axis in α state and an angle 180◦ − 54�74◦ in
the β state. Whatever the motion, it must satisfy 〈α|Ŝxα〉 = 〈α|Ŝyα〉 = 0 and 〈β|Ŝxβ〉 = 〈β|Ŝyβ〉 = 0�
No more information is available, but one may imagine the motion as a precession just like that of the
top.
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the sodium atom with 23 nucleons (each of spin 1
2 ) in the nucleus and 11 electrons

moving around it, also represents a boson.
When one adds together two electron spin vectors s1 + s2, then the maximum

z component of the spin angular momentum will be (in h̄ units): |MS| = |ms1 +
ms2| = 1

2 + 1
2 = 1. This corresponds to the vectors s1	 s2, called “parallel” to each

other, while the minimum |MS| = |ms1+ms2| = 1
2 − 1

2 = 0 means an “antiparallel”
configuration of s1and s2 (Fig. 1.12).

The first situation indicates that for the state with parallel spins S = 1, for
this S the possible MS = 1	0	−1. This means there are three states: (S	MS) =
(1	1)	 (1	0)	 (1	−1). If no direction in space is privileged, then all the three states
correspond to the same energy (triple degeneracy). This is why such a set of three
states is called a triplet state. The second situation witnesses the existence of a state triplet

with S = 0, which obviously corresponds to MS = 0. This state is called a singlet
state. singlet

Let us calculate the angle ω between the individual electronic spins:

|S|2 = (s1 + s2)
2 = s21 + s22 + 2s1 · s2

= s21 + s22 + 2s1 · s2 cosω

= 1
2

(
1
2
+ 1
)

h̄2 · 2+ 2

√

1
2

(
1
2
+ 1
)
√

1
2

(
1
2
+ 1
)

h̄2 cosω

=
(

3
2
+ 3

2
cosω

)

h̄2 = 3
2
(1+ cosω)h̄2�

SINGLET AND TRIPLET STATES:
For the singlet state |S|2 = S(S + 1)h̄2 = 0	 hence 1 + cosω = 0 and ω =
180◦� This means the two electronic spins in the singlet state are antiparallel.
For the triplet state |S|2 = S(S + 1)h̄2 = 2h̄2	 and hence 3

2(1+ cosω)h̄2 =
2h̄2, i.e. cosω = 1

3 , or ω = 70�52◦, see Fig. 1.12. Despite forming the angle
ω= 70�52◦ the two spins in the triplet state are said to be “parallel”.

The two electrons which we have considered may, for example, be part of a
hydrogen molecule. Therefore, when considering electronic states, we may have
to deal with singlets or triplets. However, in the same hydrogen molecule we have
two protons, whose spins may also be “parallel” (orthohydrogen) or antiparallel
(parahydrogen) . In parahydrogen the nuclear spin is S = 0, while in orthohydrogen parahydrogen

and
orthohydrogen

S = 1. In consequence, there is only one state for parahydrogen (MS = 0), and
three states for orthohydrogen (MS = 1	0	−1).44

44Since all the states have very similar energies (and therefore at high temperatures the Boltzmann fac-
tors are practically the same), there are three times as many molecules of orthohydrogen as of parahy-
drogen. Both states (ortho and para) differ slightly in their physicochemical characteristics.
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Fig. 1.12. Spin angular momentum for a system with two electrons (in general, particles with s = 1
2 ).

The quantization axis is arbitrarily chosen as the vertical axis z. Then, the spin vectors of individual
electrons (see Fig. 1.11.b) may be thought to reside somewhere on the upper cone that corresponds to
ms1 = 1

2 , or on the lower cone corresponding toms1 =− 1
2 � For two electrons there are two spin eigen-

states of Ŝ
2

. One has total spin quantum number S = 0 (singlet state); the other is triply degenerate
(triplet state), and the three components of the state have S = 1 and Sz = 1	0	−1 in h̄ units. In the
singlet state (a) the vectors s1 and s2 remain on the cones of different orientation, and have the op-
posite (“antiparallel”) orientations, so that s1 + s2 = 0. Although their exact positions on the cones are
undetermined (and moreover the cones themselves follow from the arbitrary choice of the quantiza-
tion axis in space), they are always pointing in opposite directions. The three triplet components (b,c,d)
differ by the direction of the total spin angular momentum (of constant length

√
S(S+ 1)h̄ = √2h̄).

The three directions correspond to three projections MSh̄ of spin momentum: h̄	−h̄	0 for Figs. b, c,
d, respectively. In each of the three cases the angle between the two spins equals ω= 70�52◦ (although
in textbooks – including this one – they are said to be “parallel”. In fact they are not, see the text).

Postulate VI (on the permutational symmetry)

Unlike classical mechanics, quantum mechanics is radical: it requires that two
particles of the same kind (two electrons, two protons, etc.) should play the
same role in the system, and therefore in its description enshrined in the wave



1.2 Postulates 33

function.45 Quantum mechanics guarantees that the roles played in the Hamil-
tonian by two identical particles are identical. Within this philosophy, exchange
of the labels of two identical particles (i.e. the exchange of their coordinates
x1	 y1	 z1	σ1 ↔ x2	 y2	 z2	σ2. In short, 1 ↔ 2) leads, at most, to a change of
the phase φ of the wave function: ψ(2	1)→ eiφψ(1	2), because in such a case
|ψ(2	1)| = |ψ(1	2)| (and this guarantees equal probabilities of both situations).
However, when we exchange the two labels once more, we have to return to
the initial situation: ψ(1	2)= eiφψ(2	1)= eiφeiφψ(1	2)= (eiφ)2ψ(1	2). Hence,
(eiφ)2 = 1, i.e. eiφ = ±1. Postulate VI says that eiφ = +1 refers to bosons, while
eiφ =−1 refers to fermions.46

bosons –
symmetric
function

The wave function ψ which describes identical bosons (i.e. spin integer par-
ticles) 1	2	3	 � � � 	N has to be symmetric with respect to the exchange of
coordinates xi	 yi	 zi	σi and xj	 yj	 zj	σj , i.e. if xi ↔ xj , yi ↔ yj , zi ↔ zj ,
σi ↔ σj , then ψ(1	2	 � � � 	 i	 � � � 	 j	 � � � 	N) = ψ(1	2	 � � � 	 j	 � � � 	 i	 � � � 	N). If
particles i and j denote identical fermions, the wave function must be anti-
symmetric, i.e. ψ(1	2	 � � � 	 i � � � 	 j	 � � � 	N)=−ψ(1	2	 � � � 	 j	 � � � 	 i	 � � � 	N).

fermions –
antisymmetric
function

Let us see the probability density that two identical fermions occupy the same
position in space and, additionally, that they have the same spin coordinate
(x1	 y1	 z1	σ1) = (x2	 y2	 z2	σ2). We have: ψ(1	1	3	4	 � � � 	N) = −ψ(1	1	3	4	
� � � 	N), hence ψ(1	1	3	4	 � � � 	N) = 0 and, of course, |ψ(1	1	3	4	 � � � 	N)|2 = 0.
Conclusion: two electrons of the same spin coordinate (we will sometimes say: “of
the same spin”) avoid each other. This is called the exchange or Fermi hole around
each electron.47 The reason for the hole is the antisymmetry of the electronic wave
function, or in other words, the Pauli exclusion principle.48 Pauli exclusion

principle

Thus, the probability density of finding two identical fermions in the same
position and with the same spin coordinate is equal to zero. There is no such
restriction for two identical bosons or two identical fermions with different
spin coordinates. They can be at the same point in space.

45Everyday experience in classical world tells us the opposite, e.g., a car accident involving a Mercedes
does not cause all copies of that particular model to have identical crash records.
46The postulate requires more than just making identical particles indistinguishable. It requires that

all pairs of the identical particles follow the same rule.
47Besides that any two electrons avoid each other because of the same charge (Coulombic hole). Both

holes (Fermi and Coulomb) have to be reflected in a good wave function. We will come back to this
problem in Chapter 10.
48The Pauli exclusion principle is sometimes formulated in another way: two electrons cannot be in the

same state (including spin). The connection of this strange phrasing (what does electron state mean?)
with the above will become clear in Chapter 8.
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This is related to what is known as Bose condensation.49Bose
condensation

* * *
Among the above postulates, the strongest controversy has always been asso-

ciated with Postulate IV, which says that, except of some special cases, one can-
not predict the result of a particular single measurement, but only its probability.
More advanced considerations devoted to Postulate IV lead to the conclusion that
there is no way (neither experimental protocol nor theoretical reasoning), to pre-
dict when and in which direction an excited atom will emit a photon. This means
that quantum mechanics is not a deterministic theory.

The indeterminism appears however only in the physical space, while in
the space of all states (Hilbert space) everything is perfectly deterministic.
The wave function evolves in a deterministic way according to the time-
dependent Schrödinger equation (1.10).

The puzzling way in which indeterminism operates will be shown below.

1.3 THE HEISENBERG UNCERTAINTY PRINCIPLE

Consider two mechanical quantities A and B, for which the corresponding Her-
mitian operators (constructed according to Postulate II), Â and B̂, give the com-
mutator [Â	 B̂] = ÂB̂− B̂Â= iĈ , where Ĉ is a Hermitian operator.50 This is what
happens for example for A = x and B = px. Indeed, for any differentiable func-
tion φ one has: [x̂	 p̂x]φ = −xih̄φ′ + ih̄(xφ)′ = ih̄φ, and therefore the operator
Ĉ in this case means simply multiplication by h̄.

From axioms of quantum mechanics one can prove that a product of errors
(in the sense of standard deviation) of measurements of two mechanical
quantities is greater than or equal to 1

2 〈[Â	 B̂]〉, where 〈[Â	 B̂]〉 is the mean
value of the commutator [Â	 B̂].

This is known as the Heisenberg uncertainty principle.

49Carried out by Eric A. Cornell, Carl E. Wieman and Wolfgang Ketterle (Nobel Prize 2001 “for
discovering a new state of matter”). In the Bose condensate the bosons (alkali metal atoms) are in the
same place in a peculiar sense. The total wave function for the bosons was, to a first approximation,
a product of identical nodeless wave functions for the particular bosons (this assures proper symmetry).
Each of the wave functions extends considerably in space (the Bose condensate is as large as a fraction
of a millimetre), but all have been centred in the same point in space.
50This is guaranteed. Indeed, Ĉ =−i[Â	 B̂] and then the Hermitian character of Ĉ is shown by the fol-

lowing chain of transformations 〈f |Ĉg〉 = −i〈f |[Â	 B̂]g〉 = −i〈f |(ÂB̂− B̂Â)g〉 = −i〈(B̂Â−ÂB̂)f |g〉 =
〈−i(ÂB̂− B̂Â)f |g〉 = 〈Ĉf |g〉�
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Werner Karl Heisenberg (1901–1976) was
born in Würzburg (Germany), attended high
school in Munich, then (with his friend Wolf-
gang Pauli) studied physics at the Munich
University under Sommerfeld’s supervision. In
1923 he defended his doctoral thesis on turbu-
lence in liquids. Reportedly, during the doctoral
examination he had problems writing down the
chemical reaction in lead batteries. He joined
the laboratory of Max Born at Göttingen (fol-
lowing his friend Wolfgang) and in 1924 the
Institute of Theoretical Physics in Copenhagen
working under the supervision of Niels Bohr.
A lecture delivered by Niels Bohr decided the
future direction of his work. Heisenberg later
wrote: “I was taught optimism by Sommerfeld,
mathematics in Göttingen, physics by Bohr ”.
In 1925 (only a year after being convinced
by Bohr) Heisenberg developed a formalism,
which became the first successful quantum
theory. Then, in 1926 Heisenberg, Born and
Jordan elaborated the formalism, which re-
sulted in a coherent theory (“matrix mechan-
ics”). In 1927 Heisenberg obtained a chair at
Leipzig University, which he held until 1941
(when he became director of the Kaiser Wil-
helm Physics Institute in Berlin). Heisenberg
received the Nobel Prize in 1932 “for the cre-
ation of quantum mechanics, the application of
which has, inter alia, led to the discovery of the
allotropic forms of hydrogen”.

In 1937 Werner Heisenberg was at the
height of his powers. He was nominated pro-
fessor and got married. However, just after re-
turning from his honeymoon, the rector of the
university called him, saying that there was
a problem. In the SS weekly an article by
Prof. Johannes Stark (a Nobel Prize winner
and faithful Nazi) was about to appear claim-
ing that Professor Heisenberg is not such a
good patriot as he pretends, because he so-
cialized in the past with Jewish physicists. . .

Soon Professor Heisenberg was invited to SS
headquarters at Prinz Albert Strasse in Berlin.
The interrogation took place in the basement.
On the raw concrete wall there was the in-
teresting slogan “Breath deeply and quietly”.
One of the questioners was a Ph.D. student
from Leipzig, who had once been examined by
Heisenberg. The terrified Heisenberg told his
mother about the problem. She recalled that
in her youth she had made the acquaintance
of Heinrich Himmler’s mother. Frau Heisenberg
paid a visit to Frau Himmler and asked her
to pass a letter from her son to Himmler. At
the beginning Himmler’s mother tried to sepa-
rate her maternal feelings for her beloved son
from politics. She was finally convinced after
Frau Heisenberg said “we mothers should care
about our boys”. After a certain time, Heisen-
berg received a letter from Himmler saying
that his letter “coming through unusual chan-
nels” has been examined especially carefully.
He promised to stop the attack. In the post
scriptum there was a precisely tailored phrase:
“I think it best for your future, if for the bene-
fit of your students, you would carefully sepa-
rate scientific achievements from the personal
and political beliefs of those who carried them
out. Yours faithfully, Heinrich Himmler ” (after
D. Bodanis, “E = mc2”, Fakty, Warsaw, 2001,
p. 130).

Werner Heisenberg did not carry out any formal proof, instead he analyzed a
Gedankenexperiment (an imaginary ideal experiment) with an electron interacting
with an electromagnetic wave (“Heisenberg’s microscope”).

The formal proof goes as follows.
Recall the definition of the variance, or the square of the standard deviation

(�A)2	 of measurements of the quantity A:

(�A)2 = 〈Â2〉 − 〈Â〉2	 (1.20)
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where 〈X〉 means the mean value of many measurements of the quantity X . The
standard deviation �A represents the width of the distribution of A, i.e. measures the
error made. Eq. (1.20) is equivalent to

(�A)2 = 〈(Â− 〈Â〉)2〉	 (1.21)

because 〈(Â − 〈Â〉)2〉 = 〈Â2 − 2Â〈Â〉 + 〈Â〉2〉 = 〈Â2〉 − 2〈Â〉2 + 〈Â〉2 = 〈Â2〉 −
〈Â〉2. Consider the product of the standard deviations for the operators Â and B̂,
taking into account that 〈û〉 denotes (Postulate IV) the integral 〈�|û|�〉 according
to (1.19). One obtains (denoting Â= Â−〈Â〉 and B̂ = B̂−〈B̂〉; of course, [Â	 B̂] =
[Â	 B̂]):

(�A)2 · (�B)2 = 〈�|Â2�〉〈�|B̂2�〉 = 〈Â�|Â�〉〈B̂�|B̂�〉	

where the Hermitian character of the operators Â and B̂ is used. Now, let us use
the Schwarz inequality (Appendix B) 〈f1|f1〉〈f2|f2〉	 |〈f1|f2〉|2:

(�A)2 · (�B)2 = 〈Â�|Â�〉〈B̂�|B̂�〉	 |〈Â�|B̂�〉|2�

Next,

〈Â�|B̂�〉 = 〈�|ÂB̂�〉 = 〈�|{[Â	 B̂] + B̂Â}�〉 = i〈�|Ĉ�〉 + 〈�|B̂Â�〉
= i〈�|Ĉ�〉 + 〈B̂�|Â�〉 = i〈�|Ĉ�〉 + 〈Â�|B̂�〉∗�

Hence,
i〈�|Ĉ�〉 = 2i Im

{〈Â�|B̂�〉}

This means that Im{〈Â�|B̂�〉} = 〈�|Ĉ�〉
2 , which gives |〈Â�|B̂�〉| 	 |〈�|Ĉ�〉|

2 .
Hence,

(�A)2 · (�B)2 	
∣
∣
〈

Â�|B̂�〉∣∣2 	 |〈�|Ĉ�〉|2
4

(1.22)

or, taking into account that |〈�|Ĉ�〉| = |〈�|[Â	 B̂]�〉| we have

�A ·�B	 1
2
|〈�|[Â	 B̂]�〉|� (1.23)

There are two important special cases:
(a) Ĉ = 0, i.e. the operators Â and B̂ commute. We have �A · �B 	 0,

i.e. the errors can be arbitrarily small. Both quantities therefore can be
measured simultaneously without error.

(b) Ĉ = h̄, as in the case of x̂ and p̂x. Then, (�A) · (�B)	 h̄
2 .
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Fig. 1.13. Illustration of the Heisenberg uncertainty principle. (a1) |�(x)|2 as function of coordi-
nate x. Wave function �(x) can be expanded in the infinite series �(x) =∑p cp exp(ipx), where
p denotes the momentum. Note that each individual function exp(ipx) is an eigenfunction of mo-
mentum, and therefore if �(x)= exp(ipx), a measurement of momentum gives exactly p. If however
�(x)=∑p cp exp(ipx), then such a measurement yields a given p with the probability |cp|2. Fig. (a2)

shows |cp|2 as function of p. As one can see a broad range of p (large uncertainty of momentum)
assures a sharp |�(x)|2 distribution (small uncertainty of position). Simply the waves exp(ipx) to ob-
tain a sharp peak of �(x) should exhibit a perfect constructive interference in a small region and a
destructive interference elsewhere. This requires a lot of different p’s, i.e. a broad momentum distri-
bution. Fig. (a3) shows �(x) itself, i.e. its real (large) and imaginary (small) part. The imaginary part
is non-zero because of small deviation from symmetry. Figs. (b1–b3) show the same, but this time a
narrow p distribution gives a broad x distribution.

In particular, for Â= x̂ and B̂ = p̂x, if quantum mechanics is valid, one cannot
measure the exact position and the exact momentum of a particle. When the preci-
sion with which x is measured increases, the particle’s momentum has so wide a
distribution that the error in determining px is huge, Fig. 1.13.51

1.4 THE COPENHAGEN INTERPRETATION

In the 1920s and 1930s, Copenhagen for quantum mechanics was like Rome for
catholics, and Bohr played the role of the president of the Quantum Faith Con-
gregation.52 The picture of the world that emerged from quantum mechanics was
“diffuse” compared to classical mechanics. In classical mechanics one could mea-

51There is an apocryphal story about a police patrol stopping Professor Heisenberg for speeding. The
policeman asks: “Do you know how fast you were going when I stopped you?” Heisenberg answered:
“I have no idea, but can tell you precisely where you stopped me”.
52Schrödinger did not like the Copenhagen interpretation. Once Bohr and Heisenberg invited him

for a Baltic Sea cruise and indoctrinated him so strongly, that Schrödinger became ill and stopped
participating in their discussions.
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sure a particle’s position and momentum with a desired accuracy,53 whereas the
Heisenberg uncertainty principle states that this is simply impossible.

Bohr presented a philosophical interpretation of the world, which at its founda-
tion had in a sense a non-reality of the world.

According to Bohr, before a measurement on a particle is made, nothing can
be said about the value of a given mechanical quantity, unless the wave func-
tion represents an eigenfunction of the operator of this mechanical quantity.
Moreover, except in this case, the particle does not have any fixed value of
mechanical quantity at all.

A measurement gives a value of the mechanical property (A). Then, according
to Bohr, after the measurement is completed, the state of the system changes (thecollapse

so called wave function collapse or, more generally, decoherence) to the state de-
scribed by an eigenfunction of the corresponding operator Â, and as the measureddecoherence

value one obtains the eigenvalue corresponding to the wave function. According to
Bohr, there is no way to foresee which eigenvalue one will get as the result of the
measurement. However, one can calculate the probability of getting a particular
eigenvalue. This probability may be computed as the square of the overlap integral
(cf. p. 24) of the initial wave function and the eigenfunction of Â.

1.5 HOW TO DISPROVE THE HEISENBERG PRINCIPLE?
THE EINSTEIN–PODOLSKY–ROSEN RECIPE

The Heisenberg uncertainty principle came as a shock. Many scientists felt a strong
imperative to prove that the principle is false. One of them was Albert Einstein,
who used to play with ideas by performing some (as he used to say) imaginary ideal
experiments (in German Gedankenexperiment) in order to demonstrate internal
contradictions in theories. Einstein believed in the reality of our world. With his
colleagues Podolsky and Rosen (“EPR team”) he designed a special Gedanken-EPR

“experiment” experiment.54 It represented an attempt to disprove the Heisenberg uncertainty
principle and to show that one can measure the position and momentum of a par-
ticle without any error. To achieve this, the gentlemen invoked a second particle.

The key statement of the whole reasoning, given in the EPR paper, was the fol-
lowing: “If, without in any way disturbing a system, we can predict with certainty (i.e.
with probability equal to unity) the value of a physical quantity, then there exists an
element of physical reality corresponding to this physical quantity”. EPR considered

53This is an exaggeration. Classical mechanics also has its own problems with uncertainty. For exam-
ple, obtaining the same results for a game of dice would require a perfect reproduction of the initial
conditions, which is never feasible.
54A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47 (1935) 777.
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a coordinate system fixed in space and two particles: 1 with coordinate x1 and mo-
mentum px1 and 2 with coordinate x2 and momentum px2, the total system being
in a state with a well defined total momentum: P = px1+ px2 and well defined
relative position x= x1 − x2. The meaning of the words “well defined” is that, ac-
cording to quantum mechanics, there is a possibility of the exact measurement of
the two quantities (x and P), because the two operators x̂ and P̂ do commute.55

At this point, Einstein and his colleagues and the great interpreters of quantum
theory, agreed.

We now come to the crux of the real controversy.
The particles interact, then separate and fly far away (at any time we are able

to measure exactly both x and P). When they are extremely far from each other
(e.g., one close to us, the other one millions of light years away), we begin to sus-
pect that each of the particles may be treated as free. Then, we decide to measure
px1. However, after we do it, we know with absolute certainty the momentum of the
second particle px2 = P − px1, and this knowledge has been acquired without any
perturbation of particle 2. According to the above cited statement, one has to admit
that px2 represents an element of physical reality. So far so good. However, we
might have decided with respect to particle 1 to measure its coordinate x1. If this
happened, then we would know with absolute certainty the position of the second
particle, x2 = x − x1, without perturbing particle 2 at all. Therefore, x2, as px2,
is an element of physical reality. The Heisenberg uncertainty principle says that
it is impossible for x2 and px2 to be exactly measurable quantities. Conclusion:
the Heisenberg uncertainty principle is wrong, and quantum mechanics is at least
incomplete!

A way to defend the Heisenberg principle was to treat the two particles as an
indivisible total system and reject the supposition that the particles are indepen-
dent, even if they are millions light years apart. This is how Niels Bohr defended
himself against Einstein (and his two colleagues). He said that the state of the total
system in fact never fell apart into particles 1 and 2, and still is in what is known as
entangled quantum state56 of the system of particles 1 and 2 and entangled states

any measurement influences the state of the system as a whole, independently
of the distance of particles 1 and 2.

This reduces to the statement that measurement manipulations on particle 1 in-
fluence the results of measurements on particle 2. This correlation between mea-
surements on particles 1 and 2 has to take place immediately, regardless of the space

55Indeed, x̂P̂ − P̂x̂ = (x̂1 − x̂2)(p̂x1 + p̂x2) − (p̂x1 + p̂x2)(x̂1 − x̂2) = [x̂1	 p̂x1] − [x̂2	 p̂x2] +
[x̂1	 p̂x2] − [x̂2	 p̂x1] = +ih̄− ih̄+ 0− 0= 0�
56To honour Einstein, Podolsky and Rosen the entanglement of states is sometimes called the EPR

effect.
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that separates them. This is a shocking and non-intuitive feature of quantum me-
chanics. This is why it is often said, also by specialists, that quantum mechan-
ics cannot be understood. One can apply it successfully and obtain an excellent
agreement with experiment, but there is something strange in its foundations. This
represents a challenge: an excellent theory, but based on some unclear founda-
tions.

In the following, some precise experiments will be described, in which it is shown
that quantum mechanics is right, however absurd it looks.

1.6 IS THE WORLD REAL?

BILOCATION

Assume that the world (stars, Earth, Moon, you and me, table, proton, etc.) exists
objectively. This one may suspect from everyday observations. For example, the
Moon is seen by many people, who describe it in a similar way.57 Instead of the
Moon, let us begin with something simpler: how about electrons, protons or other
elementary particles? This is an important question because the world as we know
it – including the Moon – is mainly composed of protons.58 Here one encounters
a mysterious problem. I will try to describe it by reporting results of several exper-
iments.

Following Richard Feynman,59 imagine two slits in a wall. Every second (the
time interval has to be large enough to be sure that we deal with properties of a
single particle) we send an electron towards the slits. There is a screen behind the
two slits, and when an electron hits the screen, there is a flash (fluorescence) at
the point of collision. Nothing special happens. Some electrons will not reach the
screen at all, but traces of others form a pattern, which seems quite chaotic. The
experiment looks monotonous and boring. Just a flash here, and another there.
One cannot predict where a particular electron will hit the screen. But suddenly
we begin to suspect that there is some regularity in the traces, Fig. 1.14.

57This may indicate that the Moon exists independently of our observations and overcome importu-
nate suspicions that the Moon ceases to exist, when we do not look at it. Besides, there are people who
claim to have seen the Moon from very close and even touched it (admittedly through a glove) and this
slightly strengthens our belief in the Moon’s existence. First of all, one has to be cautious. For example,
some chemical substances, hypnosis or an ingenious set of mirrors may cause some people to be con-
vinced about the reality of some phenomena, while others do not see them. Yet, would it help if even
everybody saw? We should not verify serious things by voting. The example of the Moon also intrigued
others, cf. D. Mermin, “Is the Moon there, when nobody looks?”, Phys. Today 38 (1985) 38.
58In the darkest communist times a colleague of mine came to my office. Conspiratorially, very excited,

he whispered: “The proton decays!!!” He just read in a government newspaper that the lifetime of proton
turned out to be finite. When asked about the lifetime, he gave an astronomical number, something like
1030 years or so. I said: “Why do you look so excited then and why all this conspiracy?” He answered: “The
Soviet Union is built of protons, and therefore is bound to decay as well!”
59After Richard Feynman, “The Character of Physical Law”, MIT Press, 1967.
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Fig. 1.14. Two-slit electron interference pattern registered by Akira Tonomura. (a) 10 electrons (b) 100
electrons (c) 3000 electrons – one begins to suspect something (d) 20000 electrons – no doubt, we will
have a surprize (e) 70000 electrons – here it is! Conclusion: there is only one possibility – each electron
went through the two slits. Courtesy of Professor Akira Tonomura.

A strange pattern appears on the screen: a number of high concentrations of
traces is separated by regions of low concentration. This resembles the interfer-
ence of waves, e.g., a stone thrown into water causes interference behind two slits:
an alternation of high and low amplitude of water level. Well, but what has an elec-
tron in common with a wave on the water surface? The interference on water was
possible, because there were two sources of waves (the Huygens principle) – two
slits.

The common sense tells us that nothing like this could happen with the elec-
tron, because, firstly, the electron could not pass through both slits, and, sec-
ondly, unlike the waves, the electron has hit a tiny spot on the screen (trans-
ferring its energy). Let us repeat the experiment with a single slit. The electrons
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Christiaan Huygens (1629–
1695), Dutch mathematician,
physicist and astronomer. Huy-
gens was the first to construct
a useful pendulum clock.

go through the slit and make flashes on
the screen here and there, but there is
only a single major concentration re-
gion (just facing the slit) fading away
from the centre (with some minor min-
ima).

This result should make you feel
faint. Why? You would like the Moon, a
proton or an electron to be solid objects,
wouldn’t you? All investigations made

so far indicate that the electron is a point-like elementary particle. If, in the exper-
iments we have considered, the electrons were to be divided into two classes: those
that went through slit 1 and those that passed slit 2, then the electron patterns
would be different. The pattern with the two slits had to be the sum of the patterns
corresponding to only one open slit (facing slit 1 and slit 2). We do not have that
picture.

The only explanation for this interference of the electron with itself is that
with the two slits open it went through both.

Clearly, the two parts of the electron united somehow and caused the flash at
a single point on the screen. The quantum world is really puzzling. Despite the
fact that the wave function is delocalized, the measurement gives its single point
position (decoherence). How could an electron pass simultaneously through two
slits? We do not understand this, but this is what happens.

Maybe it is possible to pinpoint the electron passing through two slits? Indeed,
one may think of the Compton effect: a photon collides with an electron, changes
its direction and this can be detected (“a flash on the electron”). When one pre-
pares two such ambushes at the two open slits, it turns out that the flash is always
on a single slit, not on both. This cannot be true! If it were true, then the pattern
would be of a NON-interference character (and had to be the sum of the two one-
slit patterns), but we have the interference. No. There is no interference. Now, the
pattern does not show the interference. The interference was when the electrons
were not observed. When we observe them, there is no interference.60 Somehow
we perturb the electron’s momentum (the Heisenberg principle) and the interfer-
ence disappears.

We have to accept that the electron passes through two slits. This is a blow to
those who believe in the reality of the world. Maybe it only pertains to the electron,
maybe the Moon is something completely different? A weak hope. The same thing

60Even if an electron has been pinpointed just after passing the slit region, i.e. already on the screen
side (leaving the slit system behind). One might think it is too late, it has already passed the interference
region. This has serious consequences, known as the problem of “delayed choice” (cf. the experiments
with photons at the end of this chapter).
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happens to proton. Sodium atoms were also found to interfere.61 A sodium atom,
of diameter of a few Å, looks like an ocean liner, when compared to a child’s
toy boat of a tiny electron (42 000 times less massive). And this ocean liner passed
through two slits separated by thousands of Å. A similar interference was observed
for the fullerene,62 a giant C60 molecule (in 2001 also for C70), about million times
more massive than the electron. It is worth noting that after such adventure the
fullerene molecule remained intact: somehow all its atoms, with the details of their
chemical bonds, preserved their nature. There is something intriguing in this.

1.7 THE BELL INEQUALITY WILL DECIDE

John Bell proved a theorem in 1964 that pertains to the results of measurements
carried out on particles and some of the inequalities they have to fulfil. The the-
orem pertains to the basic logic of the measurements and is valid independently
of the kind of particles and of the nature of their interaction. The theorem soon
became very famous, because it turned out to be a useful tool allowing us to verify
some fundamental features of our knowledge about the world.

Imagine a launching gun63 (Fig. 1.15), which ejects a series of pairs of iden-
tical rectangular bars flying along a straight line (no gravitation) in opposite di-
rections (opposite velocities). The axes
of the bars are always parallel to each
other and always perpendicular to the
straight line. The launching machine is
constructed in such a way that it can
rotate about the straight line, and that
any two launching series are absolutely
identical. At a certain distance from the
launching machine there are two rectan-
gular slits A and B (the same on both
sides). If the bar’s longer axis coincides
with the longer dimension of the slit then

John Stuart Bell (1928–1990),
Irish mathematician at Centre
Européen de la Recherche
Nucleaire (CERN) in Geneva.
In the 1960s Bell reconsid-
ered an old controversy of lo-
cality versus non-locality, hid-
den variables, etc., a subject
apparently exhausted after
exchange of ideas between
Einstein and Bohr.

the bar will go through for sure and will be registered as “1”, i.e. “it has arrived” by
the detector. If the bar’s longer axis coincides with the shorter axis of the slit, then
the bar will not go through for sure, and will be detected as “0”. For other angles
between the bar and slit axes the bar will sometimes go through (when it fits the
slit), sometimes not (when it does not fit the slit).64

61To observe such phenomena the slit distance has to be of the order of the de Broglie wave length,
λ= h/p, where h is the Planck constant, and p is the momentum. Cohen-Tannoudji lowered the tem-
perature to such an extent that the momentum was close to 0, and λ could be of the order of thousands
of Å.
62M. Arndt, O. Nairz, J. Voss-Andreae, C. Keller, G. van der Zouw, A. Zeilinger, Nature 401 (1999)

680.
63See, e.g., W. Kołos, Proceedings of the IV Castel Gandolfo Symposium, 1986.
64Simple reasoning shows that for a bar of length L, two possibilities: “to go through” and “not to go

through” are equally probable (for a bar of zero width) if the slit width is equal to L√
2
�
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Fig. 1.15. Bell inequalities. A bar launching gun adopts some positions when rotating about the axis.
Each time the full magazine of bars is loaded. The slits also may be rotated about the axis. The bars
arrive at slits A and B. Some will go through and be detected.

Having prepared the launching gun (our magazine contains 16 pairs of bars) we
begin our experiments. Four experiments will be performed. Each experiment will
need the full magazine of bars. In the first experiment the two slits will be parallel.
This means that the fate of both bars in any pair will be exactly the same: if they
go through, they will both do it, if they are stopped by the slits, they will both be
stopped. Our detectors have registered (we group the 16 pairs in clusters of 4 to
make the sequence more transparent):

Experiment I (angle 0)
Detector A: 1001 0111 0010 1001
Detector B: 1001 0111 0010 1001

Now, we repeat Experiment I, but this time slit A will be rotated by a small
angle α (Experiment II). At the slit B nothing has changed, and therefore we must
obtain there exactly the same sequence of zeros and ones as in Experiment I. At
slit A, however, the results may be different. Since the rotation angle is small, the
difference list will be short. We might get the following result
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Experiment II (angle α)
Detector A: 1011 0111 0010 0001
Detector B: 1001 0111 0010 1001

There are two differences (highlighted in bold) between the lists for the two
detectors.

Now for Experiment III. This time slit A comes back to its initial position, but
slit B is rotated by −α. Because of our perfect gun, we must obtain at detector A
the same result as in Experiment I. However, at B we find some difference with
respect to Experiments I and II:

Experiment III (angle −α)
Detector A: 1001 0111 0010 1001
Detector B: 1001 0011 0110 1001

There are two differences (bold) between the two detectors.
We now carry out Experiment IV. We rotate slit A by angle α, and slit B by angle

−α. Therefore, at Detector A we obtain the same results as in Experiment II, while
at Detector B – the same as in Experiment III. Therefore, we detect:

Experiment IV (angle 2α)
Detector A: 1011 0111 0010 0001
Detector B: 1001 0011 0110 1001

Now there are four differences between Detector A and Detector B. In Ex-
periment IV the number of differences could not be larger (Bell inequality). In our
case it could be four or fewer. When would it be fewer? When accidentally the
bold figures (i.e. the differences of Experiments II and III with respect to those of
Experiment I) coincide. In this case this would be counted as a difference in Exper-
iments II and III, while in Experiment IV it would not be counted as a difference.

Thus, we have demonstrated

BELL INEQUALITY :

N(2α)
 2N(α)	 (1.24)

where N stands for the number of measurement differences. The Bell in-
equality was derived under assumption that whatever happens at slit A it
does not influence that which happens at slit B (this is how we constructed
the counting tables) and that the two flying bars have, maybe unknown for
the observer, only a real (definite) direction in space (the same for both
bars).
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It would be interesting to perform a real experiment similar to Bell’s to con-
firm the Bell inequality. This opens the way for deciding in a physical experiment
whether:

• elementary particles are classical (though extremely small) objects that have
some well defined attributes irrespective of whether we observe them or not
(Einstein’s view)

• elementary particles do not have such attributes and only measurements them-
selves make them have measured values (Bohr’s view).

1.8 INTRIGUING RESULTS OF EXPERIMENTS WITH
PHOTONS

Aspect et al., French scientists from the Institute of Theoretical and Applied Op-
tics in Orsay published the results of their experiments with photons.65 The excited
calcium atom emitted pairs of photons (analogues of our bars), which moved in op-
posite directions and had the same polarization. After flying about 6 m they both
met the polarizers – analogues of slits A and B in the Bell procedure. A polarizer
allows a photon with polarization state |0〉	 or “parallel” (to the polarizer axis),
always pass through, and always rejects any photon in the polarization state |1〉, or
“perpendicular” (indeed perpendicular to the above “parallel” setting). When the
polarizer is rotated about the optical axis by an angle, it will pass through a percent-
age of the photons in state |0〉 and a percentage of the photons in state |1〉. When
both polarizers are in the “parallel” setting, there is perfect correlation between
the two photons of each pair, i.e. exactly as in Bell’s Experiment I. In the photon
experiment, this correlation was checked for 50 million photons every second for
about 12 000 seconds.

Bell’s experiments II–IV have been carried out. Common sense indicates that,
even if the two photons in a pair have random polarizations (perfectly correlated
though always the same – like the bars), they still have some polarizations, i.e.
maybe unknown but definite (as in the case of the bars, i.e. what E, P and R be-
lieved happens). Hence, the results of the photon experiments would have to fulfil the
Bell inequality. However, the photon experiments have shown that the Bell inequal-
ity is violated, but still the results are in accordance with the prediction of quantum
mechanics.

There are therefore only two possibilities (compare the frame at the end of the
previous section):

(a) either the measurement on a photon carried out at polarizer A (B) results in
some instantaneous interaction with the photon at polarizer B(A), or/and

(b) the polarization of any of these photons is completely indefinite (even if the po-
larizations of the two photons are fully correlated, i.e. the same) and only the
measurement on one of the photons at A (B) determines its polarization, which

65A. Aspect, J. Dalibard, G. Roger, Phys. Rev. Lett. 49 (1982) 1804.
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results in the automatic determination of the polarization of the second pho-
ton at B(A), even if they are separated by millions of light years.

Both possibilities are sensational. The first assumes a strange form of communi-
cation between the photons or the polarizers. This communication must be propa-
gated with a velocity exceeding the speed of light, because an experiment was per-
formed in which the polarizers were switched (this took something like 10 nano-
seconds) after the photons started (their flight took about 40 nanoseconds). De-
spite this, communication between the photons did exist.66 The possibility b) as a
matter of fact represents Bohr’s interpretation of quantum mechanics: elementary
particles do not have definite attributes (e.g., polarization).

As a result there is dilemma: either the world is “non-real” (in the sense that
the properties of particles are not determined before measurement) or/and
there is instantaneous (i.e. faster than light) communication between parti-
cles which operates independently of how far apart they are (“non-locality”).

This dilemma may make everybody’s metaphysical shiver!

1.9 TELEPORTATION

The idea of teleportation comes from science fiction and means:

• acquisition of full information about an object located at A,
• its transmission to B,
• creation (materialization) of an identical object at B
• and at the same time, the disappearance of the object at A.

At first sight it seems that this contradicts quantum mechanics. The Heisenberg
uncertainty principle says that it is not possible to prepare a perfect copy of the
object, because, in case of mechanical quantities with non-commuting operators
(like positions and momenta), there is no way to have them measured exactly, in
order to rebuild the system elsewhere with the same values of the quantities.

The trick is, however, that the quantum teleportation we are going to describe,
will not violate the Heisenberg principle, because the mechanical quantities needed
will not be measured and the copy made based on their values.

The teleportation protocol was proposed by Bennett and coworkers,67 and ap- teleportation

plied by the Anton Zeilinger group.68 The latter used the entangled states (EPR
effect) of two photons described above.69

66This again is the problem of delayed choice. It seems that when starting the photons have a knowl-
edge of the future setting of the aparatus (the two polarizers)!
67C.H. Benneth, G. Brassard, C. Crépeau, R. Josza, A. Peres, W.K. Wootters, Phys. Rev. Letters 70

(1993) 1895.
68D. Bouwmeester, J. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Nature 390 (1997) 575.
69A UV laser beam hits a barium borate crystal (known for its birefringence). Photons with parallel

polarization move along the surface of a cone (with the origin at the beam-surface collision point),
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Assume that photon A (number 1) from the entangled state belongs to Alice,
and photon B (number 2) to Bob. Alice and Bob introduce a common fixed coor-
dinate system. Both photons have identical polarizations in this coordinate system,
but neither Alice nor Bob know which. Alice may measure the polarization of her
photon and send this information to Bob, who may prepare his photon in that state.
This, however, does not amount to teleportation, because the original state could
be a linear combination of the |0〉 (parallel) and |1〉 (perpendicular) states, and
in such a case Alice’s measurement would “falsify” the state due to wave function
collapse (it would give either |0〉 or |1〉), cf. p. 23.

Since Alice and Bob have two entangled photons of the same polarization, then
let us assume that the state of the two photons is the following superposition:70

|00〉 + |11〉, where the first position in every ket pertains to Alice’s photon, the
second to Bob’s.

Now, Alice wants to carry out teleportation of her additional photon (number 3)
in an unknown quantum state φ = a|0〉 + b|1〉 (known as qubit), where a and bqubit

stand for unknown coefficients71 satisfying the normalization condition a2+b2 = 1.
Therefore, the state of three photons (Alice’s: the first and the third position in the
three-photon ket, Bob’s: the second position) will be [|00〉 + |11〉][a|0〉 + b|1〉] =
a|000〉 + b|001〉 + a|110〉 + b|111〉.

Alice prepares herself for teleportation of the qubit φ corresponding to her
second photon� She first prepares a device called the XOR gate.72

What is the XOR gate? The device manipulates two photons, one is treated asXOR gate

the steering photon, the second as the steered photon. The device operates thus:
if the steering photon is in state |0〉, then no change is introduced for the state of
the steered photon. If, however, the steering photon is in the state |1〉, the steered
photon will be switched over, i.e. it will be changed from |0〉 to |1〉 or from |1〉 to |0〉.
Alice chooses the photon in the state φ as her steering photon, and photon 1 as
her steered photon.

After the XOR gate is applied, the state of the three photons will be as follows:
a|000〉 + b|101〉 + a|110〉 + b|011〉.

Alice continues her preparation by using another device called the HadamardHadamard gate

gate that operates on a single photon and does the following

|0〉 → 1√
2

(|0〉 + |1〉)	

|1〉 → 1√
2

(|0〉 − |1〉)�

the photons with perpendicular polarization move on another cone, the two cones intersecting. From
time to time a single UV photon splits into two equal energy photons of different polarizations. Two
such photons when running along the intersection lines of the two cones, and therefore not having a
definite polarization (i.e. being in a superposition state composed of both polarizations) represent the
two entangled photons.
70The teleportation result does not depend on the state.
71Neither Alice nor Bob will know these coefficients up to the end of the teleportation procedure, but

still Alice will be able to send her qubit to Bob!
72Abbreviation of “eXclusive OR”.
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Alice applies this operation to her photon 3, and after that the three-photon
state is changed to the following

1√
2
[a|000〉 + a|001〉 + b|100〉 − b|101〉 + a|110〉 + a|111〉 + b|010〉 − b|011〉]

= 1√
2

[∣
∣0
(

a|0〉 + b|1〉) 0
〉+ ∣∣0 (a|0〉 − b|1〉) 1

〉− ∣∣1 (a|1〉 + b|0〉) 0
〉

+ ∣∣1 (a|1〉 − b|0〉) 1
〉]

� (1.25)

There is a superposition of four three-photon states in the last row. Each state
shows the state of Bob’s photon (number 2 in the ket), at any given state of Alice’s
two photons. Finally, Alice carries out the measurement of the polarization states
of her photons (1 and 3). This inevitably causes her to get (for each of the photons)
either |0〉 or |1〉 (collapse). This causes her to know the state of Bob’s photon from
the three-photon superposition (1.25):

• Alice’s photons 00, i.e. Bob has his photon in state (a|0〉 + b|1〉)=φ,
• Alice’s photons 01, i.e. Bob has his photon in state (a|0〉 − b|1〉),
• Alice’s photons 10, i.e. Bob has his photon in state (a|1〉 + b|0〉),
• Alice’s photons 11, i.e. Bob has his photon in state (a|1〉 − b|0〉).

Then Alice calls Bob and tells him the result of her measurements of the polar-
ization of her two photons. Bob has derived (1.25) as we did.

Bob knows therefore, that if Alice tells him 00 this means that the telepor-
tation is over: he already has his photon in state φ! If Alice sends him one
of the remaining possibilities, he would know exactly what to do with his
photon to prepare it in state φ and he does this with his equipment. The
teleportation is over: Bob has the teleported state φ, Alice has lost her photon
state φ when performing her measurement (wave function collapse).

Note that to carry out the successful teleportation of a photon state Alice had
to communicate something to Bob.

1.10 QUANTUM COMPUTING

Richard Feynman pointed out that contemporary computers are based on the “all”
or “nothing” philosophy (two bits: |0〉 or |1〉), while in quantum mechanics one may
also use a linear combination (superposition) of these two states with arbitrary co-
efficients a and b: a|0〉 + b|1〉, a qubit. Would a quantum computer based on such
superpositions be better than traditional one? The hope associated with quantum
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computers relies on a multitude of quantum states (those obtained using variable
coefficients a	b	 c	 � � �) and possibility of working with many of them using a sin-
gle processor. It was (theoretically) proved in 1994 that quantum computers could
factorize natural numbers much faster than traditional computers. This sparked
intensive research on the concept of quantum computation, which uses the idea
of entangled states. According to many researchers, any entangled state (a super-
position) is extremely sensitive to the slightest interaction with the environment,
and as a result decoherence takes place very easily, which is devastating for quan-
tum computing.73 First attempts at constructing quantum computers were based
on protecting the entangled states, but, after a few simple operations, decoherence
took place.

In 1997 Neil Gershenfeld and Isaac Chuang realized that any routine nuclear
magnetic resonance (NMR) measurement represents nothing but a simple quan-
tum computation. The breakthrough was recognizing that a qubit may be also rep-
resented by the huge number of molecules in a liquid.74 The nuclear spin angu-
lar momentum (say, corresponding to s = 1

2 ) is associated with a magnetic dipole
moment and those magnetic dipole moments interact with an external magnetic
field and with themselves (Chapter 12). An isolated magnetic dipole moment has
two states in a magnetic field: a lower energy state corresponding to the antipar-
allel configuration (state |0〉) and of higher energy state related to the parallel
configuration (state |1〉). By exposing a sample to a carefully tailored nanosecond
radiowave impulse one obtains a rotation of the nuclear magnetic dipoles, which
corresponds to their state being a superposition a|0〉 + b|1〉.

Here is a prototype of the XOR gate. Take chloroform75 [13CHCl3]. Due to the
interaction of the magnetic dipoles of the proton and of the carbon nucleus (both
either in parallel or antiparallel configurations with respect to the external mag-
netic field) a radiowave impulse of a certain frequency causes the carbon nuclear
spin magnetic dipole to rotate by 180◦ provided the proton spin dipole moment is
parallel to that of the carbon. Similarly, one may conceive other logical gates. The
spins changes their orientations according to a sequence of impulses, which play
the role of a computer program. There are many technical problems to overcome
in “liquid quantum computers”: the magnetic interaction of distant nuclei is very
weak, decoherence remains a worry and for the time being, limits the number of
operations to several hundred. However, this is only the beginning of a new com-
puter technology. It is most important that chemists know the future computers
well – they are simply molecules.

73It pertains to an entangled state of (already) distant particles. When the particles interact strongly
the state is more stable. The wave function for H2 also represents an entangled state of two electrons,
yet the decoherence does not take place even at short internuclear distances. As we will see, entangled
states can also be obtained in liquids.
74Interaction of the molecules with the environment does not necessarily result in decoherence.
75The NMR operations on spins pertain in practise to a tiny fraction of the nuclei of the sample (of

the order of 1 :1000000).
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Summary

Classical mechanics was unable to explain certain phenomena: black body radiation, the
photoelectric effect, the stability of atoms and molecules as well as their spectra. Quantum
mechanics, created mainly by Werner Heisenberg and Erwin Schrödinger, explained these
effects. The new mechanics was based on six postulates:

• Postulate I says that all information about the system follows from the wave function ψ.
The quantity |ψ|2 represents the probability density of finding particular values of the
coordinates of the particles, the system is composed of.

• Postulate II allows operators to be ascribed to mechanical quantities (e.g., energy). One
obtains the operators by writing down the classical expression for the corresponding quan-
tity, and replacing momenta (e.g., px) by momenta operators (here, p̂x =−ih̄ ∂

∂x ).
• Postulate III gives the time evolution equation for the wave function ψ (time-dependent

Schrödinger equation Ĥψ= ih̄ ∂ψ∂t ), using the energy operator (Hamiltonian Ĥ).
• Postulate IV pertains to ideal measurements. When making a measurement of a quantity
A, one can obtain only an eigenvalue of the corresponding operator Â. If the wave function
ψ represents an eigenfunction of Â, i.e. (Âψ= aψ), then one obtains always as a result
of the measurement the eigenvalue corresponding to ψ (i.e., a). If, however, the system
is described by a wave function, which does not represent any eigenfunction of Â, then one
obtains also an eigenvalue of Â, but there is no way to predict which eigenvalue. The only
thing one can predict is the mean value of many measurements, which may be computed
as 〈ψ|Âψ〉 (for the normalized function ψ).

• Postulate V says that an elementary particle has an internal angular momentum (spin).
One can measure only two quantities: the square of the spin length s(s + 1)h̄2 and one
of its components msh̄, where ms =−s	−s+ 1	 � � � 	+s, with spin quantum number s 	 0
characteristic for the type of particle (integer for bosons, half-integer for fermions). The
spin magnetic quantum number ms takes 2s+ 1 values.

• Postulate VI has to do with symmetry of the wave function with respect to the different
labelling of identical particles. If one exchanges the labels of two identical particles (we
sometimes call it the exchange of all the coordinates of the two particles), then for two
identical fermions the wave function has to change its sign (antisymmetric), while for
two identical bosons the function does not change (symmetry). As a consequence, two
identical fermions with the same spin coordinate cannot occupy the same point in space.

Quantum mechanics is one of the most peculiar theories. It gives numerical results that
agree extremely well with experiments, but on the other hand the relation of these results
to our everyday experience sometimes seems shocking. For example, it turned out that a
particle or even a molecule may somehow exist in two locations (they pass through two slits
simultaneously), but when one checks that out they are always in one place. It also turned
out that

• either a particle has no definite properties (“the world is unreal”), and the measurement
fixes them somehow

• or/and, there is instantaneous communication between particles however distant they are
from each other (“non-locality of interactions”).

It turned out that in the Bohr–Einstein controversy Bohr was right. The Einstein–
Podolsky–Rosen paradox resulted (in agreement with Bohr’s view) in the concept of entan-
gled states. These states have been used experimentally to teleport a photon state without
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violating the Heisenberg uncertainty principle. Also the entangled states stand behind the
idea of quantum computing: with a superposition of two states (qubit) a|0〉+b|1〉 instead of
|0〉 and |1〉 as information states.

Main concepts, new terms

wave function (p. 16)
operator of a quantity (p. 18)
Dirac notation (p. 19)
time evolution equation (p. 20)
eigenfunction (p. 21)
eigenvalue problem (p. 21)
stationary state (p. 22)
measurement (p. 22)
mean value of an operator (p. 24)
spin angular momentum (p. 25)
spin coordinate (p. 26)
Pauli matrices (p. 28)
symmetry of wave function (p. 33)
antisymmetric function (p. 33)

symmetric function (p. 33)
Heisenberg uncertainty principle (p. 36)
Gedankenexperiment (p. 38)
EPR effect (p. 38)
entangled states (p. 39)
delayed choice (p. 42)
interference of particles (p. 42)
bilocation (p. 42)
Bell inequality (p. 43)
experiment of Aspect (p. 46)
teleportation (p. 47)
logical gate (p. 47)
qubit (p. 48)
XOR and Hadamard gates (p. 48)

From the research front
Until recently, the puzzling foundations of quantum mechanics could not be verified directly
by experiment. As a result of enormous technological advances in quantum electronics and
quantum optics it became possible to carry out experiments on single atoms, molecules,
photons, etc. It was possible to carry out teleportation of a photon state across the Danube
River. Even molecules such as fullerene were subjected to successful interference experi-
ments. Quantum computer science is just beginning to prove that its principles are correct.

Ad futurum
Quantum mechanics has been proved in the past to give excellent results, but its foundations
are still unclear.76 There is no successful theory of decoherence, that would explain why and
how a delocalized state becomes localized after the measurement. It is possible to make
fullerene interfere, and it may be that in the near future we will be able to do this with
a virus.77 It is interesting that fullerene passes instantaneously through two slits with its
whole complex electronic structure as well as nuclear framework, although the de Broglie
wave length is quite different for the electrons and for the nuclei. Visibly the “overweighted”
electrons interfere differently from free ones. After the fullerene passes the slits, one sees
it in a single spot on the screen (decoherence). It seems that there are cases when even
strong interaction does not make decoherence necessary. Sławomir Szymański presented his
theoretical and experimental results78 and showed that the functional group –CD3 exhibits
a delocalized state (which corresponds to its rotation instantaneously in both directions, a
coherence) and, which makes the thing more peculiar, interaction with the environment not
only does not destroy the coherence, but makes it more robust. This type of phenomenon might
fuel investigations towards future quantum computer architectures.

76A pragmatic viewpoint is shared by the vast majority: “do not wiseacre, just compute!”
77As announced by Anton Zeilinger.
78S. Szymański, J. Chem. Phys. 111 (1999) 288.
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Additional literature

“The Ghost in the atom: a discussion of the mysteries of quantum physics”, P.C.W. Davies
and J.R. Brown, eds, Cambridge University Press, 1986.

Two BBC journalists interviewed eight outstanding physicists: Alain Aspect (photon
experiments), John Bell (Bell inequalities), John Wheeler (Feynman’s PhD supervisor),
Rudolf Peierls (“Peierls metal-semiconductor transition”), John Taylor (“black holes”),
David Bohm (“hidden parameters”) and Basil Hiley (“mathematical foundations of quan-
tum physics”). It is most striking that all these physicists give very different theoretical
interpretations of quantum mechanics (summarized in Chapter I).

R. Feynman, “QED – the Strange Theory of Light and Matter”, Princeton University
Press, Princeton (1985).

Excellent popular presentation of quantum electrodynamics written by one of the out-
standing physicists of the 20th century.

A. Zeilinger, “Quantum teleportation”, Scientific American 282 (2000) 50.
The leader in teleportation describes this new domain.

N. Gershenfeld, I.L. Chuang, “Quantum computing with molecules”, Scientific American
278 (1998) 66.

First-hand information about NMR computing.

Ch.H. Bennett, “Quantum Information and Computation”, Physics Today 48 (1995) 24.
Another first-hand description.

Questions

1. The state of the system is described by the wave function ψ. If |ψ|2 is computed by
inserting some particular values of the coordinates, then one obtains:
a) the probability of finding the system with these coordinates; b) a complex number;
c) 1; d) the probability density of finding the system with these coordinates.

2. The kinetic energy operator (one dimension) is equal to:

a) mv
2

2 ; b) −ih̄ ∂
∂x ; c) − h̄2

2m
∂2

∂x2 ; d) h̄2

2m
∂2

∂x2 .

3. The length of the electron spin vector is equal to:

a)
√

3
4 h̄; b) 1

2 h̄; c) ± 1
2 h̄; d) h̄.

4. The probability density of finding two identical fermions in a single point and with the
same spin coordinate is:
a) > 0; b) 0; c) 1; d) 1/2.

5. The measurement error �A of quantity A, which the Heisenberg uncertainty principle
speaks about is equal to:

a) �A=
√

〈ψ|Âψ〉; b) �A=
√

〈ψ|Â2ψ〉 − 〈ψ|Âψ〉2;

c) �A= 〈ψ|(Â2 − Â)ψ〉; d) �A= 〈ψ|Âψ〉.
6. The Heisenberg uncertainty principle �A ·�B	 h̄

2 pertains to:
a) any two mechanical quantities A and B; b) such mechanical quantities A and B, for
which ÂB̂ = B̂Â; c) such mechanical quantities A and B, for which the operators do
not commute; d) only to a coordinate and the corresponding momentum.
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7. The product of the measurement errors for a coordinate and the corresponding mo-
mentum is:
a) 	 h̄

2 ; b) > h̄
2 ; c) = h̄

2 ; d) > h̄.

8. The Einstein–Podolsky–Rosen experiment aimed at falsifying the Heisenberg uncer-
tainty principle:
a) measuring the coordinate of the first particle and the momentum of the second par-
ticle; b) measuring exactly the coordinates of two particles; c) measuring exactly the
momenta of two particles; d) by exact measuring whatever one chooses: either the co-
ordinate or the momentum of a particle (one of two particles).

9. Entangled states mean:
a) the real and imaginary parts of the wave function; b) a single state of two separated
particles causing dependence of the results of measurements carried out on both parti-
cles; c) a product of the wave function for the first and for the second particle; d) wave
functions with a very large number of nodes.

10. The experiment of Aspect has shown that:
a) the world is local; b) the photon polarizations are definite before measurement; c) the
world is non-local or/and the photon polarizations are indefinite before measurement;
d) the Bell inequality is satisfied for photons.

Answers

1d, 2c, 3a, 4b, 5b, 6c, 7a, 8d, 9b, 10c



Chapter 2

THE SCHRÖDINGER
EQUATION

Where are we?

The postulates constitute the foundation of quantum mechanics (the base of the TREE
trunk). One of their consequences is the Schrödinger equation for stationary states. Thus
we begin our itinerary on the TREE. The second part of this chapter is devoted to the time-
dependent Schrödinger equation, which, from the pragmatic point of view, is outside the
main theme of this book (this is why it is a side branch on the left side of the TREE).

An example

A friend asked us to predict what the UV spectrum of antracene1 looks like. One can predict
any UV spectrum if one knows the electronic stationary states of the molecule. The only
way to obtain such states and their energies is to solve the time-independent Schrödinger
equation. Thus, one has to solve the equation for the Hamiltonian for antracene, then find
the ground (the lowest) and the excited stationary states. The energy differences of these
states will tell us where (in the energy scale), to expect light absorption, and finally then the
wave functions will enable us to compute the intensity of this absorption.

What is it all about

Symmetry of the Hamiltonian and its consequences (��) p. 57
• The non-relativistic Hamiltonian and conservation laws
• Invariance with respect to translation
• Invariance with respect to rotation
• Invariance with respect to permutations of identical particles (fermions and bosons)
• Invariance of the total charge
• Fundamental and less fundamental invariances
• Invariance with respect to inversion – parity
• Invariance with respect to charge conjugation
• Invariance with respect to the symmetry of the nuclear framework
• Conservation of total spin
• Indices of spectroscopic states

1Three condensed benzene rings.

55
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Schrödinger equation for stationary states (�) p. 70
• Wave functions of class Q
• Boundary conditions
• An analogy
• Mathematical and physical solutions

The time-dependent Schrödinger equation (�) p. 76
• Evolution in time
• Normalization is preserved
• The mean value of the Hamiltonian is preserved
• Linearity

Evolution after switching a perturbation (�) p. 79
• The two-state model
• First-order perturbation theory
• Time-independent perturbation and the Fermi golden rule
• The most important case: periodic perturbation.

The time-independent Schrödinger equation is the one place where stationary states can
be produced as solutions of the equation. The time-dependent Schrödinger equation plays
a role as the equation of motion, describing the evolution of a given wave function as time
passes. As always for an equation of motion, one has to provide an initial state (starting
point), i.e. the wave function for t = 0. Both the stationary states, and the evolution of
the non-stationary states, depend on the energy operator (Hamiltonian). If one finds some
symmetry of the Hamiltonian, this will influence the symmetry of the wave functions. At the
end of this chapter we will be interested in the evolution of a wave function after applying a
perturbation.

Why is this important?

The wave function is a central notion in quantum mechanics, and is obtained as a solution
of the Schrödinger equation. Hence this chapter is necessary for understanding quantum
chemistry.

What is needed?

• Postulates of quantum mechanics, Chapter 1 (necessary).
• Matrix algebra, Appendix A, p. 889 (advised).
• Centre-of-mass separation, Appendix I, p. 971 (necessary).
• Translation vs momentum and rotation vs angular momentum, Appendix F, p. 955 (nec-

essary).
• Dirac notation, p. 19 (necessary).
• Two-state model, Appendix D, p. 948 (necessary).
• Dirac delta, Appendix E, p. 951 (necessary).

Classical works

A paper by the mathematician Emmy Noether “Invariante Variationsprobleme” published in
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, 1918, pp. 235–257 was the
first to follow the conservation laws of certain physical quantities with the symmetry of the-
oretical descriptions of the system. � Four papers by Erwin Schrödinger, which turned out



2.1 Symmetry of the Hamiltonian and its consequences 57

to cause an “earth-quake” in science: Annalen der Physik, 79 (1926) 361, ibid. 79 (1926) 489,
ibid. 80 (1926) 437, ibid. 81 (1926) 109, all under the title “Quantisierung als Eigenwertprob-
lem” presented quantum mechanics as an eigenvalue problem (known from the developed
differential equation theory), instead of an abstract Heisenberg algebra. Schrödinger proved
the equivalence of both theories, gave the solution for the hydrogen atom, and introduced
the variational principle. � The time-dependent perturbation theory described in this chap-
ter was developed by Paul Adrien Maurice Dirac in 1926. Twenty years later, Enrico Fermi,
lecturing at the University of Chicago coined the term “The Golden Rule” for these results.
From then on, they are known as the Fermi Golden Rule.

2.1 SYMMETRY OF THE HAMILTONIAN AND ITS
CONSEQUENCES

2.1.1 THE NON-RELATIVISTIC HAMILTONIAN AND
CONSERVATION LAWS

From classical mechanics it follows that for an isolated system (and assum-
ing the forces to be central and obeying the action-reaction principle), its
energy, momentum and angular momentum are conserved.

Imagine a well isolated space ship ob-
served in an inertial coordinate system.
Its energy is preserved, its centre of mass
moves along a straight line with constant
velocity (the total, or centre-of-mass, mo-
mentum vector is preserved), it rotates
about an axis with an angular veloc-
ity (total angular momentum preserved2).
The same is true for a molecule or atom,
but the conservation laws have to be for-
mulated in the language of quantum me-
chanics.

Where did the conservation laws
come from? Emmy Noether proved that
they are related to the symmetry opera-

Emmy Noether (1882–1935),
German mathematician, in-
formally professor, formally
only the assistant of David
Hilbert at the University of
Göttingen (in the first quar-
ter of the twentieth century
women were not allowed to
be professors in Germany).
Her outstanding achievements
in mathematics meant noth-
ing to the Nazis, because
Noether was Jewish (peo-
ple should reminded of such
problems) and in 1933 Noether

has been forced to emigrate
to the USA (Institute for Ad-
vanced Study in Princeton).

tions, with respect to which the equation of motion is invariant.3

2I.e. its length and direction. Think of a skater performing a spin: extending the arms sideways slows
down her rotation, while stretching them along the axis of rotation results in faster rotation. But all the
time the total angular momentum vector is the same. If the space ship captain wanted to stop the rotation
of the ship which is making the crew sick, he could either throw something (e.g., gas from a steering jet)
away from the ship, or spin a well oriented body, fast, inside the ship. But even the captain is unable to
change the total angular momentum.

3In case of a one-parameter family of operations ŜαŜβ = Ŝα+β, e.g., translation (α	β stand for the
translation vectors), rotation (α	β are rotational angles), etc. Some other operations may not form such
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Thus, it turned out that invariance of the equation of motion with respect to
an arbitrary:

– translation in time (time homogeneity) results in the energy conservation
principle

– translation in space (space homogeneity) gives the total momentum con-
servation principle

– rotation in space (space isotropy) implies the total angular momentum con-
servation principle.

These may be regarded as the foundations of science. The homogeneity of time
allows one to expect that repeating experiments give the same results. The homo-
geneity of space makes it possible to compare the results of the same experiments
carried out in two different laboratories. Finally, the isotropy of space allows one
to reject any suspicion that a different orientation of our laboratory bench with
respect to distant stars changes the result.

Now, let us try to incorporate this into quantum mechanics.
All symmetry operations (e.g. translation, rotation, reflection in a plane) are

isometric, i.e. Û† = Û−1 and Û does not change distances between points of the
transformed object (Figs. 2.1 and 2.2).

Fig. 2.1. (a) An object is rotated by angle α. (b) The coordinate system is rotated by angle −α. The new
position of the object in the old coordinate system (a) is the same as the initial position of the object in
the new coordinate system (b).

families and then the Noether theorem is no longer valid. This was an important discovery. Symmetry
of a theory is much more fundamental than the symmetry of an object. The symmetry of a theory means
that phenomena are described by the same equations no matter what laboratory coordinate system is chosen.
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Fig. 2.2. The f and Ĥf represent, in general, differ-
ent functions. Rotation (by α) of function Ĥf gives
function Û(Ĥf ) and, in consequence, is bound to de-
note the rotation of f (i.e. Ûf ) and the transformation
ÛĤÛ−1 of the operator Ĥ . Indeed, only then does
ÛĤÛ−1 acting on the rotated function, i.e. Ûf give
ÛĤÛ−1(Ûf ) = Û(Ĥf ), i.e. the rotation of the re-
sult. Because of Û(Ĥf ) = (ÛĤ)(Ûf ), when verify-
ing the invariance of Ĥ with respect to transforma-
tion Û , it is sufficient to check whether ÛĤ has the
same formula as Ĥ , but expressed in the new coordi-
nates. Only this ÛĤ will fit to f expressed in the new
coordinates, i.e. to Ûf . This is how we will proceed
shortly.

The operator Û acting in 3D Cartesian space corresponds to the operator
Û acting in the Hilbert space, cf. eq. (C.2), p. 905. Thus the function f (r)
transforms to f ′ = Ûf = f (Û−1r), while the operator Â transforms to Â′ =
ÛÂÛ−1 (Fig. 2.2). The formula for Â′ differs in general from Â, but when it
does not, i.e. Â′ = Â , then Û commutes with Â.

Indeed, then Â = ÛÂÛ−1, i.e. one has the commutation relation ÂÛ = ÛÂ,
which means that Û and Â share their eigenfunctions (Appendix B, p. 895).

Let us take the Hamiltonian Ĥ as the operator Â. Before writing it down let
us introduce atomic units. Their justification comes from something similar to lazi-
ness. The quantities one calculates in quantum mechanics are stuffed up by some
constants: h̄ = h

2π , where h is the Planck constant, electron charge −e, its (rest)
mass m0, etc. These constants appear in clumsy formulae with various powers, in
the nominator and denominator (see Table of units, p. 1062). We always know,
however, that the quantity we calculate is energy, length, time or something sim-
ilar and we know how the unit energy, the unit length, etc. is expressed by h̄, e,
m0. atomic units

ATOMIC UNITS
If one inserts: h̄ = 1	 e = 1	 m0 = 1	 this gives a dramatic simplification
of the formulae. One has to remember though, that these units have been
introduced and, whenever needed, one can evaluate the result in other units
(see Table of conversion coefficients, p. 1063).

The Hamiltonian for a system of M nuclei (with charges ZI and masses mI , non-relativistic
Hamiltonian
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I = 1	 � � � 	M) andN electrons, in the non-relativistic approximation and assuming
point-like particles without any internal structure,4 takes [in atomic units (a.u.)] the
following form (see p. 18)

Ĥ = T̂n + T̂e + V̂ 	 (2.1)

where the kinetic energy operators for the nuclei and electrons (in a.u.) read as:

T̂n =−1
2

M
∑

I=1

1
mI
�I	 (2.2)

T̂e =−1
2

N
∑

i=1

�i	 (2.3)

where the Laplacians are

�I = ∂2

∂X2
I

+ ∂2

∂Y 2
I

+ ∂2

∂Z2
I

	

�i = ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

	

4No internal structure of the electron has yet been discovered. The electron is treated as a point-like
particle. Contrary to this nuclei have a rich internal structure and non-zero dimensions. A clear multi-
level-like structure appears (which has to a large extent forced a similar structure on the corresponding
scientific methodologies):

• Level I. A nucleon (neutron, proton) consists of three (the valence) quarks, clearly seen on the scat-
tering image obtained for the proton. Nobody has yet observed a free quark.

• Level II. The strong forces acting among nucleons have a range of about 1–2 fm (1 fm = 10−15

m). Above 0.4–0.5 fm they are attractive, at shorter distances they correspond to repulsion. One
need not consider their quark structure when computing the forces among nucleons, but they may
be treated as particles without internal structure. The attractive forces between nucleons practically
do not depend on the nucleon’s charge and are so strong that they may overcome the Coulomb
repulsion of protons. Thus the nuclei composed of many nucleons (various chemical elements) may
be formed, which exhibit a shell structure (analogous to electronic structure, cf. Chapter 8) related to
the packing of the nucleons. The motion of the nucleons is strongly correlated. A nucleus may have
various energy states (ground and excited), may be distorted, may undergo splitting, etc. About 2000
nuclei are known, of which only 270 are stable. The smallest nucleus is the proton, the largest known
so far is 209Bi (209 nucleons). The largest observed number of protons in a nucleus is 118. Even the
largest nuclei have diameters about 100000 times smaller than the electronic shells of the atom. Even
for an atom with atomic number 118, the first Bohr radius is equal to 1

118 a.u. or 5 · 10−13 m, still
about 100 times larger than the nucleus.

• Level III. Chemists can neglect the internal structure of nuclei. A nucleus can be treated as a struc-
tureless point-like particle and using the theory described in this book, one is able to predict ex-
tremely precisely virtually all the chemical properties of atoms and molecules. Some interesting ex-
ceptions will be given in 6.11.2.
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and x	 y	 z stand for the Cartesian coordinates of the nuclei and electrons indicated
by vectors RI = (XI	YI	ZI) and ri = (xi	 yi	 zi), respectively.

The operator V̂ corresponds to the electrostatic interaction of all the particles
(nucleus–nucleus, nucleus–electron, electron–electron):

V̂ =
M
∑

I=1

M
∑

J>I

ZIZJ
|RI −RJ | −

M
∑

I=1

N
∑

i=1

ZI
|ri −RI | +

N
∑

i=1

N
∑

j>i

1
|ri − rj| 	 (2.4)

or, in a simplified form

V̂ =
M
∑

I=1

M
∑

J>I

ZIZJ
RIJ

−
M
∑

I=1

N
∑

i=1

ZI
riI
+

N
∑

i=1

N
∑

j>i

1
rij
� (2.5)

If the Hamiltonian turned out to be invariant with respect to a symmetry opera-
tion Û (translation, rotation, etc.), this would imply the commutation of Û and Ĥ.
We will check this in more detail below.

Note that the distances RIJ	 riI and rij in the Coulombic potential energy in
eq. (2.5) witness the assumption of instantaneous interactions in non-relativistic
theory (infinite speed of travelling the interaction through space).

2.1.2 INVARIANCE WITH RESPECT TO TRANSLATION

Translation by vector T of function f (r) in space means the function Ûf (r) =
f (Û−1r)= f (r− T), i.e. an opposite (by vector −T) translation of the coordinate
system (Fig. 2.3).

Transformation r′ = r+ T does not change the Hamiltonian. This is evident for
the potential energy V̂ , because the translations T cancel, leaving the interparticle
distances unchanged. For the kinetic energy one obtains

∂

∂x′
=

∑

σ=x	y	z

∂σ

∂x′
∂

∂σ
= ∂x

∂x′
∂

∂x
= ∂

∂x
	

and all the kinetic energy operators (eqs. (2.2) and (2.3)) are composed of the
operators having this form.

The Hamiltonian is therefore invariant with respect to any translation of the
coordinate system.
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Fig. 2.3. A function f shifted by vector T (symmetry operation T̂ ), i.e. T̂ f (x	 y) in the coordinate
system (x	y) is the same as function f (x′	 y′), in the coordinate system (x′	 y′) shifted by −T .

There are two main consequences of translational symmetry:space
homogeneity

• No matter, whether the coordinate system used is fixed in Trafalgar Square, or
in the centre of mass of the system, one has to solve the same mathematical
problem.

• The solution to the Schrödinger equation corresponding to the space fixed coor-
dinate system (SFS) located in Trafalgar Square is �pN , whereas �0N is calcu-
lated in the body-fixed coordinate system (see Appendix I) located in the centre
of mass at RCM with the (total) momentum pCM . These two solutions are re-
lated by �pN =�0N exp(ipCM ·RCM). The number N = 0	1	2	 � � � counts the
energy states after the centre-of-mass motion is separated.

This means that the energy spectrum represents a continuum, because the
centre of mass may have any (non-negative) kinetic energy p2

CM/(2m). If,
however, one assumes that pCM = const, then the energy spectrum is dis-
crete for low-energy eigenvalues (see eq. (1.13)).

This spectrum corresponds to the bound states, i.e. those states which do not
correspond to any kind of dissociation (including ionization). Higher energy states
lead to dissociation of the molecule, and the fragments may have any kinetic en-
ergy. Therefore, above the discrete spectrum one has a continuum of states. The
states �0N will be called spectroscopic states. The bound states �0N are squarespectroscopic

states integrable, as opposed to �pN , which are not because of function exp(ipRCM),
which describes the free motion of the centre of mass.
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2.1.3 INVARIANCE WITH RESPECT TO ROTATION

The Hamiltonian is also invariant with respect to any rotation in space Û of the isotropy of
spacecoordinate system about a fixed axis. The rotation is carried out by applying an or-

thogonal matrix transformation U of vector r = (x	 y	 z)T that describes any par-
ticle of coordinates x, y , z. Therefore all the particles undergo the same rotation
and the new coordinates are r′ = Ûr = Ur. Again there is no problem with the
potential energy, because a rotation does not change the interparticle distances.
What about the Laplacians in the kinetic energy operators? Let us see.

� =
3
∑

k=1
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∂x2
k

=
3
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∂
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∂
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Thus, one has invariance of the Hamiltonian with respect to any rotation
about the origin of the coordinate system. This means (see p. 955) that the
Hamiltonian and the operator of the square of the total angular momen-
tum Ĵ2 (as well as of one of its components, denoted by Ĵz) commute. One
is able, therefore, to measure simultaneously the energy, the square of to-
tal angular momentum as well as one of the components of total angular
momentum, and (as it will be shown in (4.6)) one has

Ĵ2�0N(r	R) = J(J + 1)h̄2�0N(r	R)	 (2.6)

Ĵz�0N(r	R) =MJh̄�0N(r	R)	 (2.7)

where J = 0	1	2 � � � and MJ =−J	−J + 1	 � � � 	+J.
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Any rotation matrix may be shown as a product of “elementary” rotations, each
about axes x, y or z. For example, rotation about the y axis by angle θ corresponds
to the matrix

⎛

⎝

cosθ 0 − sinθ
0 1 0

sinθ 0 cosθ

⎞

⎠ �

The pattern of such matrices is simple: one has to put in some places sines, cosines,
zeros and ones with the proper signs.5 This matrix is orthogonal,6 i.e. UT = U−1,
which you may easily check. The product of two orthogonal matrices represents an
orthogonal matrix, therefore any rotation corresponds to an orthogonal matrix.

2.1.4 INVARIANCE WITH RESPECT TO PERMUTATION OF IDENTICAL
PARTICLES (FERMIONS AND BOSONS)

The Hamiltonian has also permutational symmetry. This means that if someone
exchanged labels numbering the identical particles, independently of how it was
done, they would always obtain the identical mathematical expression for the
Hamiltonian. This implies that any wave function has to be symmetric (for bosons)
or antisymmetric (fermions) with respect to the exchange of labels between two
identical particles (cf. p. 33).

2.1.5 INVARIANCE OF THE TOTAL CHARGE

The total electric charge of a system does not change, whatever happens. In ad-
dition to the energy, momentum and angular momentum, strict conservation laws
are obeyed exclusively for the total electric charge and the baryon and lepton num-
bers (a given particle contributes +1, the corresponding the antiparticle −1).7 The
charge conservation law follows from the gauge symmetry. This symmetry means
the invariance of the theory with respect to partition of the total system into subsys-
tems. Total electric charge conservation follows from the fact that the description
of the system has to be invariant with respect to the mixing of the particle and
antiparticle states, which is analogous to rotation.

5Clockwise and anticlockwise rotations and two possible signs at sines cause a problem with memo-
rizing the right combination. In order to choose the correct one, one may use the following trick. First,
we decide that what moves is an object (e.g., a function, not the coordinate system). Then, you take
my book from your pocket. With Fig. 2.1.a one sees that the rotation of the point with coordinates
(1	0) by angle θ = 90◦ should give the point (0	1), and this is assured only by the rotation matrix:
(

cosθ − sinθ
sinθ cosθ

)

.

6And therefore also unitary (cf. Appendix A, p. 889).
7For example, in the Hamiltonian (2.1) it is assumed that whatever might happen to our system, the

numbers of the nucleons and electrons will remain constant.
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2.1.6 FUNDAMENTAL AND LESS FUNDAMENTAL INVARIANCES

The conservation laws described are of a fundamental character, because they are
related to the homogeneity of space and time, the isotropy of space and the non-
distinguishability of identical particles.

Besides these strict conservation laws, there are also some approximate laws.
Two of these: parity and charge conjugation, will be discussed below. They are
rooted in these strict laws, but are valid only in some conditions. For example, in
most experiments, not only the baryon number, but also the number of nuclei of
each kind are conserved. Despite the importance of this law in chemical reaction
equations, this does not represent any strict conservation law as shown by radioac-
tive transmutations of elements.

Some other approximate conservation laws will soon be discussed.

2.1.7 INVARIANCE WITH RESPECT TO INVERSION – PARITY

There are orthogonal transformations which are not equivalent to any rotation,
e.g., the matrix of inversion

⎛

⎝

−1 0 0
0 −1 0
0 0 −1

⎞

⎠ 	

which corresponds to changing r to −r for all the particles and does not represent
any rotation. If one performs such a symmetry operation, the Hamiltonian remains
invariant. This is evident, both for V̂ (the interparticle distances do not change),
and for the Laplacian (single differentiation changes sign, double does not). Two
consecutive inversions mean an identity operation. Hence,

�0N(−r	−R)=��0N(r�R)	 where � ∈ {1	−1}�
Therefore,

the wave function of a stationary state represents an eigenfunction of the
inversion operator, and the eigenvalue can be either �= 1 or �=−1 (this
property is called parity, or P).

Now the reader will be taken by surprise. From what we have said, it follows
that no molecule has a non-zero dipole moment. Indeed, the dipole moment is cal-
culated as the mean value of the dipole moment operator, i.e. μ= 〈�0N |μ̂�0N 〉 =
〈�0N |(∑i qiri)�0N〉. This integral will be calculated very easily: the integrand is
antisymmetric with respect to inversion8 and therefore μ= 0.

8�0N may be symmetric or antisymmetric, but |�0N |2 is bound to be symmetric. Therefore, since
∑

i qiri is antisymmetric, then indeed, the integrand is antisymmetric (the integration limits are sym-
metric).
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Is therefore the very meaning of the dipole moment, a quantity often used in
chemistry and physics, a fairy tale? If HCl has no dipole moment, then it is more
understandable that H2 does not have either. All this seems absurd. What about
this dipole moment?

Let us stress, that our conclusion pertains to the total wave function, which has
to reflect the space isotropy leading to the zero dipole moment, because all orienta-
tions in space are equally probable. If one applied the transformation r→−r only
to some particles in the molecule (e.g., electrons), and not to others (e.g., the nu-
clei), the wave function will show no parity (it would be neither symmetric nor an-
tisymmetric). We will introduce the Hamiltonian in Chapter 6, which corresponds
to immobilizing the nuclei (clamped nuclei approximation) in certain positions in
space, and in such a case the wave function depends on the electronic coordinates
only. This wave function may be neither symmetric nor antisymmetric with respect
to the partial inversion transformation r→−r (for the electrons only). To give an
example, let us imagine the HF molecule in a coordinate system, its origin in the
middle between the H and F nuclei. Consider a particular configuration of the 10
electrons of the molecule; all close to the fluorine nucleus in some well defined
points. One may compute the value of the wave function for this configuration of
electrons. Its square gives us the probability density of finding this particular con-
figuration of electrons. Now, imagine the (partial) inversion r→−r applied to all
the electrons. Now they will all be close to the proton. If one computes the proba-
bility density for the new situation, one would obtain a different value (much, much
smaller, because the electrons prefer the fluorine, not the hydrogen). No symme-
try or antisymmetry. No wonder therefore that if one computed μ= 〈�0N |μ̂�0N〉
with such a function (integration is over the electronic coordinates only), the result
would differ from zero. This is why chemists believe the HF molecule has a non-
zero dipole moment.9 On the other hand, if the molecule taken as the example
were B2 (also ten electrons), then the two values have had to be equal, because
they describe the same physical situation. This corresponds, therefore, to a wave
function with definite parity (symmetric or antisymmetric), and therefore, in this
case μ = 0. This is why chemists believe such molecules as H2, B2, O2 have no
dipole moment.

Product of inversion and rotation

The Hamiltonian is also invariant with respect to some other symmetry operations
like changing the sign of the x coordinates of all particles, or similar operations
which are products of inversion and rotation. If one changed the sign of all the x
coordinates, it would correspond to a mirror reflection. Since rotational symmetrymirror reflection

stems from space isotropy (which we will treat as “trivial”), the mirror reflection
may be identified with parity P .P symmetry

9What therefore do they measure? The answer will be given in Chapter 12.
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Enantiomers

A consequence of inversion symmetry is that the wave functions have to be eigen-
functions of the inversion operator with eigenvalues �= 1, i.e. the wave function
is symmetric, or �=−1, i.e. the wave function is antisymmetric. Any asymmetric
wave function corresponding to a stationary state is therefore excluded (“illegal”).
However, two optical isomers (enantiomers), corresponding to an object and its
mirror image, do exist (Fig. 2.4).10

We ask in a pharmacy for D-glucose, strangely enough the pharmacist is
fully cooperative and does not make
trouble. We pay a small sum and he
gives us something which should not
exist11 – a substance with a single enan-
tiomer. We should obtain a substance
composed of molecules in their station-
ary states, which have therefore to have
definite parity, either as a sum of the
wave functions for the two enantiomers
D and L (� = 1, cf. Appendix D on
p. 948, Example I): ψ+ = ψD + ψL
or as the difference (� = −1): ψ− =
ψD − ψL. The energies corresponding
to ψ+ and ψ− differ, but the differ-
ence is extremely small (quasidegener-
acy). The brave shopkeeper has given
us something with the wave function
ψ=N(ψ+ +ψ−)=ψD (as result of de-

Chen Ning Yang (b. 1922)
and Tsung Dao Lee (b. 1926)
American physicists, profes-
sors at the Advanced Study
Institute in Princeton predict-
ed in 1956 parity breaking in
the weak interactions, which
a few months later has been
confirmed experimentally by

Madam Wu. In 1957 Yang
and Lee received the Nobel
Prize “for their penetrating
investigation of parity laws,
which led to important dis-
coveries regarding elemen-
tary particles”.

inversion rotation

Fig. 2.4. If one superposed the X1–C–X2 and X′1–C′–X′2 fragments of both molecules, the other two
substituents could not match: X′4 in place of X3 and X′3 in place of X4. The two molecules represent two
enantiomeric isomers. A wave function that describes one of the enantiomers does not have a definite
parity and is therefore “illegal”.

10The property that distinguishes them is known as chirality (your hands are an example of chiral
objects). The chiral molecules (enantiomers) exhibit optical activity, i.e. polarized light passing through
a solution of one of the enantiomers undergoes a rotation of the polarization plane always in the same
direction (which may be easily seen by reversing the direction of the light beam). Two enantiomeric
molecules have the same properties, provided one is checking this by using non-chiral objects. If the
probe were chiral, one of the enantiomers would interact with it differently (for purely sterical reasons).
Enantiomers (e.g., molecular associates) may be formed from chiral or non-chiral subunits.
11More exactly, should be unstable.
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coherence), which therefore describes a non-stationary state.12 As we will see in a
moment (p. 82), the approximate lifetime of the state is proportional to the inverse
of the integral 〈ψD|ĤψL〉. If one calculated this integral, one would obtain an ex-
tremely small number.13 It would turn out that the pharmacy could safely keep the
stock of glucose for millions of years. Maybe the reason for decoherence is interac-
tion with the rest of the Universe, maybe even interaction with a vacuum. The very
existence of enantiomers, or even the prevailence of one of them on Earth, does
not mean breaking parity symmetry. This would happen if one of the enantiomers
corresponded to a lower energy than the other.14

2.1.8 INVARIANCE WITH RESPECT TO CHARGE CONJUGATION

If one changed the signs of the charges of all particles, the Hamiltonian
would not change.

This therefore corresponds to exchanging particles and antiparticles.15 Such aC symmetry

symmetry operation is called the charge conjugation and denoted as C symmetry.
This symmetry will not be marked in the wave function symbol (because, as a rule,
we have to do with matter, not antimatter), but we will remember. Sometimes it
may turn out unexpectedly to be useful (see Chapter 13, p. 702). After Wu’s ex-
periment, physicists tried to save the hypothesis that what is conserved is the CP
symmetry, i.e. the product of charge conjugation and inversion. However, analy-
sis of experiments with the meson K decay has shown that even this symmetry is
approximate (although the deviation is extremely small).

2.1.9 INVARIANCE WITH RESPECT TO THE SYMMETRY OF THE
NUCLEAR FRAMEWORK

In many applications the positions of the nuclei are fixed (clamped nuclei ap-
proximation, Chapter 6), often in a high-symmetry configuration (cf. Appendix C,
p. 903). For example, the benzene molecule in its ground state (after minimizing
the energy with respect to the positions of the nuclei) has the symmetry of a regular
hexagon. In such cases the electronic Hamiltonian additionally exhibits invariance
with respect to some symmetry operations and therefore the wave functions are

12Only ψ+ and ψ− are stationary states.
13This is seen even after attempting to overlap two molecular models physically, Fig. 2.4. The overlap

of the wave functions will be small for the same reasons (the wave functions decay exponentially with
distance).
14This is what happens in reality, although the energy difference is extremely small. Experiments with
β-decay have shown that Nature breaks parity in weak interactions. Parity conservation law therefore
has an approximate character.
15Somebody thought he had carried out computations for benzene, but he also computed antibenzene.

The wave function for benzene and antibenzene are the same.
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the eigenstates of these symmetry operations. Therefore, any wave function may
have an additional label; the symbol of the irreducible representation16 it belongs
to.

2.1.10 CONSERVATION OF TOTAL SPIN

In an isolated system the total angular momentum J is conserved. However, J =
L+ S, where L and S stand for the orbital and spin angular momenta (sum over
all particles), respectively. The spin angular momentum S, a sum of spins of all
particles, is not conserved.

However, the (non-relativistic) Hamiltonian does not contain any spin vari-
ables. This means that it commutes with the operator of the square of the
total spin as well as with the operator of one of the spin components (by
convention the z component). Therefore, in the non-relativistic approxima-
tion one can simultaneously measure the energy E, the square of the spin
S2 and one of its components Sz .

2.1.11 INDICES OF SPECTROSCOPIC STATES

In summary, assumptions about the homogeneity of space and time, isotropy of
space and parity conservation lead to the following quantum numbers (indices) for
the spectroscopic states:

• N quantizes energy,
• J quantizes the length of total angular momentum,
• M quantizes the z component of total angular momentum,
• � determines parity:

�N	J	M	�(r�R)�

Besides these indices following from the fundamental laws (in the case of par-
ity it is a little too exaggerated), there may be also some indices related to less
fundamental conservation laws:

• the irreducible representation index of the symmetry group of the clamped nu-
clei Hamiltonian (Appendix C)

• the values of S2 (traditionally one gives the multiplicity 2S + 1) and Sz .

16Of the symmetry group composed of the symmetry operations mentioned above.
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2.2 SCHRÖDINGER EQUATION FOR STATIONARY STATES
It may be instructive to see how Erwin Schrödinger invented his famous equa-
tion (1.13) for stationary states ψ of energy E (Ĥ denotes the Hamiltonian of the
system)

Ĥψ=Eψ� (2.8)

Schrödinger surprised the contemporary quantum elite (associated mainly with

Erwin Rudolf Josef Alexander Schrödinger
(1887–1961), Austrian physicist, professor at
the universities of Jena, Stuttgart, Graz, Bres-
lau, Zurich, Berlin and Vienna. In later years
Schrödinger recalled the Zurich period most
warmly, in particular, discussions with the
mathematician Hermann Weyl and physicist
Peter Debye. In 1927 Schrödinger succeeded
Max Planck at the University of Berlin, and in
1933 received the Nobel Prize “for the discov-
ery of new productive forms of atomic theory”.
Hating the Nazi regime, he left Germany in
1933 and moved to the University of Oxford.
However, homesick for his native Austria he
went back in 1936 and took a professorship at
the University of Graz. Meanwhile Hitler car-
ried out his Anschluss with Austria in 1938,
and Schrödinger even though not a Jew, could
have been an easy target as one who fled Ger-
many because of the Nazis. He emigrated to
the USA (Princeton), and then to Ireland (In-
stitute for Advanced Studies in Dublin), worked
there till 1956, then returned to Austria and re-
mained there, at the Vienna University, until his
death.

In his scientific work as well as in his per-
sonal life Schrödinger did not strive for big
goals, he worked by himself. Maybe what char-
acterizes him best is that he was always ready
to leave having belongings packed in his ruck-
sack. Among the goals of this textbook listed
in the Introduction there is not demoralization
of youth. This is why I will stop here, limit my-
self to the carefully selected information given
above and refrain from describing the circum-
stances, in which quantum mechanics was
born. For those students who read the mate-
rial recommended in the Additional Literature,
I provide some useful references: W. Moore,
“Schrödinger: Life and Thought”, Cambridge
University Press, 1989, and the comments
on the book given by P.W. Atkins, Nature,

341 (1989), also http://www-history.mcs.st-
andrews.ac.uk/history/Mathematicians/Schro-
dinger.html.

Schrödinger’s curriculum vitae found in
Breslau (now Wrocław):

“Erwin Schrödinger, born on Aug., 12, 1887
in Vienna, the son of the merchant Rudolf
Schrödinger and his wife née Lauer. The fam-
ily of my father comes from the Upper Palati-
nate and Wirtemberg region, and the fam-
ily of my mother from German Hungary and
(from the maternal side) from England. I at-
tended a so called “academic” high school
(once part of the university) in my native town.
Then from 1906–1910 I studied physics at Vi-
enna University, where I graduated in 1910 as
a doctor of physics. I owe my main inspira-
tion to my respected teacher Fritz Hasenöhrl,
who by an unlucky fate was torn from his dili-
gent students – he fell gloriously as an attack
commander on the battlefield of Vielgereuth.
As well as Hasenöhrl, I owe my mathemat-
ical education to Professors Franz Mertens
and Wilhelm Wirtinger, and a certain knowl-
edge of experimental physics to my principal
of many years (1911–1920) Professor Franz
Exner and my intimate friend R.M.F. Rohrmuth.
A lack of experimental and some mathemati-
cal skills oriented me basically towards theory.
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Presumably the spirit of Ludwig Boltzmann
(deceased in 1906), operating especially in-
tensively in Vienna, directed me first towards
the probability theory in physics. Then, (. . . )
a closer contact with the experimental works
of Exner and Rohrmuth oriented me to the
physiological theory of colours, in which I tried
to confirm and develop the achievements of
Helmholtz. In 1911–1920 I was a laboratory
assistant under Franz Exner in Vienna, of
course, with 4 1

2 years long pause caused
by war. I have obtained my habilitation in
1914 at the University of Vienna, while in
1920 I accepted an offer from Max Wien and
became his assistant professor at the new
theoretical physics department in Jena. This
lasted, unfortunately, only one semester, be-
cause I could not refuse a professorship at
the Technical University in Stuttgart. I was
there also only one semester, because April

1921 I came to the University of Hessen in
succession to Klemens Schrafer. I am almost
ashamed to confess, that at the moment I sign
the present curriculum vitae I am no longer
a professor at the University of Breslau, be-
cause on Oct. 15. I received my nomination to
the University of Zurich. My instability may be
recognized exclusively as a sign of my ingrati-
tude!

Breslau, Oct., 5, 1921. Dr Erwin Schrödin-
ger

(found in the archives of the University of
Wrocław (Breslau) by Professor Zdzisław La-
tajka and Professor Andrzej Sokalski, transla-
ted by Professor Andrzej Kaim and the Author.
Since the manuscript (see web annex, Supple-
ments) was hardly legible due to Schrödinger’s
difficult handwriting, some names may have
been misspelled.)

Copenhagen and Göttingen) by a clear formulation of quantum mechanics as wave
mechanics. January 27, 1926, when Schrödinger submitted a paper entitled “Quan-
tisierung als Eigenwertproblem”17 to Annalen der Physik, may be regarded as the
birthday of wave mechanics.

Most probably Schrödinger’s reasoning was as follows. De Broglie discovered
that what people called a particle also had a wave nature (Chapter 1). That is re-
ally puzzling. If a wave is involved, then according to Debye’s suggestion at the
November seminar in Zurich, it might be possible to write the standing wave equa-
tion with ψ(x) as its amplitude at position x:

v2 d2ψ

dx2 +ω2ψ= 0	 (2.9)

where v stands for the (phase) velocity of the wave, and ω represents its angular
frequency (ω= 2πν, where ν is the usual frequency) which is related to the wave
length λ by the well known formula:18

ω/v= 2π
λ
� (2.10)

Besides, Schrödinger knew from the de Broglie’s thesis, himself having lectured
in Zurich about this, that the wavelength, λ, is related to a particle’s momentum p
through λ= h/p, where h= 2πh̄ is the Planck constant. This equation is the most

17Quantization as an eigenproblem. Well, once upon a time quantum mechanics was discussed in
German. Some traces of that period remain in the nomenclature. One is the “eigenvalue problem or
eigenproblem” which is a German–English hybrid.
18In other words ν = v

λ or λ= vT (i.e. wave length is equal to the velocity times the period). Eq. (2.9)

represents an oscillating function ψ(x) � Indeed, it means that d2ψ
dx2 and ψ differ by sign, i.e. if ψ is

above the x axis, then it curves down, while if it is below the x axis, then it curves up.
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famous achievement of de Broglie, and relates the corpuscular (p) character and
the wave (λ) character of any particle.

On the other hand the momentum p is related to the total energy (E) and
the potential energy (V ) of the particle through: p2 = 2m(E − V ), which follows,
from the expression for the kinetic energy T = mv2

2 = p2/(2m) and E = T + V .
Therefore, eq. (2.9) can be rewritten as:

d2ψ

dx2 +
1

h̄2

[

2m(E − V )]ψ= 0	 (2.11)

The most important step towards the great discovery was the transfer of the term
involving E to the left hand side. Let us see what Schrödinger obtained:

[

− h̄
2

2m
d2

dx2 + V
]

ψ=Eψ� (2.12)

This was certainly a good moment for a discovery. Schrödinger obtained a kind
of eigenvalue equation (1.13), recalling his experience with eigenvalue equations in
the theory of liquids.19 What is striking in eq. (2.12) is the odd fact that an operator
− h̄2

2m
d2

dx2 amazingly plays the role of the kinetic energy. Indeed, keeping calm we
see the following: something plus potential energy, all that multiplied by ψ, equals
total energy times ψ. Therefore, clearly this something must be the kinetic energy!

But, wait a minute, the kinetic energy is equal to p2

2m . From this it follows that,
in the equation obtained instead of p there is a certain operator ih̄ d

dx or −ih̄ d
dx ,

because only then does the squaring give the right answer.
Would the key to the puzzle be simply taking the classical expression for to-

Hermann Weyl (1885–1955),
German mathematician, pro-
fessor at ETH Zurich, then
the University of Göttingen
and the Institute for Advanced
Studies at Princeton (USA),
expert in the theory of or-
thogonal series, group the-
ory and differential equations.
Weyl adored Schrödinger’s
wife, was a friend of the fam-
ily, and provided an ideal part-
ner for Schrödinger in conver-

sations about the eigenprob-
lem.

tal energy and inserting the above op-
erators instead the momenta? What was
the excited Schrödinger supposed to do?
The best choice is always to begin with
the simplest toys, such as the free parti-
cle, the particle in a box, the harmonic
oscillator, the rigid rotator or hydrogen
atom. Nothing is known about whether
Schrödinger himself had a sufficiently
deep knowledge of mathematics to be
able to solve the (sometimes non-trivial)
equations related to these problems, or
whether he had advice from a friend

versed in mathematics, such as Hermann Weyl.
It turned out that instead of p	 −ih̄ d

dx had to be inserted, and not ih̄ d
dx (Postu-

late II, Chapter 1).

19Very interesting coincidence: Heisenberg was also involved in fluid dynamics. At the beginning,
Schrödinger did not use operators. They appeared after he established closer contacts with the Uni-
versity of Göttingen.
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2.2.1 WAVE FUNCTIONS OF CLASS Q
The postulates of quantum mechanics, especially the probabilistic interpretation
of the wave function given by Max Born, limits the class of functions allowed (to
“class Q”, or “quantum”).

Any wave function

• cannot be zero everywhere (Fig. 2.5.a), because the system is somewhere in space;
• has to be continuous, (Fig. 2.5.b). This also means it cannot take infinite values

at any point in space20 (Fig. 2.5.c,d);
• has to have a continuous first derivative as well (everywhere in space except

isolated points (Fig. 2.5.e,f), where the potential energy tends to −∞), because
the Schrödinger equation is a second order differential equation and the second
derivative must be defined;

• has to have a uniquely defined value in space,21 Fig. 2.5.g,h;
• for bound states has to tend to zero at infinite values of any of the coordi-

nates (Fig. 2.5.i,j), because such a system is compact and does not disintegrate in
space. In consequence (from the probabilistic interpretation), the wave function
is square integrable, i.e. 〈�|�〉<∞.

2.2.2 BOUNDARY CONDITIONS
The Schrödinger equation is a differential equation. In order to obtain a special
solution to such equations, one has to insert the particular boundary conditions to
be fulfilled. Such conditions follow from the physics of the problem, i.e. with which
kind of experiment are we going to compare the theoretical results? For example:

• for the bound states (i.e. square integrable states) we put the condition that the bound states

wave function has to vanish at infinity, i.e. if any of the coordinates tends to
infinity: ψ(x=∞)=ψ(x=−∞)= 0;

• for cyclic systems of circumference L	 the natural conditions will be: ψ(x) =
ψ(x+L) and ψ′(x)=ψ′(x+L), because they ensure a smooth matching of the
wave function for x < 0 and of the wave function for x > 0 at x= 0;

• for scattering states (not discussed here) the boundary conditions are more com-
plex.22

There is a countable number of bound states. Each state corresponds to eigen-
value E.
20If this happened in any non-zero volume of space (Fig. 2.5.d) the probability would tend to infinity

(which is prohibited). However, the requirement is stronger than that: a wave function cannot take an
infinite value even at a single point, Fig. 2.5.c. Sometimes such functions appear among the solutions of
the Schrödinger equation, and have to be rejected. The formal argument is that, if not excluded from
the domain of the Hamiltonian, the latter would be non-Hermitian when such a function were involved
in 〈f |Ĥg〉 = 〈Ĥf |g〉. A non-Hermitian Hamiltonian might lead to complex energy eigenvalues, which
is prohibited.
21At any point in space the function has to have a single value. This plays a role only if we have an

angular variable, say φ. Then, φ and φ+ 2π have to give the same value of the wave function. We will
encounter this problem in the solution for the rigid rotator.
22J.R. Taylor, “Scattering Theory”, Wiley, New York, 1972 is an excellent reference.
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Fig. 2.5. Functions of class Q (i.e. wave functions allowed in quantum mechanics) – examples and
counterexamples. A wave function (a) must not be zero everywhere in space (b) has to be continuous
(c) cannot tend to infinity even at a single point (d) cannot tend to infinity (e) its first derivative cannot
be discontinuous for infinite number of points (f) its first derivative may be discontinuous for a finite
number of points (g) has to be defined uniquely in space (for angular variable θ) (h) cannot correspond
to multiple values at a point in space (for angular variable θ) (i) for bound states: must not be non-zero
in infinity (j) for bound states: has to vanish in infinity.

An energy level may be degenerate, that is, more than one wave function maydegeneracy

correspond to it, all the wave functions being linearly independent (their number
is the degree of degeneracy). The eigenvalue spectrum is usually represented by
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putting a single horizontal section (in the energy scale) for each wave function:

——— E3

——— ——— E2
———E1

——— E0

2.2.3 AN ANALOGY

Let us imagine all the stable positions of a chair on the floor (Fig. 2.6).
Consider a simple chair, very uncomfortable for sitting, but very convenient for

a mathematical exercise. Each of the four legs represents a rod of length a, the
„seat” is simply a square built of the rods, the back consists of three such rods
making a C shape. The potential energy of the chair (in position i) in a gravita-
tional field equals mghi, where m stands for the mass of the chair, g gravitational
acceleration, and hi denotes the height of the centre of mass with respect to the
floor. We obtain the following energies, Ei	 of the stationary states (in units of
mga):

– the chair is lying on the support: E0 = 4
11 ;

– the chair is lying inclined: the support and the seat touch the floor E1 = 7
√

2
22 =

0�45;
– the chair is lying on the side: E2 = 1

2 �

Note, however, that we have two sides. The energy is the same for the chair lying
on the first and second side (because the chair is symmetric), but these are two
states of the chair, not one. The degree of degeneracy equals two, and therefore accidental

degeneracyon the energy diagram we have two horizontal sections. Note how naturally the
problem of degeneracy has appeared. The degeneracy of the energy eigenstates of
molecules results from symmetry, exactly as in the case of the chair. In some cases,

Fig. 2.6. The stable posi-
tions of a chair on the floor
(arbitrary energy scale). In
everyday life we most often
use the third excited state.
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one may obtain an accidental degeneracy, which does not follow from the symmetry
of an object like a chair, but from the properties of the potential field, and is called
dynamical symmetry.23dynamical

symmetry
– the chair is in the normal position: E3 = 1.

There are no more stable states of the chair24 and there are only four energy levels,
Fig. 2.6. The stable states of the chair are analogues to the stationary quantum
states of Fig. 1.8.b,d, on p. 23, while unstable states of the chair on the floor are
analogues of the non-stationary states of Fig. 1.8.a,c.

2.2.4 MATHEMATICAL AND PHYSICAL SOLUTIONS

It is worth noting that not all solutions of the Schrödinger equation are phys-
ically acceptable.

For example, for bound states, all solutions other than those of class Q (see
p. 895) must be rejected. In addition, these solutions ψ, which do not exhibit
the proper symmetry, even if |ψ|2 does, have also to be rejected. They are called
mathematical (non-physical) solutions to the Schrödinger equation. Sometimes
such mathematical solutions correspond to a lower energy than any physically ac-
ceptable energy (known as underground states). In particular, such illegal, non-underground

states acceptable functions are asymmetric with respect to the label exchange for elec-
trons (e.g., symmetric for some pairs and antisymmetric for others). Also, a fully
symmetric function would also be such a non-physical (purely mathematical) solu-
tion.

2.3 THE TIME-DEPENDENT SCHRÖDINGER EQUATION
What would happen if one prepared the system in a given state ψ, which does not
represent a stationary state? For example, one may deform a molecule by using
an electric field and then switch the field off.25 The molecule will suddenly turn
out to be in state ψ, that is not its stationary state. Then, according to quantum
mechanics, the state of the molecule will start to change according to the time
evolution equation (time-dependent Schrödinger equation)

Ĥψ= ih̄∂ψ
∂t
� (2.13)

23Cf. the original works C. Runge, “Vektoranalysis”, vol. I, p. 70, ed. S. Hirzel, Leipzig, 1919, W. Lenz,
Zeit. Physik 24 (1924) 197 as well as L.I. Schiff, “Quantum Mechanics”, McGraw Hill (1968).
24Of course, there are plenty of unstable positions of the chair with respect to the floor. The stationary

states of the chair have more in common with chemistry than we might think. A chair-like molecule
(organic chemists have already synthesized much more complex molecules) interacting with a crystal
surface would very probably have similar stationary (vibrational) states.
25We neglect the influence of the magnetic field that accompanies any change of electric field.
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The equation plays a role analogous to Newton’s equation of motion in classical
mechanics. The position and momentum of a particle change according to New-
ton’s equation. In the time-dependent Schrödinger equation the evolution pro-
ceeds in a completely different space – in the space of states or Hilbert space (cf.
Appendix B, p. 895).

Therefore, in quantum mechanics one has absolute determinism, but in the
state space. Indeterminism begins only in our space, when one asks about
the coordinates of a particle.

2.3.1 EVOLUTION IN TIME

As is seen from eq. (2.13), knowledge of the Hamiltonian and of the wave function
at a given time (left-hand side), represents sufficient information to determine the
time derivative of the wave function (right-hand side). This means that we may
compute the wave function after an infinitesimal time dt:

ψ+ ∂ψ
∂t

dt =ψ− i

h̄
Ĥψdt =

[

1+
(

−i t
Nh̄

)

Ĥ

]

ψ	

where we have set dt = t/N with N (natural number) very large. Thus, the new
wave function results from action of the operator [1+ (−i t

Nh̄ )Ĥ] on the old wave
function. Now, we may pretend that we did not change any function and apply
the operator again and again. We assume that Ĥ is time-independent. The total
operation is nothing but the action of the operator:

lim
N→∞

[

1+
(

−i t
Nh̄

)

Ĥ

]N

�

Please recall that ex = limN→∞[1+ x
N ]N .

Hence, the time evolution corresponds to action on the initial ψ of the op-
erator exp(− it

h̄ Ĥ):

ψ′ = exp
(

− it
h̄
Ĥ

)

ψ� (2.14)

Our result satisfies the time-dependent Schrödinger equation,26 if Ĥ does not
depend on time (as we assumed when constructing ψ′).

Inserting the spectral resolution of the identity27 (cf. Postulate II in Chapter 1)

26One may verify inserting ψ′ into the Schrödinger equation. Differentiating ψ′ with respect to t, the
left-hand-side is obtained.
27The use of the spectral resolution of the identity in this form is not fully justified. A sudden cut in

the electric field may leave the molecule with a non-zero translational energy. However, in the above
spectral resolution one has the stationary states computed in the centre-of-mass coordinate system, and
therefore translation is not taken into account.
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one obtains28

ψ′ = exp
(

−i t
h̄
Ĥ

)

1ψ= exp
(

−i t
h̄
Ĥ

)
∑

n

|ψn〉〈ψn|ψ〉

=
∑

n

〈ψn|ψ〉exp
(

−i t
h̄
Ĥ

)

|ψn〉 =
∑

n

〈ψn|ψ〉exp
(

−i t
h̄
En

)

|ψn〉�

This is how the state ψ will evolve. It will be similar to one or another stationary
state ψn, more often to those ψn which overlap significantly with the starting func-
tion (ψ) and/or correspond to low energy (low frequency). If the overlap 〈ψn|ψ〉
of the starting function ψ with a stationary state ψn is zero, then during the evolu-
tion no admixture of the ψn state will be seen, i.e. only those stationary states that
constitute the starting wave function ψ contribute to the evolution.

2.3.2 NORMALIZATION IS PRESERVED

Note that the imaginary unit i is important in the formula for ψ′. If “i” were absent
in the formula, then ψ′ would be unnormalized (even if ψ is). Indeed,

〈ψ′|ψ′〉 =
∑

n

∑

m

〈ψ|ψm〉〈ψn|ψ〉exp
(

−i t
h̄
En

)

exp
(

+ i t
h̄
Em

)

〈ψm|ψn〉

=
∑

n

∑

m

〈ψ|ψm〉〈ψn|ψ〉exp
(

−i t
h̄
(En −Em)

)

δmn = 〈ψ|ψ〉 = 1�

Therefore, the evolution preserves the normalization of the wave function.

2.3.3 THE MEAN VALUE OF THE HAMILTONIAN IS PRESERVED

The mean value of the Hamiltonian is a time-independent quantity. Indeed,

〈

ψ′
∣
∣Ĥψ′

〉 =
〈

exp
(

−i t
h̄
Ĥ

)

ψ

∣
∣
∣
∣
Ĥ exp

(

−i t
h̄
Ĥ

)

ψ

〉

=
〈

ψ

∣
∣
∣
∣
exp
(

i
t

h̄
Ĥ

)

Ĥ exp
(

−i t
h̄
Ĥ

)

ψ

〉

=
〈

ψ

∣
∣
∣
∣
Ĥ exp

(

i
t

h̄
Ĥ

)

exp
(

−i t
h̄
Ĥ

)

ψ

〉

= 〈ψ|Ĥψ〉	

because exp(−i th̄ Ĥ)† = exp(i th̄ Ĥ) (Appendix B, p. 895) and, of course, exp(i th̄ Ĥ)

commutes with Ĥ . The evolution of a non-degenerate stationary state has a trivial
time dependence through the factor exp(−i th̄En). If a stationary state is degener-
ate then it may evolve in a non-trivial way, but at a given time the wave function
is always a linear combination of the wave functions corresponding to this energy
28We used here the property of an analytical function f , that for any eigenfunction ψn of the operator
Ĥ one has f (Ĥ)ψn = f (En)ψn . This follows from the Taylor expansion of f (Ĥ) acting on eigenfunc-
tion ψn .
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level only. However, starting from a non-stationary state (even if the mean energy
is equal to the energy of a stationary state), one never reaches a pure stationary
state during evolution.

Until a coupling of the system with an electromagnetic field is established,
the excited states have an infinite lifetime. However, in reality the excited
states have a finite lifetime, emit photons, and as a result the energy of
the system is lowered (although together with the photons the energy re-
mains constant). Quantitative description of spontaneous photon emission
has been given by Einstein.

2.3.4 LINEARITY

The most mysterious feature of the Schrödinger equation (2.13) is its linear charac-
ter. The world is non-linear, because effect is never strictly proportional to cause.
However, if ψ1(x	 t) and ψ2(x	 t) satisfy the time dependent Schrödinger equa-
tion, then their arbitrary linear combination also represents a solution.29

2.4 EVOLUTION AFTER SWITCHING A PERTURBATION

Let us suppose that we have a system with the Hamiltonian Ĥ(0) and its stationary
states ψ(0)k :

Ĥ(0)ψ(0)k =E(0)k ψ(0)k 	 (2.15)

that form the orthonormal complete set30

ψ(0)k (x	 t)=φ(0)k (x)exp
(

−iE
(0)
k

h̄
t

)

	 (2.16)

where x represents the coordinates, and t denotes time.

Let us assume, that at time t = 0 the system is in the stationary state ψ(0)m .
At t = 0 a drama begins: one switches on the perturbation V (x	 t) that in
general depends on all the coordinates (x) and time (t), and after time τ the
perturbation is switched off. Now we ask question about the probability of
finding the system in the stationary state ψ(0)k .

29Indeed, Ĥ(c1ψ1 + c2ψ2)= c1Ĥψ1 + c2Ĥψ2 = c1ih̄ ∂ψ1
∂t + c2ih̄ ∂ψ2

∂t = ih̄ ∂(c1ψ1+c2ψ2)
∂t �

30This can always be assured (by suitable orthogonalization and normalization) and follows from the
Hermitian character of the operator Ĥ(0) .
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After the perturbation is switched on, the wave function ψ(0)m is no longer sta-
tionary and begins to evolve in time according to the time-dependent Schrödinger
equation (Ĥ(0) + V̂ )ψ = ih̄ ∂ψ∂t . This is a differential equation with partial deriva-
tives with the boundary condition ψ(x	 t = 0)=φ(0)m (x). The functions {ψ(0)n } form
a complete set and therefore the wave function ψ(x	 t) that fulfils the Schrödin-
ger equation at any time can be represented as a linear combination with time-
dependent coefficients c:

ψ(x	 t)=
∞
∑

n=0

cn(t)ψ
(0)
n � (2.17)

Inserting this to the left-hand side of the time-dependent Schrödinger equation
one obtains:

(

Ĥ(0) + V̂ )ψ=
∑

n

cn
(

Ĥ(0) + V̂ )ψ(0)n =
∑

n

cn
(

E(0)n + V )ψ(0)n 	

whereas its right-hand side gives:

ih̄
∂ψ

∂t
= ih̄

∑

n

[

ψ(0)n
∂cn

∂t
+ cn ∂ψ

(0)
n

∂t

]

=
∑

n

[

ih̄ψ(0)n
∂cn

∂t
+ cnE(0)n ψ(0)n

]

�

Both sides give:
∑

n

cnV̂ ψ
(0)
n =

∑

n

(

ih̄
∂cn

∂t

)

ψ(0)n �

Multiplying the left-hand side by ψ(0)∗k and integrating result in:

∞
∑

n

cnVkn = ih̄∂ck
∂t
	 (2.18)

for k= 0	1	2	 � � � , where

Vkn =
〈

ψ
(0)
k

∣
∣V̂ ψ(0)n

〉

� (2.19)

The formulae obtained are equivalent to the Schrödinger equation. These are
differential equations, which we would generally like, provided the summation is
not infinite, but in fact it is.31 In practice, however, one has to keep the summation
finite.32 If the assumed number of terms in the summation is not too large, then
problem is soluble using modern computer techniques.

31Only then the equivalence to the Schrödinger equation is ensured.
32This is typical for expansions into the complete set of functions (the so called algebraic approxima-

tion).
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2.4.1 THE TWO-STATE MODEL

Let us take the two-state model (cf. Appendix D, p. 948) with two orthonormal
eigenfunctions |ψ(0)1 〉 = |1〉 and |ψ(0)2 〉 = |2〉 of the Hamiltonian Ĥ(0)

Ĥ(0) =E(0)1 |1〉〈1| +E(0)2 |2〉〈2|

with the perturbation (v12 = v∗21 = v):

V = v12|1〉〈2| + v21|2〉〈1|�

This model has an exact solution (even for a large perturbation V ). One may
introduce various time-dependences of V , including various regimes for switching
on the perturbation.

The differential equations (2.18) for the coefficients c1(t) and c2(t) are (in a.u.,
ω21 =E(0)2 −E(0)1 )

c1v exp(iω21t) = i ∂c2

∂t
	

c2v exp(−iω21t) = i ∂c1

∂t
�

Let us assume as the initial wave function |2〉, i.e. c1(0)= 0	 c2(0)= 1. In such a
case one obtains

c1(t) = − i
a

exp
(

−iω21

2
t

)

sin(avt)	

c2(t) = 1
a

exp(iω21t) cos
[

−avt + arcSec
(

1
a

)]

	

where a=
√

1+ (ω21
2v )

2, and Sec denotes 1
cos .

Two states – degeneracy

One of the most important cases corresponds to the degeneracy ω21 = E(0)2 −
E(0)1 = 0. One obtains a= 1 and

c1(t) = −i sin(vt)	

c2(t) = cos(vt)�

A very interesting result. The functions |1〉 and |2〉 may be identified with the
ψD and ψL functions for the D and L enantiomers (cf. p. 68) or, with the wave
functions 1s, centred on the two nuclei in the H+

2 molecule. As one can see from
the last two equations, the two wave functions oscillate, transforming one to the oscillations
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other with an oscillation period T = 2π
v � If v were very small (as in the case of D-

and L-glucose), then the oscillation period would be very large. This happens to
D- and L-enantiomers of glucose, where changing the nuclear configuration from
one to the other enantiomer means breaking a chemical bond (a high and wide
energy barrier to overcome). This is why the drugstore keeper can safely stock a
single enantiomer for a very long time.33 This however may not be true for other
enantiomers. For example, imagine a pair of enantiomers that represent some in-
termolecular complexes and a small change of the nuclear framework may cause
one of them to transform into the other. In such a case, the oscillation period may
be much, much smaller than the lifetime of the Universe, e.g., it may be compa-
rable to the time of an experiment. In such a case one could observe the oscilla-
tion between the two enantiomers. This is what happens in reality. One observes a
spontaneous racemization, which is of dynamical character, i.e. a single molecule
oscillates between D and L forms.

2.4.2 FIRST-ORDER PERTURBATION THEORY

If one is to apply first-order perturbation theory, two things have to be assured: the
perturbation V has to be small and the time of interest has to be small (switching
the perturbation in corresponds to t = 0). This is what we are going to assume from
now on. At t = 0 one starts from the m-th state and therefore cm = 1, while other
coefficients cn = 0. Let us assume that to first approximation this will be true even
after switching the perturbation on, and we will be interested in the tendencies
in the time-evolution of cn for n 	= m. These assumptions (based on first-order
perturbation theory) lead to a considerable simplification34 of eqs. (2.18):

Vkm = ih̄∂ck
∂t

for k= 1	2	 � � � 	N�

In this, and the further equations of this chapter, the coefficients ck will depend
implicitly on the initial state m.

The quantity Vkm depends on time for two or even three reasons: firstly and
secondly, the stationary states ψ(0)m and ψ(0)k of eq. (2.16) are time-dependent, and
thirdly, in addition the perturbation V may also depend on time. Let us highlight
the time-dependence of the wave functions by introducing the frequency

ωkm =
E(0)k −E(0)m

h̄

and the definition

vkm ≡
〈

φ
(0)
k

∣
∣V̂ φ(0)m

〉

�

33Let us hope no longer than the sell-by date.
34For the sake of simplicity we will not introduce a new notation for the coefficients cn corresponding

to a first-order procedure. If the above simplified equation were introduced to the left-hand side of
eq. (2.18), then its solution would give c accurate up to the second order, etc.
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One obtains

− i
h̄
vkm e

iωkmt = ∂ck
∂t
�

Subsequent integration with the boundary condition ck(τ = 0) = 0 for k 	= m
gives:

ck(τ)=− i
h̄

∫ τ

0
dt vkm(t)eiωkmt � (2.20)

The square of ck(τ) represents (to the accuracy of first-order perturbation the-
ory), the probability that at time τ the system will be found in state ψ(0)k . Let us
calculate this probability for a few important cases of the perturbation V .

2.4.3 TIME-INDEPENDENT PERTURBATION AND THE FERMI GOLDEN
RULE

From formula (2.20) we have

ck(τ)=− i
h̄
vkm

∫ τ

0
dt eiωkmt =− i

h̄
vkm

eiωkmτ − 1
iωkm

=−vkm e
iωkmτ − 1
h̄ωkm

� (2.21)

Now let us calculate the probability density Pkm = |ck|2, that at time τ the system
will be in state k (the initial state is m):

Pkm(τ) = |vkm|2
(−1+ cosωkmτ)2 + sin2ωkmτ

(h̄ωkm)2
= |vkm|2 (2− 2 cosωkmτ)

(h̄ωkm)2

= |vkm|2
(4 sin2 ωkmτ

2 )

(h̄ωkm)2
= |vkm|2 1

h̄2

(sin2 ωkmτ
2 )

(ωkm2 )2
�

In order to undergo the transition from state m to state k one has to have a
large vkm, i.e. a large coupling of the two states through perturbation V̂ . Note that
probability Pkm strongly depends on the time τ chosen; the probability oscillates as
the square of the sine when τ increases, for some τ it is large, for others it is just
zero. From Example 4 in Appendix E, p. 951, one can see that for large values of τ
one may write the following approximation35 to Pkm:

Pkm(τ)
∼= |vkm|2π τ

h̄2 δ

(
ωkm

2

)

= 2πτ

h̄2 |vkm|2δ(ωkm)=
2πτ
h̄
|vkm|2δ

(

E(0)k −E(0)m
)

	

where we have used twice the Dirac delta function property that δ(ax)= δ(x)
|a| .

35Large when compared to 2π/ωkm, but not too large in order to keep the first-order perturbation
theory valid.
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As one can see, Pkm is proportional to time τ, which makes sense only because
τ has to be relatively small (first-order perturbation theory has to be valid). Note
that the Dirac delta function forces the energies of both states (the initial and the
final) to be equal, because of the time-independence of V .

A time-independent perturbation is unable to change the state of the system
when it corresponds to a change of its energy.

A very similar formula is systematically derived in several important cases. Prob-
ably this is why the probability per unit time is called, poetically, the Fermi golden
rule:36

FERMI GOLDEN RULE

wkm ≡
Pkm(τ)

τ
= |vkm|2 2π

h̄
δ
(

E(0)k −E(0)m
)

� (2.22)

2.4.4 THE MOST IMPORTANT CASE: PERIODIC PERTURBATION

Let us assume a time-dependent periodic perturbation

V̂ (x	 t)= v̂(x)e±iωt �

Such a perturbation corresponds, e.g., to an oscillating electric field37 of angular
frequency ω.

Let us take a look at successive equations, which we obtained at the time-
independent V̂ . The only change will be, that Vkm will have the form

Vkm ≡
〈

ψ(0)k
∣
∣V̂ ψ(0)m

〉= vkmei(ωkm±ω)t

instead of

Vkm ≡
〈

ψ(0)k
∣
∣V̂ ψ(0)m

〉= vkmeiωkmt �
The whole derivation will be therefore identical, except that the constant ωkm will
be replaced by ωkm ±ω. Hence, we have a new form of the Fermi golden rule for
the probability per unit time of transition from the m-th to the k-th state:

36E. Fermi, Nuclear Physics, University of Chicago Press, Chicago, 1950, p. 142.
37In the homogeneous field approximation, the field interacts with the dipole moment of the molecule

(cf. Chapter 12) V (x	 t)= V (x)e±iωt =−μ̂ ·Ee±iωt , where E denotes the electric field intensity of the
light wave and μ̂ is the dipole moment operator.
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FERMI GOLDEN RULE

wkm ≡
Pkm(τ)

τ
= |vkm|2 2π

h̄
δ
(

E(0)k −E(0)m ± h̄ω)� (2.23)

Note, that V with exp(+iωt) gives the equality E(0)k + h̄ω= E(0)m , which means

that E(0)k 
 E
(0)
m and therefore one has emission from the m-th to the k-th states.

On the other hand, V with exp(−iωt) forces the equation E(0)k − h̄ω=E(0)m , which
corresponds to absorption from the m-th to the k-th state.

Therefore, a periodic perturbation is able to make a transition between
states of different energy.

Summary

The Hamiltonian of any isolated system is invariant with respect to the following transfor-
mations (operations):

• any translation in time (homogeneity of time)
• any translation of the coordinate system (space homogeneity)
• any rotation of the coordinate system (space isotropy)
• inversion (r→−r)
• reversing all charges (charge conjugation)
• exchanging labels of identical particles.

This means that the wave function corresponding to a stationary state (the eigenfunction
of the Hamiltonian) also has to be an eigenfunction of the:

• total momentum operator (due to the translational symmetry)
• total angular momentum operator and one of its components (due to the rotational sym-

metry)
• inversion operator
• any permutation (of identical particles) operator (due to the non-distinguishability of

identical particles)
• Ŝ2 and Ŝz operators (for the non-relativistic Hamiltonian (2.1) due to the absence of spin

variables in it).

Such a wave function corresponds to the energy belonging to the energy continuum.38

Only after separation of the centre-of-mass motion does one obtain the spectroscopic
states (belonging to a discrete spectrum) �N	J	M	�(r�R), where N = 0	1	2	 � � � denotes
the number of the electronic state, J = 0	1	2	 � � � quantizes the total angular momentum,

38Because the molecule as a whole (i.e. its centre of mass) may have an arbitrary kinetic energy. Some-
times it is rewarding to introduce the notion of the quasicontinuum of states, which arises if the system
is enclosed in a large box instead of considering it in infinite space. This simplifies the underlying math-
ematics.
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M	−J 
M 
 J, quantizes its component along the z axis, and�=±1 represents the parity
with respect to the inversion. As to the invariance with respect to permutations of identical
particles: an acceptable wave function has to be antisymmetric with respect to the exchange
of identical fermions, whereas it has to be symmetric when exchanging bosons.

The time-independent Schrödinger equation Ĥψ = Eψ has been “derived” from the
wave equation and the de Broglie equation. Solving this equation results in the stationary
states and their energies. This is the basic equation of quantum chemistry. The prevailing
weight of research in this domain is concentrated on solving this equation for various sys-
tems.

The time-dependent Schrödinger equation Ĥψ = ih̄ ∂ψ∂t represents the time evolution
of an arbitrary initial wave function. The assumption that translation in time is a unitary
operator leads to preserving the normalization of the wave function and of the mean value
of the Hamiltonian. If the Hamiltonian is time-independent, then one obtains the formal
solution to the Schrödinger equation by applying the operator exp(− it

h̄
Ĥ) to the initial

wave function. The time evolution of the stationary state ψ(0)m is most interesting in the case
of suddenly switching the perturbation V̂ . The state is no longer stationary and the wave
function begins to change as time passes. Two cases have been considered:

• time-independent perturbation
• periodic perturbation.

Only in the case of a time-dependent perturbation may the system change the energy
state.

Main concepts, new terms
symmetry of the Hamiltonian (p. 57)
invariance of theory (p. 58)
translational symmetry (p. 61)
spectroscopic state (p. 62)
rotational symmetry (p. 63)
baryon number (p. 64)
lepton number (p. 64)
gauge symmetry (p. 64)
inversion (p. 65)
symmetry P (p. 65)
enantiomers (p. 67)
symmetry C (p. 68)
charge conjugation (p. 68)
stationary state (p. 70)

Schrödinger equation (p. 70)
bound state (p. 73)
wave function “matching” (p. 73)
mathematical solution (p. 76)
physical solutions (p. 76)
wave function evolution (p. 76)
time-evolution operator (p. 77)
algebraic approximation (p. 80)
two-state model (p. 81)
first-order perturbation theory (p. 82)
time-independent perturbation (p. 83)
Fermi golden rule (p. 84)
periodic perturbation (p. 84)

From the research front

The overwhelming majority of research in the domain of quantum chemistry is based on the
solution of the time-independent Schrödinger equation. Without computers it was possible
to solve (in an approximate way) the equation for H+2 by conducting a hall full of secretaries
with primitive calculators for many hours (what a determination!). Thanks to computers,
such problems became easy as early as the 1960s. Despite enormous progress in computer
science,39 by the end of the 1980s the molecules studied were rather small when compared

39A boss of the computer industry reportedly declared that if progress similar to that in his branch
would occur in the car industry, a Mercedes would cost 1$ and would take one gallon of gas to go
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to the expectations of experimentalists. They could be treated only as models, because they
were usually devoid of the substituents theoreticians considered irrelevant in the behaviour
of the molecule. The last years of the twentieth century were marked by the unprecedented
delivery by theoreticians of powerful high-tech efficient tools of quantum chemistry avail-
able to everybody: chemists, physicists, etc. Also to those who knew little of the underlying
theory. The software computes millions of integrals, uses sophisticated mathematics, liter-
ally the whole arsenal of quantum chemistry, but users need not know about it. It is sufficient
to make . . . a mouse click on a quantum chemistry method icon.40 Despite such progress,
the time-dependent Schrödinger equation is rarely solved. For the time being, researchers
are interested mainly in stationary states. The quality of results depends on the size of the
molecules investigated. Very accurate computations (accuracy ∼ 0�01 kcal/mol) are feasible
for the smallest molecules containing a few electrons, less accurate ones use first principles
(ab initio methods) and are feasible for hundreds of atoms (accuracy to a few kcals/mol). oscillations

Semiempirical quantum calculations41 of even poorer accuracy are applicable to thousands
of atoms.

Ad futurum. . .

The numerical results routinely obtained so far indicate that, for the vast majority of chem-
ical problems (yet not all, cf. Chapter 3) there is no need to search for a better tool than the
Schrödinger equation. Future progress will be based on more and more accurate solutions
for larger and larger molecules. The appetite is unlimited here, but the numerical difficul-
ties increase much faster than the size of the system. However, progress in computer science
has systematically opened new possibilities, always more exciting than previous ones. Some
simplified alternatives to the Schrödinger equation (e.g., such as described in Chapter 11)
will also become more important.

Undoubtedly, methods based on the time-dependent Schrödinger equation will also be
developed. A typical possible target might be to plan a sequence of laser pulses,42 such that
the system undergoes a change of state from ψ1 to ψ2 (“state-to-state reaction”). The way state-to-state
we carry out chemical reactions, usually by rather primitive heating, may change to a precise
transformation of the system from state to state.

It seems that the essence of science comes down to the fundamental question “why?” and
a clear answer to this question follows from a deep understanding of Nature’s machinery.
We cannot tell a student: “well, this is what the computer says”, because it implies that the
computer understands, but what about you and me? Hence, interpretation of the results will
be of crucial importance (a sort of Bader analysis, cf. Chapter 11). Progress here seems to
be rather modest for the time being.

around the Earth. Somebody from the car sector answered that if cars were produced like computers,
they would break down twice a day.
40I hope all students understand that a quantum chemist has to be equipped with something more

than a strong forefinger for clicking.
41In such calculations many integrals are approximated by simple formulae (sometimes involving ex-

perimental data), the main goal of which is efficiency.
42I.e. a sinusoidal impulse for each of the sequences: switching on time, duration, intensity, phase. For

contemporary laser technique it is an easy task. Now chemists should consider transforming reagents
to products. The beginnings of such an approach are already present in the literature (e.g., J. Manz,
G.K. Paramonov, M. Polášek, C. Schütte, Isr. J. Chem. 34 (1994) 115).
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Additional literature

R. Feynman, The Character of Physical Law, Cox and Wyman, Ltd, London, (1965).
The best recommendation is that the Feynman’s books need no recommendation.

J. Ciosłowski, in “Pauling’s Legacy: Modern Modelling of the Chemical Bond”, Elsevier,
Theor. Comput. Chem., 6 (1999) 1, eds. Z.B. Maksić, W.J. Orville-Thomas.

A concise presentation of the symmetry requirements.

Questions

1. If the Hamiltonian Ĥ is invariant with respect to a unitary operation Û , then:
a) the stationary states are the eigenfunctions of Û and Ĥ; b) ÛĤ+ ĤÛ = 0; c) ÛĤÛ =
Ĥ; d) Û = 1.

2. The symmetry broken in the wave function for an optical isomer is:
a) rotation; b) inversion; c) charge conjugation; d) permutational symmetry.

3. The spectroscopic states represent:
a) such states of a molecule, that the optical transitions between them are especially
intensive; b) the ground and the first excited states; c) the states that arise after switching
on the electric field; d) the wave functions of the Hamiltonian that are calculated in the
centre-of-mass coordinate system.

4. Degeneracy of the energy levels comes from:
a) symmetry of the problem; b) requirement that the wave functions are of class Q;
c) energy conservation rule; d) angular momentum conservation rule.

5. The time evolution operator in the Schrödinger equation (time-independent Hamil-
tonian Ĥ) is equal to:

a) exp(− ih̄t ); b) exp(− iĤt ); c) exp(− t
h̄
Ĥ); d) exp(− iĤ

h̄
t).

6. If one prepares the system in state ψD (one of the two non-stationary states ψD and
ψL of equal energy), the system will:
a) go to state ψL and remain in it; b) remain in ψD; c) oscillate between ψD and ψL;
d) evolve to state ψD ± ψL.

7. During time evolution of the wave function ψ(t) of the system (the initial function is
normalized, Ē stands for the mean value of the time-independent Hamiltonian)
a) |ψ(t)| = 1, Ē = const; b)

∫ |ψ(t)|2 = 1, and Ē decreases; c)
∫ |ψ(t)|2 dτ = 1, and

Ē = const; d) Ē lowers, while the wave function stays normalized.

8. The Dirac delta δ(x) has the following properties:
a)
∫∞

1 f (x)δ(x)dx = f (0) and δ(ax) = δ(x)/|a|; b)
∫∞
−∞ f (x)δ(x)dx = f (0) and

δ(ax)= δ(x)
|a| ; c)

∫−1
−∞ f (x)δ(x)dx= f (0) and δ(ax)= δ(x)|a|;

d)
∫∞
−∞ f (x)δ(x)dx= f (0) and δ(ax)= δ(x)/a.

9. The state of the system corresponds to the energy E(0)m < E
(0)
k

. During a short time
period τ one applies a homogeneous time-independent electric field of intensity E . The
probability that after time τ the system will have energy E(0)

k
is equal to:

a) 1/2; b) 0; c) 1; d) 1
E2 .



Answers 89

10. The state of the system corresponds to energy E(0)m < E
(0)
k

. During a short time period
τ one applies a periodic perturbation of amplitude V (x), corresponding to the matrix
elements denoted by vkm� The probability that after time τ the system will have energy
E
(0)
k

is proportional to:

a) |vkm| and τ; b) |vkm|−2 and τ
1
2 ; c) |vkm|2 and τ−1; d) |vkm|2 and τ.

Answers

1a, 2b, 3d, 4a, 5d, 6c, 7c, 8b, 9b, 10d



Chapter 3

BEYOND
THE SCHRÖDINGER
EQUATION

Where are we?

The problems considered in the present chapter are shown as a small side-branch at the
base of the TREE.1

An example

Copper, silver and gold – many people want to know everything about them (especially
about the latter). The yellow shine of this metal has hypnotized humanity for centuries. Few
people know that the colour of gold, as calculated assuming the infinite velocity of light (as
it is in the Schrödinger equation), would be silver.2 The Schrödinger equation fails. Here is
an example of three diatomics: Cu2, Ag2, Au2 (ZCu = 29, ZAg = 47, ZAu = 79).

BOND LENGTH (Å) Cu Ag Au
Non-relativistic calculations 2�26 2�67 2�90
Relativistic calculations 2�24 2�52 2�44
Experimental results 2�22 2�48 2�47

It is seen that the error of calculations within relativistic theories is of the order of 1%–
2%, while the non-relativistic calculations lead to errors of the order of 2%, 8%, 20%, re-
spectively. This is a huge discrepancy for such a quantity as bond length.

What is it all about

A glimpse of classical relativity theory (�) p. 93
• The vanishing of apparent forces
• The Galilean transformation
• The Michelson–Morley experiment
• The Galilean transformation crashes

1This chapter owes much to the presentation given by L. Pisani, J.-M. André, M.-C. André, E.
Clementi, J. Chem. Educ. 70 (1993) 894–901, as well as to the work of my friends J.-M. André, D.H.
Mosley, M.-C. André, B. Champagne, E. Clementi, J.G. Fripiat, L. Leherte, L. Pisani, D. Vercauteren,
M. Vracko, Exploring Aspects of Computational Chemistry: Vol. I, Concepts, Presses Universitaires de
Namur, pp. 150–166 (1997), Vol. II, Exercises, Presses Universitaires de Namur, pp. 249–272 (1997),
and J.-M. André, M.-C. André, “Une introduction à la théorie de la relativité classique et quantique à
l’usage des chimistes”, Namur, 1999.

2P. Pyykkö, Chem. Rev. 88 (1988) 563; also P. Pyykkö, ibid. 97 (1997) 597.

90
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• The Lorentz transformation
• New law of adding velocities
• The Minkowski space-time continuum
• How do we get E =mc2?

Reconciling relativity and quantum mechanics (�) p. 109

The Dirac equation (��) p. 111
• The Dirac electronic sea
• The Dirac equations for electron and positron
• Spinors and bispinors
• What next?
• Large and small components of the bispinor
• How to avoid drowning in the Dirac sea
• From Dirac to Schrödinger – how to derive the non-relativistic Hamiltonian?
• How does the spin appear?
• Simple questions

The hydrogen-like atom in Dirac theory (�) p. 123
• Step by step: calculation of the ground-state of the hydrogen atom within Dirac theory
• Relativistic contraction of orbitals

Larger systems (�) p. 129

Beyond the Dirac equation� � � (��) p. 130
• The Breit equation
• A few words about quantum electrodynamics

The greater the velocity of an object the greater the errors in Newton dynamics. Elec-
trons have a greater velocity when close to nuclei of large electric charges.3 This is why relativistic mass

effectrelativistic corrections may turn out to be important for heavy elements.
The Schrödinger equation is incompatible with special relativity theory. This has to be

corrected somehow. This is far from being solved, but progress so far shows the Schrödinger
equation, the spin of a particle, etc. in a new light.

Why is this important?

The subject of the present chapter addresses the very foundations of physics, and in prin-
ciple has to be treated on an equal footing with the postulates of quantum mechanics. The
Schrödinger equation of Chapter 2 does not fulfil (as will be shown in the present chapter)
the requirements of relativity theory, and therefore is in principle “illegal”. In the present
chapter, Dirac’s attempt to generalize the Schrödinger equation to adapt it to relativity the-
ory will be described. If one assumes that particle velocities are small compared to that of
light, then from this more general theory one obtains the Schrödinger equation. Also the

3This is easy to estimate. From Appendix H on p. 969 it follows that the mean value of the kinetic
energy of an electron described by the 1s orbital in an atom of atomic numberZ is equal to T̄ = 1

2Z
2 (in

a.u.). On the other hand, for a rough estimation of the electron velocity v, one may write T̄ = mv2
2 . This

results in the expression v = Z valid in a.u., while the velocity of light c = 137�036 a.u. The largest Z
known hardly exceeds a hundred. It is seen, therefore, that if an atom with Z > 137 existed, then 1s
electrons would attain velocities exceeding the velocity of light. Even if this calculation is nothing but a
rule of thumb, there is no doubt that when Z increases a certain critical Z value is approached (the so
called relativistic mass effect).
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notion of the spin, which was introduced as a postulate in Chapter 1, follows as a natural
consequence of the relativistic theory. One may draw the conclusion that the present chap-
ter addresses “the foundations of foundations” and therefore should occupy a prominent
position in the TREE, instead of representing a small side branch (as it does now). How-
ever, the relativistic effects, even if visible in chemistry, do not play an important role in the
case of the light elements (covering almost the whole of organic chemistry as well as almost
the whole of biology). This is why I have chosen a rather pragmatic (“non-fundamental”)
way of presentation. This chapter is mainly for those readers who are interested in:

• “the foundations of foundations”
• very accurate calculations for small atoms and molecules
• calculations for systems containing heavy elements

What is needed?
• The postulates of quantum mechanics (Chapter 1, necessary).
• Operator algebra (Appendix A, p. 889, necessary).
• Vector and scalar potentials (Appendix G, p. 962, necessary).

Classical works

In 1881 the American physicist Albert Michelson and in 1887 with Edward Morley carried
out some experiments showing that the speed of light is the same in the directions perpen-
dicular and parallel to the Earth’s orbit, i.e. the Earth’s orbital velocity did not change the
speed of light with respect to the Earth. The results were published in the American Journal
of Science, 22 (1881) 120 under the title “The Relative Motion of the Earth and the Luminifer-
ous Aether”, and ibid., 34 (1887) 333 (with similar title). � In 1889 the Irish physicist George
Francis FitzGerald made the conjecture that, if all moving objects were foreshortened in
the direction of their motion, this would account for the strange results of the Michelson–
Morley experiment. This was published in Science, 13 (1889) 390 with the title “The Ether
and the Earth’s Atmosphere”. � The revolutionary special relativity theory (that explained
this in detail) was developed by Albert Einstein in an article entitled “Zur Elektrodynamik
bewegter Körper” published in Annalen der Physik (Leipzig), 17 (1905) 891. � The article is
based largely on the ideas of the Dutchman Hendrik Antoon Lorentz, who independently
of FitzGerald4 proposed the Lorentz transformation (of space and time) in 1904. The trans-
formation accounted for the contraction of moving objects, as predicted by FitzGerald. The
paper “Electromagnetic Phenomena in a System Moving with any Velocity less than that of
Light” was published in Proceedings of the Academy of Sciences of Amsterdam, 6 (1904) 809.
� The German mathematician Hermann Minkowski realized that the work of Lorentz and
Einstein could best be understood using a non-Euclidean space of the space and time vari-
ables. His first paper on this subject was “Die Grundgleichungen für die elektromagnetischen
Vorgänge in bewegten Körper” published in Nachrichten der königlichen Gesellschaft der Wis-
senschaften zu Göttingen (1908). � The Soviet physicist Vladimir A. Fock derived the first
relativistic wave equation for a particle (published in Zeitschrift für Physik, 39 (1926) 226),

4It was pointed out to Lorentz in 1894 that FitzGerald had published something similar. He wrote
to FitzGerald, but the latter replied that indeed he has sent a half-page article to Science, but he did
not know “whether they ever published it”. Afterwards Lorentz took every opportunity to stress that
FitzGerald was first to present the idea.
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then the German Walter Gordon did the same and also published in Zeitschrift für Physik,
40 (1926) 117. Finally, a similar theory was proposed independently by the Swede Oskar
Klein in Zeitschrift für Physik, 41 (1927) 407. The Austrian Erwin Schrödinger also derived
the same equation, and this is why it is sometimes called “the equation with many fathers”.
� A more advanced quantum mechanical theory (for a single particle) adapted to the prin-
ciples of relativity was given by the British Paul Adrien Maurice Dirac in several articles in
Proceedings of the Royal Society (London) entitled “The Fundamental Equations of Quantum
Mechanics”, A109 (1926) 642, “Quantum Mechanics and a Preliminary Investigation of the
Hydrogen Atom”, ibid., A110 (1926) 561, “The Quantum Theory of Radiation”, ibid., A114
(1927) 243, “The Quantum Theory of the Electron”, ibid., A117 (1928) 610, and “The Quan-
tum Theory of the Electron. Part II” ibid., A118 (1928) 351. � An extension of relativistic
quantum theory to many-electron problems (still approximate) was published by the Amer-
ican Gregory Breit in Physical Review with the title “The Effect of Retardation on the Interac-
tion of Two Electrons”, 34 (1929) 553, and then in two other papers entitled “Fine Structure
of He as a Test of the Spin Interaction of Two Electrons”, ibid., 36 (1930) 383, and “Dirac’s
Equation and the Spin–Spin Interactions of Two Electrons”, ibid., 39 (1932) 616. � In 1948
the Americans Richard Feynman and Julian Schwinger as well as the Japanese Shinichiro
Tomonaga independently invented the quantum electrodynamics (QED), which successfully
combined quantum theory with the special theory of relativity and produced extremely ac-
curate results.

3.1 A GLIMPSE OF CLASSICAL RELATIVITY THEORY

3.1.1 THE VANISHING OF APPARENT FORCES

The three principles of Newtonian5 dy-
namics were taught to us in school. The
first principle, that a free body (with no
acting force) moves uniformly along a
straight line, seems to be particularly
simple. It was not so simple for Ernest
Mach though.

Mach wondered how one recognizes
that no force is acting on a body. The
contemporary meaning of the first prin-
ciple of Newton dynamics is the follow-

Ernest Mach (1838–1916),
Austrian physicist and philos-
opher, professor at the Uni-
versities of Graz, Prague, and
Vienna, godfather of Wolf-
gang Pauli. Mach investigated
supersonic flows. In recogni-
tion of his achievements the
velocity of sound in air (1224
km/hour) is called Mach 1.

ing. First, we introduce a Cartesian coordinate system x	 y	 z to the Universe, then
remove all objects except one from the Universe, to avoid any interactions. Then,
we measure equal time intervals using a spring clock and put the corresponding
positions of the body in the coordinate system (we are thus there with our clock
and our ruler� � �). The first principle says that the positions of the body are along
a straight line and equidistant. What a crazy procedure! The doubts and dilemmas
of Mach were implanted in the mind of Albert Einstein.

5For Newton’s biography see Chapter 7.
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Albert Einstein (1879–1955) born in Ulm (Ger-
many) studied at the ETH, Zurich. Consid-
ered by many as genius of all times. As a
teenager and student, Einstein rejected many
social conventions. This is why he was forced
to begin his scientific career at a secondary po-
sition in the Federal Patent Office. Being afraid
of his supervisor, he used to read books hid-
den in a drawer (he called it the “Department
of Physics”).

The year of his 26th birthday was particu-
larly fruitful (“miraculous year” 1905). He pub-
lished three fundamental papers: about rela-
tivity theory, about Brownian motion and about
the photoelectric effect. For the last, Einstein
received the Nobel Prize in 1921. After these
publications he was appointed professor at the
University of Zurich and then at the Univer-
sity of Prague. From 1914 Einstein headed the
Physics Institute in Berlin, which was founded
especially for him. He emigrated to the USA in
1933, because of menacing persecution, be-
cause of his Jewish origin. Einstein worked at
the Institute for Advanced Study in Princeton in
the USA. He died there in 1955. According to
his will, his ashes were dispersed over Amer-
ica from the air.

This Bern Patent Office employee also knew about the dramatic dilemmas of
Lorentz, which we will talk about in a moment. Einstein recalls that there was a
clock at a tram stop in Bern. Whenever his tram moved away from the stop, the
modest patent office clerk asked himself what would the clock show, if the tram
had the velocity of light. While other passengers probably read their newspapers,
Einstein had questions which led humanity on new pathways.

Let us imagine two coordinate systems (each in 1D): O “at rest” (we assume
it inertial6) while the coordinate system O′ moves with respect to the first in a
certain way (possibly very complicated). The position of the moving point may be
measured in O giving the number x as the result, while in O′ on gets the result x′.
These numbers are related one to another (f is a function of time t):

x′ = x+ f (t)� (3.1)

If a scientist working in a lab associated with the coordinate system O would
like to calculate the force acting on the above mentioned point body, he would
get a result proportional to the acceleration, i.e. to d2x

dt2
. If the same were done by

6That is, in which the Newton equation is satisfied. A coordinate system associated with accelerat-
ing train is not inertial, because there is a non-zero force acting on everybody in the train, while the
acceleration with respect to the train coordinate system is zero.
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another scientist working in a lab in O′, then he would obtain another force, this

time proportional to the acceleration computed as d2x′
dt2

= d2x
dt2
+ d2f

dt2
. The second

term in this force is the apparent force. Such apparent forces (from the point of
view of an observer on the ground) are encountered in lifts, on a carousel, etc.

Let us note an important consequence: if one postulates the same forces
(and therefore the same dynamics) in two coordinate systems, f (t) has to be
a linear function (because its second derivative is equal to zero). This means
that a family of all coordinate systems that moved uniformly with respect to
one another would be characterized by the same description of phenomena
because the forces computed would be the same (inertial systems).

Physics textbooks written in the two laboratories associated to O and O′ would
describe all the phenomena in the same way. inertial systems

The linearity condition gives x′ = x+ vt, if at t = 0 O and O′ coincide. Let us
take a fresh look at this equation: x′ represents a linear combination of x and t,
which means that time and the linear coordinate mix together. One has two coordi-
nates: one in the O coordinate system and the other in the O′ coordinate system.
Wait a minute! Since the time and the coordinate are on an equal footing (they mix
together), maybe one may also have the time (t) appropriate for (i.e. running in)
the O and the time (t ′) running in the O′ coordinate system?

Now, a crucial step in the reasoning. Let us write in a most general way a
linear transformation of coordinates and time that ensures the two systems
equivalent (no apparent forces):

x′ =Ax+Bt	
t ′ = Cx+Dt�

First of all the corresponding transformation matrix has to be invertible (i.e.
non-singular), because inversion simply means exchanging the roles of the two co-
ordinate systems and of the observers flying with them. Thus, one has:

x = Āx′ + B̄t ′	
t = C̄x′ + D̄t ′�

Next, A has to be equal to Ā, because the measurements of length in O and
O′, i.e. x and x′, cannot depend on whether one looks at the O coordinate system
from O′, or at O′ from O. If the opposite were true, then one of the coordinate
systems would be privileged (treated in a special way). This, however, is impossible,
because the two coordinate systems differ only in that O′ flies from O with velocity
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v, while O flies from O′ with velocity −v, but the space is isotropic. The same has
to happen with the time measurements: on board O, i.e. t, and on board O′, i.e. t ′,
therefore D= D̄. Since (from the inverse transformation matrix) Ā= D

AD−BC and
D̄= A

AD−BC , therefore we have

D

AD−BC =A	
A

AD−BC =D�

From this D
A = A

D follows, or:

A2 =D2� (3.2)

From the two solutions: A =D and A = −D, one has to choose only A =D,
because the second solution would mean that the times t and t ′ have opposite signs,
i.e. when time run forwards in O it would run backwards in O′. Thus, we have

A=D� (3.3)

3.1.2 THE GALILEAN TRANSFORMATION

The equality condition A=D is satisfied by the Galilean transformation, in which
the two coefficients are equal to 1:

x′ = x− vt	
t ′ = t	

where position x and time t, say, of a passenger in a train, is measured in a plat-
form-fixed coordinate system, while x′ and t ′ are measured in a train-fixed coordi-
nate system. There are no apparent forces in the two coordinate systems related by
the Galilean transformation. Also, the Newtonian equation is consistent with our
intuition, saying that time flows at the same pace in any coordinate system.

3.1.3 THE MICHELSON–MORLEY EXPERIMENT

Hendrik Lorentz indicated that the Galilean transformation represents only one
possibility of making the apparent forces vanish, i.e. assuring that A = D. Both
constants need not be equal to 1. As it happens that such a generalization is forced
by an intriguing experiment performed in 1887.

Michelson and Morley were interested in whether the speed of light differs,
when measured in two laboratories moving with respect to one another. According
to the Galilean transformation, the two velocities of light should be different, in the
same way as the speed of train passengers (measured with respect to the platform)
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Galileo Galilei (1564–1642), Italian
scientist, professor of mathemat-
ics at the University of Pisa. Only
those who have visited Pisa are
able to appreciate the inspiration
(for studying the free fall of bod-
ies of different materials) from the
incredibly leaning tower. Galileo’s
opus magnum (right-hand side)
has been published by Elsevier in
1638. Portrait by Justus Suster-
mans (XVII century).

Hendrik Lorentz (1853–1928), Dutch scientist,
professor at Leiden. Lorentz was very close to
formulating the special theory of relativity.

Albert Michelson (1852–1931), American physi-
cist, professor in Cleveland and Chicago, USA.
He specialized in the precise measurements of
the speed of light.

His older colleague Edward Williams Mor-
ley was American physicist and chemist, pro-
fessor of chemistry at Western Reserve Uni-
versity in Cleveland, USA.
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Fig. 3.1. The Michelson–Morley experimental framework. We have two identical V-shaped right-angle
objects, each associated with a Cartesian coordinate system (with origins O and O′). The first is at rest,
while the second moves with velocity v with respect to the first (along coordinate x). We are going to
measure the velocity of light in two laboratories rigidly bound to the two coordinate systems. The mir-
rors are at the ends of the objects:A, B in O andA′, B′ in O′ , while at the origins two semi-transparent
mirrors Z and Z′ are installed. Time 2t3 ≡ t↓ is the time for light to go down and up the vertical arm.

differs depending on whether they walk in the same or the opposite direction with
respect to the train motion. Michelson and Morley replaced the train by Earth,
which moves along its orbit around the Sun with a speed of about 40 km/s. Fig. 3.1
shows the Michelson–Morley experimental framework schematically. Let us imag-
ine two identical right-angle V-shaped objects with all the arm lengths equal to L.

Each of the objects has a semi-transparent mirror at its vertex,7 and ordinary
mirrors at the ends. We will be interested in how much time it takes the light to
travel along the arms of our objects (back and forth). One of the two arms of any
object is oriented along the x axis, while the other one must be orthogonal to it.
The mirror system enables us to overlap the light beam from the horizontal arm (x
axis) with the light beam from the perpendicular arm. If there were any difference
in phase between them we would immediately see the interference pattern.8 The
second object moves along x with velocity v (and is associated with coordinate
systemO′) with respect to the first (“at rest”, associated with coordinate system O).

3.1.4 THE GALILEAN TRANSFORMATION CRASHES

In the following we will suppose that the Galilean transformation is true. In coordi-
nate system O the time required for light to travel (round-trip) the arm along the

7Such a mirror is made by covering glass with a silver coating.
8From my own experience I know that interference measurement is very sensitive. A laser installation

was fixed to a steel table 10 cm thick concreted into the foundations of the Chemistry Department build-
ing, and the interference pattern was seen on the wall. My son Peter (then five-years-old) just touched
the table with his finger. Everybody could see immediately a large change in the pattern, because the
table bent.
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x axis (T→) and that required to go perpendicularly to axis (T↓) are the same:

T→ = 2L
c
	 T↓ = 2L

c
�

Thus, in the O coordinate system, there will be no phase difference between
the two beams (one coming from the parallel, the other from the perpendicular
arm) and therefore no interference will be observed. Let us consider now a similar
measurement in O′. In the arm co-linear with x, when light goes in the direction of
v, it has to take more time (t1) to get to the end of the arm:

ct1 =L+ vt1	 (3.4)

than the time required to come back (t2) along the arm:

ct2 =L− vt2� (3.5)

Thus, the total round-trip time t→ is9

t→ = t1 + t2 = L

c − v +
L

c+ v =
L(c+ v)+L(c− v)
(c− v)(c+ v) = 2Lc

c2 − v2 =
2L
c

1− v2

c2

� (3.6)

What about the perpendicular arm in the coordinate system O′? In this case the
time for light to go down (t3) and up will be the same (let us denote total flight
time by t↓ = 2t3, Fig. 3.1). Light going down goes along the hypotenuse of the
rectangular triangle with sides: L and vt↓

2 (because it goes down, but not only, since
after t↓2 it is found at x= vt↓

2 ). We will find, therefore, the time t↓ from Pythagoras’
theorem:

(

c
t↓
2

)2

=L2 +
(

v
t↓
2

)2

	 (3.7)

or

t↓ =
√

4L2

c2 − v2 =
2L

√

c2 − v2
=

2L
c

√

1− v2

c2

� (3.8)

The times t↓ and t→ do not equal each other for the moving system and there
will be the interference, we were talking about a little earlier.

However, there is absolutely no interference!
Lorentz was forced to put the Galilean transformation into doubt
(apparently the foundation of the whole science).

9Those who have some experience with relativity theory, will certainly recognize the characteristic

term 1− v2

c2 .
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3.1.5 THE LORENTZ TRANSFORMATION

The interference predicted by the Galilean transformation is impossible, because
physical phenomena would experience the two systems in a different way, while
they differ only by their relative motions (v has to be replaced by −v).

To have everything back in order, Lorentz assumed that, when a body moves,
its length (measured by using the unit length at rest in the coordinate sys-
tem O) along the direction of the motion, contracts according to equation

l=L
√

1− v
2

c2 � (3.9)

If we insert such a length l, instead ofL, in the expression for t→, then we obtainlength
contraction

t→ =
2l
c

1− v2

c2

=
2L
√

1− v2

c2

c

1− v2

c2

=
2L
c

√

1− v2

c2

(3.10)

and everything is perfect again: t↓ = t→. No interference. This means that x′ (i.e.
the position of a point belonging to a rigid body as measured in O′) and x (the
position of the same point measured in O) have to be related by the following
formula. The coordinate x measured by an observer in his O is composed of the
intersystem distance OO′, i.e. vt plus the distance O′ – point, but measured using
the length unit of the observer in O, i.e. the unit that resides in O (thus, non-

contracted by the motion). Because of the contraction 1:
√

1− v2

c2 of the rigid body
the latter result will be smaller than x′ (recall, please, that x′ is what the observer
measuring the position in his O′ obtains), hence:

x= x′
√

1− v
2

c2 + vt	 (3.11)

or:

x′ = x
√

1− v2

c2

− vt
√

1− v2

c2

	 (3.12)

which means that in the linear transformation

A = 1
√

1− v2

c2

	 (3.13)

B = − v
√

1− v2

c2

� (3.14)
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As we have already shown, in linear transformation (x′	 t ′)→ (x	 t) the diagonal
coefficients have to be equal (A=D), therefore

t ′ = Cx+Dt	 (3.15)

D = 1
√

1− v2

c2

� (3.16)

To complete determination of the linear transformation we have to calculate
the constant C . Albert Einstein assumed, that if Professors Oconnor and O’connor
began (in their own coordinate systems O and O′) measurements on the velocity
of light, then despite the different distances gone (x and x′) and different flight
times10 (t and t ′), both scientists would get the same velocity of light (denoted by c).

In other words x= ct and x′ = ct ′.

Using this assumption and eqs. (3.12) and (3.16) we obtain:

ct ′ =Dct − vDt	 (3.17)

while multiplying equation (3.15) for t ′ by c we get:

ct ′ = cCx+Dct� (3.18)

Subtracting both equations we have

0=−vDt − cCx (3.19)

or

C =−vtD
cx

=−vtD
cct

=−vD
c2 � (3.20)

Thus we obtain the full Lorentz transformation, which assures that no of the
systems is privileged, and the same speed of light in both systems:

x′ = 1
√

1− v2

c2

x− v
√

1− v2

c2

t	

t ′ = − v

c2
1

√

1− v2

c2

x+ 1
√

1− v2

c2

t�

10At the moment of separation t = t′ = 0.
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Let us check first of all, whether if v= 0, then everything is OK. Yes it is. Indeed,
the denominator equals 1 and we have t ′ = t and x′ = x. Let us see what would
happen if the velocity of light were equal to infinity. Then, the Lorentz transfor-
mation becomes identical with the Galilean. In general, after expanding t ′ and x′
in a power series of v2/c2 we obtain

x′ = −vt + x+ 1
2
(−vt + x)v

2

c2 + · · · 	

t ′ = t +
(

−x
v
+ t

2

)
v2

c2 + · · ·

This means that only at very high velocity v, may we expect differences between
both transformations.

Contraction is relative
Of course, Professor O’connor in his laboratory O′ would not believe in Professor
Oconnor (sitting in his O lab) saying that he (O’connor) has a contraction of the
rigid body. And indeed, if Professor O’connor measured the rigid body using his
standard length unit (he would not know his unit is contracted), then the length
measured would be exactly the same as that measured just before separation of
the two systems, when both systems were at rest. In a kind of retaliation, Professor
O’connor could say (smiling) that it is certainly not him who has the contraction,
but his colleague Oconnor. He would be right, because for him, his system is at
rest and his colleague Oconnor flies away from him with velocity −v. Indeed, our
formula (3.11) makes that very clear: expressing in (3.11) t by t ′ from the Lorentz
transformation leads to the point of view of Professor O’connor

x′ = x
√

1− v
2

c2 − vt ′	 (3.21)

and one can indeed see an evident contraction of the rigid body of Professor Ocon-
nor. This way, neither of these two coordinate systems is privileged. That is very,
very good.

3.1.6 NEW LAW OF ADDING VELOCITIES

Our intuition was worked out for small velocities, much smaller than the velocity of
light. The Lorentz transformation teaches us something, which is against intuition.
What does it mean that the velocity of light is constant? Suppose we are flying with
the velocity of light and send the light in the direction of our motion. Our intuition
tells us: the light will have the velocity equal to 2c. Our intuition has to be wrong.
How it will happen?

Let us see. We would like to have the velocity in the coordinate system O, but
first let us find the velocity in the coordinate system O′, i.e. dx′

dt ′ . From the Lorentz
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transformation one obtains step by step:

dx′

dt ′
=

1
√

1− v2

c2

dx− v
√

1− v2

c2

dt

− v
c2

1
√

1− v2

c2

dx+ 1
√

1− v2

c2

dt
=

dx
dt − v

1− v
c2

dx
dt

� (3.22)

By extracting dx
dt or using the symmetry relation (when O′ → O, then v→−v)

we obtain:

dx
dt
=

dx′
dt ′ + v

1+ v
c2

dx′
dt ′

(3.23)

or

VELOCITY ADDITION LAW

V = v′ + v
1+ vv′

c2

� (3.24)

In this way we have obtained a new rule of adding the velocities of the train
and its passenger. Everybody naively thought that if the train velocity is v and,
the passenger velocity with respect to the train corridor is v′, then the velocity of
the passenger with respect to the platform is V = v+ v′. It turned out that this is
not true. On the other hand when both velocities are small with respect to c, then
indeed one restores the old rule

V = v′ + v� (3.25)

Now, let us try to fool Mother Nature. Suppose our train is running with the
velocity of light, i.e. v = c, and we take out a torch and shine the light forward,
i.e. dx′

dt ′ = v′ = c. What will happen? What will be the velocity V of the light with
respect to the platform? 2c? From (3.24) we have V = 2c

2 = c. This is precisely
what is called the universality of the speed of light. Now, let us make a bargain
with Nature. We are hurtling in the train with the speed of light v= c and walking
along the corridor with velocity v′ = 5 km/h. What will our velocity be with respect
to the platform? Let us calculate again:

dx
dt
= 5+ c

1+ c
c2 5

= 5+ c
1+ 5

c

= c 5+ c
5+ c = c� (3.26)

Once more we have been unable to exceed the speed of light c. One last attempt.
Let us take the train velocity as v = 0�95c, and fire along the corridor a powerful
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missile with speed v′ = 0�10c. Will the missile exceed the speed of light or not? We
have

dx
dt
= 0�10c+ 0�95c

1+ 0�95c
c2 0�10c

= 1�05c
1+ 0�095

= 1�05
1�095

c = 0�9589c� (3.27)

c is not exceeded. Wonderful formula.

3.1.7 THE MINKOWSKI SPACE-TIME CONTINUUM

The Lorentz transformation may also be written as:
[

x′
ct ′
]

= 1
√

1− v2

c2

[

1 − v
c− v

c 1

][

x
ct

]

�

What would happen if the roles of the two systems were interchanged? To this
end let us express x, t by x′, t ′. By inversion of the transformation matrix we ob-
tain11

[

x
ct

]

= 1
√

1− v2

c2

[

1 v
c

v
c 1

][

x′
ct ′
]

� (3.28)

We have perfect symmetry, because it is clear that the sign of the velocity has torelativity
principle change. Therefore:

none of the systems is privileged (relativity principle).

Now let us come back to Einstein’s morning tram meditation12 about what he
would see on the tramstop clock if the tram had the velocity of light. Now we have
the tools to solve the problem. It concerns the two events – two ticks of the clock
observed in the coordinate system associated with the tramstop, i.e. x1 = x2 ≡ x,
but happening at two different times t1 and t2 (differing by, say, one second, i.e.
t2− t1 = 1, this is associated with the corresponding movement of the clock hand).

11You may check this by multiplying the matrices of both transformations – we obtain the unit matrix.
12Even today Bern looks quite provincial. In the centre Albert Einstein lived at Kramgasse 49. A small

house, squeezed by others, next to a small café, with Einstein’s achievements on the walls. Einstein’s
small apartment is on the second floor showing a room facing the backyard, in the middle a child’s
room (Einstein lived there with his wife Mileva Marić and their son Hans Albert; the personal life of
Einstein is complicated), and a large living room facing the street. A museum employee with oriental
features says the apartment looks as it did in the “miraculous year 1905”, everything is the same (except
the wall-paper, she adds), and then: “maybe this is the most important place for the history of science”.
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What will Einstein see when his tram leaves the stop with velocity v with respect
to the stop, or in other words when the tramstop moves with respect to him with
velocity−v? He will see the same two events, but in his coordinate system they will
happen at

t ′1 =
t1

√

1− v2

c2

−
v
c2x

√

1− v2

c2

and t ′2 =
t2

√

1− v2

c2

−
v
c2x

√

1− v2

c2

	

i.e. according to the tram passenger the two ticks at the tramstop will be separated
by the time interval

t ′2 − t ′1 =
t2 − t1
√

1− v2

c2

= 1
√

1− v2

c2

�

Thus, when the tram ran through the streets of Bern with velocity v= c, the
hands on the tramstop clock when seen from the tram would not move at
all, and this second would be equivalent to eternity.

This is known as time dilation. Of course, for the passengers waiting at the tram- time dilation

stop (for the next tram) and watching the clock, its two ticks would be separated
by exactly one second. If Einstein took his watch out of his waistcoat pocket and
showed it to them through the window they would be amazed. The seconds will
pass at the tramstop, while Einstein’s watch would seem to be stopped. The effect
we are describing has been double checked experimentally many times. For exam-
ple, the meson lives such a short time (in the coordinate system associated with
it), that when created by cosmic rays in the stratosphere, it would have no chance
of reaching a surface laboratory before decaying. Nevertheless, as seen from the
laboratory coordinate system, the meson’s clock ticks very slowly and mesons are
observable.

Hermann Minkowski introduced the
seminal concept of the four-dimensional
space-time continuum (x	 y	 z	 ct).13 In
our one-dimensional space, the elements
of the Minkowski space-time continuum
are events, i.e. vectors (x	 ct), some-
thing happens at space coordinate x at
time t, when the event is observed from
coordinate system O. When the same
event is observed in two coordinate sys-

Hermann Minkowski (1864–
1909), German mathemati-
cian and physicist, professor
in Bonn, Königsberg, Tech-
nische Hochschule Zurich,
and from 1902 professor at
the University of Göttingen.

13Let me report a telephone conversation between the PhD student Richard Feynman and his supervi-
sor Prof. Archibald Wheeler from Princeton Advanced Study Institute (according to Feynman’s Nobel
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tems, then the corresponding x	 t and x′	 t ′ satisfy the Lorentz transformation. It
turns out that in both coordinate systems the distance of the event from the origin
of the coordinate system is preserved. The square of the distance is calculated in a
strange way as:

(ct)2 − x2 (3.29)

for the event (x	 ct). Indeed, let us check carefully:

(ct ′)2 − (x′)2 = 1

1− v2

c2

(

−v
c
x+ ct

)2
− 1

1− v2

c2

(

x− v
c
ct

)2

= 1

1− v2

c2

[
v2

c2 x
2 + c2t2 − 2vxt − x2 − v

2

c2 c
2t2 + 2vxt

]

= 1

1− v2

c2

[
v2

c2 x
2 + c2t2 − x2 − v

2

c2 c
2t2
]

= (ct)2 − (x)2� (3.30)

There it is! This equation enabled Hermann Minkowski to interpret the Lorentz
transformation (3.28) as a rotation of the event (x	 ct) in the Minkowski space
about the origin of the coordinate system (since any rotation preserves the distance
from the rotation axis).

3.1.8 HOW DO WE GET E=mc2?

The Schrödinger equation is invariant with respect to the Galilean transformation.
Indeed, the Hamiltonian contains the potential energy which depends on inter-
particle distances, i.e. on the differences of the coordinates, whereas the kinetic
energy operator contains the second derivative operators which are invariant with
respect to the Galilean transformation. Also, since t = t ′, the time derivative in the
time-dependent Schrödinger equation does not change.

Unfortunately, both Schrödinger equations (time-independent and time-
dependent) are not invariant with respect to the Lorentz transformation
and therefore are illegal.

As a result, one cannot expect the Schrödinger equation to describe accurately
objects that move with velocities comparable to the speed of light.

Lecture, 1965): “Wheeler: “Feynman, I know why all electrons have the same charge and the same mass!”
F: “Why?” W: “Because they are all the same electron!” Then, Wheeler explained: “suppose that the world
lines which we were ordinarily considering before in time and space – instead of only going up in time were
a tremendous knot, and then, when we cut through the knot by the plane corresponding to a fixed time, we
would see many, many world lines and that would represent many electrons (...)”.



3.1 A glimpse of classical relativity theory 107

Let us consider a particle moving in the potential V . The Schrödinger equation
has been “derived” (see p. 70) from the total energy expression:

E = p2

2m
+ V 	 (3.31)

where p is the momentum vector and m is the mass.
Einstein was convinced that nothing could be faster than light.14 Therefore,

what would happen if a particle were subject to a constant force? It would even-
tually attain the velocity of light and what would happen afterwards? There was a
problem, and Einstein assumed that in the laboratory coordinate system in which
the particle is speeded up, the particle will increase its . . . mass. In the coordinate
system fixed on the particle no mass increase will be observed, but in the labora-
tory system it will. We have to admire Einstein’s courage. For millions of people
the mass of a body represented an invariant characteristic of the body. How was
the mass supposed to increase? Well, the increase law – Einstein reasoned – should
be such that the particle was able to absorb any amount of the kinetic energy. This
means that when v→ c, then we have to have m(v)→∞. One of the possible
formulae for m(v) may contain a factor typical of relativity theory [cf. eq. (3.16)]:

m(v)= m0
√

1− v2

c2

	 (3.32)

where m0 is the so called rest mass of the particle (i.e. its mass measured in the
coordinate system residing on the particle).15 It is seen that if v/c were zero (as it
is in the non-relativistic world), then m would be equal to m0, i.e. to a constant as
it is in non-relativistic physics.16

For the time being, the legitimacy of eq. (3.32) is questionable as being just
one of the possible ad hoc suppositions. However, Einstein has shown that this

14Maybe this is true, but nothing in the special theory of relativity compels us to think that c is the
maximum speed possible.
15Because of the speed-dependent mass in relativity theory it is impossible to separate the centre-of-

mass motion.
16And therefore no corrections to the Schrödinger equation are needed. At the beginning of this

chapter we arrived at the conclusion that electron velocity in an atom is close to its atomic number Z
(in a.u.). Hence, for the hydrogen atom (ZH = 1) one may estimate v/c � 0�7%, i.e. v of the electron in
the 1s state represents a velocity of the order of 2100 km/s, which is probably very impressive for a car
driver, but not for an electron. However, for gold (ZAu = 79) we obtain v/c � 51%. This means that in
the atom of gold the electron mass is larger by about 15% with respect to its rest mass and therefore the
relativistic effects are non-negligible. For such important elements as C, O, N (biology) the relativistic
corrections may be safely neglected. A young graduate student, Grzegorz Łach, posed an interesting
purely academic question (such questions and the freedom to discuss them represent the cornerstone
and the beauty of university life): will the human body survive the switching off of relativistic effects?
Most of the biomolecules would function practically without significant changes, but the heavy metal
atoms in enzyme active sites might react differently in the chemical reactions in which they are involved.
Would they indeed? Would the new direction be destructive for the body? Nobody knows. On the other
hand, we have forgotten about the spin concept that follows in a consequent way only from relativistic
quantum theory (see below). Without spin no world similar to ours is conceivable.
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particular formula fits the existing equation of motion. First, after expanding the
mass into the Taylor series one obtains something interesting

m(v)=m0

{

1+ 1
2
v2

c2 +
3
8
v4

c4 + · · ·
}

	 (3.33)

especially after multiplying the result by c2:kinetic energy

mc2 −m0c
2 = m0v

2

2
+ smaller terms� (3.34)

It looks as if indeed the kinetic energy was stored directly in the mass m. Ein-
stein deduced that it may be that the total kinetic energy of the body is equal to:

E =mc2�

He convinced himself about this after calculating its time derivative. After as-
suming that eq. (3.32) is correct, one obtains:

dE
dt
= c2 dm

dt
= c2 d

dt
m0

√

1− v2

c2

=m0c
2 d

dt
1

√

1− v2

c2

=m0c
2
(

−1
2

)(

1− v
2

c2

)− 3
2 −2v
c2

dv
dt
=m0

(

1− v
2

c2

)− 3
2
v

dv
dt

= m0
√

(1− v2

c2 )

1

1− v2

c2

v
dv
dt
= m0
√

(1− v2

c2 )

(

1+
v2

c2

1− v2

c2

)

v
dv
dt

= m0
√

(1− v2

c2 )
v

dv
dt
+ v

2

c2m0

(

1− v
2

c2

)− 3
2
v

dv
dt
=mv dv

dt
+ v2 dm

dt
= v d(mv)

dt
�

Precisely the same equation is satisfied in non-relativistic mechanics, if E de-
notes the kinetic energy:

dE
dt
= d(mv

2

2 )

dt
=mv dv

dt
= v d(mv)

dt
� (3.35)

Therefore in relativity theory

Ekin =mc2� (3.36)
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This formula has been verified in laboratories many times. For example, it is
possible nowadays to speed electrons in cyclotrons up to a velocity that differs
from c by 1

8000000c. That corresponds to 1− v2

c2 = 1
4000000 , and the electron’s mass

m becomes 2000 times larger than its m0. This means that the electron is pumped
up with energy to such an extent that its mass is similar to that of the proton. The
energy stored in mass is huge. If, from the mass of a 20000 TNT atomic bomb,
one subtracted the mass of its ashes after explosion,17 then one would obtain only
about 1g! The energy freed from this 1g gives an effect similar to the apocalypse.

3.2 RECONCILING RELATIVITY AND QUANTUM
MECHANICS

“The equation with many fathers” (Klein–Gordon, also Fock and
Schrödinger. . . )
We would like to express the kinetic energy Ekin through the particle’s momen-
tum p, because we would then know how to obtain the corresponding quantum
mechanical operators (Chapter 1, p. 18). To this end let us consider the expression

E2
kin −

(

m0c
2)2 =m2c4 −m2

0c
4 =m2

0c
4
(

1
1− v2/c2 − 1

)

= m2
0c

4

1− v2/c2
v2

c2 =m2v2c2 = p2c2� (3.37)

Therefore,

Ekin = c
√

p2 +m2
0c

2 (3.38)

and the total energy E in the external potential V

E = c
√

p2 +m2
0c

2 + V � (3.39)

What if the particle is subject to an electromagnetic field, given by the electric
field E and the magnetic field H (or, the magnetic induction B) in every point of
the space? Instead of E and H (or B) we may introduce two other quantities: the
vector field A and the scalar field φ (see Appendix G)� As we can show in classical
electrodynamics,18 the kinetic energy of the particle subject to an electromagnetic
field is very similar to the same expression without the field (eq. (3.38)), namely,
for a particle of charge q, the momentum p is to be replaced by p− q

cA and the
potential V by qφ. Therefore, we obtain the following expression for the total

17R. Feynman, R.B. Leighton, M. Sands, “Feynman Lectures on Physics”, Addison-Wesley Publishing
Company, 1964.
18For example, H.F. Hameka, Advanced Quantum Chemistry, Addison-Wesley, Reading, MA, 1965,

p. 40.
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energy of the particle in an electromagnetic field

E = c
√
(

p− q
c
A

)2
+m2

0c
2 + qφ	 (3.40)

where A and φ represent functions of the particle’s position.
If we wanted to use the last expression to construct the Hamiltonian, then we

would find serious difficulty, namely, the momentum operator p̂=−ih̄∇ (replac-
ing p according to the appropriate postulate, Chapter 1) is under the square root
sign, thus leading to non-linear operators. Brave scientists noted, however, that if
you squared both sides, the danger would disappear. We would obtain

(E − qφ)2 = c2
[(

p− q
c
A

)2
+m2

0c
2
]

� (3.41)

All this has been, and still is, a sort of groping and guessing from some traces or
indications.

The equations corresponding to physical quantities will be transformed to
the corresponding operator equations, and it will be assumed that both sides
of them will act on a wavefunction.

Oskar Klein (1894–1977) was
the youngest son of the chief
rabi of Sweden and professor
of mathematics and physics
at Stockholm Högskola. Wal-
ter Gordon (1893–1940) until
1933 was a professor at the
University of Hamburg, and
afterwards resided in Swe-
den.

What to insert as the operator Ĥ
of the energy E? This was done by
Schrödinger (even before Fock, Klein
and Gordon). Schrödinger inserted what
he had on the right-hand side of his
time-dependent equation

Ĥ�= ih̄ ∂
∂ t
�	 i�e� Ĥ = ih̄ ∂

∂ t
�

This way
(

ih̄
∂

∂t
− qφ

)2

= c2
[(

−ih̄∇ − q
c
A

)2

+m2
0c

2
]

	 (3.42)

or after acting on the wave function we obtain the equation known as Klein–
Gordon:

(

ih̄
∂

∂t
− qφ

)2
�= c2

[(

−ih̄∇ − q
c
A

)2
+m2

0c
2
]

�� (3.43)
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This equation has at least one advantage over the Schrödinger equation: ct and
x	 y	 z enter the equation on an equal footing, which is required by special relativ-
ity. Moreover, the Klein–Gordon equation is invariant with respect to the Lorentz
transformation, whereas the Schrödinger equation is not. This is a prerequisite of
any relativity-consistent theory and it is remarkable that such a simple derivation
made the theory invariant. The invariance does not however mean that the equa-
tion is accurate. The Klein–Gordon equation describes a boson particle.

3.3 THE DIRAC EQUATION

3.3.1 THE DIRAC ELECTRONIC SEA

Paul Dirac used the Klein–Gordon equation to derive a Lorentz transformation
invariant equation19 for a single fermion particle. The Dirac equation is solvable
only for several very simple cases. One of them is the free particle (Dirac), the
other is an electron in the electrostatic field of a nucleus (Darwin, not that one).

One may add here a few other systems, e.g., the harmonic oscillator and that’s it.
From eq. (3.38), in the case of a free particle V = 0, one obtains two sets of

energy eigenvalues, one corresponding to the negative energies

E =−
√

p2c2 +m2
0c

4 (3.44)

and the other corresponding to the positive energies

E =+
√

p2c2 +m2
0c

4� (3.45)

Dirac was not worried by the fact that both roots appear after an ad hoc decision
to square the expression for the energy (eqs. (3.40) and (3.41)). As we can see,

Paul Adrien Maurice Dirac (1902–1984), British
physicist theoretician, professor at universi-
ties in Cambridge, and then Oxford. Dirac was
keen on hiking and climbing. He used to prac-
tise before expeditions by climbing trees near
Cambridge, in the black outfit in which always
gave his lectures.

He spent his last years at the University of
Tallahassee (Florida, USA). On being guided
through New York City, Dirac remembered old
times. The guide remarked that there were
visible changes, among others the buses had

been painted pink. Dirac quietly agreed, adding
that indeed they had, at least from one side� � �

19See J.D. Bjorken, S.D. Drell, “Relativistic Quantum Mechanics”, McGraw-Hill, 1964.
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Charles Galton Darwin (1887–
1962), British physicist and
mathematician, professor at
University of Edinburgh, Scot-
land, grandson of the evo-
lutionist Sir Charles Robert
Darwin. Darwin investigated
the scattering of α particles
on atoms.

since the momentum may change from
0 to∞ (p=mv, and for v→ c, we have
m→∞), we therefore have the nega-
tive energy continuum and symmetrically
located positive energy continuum, both
continua separated by the energy gap
2m0c

2 (Fig. 3.2).
Dirac (when 26 years old) made the

apparently absurd assumption that what
people call a vacuum is in reality a sea of
electrons occupying the negative energy
continuum (“Dirac electronic sea”). The

sea was supposed to consist of an infinite number of electrons, which had to im-
ply catastrophic consequences concerning, for example, the mass of the Universe
(infinite), but Dirac did not doubt or discourage: “We see only those electrons, that
have the positive energy” – said Dirac. Then, he asked himself, whether one could
somehow see those electrons that occupy the sea and answered yes, it is possible.
According to Dirac it is sufficient to excite such an electron by providing the energy

Fig. 3.2. Energy levels for the hydrogen
atom according to Schrödinger (left hand
side) and Dirac (right hand side). Shadowed
areas correspond to the positive and nega-
tive energy continua.
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of the order of 2m0c
2 to cover the en-

ergy gap (the energy 2m0c
2 is very large,

of the order of 1 MeV). Then the sea
electron would have positive energy and
could be observed as others electrons
with positive energy. However, besides
the electron one, would leave a hole in
the Dirac sea. Dirac has been severely
molested about what this strange hole
would correspond to in experimental
physics. Once, when pushed too strong-

Carl David Anderson (1905–
1991), American physicist,
professor at the Pasadena In-
stitute of Technology. In 1932
Anderson discovered the pos-
itron, for which he received
the Nobel Prize in 1936. He
was also a co-discoverer of
the muon.

ly, he said desperately that this is a � � � proton. Some seemed to be satisfied, but
others began to attack him furiously. However, then Dirac has demonstrated that
the hole would have the dynamical and electrical properties of an electron, except positron

that its sign would be opposite.20 This has been nothing but a hypothesis for the
existence of antimatter, a state of matter unknown at that time. Please imagine the antimatter

shock, when three years later Carl Anderson reported the creation of electron–
positron pairs from a vacuum after providing energy 2m0c

2. This was a day of
glory for quantum theory.

In a moment we will see the determination with which Dirac attacked the Klein–
Gordon equation, which we will write down a little differently:

[
ih̄ ∂
∂ t − qφ
c

]2
−
[(

−ih̄∇ − q
c
A

)2
+m2

0c
2
]

= 0� (3.46)

Let us first introduce the following abbreviations:

π0 =
ih̄ ∂
∂ t − qφ
c

	 πμ =−ih̄ ∂
∂μ
− q
c
Aμ	 (3.47)

for μ= x	 y	 z or 1	2	3.

20Paul Dirac, when a pupil in primary school, made his reputation after solving a riddle which goes
very well with the person who thought out the positively charged electron (positron).
Three fishermen went overnight fishing and camping at a lake. After heavy fishing, around evening they
put the fish in a bucket, and tired, fell asleep in the tent. At midnight one of the fishermen woke up and,
tired of the whole escapade decided to take 1

3 of all the fish, leave the tent quietly and go home. When
he counted the fish in the bucket, it turned out that the number of fish was not divisible by 3. However,
when he had thrown one fish back to the lake, the number was divisible by 3, he took his 1

3 and went
away. After a while a second fisherman woke up and did the same, and then the third. The question was,
how many fish were in the bucket. Dirac’s answer was: −2. Indeed, the number is indivisible by 3, but
after the first fisherman threw away one fish the number was −3. He took his 1

3 , i.e. −1 fish, wrapped
it up using a newspaper and went away leaving −2 fish splashing in the bucket. The same happened to
each of the other two fishermen.
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Dirac persisted in treating eq. (3.46) as a2 − b2 and therefore rewriting it in the
form (a+ b)(a− b), i.e.

(

π0 +
∑

μ=x	y	z
αμπμ + α0m0c

)(

π0 −
∑

μ=x	y	z
αμπμ − α0m0c

)

= 0� (3.48)

He was so self-assured, that he said eq. (3.48) has to be satisfied at any price by
finding suitable unknowns αi (independent of coordinates and time). The α’s have
to satisfy the following relations (anti-commutation relations)

α2
μ = 1	 (3.49)

αμαν + αναμ = 0 for μ 	= ν� (3.50)

Indeed, using the anti-commutation relations one recovers the Klein–Gordonanti-
commutation equation:

(

π0 +
3
∑

μ=x	y	z
αμπμ + α0m0c

)(

π0 −
3
∑

μ=x	y	z
αμπμ − α0m0c

)

= π2
0 −

[ 3
∑

μ=x	y	z
αμπμ + α0m0c

]2

= π2
0 −

3
∑

μ	ν=x	y	z
αμανπμπν

−
3
∑

μ=x	y	z
(αμα0 + α0αμ)πμm0c − α0m

2
0c

2

= π2
0 −

3
∑

μ	ν=x	y	z
(αμαν + αμαν)πμπν −m2

0c
2 = π2

0 −
3
∑

μ=x	y	z
π2
μ −m2

0c
2�

Note that the α’s cannot be just numbers, because no numbers can satisfy the
anticommutation relation. They have to be matrices. Since we have four variables
x	 y	 z	 t, then we may expect matrices of order 4, but they could be larger. Here is
one of the consistent choices of matrices:

αx =
(

0 σx
σx 0

)

	 αy =
(

0 σy
σy 0

)

	

αz =
(

0 σz
σz 0

)

	 α0 ≡ β=
(

1 0
0 −1

)

�

Please note the Pauli matrices σx	σy	σz , defined on p. 28, determine electron
spin. This is the first sign of what will happen later on: the Dirac equation will
automatically describe the spin angular momentum.
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3.3.2 THE DIRAC EQUATIONS FOR ELECTRON AND POSITRON

After the factorization described above Dirac obtained two operator equations.
The Dirac equations (for the positron and electron) correspond to these opera-
tors acting on the wave function �. Thus, we obtain the equation for the negative
electron energies (positron)

(

π0 +
∑

μ=x	y	z
αμπμ + α0m0c

)

�= 0 (3.51)

and for the positive electron energies (electron)
(

π0 −
∑

μ=x	y	z
αμπμ − α0m0c

)

�= 0� (3.52)

These two equations are coupled together through the same function � which
has to satisfy both of them. This coupling caused a lot of trouble in the past. First,
people assumed that the equation with the negative electron energies (positron
equation) may be ignored, because the energy gap is so large that the Dirac sea
is occupied whatever a chemist does with a molecule. This assumption turned out
to cause some really vicious or weird performances of numerical procedures (see
later on). The electron equation alone reads as

ih̄
∂�

∂ t
=
(

qφ+ c
∑

μ=x	y	z
αμπμ + α0m0c

2
)

�� (3.53)

If one is interested in stationary states (cf. p. 21), the wave function has the form stationary states

�(x	y	 z	 t)= �(x	y	 z)e−i Eh̄ t , where we have kept the same symbol for the time

independent factor �(x	y	 z). After dividing by e−i
E
h̄ t we obtain

THE DIRAC EQUATION FOR STATIONARY ELECTRONIC STATES

(

E − qφ−βm0c
2 − cα ·π)�(x	y	 z)= 0	 (3.54)

where β= α0.

The quantity qφ= V in future applications will denote the Coulomb interaction
of the particle under consideration with the external potential.

3.3.3 SPINORS AND BISPINORS

The last equation needs a comment. Because the matrices α have dimension 4,
then� has to be a four component vector (known as bispinor, its connection to the spinors and

bispinors
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spin concept will be shown later on)

�=
⎛

⎜
⎝

ψ1
ψ2
φ1
φ2

⎞

⎟
⎠=

(

ψ
φ

)

	

where the first two components (ψ1 and ψ2, functions of class Q), for reasons that
will become clear in a moment, are called large components, are hidden in vector
ψ, while the two small components (φ1 and φ2, functions of class Q)21 are labelled
by vector φ. Vectors ψ and φ are called the spinors.

How to operate the N-component spinor (for N = 4 we have called them
bispinors)? Let us construct the proper Hilbert space for the N-component
spinors. As usual (p. 895), first, we will define the sum of two spinors in the fol-
lowing way:

⎛

⎜
⎝

�1
�2
� � �
�N

⎞

⎟
⎠+

⎛

⎜
⎝

�1
�2
� � �
�N

⎞

⎟
⎠=

⎛

⎜
⎝

�1 +�1
�2 +�2
� � �

�N +�N

⎞

⎟
⎠ 	

and then, the product of the spinor by a number γ:

γ

⎛

⎜
⎝

�1
�2
� � �
�N

⎞

⎟
⎠=

⎛

⎜
⎝

γ�1
γ�2
� � �
γ�N

⎞

⎟
⎠ �

Next, we check that the spinors form an Abelian group with respect to the above
defined addition (cf. Appendix C, p. 903) and, that the conditions for the vector
space are fulfilled (Appendix B). Then, we define the scalar product of two spinors

〈�|�〉 =
N
∑

i=1

〈�i|�i〉	

where the scalar products 〈�i|�i〉 are defined as usual in the Hilbert space of
class Q functions. Then, using the scalar product 〈�|�〉 we define the distance
between two spinors: ‖�−�‖ ≡√〈�−�|�−�〉 and afterwards the concept of
the Cauchy series (the distances between the consecutive terms tend to zero). The
Hilbert space of spinors will contain all the linear combinations of the spinors to-
gether with the limits of all the convergent Cauchy series.
21It will be shown that in the non-relativistic approximation the large components reduce to the wave

function known from the Schrödinger equation, and the small components vanish. In eq. (3.54) the
constant E as well as the function V individually multiply each component of the bispinor �, while
σ ·π ≡ αxπx+αyπy+αzπz denotes the “dot product” of the matrices αμ, μ= x	y	 z, by the operators
πμ (in the absence of the electromagnetic field, it is simply the momentum operator component, see
p. 962). The matrix β is multiplied by the constant m0c

2, then by the bispinor ��
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An operator acting on a spinor means a spinor with each component resulting
from action on the corresponding component

Â

⎛

⎜
⎝

�1
�2
� � �
�N

⎞

⎟
⎠=

⎛

⎜
⎝

Â�1
Â�2
� � �
Â�N

⎞

⎟
⎠ �

Sometimes we will use the notation, in which a matrix of operators acts on a
spinor. In this case the result corresponds to multiplication of the matrix (of oper-
ators) and the vector (spinor)

⎛

⎜
⎝

Â11 Â12 � � � Â1N
Â21 Â22 � � � Â2N
� � � � � � � � � � � �
ÂN1 ÂN2 � � � ÂNN

⎞

⎟
⎠

⎛

⎜
⎝

�1
�2
� � �
�N

⎞

⎟
⎠=

⎛

⎜
⎜
⎝

∑

j Â1j�j
∑

j Â2j�j
� � �

∑

j ÂNj�j

⎞

⎟
⎟
⎠
�

3.3.4 WHAT NEXT?

In the following we will show

1. that the first two components of the bispinor are much larger than the last two
2. that in the limit c→∞ the Dirac equation gives the Schrödinger equation
3. that the Dirac equation accounts for the spin angular momentum of the electron
4. how to obtain, in a simple way, an approximate solution of the Dirac equation

to the electron in the field of a nucleus (“hydrogen-like atom”).

3.3.5 LARGE AND SMALL COMPONENTS OF THE BISPINOR

Using matrix multiplication rules, the Dirac equation (3.54) with bispinors can be
rewritten in the form of two equations with spinors ψ and φ:

(

E − V −m0c
2)ψ− c(σ ·π)φ = 0	 (3.55)

(

E − V +m0c
2)φ− c(σ ·π)ψ = 0� (3.56)

The quantity m0c
2 represents the energy. Let us use this energy to shift the en-

ergy scale (we are always free to choose 0 on this scale): ε= E −m0c
2, in order to

make ε comparable in future to the eigenvalue of the Schrödinger equation (p. 70).
We obtain

(ε− V )ψ− c(σ ·π)φ = 0	 (3.57)
(

ε− V + 2m0c
2)φ− c(σ ·π)ψ = 0� (3.58)
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This set of equations corresponds to a single matrix equation:
(

V c(σ ·π)
c(σ ·π) V − 2m0c

2

)(

ψ
φ

)

=
(

ε 0
0 ε

)(

ψ
φ

)

� (3.59)

3.3.6 HOW TO AVOID DROWNING IN THE DIRAC SEA

When, in the past, the above equation was solved and the energy εminimized (rou-
tine practice in the non-relativistic case) with respect to the variational parameters
(see Chapter 5) in the trial spinorsψ andφ, then some serious numerical problems
occurred. Either the numerical procedures diverged or the solutions obtained were
physically unacceptable. The reason for this was that the existence of the Dirac sea
had been totally ignored by neglecting eq. (3.51) for the positron and taking solely
eq. (3.52) for electron motion. The variational trial functions felt, however, the
presence of the Dirac sea electronic states (there was nothing in the theory that
would prevent the electron from attempting to occupy negative energies) and the
corresponding variational energies dived down the energy scale towards the abyss
of the sea without a bottom.22 The presence of the Dirac sea makes the Dirac the-
ory, in fact, a theory of an infinite number of particles, whereas formally it was
only a theory of a single particle in an external field. This kind of discomfort made
people think of the possibility of describing the electron from the Dirac electronic
sea by replacing the bispinors by the exact spinor (two components) theory.23 Such
exact separation has been reported by Barysz and Sadlej.24

An approximate (and simple) prescription was also invented to avoid the
catastrophic drowning described above. Indeed, eq. (3.58) can be transformed
without any problem to

φ=
(

1+ (ε− V )
2m0c2

)−1 1
2m0c

(σ ·π)ψ�

Since 2m0c
2 represents a huge energy when compared to the kinetic energy

ε− V , then the first parenthesis on the right-hand side is to a good approximation
22How severe the problem might be has been shown by M. Stanke, J. Karwowski, “Variational Prin-

ciple in the Dirac Theory: Spurious Solutions, Unexpected Extrema and Other Traps” in “New Trends in
Quantum Systems in Chemistry and Physics”, vol. I, p. 175–190, eds. J. Maruani et al., Kluwer Academic
Publishers. Sometimes an eigenfunction corresponds to a quite different eigenvalue. Nothing of that
sort appears in non-relativistic calculations.
23Exact within the Dirac model.
24M. Barysz, A.J. Sadlej, J.G. Snijders, Int. J. Quantum Chem. 65 (1997) 225; M. Barysz, J. Chem.

Phys. 114 (2001) 9315; M. Barysz, A.J. Sadlej, J. Mol. Struct. (Theochem) 573 (2001) 181; M. Barysz,
A.J. Sadlej, J. Chem. Phys. 116 (2002) 2696. In the latter paper an exact solution to the problem was
given. The two-component theory, although more appealing, both from the point of view of physics
as well as computationally, implies a change in definition of the operators, e.g., the position operator
is replaced by a quite complex expression. This fact, ignored in computations using two-component
theories, has been analysed in the articles: V. Kellő, A.J. Sadlej, B.A. Hess, J. Chem. Phys. 105 (1996)
1995; M. Barysz, A.J. Sadlej, Theor. Chem. Acc. 97 (1997) 260; V. Kellő, A.J. Sadlej, Int. J. Quantum
Chem. 68 (1998) 159; V. Kellő, A.J. Sadlej, J. Mol. Struct. (Theochem) 547 (2001) 35.
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equal to 1. This means however that

φ≈ 1
2m0c

(σ ·π)ψ	

which is known as “kinetic balancing”. It was shown that the “kinetically balanced” kinetic
balancingtrial function achieves the miracle25 of the energy not tending to −∞. The kinetic

balancing indicates some fixed relation between φ and ψ.
Let us focus now on σ · π . This is a 2 × 2 matrix and in the absence of an

electromagnetic field (π = p) one has:

σ ·π = σxp̂x + σyp̂y + σzp̂z

=
(

0 p̂x
p̂x 0

)

+
(

0 −ip̂y
ip̂y 0

)

+
(

p̂z 0
0 −p̂z

)

=
(

p̂z p̂x − ip̂y
p̂x + ip̂y −p̂z

)

�

It is seen that σ ·π is of the order of momentummv, and for the small velocities
of the order of m0v.

Hence, one obtains φ ≈ 1
2m0c

(σ · π)ψ ≈ v
2cψ, therefore the component φ

is for small v much smaller than the component ψ,

which justifies the terms “small” and “large” components.26

3.3.7 FROM DIRAC TO SCHRÖDINGER – HOW TO DERIVE THE
NON-RELATIVISTIC HAMILTONIAN?

The approximate relation (“kinetic balance”) between the large and small compo-
nents of the bispinor (that holds for small v/c) may be used to eliminate the small
components27 from (3.57) and (3.58). We obtain

(ε− V )ψ− c(σ ·π) 1
2m0c

(σ ·π)ψ = (3.60)

(ε− V )ψ− 1
2m0

(σ ·π)(σ ·π)ψ = 0� (3.61)

25This remedy has not only an ad hoc character, but moreover does not work for the heaviest atoms,
which are otherwise the most important target of relativistic computations.
26These terms refer to the positive part of the energy spectrum. For the negative continuum (Dirac

sea) the proportion of the components is reversed.
27A more elegant solution was reported by Andrzej W. Rutkowski, J. Phys. B. 9 (1986) 3431, ibid. 19

(1986) 3431, ibid. 19 (1986) 3443. For the one-electron case, this approach was later popularized by
Werner Kutzelnigg as Direct Perturbation Theory (DPT).
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Let us take a closer look at the meaning of the expression

(σ ·π)(σ ·π) =
(

p̂z p̂x − ip̂y
p̂x + ip̂y −p̂z

)(

p̂z p̂x − ip̂y
p̂x + ip̂y −p̂z

)

=
(

p̂2 0
0 p̂2

)

= p̂21�

Now please look carefully. Let us insert this into the last equation. We obtain
what is sometimes called the Schrödinger equation with spin (because it is satisfied
by a two-component spinor)

(
p̂2

2m0
+ V

)

ψ= εψ�

Recalling that p̂ represents the momentum operator, we observe each of the
large components satisfies the familiar Schrödinger equation

(

− h̄2

2m0
�+ V

)

ψ= εψ�

Therefore, the non-relativistic equation has been obtained from the rela-
tivistic one, assuming that the velocity of particle v is negligibly small with
respect to the speed of light c. The Dirac equation remains valid even for
larger particle velocities.

3.3.8 HOW DOES THE SPIN APPEAR?

It will be shown that the Dirac equation for the free electron in an external elec-
tromagnetic field is leading to the spin concept. Thus, in relativistic theory, the
spin angular momentum appears in a natural way, whereas in the non-relativistic
formalism it was the subject of a postulate of quantum mechanics, p. 25.

First let us introduce the following identity:

(σ ·a)(σ ·b)= (a · b)1+ iσ · (a× b)	

where, on the left-hand side, we have a product of two matrices, each formed by a
“scalar product” of matrices28 σ and a vector, whereas on the right-hand side we
have the scalar product of two vectors multiplied by a unit matrix plus the scalar

28That is, σ ·a= σxax + σyay + σzaz .
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product of the matrix iσ and the vector a× b. The left-hand side:

[(

0 ax
ax 0

)

+
(

0 −iay
iay 0

)

+
(

az 0
0 −az

)]

×
[(

0 bx
bx 0

)

+
(

0 −iby
iby 0

)

+
(

bz 0
0 −bz

)]

=
(

az ax − iay
ax + iay −az

)(

bz bx − iby
bx + iby −bz

)

=
(

a · b+ i(a× b)z (a× b)y + i(a× b)x
−(a× b)y + i(a× b)x a · b− i(a× b)z

)

is therefore equal to the right-hand side, which is what we wanted to show.
Now, taking a= b=π one obtains the relation

(σ ·π)(σ ·π)= (π ·π)1+ iσ(π ×π)�

If the vector π had numbers as its components, the last term would have had
to be zero, because the vector product of two parallel vectors would be zero. This,
however, need not be true when the vector components are operators (as it is in our
case). Since π = p− q

cA, then (π · π) = π2 and (π × π) = iq h̄c curlA. To check
this, we will obtain the last equality for the x components of both sides (the proof
for the other two components looks the same). Let the operator (π×π) act on an
arbitrary function f (x	 y	 z). As a result we expect the product of f and the vector
iq h̄c curlA. Let us see:

(π ×π)xf = (p̂y − q/cAy)(p̂z − q/cAz)f − (p̂z − q/cAz)(p̂y − q/cAy)f
= [p̂yp̂z − q/cp̂yAz − q/cAyp̂z + (q/c)2AyAz
− p̂zp̂y + q/cp̂zAy + q/cAzp̂y − (q/c)2AzAy ]f

= −q/c(−ih̄)
{
∂

∂y
(Azf )−Az ∂f

∂y
+Ay ∂f

∂z
− ∂

∂z
(Ayf )

}

= ih̄q/c
{
∂Az

∂y
− ∂Ay

∂z

}

f = iqh̄

c
(curlA)xf�

This is what we expected to get. From the Maxwell equations (p. 962), we have
curlA = H , where H represents the magnetic field intensity. Let us insert this
into the Dirac equation (valid for kinetic energy much smaller than 2m0c

2, see
eq. (3.60))

(ε− V )ψ = 1
2m0

(σ ·π)(σ ·π)ψ
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= 1
2m0

(π ·π)ψ+ i

2m0
σ · (π ×π)ψ

= 1
2m0

(π ·π)ψ+ i

2m0

iqh̄

c
(σ ·H)ψ

=
[
π2

2m0
− qh̄

2m0c
σ ·H

]

ψ=
[
π2

2m0
+ eh̄

2m0c
σ ·H

]

ψ�

In the last parenthesis, beside the kinetic energy operator (first term), there
is a strange second term. The term has the appearance of the interaction energy
−M · H of a mysterious magnetic dipole moment M with magnetic field H (cf.
interaction with magnetic field, p. 659). The operator of this electronic dipole mo-
ment M = − eh̄

2m0c
σ = −μBσ , where μB stands for the Bohr magneton equal to

eh̄
2m0c

. The spin angular momentum operator of the electron is denoted by (cf. p. 28)

s. Therefore, one has s= 1
2 h̄σ . Inserting σ to the equation for M we obtain

M =−2
μB
h̄
s=− e

m0c
s� (3.62)

It is exactly twice as much as we get for the orbital angular momentum and
the corresponding orbital magnetic dipole (hence the anomalous magnetic
spin moment of the electron), see eq. (12.53).

When two values differ by an integer factor (as in our case) this should stimu-
late our mind, because it may mean something fundamental that might depend on,
e.g., the number of dimensions of our space or something similar. However, one
of the most precise experiments ever made by humans gave29 2�0023193043737±
0�0000000000082 instead of 2. Therefore, our excitement must diminish. A more
accurate theory (quantum electrodynamics, some of the effects of this will be de-
scribed later) gave a result that agreed with the experiment within an experimen-
tal error of ±0.0000000008. The extreme accuracy achieved witnessed the excep-
tional status of quantum electrodynamics, because no other theory of mankind has
achieved such a level of accuracy.

3.3.9 SIMPLE QUESTIONS

How to interpret a bispinor wave function? Does the Dirac equation describe a sin-
gle fermion, an electron, a positron, an electron and a Dirac sea of other electrons
(infinite number of particles), an effective electron or effective positron (interact-
ing with the Dirac sea)? After eighty years these questions do not have a clear
answer.
29R.S. Van Dyck Jr., P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Letters 59 (1990) 26.
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Despite the glorious invariance with respect to the Lorentz transformation and
despite spectacular successes, the Dirac equation has some serious drawbacks, in-
cluding a lack of clear physical interpretation. These drawbacks are removed by a
more advanced theory – quantum electrodynamics.

3.4 THE HYDROGEN-LIKE ATOM IN DIRAC THEORY

After this short escapade we are back with Dirac theory. The hydrogen-like atom
may be simplified by immobilizing the nucleus and considering a single particle –
the electron30 moving in the electrostatic field of the nucleus31 −Z/r. This problem
has an exact solution first obtained by Charles Galton Darwin, cf. p. 112. The elec-
tron state is described by four quantum numbers n	 l	m	ms , where n = 1	2	 � � �
stands for the principal, 0 
 l
 n− 1 for the angular, |m|
 l for the magnetic and
ms = 1

2 	− 1
2 for the spin quantum number. Darwin obtained the following formula

for the relativistic energy of the hydrogen-like atom (in a.u.):

En	j =− 1
2n2

[

1+ 1
nc2

(
1

j + 1
2

− 3
4n

)]

	

where j = l +ms , and c is the speed of light (in a.u.). For the ground state (1s,
n= 1	 l= 0	 m= 0	 ms = 1

2 ) we have

E1	 1
2
=−1

2

[

1+
(

1
2c

)2]

�

Thus, instead of the non-relativistic energy equal to − 1
2 , from the Dirac the-

ory we obtain −0�5000067 a.u., which means a very small correction to the non-
relativistic energy. The electron energy levels for the non-relativistic and relativis-
tic cases are shown schematically in Fig. 3.2.

3.4.1 STEP BY STEP: CALCULATION OF THE GROUND STATE OF THE
HYDROGEN-LIKE ATOM WITHIN DIRAC THEORY

Matrix form of the Dirac equation
We will use the Dirac equation (3.59). First, the basis set composed of two bispinors

will be created: 
1 =
(

ψ
0

)

and 
2 =
(

0
φ

)

, and the wave function 
 will be

30In the Dirac equation A= 0 and −eφ= V =−Ze2
r were set.

31The centre-of-mass motion can be easily separated from the Schrödinger equation, Appendix I.
Nothing like this has been done for the Dirac equation. The atomic mass depends on its velocity with
respect to the laboratory coordinate system, the electron and proton mass also depend on their speeds,
and there is also a mass deficit as a result of binding between both particles. All this seems to indicate
that centre of mass separation is not possible. Nevertheless, for an energy expression accurate to a
certain power of c−1, such a separation is, at least in some cases, possible.
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sought as a linear combination
= c1
1+ c2
2, which represents an approxima-
tion. Within this approximation the Dirac equation looks like this

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)

(c1
1 + c2
2)= 0	

which gives

c1

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)


1 + c2

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)


2 = 0�

By making a scalar product first with 
1 and then with 
2 we obtain two equa-
tions:

c1

〈


1

∣
∣
∣
∣

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)


1

〉

+ c2

〈


1

∣
∣
∣
∣

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)


2

〉

= 0

c1

〈


2

∣
∣
∣
∣

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)


1

〉

+ c2

〈


2

∣
∣
∣
∣

(
V − ε c(σ ·π)
c(σ ·π) V − 2m0c

2 − ε
)


2

〉

= 0�

Taking into account the particular structure of the bispinors 
1 and 
2, we
obtain the same equations expressed in spinors (two component spinors)

c1〈ψ |(V − ε)ψ〉 + c2〈ψ| c(σ ·π)φ〉 = 0	

c1〈φ |c(σ ·π)ψ〉 + c2〈φ| (V − 2m0c
2 − ε)φ〉 = 0�

This is a set of homogeneous linear equations. To obtain a non-trivial solution,32

the determinant of the coefficients multiplying the unknowns c1 and c2 has to be
zero (the secular determinant, cf. variational method in Chapter 5)

∣
∣
∣
∣

〈ψ|(V − ε)ψ〉 〈ψ|c(σ ·π)φ〉
〈φ|c(σ ·π)ψ〉 〈φ|(V − 2m0c

2 − ε)φ〉
∣
∣
∣
∣
= 0�

The potential V in the above formula will be taken as −Z/r, where r is the
electron–nucleus distance.

32It is easy to give a trivial one, but not acceptable (the wave function cannot equal zero everywhere):
c1 = c2 = 0.
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The large component spinor

It is true that we have used an extremely poor basis, however, we will try to com-
pensate for it by allowing a certain flexibility within the large component spinor:

ψ=
(

1s
0

)

, where the hydrogen-like function 1s =
√

ζ3

π exp(−ζr). The parameter

ζ will be optimized in such a way as to minimize the energy ε of the electron. This
idea is similar to the variational method in the non-relativistic theory (Chapter 5
and Appendix H, p. 969), however, it is hardly justified in the relativistic case. In-
deed, as proved by numerical experience the variational procedure very often fails.
As a remedy we will use kinetic balancing already used to describe the large and
small components of the bispinor (p. 119). The spinor of the small components is
therefore obtained automatically from the large components (approximation):

φ =N (σ ·π)
(

1s
0

)

=N
(

p̂z p̂x + ip̂y
p̂x − ip̂y p̂z

)(

1s
0

)

=N
(

p̂z(1s)
(p̂x + ip̂y)(1s)

)

	

where N is a normalization constant. In the above formula p̂ represents the mo-
mentum operator. The normalization constant N will be found from

〈φ|φ〉 = 1= |N |2{〈p̂z(1s)
∣
∣ p̂z(1s)

〉+ 〈(p̂x + ip̂y)(1s)
∣
∣ (p̂x + ip̂y)(1s)

〉}

= |N |2 ·
{

〈p̂z(1s)|p̂z(1s)〉 + 〈p̂x(1s)|p̂x(1s)〉 + i〈p̂x(1s)|p̂y(1s)〉
− i〈p̂y(1s)|p̂x(1s)〉 + 〈p̂y(1s)|p̂y(1s)〉

}

�

In the above formula, integrals with the imaginary unit i are equal to zero, be-
cause the integrand is an odd function. After using the Hermitian character of the
momentum operator we obtain 1 = |N |2〈1s|p̂21s〉 = ζ2. The last equality follows
from Appendix H, p. 969. Thus, one may choose N = 1/ζ.

Calculating integrals in the Dirac matrix equation

We will calculate one by one all the integrals that appear in the Dirac matrix equa-
tion. The integral 〈ψ| − Z

r ψ〉 = −Zζ, because the scalar product leads to the nu-
clear attraction integral with a hydrogen-like atomic orbital, and this gives the re-
sult above (Appendix H, p. 969). The next integral can be computed as follows

〈

φ

∣
∣
∣
∣

1
r
φ

〉

= |N |2
〈

p̂z(1s)
(p̂x + ip̂y)(1s)

∣
∣
∣
∣

1
r

(

p̂z(1s)
(p̂x + ip̂y)(1s)

)〉

= |N |2
〈

p̂z(1s)
∣
∣
∣
∣

1
r
p̂z(1s)

〉

+
〈
(

p̂x + ip̂y
)

(1s)
∣
∣
∣
∣

1
r

(

p̂x + ip̂y
)

(1s)
〉
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= |N |2
〈

(1s)
∣
∣
∣
∣
p̂z

1
r
p̂z(1s)

〉

+
〈

(1s)
∣
∣
∣
∣

(

p̂x − ip̂y
)1
r

(

p̂x + ip̂y
)

(1s)
〉

= |N |2
〈

(1s)
∣
∣
∣
∣

(

p̂z
1
r

)

p̂z(1s)
〉

+
〈

(1s)
∣
∣
∣
∣

[
(

p̂x − ip̂y
)1
r

]
(

p̂x + ip̂y
)

(1s)
〉

+
〈

(1s)
∣
∣
∣
∣

1
r
p̂zp̂z(1s)

〉

+
〈

(1s)
∣
∣
∣
∣

1
r

(

p̂x − ip̂y
) (

p̂x + ip̂y
)

(1s)
〉

� (3.63)

In the second row, the scalar product of spinors is used, in the third row, the
Hermitian character of the operator p̂. Further,

〈

φ

∣
∣
∣
∣

1
r
φ

〉

= |N |2
[〈

(1s)
∣
∣
∣
∣

(

p̂z
1
r

)

p̂z(1s)
〉

+
〈

(1s)
∣
∣
∣
∣

1
r

(

p̂2
x + p̂2

y + p̂2
z

)

(1s)
〉

+
〈

(1s)
∣
∣
∣
∣

[
(

p̂x − ip̂y
) 1
r

]
(

p̂x + ip̂y
)

(1s)
〉]

= |N |2
[〈

(1s)
∣
∣
∣
∣

(

p̂z
1
r

)

p̂z(1s)
〉

−
〈

(1s)
∣
∣
∣
∣

1
r
�(1s)

〉

+
〈

(1s)
∣
∣
∣
∣

(

p̂x
1
r

)

p̂x(1s)
〉

+
〈

(1s)
∣
∣
∣
∣

(

p̂y
1
r

)

p̂y(1s)
〉

− i
〈

(1s)
∣
∣
∣
∣

(

p̂y
1
r

)

p̂x(1s)
〉

+ i
〈

(1s)
∣
∣
∣
∣

(

p̂x
1
r

)

p̂y(1s)
〉]

� (3.64)

We used the atomic units and therefore p̂2 =−�, and the momentum operator
is equal to −i∇ . The two integrals at the end cancel each other, because each of
the integrals does not change when the variables are interchanged: x↔ y .

Finally, we obtain the following formula

〈

φ

∣
∣
∣
∣

1
r
φ

〉

= −|N |2
{〈

1s
∣
∣
∣
∣

1
r
�(1s)

〉

+
〈

1s
∣
∣
∣
∣

(

∇ 1
r

)∇(1s)
〉}

= −ζ−2{(−3ζ3 + 2ζ3)}= ζ	

where the equality follows from a direct calculation of the two integrals.33

The next matrix element to calculate is equal to 〈φ|c(σ ·π)ψ〉. We proceed as
follows (please recall kinetic balancing and we also use Appendix H, p. 969):

〈φ|c(σ ·π)ψ〉 =N c
〈

(σ ·π)
(

1s
0

)∣
∣
∣
∣
(σ ·π)

(

1s
0

)〉

33In the first integral we have the same situation as a while before. In the second integral we write the
nabla operator in Cartesian coordinates, obtain a scalar product of two gradients, then we get three
integrals equal to one another (they contain x	y	 z), and it is sufficient to calculate one of them by
spherical coordinates by formula (H.2) in Appendix H, p. 969.
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=N c
〈(

p̂z(1s)
(p̂x + ip̂y)(1s)

)∣
∣
∣
∣

(

p̂z(1s)
(p̂x + ip̂y)(1s)

)〉

=N c
[〈

p̂z(1s)
∣
∣ p̂z(1s)

〉+ 〈(p̂x + ip̂y)(1s)
∣
∣ (p̂x + ip̂y)(1s)

〉]

=N c
〈

1s
∣
∣p̂2(1s)

〉= 1
ζ
cζ2 = cζ�

The last matrix element reads as

〈ψ|c(σ ·π)φ〉 =N c
〈(

1s
0

)∣
∣
∣
∣
(σ ·π)2

(

1s
0

)〉

=N c
〈(

1s
0

)∣
∣
∣
∣

(

p̂2 0
0 p̂2

)(

1s
0

)〉

=N c
〈

1s
∣
∣ p̂21s

〉= c 1
ζ
ζ2 = cζ�

Dirac’s secular determinant
We have all the integrals needed and may now write the secular determinant cor-
responding to the matrix form of the Dirac equation:

∣
∣
∣
∣

〈ψ|V ψ〉 − ε 〈ψ|c(σ ·π)φ〉
〈φ|c(σ ·π)ψ〉 〈φ|(V − 2c2))φ〉 − ε

∣
∣
∣
∣
= 0	

and after inserting the calculated integrals
∣
∣
∣
∣

−Zζ − ε cζ
cζ −Zζ − 2c2 − ε

∣
∣
∣
∣
= 0�

Expanding the determinant gives the equation for the energy ε

ε2 + ε(2Zζ + 2c2)+ [Zζ(Zζ + 2c2)− c2ζ2]= 0�

Hence, we get two solutions

ε± =−
(

c2 +Zζ)±
√

c4 + ζ2c2�

Note that the square root is of the order of c2 (in a.u.), and with the (unit) mass
of the electron m0, it is of the order of m0c

2. Therefore, the minus sign before the
square root corresponds to a solution with energy of the order of −2m0c

2, while
the plus sign corresponds to energy of the order of zero. Let us recall that we have
shifted the energy scale in the Dirac equation and the last solution ε+ (hereafter
denoted by ε) is to be compared to the energy of the non-relativistic hydrogen-like
atom

ε = −(c2 +Zζ)+
√

c4 + ζ2c2 =−(c2 +Zζ)+ c2

√

1+ ζ
2

c2
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= −(c2 +Zζ)+ c2
(

1+ ζ2

2c2 −
ζ4

8c4 + � � �
)

= −Zζ + ζ
2

2
+
(

− ζ4

8c2 + � � �
)

� (3.65)

Non-relativistic solution

If c→∞, i.e. we approach the non-relativistic limit, then ε= −Zζ + ζ2

2 . Mini-
mization of this energy with respect to ζ gives its optimum value ζnonrel

opt = Z. In
this way one recovers the result known from non-relativistic quantum mechanics
(Appendix H) obtained in the variational approach to the hydrogen atom with the
1s orbital as a trial function.

3.4.2 RELATIVISTIC CONTRACTION OF ORBITALS

Minimizing the relativistic energy equation (3.65) leads to an equation for opti-
mum ζ ≡ ζrel

opt:

dε
dζ
= 0=−Z + 1

2
(

c4 + ζ2c2)− 1
2 2ζc2 =−Z + (c4 + ζ2c2)− 1

2 ζc2	

giving

ζrel
opt =

Z
√

1− Z2

c2

�

The result differs remarkably from the non-relativistic value ζnonrel
opt =Z, but ap-

proaches the non-relativistic value when c→∞. Note than the difference between
the two values increases with atomic number Z, and that the relativistic exponent
is always larger that its non-relativistic counter-part. This means that the relativistic
orbital decays faster with the electron–nucleus distance and therefore

the relativistic orbital 1s is smaller (contraction) than the corresponding
non-relativistic one.

Let us see how it is for the hydrogen atom. In that case ζrel
opt = 1�0000266

as compared to ζnonrel
opt = ZH = 1. And what about 1s orbital of gold? For gold

ζrel
opt = 96�68, while ζnonrel

opt =ZAu = 79! Since for a heavy atom, the effective expo-
nent of the atomic orbitals decreases when moving from the low-energy compact
1s orbital to higher-energy outer orbitals, this means that the most important rel-
ativistic orbital contraction occurs for the inner shells. The chemical properties of
an atom depend on what happens to its outer shells (valence shell). Therefore, we
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may conclude that the relativistic corrections are expected to play a secondary role
in chemistry.34

If we insert ζrel
opt in eq. (3.65) we obtain the minimum value of ε

εmin =−
(

c2 +Zζ)+
√

c4 + ζ2� (3.66)

Since Z2/c2 is small with respect to 1, we may expand the square root in the
Taylor series,

√
1− x= 1− 1

2x− 1
8x

2 − · · ·. We obtain

εmin = −c2 + c2
{

1−
(

1
2

)(
Z2

c2

)

− 1
8

(
Z2

c2

)2

− · · ·
}

= −Z
2

2

(

1+
(
Z

2c

)2
+ · · ·

)

� (3.67)

In the case of the hydrogen atom (Z = 1) we have

εmin =−1
2

(

1+
(

1
2c

)2
+ · · ·

)

	 (3.68)

where the first two terms shown give Darwin’s exact result35 (discussed earlier).
Inserting c = 137�036 a.u. we obtain the hydrogen atom ground-state energy ε =
−0�5000067 a.u., which agrees with Darwin’s result.

3.5 LARGER SYSTEMS

The Dirac equation represents an approximation36 and refers to a single particle.
What happens with larger systems? Nobody knows, but the first idea is to con-
struct the total Hamiltonian as a sum of the Dirac Hamiltonians for individual par-
ticles plus their Coulombic interaction (the Dirac–Coulomb approximation). This Dirac–Coulomb

approximationis practised routinely nowadays for atoms and molecules. Most often we use the
mean-field approximation (see Chapter 8) with the modification that each of the
one-electron functions represents a four-component bispinor. Another approach
is extremely pragmatic, maybe too pragmatic: we perform the non-relativistic cal-
culations with a pseudopotential that mimics what is supposed to happen in a rel-
ativistic case.

34We have to remember, however, that the relativistic effects also propagate from the inner shells to
the valence shell through the orthogonalization condition, that has to be fulfilled after the relativistic
contraction. This is why the gold valence orbital 6s shrinks, which has an immediate consequence in the
relativistic shortening of the bond length in Au2, which we cited at the beginning of this chapter.
35I.e. the exact solution to the Dirac equation for the electron in the external electric field produced

by the proton.
36Yet it is strictly invariant with respect to the Lorentz transformation.
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3.6 BEYOND THE DIRAC EQUATION� � �

How reliable is the presented relativistic quantum theory? The Dirac or Klein–
Gordon equations, as is usual in physics, describe only some aspects of reality.
The fact that both equations are invariant with respect to the Lorentz transforma-
tion indicates only that the space-time symmetry properties are described correctly.
The physical machinery represented by these equations is not so bad, since several
predictions have been successfully made (antimatter, electron spin, energy levels
of the hydrogen atom). Yet, in the latter case an assumption of the external field
V =−Ze2

r is a positively desperate step, which in fact is unacceptable in a fair rel-
ativistic theory for the proton and the electron (and not only of the electron in
the external field of the nucleus). Indeed, the proton and the electron move. At a
given time their distance is equal to r, but such a distance might be inserted into the
Coulombic law if the speed of light were infinite, because the two particles would
feel their positions instantaneously. Since, however, any perturbation by a posi-
tional change of a particle needs time to travel to the other particle, we have to use
another distance somehow taking this into account (Fig. 3.3). The same pertains,
of course, to any pair of particles in a many-body system (the so-called retardedretarded

potential potential).
There is certainly a need for a more accurate theory.

3.6.1 THE BREIT EQUATION

Breit constructed a many-electron relativistic theory that takes into account such
a retarded potential in an approximate way. Breit explicitly considered only the
electrons of an atom, nucleus of which (similar to Dirac theory) created only an
external field for the electrons. This ambitious project was only partly success-

Fig. 3.3. Retardation of the interaction. The dis-
tance r12 of two particles in the interaction po-
tential (as in Coulomb’s law) is bound to repre-
sent an approximation, because we assume an in-
stantaneous interaction. However, when the two
particles catch sight of each other (which takes
time) they are already somewhere else.
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ful, because the resulting theory turned
out to be approximate not only from the
point of view of quantum theory (some
interactions not taken into account) but
also from the point of view of relativity
theory (an approximate Lorentz trans-
formation invariance).

For two electrons the Breit equation
has the form (r12 stands for the distance
between electron 1 and electron 2)

Gregory Breit (1899–1981),
American physicist, professor
at the universities New York,
Wisconsin, Yale, Buffalo. Breit
with Eugene Wigner intro-
duced the resonance states
of particles, and with Condon
created the proton–proton
scattering theory.

{

Ĥ(1)+ Ĥ(2)+ 1
r12
− 1

2r12

[

α(1)α(2)+ [α(1) · r12] [α(2) · r12]

r2
12

]}

�=E�	
(3.69)

where (cf. eq. (3.54) with E replaced by the Hamiltonian)

Ĥ(i)= qiφ(ri)+ cα(i)π(i)+ α0(i)m0c
2 =−eφ(ri)+ cα(i)π(i)+ α0(i)m0c

2

is the Dirac Hamiltonian for electron i pointed by vector ri, whereas the Dirac ma-
trices for electron i: α(i) = [αx(i)	αy(i)	αz(i)] and the corresponding operators
πμ(i) have been defined on p. 114, φ(ri) represents the scalar potential calculated
at ri. The wavefunction � represents a 16-component spinor (here represented
by a square matrix of rank 4), because for each electron we would have the usual
Dirac bispinor (four component) and the two-electron wavefunction depends on
the Cartesian product of the components.37

The Breit Hamiltonian (in our example, for two electrons in an electromagnetic
field) can be approximated by the following useful formula38 known as the Breit–
Pauli Hamiltonian Breit–Pauli

Hamiltonian
Ĥ(1	2)= Ĥ0 + Ĥ1 + · · · + Ĥ6	 (3.70)

where:

• Ĥ0 = p̂2
1

2m0
+ p̂2

2
2m0

+ V represents the familiar non-relativistic Hamiltonian.

• Ĥ1 =− 1
8m3

0c
2 (p̂

4
1 + p̂4

2) comes from the velocity dependence of mass, more pre-

cisely from the Taylor expansion of eq. (3.38), p. 109, for small velocities.
• Ĥ2 =− e2

2(m0c)2
1
r12
[p̂1 · p̂2+ r12·(r12·p̂1)p̂2

r2
12

] stands for the correction39 that accounts

in part for the above mentioned retardation. Alternatively, the term may be
viewed as the interaction energy of two magnetic dipoles, each resulting from
the orbital motion of an electron (orbit–orbit term). orbit–orbit term

37In the Breit equation (3.69) the operators in { } act either by multiplying the 4 × 4 matrix � by a
function (i.e. each element of the matrix) or by a 4× 4 matrix resulting from α matrices.
38H.A. Bethe, E.E. Salpeter, “Quantum Mechanics of One- and Two-Electron Atoms”, Springer, 1977,

p. 181.
39For non-commuting operators â(â · b̂)ĉ=∑3

i	j=1 âiâj b̂j ĉi .
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• Ĥ3 = μB
m0c
{[E(r1) × p̂1 + 2e

r3
12
r12 × p̂2] · s1 + [E(r2) × p̂2 + 2e

r3
12
r21 × p̂1] · s2} is

the interaction energy of the electronic magnetic moments (resulting from the
above mentioned orbital motion) with the spin magnetic dipole moments (spin–spin–orbit

coupling orbit coupling), μB stands for the Bohr magneton, and E denotes the electric
field vector. Since we have two orbital magnetic dipole moments and two spin
orbital dipole moments, there are four spin–orbit interactions. The first term
in square brackets stands for the spin–orbit coupling of the same electron, while
the second term represents the coupling of the spin of one particle with the orbit
of the second.

• Ĥ4 = ieh̄
(2m0c)2

[p̂1 ·E(r1)+ p̂2 ·E(r2)] is a non-classical term peculiar to the Dirac
theory (also present in the one-electron Dirac Hamiltonian) called the DarwinDarwin term

term.
• Ĥ5 = 4μ2

B{− 8π
3 (s1 · s2)δ(r12) + 1

r3
12
[s1 · s2 − (s1·r12)(s2·r12)

r2
12

]} corresponds to the

spin dipole moment interactions of the two electrons (spin–spin term). The firstspin–spin

term is known as the Fermi contact term, since it is non-zero only when the twoFermi contact
term electrons touch one another (see Appendix E, p. 951), whereas the second term

represents the classical dipole–dipole interaction of the two electronic spins (cf.
the multipole expansion in Appendix X, p. 1038 and Chapter 13), i.e. the in-
teraction of the two spin magnetic moments of the electrons (with the factor 2,
according to eq. (3.62), p. 122).

• Ĥ6 = 2μB[H(r1) · s1 + H(r2) · s2] + e
m0c
[A(r1) · p̂1 + A(r2) · p̂2] is known as

the Zeeman interaction, i.e. the interaction of the spin (the first two terms) andZeeman term

the orbital (the second two terms) electronic magnetic dipole moments with the
external magnetic field H (cf. eq. (3.62)).

The terms listed above are of prime importance in the theory of the interaction
of matter with the electromagnetic field (e.g., in nuclear magnetic resonance).

3.6.2 A FEW WORDS ABOUT QUANTUM ELECTRODYNAMICS (QED)

The Dirac and Breit equations do not account for several subtle effects.40 They are
predicted by quantum electrodynamics, a many-particle theory.

Willis Eugene Lamb (b. 1913), American physi-
cist, professor at Columbia, Stanford, Oxford,
Yale and Tucson universities. He received the
Nobel Prize in 1955 “for his discoveries con-
cerning the fine structure of the hydrogen
spectrum”.

40For example, an effect observed in spectroscopy for the first time by Willis Lamb.



3.6 Beyond the Dirac equation� � � 133

The QED energy may be conveniently developed in a series of 1
c :

• in zero order we have the non-relativistic approximation (solution to the
Schrödinger equation);

• there are no first order terms;
• the second order contains the Breit corrections;
• the third and further orders are called the radiative corrections. radiative

corrections

Radiative corrections
The radiative corrections include:

• Interaction with the vacuum (Fig. 3.4.a). According to modern physics the per-
fect vacuum does not just represent nothing. The electric field of the vacuum
itself fluctuates about zero and these instantaneous fluctuations influence the
motion of any charged particle. When a strong electric field operates in a vac-
uum, the latter undergoes a polarization (vacuum polarization), which means a vacuum

polarizationspontaneous creation of matter, more specifically, of particle-antiparticle pairs.

Fig. 3.4. (a) The electric field close to the proton (composed of three quarks) is so strong that it creates
matter and antimatter (shown as electron–positron pairs). The three quarks visible in scattering exper-
iments represent the valence quarks. (b) One of the radiative effects in the QED correction of the
c−3 order (see Table 3.1). The pictures show the sequence of the events from left to the right. A pho-
ton (wavy line on the left) polarizes the vacuum and an electron–positron pair (solid lines) is created,
and the photon vanishes. Then the created particles annihilate each other and a photon is created.
(c) A similar event (of the c−4 order in QED), but during the existence of the electron–positron pair
the two particles interact by exchange of a photon. (d) An electron (horizontal solid line) emits a pho-
ton, which creates an electron–positron pair, that annihilates producing another photon. Meanwhile
the first electron emits a photon, then first absorbs the photon from the annihilation, and afterwards
the photon emitted by itself earlier. This effect is of the order c−5 in QED.



134 3. Beyond the Schrödinger Equation

The probability of this event (per unit volume and time) depends41 (Fig. 3.4.a–
d) on the particle mass m and charge q:

w= E2

cπ2

∞
∑

n=1

1
n2 exp

(

−nπm
2

|qE |
)

	 (3.71)

where E is the electric field intensity. The creation of such pairs in a static elec-
tric field has never yet been observed, because we cannot yet provide sufficient E .
Even for the electron on the first Bohr orbit, the |qE | is small compared to m2

(however, for smaller distances the exponent may be much smaller).creation of
matter • Interaction with virtual photons. The electric field influences the motion of elec-

tron. What about its own electric field? Does it influence its motion as well? The
latter effect is usually modelled by allowing the electron to emit photons and
then to absorb them (“virtual photons”)42 (Fig. 3.4.d).

The QED calculations performed to date have been focused on the energy. The
first calculations of atomic susceptibilities (helium) within an accuracy including
the c−2 terms were carried out independently43 by Pachucki and Sapirstein44 and
by Cencek and coworkers,45 and with accuracy up to c−3 (with estimation of the
c−4 term) by Łach and coworkers (see Table 3.1). To get a flavour of what subtle
effects may be computed nowadays, Table 3.1 shows the components of the first
ionization energy and of the dipole polarizability (see Chapter 12) of the helium
atom.

Comments to Table 3.1

• Ĥ0 denotes the result obtained from an accurate solution of the Schrödinger
equation (i.e. the non-relativistic and finite nuclear mass theory). Today the so-
lution of the equation could be obtained with greater accuracy than reported
here. Imagine, that here the theory is limited by the precision of our knowledge
of the helium atom mass, which is “only” 12 significant figures.

• The effect of the non-zero size of the nucleus is small, it is practically never
taken into account in computations. If we enlarged the nucleus to the size of an
apple, the first Bohr orbit would be 10 km from the nucleus. And still (sticking
to our analogy) the electron is able to distinguish a point from an apple? Not
quite. It sees the (tiny) difference because the electron knows the region close
to the nucleus: it is there that it resides most often. Anyway the theory is able to
compute such a tiny effect.

41C. Itzykson, J.-B. Zuber, “Quantum Field Theory”, McGraw-Hill, 1985, p. 193.
42As remarked by Richard Feynman (see Additional Literature in the present chapter, p. 140) for

unknown reasons physics is based on the interaction of objects of spin 1
2 (like electrons or quarks)

mediated by objects of spin 1 (like photons, gluons or W particles).
43With identical result, that increases enormously the confidence one may place in such results.
44K. Pachucki, J. Sapirstein, Phys. Rev. A 63 (2001) 12504.
45W. Cencek, K. Szalewicz, B. Jeziorski, Phys. Rev. Letters 86 (2001) 5675.
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Table 3.1. Contributions of various physical effects (non-relativistic, Breit, QED and beyond QED) to the ionization energy and the dipole polarizability α
of the helium atom as well as comparison with the experimental values (all quantities in atomic units, i.e. e= 1, h̄= 1, m0 = 1, where m0 denotes the rest
mass of electron). The first column gives the symbol of the term in the Breit–Pauli Hamiltonian (3.70) as well as of the QED corrections given order by
order (first corresponding to the electron–positron vacuum polarization (QED), then, beyond quantum electrodynamics, to other particle–antiparticle pairs
(non-QED): μ	π	 � � �) split into several separate effects. The second column contains a short description of the effect. The estimated error (third column) is
given in parentheses in the units of the last figure reported

Term Physical interpretation Ionization energy [MHz] α [a.u.×10−6]1
Ĥ0 Schrödinger equation 5 945 262 288.62(4) 1 383 809.986(1)
δ non-zero size of the nucleus −29.55(4) 0.022(1)
Ĥ1 p4 term 1 233 305.45(1) −987.88(1)
Ĥ2(el-el) electron–electron retardation (Breit interaction) 48 684�88(1) −23�219(1)
Ĥ2(el-n) electron–nucleus retardation (Breit interaction) 319�16(1) −0�257(3)
Ĥ2 Breit interaction (total) 49 004.04(1) −23.476(3)
Ĥ3 spin–orbit 0 0
Ĥ4(el-el) electron–electron Darwin term 117 008�83(1) −66�083(1)
Ĥ4(el-n) electron–nucleus Darwin term −1 182 100�99(1) 864�85(2)
Ĥ4 Darwin term (total) −1 065 092.16(1) 798.77(2)
Ĥ5 spin–spin (total) −234 017.66(1) 132.166(1)
Ĥ6 spin-field 0 0
QED(c−3) vacuum polarization correction to electron–electron interaction −72�48(1) 0�41(1)
QED(c−3) vacuum polarization correction to electron–nucleus interaction 1 463�00(1) −1�071(1)
QED(c−3) Total vacuum polarization in c−3 order 1 390�52(1) −1�030(1)
QED(c−3) vac.pol. + other c−3 QED correction −40 483.98(5) 30.66(1)
QED(c−4) vacuum polarization 12�26(1) 0�009(1)
QED(c−4) Total c−4 QED correction −834.9(2) 0.56(22)
QED-h.o. Estimation of higher order QED correction 84(42) −0.06(6)
non-QED contribution of virtual muons, pions, etc. 0.05(1) −0.004(1)
∑

Theory (total) 5 945 204 223(42)2 1 383 760.79(23)
Experiment 5 945 204 238(45)3 1 383 791(67)4

1G. Łach, B. Jeziorski, K. Szalewicz, Phys. Rev. Letters 92 (2004) 233001.
2G.W.F. Drake, W.C. Martin, Can. J. Phys. 76 (1998) 679; V. Korobov, A. Yelkhovsky, Phys. Rev. Letters 87 (2001) 193003.
3K.S.E. Eikema, W. Ubachs, W. Vassen, W. Hogervorst, Phys. Rev. A 55 (1997) 1866.
4F. Weinhold, J. Phys. Chem. 86 (1982) 1111.
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• The term p4and the total Darwin effect nearly cancel each other for unclear reasons.
This cancellation is being persistently confirmed also in other systems. Mysteri-
ously enough, this pertains not only to the ionization energy, but also to the
polarizability.

• After the above mentioned cancellation (of p4 and Darwin terms), retardation
becomes one of the most important relativistic effects. As seen from the Ta-
ble, the effect is about a 100 times larger (both for the ionization energy and the
polarizability) for the electron–electron retardation than for that of the nucleus–
electron. This is quite understandable, because the nucleus represents a “mas-
sive rock” (it is about 7000 times heavier) in comparison to an electron, it moves
slowly and in the nucleus–electron interaction only the electron contributes to
the retardation effect. Two electrons make the retardation much more serious.

• Term Ĥ3 (spin–orbit coupling) is equal to zero for symmetry reasons (for the
ground state).

• In the Darwin term, the nucleus–electron vs electron–electron contribution have
reversed magnitudes: about 1 : 10 as compared to 100 : 1 in retardation). Again
this time it seems intuitively correct. We have the sum of the particle–particle
terms in the Hamiltonian Ĥ4 = ieh̄

(2m0c)2
[p̂1 · E(r1)+ p̂2 · E(r2)], where E means

an electric field created by two other particles on the particle under considera-
tion. Each of the terms is proportional to ∇i∇iV = �iV = 4πqiδ(ri), where δ is
the δ Dirac delta function (Appendix E, p. 951), and qi denotes the charge of
the particle “i”. The absolute value of the nuclear charge is twice the electron
charge.

• In term Ĥ5 the spin–spin relates to the electron–electron interaction because
the helium nucleus has spin angular momentum of 0.

• The Coulombic interactions are modified by the polarization of vacuum (simi-
lar to the weaker interaction of two charges in a dielectric medium). Table 3.1
reports such corrections46 to the electron–electron and the electron–nucleus in-
teractions [QED(c−3)] taking into account that electron–positron pairs jump
out from the vacuum. One of these effects is shown in Fig. 3.4.a. As seen from
Table 3.1, the nucleus polarizes the vacuum much more easily (about ten times
more that the polarization by electrons). Once again the larger charge of the
nucleus makes the electric field larger and qualitatively explains the effect. Note
that the QED corrections (corresponding to e-p creation) decrease quickly with
their order. One of such higher order corrections is shown in Fig. 3.4.d.

• What about the creation of other (than e-p) particle-antiparticle pairs from the
vacuum? From (3.71) we see that the larger the rest mass the more difficult it
is to squeeze out the corresponding particle-antiparticle pair. And yet, we have
some tiny effect (see non-QED entry) corresponding to the creation of such
pairs as muon-antimuon (μ), pion-antipion47 (π), etc. This means that the he-
lium atom is composed of the nucleus and the two electrons only, when we look

46However, these effects represent a minor fraction of the total QED(c−3) correction.
47Pions are π mesons, the subnuclear particles with mass comparable to that of the muon, a particle

about 200 times more massive than an electron. Pions were discovered in 1947 by C.G. Lattes, G.S.P.
Occhialini and C.F. Powell.
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at it within a certain approximation. To tell the truth, the atom contains also pho-
tons, electrons, positrons, muons, pions, and whatever you wish, but with smaller
and smaller probability. All that silva rerum has only a minor effect of the order
of something like the seventh significant figure (both for the ionization potential
and for the polarizability).

Summary

The beginning of the twentieth century has seen the birth and development of two revo-
lutionary theories: relativity and quantum mechanics. These two theories turned out to be
incompatible, and attempts were made to make them consistent. This chapter consists of
two interrelated parts:

• introduction of the elements of relativity theory, and
• attempts to make quantum theory consistent with relativity (relativistic quantum mechan-

ics).

ELEMENTS OF SPECIAL RELATIVITY THEORY

• If experiments are to be described in the same way in two laboratories that move with
respect to the partner laboratory with constant velocities v and −v, respectively, then
the apparent forces have to vanish. The same event is described in the two laboratories
(by two observers) in the corresponding coordinate system (in one the event happens at
coordinate x and time t, in the second – at x′ and t′). A sufficient condition that makes
the apparent forces vanish is based on linear dependence: x′ =Ax+Bt and t′ = Cx+Dt,
where A	B	C	D denote some constants.

• In order to put both observers on the same footing, we have to have A=D.
• The Michelson–Morley experiment has shown that each of the observers will note that in

the partner’s laboratory there is a contraction of the dimension pointing to the partner.
As a consequence there is a time dilation, i.e. each of the observers will note that time
flows slower in the partner’s laboratory.

• Einstein assumed that in spite of this, any of the observers will measure the same speed
of light, c, in his coordinate system.

• This leads to the Lorentz transformation that says where and when the two observers see
the same event. The Lorentz transformation is especially simple after introducing the
Minkowski space (x	 ct):

[

x′
ct′
]

= 1
√

1− v2

c2

{

1 − vc− vc 1

}[

x
ct

]

�

None of the two coordinate systems is privileged (relativity principle).
• Finally, we derived Einstein’s formula Ekin =mc2 for the kinetic energy of a body with

mass m (this depends on its speed with respect to the coordinate system where the mass
is measured).

RELATIVISTIC QUANTUM DYNAMICS

• Fock, Klein and Gordon found the total energy for a particle using the Einstein formula
for kinetic energy Ekin =mc2, adding the potential energy and introducing the momen-



138 3. Beyond the Schrödinger Equation

tum48 p=mv. After introducing an external electromagnetic field (characterized by the
vector potential A and the scalar potential φ) they obtained the following relation among
operators

[
ih̄ ∂
∂ t − qφ
c

]2
−
[(

−ih̄∇ − q

c
A

)2
+m2

0c
2
]

= 0	

where m0 denotes the rest mass of the particle.
• Paul Dirac factorized the left hand side of this equation by treating it as the difference

of squares. This gave two continua of energy separated by a gap of width 2m0c
2. Dirac

assumed that the lower (negative energy) continuum is fully occupied by electrons (“vac-
uum”), while the upper continuum is occupied by the single electron (our particle). If we
managed to excite an electron from the lower continuum to the upper one, then in the
upper continuum we would see an electron, while the hole in the lower continuum would
have the properties of a positive electron (positron). This corresponds to the creation of
the electron–positron pair from the vacuum.

• The Dirac equation for the electron has the form:
(

ih̄
∂

∂ t

)

�=
(

qφ+ c
∑

μ=x	y	z
αμπμ + α0m0c

2
)

�	

where πμ in the absence of magnetic field is equal to the momentum operator p̂μ, μ=
x	 y	 z, while αμ stand for the square matrices of the rank 4, which are related to the Pauli
matrices (cf. introduction of spin, Chapter 1). In consequence, the wavefunction � has to
be a four-component vector composed of square integrable functions (bispinor).

• The Dirac equation demonstrated “pathological” behaviour when a numerical solution
was sought. The very reason for this was the decoupling of the electron and positron
equations. The exact separation of the negative and positive energy continua has been
demonstrated by Barysz and Sadlej, but it leads to a more complex theory. Numerical
troubles are often removed by an ad hoc assumption called kinetic balancing, i.e. fixing
a certain relation among the bispinor components. By using this relation we prove that
there are two large and two small (smaller by a factor of about v

2c ) components of the
bispinor.49

• The kinetic balance can be used to eliminate the small components from the Dirac
equation. Then, the assumption c = ∞ (non-relativistic approximation) leads to the
Schrödinger equation for a single particle.

• The Dirac equation for a particle in the electromagnetic field contains the interaction of
the spin magnetic moment with the magnetic field. In this way spin angular momentum
appears in the Dirac theory in a natural way (as opposed to the non-relativistic case,
where it has had to be postulated).

• The problem of an electron in the external electric field produced by the nucleus (the
hydrogen-like atom) has been solved exactly. It turned out that the relativistic corrections
are important only for systems with heavy atoms.

• It has been demonstrated in a step-by-step calculation how to obtain an approximate
solution of the Dirac equation for the hydrogen-like atom. One of the results is that the
relativistic orbitals are contracted compared to the non-relativistic ones.

48They wanted to involve the momentum in the formula to be able to change the energy expression to
an operator (p→ p̂) according to the postulates of quantum mechanics.
49For solutions with negative energies this relation is reversed.
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• Finally, the Breit equation has been given. The equation goes beyond the Dirac model,
by taking into account the retardation effects. The Pauli–Breit expression for the Breit
Hamiltonian contains several easily interpretable physical effects.

• Quantum electrodynamics (QED) provides an even better description of the system by
adding radiative effects that take into account the interaction of the particles with the
vacuum.

Main concepts, new terms

apparent forces (p. 93)
inertial system (p. 95)
Galilean transformation (p. 96)
Michelson–Morley experiment (p. 96)
length contraction (p. 100)
Lorentz transformation (p. 100)
velocity addition law (p. 103)
relativity principle (p. 104)
Minkowski space-time (p. 104)
time dilation (p. 105)
relativistic mass (p. 107)
Einstein equation (p. 108)
Klein–Gordon equation (p. 109)
Dirac electronic sea (p. 111)
Dirac vacuum (p. 112)
energy continuum (p. 112)
positron (p. 113)

anticommutation relation (p. 114)
Dirac equation (p. 115)
spinors and bispinors (p. 115)
kinetic balance (p. 119)
electron spin (p. 122)
Darwin solution (p. 123)
contraction of orbitals (p. 128)
retarded potential (p. 130)
Breit equation (p. 131)
spin–orbit coupling (p. 132)
spin–spin coupling (p. 132)
Fermi contact term (p. 132)
Zeeman effect (p. 132)
vacuum polarization (p. 133)
particle–antiparticle creation (p. 134)
virtual photons (p. 134)

From the research front

Dirac theory within the mean field approximation (Chapter 8) is routinely applied to mole-
cules and allows us to estimate the relativistic effects even for large molecules. In the com-
puter era, this means, that there are commercial programs available that allow anybody to
perform relativistic calculations.

Much worse is the situation with more accurate calculations. The first estimation for
molecules of relativistic effects beyond the Dirac approximation has been carried out by
Janos Ladik50 and then by Jeziorski and Kołos51 while the first calculation of the inter-
action with the vacuum for molecules was done by Bukowski et al.52 Besides the recent
computation of the Lamb shift for the water molecule,53 not much has been computed in
this area.

Ad futurum� � �

In comparison with typical chemical phenomena, the relativistic effects in almost all in-
stances, remain of marginal significance for biomolecules or for molecules typical of tradi-

50J. Ladik, Acta Phys. Hung. 10 (1959) 271.
51The calculations were performed for the hydrogen molecular ion H+2 , B. Jeziorski, W. Kołos, Chem.

Phys. Letters 3 (1969) 677.
52R. Bukowski, B. Jeziorski, R. Moszyński, W. Kołos, Int. J. Quantum Chem. 42 (1992) 287.
53P. Pyykkö, K.G. Dyall, A.G. Császár, G. Tarczay, O.L. Polyansky, J. Tennyson, Phys. Rev. A 63 (2001)

24502.
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Hans Albrecht Bethe (1906–2005), American
physicist, professor at Cornell University, stu-
dent of Arnold Sommerfeld. Bethe contributed
to many branches of physics, e.g., crystal
field theory, interaction of matter with radiation,
quantum electrodynamics, structure and nu-
clear reactions of stars (for the latter achieve-
ment he received the Nobel Prize in 1967).

tional organic chemistry. In inorganic chemistry, these effects could however be much more
important. Probably the Dirac–Coulomb theory combined with the mean field approach will
for a few decades remain a satisfactory standard for the vast majority of researchers. At the
same time there will be theoretical and computational progress for small molecules (and for
atoms), where Dirac theory will be progressively replaced by quantum electrodynamics.

Additional literature

H. Bethe, E. Salpeter, “Quantum Mechanics of One- and Two-Electron Atoms”,
Springer, Berlin, 1957.

This book is absolutely exceptional. It is written by excellent specialists in such a com-
petent way and with such care (no misprints), that despite the lapse of many decades it
remains the fundamental and best source.

I.M. Grant, H.M. Quiney, “Foundations of the Relativistic Theory of Atomic and Molec-
ular Structure”, Adv. At. Mol. Phys., 23 (1988) 37.

Very good review.

L. Pisani, J.M. André, M.C. André, E. Clementi, J. Chem. Educ., 70, 894–901 (1993),
also J.M. André, D.H. Mosley, M.C. André, B. Champagne, E. Clementi, J.G. Fripiat,
L. Leherte, L. Pisani, D. Vercauteren, M. Vracko, Exploring Aspects of Computational
Chemistry: Vol. I, Concepts, Presses Universitaires de Namur, pp. 150–166 (1997), Vol. II,
Exercises, Presses Universitaires de Namur, p. 249–272 (1997).

Fine article, fine book, written clearly, its strength is also in very simple examples of
the application of the theory.

R.P. Feynman, “QED – The Strange Theory of Light and Matter”, Princeton University
Press, Princeton, 1988.

Excellent book written by one of the celebrities of our times in the style “quantum
electrodynamics not only for poets”.

Questions

1. In the Lorentz transformation the two coordinate systems:
a) are both at rest; b) move with the same velocity; c) are related also by Galilean
transformation; d) have x′ and t′ depending linearly on x and t.

2. The Michelson–Morley experiment has shown that when an observer in the coordinate
system O measures a length in O′ (both coordinate systems fly apart; v′ = −v), then he
obtains:
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a) the same result that is obtained by an observer in O′; b) contraction of lengths along
the direction of the motion; c) expansion of lengths along the direction of the motion;
d) contraction of lengths in any direction.

3. An observer inO measures the times a phenomenon takes inO andO′ (both coordinate
systems fly apart; v′ = −v):
a) the time of the phenomenon going on in O will be shorter; b) time goes with the same
speed in O′; c) time goes more slowly in O′ only if |v|> c

2 ; d) time goes more slowly in
O′ only if |v|< c

2 .

4. In the Minkowski space, the distance of any event from the origin (both coordinate
systems fly apart; v′ = −v) is:
a) equal to vt; b) equal to ct; c) the same for observers in O and in O′; d) equal to 0.

5. A bispinor represents:
a) a two-component vector with functions as components; b) a two-component vector
with complex numbers as components; c) a four-component vector with square inte-
grable functions as components; d) a scalar square integrable function.

6. Non-physical results of numerical solutions to the Dirac equation appear because:
a) the Dirac sea is neglected; b) the electron and positron have the same energies; c)
the electron has kinetic energy equal to its potential energy; d) the electron has zero
kinetic energy.

7. The Schrödinger equation can be deduced from the Dirac equation under the assump-
tion that:
a) v = c; b) v/c is small; c) all components of the bispinor have equal length; d) the
magnetic field is zero.

8. In the Breit equation there is an approximate cancellation of:
a) the retardation effect with the non-zero size of the nucleus effect; b) the retardation
effect electron–electron with that of electron–nucleus; c) the spin–spin effect with the
Darwin term; d) the Darwin term with the p4 term.

9. Dirac’s hydrogen atom orbitals when compared to Schrödinger’s are:
a) more concentrated close to the nucleus, but have a larger mean value of r; b) have a
larger mean value of r; c) more concentrated close to the nucleus; d) of the same size,
because the nuclear charge has not changed.

10. The Breit equation: a) is invariant with respect to the Lorentz transformation; b) takes
into account the interaction of the magnetic moments of electrons resulting from their
orbital motion; c) neglects the interaction of the spin magnetic moments; d) describes
only a single particle.

Answers

1d, 2b, 3a, 4c, 5c, 6a, 7b, 8d, 9c, 10b
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EXACT SOLUTIONS –
OUR BEACONS

Where are we?

We are in the middle of the TREE trunk.

An example

Two chlorine atoms stay together – they form the molecule Cl2. If we want to know its main
mechanical properties, it would very quickly be seen that the two atoms have an equilib-
rium distance and any attempt to change this (in either direction) would be accompanied by
work to be done. It looks like the two atoms are coupled together by a sort of spring. If one
assumes that the spring satisfies Hooke’s law,1 the system is equivalent to a harmonic oscil-
lator. If we require that no rotation in space of such a system is allowed, the corresponding
Schrödinger equation has the exact2 analytical solution.

What is it all about

Free particle (�) p. 144

Particle in a box (�) p. 145
• Box with ends
• Cyclic box
• Comparison of two boxes: hexatriene and benzene

Tunnelling effect (��) p. 153
• A single barrier
• The magic of two barriers . . .

The harmonic oscillator (�) p. 164

Morse oscillator (�) p. 169
• Morse potential
• Solution
• Comparison with the harmonic oscillator
• The isotope effect
• Bond weakening effect
• Examples

Rigid rotator (�) p. 176

1And if we limit ourselves to small displacements, see p. 239.
2Exact means ideal, i.e. without any approximation.

142
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Hydrogen-like atom (�) p. 178

Harmonic helium atom (harmonium) (�) p. 185

What do all these problems have in common? (�) p. 188

Beacons and pearls of physics (�) p. 189

Short descriptions of exact solutions to the Schrödinger equations for the above model
systems will be given.

Why is this important?

The Schrödinger equation is nowadays quite easy to solve with a desired accuracy for many
systems. There are only a few systems for which the exact solutions are possible. These
problems and solutions play an extremely important role in physics, since they represent
kind of beacons for our navigation in science, when we deal with complex systems. Real
systems may often be approximated by those for which exact solutions exist. For example,
a real diatomic molecule is an extremely complex system, difficult to describe in detail and
certainly does not represent a harmonic oscillator. Nevertheless, the main properties of
diatomics follow from the simple harmonic oscillator model. When a chemist or physicist
has to describe a complex system, he always first tries to simplify the problem,3 to make
it similar to one of the simple problems described in the present chapter. Thus, from the
beginning we know the (idealized) solution. This is of prime importance when discussing
the (usually complex) solution to a higher level of accuracy. If this higher level description
differs dramatically from that of the idealized one, most often this indicates that there is an
error in our calculations and nothing is more urgent than to find and correct it.

What is needed?

• The postulates of quantum mechanics (Chapter 1, necessary).
• Separation of the centre of mass motion (Appendix I on p. 971, necessary).
• Operator algebra (Appendix B on p. 895, necessary).

In the present textbook we assume that the reader knows most of the problems described
in the present chapter from a basic course in quantum chemistry. This is why the problems
are given in short – only the most important results, without derivation, are reported. On
the other hand, such a presentation, in most cases, will be sufficient for our goals.

Classical works

The hydrogen atom problem was solved by Werner Heisenberg in “Über quantentheoreti-
schen Umdeutung kinematischer und mechanischer Beziehungen” published in Zeitschrift für
Physik, 33 (1925) 879. � Erwin Schrödinger arrived at an equivalent picture within his wave
mechanics in “Quantisierung als Eigenwertproblem. I.” published in Annalen der Physik, 79
(1926) 361. Schrödinger also gave the solution for the harmonic oscillator in a paper (un-
der almost same title) which appeared in Annalen der Physik, 79 (1926) 489. � The Morse

3One of the cardinal strategies of science, when we have to explain a strange phenomenon, is first
to simplify the system and create a model or series of models (more and more simplified descriptions)
that still exhibit the phenomenon. The first model to study should be as simple as possible, because it
will shed light on the main machinery.
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oscillator problem was solved by Philip McCord Morse in “Diatomic Molecules According
to the Wave Mechanics. II. Vibrational Levels” in Physical Review, 34 (1929) 57.4 � The tun-
nelling effect was first considered by Friedrich Hund in “Zur Deutung der Molekelspektren”
published in Zeitschrift für Physik, 40 (1927) 742. � The Schrödinger equation for the har-
monium5 was first solved by Sabre Kais, Dudley R. Herschbach and Raphael David Levine
in “Dimensional Scaling as a Symmetry Operation”, which appeared in the Journal of Chemi-
cal Physics, 91 (1989) 7791.

4.1 FREE PARTICLE

The potential energy for a free particle is a constant (taken arbitrarily as zero):
V = 0 and, therefore, energyE represents the kinetic energy only. The Schrödinger
equation takes the form

− h̄
2

2m
d2�

dx2 =E�
or in other words

d2�

dx2 + κ2�= 0

with κ2 = 2mE
h̄2 � The constant κ in this situation6 is a real number.

The special solutions to this equation are exp(iκx) and exp(−iκx). Their linear
combination with arbitrary complex coefficients A′ and B′ represents the general
solution:

�=A′ exp(iκx)+B′ exp(−iκx)� (4.1)

This is a de Broglie wave of wave length λ= 2π
κ . Function exp(iκx) represents

the eigenfunction of the momentum operator:

p̂x exp(iκx)=−ih̄ d
dx

exp(iκx)=−ih̄iκexp(iκx)= κh̄exp(iκx)�

For eigenvalue h̄κ > 0 the eigenfunction exp(iκx) describes a particle moving to-
wards +∞. Similarly, exp(−iκx) corresponds to a particle of the same energy, but
moving in the opposite direction. The function � =A′ exp(iκx) + B′ exp(−iκx)
is a superposition of these two states. A measurement of the momentum can give
only two values: κh̄ with probability proportional to |A′|2 or −κh̄ with probability
proportional to |B′ |2.

4Note the spectacular speed at which the scholars worked.
5A harmonic model of the helium atom.
6The kinetic energy is always positive.
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4.2 PARTICLE IN A BOX

4.2.1 BOX WITH ENDS

The problem pertains to a single particle in a potential (Fig. 4.1.a)

V (x) = 0 for 0 
 x
L	

V (x) =∞ for other x�

Just because the particle will never go outside the section 0 
 x
L, therefore,
the value of the wave function outside the section is equal to 0. It remains to find
the function in 0 
 x
L.

Let us write down the Schrödinger equation for 0 
 x
L with the Hamiltonian
containing the kinetic energy only (since V = 0, one has E 	 0)

− h̄
2

2m
d2�

dx2 =E�� (4.2)

Fig. 4.1. The potential energy functions for a) particle in a box, b) single barrier, c) double barrier,
d) harmonic oscillator, e) Morse oscillator, f) hydrogen atom.
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The solution to this equation is given by (4.1), which may also be written as

�=A sinκx+B cosκx (4.3)

with

κ2 = 2mE

h̄2 � (4.4)

Now, the key is to recall (p. 74, Fig. 2.5), that the wave function has to be con-
tinuous and, therefore, two conditions have to be fulfilled: 1) �= 0 for x= 0 and
2) �= 0 for x=L. The first condition immediately gives B= 0, the second in this
situation is equivalent to κL= nπ, for n= 0	1	 � � � . From this follows energy quanti-
zation, because κ contains energy E. One obtains, therefore, the following solution
(a standing wave7):

En = n2h2

8mL2 	 n= 1	2	3	 � � � 	 (4.5)

�n =
√

2
L

sin
nπ

L
x	 n= 1	2	3	 � � � 	 (4.6)

because n = 0 has to be excluded as leading to the wave function equal to zero
everywhere, while n < 0 may be safely excluded as leading to the same wave func-
tions as8 n > 0. Fig. 4.2 shows the wave functions for n= 1, 2, 3.

2D rectangular box

Let us consider a rectangular box (Fig. 4.3) with sides L1 and L2 and V = 0 inside
and V =∞ outside. We very easily obtain the solution to the Schrödinger equa-
tion after a straightforward separation of variables x and y leading to the two 1D
Schrödinger equations.

The energy eigenvalue is equal to the sum of the energies for the 1D problems

En = h2

8m

(
n2

1

L2
1

+ n2
2

L2
2

)

	 (4.7)

while the wave function has form of the product

�n1n2 = 2

√

1
L1L2

sin
n1π

L1
x · sin

n2π

L2
y	 (4.8)

where n1	 n2 = 1	2	 � � �

7Recall that any stationary state has a trivial time-dependence through the factor exp(−i E
h̄
t). A stand-

ing wave at any time t has a standing-still pattern of the nodes i.e. the points x with �= 0.
8With the opposite sign, but it does not matter.
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Fig. 4.2. The wave functions for the
particle in a box corresponding to n=
1, 2, 3. Note the increasing number of
nodes, when the energy Ei of the sta-
tionary state increases.

Example 1. Butadiene naively
The particle-in-box problem has more to do with chemistry than would appear at
first glance.

In organic chemistry, we consider some molecules with conjugate double and
single bonds, one of the simplest is butadiene: =−= �

What does this molecule have to do with the particle in a box? It seems nothing.
First, we have not a single particle but 40 particles (10 nuclei and 30 electrons),
second, where is this constant potential for the motion of the particle? Nowhere.
Third, a molecule does not represent a one-dimensional but a three-dimensional
object, and in addition, a curved one instead of a beautiful section of the x axis. It
would seem that any attempt to apply such a primitive theory to our molecule is
ridiculous and yet in such a difficult situation we will see the power of the exact so-
lutions reported in the present chapter. All above objections are perfectly justified,
but let us try to simplify our system a little.

In the molecule under study the CC bonds are “averaged”, which facilitates
the motion of the π electrons along the system (this notion will become clear in
Chapter 8; the π electrons are loosely bound to the molecule, we may assume that
other electrons are always rigidly bound and will therefore be ignored).

If
• we removed the π electrons from the molecule (and put them temporarily into

a safe), and then
• “ground up” the remaining (positively charged) molecular core and distributed

the ground mass uniformly along the x axis within a section of length L equal to
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Fig. 4.3. Examples of the wave functions for a particle in a square box, the quantum numbers (n1	n2)
correspond to: a) (1	1); b) (1	2); c) (2	1); d) (2	2); e) (4	4). The background colour corresponds to
zero. In the case shown the higher the energy the more nodes in the wave function. This rule is not
generally true. For example, in a rectangular box with L1 � L2 even a large increase of n1 does not
raise the energy too much, while introducing a lot of nodes. On the other hand, increasing n2 by 1 raises
the energy much more, while introducing only one extra node. A reader acquainted with hydrogen atom
orbitals will easily recognize the resemblance of the above figures to some of them (cf. pp. 180–185),
because of the rule mentioned above.

the length of the molecule (averaging the potential energy for a charged particle)
to construct a highway for the π electrons

• added the first π electron from the safe, then
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this single electron would represent something similar to a particle in a box.9 As-
suming this simplified model we know all the details of the electron distribution,
including the ground-state and excited-state wave functions (in the one-particle
case called the orbitals). If we now took all the π electrons from the safe, added
them one by one to the system, assuming that they would not see one another,10

then taking into account the Pauli exclusion principle (described in more detail in
Chapter 8) we would obtain information about the electron density distribution
in the molecule. The idea we are describing is called the Free Electron Molecular
Orbitals (FEMO) method. FEMO method

In our example, the total electron density distribution (normalized to four π
electrons, i.e. giving 4 after integration over x) is given as11

ρ(x)= 2ψ2
1 + 2ψ2

2 = 2
2
L

sin2 π

L
x+ 2

2
L

sin2 2π

L
x= 4

L

(

sin2 π

L
x+ sin2 2π

L
x

)

�

The function ρ(x) is shown in Fig. 4.4.a.

It is seen that:
1. ρ(x) is the largest on the outermost bonds in the molecule, exactly where
chemists put their two little lines to symbolize a double bond.
2. π-electron density, i.e. ρ(x) is non-zero in the centre. This means that the
bond over there is not strictly a single bond.

This key information about the butadiene molecule has been obtained at prac-
tically no cost from the simple FEMO model.

Of course, we cannot expect the description to reflect all the details of the
charge distribution in the butadiene molecule, but one may expect this approach
to be able to reflect at least some rough features of the π electron distribution. If
the results of more advanced calculations contradict the rough particle-in-box results,
then we should take a closer look at them and search for an error. This is the strength
of the simple exact model systems. They play the role of the beacons – points of
reference.

4.2.2 CYCLIC BOX
The 1D box described above is similar to a stick in which the particle can move.
The butadiene molecule is rather similar to such a stick and, therefore, the 1D box
models it quite well.

9Almost, because the potential is not quite constant (ends!). Also one might remove the particle from
the box at the expense of a large but finite energy (ionization), which is not feasible for the particle in a
box.
10As we will see in Chapter 8, this approximation is more realistic than it sounds.
11The student “i” is characterized by a probability density distribution ρi(x) of finding him at co-

ordinate x (we limit ourselves to a single variable, measuring his position, say, on his way from the
dormitory to the university). If all students moved independently, the sum of their individual proba-
bility densities at point x0, i.e. ρ(x0)=

∑

i ρi(x0) would be proportional to the probability density of
finding any student at x0� The same pertains to electrons, when assumed to be independent.
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Fig. 4.4. π-electron density charge distributions for several molecules computed by the FEMO method.
The length of each molecule L has been assumed to be equal 1. For other lengths the charge distribu-
tions are similar. The electron density for four electrons in butadiene (a) and of six electrons in hexa-
triene (b). The electron density maxima coincide with the positions chemists write as double bonds.
The six electron density distribution in the benzene molecule is peculiar, because it is constant along the
perimeter of the molecule (c). If we subtract an electron from benzene (d) or add an electron to it (e),
then maxima and minima of the π electron density appear. If an electron is subtracted (d) there are two
maxima (double bonds) and two π electron deficient regions denoted as having charge + 1

2 . After one
electron π is added (e) then we obtain four maxima (two double bonds and two electron-rich regions
denoted by charge − 1

2 ).
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And what can model the benzene molecule? In a crude approximation we may
think of benzene as a stick with the two ends joined in such a way as to be unable
to recognize where the union has taken place. Limiting ourselves to this effect,12

we may use the solution given by (4.3) and impose appropriate boundary condi-
tions. What could these boundary conditions be? The wave function at the two
ends of the box has to be stitched together without leaving any trace of the seam.
This is achieved by two boundary conditions: �(0) =�(L) forcing the two wave
function values to match and �′(0)=�′(L) making the seam “invisible”. The two
conditions mean:

A sinκ0+B cosκ0 =A sinκL+B cosκL	

Aκ cosκ0−Bκ sinκ0 =Aκ cosκL−Bκ sinκL

or

B =A sinκL+B cosκL	

A =A cosκL−B sinκL�

To find a non-trivial solution the determinant of the coefficients at the unknown
quantities A and B has to vanish:13

∣
∣
∣
∣

sinκL cosκL− 1
cosκL− 1 − sinκL

∣
∣
∣
∣
= 0	

which is equivalent to
cosκL= 1�

The last condition gives κL = 2πn, n = 0	±1	±2	 � � � . This immediately gives
a formula for the energy very similar to that for the box with ends, but with the
replacement n→ 2n:

En = (2n)2h2

8mL2 	 (4.9)

where this time n= 0	±1	±2	 � � �

The corresponding wave functions are

ψ0 =
√

1
L

for n= 0	

ψn>0 =A sin
2πn
L
x+B cos

2πn
L
x	

ψn<0 = −A sin
2π|n|
L

x+B cos
2π|n|
L

x�

12And neglecting such effects as the particular shape of the benzene (curvature, etc.).
13This is a set of homogeneous linear equations.
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Since ψn>0 and ψn<0 correspond to the same energy, any combination of them
also represents an eigenfunction of the Schrödinger equation corresponding to the
same energy (Appendix B on p. 895). Taking therefore as the new wave functions
(for n 	= 0) the normalized sum and difference of the above wave functions, we
finally obtain the solutions to the Schrödinger equation

�0 ≡ψ0 =
√

1
L

for n= 0	

�n>0 =
√

2
L

sin
2πn
L
x for n > 0	

�n<0 =
√

2
L

cos
2πn
L
x for n < 0�

4.2.3 COMPARISON OF TWO BOXES: HEXATRIENE AND BENZENE
Let us take an example of two molecules: hexatriene and benzene (i.e. the cyclo-
hexatriene). Let us assume for simplicity that the length of the hexatriene L is
equal to the perimeter of the benzene.14 Both molecules have 6 π electrons (any
of them). The electrons doubly occupy (the Pauli exclusion principle) three one-
electron wave functions corresponding to the lowest energies. Let us compute the
sum of the electron energies15 (in the units h2

8mL2 , to have the formulae as compact
as possible):

• HEXATRIENE: Eheks = 2× 1+ 2× 22 + 2× 32 = 28,
• BENZENE: Ebenz = 2× 0+ 2× 22 + 2× 22 = 16.

We conclude, that 6 π electrons in the benzene molecule correspond to lower
energy (i.e. is more stable) than the 6 π electrons in the hexatriene molecule.
Chemists find this experimentally: the benzene ring with its π electrons survives
in many chemical reactions, whereas this rarely happens to the π-electron system
of hexatriene.

Our simple theory predicts the benzene molecule is more stable than the
hexatriene molecule.

And what about the electronic density in both cases? We obtain (Fig. 4.4.b,c)

• HEXATRIENE: ρ(x)= 2× 2
L [sin2 π

Lx+ sin2 2π
L x+ sin2 3π

L x],
• BENZENE: ρ(x)= 2× 1

L + 2× 2
L [sin2 2π

L x+ cos2 2π
L x] = 6

L .

14This is to some extent an arbitrary assumption, which simplifies the final formulae nicely. In such
cases we have to be careful that the conclusions are valid.
15As will be shown in Chapter 8, this method represents an approximation.



4.3 Tunnelling effect 153

This is an extremely interesting result.

The π-electron density is constant along the perimeter of the benzene mole-
cule.

No single and double bonds – all CC bonds are equivalent (Fig. 4.4.c). Chemical
experience led chemists already long time ago to the conclusion that all the C–C
bonds in benzene are equivalent. This is why they decided to write down the ben-
zene formula in the form of a regular hexagon with a circle in the middle (i.e. not to
give the single and double bonds). The FEMO method reflected that feature in a
naive way. Don’t the π electrons see where the carbon nuclei are? Of course they
do. We will meet some more exact methods in further chapters of this textbook,
which give a more detailed picture. The π-electron density would be larger, closer
to the nuclei, but all CC bonds would have the same density distribution, similar to
the solution given by the primitive FEMO method. From (4.9) and the form of the
wave functions it follows that this will happen not only for benzene, but also for
all the systems with (4n+ 2)-electrons, n= 1	2	 � � � , because of a very simple (and,
therefore, very beautiful) reason that sin2 x+ cos2 x= 1.

The addition or subtraction of an electron makes the distribution non-uniform
(Fig. 4.4.d,e). Also in six π electron hexatriene molecule, uniform electron density
is out of the question (Fig. 4.4.b). Note that the maxima of the density coincide
with the double bonds chemists like to write down. However, even in this molecule,
there is still a certain equalization of bonds, since the π electrons are also where
the chemists write a single bond (although the π electron density is smaller over
there16).

Again important information has been obtained at almost no cost.

4.3 TUNNELLING EFFECT
Is it possible to pass through a barrier with less energy than the barrier height? Yes.

4.3.1 A SINGLE BARRIER

Let us imagine a rectangular potential energy barrier (Fig. 4.1.b) for the motion of
a particle of mass m: V (x) = V for 0 
 x 
 a, with V (x) = 0 for other values of
x (V is the barrier height). Let us assume that the particles go from left to right
and that their energy E is smaller than V . This assumption will make it possible
to study the most interesting phenomenon – tunnelling through the barrier.17 In
order to stress that 0 
E 
 V let us write:

E = V sin2β� (4.10)

16Where, in the classical picture, no π electron should be.
17Another interesting question would be what will happen if E > V . This question will be postponed

for a moment.
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The x axis will be divided in three parts:

region 1 −∞< x< 0,
region 2 0 
 x
 a,
region 3 a < x<∞.

In each of these regions the Schrödinger equation will be solved, then the solu-
tions will be stitched together in such a way as to make it smooth at any boundary.
The general solution for each region has the form18 �(x)=Aeiκx+Be−iκx, where
A and B are the de Broglie wave amplitudes for motion to the right and to the
left. The κ constant comes from the Schrödinger equation ∂2�

∂x2 + κ2�= 0, where

κ2 = 2mE
h̄2 for regions 1 and 3 and κ2 = 2m(E−V )

h̄2 for region 2. Therefore, the wave
functions for each region is:

�1(x) =A1e
ix
√

2mE
h̄ +B1e

− ix
√

2mE
h̄ 	 (4.11)

�2(x) =A2e
−x cotβ

√
2mE

h̄ +B2e
x cotβ

√
2mE

h̄ 	 (4.12)

�3(x) =A3e
ix
√

2mE
h̄ +B3e

− ix
√

2mE
h̄ � (4.13)

The second equation needs a little derivation, but using eq. (4.10) this is straight-
forward.

In regions 1 and 2 we may have the particle going right or left (reflection), hence
in these regions A and B are non-zero. However, in region 3 we are sure that
B3 = 0, because there will be no returning particle (since no reflection is possible
in region 3).

Now, the coefficients A and B are to be determined (with accuracy up to a
multiplicative constant) in such a way as to ensure that the wave function sections
match smoothly. This will be achieved by matching the function values and the first
derivatives at each of the two boundaries.19

As the wave function has to be continuous for x = 0 and x = a	 we obtain the
following equations

A1 +B1 =A2 +B2	

A2 exp
(

−a cotβ
√

2mE
h̄

)

+B2 exp
(

+ a cotβ
√

2mE
h̄

)

=A3 exp
(
ia
√

2mE
h̄

)

�

18This is the free particle wave function. The particle has the possibility (and, therefore, certain prob-
ability) of going left or right.
19The second derivative is discontinuous, because of the form of the potential function V (x) intro-

duced.



4.3 Tunnelling effect 155

The continuity of the first derivative at x= 0 and x= a gives:

i(A1 −B1)= cot(B2 −A2)	

cotβ
(

−A2 exp
(

−a cotβ
√

2mE
h̄

)

+B2 exp
(

+ a cotβ
√

2mE
h̄

))

= iA3 exp
(
ia
√

2mE
h̄

)

�

After introducing the abbreviations:

k= exp
(
a cotβ

√
2mE

h̄

)

and N = (1− k2) cos 2β+ i(1+ k2) sin 2β	

we obtain the following ratios of all the coefficients and coefficient A1:

B1

A1
= k2 − 1

N
	

A2

A1
= k2(1− exp(−2iβ))

N
	

B2

A1
= (exp(2iβ)− 1)

N
	

A3

A1
= 2ik sin 2βexp(− ia

√
2mE
h̄ )

N
�

A current in region 3 towards the positive direction of the x axis may be defined
as the probability density A∗3A3 of the particle going right in region 3 times the
velocity

√

2E
m
=
√

2mv
2

2
m

= v

in this region. Therefore, the current passing through region 3 is equal to current

A∗3A3

√

2E
m
= 4k2A∗1A1 sin2 2β

|N|2
√

2E
m
� (4.14)

Therefore, the ratio of the current going right in 3 to the current going right in
1 is equal to: Dsingle = |A3|2

|A1|2 (the barrier transmission coefficient, in our case equal transmission
coefficientto the probability of passing the barrier):

Dsingle = 4k2 sin2(2β)
NN∗

(4.15)



156 4. Exact Solutions – Our Beacons

• This result is exact (for 0 
 E 
 V ). Despite its conciseness the formula for
Dsingle as a function of E, V looks quite complicated. What does this formula
tell us? Below are some questions:

• Dsingle should increase when the particle energy E increases, but is the function
Dsingle(E)monotonic? Maybe there are some “magic” energies at which passage
through the barrier becomes easier? Maybe this is what those guys in the movies
use, when they go through walls.

The answer is given in Figs. 4.5.a–f. It has been assumed that the particle has
the mass of an electron (1 a.u.). From Figs. 4.5.a–c for three barrier heights (V ), it
follows that the function is monotonic, i.e. the faster the particle the easier it is to
pass the barrier – quite a banal result. There are no magic energies.

• How does the function Dsingle(V ) look with other parameters fixed? For exam-
ple, whether it is easier to pass a low or a high barrier with the same energy,
or are there some magic barrier heights. Figs. 4.5.a–c tell us that at a fixed E it
is easier to pass a lower barrier and the function is monotonic, e.g., for E = 0�5
a.u.∼= 13�5 eV the transmission coefficientDsingle is about 80% for V = 0�5, 40%
for V = 1, and 10% for V = 2. No magic barrier heights.

• How does the transmission coefficient depend on the barrier width? From
Figs. 4.5.d–f we see that Dsingle(a) is also monotonic (no magic barrier widths)
and dramatically drops, when the barrier width a increases. On the other hand
the larger the kinetic energy of the projectile heading towards the barrier the
better the chance to cross the barrier. For example, at electron energies of the
order of 0�5 a.u. (at fixed V = 1 and m = 1) the barrier of width 2 a.u. � 1 Å
allows 6% of the particles to pass, while at energy 0.75 a.u. 18%, and at energy
1 a.u. 30% pass.

What does the wave function of the tunnelling particle look like? The answer is
in Fig. 4.6. We see that:

• The real as well as the imaginary parts of the wave function are non-zero in the
barrier, i.e. the particle penetrates the barrier.

• Both (real and imaginary) parts decay very rapidly (exponentially) for large pen-
etrations.

• Since the barrier has a finite width, the wave function does not vanish completely
within the barrier range. Thus, after leaving the barrier region we again have a
wave with the same frequency but with a smaller amplitude than that before the
barrier range.20 This means that there is a non-zero probability that the particle

20The tunnelling of a particle is certainly a strange phenomenon and our imagination is too poor
to figure out how this happens. However, as a matter of fact even in classical mechanics one may
be taken by surprise. This happens when we have to do with the probability density distribution of
configurations in an ensemble (as we often have to do in statistical thermodynamics and similarly in
quantum mechanics). Then we may encounter the notion of “classical tunnelling” (J. Straub, “New
Developments in Theoretical Studies of Proteins”, ed. R. Elber, World Scientific, 1996), since the mean
value of the kinetic energy is lower than the barrier and yet the system overcomes the barrier. Let us
put this problem aside.
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Fig. 4.5. A classical particle cannot tunnel through a barrier, while a quantum particle can. The figures show the transmission coefficient (tunnelling) of the
electron having various energies (always lower than the barrier) and passing through a barrier of various heights and widths. Figs. a–c show, that the larger the
energy the easier to tunnel, also the higher the barrier the harder to pass the barrier (at the same energy of the particle). Figs. d–f show the dependence of the
transmission coefficient on the barrier width: the wider the barrier the harder to go through.
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Fig. 4.6. Tunnelling of an electron (m= 1) with energy E = 2�979 a.u. through a single barrier of height
V = 5 a.u., and width 1 a.u. The wave function plot (real and imaginary parts) corresponds to the
following values of the coefficients A1 = 1 (as a reference)	B1 = 0�179− 0�949i	 A2 = 1�166− 0�973i	
B2 = 0�013+ 0�024i, A3 =−0�163− 0�200i and represents a wave.

reflects from the barrier and a non-zero probability that the particle passes through
the barrier.21

4.3.2 THE MAGIC OF TWO BARRIERS. . .

Is there anything magic in life? Yes, there is. If we take two rectangular barriers of
height V with a well between them (Fig. 4.1.c), then we have magic. This time we
allow for any energy of the particle (E > 0).

How will the problem be solved?

We have five non-overlapping sections of the x axis. In each section the wave func-
tion will be assumed in the form �(x) =Aeiκx + Be−iκx with the corresponding

21This remains in general true even if E > V .
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A and B coefficients, and with κ2 = 2m(E−V )
h̄2 . In Section 5, however, the particle

goes right and never left, hence B5 = 0. Now, the other coefficients A and B will
be determined by stitching the wave function nicely at each of the four boundaries
in order to have it going smoothly through the boundary (the wave function values
and the first derivative values have to be equal for the left and right section to meet
at this boundary). In this way we obtain a set of eight linear equations with eight
unknown ratios: AiA1

, i= 2, 3, 4, 5, and Bi
A1

, i= 1, 2, 3, 4. The most interesting ratio
is A5/A1, because this coefficient determines the transmission coefficient through
the two barriers. Using the program Mathematica,22 we obtain an amazing result.

Transmission coefficient
Let us check how the transmission coefficient (in our case identical to the trans-
mission probability) changes through two identical barriers of height V = 5, each
of width a= 1, when increasing the impact energy E from 0 to V = 5. In general
the transmission coefficient is very small. For example, for E = 2 the transmission
coefficient through the single barrier (Dsingle) amounts to 0�028, that is the chance
of transmission is about 3%, while the transmission coefficient through the double
barrier (Ddouble) is equal to 0.00021, i.e. about 100 times smaller. It stands to rea-
son, it is encouraging. It is fine that it is harder to cross two barriers than a single
barrier.23 And the story will certainly be repeated for other values of E. To be sure,
let us scan the whole range 0 
E < V . The result is shown in Fig. 4.7.

Magic energetic gates (resonance states)
There is something really exciting going on. In our case we have three energies
E 
 V , at which the transmission coefficient Ddouble increases dramatically when
compared to the neighbourhood. These are: 0.34, 1.364 and 2.979. Thus, there are
three secret energetic gates for going through the double barrier! It is sufficient just
to hit the right energy (resonance energy). Is the chance of passing two barriers resonance

large? Let us take a look. For all three resonances the transmission coefficient
is equal to Ddouble = 1, but it drops down differently when going off resonance.
Thus, there are three particle energies, for which the particle goes through the two
barriers like a knife through butter, as if the barriers did not exist.24 Moreover, as
we can see for the third resonance, the transmission coefficient through the single
barrier amounts to Dsingle = 0�0669 (i.e. only 7%), but through two barriers 100%!
It looks as if it would be hard for a prisoner to pass through a single armoured
prison door, but when the anxious prison governor built a second armoured door
behind the first, the prisoner25 disappeared through the two doors like a ghost.26

22See the Web Annex, the file Mathematica\ Dwiebar.ma.
23This is even more encouraging for a prison governor. Of course, a double wall is better than a single

one!
24This news should be strictly confidential in penitentiary departments.
25Educated in quantum mechanics.
26There is experimental evidence for such resonance tunnelling through two energy barriers in semi-

conductors. One of the first reports on this topic was a paper by T.C.L.G. Sollner, W.D. Goodhue,
P.E. Tannenwald, C.D. Parker, D.D. Peck, Appl. Phys. Letters 43 (1983) 588.
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Fig. 4.7. The transmission coef-
ficient (D) for a particle going
through a potential double bar-
rier (of height V = 5 a.u.) as a
function of the particle impact
energy E. We see some sudden
increases of the transmission co-
efficient (resonance states).

What happens over there? Let us stress once more that the phenomenon is
100% of a quantum nature, because a classical particle would tunnel neither
through the double nor through the single barrier. Why do we observe such dra-
matic changes in the transmission coefficient for the two barriers? We may have
some suspicions. From the time the second barrier is created, a new situation ap-
pears: a well between the two barriers, something similar to the box discussed ear-
lier.27 A particle in a box has some peculiar energy values: the energies of the
stationary states (cf. p. 146). In our situation all these states correspond to a con-
tinuum, but something magic might happen if the particle had just one of these
energies. Let us calculate the stationary state energies assuming that V =∞. Us-
ing the atomic units in the energy formula, we have En = h2

8m
n2

L2 = π2

L2
n2

2 � To simplify

the formula even more let us take L= π� Finally, we have simply En = n2

2 . Hence,
we might expect something strange for the energy E equal to E1 = 1

2 , E2 = 2	
E3 = 9

2 , E4 = 8 a.u., etc. The last energy level, E4 = 8	 is already higher than the

27Note, however, that the box has finite well depth and final width of the walls.
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Fig. 4.8. Tunnelling of an electron with energy E = 2 a.u. through two barriers of height V = 5 and
width a= 1, the barrier separation is L= π (all quantities in a.u.). This is the off-resonance case. The
real part of the wave function (a) oscillates before the first barrier, is reduced by an order of magnitude
in the first barrier, between the barriers the function oscillates for ca. one period, decays in the second
barrier and goes out of the barrier region with an amplitude representing about 5% of the starting
amplitude. A similar picture follows from the imaginary part of the wave function (b).

barrier height. Note, however, that the resonance states obtained appear at quite
different energies: 0.34, 1.364, 2.979.

Maybe this intuition nevertheless contains a grain of truth? Let us concentrate
on E1	 E2	 E3. One may expect that the wave functions corresponding to these
energies are similar to the ground-state (nodeless), the first (single node) and sec-
ond (two nodes) excited states of the particle in a box. What then happens to the
nodes of the wave function for the particle going through two barriers? Here are
the plots for the off-resonance (Fig. 4.8) and resonance (of the highest energy,
Fig. 4.9) cases.
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Fig. 4.9. Tunnelling of an electron with energy E = 2�979 a.u. through two barriers of height V = 5 and
width a= 1, the barrier separation is L= π (all quantities in a.u.). This is the resonance case. The real
part of the wave function (a) oscillates before the first barrier with amplitude 1, increases by a factor of
about 3.5 within the first barrier, between the barriers the function makes slightly more than about one
period, decays in the second barrier and goes out of the barrier region with an amplitude representing
about 100% of the starting amplitude. A similar picture follows from the imaginary part of the wave
function (b).

These figures and similar figures for lower-energy resonances support the hy-
pothesis: if an integer number of the half-waves of the wave function fit the re-
gion of the “box” between the barriers (“barrier-box-barrier”), in this case we may
expect resonance – a secret gate to go through the barriers.28 As we can see, in-

28As one can see in this case, contrary to what happened with a single barrier, the wave function does
not vanish exponentially within the barriers.
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deed we have been quite close to guessing the reason for the resonances. On the
other hand, it turned out that the box length should include not only the box it-
self but also the barrier widths. Maybe to obtain the right resonance energies we
simply have to adjust the box length? Since, instead of resonance at E1 = 1

2 we
have resonance at energy 0�34, then we may guess that it is sufficient to change

the box width L to L′ =
√

0�5
0�34L = 1�21L, to make the first resonance energies

match. Then, instead of E1 = 1
2 , we have exactly the first resonance energy equal

to E′1 = 0�34	 an agreement forced on us. But later, instead of E2 = 2 we obtain
E′2 = 1�36, which agrees very well with the second resonance energy 1�364� Then,
instead of E3 = 4�5	 we obtain E′3 = 3�06, a good approximation to 2�979, but evi-
dently the closer the barrier energy the harder it is to obtain agreement.29 The next
resonance state is expected to occur at E4 = 8×0�68= 5�44	 but we have forgotten
that this energy already exceeds the barrier height (V = 5 a.u.). We will come back
to this state in a moment.

Close encounters of the third degree?

Let us consider the two barriers and an electron with higher energy than the barrier
height V . What will happen? Well, we may say that this means the particle energy
is sufficient to pass the barrier. Let us see.

Let us assume the barrier height V = 5 and the particle energy is equal to 5�5
a.u. We solve our equations and we obtain transmission coefficient equal to 0.138,
hence the electron will bounce back with a probability of about 86%. How it did
bounce off? Difficult to say.

Fig. 4.7 shows also the transmission coefficient also for energies higher than
the barrier height. It turns out that at energy E = 5�037 a.u. (i.e. higher than the
barrier height) another resonance state is hidden, which assures certainty (100%)
of transmission (whereas the particle energies in the energetic neighbourhood lead
to a considerable reflection rate as described above). We expected such behaviour
for all E > V , but it turned out to be true for the resonance state. Let us recall
that we have already predicted “by mistake” a box stationary state with energy
E4 = 5�44, higher than the barrier height V . This, and the number of the nodes
within the barrier range seen in Fig. 4.10, tells us that indeed this is the state.30

What makes the difference between the resonance and off-resonance states for
E > V ? The corresponding wave functions (real and imaginary parts) are given in
Figs. 4.10 and 4.11.

Thus, resonance states may also hide in that part of the continuum which has
energy higher than the barriers (with a short life time, because such resonances are

29Note, please, that there is such a thing as resonance width, and that this width is different for each
resonance. The most narrow resonance corresponds to the lowest energy, the widest to the highest
energy. The width of resonances is related to the notion of the resonance life-time τ (τ is proportional
to the inverse of the resonance width).
30It corresponds to a lower energy than we predicted (similar to the case of E3). No wonder that due

to finite well depth, the states corresponding to the upper part of the well “feel” the box is longer.
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Fig. 4.10. The wave function for an electron with energy E = 5�037 a.u., i.e. over the barrier V = 5
(resonance case). As we can see the amplitude is nearly the same for the wave function before and
after the barriers (this means the transmission coefficient of the order of 100%). The real part, and
especially the imaginary part both wobble within the range of the barriers range, i.e. within section
(0	5�14) (the imaginary part has a large amplitude). We may guess that the state is related to the
three-node stationary state.

wide, cf. Fig. 4.7). They are also a reminder of the stationary states of the particle
in a box longer than the separation of the barriers and infinite well depth.

4.4 THE HARMONIC OSCILLATOR

A one-dimensional harmonic oscillator is a particle of mass m, subject to force
−kx, where the force constant k > 0, and x is the displacement of the particleforce constant

from its equilibrium position (x = 0). This means the force pushes the particle
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Fig. 4.11. The wave function for an electron in the off-resonance case (E = 5�5 a.u., i.e. over the barrier
height V = 5). Despite the fact that E > V 	 the amplitude of the outgoing wave is considerably reduced
after passing the range of the barriers (0	5�14). This means that the particle flying over the barriers will
reflect from them.

always towards the origin, because it has a negative (positive) component for x > 0
(x < 0). The potential energy is given as a parabola V = 1

2kx
2, Fig. 4.1.d.

The Schrödinger equation has the following solutions of class Q:

�v(ξ)=NvHv(ξ)exp
(

−ξ
2

2

)

(4.16)

with energy

Ev = hν(v+ 1/2)	 (4.17)
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where h is the Planck constant, v = 0	1	2	 � � � is the vibrational quantum number,vibrational
quantum
number

the variable ξ is proportional to the displacement x:

ξ=√αx	 α=
√

km

h̄2 	 ν = 1
2π

√

k

m

frequency

is the frequency of the classical vibration of a particle of mass m and a force con-
stant k, Hv represent the Hermite polynomials31 (of degree v) defined as32Hermite

polynomials

Hv(ξ)= (−1)v exp
(

ξ2)dv exp(−ξ2)

dξv
	

and Nv is the normalization constant, Nv =
√

( απ )
1
2 1

2vv! .

The harmonic oscillator finger print: it has an infinite number of energy
levels, all non-degenerate, with constant separation equal to hν.

Note, that the oscillator energy is never equal to zero.
Fig. 4.12 shows what the wave functions for the one-dimensional harmonic os-

cillator look like. Fig. 4.13 also shows the plots for a two-dimensional harmonic
oscillator (we obtain the solution by a simple separation of variables, the wave
function is a product of the two wave functions for the harmonic oscillators with x
and y variables, respectively).

The harmonic oscillator is one of the most important and beautiful models in
physics. When almost nothing is known, except that the particles are held by some

Fig. 4.12. Some of the wave func-
tions �v for a one-dimensional os-
cillator. The number of nodes in-
creases with the oscillation quan-
tum number v.

31Charles Hermite was French mathematician (1822–1901), professor at the Sorbonne. The Hermite
polynomials were defined half a century earlier by Pierre Laplace.
32H0 = 1, H1 = 2ξ, H2 = 4ξ2 − 2, etc.
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Fig. 4.13. A graphic representation of the 2D harmonic oscillator wave (isolines). The background
colour corresponds to zero. Figs. a–i show the wave functions labelled by a pair of oscillation quantum
numbers (v1	 v2). The higher the energy the larger the number of node planes. A reader acquainted
with the wave functions of the hydrogen atom will easily recognize a striking resemblance between these
figures and the orbitals.



168 4. Exact Solutions – Our Beacons

Fig. 4.13. Continued.
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forces, then the first model to consider is the harmonic oscillator. This happened
for the black body problem (Chapter 1), now it is the case with quantum dots,33

string theory,34 solvated electron,35 and so on.

4.5 MORSE OSCILLATOR

4.5.1 MORSE POTENTIAL

Diatomic molecules differ from harmonic oscillators mainly in that they may dis-
sociate. If we pull a diatomic molecule with internuclear distance R equal to the
equilibrium distance Re, then at the beginning, displacement x=R−Re is indeed
proportional to the force applied, but afterwards the pulling becomes easier and
easier. Finally, the molecule dissociates, i.e. we separate the two parts without any
effort at all. This fundamental difference with respect to the harmonic oscillator is
qualitatively captured by the potential proposed by Morse (parameter α> 0):36

V (x)=De−αx(e−αx − 2
)

� (4.18)

As we can see (Fig. 4.14), D represents the well depth and, the parameter α
decides its width. When the displacement x= 0, then the function attains the min-
imum V =−D, and when x→∞, then V → 0.

The Morse oscillator will serve as a model of a diatomic molecule. In such a
case x = R− Re, where Re means the length of the molecule which corresponds
to the potential energy minimum. Besides the above mentioned advantage, the
Morse oscillator differs from real diatomics mainly by two qualitative features.
First, for R= 0 we obtain a finite potential energy for the Morse oscillator, second,
the asymptotic behaviour of the Morse oscillator for x→∞ means exponential
asymptotics, while the atomic and molecular systems at large distances interact
as 1

Rn .
The second derivative of V (x) calculated at the minimum of the well represents

the force constant k of the oscillator

k= 2α2D� (4.19)

Parabola −D + 1
2kx

2 best approximates V (x) close to x = 0 and represents
the harmonic oscillator potential energy (with the force constant k). The Morse

33A part of the “nanotechnology”: some atomic clusters are placed (quantum dots) on a solid surface,
lines of such atoms (nanowires), etc. Such systems may exhibit unusual properties.
34Quarks interact through exchange of gluons. An attempt at separating two quarks leads to such a

distortion of the gluon bond (string) that the string breaks down and separates into two strings with
new quarks at their ends created from the distortion energy.
35Many polar molecules may lower their energy in a liquid by facing an extra electron with their posi-

tive pole of the dipole. This is the solvated electron.
36Philip McCord Morse (1903–1985) was American theoretical physicist.
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Fig. 4.14. (a) The Morse po-
tential energy curves have the
shape of a hook. How does the
shape depend on the Morse pa-
rameters? The figures show the
curves for D = 1	2 and α =
1	2� As we can see D controls
the well depth and α its width.
(b) the Morse oscillator is a
kind of compromise between
the harmonic oscillator (b1) and
a rectangular well (b2). Both
potentials correspond to exact
solutions of the Schrödinger
equation. Model b2 gives the
discrete spectrum as well as the
continuum and the resonance
states. The later ones are only
very rarely considered for the
Morse oscillator, but they play
an important role in scattering
phenomena (primarily in reac-
tive collisions).

oscillator is hard to squeeze – the potential energy goes up faster than that of the
harmonic oscillator with the same force constant k.

4.5.2 SOLUTION

One had to have courage to presume that analytical solution with such a poten-
tial energy exists. The solution was found by Morse. It represents a rare example
of an exact solution to a non-linear problem. Exact solutions exist not only for
the ground (vibrational quantum number v = 0) but also for all the excited states
(v= 1	2	 � � � 	 vmax) belonging to the discrete spectrum. The energy levels are non-
degenerate and are given by the formula:

Ev =−D+ hν
(

v+ 1
2

)

− hν
(

v+ 1
2

)2

β	 v= 1	2	 � � � 	 vmax	 (4.20)
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where using atomic units we obtain

hν = 2α
(
D

2μ

) 1
2
� (4.21)

This formula follows from the parabolic approximation of the Morse potential
(valid for small displacements x),37 while

β= α
(

1
8μD

) 1
2
	 (4.22)

where μ is the mass of the oscillating particle. When the Morse oscillator serves
as a model of a diatomic molecule, μ stands for the reduced mass of both nuclei
μ = (1/m1 + 1/m2)

−1 (Appendix I on p. 971). As we can see, the energy of the
oscillator never equals zero (similar to the harmonic oscillator) and that

the separation between consecutive energy levels decreases.

The wave functions are slightly more complicated than those for the harmonic
oscillator and are given by the formula:

ψv =Nve− z
2 zbvL2bv

v (z)	 (4.23)

where the normalization coefficient

Nv =
√

2bvv!
�(2bv + v+ 1)

with �(z)=
∫ ∞

0
e−t tz−1 dt	

z is a real number related to displacement x by the formula z = 2ae−αx, while

a =
√

2μD
α

	 (4.24)

bv = a− 1
2
− v > 0� (4.25)

The above condition gives maximum v= vmax and, therefore, vmax+1 is the
number of eigenfunctions. Thus, we always have a finite number of energy
levels.

37Let us recall that, for the harmonic oscillator 2πν =
√
k
μ , therefore, from (4.19) hν = h̄α

√
2D
μ , while

h̄= 1 a.u.



172 4. Exact Solutions – Our Beacons

L stands for the polynomial given by the formula

Lcn(x)=
1
n!e

xx−c dn

dxn
(

e−xxn+c
)

	 (4.26)

where n= 0	1	2	 � � � is the polynomial degree.38 A short exercise gives

Lc0(x)= 1	

Lc1(x)= (c+ 1)− x	

Lc2(x)=
1
2
x2 − (c+ 2)x+ 1

2
(c+ 1)(c+ 2)	

� � �

This means the number of nodes in a wave function is equal to v (as in the
harmonic oscillator). The lowest energy level is, therefore, nodeless.

4.5.3 COMPARISON WITH THE HARMONIC OSCILLATOR

For very large well depths (D), the parameter β of eq. (4.22) becomes very small.
This results in Ev approaching the corresponding formula for the harmonic oscil-
lator −D+ hν(v+ 1/2), and the energy levels become equidistant with the near-
est neighbour separation equal to hν. The potential is highly anharmonic (of the
“hook-type”), but the energy levels would be equidistant as in the harmonic os-
cillator. Is it possible? Yes, it is. The key is that, for small values of v, the term
−hν(v+ 1/2)2β does not yet enter into play and low-energy levels correspond to
small amplitudes (x) of vibrations. For small x	 the potential is close to parabolic39

– as for the harmonic oscillator with force constant k.

4.5.4 THE ISOTOPE EFFECT

As we can see from eq. (4.21), hν is large for narrow (large α) and deep (large D)
wells, and for light oscillators (small μ). In particular, when we consider the ground
states of two molecules that differ by an isotope substitution, the molecule with the
heavier isotope (larger μ), would have lower energy than that corresponding to
the light-isotope. This may be seen from the approximate formula for the energy
−D+ 1

2hν (zero-vibration energy).40zero-vibration
energy This effect was also present in the harmonic oscillator. When β becomes larger

this picture is modified. The larger ν, the larger the modification of the energies of
the stationary states (see the last term in the formula for Ev).

Fig. 4.15 shows three different Morse curves and the calculated energy levels.
38Indeed, n-time derivation gives e−xxn+c as a term with the highest power of x. Multiplication by
exx−c gives xn .
39As witnessed by a Taylor expansion of V (x) for x= 0.
40We have to stress that V is almost identical for both molecules, as will be explained in Chapter 6.

The energy difference comes, therefore, mainly from the zero-vibration (i.e. v= 0) energy difference.
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Fig. 4.15. The isotope effect and the effect of bond weakening. The Morse curve (a) corresponds to
D= 0�01 a.u. and α= 1� The calculated energy levels correspond to a proton mass μ= 1840 a.u. The
Morse curve (b) is identical, but an isotope substitution (deuteron instead of the proton) has been
made. As a result we obtain a larger number of vibrational levels, the levels are closer each other and
the system becomes more stable. The Morse curve (c) corresponds to D= 0�008 a.u., i.e. it is less deep
by 20% with respect to curve (a). As we can see, the number of stationary states has diminished.

The two first curves are identical (Fig. 4.15 a and b) and illustrate the isotope
effect. When calculating the energy levels in case of a (or b), the reduced mass of
the proton (or deuteron) has been taken.41 As we can see in the deuteron case, the
number of energy levels has increased (from 6 to 9), the levels lowered and have
became closer, when compared to the proton case.

ISOTOPE EFFECT (after substitution by a heavy isotope)
results mainly in decreasing the zero-vibration energy, as well as in lowering
and condensing higher energy levels.

Eq. (4.21) shows that the ratio of the OD bond frequency to the OH bond fre-
quency is equal to the square root of the inverse reduced masses of D-substituted

41Why these masses? Let us imagine that the oscillators are the molecules OH and OD. The reduced
masses for these two cases are equal to 0�94 and 1�78 of the proton mass, respectively, which is close to
the proton and deuteron masses, respectively (these have been used in the example). In the system of
two nuclei (the heavy oxygen and the light hydrogen) the light atom (hydrogen) is mainly responsible
for the oscillatory motion, which justifies the choice made.
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and H-substituted compounds, which may be approximated as:42

νOD
νOH

∼=
√
mH
mD

∼= 0�7� (4.27)

The red shift (νOD < νOH) in the IR spectrum represents one of the main char-
acteristics of deuteration. The effect is used in spectroscopy to check whether a
band is indeed the OH band. In such a case, the substance is dissolved in heavy
water, and after a while the OH functional groups are replaced by OD functional
groups. If the IR spectrum is registered again and compared with the previous
one showing a red shift in agreement with (4.27), this proves that indeed we were
concerned with an OH band.

4.5.5 BOND WEAKENING EFFECT

The condition bv > 0 determines the number of vibrational levels, which may be
accommodated by a potential well. This number is always finite. The key number,
bv	 depends on a, whereas a is determined by μ, D and α. First of all, we can see
that we may have a beautiful well which is unable to accommodate even a single
vibrational energy level. This may happen if b0 < 0, which, as seen from (4.25),
requires a 
 1

2 � Such a condition may be fulfilled because of a too shallow well
(small D), or too light nuclei (small μ) or a too narrow well (large α). Even if in
such a case there is no stationary vibrational state, such a shallow potential energy
well may be detected in scattering experiments through the appearance of some
resonance states. Such states are called encounter complexes.encounter

complexes The third curve (Fig. 4.15.c) differs only by reducing the binding energy (D)
with respect to the first curve, which in real situations is similar to a bond weak-
ening. As we can see, the number of stationary states has decreased to 5. We may
imagine that, in the extreme, the curve may become very shallow and unable to
accommodate any vibrational level. In such a case, even if the binding energy (i.e.
the well depth) is non-zero, the molecule will sooner or later dissociate.

4.5.6 EXAMPLES

Example 2. Hydrogen molecule
The hydrogen molecule has been investigated in detail. As will be seen in Chap-
ters 6 and 10 the theory challenges some very subtle experiments. Let us approx-
imate the most accurate theoretical potential energy curve43 (as a function of the
internuclear distance R) by a Morse curve.

Is such an approximation reasonable? Let us see. From Wolniewicz’s calcula-
tions we may take the parameter D = 109�52 kcal/mol= 38293 cm−1, while the

42In our example from Fig. 4.15 the ratio equals 0�73, while simply taking the masses instead of the
reduced masses, gives this ratio equal 0.71.
43L. Wolniewicz, J. Chem. Phys. 103 (1995) 1792.
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parameter α is chosen in such a way as to reproduce the theoretical binding en-
ergy for R = Re + 0�4 a.u.,44 where Re = 1�4 a.u. is the position of the mini-
mum binding energy. It turns out that, say, “by chance” this corresponds to α= 1�
From eq. (4.24) and eq. (4.25) we obtain a = 17�917 and the allowed v are those
satisfying the inequality bv = 17�417 − v > 0� We expect, therefore, 18 energy
levels with v = 0	1	 � � � 	17 for H2 and 25 energy levels for T2 (in the last case
bv = 24�838− v > 0). Accurate calculations of Wolniewicz give 14 vibrational lev-
els for H2, and 25 levels for T2. Moreover, from eq. (4.21) we obtain for H2:
hν = 0�019476 a.u.= 4274 cm−1, while from eq. (4.22) we have β= 0�0279� From
these data one may calculate the energetic gap between the ground (v = 0) and
the first excited state (v = 1) for H2, �E0→1, as well as between the first and the
second excited states, �E1→2. We get:

�E0→1 = hν− hν
[

(1+ 1/2)2 − (0+ 1/2)2
]

β= hν(1− 2β)	

�E1→2 = hν− hν
[

(2+ 1/2)2 − (1+ 1/2)2
]

β= hν(1− 4β)�

Inserting the calculated hν and β gives �E0→1 = 4155 cm−1 and �E1→2 =
3797 cm−1� The first value agrees very well with the experimental value45

4161 cm−1. Comparison of the second value with the measured value 3926 cm−1

is a little bit worse, although it is still not bad for our simple theory. The quantity
D represents the binding energy, i.e. the energy difference between the well bottom binding energy

and the energy of the dissociated atoms. In order to obtain the dissociation energy
we have to consider that the system does not start from the energy corresponding
to the bottom of the curve, but from the level with v = 0 and energy 1

2hν, hence
our estimation of the dissociation energy is Ediss =D− 1

2hν = 36156 cm−1, while dissociation
energythe experimental value amounts to 36118 cm−1.

Example 3. Two water molecules

The above example pertains to a chemical bond. Let us take, in the same way, a
quite different situation where we have relatively weak intermolecular interactions,
namely the hydrogen bond between two water molecules. The binding energy in
such a case is of the order of D = 6 kcal/mol = 0�00956 a.u. = 2097 cm−1, i.e.
about twenty times smaller as before. To stay within a single oscillator model, let
us treat each water molecule as a point-like mass. Then, μ = 16560 a.u. Let us
stay with the same value of α= 1. We obtain (p. 171) a= 17�794 and hence b0 =
17�294, b1 = 16�294	 � � � 	 b17 = 0�294, bn>17 < 0. Thus, (accidentally) we also have
18 vibrational levels.

This time from (4.21), we have hν = 0�001074 a.u= 235 cm−1, and β= 0�02810
a.u., therefore �E0→1 = 222 cm−1 and �E1→2 = 209 cm−1. These numbers have
the same order of magnitude as those appearing in the experiments (cf. p. 303).

44This choice is of course arbitrary.
45I. Dabrowski, Can. J. Phys. 62 (1984) 1639.
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4.6 RIGID ROTATOR

A rigid rotator is a system of two point-like masses, m1 and m2, with a constant
distance R between them. The Schrödinger equation may be easily separated giv-
ing two equations, one for the centre-of-mass motion and the other for the relative
motion of the two masses (see Appendix I on p. 971). We are interested only in
the second equation, which describes the motion of a particle of mass equal to the
reduced mass of the two particles μ, and position in space given by the spherical
coordinates R	θ	φ	 where 0 
R<∞, 0 
 θ
 π, 0 
φ
 2π. The kinetic energy
operator is equal to − h̄2

2μ�, where the Laplacian � represented in the spherical co-
ordinates is given in Appendix H on p. 969. Since R is a constant, the part of the
Laplacian which depends on the differentiation with respect to R is absent.46 In
this way we obtain the equation (equivalent to the Schrödinger equation) for the
motion of a particle on a sphere:

− h̄2

2μR2

{
1

sinθ
∂

∂θ

(

sinθ
∂

∂θ

)

+ 1
(sinθ)2

∂2

∂φ2

}

Y =EY	 (4.28)

where Y(θ	φ) is the wave function to be found, and E represents the energy. This
equation may be rewritten as (Y is also an eigenfunction of Ĵ2):

Ĵ2Y = 2μR2EY	 (4.29)

where Ĵ2 is the square of the angular momentum operator.
Eq. (4.28) may be also written as

1
Y

{
1

sinθ
∂

∂θ

(

sinθ
∂Y

∂θ

)

+ 1
(sinθ)2

∂2Y

∂φ2

}

= λ	

where λ = − 2μR2

h̄2 E� The solution of the equation is known in mathematics as a

spherical harmonic,47 it exists if λ=−J(J + 1), J = 0	1	2	 � � � :spherical
harmonics

YMJ (θ	φ)=NJM · P |M|J (cosθ) · 1
2π

exp(iMφ) (4.30)

46This reasoning has a heuristic character, but the conclusions are correct. Removing an operator is
a subtle matter. In the correct solution to this problem we have to consider the two masses with a
variable distance R with the full kinetic energy operator and potential energy in the form of the Dirac
delta function (see Appendix E on p. 951) −δ(R−R0).
47There are a few definitions of the spherical harmonics in the literature (see E.O. Steinborn, K. Rue-

denberg, Advan. Quantum Chem. 7 (1973) 1). The Condon–Shortley convention often is used, and is
related to the definition given above in the following way: YMJ = εM [YMJ ]CS , YJJ = (−1)J [YJJ ]CS ,
where εM = i|M|+M�
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where NJM =
√
(2J+1)

2
(J−|M|)!
(J+|M|)! is the normalization coefficient, and P is the associ-

ated Legendre polynomial48 defined as associated
Legendre
polynomials

P
|M|
J (x)= (1− x2)

|M|
2

d|M|

dx|M|
PJ(x) (4.31)

with the Legendre polynomial Legendre
polynomial

PJ(x)= 1
2JJ!

dJ

dxJ
(

x2 − 1
)J
� (4.32)

From the uniqueness of the solution (Fig. 2.5.g,h) it follows that M has to be
an integer.49 The solution exists if J = 0	1	2	3	 � � � , and from the analysis of the quantum

number Massociated Legendre polynomials, it follows that M cannot exceed50 J, because
otherwise Y = 0. The energetic levels are given by

EJ = J(J + 1)
h̄2

2μR2 for J = 0	1	2	 � � � (4.33)

It is seen that the lowest energy level (J = 0) corresponds to Y 0
0 = const (the quantum

number Jfunction is, of course, nodeless, Fig. 4.16.a). This means that all orientations of the
rotator are of equal probability. The first excited state corresponds to J = 1 and is
triply degenerate, since M = 0	±1. The corresponding wave functions are: Y 0

1 =
cosθ, Y 1

1 = sinθexp(iφ), Y−1
1 = sinθexp(−iφ). The first function, being real, may

be easily plotted (Fig. 4.16.b), while the second and the third are not (they are
complex). Since they both correspond to the same eigenvalue of the Hamiltonian,
their arbitrary linear combination is an equally good eigenfunction of this operator.
We may take, therefore, Y 1

1 and Y−1
1 as ψ1 = 1

2(Y
1
1 +Y−1

1 )= sinθ cosφ and ψ2 =
1
2i (Y

1
1 −Y−1

1 )= sinθ sinφ. Both functions are real, they are shown in Fig. 4.16.c,d.
Note, that again we have the usual situation: the ground state is nodeless, the first
excited state has a single node, etc.
YMJ is not only the eigenfunction of the Hamiltonian Ĥ and of the square of the

angular momentum Ĵ2 (with the eigenvalue J(J + 1)h̄2) but also of the z compo-
nent of the angular momentum operator:

ĴzY
M
J =Mh̄YMJ � (4.34)

48Adrien Legendre (1752–1833), French mathematician, professor at the Ecole Normale Superieure
– an elite school of France founded by Napoleon Bonaparte.
49Indeed, since φ is an angle, we have exp(iMφ) = exp[iM(φ+ 2π)]� Hence, exp(iM2π) = 1	 and,

therefore, cos(2πM)= 1 and sin(2πM)= 0� This is fulfilled only if M is an integer.
50PJ(x) is a polynomial of J-th degree, while d|M|

dx|M| in P |M|J (x) decreases the degree by M . If |M|
exceeds J, then P |M|J (x) automatically becomes equal to zero.
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Fig. 4.16. A schematic representation of the nodes for rigid rotator wave functions: (a) ground state
(nodeless), J = 0 (b) triply degenerate first excited state (single node), J = 1.

4.7 HYDROGEN-LIKE ATOM

We have two particles: an electron of massm and charge −e and a nucleus of mass
M and charge +Ze. The Hamiltonian contains two kinetic energy operators and
the Coulombic interaction−Ze2/r, where r is the electron–nucleus separation. We
have, therefore, 6 coordinates. In Appendix I on p. 971, it is shown how the centre-
of-mass motion can be separated (we are not interested in this motion). There
remain three coordinates, x	 y	 z	 showing where the electron is with respect to
the nucleus. The resulting Schrödinger equation contains a single kinetic energy
operator of a particle of reduced mass μ (almost equal to the electron mass) with
coordinates x	 y	 z	 and Coulombic interaction of the electron and the nucleus (as
before). Now, instead of x	 y	 z	 we introduce the spherical coordinates r	 θ	φ.
Then, as in the class Q solution, we obtain

ψnlm(r	θ	φ)=NnlRnl(r)Yml (θ	φ) (4.35)

where Yml is identical to the solution (4.30) of a rigid rotator of length r, and the



4.7 Hydrogen-like atom 179

function Rnl has the following form in a.u. (Nnl is the normalization constant)

Rnl(r)= rlL2l+1
n+l

(
2Zr
na0

)

exp
(

− Zr
na0

)

	 (4.36)

where the Bohr first orbit radius Bohr first orbit
radius

a0 = 1
μ
� 1 a.u.	 (4.37)

where

principal quantum number n= 1	2	3	 � � � ,
azimuthal quantum number l= 0	1	2	 � � � 	 n− 1,
magnetic quantum number m=−l	−l+ 1	 � � � 	0	 � � � 	+l.

and the associated Laguerre polynomial Lβα(x) is defined as associated
Laguerre
polynomial

Lβα(x)=
dβ

dxβ
Lα(x)	 (4.38)

while the Laguerre polynomial is given by51

Lα(x)= exp(x)
dα

dxα
[

xα exp(−x)]� (4.39)

The one-electron wave functions (orbitals) of the hydrogen atom with l= 0
are traditionally denoted as ns: ψ100 = 1s, ψ200 = 2s	 � � � , with l = 1 as np,
with l= 2	3	 � � � as nd, nf, . . .

The wave functions ψnlm can be plotted in several ways. For example, the func-
tion (nlm)= (100) or 1s given by the formula

ψ100(r	 θ	φ)=
√

Z3

π
exp(−Zr)	 (4.40)

and can be visualized in several alternative forms shown in Fig. 4.17.
We see that what the electron likes most is to sit on the nucleus. Indeed, if

we chopped the space into tiny cubes, then computed the value of (1s)2 in each
cube (the function is real, therefore, the modulus is irrelevant), and multiplied

51Both Lβα(x) and Lα are indeed polynomials of α− β degree. If β > α, from (4.38) it follows that
L
β
α = 0.
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Fig. 4.17. Various ways of visualization the 1s hydrogen orbital, which is a function of electron position
in 3D space (coordinates in Figs. (a)–(c) in a.u.). (a) Isolines of the z = 0 section of the wave function
(going through the nucleus). Background colour means the value zero, white colour means a high value.
This is a map of a mountain. The centre of Fig. (a) shows a large white plateau, which represents,
however, an artifact. In fact (b), the section of the 1s orbital as a function of r represents a mountain
with a sharp summit (a discontinuity of the first derivative). Fig. (c) is similar to (a), but instead of
isolines we have a white mist with the highest concentration in the centre, disappearing exponentially
with increasing distance r . Fig. (d) shows a spherically symmetric isosurface of the wave function.

the number obtained by the volume of the cube, the resulting number in each
cube would have a meaning of the probability of finding the electron in a par-
ticular cube. Evidently, this number will be largest for the cube that contains the
nucleus (the origin). We were told about the Bohr model52 in school, about the
orbits, and about the first Bohr orbit (corresponding to the atom ground state).

52Nobody is perfect. Geniuses also. . . Here is a story by John Slater: “. . . Brillouin delivered an in-
teresting lecture concerning his relations. When he finished, Bohr stood up and attacked him with an
inhuman fury. I have never heard any adult to scold another person in public with such an emotional
engagement without any reason whatsoever. After this show I have decided that my antipathy with
respect to Bohr dating since 1924 continues to be justified.”
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Do we relegate all this to fairy-tales? Not completely. If we changed the ques-
tion: what is the distance at which the electron is most likely to be found, then
the answer should indeed be as we were taught in school: the first Bohr orbit.
This is easy to show by computing the radial probability density of finding the elec-
tron (i.e. integrating over all orientations, leaving the dependence on the distance):
ρ(r)= ∫ dθdφr2 sinθ|ψ100|2 = 4Z3r2 exp−2Zr, i.e. such a function computed for
a given r = r0 and multiplied by the volume 4πr2

0 dr confined between two concen-
tric spheres, one with radius r0	 the other with radius r0 + dr	 gives the probability
of finding the electron exactly between these spheres. The maximum of ρ(r) cor-
responds exactly to r = 1 a.u. or the first Bohr orbit radius.53

Since the Hamiltonian commutes with the square of the total angular momen-
tum operator Ĵ2 and with the operator of Ĵz (cf. Chapter 2 and Appendix F on
p. 955), then the functions ψnlm are also the eigenfunctions of these two opera-
tors:

Ĥψnlm = Enψnlm	 (4.41)

Ĵ2ψnlm = l(l+ 1)h̄2ψnlm	 (4.42)

Ĵzψnlm =mh̄ψnlm	 (4.43)

where in a.u.

En =− Z
2

2n2

(
1

1+ 1
Mp

)

	 (4.44)

withMp representing the proton mass (in a.u.), i.e. about 1840. The content of the
parenthesis in the last equation works out as 0.999457, almost 1, which would be
obtained for an infinite mass of the nucleus.

Each of the energy levels is n2-fold degenerate. Note, that the hydrogen atom
energy depends solely on the principal quantum number n. The fact that the en-
ergy does not depend on the projection of the angular momentum mh̄ is natural,
because the space is isotropic and no direction is privileged. However, the fact that
it does not depend on the length of the angular momentum

√

l(l+ 1)h̄, is at first
sight strange. The secret is in the Coulombic potential 1

r produced by the point-
like nucleus and is connected with the notion of dynamic symmetry mentioned on
p. 76. If we considered a non-point-like nucleus or were interested in the orbital 2s
of such a quasi-hydrogen atom as lithium,54 then the energy would depend on the
quantum number l, e.g., would be different for orbitals 2s and 2p.

The 2s orbital (n= 2, l= 0, m= 0) reads as (Fig. 4.18)

ψ2s(r	 θ	φ)=N2s(Zr − 2)exp(−Zr/2) (4.45)

53The computed maximum position does not coincide with the mean value of r (cf. Appendix H on
p. 969) 〈r〉 = 〈ψ100|rψ100〉 =

∫∞
0 dr rρ(r)= 3

2 a.u.
54In which the nucleus is screened by a cloud of two 1s electrons. The 2s electron thinks it is in a

hydrogen atom with a spacious nucleus of the size of the 1s orbital and an effective charge +1.
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Fig. 4.18. Various graphical representations of the hydrogen 2s orbital (coordinates in Figs. (a)–(c) in
a.u.). (a) Isolines of z = 0 section of the orbital. Gray means the value zero, white a high value, black
a negative value. Note, that gray is not only at peripheries, but also around the centre. This means that
2s orbital exhibits a nodal sphere of radius 2 a.u. (see eq. (4.45)), that contains a little more than 5% of
the electronic density (whereas for the 1s orbital such a sphere contains about 75% of electron cloud).
The centre of the figure a shows a quite large white plateau, which represents, however, an artifact. In
fact, (b) showing the section of 2s orbital as a function of r represents a mountain with a sharp peak (a
discontinuity of the first derivative is shown incorrectly on the figure, instead a sharp summit one has
an artifact plateau) with a depression at its base. Fig. (c) is similar to (a), but instead of isolines one has
a white mist with the largest concentration in the centre, then taking the negative values (black mist)
and finally disappearing exponentially with increasing distance r . Fig. (d) shows a spherically symmetric
isosurface of the wave function (the sphere was shown as larger than 1s orbital, because 2s orbital
decays more slowly than 1s).
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with the normalization constantN2s = Z
3
2

4
√

2π
. A sphere of radius 2/Z (representing

the nodal sphere) contains55 only a little more than 5% of the total electronic
density (independently of Z).56

The wave functions (orbitals) with m 	= 0 are difficult to draw, because they are
complex. We may, however, plot the real part of ψnlm (Reψnlm) by taking the sum
of ψnlm and ψnl−m, i.e. 2Reψnlm and the imaginary part of ψnlm (Imψnlm ) from
the difference of ψnlm and ψnl−m equal to 2i Imψnlm. These functions are already
real and can be easily plotted. In this way we obtain the orbitals 2px and 2py from
the functions 211 and 21–1. The orbital 210 is identical to 2pz :

2px =N2pxexp(−Zr/2)	
2py =N2py exp(−Zr/2)	
2pz =N2pz exp(−Zr/2)	

where an easy calculation (just five lines) gives the normalization constant N2p =
ZN2s . The 2p orbitals are shown in Fig. 4.19.

Note, please, that a linear combination of eigenfunctions is not necessarily an
eigenfunction. It does, if the functions mixed, correspond to the same eigenvalue.
This is why 2px and 2py are the eigenfunctions of the Hamiltonian, of the square
of the angular momentum operator, but are not eigenfunctions of Ĵz .

Similarly we obtain the five real 3d orbitals. They can be easily obtained from
eq. (4.35) and subsequently making them real by choosing Reψnlm and Imψnlm.

As a result we have the following normalized 3d orbitals (N3d = Z
7
2

81

√

2
π )

3dxy =N3dxy exp(−Zr/3)	
3dxz =N3dxz exp(−Zr/3)	
3dyz =N3dyz exp(−Zr/3)	

3dx2−y2 = 1
2
N3d

(

x2 − y2)exp(−Zr/3)	

3d3z2−r2 = 1

2
√

3
N3d

(

3z2 − r2)exp(−Zr/3)�

The 3d orbitals are shown in Figs. 4.20 and 4.21. A summary of the hydrogen
atomic orbitals is shown in Fig. 4.22.57

55See the Mathematica files for Chapter 4 in the Web Annex.
56A sphere of the same radius encloses about 75% of the electron density for the 1s orbital.
57A night bus ride might enrich us with some unexpected impressions. Of all atomic orbitals you may

most easily “see” is the orbital 1s. Just look through the condensation on a bus window at a single street
lamp. You will see a gleam that decays to black night. You may also quite easily find a double lamp that
will offer you a 2p orbital and sometimes have the chance to see some of the 3d orbitals. Once I have
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Fig. 4.19. Various graphical representations of the hydrogen 2px orbital (coordinates in Figs. (a)–(c)
in a.u.). The two other 2p orbitals: 2py , 2pz look the same as 2px , but are oriented along axes y and
z. Note that for the hydrogen atom all four orbitals 2s, 2px , 2py , 2pz correspond to the same energy,
and all have a single nodal surface. For 2s the surface (Fig. 4.18) is a sphere of radius 2, for the 2px ,
2py and 2pz orbitals the nodal surfaces are the planes x	y	 z = 0. (a) Isolines of the z = 0 section of
the orbital. Gray means zero, white means a high value, black means a negative value. Note (Figs. (a),
(b)), that the right-hand side of the orbital is positive, the left-hand side is negative. The maximum
(minimum) value of the orbital is at x= 2 (x=−2) a.u. Fig. (c) is similar to (a), but instead of isolines
we have a mist with the largest concentration (white) on the right and the smallest (and negative, black)
concentration on the left. The orbital finally disappears exponentially with increasing distance r from
the nucleus. Fig. (d) shows an isosurface of the absolute value of the angular part of the wave function
|Y 0

1 |. As for Y 0
1 itself, one of the lobes takes negative, the other positive values and they touch each

other at the position of the nucleus. To obtain the orbital, we have to multiply this angular function by
a spherically symmetric function of r . This means that an isosurface of the absolute value of the wave
function will also have two lobes (for the wave function itself, one will be positive, the other negative),
but they will not touch each other in full accordance with Fig. (a).

even found the 2s orbital, but I do not understand how it was possible. I was looking at a single lamp,
which made an intense gleam in the centre, which gradually decayed and then again an annular gleam
appeared that finally vanished. This is what the square of the 2s orbital looks like.
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Fig. 4.20. Various graphical representations of the hydrogen 3dxy orbital (coordinates in Figs. (a)–(c)
in a.u.). The three other 3d orbitals: 3dyz , 3dxz and 3dx2−y2 look the same as 3dxy , but are oriented
in space according to their indices (in the last case along x and y axes). (a) Isolines of z = 0 section
of the orbital. Gray means zero, white means a positive value, black means a negative value. Note
(Figs. (a), (b)), that 3d orbitals are symmetric with respect to inversion. One may imagine the z = 0
section of 3dxy as two hills and two valleys (b). Fig. (c) is similar to (a), but instead of isolines one
has a white mist with the highest concentration on the North-East line and the smallest (and negative)
concentration on the North-West line (black mist). The orbital finally disappears exponentially with
increasing distance r from nucleus. Fig. (d) shows an isosurface of the absolute value of the angular
part of the wave function: |Y 2

2 − Y−2
2 |. As for Y 2

2 − Y−2
2 itself two of the lobes take the negative,

the other two take positive values, they touch each other at nucleus. To obtain the orbital one has to
multiply this angular function by a spherically symmetric function of r . This means that an isosurface
of the absolute value of the wave function will have also four lobes (for the wave function itself two will
be positive, the other two negative), but they will not touch in full accordance with Fig. (a).

4.8 HARMONIC HELIUM ATOM (HARMONIUM)

Two-electron systems already represent a serious problem for quantum chemistry,
because the mutual correlation of electron motions must be carefully taken into
account. As we will see in further chapters, such calculations are feasible, but the
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Fig. 4.21. Various graphical representations of the hydrogen 3d3z2−r2 orbital (coordinates in
Figs. (a)–(c) in a.u.). The z axis is vertical, x axis is horizontal. (a) Isolines of the xz section of the or-
bital. Gray means zero, white means a high positive value, black means a negative value. Note (Figs. (a),
(b)), that 3d3z2−r2 orbitals are symmetric with respect to inversion. We may imagine xz section of the
3d3z2−r2 as two hills and two valleys (b), the hills are higher than the depth of the valleys (the plateaus
in Fig. (b) are artificial). Fig. (c) is similar to (a), but instead of isolines one has a mist with the highest
concentration (white) on the North-South line and the smallest (and negative, black mist) concentra-
tion on the East-West line. The orbital finally disappears exponentially with increasing distance r from
the nucleus. Fig. (d) shows an isosurface of the absolute value of the angular part of the wave func-
tion (|Y 0

2 |). As for Y 0
2 itself there are two positive lobes and a negative ring, they touch each other

at nucleus. To obtain the orbital, we have to multiply this angular function by a spherically symmetric
function of r . This means that an isosurface of the absolute value of the wave function will have also
two lobes along the z axis as well as the ring, but they will not touch in accordance with Fig. (a). The
lobes along the z axis are positive, the ring is negative.
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Fig. 4.22. Summary: schematic representation of 1s, 2s, 2p, 3s, 3p, 3d orbitals of the hydrogen atom.
1s, 2s, 3s orbitals are spherically symmetric and increase in size; 1s has no node, 2s has one nodal
sphere (not shown), 3s has two nodal spheres (not shown). The shadowed area corresponds to the
“minus” sign of the orbital. The 2p orbitals have a single nodal plane (perpendicular to the orbital
shape). 3p orbitals are larger than 2p, and have a more complex nodal structure. Note that among 3d
orbitals all except 3d3z2−r2 have identical shape, but differ by orientation in space. A peculiar form
of 3d3z2−r2 becomes more familiar when one realizes that it simply represents a sum of two “usual”

3d orbitals. Indeed, 3d3z2−r2 ∝ [2z2 − (x2 + y2)]exp(−Zr/3) ∝ [(z2 − x2)+ (z2 − y2)]exp(−Zr/3)
∝ (3dz2−x2 + 3dz2−y2).

wave functions are very complicated, e.g., may represent linear combinations of
thousands of terms and still only be approximations to the exact solution to the
Schrödinger equation. This is why people were surprised when Kais et al. showed
that a two electron system has an exact analytical solution.58

Unfortunately, this wonderful two-electron system is (at least partially) non-
physical. It represents a strange helium atom, in which the two electrons (their
distance denoted by r12) interact through the Coulombic potential, but each is at-

58S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, G.J. Laming, J. Chem. Phys. 99 (1993) 417.
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Fig. 4.23. The harmonic helium atom. The elec-
trons repel by Coulombic forces and are attracted
by the nucleus by a harmonic (non-Coulombic)
force.

tracted to the nucleus by a harmonic spring (of equilibrium length 0 and force
constant k, with electron–nucleus distances denoted by r1 and r2), Fig. 4.23.

The Hamiltonian of this problem (the adiabatic approximation and atomic units
are used) has the form:

Ĥ =−1
2
�1 − 1

2
�2 + 1

2
k
(

r2
1 + r2

2
)+ 1

r12
�

It is amazing in itself that the Schrödinger equation for this system has an an-
alytical solution (for k = 1

4 ), but it could be an extremely complicated analytical
formula. It is a sensation that the solution is dazzlingly beautiful and simple

ψ(r1	 r2)=N
(

1+ 1
2
r12

)

exp
[

−1
4
(

r2
1 + r2

2
)
]

	

where

|N|2 = π
3
2

8+ 5
√
π
�

The wave function represents the product of the two harmonic oscillator wave
functions (Gaussian functions), but also an additional extremely simple correlation
factor (1+ 1

2 r12). As we will see in Chapter 13, exactly such a factor is required for
the ideal solution. In this exact function there is nothing else, just what is needed.59

4.9 WHAT DO ALL THESE SOLUTIONS HAVE IN COMMON?

• In all the systems considered (except the tunnelling effect, where the wave func-
tion is non-normalizable), the stationary states are similar, the number of their
nodes increasing with their energy (the nodeless function corresponds to the
lowest energy).

59We might have millions of complicated terms.
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• If the potential energy is a constant (particle in a box, rigid rotator), then the en-
ergy level (nearest-neighbour) distance increases with the energy.60 The energy
levels get closer for larger boxes, longer rotators, etc.

• A parabolic potential energy well (harmonic oscillator) reduces this tendency
and the energy levels are equidistant. The distance decreases if the parabola gets
wider (less restrictive).

• The Morse potential energy curve may be seen as a function that may be ap-
proximated (as the energy increases) by wider and wider parabolic sections. No
wonder, therefore, that the energy level distance decreases. The number of en-
ergy levels is finite.61

• The Coulomb potential, such as that for the hydrogen atom, resembles vaguely
the Morse curve. Yet its form is a little similar to the Morse potential (dissoci-
ation limit, but infinite depth). We expect, therefore, that the energy levels for
the hydrogen-like atom will become closer and closer when the energy increases,
and we are right. Is the number of these energy levels finite as for the Morse po-
tential? This is a more subtle question. Whether the number is finite or not is
decided by the asymptotics (the behaviour at infinity). The Coulomb potential
makes the number infinite.

4.10 BEACONS AND PEARLS OF PHYSICS

Sometimes students, fascinated by handy computers available nowadays, tend to
treat the simple systems described in this chapter as primitive and out of date.
A Professor has taken them from the attic and after dusting off shows them to
a class, whilst outside sophisticated computers, splendid programs and colourful
graphs await. This is wrong. The simple systems considered in this chapter corre-
spond to extremely rare exact solutions of Schrödinger equation and are, therefore,
precious pearls of physics by themselves. Nobody will give a better solution, the
conclusions are hundred percent sure. It is true that they all (except for the hydro-
gen atom) correspond to some idealized systems.62 There is no such a thing as an
unbreakable spring (e.g., harmonic oscillator) or a rotator, that does not change
its length, etc. And yet these problems represent our firm ground or the beacons
of our native land. After reading the present chapter we will be preparing our ship
for a long voyage. When confronted with the surprises of new lands and trying to
understand them

60In both cases the distance goes as the square of the quantum number.
61Such type of reasoning prepares us for confronting real situations. Practically, we will never deal

with the abstract cases described in the present chapter, and yet in later years we may say something
like this: “look, this potential energy function is similar to case X in Chapter 4 of that thick boring book we
have been forced to study. So the distribution of energy levels and wave functions has to be similar to those
given there”.
62Like Platonic ideal solids.
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the only points of reference or the beacons which tell us about terra firma
will be the problems for which analytical solutions have been found.

Summary

Exact analytical solutions63 to the Schrödinger equation play an important role as an or-
ganizer of our quantum mechanical experience. Such solutions have only been possible for
some idealized objects. This is of great importance for the interpretation of approximate
solutions for real systems. Another great feature of exact solutions is that they have an ex-
tremely wide range of applications: they are useful independently of whether we concentrate
on an electron in an atom, in molecule, a nucleon in a nucleus or a molecule as an entity,
etc.

The main features of the solutions are:

• Free particle. The particle may be described as the superposition of the state exp(iκx),
corresponding to the particle moving right (positive values of x), and the state exp(−iκx),
that corresponds to the particle moving left� Both states correspond to the same energy
(and opposite momenta).

• Particle in a box. We consider first a particle in a 1D box, i.e. the particle is confined to
section [0	L] with potential energy (for a particle of mass m and coordinate x) equal
to zero and ∞ outside the section. Such a potential forces the wave function to be non-
zero only within the section [0	L]. We solve the elementary Schrödinger equation and
obtain � =A sinκx+ cosκx	 where κ2 = 2mE

h̄2 � Quantization appears in a natural way

from the condition of continuity for the wave function at the boundaries: �(0) = 0 and

�(L)= 0� These two conditions give the expression for the energy levels En = n2h2

8mL2 and

for the wave functions�n =
√

2
L sin nπL x with quantum number n= 1	2	 � � � . Conclusion:

the successive energy levels are more and more distant and the wave function is simply a
section of the sine function (with 0 value at the ends).

• Tunnelling effect. We have a particle of mass m and a rectangular barrier (section [0	 a],
width a and height V ). Beyond this section the potential energy is zero. The particle
comes from the negative x values and has energy E < V � A classical particle would be
reflected from the barrier. However, for the quantum particle:
– the transmission coefficient is non-zero,
– the passage of a large energy particle is easier,
– a narrower barrier means larger transmission coefficient,
– the higher the barrier the smaller transmission coefficient.

The first feature is the most sensational, the others are intuitively quite acceptable. This
is not the case for a particle tunnelling through two consecutive barriers. It turns out that
(for a given interbarrier distance) there are some “magic” energies of the particle (resonance
energies), at which the transmission coefficient is particularly large. The magic energies cor-
respond to the stationary states that would be for a particle in a box a little longer than
the interbarrier distance. The resonance states exist also for energies greater than barrier

63To distinguish from accurate solutions (i.e. received with a desired accuracy).
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and have a transmission coefficients equal to 100%, whereas other energies may lead to
reflection of the particle, even if they are larger than the barrier energy.

• Harmonic oscillator. A single particle of mass m attached to a harmonic spring (with

force constant k) corresponds to potential energy V = kx2

2 . We obtain quantization of

the energy: Ev = hν(v+ 1
2 ), where the vibrational quantum number v = 0	1	2	 � � � , and

the angular frequency ω = 2πν =
√

k
m . We see that the energy levels are equidistant, and

their distance is larger for a larger force constant and smaller mass. The wave function64

has the form of a Gaussian factor and a polynomial of degree v. The polynomial assures
the proper number of nodes, while the Gaussian factor damps the plot to zero for large
displacements from the particle equilibrium position. The harmonic oscillator may be
viewed (Chapter 6) as equivalent (for small displacements) to two masses bound by a
spring.

• Morse oscillator. The harmonic oscillator does not allow for the breaking of the spring
connecting two particles, while the Morse oscillator admits dissociation. This is extremely
important, because real diatomic molecules resemble the Morse rather than the harmonic
oscillator. The solution for the Morse oscillator has the following features:
– energy levels are non-degenerate,
– their number is finite,
– for large well depths the low energy levels tend to the energy levels of the harmonic

oscillator (the levels are equidistant),
– the higher the energy level the larger the displacement from the equidistant situation

(the energy levels get closer),
– the wave functions, especially those corresponding to deep-lying levels, are very similar

to the corresponding ones of the harmonic oscillator,65 but they do not exhibit the
symmetry.66

• Rigid rotator. This is a system of two massesm1 andm2 that keeps their distance R fixed.
After separating the centre-of-mass motion (Appendix I on p. 971) we obtain an equation
of motion for a single particle of mass equal to the reduced mass μ moving on a sphere
of radius R (position given by angles θ and φ). The energy is determined by the quantum

number J = 0	1	2	 � � � and is equal to EJ = J(J + 1) h̄2

2μR2 � As we can see:

– there is an infinite number of energy levels,
– the separation of the energy levels increases with the energy (similar to the particle in

a box problem),
– the separation is smaller for larger masses,
– the separation is smaller for longer rotators.
The wave functions are the spherical harmonics YMJ (θ	φ)	 which for low J are very sim-
ple, and for large J complicated trigonometric functions. The integer quantum numberM
satisfies the relation |M|
 J. The energy levels are, therefore, (2J+ 1)-tuply degenerate.

• Hydrogen-like atom. We have an electron and a nucleus of charges −e and +Ze	 re-
spectively, or −1 and +Z in a.u. The wave function is labelled by three quantum num-
bers: principal n= 1	2	 � � � , azimuthal l = 0	1	 � � � 	 (n− 1) and magnetic m=−l	 (−l +

64The energy levels are non-degenerate.
65Despite the fact, that the formula itself is very different.
66The wave functions for the harmonic oscillator are either even or odd with respect to the inversion

operation (x→−x).
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1)	 � � � 	0	 � � � 	 l. The energy in a.u. is given by the formula67 En =−Z2/(2n2)� The wave
function represents the product of a polynomial (of r), an exponential function decreas-
ing with r and a spherical harmonic Ym

l
(θ	φ), where r	 θ	φ are the spherical coordinates

of the electron, and the nucleus is at the origin. The wave functions that correspond to
low energies are denoted by the symbols nlm (with s for l = 0, p for l = 1, etc.): 1s	 2s	
2p0	 2p1	 2p−1, . . . The degeneracy of the n-th level is equal to n2�

• Harmonic helium atom. In this peculiar helium atom the electrons are attracted to the
nucleus by harmonic springs (of equal strength) of equilibrium length equal to zero. For
k = 1

4 an exact analytical solution exists� The exact wave function is a product of two

Gaussian functions and a simple factor: (1+ 1
2 r12) that correlates the motions of the two

electrons.

Main concepts, new terms

free particle (p. 144)
particle in a box (p. 145)
box with ends (p. 145)
FEMO (p. 149)
cyclic box (p. 149)
tunnelling effect (p. 153)
current (p. 155)
transmission coefficient (p. 155)
resonance state (p. 155)
harmonic oscillator (p. 166)
Hermite polynomials (p. 166)
Morse oscillator (p. 169)

isotope effect (p. 172)
encounter complex (p. 174)
binding energy (p. 175)
dissociation energy (p. 175)
rigid rotator (p. 176)
spherical harmonics (p. 176)
Legendre polynomials (p. 176)
associated Legendre polynomials (p. 176)
hydrogen-like atom (p. 178)
Laguerre polynomials (p. 178)
associated Laguerre polynomials (p. 178)
correlation factors (p. 188)

From the research front

A field like that discussed in the present chapter seems to be definitely closed. We have
been lucky enough to solve some simple problems, that could be solved, but others are just
too complicated. This is not true. For several decades it has been possible to solve a series
of non-linear problems, thought in the past to be hopeless. What decides success is: choice
of the problem, quality of researchers, courage, etc.68 It is worth noting that there are also
attempts at a systematic search for promising systems to solve.

Ad futurum. . .

It seems that the number of exactly solvable problems will continue to increase, although
the pace of such research will be low. If exactly solvable problems were closer and closer to
practise of physics, it would be of great importance.

Additional literature

J. Dvořák and L. Skála, “Analytical Solutions of the Schrödinger Equation. Ground State
Energies and Wave Functions”, Collect. Czech. Chem. Commun., 63 (1998) 1161.

67An infinite number of levels.
68Already the Morse potential looks very difficult to manage, to say nothing about the harmonic he-

lium atom.
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Very interesting article with the character of a review. Many potentials,69 leading to
exactly solvable problems are presented in a uniform theoretical approach. The authors
give also their own two generalizations.

Questions

1. Particle in a box. After doubling the box length the energy of the levels will:
a) stay the same; b) decrease four times; c) increase twice; d) decrease twice.

2. Tunnelling of a particle through a system of two rectangular barriers of height V . E > 0
is the particle energy. The transmission coefficient as a function of E:
a) does not depend on E; b) increases with E; c) has maxima; d) vanishes exponentially
when E decreases.

3. Harmonic oscillator. The energy E of the lowest vibrational level of the H2 molecule is
equal to A, of the DH molecule is equal to B, of the TH molecule is equal to C . The
following inequality holds:
a) A>B>C; b) C >A>B; c) B <C <A; d) A<B<C .

4. Morse oscillator. The number of vibrational levels:
a) is always larger than 1; b) does not depend on the well width, and depends on its
depth; c) may be equal to zero for a non-zero well depth; d) may be equal to ∞.

5. Rigid rotator. The separation between neighbouring levels with quantum numbers J
and J + 1:
a) increases linearly with J; b) increases with J(J + 1); c) decreases proportionally to
2J + 1; d) is constant.

6. The following spherical harmonics YMJ have the correct indices:

a) Y 0
−1	Y

2
1 	Y

−1
2 ; b) Y 1

2 	Y
0
1 	Y

5
1 ; c) Y 0

0 	Y
1
0 	Y

2
2 ; d) Y 3

3 	Y
2
3 	Y

−2
3 .

7. In the ground-state hydrogen atom:
a) the probability of finding the electron in a cube with its centre on the nucleus is equal
to 0;
b) the maximum probability density for finding the electron is on the nucleus;
c) the probability density for finding the electron on the nucleus is equal to 0;
d) the radial probability density has its maximum on the nucleus.

8. The following linear combination of the hydrogen atom orbitals (Ĥ is the Hamiltonian,
Ĵ2 is the operator of the square of the angular momentum, Ĵz is the operator of the
z-component of the angular momentum):
a) 2s+ 3 · (2p−1) is an eigenfunction of Ĥ and Ĵz ;
b) 3s− 1/3 · 2pz is an eigenfunction of Ĵz ;
c) 2p0 + 3p−1 is an eigenfunction of Ĥ and Ĵ2;
d) 2s− 3s is an eigenfunction of Ĥ .

9. Please choose the acceptable hydrogen atom orbitals ψnlm:
a) ψ200	ψ100	ψ220; b) ψ100	ψ2−10	ψ211; c) ψ320	ψ52−1	ψ210; d) ψ−200	ψ010	ψ210.

69Among them six not discussed in the present textbook.
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10. Harmonic helium atom. In this system the electrons:
a) attract themselves harmonically, but interact by Coulombic force with the nucleus;
b) interact harmonically with themselves and with the nucleus;
c) oscillate between two positions;
d) repel each other by Coulombic forces and are attracted harmonically by the nucleus.

Answers

1b, 2c, 3a, 4c, 5a, 6d, 7b, 8b, 9c, 10d



Chapter 5

TWO FUNDAMENTAL
APPROXIMATE
METHODS

Where are we?

We are moving upwards in the central parts of the TREE trunk.

An example

We are interested in properties of the ammonia molecule in its ground and excited states,
e.g., we would like to know the mean value of the nitrogen–hydrogen distance. Only quan-
tum mechanics gives a method for calculation this value (p. 24): we have to calculate the
mean value of an operator with the ground-state wave function. But where could this func-
tion be taken from? As a solution of the Schrödinger equation? Impossible. This equation
is too difficult to solve (14 particles, cf. problems with exact solutions, Chapter 4).

The only possibility is somehow to obtain an approximate solution to this equation.

What is it all about

We need mathematical methods which will allow us to obtain approximate solutions of the
Schrödinger equation. These methods are: the variational method and the perturbational
approach.

Variational method (�) p. 196
• Variational principle
• Variational parameters
• Ritz method

Perturbational method (��) p. 203
• Rayleigh–Schrödinger approach (�)
• Hylleraas variational principle (�)
• Hylleraas equation (�)
• Convergence of the perturbational series (�)

Why is this important?

We have to know how to calculate wave functions. The exact wave function is definitely out of
our reach, therefore in this chapter we will learn how to calculate the approximations.

What is needed?

• Postulates of quantum mechanics (Chapter 1, needed).

195



196 5. Two Fundamental Approximate Methods

• Hilbert space (Appendix B, p. 895, necessary).
• Matrix algebra (Appendix A, p. 889, needed).
• Lagrange multipliers (Appendix N, on p. 997, needed).
• Orthogonalization (Appendix J, p. 977, occasionally used).
• Matrix diagonalization (Appendix K, p. 982, needed).
• Group theory (Appendix C, p. 903, occasionally used in this chapter).

Classical works

The variational method of linear combinations of functions was formulated by Walther Ritz
in a paper published in Zeitschrift für Reine und Angewandte Mathematik, 135 (1909) 1. �
The method was applied by Erwin Schrödinger in his first works “Quantisierung als Eigen-
wertproblem” in Annalen der Physik, 79 (1926) 361, ibid. 79 (1926) 489, ibid. 80 (1926) 437,
ibid. 81 (1926) 109. Schrödinger also used the perturbational approach when developing
the theoretical results of Lord Rayleigh for vibrating systems (hence the often used term
Rayleigh–Schrödinger perturbation theory). � Egil Andersen Hylleraas, in Zeitschrift der
Physik, 65 (1930) 209 showed for the first time that the variational principle may be used
also for separate terms of the perturbational series.

5.1 VARIATIONAL METHOD

5.1.1 VARIATIONAL PRINCIPLE
Let us write the Hamiltonian Ĥ of the system under consideration1 and take an
arbitrary (variational) function �, which satisfies the following conditions:variational

function • it depends on the same coordinates as the solution to the Schrödinger equation;
• it is of class Q, p. 73 (which enables it to be normalized).

We calculate the number ε that depends on � (i.e. ε is a functional of �)

ε[�] = 〈�|Ĥ|�〉〈�|�〉 � (5.1)

The variational principle states:

• ε	E0, where E0 is the ground-state energy of the system
• in the above inequality ε= E0 happens, if and only if, � equals the exact

ground-state wave function ψ0 of the system, Ĥψ0 =E0ψ0.

1We focus here on the non-relativistic case (eq. (2.1)), where the lowest eigenvalue of Ĥ is bound
from below (>−∞). As we remember from Chapter 3, this is not fulfilled in the relativistic case (Dirac’s
electronic sea), and may lead to serious difficulties in applying the variational method.
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Proof (expansion into eigenfunctions):

The unknown eigenfunctions {ψi} of the Hamiltonian Ĥ represent a complete set
(we may be assured of its orthonormality, see Appendix B on p. 895) in the Hilbert
space of our system. This means that any function belonging to this space can be
represented as a linear combination of the functions of this set

�=
∞
∑

i=0

ciψi	 (5.2)

where ci assure the normalization of �, i.e.
∑∞
i=0 |ci|2 = 1, because

〈�|�〉 =
∑

i	j

c∗j ci〈ψj|ψi〉 =
∑

i	j

c∗j ciδij =
∑

i

c∗i ci = 1�

Let us insert this into the expression for the mean value of the energy ε= 〈�|Ĥ�〉

ε−E0 = 〈�|Ĥ�〉 −E0 =
〈 ∞
∑

j=0

cjψj

∣
∣
∣
∣
∣
Ĥ

∞
∑

i=0

ciψi

〉

−E0

=
∞
∑

i	j=0

c∗j ciEi〈ψj|ψi〉 −E0 =
∞
∑

i	j=0

c∗j ciEiδij −E0 =
∞
∑

i=0

|ci|2Ei −E0 · 1

=
∞
∑

i=0

|ci|2Ei −E0

∞
∑

i=0

|ci|2 =
∞
∑

i=0

|ci|2(Ei −E0)	 0�

Note that the equality (in the last step) is satisfied only if �= ψ0� This therefore
proves the variational principle (5.1): ε	E0.

In several places in this book we will need similar proofs using Lagrange multi-
pliers. This is why we will demonstrate how to prove the same theorem using this
technique (Appendix N on p. 997).

Proof using Lagrange multipliers:

Take the functional

ε[�] = 〈�|Ĥ�〉� (5.3)

We want to find a function that assures a minimum of the functional and satisfies
the normalization condition

〈�|�〉 − 1= 0� (5.4)

We will change the function � a little (the change will be called “variation”)
and see, how this will change the value of the functional ε[�]� In the functional we
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have, however, � and �∗� It seems that we have, therefore, to take into account
in �∗ the variation made in �. However, in reality there is no need to do that: it is
sufficient to make the variation either in � or in �∗ (the result does not depend on
the choice2). This makes the formulae simpler. We decide to choose the variation of
�∗, i.e. δ�∗�

Now we apply the machinery of the Lagrange multipliers (Appendix N on
p. 997). Let us multiply eq. (5.4) by (for the time being) unknown Lagrange mul-
tiplier E and subtract afterwards from the functional ε, resulting in an auxiliary
functional G[�]

G[�] = ε[�] −E(〈�|�〉 − 1)�

The variation of G (which is analogous to the differential of a function) repre-
sents a linear term in δ�∗� For an extremum the variation has to be equal to zero:

δG= 〈δ�|Ĥ�〉 −E〈δ�|�〉 = 〈δ�|(Ĥ −E)�〉 = 0�

Since this has to be satisfied for any variation δ�∗, then it can follow only if

(Ĥ −E)�opt = 0	 (5.6)

which means that the optimal �≡�opt is a solution of the Schrödinger equation3

with E as the energy of the stationary state.

2Let us show this, because we will use it several times in this book. In all our cases the functional
(which depends here on a single function φ(x), but later we will also deal with several functions in a
similar procedure) might be rewritten as

ε[φ] = 〈φ|Âφ〉	 (5.5)

where Â is a Hermitian operator. Let us write φ(x) = a(x) + ib(x), where a(x) and b(x) are real
functions. The change of ε is equal to

ε[φ+ δφ] − ε[φ] = 〈a+ δa+ ib+ iδb|Â(a+ δa+ ib+ iδb)〉− 〈a+ ib|Â(a+ ib)〉

= 〈δa+ iδb|Âφ〉+ 〈φ|Â(δa+ iδb)〉+ quadratic terms

= 〈δa|Âφ+ (Âφ)∗〉+ i〈δb|(Âφ)∗ − Âφ〉+ quadratic terms�

The variation of a function only represents a linear part of the change, and therefore δε= 〈δa|Âφ+
(Âφ)∗〉 + i〈δb|(Âφ)∗ − Âφ〉. At the extremum the variation has to equal zero at any variations of
δa and δb� This may happen only if Âφ + (Âφ)∗ = 0 and (Âφ)∗ − Âφ� This means Âφ = 0 or,
equivalently, (Âφ)∗ = 0�

The first of the conditions would be obtained if in ε we made the variation in φ∗ only (the variation
in the extremum would then be δε = 〈δφ|Âφ〉 = 0), hence, from the arbitrariness of δφ∗ we would
get Âφ= 0), the second, if we made the variation in φ only (then, δε= 〈φ|Âδφ〉 = 〈Âφ|δφ〉 = 0 and
(Âφ)∗ = 0) and the result is exactly the same. This is what we wanted to show: we may vary either φ or
φ∗ and the result is the same.

3In the variational calculus the equation for the optimum �, or the conditional minimum of a func-
tional ε, is called the Euler equation. As one can see in this case the Euler equation is identical with
the Schrödinger one.
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Now let us multiply eq. (5.6) by �∗opt and integrate. We obtain

〈

�opt
∣
∣Ĥ�opt

〉−E〈�opt|�opt〉 = 0	 (5.7)

which means that the conditional minimum of ε[�] is E =min(E0	E1	E2	 � � �)=
E0 (the ground state). Indeed, eq. (5.7) may be written as the mean value of the
Hamiltonian
〈

1
√〈�opt|�opt〉

�opt

∣
∣
∣
∣
Ĥ

1
√〈�opt|�opt〉

�opt

〉

=E = ε
[

1
√〈�opt|�opt〉

�opt

]

	 (5.8)

and the lowest possible eigenvalue E is E0. Hence, for any other � we obtain a
higher energy value, therefore ε	E0.

The same was obtained when we expanded � into the eigenfunction series.

Variational principle for excited states
The variational principle (5.1) has been proved for an approximation to the
ground-state wave function. What about excited states? If the variational function
� is orthogonal to exact solutions to the Schrödinger equation that correspond to all
the states of lower energy than the state we are interested in, the variational principle
is still valid.4 If the wave function k being sought represents the lowest state among variational

principle for
excited states

those belonging to a given irreducible representation of the symmetry group of the
Hamiltonian, then the orthogonality mentioned above is automatically guaranteed
(see Appendix C on p. 903). For other excited states, the variational principle can-
not be satisfied, except that function � does not contain lower-energy wave func-
tions, i.e. is orthogonal to them, e.g., because the wave functions have been cut out
of it earlier.

Beware of mathematical states
We mentioned in Chapter 1 that not all solutions of the Schrödinger equation are
acceptable. Only those are acceptable which satisfy the symmetry requirements
with respect to the exchange of labels corresponding to identical particles (Postu-
late V). The other solutions are called mathematical. If, therefore, an incautious
scientist takes a variational function � with a non-physical symmetry, the varia-
tional principle, following our derivation exactly (p. 197), will still be valid, but with
respect to the mathematical ground state. The mathematical states may correspond
to energy eigenvalues lower than the physical ground state (they are called the un-
derground states, cf. p. 76). All this would end up as a catastrophe, because the underground

statesmean value of the Hamiltonian would tend towards the non-physical underground
mathematical state.

4The corresponding proof will only be slightly modified. Simply in the expansion eq. (5.2) of the
variational function �, the wave functions ψi that correspond to lower energy states (than the state
in which we are interested), will be absent. We will therefore obtain

∑

i=1 |ci|2(Ei −Ek)	 0, because
state k is the lowest among all the states i.
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5.1.2 VARIATIONAL PARAMETERS

The variational principle (5.1) may seem a little puzzling. We insert an arbitrary
function � into the integral and obtain a result related to the ground state of the
system under consideration. And yet the arbitrary function � may have absolutely
nothing to do with the molecule we consider. The problem is that the integral con-
tains the most important information about our system. The information resides
in Ĥ. Indeed, if someone wrote down the expression for Ĥ , we would know right
away that the system contains N electrons and M nuclei, we would also know the
charges on the nuclei, i.e. the chemical elements of which the system is composed.5

This is important information.
The variational method represents an application of the variational principle.

The trial wave function � is taken in an analytical form (with the variables denotedtrial function

by the vector x and automatically satisfying Postulate V). In the “key positions”
in the formula for � we introduce the parameters c ≡ (c0	 c1	 c2	 � � � 	 cP), which
we may change smoothly. The parameters play the role of tuning, their particular
values listed in vector c result in a certain shape of �(x;c). The integration in the
formula for ε pertains to the variables x, therefore the result depends uniquely
on c. Our function ε(c) has the form

ε(c0	 c1	 c2	 � � � 	 cP)≡ ε(c)= 〈�(x;c)|Ĥ�(x;c)〉〈�(x;c)|�(x;c)〉 �

Now the problem is to find the minimum of the function ε(c0	 c1	 c2	 � � � 	 cP).

In a general case the task is not simple, because what we are searching for is the
global minimum. The relation

∂ε(c0	 c1	 c2	 � � � 	 cP)

∂ci
= 0 for i= 0	1	2	 � � � 	P	

therefore represents only a necessary condition for the global minimum.6 This
problem may be disregarded, when:

• the number of minima is small,
• in particular, when we use � with the linear parameters c (in this case we have

a single minimum, see below).

The above equations enable us to find the optimum set of parameters c= copt�
Then,

in a given class of the trial functions � the best possible approximation to
ψ0 is �(x;copt), and the best approximation to E0 is ε(copt).

5And yet we would be unable to decide whether we have to do with matter or antimatter, or whether
we have to perform calculations for the benzene molecule or for six CH radicals (cf. Chapter 2).

6More about global minimization may be found in Chapter 6.
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Fig. 5.1. The philosophy behind the
variational method. A parameter c is
changed in order to obtain the best
solution possible. Any commentary
would obscure the very essence of the
method.

Fig. 5.1. shows the essence of the variational method.7

Let us assume that someone does not know that the hydrogen-like atom (the
nucleus has a charge Z) problem has an exact solution.8 Let us apply the sim-
plest version of the variational method to see what kind of problem we will be
confronted with.

An important first step will be to decide which class of trial functions to choose.
We decide to take the following class9 (for c > 0) exp(−cr) and after normalization

of the function: �(r	θ	φ; c)=
√

c3

π exp(−cr). The calculation ε[�] = 〈�|Ĥ|�〉 is

shown in Appendix H on p. 969. We obtain ε(c) = 1
2c

2 − Zc. We very easily find
the minimum of ε(c) and the optimum c is equal to copt = Z, which, as we know
from Chapter 4, represents the exact result. In practise (for atoms or molecules),
we would never know the exact result. The optimal ε might then be obtained after
many days of number crunching.10

7The variational method is used in everyday life. Usually we determine the target (say, cleaning the
car), and then by trial, errors and corrections we approach the ideal, but never fully achieve it.

8For a larger system we will not know the exact solution either.
9A particular choice is usually made through scientific discussion. The discussion might proceed as

follows.
The electron and the nucleus attract themselves, therefore they will be close in space. This assures

many classes of trial functions, e.g., exp(−cr), exp(−cr2), exp(−cr3), etc., where c > 0 is a single vari-
ational parameter. In the present example we pretend not to know, which class of functions is most
promising (i.e. which will give lower ε). Let us begin with class exp(−cr), and other classes will be
investigated in the years to come. The decision made, we rush to do the calculations.
10For example, for Z = 1 we had to decide a starting value of c, say, c = 2; ε(2)= 0� Let us try c = 1�5,

we obtain a lower (i.e. better) value ε(1�5)=−0�375 a.u., the energy goes down. Good direction, let us
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5.1.3 RITZ METHOD11

The Ritz method represents a special kind of variational method. The trial
function � is represented as a linear combination of the known basis func-
tions {�i} with the (for the moment) unknown variational coefficients ci

�=
P
∑

i=0

ci�i� (5.9)

basis functions

Then

ε= 〈
∑P
i=0 ci�i|Ĥ

∑P
i=0 ci�i〉

〈∑P
i=0 ci�i|

∑P
i=0 ci�i〉

=
∑P
i=0
∑P
j=0 c

∗
i cjHij

∑P
i=0
∑P
j=0 c

∗
i cjSij

= A

B
� (5.10)

In the formula above {�i} represents the chosen complete basis set.12 The basiscomplete basis
set set functions are usually non-orthogonal, and therefore

〈�i|�j〉 = Sij	 (5.11)

where S stands for the overlap matrix, and the integralsoverlap matrix

Hij = 〈�i|Ĥ�j〉 (5.12)

are the matrix elements of the Hamiltonian. Both matrices (S and H) are calcu-
lated once and for all. The energy ε becomes a function of the linear coefficients
{ci}. The coefficients {ci} and the coefficients {c∗i } are not independent (ci can
be obtained from c∗i ). Therefore, as the linearly independent coefficients, we may
treat either {ci} or {c∗i }. When used for the minimization of ε, both choices would
give the same. We decide to treat {c∗i } as variables. For each k = 0	1	 � � � 	P we

try, therefore c = 1�2; ε(1�2) = −0�48 a.u. Indeed, a good direction. However, when we continue and
take c = 0�7, we obtain ε=−0�455, i.e. a higher energy. We would continue this way and finally obtain
something like copt = 1�0000000. We might be satisfied by 8 significant figures and decide to stop the
calculations. We would never be sure, however, whether other classes of trial functions would provide
still better (i.e. lower) energies. In our particular case this, of course, would never happen, because
“accidentally” we have taken a class which contains the exact wave function.
11Walther Ritz was the Swiss physicist and a former student of Poincaré. His contributions, beside the

variational approach, include perturbation theory, the theory of vibrations etc. Ritz is also known for
his controversy with Einstein on the time flow problem (“time flash”), concluded by their joint article
“An agreement to disagree” (W. Ritz, A. Einstein, Phys. Zeit. 10 (1909) 323).
12Such basis sets are available in the literature. A practical problem arises as to how many such func-

tions should be used. In principle we should have used P =∞. This, however, is unfeasible. We are
restricted to a finite, preferably small number. And this is the moment when it turns out that some basis
sets are more effective than others, that this depends on the problem considered, etc. This is how a new
science emerges, which might facetiously be called basology.
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have to have in the minimum

0 = ∂ε

∂c∗k
= (
∑P
j=0 cjHkj)B−A(

∑P
j=0 cjSkj)

B2

= (
∑P
j=0 cjHkj)

B
− A
B

(
∑P
j=0 cjSkj)

B
= (
∑P
j=0 cj(Hkj − εSkj))

B
	

what leads to the secular equations secular
equations

(
P
∑

j=0

cj(Hkj − εSkj)
)

= 0 for k= 0	1	 � � � 	P� (5.13)

The unknowns in the above equation are the coefficients cj and the energy ε.
With respect to the coefficients cj , eqs. (5.13) represent a homogeneous set of
linear equations. Such a set has a non-trivial solution if the secular determinant is secular

determinantequal to zero (see Appendix A)

det(Hkj − εSkj)= 0� (5.14)

This happens however only for some particular values of ε satisfying the above
equation. Since the rank of the determinant is equal P + 1, we therefore obtain
P + 1 solutions εi, i = 0	1	2	 � � � 	P . Due to the Hermitian character of operator
Ĥ, the matrixH will be also Hermitian. In Appendices J on p. 977 and L on p. 984,
we show that the problem reduces to the diagonalization of some transformed H
matrix (also Hermitian). This guarantees that all εi will be real. Let us denote
the lowest εi as ε0	 to represent an approximation to the ground state energy.13

The other εi, i= 1	2	 � � � 	P , will approximate the excited states of the system. We
obtain an approximation to the i-th wave function by inserting the calculated εi
into eq. (5.13), and then, after including the normalization condition, we find the
corresponding set of ci. The problem is solved.

5.2 PERTURBATIONAL METHOD

5.2.1 RAYLEIGH–SCHRÖDINGER APPROACH

The idea of the perturbational approach is very simple. We know everything about
a non-perturbed problem. Then we slightly perturb the system and everything
changes. If the perturbation is small, it seems there is a good chance that there

13Assuming we used the basis functions that satisfy Postulate V (on symmetry).
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will be no drama: the wave function and the corresponding energy will change only
a little (if the changes were large, the perturbational approach would simply be in-
applicable). The whole perturbational procedure aims at finding these tiny changes
with satisfactory precision.

Perturbational theory is notorious for quite clumsy equations. Unfortunately,
there is no way round if we want to explain how to calculate things. However, in
practise only a few of these equations will be used – they will be highlighted in frames.

Let us begin our story. We would like to solve the Schrödinger equationunperturbed
operator

Ĥψk =Eψk	 (5.15)

and as a rule we will be interested in a single particular state k, most often the
ground state (k= 0).

We apply a perturbational approach, when14

Ĥ = Ĥ(0) + Ĥ(1)	

where the so called unperturbed operator Ĥ(0) is “large”, while the perturbationperturbation

operator Ĥ(1) is “small”.15 We assume that there is no problem whatsoever with
solving the unperturbed Schrödinger equation

Ĥ(0)ψ(0)k =E(0)k ψ(0)k � (5.16)

We assume that ψ(0)k form an orthonormal set, which is natural.16 We are in-

terested in the fate of the wave function ψ(0)k after the perturbation is switched on
(when it changes to ψk). We choose the intermediate normalization, i.e.intermediate

normalization
〈

ψ(0)k
∣
∣ψk
〉= 1� (5.17)

The intermediate normalization means that ψk, as a vector of the Hilbert space
(see Appendix B on p. 895), has the normalized ψ(0)k as the component along the

unit basis vector ψ(0)k . In other words,17 ψk =ψ(0)k + terms orthogonal to ψ(0)k .
We are all set to proceed. First, we introduce the perturbational parameter 0 
perturbational

parameter λ
 1 in Hamiltonian Ĥ, making it, therefore, λ-dependent18

Ĥ(λ)= Ĥ(0) + λĤ(1)�

14We assume all operators are Hermitian.
15In the sense that the energy spectrum of Ĥ(0) is only slightly changed after the perturbation Ĥ(1) is

switched on.
16We can always do that, because Ĥ(0) is Hermitian (see Appendix B).
17The intermediate normalization is convenient, but not necessary. Although convenient for the

derivation of perturbational equations, it leads to some troubles when the mean values of operators
are to be calculated.
18Its role is technical. It will enable us to transform the Schrödinger equation into a sequence of

perturbational equations, which must be solved one by one. Then the parameter λ disappears from the
theory, because we put λ= 1.
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When λ = 0, Ĥ(λ) = Ĥ(0), while λ = 1 gives Ĥ(λ) = Ĥ(0) + Ĥ(1). In other
words, we tune the perturbation at will from 0 to Ĥ(1)� It is worth noting that Ĥ(λ)
for λ 	= 0	1 may not correspond to any physical system. It does not need to. We
are interested here in a mathematical trick, we will come back to reality by putting
λ= 1 at the end.

We are interested in the Schrödinger equation being satisfied for all values λ ∈
[0	1]

Ĥ(λ)ψk(λ)=Ek(λ)ψk(λ)�
Now this is a key step in the derivation. We expect that both the energy and the

wave function can be developed in a power series19 of λ

Ek(λ) = E(0)k + λE(1)k + λ2E(2)k + · · · 	 (5.18)

ψk(λ) = ψ(0)k + λψ(1)k + λ2ψ(2)k + · · · 	 (5.19)

where E(i)k stand for some (unknown for the moment) coefficients, and ψ(i)k repre-
sents the functions to be found. We expect the two series to converge (Fig. 5.2).

In practise we calculate only E(1)k 	E(2)k and quite rarely E(3)k , and for the

wave function, we usually limit the correction to ψ(1)k .

How are these corrections calculated?

Fig. 5.2. Philosophy of the perturbational approach (optimistic version). The ideal ground-state wave
function ψ0 is constructed as a sum of a good zero-order approximation (ψ(0)0 ) and consecutive small

corrections (ψ(n)0 ). The first-order correction (ψ(1)0 ) is still quite substantial, but fortunately the next
corrections amount to only small cosmetic changes.

19It is in fact a Taylor series with respect to λ. The physical meaning of these expansions is the follow-
ing: E(0)

k
and ψ(0)

k
are good approximations of Ek(λ) and ψk(λ). The rest will be calculated as a sum

of small correction terms.
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We insert the two perturbational series for Ek(λ) and ψk(λ) into the Schrödin-
ger equation

(

Ĥ(0) + λĤ(1))(ψ(0)k + λψ(1)k + λ2ψ(2)k + · · · )

= (E(0)k + λE(1)k + λ2E(2)k + · · · )(ψ(0)k + λψ(1)k + λ2ψ(2)k + · · · )

and, since the equation has to be satisfied for any λ belonging to 0 
 λ 
 1, this
may happen only if

the coefficients at the same powers of λ on the left- and right-hand sides are
equal.

This gives a sequence of an infinite number of perturbational equations to be
satisfied by the unknown E(n)k and ψ(n)k . These equations may be solved consecutively
allowing us to calculate E(n)k and ψ(n)k with larger and larger n. We have, for example:perturbational

equations

for λ0: Ĥ(0)ψ(0)k =E(0)k ψ(0)k

for λ1: Ĥ(0)ψ(1)k + Ĥ(1)ψ(0)k =E(0)k ψ(1)k +E(1)k ψ(0)k (5.20)

for λ2: Ĥ(0)ψ(2)k + Ĥ(1)ψ(1)k =E(0)k ψ(2)k +E(1)k ψ(1)k +E(2)k ψ(0)k

� � �

etc.20

Doing the same with the intermediate normalization (eq. (5.17)), we obtain

〈

ψ(0)k |ψ(n)k
〉= δ0n� (5.21)

The first of eqs. (5.20) is evident (the unperturbed Schrödinger equation does
not contain any unknown). The second equation involves two unknowns, ψ(1)k and

E(1)k . To eliminate ψ(1)k we will use the Hermitian character of the operators. In-

deed, by making the scalar product of the equation with ψ(0)k we obtain:

〈

ψ(0)k
∣
∣
(

Ĥ(0) −E(0)k
)

ψ(1)k + (Ĥ(1) −E(1)k
)

ψ(0)k
〉

= 〈ψ(0)k
∣
∣
(

Ĥ(0) −E(0)k
)

ψ(1)k
〉+ 〈ψ(0)k

∣
∣
(

Ĥ(1) −E(1)k
)

ψ(0)k
〉

= 0+ 〈ψ(0)k
∣
∣
(

Ĥ(1) −E(1)k
)

ψ
(0)
k

〉= 0	

i.e.
20We see the construction principle of these equations: we write down all the terms which give a given

value of the sum of the upper indices.
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the formula for the first-order correction to the energy

E(1)k =H(1)
kk 	 (5.22)

where we defined

H(1)
kn =

〈

ψ(0)k
∣
∣Ĥ(1)∣∣ψ(0)n

〉

� (5.23)

Conclusion: the first order correction to the energy, E(1)k , represents the mean first-order
correctionvalue of the perturbation with the unperturbed wave function of the state in which

we are interested (usually the ground state).21

Now, from the perturbation equation (5.20) corresponding to n= 2 we have22

〈

ψ(0)k
∣
∣
(

Ĥ(0) −E(0)k
)

ψ(2)k
〉+ 〈ψ(0)k

∣
∣
(

Ĥ(1) −E(1)k
)

ψ(1)k
〉−E(2)k

= 〈ψ(0)k
∣
∣Ĥ(1)ψ(1)k

〉−E(2)k = 0	

and hence

E(2)k = 〈ψ(0)k
∣
∣Ĥ(1)ψ(1)k

〉

� (5.24)

For the time being we cannot compute E(2)k , because we do not know ψ(1)k , but

soon we will. In the perturbational equation (5.20) for λ1 let us expand ψ(1)k into

the complete set of the basis functions {ψ(0)n } with as yet unknown coefficients cn:

ψ
(1)
k =

∑

n( 	=k)
cnψ

(0)
n �

Note that because of the intermediate normalization (5.17) and (5.21), we did
not take the term with n= k. We get

(

Ĥ(0) −E(0)k
) ∑

n( 	=k)
cnψ

(0)
n + Ĥ(1)ψ

(0)
k =E(1)k ψ

(0)
k 	

21This is quite natural and we use such a perturbative estimation all the time. What it really says is:
we do not know what the perturbation exactly does, but let us estimate the result by assuming that all
things are going on as they were before the perturbation was applied. In the first-order approach, insurance
estimates your loss by averaging over similar losses of others. A student score in quantum chemistry is
often close to its a posteriori estimation from his/her other scores, etc.
22Also through a scalar product with ψ(0)

k
.
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and then transform

∑

n( 	=k)
cn
(

E(0)n −E(0)k
)

ψ(0)n + Ĥ(1)ψ(0)k =E(1)k ψ(0)k �

We find cm by making the scalar product with ψ(0)m � Due to the orthonormality
of functions {ψ(0)n } we obtain

cm =
H(1)
mk

E(0)k −E(0)m
	

which gives the following formula for the first-order correction to the wave functionfirst-order
correction to
wave function

ψ
(1)
k =

∑

n( 	=k)

H(1)
nk

E(0)k −E(0)n
ψ(0)n 	 (5.25)

and then the formula for the second-order correction to the energysecond-order
energy

E(2)k =
∑

n( 	=k)

|H(1)
kn |2

E(0)k −E(0)n
� (5.26)

From (5.25) we see that the contribution of function ψ(0)n to the wave function
deformation is large if the coupling between states k and n (i.e. H(1)

nk ) is large, and
the closer in the energy scale these two states are.

The formulae for higher-order corrections become more and more complex.
We will limit ourselves to the low-order corrections in the hope that the pertur-
bational method converges fast (we will see in a moment how surprising the per-
turbational series behaviour can be) and further corrections are much less impor-
tant.23

5.2.2 HYLLERAAS VARIATIONAL PRINCIPLE24

The derived formulae are rarely employed in practise, because we only very rarely
have at our disposal all the necessary solutions of eq. (5.16). The eigenfunctions of
the Ĥ(0) operator appeared as a consequence of using them as the complete set of
functions (e.g., in expanding ψ(1)k ). There are, however, some numerical methods

23Some scientists have been bitterly disappointed by this assumption.
24See his biographic note in Chapter 10.



5.2 Perturbational method 209

that enable us to compute ψ(1)k using the complete set of functions {φi}, which are
not the eigenfunctions of Ĥ(0).

Hylleraas noted25 that the functional

E[χ̃] = 〈χ̃∣∣(Ĥ(0) −E(0)0

)

χ̃
〉

(5.27)

+ 〈χ̃∣∣(Ĥ(1) −E(1)0

)

ψ(0)0

〉+ 〈ψ(0)0

∣
∣
(

Ĥ(1) −E(1)0

)

χ̃
〉

(5.28)

exhibits its minimum at χ̃= ψ(1)0 and for this function the value of the functional
is equal to E(2)0 . Indeed, inserting χ̃ = ψ(1)0 + δχ into eq. (5.28) and using the
Hermitian character of the operators we have

[

ψ(1)0 + δχ]− [ψ(1)0

] = 〈ψ(1)0 + δχ∣∣(Ĥ(0) −E(0)0

)(

ψ(1)0 + δχ)〉

+ 〈ψ(1)0 + δχ∣∣(Ĥ(1) −E(1)0

)

ψ(0)0

〉

+ 〈ψ(0)0

∣
∣
(

Ĥ(1) −E(1)0

)(

ψ(1)0 + δχ)〉

= 〈δχ|(Ĥ(0) −E(0)0

)

ψ(1)0 + (Ĥ(1) −E(1)0

)

ψ(0)0

〉

+ 〈(Ĥ(0) −E(0)0

)

ψ(1)0 + (Ĥ(1) −E(1)0

)

ψ(0)0

∣
∣δχ
〉

+ 〈δχ∣∣(Ĥ(0) −E(0)0

)

δχ
〉= 〈δχ∣∣(Ĥ(0) −E(0)0

)

δχ
〉

	 0�

This proves the Hylleraas variational principle. The last equality follows from
the first-order perturbational equation, and the last inequality from the fact that
E(0)0 is assumed to be the lowest eigenvalue of Ĥ(0) (see the variational principle).

What is the minimal value of the functional under consideration? Let us insert
χ̃=ψ(1)0 � We obtain

E
[

ψ(1)0

] = 〈ψ(1)0

∣
∣
(

Ĥ(0) −E(0)0

)

ψ(1)0

〉

+ 〈ψ(1)0

∣
∣
(

Ĥ(1) −E(1)0

)

ψ
(0)
0

〉+ 〈ψ(0)0

∣
∣
(

Ĥ(1) −E(1)0

)

ψ
(1)
0

〉

= 〈ψ(1)0

∣
∣
(

Ĥ(0) −E(0)0

)

ψ(1)0 + (Ĥ(1) −E(1)0

)

ψ(0)0

〉+ 〈ψ(0)0

∣
∣Ĥ(1)ψ(1)0

〉

= 〈ψ(1)0

∣
∣0
〉+ 〈ψ(0)0

∣
∣Ĥ(1)ψ

(1)
0

〉= 〈ψ(0)0

∣
∣Ĥ(1)ψ

(1)
0

〉=E(2)0 �

5.2.3 HYLLERAAS EQUATION

The first-order perturbation equation (p. 206, eq. (5.20)) after inserting

ψ(1)0 =
N
∑

j=1

djφj (5.29)

25E.A. Hylleraas, Zeit. Phys. 65 (1930) 209.
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takes the form

N
∑

j=1

dj(Ĥ
(0) −E(0)0 )φj +

(

Ĥ(1) −E(1)0

)

ψ(0)0 = 0�

Making the scalar products of the left- and right-hand side of the equation with
functions φi, i= 1	2	 � � � , we obtain

N
∑

j=1

dj
(

Ĥ
(0)
ij −E(0)0 Sij

)=−(Ĥ(1)
i0 −E(1)0 Si0

)

for i= 1	2	 � � � 	N	

where Ĥ(0)
ij ≡ 〈φi|Ĥ(0)φj〉, and the overlap integrals Sij ≡ 〈φi|φj〉. Using the ma-

trix notation we may write the Hylleraas equation

(

H(0) −E(0)k S
)

d =−v	 (5.30)

where the components of the vector v are vi = Ĥ(1)
i0 − E(1)0 Si0� All the quantities

can be calculated and the set of N linear equations with unknown coefficients di
remains to be solved.26

5.2.4 CONVERGENCE OF THE PERTURBATIONAL SERIES

The perturbational approach is applicable when the perturbation only slightly
changes the energy levels, therefore not changing their order. This means that the
unperturbed energy level separations have to be much larger than a measure of
perturbation such as Ĥ(1)

kk = 〈ψ(0)k |Ĥ(1)ψ(0)k 〉. However, even in this case we may
expect complications.

The subsequent perturbational corrections need not be monotonically decreas-
ing. However, if the perturbational series eq. (5.19) converges, for any ε > 0 we
may choose such N0 that for N > N0 we have 〈ψ(N)k |ψ(N)k 〉 < ε, i.e. the vectors
ψ(N)k have smaller and smaller length in the Hilbert space.

Unfortunately, perturbational series are often divergent in a sense known as
asymptotic convergence. A divergent series

∑∞
n=0

An
zn is called an asymptotic series ofasymptotic

convergence a function f (z), if the functionRn(z)= zn[f (z)−Sn(z)]	 where Sn(z)=∑n
k=0

Ak
zk

,
satisfies the following condition: limz→∞Rn(z)= 0 for any fixed n. In other words,
the error of the summation, i.e. [f (z)− Sn(z)] tends to 0 as z−(n+1) or faster.

Despite the fact that the series used in physics and chemistry are often asymp-
totic, i.e. divergent, we are able to obtain results of high accuracy with them pro-
vided we limit ourselves to appropriate number of terms. The asymptotic character
26We obtain the same equation, if in the Hylleraas functional eq. (5.28), the variational function χ is

expanded as a linear combination (5.29), and then vary di in a similar way to that of the Ritz variational
method described on p. 202.
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of such series manifests itself in practise in such a way that the partial sums Sn(z)
stabilize and we obtain numerically a situation typical for convergence. For exam-
ple, we sum up the consecutive perturbational corrections and obtain the partial
sums changing on the eighth, then ninth, then tenth significant figures. This is a
very good time to stop the calculations, publish the results, finish the scientific ca-
reer and move on to other business. The addition of further perturbational correc-
tions ends up in catastrophe, cf. Appendix X on p. 1038. It begins by an innocent,
very small, increase in the partial sums, they just begin to change the ninth, then
the eighth, then the seventh significant figure. Then, it only gets worse and worse
and ends up by an explosion of the partial sums to ∞ and a very bad state of mind
for the researcher (I did not dare to depict it in Fig. 5.2).

In perturbation theory we assume that Ek(λ) andψk(λ) are analytical functions
of λ (p. 205). In this mathematical aspect of the physical problem we may treat λ
as a complex number. Then the radius of convergence ρ of the perturbational series
on the complex plane is equal to the smallest |λ|, for which one has a pole of Ek(λ)
or ψk(λ). The convergence radius ρk for the energy perturbational series may be
computed as (if the limit exists27)

ρk = lim
N→∞

|E(N)k |
|E(N+1)
k |

�

For physical reasons λ= 1 is most important. It is, therefore, desirable to have
ρk 	 1� Note (Fig. 5.3), that if ρk 	 1, then the series with λ = 1 is convergent
together with the series with λ=−1�

Let us take as the unperturbed system the harmonic oscillator (the potential
energy equal to 1

2x
2) in its ground state, and the operator Ĥ(1) =−0�000001 ·x4 as

its perturbation� In such a case the perturbation seems to be small28 in comparison
with the separation of the eigenvalues of Ĥ(0). And yet the perturbational series
carries the seed of catastrophe. It is quite easy to see why a catastrophe has to hap-
pen. After the perturbation is added, the potential becomes qualitatively different
from 1

2x
2. For large x, instead of going to∞, it will tend to −∞. The perturbation

is not small at all, it is a monster. This will cause the perturbational series to di-
verge. How will it happen in practise? Well, in higher orders we have to calculate
the integrals 〈ψ(0)n |Ĥ(1)ψ(0)m 〉, where n	m stand for the vibrational quantum num-
bers. As we recall from Chapter 4 high-energy wave functions have large values
for large x, where the perturbation changes as x4 and gets larger and larger as x
increases. This is why the integrals will be large. Therefore, the better we do our
job (higher orders, higher-energy states) the faster we approach catastrophe.

Let us consider the opposite perturbation Ĥ(1) = +0�000001 · x4. Despite the
fact that everything looks good (the perturbation does not qualitatively change the
potential), the series will diverge sooner or later. It is bound to happen, because the

27If the limit does not exist, then nothing can be said about ρk .
28As a measure of the perturbation we may use 〈ψ(0)0 |Ĥ(1)ψ(0)0 〉, which means an integral of x4 mul-

tiplied by a Gaussian function (cf. Chapter 4). Such an integral is easy to calculate and, in view of the
fact that it will be multiplied by the (small) factor 0�000001, the perturbation will turn out to be small.
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Fig. 5.3. The complex plane of the λ para-
meter. The physically interesting points are
at λ = 0	1� In perturbation theory we finally
put λ= 1� Because of this the convergence ra-
dius ρk of the perturbational series has to be
ρk 	 1. However, if any complex λ with |λ|< 1
corresponds to a pole of the energy, the per-
turbational series will diverge in the physical
situation (λ = 1). The figure shows the posi-
tion of a pole by concentric circles. (a) The
pole is too close (ρk < 1) and the perturba-
tional series diverges; (b) the perturbational
series converges, because ρk > 1.

convergence radius does not depend on the sign of the perturbation. A researcher
might be astonished when the corrections begin to explode.

Quantum chemistry experiences with perturbational theories look quite consis-
tent:

• low orders may give excellent results,
• higher orders often make the results worse.29

Summary

There are basically two numerical approaches to obtain approximate solutions to the
Schrödinger equation, variational and perturbational. In calculations we usually apply varia-
tional methods, while perturbational is often applied to estimate some small physical effects.

29Even orders as high as 2000 have been investigated in the hope that the series will improve the
results. . .
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The result is that most concepts (practically all we know) characterizing the reaction of a
molecule to an external field come from the perturbational approach. This leads to such
quantities (see Chapter 12) as dipole moment, polarizability, hyperpolarizability, etc. The
computational role of perturbational theories may, in this context, be seen as being of the
second order.

• Variational method
– The method is based on the variational principle, which says that, if for a system with

Hamiltonian Ĥ we calculate the number ε = 〈�|Ĥ�〉
〈�|�〉 , where � stands for an arbitrary

function, then the number ε	E0, with E0 being the ground-state energy of the system.
If it happens that ε[�] = E0	 then there is only one possibility: � represents the exact
ground-state wave function ψ0.

– The variational principle means that to find an approximate ground-state wave function
we can use the variational method: minimize ε [�] by changing (varying) �. The mini-
mum value of ε [�] is equal to ε[�opt] which approximates the ground-state energy E0
and corresponds to �opt, i.e. an approximation to the ground-state wave function ψ0.

– In practise the variational method consists from the following steps:
∗ make a decision as to the trial function class, among which the �opt(x) will be

sought30

∗ introduce into the function the variational parameters c ≡ (c0	 c1	 � � � 	 cP): �(x;c).
In this way ε becomes a function of these parameters: ε(c)

∗ minimize ε(c) with respect to c ≡ (c0	 c1	 � � � 	 cP) and find the optimal set of para-
meters c= copt

∗ the value ε(copt) represents an approximation to E0
∗ the function �(x�;copt) is an approximation to the ground-state wave function
ψ0(x)

– The Ritz procedure is a special case of the variational method, in which the parame-
ters c enter � linearly: �(x;c) =∑P

i=0 ci�i, where {�i} are some known basis func-
tions that form (or more exactly, in principle form) the complete set of functions in the
Hilbert space. This formalism leads to a set of homogeneous linear equations to solve
(“secular equations”), from which we find approximations to the ground- and excited
states energies and wave functions.

• Perturbational method

We assume that the solution to the Schrödinger equation for the unperturbed system is
known (E(0)

k
for the energy and ψ(0)

k
for the wave function, usually k = 0, i.e. the ground

state), but when a small perturbation Ĥ(1) is added to the Hamiltonian, then the solution
changes (to Ek and ψk, respectively) and is to be sought using the perturbational approach.
Then the key assumption is: Ek(λ) = E(0)k + λE(1)

k
+ λ2E

(2)
k
+ · · · and ψk(λ) = ψ(0)k +

λψ
(1)
k
+ λ2ψ

(2)
k
+ · · · , where λ is a parameter that tunes the perturbation. The goal of the

perturbational approach is to compute corrections to the energy: E(1)
k
	E

(2)
k
	 � � � and to the

wave function: ψ(1)
k
	ψ

(2)
k
	 � � � . We assume that because the perturbation is small, only a few

such corrections are to be computed, in particular,

E
(1)
k
= 〈ψ(0)

k

∣
∣Ĥ(1)ψ

(0)
k

〉

	 E
(2)
k
=
∑

n( 	=k)

|H(1)
kn
|2

E
(0)
k
−E(0)n

	 where H(1)
kn
= 〈ψ(0)

k

∣
∣Ĥ(1)ψ

(0)
n
〉

�

30x symbolizes the set of coordinates (space and spin, cf. Chapter 1).
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Main concepts, new terms

variational principle (p. 196)
variational method (p. 196)
variational function (p. 196)
variational principle for excited states

(p. 199)
underground states (p. 199)
variational parameters (p. 200)
trial function (p. 200)
Ritz method (p. 202)
complete basis set (p. 202)
secular equation (p. 203)

secular determinant (p. 203)
perturbational method (p. 203)
unperturbed system (p. 204)
perturbed system (p. 204)
perturbation (p. 204)
corrections to energy (p. 205)
corrections to wave function (p. 205)
Hylleraas functional (p. 209)
Hylleraas variational principle (p. 209)
Hylleraas equation (p. 210)
asymptotic convergence (p. 210)

From the research front

In practise, the Ritz variational method is used most often. One of the technical problems
to be solved is the size of the basis set. Enormous progress in computation and software
development now facilitate investigations which 20 years ago were absolutely beyond the
imagination. The world record in quantum chemistry means a few billion expansion func-
tions. To accomplish this quantum chemists have had to invent some powerful methods of
applied mathematics.

Ad futurum. . .

The computational technique impetus we witness nowadays will continue in the future
(maybe in a modified form). It will be no problem to find some reliable approximations
to the ground-state energy and wave function for a molecule composed of thousands of
atoms. We will be effective. We may, however, ask whether such effectiveness is at the heart
of science. Would it not be interesting to know what these ten billion terms in our wave
function are telling us about and what we could learn from this?

Additional literature

E. Steiner, “The Chemistry Maths Book”, Oxford University Press, Oxford, 1996.
A very good textbook. We may find some useful information there about the secular

equation.

W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, “Numerical Recipes. The Art
of Scientific Computing”, Cambridge University Press, 1986. p. 19–77, 274–326, 335–381.

Probably the best textbook in computational mathematics, some chapters are very
closely related to the topics of this chapter (diagonalization, linear equations).

H. Margenau and G.M. Murphy, “The Mathematics of Physics and Chemistry”, D. van
Nostrand Co., 1956.

An excellent old book dealing with most mathematical problems which we may en-
counter in chemistry and physics, including the variational and perturbational methods.

J.O. Hirschfelder, W. Byers Brown, S.T. Epstein, “Recent Developments in Perturbation
Theory”, Adv. Quantum Chem. 1 (1964) 255.

A long article on perturbation theory. For many years obligatory for those working in
the domain.
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Questions

1. Variational method (� stands for the trial function, Ĥ the Hamiltonian, E0 the exact

ground-state energy, and ψ0 the exact ground-state wave function, ε= 〈�|Ĥ�〉
〈�|�〉 ). If ε=

E0, this means that:
a) ψ0 =�; b) |�|2 = 1; c) ψ0 
�; d) ψ0 = E0�.

2. In the Ritz method (� stands for the trial function, Ĥ the Hamiltonian, E0 the exact

ground-state energy, ψ0 the exact ground-state wave function, ε = 〈�|Ĥ�〉
〈�|�〉 ) the trial

function � is always a linear combination of:
a) orthonormal functions; b) unknown functions to be found in the procedure; c) eigen-
functions of Ĥ; d) known functions.

3. A trial function used in the variational method for the hydrogen atom had the form:
ψ= exp(−c1r)+ c2 exp(−r/2). From a variational procedure we obtained:
a) c1 = c2 = 0; b) c1 = 1, c2 = 0; c) c1 = 0, c2 = 1; d) c1 = 1, c2 = 1.

4. In the variational method applied to a molecule:
a) we search an approximate wave function in the form of a secular determinant;
b) we minimize the mean value of the Hamiltonian computed with a trial function;
c) we minimize the trial function with respect to its parameters;
d) we minimize the secular determinant with respect to the variational parameters.

5. In a variational method, four classes of trial functions have been applied and the total
energy computed. The exact value of the energy is equal to −50�2 eV. Choose the best
approximation to this value obtained in correct calculations:
a) −48�2 eV; b) −50�5 eV; c) −45�3 eV; d) −43�0 eV.

6. In the Ritz method (M terms) we obtain approximate wave functions only for:
a) the ground state; b) the ground state and M excited states; c) M states; d) one-
electron systems.

7. In the perturbational method for the ground state (k= 0):
a) the first-order correction to the energy is always negative;
b) the second-order correction to the energy is always negative;
c) the first-order correction to the energy is the largest among all the perturbational
corrections;
d) the first-order correction to the energy is E(1)

k
= 〈ψ(0)

k
|Ĥ(1)ψ(1)

k
〉, where ψ(0)

k
stands

for the unperturbed wave function, Ĥ(1) is the perturbation operator and ψ(1)
k

is the
first-order correction to the wave function.

8. Perturbation theory [Ĥ	 Ĥ(0)	 Ĥ(1) stand for the total (perturbed), unperturbed and
perturbation Hamiltonian operators, ψ(0)

k
the normalized unperturbed wave function

of state k corresponding to the energy E(0)
k

]. The first-order correction to energy E(1)
k

satisfies the following relation:
a) E(1)

k
= 〈ψ(0)

k
|Ĥ(1)ψ(0)

k
〉; b) E(1)

k
= 〈ψ(0)

k
|Ĥ(0)ψ(0)

k
〉; c) E(1)

k
= 〈ψ(0)

k
|Ĥ(0)ψ(1)

k
t〉;

d) E(1)
k
= 〈ψ(1)

k
|Ĥ(0)ψ(0)

k
〉.

9. In perturbation theory:
a) we can obtain accurate results despite the fact that the perturbation series diverges
(converges asymptotically);
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b) the first-order correction to the energy has to be larger than the second-order cor-
rection;
c) the wave function ψ(0)

k
should not have any nodes;

d) E(1)
k
> 0.

10. Perturbation theory [Ĥ	 Ĥ(0)	 Ĥ(1) stand for the total (perturbed), unperturbed and
perturbation Hamiltonian operators, ψ(0)

k
the normalized unperturbed wave function

of state k corresponding to energy E(0)
k

]. The following equation is satisfied:

a) Ĥ(0)ψ(0)
k
=E(1)

k
ψ
(1)
k
+E(0)

k
ψ
(1)
k

; b) Ĥ(1)ψ(0)
k
= E(1)

k
ψ
(0)
k
+E(0)

k
ψ
(1)
k

; c) Ĥ(0)ψ(1)
k
+

Ĥ(1)ψ
(0)
k
= E(1)

k
ψ
(0)
k
+E(0)

k
ψ
(1)
k

; d) Ĥ(0)ψ(1)
k
+ Ĥ(1)ψ(0)

k
= E(1)

k
ψ
(0)
k

.

Answers

1a, 2d, 3b, 4b, 5a, 6c, 7b, 8a, 9a, 10c



Chapter 6

SEPARATION
OF ELECTRONIC
AND NUCLEAR MOTIONS

Where are we?

We are on the most important branch of the TREE.

An example

A colleague shows us the gas phase absorption spectra of the hydrogen atom and of the
hydrogen molecule recorded in the ultraviolet and visible (UV-VIS), infrared (IR) and mi-
crowave range. The spectrum of the hydrogen atom consists of separated narrow absorption
lines. The hydrogen molecule spectrum is much more complex, instead of the absorption
lines we have some absorption bands with a regular and mysterious structure. If the theory
given in the previous chapters is correct, then it should explain why these bands appear and
why the spectra have such a strange structure.

What is it all about

Separation of the centre-of-mass motion (�) p. 221
• Space-fixed coordinate system (SFCS)
• New coordinates
• Hamiltonian in the new coordinates
• After separation of the centre-of-mass motion

Exact (non-adiabatic) theory (�) p. 224

Adiabatic approximation (�) p. 227

Born–Oppenheimer approximation (�) p. 229

Oscillations of a rotating molecule (�) p. 229
• One more analogy
• The fundamental character of the adiabatic approximation – PES

Basic principles of electronic, vibrational and rotational spectroscopy (�) p. 235
• Vibrational structure
• Rotational structure

Approximate separation of rotations and vibrations (�) p. 238

Polyatomic molecule (��) p. 241
• Kinetic energy expression
• Simplifying using Eckart conditions

217
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• Approximation: decoupling of rotation and vibrations
• The kinetic energy operators of translation, rotation and vibrations
• Separation of translational, rotational and vibrational motions

Non-bound states (��) p. 247

Adiabatic, diabatic and non-adiabatic approaches (��) p. 252

Crossing the potential energy curves for diatomics (��) p. 255
• The non-crossing rule
• Simulating the harpooning effect in the NaCl molecule

Polyatomic molecules and the conical intersection (��) p. 260
• Conical intersection
• Berry phase

Beyond the adiabatic approximation. . . (�) p. 268
• Muon catalyzed nuclear fusion
• “Russian dolls” – or a molecule within molecule

Nuclei are thousands times heavier than the electrons. As an example let us take
the hydrogen atom. From the conservation of momentum law, it follows that the pro-
ton moves 1840 times slower than the electron. In a polyatomic system, while a nucleus
moves a little, an electron travels many times through the molecule. It seems that a lot
can be simplified when assuming electronic motion in a field created by immobile nu-
clei. This concept is behind what is called adiabatic approximation, in which the mo-
tions of the electrons and the nuclei are separated.1 Only after this approximation is intro-
duced, can we obtain the fundamental concept of chemistry: the molecular structure in 3D
space.

The separation of the electronic and nuclear motions will be demonstrated in detail by
taking the example of a diatomic molecule.

Why is it important?

The separation of the electronic and nuclear motions represents a fundamental approxi-
mation of quantum chemistry. Without this, chemists would lose their basic model of the
molecule: the 3D structure with the nuclei occupying some positions in 3D space, with
chemical bonds etc. This is why the present chapter occupies the central position on the
TREE.

What is needed?

• Postulates of quantum mechanics (Chapter 1, needed).
• Separation of the centre-of-mass motion (Appendix I on p. 971, necessary).
• Rigid rotator (Chapter 4, necessary).
• Harmonic and Morse oscillators (Chapter 4, necessary).
• Conclusions from group theory (Appendix C, p. 903, advised).

1It does not mean that the electrons and the nuclei move independently. We obtain two coupled
equations: one for the motion of the electrons in the field of the fixed nuclei, and the other for the
motion of the nuclei in the potential averaged over the electronic positions.
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Classical papers

John von Neumann (1903–1957) known as
Jancsi (then Johnny) was the wunderkind of
a top Hungarian banker (Jancsi showed off
at receptions by reciting from memory all the
phone numbers after reading a page of the
phone book). He attended the same famous
Lutheran High School in Budapest as Jenó Pál
(who later used the name Eugene) Wigner.
In 1926 von Neumann received his chemistry
engineering diploma, and in the same year
he completed his PhD in mathematics at the
University of Budapest. He finally emigrated
to the USA and founded the Princeton Ad-
vanced Study Institute. John von Neumann
was a mathematical genius. He contributed to
the mathematical foundations of quantum the-
ory, computers, and game theory. Von Neu-
mann made a strange offer of a professor-

ship at the Advanced Study Institute to Ste-
fan Banach from the John Casimir University in
Lwów. He handed him a cheque with a hand-
written figure “1” and asked Banach to add as
many zeros as he wanted. “This is not enough
money to persuade me to leave Poland” – an-
swered Banach.

The conical intersection problem was first recognized by three young and congenial Hun-
garians: Janos (later John) von Neumann and Jenó Pál (later Eugene) Wigner in the papers
“Über merkwürdige diskrete Eigenwerte” in Physikalische Zeitschrift, 30 (1929) 465 and “Über
das Verhalten von Eigenwerten bei adiabatischen Prozessen” also published in Physikalische
Zeitschrift, 30 (1929) 467, and later in a paper by Edward Teller published in the Journal
of Chemical Physics, 41 (1937) 109. � A fundamental approximation (called the Born–
Oppenheimer approximation) has been introduced in the paper “Zur Quantentheorie der
Molekeln” by Max Born and Julius Robert Oppenheimer in Annalen der Physik, 84 (1927)
457, which follows from the fact that nuclei are much heavier than electrons. � Gerhard
Herzberg was the greatest spectroscopist of the XX century, author of the fundamental
three-volume work: “Spectra of Diatomic Molecules” (1939), “Infrared and Raman Spectra
of Polyatomic Molecules” (1949) and “Electronic Spectra of Polyatomic Molecules” (1966).

Edward Teller (1908–2004), American phys-
icist of Hungarian origin, professor at the
George Washington University, the University
of Chicago and the University of California.
Teller left Hungary in 1926, received his PhD
in 1930 at the University of Leipzig, and fled
Nazi Germany in 1935. Teller was the project
leader and the top brain behind the American
hydrogen bomb project in Los Alamos, believ-
ing that this was the way to overthrow com-
munism. The hydrogen bomb patent is owned
by Edward Teller and Stanisław Ulam. Interro-
gated on Robert Oppenheimer’s possible con-
tacts with Soviet Intelligence Service, he de-

clared: “I feel I would prefer to see the vital
interests of this country in hands that I under-
stand better and therefore trust more”.
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Eugene Paul Wigner (1902–1995), American
chemist, physicist and mathematician of Hun-
garian origin, professor at the Princeton Uni-
versity (USA). At the age of 11 Wigner, a pri-
mary schoolboy from Budapest, was in a sana-
torium in Austria with suspected tuberculosis.
Lying for hours on a deck-chair reading books,
he was seduced by the beauty of mathematics
(fortunately, it turned out he did not have tuber-
culosis). In 1915 Wigner entered the famous
Lutheran High School in Budapest. Fulfilling
the wish of his father, who dreamed of having
a successor in managing the familial tannery,
Wigner graduated from the Technical Univer-
sity in Budapest as a chemist. In 1925, at the
Technical University in Berlin he defended his
PhD thesis on chemical kinetics “Bildung und
Zerfall von Molekülen” under the supervision
of Michael Polanyi, a pioneer in the study of
chemical reactions. In 1926 Wigner left the tan-

nery. . . Accidentally he was advised by his col-
league von Neumann, to focus on group the-
ory (where he obtained the most spectacular
successes). Wigner was the first to understand
the main features of the nuclear forces. In 1963
he won the Nobel Prize “for his contributions to
the theory of the atomic nucleus and elemen-
tary particles, particularly through the discov-
ery and application of fundamental symmetry
principles”.

� The world’s first computational papers using a rigorous approach to go beyond the Born–
Oppenheimer approximation for molecules were two articles by Włodzimierz Kołos and Lu-
tosław Wolniewicz, the first in Acta Physica Polonica 20 (1961) 129 entitled “The Coupling
between Electronic and Nuclear Motion and the Relativistic Effects in the Ground State of the
H2 Molecule” and the second in Physics Letters, 2 (1962) 222 entitled “A Complete Non-
Relativistic Treatment of the H2 Molecule”. � The discovery of the conical intersection and
the funnel effect in photochemistry is attributed to Howard E. Zimmerman [Journal of the
American Chemical Society, 88 (1966) 15662] and to Josef Michl [Journal of Molecular Pho-
tochemistry, 243 (1972)]. Important contributions in this domain were also made by Lionel
Salem and Christopher Longuet-Higgins.

Christopher Longuet-Higgins, professor at the
University of Sussex, Great Britain, began his
scientific career as a theoretical chemist. His
main achievements are connected with conical
intersection, as well as with the introduction
of permutational groups in the theoretical ex-
planation of the spectra of flexible molecules.
Longuet-Higgins was elected the member of
the Royal Society of London for these contri-
butions. He turned to artificial intelligence at
the age of 40, and in 1967 he founded the De-
partment of Machine Intelligence and Percep-
tion at the University of Edinburgh. Longuet-
Higgins investigated machine perception of

speech and music. His contribution to this field
was recognized by the award of an Honorary
Doctorate in Music by Sheffield University.

2The term “funnel effect” was coined in this paper.
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6.1 SEPARATION OF THE CENTRE-OF-MASS MOTION

6.1.1 SPACE-FIXED COORDINATE SYSTEM (SFCS)

Let us consider first a diatomic molecule with the nuclei labelled by a	b, and n
electrons. Let us choose a Cartesian coordinate system in our laboratory (called
the space-fixed coordinate system, SFCS) with the origin located at an arbitrarily
chosen point and with arbitrary orientation of the axes.3 The nuclei have the fol-
lowing positions: Ra = (Xa	Ya	Za) and Rb = (Xb	Yb	Zb), while electron i has
the coordinates x′i	 y

′
i	 z

′
i.

We write the Hamiltonian for the system (Chapter 1):

Ĥ=− h̄2

2Ma
�a − h̄2

2Mb
�b −

n
∑

i=1

h̄2

2m
�′i + V 	 (6.1)

where the first two terms stand for the kinetic energy operators of the nuclei (with
masses Ma and Mb), the third term corresponds to the kinetic energy of the elec-
trons (m is the electron mass, all Laplacians are in the space-fixed coordinate sys-
tem), and V denotes the Coulombic potential energy operator (interaction of all
the particles, nuclei–nuclei, nuclei–electrons, electrons–electrons; Zae and Zbe are
nuclear charges)

V = ZaZbe2

R
−Za

∑

i

e2

rai
−Zb

∑

i

e2

rbi
+
∑

i<j

e2

rij
� (6.2)

When we are not interested in collisions of our molecule with a wall or similar
obstruction, we may consider a separation of the motion of the centre-of-mass,
then forget about the motion and focus on the rest, i.e. on the relative motion of
the particles.

6.1.2 NEW COORDINATES

The total mass of the molecule is M =Ma +Mb +mn� The components of the
centre-of-mass position vector are4

X = 1
M

(

MaXa +MbXb +
∑

i

mx′i
)

	

Y = 1
M

(

MaYa +MbYb +
∑

i

my ′i
)

	

Z = 1
M

(

MaZa +MbZb +
∑

i

mz′i
)

�

3For example, right in the centre of the Norwich market square.
4Do not mix the coordinate Z with the nuclear charge Z .
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Now, we decide to abandon this coordinate system (SFCS). Instead of the old
coordinates, we will choose a new set of 3n + 6 coordinates (see Appendix I on
p. 971, choice II):

• three centre-of-mass coordinates X	Y	Z,
• three components of the vector R= Ra −Rb that separates nucleus a from nu-

cleus b,
• 3n electronic coordinates xi = x′i − 1

2(Xa +Xb) and similarly for yi and zi, for
i = 1	2	 � � � 	 n, which show the electron’s position with respect to the geometric
centre5 of the molecule.

6.1.3 HAMILTONIAN IN THE NEW COORDINATES

The new coordinates have to be introduced into the Hamiltonian. To this end, we
need the second derivative operators in the old coordinates to be expressed by
the new ones. First (similarly as in Appendix I), let us construct the first derivative
operators:

∂

∂Xa
= ∂X

∂Xa

∂

∂X
+ ∂Y

∂Xa

∂

∂Y
+ ∂Z

∂Xa

∂

∂Z
+ ∂Rx

∂Xa

∂

∂Rx
+ ∂Ry

∂Xa

∂

∂Ry
+ ∂Rz

∂Xa

∂

∂Rz

+
∑

i

∂xi
∂Xa

∂

∂xi
+
∑

i

∂yi
∂Xa

∂

∂yi
+
∑

i

∂zi
∂Xa

∂

∂zi

= ∂X

∂Xa

∂

∂X
+ ∂Rx

∂Xa

∂

∂Rx
+
∑

i

∂xi
∂Xa

∂

∂xi
= Ma

M

∂

∂X
+ ∂

∂Rx
− 1

2

∑

i

∂

∂xi

and similarly for the coordinates Ya and Za. For the nucleus b the expression is a
little bit different:

∂

∂Xb
= Mb

M

∂

∂X
− ∂

∂Rx
− 1

2

∑

i

∂

∂xi
�

For the first derivative operator with respect to the coordinates of the electron i
we obtain:

∂

∂x′i
= ∂X

∂x′i
∂

∂X
+ ∂Y

∂x′i
∂

∂Y
+ ∂Z

∂x′i
∂

∂Z
+ ∂Rx
∂x′i

∂

∂Rx
+ ∂Ry
∂x′i

∂

∂Ry
+ ∂Rz
∂x′i

∂

∂Rz

+
∑

j

∂xj

∂x′i
∂

∂xj
+
∑

j

∂yj

∂x′i
∂

∂yj
+
∑

j

∂zj

∂x′i
∂

∂zj

= ∂X

∂x′i
∂

∂X
+ ∂xi
∂x′i

∂

∂xi
= m

M

∂

∂X
+ ∂

∂xi

and similarly for y ′i and z′i.
5If the origin were chosen in the centre of mass instead of the geometric centre, V becomes mass-

dependent (J. Hinze, A. Alijah and L. Wolniewicz, Pol. J. Chem. 72 (1998) 1293), cf. also Appendix I,
Example II. We want to avoid this.
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Now, let us create the second derivative operators:

∂2

∂X2
a

=
(
Ma

M

∂

∂X
+ ∂

∂Rx
− 1

2

∑

i

∂

∂xi

)2
=
(
Ma

M

)2 ∂2

∂X2 +
∂2

∂R2
x

+ 1
4

(
∑

i

∂

∂xi

)2

+ 2
Ma

M

∂

∂X

∂

∂Rx
− ∂

∂Rx

∑

i

∂

∂xi
− Ma

M

∂

∂X

∑

i

∂

∂xi
	

∂2

∂X2
b

=
(
Mb

M

∂

∂X
− ∂

∂Rx
− 1

2

∑

i

∂

∂xi

)2
=
(
Mb

M

)2 ∂2

∂X2 +
∂2

∂R2
x

+ 1
4

(
∑

i

∂

∂xi

)2

− 2
Mb

M

∂

∂X

∂

∂Rx
+ ∂

∂Rx

∑

i

∂

∂xi
− Mb

M

∂

∂X

∑

i

∂

∂xi
	

∂2

∂(x′i)2
=
(
m

M

∂

∂X
+ ∂

∂xi

)2
=
(
m

M

)2 ∂2

∂X2 +
∂2

∂x2
i

+ 2
m

M

∂

∂X

∂

∂xi
�

After inserting all this into the Hamiltonian (6.1) we obtain the Hamiltonian
expressed in the new coordinates:6 clamped nuclei

Hamiltonian

Ĥ=− h̄2

2M
�XYZ + Ĥ0 + Ĥ ′	 (6.3)

where the first term means the centre-of-mass kinetic energy operator, Ĥ0 is the
electronic Hamiltonian (clamped nuclei Hamiltonian) electronic

Hamiltonian

Ĥ0 =−
∑

i

h̄2

2m
�i + V 	 (6.4)

while �i ≡ ∂2

∂x2
i

+ ∂2

∂y2
i

+ ∂2

∂z2
i

and

Ĥ ′ = − h̄
2

2μ
�R + Ĥ ′′ (6.5)

with �R ≡ ∂2

∂R2
x
+ ∂2

∂R2
y
+ ∂2

∂R2
z
, where

Ĥ ′′ =
[

− h̄
2

8μ

(
∑

i

∇i
)2
− h̄

2

2

(
1
Ma

− 1
Mb

)

∇R
∑

i

∇i
]

	

and μ denotes the reduced mass of the two nuclei (μ−1 =M−1
a +M−1

b ).

6The potential energy also has to be expressed using the new coordinates.
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The Ĥ0 does not contain the kinetic energy operator of the nuclei, but all the
other terms (this is why it is called the electronic Hamiltonian): the first term stands
for the kinetic energy operator of the electrons, and V means the potential energy
corresponding to the Coulombic interaction of all particles. The first term in the
operator Ĥ ′, i.e. − h̄2

2μ�R, denotes the kinetic energy operator of the nuclei,7 while

the operator Ĥ ′′ couples the motions of the nuclei and electrons.8

6.1.4 AFTER SEPARATION OF THE CENTRE-OF-MASS MOTION

After separation of the centre-of-mass motion (the first term in eq. (6.3) is gone,
see Appendix I on p. 971) we obtain the eigenvalue problem of the Hamiltonian

Ĥ = Ĥ0 + Ĥ ′� (6.6)

This is an exact result, fully equivalent to the Schrödinger equation.

6.2 EXACT (NON-ADIABATIC) THEORY

The total wave function that describes both electrons and nuclei can be proposed
in the following form9

7What moves is a particle of reduced mass μ and coordinatesRx	Ry	Rz . This means that the particle
has the position of nucleus a, whereas nucleus b is at the origin. Therefore, this term accounts for the
vibrations of the molecule (changes in length of R), as well as its rotations (changes in orientation of
R).

8The first of these two terms contains the reduced mass of the two nuclei, where ∇i denotes the nabla
operator for electron i, ∇i ≡ i ∂∂x + j ∂∂y + k ∂∂z with i	j	k being the unit vectors along the axes x	y	 z.
The second term is non-zero only for the heteronuclear case and contains the mixed product of nablas:
∇R∇i with ∇R = i ∂

∂Rx
+ j ∂

∂Ry
+ k ∂

∂Rz
and Rx	Ry	Rz as the components of the vector R.

9Where did such a form of the wave function come from?
If the problem were solved exactly, then the solution of the Schrödinger equation could be sought,

e.g., by using the Ritz method (p. 202). Then we have to decide what kind of basis set to use. We could
use two auxiliary complete basis sets: one that depended on the electronic coordinates {ψ̄k(r)}, and the
second on the nuclear coordinates {φ̄l(R)}. The complete basis set for the Hilbert space of our system
could be constructed as a Cartesian product {ψ̄k(r)} × {φ̄l(R)}, i.e. all possible product-like functions
ψ̄k(r)φ̄l(R). Thus, the wave function could be expanded in a series

�(r	R)=
∑

kl

cklψ̄k(r)φ̄l(R)=
N
∑

k

ψ̄k(r)

[
∑

l

cklφ̄l(R)

]

=
N
∑

k

ψ̄k(r)fk(R)	

where fk(R)=
∑

l cklφ̄l(R) stands for a to-be-sought coefficient depending on R (rovibrational func-
tion). If we had to do with complete sets, then both ψ̄k and fk should not depend on anything else,
since a sufficiently long expansion of the terms ψ̄k(r)φ̄l(R) would be suitable to describe all possible
distributions of the electrons and the nuclei.

However, we are unable to manage the complete sets, instead, we are able to take only a few terms
in this expansion. We would like them to describe the molecule reasonably well, and at the same time to
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�(r	R)=
N
∑

k

ψk(r;R)fk(R)	 (6.7)

where ψk(r;R) are the eigenfunctions of Ĥ0

Ĥ0(R)ψk(r;R)=E0
k(R)ψk(r;R) (6.8)

that depend parametrically10 on the internuclear distance R, and fk(R) are yet
unknown rovibrational functions (describing the rotations and vibrations of the
molecule).

Derivation

First, let us write down the Schrödinger equation with the Hamiltonian (6.6) and
the wave function as in (6.7)

(

Ĥ0 + Ĥ ′
)

N
∑

k

ψk(r;R)fk(R)=E
N
∑

k

ψk(r;R)fk(R)� (6.9)

Let us multiply both sides by ψ∗l (r;R) and then integrate over the electronic
coordinates r (which will be stressed by the subscript “e”):

N
∑

k

〈

ψl
∣
∣
(

Ĥ0 + Ĥ ′
)

(ψkfk)
〉

e
=E

N
∑

k

〈ψl|ψk〉efk� (6.10)

On the right-hand side of (6.10) we profit from the orthonormalization condi-
tion 〈ψl|ψk〉e = δkl , on the left-hand side we recall that ψk is an eigenfunction
of Ĥ0

E0
l fl +

N
∑

k

〈

ψl
∣
∣Ĥ ′(ψkfk)

〉

e
=Efl� (6.11)

Now, let us focus on the expression Ĥ ′(ψkfk) = − h̄2

2μ�R(ψkfk) + Ĥ ′′(ψkfk),
which we have in the integrand in eq. (6.11). Let us concentrate on the first of

have only a few, to be exact only one such term. If so, it would be reasonable to introduce a parametric
dependence of the function ψ̄k(r) on the position of the nuclei, which in our case of a diatomic molecule
means the internuclear distance. This is equivalent to telling someone how the electrons behave when the
internuclear distances are such and such, and how they behave, when the distances are changed.
10For each value of R we have a different formula for ψk.
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these terms11

− h̄
2

2μ
�R(ψkfk) = − h̄

2

2μ
∇R∇R(ψkfk)=− h̄

2

2μ
∇R
[

ψk∇Rfk + (∇Rψk)fk
]

= − h̄
2

2μ
[∇Rψk∇Rfk +ψk�Rfk + (�Rψk)fk +∇Rψk∇Rfk

]

= − h̄
2

2μ
[

2(∇Rψk)(∇Rfk)+ψk�Rfk + (�Rψk)fk
]

� (6.12)

After inserting the result into 〈ψl|Ĥ ′(ψkfk)〉e and recalling eq. (6.5) we have

〈

ψl
∣
∣Ĥ ′[ψkfk]

〉

e
= 2
(

− h̄
2

2μ

)

〈ψl|∇Rψk〉e∇Rfk + 〈ψl |ψk〉e
(

− h̄
2

2μ

)

�Rfk

+
〈

ψl

∣
∣
∣
∣

(

− h̄
2

2μ

)

�Rψk

〉

e

fk +
〈

ψl
∣
∣Ĥ ′′ψk

〉

e
fk

= (1− δkl)
(

− h̄
2

μ

)

〈ψl|∇Rψk〉e∇Rfk − δkl h̄
2

2μ
�Rfk

+Hlkfk	 (6.13)

with

H ′lk ≡
〈

ψl
∣
∣Ĥ ′ψk

〉

e
�

We obtain the following form of (6.11)

E0
l fl +

N
∑

k

[

(1− δkl)
(

− h̄
2

μ

)

〈ψl|∇Rψk〉e∇Rfk − δkl h̄
2

2μ
�Rfk +H ′lkfk

]

=Efl�

(we have profited from the equality 〈ψk|∇Rψk〉e = 0, which follows from the dif-
ferentiation of the normalization condition12 for the function ψk)

Non-adiabatic nuclear motion

Grouping all the terms with fl on the left-hand side we obtain a set of N equations

11We use the relation �R = (∇R)2.
12We assume that the phase of the wave function ψk(r;R) does not depend on R, i.e. ψk(r;R) =
ψ̃k(r;R)exp(iφ), where ψ̄k is a real function and φ 	= φ(R)� This immediately gives 〈ψk|∇Rψk〉e =
〈ψ̃k|∇Rψ̃k〉e, which is zero from differentiating the normalization condition. Indeed, the normalization
condition:

∫

ψ2
k

dτe = 1. Hence, ∇R
∫

ψ2
k

dτe = 0, or 2
∫

ψk∇Rψk dτe = 0.
Without this approximation we will surely have trouble.
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[

− h̄
2

2μ
�R +E0

l (R)+H ′ll(R)−E
]

fl =−
N
∑

k( 	=l)
�lkfk	 (6.14)

for l= 1	2	 � � � 	N with the non-adiabatic coupling operators

�lk =− h̄
2

μ
〈ψl|∇Rψk〉e∇R +H ′lk� (6.15)

Note, that the operator H ′lk depends on the length of the vector R, but not on
its direction.13

Eq. (6.14) is equivalent to the Schrödinger equation.
Eqs. (6.14) and (6.15) have been derived under the assumption that ψk of

eq. (6.7) satisfy (6.8). If instead of ψk(r;R) we use a (generally non-orthogonal)
complete set {ψ̄k(r;R)} in (6.7), eqs. (6.14) and (6.15) would change to

[

− h̄
2

2μ
�R + Ēl(R)+H ′ll(R)−E

]

fl =−
N
∑

k( 	=l)
�lkfk	 (6.16)

for l= 1	2	 � � � 	N with the non-adiabatic coupling operators

�lk =− h̄
2

μ

〈

ψ̄l
∣
∣∇Rψ̄k

〉

e
∇R +H ′lk +

〈

ψ̄l
∣
∣ψ̄k
〉

e

(

− h̄
2

2μ
�R

)

(6.17)

and Ēl(R)≡ 〈ψ̄l|Ĥ0ψ̄l〉e.

6.3 ADIABATIC APPROXIMATION

If the curves E0
l (R) for different l are well separated on the energy scale, we may

expect that the coupling between them is small, and therefore all�kl for k 	= l may
be set equal to zero. This is called the adiabatic approximation. In this approxima-
tion we obtain from (6.14):

[

− h̄
2

2μ
�R +E0

l (R)+H ′ll(R)
]

fl =Efl	 (6.18)

where the diagonal correction H ′ll(R) is usually very small compared to E0
l (R). diagonal

correctionIn the adiabatic approximation the wave function is approximated by a product

13This follows from the fact that we have in Ĥ′ (see eq. (6.5)) the products of nablas, i.e. scalar prod-
ucts. The scalar products do not change upon rotation, because both vectors involved rotate in the same
way and the angle between them does not change.
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�≈ψl(r;R)fl(R)� (6.19)

The function fk(R) depends explicitly not only on R, but also on the direction
of vector R, and therefore will describe future vibrations of the molecule (changes
of R) as well as its rotations (changes of the direction of R).

A simple analogy
Let us stop for a while to catch the sense of the adiabatic approximation.

To some extent the situation resembles an attempt to describe a tourist (an elec-
tron) and the Alps (nuclei). Not only the tourist moves, but also the Alps, as has
been quite convincingly proved by geologists.14 The probability of encountering
the tourist may be described by a “wave function” computed for a fixed position
of the mountains (shown by a map bought in a shop). This is a very good approx-
imation, because when the tourist wanders over hundreds miles, the beloved Alps
move a tiny, tiny distance, so that the map seems to be perfect all the time. On
the other hand the probability of having the Alps in a given configuration is de-
scribed by the geologists’ “wave function” f , saying for example, the probability
that the distance between the Matterhorn and the Jungfrau is equal to R. When
the tourist revisits the Alps after a period of time (say, a few million of years), the
mountains will be changed (the new map bought in the shop will reflect this fact).
The probability of finding the tourist may again be computed from the new wave
function valid for the new configuration of the mountains (a parametric dependence).
Therefore, the probability of finding the tourist in the spot indicated by the vector
r at a given configuration of the mountains R can be approximated15 by a product of
the probability of finding the mountains at this configuration |fl(R)|2 d3R and the
probability |ψl(r;R)|2 d3r of finding the tourist in the position shown by the vec-
tor r, when the mountains have this particular configuration R. In the case of our
molecule this means the adiabatic approximation (a product-like form), eq. (6.19).

This parallel fails in one important point: the Alps do not move in the potential
created by tourists, the dominant geological processes are tourist-independent. As
we will soon see, nuclear motion is dictated by the potential which is the electronic
energy.

14The continental plates collide like billiard balls in a kind of quasi-periodic oscillation. During the cur-
rent oscillation, the India plate which moved at record speed of about 20 cm a year hit the Euroasiatic
plate. This is why the Himalayan mountains are so beautiful. The collision continues and the Himalayas
will be even more beautiful. Europe was hit from the South by a few plates moving at about 4 cm a year,
and this is why we have much lower Alps. While visiting the Atlantic coast of Maine (USA), I thought
that the colour of the rocks was very similar to those I remembered from Brittany (France). That was it!
Once upon a time the two coasts made a common continent. Later we had to rediscover America. The
Wegener theory of continental plate tectonics, when created in 1911, was viewed as absurd, although
the mountain ranges suggested that some plates were colliding.
15This is an approximation, because in the non-adiabatic, i.e. fully correct, approach the total wave

function is a superposition of many such products, eq. (6.7), corresponding to various electronic and
rovibrational wave functions.
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6.4 BORN–OPPENHEIMER APPROXIMATION

In the adiabatic approximation, H ′ll =
∫

ψ∗l H
′ψl dτe represents a small correction

to E0
l (R). Neglecting the correction results in the Born–Oppenheimer approximation

H ′ll ∼= 0�

Note that in the Born–Oppenheimer approximation the potential energy
for the motion of the nuclei E0

l (R) is independent of the mass of the nuclei,
whereas in the adiabatic approximation the potential energyE0

l (R)+H ′ll(R)
depends on the mass.

Julius Robert Oppenheimer (1904–1967),
American physicist, professor at the University
of California in Berkeley and the California In-
stitute of Technology in Pasadena, and at the
Institute for Advanced Study in Princeton. In
1943–1945 Oppenheimer headed the Manhat-
tan Project (atomic bomb).

From John Slater’s autobiography: “. . . Ro-
bert Oppenheimer was a very brilliant physics
undergraduate at Harvard during the 1920s,
the period when I was there on the faculty, and
we all recognized that he was a person of very
unusual attainments. Rather than going on for
his graduate work at Harvard, he went to Ger-

many, and worked with Born, developing what
has been known as the Born–Oppenheimer
approximation.”

6.5 OSCILLATIONS OF A ROTATING MOLECULE

Our next step will be an attempt to separate rotations and oscillations within the
adiabatic approximation. To this end the function fk(R)= fk(R	θ	φ) will be pro-
posed as a product of a function Y which will account for rotations (depending on
θ	φ), and a certain function χk(R)

R describing the oscillations, i.e. dependent on R

fk(R)= Y(θ	φ)χk(R)
R

� (6.20)

No additional approximation is introduced. We say only that the isolated mole-
cule vibrates absolutely independently of whether it is oriented towards the Capri-
corn or Taurus Constellations (space is isotropic). The function χk(R) is yet un-
known, therefore dividing by R in (6.20) is meaningless.16

16In the case of polyatomics the function fk(R) may be more complicated, because some vibrations
(e.g., a rotation of the CH3 group) may contribute to the total angular momentum, which has to be
conserved (this is related to space isotropy, cf. p. 63).
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Now, we will try to separate the variables θ, φ from the variable R in eq. (6.18),
i.e. to obtain two separate equations for them. First, let us define the quantity

Uk(R)=E0
k(R)+H ′kk(R)� (6.21)

After inserting the Laplacian (in spherical coordinates, see Appendix H on p. 969)
and the product (6.20) into (6.18) we obtain the following series of transformations

[

− h̄
2

2μ

(
1
R2

∂

∂R
R2 ∂

∂R
+ 1
R2 sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

R2 sin2 θ

∂2

∂φ2

)

+Uk(R)
]

Y
χk
R

=EY χk
R
	

− h̄2

2μ

(
Y

R

∂2χk

∂R2 +
χk
R

1
R2 sinθ

∂

∂θ
sinθ

∂Y

∂θ
+ χk
R

1

R2 sin2 θ

∂2Y

∂φ2

)

+YUk(R)χk
R

=EY χk
R
	

− h̄2

2μ

(
1
χk

∂2χk

∂R2 +
1
Y

(
1

R2 sinθ
∂

∂θ
sinθ

∂Y

∂θ
+ 1

R2 sin2 θ

∂2Y

∂φ2

))

+Uk(R)=E	

−
(
R2

χk

∂2χk

∂R2

)

+ 2μ

h̄2 Uk(R)R
2 − 2μ

h̄2 ER
2 = 1

Y

(
1

sinθ
∂

∂θ
sinθ

∂Y

∂θ
+ 1

sin2 θ

∂2Y

∂φ2

)

�

Look! The left-hand side only depends on R, and the right-hand side only on
θ and φ. Both sides equal each other independently of the values of the variables.
This can only happen if each side is equal to a constant (λ), the same for each!
Therefore, we have

−
(
R2

χk

∂2χk

∂R2

)

+ 2μ

h̄2 Uk(R)R
2 − 2μ

h̄2 ER
2 = λ	 (6.22)

1
Y

(
1

sinθ
∂

∂θ
sinθ

∂Y

∂θ
+ 1

sin2 θ

∂2Y

∂φ2

)

= λ� (6.23)

Now, we are amazed to see that (6.23) is identical (cf. p. 176) to that which ap-
peared as a result of the transformation of the Schrödinger equation for a rigid rotator,
Y denoting the corresponding wave function. As we know from p. 176 mathemati-
cians have proved that this equation has a solution only if λ = −J(J + 1), where
J = 0	1	2	 � � � . Since Y stands for the rigid rotator wave function, which we know very
well, we now concentrate exclusively on the function χk, which describes vibrations
(changes in the length of R).

After inserting the permitted values of λ into (6.22) we get

− h̄
2

2μ

(
∂2χk

∂R2

)

+Uk(R)χk −Eχk =− h̄2

2μR2 J(J + 1)χk�
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Let us write this equation in the form of the eigenvalue problem for the unidi-
mensional motion of a particle (we change the partial into the regular derivative)
of mass μ

(

− h̄
2

2μ
d2

dR2 + VkJ
)

χ
kvJ
(R)=E

kvJ
χ
kvJ
(R) (6.24)

with potential energy (let us stress that R> 0)

VkJ(R)=Uk(R)+ J(J + 1)
h̄2

2μR2 (6.25)

which takes the centrifugal force effect on the vibrational motion into account. The centrifugal force
effectsolution χk, as well as the total energy E, have been labelled by two additional

indices: the rotational quantum number J (because the potential depends on it)
and the numbering of the solutions v= 0	1	2	 � � � .

The solutions of eq. (6.24) describe the vibrations of the nuclei. The function
VkJ =E0

k(R)+H ′kk(R)+ J(J+ 1)h̄2/(2μR2) plays the role of the potential
energy curve for the motion of the nuclei.

The above equation, and therefore also

the very notion of the potential energy curve for the motion of the nuclei ap-
pears only after the adiabatic (the product-like wave function, andH ′kk pre-
served) or the Born–Oppenheimer (the product-like wave function, butH ′kk
removed) approximations are applied.

If the H ′kk(R) term were not present in VkJ(R) (as it is in the Born–
Oppenheimer approximation), then the potential energy would not depend on
the mass of the nuclei.

Therefore, in the Born–Oppenheimer approximation the potential energy
is the same for H2, HD and D2.

It is worth noting that VkJ(R) only represents the potential energy of the mo-
tion of the nuclei. If VkJ(R) were a parabola (as it is for the harmonic oscillator),
the system would never acquire the energy corresponding to the bottom of the
parabola, because the harmonic oscillator energy levels (cf. p. 166) correspond to
higher energy. The same pertains to VkJ of a more complex shape.
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6.5.1 ONE MORE ANALOGY

The fact that the electronic energy E0
k(R) plays the role of the potential energy

for oscillations represents not only the result of rather complex derivations, but is
also natural and understandable. The nuclei keep together thanks to the electronic
“glue” (we will come back to this in Chapter 8). Let us imagine two metallic balls
(nuclei) in a block of transparent glue (electronic cloud), Fig. 6.1.

If we were interested in the motion of the balls, we have to take the potential en-
ergy as well as the kinetic energy into account. The potential energy would depend
on the distance R between the balls, in the way the glue’s elastic energy depends
on the stretching or squeezing of the glue to produce a distance between the balls
equal to R. Thus, the potential energy for the motion of the balls (nuclei) has to
be the potential energy of the glue (electronic energy).17

This situation corresponds to a non-rotating system. If we admit rotation, we
would have to take the effect of centrifugal force on the potential energy of the
gum into account. This effect is analogous to the second term in eq. (6.25) for
VkJ(R).

Fig. 6.1. Two metallic balls in a block of transparent glue. How they will vibrate? This will be dictated
by the elastic properties of the glue.

17The adiabatic approximation is of more general importance than the separation of the electronic and
nuclear motions. Its essence pertains to the problem of two coexisting time-scales in some phenomena:
fast and slow scales. The examples below indicate that we have to do with an important and general
philosophical approach:

• In Chapter 14 on chemical reactions, we will consider slow motion along a single coordinate, and
fast motions along other coordinates (in the configurational space of the nuclei). “Vibrationally adi-
abatic” approximation will also be introduced, and the slow motion will proceed in the potential
energy averaged over fast motions and calculated at each fixed value of the slow coordinate.

• Similar reasoning was behind vibrational analysis in systems with hydrogen bonds (Y. Marechal and
A. Witkowski, Theor. Chim. Acta 9 (1967) 116. The authors selected a slow intermolecular motion
proceeding in the potential energy averaged over fast intramolecular motions.
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6.5.2 THE FUNDAMENTAL CHARACTER OF THE ADIABATIC
APPROXIMATION – PES

In the case of a polyatomic molecule withN atoms (N > 2), VkJ depends on 3N−6
variables determining the configuration of the nuclei. The function VkJ(R) there-
fore represents a surface in (3N − 5)-dimensional space (a hypersurface). This po- potential energy

surface (PES)tential energy (hyper)surface VkJ(R), or PES, for the motion of the nuclei, rep-
resents one of the most important ideas in chemistry. This concept makes possible
contact with what chemists call the spatial “structure” of a molecule.

It is only because of the adiabatic approximation, that we may imagine the 3D
shape of a molecule as a configuration of its nuclei (corresponding to a minimum
of the electronic energy) bound by an electronic cloud, Fig. 6.2. This object moves
and rotates in space, and in addition, the nuclei vibrate about their equilibrium
positions with respect to other nuclei.

Without the adiabatic approximation, questions about the molecular 3D struc-
ture of the benzene molecule could only be answered in a very enigmatic way, e.g.,

• the molecule does not have any particular 3D shape,
• the motion of the electrons and nuclei are very complicated,
• correlations of motion of all the particles exist (electron–electron, nucleus–

nucleus, electron–nucleus),
• these correlations are in general very difficult to elucidate.

Identical answers would be given, if we were to ask about the structure of the
DNA molecule. Obviously, something is going wrong, we should expect more help
from theory.

For the benzene molecule, we could answer the questions like: what is the mean
value of the carbon–carbon, carbon–proton, proton–proton, electron–electron,
electron–proton, electron–carbon distances in its ground and excited state. Note
that because all identical particles are indistinguishable, for example, the carbon–
proton distance pertains to any carbon and any proton, and so on. To discover that
the benzene molecule is essentially a planar hexagonal object would be very diffi-
cult. What could we say about a protein? A pile of paper with such numbers would
give us the true (non-relativistic though) picture of the benzene molecule, but it
would be useless, just as a map of the world with 1:1 scale would be useless for a
tourist. It is just too exact. If we relied on this, progress in the investigation of the
molecular world would more or less stop. A radical approach in science, even if
more rigorous, is very often less fruitful or fertile. Science needs models, simpler
than reality but capturing the essence of it, which direct human thought towards
much more fertile regions.

The adiabatic approximation offers a simple 3D model of a molecule – an
extremely useful concept with great interpretative potential.
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Fig. 6.2. A 3D model (called the “structure”) of a molecule allows us to focus attention on spatial and
temporal relations that are similar to those we know from the macroscopic world. Although the con-
cept of “spatial structure” may occasionally fail, in virtually all cases in chemistry and physics we use
a 3D molecular model which resembles what is shown in the figure for a particular molecule (using a
2D projection of the 3D model). There are “balls” and “connecting sticks”. The balls represent atoms
(of various sizes, the size characterizes the corresponding element), the sticks of different length are
supposed to represent what are called “chemical bonds”. What should be taken seriously and what not?
First, the scale. The real molecule is about 100 000 000 times smaller than the picture in the figure. Sec-
ond, the motion. This static model shows a kind of averaging over all the snapshots of the real oscillating
atoms. In Chapters 8 and 11 we will see that indeed the atoms of which the molecule is composed keep
together because of a pattern of interatomic chemical bonds (which characterizes the electronic state of
the molecule) that to some extent resemble sticks. An atom in a molecule is never spherically symmetric
(cf. Chapter 11), but can be approximated by its spherical core (“ball”). The particular molecule in the
figure has two tetraazaanulene macrocycles that coordinate two Ni2+ ions (the largest spheres). The
macrocycles are held together by two –(CH2)4– molecular links. Note that any atom of a given type
binds a certain number of its neighbours. The most important message is: if such structural information
offered by the 3D molecular model were not available, it would not be possible to design and carry out the
complex synthesis of the molecule. Courtesy of Professor B. Korybut-Daszkiewicz.

In the chapters to come, this model will gradually be enriched by introducing the
notion of chemical bonds between some atoms, angles between consecutive chemi-
cal bonds, electronic lone pairs, electronic pairs that form the chemical bonds, etc.
Such a model inspires our imagination.18 This is the foundation of all chemistry,
all organic syntheses, conformational analysis, most of spectroscopy etc. Without
this beautiful model, progress in chemistry would be extremely difficult.

18Sometimes too much. We always have to remember that the useful model represents nothing more
than a kind of better or worse pictorial representation of a more complex and unknown reality.
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6.6 BASIC PRINCIPLES OF ELECTRONIC, VIBRATIONAL
AND ROTATIONAL SPECTROSCOPY

6.6.1 VIBRATIONAL STRUCTURE

Eq. (6.24) represents the basis of molecular spectroscopy, and involves changing
the molecular electronic, vibrational or rotational state of a diatomic molecule.
Fig. 6.3 shows an example how the curves Uk(R) may appear for three electronic
states k = 0	1	2 of a diatomic molecule. Two of these curves (k = 0	2) have a
typical “hook-like” shape for bonding states, the third (k = 1) is also typical, but
for repulsive electronic states.

It was assumed in Fig. 6.3 that J = 0 and therefore VkJ(R) = Uk(R). Next,
eq. (6.24) was solved for U0(R) and a series of solutions χkvJ was found: χ000	
χ010	χ020	 � � � with energies E000	E010	E020	 � � � , respectively. Then, in a similar
way, for k = 2, one has obtained the series of solutions: χ200	χ210	χ220	 � � � with
the corresponding energies E200	E210	E220	 � � � This means that these two elec-
tronic levels (k= 0	2) have a vibrational structure (v= 0	1	2	 � � �), the correspond- vibrational

structureing vibrational levels are shown in Fig. 6.3. Any attempt to find the vibrational lev-
els for the electronic state k= 1 would fail (we will return to this problem later).

The pattern of the vibrational levels looks similar to those for the Morse oscil-
lator (p. 173). The low levels are nearly equidistant, reminding us of the results

Fig. 6.3. The curves VkJ(R) for
J = 0 [Vk0(R)= Uk(R)] for the
electronic states k = 0	1	2 of
a diatomic molecule (scheme).
The vibrational energy levels
EkvJ for J = 0 corresponding to
these curves are also shown. The
electronic state k = 0 has four,
k = 1 has zero, and k = 2 has
five vibrational energy levels.
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for the harmonic oscillator. The corresponding wave functions also resemble those
for the harmonic oscillator. Higher-energy vibrational levels are getting closer and
closer, as for the Morse potential. This is a consequence of the anharmonicity of
the potential – we are just approaching the dissociation limit where the Uk(R)
curves differ qualitatively from the harmonic potential.

6.6.2 ROTATIONAL STRUCTURE

What would happen if we took J = 1 instead of J = 0? This corresponds to
the potential energy curves VkJ(R) = Uk(R) + J(J + 1)h̄2/(2μR2), in our case
Vk1(R) = Uk(R)+ 1(1+ 1)h̄2/(2μR2) = Uk(R)+ h̄2/(μR2) for k = 0	1	2. The
new curves therefore represent the old curves plus the term h̄2/(μR2), which is the
same for all the curves. This corresponds to a small modification of the curves for
large R and a larger modification for small R. The potential energy curves just go
up a little bit on the left.19 Of course, this is why the solution of eq. (6.24) for these
new curves will be similar to that which we had before, but this tiny shift upwards
will result in a tiny shift upwards of all the computed vibrational levels. Therefore
the levels Ekv1 for v= 0	1	2	 � � � will be a little higher than the corresponding Ekv0
for v = 0	1	2	 � � � (this pertains to k = 0	2, there will be no vibrational states for
k= 1). This means that each vibrational level v will have its own rotational structurerotational

structure corresponding to J = 0	1	2	 � � � .
Increasing J means that the potential energy curve becomes shallower.20 It may

happen that after a high-energy rotational excitation (to a large J) the potential
energy curve will be so shallow, that no vibrational energy level will be possible.
This means that the molecule will undergo dissociation due to the excessive cen-
trifugal force. At some lower J’s the molecule may accommodate all or part of the
vibrational levels that exist for J = 0.

Example

Let us try this. An ideal experimental range for us would be a molecule with a
Morse-like potential energy (p. 169), because here the problem is exactly solv-
able, yet preserves some important realistic features (e.g., dissociation). Unfortu-
nately, even if we approximated Uk(R)=E0

k(R)+H ′kk(R) by a Morse curve, after
adding the centrifugal term J(J + 1)h̄2/(2μR2) the curve will no longer be of the

19With an accompanying small shift to the right the position of the minimum.
20It is interesting to note that the force constant corresponding to the curves with J 	= 0 may, in prin-

ciple, increase with respect to what we had for J = 0. At least this is what happens when approximating

the Uk(R) curve by a parabola (harmonic oscillator). Then, due to the curvature 6J(J + 1) h̄2

2μR4 (al-

ways positive) of the term J(J + 1) h̄2

2μR2 , we have an increase of the force constant due to rotational

excitation. We have no information about whether this effect applies to more realistic potentials. For
sufficiently high rotational excitations, when the minimum position of VkJ(R) is getting larger, the force
constant has to converge to zero.
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Morse type. However, what we would get, would certainly resemble a Morse po-
tential. Indeed, the resulting curve approaches zero at R→∞ (as do all the Morse
curves), and at the equilibrium point, Re will be shifted up by J(J + 1)h̄2/(2μR2

e),
which we may ensure by taking a Morse curve with a little lower dissociation en-
ergy D→ D′ = D − J(J + 1)h̄2/(2μR2

e). As seen from Fig. 4.14, we should not
worry too much about what to take as the parameter α, which controls the well
width. Let us keep it constant. We could take any example we want, but since in
Chapter 4 we used the Morse potential for the hydrogen bond between two water
molecules, we have already a feeling for what happens there, so therefore let us
stick to this example.

The Morse parameters we used were: D = 6 kcal/mol = 0�00956 a.u. =
2097 cm−1, μ= 16560 a.u. and α= 1, and we have got 18 vibrational levels for two
vibrating point-like water molecules. Then we computed (p. 175) hν = 0�001074
a.u. = 235 cm−1. Let us try something special and take a very high rotational ex-
citation21 J = 40. Let us calculate the new potential well depth D′ assuming that
Re = 5�6 a.u., because this is what the hydrogen bond length amounts to. Then, we
obtain D′ = 0�00798 a.u., while hν = 215 cm−1 a bit smaller in comparison with
the state with no rotational excitation (hν = 235 cm−1).

Now, let us turn to the problem of the number of energy levels. The new a′ =
16�257, and therefore the possible values of bv are: b0 = 15�757	 b1 = 14�757	 � � � ,
so we have 16 allowed vibrational energy levels (and not 18 as we had before the
rotational excitation). Two levels have vanished into thin air. We see that the mole-
cule has been partially destabilized through rotational excitation. Higher excita-
tions might result in dissociation.

Separation between energy levels

For molecules other than hydrides, the separation between rotational levels
(EkvJ+1 − EkvJ) is smaller by two to three orders of magnitude than the sepa-
ration between vibrational levels (Ek	v+1	J −EkvJ), and the later is smaller by one
or two orders of magnitude when compared to the separation of the electronic
levels (Ek+1	v	J −EkvJ).

UV-VIS,
IR spectra,
microwave
spectra

This is why electronic excitation corresponds to absorption of UV or vis-
ible light, vibrational excitation to absorption of infrared radiation, and a
rotational excitation, to absorption of microwave radiation.

This is what we use in a microwave oven. Some chicken on a ceramic plate is ir-
radiated by microwaves. This causes rotational excitation of the water molecules22

always present in food. The “rotating” water molecules cause a transfer of kinetic

21At small excitations the effect is less visible.
22Such rotation is somewhat hindered in the solid phase.
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energy to proteins, as would happen in traditional cooking. After removing the
food from the microwave the chicken is hot, but the plate is cool (nothing to rotate
in it).

In practice, our investigations always involve the absorption or emission spectra
of a specimen from which we are trying to deduce the relative positions of the en-
ergy levels of the molecules involved. We may conclude that, in theoretical spectra
computed in the centre-of-mass system, there will be allowed and forbidden energy
intervals.23 There is no energy levels in the forbidden intervals.24 In the allowed
intervals, any region corresponds to an electronic state, whose levels exhibit a pat-
tern, i.e. clustering into vibrational series: one cluster corresponding to v = 0, the
second to v= 1, etc. Within any cluster we have rotational levels corresponding to
J = 0	1	2	 � � � This follows from the fact that the distances between the levels with
different k are large, with different v are smaller, and with different J are even
smaller.

6.7 APPROXIMATE SEPARATION OF ROTATIONS AND
VIBRATIONS

Vibrations cannot be exactly separated from rotations for a very simple reason: during
vibrations the length R of the molecule changes, this makes the momentum of
inertia I = μR2 change and influences the rotation of the molecule25 according to
eq. (6.25), p. 231.

The separation is feasible only when making an approximation, e.g., when as-
suming the mean value of the momentum of inertia instead of the momentum
itself. Such a mean value is close to I = μR2

e, where Re stands for the position of
the minimum of the potential energy Vk0� So, we may decide to accept the poten-
tial (6.25) for the oscillations in the form26

VkJ(R)≈Uk(R)+ J(J + 1)
h̄2

2μR2
e

�

Since the last term is a constant, this immediately gives the separation of the
rotations from the vibrational equation (6.24)

(

− h̄
2

2μ
d2

dR2 +Uk(R)
)

χ
kvJ
(R)=E′χ

kvJ
(R)	 (6.26)

where the constant

E′ = EkvJ −Erot	

23In a space-fixed coordinate system (see p. 971) we always have to do with a continuum of states (due
to translations, see p. 61).
24Corresponding to bound states. The non-bound states densely fill the total energy scale above the

dissociation limit of the ground state.
25Let us recall the energetic pirouette of charming dancer. Her graceful movements, stretching arms

out or aligning them along the body, immediately translate into slow or fast rotational motion.
26Which looks reasonable for small amplitude oscillations only.
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Erot = J(J + 1)
h̄2

2μR2
e

� (6.27)

rotational
energyNow, we may always write the potential Uk(R) as a number Uk(Re) plus the

“rest” labelled by Vosc(R):

Uk(R)=Uk(Re)+ Vosc(R)� (6.28)

Then, it is appropriate to call Uk(Re) the electronic energy Eel (corresponding electronic
energyto the equilibrium internuclear distance in electronic state k), while the function

Vosc(R) stands, therefore, for the oscillation potential satisfying Vosc(Re)= 0� Af-
ter introducing this into eq. (6.26) we obtain the equation for oscillations (in gen-
eral anharmonic)

(

− h̄
2

2μ
d2

dR2 + Vosc(R)

)

χkvJ(R)=EoscχkvJ(R)	

where the vibrational energy Eosc = E′ − Eel, hence (after adding the translational vibrational
energyenergy – recalling that we have separated the centre-of-mass motion) we have the

final approximation

EkvJ ≈Etrans +Eel(k)+Eosc(v)+Erot(J)	 (6.29)

where the corresponding quantum numbers are given in parentheses: the elec-
tronic (k), the vibrational (v) and the rotational (J).

A quasi-harmonic approximation

The detailed form of Vosc(R) is obtained from Uk(R) of eq. (6.28) and therefore
from the solution of the Schrödinger equation (6.8) with the clamped nuclei Hamil-
tonian. In principle there is no other way but to solve eq. (6.26) numerically. It is
tempting, however, to get an idea of what would happen if a harmonic approxima-
tion were applied, i.e. when a harmonic spring was installed between both vibrating
atoms. Such a model is very popular when discussing molecular vibrations. There
is a unexpected complication though: such a spring cannot exist even in princi-
ple. Indeed, even if we constructed a spring that elongates according to Hooke’s
law, one cannot ensure the same for shrinking. It is true, that at the beginning, the
spring may fulfil the harmonic law for shrinking too, but when R→ 0+ the two
nuclei just bump into each other and the energy goes to infinity instead of being
parabolic. For the spring to be strictly harmonic, we have to admit R< 0, which is
inconceivable. Fig. 6.4 shows the difference between the harmonic potential and
the quasi-harmonic approximation for eq. (6.26).
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Fig. 6.4. The difference between harmonic and quasi-harmonic approximations for a diatomic mole-
cule. (a) the potential energy for the harmonic oscillator (b) the harmonic approximation to the os-
cillator potential Vosc(R) for a diatomic molecule is non-realistic, since at R = 0 (and at R < 0) the
energy is finite, whereas it should go asymptotically to infinity when R tends to 0. (c) A more realis-
tic (quasi-harmonic) approximation: the potential is harmonic up to R= 0, and for negative R it goes
to infinity. The difference between the harmonic and quasi-harmonic approximations pertains to such
high energies V0 (high oscillation amplitudes), that practically it is of negligible importance. In cases (b)
and (c), there is a range of small amplitudes where the harmonic approximation is applicable.

What do we do? Well, sticking to principles is always the best choice.27 Yet,
even in the case of the potential wall shown in Fig. 6.4c we have an analytical
solution.28 The solution is quite complex, but it gets much simpler assuming V0

hν ≡
α� v, where v = 0	1	2	 � � � stands for the vibrational quantum number we are

27Let me stress once more that the problem appears when making the quasi-harmonic approximation,
not in the real system we have.
28E. Merzbacher, “Quantum Mechanics”, Wiley, New York, 2nd edition, 1970. The solution we are

talking about has to be extracted from a more general problem in the reference above. The potential
energy used in the reference also has its symmetric counterpart for R< 0. Hence, the solution needed
here corresponds to the antisymmetric solutions in the more general case (only for such solutions where
the wave function is equal to zero for R= 0).
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going to consider, and V0 ≡ Vosc(0). This means that we limit ourselves to those
vibrational states that are much below V0. This is quite satisfactory, because the
hypothetical bump of the two nuclei would occur at vast (even unrealistic) V0. In
such a case the vibrational energy is equal to Ev = hν(v′ + 1

2), where the modified
“quantum number” v′ = v+ εv with a tiny modification

εv = 1√
2π

1
v!(4α)

v+ 1
2 exp(−2α)�

The corresponding wave functions very much resemble those of the harmonic
oscillator, except that for R 
 0 they are equal to zero. The strictly harmonic ap-
proximation results in εv = 0, and therefore, Ev = hν(v+ 1

2), see Chapter 4.
Conclusion: the quasi-harmonic approximation means almost the same as the

(less realistic) harmonic one.

6.8 POLYATOMIC MOLECULE

6.8.1 KINETIC ENERGY EXPRESSION

A similar procedure can be carried out for a polyatomic molecule.
Let us consider a space fixed Cartesian coordinate system (SFCS, see Appen-

dix I on p. 971), and vector RCM indicating the centre of mass of a molecule com-
posed of M atoms, Fig. 6.5. Let us construct a Cartesian coordinate system (Body-
Fixed Coordinate System, BFCS) with the origin in the centre of mass and the axes
parallel to those of the SFCS (the third possibility in Appendix I).

In the BFCS an atom α of mass29 Mα is indicated by the vector rα, and, its
equilibrium position30 by aα, the vector of displacement is ξα = rα − aα� If the
molecule were rigid and did not rotate in the SFCS, then the velocity of the atom
α would be equal to V α = d

dt (RCM + rα) = ṘCM (dots mean time derivatives),
because the vector rα, indicating the atom from the BFCS, would not change at all.
If, in addition, the molecule, still preserving its rigidity, is rotated about its centre of
mass with angular velocity ω (the vector having the direction of the rotation axis,
right-handed screw orientation, and length equal to the angular velocity in radians
per second), then the velocity of the atom α would equal31 V α = ṘCM + (ω ×
rα). However, our molecule is not rigid and everything moves inside it (let us call
these motions “vibrations”32). Note that no restriction was made with respect to the

29What this mass really means is still a unsolved problem. The essence of the problem is what electrons
do when nuclei move. Besides the kinetic energy of the nuclei, we have to add the kinetic energy of the
electrons that move together with the nuclei. We will leave this problem unsolved and treat Mα as the
mass of the corresponding atom.
30We assume that such a position exists. If there are several equilibrium positions, we just choose one

of them.
31|ω × rα| = ωrα sinθ, where θ stands for the angle axis/vector rα� If the atom α is on the rotation

axis, this term vanishes (θ= 0 or π). In other cases the rotation radius is equal to rα sinθ.
32Such a “vibration” may mean an oscillation of the OH bond, but also a rotation of the –CH3 group

or a large displacement of a molecular fragment.



242 6. Separation of Electronic and Nuclear Motions

Fig. 6.5. Space- and Body-Fixed Coordinate Systems (SFCS and BFCS). (a) SFCS is a Cartesian coor-
dinate system arbitrarily chosen in space (left). The origin of the BFCS is located in the centre of mass
of the molecule (right). The centre of mass is shown by the vector RCM from the SFCS. The nuclei
of the atoms are indicated by vectors r1	 r2	 r3 � � � from the BFCS. Fig. (b) shows what happens to the
velocity of atom α, when the system is rotating with the angular velocity given as vector ω. In such a
case the atom acquires additional velocity ω × rα. Fig. (c) shows that if the molecule vibrates, then
atomic positions rα differ from the equilibrium positions aα by the displacements ξα.

displacements ξα – there could be some giant internal motions. Then, the velocity
of the atom α with respect to the SFCS is

V α = ṘCM + (ω× rα)+ ξ̇α� (6.30)

When these velocities V α are inserted into the kinetic energy T of the molecule
calculated in the SFCS, we get

T = 1
2

∑

α

Mα(V α)
2 = 1

2
(

ṘCM
)2∑

α

Mα + 1
2

∑

α

Mα(ω× rα)2 + 1
2

∑

α

Mα
(

ξ̇α
)2

+ ṘCM ·
[

ω×
(
∑

α

Mαrα

)]

+ ṘCM ·
∑

α

Mαξ̇α +
∑

α

Mα(ω× rα) · ξ̇α�
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The first three (“diagonal”) terms have a clear interpretation. These are: the
kinetic energy of the centre of mass, the kinetic energy of rotation, and the kinetic
energy of vibrations. The three further terms (“non-diagonal”) denote the roto-
translational, vibro-translational and vibro-rotational couplings.

6.8.2 SIMPLIFYING USING ECKART CONDITIONS
There is a little problem with the expression for the kinetic energy: we have a re-
dundancy in the coordinates. Indeed, we have three coordinates for defining trans-
lation (RCM ), three that determine rotation (ω) and on top of that M vectors rα.
Too many. Six are redundant. Using such coordinates would be very annoying, be-
cause we have to take into account that they are non-independent.33

We may impose six relations among the coordinates and in this way get rid of the
redundancy. The first three relations are evident, because the origin of the BFCS
is simply the centre of mass. Therefore,

∑

α

Mαrα = 0	 (6.31)

also true when the atoms occupy equilibrium positions
∑

α

Mαaα = 0�

Hence, we obtain a useful relation
∑

α

Mα(rα − aα) = 0	
∑

α

Mαξα = 0	

which, after differentiation with respect to time, becomes first Eckart condition first Eckart
condition∑

α

Mαξ̇α = 0� (6.32)

Inserting (6.31) and (6.32) into the kinetic energy expression makes the roto-
translational and vibro-translational couplings vanish. Thus, we have

T = 1
2
(

ṘCM
)2∑

α

Mα + 1
2

∑

α

Mα(ω× rα)2 + 1
2

∑

α

Mα
(

ξ̇α
)2

+
∑

α

Mα(ω× rα) · ξ̇α�

Noting that rα = aα+ ξα and using the relation34 (A×B) ·C=A · (B×C), we
obtain immediately

T = 1
2
(

ṘCM
)2∑

α

Mα + 1
2

∑

α

Mα(ω× rα)2 + 1
2

∑

α

Mα
(

ξ̇α
)2

+ω ·
∑

α

Mα
(

aα × ξ̇α
)+ω ·

∑

α

Mα
(

ξα × ξ̇α
)

�

33And we would have to check all the time, whether their values are consistent.
34These are two ways of calculating the volume of the parallelepiped according to the formula: surface

of the base times the height.
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We completely get rid of the redundancy if the second Eckart condition35 issecond Eckart
condition imposed (equivalent to three conditions for the coordinates)

∑

α

Mα
(

aα × ξ̇α
)= 0� (6.33)

The condition means that we do not want the internal motion to generate any
angular momentum.36 This completes our final expression for the kinetic energy of
a polyatomic molecule

2T = (ṘCM
)2∑

α

Mα +
∑

α

Mα(ω× rα)2 +
∑

α

Mα
(

ξ̇α
)2

+ 2ω ·
∑

α

Mα
(

ξα × ξ̇α
)

� (6.34)

The kinetic energy in a space-fixed coordinate system (SFCS) is composed of:

• the kinetic energy of the centre of mass,
• the rotational energy of the whole molecule,
• the kinetic energy of the internal motions (“vibrations”),
• the last term, usually very small, is known as the Coriolis term.37 The term cou-

ples the internal motions (“vibrations”) within the molecule with its rotation.

6.8.3 APPROXIMATION: DECOUPLING OF ROTATION AND VIBRATIONS

After the Eckart conditions are introduced, all the coordinates, i.e. the components of
the vectors RCM	ω and all ξα, can be treated as independent.

Since the Coriolis term is small, in the first approximation we may decide to
neglect it. Also, when assuming small vibrational amplitudes ξα, which is a rea-
sonable approximation in most cases, we may replace rα by the corresponding
equilibrium positions aα in the rotational term of eq. (6.34):

∑

αMα(ω× rα)2 ≈
∑

αMα(ω×aα)2, which is analogous to eq. (6.27). After these two approximations
have been made the kinetic energy represents the sum of the three independent

35Carl Eckart, professor at California Institute of Technology, contributed to the birth of quantum
mechanics (e.g., C. Eckart, Phys. Rev. 28 (1926) 711).
36The problem is whether indeed we do not generate any momentum by displacing the nuclei from

their equilibrium positions. A flexible molecule may have quite a number of different equilibrium po-
sitions (see Chapter 7). We cannot expect all of them to satisfy (6.33), where one of these equilibrium
positions is treated as a reference. Assuming (6.33) means that we restrict the molecular vibrations to
have only small amplitudes about a single equilibrium position.
37Gaspard Gustav de Coriolis (1792–1843), French engineer and mathematician, director of the Ecole

Polytechnique in Paris. In 1829 Coriolis introduced the notion of work, the equivalence of work and
energy, and also a coupling of rotation and vibrations.
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terms (i.e. each depending on different variables)

T ∼= 1
2
(

ṘCM
)2∑

α

Mα + 1
2

∑

α

Mα(ω× aα)2 + 1
2

∑

α

Mα
(

ξ̇α
)2
	 (6.35)

the translational kinetic energy of the centre of mass 1
2(ṘCM)

2∑
αMα, the rota-

tional energy 1
2
∑

αMα(ω × aα)2 and the internal motion (“vibrational”) kinetic
energy 1

2
∑

αMα(ξ̇α)
2.

6.8.4 THE KINETIC ENERGY OPERATORS OF TRANSLATION, ROTATION
AND VIBRATIONS

Eq. (6.35) may serve to construct the corresponding kinetic energy operator for a
polyatomic molecule. There is no problem (see Chapter 1) with the translational
term: − h̄2

2
∑

αMα
�RCM , the vibrational term will be treated in Chapter 7, p. 294.

There is a problem with the rotational term. A rigid body (the equilibrium
atomic positions aα are used), e.g., the benzene molecule, rotates, but due to sym-
metry it may have some special axes characterizing its moment of inertia. The mo-
ment of inertia represents a tensor of rank 3 with the following components: moment of

inertia
⎧

⎨

⎩

∑

αMαa
2
x	α

∑

αMαax	αay	α
∑

αMαax	αaz	α
∑

αMαax	αay	α
∑

αMαa
2
y	α

∑

αMαay	αaz	α
∑

αMαax	αaz	α
∑

αMαay	αaz	α
∑

αMαa
2
z	α

⎫

⎬

⎭
	

to be computed in the BFCS (see Appendix I on p. 971). The diagonalization of the
matrix (Appendix K on p. 982) corresponds to a certain rotation of the BFCS to
a coordinate system rotating with the molecule (RMCS), and gives as the eigenval-
ues38 Ixx	 Iyy	 Izz� Then the classical expression for the kinetic energy of rotation
takes the form39 spherical,

symmetric,
asymmetric tops1

2

∑

α

Mα(ω× aα)2 = 1
2
(

Ixxω
2
x + Iyyω2

y + Izzω2
z

)= J2
x

2Ixx
+ J2

y

2Iyy
+ J2

z

2Izz
	

where ωx	ωy	ωz stand for the components of ω in the RMCS, and Jx	 Jy	 Jz rep-
resent the components of angular momentum also computed in the RMCS. We
recall from classical mechanics, that an expression for rotational motion results
from the corresponding one for translational motion by replacing mass by mo-
ment of inertia, momentum by angular momentum and velocity by angular veloc-

38If Ixx = Iyy = Izz , the body is called a spherical top (example: methane molecule); if Ixx = Iyy 	=
Izz , it is called a symmetric top (examples: benzene, ammonia molecules); if Ixx 	= Iyy 	= Izz , then the
top is asymmetric (example: water molecule).
39H. Goldstein, “Classical Mechanics”, 2nd edition, Addison-Wesley, 1980.
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ity. Therefore, the middle part of the above formula for kinetic energy represents

an analogue of mv
2

2 and the last part is an analogue of p2

2m .
It is not straightforward to write down the corresponding kinetic energy oper-

ator. The reason is that, in the above expression, we have curvilinear coordinates
(because of the rotation from BFCS to RMCS40), whereas the quantum mechanical
operators were introduced (Chapter 1) only for the Cartesian coordinates (p. 19).
How do we write an operator expressed in some curvilinear coordinates qi and the
corresponding momenta pi? Boris Podolsky solved this problem41 and the result
is:

T̂ = 1
2
g−

1
2 p̂T g

1
2G−1p̂	

where p̂i = −ih̄ ∂
∂qi

, G represents a symmetric matrix (metric tensor) of the ele-metric tensor

ments grs , defined by the square of the length element ds2 ≡∑r

∑

s grs dqr dqs ,
with g= detG and grs being in general some functions of qr .

6.8.5 SEPARATION OF TRANSLATIONAL, ROTATIONAL AND
VIBRATIONAL MOTIONS

Eq. (6.35) represents approximate kinetic energy. To obtain the corresponding
Hamiltonian we have to add the potential energy for the motion of the nuclei,
Uk, to this energy where k labels the electronic state. The last energy depends
uniquely on the variables ξα that describe atomic vibrations and corresponds to
the electronic energy Uk(R) of eq. (6.28), except that instead of the variable R,
which pertains to the oscillation, we have the components of the vectors ξα. Then,
in full analogy with (6.28), we may write

Uk(ξ1	ξ2	 � � � 	ξN)=Uk(0	0	 � � � 	0)+ Vk	osc(ξ1	ξ2	 � � � 	ξN)	

where the number Uk(0	0	 � � � 	0)= Eel may be called the electronic energy in state
k, and Vk	osc(0	0	 � � � 	0)= 0�

Since (after the approximations have been made) the translational, rotational
and “vibrational” (“internal motion”) operators depend on their own variables, af-
ter separation the total wave function represents a product of three eigenfunctions
(translational, rotational and vibrational) and the total energy is the sum of the
translational, rotational and vibrational energies (fully analogous with eq. (6.29))

E ≈Etrans +Eel(k)+Erot(J)+Eosc(v1	 v2	 � � � 	 v3N−6)� (6.36)

40The rotation is carried out by performing three successive rotations by what is known as Euler angles.
For details see Fig. 14.3, also R.N. Zare, “Angular Momentum”, Wiley, New York, 1988, p. 78.
41B. Podolsky, Phys. Rev. 32 (1928) 812.
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6.9 NON-BOUND STATES

Repulsive potential

If we try to solve eq. (6.26) for oscillations with a repulsive potential, we would
not find any solution of class Q. Among continuous, but non-square-integrable,
functions we would find an infinite number of the eigenfunctions and the corre-
sponding eigenvalues would form a continuum. These eigenvalues usually reflect
the simple fact that the system has dissociated and its dissociation products may
have any kinetic energy larger than the dissociation limit (i.e. having dissociated
fragments with no kinetic energy), all energies measured in SFCS. Any collision of
two fragments (that correspond to the repulsive electronic state) will finally result
in the fragments flying off. Imagine that the two fragments are located at a dis-
tance R0, with a corresponding total energy E, and that the system is allowed to
relax according to the potential energy shown in Fig. 6.6.a. The system slides down
the potential energy curve (the potential energy lowers) and, since the total energy
is conserved its kinetic energy increases accordingly. Finally, the potential energy

Fig. 6.6. Three different electronic states (R is the internuclear distance): (a) repulsive state (no vibra-
tional states), (b) three bound (vibrational) states, (c) one bound vibrational state and one metastable
vibrational state. A continuum of allowed states (shadowed area) is above the dissociation limit.
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curve flattens, attaining EA + EB, where EA denotes the internal energy of the
fragment A (similarly for B). The final kinetic energy is equal to E − (EA + EB)
in SFCS.

“Hook-like” curves

Another typical potential energy curve is shown in Fig. 6.6.b, and has the shape
of a hook. Solving (6.26) for such a curve usually42 gives a series of bound states,
i.e. with their wave functions (Fig. 6.7) concentrated in a finite region of space
and exponentially vanishing on leaving it. Fig. 6.6 shows the three discrete energy
levels found, and the continuum of states above the dissociation limit, similar to
the curve in Fig. 6.6.a. The continuum has, in principle, the same origin as before
(any kinetic energy of the fragments).

Thus, the overall picture is that a system may have some bound states, but above
the dissociation limit it can also acquire any energy and the corresponding wave
functions are non-normalizable (non-square-integrable).

Continuum

The continuum may have a quite complex structure. First of all, the number of
states per energy unit depends, in general, on the position on the energy scale
where this energy unit is located. Thus the continuum may be characterized by
the density of states (the number of states per unit energy) as a function of en-
ergy. This may cause some confusion, because the number of continuum states indensity of states

any energy section is infinite. The problem is, however, that the infinities differ,
some are “more infinite than others”. The continuum does not mean a banality
of the states involved (Fig. 6.6.c). The continuum extends upward the dissocia-
tion limit irrespectively of what kind of potential energy curve one has for finite

Fig. 6.7. The bound, continuum and reso-
nance (metastable) states of an anharmonic
oscillator. Two discrete bound states are
shown (energy levels and wave functions) in
the lower part of the figure. The continuum
(shaded area) extends above the dissociation
limit, i.e. the system may have any of the
energies above the limit. There is one reso-
nance state in the continuum, which corre-
sponds to the third level in the potential en-
ergy well of the oscillator. Within the well, the
wave function is very similar to the third state
of the harmonic oscillator, but there are dif-
ferences. One is that the function has some
low-amplitude oscillations on the right-hand
side. They indicate that the function is non-
normalizable and that the system will sooner
or later dissociate.

42For a sufficiently deep and large potential energy well.
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values of R. In cases similar to that of Fig. 6.6.c the continuum will exist indepen-
dently of how large and high the barrier is. But, the barrier may be so large that
the system will have no idea about any “extra-barrier life”, and therefore will have
its “quasi-discrete” states with the energy higher than the dissociation limit. Yet,
these states despite its similarity to bound states belong to the continuum (are non-
normalizable). Such states are metastable and are called resonances (cf. p. 159), or resonances

encounter complexes. The system in a metastable state will sooner or later dissoci- encounter
complexate, but before this happens it may have a quite successful long life. Fig. 6.7 shows

how the metastable and stationary states differ: the metastable ones do not vanish
in infinity.

As shown in Fig. 6.8 rotational excitations may lead to a qualitative change of
the potential energy curve for the motion of the nuclei. Rotational excitations
lower the dissociation energy of the molecule. They may also create metastable
vibrational states (vibrational resonances).

Fig. 6.8. Rotational excitation may lead to creating the resonance states. As an illustration a potential
energy curve VkJ(R) of eq. (6.24) has been chosen that resembles what we would have for two water
molecules bound by the hydrogen bond. Its first component Uk(R) is taken in the form of the so called

Lennard-Jones potential (cf. p. 287) Uk(R) = εk[(RekR )12 − 2(RekR )6] with the parameters for the
electronic ground state (k= 0): ε0 = 6 kcal/mol and Re0 = 4 a.u. and the corresponding reduced mass
μ= 16560 a.u. For J = 0 (a) the parameter ε0 stands for the well depth, the Re0 denotes the position
of the well minimum. Figs. (a), (b), (c), (d) correspond to VkJ(R)=Uk(R)+ J(J + 1)h̄2/(2μR2) with
J = 0	10	15	20, respectively. The larger J the shallower the well: the rotation weakens the bond. Due to
the centrifugal force a possibility of existence of the metastable resonance states appears. These are the
“normal” vibrational states pushed up by the centrifugal energy beyond the energy of the dissociation
limit. For J = 20 already all states (including the potential resonances) belong to the continuum.
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Besides the typical continuum states that result from the fact that the dis-
sociation products fly slower or faster, one may also have the continuum
metastable or resonance states, that resemble the bound states.

The human mind wants to translate such situations into simple pictures, which
help to “understand” what happens. Fig. 6.9 shows an analogy associated to as-
tronomy: the Earth and the Moon are in a bound state, the Earth and an asteroid
are in a “primitive” continuum-like state, but if it happens that an asteroid went
around the Earth several times and then flew away into the Space, then one has to

Fig. 6.9. Continuum, bound and res-
onance states – an analogy to the
“states” of the Earth and an inter-
acting body. (a) A “primitive” con-
tinuum state: an asteroid flies by the
Earth and changes a little bit its
trajectory. (b) A bound state: the
Moon is orbiting around the Earth.
(c) A resonance state: the asteroid
was orbiting several times about the
Earth and then flew away.
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do with an analogue of a metastable or resonance state (characterized by a finite
and non-zero life time).

The Schrödinger equation Ĥψ = Eψ is time-independent and, therefore, its
solutions do not inform us about the sequence of events, but only all the possi-
ble events with their probability amplitudes. This is why the wave function for the
metastable state of Fig. 6.7 exhibits oscillations at large x, it informs us about a
possibility of dissociation.

Wave function “measurement”
Could we know a vibrational wave function in a given electronic and rotational
state? It seemed that such a question could only be answered by quantum mechan-
ical calculations. It turned out,43 however, that the answer can also come from
experiment. In this experiment three states are involved: the electronic ground
state (G), an electronic excited state M , in particular its vibrational state – this
state will be measured, and the third electronic state of a repulsive character (REP),
see Fig. 6.10.

We excite the molecule from the ground vibrational state of G to a certain vi-
brational state ψv ofM using a laser. Then the molecule undergoes a spontaneous
fluorescence transition to REP. The electronic state changes so fast that the nuclei fluorescence

Fig. 6.10. A “measurement” of the wave function
ψv , or more exactly of the corresponding proba-
bility density |ψv|2. A molecule is excited from its
electronic ground state G to a certain vibrational
state ψv in the electronic excited state M . From M
the molecule undergoes a fluorescence transition
to the state REP. Since the REP state is of repulsive
character the potential energy transforms into the
kinetic energy (the total energy being preserved).
By measuring the kinetic energy of the dissociation
products one is able to calculate what their starting
potential energy was, i.e. how high they were on the
REP curve. This enables us to calculate |ψv|2.

43W. Koot, P.H.P. Post, W.J. van der Zande, J. Los, Zeit. Physik D 10 (1988) 233. The experimental data
pertain to the hydrogen molecule.



252 6. Separation of Electronic and Nuclear Motions

James Franck (1882–1964), German physi-
cist, professor at the Kaiser Wilhelm Institut
für Physikalische Chemie in Berlin, then at the
University of Göttingen, from 1935 at the John
Hopkins University in the USA, and then at
the University of Chicago. Franck also partici-
pated in the Manhattan Project. As a freshman
at the Department of Law at the University of
Heidelberg he made the acquaintance of the
student Max Born. Born persuaded him to re-
sign from his planned career as a lawyer and
choose chemistry, geology and then physics. In
1914 Franck and his colleague Gustav Hertz
used electrons to bombard mercury atoms.
The young researchers noted that electrons
lose 4.9 eV of their kinetic energy after collid-
ing with mercury atoms. This excess energy is
then released by emitting a UV photon. This

was the first experimental demonstration that
atoms have the electronic energy levels fore-
seen by Niels Bohr. Both scientists obtained
the Nobel Prize in 1925. The fact that, during
the First World War, Franck was twice deco-
rated with the Iron Cross was the reason that
Franck was one of the few Jews whom the
Nazis tolerated in academia.

have no time to move (Franck–Condon rule). Whatever falls (vertically, becauseFranck–Condon
rule

Edward Condon, American
physicist, one of the pioneers
of quantum theory in the USA.
In 1928 Condon and Gurney
discovered the tunnelling ef-
fect. More widely known is his
second great achievement –
the Franck–Condon rule.

of the Franck–Condon rule) on the REP
state as a result of fluorescence, disso-
ciates, because this state is repulsive.
The kinetic energy of the dissociation
products depends on the internuclear
distance R when the fluorescence took
place, i.e. on the length the system has to
slide down the REP. How often suchan
R occurs depends on |ψv(R)|2. There-
fore, investigating the kinetic energy of
the dissociation products gives |ψv|2.

6.10 ADIABATIC, DIABATIC AND NON-ADIABATIC
APPROACHES

Let us summarize the diabatic, adiabatic and non-adiabatic concepts, Fig. 6.11.

Adiabatic case. Suppose we have a Hamiltonian Ĥ(r;R) that depends on the
electronic coordinates r and parametrically depends on the configuration of the
nuclei R. In practical applications, most often Ĥ(r;R) ≡ Ĥ0(r;R), the electronic
clamped nuclei Hamiltonian corresponding to eq. (6.8) (generalized to polyatomic
molecules). The eigenfunctions ψ(r;R) and the eigenvalues Ei(R) of the Hamil-
tonian Ĥ(r;R) are called adiabatic, Fig. 6.11. If we take Ĥ=Ĥ0(r;R), then inadiabatic states

the adiabatic approximation (p. 227) the total wave function is represented by the
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a)
diabatic

c)    adiabatic

non-adiabatic

b)
diabatic

d)

Fig. 6.11. The diabatic, adiabatic and non-adiabatic approaches to the motion of nuclei (a schematic
view). (a) A state that preserves the chemical structure for any molecular geometry is called diabatic
(e.g., is always ionic, or always covalent). The energies of these states are calculated as the mean values
of the clamped nuclei Hamiltonian. In the lower-energy state, the system is represented by a white ball
(say, the ionic state), in the second the system is represented by the black ball (say, covalent structure).
These balls oscillate in the corresponding wells, preserving the chemical structure. (b) It may happen
that two diabatic states cross. If the nuclear motion is fast, the electrons are unable to adjust and the
nuclear motion may take place on the diabatic curves (i.e. the bond pattern does not change during
this motion). Fig. (c) shows the adiabatic approach, where the diabatic states mix (mainly at a crossing
region). Each of the adiabatic states is an eigenfunction of the clamped nuclei Hamiltonian, eq. (6.8). If
the nuclear motion is slow, the electrons are able to adjust to it instantaneously and the system follows
the lower adiabatic curve. The bond pattern changes qualitatively during this motion (black ball changes
to white ball, e.g., the system undergoes a transition from covalent to ionic going through intermediate
states shown as half-white and half-black ball). The total wave function is a product of the adiabatic
electronic state and a rovibrational wave function. Finally, (d) pertains to the non-adiabatic approach.
In this particular case, three diabatic curves come into play. The total wave function is the sum of three
functions (their contributions are geometry-dependent, a larger ball means a larger contribution), each
function is a product of a diabatic electronic state times a rovibrational wave function, eq. (6.7). The
system is shown at two geometries. Changing the nuclear geometry, it is as if the system has moved
on three diabatic surfaces at the same time. This motion is accompanied by changing the proportions
(visualized by the size of the balls) of the electronic diabatic states composing it.

product
�(r	R)=ψ(r;R)f (R)	 (6.37)

where f (R) is a rovibrational wave function that describes the rotations and vibra-
tions of the system.

Diabatic case. Imagine now a basis set ψ̄i(r;R), i = 1	2	3	 � � � 	M	 of some par- diabatic states

ticular electronic wave functions (we will call them diabatic) that also depend para-
metrically on R. There are two reasons for considering such a basis set. The first
is that we are going to solve the Schrödinger equation Ĥ�i = Ei�i by using the
Ritz method (Chapter 5) and we need a basis set of the expansion functions

ψ(r;R)≈
M
∑

i

ciψ̄i(r;R)� (6.38)
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The second reason pertains to chemical interpretation: usually any of the dia-
batic wave functions are chosen as corresponding to a particular electronic distri-
bution (chemical bond pattern) in the system,44 and from (6.38) we may recognize
what kind of chemical structure dominates ψ. Thus, using the diabatic basis, there
is a chance of an insight into the chemistry going on in the system.45

The wave functions ψ̄i are in general non-orthogonal (we assume them normal-
ized). For each of them we may compute the mean value of the energy

Ēi(R)=
〈

ψ̄i
∣
∣ Ĥ(R)ψ̄i

〉

	 (6.39)

and we will call it the diabatic energy.
The key point is that we may compare the eigenvalues and eigenfunctions of

Ĥ(R), i.e. the adiabatic states with Ēi and ψ̄i, respectively. If the diabatic states
are chosen in a realistic way, they are supposed to be close to the adiabatic states
for most configurations R, Fig. 6.11.a,b,c. These relations will be discussed in a
minute.

Non-adiabatic case. The diabatic states or the adiabatic states may be used to
construct the basis set for the motion of the electrons and nuclei in the non-
adiabatic approach. Such a basis function is taken as a product of the electronic
(diabatic or adiabatic) wave function and of a rovibrational wave function that de-
pends on R. In a non-adiabatic approach the total wave function is a superposition
of these product-like contributions [a generalization of eq. (6.7)]:

�(r;R)≈
∑

k

ψ̄k(r;R)fk(R)� (6.40)

This sum means that in the non-adiabatic approach the motion of the system
involves many potential energy surfaces at the same time, Fig. 6.11.d.

The diabatic and the adiabatic electronic states are simply two choices from the
basis set in non-adiabatic calculations. If the sets were complete, the results would
be identical. The first choice underlines the importance of the chemical bond pat-

44Let us take the example of the NaCl molecule: ψ̄1 may describe the ionic Na+Cl− distribution,
while ψ̄2 may correspond to the covalent bond Na–Cl. The adiabatic wave function ψ(r;R) of the
NaCl molecule may be taken as a superposition of ψ̄1 and ψ̄2. The valence bond (VB) wave functions
(VB structures) described in Chapter 10 may be viewed as diabatic states.
45Very important for chemical reactions, in which a chemical structure undergoes an abrupt change. In

chemical reactions large changes of nuclear configuration are accompanied by motions of electrons, i.e.
large changes in the chemical bond pattern (a qualitative change of ci of eq. (6.38)). Such a definition
leaves liberty in the choice of diabatic states. This liberty can be substantially reduced by the following.
Let us take two adiabatic states that dissociate to different products, well separated on the energy scale.
However, for some reason the two adiabatic energies are getting closer for some finite values of R. For
each value of R we define a space spanned by the two adiabatic functions for that R. Let us find in this
space two normalized functions that maximize the absolute value of the overlap integral with the two
dissociation states. These two (usually non-orthogonal) states may be called diabatic.
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tern and the interplay among such patterns. The second basis set highlights the
order of the eigenvalues of Ĥ(R) (the lower/higher-energy adiabatic state).46

6.11 CROSSING OF POTENTIAL ENERGY CURVES FOR
DIATOMICS

6.11.1 THE NON-CROSSING RULE

Can the adiabatic curves cross when R changes?
To solve this problem in detail let us limit ourselves to the simplest situation:

the two-state model (Appendix D). Let us consider a diatomic molecule and such
an internuclear distance R0 that the two electronic adiabatic states47 ψ1(r;R0)
and ψ2(r;R0)) correspond to the non-degenerate (but close on the energy scale)
eigenvalues of the clamped nuclei Hamiltonian Ĥ0(R0):

Ĥ0(R0)ψi(r;R0)=Ei(R0)ψi(r;R0)	 i= 1	2�

Since Ĥ0 is Hermitian and E1 	=E2, we have the orthogonality of ψ1(r;R0) and
ψ2(r;R0): 〈ψ1|ψ2〉 = 0.

Now, we are interested in solving

Ĥ0(R)ψ(r;R)=Eψ(r;R)
for R in the vicinity of R0 and ask, is it possible for the energy eigenvalues to cross?

The eigenfunctions of Ĥ0 will be sought as linear combinations of ψ1 and ψ2:

ψ(r;R)= c1(R)ψ1(r;R0)+ c2(R)ψ2(r;R0)� (6.41)

Note that for this distance R

Ĥ0(R)= Ĥ0(R0)+ V (R)	 (6.42)

and V (R) is small, because R is close to R0 and V (R0)= 0. Using the Ritz method
(Chapter 5, Appendix D, case III), we arrive at two adiabatic solutions, and the
corresponding energies are

E±(R)= Ē1 + Ē2

2
±
√
(
Ē1 − Ē2

2

)2

+ |V12|2	 (6.43)

46In polyatomic systems there is a serious problem with the adiabatic basis (this is why the diabatic
functions are preferred). As we will see later (p. 264), the adiabatic electronic wave function is multi-
valued, and the corresponding rovibrational wave function, having to compensate for this (because the
total wave function must be single-valued), also has to be multi-valued.
47These states are adiabatic only for R = R0, but when considering R 	= R0 they may be viewed as

diabatic (because they are not the eigenfunctions for that R).
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where Vij ≡ 〈ψi|V̂ (R)ψj〉 and

Ēi(R)=
〈

ψi(r;R0)
∣
∣Ĥ0(R)ψi(r;R0)

〉=Ei(R0)+ Vii(R)� (6.44)

The crossing of the energy curves at a given R means that E+ = E−, and from
this it follows that the expression under the square root symbol has to equal zero.
Since, however, the expression is the sum of two squares, the crossing needs two
conditions to be satisfied simultaneously:

Ē1 − Ē2 = 0	 (6.45)

|V12| = 0� (6.46)

Two conditions, and a single changeable parameter R. If you adjust the parameter
to fulfil the first condition, the second one is violated and vice versa. The crossing
E+ = E− may occur only when, for some reason, e.g., because of the symmetry,
the coupling constant is automatically equal to zero, |V12| = 0, for all R. Then, wecoupling of

diabatic states have only a single condition to be fulfilled, and it can be satisfied by changing the
parameter R, i.e. crossing can occur. The condition |V12| = 0 is equivalent to

|H12| ≡
〈

ψ1
∣
∣Ĥ0(R)ψ2

〉= 0	

because Ĥ0(R) = Ĥ0(R0) + V̂ , and [(H0(R0)]12 = 0 due to the orthogonality of
both eigenfunctions of Ĥ0(R0).

Now we will refer to group theory (see Appendix C, p. 903). The Hamiltonian
represents a fully symmetric object, whereas the wave functions ψ1 and ψ2 are
not necessarily fully symmetrical, because they may belong to other irreducible
representations of the symmetry group. Therefore, in order to make the integral
|H12| = 0, it is sufficient that ψ1 and ψ2 transform according to different irreducible
representations (“have different symmetries”).48 Thus, the adiabatic curves can-
not cross if the corresponding wave functions have the same symmetry. What will
happen if such curves are heading for something that looks like an inevitable cross-
ing? Such cases are quite characteristic and look like an avoided crossing. The two
curves look as if they repel each other and avoid the crossing.

If two states of a diatomic molecule have the same symmetry, then the cor-
responding potential energy curves cannot cross.

48H12 transforms according to the representation being the direct product of three irreducible repre-
sentations: that of ψ1, that of ψ2 and that of Ĥ0 (the last is, however, fully symmetric, and therefore,
does not count in this direct product). In order to have H12 	= 0 this direct product, after decomposi-
tion into irreducible representations, has to contain a fully symmetric irreducible representation. This,
however, is possible only when ψ1 and ψ2 transform according to the same irreducible representation.
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6.11.2 SIMULATING THE HARPOONING EFFECT IN THE NaCl MOLECULE

Our goal now is to show, in an example, what happens to adiabatic states (eigenstates
of Ĥ(R)), if two diabatic energy curves (mean values of the Hamiltonian with the
diabatic functions) do cross. Although we are not aiming at an accurate description
of the NaCl molecule (we prefer simplicity and generality), we will try to construct
a toy (a model) that mimics this particular system.

The sodium atom has 11 electrons (the electronic configuration:49 1s22s22p63s1),
and the chlorine atom contains 17 electrons (1s22s22p63s23p5). The solution of the
Schrödinger equation for 28 electrons is difficult. But, we are not looking for trou-
ble. Note that in the NaCl story the real film star is a single electron that goes from
the sodium to the chlorine atom making Na+ and Cl− ions. The ions attract each
other by the Coulombic force and form the familiar ionic bond. But wait a minute!
There is a problem. Which is of lower energy: the two non-interacting atoms Na
and Cl or the two non-interacting ions Na+ and Cl−? The ionization energy of
sodium is I = 495�8 kJ/mol= 0�1888 a.u., whereas the electron affinity of chlorine
is only A = 349 kJ/mol = 0�1329 a.u. This means that the NaCl molecule in its
ground state dissociates into atoms, not ions.

To keep the story simple, let us limit ourselves to the single electron mentioned
above.50 First, let us define the two diabatic states (the basis set) of the system: the
3s orbital of Na (when the electron resides on Na; we have atoms) denoted by |3s〉
and the 3pz orbital of Cl (when the electron is on Cl; we have ions, z is the axis
of the molecule) |3p〉. Now, what about the Hamiltonian Ĥ? Well, a reasonable
model Hamiltonian may be taken as51

Ĥ(r;R)=−I|3s〉〈3s| −A|3p〉〈3p| − 1
R
|3p〉〈3p| + exp(−R)�

Indeed, the mean values of Ĥ in the |3s〉 and |3p〉 states are equal to

Ē1(R) ≡H11 =
〈

3s
∣
∣Ĥ(3s)

〉=−I −AS2 − 1
R
S2 + exp(−R)	

Ē2(R) ≡H22 =
〈

3p
∣
∣Ĥ(3p)

〉=−IS2 −A− 1
R
+ exp(−R)	

where (assuming the diabatic functions to be real) the overlap integral

S ≡ 〈3s|3p〉 = 〈3p|3s〉�

First of all, this Hamiltonian gives the correct energy limits Ē1(R) = −I and

49What these configurations really mean is explained in Chapter 8.
50The other electrons in our approach will only influence the numerical values of the interaction pa-

rameters.
51r stands for the coordinates of the electron, for the diatomic molecule R replaces R.
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Ē2(R) = −A, when R→∞ (the electron binding energy by the sodium and by
the chlorine atoms for dissociation into atoms and ions, respectively), which is al-
ready very important. The term exp(−R) mimics the repulsion of the inner shells
of both atoms52 and guarantees that the energies go up (they should do) as R→ 0�
Note also that the Ē1(R) and Ē2(R) curves indeed mimic the approaching Na and
Cl, and Na+ and Cl−, respectively, because in Ē2(R) there is a Coulomb term
− 1
R , while in Ē1(R) such an interaction practically disappears for large R. All this

gives us a certain confidence that our Hamiltonian Ĥ grasps the most important
physical effects for the NaCl molecule. The resulting non-diagonal element of the
Hamiltonian reads as:

〈

3s
∣
∣Ĥ(3p)

〉≡H12 = S
[

−I −A− 1
R
+ exp(−R)

]

�

As to S, we could in principle calculate it by taking some approximate atomic or-
bitals, but our goal is less ambitious than that. Let us simply set S =Rexp(−R/2)�
Why? Since S = 〈3s|3p〉 = 0, if R→∞ or if R→ 0, and S > 0 for other values of
R, then at least our formula takes care of this. In addition, Figs. 6.12.a,b show that
such a formula for S also gives a quite reasonable set of diabatic curves Ē1(R) and
Ē2(R): both curves have single minimum, the minimum for the ionic curve is at
about 5.23 a.u., close to the experimental value of 5.33 a.u., and the binding energy
is 0.11 a.u. (0.13 for the adiabatic case, see below), also quite close the experimen-
tal value of 0.15 a.u. Thus, our model to a reasonable extent resembles the real
NaCl molecule.

Our goal is the adiabatic energies computed using the diabatic basis chosen,
eq. (6.38). Appendix D (general case) gives the eigenvalues [E+(R) and E−(R)]
and the eigenfunctions (ψ+ andψ−). Figs. 6.12.c,d show the adiabatic compared to
the diabatic curves. The avoided crossing at about 17.9 a.u. is the most important.
If the two atoms begin to approach (Fig. 6.12.a, light gray) the energy does not
change too much (flat energy curve), but if the ions do the same the energy goes
down, because of Coulombic attraction (dark gray). Thus, the two adiabatic curves
(that nearly coincide with the two diabatic curves, especially for large R) look as
though they are going to cross each other (Figs. 6.12.a,b), but the two states have
the same symmetry with respect to the molecular axis (note that S 	= 0) and, there-
fore, the crossing cannot occur, Fig. 6.12.d. As a result, the two curves avoid the
crossing and, as shown in Fig. 6.12.c–f, the “atomic” curve switches to the “ionic”avoided

crossing curve and vice versa. This switching means an electron jumping from Na to Cl and,
therefore, formation of the ions Na+ and Cl− (then the ions approach fast – this
is the harpooning effect, introduced to chemistry by Michael Polanyi). This jumpharpooning

effect occurs at long distances, of the order of 9 Å.
Is this jump inevitable?

52It prevents the two cores collapsing, cf. Chapter 13.
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Fig. 6.12. A simple one-electron model of electron transfer in the NaCl molecule. R is the internuclear
distance. (a) The mean values of the Hamiltonian with two diabatic states: one (light gray) being the
3s atomic orbital of the sodium atom (atomic curve), the second (dark gray) the 2p atomic orbital of
the chlorine atom (ionic curve). The two diabatic curves intersect. (b) A closer view of the intersection.
(c) The two diabatic curves [gray, as in (a,b)], and the two adiabatic curves (black): the lower-energy
(solid), the higher-energy (dashed). Although the drawing looks like intersection, in fact the adiabatic
curves “repel” each other, as shown in Fig. (d) (avoided crossing at 17.9 a.u.). (e) Each of the adia-
batic states is a linear combination of two diabatic states (atomic and ionic) . The ratio c1/c2 of the
coefficients for the lower-energy (solid line) and higher-energy (dashed line) states, c1 is the contribu-
tion of the atomic function, c2 – of the ionic function. As we can see, the lower-energy (higher-energy)
adiabatic state is definitely atomic (ionic) for R> 17�9 a.u. and definitely ionic (atomic) for smaller R.
(f) The ratio c1/c2 very close to the avoided crossing point. As we can see, at this point one of the
adiabatic states is the sum, the other the difference of the two diabatic states.

If the electron is able to adapt instantaneously to the position of the nuclei
(slow nuclear motion), the system follows the adiabatic curve and the elec-
tron jump occurs. If the nuclear motion is very fast, the system follows the
diabatic curve and no electron transfer takes place. The electron transfer is
more probable if the gap 2|H12| between E+(R) and E−(R) is large.
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For large distances the adiabatic are practically identical with the diabatic states,
except in the avoided crossing region, Figs. 6.12.c,d.

6.12 POLYATOMIC MOLECULES AND CONICAL
INTERSECTION

Crossing for polyatomics

The non-crossing rule for a diatomic molecule has been based on eq. (6.43). To
achieve the crossing we had to make two independent terms vanish with only one
parameter (the internuclear distance R) able to vary. It is important to note that in
the case of a polyatomic molecule the formula would be the same, but the number
of parameters would be larger: 3N − 6 in a molecule with N nuclei. For N = 3 one
has already, therefore, three such parameters. No doubt even for a three-atomic
molecule we would be able to make the two terms equal to zero and, therefore,
achieve E+ =E−, i.e. the crossing of the two diabatic hypersurfaces.

Let us investigate this possibility, which, for reasons that will become clear later,
is called conical intersection. We will approach this concept by a few steps.

Cartesian system of 3N coordinates (O3N )

All the quantities in eq. (6.43) depend on n = 3N − 6 coordinates of the nuclei.
These coordinates may be chosen in many different ways, the only thing we should
bother about is that they have to determine the positions of N point objects. To
begin, let us construct a Cartesian system of 3N coordinates (O3N ). Let us locate
(Fig. 6.13) nucleus 1 at the origin (in this way we eliminate three degrees of free-
dom connected with the translation of the system), nucleus 2 will occupy the point
x2 on the x axis, i.e. y2 = z2 = 0. In this way we have eliminated two rotations of the
system. The total system may still be rotated about the x axis. This last possibility

Fig. 6.13. The Cartesian coordinate system O3N and
the atoms 1	2	3 with their fixed positions.
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can be eliminated when we decide to locate the nucleus 3 in the plane x	 y (i.e. the
coordinate z3 = 0).

Thus six degrees of freedom have been eliminated from the 3N coordinates.
The other nuclei may be indicated by vectors (xi	 yi	 zi) for i= 4	5	 � � � 	N . As we
can see there has been a lot of arbitrariness in these choices. By the way, if the
molecule was diatomic, the third rotation need not be determined and the number
of variables would be equal to n= 3× 2− 5= 1.

Cartesian system of 3N − 6 coordinates (O3N−6)
This choice of coordinate system may be viewed a little differently. We may
construct a Cartesian coordinate system with the origin at atom 1 and the axes
x2	x3	 y3 and xi	 yi	 zi for i = 4	5	 � � � 	N . Thus, we have a Cartesian coordinate
system (O3N−6) with 3+ 3(N − 3) = 3N − 6 = n axes, which may be labelled (in
the sequence given above) in a uniform way: x̄i, i = 1	2	 � � � 	 n. A single point
R= x̄1	 x̄2	 � � � 	 x̄3N−6) in this n-dimensional space determines the positions of all
N nuclei of the system. If necessary all these coordinates may be expressed by the
old ones, but we are not intending to make this expression.

Two special vectors in the O3N−6 space
Let us consider two functions Ē1 − Ē2 and V12 of the configuration of the nuclei
R= (x̄1	 x̄2	 � � � 	 x̄3N−6), i.e. with domain being the O3N−6 space. Now, let us con-
struct two vectors in O3N−6:

∇(Ē1 − Ē2) =
3N−6
∑

i=1

ii
∂(Ē1 − Ē2)

∂x̄i
	

∇V12 =
3N−6
∑

i=1

ii
∂V12

∂x̄i
	

where ii labels the unit vector along axis x̄i.

Rotating O3N−6 to O′
3N−6

We may introduce any coordinate system. We are free to do this because the system
stays immobile, but our way of determining the nuclear coordinates changes. We
will change the coordinate system in n-dimensional space once more. This new
coordinate system is formed from the old one (O3N−6) by rotation.

The rotation will be done in such a way as to make the plane determined by
the two first axes (x̄1 and x̄2) of the old coordinate system coincide with the
plane determined by the two vectors: ∇(Ē1 − Ē2) or ∇(V12).

Let us denote the coordinates in the rotated coordinate system by ξi	 i =
1	2	 � � � 	 n. The new coordinates can, of course, be expressed as some linear com-
binations of the old ones, but these details need not bother us. The most important
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thing is that we have the axes of the coordinates ξ1 and ξ2, which determine the
same plane as the vectors ∇(Ē1 − Ē2) and ∇V12. The directions ∇(Ē1 − Ē2) and
∇V12 need not be orthogonal, although they look this way in figures shown in the
literature.53

Now we are all set to define the conical intersection.

6.12.1 CONICAL INTERSECTION

Why has this, a slightly weird, coordinate system been chosen? We see from the
formula (6.43) for E+ and E− that ξ1 and ξ2 correspond to the fastest change of
the first term and the second term under the square-root sign, respectively.54

Any change of all other coordinates (being orthogonal to the plane ξ1ξ2)
does not influence the value of the square root, i.e. does not change the
difference between E+ and E− (although it changes the values of E+
and E−).

Therefore, the hypersurface E+ intersects with the hypersurface E−, and theirconical
intersection
subspace

common part, i.e. the intersection set, are all those vectors of the n-dimensional
space that fulfil the condition: ξ1 = 0 and ξ2 = 0. The intersection represents a
(n− 2)-dimensional subspace of the n-dimensional space of the nuclear configu-
rations.55 When we withdraw from the point (0	0	 ξ3	 ξ4	 � � � 	 ξ3N−6) by changing
the coordinates ξ1 and/or ξ2, a difference between E+ and E− appears. For small
increments dξ1 the changes in the energies E+ and E− are proportional to dξ1
and for E+ and E− differ in sign. This means that the hypersurfaces E+ and E−
as functions of ξ1 (at ξ2 = 0 and fixed other coordinates) have the shapes shown
in Fig. 6.14.a. For ξ2 the situation is similar, but the cone may differ by its angle.
From this it follows that

two diabatic hypersurfaces intersect with each other (the intersection set
represents the subspace of all vectors (0	0	 ξ3	 ξ4	 � � � 	 ξn)) and split when
we go out of the intersection point according to the cone rule, i.e. linearly
when moving in the plane ξ1, ξ2 from the point (0	0).

53See: F. Bernardi, M. Olivucci, M.A. Robb, Chem. Soc. Rev. (1996) 321. The authors confirmed to me
that the angle is often quite small.
54Let us take a scalar field V and calculate its value at the point r0 + r, where we assume |r| � 1�

From the Taylor expansion we have with good accuracy, V (r0 + r)∼= V (r0)+ (∇V )r=r0 · r= V (r0)+|(∇V )r=r0 | · r cosθ. We obtain the largest absolute value of the increment of V for θ= 0 and θ= 180◦ ,
i.e. along the vector (∇V )r=r0 .
55If the axes ξ1 and ξ2 were chosen in another way on the plane determined by the vectors ∇(Ē1− Ē2)

and ∇V12, the conical intersection would be described in a similar simple way. If, however, the axes
were chosen outside the plane, it may happen that moving along more than just two axes the energy
would split into E+ and E− . Our choice stresses that the intersection of E+ and E− represents a
(n− 2)-dimensional subspace.
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Fig. 6.14. Conical intersection: (a) a section of the cone along the ξ1 axis; (b) the cone (variables ξ1
and ξ2); (c) the values of the other coordinates decide the cone opening angle as well as the intersection
point energy.

This is called the conical intersection, Fig. 6.14.b. The cone opening angle is conical
intersectionin general different for different values of the coordinates ξ3	 ξ4	 � � � 	 ξ3N−6 see

Fig. 6.14.c.
The conical intersection plays a fundamental role in the theory of chemical re-

actions (Chapter 14). The lower (ground-state) as well as the higher (excited-state)
adiabatic hypersurfaces are composed of two diabatic parts, which in polyatomics
correspond to different patterns of chemical bonds. This means that the system,
(point) when moving on the ground-state adiabatic hypersurface towards the join
of the two parts, passes near the conical intersection point and overcomes the en-
ergy barrier. This is the essence of a chemical reaction.
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6.12.2 BERRY PHASE

We will focus on the adiabatic wave functions close to the conical intersection. Our
goal will be to show something strange, that

when going around the conical intersection point in the configurational
space, the electronic wave function changes its phase, and after coming back
to the starting point this change results in the opposite sign of the function.

First let us prepare an itinerary in the configuration space around the conical
intersection. We need a parameter, which will be an angle α, and will define our
position during our trip around the point. Let us introduce some abbreviations in
formula (6.43): δ≡ Ē1−Ē2

2 , h≡ V12, and define α in the following way

sinα= δ/ρ	 cosα= h/ρ	 where ρ=
√

δ2 + h2�

We will move around the conical intersection within the plane given by the vec-
tors ∇δ and ∇h. The conical intersection point is defined by |∇δ| = |∇h| = 0�
Changing α from 0 to 2π we have to go, at a distance ρ(α), once through a maxi-
mum of h (say, in the direction of the maximum gradient ∇h), and once through
its minimum−h (the opposite direction). This is assured by cosα= h/ρ. Similarly,
we have a single maximum and a single minimum of ∇δ (as must be when going
around), when assuming sinα= δ/ρ. We do not need more information about our
itinerary because what we are interested in is how the wave function changes after
making a complete trip (i.e. 360◦) around the conical intersection and returning to
the starting point.

The adiabatic energies are given in (6.43) and the corresponding coefficients of
the diabatic states are reported in Appendix D (the first, most general case):

(
c1

c2

)

±
= 1
h

[

δ±
√

δ2 + h2
]= tanα± 1

cosα
�

Thus,

c1	+
c2	+

= sinα+ 1
cosα

= (sin α
2 + cos α2 )

2

cos2 α
2 − sin2 α

2

= (sin α
2 + cos α2 )

(cos α2 − sin α
2 )
	

c1	−
c2	−

= sinα− 1
cosα

= −(cos α2 − sin α
2 )

2

cos2 α
2 − sin2 α

2

=−(cos α2 − sin α
2 )

(cos α2 + sin α
2 )
�

To specify the coefficients in ψ+ = c1	+ψ1 + c2	+ψ2 and ψ− = c1	−ψ1 + c2	−ψ2
with ψ1 and ψ2 denoting the diabatic states, we have to take the two normalization
conditions into account: c2

1	+ + c2
2	+ = 1, c2

1	− + c2
2	− = 1 and the orthogonality of
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ψ+ and ψ− : c1	+c1	− + c2	+c2	− = 0. After a little algebra we get

c1	+ = 1√
2

(

cos
α

2
+ sin

α

2

)

	

c2	+ = 1√
2

(

cos
α

2
− sin

α

2

)

�

c1	− = − 1√
2

(

cos
α

2
− sin

α

2

)

	

c2	− = 1√
2

(

cos
α

2
+ sin

α

2

)

�

Now, let us make this journey by considering the wave functions ψ+ and ψ− at
the angle α and at the angle α+ 2π. Note that cos α+2π

2 = cos(α2 + π) = − cos α2
and sin α+2π

2 = sin(α2 + π)=− sin α
2 . Therefore, both the electronic functions ψ+

and ψ− have to change their signs after the journey (“geometric” phase or Berry
phase), i.e.

ψ+(α+ 2π)=−ψ+(α) and ψ−(α+ 2π)=−ψ−(α)�

This is how the conical intersection is usually detected.

Since the total wave function has to be single-valued, this means the func-
tion that describes the motion of the nuclei (and multiplies the electronic
function) has to compensate for that change, and has to undergo a change
of sign.

The role of the conical intersection – non-radiative transitions and
photochemical reactions

The conical intersection was underestimated in the past. However, photochemistry
demonstrated that it happens much more frequently than expected.

Laser light may excite a molecule from its ground to an excited electronic state
(Fig. 6.15). Let us assume that the nuclei in the electronic ground state have their
positions characterized by point P′ in the configurational space (they vibrate in its
neighbourhood, but let us ignore the quantum nature of these vibrations56).

56Electronic energy hypersurfaces represent the potential energy surface (PES) for the motion of
the nuclei. In the quantum mechanical picture only some energies will be allowed: we will have the
vibrational and rotational energy levels, as for diatomics. The same energy levels corresponding to E+
may be close in the energy scale to those of E−. Moreover, it may happen that the vibrational wave
functions of two such levels may overlap significantly in space, which means that there is a significant
probability that the system will undergo a transition from one to the other vibrational state. In short, in
the quantum mechanical picture, the motion of the system is not necessarily bound to a single PES, but
the two PESs are quite penetrable.
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Fig. 6.15. The photochemical funnel effect. We can see two adiabatic surfaces (upper and lower), which
resulted from intersection of two diabatic surfaces (white and gray). The lower surface corresponds
to an electronic ground state, the upper to an excited electronic state. The molecule is excited from
its ground state at the nuclear configuration P′ to the excited state (point FC) at the same nuclear
configuration (according to the Franck–Condon rule). The point FC representing the system is usually
located on a slope of the potential energy (corresponding to the excited state) and this is why it slides
downhill towards the energy minimum M∗. Its kinetic energy may be sufficient to go through M∗ and
pass a barrier (saddle point) corresponding to the point TS. Then, the system inevitably slides down
into the conical intersection point C (“funnel effect”) and lands in the ground state surface (at the
configuration of the conical intersection) with nearly 100% efficiency. The future of the system may
correspond to different products: it may roll down to product P or slide back to product P′ . Modified
and adapted from F. Bernardi, M. Olivucci, M.A. Robb, Chem. Soc. Rev. (1996) 321.

The electronic excitation takes place so fast that the nuclei do not have
enough time to move. Thus the positions of the nuclei in the excited state
are identical to those in the ground state (Franck–Condon rule).

The point FC in Fig. 6.15 shows the very essence of the Franck–Condon rule –
a vertical transition. The corresponding nuclear configuration may differ quite sig-vertical

transition nificantly from the nearest potential energy minimum M∗ in the excited state PES
(E−). In a few or a few tens of femtoseconds, the system slides down from P′ to the
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neighbourhood of M∗, transforming its potential energy into kinetic energy. Usu-
ally point M∗ is separated from the conical intersection configuration C by a bar-
rier with the corresponding potential energy saddle point TS (“transition state”).
Behind the saddle point there is usually an energy valley57 with a deep funnel end-
ing in the conical intersection configuration. As soon as the system overcomes the
barrier at TS, by going over it or by tunnelling, it will be sucked in by the conical
intersection attractor with almost 100% probability. funnel effect

The system goes through the “funnel” to the electronic ground-state hyper-
surface.

Then the system will continue its path in the ground state PES, E+. If its mo-
mentum is large enough, the system slides down along path P towards the nearest
local minimum. If its momentum is small, the system may choose path P′. The P
trajectory may mean a new reaction product, while P′ means returning to the orig-
inal molecule.

Of course, the total energy has to be conserved. The non-radiative process de-
scribed will take place if the system finds a way to dissipate its energy, i.e. to trans- energy

dissipationfer an excess of electronic energy into the vibrational, rotational and translational
degrees of freedom of its own or neighbouring molecules (e.g., of the solvent).58

What will the energy in the plane ξ1ξ2 be, far away from the conical intersection
point? Of course, there is no reason for the energy to change linearly. Instead we
may expect a more complex landscape to emerge on the E+ and E− PESs, such
as minima, saddle points, etc. shown in Fig. 6.15. We may ask whether we will find
some other conical intersections in the ground-state PES. In general the answer is
positive. There are at least two reasons for this.

In the simplest case the conical intersection represents the dilemma of an
atom C (approaching molecule AB): to attach either to A or B?

Thus any encounter of three atoms causes a conical intersection (see Chap-
ter 14). In each case the important thing is a configuration of nuclei, where a small
variation may lead to distinct sets of chemical bonds like in an equilateral trian-
gle configuration of H3. Similar “pivot points” may happen for four, five, six etc.
atoms. Thus we will encounter not only the minima, maxima and saddle points, but
also the conical intersection points when travelling in the ground-state PES.

The second reason is the permutational symmetry. Very often the system con-
tains the same kinds of nuclei. Any exchange of the positions of such nuclei moves
the point representing the system in configuration space to some distant regions,
whereas the energy does not change at all. Therefore, any PES has to exhibit the

57On the excited state PES.
58The energy is usually distributed among the degrees of freedom in an unequal way.
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corresponding permutational symmetry. All the details of PES will be repeated N!
times for a system with N identical nuclei. This will multiply the number of conical
intersections.

More about conical intersection will be given in Chapter 14, when we will
be equipped with the theoretical tools to describe how the electronic structure
changes during chemical reactions.

6.13 BEYOND THE ADIABATIC APPROXIMATION. . .

6.13.1 MUON CATALYZED NUCLEAR FUSION

Andrei Dmitrievich Sakharov
(1921–1989) Russian physi-
cist, father of the Soviet hy-
drogen bomb. During the fi-
nal celebration of the H bomb
project Sakharov expressed
his hope that the bombs would
never be used. A Soviet gen-
eral answered coldly that it
was not the scientists’ busi-
ness to decide such things.
This was a turning point for
Sakharov and he began his
fight against the totalitarian
system.

The idea of muon induced
fusion was conceived by Sa-

kharov in 1945, in his first sci-
entific paper, under the su-
pervision of Tamm. In 1957
David Jackson realized that
muons may serve as cata-
lysts.

Some molecules look really peculiar,
they may contain a muon instead of an
electron. The muon is an unstable parti-
cle with the charge of an electron and
mass equal to 207 electron masses.59

For such a mass, assuming that nuclei
are infinitely heavier than a muon looks
like a very bad approximation. There-
fore, the calculations need to be non-
adiabatic. The first computations for
muonic molecules were performed by
Kołos, Roothaan and Sack in 1960.60

The idea behind the project was muon
catalyzed fusion of deuterium and tri-
tium. This fascinating problem was pro-
posed by the Russian physicist Andrei
Sakharov. Its essence is as follows.

If an electron in the molecule dt+ is replaced by a muon, immediately the di-
mension of the molecule decreases by a factor of about 200. How is this possible?

The radius of the first Bohr orbit in the hydrogen atom (see p. 179) is equal to
a0 = h̄2

μe2 . After introducing atomic units, this formula becomes a0 = 1
μ , and when

we take into account that the reduced mass μ ≈ m (m stands for the electron
mass) we get a0 ≈ 1. This approximation works for the electron, because in reality
μ= 0�9995m. If, in the hydrogen atom, instead an electron we have a muon, then μ
would be equal about 250m. This, however, means that such a “muon Bohr radius”
would be about 250 times smaller. Nuclear forces begin to operate at such a smallmuon catalysis

internuclear separation (strong interactions, Fig. 6.16.a), and are able to overcome

59The muon was discovered in 1937 by C.D. Anderson and S.H. Neddermeyer. Its life time is about
2�2 ·10−6 s. The muons belong to the leptons family (with the electron and τ particle, the later with mass
equal to about 3640 electron masses). Nature created, for some unknown reasons, the “more massive
electrons”. When the nuclear physicist Isidor Rabi was told about the incredible mass of the τ particle,
he dramatically shouted: “Who ordered that?!”
60W. Kołos, C.C.J. Roothaan, R.A. Sack, Rev. Mod. Phys. 32 (1960) 205.
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Fig. 6.16. (a) The interaction energy potential (E) of d and t as a function of the interparticle dis-
tance (R), with taking the nuclear forces into account (an outline). At large R, of the order of nanome-
ters, we have Coulombic repulsion, at distances of the order of femtometers the internuclear attractive
forces (called the strong interaction) are switched on and overcome the Coulombic repulsion. At a dis-
tance of a fraction of femtometer again we have a repulsion (b) “Russian dolls” (outline): the analogues
of H2 and H+2 .

the Coulombic barrier and stick the nuclei together by nuclear fusion. The muon,
however, is released, and may serve as a catalyst in the next nuclear reaction.

Deuteron and tritium bound together represent a helium nucleus. One muon
may participate in about 200–300 such muon catalyzed fusion processes.61 Every-
body knows how much effort and money has been spent for decades (for the
moment without success) to ignite the nuclear synthesis d + t → He. Muon cat-
alyzed fusion might be an alternative solution. If the muon project were success-
ful, humanity would have access to a practically unlimited source of energy. Un-
fortunately, theoretical investigations suggest that the experimental yield already
achieved is about the maximum theoretical value.62

61The commercial viability of this process will not be an option unless we can demonstrate 900 fusion
events for each muon. About 10 grams of deuterium and 15 g of tritium fusion would then be sufficient
to supply the average person with electricity for life.
62More about this may be found in K. Szalewicz, S. Alexander, P. Froelich, S. Haywood, B. Jeziorski,

W. Kołos, H.J. Monkhorst, A. Scrinzi, C. Stodden, A. Velenik, X. Zhao, in “Muon Catalyzed Fusion”,
eds. S.E. Jones, J. Rafelski, H.J. Monkhorst, AIP Conference Proceedings 181 (1989) 254.



270 6. Separation of Electronic and Nuclear Motions

6.13.2 “RUSSIAN DOLLS” – OR A MOLECULE WITHIN MOLECULE

Scrinzi and Szalewicz63 carried out non-adiabatic calculations (p. 224) for a sys-
tem of 6 particles: proton (p), deuterium (d), tritium (t), muon (μ) and two elec-
trons (e) interacting by Coulombic forces (i.e. no nuclear forces assumed). It is not
so easy to predict the structure of the system. It turns out that the resulting struc-
ture is a kind of “Russian doll”64 (Fig. 6.16.b): the muon has acted according to its
mass (see above) and created tdμ with a dimension of about 0�02 Å. This system
may be viewed as a partly split nucleus of charge +1 or, alternatively, as a mini
model of the hydrogen molecular ion (scaled at 1:200). The “nucleus” serves as a
partner to the proton and both create a system similar to the hydrogen molecule, in
which the two electrons play their usual binding role, and the internuclear distance
is about 0.7 Å. It turns out that the non-zero dimension of the “nucleus” makes a
difference, and the energies computed with and without an approximation of the
point-like nucleus differ. The difference is tiny (about 0.20 meV), but it is there.

It is quite remarkable that such small effects are responsible for the fate of the
total system. The authors observe that the relaxation of the “nucleus” dtμ (from
the excited state to the ground state65) causes the ionization of the system: one of
the electrons flies off. Such an effect may excite those who study this phenomenon.
How is it possible? The “nucleus” is terribly small when seen by an electron orbit-
ing far away. How could the electron detect that the nucleus has changed its state
and that it has no future in the molecule? Here, however, our intuition fails. For
the electron, the most frequently visited regions of the molecule are the nuclei. We
will see this in Chapter 8, but even the 1s state of the hydrogen atom (p. 178, the
maximum of the orbital is at the nucleus) suggests the same. Therefore, no wonder
the electron could recognize that something has abruptly changed on one of the
nuclei and (being already excited) it felt it was receiving much more freedom, so
much that it could leave the molecule completely.

We may pose an interesting question, whether the “Russian doll” represents the
global minimum of the particles system. We may imagine that the proton changes
its position with the deuterium or tritium, i.e. new isomers (isotopomers66) appear.

63A. Scrinzi, K. Szalewicz, Phys. Rev. A 39 (1989) 4983.
64(((woman@ woman)@ woman)@)
65A. Scrinzi, K. Szalewicz, Phys. Rev. A 39 (1989) 2855. The dtμ ion is created in the rovibrational state
J = 1, v = 1, and then the system spontaneously goes to the lower energy 01 or 00 states. The energy
excess causes one electron to leave the system (ionization). This is an analogue of the Auger effect in
spectroscopy.
66The situation is quite typical, although we very rarely think this way. Some people say that they

observe two different systems, whereas others say, that they see two states of the same system. This begins
with the hydrogen atom – it looks different in its 1s and 3pz states. We can easily distinguish two
different conformations of cyclohexane, two isomers of butane, and some chemists would say these
are different substances. Going much further, N2 and CO represent two different molecules, or is one
of them nothing but an excited state of the other? However strange it may sound for a chemist, N2
represents an excited state of CO, because we may imagine a nuclear reaction of the displacement of
a proton from one nitrogen to the other (and the energy curve per nucleon as a function of the atomic
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The authors did not study this question,67 but investigated a substitution of the
proton by deuterium and tritium (and obtained similar results).

Scrinzi and Szalewicz also performed some calculations for an analogue of H+
2 :

proton, deuterium, tritium, muon and electron. Here the “Russian doll” looks won-
derful (Fig. 6.16.c); it is a four-level object:

• the molecular ion (the analogue of H+
2 ) is composed of three objects: the proton,

the “split nucleus” of charge +1 and the electron;
• the “split nucleus” is also composed of three objects: d, t, μ (a mini model of H+

2 );
• the tritium is composed of three nucleons: the proton and the two neutrons;
• each of the nucleons is composed of three quarks (called the valence quarks).

Summary

• In the adiabatic approximation, the total wave function is approximated as a product �=
ψk(r;R)fk(R) of the function fk(R), which describes the motion of the nuclei (vibrations
and rotations) and the function ψk(r;R) that pertains to the motion of electrons (and
depends parametrically on the configuration of the nuclei; here we give the formulae for
a diatomic molecule). This approximation relies on the fact that the nuclei are thousands
of times heavier than the electrons.

• The function ψk(r;R) represents an eigenfunction of the Hamiltonian Ĥ0(R) of
eq. (6.4), i.e. the Hamiltonian Ĥ , in which the kinetic energy operator for the nuclei
is assumed to be zero (the clamped nuclei Hamiltonian).

• The function fk(R) is a product of a spherical harmonic68 YMJ that describes the rotations
of the molecule (J and M stand for the corresponding quantum numbers) and a function
that describes the vibrations of the nuclei.

• The diagram of the energy levels shown in Fig. 6.3 represents the basis of molecular
spectroscopy. The diagram may be summarized in the following way:
– the energy levels form some series separated by energy gaps, with no discrete levels.

Each series corresponds to a single electronic state n, and the individual levels pertain
to various vibrational and rotational states of the molecule in electronic state n;

– within the series for a given electronic state, there are groups of energy levels, each
group characterized by a distinct vibrational quantum number (v = 0	1	2	 � � �), and
within the group the states of higher and higher energies correspond to the increasing
rotational quantum number J;

– the energy levels fulfil some general relations:
∗ increasing n corresponds to an electronic excitation of the molecule (UV-VIS, ultra-

violet and visible spectrum),
∗ increasing v pertains to a vibrational excitation of the molecule, and requires the

energy to be smaller by one or two orders of magnitude than an electronic excitation
(IR, infrared spectrum).

∗ increasing J is associated with energy smaller by one or two orders of magnitude than
a vibrational excitation (microwaves).

mass is convex). Such a point of view is better for viewing each object as a “new animal”: it enables us
to see and use some relations among these animals.
67They focused their attention on tdμ.
68That is, of the eigenfunction for the rigid rotator.
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• The electronic wave functions ψk(r;R) correspond to the energy eigenstates E0
k
(R),

which are functions of R. The energy curves69 E0
k
(R) for different electronic states k

may cross each other, unless the molecule is diatomic and the two electronic states have
the same symmetry.70 In such a case we have what is known as an avoided crossing (see
Fig. 6.12).

• For polyatomic molecules the energy hypersurfaces E0
k
(R) can cross. The most important

is conical intersection (Fig. 6.15) of the two (I and II) diabatic hypersurfaces, i.e. those that
(each individually) preserve a given pattern of chemical bonds. This intersection results
in two adiabatic hypersurfaces (“lower and upper”). Each of the adiabatic hypersurfaces
consists of two parts: one belonging to I and the second to II. Using a suitable coordinate
system in the configurational space, we obtain, independence of the adiabatic hypersurface
splitting of 3N − 8 coordinates and dependence on two coordinates (ξ1 and ξ2) only. The
splitting begins by a linear dependence on ξ1 and ξ2, which gives a sort of cone (hence
the name “conical intersection”).

• Conical intersection plays a prominent role in the photochemical reactions, because the
excited molecule slides down the upper adiabatic hypersurface to the funnel (just the con-
ical intersection point) and then, with a yield close to 100% lands on the lower adiabatic
hypersurface (assuming there is a mechanism for dissipation of the excess energy).

Main concepts, new terms

clamped nuclei Hamiltonian (p. 223)
non-adiabatic theory (p. 224)
adiabatic approximation (p. 227)
diagonal correction for the motion of the

nuclei (p. 227)
Born–Oppenheimer approximation (p. 229)
potential energy curve (p. 231)
potential energy (hyper)surface (p. 233)
electronic-vibrational-rotational

spectroscopy (p. 235)
non-bound states (p. 247)
non-bound metastable states (p. 247)
wave function “measurement” (p. 251)

diabatic curve (p. 253)
adiabatic curve (p. 253)
avoided crossing (p. 255)
non-crossing rule (p. 256)
harpooning effect (p. 257)
conical intersection (p. 262)
Berry phase (p. 264)
Franck–Condon rule (p. 266)
funnel effect (p. 266)
non-radiative transitions (p. 266)
photochemical reaction (p. 266)
muon catalyzed nuclear fusion (p. 268)
split nucleus effect (p. 270)

From the research front

Computing a reliable hypersurface of the potential energy (PES) for the motion of nuclei,
represents an extremely difficult task for today’s computers, even for systems of four atoms.
In principle routine calculations are currently performed for three-atomic (and, of course,
two-atomic) systems. The technical possibilities are discussed by J. Hinze, A. Alijah and
L. Wolniewicz, Pol. J. Chem. 72 (1998) 1293, in which the most accurate calculations are also
reported (for the H+3 system). Analysis of conical intersections is only occasionally carried
out, because the problem pertains to mostly unexplored electronic excited states.

69As functions of R.
70That is, they transform according to the same irreducible representation.
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Ad futurum. . .

The computational effort needed to calculate the PES for an N atomic molecule is pro-
portional to 103N−6. This strong dependence suggests that, for the next 20 years, it would
be rather unrealistic to expect high-quality PES computations for N > 10. However, ex-
perimental chemistry offers high-precision results for molecules with hundreds of atoms.
It seems inevitable that it will be possible to freeze the coordinates of many atoms. There
are good reasons for such an approach, because indeed most atoms play the role of specta-
tors in chemical processes. It may be that limiting ourselves to, say, 10 atoms will make the
computation of rovibrational spectra feasible.

Additional literature

J. Hinze, A. Alijah, L. Wolniewicz, “Understanding the Adiabatic Approximation; the
Accurate Data of H2 Transferred to H+3 ”, Pol. J. Chem. 72 (1998) 1293.

The paper reports the derivation of the equation of motion for a polyatomic molecule.
As the origin of the BFCS, unlike this chapter, the centre of mass was chosen.71

W. Kołos, “Adiabatic Approximation and its Accuracy”, Advan. Quantum Chem. 5 (1970)
99.

Kołos was the No 1 expert in the domain.

F. Bernardi, M. Olivucci, M.A. Robb, “Potential Energy Surface Crossings in Organic
Photochemistry”, Chem. Soc. Rev. p. 321–328 (1996).

A review article by the top experts in conical intersection problems.

Questions

1. A diatomic homonuclear molecule, origin of the BFCS in the centre of the molecule, po-
tential energy of the Coulombic interactions equals V . The total non-relativistic Hamil-
tonian is equal to:

a) Ĥ = −∑i
h̄2

2m�i − h̄2

2μ�R; b) Ĥ = −∑i
h̄2

2m�i + V ; c) Ĥ = − h̄2

2μ�R + V ; d) Ĥ =
−∑i

h̄2

2m�i + V − h̄2

2μ�R − h̄2

8μ(
∑

i∇i)2.

2. A diatomic molecule, origin of the BFCS in the centre of the molecule. In the adiabatic
approximation, the total wave function is in the form �=ψk(r;R)fk(R), where:
a) fk(R) describes the translation of the molecule; b) fk(R) stands for a spherical har-
monic describing the rotations of the molecule; c) ψk(r;R) denotes the eigenfunction of
the clamped nuclei Hamiltonian; d) ψk(r;R) stands for the probability density of having
the electrons with coordinates r and the nuclei at distance R.

3. A diatomic molecule, origin of the BFCS in the centre of the molecule, in the adiabatic
approximation the total wave function is in the form �= ψk(r;R)fk(R)� The potential
energy for the vibrations of the molecule is equal to:

a) V + J(J + 1) h̄2

2μR2 ; b) 〈ψk|Ĥψk〉 + (2J + 1) h̄2

2μR2 ; c) 〈ψk|Ĥψk〉 + J(J + 1) h̄
2

2μ ;

d) 〈ψk|Ĥψk〉 + J(J + 1) h̄2

2μR2 .

71We have chosen the centre of the ab bond.
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4. The potential energy curves for the motion of the nuclei for a diatomic molecule
a) cross, if their derivatives differ widely; b) always cross; c) do not cross, if they corre-
spond to the same irreducible representation of the symmetry group of the Hamiltonian;
d) do not cross, if they correspond to different symmetry.

5. Please choose the wrong answer. The potential energy for the motion of the nuclei:
a) contains the eigenvalue of the clamped nuclei Hamiltonian;
b) does not change when the rotation excitation occurs;
c) represents the electronic energy when the Born–Oppenheimer approximation is used;
d) for bound states has to be convex as a function of the positions of the nuclei.

6. Please choose the wrong answer. As a result of the rotational excitation J→ (J + 1) of a
molecule of length R:
a) the angular momentum increases;
b) the potential for vibrations changes;
c) the potential energy curve for the motion of the nuclei becomes shallower;
d) the potential energy increases by a term proportional to (2J + 1) and proportional
to R−2.

7. The potential energy hypersurface for the N-atomic molecule depends on the following
number of variables:
a) 2N − 8; b) 3N − 6; c) 3N − 5; d) N .

8. At the conical intersection (Born–Oppenheimer approximation), the cone angle:
a) does not depend on the direction of leaving the conical intersection point; b) is dif-
ferent for the lower and for the higher cones; c) depends on the values of coordinates
other than those along directions ∇(Ē1 − Ē2) and ∇(V12); d) is different for different
isotopomers.

9. At the conical intersection the following directions in configurational space lead to split-
ting between E+ and E−:
a) ∇(Ē1 − Ē2) and ∇(V12); b) ∇(Ē1) and ∇(Ē2); c) ∇(Ē1 · Ē2) and ∇(V12); d) ∇(Ē1 +
Ē2) and ∇(V12).

10. Please find the wrong answer. The adiabatic approximation:
a) is equivalent to the Born–Oppenheimer approximation; b) is related to the wave func-
tion in the form of a product of an electronic function and a function describing the
motion of the nuclei; c) leads to the notion of the potential energy curve for the motion
of the nuclei; d) is worse satisfied for molecules with muons instead of electrons.

Answers

1d, 2c, 3d, 4c, 5b, 6d, 7b, 8c, 9a, 10a



Chapter 7

MOTION OF NUCLEI

Where are we?

We are on the most important side branch of the TREE.

An example

Which of conformations (Fig. 7.1) is more stable: the “boat” or “chair” of cyclohexane
C6H12? How do particular conformations look in detail (symmetry, interatomic distances,
bond angles), when the electronic energy as a function of the positions of the nuclei attains a
minimum value? What will be the most stable conformation of the trimer: C6H11–(CH2)3–
C6H10–(CH2)3–C6H11?

Fig. 7.1. The chair (a) and boat (b) conformations of cyclohexane. These geometries (obtained from
arbitrary starting conformations) are optimized in the force field, which we will define in the present
chapter. The force field indicates, in accordance with experimental results, that the chair conformation
is the more stable (by about 5.9 kcal/mol). Thus we obtain all the details of the atomic positions (bond
lengths, bond angles, etc.). Note that the chair conformation obtained exhibits D3d symmetry, while
the boat conformation corresponds to D2 (the boat has somewhat warped planks, because of repulsion
of the two upper hydrogen atoms).

What is it all about

Rovibrational spectra – an example of accurate calculations: atom–diatomic
molecule (��) p. 278

• Coordinate system and Hamiltonian

275
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• Anisotropy of the potential V
• Adding the angular momenta in quantum mechanics
• Application of the Ritz method
• Calculation of rovibrational spectra

Force fields (FF) (♠ �) p. 284

Local molecular mechanics (MM) (�) p. 290
• Bonds that cannot break
• Bonds that can break

Global molecular mechanics (��) p. 292
• Multiple minima catastrophe
• Is it the global minimum which counts?

Small amplitude harmonic motion – normal modes (�) p. 294
• Theory of normal modes
• Zero-vibration energy

Molecular dynamics (MD) (♠ �) p. 304
• The MD idea
• What does MD offer us?
• What to worry about?
• MD of non-equilibrium processes
• Quantum-classical MD

Simulated annealing (♠ �) p. 309

Langevin dynamics (�) p. 310

Monte Carlo dynamics (♠ �) p. 311

Car–Parrinello dynamics (�) p. 314

Cellular automata (�) p. 317

As shown in Chapter 6, the solution of the Schrödinger equation in the adiabatic approx-
imation can be divided into two tasks: the problem of electronic motion in the field of the
clamped nuclei (this will be the subject of the next chapters) and the problem of nuclear
motion in the potential energy determined by the electronic energy. The ground-state electronic
energy E0

k
(R) of eq. (6.8) (where k = 0 means the ground state) will be denoted in short

as V (R), where R represents the vector of the nuclear positions. The function V (R) has
quite a complex structure and exhibits many basins of stable conformations (as well as many
maxima and saddle points).

The problem of the shape of V (R), as well as of the nuclear motion on the V (R) hyper-
surface, will be the subject of the present chapter. It will be seen that the electronic energy
can be computed within sufficient accuracy as a function of R only for very simple systems
(such as an atom plus a diatomic molecule), for which quite a lot of detailed information
can be obtained.

In practice, for large molecules, we are limited to only some approximations to V (R)
called force fields. After accepting such an approximation we encounter the problem of
geometry optimization, i.e. of obtaining the most stable molecular conformation. Such a
conformation is usually identified with a minimum on the electronic energy hypersurface,
playing the role of the potential energy for the nuclei (local molecular mechanics). In prac-
tice we have the problem of the huge number of such minima. The real challenge in such
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a case is finding the most stable structure, usually corresponding to the global minimum
(global molecular mechanics) of V (R).

Molecular mechanics does not deal with nuclear motion as a function of time as well
as with the kinetic energy of the system. This is the subject of molecular dynamics, which
means solving the Newton equation of motion for all the nuclei of the system interacting by
potential energy V (R). Various approaches to this question (of general importance) will be
presented at the end of the chapter.

Why is this important?

In 2001 the Human Genome Project, i.e. the sequencing of human DNA, was announced to
be complete. This represents a milestone for humanity and its importance will grow steadily
over the next decades. In the biotechnology laboratories DNA sequences will continue to
be translated at a growing rate into a multitude of the protein sequences of amino acids.
Only a tiny fraction of these proteins (0.1 percent?) may be expected to crystallize and
then their atomic positions will be resolved by X-ray analysis. The function performed by a
protein (e.g., an enzyme) is of crucial importance, rather than its sequence. The function
depends on the 3D shape of the protein. For enzymes the cavity in the surface, where the
catalytic reaction takes place is of great importance. The complex catalytic function of an
enzyme consists of a series of elementary steps such as: molecular recognition of the enzyme
cavity by a ligand, docking in the enzyme active centre within the cavity, carrying out a
particular chemical reaction, freeing the products and finally returning to the initial state
of the enzyme. The function is usually highly selective (pertains to a particular ligand only),
precise (high yield reaction) and reproducible. To determine the function we must first of
all identify the active centre and understand how it works. This, however, is possible either
by expensive X-ray analysis of the crystal, or by a much less expensive theoretical prediction
of the 3D structure of the enzyme molecule with atomic resolution accuracy. That is an
important reason for theory development, isn’t it?

It is not necessary to turn our attention to large molecules only. Small ones are equally
important: we are interested in predicting their structure and their conformation.

What is needed?

• Laplacian in spherical coordinates (Appendix H, p. 969, recommended).
• Angular momentum operator and spherical harmonics (Chapter 4, recommended).
• Harmonic oscillator (p. 166, necessary).
• Ritz method (Appendix L, p. 984, necessary).
• Matrix diagonalization (Appendix K, p. 982, necessary).
• Newton equation of motion (necessary).
• Chapter 8 (an exception: the Car–Parrinello method needs some results which will be

given in Chapter 8, marginally important).
• Entropy, free energy, sum of states (necessary).

Classical works

There is no more classical work on dynamics than the monumental “Philosophiae Naturalis
Principia Mathematica”, Cambridge University Press, A.D. 1687 of Isaac Newton. � The
idea of the force field was first presented by Mordechai Bixon and Shneior Lifson in Tetra-
hedron 23 (1967) 769 and entitled “Potential Functions and Conformations in Cycloalkanes”.
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Isaac Newton (1643–1727), English physicist,
astronomer and mathematician, professor at
Cambridge University, from 1672 member of
the Royal Society of London, from 1699 Direc-
tor of the Royal Mint – said to be merciless to
the forgers. In 1705 Newton became a Lord.
In the opus magnum mentioned above he de-
veloped the notions of space, time, mass and
force, gave three principles of dynamics, the
law of gravity and showed that the later per-
tains to problems that differ enormously in their
scale (e.g., the famous apple and the planets).
Newton is also a founder of differential and in-
tegral calculus (independently from G.W. Leib-
nitz). In addition Newton made some fun-

damental discoveries in optics, among other
things he is the first to think that light is com-
posed of particles.

� The paper by Berni Julian Alder and Thomas Everett Wainwright “Phase Transition for
a Hard Sphere System” in Journal of Chemical Physics, 27 (1957) 1208 is treated as the be-
ginning of the molecular dynamics. � The work by Aneesur Rahman “Correlations in the
Motion of Atoms in Liquid Argon” published in Physical Review, A136 (1964) 405 for the
first time used a realistic interatomic potential (for 864 atoms). � The molecular dynam-
ics of a small protein was first described in the paper by Andy McCammon, Bruce Gelin
and Martin Karplus under the title “Dynamics of folded proteins”, Nature, 267 (1977) 585.
� The simulated annealing method is believed to have been used first by Scott Kirkpatrick,
Charles D. Gellat and Mario P. Vecchi in a work “Optimization by Simulated Annealing”,
Science, 220 (1983) 671. � The Metropolis criterion for the choice of the current configu-
ration in the Monte Carlo method was given by Nicolas Constantine Metropolis, Arianna
W. Rosenbluth, Marshal N. Rosenbluth, Augusta H. Teller and Edward Teller in the pa-
per “Equations of State Calculations by Fast Computing Machines” in Journal of Chemical
Physics, 21 (1953) 1087. � The Monte Carlo method was used first by Enrico Fermi, John
R. Pasta and Stanisław Marcin Ulam during their stay in Los Alamos (E. Fermi, J.R. Pasta,
S.M. Ulam, “Studies of Non-Linear Problems”, vol. 1, Los Alamos Reports, LA-1940). Ulam
and John von Neumann are the discoverers of cellular automata.

7.1 ROVIBRATIONAL SPECTRA – AN EXAMPLE OF
ACCURATE CALCULATIONS: ATOM – DIATOMIC
MOLECULE

One of the consequences of adiabatic approximation is the idea of the potential
energy hypersurface V (R) for the motion of nuclei. To obtain the wave function
for the motion of nuclei (and then to construct the total product-like wave function
for the motion of electrons and nuclei) we have to solve the Schrödinger equation
with V (R) as the potential energy. This is what this hypersurface is for. We will
find rovibrational (i.e. involving rotations and vibrations) energy levels and the
corresponding wave functions, which will allow us to obtain rovibrational spectra
(frequencies and intensities) to compare with experimental results.
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7.1.1 COORDINATE SYSTEM AND HAMILTONIAN

Let us consider a diatomic molecule AB plus a weakly interacting atom C (e.g.,
H–H . . . Ar or CO . . . He), the total system in its electronic ground state. Let us
centre the origin of the body-fixed coordinate system1 (with the axes oriented as in
the space-fixed coordinate system, see Appendix I, p. 971) in the centre of mass of
AB. The problem involves therefore 3× 3− 3= 6 dimensions.

However strange it may sound, six is too much for contemporary (other-
wise impressive) computer techniques. Let us subtract one dimension by assum-
ing that no vibrations of AB occur (rigid
rotator). The five-dimensional problem
becomes manageable. The assumption
about the stiffness of AB now also pays
off because we exclude right away two
possible chemical reactions C + AB →
CA + B and C + AB → CB + A, and
admit therefore only some limited set of
nuclear configurations – only those that
correspond to a weakly bound complex
C+AB. This approximation is expected
to work better when the AB molecule is

Carl Gustav Jacob Jacobi
(1804–1851), German math-
ematical genius, son of a
banker, graduated from school
at the age of 12, then as-
sociated with the universi-
ties of Berlin and Königsberg.
Jacobi made important con-
tributions to number theory,
elliptic functions, partial dif-
ferential equations, analytical
mechanics.

stiffer, i.e. has a larger force constant (and therefore vibration frequency).2

We will introduce the Jacobi coordinates (Fig. 7.2, cf. p. 776): three components Jacobi
coordinatesof vector R pointing to C from the origin of the coordinate system (the length R

Fig. 7.2. The Jacobi coordi-
nates for the C. . . AB system.
The origin is in the centre of
mass of AB (the distance AB is
constant and equal to req). The
positions of atoms A and B are
fixed by giving the angles θ, φ.
The position of atom C is deter-
mined by three coordinates: R,
� and �. Altogether we have 5
coordinates: R,�,�, θ, φ or R,
R̂ and r̂.

1Any coordinate system is equally good from the point of view of mathematics, but its particular
choice may make the solution easy or difficult. In the case of a weak C . . . AB interaction (our case)
the proposed choice of the origin is one of the natural ones.

2A certain measure of this might be the ratio of the dissociation energy of AB to the dissociation
energy of C. . . AB. The higher the ratio the better our model will be.
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and angles � and �, both angles denoted by R̂) and the angles θ	φ showing the
orientation r̂ of vector r=−→AB, altogether 5 coordinates – as there should be.

Now let us write down the Hamiltonian for the motion of the nuclei in the Jacobi
coordinate system (with the stiff AB molecule with AB equilibrium distance equal
to req):3

Ĥ =− h̄2

2μR2
d

dR
R2 d

dR
+ l̂2

2μR2 +
ĵ2

2μABr2
eq
+ V 	

where l̂2 denotes the operator of the square of the angular momentum of the
atom C, ĵ2 stands for the square of the angular momentum of the molecule AB,

l̂2 = −h̄2
[

1
sin�

∂

∂�
sin�

∂

∂�
+ 1

sin2�

∂2

∂�2

]

	

ĵ2 = −h̄2
[

1
sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

sin2 θ

∂2

∂φ2

]

	

μ is the reduced mass of C and the mass of (A + B), μAB denotes the reduced
mass of A and B, V stands for the potential energy of the nuclear motion.

The expression for Ĥ is quite understandable. First of all, we have in Ĥ five
coordinates, as there should be: R, two angular coordinates hidden in the symbol
R̂ and two angular coordinates symbolized by r̂ – the four angular coordinates
enter the operators of the squares of the two angular momenta. The first three
terms in Ĥ describe the kinetic energy, V is the potential energy (the electronic
ground state energy which depends on the nuclear coordinates). The kinetic energy
operator describes the radial motion of C with respect to the origin (first term),
the rotation of C about the origin (second term) and the rotation of AB about the
origin (third term).

7.1.2 ANISOTROPY OF THE POTENTIAL V

How to figure out the shape of V ? Let us first make a section of V . If we freeze the
motion of AB,4 the atom C would have (concerning the interaction energy) a sort
of an energetic well around AB wrapping the AB molecule, caused by the C. . . AB
van der Waals interaction, which will be discussed in Chapter 13. The bottom of
the well would be quite distant from the molecule (van der Waals equilibrium dis-
tance), while the shape determined by the bottom points would resemble the shape
of AB, i.e. would be a little bit elongated. The depth of the well would vary depend-
ing on orientation with respect to the origin.

3The derivation of the Hamiltonian is given in S. Bratož, M.L. Martin, J. Chem. Phys. 42 (1965) 1051.
4That is, fixed the angles θ and φ.
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If V were isotropic, i.e. if atom C would have C. . . AB interaction energy in-
dependent5 of r̂, then of course we might say that there is no coupling between
the rotation of C and the rotation of AB. We would have then a conservation law
separately for the first and the second angular momentum and the corresponding
commutation rules (cf. Chapter 2 and Appendix F)

[

Ĥ	 l̂2
] = [Ĥ	 ĵ2]= 0	

[

Ĥ	 l̂z
] = [Ĥ	 ĵz

]= 0�

Therefore, the wave function of the total system would be the eigenfunction of
l̂2 and l̂z as well as of ĵ2 and ĵz� The corresponding quantum numbers l= 0	1	2	 � � �
and j = 0	1	2	 � � � that determine the squares of the angular momenta l2 and
j2, as well as the corresponding quantum numbers ml = −l	−l + 1	 � � � 	 l and
mj = −j	−j + 1	 � � � 	 j that determine the projections of the corresponding an-
gular momenta on the z axis, would be legal6 quantum numbers (full analogy with
the rigid rotator, Chapter 4). The rovibrational levels could be labelled using pairs
of quantum numbers: (l	 j). In the absence of an external field (no privileged ori-
entation in space) any such level would be (2l+ 1)(2j+ 1)-tuply degenerate, since
this is the number of different projections of both angular momenta on the z axis.

7.1.3 ADDING THE ANGULAR MOMENTA IN QUANTUM MECHANICS

However, V is not isotropic (although the anisotropy is small). What then? Of all
angular momenta, only the total angular momentum J = l + j is conserved (the
conservation law results from the very foundations of physics, cf. Chapter 2).7

Therefore, the vectors l and j when added to J	 would make all allowed angles:
from minimum angle (the quantum number J = l + j), through smaller angles8

and the corresponding quantum numbers J = l + j − 1	 l + j − 2	 etc., up to the
angle 180◦, corresponding to J = |l − j|). Therefore, the number of all possible
values of J (each corresponding to a different energy) is equal to the number of
projections of the shorter9 of the vectors l and j on the longer one, i.e.

J = (l+ j)	 (l+ j − 1)	 � � � 	 |l− j|� (7.1)

For a given J there are 2J+ 1 projections of J on the z axis (because |MJ |
 J);
without any external field all these projections correspond to identical energy.

5I.e. the bottom of the well would be a sphere centred in the centre of mass of AB and the well depth
would be independent of the orientation.

6We use to say “good”.
7Of course, the momentum has also been conserved in the isotropic case, but in this case the energy

was independent of the quantum number J (resulting from different angles between l and j).
8The projections of the angular momenta are quantized.
9In the case of two vectors of the same length, the role of the shorter vector may be taken by either

of them.
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Please check that the number of all possible eigenstates is equal to (2l+1)(2j+
1), i.e. exactly what we had in the isotropic case. For example, for l = 1 and j = 1
the degeneracy in the isotropic case is equal to (2l + 1)(2j + 1) = 9, while for
anisotropic V we would deal with 5 states for J = 2 (all of the same energy), 3
states corresponding to J = 1 (the same energy, but different from J = 2), a single
state with J = 0 (still another value of energy), altogether 9 states. This means that
switching anisotropy on partially removed the degeneracy of the isotropic level
(l	 j) and gave the levels characterized by quantum number J.

7.1.4 APPLICATION OF THE RITZ METHOD

We will use the Ritz variational method (see Chapter 5, p. 202) to solve the
Schrödinger equation. What should we propose as the expansion functions? It is
usually recommended that we proceed systematically and choose first a complete
set of functions depending on R, then a complete set depending on R̂ and finally
a complete set that depends on the r̂ variables. Next, one may create the complete
set depending on all five variables (these functions will be used in the Ritz varia-
tional procedure) by taking all possible products of the three functions depending
on R	 R̂ and r̂. There is no problem with the complete sets that have to depend
on R̂ and r̂, as these may serve the spherical harmonics (the wave functions for
the rigid rotator, p. 176) {Yml (�	�)} and {Ym′l′ (θ	φ)}, while for the variable R we
may propose the set of harmonic oscillator wave functions {χv(R)}.10 Therefore,
we may use as the variational function:11

�(R	�	�	θ	φ)=
∑

cvlml′m′χv(R)Y
m
l (�	�)Y

m′
l′ (θ	φ)	

where c are the variational coefficients and the summation goes over v	 l	m	 l′	m′
indices. The summation limits have to be finite in practical applications, therefore
the summations go to some maximum values of v, l and l′ (m and m′ vary from −l
to l and from−l′ to+l′). We hope (as always in quantum chemistry) that numerical
results of a demanded accuracy will not depend on these limits. Then, as usual the
Hamiltonian matrix is computed and diagonalized (see p. 982), and the eigenvalues
EJ as well as the eigenfunctions ψJ	MJ of the ground and excited states are found.

10See p. 164. Of course, our system does not represent any harmonic oscillator, but what counts is
that the harmonic oscillator wave functions form a complete set (as the eigenfunctions of a Hermitian
operator).
11The products Ym

l
(�	�) Ym

′
l′ (θ	φ) may be used to produce linear combinations that are automati-

cally the eigenfunctions of Ĵ2 and Ĵz , and have the proper parity (see Chapter 2). This may be achieved
by using the Clebsch–Gordan coefficients (D.M. Brink, G.R. Satchler, “Angular Momentum”, Claren-
don, Oxford, 1975). The good news is that this way we can obtain a smaller matrix for diagonalization in
the Ritz procedure, the bad news is that the matrix elements will contain more terms to be computed.
The method above described will give the same result as using the Clebsch–Gordan coefficients, be-
cause the eigenfunctions of the Hamiltonian obtained within the Ritz method will automatically be the
eigenfunctions of Ĵ2 and Ĵz , as well as having the proper parity.
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Each of the eigenfunctions will correspond to some J	MJ and to a certain parity.
The problem is solved.

7.1.5 CALCULATION OF ROVIBRATIONAL SPECTRA

The differences of the energy levels provide the electromagnetic wave frequencies
needed to change the stationary states of the system, the corresponding wave func-
tions enable us to compute the intensities of the rovibrational transitions (which
occur at the far-infrared and microwave wavelengths). When calculating the inten-
sities to compare with experiments we have to take into account the Boltzmann
distribution in the occupation of energy levels. The corresponding expression for
the intensity I(J′′ → J′) of the transition from level J′′ to level J′ looks as follows:12

I
(

J′′ → J′
)= (EJ′ −EJ′′)

exp
(EJ′′−EJ′

kBT

)

Z(T)

∑

m	M ′
J 	M

′′
J

∣
∣
〈

�J′M ′
J

∣
∣μ̂m

∣
∣�J′′M ′′

J

〉∣
∣2	

where:

• Z(T) is the partition function (known from the statistical mechanics) – a func- partition
functiontion of the temperature T : Z(T)=∑J(2J+1)exp(− EJ

kBT
), kB is the Boltzmann

constant
• μ̂m represents the dipole moment operator (cf. Appendix X)13 μ̂0 = μ̂z , μ̂1 =

1√
2
(μ̂x + iμ̂y), μ̂−1 = 1√

2
(μ̂x − iμ̂y)

• the rotational state J′′ corresponds to the vibrational state 0, while the rotational
state J′ pertains to the vibrational quantum number v, i.e. EJ′′ ≡ E00J′′ , EJ′ ≡
E0vJ′ (index 0 denotes the electronic ground state)

• the integration is over the coordinates R, R̂ and r̂.

The dipole moment in the above formula takes into account that the charge
distribution in the C. . . AB system depends on the nuclear configuration, i.e. on R,

12D.A. McQuarrie, “Statistical Mechanics”, Harper&Row, New York, 1976, p. 471.
13The Cartesian components of the dipole moment operator read as

μ̂x =
M
∑

α=1

ZαXα −
N
∑

i=1

〈

�el0
∣
∣xi
∣
∣�el0

〉

and similarly for y and z, where Zα denotes the charge (in a.u.) of the nucleus α, Xα denotes its x
coordinate,
– �el0 denotes the electronic ground-state wave function of the system that depends parametrically on
R, R̂ and r̂;

– M = 3	 N stands for the number of electrons in C� � � AB;
– i is the electron index;
– the integration goes over the electronic coordinates.
Despite the fact that, for charged systems, the dipole moment operator μ̂ depends on the choice of the
origin of the coordinate system, the integral itself does not depend on such choice (good for us!). Why?
Because these various choices differ by a constant vector (an example will be given in Chapter 13). The
constant vector goes out of the integral and the corresponding contribution, depending on the choice
of the coordinate system, gives 0, because of the orthogonality of the states.
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Fig. 7.3. Comparison of the theoretical and experimental intensities of the rovibrational transitions (in
cm−1) for the 12C16O . . . 4He complex. Courtesy of Professor R. Moszyński.

R̂ and r̂, e.g., the atom C may have a net charge and the AB molecule may change
its dipole moment when rotating.

Heijmen et al. carried out accurate calculations of the hypersurface V for a
few atom-diatomic molecules, and then using the method described above the
Schrödinger equation is solved for the nuclear motion. Fig. 7.3 gives a compari-
son of theory14 and experiment15 for the 12C16O complex with the 4He atom.16

All the lines follow from the electric-dipole-allowed transitions [those for which
the sum of the integrals in the formula I(J′′ → J′) is not equal to zero], each line
is associated with a transition (J′′	 l′′	 j′′)→ (J′	 l′	 j′).

7.2 FORCE FIELDS (FF)

The middle of the twentieth century marked the end of a long period of deter-
mining the building blocks of chemistry: chemical elements, chemical bonds, bond
angles. The lists of these are not definitely closed, but future changes will be rather
cosmetic than fundamental. This made it possible to go one step further and begin

14T.G.A. Heijmen, R. Moszyński, P.E.S. Wormer, A. van der Avoird, J. Chem. Phys. 107 (1997) 9921.
15C.E. Chuaqui, R.J. Le Roy, A.R.W. McKellar, J. Chem. Phys. 101 (1994) 39; M.C. Chan,

A.R.W. McKellar, J. Chem. Phys. 105 (1996) 7910.
16Of course the results depend on the isotopes involved, even when staying within the Born–

Oppenheimer approximation.
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to rationalize the structure of molecular systems as well as to foresee the structural
features of the compounds to be synthesized. The crucial concept is based on the
adiabatic (or Born–Oppenheimer) approximation and on the theory of chemical
bonds and resulted in the spatial structure of molecules. The great power of such
an approach was proved by the construc-
tion of the DNA double helix model by
Watson and Crick. The first DNA model
was build from iron spheres, wires and
tubes. This approach created problems:
one of the founders of force fields,
Michael Levitt, recalls17 that a model
of a tRNA fragment constructed by him
with 2000 atoms weighted more than
50 kg.

The experience accumulated paid off
by proposing some approximate expres-
sions for electronic energy, which is, as
we know from Chapter 6, the potential
energy of the motion of the nuclei. This
is what we are going to talk about.

Suppose we have a molecule (a set
of molecules can be treated in a similar
way). We will introduce the force field,
which will be a scalar field – a func-
tion V (R) of the nuclear coordinates R�
The function V (R) represents a general-
ization (from one dimension to 3N − 6
dimensions) of the function E0

0(R) of

James Dewey Watson, born
1928, American biologist, pro-
fessor at Harvard University.
Francis Harry Compton Crick
(1916–2004), British physi-
cist, professor at Salk Insti-
tute in San Diego. Both schol-
ars won the 1962 Nobel Prize
for “their discoveries concern-
ing the molecular structure of
nucleic acids and its signifi-
cance for information transfer
in living material”. At the end
of the historic paper J.D. Wat-
son, F.H.C. Crick, Nature,
737 (1953) (of about 800
words) the famous enigmatic
but crucial sentence appears:
“It has not escaped our notice
that the specific pairing we
have postulated immediately
suggests a possible copying
mechanism for the genetic
material”. The story behind
the discovery is described in
a colourful and unconven-

tional way by Watson in his
book “Double Helix: A Per-
sonal Account of the Discov-
ery of the Structure of DNA”.

eq. (6.8) on p. 225. The force acting on atom j occupying position xj	 yj	 zj is com-
puted as the components of the vector F j =−∇jV , where

∇j = i · ∂
∂xj

+ j · ∂
∂yj

+ k · ∂
∂zj

(7.2)

with i	j	k denoting the unit vectors along x	 y	 z, respectively.

FORCE FIELD
A force field represents a mathematical expression V (R) for the electronic
energy as a function of the nuclear configuration R.

Of course, if we had to write down this scalar field in a 100% honest way, we
have to solve (with an accuracy of about 1 kcal/mol) the electronic Schrödinger

17M. Levitt, Nature Struct. Biol. 8 (2001) 392.
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equation (6.8) for every configuration R of the nuclei and take the eigenvalue [i.e.
an analogue of E0

0(R)] as V (R). This would take so much time, even for small
systems composed of a few atoms, that maybe even after some cursing, we would
abandon this method with a great feeling of relief. Even if such a calculation re-
quired huge computation time, it would give results which would have been quite
simple in their overall features (assuming that the molecule has a pattern of chem-
ical bonds). It just would turn out that V would be characterized by the following:

• Chemical bonds. V (R) would be obtained about its minimum, if any chemical
bond between atoms X and Y had a certain characteristic reference length r0 that
would depend on the chemical species of the atoms X and Y . If the bond length
were changed (shortened or elongated) to a certain value r, the energy would in-
crease, first according to the harmonic law (with force constant kXY ) and then
some deviations from the harmonic approximation begin.18 A harmonic term of
the kind 1

2kXY (r − r0)2 incorporated additively into V replaces the true anhar-
monic dependence by a harmonic approximation (assumption of small ampli-
tudes) as if the two atoms had been bound by a harmonic spring (in the formula
the atomic indices at symbols of distances have been omitted). The most im-
portant feature is that the same formula 1

2kXY (r − r0)2 is used for all chemical
bonds X–Y , independently of some particular chemical neighbourhood of a given
X–Y bond. For example, one assumes that a non-distorted single C–C bond19

has a characteristic reference length r0 = 1�523 Å and a characteristic force con-
stant kXY = 317 kcal

mol Å2 , similarly, some distinct parameters pertain to the C=C

bond: r0 = 1�337 Å, kXY = 690 kcal
molÅ2 etc.20	21

• Bond angles. While preserving the distances r in the A–B and B–C bonds we
may change the bond angle α = A–B–C, in this way changing the A. . . C dis-
tance. A corresponding change of V has to be associated with such a change.
The energy has to increase when the angle α deviates from a characteristic
reference value α0. The harmonic part of such a change may be modelled
by 1

2kXYZ(α − α0)
2 (the indices for angles are omitted), which is equivalent

to setting a corresponding harmonic spring for the bond angle and requires
small amplitudes |α− α0|. For example, for the angle C–C–C α0 = 109�47◦ and
kXYZ = 0�0099 kcal

mol degree2 , which means that to change the C. . . C distance by

varying angle is about an order of magnitude easier than to change a CC bond
length.

18These deviations from harmonicity (i.e. from the proportionality of force and displacement) are
related to the smaller and smaller force needed to elongate the bond by a unit length and the larger
and larger force needed to shorten the bond.
19That is, when all other terms in the force field equal zero.
20A CC bond involved in a conjugated single and double bonds (e.g., in benzene) also has its own

parameters.
21A description of the popular MM2 force field is given in N.L. Allinger, J. Am. Chem. Soc. 99 (1977)

8127.
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• van der Waals interaction. Two atoms X and Y, that do not form a chemical
bond X–Y, as well as not participating in any sequence of bonds X–A–Y, still
interact. There is nothing in the formulae introduced above that would prevent
X and Y collapsing without any change
of V . However, when two such atoms
approach at a distance smaller than
the sum of their radii (the van der
Waals radii, see p. 742), then V had
to increase very greatly.22 On the
other hand, at large interatomic dis-
tances the two atoms have to attract
each other by the dispersion inter-
action vanishing as r−6 (cf. Chap-
ter 13, p. 694). Hence, there is an

John E. Lennard-Jones was
professor of theoretical chem-
istry of the University of Cam-
bridge, UK. The reader may
find a historic picture of the
theoretical chemistry team in
Intern. J. Quantum Chem-
istry, S23 (1989), page XXXII.

equilibrium distance re, at which the interaction energy attains a minimum
equal to −ε. These features of the interaction are captured by the widely used
Lennard-Jones potential

VLJ(X	Y)= ε
[(
re

r

)12

− 2
(
re

r

)6]

	

where we skip for brevity the indicesX	Y on the right-hand side. The Lennard- Lennard-Jones
potentialJones potential given above is called LJ 12–6 (reflecting the powers involved).

Sometimes other powers are used leading to other “LJ m–n” potentials.23 Due
to their simplicity, the LJ potentials are widely used, Fig. 7.4.

Fig. 7.4. The Lennard-Jones (LJ 12–6) potential.
The parameter ε > 0 represents the depth of the po-
tential well, while the parameter re denotes the min-
imum position. This re, corresponding to the non-
bonding interaction of atoms X and Y, has no direct
relation to the r0 value pertaining to the chemical
bond X–Y (discussed above; in order to keep the
notation concise we do not distinguish between the
two). The first is larger than the second by about an
angstrom or so.

22A similar thing happens with cars: the repair cost increases very greatly, when the distance between
two cars decreases below two thicknesses of the paint job.
23The power 12 has been chosen for two reasons: first, the power is sufficiently large to produce a

strong repulsion when the two atoms approach each other, second, . . . 12 = 6 × 2� The last reason
makes the first derivative formula (i.e. the force) look more elegant than other powers do. A more
elegant formula is often faster to compute and this is of practical importance.
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• Electrostatic interaction. All the terms we have introduced to V so far do not
take into account the fact that atoms carry net charges qX and qY that have to
interact electrostatically by Coulombic forces. To take this effect into account
the electrostatic energy terms qXqY/r are added to V , where we assume the net
charges qX and qY are fixed (i.e. independent of the molecular conformation).24

• Torsional interactions. In addition to all the terms described above we often
introduce to the force field a torsional term AX–Y–Z–W(1 − cosnω) for each
torsional angle ω showing how V changes when a rotation ω about the chemical
bond YZ, in the sequence X–Y–Z–W of chemical bonds, takes place (n is the
multiplicity of the energy barriers per single turn25). Some rotational barriers
already result from the van der Waals interaction of the X and W atoms, but in
practice the barrier heights have to be corrected by the torsional potentials to
reproduce experimental values.

• Mixed terms. Besides the above described terms one often introduces some cou-
pling (mixed) terms, e.g., bond–bond angle etc. The reasoning behind this is sim-
ple. The bond angle force constant X–Y–Z has to depend on the bond-lengths
X–Y and Y–Z, etc.

Summing up a simple force field might be expressed as shown in Fig. 7.5, where
for the sake of simplicity the indices X	Y at r	 r0	 as well as X	Y	Z at α	α0	 and
X	Y	Z	W at ω have been omitted:

V =
∑

X−Y

1
2
kXY (r − r0)2 +

∑

X−Y−Z

1
2
kXYZ(α− α0)

2 +
∑

X���Y

VLJ(X	Y)

+
∑

X	Y

qXqY
r

+
∑

tors

AX–Y–Z–W(1− cosnω)+ coupling terms (if any)�

Such simple formulae help us to figure out how the electronic energy looks as a
function of the configuration of the nuclei. Our motivation is as follows:

• economy of computation: ab initio calculations of the electronic energy for larger
molecules would have been many orders of magnitude more expensive;

24In some force fields the electrostatic forces depend on the dielectric constant of the neighbourhood
(e.g., solvent) despite the fact that this quantity has a macroscopic character and does not pertain to the
nearest neighbourhood of the interacting atoms. If all the calculations had been carried out taking the
molecular structure of the solvent into account as well as the polarization effects, no dielectric constant
would have been needed. If this is not possible, then the dielectric constant effectively takes into account
the polarization of the medium (including reorientation of the solvent molecules). The next problem is
how to introduce the dependence of the electrostatic interaction of two atomic charges on the dielectric
constant. In some of the force fields we introduce a brute force kind of damping, namely, the dielectric
constant is introduced into the denominator of the Coulombic interaction as equal to the . . . interatomic
distance.

In second generation force fields (e.g., W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M. Merz
Jr., D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman, J. Amer. Chem. Soc. 117
(1995) 5179) we explicitly take into account the induction interaction, e.g., the dependence of the
atomic electric charges on molecular conformations.
25For example, n= 3 for ethane.
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Fig. 7.5. The first force field of Bixon and Lifson in a mnemonic presentation.
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• in addition, a force field gives V (R) in the form of a simple formula for any
positions R of the nuclei, while the calculation of the electronic energy would
give us V (R) numerically, i.e. for some selected nuclear configurations.

7.3 LOCAL MOLECULAR MECHANICS (MM)

7.3.1 BONDS THAT CANNOT BREAK

It is worth noting that the force fields correspond to a fixed (and unchangeable
during computation) system of chemical bonds. The chemical bonds are treated as
springs, most often satisfying Hooke’s26 law (harmonic), and therefore unbreak-
able.27 Similarly, the bond angles are forced to satisfy Hooke’s law. Such a force
field is known as flexible molecular mechanics. To decrease the number of variables,flexible MM

we sometimes use rigid molecular mechanics,28 in which the bond lengths and the
bond angles are fixed at values close to experimental ones, but the torsional anglesrigid MM

are free to change. The argument behind such a choice is that the frequencies asso-
ciated with torsional motion are much lower than those corresponding to the bond
angle changes, and much much lower than frequencies of the bond length vibra-
tions. This means that a quantity of energy is able to make only tiny changes in the
bond lengths, small changes in the bond angles and large changes in the torsional
angles, i.e. the torsional variables determine the overall changes of the molecular
geometry. Of course, the second argument is that a smaller number of variables
means lower computational costs.

Molecular mechanics represents a method of finding a stable configuration
of the nuclei by using a minimization of V (R) with respect to the nuclear
coordinates (for a molecule or a system of molecules).

The essence of molecular mechanics is that we roll the potential energy hyper-
surface slowly downhill from a starting point chosen (corresponding to a certain
starting geometry of the molecule) to the “nearest” energy minimum correspond-
ing to the final geometry of the molecule. The “rolling down” is carried out by
a minimization procedure that traces point by point the trajectory in the config-
urational space, e.g., in the direction of the negative gradient vector calculated at
any consecutive point. The minimization procedure represents a mechanism show-
ing how to obtain the next geometry from the previous one. The procedure ends,
26Robert Hooke, British physicist and biologist (1635–1703).
27There are a few such force fields in the literature. They give similar results, as far as their main

features are considered. The force field concept was able to clarify many observed phenomena, even
fine effects. It may also fail as with anything confronting the real world.
28Stiff molecular mechanics was a very useful tool for Paul John Flory (1910–1985), American chemist,

professor at the universities at Cornell and Stanford. Using such mechanics, Flory developed a theory
of polymers that explained their physical properties. In 1974 he obtained the Nobel Prize “for his fun-
damental achievements, both theoretical and experimental, in the physical chemistry of macromolecules”.
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when the geometry ceases to change (e.g., the gradient vector has zero length29).
The geometry attained is called the equilibrium or stable geometry. The rolling de-
scribed above is more like a crawling down with large friction, since in molecular
mechanics the kinetic energy is always zero and the system is unable to go uphill30

of V .
A lot of commercial software31 offers force field packets. For example, the Hy-

perchem package provides the force fields AMBER and MM2,32 the program In-
sight offers the CVFF force field. Unfortunately, the results depend to quite a sig-
nificant degree on the force field chosen. Even using the same starting geometry
we may obtain final (equilibrium) results that differ very much one from another.
Usually the equilibrium geometries obtained in one force field do not differ much
from those from another one, but the corresponding energies may be very dif-
ferent. Therefore, the most stable geometry (corresponding to the lowest energy)
obtained in a force field may turn out to be less stable in another one, thus leading
to different predictions of the molecular structure.

A big problem in molecular mechanics is that the final geometry is very close to
the starting one. We start from a boat (chair) conformation of cyclohexane and ob-
tain a boat (chair) equilibrium geometry. The very essence of molecular mechanics
however, is that when started from some, i.e. distorted boat (chair) conformation,
we obtain the perfect, beautiful equilibrium boat (chair) conformation, which may
be compared with experimental results. Molecular mechanics is extremely useful
in conformational studies of systems with a small number of stable conformations,
either because the molecule is small, rigid or its overall geometry is fixed. In such
cases all or all “reasonable”,33 conformations can be investigated and those of
lowest-energy can be compared with experimental results.

7.3.2 BONDS THAT CAN BREAK

Harmonic bonds cannot be broken and therefore molecular mechanics with har-
monic approximation is unable to describe chemical reactions. When instead of
harmonic oscillators we use Morse model (p. 169), then the bonds can be broken.

And yet we most often use the harmonic oscillator approximation. Why? There
are a few reasons:

• the Morse model requires many computations of the exponential function,
which is expensive34 when compared to the harmonic potential;

29The gradient is also equal zero at energy maxima and energy saddle points. To be sure that a min-
imum really has been finally attained we have to calculate (at the particular point suspected to be a
minimum) a Hessian, i.e. the matrix of the second derivatives of V , then diagonalize it (cf. p. 982) and
check whether the eigenvalues obtained are all positive.
30Unless assuming too large a step (but this has to be considered as an error in the “art of computing”).
31See the Web Annex.
32N.L. Allinger, J. Am. Chem. Soc. 99 (1977) 8127.
33A very dangerous word!
34Each time requires a Taylor expansion calculation.
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• the Morse potential requires three parameters, while the harmonic model needs
only two parameters;

• in most applications the bonds do not break and it would be very inconvenient
to obtain breaking due, for instance, to a particular starting point;

• a description of chemical reactions requires not only the possibility of breaking
bonds, but also a realistic, i.e. quantum chemical, computation of the charge
distributions involved (cf. p. 308). The Morse potential would be too simplistic
for such purposes.

7.4 GLOBAL MOLECULAR MECHANICS

7.4.1 MULTIPLE MINIMA CATASTROPHE

If the number of local minima is very large (and this may happen even for medium
size molecules) or even “astronomic”, then exploring the whole conformational
space (all possible geometries) by finding all possible minima using a minimiza-
tion procedure becomes impossible. Hence, we may postulate another procedure
which may be called global molecular mechanics and could find the global mini-
mum (the most stable conformation) starting from any point in the configurational
space.

If the number of local minima is small, there is in principle no problem with
using theory. Usually it turns out that the quantum mechanical calculations are
feasible, often even at the ab initio level. A closer insight leads, however, to the
conclusion that only some extremely accurate and expensive calculations would
give the correct energy sequence of the conformers, and that only for quite small
molecules with a dozen atoms. This means that for larger molecules we are
forced to use molecular mechanics. For molecules with a few atoms we might
investigate the whole conformational space by sampling it by a stochastic or sys-
tematic procedure, but this approach soon becomes prohibitive for larger mole-
cules.

For such larger molecules we encounter difficulties which may only be appre-
ciated by individuals who have made such computations themselves. We may say,
in short, that virtually nothing helps us with the huge number of conformations
to investigate. According to Schepens35 the number of the conformations found
is proportional to the time spent conducting the search. It is worth noting that
this means catastrophe, because for a twenty amino acid oligopeptide the num-
ber of conformations is of the order36 of 1020, and for a hundred amino acids –

35Wijnand Schepens, PhD thesis, University of Gand, 2000.
36The difficulty of finding a particular conformation among 1020 conformations is a real horror. Maybe

the example below will show what a severe problem has been encountered. A single grain of sand has
a diameter of about 1 mm. Let us try to align 1020 of such sand grains side by side. What will the
length of such a chain of grains be? Let us compute: 1020 mm= 1017 m= 1014 km. One light year is
300000 km/s× 3600 s× 24× 365� 1013 km. Hence, the length is about 10 light years, i.e. longer than
the round trip from our Sun to the nearest star – Alpha Centauri. This is what the thing looks like.
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10100. Also methods based on molecular dynamics (cf. p. 304) do not solve the
problem, since they could cover only a tiny fraction of the total conformational
space.

7.4.2 IS IT THE GLOBAL MINIMUM WHICH COUNTS?

The goal of conformational analysis is to find those conformations of the mole-
cule which are observed under experimental conditions. At temperatures close to
300 K the lowest-energy conformations prevail in the sample, i.e. first of all those
corresponding the global minimum of the potential energy37 V .

We may ask whether indeed the global minimum of the potential energy decides
the observed experimental geometry. Let us neglect the influence of the solvent
(neighbourhood). A better criterion would be the global minimum of the free en- free energy

ergy, E − TS, where the entropic factor would also enter. A wide potential well
means a higher density of vibrational states, a narrow well means a lower density
of states (cf. eq. (4.21), p. 171; a narrow well corresponds to a large α). If the
global minimum corresponds to a wide well, the well is additionally stabilized by
the entropy,38 otherwise it is destabilized.

For large molecules, there is a possibility that, due to the synthesis conditions, kinetic minimum

the molecule is trapped in a local minimum (kinetic minimum), different from the
global minimum of the free energy (thermodynamic minimum), Fig. 7.6. thermodynamic

minimumFor the same reason that the diamonds (kinetic minimum) in your safe do not
change spontaneously into graphite (thermodynamic minimum), a molecule im-
prisoned in the kinetic minimum may rest there for a very long time (when com-
pared with experimental time). Nobody knows whether the native conformation of

Fig. 7.6. Electronic energy V (R) as function
of the nuclear configuration R. The basins
of the thermodynamic minimum (T), of the
kinetic minimum (K) and of the global min-
imum (G). The deepest basin (G) should
not correspond to the thermodynamically
most stable conformation (T). Additionally,
the system may be caught in a kinetic min-
imum (K), from which it may be difficult
to tunnel to the thermodynamic minimum
basin. Diamond and fullerenes may serve as
examples of K.

37Searching for the global minimum of V is similar to the task of searching for the lowest valley on
Earth when starting from an arbitrary point on the surface.
38According the famous formula of Ludwig Boltzmann, entropy S = kB ln�(E)	 where � is the num-

ber of the states available for the system at energy E� The more states, the larger the entropy.
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Christian Anfinsen obtained
the Nobel Prize in 1972 “for
his work on ribonuclease, es-
pecially concerning the con-
nection between the amino
acid sequence and the bio-
logically active conformation”.
He made an important contri-
bution showing that after de-
naturation (a large change of
conformation) some proteins
fold back spontaneously to
their native conformation.

a protein corresponds to the thermody-
namic or kinetic minimum.39 Some ex-
periments indicate the first, others the
second possibility.

Despite these complications we gen-
erally assume in conformational analy-
sis, that the global minimum and other
low-energy conformations play the most
important role. In living matter, taking a
definite (native) conformation is some-
times crucial. It has been shown40 that
the native conformation of natural en-

zymes has much lower energy than those of other conformations (energy gap).
Artificial enzymes with stochastic amino acid sequences do not usually have this
property resulting in no well-defined conformation.

Global molecular mechanics is, in my opinion, one of the most important chal-
lenges in chemistry. Students need to look for an important research subject. This
is such a subject.41

7.5 SMALL AMPLITUDE HARMONIC MOTION – NORMAL
MODES

The hypersurface V (R) has, in general (especially for large molecules), an ex-
tremely complex shape with many minima, each corresponding to a stable con-
formation. Let us choose one of those minima and ask what kind of motion the
molecule undergoes, when only small displacements from the equilibrium geometry
are allowed. In addition we assume that the potential energy for this motion is a
harmonic approximation of the V (R) in the neighbourhood of the minimum.42

Then we obtain the normal vibrations or normal modes.

NORMAL MODES
A normal mode represents a harmonic oscillation (of a certain frequency)
of all the atoms of the molecule about their equilibrium positions with the
same phase for all the atoms (i.e. all the atoms attain their equilibrium po-
sition at the same time).

39It is clear if a protein were denatured very heavily (e.g., cooking chicken soup we could not expect
the chicken to return to life).
40E.I. Shakanovich, A.M. Gutin, Proc. Natl. Acad. Sci. USA 90 (1993) 7195; A. Šali, E.I. Shakanovich,

M. Karplus, Nature 369 (1994) 248.
41My own adventure with this topic is described in L. Piela, “Handbook of Global Oprimization”, vol. 2,

P.M. Pardalos, H.E. Romeijn, eds., Kluwer Academic Publishers, Boston, 2002.
42We may note en passant that a similar philosophy prevailed in science until quite recent times: take

only the linear approximation and forget about non-linearities. It turned out, however, that the non-
linear phenomena (cf. Chapter 15) are really fascinating.



7.5 Small amplitude harmonic motion – normal modes 295

The number of such vibrations with non-zero frequencies is equal to 3N − 6.
A vibrational motion of the molecule represents a superposition of these individual
normal modes.

7.5.1 THEORY OF NORMAL MODES

Suppose we have at our disposal an analytical expression for V (R) (e.g., the force
field), where R denotes the vector of the Cartesian coordinates of the N atoms
of the system (it has 3N components). Let us assume (Fig. 7.7) that the function
V (R) has been minimized in the configurational space, starting from an initial
position Ri and going downhill until a minimum position R0 has been reached, the
R0 corresponding to one of many minima the V function may possess43 (we will
call the minimum the “closest” to the Ri point in the configurational space). All
the points Ri of the configurational space that lead to R0 represent the basin of the
attractor44 R0.

From this time on, all other basins of the function V (R) have “disappeared from
the theory” – only motion in the neighbourhood of R0 is to be considered.45 If some-
one is aiming to apply harmonic approximation and to consider small displace-
ments from R0 (as we do), then it is a good idea to write down the Taylor expan-
sion of V about R0 [hereafter instead of the symbols X1	Y1	Z1	X2	Y2	Z2	 � � �
for the atomic Cartesian coordinates we will use a slightly more uniform notation:

Fig. 7.7. A schematic (one-
dimensional) view of the hy-
persurface V (x) that illus-
trates the choice of a par-
ticular basin of V related
to the normal modes to be
computed. The basin cho-
sen is then approximated by
a paraboloid in 3N vari-
ables. This gives the 3N −
6 modes with non-zero fre-
quencies and 6 “modes” with
zero frequencies.

43These are improper minima, because a translation or rotation of the system does not change V .
44The total configurational space consists of a certain number of such basins.
45For another starting conformation Ri we might obtain another minimum of V (R). This is why the

choice of Ri has to have a definite relation to that which is observed experimentally.
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R= (X1	X2	X3	X4	X5	X6	 � � � 	X3N)
T ]

V (R0 + x)= V (R0)+
∑

i

(
∂V

∂xi

)

0
xi + 1

2

∑

ij

(
∂2V

∂xi∂xj

)

0
xixj + · · · 	 (7.3)

where x=R−R0 is the vector with the displacements of the atomic positions from
their equilibria (xi =Xi −Xi	0 for i= 1	 � � � 	3N), while the derivatives are calcu-
lated at R=R0.

In R0 all the first derivatives vanish. According to the harmonic approximation,
the higher order terms denoted as “+· · ·” are neglected. In effect we have

V (R0 + x)∼= V (R0)+ 1
2

∑

ij

(
∂2V

∂xi∂xj

)

0
xixj� (7.4)

In matrix notation we have V (R0+x)= V (R0)+ 1
2x
TV ′′x, where V ′′ is a square

matrix of the Cartesian force constants, (V ′′)ij = ( ∂2V
∂xi∂xj

)0.force constant

The Newton equations of motion for all the atoms of the system can be written
in matrix form as (ẍ means the second derivative with respect to time t)

Mẍ=−V ′′x	 (7.5)

where M is the diagonal matrix of the atomic masses (the numbers on the diago-
nal are: M1	M1	M1	 M2	M2	M2	 � � �), because we calculate the force component
along the axis k as

− ∂V
∂xk

= −1
2

∑

j

(
∂2V

∂xk∂xj

)

0
xj − 1

2

∑

i

(
∂2V

∂xi∂xk

)

0
xi

= −
∑

j

(
∂2V

∂xk∂xj

)

0
xj =−(V ′′x)k�

We may use the relation M
1
2M

1
2 =M

M
1
2M

1
2 ẍ=−M 1

2M− 1
2V ′′M− 1

2M
1
2 x	 (7.6)

where M
1
2 is a matrix similar to M , but its elements are the square roots of the

atom masses instead of the masses, while the matrix M− 1
2 contains the inverse

square roots of the masses. The last equation, after multiplying from the left by
M− 1

2 , gives

ÿ=−Ay	 (7.7)

where y=M 1
2 x and A=M− 1

2V ′′M− 1
2 .
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Let us try to find the solution in the form46

y= c1 exp(+iωt)+ c2 exp(−iωt)	
where the vectors ci (of the dimension 3N) of the complex coefficients are time
independent. The coefficients ci depend on the initial conditions as well as on
the A matrix. If we say that at time t = 0 all the atoms are at equilibrium, i.e.
y(t = 0)= 0, then we obtain the relation c1 =−c2 leading to the formula

y=L sin(ωt)	 (7.8)

where the vector47 L and ω depend on the matrix A. Vector L is determined only
to the accuracy of a multiplication constant, because multiplication of L by any
number does not interfere with satisfying (7.7).

When we insert the proposed solution (7.8) in (7.7), we immediately obtain, that
ω and L have to satisfy the following equation

(

A−ω21
)

L= 0� (7.9)

The values of ω2 represent the eigenvalues,48 while the L are the eigenvectors
of the A matrix. There are 3N eigenvalues, and each of them corresponds to its
eigenvector L. This means that we have 3N normal modes, each mode character-
ized by its angular frequency ω= 2πν (ν is the frequency) and its vibration ampli-
tudes L. Hence, it would be natural to assign a normal mode index k= 1	 � � � 	3N
for ω and L. Therefore we have

(

A−ω2
k1
)

Lk = 0 (7.10)

The diagonalization of A (p. 982) is an efficient technique for solving the eigen-
value problem using commercial computer programs (diagonalization is equivalent
to a rotation of the coordinate system, Fig. 7.8).

This is equivalent to replacing V by a 3N-dimensional paraboloid with ori-
gin at R0. The normal mode analysis means such a rotation of the coordi-
nate system as will make the new axes coincide with the principal axes of the
paraboloid.

46This form (with ω = a + ib) allows for a constant solution (a = b = 0), an exponential growth or
vanishing (a= 0, b 	= 0), oscillations (a 	= 0, b= 0), oscillatory growing or oscillatory vanishing (a 	= 0,
b 	= 0). For R0 denoting a minimum, detA> 0 and this assures a solution with a 	= 0, b= 0.
47Equal to 2ic1, but since c1 is unknown, as for the time being is L, therefore we can say goodbye to
c1 without feeling any discomfort whatsoever.
48A is a symmetric matrix, hence its eigenvalues ω2 and therefore also ω = a + ib are real (b = 0).

Whether ω are positive, negative or zero depends on the hypersurface V at R0, see Fig. 7.8.
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Fig. 7.8. (a) and (b) show the normal vibrations (normal modes) about a point R0 = 0 being a
minimum of the potential energy function V (R0 + y) of two variables y = (y1	 y2). This function
is first approximated by a quadratic function, i.e. a paraboloid Ṽ (y1	 y2)� Computing the normal
modes is equivalent to such a rotation of the Cartesian coordinate system (a), that the new axes
(b) y′1 and y′2 become the principal axes of any section of Ṽ by a plane Ṽ = const (i.e. ellipses).

Then, we have Ṽ (y1	 y2) = V (R0 = 0) + 1
2k1(y

′
1)

2 + 1
2k2(y

′
2)

2. The problem then becomes equiv-
alent to the two-dimensional harmonic oscillator (cf. Chapter 4) and separates into two indepen-

dent one-dimensional oscillators (normal modes): one of angular frequency ω1 = 2πν1 =
√
k1
m and

the other with angular frequency ω2 = 2πν2 =
√
k2
m , where m is the mass of the oscillating particle.

Figs. (c), (d) show what would happen, if R0 corresponded not to a minimum, but to a maximum (c) or
the saddle point (d). For a maximum (c) k1 and k2 in Ṽ (y′1	 y

′
2)= V (0)+ 1

2k1(y
′
1)

2 + 1
2k2(y

′
2)

2 would
be both negative, and therefore the corresponding normal “vibrations” would have had both imaginary
frequencies, while for the saddle point (d) only one of the frequencies would be imaginary.

There will be six frequencies (five for a linear molecule) equal to zero. They are
connected to the translation and rotation of the molecule in space: three trans-
lations along x	 y	 z and three rotations about x	 y	 z (two in the case of a linear
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Fig. 7.8. Continued.

molecule). Such free translations/rotations do not change the energy and may be
thought therefore to correspond to zero force constants.

If we are interested in what the particular atoms are doing, when a single mode l
is active, then the displacements from the equilibrium position as a function of time
are expressed as

xl =M− 1
2 yl =M− 1

2Ll sin(ωlt)� (7.11)

A given atom participates in all vibrational modes. Even if any vibrational mode
makes all atoms move, some atoms move more than others. It may happen that a
particular mode changes mainly the length of one of the chemical bonds (stretch-
ing mode), another mode moves another bond, another changes a particular bond
angle (bending mode), etc.
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Table 7.1. Characteristic frequencies (wave numbers, in cm−1)
typical for some chemical bonds (stretching vibrations) and
bond angles (bending vibrations). This is of great importance
for chemical analysis.

Bond Vibration Wave number

C–H stretching 2850–3400
H–C–H bending 1350–1460
C–C stretching 700–1250
C=C stretching 1600–1700
C≡C stretching 2100–2250
C=O stretching 1600–1750
N–H stretching 3100–3500
O–H stretching 3200–4000

This means that some chemical bonds or some functional groups may have
characteristic vibration frequencies, which is of great importance for the
identification of these bonds or groups in chemical analysis.

In Table 7.1 typical (“characteristic”) frequencies for some particular chemicalcharacteristic
frequencies bonds are reported. Note, that high frequencies correspond to light atoms (e.g.,

hydrogen). The wave numbers ν̄ are defined by the relation

ω= 2πν = 2πν̄c	 (7.12)

with c being the velocity of light and ν the frequency. The wave number is thewave number

number of the wave lengths covering a distance of 1 cm.

Example 1. The water molecule

The goal behind this example is to elaborate ideas associated with various bonds,
their characteristic frequencies, and their applicability in chemical analysis.

The single water molecule has 3 × 3 = 9 normal modes. Six of them have the
angular frequencies ω equal zero (they correspond to three free translations and
three free rotations of the molecule in space). Three normal modes remain, the
vectors x of eq. (7.11) for these modes can be described as follows (Fig. 7.9, the
corresponding wave numbers have been given in parentheses49):

• one of the modes means a symmetric stretching of the two OH bonds (ν̄sym =
3894 cm−1);

49J. Kim, J.Y. Lee, S. Lee, B.J. Mhin, K.S. Kim, J. Chem. Phys. 102 (1995) 310. This paper reports
normal mode analysis for potential energy hypersurfaces computed by various methods of quantum
chemistry. I have chosen the coupled cluster method (see Chapter 10) CCSD(T) as an illustration.
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Fig. 7.9. The normal modes of the water molecule: (a) symmetric (b) antisymmetric (c) bending.

• the second mode corresponds to a similar, but antisymmetric motion, i.e. when
one of the bonds shortens the other one elongates and vice versa50 (ν̄asym =
4029 cm−1);

• the third mode is called the bending mode and corresponds to an oscillation of
the HOH angle about the equilibrium value (ν̄bend = 1677 cm−1).

Example 2. The water dimer
Now let us take two interacting water molecules. First, let us ask how many minima
we can find on the electronic ground-state energy hypersurface. Detailed calcula-
tions have shown that there are two such minima (Fig. 7.10). The global minimum
corresponds to the configuration characteristic for the hydrogen bond (cf. p. 746). hydrogen bond

One of the molecules is a donor, the other is an acceptor of a proton, Fig. 7.10.a.
A local minimum of smaller stability appears when one of the water molecules
serves as a donor of two protons, while the other serves as an acceptor of them
called the bifurcated hydrogen bond, Fig. 7.10.b.

50The shortening has the same value as the lengthening. This is a result of the harmonic approximation,
in which both shortening and lengthening require the same energy.
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Fig. 7.10. The water dimer and the configurations of the nuclei that correspond to minima of the two
basins of the potential energy V . The global minimum (a) corresponds to a single hydrogen bond
O–H. . . O; the local minimum (b) corresponds to the bifurcated hydrogen bond.

Now, we decide to focus on the global minimum potential well. We argue that forbifurcated
hydrogen bond thermodynamic reasons, this particular well will be most often represented among

water dimers. This potential energy well has to be approximated by a paraboloid.
The number of degrees of freedom is equal to 6× 3= 18 and this is also the num-
ber of normal modes to be obtained. As in Example 1, six of them will have zero
frequencies and the number of “true” vibrations is 12. This is the number of nor-
mal modes, each with its frequency ωk and the vector xk =M− 1

2Lk sin(ωkt) that
describes the atomic motion. The two water molecules, after forming the hydro-
gen bond, have not lost their individual features (in other words the OH vibration
is characteristic). In dimer vibrations we will find the vibration frequencies of in-
dividual molecules changed a little by the water–water interaction. These modes
should appear in pairs, but the two frequencies should differ (the role of the two
water molecules in the dimer is different). The computed frequencies51 are the
following:

• two stretching vibrations with frequencies 3924 cm−1 (antisymmetric) and
3904 cm−1 (nearly antisymmetric), the higher frequency corresponds to the pro-
ton acceptor, the lower to the proton donor;

• two stretching vibrations with frequencies 3796 cm−1 (symmetric) and 3704 cm−1

(nearly symmetric), again the higher frequency corresponds to the proton accep-
tor, the lower to the proton donor;

• two bending vibrations with frequencies 1624 cm−1 (donor bending) and
1642 cm−1 (acceptor bending).

The proton acceptor has something attached to its heavy atom, the proton
donor has something attached to the light hydrogen atom. Let us recall that in
the harmonic oscillator, the reduced mass is relevant, which therefore is almost
equal to the mass of the light proton. If something attaches to this atom, it means a
considerable lowering of the frequency. This is why lower frequencies correspond
to the proton donor.

Thus, among 12 modes of the dimer we have discovered six modes which are
related to the individual molecules: 4 OH stretching and 2 HOH bending modes.

51R.J. Reimers, R.O. Watts, Chem. Phys. 85 (1984) 83.
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Now, we have to identify the remaining 6 modes. These are the intermolecular
vibrations (Fig. 7.10.a):

• stretching of the hydrogen bond O–H. . . O (the vibration of two water molecules
treated as entities): 183 cm−1

• bending of the hydrogen bond O–H. . . O in the plane of the figure: 345 cm−1

• bending of the hydrogen bond O–H. . . O in the plane perpendicular to the figure:
645 cm−1

• rocking of the hydrogen atom H1 perpendicular to the figure plane: 115 cm−1

• rocking of the second water molecule (the right-hand side of the figure) in the
figure plane: 131 cm−1

• rocking of the second water molecule (the right-hand side of the figure) about
its symmetry axis: 148 cm−1.

As we can see, the intermolecular interactions have made the “intramolecular”
vibration frequencies decrease,52 while the “intermolecular” frequencies have very
low frequencies. The last effect is, of course, nothing strange, because a change of
intermolecular distances does require a small expenditure of energy (which means
small force constants). Note, that the simple Morse oscillator model considered
in Chapter 4, p. 175, gave the correct order of magnitude of the intermolecular
frequency of two water molecules (235 cm−1 as compared to the above, much more
accurate, result 183 cm−1).

7.5.2 ZERO-VIBRATION ENERGY

The computed minimum of V (using any method, either quantum-mechanical or
force field) does not represent the energy of the system for exactly the same reason
as the bottom of the parabola (the potential energy) does not represent the energy
of the harmonic oscillator (cf. the harmonic oscillator, p. 166). The reason is the
kinetic energy contribution.

If all the normal oscillators are in their ground states (vj = 0, called the “zero-
vibrations”), then the energy of the system is the energy of the bottom of the
parabola Vmin plus the zero-vibration energy (we assume no rotational contribu-
tion)

E = Vmin + 1
2

∑

j

(hνj)� (7.13)

It has been assumed that the vibrations are harmonic in the above formula. This
assumption usually makes the frequencies higher by several percent (cf. p. 175).

Taking anharmonicity into account is a much more difficult task than normal
mode analysis. Note (Fig. 7.11) that in such a case the position of the minimum

52This is how the hydrogen bonds behave. This, seemingly natural expectation after attaching an ad-
ditional mass to a vibrating system is legitimate when assuming that the force constants have not in-
creased. An interesting example of the opposite effect for a wide class of compounds has been reported
by Pavel Hobza and Zdenek Havlas (P. Hobza, Z. Havlas, Chem. Rev. 100 (2000) 4253).
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Fig. 7.11. The ground-state vibrational wave
function ψ′0 of the anharmonic oscillator (of
potential energy V2) is asymmetric and shifted
towards positive values of the displacement
when compared to the wave function ψ0 for
the harmonic oscillator with the same force
constant (the potential energy V1).

of V does not correspond to the mean value of the interatomic distance due to the
asymmetry of V .

7.6 MOLECULAR DYNAMICS (MD)

In all the methods described above there is no such a thing as temperature. It looks
as if all the experiments were made after freezing the lab to 0 K. It is difficult to
tolerate such a situation.

7.6.1 THE MD IDEA

Molecular dynamics is a remedy. The idea is very simple.
If we knew the potential energy V as a function of the position (R) of all the

atoms (whatever force field has been used for the approximation53), then all the
forces the atoms undergo could be easily computed. If R = (X1	X2	 � � � 	X3N)

T

denotes the coordinates of all the N atoms (X1	X2	X3 are the x	 y	 z coordinates
of atom 1, X4	X5	X6 are the x	 y	 z of atom 2, etc.), then − ∂V

∂X1
is the x compo-

nent of the force atom 1 undergoes, − ∂V
∂X2

is the y component of the same force,
etc. When a force field is used, all this can be easily computed even analytically.54

We had the identical situation in molecular mechanics, but there we were inter-
ested just in making these forces equal to zero (through obtaining the equilibrium
geometry). In molecular dynamics we are interested in time t, the velocity of the
atoms (in this way temperature will come into play) and the acceleration of the
atoms.

53Cf. p. 288.
54That is, an analytical formula can be derived.
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Our immediate goal is collecting the atomic positions as functions of time,
i.e. the system trajectory.

The Newton equation tells us that, knowing the force acting on a body (e.g., an
atom), we may compute the acceleration the body undergoes. We have to know
the mass, but there is no problem with that.55 Hence the i-th component of the
acceleration vector is equal to

ai =− ∂V
∂Xi

· 1
Mi

(7.14)

for i= 1	2	 � � � 	3N (Mi =M1 for i= 1	2	3, Mi =M2 for i= 4	5	6, etc.).
Now, let us assume that at t = 0 all the atoms have the initial coordinates R0 and

the initial velocities56 v0. Now we assume that the forces calculated act unchanged
during a short period �t (often 1 femtosecond or 10−15 s). We know what should
happen to a body (atom) if under influence of a constant force during time �t.
Each atom undergoes a uniformly variable motion and the new position may be
found in the vector

R=R0 + v0�t + a�t
2

2
	 (7.15)

and its new velocity in the vector

v= v0 + a�t	 (7.16)

where the acceleration a is a vector composed of the acceleration vectors of all the
N atoms

a = (a1	a2	 � � �aN)
T 	 (7.17)

a1 =
(

− ∂V

∂X1
	− ∂V

∂X2
	− ∂V

∂X3

)

· 1
M1

	

a2 =
(

− ∂V

∂X4
	− ∂V

∂X5
	− ∂V

∂X6

)

· 1
M2

	 etc.

55We assume that what moves is the nucleus. In MD we do not worry about that the nucleus moves
together with its electrons. To tell the truth both masses differ only by about 0.05%.
56Where could these coordinates be taken from? To tell the truth, almost from a “hat”. “Almost” –

because some essential things will be assumed. First, we may quite reasonably conceive the geometry
of a molecule, because we know which atoms form the chemical bonds, their reasonable lengths, the
reasonable values of the bond angles, etc. That is, however, not all we would need for larger molecules.
What do we take as dihedral angles? This is a difficult case. Usually we take a conformation, which we
could call as “reasonable”. In a minute we will take a critical look at this problem. The next question is
the velocities. Having nothing better at our disposal, we may use a random number generator, assuring
however that the velocities are picked out according to the Maxwell–Boltzmann distribution suitable
for a given temperature T of the laboratory, e.g., 300 K. In addition, we will make sure that the system
does not rotate or flies off somewhere.

In this way we have our starting position and velocity vectors R0 and v0.
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All on the right hand side of (7.15) and (7.16) is known. Therefore the new po-
sitions and the new velocities are easy to calculate.57 Now, we may use the new
positions and velocities as a start ones and repeat the whole procedure over and
over. This makes it possible to go along the time axis in a step-like way in practice
reaching even nanosecond times (10−9 sec), which means millions of such steps.
The procedure described above simply represents the numerical integration of 3N
differential equations. If N = 2000 then the task is impressive. It is so straightfor-
ward, because we are dealing with a numerical (not analytical) solution.58

7.6.2 WHAT DOES MD OFFER US?

The computer simulation makes the system evolve from the initial state to the
final one. The position R in 3N-dimensional space becomes a function of time and
therefore R(t) represents the trajectory of the system in the configurational space.MD trajectory

A similar statement pertains to v(t). Knowing the trajectory means that we know
the smallest details of the motion of all the atoms. Within the approximations used,
we can therefore answer any question about this motion. For example we may ask
about some mean values, like the mean value of the total energy, potential energy,
kinetic energy, the distance between atom 4 and atom 258, etc. All these quantities
may be computed at any step of the procedure, then added up and divided by the
number of steps giving the mean values we require. In this way we may obtain
the theoretical prediction of the mean value of the interatomic distance and then
compare it to, say, the NMR result.

In this way we may search for some correlation of motion of some atoms or
groups of atoms, i.e. the space correlation (“when this group of atoms is shifted tocorrelation and

auto-correlation the left, then another group is most often shifted to the right”) or the time correla-
tion (“when this thing happens to the functional group G1, then after a time τ that
most often takes place with another functional group G2”) or time autocorrelation
(“when this happens to a certain group of atoms, then after time τ the same most
often happens to the same group of atoms”). For example, is the x coordinate of
atom 1, i.e. X1 correlated to the coordinate y of atom 41, i.e. X122, or are these
two quantities absolutely independent? The answer to this question is given by
the correlation coefficient c1	122 calculated for M simulation steps in the following
way:

c1	122 =
1
M

∑M
i=1(X1	i − 〈X1〉)(X122	i − 〈X122〉)

√

( 1
M

∑M
i=1(X1	i − 〈X1〉)2)( 1

M

∑M
i=1(X122	i − 〈X122〉)2)

	

where 〈X1〉 and 〈X122〉 denote the mean values of the coordinates indicated, and
the summation goes over the simulation steps. It is seen that any deviation from

57In practice we use a more accurate computational scheme called the leap frog algorithm.
58By the way, if somebody gave us the force field for galaxies (this is simpler than for molecules), we

could solve the problem as easily as in our case. This is what astronomers often do.
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independence means a non-zero value of c1	122. What could be more correlated to
the coordinate X1 than the same X1 (or −X1)? Of course, absolutely nothing. In
such a case (in the formula we replace X122	i→X1	i and X122 →X1), we obtain
c1	1 = 1 or −1. Hence, c always belongs to [−1	1], c = 0 means independence,
c± 1 means maximum dependence.

Does molecular dynamics have anything to do with reality?
If the described procedure were applied without any modification, then most

probably we would have bad luck and our R0 would be located on a slope of the
hypersurface V . Then, the solution of the Newton equations would reflect what
happens to a point (representing the system) when placed on the slope – it would
slide downhill. The point would go faster and faster and soon the vector v would
not correspond to the room temperature, but, say, to 500 K. Of course, despite
such a high temperature the molecule would not disintegrate, because this is not
a real molecule but one operating with a force field that usually corresponds to
unbreakable chemical bonds. Although the molecule will not fall apart,59 such a
large T has nothing to do with the temperature of the laboratory. This suggests
that after some number of steps we should check whether the atomic velocities still
correspond to the proper temperature. If not, it is recommended to scale all the ve-
locities by multiplying them by such a factor in order to make them corresponding
again to the desired temperature. For this reason, the only goal of the first part of
a molecular dynamics simulation is called the “thermalization”, in which the error thermalization

connected to the non-zero �t is averaged and the system is forced stepwise (by scal-
ing) to behave as what is called the canonical ensemble. The canonical ensemble canonical

ensemblepreserves the number of molecules, the volume and the temperature (simulating
contact with a thermostat at temperature T ). In such a “thermalized” system total
energy fluctuations are allowed.

The thermalization done, the next (main) stage of molecular dynamics, i.e. the
harvesting of data (trajectory) begins.

7.6.3 WHAT TO WORRY ABOUT?

• During simulation, the system has to have enough time to wander through all
parts of the phase space60 that are accessible in the experimental conditions
(with which the simulation is to be compared). We are never sure that it hap-
pens. We have to check whether the computed mean values depend upon the
simulation time. If they do not, then very probably everything is all right – we
have a description of the equilibrium state.

• The results of the MD (the mean values) should not depend on the starting
point, because it has been chosen arbitrarily. This is usually satisfied for small
molecules and their collections. For large and flexible molecules we usually start

59This pertains to a single molecule bound by chemical bonds; a system of several molecules could fall
apart.
60The Cartesian space of all atomic positions and momenta.
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from the vector R0 found from X-ray determined atomic positions. Why? Be-
cause after the MD we will still stay close to this (all in all experimental) con-
formation. If the simulation started from another conformation, it would result
in a conformation close to this new starting point. This is because even with
the most powerful computers, simulation times are too short. In such a way we
have a simulation of one conformation evolution rather than a description of the
thermodynamic equilibrium.

• The simulation time in the MD is limited on one side by the power of computers
and on the other side by the time step �t, which is not infinitesimally small, and
creates an error that cumulates during the simulation (as a result the total energy
may vary too much and the system may be heading into non-physical regions of
the phase space).

7.6.4 MD OF NON-EQUILIBRIUM PROCESSES

The thermalization is not always what we want. We may be interested in what hap-
pens, when a DNA molecule being anchored to a solid surface by one of its end
functional groups is distorted by pulling the other end of the molecule. Such MD
results may nowadays be compared to the corresponding experiment.

And yet another example. A projectile hits a wall. The projectile is being com-
posed of Lennard-Jones atoms (with some εp and re	p, p. 287), we assume the
same for the wall (for other values of the parameters, let us make the wall less
resistant than the projectile: εw < εp and re	w > re	p). Altogether we may have
hundreds of thousands or even millions of atoms (i.e. millions of differential equa-
tions to solve). Now, we prepare the input R0 and v0 data. The wall atoms are
assumed to have stochastic velocities drawn from the Maxwell–Boltzmann distri-
bution for room temperature. The same for the projectile atoms, but additionally
they have a constant velocity component along the direction pointing to the wall.
At first, nothing particularly interesting happens – the projectile flies towards the
wall with a constant velocity (while all the atoms of the system vibrate). Of course,
the time the projectile hits the wall is the most interesting. Once the front part of
the projectile touches the wall, the wall atoms burst into space in a kind of erup-
tion, the projectile’s tip loses some atoms as well, the spot on the wall hit by the
projectile vibrates and sends a shock wave and concentric waves travelling within
the wall. A violent (and instructive) movie.

Among more civil applications, we may think of the interaction of a drill and
a steel plate, to plan better drills and better steel plates, as well as about other
micro-tools which have a bright future.

7.6.5 QUANTUM-CLASSICAL MD

A typical MD does not allow for breaking bonds and the force fields which allow
this give an inadequate, classical picture, so a quantum description is sometimes



7.7 Simulated annealing 309

a must. The systems treated by MD are usually quite large, which excludes a full
quantum-mechanical description.

For enzymes (natural catalysts) researchers proposed61 joining the quantum
and the classical description by making the precision of the description depen-
dent on how far the region of focus is from the enzyme active centre (where the
reaction the enzyme facilitates takes place). They proposed dividing the system
(enzyme+ solvent) into three regions:

• region I represents the active centre atoms,
• region II is the other atoms of the enzyme molecule,
• region III is the solvent.

Region I is treated as a quantum mechanical object and described by the proper
time-dependent Schrödinger equation, region II is treated classically by the force
field description and the corresponding Newton equations of motion, region III
is simulated by a continuous medium (no atomic representation) with a certain
dielectric permittivity.

The regions are coupled by their interactions: quantum mechanical region I is
subject to the external electric field produced by region II evolving according to
its MD as well as that of region III, region II feels the charge distribution changes
region I undergoes through electrostatic interaction.

7.7 SIMULATED ANNEALING

The goal of MD may differ from simply calculating some mean values, e.g., we may
try to use MD to find regions of the configurational space for which the potential
energy V is particularly low.62 From a chemist’s point of view, this means trying
to find a particularly stable structure (conformation of a single molecule or an
aggregate of molecules). To this end, MD is sometimes coupled with an idea of
Kirkpatrick et al.,63 taken from an ancient method of producing metal alloys of
exceptional quality (the famous steel of Damascus), and trying to find the minima
of arbitrary functions.64 The idea behind simulated annealing is extremely simple.

This goal is achieved by a series of heating and cooling procedures (called the
simulation protocol). First, a starting configuration is chosen that, to the best of
our knowledge, is of low energy and the MD simulation is performed at a high
temperature T1. As a result, the system (represented by a point R in the configura-
tion space) rushes through a large manifold of configurations R, i.e. wanders over

61P. Bała, B. Lesyng, J.A. McCammon, in “Molecular Aspects of Biotechnology: Computational Methods
and Theories”, Kluwer Academic Publishers, p. 299 (1992). A similar philosophy stands behind the
Morokuma’s ONIOM procedure: M. Svensson, S. Humbel, R.D.J. Froese, T. Matsubara, S. Sieber,
K. Morokuma, J. Phys. Chem. 100 (1996) 19357.
62Like in global molecular mechanics.
63S. Kirkpatrick, C.D. Gellat Jr., M.P. Vecchi, Science 220 (1983) 671.
64I recommend a first-class book: W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical

Recipes The Art of Scientific Computing, Cambridge Univ. Press, Cambridge.
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a large portion of the hypersurface V (R). Then, a lower temperature T2 is chosen
and the motion slows down, the visited portion of the hypersurface shrinks and
hopefully corresponds to some regions of low values of V – the system is confined
in a large superbasin (the basin composed of individual minima basins). Now the
temperature is raised to a certain value T3 < T1, thus allowing the system even-
tually to leave the superbasin and to choose another one, maybe of lower energy.
While the system explores the superbasin, the system is cooled again, this time to
temperature T4 < T2, and so forth. Such a procedure does not give any guarantee
of finding the global minimum of V , but there is a good chance of getting a config-
uration with much lower energy than the start. The method, being straightforward
to implement, is very popular. Its successes are spectacular, although sometimes
the results are disappointing. The highly prized swords made in ancient Damascus
using annealing, prove that the metal atoms settle down in quasi-optimal positions
forming a solid state of low energy – very difficult to break or deform.

7.8 LANGEVIN DYNAMICS

In the MD we solve Newton equations of motion for all atoms of the system.
Imagine we have a large molecule in an aqueous solution (biology offers us impor-
tant examples). We have no chance to solve Newton equations because there are
too many of them (a lot of water molecules). What do we do then? Let us recall that
we are interested in the macromolecule, the water molecules are interesting only

Paul Langevin (1872–1946),
French physicist, professor at
the College de France. His
main achievements are in the
theory of magnetism and in
relativity theory. His PhD stu-
dent Louis de Broglie made a
breakthrough in quantum the-
ory.

as a medium that changes the conforma-
tion of the macromolecule. The changes
may occur for many reasons, but the sim-
plest is the most probable – just the fact
that the water molecules in their ther-
mal motion hit the atoms of the macro-
molecule. If so, their role is reduced to a
source of chaotic strikes. The main idea
behind Langevin dynamics is to ensure
that the atoms of the macromolecule in-

deed feel some random hits from the surrounding medium without taking this
medium into consideration explicitly. This is the main advantage of the method.

A reasonable part of this problem may be incorporated into the Langevin equa-
tion of motion:

MiẌi =− ∂V
∂Xi

+ Fi − γiMiẊi	 (7.18)

for i= 1	2	 � � � 	3N , where besides the force −∇V resulting from the potential en-
ergy V for the macromolecule alone, we also have an additional stochastic force F ,
whose magnitude and direction are drawn keeping the force related to the temper-
ature and assuring its isotropic character. The coefficient γi is a friction coefficient
and the role of friction is proportional to atomic velocity.
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The Langevin equations are solved in the same way as those of MD, with the
additional stochastic force drawn using a random number generator.

7.9 MONTE CARLO DYNAMICS

Las Vegas, Atlantic City and Monte Carlo are notorious among upright citizens for
day and night use of such random number generators as billiards, roulette or cards.
Because of this, the idea and even the name of Monte Carlo has been accepted in
mathematics, physics, chemistry and biology. The key concept is that a random
number, when drawn successively many times, may serve to create a sequence of
system snapshots.

All this began from an idea of the mathematician from Lwów, then in Poland
(now Lviv in the Ukraine) Stanisław Marcin Ulam.

Perhaps an example will best explain the Monte Carlo method. I have chosen
the methodology introduced to the protein folding problem by Andrzej Koliński

Stanisław Ulam (1909–1984), first associated
with the University of Lwów, then professor at
the Harvard University, University of Wiscon-
sin, University of Colorado, Los Alamos Na-
tional Laboratory. In Los Alamos Ulam solved
the most important bottleneck in hydrogen
bomb construction by suggesting that pres-
sure is the most important factor and that suffi-
cient pressure could be achieved by using the
atomic bomb as a detonator. Using this idea
and an idea of Edward Teller about further am-
plification of the ignition effect by implosion of
radiation, both scholars designed the hydro-
gen bomb. They both own the US patent for
H-bomb production.

According to the Ulam Quarterly Journal
(http://www.ulam.usm.edu/editor.html), Ulam’s
contribution to science includes logic, set the-
ory, measure theory, probability theory, com-
puter science, topology, dynamic systems,
number theory, algebra, algebraic and arith-
metic geometry, mathematical biology, control
theory, mathematical economy and mathemat-
ical physics. He developed and coined the
name of the Monte Carlo method, and also
the cellular automata method (described at the
end of this Chapter). Stanisław Ulam wrote a
very interesting autobiography “Adventures of
a Mathematician”.

The picture below shows one of the “magic
places” of international science, the Szkocka
Café, Akademicka street, Lwów, now a bank
at Prospekt Szewczenki 27, where, before the
World War II, young Polish mathematicians,
among them the mathematical genius Ste-
fan Banach, made a breakthrough thereafter
called the “Polish school of mathematics”.
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and Jeffrey Skolnick.65 In a version of this method we use a simplified model of the
real protein molecule, a polymer composed of monomeric peptide units . . . HN–
CO–CHR–. . . , as a chain of point-like entities HN–CO–CH from which protrude
points representing various side chains R. The polymer chain goes through the
vertices of a crystallographic lattice (the side chain points can also occupy only the
lattice vertices), which excludes a lot of unstable conformations and enable us to
focus on those chemically relevant. The lattice representation speeds computation
by several orders of magnitude.

The reasoning goes as follows. The non-zero temperature of the water the pro-
tein is immersed in makes the molecule acquire random conformations all the
time. The authors assumed that a given starting conformation is modified by a
series of random micro-modifications. The micro-modifications allowed have to
be chosen so as to obey three rules, these have to be:

• chemically/physically acceptable;
• always local, i.e. they have to pertain to a small fragment of the protein, because

in future we would like to simulate the kinetics of the protein chain (how a con-
formational change evolves);

• able to transform any conformation into any other conformation of the protein.

This way we are able to modify the molecular conformation, but we want the
protein to move, i.e. to have the dynamics of the system, i.e. a sequence of molecu-
lar conformations, each one derived from the previous one in a physically accept-
able way.

To this end we have to be able to write down the energy of any given conforma-
tion. This is achieved by giving the molecule an energy award if the configuration
corresponds to intramolecular energy gain (e.g., trans conformation, the possibil-
ity of forming a hydrogen bond or a hydrophobic effect, see Chapter 13), and an
energy penalty for intramolecular repulsion (e.g., cis conformation, or when two
fragments of the molecule are to occupy the same space). It is, in general, better if
the energy awards and penalties have something to do with experimental data for
final structures, e.g., can be deduced from crystallographic data.66

Now we have to let the molecule move. We start from an arbitrarily chosen
conformation and calculate its energy E1. Then, a micro-modification, or even a
series of micro-modifications (this way the calculations go faster), is drawn from
the micro-modifications list and applied to the molecule. Thus a new conformation
is obtained with energy E2. Now the most important step takes place. We decide
to accept or to reject the new conformation according to the Metropolis criterion,67Metropolis

criterion
65J. Skolnick, A. Koliński, Science 250 (1990) 1121.
66The Protein Data Bank is the most famous. This Data Basis may serve to form what is called the

statistical interaction potential. The potential is computed from the frequency of finding two amino
acids close in space (e.g., alanine and serine; there are 20 natural amino acids) in the Protein Data
Bank. If the frequency is large, we deduce an attraction has to occur between them, etc.
67N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21 (1953)

1087.
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which gives the probability of the acceptance as:

P1→2 =
⎧

⎨

⎩

1 if E2 
E1	

a= exp
(

− (E2−E1)
kBT

)

if E2 >E1�

Well, we have a probability but what we need is a clear decision: to be or not to be
in state 2. This is where the Monte Carlo spirit comes in, see Fig. 7.12. By using a
random number generator we draw a random number u from section [0	1] and. . .
compare it with the number a. If u
 a, then we accept the new conformation, oth-
erwise conformation 2 is rejected (and we forget about it). The whole procedure
is repeated over and over again: drawing micro-modifications→ a new conforma-
tion→ comparison with the old one by the Metropolis criterion→ accepting (the
new conformation becomes the current one) or rejecting (the old conformation
remains the current one), etc.

The Metropolis criterion is one of those mathematical tricks a chemist has to
know about. Note that the algorithm always accepts the conformation 2 if E2 
E1
and therefore will have a tendency to lower the energy of the current conforma-
tion. On the other hand, when E2 > E1 the algorithm may decide to increase the
energy by accepting the higher energy conformation 2. If (E2−E1)

kBT
> 0 is small, the

algorithm accepts the new conformation very easily (Fig. 7.12.a), at a given E2−E1
the easier the higher the temperature. On the other hand, an attempt at a very high
jump (Fig. 7.12.b) in energy may be successful in practice only at very high temper-
atures. The algorithm prefers higher energy conformations to the same extent as
the Boltzmann distribution. Thus, grinding the mill of the algorithm on and on

Fig. 7.12. Metropolis algorithm. (a) If
E2 is only a little higher than E1, then
the Metropolis criterion often leads to
accepting the new conformation (of
energy E2). (b) On the other hand
if the energy difference is large, then
the new conformation is accepted only
rarely. If the temperature increases,
the acceptance rate increases too.
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(sometimes it takes months on the fastest computers of the world) and calculat-
ing statistics of the number of accepted conformations as a function of energy, we
arrive at the Boltzmann distribution as it should be in thermodynamic equilibrium.

Thus as the mill grinds we can make a film. The film would reveal how the pro-
tein molecule behaves at high temperature: the protein acquires practically any
new conformation generated by the random micro-modifications and it looks as if
the molecule is participating in a kind of rodeo. However, we decide the tempera-
ture. Thus let us decide to lower the temperature. Until a certain temperature we
will not see any qualitative change in the rodeo, but at a sufficiently low tempera-
ture we can recognize that something has happened to the molecule. From time to
time (time is proportional to the number of simulation steps) some local structures
typical of the secondary structures of proteins (the α-helices and the zig-zag type
β-strands, the latter like to bind together laterally by hydrogen bonds) emerge and
vanish, emerge again etc.

When the temperature decreases, at a certain critical value, Tcrit, all of a
sudden a stable structure emerges (an analog of the so called native struc-
ture, i.e. the one ensuring the molecule can perform its function in nature).

critical
temperature The structure vibrates a little, especially at the ends of the protein, but further

cooling does not introduce anything new. The native structure exhibits a unique
secondary structure pattern along the polymeric chain (i.e. definite sections of the
α and β structures) which packs together into a unique tertiary structure. In this way
a highly probable scenario for the coil-globular phase transition was demonstratedcoil-globular

transition for the first time by Koliński and Skolnick. It seems that predicting the 3D structure
of globular proteins uniquely from the sequence of amino acids (an example is
shown in Fig. 7.1568), will be possible in the near future.

7.10 CAR–PARRINELLO DYNAMICS

Despite the fact that the present textbook assumes that the reader has completed
a basic quantum chemistry course, the author (according to his declaration in the
Introduction) does not profit from this very extensively. Car–Parrinello dynamics is
an exception. It positively belongs to the present chapter, while borrowing heavily
from the results of Chapter 8. If the reader feels uncomfortable with this, this
section may just be omitted.

We have already listed some problems associated with the otherwise nice and
powerful MD. We have also mentioned that the force field parameters (e.g., the net
atomic charges) do not change when the conformation changes or when two mole-

68This problem is sometimes called “the second genetic code” in the literature. This name reflects
the final task of obtaining information about protein function from the “first genetic code” (i.e. DNA)
information that encodes protein production.
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cules approach, whereas everything has to change. Car and Parrinello69 thought of
a remedy in order to make the parameters change “in flight”.

Let us assume the one-electron approximation.70 Then the total electronic en-
ergy E0

0(R) is (in the adiabatic approximation) not only a function of the posi-
tions of the nuclei, but also a functional of the spinorbitals {ψi}: V = V (R	 {ψi})≡
E0

0(R).

The function V = V (R	 {ψi}) will be minimized with respect to the posi-
tions R of the nuclei and the spinorbitals {ψi} depending on the electronic
coordinates.

If we are going to change the spinorbitals, we have to take care of their ortho-
normality at all stages of the change.71 For this reason Lagrange multipliers appear
in the equations of motion (Appendix N). We obtain the following set of Newton
equations for the motion of M nuclei

MIẌI =− ∂V

∂XI
for I = 1	 � � � 	3M

and an equation of motion for each spinorbital (each corresponding to the evolu-
tion of one electron probability density in time)

μψ̈i =−F̂ψi +
N
∑

j=1

 ijψj	 i= 1	2	 � � � 	N	 (7.19)

where μ > 0 is a fictitious parameter72 for the electron, F̂ is a Fock operator (see
Chapter 8, p. 341), and  ij are the Lagrange multipliers to assure the orthonor-
mality of the spinorbitals ψj�

Both equations are quite natural. The first (Newton equation) says that a nu-
cleus has to move in the direction of the force acting on it (− ∂V

∂XI
) and the larger

the force and the smaller the mass, the larger the acceleration achieved. Good!
The left hand side of the second equation and the first term on the right hand side
say the following: let the spinorbital ψi change in such a way that the orbital energy
has a tendency to go down (in the sense of the mean value). How on earth does
this follow from the equations? From a basic course in quantum chemistry (this
will be repeated in Chapter 8) we know, that the orbital energy may be computed
as the mean value of the operator F̂ with the spinorbital ψi, i.e. 〈ψi|F̂ψi〉. To focus
our attention, let us assume that δψi is localized in a small region of space (see
Fig. 7.13).
69R. Car, M. Parrinello, Phys. Rev. Letters 55 (1985) 2471.
70The approximation will be described in Chapter 8 and consists of assuming the wave function in

the form of a single Slater determinant built of orthonormal spinorbitals. Car and Parrinello gave the
theory for the density functional theory (DFT). As will be seen in Chapter 11, a single determinant
function is also considered.
71Because the formulae they satisfy are valid under this condition.
72We may call it “mass”. In practical applications μ is large, usually taken as a few hundreds of the

electron mass, because this assures the agreement of theory and experiment.
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Fig. 7.13. A scheme showing why the acceleration ψ̈i of the spinorbital ψi has to be of the same sign
as that of −F̂ψi . Time (arbitrary units) goes from up (t = 0) downwards (t = 3) where the time step is
�t = 1. On the left hand side the changes (localized in 1D space, x axis) of ψi are shown in a schematic
way (in single small square units). It is seen that the velocity of the change is not constant and the
corresponding acceleration is equal to 1. Now let us imagine for simplicity that function F̂ψi has its
non-zero values precisely where ψi 	= 0 and let us consider two cases: a) F̂ψi < 0 and b) F̂ψi > 0. In
such a situation we may easily foresee the sign of the mean value of the energy 〈ψi|F̂ψi〉 of an electron
occupying spinorbital ψi . In situation a) the conclusion for changes of ψi is: keep that way or, in other
words, even increase the acceleration ψ̈i making it proportional to −F̂ψi . In b) the corresponding
conclusion is: suppress these changes or in other words decrease the acceleration e.g., making it negative
as −F̂ψi . Thus, in both cases we have μψ̈i =−F̂ψi , which agrees with eq. (7.19). In both cases there is
a trend to lower orbital energy εi = 〈ψi|F̂ψi〉.
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From Fig. 7.13, it is seen that it would be desirable to have the acceleration ψ̈i
with the same sign as −F̂ψi. This is equivalent to increase the changes that lower
the corresponding orbital energy, and to suppress the changes that make it higher.
The ψi spinorbitals obtained in the numerical integration have to be corrected for
orthonormality, as is assured by the second term in (7.19).

The prize for the elegance of the Car–Parrinello method is the computation
time, which allows one to treat systems currently up to a few hundreds of atoms
(while MD may even deal with a million of atoms). The integration interval has to
be decreased by a factor of 10 (i.e. 0.1 fs instead of 1 fs), which allows us to reach
simulation times of the order of 10–100 picoseconds instead of (in classical MD)
nanoseconds.

7.11 CELLULAR AUTOMATA

Another powerful tool for chemists is the cellular automata method invented by
John (in his Hungarian days Janos) von Neumann73 and Stanisław Marcin Ulam
(under the name of “cellular spaces”). The cellular automata are mathematical
models in which space and time both have a granular structure (similar to Monte
Carlo simulations on lattices, in MD only time has such a structure). A cellular au-
tomaton consists of a periodic lattice of cells (nodes in space). In order to describe
the system locally, we assume that every cell has its “state” representing a vector
of N components. Each component is a Boolean variable, i.e. a variable having a
logical value (e.g., “0” for “false” and “1” for “true”).

A cellular automaton evolves using some propagation and collision (or actual-
ization) rules that are always of a local character. The local character means that
(at a certain time step t and a certain cell) the variables change their values de-
pending only on what happened at the cell and at its neighbours at time step t − 1.
The propagation rules dictate what would happen next (for each cell) with vari-
ables on the cell and on the nearest neighbour cells for each cell independently.
But this may provoke a collision of the rules, because a Boolean variable on a cell
may be forced to change by the propagation rules related to two or more cells.
We need a unique decision and this comes from the collision, or actualization,
rules.

For physically relevant states, the propagation and collision rules for the behav-
iour of such a set of cells as time goes on, may mirror what would happen with a
physical system. This is why cellular automata are appealing. Another advantage
is that due to the locality mentioned above, the relevant computer programs may
be effectively parallelized, which usually significantly speeds up computations. The
most interesting cellular automata are those for which the rules are of a non-linear
character (cf. Chapter 15).

73His short biography is in Chapter 6.
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Example 3. Gas lattice model

One of the simplest examples pertains to a lattice model of a gas. Let the lattice be
regular two-dimensional (Fig. 7.14).

Propagation rules:
There are a certain number of point-like particles of equal mass which may oc-

cupy the nodes (cells) only and have unit velocities pointing either in North–South

George Boole (1815–1864),
British mathematician and lo-
gician. Despite the fact that
he was self-taught, he be-
came professor of Mathe-
matics at Queen’s College in
Cork and a member of the
Royal Society. In 1854 Boole
wrote his Opus Magnum “An
Investigation of the Laws of
Thought”, creating a domain
of mathematical logic. The

logic was treated there as a
kind of algebra.

or East–West directions, thus reaching
the next row or column after a unit of
time. We assign each cell a state which
is a four-dimensional vector of Boolean
variables. The first component tells us
whether there is a particle moving North
on the node (Boolean variables take 0
or 1), the second moving East, the third
South and the fourth West. There should
be no more than one particle going in
one direction at the node, therefore a
cell may correspond to 0, 1, 2, 3, 4 par-

ticles. Any particle is shifted by one unit in the direction of the velocity vector (in
unit time).

Collision rules:
If two particles are going to occupy the same state component at the same cell,

the two particles are annihilated and a new pair of particles is created with drawn

Fig. 7.14. Operation of a cellular automaton – a model of gas. The particles occupy the lattice nodes
(cells). Their displacement from the node symbolizes which direction they are heading in with the
velocity equal to 1 length unit per 1 time step. On the left scheme (a) the initial situation is shown. On
the right scheme (b) the result of the one step propagation and one step collision is shown. Collision
only take place in one case (at a3b2) and the collision rule has been applied (of the lateral outgoing).
The game would become more dramatic if the number of particles were larger, if the walls of the box
as well as the appropriate propagation rules (with walls) were introduced.
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positions and velocities. Any two particles which meet at a node with opposite
velocities acquire the velocities that are opposite to each other and perpendicular
to the old ones (the “lateral outgoing”, see Fig. 7.14).

This primitive model has nevertheless an interesting property. It turns out that
such a system attains a thermodynamic equilibrium state. No wonder that this ap-
proach with more complex lattices and rules became popular. Using the cellular
automata we may study an extremely wide range of phenomena, such as turbulent
flow of air along a wing surface, electrochemical reactions, etc. It is a simple and
powerful tool of general importance.

Summary

• A detailed information about a molecule (in our case: a three atom complex C. . . AB)
may be obtained making use of the potential energy hypersurface for the nuclear motion
computed as the ground-state electronic energy (however, even in this case simplified: the
AB distance has been frozen). After constructing the basis functions appropriate for the
5 variables and applying the Ritz method of solving the Schrödinger equation we obtain
the rovibrational levels and corresponding wave functions for the system. This allows us
to compute the IR and microwave spectrum, and as it turns out, this agrees very well with
the experimental data, which confirms the high quality of the hypersurface and of the
basis set used.

• We may construct an approximation to the potential energy hypersurface for the motion
of the nuclei by designing what is called a force field, or a simple expression for the elec-
tronic energy as a function of the position of the nuclei. Most often in proposed force
fields we assume harmonicity of the chemical bonds and bond angles (“springs”). The
hypersurface obtained often has a complex shape with many local minima.

• Molecular mechanics (should have the adjective “local”) represents
– choice of the starting configuration of the nuclei (a point in the configuration space),
– sliding slowly downhill from the point (configuration) to the “nearest” local minimum,

which corresponds to a stable conformation with respect to small displacements in the
configurational space.

• Global molecular mechanics means
– choice of the starting configuration of the nuclei,
– finding the global (the lowest-energy) minimum, i.e. the most stable configuration of

the nuclei.

While the local molecular mechanics represents a standard procedure, the global one is
still in statu nascendi.

• Any of the potential energy minima can be approximated by a paraboloid. Then, for N
nuclei, we obtain 3N − 6 normal modes (i.e. harmonic and having the same phase) of
the molecular vibrations. This represents important information about the molecule, be-
cause it is sufficient to calculate the IR and Raman spectra (cf. p. 903). Each of the normal
modes makes all the atoms move, but some atoms move more than others. It often hap-
pens that a certain mode is dominated by the vibration of a particular bond or functional
group and therefore the corresponding frequency is characteristic for this bond or func-
tional group, which may be very useful in chemical analysis.
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• Molecular mechanics does not involve atomic kinetic energy, molecular dynamics (MD)
does. MD represents a method of solving the Newton equations of motion74 for all the
atoms of the system. The forces acting on each atom at a given configuration of the nuclei
are computed (from the potential energy V assumed to be known75) as Fj =−∇jV for
atoms j = 1	2	 � � � 	N . The forces known, we calculate the acceleration vector, and from
that the velocities and the new positions of the atoms after a unit time. The system starts
to evolve, as time goes on. Important ingredients of the MD procedure are:
– choice of starting conformation,
– choice of starting velocities,
– thermalization at a given temperature (with velocity adjustments to fulfil the appropri-

ate Maxwell–Boltzmann distribution),
– harvesting the system trajectory,
– conclusions derived from the trajectory.

• In MD (also in the other techniques listed below) there is the possibility of applying a se-
quence (protocol) of cooling and heating periods in order to achieve a low-energy config-
uration of the nuclei (simulated annealing). The method is very useful and straightforward
to apply.

• Besides MD, there are other useful techniques describing the motion of the system:
– Langevin dynamics that allows the surrounding solvent to be taken into account, inex-

pensively.
– Monte Carlo dynamics – a powerful technique basing on drawing and then accept-

ing/rejecting random configurations by using the Metropolis criterion. The criterion says
that if the energy of the new configuration is lower, the configuration is accepted, if it
is higher, it is accepted with a certain probability.

– Car–Parrinello dynamics allows for the electron structure to be changed “in flight”,
when the nuclei move.

– cellular automata – a technique of general importance, which divides the total system
into cells. Each cell is characterized by its state being a vector with its components
being Boolean variables. There are propagation rules that change the state, as time
goes on, and collision rules, which solve conflicts of the propagation rules. Both types
of rules have a local character. Cellular automata evolution may have many features in
common with thermodynamic equilibrium.

Main concepts, new terms

Jacobi coordinate system (p. 279)
angular momenta addition (p. 281)
rovibrational spectrum (p. 283)
dipole moment (p. 283)
sum of states (p. 283)
force field (p. 284)
Lennard-Jones potential (p. 287)
torsional potential (p. 288)
molecular mechanics (p. 290)
global optimization (p. 292)
global minimum (p. 292)

kinetic minimum (p. 293)
thermodynamic minimum (p. 293)
free energy (p. 293)
entropy (p. 293)
normal modes (p. 294)
characteristic frequency (p. 300)
molecular dynamics (p. 304)
spatial correlation (p. 306)
time correlation (p. 306)
autocorrelation (p. 306)
thermalization (p. 307)

74We sometimes say: integration.
75Usually it is a force field.
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simulated annealing (p. 309)
cooling protocol (p. 309)
Langevin dynamics (p. 310)
Monte Carlo dynamics (p. 311)

Metropolis algorithm (p. 312)
Car–Parrinello algorithm (p. 314)
cellular automata(p. 317)
Boolean variables (p. 317)

From the research front

The number of atoms taken into account in MD may nowadays reach a million. The real
problem is not the size of the system, but rather its complexity and the wealth of possi-
ble structures, with too large a number to be investigated. Some problems may be simpli-
fied by considering a quantum-mechanical part in the details and a classical part described
by Newton equations. Another important problem is to predict the 3D structure of pro-
teins, starting from the available amino acid sequence. Every two years from 1994 a CASP
(Critical Assessment of techniques for protein Structure Prediction) has been organized
in California. CASP is a kind of scientific competition, in which theoretical laboratories
(knowing only the amino acid sequence) make blind predictions about 3D protein struc-
tures about to be determined in experimental laboratories, see Fig. 7.15. Most of the the-
oretical methods are based on the similarity of the sequence to a sequence from the Pro-
tein Data Bank of the 3D structures, only some of the methods are related to chemical-
physics.76

Fig. 7.15. One of the target proteins in the 2004 CASP6 competition. The 3D structure (in ribbon
representation) obtained for the putative nitroreductase, one of the 1877 proteins of the bacterium
Thermotoga maritima, which lives in geothermal marine sediments. The energy expression which was
used in theoretical calculations takes into account the physical interactions (such as hydrogen bonds,
hydrophobic interactions, etc., see Chapter 13) as well as an empirical potential deduced from rep-
resentative protein experimental structures deposited in the Brookhaven Protein Data Bank (no bias
towards the target protein). The molecule represents a chain of 206 amino acids, i.e. about 3000 heavy
atoms. Both theory (CASP6 blind prediction) and experiment (carried out within CASP6 as well) give
the target molecule containing five α-helices and two β-pleated sheets (wide arrows). These secondary
structure elements interact and form the unique (native) tertiary structure, which is able to perform
its biological function. (a) predicted by A. Kolinski (to be published) by the Monte Carlo method, and
(b) determined experimentally by X-ray diffraction. Both structures in atomic resolution differ (rms)
by 2.9 Å. Reproduced by courtesy of Professor Andrzej Koliński.

76More details, e.g., in http://predictioncenter.llnl.gov/casp6/Casp6.html
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Ad futurum. . .

The maximum size of the systems investigated by the MM and MD methods will increase
systematically to several million atoms in the near future. A critical problem will be the
choice of the system to be studied as well as the question to be asked. Very probably non-
equilibrium systems will become more and more important, e.g., concerning impact physics,
properties of materials subject to various stresses, explosions, self-organization (see Chap-
ter 13), and first of all chemical reactions. At the same time the importance of MD simula-
tions of micro-tools of dimensions of tens of thousands Å will increase.

Additional literature

A.R. Leach, “Molecular Modelling. Principles and Applications”, Longman, 1996.
A “Bible” of theoretical simulations.

M.P. Allen, D.J. Tildesley, “Computer Simulations of Liquids”, Oxford Science Publica-
tions, Clarendon Press, Oxford, 1987.

A book with a more theoretical flavour.

Questions

1. A three-atomic system C. . . AB with the Hamiltonian

Ĥ =− h̄2

2μR2
d

dR
R2 d

dR
+ l̂2

2μR2
+ ĵ2

2μABr2eq
+ V �

The symbols R	 req	 ĵ2 denote:
a) R = CA distance, req = AB distance, ĵ2 operator of the square of the angular mo-
mentum of C with respect to the centre of mass of AB;
b) R=AB distance, req = distance of C from the centre of mass of AB, ĵ2 operator of
the square of the angular momentum of C with respect to the centre of mass of AB;
c) R= distance of C from the centre of mass of AB, req = AB distance, ĵ2 operator of
the square of the angular momentum of AB with respect to the centre of mass of AB;
d) R= distance of C from the centre of mass of AB, req = AB distance, ĵ2 operator of
the square of the angular momentum of C with respect to the centre of mass of AB.

2. A force field represents an approximation to:
a) the ground-state electronic energy as a function of nuclear configuration; b) vibra-
tional wave function as a function of nuclear configuration; c) potential energy of nu-
clear repulsion; d) electric field produced by the molecule.

3. Frequencies of the normal modes:
a) pertain to a particular potential energy minimum and correspond to a quadratic de-
pendence of the potential on the displacement from the equilibrium; b) do not depend
on the local minimum; c) take into account a small anharmonicity of the oscillators;
d) are identical to H2 and HD, because both PESs are identical.

4. The Lennard-Jones potential corresponds to

V = ε
[(
r0
r

)12
− 2
(
r0
r

)6]
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where:
a) ε is the dissociation energy, r0 is the well depth of V ; b) (dV

dr )r=r0 =−ε; c) ε repre-
sents the dissociation energy, r0 is the distance for which V = 0; d) ε is the well depth,
r0 is the position of the minimum of V .

5. In equation (A−ω2
k

1)Lk = 0 for the normal modes (M is the diagonal matrix of the
atomic masses):

a) ω2
k

may be imaginary; b) ω2
k

represents an eigenvalue of M− 1
2 V ′′M− 1

2 , where V ′′ is
the Hessian computed at the minimum of the potential energy; c) the vector Lk is the

k-th column of the Hessian V ′′; d) ωk is an eigenvalue of M− 1
2 V ′′M− 1

2 , where V ′′ is
the Hessian computed in the minimum of the potential energy.

6. The most realistic set of the wave numbers (cm−1) corresponding to vibrations of the
chemical bonds: C–H, C–C, C=C, respectively, is:
a) 2900, 1650, 800; b) 800, 2900, 1650; c) 1650, 800, 2900; d) 2900, 800, 1650.

7. The goal of the simulated annealing in MD is:
a) to lower the temperature of the system; b) to find the most stable structure; c) to
adjust the atomic velocities to the Maxwell–Boltzmann distribution; d) thermalization
for a given temperature.

8. In the Metropolis algorithm within the Monte Carlo method (for temperature T ) a new
configuration is accepted:
a) on condition that its energy is higher; b) always; c) always, when its energy is lower,
and sometimes when its energy is higher; d) only when its energy is higher than kT .

9. In the Langevin MD the solvent molecules:
a) are treated on the same footing as the solute molecules; b) cause a resistance to the
molecular motion and represent a source of random forces; c) cause a resistance to the
molecular motion and represent the only source of forces acting on the atoms; d) cause
a friction proportional to the acceleration and represent a source of random forces.

10. In Car–Parrinello dynamics:
a) when the nuclei move the atomic net charges change; b) we minimize the conforma-
tional energy in a given force field; c) nuclei and electrons move according to the same
equations of motion; d) nuclei move while the electronic charge distribution is “frozen”.

Answers

1c, 2a, 3a, 4d, 5b, 6d, 7b, 8c, 9b, 10a



Chapter 8

ELECTRONIC MOTION
IN THE MEAN FIELD:
ATOMS AND
MOLECULES

Where are we?

We are in the upper part of the main trunk of the TREE.

An example

What is the electronic structure of atoms? How do atoms interact in a molecule? Two neutral
moieties (say, hydrogen atoms) attract each other with a force of a similar order of magnitude
to the Coulombic forces between two ions. This is quite surprising. What pulls these neutral
objects to one another? These questions are at the foundations of chemistry.

What is it all about

Hartree–Fock method – a bird’s eye view (�) p. 329
• Spinorbitals
• Variables
• Slater determinants
• What is the Hartree–Fock method all about?

The Fock equation for optimal spinorbitals (�) p. 334
• Dirac and Coulomb notations
• Energy functional
• The search for the conditional extremum
• A Slater determinant and a unitary transformation
• Invariance of the Ĵ and K̂ operators
• Diagonalization of the Lagrange multipliers matrix
• The Fock equation for optimal spinorbitals (General Hartree–Fock method – GHF)
• The closed-shell systems and the Restricted Hartree–Fock (RHF) method
• Iterative procedure for computing molecular orbitals: the Self-Consistent Field method

Total energy in the Hartree–Fock method (�) p. 351

Computational technique: atomic orbitals as building blocks of the molecular wave
function (�) p. 354

• Centring of the atomic orbital
• Slater-type orbitals (STO)

324
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• Gaussian-type orbitals (GTO)
• Linear Combination of Atomic Orbitals (LCAO) Method
• Basis sets of Atomic Orbitals
• The Hartree–Fock–Roothaan method (SCF LCAO MO)
• Practical problems in the SCF LCAO MO method

Back to foundations (�) p. 369
• When does the RHF method fail?
• Fukutome classes

RESULTS OF THE HARTREE–FOCK METHOD p. 379

Mendeleev Periodic Table of Chemical Elements (�) p. 379
• Similar to the hydrogen atom – the orbital model of atom
• Yet there are differences. . .

The nature of the chemical bond (�) p. 383
• H+2 in the MO picture
• Can we see a chemical bond?

Excitation energy, ionization potential, and electron affinity (RHF approach) (�) p. 389
• Approximate energies of electronic states
• Singlet or triplet excitation?
• Hund’s rule
• Ionization potential and electron affinity (Koopmans rule)

Localization of molecular orbitals within the RHF method (�) p. 396
• The external localization methods
• The internal localization methods
• Examples of localization
• Computational technique
• The σ	π	δ bonds
• Electron pair dimensions and the foundations of chemistry
• Hybridization

A minimal model of a molecule (�) p. 417
• Valence Shell Electron Pair Repulsion (VSEPR)

The Born–Oppenheimer (or adiabatic) approximation is the central point of this book
(note its position in the TREE). Thanks to the approximation, we can consider separately
two coupled problems concerning molecules:

• the motion of the electrons at fixed positions of the nuclei (to obtain the electronic en-
ergy),

• the motion of nuclei in the potential representing the electronic energy of the molecule
(see Chapter 7).

From now on we will concentrate on the motion of the electrons at fixed positions of the
nuclei (the Born–Oppenheimer approximation, p. 229).

To solve the corresponding eq. (6.18), we have at our disposal the variational and the
perturbation methods. The latter one should have a reasonable starting point (i.e. an un-
perturbed system). This is not the case in the problem we want to consider at the moment.
Thus, only the variational method remains. If so, a class of trial functions should be pro-
posed. In this chapter the trial wave function will have a very specific form, bearing signif-
icant importance for the theory. We mean here what is called Slater determinant, which is
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composed of molecular orbitals. At a certain level of approximation, each molecular orbital
is a “home” for two electrons. We will now learn on how to get the optimum molecular
orbitals (Hartree–Fock method). Despite some quite complex formulas, which will appear
below, the main idea behind them is extremely simple. It can be expressed in the following
way.

Let us consider the road traffic, the cars (electrons) move at fixed positions of buildings
(nuclei). The motion of the cars proves to be very complex (as it does for the electrons)
and therefore the problem is extremely difficult. How can such a motion be described in an
approximate way? To describe such a complex motion one may use the so called mean field
approximation (paying the price of poor quality). In the mean field approximation method
we focus on the motion of one car only considering its motion in such way that the car avoids
those streets that are usually most jammed. In this chapter we will treat the electrons in a
similar manner (leaving the difficulties of considering the correlation of the motions of the
electrons to Chapter 10). Now, the electrons will not feel the true electric field of the other
electrons (as it should be in a precise approach), but rather their mean electric field, i.e.
averaged over their motions.

Translating it into quantum mechanical language, the underlying assumptions of the
mean field method for the N identical particles (here: electrons) are as follows:

• there is a certain “effective” one-particle operator F̂(i) of an identical mathematical form
for all particles i = 1	2	 � � � 	N , which has the eigenfunctions ϕk, i.e. F̂ϕk = εkϕk, such
that

• 〈�|Ĥ�〉 ≈ 〈�̃|Ĥef �̃〉, where �̃ is an approximate wave function (to the exact wave func-
tion �, both functions normalized) for the total system, Ĥ is the electronic Hamiltonian
(in the clamped nuclei approximation, Chapter 6), and Ĥef =∑N

i=1 F̂(i). In such a case
the eigenvalue equation Ĥef

∏N
i=1ϕi(i)= E0

∏N
i=1ϕi(i) holds, and the approximate to-

tal energy is equal to E0 =
∑N
i=1 εk, as if the particles were independent.

Any mean field method needs to solve two problems:

• How should �̃ be constructed using N eigenfunctions ϕk?
• What is the form of the one-particle effective operator F̂?

These questions will be answered in the present chapter.
Such effectively independent, yet interacting particles, are called quasiparticles or – as we

sometimes use to say – bare particles dressed up by the interaction with others.
It is worth remembering that the mean field method bears several different names in

chemistry:

• one-determinant approximation,
• one-electron approximation,
• one-particle approximation,
• molecular orbital method,
• independent-particle approximation,
• mean field approximation,
• Hartree–Fock method,
• self-consistent field method (as regards practical solutions).

It will be shown how the mean field method implies that mile-stone of chemistry: the
periodic table of chemical elements.
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Next, we will endeavour to understand why two atoms create a chemical bond, and also
what affects the ionization energy and the electron affinity of a molecule.

Then, still within the molecular orbital scheme, we will show how we can reach a local-
ized description of a molecule, with chemical bonds between some atoms, with the inner
electronic shells, and the lone electronic pairs. The last terms are elements of a rich and
very useful language commonly used by chemists.

Why this is important?

Contemporary quantum chemistry uses better methods than the mean field, described in
this chapter. We will get to know them in Chapters 10 and 11. Yet all these methods start
from the mean field approximation and in most cases they only perform cosmetic changes in
energy and in electron distribution. For example, the methods described here yield about
99% of the total energy of a system.1 There is one more reason why this chapter is impor-
tant. Methods beyond the one-electron approximation are – computationally – very time-
consuming (hence they may be applied only to small systems), while the molecular orbital
approach is the “daily bread” of quantum chemistry. It is a sort of standard method, and the
standards have to be learnt.

What is needed?

• Postulates of quantum chemistry (Chapter 1, necessary).
• Operator algebra, Hermitian operators (Appendix B, p. 895, necessary).
• Complete set of functions (Chapter 1, necessary).
• Hilbert space (Appendix B, p. 895, recommended).
• Determinants (Appendix A, p. 889, absolutely necessary).
• Slater–Condon rules (Appendix M, p. 986, only the results are needed).
• Lagrange multipliers (Appendix N, p. 997, necessary).
• Mulliken population analysis (Appendix S, p. 1015, occasionally used).

Classical works

This chapter deals with the basic theory explaining electronic structure of atoms and mole-
cules. This is why we begin by Dimitrii Ivanovich Mendeleev who discovered in 1865, when
writing his book “Osnovy Khimii” (“Principles of Chemistry”), St Petersburg, Tovarishch-
estvo Obshchestvennaya Polza, 1869–71, his famous periodic table of elements – one of
the greatest human achievements. � Gilbert Newton Lewis in the paper “The Atom and
the Molecule” published in the Journal of the American Chemical Society, 38 (1916) 762 and
Walter Kossel in an article “Über die Molekülbildung als Frage des Atombaus” published in
Annalen der Physik, 49 (1916) 229, introduced such important theoretical tools as the octet
rule and stressed the importance of the noble gas electronic configurations. � As soon as
quantum mechanics was formulated in 1926, Douglas R. Hartree published several papers
in the Proceedings of the Cambridge Philosophical Society, 24 (1927) 89, 24 (1927) 111, 26
(1928) 89, entitled “The Wave Mechanics of an Atom with a Non-Coulomb Central Field”,
containing the computations for atoms such large as Rb and Cl. These were self-consistent
ab initio2 computations. . . , and the wave function was assumed to be the product of spinor-

1In physics and chemistry we are seldom interested in the total energy. The energy differences of
various states are of importance. Sometimes such precision is not enough, but the result speaks for
itself.

2That is, derived from the first principles of (non-relativistic) quantum mechanics! Note, that these
young people worked incredibly fast (no e-mail, no PCs).



328 8. Electronic Motion in the Mean Field: Atoms and Molecules

bitals. � The LCAO approximation (for the solid state) was introduced by Felix Bloch in
his PhD thesis “Über die Quantenmechanik der Elektronen in Kristallgittern”, University of
Leipzig, 1928, and three years later Erich Hückel used this method to describe the first
molecule (benzene) in a publication “Quantentheoretische Beitrage zum Benzolproblem. I.
Die Elektronenkonfiguration des Benzols”, which appeared in Zeitschrift für Physik, 70 (1931)
203. � Vladimir Fock introduced the antisymmetrization of the spinorbital product in his
publication “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems”
in Zeitschrift für Physik, 61 (1930) 126 and ibid. 62 (1930) 795. � John Slater proposed the
idea of the multi-configurational wave function (“Cohesion in Monovalent Metals”, Physi-
cal Review, 35 (1930) 509). � The Hartree–Fock method in the LCAO approximation was
formulated by Clemens C.J. Roothaan in his work “New Developments in Molecular Orbital
Theory” published in the Reviews of Modern Physics, 23 (1951) 69, and, independently, by
George G. Hall in a paper “The Molecular Orbital Theory of Chemical Valency” in Proceed-
ings of the Royal Society (London), A205 (1951) 541. � The physical interpretation of the
orbital energies in the Hartree–Fock method was given by Tjalling C. Koopmans in his only
quantum chemical paper “On the Assignment of Wave Functions and Eigenvalues to the Indi-
vidual Electron of an Atom” published in Physica, 1 (1933/1934) 104. � The first localized
orbitals (for the methane molecule) were computed by Charles A. Coulson despite the diffi-
culties of war time (Transactions of the Faraday Society, 38 (1942) 433). � Hideo Fukutome,
first in Progress in Theoretical Physics, 40 (1968) 998, and then in several following papers,
analyzed general solutions for the Hartree–Fock equations from the symmetry viewpoint,
and showed exactly eight classes of such solutions.

In the previous chapter the motion of the nuclei was considered. In the Born–
Oppenheimer approximation (Chapter 6) the motion of the nuclei takes place in
the potential, which is the electronic energy of a system (being a function of the
nuclei position, R, in the configurational space). The electronic energy E0

k(R) is
an eigenvalue given in eq. (6.8) (adapted to the polyatomic case, hence R→ R):
Ĥ0ψk(r;R)=E0

k(R)ψk(r;R). We will now deal exclusively with this equation, i.e.
we will consider the electronic motion at fixed positions of the nuclei (clamped nu-
clei). Thus, our goal is two-fold: we are interested in what the electronic structure
looks like and in how the electronic energy depends on the positions of the nuclei.3

Any theoretical method applicable to molecules may be also used for atoms, al-
beit very accurate wave functions, even for simple atoms, are not easy to calculate.4

In fact for atoms we know the solutions quite well only in the mean field approx-
imation, i.e. the atomic orbitals. Such orbitals play an important role as building
blocks of many-electron wave functions.

3In the previous chapter the ground-state electronic energy E0
0(R) was denoted as V (R).

4If an atom is considered in the Born–Oppenheimer approximation, the problem is even simpler,
the electronic equation also holds; we can then take, e.g., R= 0. People still try to compute correlated
wave functions (i.e. beyond the mean field approximation, see Chapter 10) for heavier atoms. Besides,
relativistic effects (see Chapter 3) play increasingly important roles for such atoms. Starting with mag-
nesium, they are larger than the correlation corrections. Fortunately, the relativistic corrections for
atoms are largest for the inner electronic shells, which are the least important for chemists.
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8.1 HARTREE–FOCK METHOD – A BIRD’S EYE VIEW

Douglas R. Hartree (1897–1958) was born and
died in Cambridge. He was a British mathe-
matician and physicist, professor at Manches-
ter University, and then professor of mathemat-
ical physics at Cambridge. Until 1921 his inter-
est was in the development of numerical meth-
ods for anti-aircraft artillery (he had some ex-
perience from the 1st World War), but a lecture
by Niels Bohr has completely changed his ca-
reer. Hartree immediately started investigating
atoms. He used the atomic wave function in the
form of the spinorbital product. Hartree learnt
to use machines to solve differential equa-
tions while in Boston, and then he built one
for himself at Cambridge. The machine was
invented by Lord Kelvin, and constructed by
Vannevar Bush in the USA. The machine in-
tegrated equations using a circle which rolled
on a rotating disc. Later the first electronic
computer, ENIAC, was used, and Hartree was
asked to come and help to compute missile
trajectories. An excerpt from “Solid State and
Molecular Theory”, Wiley, London, 1975 by

John C. Slater: “Douglas Hartree was very dis-
tinctly of the matter-of-fact habit of thought that
I found most congenial. The hand-waving mag-
ical type of scientist regarded him as a “mere
computer”. Yet he made a much greater con-
tribution to our knowledge of the behaviour of
real atoms than most of them did. And while
he limited himself to atoms, his demonstra-
tion of the power of the self-consistent field for
atoms is what has led to the development of
that method for molecules and solids as well”.

Before introducing the detailed for-
malism of the Hartree–Fock method, let
us first look at its principal features. It
will help us to understand our mathe-
matical goal.

First of all, the positions of the nuclei
are frozen (Born–Oppenheimer approx-
imation) and then we focus on the wave
function ofN electrons. Once we want to
move nuclei, we need to repeat the pro-
cedure from the beginning (for the new
position of the nuclei).

Vladimir A. Fock (1898–1974),
Russian physicist, professor
at the Leningrad University
(Sankt Petersburg), led in-
vestigations on quantum me-
chanics, gravity theory, gen-
eral relativity theory, and in
1930, while explaining atomic
spectra, invented the anti-
symmetrization of the spinor-
bitals product.

8.1.1 SPINORBITALS

Although this comparison is not precise, the electronic wave function for a mole-
cule is built of segments, as a house is constructed from bricks.

The electronic wave function of a molecule containing N electrons depends
on 3N Cartesian coordinates of the electrons and on their N spin coordinates (for
each electron, its σ = 1

2 or− 1
2 ). Thus, it is a function of position in 4N-dimensional

space. This function will be created out of simple “bricks”, i.e. molecular spinor-
bitals. Each of those will be a function of the coordinates of one electron only:
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Fig. 8.1. According to eq. (8.1) a
spinorbital is a mixture of α and β or-
bital components: ϕi1(r) and ϕi2(r),
respectively. Figure shows two sec-
tions of such a spinorbital (z de-
notes the Cartesian axis perpendic-
ular to the plane of the page): sec-
tion z = 0	σ = 1

2 (solid isolines) and

section z = 0, σ = − 1
2 (dashed iso-

lines). In practical applications most
often a restricted form of spinorbitals
is used: either ϕi1 = 0 or ϕi2 = 0,
i.e. a spinorbital is taken as an orbital
part times spin function α or β.

three Cartesian coordinates and one spin coordinate (cf. Chapter 1). A spinorbital
is therefore a function of the coordinates in the 4D space,5 and in the most general
case a normalized spinorbital reads as (Fig. 8.1)

φi(r	σ)= ϕi1(r)α(σ)+ϕi2(r)β(σ)	 (8.1)

where the orbital components ϕi1 and ϕi2 (square-integrable functions) that de-
pend on the position r of the electron can adopt complex values, while the spin
functions α and β, which depend on the spin coordinate σ , are defined in Chap-
ter 1, p. 28. In the vast majority of quantum mechanical calculations the spinorbital
φi is a real function, and ϕi1 and ϕi2 are such that either ϕi1 = 0 or ϕi2 = 0. Yet
for the time being we do not introduce any significant6 restrictions for the spinorbitals.
Spinorbital φi will adopt different complex values for various spatial coordinates
as well as for a given value7 of the spin coordinate σ .

8.1.2 VARIABLES

Thus the variables, on which the wave function depends, are as follows:
x1	 y1	 z1	 σ1 or briefly 1,
x2	 y2	 z2	 σ2 or briefly 2,
� � � � � � � � � � � � � � �
xN	 yN	 zN	 σN or briefly N ,

where xi, yi, zi are the Cartesian coordinates and σi is the spin coordinate of elec-
tron i.

The true wave function ψ (i.e. the eigenfunction of the Hamiltonian Ĥ) belongs
(see Fig. 8.2) to the set � which is the common part of the following sets:

5The analogy of a house and bricks fails here, because both the house and the bricks come from the
same 3D space.

6The normalization condition does not reduce the generality of the approach.
7That is, we put σ = 1

2 or σ =− 1
2 .
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Fig. 8.2. Diagram of the sets, among which
the solution ψ of the Schrödinger equation is
sought. The Q set is the one of all square-
integrable functions, �variables is the set of
the functions with variables as those of the
solution of Schrödinger equation, ψ, and
�antisym is the set of the functions which are
antisymmetric with respect to the exchange
of coordinates of any two electrons. The so-
lutions of the Schrödinger equation, ψ, will
be sought in the common part of these three
sets: ψ ∈ � = Q ∩�variables ∩ �antisym� The
�Slater represents the set of single Slater de-
terminants built of normalizable spinorbitals.
The exact wave function ψ always belongs to
�−�Slater�

• set Q of all square-integrable functions,
• set �variables of all the functions dependent on the above mentioned variables,
• set �antisym of all the functions which are antisymmetric with respect to the mu-

tual exchange of the coordinates of any two electrons (p. 33).

ψ ∈�−�Slater with �=Q ∩�variables ∩�antisym�

John C. Slater (1901–1976), American physi-
cist, for 30 years a professor and dean at the
Physics Department of the Massachusetts In-
stitute of Technology, then at the University
of Florida Gainesville and the Quantum The-
ory Project at this school. His youth was in
the stormy period of the intense development
of quantum mechanics, and he participated
vividly in it. For example, in 1926–1932 he pub-
lished articles on the ground state of the he-
lium atom, on the screening constants (Slater
orbitals), on the antisymmetrization of the wave
function (Slater determinant), and on the algo-
rithm for calculating the integrals (the Slater–
Condon rules). In this period he made the ac-
quaintance of John Van Vleck, Robert Mul-
liken, Arthur Compton, Edward Condon and
Linus Pauling. In Europe (Zurich and Leipzig)
he exchanged ideas with Werner Heisenberg,

Friedrich Hund, Peter Debye, Felix Bloch, Dou-
glas Hartree, Eugene Wigner, Albert Einstein,
Erich Hückel, Edward Teller, Nevil Mott, and
John Lennard-Jones. The frequency of the ap-
pearance of his name in this book is the best
testament to his great contribution to quantum
chemistry.
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8.1.3 SLATER DETERMINANTS

There should be something in the theory which assures us that, if we renumber
the electrons, no theoretical prediction will change. The postulate of the antisym-
metric character of the wave function with respect to the exchange of the coordi-
nates of any two electrons, certainly ensures this (Chapter 1, p. 28). The solution of
the Schrödinger equation for a given stationary state of interest should be sought
amongst such functions.

A Slater determinant is a function of the coordinates of N electrons, which auto-
matically belongs to �:

ψ= 1√
N!

∣
∣
∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) � � � φ1(N)
φ2(1) φ2(2) � � � φ2(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . .
φN(1) φN(2) � � � φN(N)

∣
∣
∣
∣
∣
∣
∣
∣

	

whereφi are the orthonormal8 one-electron9 functions, i.e. molecular spinorbitals.
The Slater determinants form a subset �Slater ⊂�.

A Slater determinant carries two important attributes of the exact wave func-
tion:

• Suppose we want to calculate the probability density that two electrons with
the same spin coordinate σ are in the same place, i.e. such that two electrons
have all their coordinates (spatial and spin ones) identical. If so, then the two
columns of the above mentioned determinant are identical. And this means that
the determinant becomes equal to zero.10 From this and from the continuity of
the wave function we may conclude that:

electrons of the same spin cannot approach each other.

• Let us now imagine two electrons with opposite values of their spin coordi-
nate σ . If these two electrons take the same position in space, the Slater deter-
minant will not vanish, because in the general case there is nothing that forces
φi(1) to be equal to φi(2), when 1 ≡ (r1	σ = 1

2) and 2 ≡ (r1	σ = − 1
2) for

8It is most often so, and then the factor standing in front of the determinant ensures normalization.
The spinorbitals could be non-normalized (but, if they are to describe a stationary state, they should
be square-integrable). They also do not need to be mutually orthogonal, but certainly they need to be
linearly independent. Any attempt to insert the linearly-dependent functions in the determinant will
have a “tragic outcome” – we will get 0. It comes from the properties of the determinant (if a row
is a linear combination of the others, the determinant is zero). It also follows that if we have a set
of non-orthogonal spinorbitals in a Slater determinant, we could orthogonalize them by making the
appropriate linear combinations. This would multiply the original Slater determinant by an irrelevant
constant. This is why it is no loss of generality to require the spinorbitals to be orthonormal.

9In the theory of the atomic nucleus, the determinant wave function for the nucleons (fermions) is
also used.
10Indeed, this is why we exist. Two objects built out of fermions (e.g., electrons) cannot occupy the

same position in space. If it were not so, our bodies would sink in the ground.
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i = 1	2	 � � � . From this, and from the continuity of the wave function, we con-
clude that:

electrons of opposite spins can approach each other.

8.1.4 WHAT IS THE HARTREE–FOCK METHOD ALL ABOUT?

The Hartree–Fock method is a variational one (p. 196) and uses the varia-
tional wave function in the form of a single Slater determinant.

In other words we seek (among the�Slater set of trial functions) the determinant
(ψHF), which results in the lowest mean value of the Hamiltonian.

In this case the mathematical form of the spinorbitals undergoes variation –
change ϕi1(r) as well as ϕi2(r) in eq. (8.1) (however you want) to try to lower
the mean value of the Hamiltonian as much as possible. The output determinant
which provides the minimum mean value of the Hamiltonian is called the Hartree–
Fock function. The Hartree–Fock function is an approximation of the true wave
function (which satisfies the Schrödinger equationHψ=Eψ), because the former
is indeed the optimal solution, but only among single Slater determinants. The Slater
determinant is an antisymmetric function, but an antisymmetric function does not
necessarily need to take the shape of a Slater determinant.

Taking the variational wave function in the form of one determinant means
an automatic limitation to the subset �Slater for searching for the opti-
mum wave function. In fact, we should search the optimum wave function
in the set � − �Slater. Thus it is an approximation for the solution of the
Schrödinger equation, with no chance of representing the exact result.

The true solution of the Schrödinger equation is never a single determinant.
Why are Slater determinants used so willingly? There are two reasons for this:

• a determinant is a kind of “template”.11 Whatever you put inside, the result (if
not zero) is antisymmetric by definition, i.e. it automatically satisfies one of the
postulates of quantum mechanics.

• it is constructed out of simple “bricks” – the one-electron functions (spinor-
bitals).

The Slater determinants built out of the complete set of spinorbitals do form
the complete set.

11An interesting analogy to the history of algebra appears here. The matrix (lat. matrix) took its name
from the printing stamp, because the latter indeed served the inventor of matrix algebra, James Joseph
Sylvester (1814–1897), for automatically “cutting out” the determinants.
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Because of this, the true wave function can take the form of a linear combination
of the determinants (we will discuss this later in Chapter 10).

8.2 THE FOCK EQUATION FOR OPTIMAL SPINORBITALS

8.2.1 DIRAC AND COULOMB NOTATIONS

The spatial and spin coordinate integrals (φ are the spinorbitals, ϕ are the or-
bitals) in the Dirac notation will be denoted with angle brackets 〈 〉 (ĥ denotes a
one-electron operator and r12 – the distance between electrons 1 and 2, dV1 =
dx1 dy1 dz1, dV2 = dx2 dy2 dz2), for the one-electron integrals:

〈i|ĥ|j〉 ≡
∑

σ1

∫

dV1φ
∗
i (1)ĥφj(1)≡

∫

dτ1φ
∗
i (1)ĥφj(1)	 (8.2)

and for the two-electron integrals:

〈ij|kl〉 ≡
∑

σ1

∑

σ2

∫

dV1

∫

dV2φ
∗
i (1)φ

∗
j (2)

1
r12
φk(1)φl(2)

≡
∫

dτ1 dτ2φ
∗
i (1)φ

∗
j (2)

1
r12
φk(1)φl(2)� (8.3)

The integrals over the spatial (only) coordinates will be denoted by round brack-
ets ( ), for the one-electron integrals:

(i|ĥ|j)≡
∫

dV1ϕ
∗
i (1)ĥ(1)ϕj(1)	 (8.4)

and for the two-electron integrals:

(ij|kl)≡
∫

dV1

∫

dV2ϕ
∗
i (1)ϕ

∗
j (2)

1
r12
ϕk(1)ϕl(2)� (8.5)

This is called Dirac notation (of the integrals).12

8.2.2 ENERGY FUNCTIONAL
Applying the first Slater–Condon rule13 we get the following equation for the meanmean value of

the Hamiltonian value of Hamiltonian (without nuclear repulsion) calculated using the normalized
12Sometimes one uses Coulomb notation (ij|kl)Dirac ≡ (ik|jl)Coulomb, also 〈ij|kl〉Dirac ≡
〈ik|jl〉Coulomb. Coulomb notation emphasizes the physical interpretation of the two electron inte-
gral, as the energy of the Coulombic interaction of two charge distributions ϕ∗i (1)ϕk(1) for elec-
tron 1 and ϕ∗j (2)ϕl(2) for electron 2. Dirac notation for the two-electron integrals emphasizes the
two-electron functions “bra” and “ket” from the general Dirac notation (p. 19). In the present book
we will consequently use Dirac notation (both for integrals using spinorbitals, and for those using or-
bitals, the difference being emphasized by the type of bracket). Sometimes the self-explaining notation
〈i|ĥ|j〉 ≡ 〈φi|ĥ|φj〉, etc. will be used.
13Appendix M, p. 986; please take a look at this rule (you may leave out its derivation).
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Slater one-determinant function ψ, i.e. the energy functional E[ψ]

E[ψ] = 〈ψ|Ĥ|ψ〉 =
N
∑

i=1

〈i|ĥ|i〉 + 1
2

N
∑

i	j=1

(〈ij|ij〉 − 〈ij|ji〉)	 (8.6)

where the indices symbolize the spinorbitals, and the symbol ĥ

ĥ(1)=−1
2
�1 −

M
∑

a=1

Za
ra1

(8.7)

is the one-electron operator (in atomic units) of the kinetic energy of the electron
plus the operator of the nucleus–electron attraction (there are M nuclei).

8.2.3 THE SEARCH FOR THE CONDITIONAL EXTREMUM

We would like to find such spinorbitals (“the best ones”), that any change in
them leads to an increase in energy E[ψ]. But the changes of the spinorbitals
need to be such that the above formula still holds, and it would hold only by
assuming the orthonormality of the spinorbitals. This means that there are
some constraints for the changed spinorbitals:

〈i|j〉 − δij = 0 for i	 j = 1	2	 � � � 	N� (8.8)

Thus we seek the conditional minimum. We will find it using the Lagrange multi- conditional
minimumpliers method (Appendix N, p. 997). In this method the equations of the constraints

multiplied by the Lagrange multipliers are added to the original function which is
to be minimized. Then we minimize the function as if the constraints did not exist.

We do the same for the functionals. The necessary condition for the minimum
is that the variation14 of stationary points

E −
∑

ij

Lij(〈i|j〉 − δij)

is equal zero.

The variation of a functional is defined as the linear part of the functional
change coming from a change in the function which is its argument.

14However, this is not a sufficient condition, because the vanishing of the differential for certain values
of independent variables happens not only for minima, but also for maxima and saddle points (stationary
points).
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Variation is an analogue of the differential (the differential is just the linear part
of the function’s change). Thus we calculate the linear part of a change (variation):

δ

(

E −
∑

ij

Lij〈i|j〉
)

= 0 (8.9)

using the (yet) undetermined Lagrange multipliers Lij and we set the variation
equal to zero.15

The stationarity condition for the energy functional
It is sufficient to vary only the functions complex conjugate to the spinorbitals or only
the spinorbitals (cf. p. 197), yet the result is always the same. We decide the first.

Substituting φ∗i →φ∗i + δφ∗i in (8.6) (and retaining only linear terms in δφ∗i to
be inserted into (8.9)) the variation takes the form (the symbols δi∗ and δj∗ mean
δφ∗i and δφ∗j )

N
∑

i=1

(

〈δi|ĥ|i〉 + 1
2

∑

ij

(〈δi	 j|ij〉 + 〈i	 δj|ij〉 − 〈δi	 j|ji〉 − 〈i	 δj|ji〉 − 2Lij〈δi|j〉
)
)

= 0�

(8.10)

Now we will try to express this in the form:

N
∑

i=1

〈δi| � � �〉 = 0�

Since the δi∗ may be arbitrary, the equation | � � �〉 = 0 (called the Euler equation
in variational calculus), results. This will be our next goal.

Noticing that the sum indices and the numbering of electrons in the integrals
are arbitrary we have the following equalities

∑

ij

〈i	 δj|ij〉 =
∑

ij

〈j	 δi|ji〉 =
∑

ij

〈δi	 j|ij〉	

∑

ij

〈i	 δj|ji〉 =
∑

ij

〈j	 δi|ij〉 =
∑

ij

〈δi	 j|ji〉	

and after substitution in the expression for the variation, we get

∑

i

(

〈δi|ĥ|i〉 + 1
2

∑

j

(〈δi	 j|ij〉 + 〈δi	 j|ij〉 − 〈δi	 j|ji〉 − 〈δi	 j|ji〉 − 2Lij〈δi|j〉
)
)

= 0�

(8.11)

15Note that δ(δij)= 0.
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Let us rewrite this equation in the following manner:

∑

i

〈

δi

∣
∣
∣
∣

(

ĥφi(1)+
∑

j

(∫

dτ2
1
r12
φ∗j (2)φj(2)φi(1)

−
∫

dτ2
1
r12
φ∗j (2)φi(2)φj(1)−Lijφj(1)

))〉

1
= 0	 (8.12)

where 〈δi| � � �〉1 means integration over coordinates of electron 1 and dτ2 refers
to the spatial coordinate integration and spin coordinate summing for electron 2. The
above must be true for any δi∗ ≡ δφ∗i , which means that each individual term in
parentheses needs to be equal to zero:

ĥφi(1)+
∑

j

(∫

dτ2
1
r12
φ∗j (2)φj(2) ·φi(1)−

∫

dτ2
1
r12
φ∗j (2)φi(2) ·φj(1)

)

=
∑

j

Lijφj(1)� (8.13)

The Coulombic and exchange operators

Let us introduce the following linear operators:

a) two Coulombic operators: the total operator Ĵ(1) and the orbital operator Ĵj(1), Coulombic and
exchange
operators

defined via their action on an arbitrary function u(1) of the coordinates of elec-
tron 1

Ĵ(1)u(1) =
∑

j

Ĵj(1)u(1) (8.14)

Ĵj(1)u(1) =
∫

dτ2
1
r12
φ∗j (2)φj(2)u(1) (8.15)

b) and similarly, two exchange operators: the total operator K̂(1) and the orbital op-
erator K̂j(1)

K̂(1)u(1) =
∑

j

K̂j(1)u(1) (8.16)

K̂j(1)u(1) =
∫

dτ2
1
r12
φ∗j (2)u(2)φj(1)� (8.17)

Then eq. (8.13) takes the form
(

ĥ(1)+ Ĵ(1)− K̂(1))φi(1)=
∑

j

Lijφj(1)� (8.18)
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The equation is nice and concise except for one thing. It would be even nicer
if the right-hand side were proportional to φi(1) instead of being a linear combi-
nation of all the spinorbitals. In such a case the equation would be similar to the
eigenvalue problem and we would like it a lot. It would be similar but not identical,
since the operators Ĵ and K̂ include the sought spinorbitals φi. Because of this, the
equation would be called the pseudo-eigenvalue problem.

8.2.4 A SLATER DETERMINANT AND A UNITARY TRANSFORMATION

How can we help? Let us notice that we do not care too much about the spinor-
bitals themselves, because these are by-products of the method which is to give the
optimum mean value of the Hamiltonian, and the corresponding N-electron wave
function. We can choose some other spinorbitals, such that the mean value of the
Hamiltonian does not change and the Lagrange multipliers matrix is diagonal. Is
this at all possible? Let us see.

Let us imagine the linear transformation of spinorbitals φi, i.e. in matrix nota-
tion:

φ′ =Aφ	 (8.19)

where φ and φ′ are vertical vectors containing components φi. A vertical vector is
uncomfortable for typography, in contrast to its transposition (a horizontal vector),
and it is easier to write the transposed vector: φ′T = [φ′1	 φ′2	 � � � 	 φ′N ] and
φT = [φ1	 φ2	 � � � 	 φN ]. If we construct the determinant built of spinorbitals
φ′ and not of φ, an interesting chain of transformations will result:

1√
N!

∣
∣
∣
∣
∣
∣
∣
∣

φ′1(1) φ′1(2) � � � φ′1(N)
φ′2(1) φ′2(2) � � � φ′2(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φ′N(1) φ′N(2) � � � φ′N(N)

∣
∣
∣
∣
∣
∣
∣
∣

= 1√
N!

∣
∣
∣
∣
∣
∣
∣
∣

∑

i A1iφi(1) � � �
∑

i A1iφi(N)
∑

i A2iφi(1) � � �
∑

i A2iφi(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∑

i ANiφi(1) � � �
∑

i ANiφi(N)

∣
∣
∣
∣
∣
∣
∣
∣

(8.20)

= det

⎧

⎪⎪⎨

⎪⎪⎩

A
1√
N!

⎡

⎢
⎢
⎣

φ1(1) φ1(2) � � � φ1(N)
φ2(1) φ2(2) � � � φ2(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φN(1) φN(2) � � � φN(N)

⎤

⎥
⎥
⎦

⎫

⎪⎪⎬

⎪⎪⎭

= detA · 1√
N!

∣
∣
∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) � � � φ1(N)
φ2(1) φ2(2) � � � φ2(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φN(1) φN(2) � � � φN(N)

∣
∣
∣
∣
∣
∣
∣
∣

� (8.21)
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We have therefore obtained our initial Slater determinant multiplied by a number:
detA. Thus, provided that detA is not zero,16

the new wave function would provide the same mean value of the Hamil-
tonian.

The only problem from such a transformation is loss of the normalization of the
wave function. Yet we may even preserve the normalization. Let us choose such a
matrix A, that |detA| = 1. This condition will hold if A= U , where U is a unitary
matrix.17 This means that

if a unitary transformation U is performed on the orthonormal spinorbitals
(when U is real, we call U an orthogonal transformation), then the new
spinorbitals φ′ are also orthonormal.

This is why a unitary transformation is said to represent a rotation in the Hilbert
space: the mutually orthogonal and perpendicular vectors do not lose these fea-
tures upon rotation.18 This can be verified by a direct calculation:

〈

φ′i(1)
∣
∣φ′j(1)

〉 =
〈
∑

r

Uirφr(1)
∣
∣
∣
∣

∑

s

Ujsφs(1)
〉

=
∑

rs

U∗irUjs
〈

φr(1)
∣
∣φs(1)

〉=
∑

rs

U∗irUjsδrs

=
∑

r

U∗irUjr = δij�

Thus, in the case of a unitary transformation even the normalization of the total
one-determinant wave function is preserved; at worst the phase χ of this function
will change (while exp(iχ)= detU), and this factor does not change either |ψ|2 or
the mean value of the operators.

8.2.5 INVARIANCE OF THE Ĵ AND K̂ OPERATORS

How does the Coulombic operator change upon a unitary transformation of the
spinorbitals? Let us see,

Ĵ(1)′χ(1) =
∫

dτ2
1
r12

∑

j

φ′j
∗(2)φ′j(2)χ(1)

16The A transformation thus cannot be singular (see Appendix A, p. 889).
17For a unitary transformation UU† =U†U = 1� The matrix U† arises from U via the exchange of rows

and columns (this does not influence the value of the determinant), and via the complex conjugation of
all elements (and this gives detU† = (detU)∗)� Finally, since (detU)(detU†)= 1 we have |detU | = 1.
18Just as three fingers held at right angles do not cease to be of the same length (normalization) after

rotation of your palm and continue to be orthogonal.
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=
∫

dτ2
1
r12

∑

j

∑

r

U∗jrφ
∗
r (2)

∑

s

Ujsφs(2)χ(1)

=
∫

dτ2
1
r12

∑

r	s

(
∑

j

UjsU
∗
jr

)

φ∗r (2)φs(2)χ(1)

=
∫

dτ2
1
r12

∑

r	s

(
∑

j

U†
rjUjs

)

φ∗r (2)φs(2)χ(1)

=
∫

dτ2
1
r12

∑

r	s

δsrφ
∗
r (2)φs(2)χ(1)

=
∫

dτ2
1
r12

∑

r

φ∗r (2)φr(2)χ(1)= Ĵ(1)χ(1)�

The operator Ĵ(1)′ proves to be identical with the operator Ĵ(1). Similarly we may
prove the invariance of the operator K.

The operators Ĵ and K̂ are invariant with respect to any unitary transforma-
tion of the spinorbitals.

In conclusion, while deriving the new spinorbitals from a unitary transformation
of the old ones, we do not need to worry about Ĵ and K̂ since they remain the same.

8.2.6 DIAGONALIZATION OF THE LAGRANGE MULTIPLIERS MATRIX

Eq. (8.18) may be written in matrix form:
[

ĥ(1)+ Ĵ(1)− K̂(1)]φ(1)=Lφ(1)	 (8.22)

where φ is a column of spinorbitals. Transforming φ = Uφ′ and multiplying the
Fock equation by U† (where U is a unitary matrix), we obtain

U†[ĥ(1)+ Ĵ(1)− K̂(1)]Uφ(1)′ =U†LUφ(1)′	 (8.23)

because Ĵ and K̂ did not change upon the transformation.

The U matrix may be chosen such that U†LU is the diagonal matrix.

Its diagonal elements19 will now be denoted as εi. Because ĥ(1)+ Ĵ(1)− K̂(1)
is a linear operator we get equation

19Such diagonalization is possible because L is a Hermitian matrix (i.e. L† = L), and each Hermitian
matrix may be diagonalized via the transformation U†LU with the unitary matrix U . Matrix L is indeed
Hermitian. It is clear when we write the complex conjugate of the variation δ(E −∑ij Lij〈i|j〉) = 0.
This gives δ(E −∑ij L

∗
ij〈j|i〉) = 0, because E is real, and after the change of the summation indices

δ(E −∑ij L
∗
ji〈i|j〉)= 0. Thus, Lij =L∗ji , i.e. L=L†.
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U†U
(

ĥ(1)+ Ĵ(1)− K̂(1))φ(1)′ =U†LUφ(1)′ (8.24)

or alternatively
(

ĥ(1)+ Ĵ(1)− K̂(1))φ(1)′ = εφ(1)′	 (8.25)

where εij = εiδij .

8.2.7 THE FOCK EQUATION FOR OPTIMAL SPINORBITALS (GENERAL
HARTREE–FOCK METHOD – GHF)

We leave out the “prime” to simplify the notation20 and write the Fock equation for
a single spinorbital:

THE FOCK EQUATION IN THE GENERAL HARTREE–FOCK
METHOD (GHF)

F̂(1)φi(1)= εiφi(1)	 (8.26)

where the Fock operator F̂ is

F̂(1)= ĥ(1)+ Ĵ(1)− K̂(1)� (8.27)

These φi are called canonical spinorbitals, and are the solution of the Fock Fock operator

equation, εi is the orbital energy corresponding to the spinorbital φi. It is indicated canonical
spin-orbitalsin brackets that both the Fock operator and the molecular spinorbital depend on

the coordinates of one electron only (exemplified as electron 1).21 orbital energy

20This means that we finally forget about φ′ (we pretend that they have never appeared), and we will
deal only with such φ as correspond to the diagonal matrix of the Lagrange multipliers.
21The above derivation looks more complex than it really is. The essence of the whole machinery

will now be shown as exemplified by two coupled (bosonic) harmonic oscillators, with the Hamiltonian

Ĥ = T̂+ V̂ where T̂ =− h̄2

2m1
∂2

∂x2
1
− h̄2

2m2
∂2

∂x2
2

and V = 1
2kx

2
1+ 1

2kx
2
2+λx4

1x
4
2, with λx4

1x
4
2 as the coupling

term. Considering the bosonic nature of the particles (the wave function is symmetric, see Chapter 1),
we will use ψ=φ(1)φ(2) as a variational function, whereφ is a normalized spinorbital. The expression
for the mean value of the Hamiltonian takes the form

E[φ] = 〈ψ|Ĥψ〉 = 〈φ(1)φ(2)|(ĥ(1)+ ĥ(2))φ(1)φ(2)〉 + λ〈φ(1)φ(2)|x4
1x

4
2φ(1)φ(2)〉

= 〈φ(1)φ(2)|ĥ(1)φ(1)φ(2)〉 + 〈φ(1)φ(2)|ĥ(2)φ(1)φ(2)〉 + λ〈φ(1)|x4
1φ(1)〉〈φ(2)|x4

2φ(2)〉
= 〈φ(1)|ĥ(1)φ(1)〉 + 〈φ(2)|ĥ(2)φ(2)〉 + λ〈φ(1)|x4

1φ(1)〉〈φ(2)|x4
2φ(2)〉

= 2〈φ|ĥφ〉 + λ〈φ|x4φ〉2	
where one-particle operator ĥ(i)=− h̄2

2mi
∂2

∂x2
i

+ 1
2kx

2
i .

The change of E, because of the variation δφ∗ , is E[φ + δφ] − E[φ] = 2〈φ + δφ|ĥφ〉 + λ〈φ +
δφ|x4φ〉2 − [2〈φ|ĥφ〉 + λ〈φ|x4φ〉2] = 2〈φ|ĥφ〉 + 2〈δφ|ĥφ〉 + λ〈φ|x4φ〉2 + 2λ〈δφ|x4φ〉〈φ|x4φ〉 +
λ〈δφ|x4φ〉2 − [2〈φ|ĥφ〉 + λ〈φ|x4φ〉2].
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Unrestricted Hartree–Fock method (UHF)
The GHF method derived here is usually presented in textbooks as the unrestricted
Hartree–Fock method (UHF). Despite its name, UHF is not a fully unrestricted
method (as the GHF is). In the UHF we assume (cf. eq. (8.1)):

• orbital components ϕi1 and ϕi2 are real and
• there is no mixing of the spin functions α and β, i.e. either ϕi1 = 0 and ϕi2 	= 0 or
ϕi1 	= 0 and ϕi2 = 0.

8.2.8 THE CLOSED-SHELL SYSTEMS AND THE RESTRICTED
HARTREE–FOCK (RHF) METHOD

Double occupation of the orbitals and the Pauli exclusion principle
When the number of electrons is even, the spinorbitals are usually formed out of
orbitals in a very easy (and simplified with respect to eq. (8.1)) manner, by multi-
plication of each orbital by the spin functions22 α or β:

φ2i−1(r	σ) = ϕi(r)α(σ) (8.28)

φ2i(r	σ) = ϕi(r)β(σ)	 i= 1	2	 � � � 	
N

2
	 (8.29)

where – as it can be clearly seen – there are twice as few occupied orbitals ϕ as
occupied spinorbitals φ (occupation means that a given spinorbital appears in the
Slater determinant23) (see Fig. 8.3). Thus we introduce an artificial restriction for
spinorbitals (some of the consequences will be described on p. 369). This is why
the method is called the Restricted Hartree–Fock.

There are as many spinorbitals as electrons, and therefore there can be a
maximum of two electrons per orbital.

If we wished to occupy a given orbital with more than two electrons, we would
need once again to use the spin function α or β when constructing the spinorbitals,

Its linear part, i.e. the variation, is δE = 2〈δφ|ĥφ〉 + 2λ〈δφ|x4φ〉〈φ|x4φ〉. The variation δφ∗ has,
however, to ensure the normalization of φ, i.e. 〈φ|φ〉 = 1. After multiplying by the Lagrange multi-
plier 2ε, we get the extremum condition δ(E − 2ε〈φ|φ〉)= 0, i.e. 2〈δφ|ĥφ〉 + 2λ〈δφ|x4φ〉〈φ|x4φ〉 −
2ε〈δφ|φ〉 = 0� This may be rewritten as 2〈δφ|[ĥ + λx̄4x4 − ε]φ〉 = 0, where x̄4 = 〈φ|x4φ〉, which
gives (δφ∗ is arbitrary) the Euler equation [ĥ+ λx̄4x4 − ε]φ= 0, i.e. the analogue of the Fock equa-
tion (8.27): F̂φ = εφ with the operator F̂ = [ĥ + λx̄4x4]. Let us emphasize that the operator F̂ is a
one-particle operator, via the notation F̂(1)φ(1)= εφ(1), while F̂(1)= [ĥ(1)+ λx̄4x4

1].
It is now clear what the mean field approximation is: the two-particle problem is reduced to a single-

particle one (denoted as number 1), and the influence of the second particle is averaged over its positions
(x̄4 = 〈φ|x4φ〉 = 〈φ(2)|x4

2φ(2)〉).
22It is not necessary, but quite comfortable. This means: φ1 = ϕ1α, φ2 = ϕ1β, etc.
23And only this. When the Slater determinant is written, the electrons lose their identity – they are not

anymore distinguishable.
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Fig. 8.3. Construction of a spinorbital
in the RHF method (i.e. a function
x	y	 z	σ) as a product of an orbital (a
function of x	y	 z) and one of the two
spin functions α(σ) or β(σ).

i.e. repeating a spinorbital. This would imply two identical rows in the Slater de-
terminant, and the wave function would equal zero. This cannot be accepted. The
above rule of maximum double occupation is called the Pauli exclusion principle.24

Such a formulation of the Pauli exclusion principle requires two concepts: the pos-
tulate of the antisymmetrization of the electronic wave function, p. 28, and double
orbital occupancy. The first of these is of fundamental importance, the second is
of a technical nature.25

We often assume the double occupancy of orbitals within what is called the
closed shell. The latter term has an approximate character (Fig. 8.4). It means that closed shell

for the studied system, there is a large energy difference between HOMO and
LUMO orbital energies.

HOMO is the Highest Occupied Molecular Orbital, and LUMO is the Low-
est Unoccupied Molecular Orbital. The unoccupied molecular orbitals are
called virtual orbitals.

24From “Solid State and Molecular Theory”, Wiley, London, 1975 by John Slater: “� � � I had a seminar
about the work which I was doing over there – the only lecture of mine which happened to be in
German. It has appeared that not only Heisenberg, Hund, Debye and young Hungarian PhD student
Edward Teller were present, but also Wigner, Pauli, Rudolph Peierls and Fritz London, all of them on
their way to winter holidays. Pauli, of course, behaved in agreement with the common opinion about
him, and disturbed my lecture saying that “he had not understood a single word out of it”, but Heisenberg
has helped me to explain the problem. (. . . ) Pauli was extremely bound to his own way of thinking,
similar to Bohr, who did not believe in the existence of photons. Pauli was a warriorlike man, a kind of
dictator. . . ”.
25The concept of orbitals, occupied by electron pairs, exists only in the mean field method. We will

leave this idea in the future, and the Pauli exclusion principle should survive as a postulate of the anti-
symmetry of the electronic wave function (more generally speaking, of the wave function of fermions).
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Fig. 8.4. The closed (a), poorly closed (b) and open (c) shell. The figure shows the occupancy of the
molecular orbitals together with the corresponding spin functions (spin up and spin down for α and β
functions): in case (a) and (b) the double occupancy of the lowest lying orbitals (on the energy scale)
has been assumed; in the case (c) there is also an attempt to doubly occupy the orbitals (left-hand
side), but a dilemma appears about which spinorbitals should be occupied. For example, in Fig. (c)
we have decided to occupy the β spinorbital (“spin down”), but there is also a configuration with the
α spinorbital (“spin up”) of the same energy. This means that we need to use a scheme which allows
different orbitals for different spins, e.g., UHF. The UHF procedure gives different orbitals energies
for the α and β spins. One possibility is shown on the right-hand side of Fig. (c).

A CLOSED SHELL
A closed shell means that the HOMO is doubly occupied as are all the or-

bitals which are equal or lower in energy. The occupancy is such that the
mathematical form of the Slater determinant does not depend on the spa-
tial orientation of the x	 y	 z axis. Using group theory nomenclature (Ap-
pendix C), this function transforms according to fully symmetric irreducible
representation of the symmetry group of the electronic Hamiltonian.
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If a shell is not closed, it is called “open”.26 We assume that there is a unique
assignment for which molecular spinorbitals27 within a closed shell are occupied
in the ground state. The concept of the closed shell is approximate because it is
not clear what it means when we say that the HOMO–LUMO energy distance28 is
large or small.29

We need to notice that HOMO and LUMO have somewhat different meanings.
As will be shown on p. 393,−εHOMO represents an approximate ionization energy,
i.e. binding energy of an electron interacting with the (N − 1)-electron system,
while−εLUMO is an approximate electron affinity energy, i.e. energy of an electron
interacting with the N-electron system.

The Fock equations for a closed shell (RHF method) can be derived in a very
similar way as in the GHF method. This means the following steps:

• we write down the expression for the mean value of the Hamiltonian as a func-
tional of the orbitals (the summation extends over all the occupied orbitals, there
are N/2 of them, as will be recalled by the upper limit denoted by MO):30

E = 2
∑MO
i (i|ĥ|i)+∑MO

i	j [2(ij|ij)− (ij|ji)];
• we seek the conditional minimum of this functional (Lagrange multipliers

method) allowing for the variation of the orbitals which takes their orthonor-
mality into account δE = 2

∑MO
i (δi|ĥ|i)+∑MO

i	j [2(δij|ij)− (δij|ji)+2(iδj|ij)−
(iδj|ji)] −∑MO

i	j L
′
ij(δi|j)= 0;

26Sometimes we use the term semi-closed shell, if it is half-occupied by the electrons and we are inter-
ested in the state bearing maximum spin. In this case the Slater determinant is a good approximation.
The reasons for this is, of course, the uniqueness of electron assignment to various spinorbitals. If there
is no uniqueness (as in the carbon atom), then the single-determinant approximation cannot be accepted.
27The adjective “molecular” is suggested even for calculations for an atom. In a correct theory of

electronic structure, the number of nuclei present in the system should not play any role. Thus, from
the point of view of the computational machinery, an atom is just a molecule with one nucleus.
28The decision to occupy only the lowest energy MOs (so called Aufbau Prinzip; a name left over from

the German origins of quantum mechanics) is accepted under the assumption that the total energy
differences are sufficiently well approximated by the differences in the orbital energies.
29Unless the distance is zero. The helium atom, with the two electrons occupying the 1s orbital

(HOMO), is a 1s2 shell of impressive “closure”, because the HOMO–LUMO energy difference cal-
culated in a good quality basis set (6-31G∗∗ , see p. 364) of atomic orbitals is of the order of 62 eV. On
the other hand, the HOMO–LUMO distance is zero for the carbon atom, because in the ground state
6 electrons occupy the 1s	2s	2px	2py and 2pz orbitals. There is room for 10 electrons, and we only
have six. Hence, the occupation (configuration) in the ground state is 1s22s22p2. Thus, both HOMO
and LUMO are the 2p orbitals, with zero energy difference. If we asked for a single sentence describ-
ing why carbon compounds play a prominent role in Nature, it should be emphasized that, for carbon
atoms, the HOMO–LUMO distance is equal to zero and that the orbital levels ε2s and ε2p are close in
energy.

On the other hand, the beryllium atom is an example of a closed shell, which is not very tightly
closed. Four electrons are in the lowest lying configuration 1s22s2, but the orbital level 2p (LUMO) is
relatively close to 2s (HOMO) (10 eV for the 6-31G∗∗ basis set is not a small gap, yet it amounts much
less than that of the helium atom).
30And not spinorbitals; see eqs. (M.17) and (M.18).
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• we derive the Euler equation for this problem from (δi| � � �)= 0. In fact it is the
Fock equation expressed in orbitals31

F̂(1)ϕi(1)= εiϕi(1)	 (8.30)

where ϕ are the orbitals. The Fock operator is defined for the closed shell, asclosed-shell
Fock operator

F̂(1)= ĥ(1)+ 2Ĵ (1)− K̂(1)	 (8.31)

where the first term (see eq. (8.7)) is the sum of the kinetic energy operator of
electron 1 and the operator of the interaction of this electron with the nuclei in
the molecule, the next two terms, i.e. Coulombic Ĵ and exchange K̂ operators,
are connected with the potential energy of the interaction of electron 1 with all
electrons in the system, and they are defined (slightly differently than before
for Ĵ and K̂ operators32) via the action on any function (χ) of the position of
electron 1:

2Ĵ (1)χ(1) =
MO
∑

i=1

2Ĵi(1)χ(1)=
MO
∑

i=1

2
∫

dV2
1
r12
ϕ∗i (2)ϕi(2)χ(1)

≡ 2
MO
∑

i

∫

dV2
1
r12

∣
∣ϕi(2)

∣
∣
2
χ(1)	 (8.32)

K̂(1)χ(1) =
MO
∑

i=1

K̂i(1)χ(1)=
MO
∑

i=1

∫

dV2
1
r12
ϕ∗i (2)χ(2)ϕi(1)	 (8.33)

where integration is now exclusively over the spatial coordinates33 of electron 2.
Factor 2 multiplying the Coulombic operator results (as the reader presumably
guessed) from the double occupation of the orbitals.

Interpretation of the Coulombic operator

The Coulombic operator is nothing else but a calculation of the Coulombic poten-
tial (with the opposite sign as created by all the electrons, Fig. 8.5) at the position of

31After a suitable unitary transformation of orbitals, analogous to what we have done in GHF case.
32Because we have orbitals here, and not spinorbitals.
33Simply, the summation over the spin coordinates has already been done when deriving the equation

for the mean value of the Hamiltonian.
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Fig. 8.5. Point-like electron 1 interacts with the total electron density (shown as electron cloud with
density

∑MO
i 2ρi(2)). To compute the interaction energy the total electron density is chopped into

small cubes. The interaction energy of electron 1 with one of such cubes of volume dV2 containing
charge −∑MO

i 2ρi(2)dV2 is calculated according to the Coulomb law: charge × charge divided by

their distance:
−1×(−1)

∑MO
i 2ρi(2)dV2
r12

or, alternatively, as charge −1 times electric potential produced

by a single cube at electron 1. The summation over all cubes gives
∫
∑MO
i 2ρi(2)
r12

dV2 = 2Ĵ .

electron 1. Indeed, such a potential coming from an electron occupying molecular
orbital ϕi is equal to

∫
ρi(2)
r12

dV2	 (8.34)

where ρi(2)= ϕi(2)∗ϕi(2) is the probability density of finding electron 2 described
by orbitalϕi. If we take into account that the orbitalϕi is occupied by two electrons,
and that the number of the doubly occupied molecular orbitals is N/2, then the
electrostatic potential calculated at the position of the electron 1 is

∫ ∑MO
i 2ρi(2)
r12

dV2 =
MO
∑

i

2Ĵi = 2Ĵ (1)�

The same expression also means an interaction of two elementary charges 1 and
2, one of each represented by a diffused cloud with a given charge density distrib-
ution ρ(2)=∑MO

i 2ρi(2).
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Integration in the formula for the operator Ĵ is a consequence of the ap-
proximation of independent particles.

This approximation means that, in the Hartree–Fock method, the electrons do
not move in the electric field of the other point-like electrons, but in the mean static
field of all the electrons represented by electron cloud ρ. It is as if a driver (one of
the electrons) in Paris did not use the position of other cars, but a map showing
only the traffic intensity via the probability density cloud. The driver would then
have a diffuse image of other vehicles,34 and could not satisfactorily optimize the
position towards other cars (it means higher energy for the molecule under study).

THE MEAN FIELD
This is typical for all the mean field methods. In these methods, instead of
watching the motion of other objects in detail, we average these motions, and
the problem simplifies (obviously, we pay the price of lower quality).

mean field

However, this trick is ingenious and worth remembering.35

Coulombic self-interaction
There is a problem with this. From what we have said, it follows that the electron 1
uses the “maps” of total electron density, i.e. including its own contribution to the
density.36 This looks strange though. Let us take a closer look, maybe something
has been missed in our reasoning. Note first of all that the repulsion of electron 1
(occupying, say, orbital k) with the electrons, which is visible in the Fock operator,
reads as (ϕk|(2Ĵ − K̂)ϕk) and not as (ϕk|(2Ĵ )ϕk). Let us write it down in more
details:

(

ϕk|
(

2Ĵ − K̂
)

ϕk
) =

∫

dV1
∣
∣ϕk(1)

∣
∣
2

MO
∑

i=1

2
∫

dV2
1
r12
ϕ∗i (2)ϕi(2)

−
MO
∑

i=1

∫

dV1ϕk(1)∗ϕi(1)
∫

dV2
1
r12
ϕ∗i (2)ϕk(2)

=
∫

dV1
∣
∣ϕk(1)

∣
∣
2

MO
∑

i=1

2
∫

dV2
1
r12
ϕ∗i (2)ϕi(2)

34An effect similar to the action of fog or alcohol. Both lead to miserable consequences.
35We use it every day, although we do not call it a mean field approach. Indeed, if we say: “I will visit my

aunt at noon, because it is easier to travel out of rush hours”, or “I avoid driving through the centre of town,
because of the traffic jams”, in practice we are using the mean field method. We average the motions of
all citizens (including ourselves!) and we get a “map” (temporal or spatial), which allows us to optimize
our own motion. The motion of our fellow-citizens disappears, and we obtain a one-body problem.
36Exactly as happens with real city traffic maps.
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−
∫

dV1ϕk(1)∗ϕk(1)
∫

dV2
1
r12
ϕ∗k(2)ϕk(2)

−
MO
∑

i( 	=k)

∫

dV1ϕk(1)∗ϕi(1)
∫

dV2
1
r12
ϕ∗i (2)ϕk(2)

=
∫ ∫

dV1dV2
1
r12
ρk(1)

[

ρ(2)− ρk(2)
]−

MO
∑

i( 	=k)
(ki|ik)	

where ρk = |ϕk(1)|2, i.e. the distribution of electron 1 interacts electrostatically
with all the other electrons,37 i.e. with the distribution [ρ(2) − ρk(2)] with ρ de-
noting the total electron density ρ =∑MO

i=1 2|ϕi|2 and −ρk excluding from it the
self-interaction energy of the electron in question. Thus, the Coulombic and ex-
change operators together ensure that an electron interacts electrostatically with
other electrons, not with itself.

Electrons with parallel spins repel less

There is also an exchange remainder −∑MO
i( 	=k)(ki|ik), which is just a by-product

of the antisymmetrization of the wave function (i.e. the Slater determinant), which
tells us that in the Hartree–Fock picture electrons of the same spin functions38 re-
pel less. What??? As shown at the beginning of the present chapter, two electrons
of the same spin cannot occupy the same point in space, and therefore (from the
continuity of the wave function) they avoid each other. It is as if they repelled each
other, because of the Pauli exclusion principle, in addition to their Coulombic re-
pulsion. Is there something wrong in our result then? No, everything is OK. The
necessary antisymmetric character of the wave function says simply that the same
spins should keep apart. However, when the electrons described by the same spin
functions keep apart, this obviously means their Coulombic repulsion is weaker than
that of electrons of opposite spins.39 This is what the term −∑MO

i( 	=k(ki|ik) really
means.

Hartree method
The exchange operator represents a (non-intuitive) result of the antisymmetriza-
tion postulate for the total wave function (Chapter 1) and it has no classical inter-

37The fact that the integration variables pertain to electron 2 is meaningless, it is just a definite inte-
gration and the name of the variable does not count at all.
38When deriving the total energy expression (Appendix M), only those exchange terms survived, which

correspond to the parallel spins of the interacting electrons. Note also, that for real orbitals (as in
the RHF method), every exchange contribution −(ki|ik) ≡ −∫ dV1 ϕk(1)ϕi(1)

∫

dV2
1
r12
ϕi(2)ϕk(2)

means a repulsion, because this is a self-interaction of the cloud ϕkϕi�
39Note that in the Hamiltonian, the Coulombic repulsion of the electrons is spin-independent. This

suggests that when trying to improve the description (by going beyond the Hartree–Fock approxima-
tion), we have to worry more about correlation of electrons with the opposite spin functions (e.g., those
occupying the same orbital).
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pretation. If the variational wave function were the product of the spinorbitals40

(Douglas Hartree did this in the beginning of the quantum chemistry)

φ1(1)φ2(2)φ3(3) · · ·φN(N)	
then we would get the corresponding Euler equation, which in this case is called
the Hartree equation

F̂Hartree(1)φi(1) = εiφi(1)	

F̂Hartree(1) = ĥ(1)+
N
∑

j( 	=i)
Ĵj(1)	

where F̂Hartree corresponds to the Fock operator. Note that there is no self-
interaction there.

8.2.9 ITERATIVE PROCEDURE FOR COMPUTING MOLECULAR
ORBITALS: THE SELF-CONSISTENT FIELD METHOD

The following is a typical technique for solving the Fock equation.
First, we meet the difficulty that in order to solve the Fock equation we should

first . . . know its solution. Indeed, the Fock equation is not an eigenvalue prob-
lem, but a pseudo-eigenvalue problem, because the Fock operator depends on the
solutions (obviously, unknown). Regardless of how strange it might seem, we deal
with this situation quite easily using an iterative approach. This is called the self-
consistent field method (SCF). In this method (Fig. 8.6) weSCF iterations

• assume at the beginning (zero-th iteration) a certain shape of molecular or-
bitals;41

• introduce these orbitals to the Fock operator, thus obtaining a sort of “carica-
ture” of it (the zero-order Fock operator);

• solve the eigenvalue problem using the above “Fock operator” and get the mole-
cular orbitals of the first iteration;

• repeat the process until the shape of the orbitals does not change in the next
iteration, i.e. until the Fock equations are solved.42

40Such a function is not legal – it does not fulfil the antisymmetrization postulate. This illegal character
(caused by a lack of the Pauli exclusion principle) would sometimes give unfortunate consequences: e.g.,
more than two electrons would occupy the 1s orbital, etc.
41These are usually the any-sort “orbitals”, although recently, because of the direct SCF idea (we

calculate the integrals whenever they are needed, i.e. at each iteration), an effort is made to save com-
putational time per iteration and therefore to provide as good-quality a starting function as possible.
We may obtain it via an initial calculation with some two-electron integrals neglected.
42Using our driver analogy, we may say that at the beginning the driver has false maps of the proba-

bility density (thus the system energy is high – in our analogy the car repair costs are large). The next
iterations (repair costs effectively teach all the drivers) improve the map, the final energy decreases,
and at the very end we get the best map possible. The mean energy is the lowest possible (within the
mean field method). A further energy lowering is only possible beyond the Hartree–Fock approxima-
tion, i.e. outside of the mean field method, which for the drivers means not using maps. A suspicious
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Fig. 8.6. Iterative solution of the Fock equation (the self-consistent field method, SCF). We:
– start from any set of occupied orbitals (zeroth iteration),
– insert them to the Fock operator,
– solve the Fock equation,
– obtain the molecular orbitals of the first approximation,
– choose those of the lowest energy as the occupied ones and if your criterion of the total energy is not

satisfied, repeat the procedure.

8.3 TOTAL ENERGY IN THE HARTREE–FOCK METHOD

In Appendix M, p. 986, we derived the following expressions for the mean value
of the Hamiltonian using the normalized determinant (without a constant addi-
tive term for the nuclear repulsion energy Vnn, SMO means summation over the
spinorbitals i = 1	 � � � 	N ; in the RHF method, the MO summation limit means
summation over the orbitals i= 1	 � � � 	N/2)

E′HF =
SMO
∑

i

〈i|ĥ|i〉 + 1
2

SMO
∑

i	j=1

[〈ij|ij〉 − 〈ij|ji〉]

≡
SMO
∑

i

hii + 1
2

SMO
∑

i	j=1

[Jij −Kij]� (8.35)

person (scientist) should be careful, because our solution may depend on the starting point used, i.e. from
the initial, completely arbitrary orbitals. Besides, the iteration process does not necessarily need to be
convergent. But it appears that the solutions in the Hartree–Fock method are usually independent on
the zero-th order MOs, and convergence problems are very rare. This is surprising. This situation is
much worse for better-quality computations, where the AOs of small exponents are included (diffuse
orbitals). Then we truly meet the problem already described (p. 292) of searching for the global energy
minimum among a multitude of local ones.
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If double occupancy is assumed (i.e. the flexibility of the variational wave func-
tion is restricted) we may transform this expression in the following way

E′RHF(double occupancy)

=
MO
∑

i

(〈iα|ĥ|iα〉 + 〈iβ|ĥ|iβ〉)

+ 1
2

MO
∑

i

SMO
∑

j

[〈iα	 j|iα	 j〉 − 〈iα	 j|j	 iα〉 + 〈iβ	 j|iβ	 j〉 − 〈iβ	 j|jiβ〉]

= 2
MO
∑

i

(i|ĥ|i)+ 1
2

MO
∑

i

MO
∑

j

[〈iα	 jα|iα	 jα〉 + 〈iα	 jβ|iα	 jβ〉 − 〈iα	 jα|jα	 iα〉
− 〈iα	 jβ|jβ	 iα〉 + 〈iβ	 jα|iβ	 jα〉 + 〈iβ	 jβ|iβ	 jβ〉
− 〈iβ	 jα|jα	 iβ〉 − 〈iβ	 jβ|jβ	 iβ〉]

= 2
MO
∑

i

(i|ĥ|i)+ 1
2

MO
∑

i

MO
∑

j

[

4(ij|ij)− 2(ij|ji)]

= 2
MO
∑

i

(i|ĥ|i)+
MO
∑

i

MO
∑

j

[

2(ij|ij)− (ij|ji)]�

This finally gives

E′RHF = 2
MO
∑

i

(i|ĥ|i)+
MO
∑

i	j

[

2(ij|ij)− (ij|ji)]≡ 2
MO
∑

i

hii +
MO
∑

i	j

[2Jij −Kij]� (8.36)

Given the equality 〈i|ĥ|i〉 = (i|ĥ|i), these integrals have been written here as
hii. The Coulombic and exchange integrals expressed in spinorbitals are denoted
Jij and Kij and expressed in orbitals as Jij and Kij .

Both formulae (8.35) and (8.36) may give different results, because in the first,
no double occupancy is assumed (we will discuss this further on p. 372).

The additive constant corresponding to the internuclear repulsion (it is con-
stant, since the nuclei positions are frozen)

Vnn =
∑

a<b

ZaZb
Rab

	 (8.37)

has not yet been introduced and thus the full Hartree–Fock energy is

ERHF =E′RHF + Vnn� (8.38)
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Note that

MO
∑

i	j

[2Jij −Kij] ≡
MO
∑

i	j

[

2(ij|ij)− (ij|ji)]=
〈

ψHF

∣
∣
∣
∣

∑

i<j

1
rij

∣
∣
∣
∣
ψHF

〉

= Vee� (8.39)

Hence, Vee is the mean electronic repulsion energy in our system.43

It is desirable (interpretation purposes) to include the orbital energies in the
formulae derived. Let us recollect that the orbital energy εi is the mean value of
the Fock operator for orbital i, i.e. the energy of an effective electron described by
this orbital. Based on formulae (8.31)–(8.33), this can be expressed as (i stands for
the molecular orbital)

εi = hii +
MO
∑

j

[2Jij −Kij]	 (8.40)

and this in turn gives an elegant expression for the Hartree–Fock electronic energy

E′RHF =
MO
∑

i

[hii + εi]� (8.41)

From eqs. (8.36), (8.40) and (8.39), the total electronic energy may be expressed
as

E′RHF =
MO
∑

i=1

2εi − Vee� (8.42)

It can be seen that the total electronic energy (i.e. E′RHF) is not the sum of
the orbital energies of electrons

∑

i 2εi.

And we would already expect full additivity, since the electrons in the Hartree–
Fock method are treated as independent. Yet “independent” does not mean “non-
interacting”. The reason for the non-additivity is that for each electron we need
to calculate its effective interaction with all the electrons, hence we would get too
much repulsion.44 Of course, the total energy, and not the sum of the orbital en-
ergies, is the most valuable. Yet in many quantum chemical problems we interpret
orbital energy lowering as energetically profitable. And it turns out that such an
interpretation has an approximate justification. Works by Fraga, Politzer and Rue-

43Please recall that 〈ψHF|Ĥ|ψHF〉 = ERHF and Vee is, therefore, the Coulombic interaction of elec-
trons.
44For example, the interaction of electron 5 and electron 7 is calculated twice: as the interaction 1

r57

and 1
r75
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denberg45 show that at the equilibrium geometry of a molecule, the formula

ERHF = E′RHF + Vnn ≈
3
2

MO
∑

i=1

2εi	 (8.43)

works with 2%–4% precision, and even better results may be obtained by taking a
factor of . . . 1�55 instead of 3

2 .

8.4 COMPUTATIONAL TECHNIQUE: ATOMIC ORBITALS AS
BUILDING BLOCKS OF THE MOLECULAR WAVE
FUNCTION

We have to be careful because the term “atomic orbital” is used in quantum chem-atomic orbital

istry with a double meaning. These are: (i) orbitals of the mean field for a particular
atom, or (ii) functions localized in the space about a given centre. We nearly always
use what are known as exponential basis sets:46exponential

basis sets

g(r)= f (x	 y	 z)exp(−ζrn)	

where f (x	 y	 z) is a polynomial. Such an atomic orbital is localized (centred)
around (0	0	0). The larger the exponent ζ, the more effective is this centring.

For n= 1, we have what is called the STO – Slater-Type Orbitals, and for n= 2
the GTO – Gaussian Type Orbitals.

8.4.1 CENTRING OF THE ATOMIC ORBITAL

Atomic orbital g(r) may be shifted by a vector A in space [translation operation
Û(A), see Chapter 2] to result in the new function Û(A)g(r) = g(T̂−1(A)r) =
g(T̂ (−A)r)= g(r−A), because T̂−1(A)= T̂ (−A). Hence the orbital centred at a
given point (indicated by a vector A) is (Fig. 8.7):

g(r−A)= f (x−Ax	y −Ay	z−Az)exp
[−ζ|r−A|n]� (8.44)

Different centring of the atomic orbitals is used in practice, although if the com-
plete set of the orbitals were at our disposal, then it might be centred in a single
point.
45S. Fraga, Theor. Chim. Acta 2 (1964) 406; P. Politzer, J. Chem. Phys. 64 (1976) 4239; K. Ruedenberg,

J. Chem. Phys. 66 (1977) 375.
46Atomic orbitals (the first meaning) are usually expressed as linear combinations of atomic orbitals

in the second meaning. There may be, but does not need to be, a nucleus in the centre. If we set an
atomic nucleus at this point, we emphasize the important fact that an electron will reside close to the
nucleus.
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Fig. 8.7. The AO g(r) centred at the point
shown by vector A, means the creation of
the orbital g(r−A). A linear combination of
such orbitals can describe any smooth func-
tion of the position in space, of any degree of
complexity.

It is more economic, however, to allow using the incomplete set and the
possibility of AO centred in various points of space.

We could construct a molecular orbital of any complexity exclusively using the
orbitals g(r)= exp(−ζ|r−A|n), i.e. the f (x	 y	 z)= const, colloquially known as
the 1s orbitals. It is clear that we could do it in any “hole-repairing” (plastering-
like) procedure.47 But why do we not do it like this? The reason is simple: the
number of such atomic orbitals that we would have to include in the calculations
would be too large. Instead, chemists allow for higher-order polynomials f (x	 y	 z).
This makes for more efficient “plastering”, because, instead of spherically symmet-
ric objects (1s), we can use orbitals g(r) of virtually any shape (via an admixture
of the p	d	 f	 � � � . functions). For example, how a rugby-ball shaped orbital can be
achieved is shown in Fig. 8.8.

8.4.2 SLATER-TYPE ORBITALS (STO)

The Slater-type orbitals48 differ from the atomic orbitals of the hydrogen atom
(see p. 178). The first difference is that the radial part is simplified in the STOs.

47Frost even derived the method of FSGO – Floating Spherical Gaussian Orbitals, A.A. Frost,
J. Chem. Phys. 47 (1967) 3707), i.e. Gaussian type orbitals of variationally-chosen positions. Their num-
ber is truly minimal – equal to the number of occupied MOs.
48We will distinguish two similar terms here: Slater-type orbitals and Slater orbitals. The latter is re-

served for special Slater-type orbitals, in which the exponent is easily computed by considering the effect
of the screening of nucleus by the internal electronic shells. The screening coefficient is calculated ac-
cording to the Slater rules, see below. Slater formulated these rules by watching the orbitals delivered
by his young coworkers from the computing room. As he writes: “when the boys were computing”,
he noticed that we can quite easily predict the orbital shape without any calculation. It is enough to
introduce screening, which could easily be predicted from numerical experience.
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Fig. 8.8. An example of function (xy section, in a.u.) modelling by a linear combination of AOs. If a
tiny admixture of the 3dx2−y2 function is added to the spherically symmetric 1s orbital (a football ball,
both orbitals with 0.5 orbital exponent). We will get shrinking in one direction, and elongation in the
other (the dimension in the third direction is unchanged), i.e. a flattened rugby ball. In our case the tiny
admixture means 0�05. If the admixture were of the 2p type, the ball would look more like an egg. As
we see, nearly everything can be simulated like this. This is essence of the LCAO method.

We put rk, where k is a natural number or zero, instead of Laguerre polynomials49

given on p. 179. The second difference is in the orbital exponent, which has no
constraint except that it has to be positive.50

The STOs have a great advantage: they decay with distance from the centre in
a similar way to the “true” orbitals – let us recall the exponential vanishing of the
hydrogen atom orbitals (see Chapter 4).51 STOs would be fine, but finally we have

49This means that the radial part of a STO has no nodes. Because of this, STOs of the same angular
dependence, in contrast to the hydrogen-like atom orbitals, are not orthogonal.
50Otherwise the orbital would not be square-integrable. To get a rough idea of how the atomic orbitals

for a particular atom look, Slater orbitals have been proposed: 1s	2s	2p	 � � � . They are Slater-type
orbitals with ζ = Z−σ

n , where Z stands for the nuclear charge, σ tells us how other electrons screen
(i.e. effectively diminish) the charge of the nucleus (σ = 0 for an atom with a single electron), and n
is the principal quantum number. The key quantity σ , is calculated for each orbital of an atom using
simple rules of thumb (designed by Prof. Slater after examining his students’ computer outputs). We
focus on the electron occupying the orbital in question, and we try to see what it sees. The electron sees
that the nucleus charge is screened by its fellow electrons. The Slater rules are as follows:

• write down the electronic configuration of an atom grouping the orbitals in the following way:
[1s][2s2p][3s3p][3d] � � � 	

• electrons to the right give zero contribution,
• other electrons in the same group contribute 0.35 each, except [1s] which contributes 0.30,
• for an electron in an [nsnp] group each electron in the n−1 group contributes 0.85, for lower groups

each contributes 1.0 and for the [nd] or [nf ] groups, all electrons in groups to the left contribute 1.0.

Example: The carbon atom. Configuration in groups: [1s2][2s22p2]. There will be two σ ’s: σ1s = 0�30,
σ2s = σ2p = 3 · 0�35 + 2 · 0�85 = 2�75. Hence, ζ1s = 6−0�30

1 = 5�70, ζ2s = ζ2p = 6−2�75
2 = 1�625.

Hence, 1sC = N1s exp(−5�70r), 2sC = N2s exp(−1�625r), 2px	C = N2pxexp(−1�625r), 2py	C =
N2py exp(−1�625r), 2pz	C =N2pz exp(−1�625r).
51It has been proved that each of the Hartree–Fock orbitals has the same asymptotic dependence on

the distance from the molecule (N.C. Handy, M.T. Marron, H.J. Silverstone, Phys. Rev. 180 (1969) 45),
i.e. const · exp(−√−2εmaxr), where εmax is the orbital energy of HOMO. Earlier, people thought the
orbitals decay as exp(−√−2εir), where εi is the orbital energy expressed in atomic units. The last
formula, as is easy to prove, holds for the atomic orbitals of hydrogen atoms (see p. 178). R. Ahlrichs,
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to compute a large number of the integrals needed.52 And here is a real prob-
lem. Since the Hamiltonian contains the electron–electron interactions, integrals
appear with, in general, four atomic orbitals (of different centres). These integrals
are difficult to calculate, and are therefore excessively computer time-consuming.

8.4.3 GAUSSIAN-TYPE ORBITALS (GTO)

If the exponent in eq. (8.44) is equal to n= 2, we are dealing with Gaussian Type
Orbitals (GTO).

The most important among them are 1s-type orbitals:

χp ≡Gp(r;αp	Rp)=
(

2αp
π

) 3
4

exp
(−αp|r−Rp|2

)

	 (8.45)

where αp is the orbital exponent, Rp is the vector indicating the centre of the or-
bital, and the factor standing before the expression is the normalization constant.
Why are 1s-type orbitals so important? Because we may construct “everything”
(even s	p	d-like orbitals) out of them using proper linear combinations. For ex-
ample, the difference of two 1s orbitals, centred at (a	0	0) and (−a	0	0), is simi-
lar to the 2px orbital (Fig. 8.9).

The most important reason for the great progress of quantum chemistry in
recent years is replacing the Slater-type orbitals, formerly used, by Gaussian-
type orbitals as the expansion functions.

Orbital size
Each orbital extends to infinity and it is impossible to measure its extension using a
ruler. Still, the αp coefficient may allow comparison of the sizes of various orbitals.
And the quantity

ρp = (αp)− 1
2 (8.46)

may be called (which is certainly an exaggeration) the orbital radius of the orbital orbital radius

χp, because53
∫ ρp

0

∫ π

0

∫ 2π

0
χ2
p dτ = 4π

∫ ρp

0
χ2
pr

2 dr = 0�74	 (8.47)

M. Hoffmann-Ostenhoff, T. Hoffmann-Ostenhoff, J.D. Morgan III, Phys. Rev. A23 (1981) 2106 have
shown that at a long distance r from an atom or a molecule, the square root of the ideal electron density

satisfies the inequality:
√
ρ 
 C(1+ r)

(Z−N+1)√
2ε

−1
exp[−(2ε)], where ε is the first ionization potential,

Z is the sum of the nuclear charges, N is the number of electrons, and C is a constant.
52The number of necessary integrals may reach billions.
53See, e.g., I.S. Gradshteyn, J.M. Rizhik, “Table of Integrals, Series, and Products”, Academic Press,

Orlando, 1980, formula 3.381.
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Fig. 8.9. Two spherically symmetric Gaussian-type orbitals (xy section, in a.u.) of the “1s-type”
G(r;1	0) (a) are used to form the difference orbital (b):G(r;1	−0�5i)−G(r;1	+0�5i), where i is the
unity vector along the x axis. For comparison (c) the Gaussian-type px orbital is shown: xG(r;1	0). It
can be seen that the spherical orbitals may indeed simulate the 2p ones. Similarly, they can model the
spatial functions of arbitrary complexity.

where the integration over r goes through the inside of a sphere of radius ρp.
This gives us an idea about the part of space in which the orbital has an important
amplitude. For example, the 1s hydrogen atom orbital can be approximated as a
linear combination of three 1s GTOs (here centred on the origin of the coordinate
system; such a popular approximation is abbreviated to STO-3G):54

1s ≈ 0�64767G1(r;0�151374	0)+ 0�40789G2(r;0�681277	0)

+ 0�07048G3(r;4�50038	0) (8.48)

which corresponds to the following radii ρ of the three GTOs: 2.57, 1.21 and
0.47 a.u.

54S. Huzinaga, J. Chem. Phys. 42 (1965) 1293.
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Product of GTOs

The product of two Gaussian-type 1s orbitals (even if they have different
centres) is a single Gaussian-type 1s orbital.55

The case of GTOs other than 1s does not give any trouble, but the result is
slightly different. The product of the exponential factors is, of course, the 1s-type
GTO, shown above. The polynomials of x	 y	 z standing in both GTOs multiplied
by each other (recall the dependence of the polynomial on the orbital centring,

55It is the most important feature of GTOs (along with the square dependence in the exponent).
Let us take two (not normalized) GTOs 1s: exp(−a(r−A)2) and exp(−b(r−B)2), the first centred

on the point shown by vector A, the second – by vector B. It will be shown that their product is the
Gaussian-type orbital

exp
(−a(r−A)2)exp

(−b(r−B)2)=N exp
(−c(r−C)2)	

with parameters c = a+ b, C= (aA+ bB)/(a+ b), N = exp[− ab
a+b (A−B)2].

Vector C shows the centre of the new Gaussian-type orbital. It is identical to the centre of mass
position, where the role of mass is played by the orbital exponents a and b.

Here is the proof:

Left side = exp
(−ar2 + 2arA− aA2 − br2 + 2brB− bB2)

= exp
(−(a+ b)r2 + 2r(aA+ bB))exp

[−(aA2 + bB2)]

= exp
(−cr2 + 2cCr

)

exp
[−(aA2 + bB2)]	

Right side = N exp
(−c(r−C)2)=N exp

[−c(r2 − 2Cr+C2)]= Left side	

if N = exp(cC2 − aA2 − bB2). It is instructive to transform the expression for N , which is a kind of
amplitude of the Gaussian-type orbital originating from the multiplication of two GTOs. So,

N = exp
[

(a+ b)C2 − aA2 − bB2]= exp
(
(a2A2 + b2B2 + 2abAB)

(a+ b) − aA2 − bB2
)

= exp
(

1
a+ b

(

a2A2 + b2B2 + 2abAB− a2A2 − abA2 − b2B2 − abB2)
)

= exp
(

1
a+ b

(

2abAB− abA2 − abB2)
)

= exp
(
ab

a+ b
(

2AB−A2 −B2)
)

= exp
( −ab
a+ b (A−B)

2
)

�

This is what we wanted to show.
It is seen that if A=B, then amplitude N is equal to 1 and the GTO with the a+ b exponent results

(as it should). The amplitude N strongly depends on the distance |A− B| between two centres. If the
distance is large, the N is very small, which gives the product of two distant GTOs as practically zero
(in agreement with common sense). It is also clear that if we multiply two strongly contracted GTOs
(a	b� 1) of different centres, the “GTO-product” is again small. Indeed, let us take, e.g., a = b. We
get N = exp{[−a/2][A−B]2}.
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formula (8.44)), can always be presented as a certain polynomial of x′	 y ′	 z′ taken
versus the new centre C. Hence, in the general case,

the product of any two Gaussian-type orbitals is a linear combination of
Gaussian-type orbitals.

Integrals

If somebody wanted to perform alone56 quantum chemical calculations, they
would immediately face integrals to compute, the simplest among them being the
1s-type. Expressions for these integrals are given in Appendix P on p. 1004.

8.4.4 LINEAR COMBINATION OF ATOMIC ORBITALS (LCAO) METHOD

Algebraic approximation

Usually we apply the self-consistent field approach with the LCAO method; this
is then the SCF LCAO MO.57 In the SCF LCAO MO method, each molecularLCAO MO

orbital is presented as a linear combination of atomic orbitals χs

ϕi(1)=
M
∑

s

csiχs(1) (8.49)

where the symbol (1) emphasizes that each of the atomic orbitals, and the result-
ing molecular orbital, depend on the spatial coordinates of one electron only (say,
electron 1). The coefficients csi are called the LCAO coefficients.

The approximation, in which the molecular orbitals are expressed as linear com-
binations of the atomic orbitals, is also called the algebraic approximation.58

56That is, independent of existing commercial programs, which only require the knowledge of how to
push a few buttons.
57Linear Combination of Atomic Orbitals – Molecular Orbitals. This English abbreviation helped Polish

quantum chemists in totalitarian times (as specialists in “MO methods”, MO standing for the mighty
“citizen police” which included the secret police). It was independently used by Professors Wiktor Ke-
mula (University of Warsaw) and Kazimierz Gumiński (Jagiellonian University). A young coworker of
Prof. Gumiński complained, that despite much effort he still could not get the official registered address
in Cracow, required for employment at the university. The Professor wrote a letter to the officials, and
asked his coworker to deliver it in person. The reaction was immediate: “Why didn’t you show this to us
earlier?!”.
58It was introduced in solid state theory by Felix Bloch (his biography is on p. 435), and used in chem-

istry for the first time by Hückel.
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Erich Hückel (1896–1980), German physicist,
professor at the universities in Stuttgart and
Marburg, student of Bohr and Debye. Erich
Hückel, presumably inspired by his brother
Walter, an eminent organic chemist, created a
simplified version of the Hartree–Fock method,
which played a major role in linking the quan-
tum theory with chemistry. Even today, al-
though this tool is extremely simplistic and has
been superseded by numerous and much bet-
ter computational schemes, Hückel theory is
valued as an initial insight into the electronic
structure of some categories of molecules and
solids.

Curiosity: these people liked to amuse
themselves with little rhymes. Felix Bloch has
translated a poem by Walter Hückel from
German to English. It does not look like a

great poetry, but deals with the famous Erwin
(Schrödinger) and his mysterious function ψ:

“Erwin with his ψ can do
Calculations quite a few.
But one thing has not been seen,
Just what does ψ really mean”.

Why is it so useful? Imagine we do not have such a tool at our disposal. Then we
are confronted with defining a function that depends on the position in 3D space
and has a quite complex shape (Fig. 8.10). If we want to do it accurately, we should
provide the function values at many points in space, say for a large grid with a
huge number of nodes, and the memory of our PC will not stand it. Also, in such
an approach one would not make use of the fact that the function is smooth. We
find our way through by using atomic orbitals. For example, even if we wrote that
a molecular orbital is in fact a single atomic orbital (we can determine the latter
by giving only four numbers: three coordinates of the orbital centre and the or-
bital exponent), although very primitive, this would carry a lot of physical intuition
(truth. . . ): (i) the spatial distribution of the probability of finding the electron is
concentrated in some small region of space, (ii) the function decays exponentially
when we go away from this region, etc.

“Blocks” of molecular orbitals ϕi are constructed out of “primary building
blocks” – the one-electron functions χs (in the jargon called atomic orbitals), which atomic orbitals

(AO)

Fig. 8.10. The concept of a molecular orbital
(MO) as a linear combination of atomic or-
bitals (LCAO), a section view. From the point
of view of mathematics, it is an expansion in
a series of a complete set of functions. From
the viewpoint of physics, it is just recognizing
that when an electron is close to nucleus a,
it should behave in a similar way as that re-
quired by the atomic orbital of atom a. From
the point of view of a bricklayer, it represents
the construction of a large building from soft
and mutually interpenetrating bricks.
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are required to fill two basic conditions:

• they need to be square-integrable,
• they need to form the complete set, i.e. “everything” can be constructed from

this set (any smooth square-integrable function of x	 y	 z),

and several practical conditions:

• they should be effective, i.e. each single function should include a part of the
physics of the problem (position in space, decay rate while going to ∞, etc.),

• should be “flexible”, i.e. their parameters should influence their shape to a large
extent,

• the resulting integrals should be easily computable (numerically and/or analyti-
cally), see p. 360.

In computational practice, unfortunately, we fulfil the second set of conditions
only to some extent: the set of orbitals taken into calculations (i.e. the basis set) is
always limited, because computing time means money, etc. In some calculations
for crystals, we also remove the first set of conditions (e.g., we often use plane
waves: exp(ik · r), and these are not square-integrable).plane waves

Interpretation of LCAO. If in Fig. 8.10, we take the linear combination of five
atomic orbitals and provide a reasonable choice of their centres, the exponents
and the weights of the functions, we will get quite a good approximation of the
ideal orbital. We account for the advantages as follows: instead of providing a huge
number of function values at the grid nodes, we master the function using only
5× 5= 25 numbers.59

The idea of LCAO MO is motivated by the fact that the molecular orbital should
consist of spatial sections (atomic orbitals), because in a molecule in the vicinity of
a given atom, an electron should be described by an atomic orbital of this atom. The
essence of the LCAO approach is just the connection (unification) of such sections.
But only some AOs are important in practice. This means that the main effort of
constructing MOs is connected to precise shaping and polishing, by inclusion of
more and more of the necessary AOs.60

Effectiveness of AOs mixing
When could we expect that two normalized AOs will have comparable LCAO coef-
ficients in a low-energy MO? Two rules hold (both can be deduced from eq. (D.1))
for the mixing effectiveness of the AOs, obtained from numerical experience:mixing effectivity

AO

EFFECTIVENESS OF AO MIXING
– AOs must correspond to comparable energies (in the meaning of the

mean value of the Fock operator),
– AOs must have large overlap integral.

59Three coordinates of the centre, the exponent and the coefficient csi standing at AO altogether give
five parameters per one AO.
60Which plays the role of the filling mass, because we aim for a beautiful shape (i.e. ideal from the

point of view of the variational method) for the MOs.
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Let us see what we obtain as the orbital energies61 (in a.u.) for several important
atoms:

1s 2s 2p 3s 3p
H −0�5 − − − −
C −11�34 −0�71 −0�41 − −
N −15�67 −0�96 −0�51 − −
O −20�68 −1�25 −0�62 − −
F −26�38 −1�57 −0�73 − −
Cl −104�88 −10�61 −8�07 −1�07 −0�51

Now, which orbitals will mix effectively when forming methane? The hydrogen
atom offers the 1s orbital with energy −0�5. As we can see from the table, there is
no possibility of effectively mixing with the carbon 1s orbital, while the 2s and 2p
are very good candidates. Note that

the orbital energies of all the outer-most (the so called valence) orbitals are
similar for all the elements (highlighted as bold in the table), and therefore
they are able to mix effectively, i.e. to lower energy by forming chemical
bonds.

This is why chemistry is mainly the science of outer shell orbitals.

The mathematical meaning of LCAO. From mathematical point of view, for- AO basis set

mula (8.49) represents a expansion of an unknown function ϕi in a series of the
known functions χs , which belong to a certain complete set, thus M should be
equal ∞. In real life, we need to truncate this series, i.e. use some limited M .

8.4.5 BASIS SETS OF ATOMIC ORBITALS

BASIS SET
The set of the AOs {χs} used in the LCAO expansion is called a basis set.

The choice of the basis set functions χ (the incomplete set) is one of the most
important practical (numerical) problems of quantum chemistry. Yet, because it is
of a technical character, we will just limit ourselves to a few remarks.

Although atomic functions do not need to be atomic orbitals (e.g., they may be
placed in-between nuclei), in most cases they are centred directly on the nuclei62

of the atoms belonging to the molecule under consideration. If M is small (in the
less precise calculations), the Slater atomic orbitals discussed above are often used
as the expansion functions χs; for larger M (in more accurate calculations), the

61J.B. Mann, “Atomic Structure Calculations. I. Hartree–Fock Energy Results for the Elements H through
Lr”, Report LA-3690 (Los Alamos National Laboratory, 1967).
62It is about the choice of the local coordinate system at the nucleus.
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relation between χs and the orbitals of the isolated atoms is lost, and χs are chosen
based on the numerical experience gathered from the literature.63

8.4.6 THE HARTREE–FOCK–ROOTHAAN METHOD (SCF LCAO MO)

Clemens C.J. Roothaan (b.
1916), American physicist,
professor at the University
of Chicago. He became in-
terested in this topic, after
recognizing that in the liter-
ature people write about the
effective one-electron opera-
tor, but he could not find its
mathematical expression.

The Hartree–Fock (HF) equations are
nonlinear differential-integral equations,
which can be solved by appropriate nu-
merical methods. For example, in the
case of atoms and diatomics the orbitals
may be obtained in a numerical form.64

High accuracy at long distances from the
nuclei is their great advantage. However,
the method is very difficult to apply for
larger systems.

George G. Hall (b. 1925),
Irish physicist, professor of
Mathematics at the University
of Nottingham. His scientific
achievements are connected
to localized orbitals, ioniza-
tion potentials, perturbation
theory, solvation and chemi-
cal reactions.

A solution is the use of the LCAO
MO method (algebraization of the Fock
equations). It leads to simplification of
the computational scheme of the Hartree–
Fock method.65 If the LCAO expansion
is introduced to the expression for the to-
tal energy, then formula (8.41) (together
with εi = (i|F̂ |i)) gives:

E′HF =
∑

i

[

hii + (i|F̂ |i)
]=

MO
∑

i=1

∑

rs

c∗ricsi
[

(r|ĥ|s)+ (r|F̂ |s)]

≡ 1
2

∑

rs

Psr[hrs + Frs]	 (8.50)

where P in the RHF method is called the bond-order matrix,bond-order
matrix

63For those who love such problems, we may recommend the article by S. Wilson “Basis Sets” in the
book “Ab initio Methods in Quantum Chemistry”, ed. by K.P. Lawley, 1987, p. 439. In fact this knowledge
is a little magic. Certain notations describing the quality of basis sets are in common use. For example,
the symbol 6-31G∗ means that the basis set uses GTOs (G), the hyphen divides two electronic shells
(here K and L, see p. 381). The K shell is described by a single atomic orbital, which is a certain linear
combination (a “contracted orbital”) of six GTOs of the 1s type, and the two digits, 31, pertain to the L
shell and denote two contracted orbitals for each valence orbital (2s,2px ,2py ,2pz), one of these contains
three GTOs, the other one GTO (the latter is called “contracted”, with a bit of exaggeration). The
starlet corresponds to d functions used additionally in the description of the L shell (called polarization
functions).
64J. Kobus, Adv. Quantum Chem. 28 (1997) 1.
65The LCAO approximation was introduced to the Hartree–Fock method, independently, by C.C.J.

Roothaan, Rev. Modern Phys. 23 (1951) 69 and G.G. Hall, Proc. Royal Soc. A205 (1951) 541.
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Psr = 2
MO
∑

i

c∗ricsi	

and the summation goes over all the occupied MOs. The symbols hrs and Frs ,
introduced here, are the matrix elements of the corresponding operators. In con-
sequence, a useful expression for the total energy in the HF method may be written
as

EHF = 1
2

AO
∑

rs

Psr(hrs + Frs)+
∑

a<b

ZaZb
Rab

	 (8.51)

where the first summation goes over the atomic orbitals (AO). For completeness,
we also give the expression for Frs

Frs =
(

r
∣
∣ĥ+ 2Ĵ − K̂

∣
∣s
)= hrs +

MO
∑

i

[

2(ri|si)− (ri|is)]	 (8.52)

where i is the index of a MO, and r and s denote the AOs.
Expressing everything in AOs we obtain:

Frs = hrs +
MO
∑

i

AO
∑

pq

c∗picqi
[

2(rp|sq)− (rp|qs)]

= hrs +
AO
∑

pq

Pqp

[

(rp|sq)− 1
2
(rp|qs)

]

	 (8.53)

where the summation goes over the AOs. We will use these formulae in the future.
In the SCF LCAO MO method, the Fock equations (complicated differential-

integral equations) are solved in a very simple way. From (8.49) and (8.30) we have

F̂
∑

s

csiχs = εi
∑

s

csiχs� (8.54)

Making the scalar product with χr for r = 1	2	 � � � 	M we obtain
∑

s

(Frs − εiSrs)csi = 0� (8.55)

This is equivalent to the Roothaan matrix equation:66 Roothaan
matrix equation

Fc= Scε (8.56)

where S is the matrix of the overlap integrals 〈χr |χs〉 involving the AOs, ε is the
diagonal matrix of the orbital energies67 εi, and F is the Fock operator matrix.

66Left-hand side:
∑

s Frscsi , right-hand side:
∑

s	l Srscslεli =
∑

s	l Srscslδliεi =
∑

s Srscsiεi . Compar-
ison of both sides of the equation gives the desired result.
67In fact some approximations to them. Their values approach the orbital energies, when the basis set

of AOs gets closer to the complete basis set.
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Each of these matrices is square (of the rank M). F depends on c (and this is why
it is a pseudo-eigenvalue equation).

The Hartree–Fock–Roothaan matrix equation is solved iteratively:

a) we assume an initial c matrix (i.e. also an initial P matrix; often in the zero-th
iteration we put P = 0, as if there were no electron repulsion),

b) we find the F matrix using matrix P ,
c) we solve the Hartree–Fock–Roothaan equation (see Appendix L, p. 984) and

obtain the M MOs, we choose the N/2 occupied orbitals (those of lowest en-
ergy),

d) we obtain a new c matrix, and then a new P , etc.,
e) we go back to a).

The iterations are terminated when the total HF energy (more liberal approach)
or the coefficients c (less liberal one) change less than the assumed threshold val-
ues. Both these criteria (ideally fulfilled) may be considered as a sign that the out-
put orbitals are already self-consistent. Practically, these are never the exact so-
lutions of the Fock equations, because a limited number of AOs was used, while
expansion to the complete set requires the use of an infinite number of AOs (the
total energy in such a case would be called the Hartree–Fock limit energy).Hartree–Fock

limit After finding the MOs (hence, also the HF function) in the SCF LCAO MO
approximation, we may calculate the total energy of the molecule as the mean
value of its Hamiltonian. We need only the occupied orbitals, and not the virtual
ones for this calculation.

The Hartree–Fock method only takes care of the total energy and completely
ignores the virtual orbitals, which may be considered as a kind of by-product.

8.4.7 PRACTICAL PROBLEMS IN THE SCF LCAO MO METHOD

Size of the AO basis set

NUMBER OF MOs
The number of MOs obtained from the SCF procedure is always equal to
the number of the AOs used. Each MO consists of various contributions of
the same basis set of AOs (the apparent exception is when, due to symmetry,
the coefficients at some AOs are equal to zero).

For double occupancy, M needs to be larger or equal to N/2. Typically we are
forced to use large basis sets (M�N/2), and then along the occupied orbitals we
get M −N/2 unoccupied orbitals, which are also called virtual orbitals. Of course,
we should aim at the best quality MOs (i.e. how close they are to the solutions of
the Fock equations), and avoiding large M (computational effort is proportional
to M4), but in practice a better basis set often means a larger M . The variational
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Fig. 8.11. The Hartree–Fock method is
variational. The better the wave function,
the lower the mean value of the Hamil-
tonian. An extension of the AO basis set
(i.e. adding new AOs) has to lower the en-
ergy, and the ideal solution of the Fock
equations gives the “Hartree–Fock limit”.
The ground-state eigenvalue of the Hamil-
tonian is thus always lower than the limit.

principle implies the ordering of the total energy values obtained in different ap-
proximations (Fig. 8.11).

It is required that as large a basis set as possible is used (mathematics: we ap-
proach the complete set), but we may also ask if a basis set dimension may be
decreased freely (economy!). Of course, the answer is no! The absolute limit M
is equal to half the number of the electrons, because only then can we create
M spinorbitals and write the Slater determinant. However, in quantum chemistry
rather misleadingly, we call the minimal basis set the basis set resulting from inner minimal basis

setshell and valence orbitals in the corresponding atoms. For example, the minimum
basis set for a water molecule is: 1s, 2s and three 2p orbitals of oxygen and two
1s orbitals of hydrogen atoms, seven AOs in total (while the truly minimal basis
would contain only 10/2= 5 AOs).

“Flip-flop”

TheM MOs result from each iteration. We order them using the increasing orbital
energy ε criterion, and then we use the N/2 orbitals of the lowest orbital energy in
the Slater determinant – we call it the occupation of MOs by electrons. We might
ask why we make the lowest lying MOs occupied? The variational principle does not
hold for orbital energies. And yet we do so (not trying all possible occupations), and
only very rarely we get into trouble. The most frequent trouble is that the criterion
of orbital energy leads to the occupation of one set of MOs in odd iterations, and
another set of MOs in even ones (typically both sets differ by including/excluding
one of the two MOs that are neighbours on the energy scale) and the energy re-
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even
iterations

odd
iterations

Fig. 8.12. A difficult case for the SCF method
(“flip-flop”). We are sure that the orbitals ex-
change in subsequent iterations, because they
differ in symmetry (�1	�2).

sulting from the odd iterations is different from that of the even ones.68 Such be-
haviour of the Hartree–Fock method is indeed annoying69 (Fig. 8.12).

Dilemmas of the AOs centring
Returning to the total energy issue, we should recall that in order to decrease the
total energy, we may move the nuclei (so far frozen during the HF procedure).
This is called the geometry optimization. Practically all calculations should be re-geometry

optimization peated for each nuclear geometry during such optimization.70 And there is one
more subtlety. As was said before, the AOs are most often centred on the nuclei.
When the nuclei are moved, the question arises whether a nucleus should pull its
AOs to a new place, or not.71 If not, then this “slipping off” the nuclei will signif-
icantly increase the energy (independent of, whether the geometry is improved or
not). If yes, then in fact we use different basis sets for each geometry, hence in each
case we search for the solution in a slightly different space (because it is spanned
by other basis sets). People use the second approach. It is worth notifying that the
problem would disappear if the basis set of AOs were complete.

The problem of AO centring is a bit shameful in quantum chemistry. Let us
consider the LCAO approximation and a real molecule such as Na2CO3. As men-
tioned above, the LCAO functions have to form a complete set. But which func-
tions? Since they have to form a complete set, they may be chosen as the eigenfunc-

68“Flip-flop” is the common name for this sort of behaviour.
69There are methods for mastering this rodeo by using the matrix P in the k-th iteration, not taken

from the previous iteration (as usual), but as a certain linear combination of P from the k−1 and k−2
iterations. When the contribution of P from the k− 2 iteration is large, in comparison with that from
the k− 1 iteration, it corresponds to a gentle attempt at quietening the nervous stallion.
70Let us take an example of CH4. First, we set any starting geometry, say, a square-like planar. Now,

we try to change the configuration to make it out-of-plane (the energy goes down). Taking the HCH
angles as all equal (tetrahedral configuration) once more lowers the total energy computed. Putting all
the CH bonds of equal length gives even lower energy. Finally, by trying different CH bond lengths
we arrive at the optimum geometry (for a given AO basis set). In practice, such geometry changes are
made automatically by computing the gradient of total energy. The geometry optimization is over.
71Even if the AOs were off the nuclei, we would have the same dilemma.
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tions of a certain Hermitian operator (e.g., the energy operator for the harmonic
oscillator or the energy operator for the hydrogen atom or the uranium atom). We
decide, and we are free to choose. In addition to this freedom, we add another
freedom, that of the centring. Where should the eigenfunctions (of the oscilla-
tor, hydrogen or uranium atom) of the complete set be centred, i.e. positioned in
space? Since it is the complete set, each way of centring is OK by definition. It really
looks like this if we hold to principles.

But in practical calculations, we never have the complete set at our disposal.
We always need to limit it to a certain finite number of functions, and it does not
represent any complete set. Depending on our computational resources, we limit
the number of functions. We usually try to squeeze the best results from our time
and money. How do we do it? We apply our physical intuition to the problem,
believing that it will pay off. First of all, intuition suggests the use of functions
for some atom which is present in the molecule, and not those of the harmonic
oscillator, or the hydrogen or uranium atom, which are absent from our molecule.
And here we meet another problem. Which atom, because we have Na, C and O in
Na2CO3. It appears that

the solution close to optimum is to take as a basis set the beginnings of several
complete sets – each of them centred on one of the atoms.

So, we could centre the 1s, 2s, 2p, 3s orbitals on both Na atoms, and the 1s, 2s,
2p set on the C and O atoms.72

8.5 BACK TO FOUNDATIONS. . .

8.5.1 WHEN DOES THE RHF METHOD FAIL?

The reason for any Hartree–Fock method failure can be only one thing: the wave
function is approximated as a single Slater determinant. All possible catastrophes
come from this. And we might even deduce when the Hartree–Fock method is
not appropriate for description of a particular real system. First, let us ask when a
single determinant would be OK? Well, if out of all determinants which could be
constructed from a certain spinorbital basis set, only its energy (i.e. the mean value
of Hamiltonian for this determinant) were close to the true energy of the molecule.
In such a case, only this determinant would matter in the linear combination of

72This is nearly everything, except for a small paradox, that if we are moderately poor (reasonable but
not extensive basis sets), then our results will be good, but if we became rich (and we perform high-
quality computations using very large basis sets for each atom) then we would get into trouble. This
would come from the fact that our basis set starts to look like six distinct complete sets. Well, that looks
too good, doesn’t it? We have an overcomplete set, and trouble must come. The overcompleteness means
that any orbital from one set is already representable as a linear combination of another complete set.
You would see strange things when trying to diagonalize the Fock matrix. No way! Be sure that you
would be begging to be less rich.
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Fig. 8.13. In exact theory there is no such
a thing as molecular orbitals. In such a
theory we would only deal with the many-
electron states and the corresponding en-
ergies of the molecule. If, nevertheless,
we decided to stick to the one-electron ap-
proximation, we would have the MOs and
the corresponding orbital energies. These
one-electron energy levels can be occu-
pied by electrons (0,1 or 2) in various ways
(the meaning of the occupation is given on
p. 342), and a many-electron wave function
(a Slater determinant) corresponds to each
occupation. This function gives a certain
mean value of the Hamiltonian, i.e. the to-
tal energy of the molecule. In this way one
value of the total energy of the molecule cor-
responds to a diagram of orbital occupation.
The case of the S and T states is somewhat
more complex than the one shown here,
and we will come back to it on p. 390.

determinants,73 and the others would have negligible coefficients. It could be so,74

if the energies of the occupied orbitals were much lower than those of the virtual
ones (“Aufbau Prinzip”, p. 380). Indeed, various electronic states of different total
energies may be approximately formed while the orbitals scheme is occupied by
electrons (Fig. 8.13), and if the virtual levels are at high energies, the total energy
calculated from the “excited determinant” (replacement: occupied spinorbital →
virtual spinorbital) would also be high.

In other words, the danger for the RHF method is when the energy difference
between HOMO and LUMO is small. For example, RHF completely fails to de-
scribe metals properly75 Always, when the HOMO–LUMO gap is small, expect
bad results.

Incorrect description of dissociation by the RHF method
An example is provided by the H2 molecule at long internuclear distances.

In the simplest LCAO MO approach, two electrons are described by the bondingbonding orbital

orbital (χa and χb are 1s orbitals centred on the H nuclei, a and b, respectively)

73The Slater determinants form the complete set, p. 334. In the configuration interaction method
(which will be described in Chapter 10) the electronic wave function is expanded using Slater determi-
nants.
74We shift here from the total energy to the one-electron energy, i.e. to the orbital picture.
75It shows up as strange behaviour of the total energy per metal atom, which exhibits poorly-decaying

oscillations with an increasing of numbers of atoms. In addition, the exchange interactions, notorious
for fast (exponential) decay as calculated by the Hartree–Fock method, are of a long-range character
(see Chapter 9).
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ϕbond = 1√
2(1+ S)(χa +χb)	 (8.57)

but there is another orbital, an antibonding one antibonding
orbital

ϕantibond = 1√
2(1− S)(χa −χb)� (8.58)

These names stem from the respective energies. For the bonding orbital:

Ebond = Haa +Hab
1+ S <Haa	

and for the antibonding orbital

Eantibond = Haa −Hab
1− S >Haa�

These approximate formulae are obtained if we accept that the molecular or-
bital satisfies a sort of “Schrödinger equation” using an effective Hamiltonian
(say, an analogue of the Fock operator): Ĥefϕ = Eϕ and after introducing nota-
tion: the overlap integral S = (χa|χb), Haa = (χa|Ĥefχa), the resonance integral76 resonance

integralHab =Hba = (χa|Ĥef χb) < 0. The resonance integral Hab, and the overlap inte-
gral S, decay exponentially when the internuclear distance R increases.

INCORRECT DISSOCIATION LIMIT OF THE HYDROGEN MOLE-
CULE
Thus we have obtained the quasi-degeneracy (a near degeneracy of two or-
bitals) for long distances, while we need to occupy only one of these orbitals
(bonding one) in the HF method. The antibonding orbital is treated as vir-
tual, and as such, is completely ignored. However, as a matter of fact, for long
distances R, it corresponds to the same energy as the bonding energy.

We have to pay for such a huge drawback. And the RHF method pays, for its
result significantly deviates (Fig. 8.14) from the exact energy for large R values
(tending to the energy of the two isolated hydrogen atoms). This effect is known
as an “incorrect dissociation of a molecule” in the RHF method (here exemplified incorrect

dissociationby the hydrogen molecule). The failure may be explained in several ways and we
have presented one point of view above.

If one bond is broken and another is formed in a molecule, the HF method
does not need to fail. It appears that RHF performs quite well in such a situation,
because two errors of similar magnitude (Chapter 10) cancel each other.77

76This integral is negative. It is its sign which decides the energy effect of the chemical bond formation
(because Haa is nearly equal to the energy of an electron in the H atom, i.e. − 1

2 a.u.).
77Yet the description of the transition state (see Chapter 14) is then of lower quality.
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Hartree–Fock

exact Fig. 8.14. Incorrect dissociation of H2 in the
molecular orbital (i.e. HF) method. The wave
function in the form of one Slater determinant
leads to dissociation products, which are neither
atoms, nor ions (they should be two ground-state
hydrogen atoms with energy 2EH =−1 a.u.).

8.5.2 FUKUTOME CLASSES

Symmetry dilemmas and the Fock operator
We have derived the general Hartree–Fock method (GHF, p. 341) providing com-
pletely free variations for the spinorbitals taken from formula (8.1). As a result,
the Fock equation of the form (8.26) was derived.

We then decided to limit the spinorbital variations via our own condition of the
double occupancy of the molecular orbitals as the real functions. This has led to
the RHF method and to the Fock equation in the form (8.30).

The Hartree–Fock method is a complex (nonlinear) procedure. Do the HF so-
lutions have any symmetry features as compared to the Hamiltonian ones? This
question may be asked both for the GHF method, and also for any spinorbital con-
straints (e.g., the RHF constraints). The following problems may be addressed:

• Do the output orbitals belong to the irreducible representations of the symmetry
group (Appendix C on p. 903) of the Hamiltonian? Or, if we set the nuclei in the
configuration corresponding to symmetry group G, will the canonical orbitals
transform according to some irreducible representations of the G group? Or,
still in other words, does the Fock operator exhibits the symmetry typical of the
G group?

• Does the same apply to electron density?
• Is the Hartree–Fock determinant an eigenfunction of the Ŝ2 operator?78

• Is the probability density of finding a σ = 1
2 electron equal to the probability

density of finding a σ =− 1
2 electron at any point of space?

Instabilities in the Hartree–Fock method

The above questions are connected to the stability of the solutions. The HF solutionstability of
solutions is stable if any change of the spinorbitals leads to a higher energy than the one

78For Ŝz it is always an eigenfunction.
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found before. We may put certain conditions for spinorbital changes. Relaxing the
condition of double occupancy may take various forms, e.g., the paired orbitals may
be equal but complex, or all orbitals may be different real functions, or we may
admit them as different complex functions, etc. Could the energy increase along
with this gradual orbital constraints removal? No, an energy increase is, of course,
impossible, because of the variational principle, the energy might, however, remain
constant or decrease.

The general answer to this question (the character of the energy change) cannot
be given since it depends on various things, such as the molecule under study,
interatomic distances, the AOs basis set, etc. However, as shown by Fukutome79

using a group theory analysis, there are exactly eight situations which may occur.
Each of these leads to a characteristic shape of the set of occupied orbitals, which
is given in Table 8.1. We may pass the borders between these eight classes of GHF
method solutions while changing various parameters.80

The Fukutome classes may be characterized according to total spin as a function
of position in space:

• The first two classes RHF (TICS) and CCW correspond to identical electron
spin densities for α and β electrons at any point of space (total spin density
equal to zero). This implies double orbital occupancy (the orbitals are real in
RHF, and complex in CCW).

• The further three classes ASCW, ASDW and ASW are characterized by the non-
vanishing spin density keeping a certain direction (hence A = axial). The pop-
ular ASDW, i.e. UHF (no. 4) class is worth mentioning.81 We will return to the UHF method

UHF function in a moment.
• The last three classes TSCW, TSDW, TSW correspond to spin density with a

total non-zero spin, where direction in space varies in a complex manner.82

The Fukutome classes allow some of the posed questions to be answered:

• The resulting RHF MOs may belong (and most often do) to the irreducible
symmetry representations (Appendix C in p. 903) of the Hamiltonian. But this
is not necessarily the case.

• In the majority of calculations, the RHF electron density shows (at molecular
geometry close to the equilibrium) spatial symmetry identical with the point
symmetry group (the nuclear configuration) of the Hamiltonian. But the RHF
method may also lead to broken symmetry solutions. For example, a system com- broken

symmetryposed of the equidistant H atoms uniformly distributed on a circle shows bond
alternation, i.e. symmetry breaking of the BOAS type.83 BOAS

79A series of papers by H. Fukutome starts with the article in Prog. Theor. Phys. 40 (1968) 998 and the
review article Int. J. Quantum Chem. 20 (1981) 955. I recommend a beautiful paper by J.-L. Calais, Adv.
Quantum Chem. 17 (1985) 225.
80In the space of the parameters it is something like a phase diagram for a phase transition.
81UHF, i.e. Unrestricted Hartree–Fock.
82See J.-L. Calais, Adv. Quantum Chem. 17 (1985) 225.
83BOAS stands for the Bond-Order Alternating Solution. It has been shown, that the translational sym-

metry is broken and that the symmetry of the electron density distribution in polymers exhibits a unit
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Table 8.1. Fukutome classes (for ϕi1 and ϕi2 see eq. (8.1))

Class Orbital components
[

ϕ11 ϕ21 � � � ϕN1
ϕ12 ϕ22 � � � ϕN2

]

Remarks Name

1
[
ϕ1 0 ϕ2 0 � � � ϕN/2 0
0 ϕ1 0 ϕ2 � � � 0 ϕN/2

]

ϕi real RHF≡TICS1

2
[
ϕ1 0 ϕ2 0 � � � ϕN/2 0
0 ϕ1 0 ϕ2 � � � 0 ϕN/2

]

ϕi complex CCW2

3

[

ϕ1 0 ϕ2 0 � � � ϕN/2 0
0 ϕ∗1 0 ϕ∗2 � � � 0 ϕ∗N/2

]

ϕi complex ASCW3

4
[
ϕ1 0 ϕ2 0 � � � ϕN/2 0
0 χ1 0 χ2 � � � 0 χN/2

]

ϕ	χ real UHF≡ ASDW4

5
[
ϕ1 0 ϕ2 0 � � � ϕN/2 0
0 χ1 0 χ2 � � � 0 χN/2

]

ϕ	χ complex ASW5

6

[

ϕ1 χ1 ϕ2 χ2 � � � ϕN/2 χN/2
−χ∗1 ϕ∗1 −χ∗2 ϕ∗2 � � � −χ∗N/2 ϕ∗N/2

]

ϕ	χ complex TSCW6

7
[
ϕ1 χ1 ϕ2 χ2 � � � ϕN/2 χN/2
τ1 κ1 τ2 κ2 � � � τN/2 κN/2

]

ϕ	χ	τ	κ real TSDW7

8
[
ϕ1 χ1 ϕ2 χ2 � � � ϕN/2 χN/2
τ1 κ1 τ2 κ2 � � � τN/2 κN/2

]

ϕ	χ	τ	κ complex TSW8

1Also, according to Fukutome, TICS, i.e. Time-reversal-Invariant Closed Shells.
2Charge Current Waves.
3Axial Spin Current Waves.
4Axial Spin Density Waves.
5Axial Spin Waves.
6Torsional Spin Current Waves.
7Torsional Spin Density Waves.
8Torsional Spin Waves.

• The RHF function is always an eigenfunction of the Ŝ2 operator (and, of course,
of the Ŝz). This is no longer true, when extending beyond the RHF method
(triplet instability).triplet instability

• The probability densities of finding the σ = 1
2 and σ =− 1

2 electron coordinate
are different for the majority of Fukutome classes (“spin waves”).

Example: Triplet instability

The wave function in the form of a Slater determinant is always an eigenfunction
of the Ŝz operator, and if in addition double occupancy is assumed (RHF) then it is
also an eigenfunction of the Ŝ2 operator, as exemplified by the hydrogen molecule
in Appendix Q on p. 1006.

cell twice as long as that of the nuclear pattern [J. Paldus, J. Čižek, J. Polym. Sci., Part C 29 (1970) 199,
also J.-M. André, J. Delhalle, J.G. Fripiat, G. Hennico, J.-L. Calais, L. Piela, J. Mol. Struct. (Theochem)
179 (1988) 393]. The BOAS represents a feature related to the Jahn–Teller effect in molecules and to
the Peierls effect in the solid state (see Chapter 9).
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And what about the UHF method?
Let us study the two electron system, where the RHF function (the TICS Fuku-

tome class) is:

ψRHF = 1√
2

∣
∣
∣
∣

φ1(1) φ1(2)
φ2(1) φ2(2)

∣
∣
∣
∣
	

and both spinorbitals have a common real orbital part ϕ: φ1 = ϕα	φ2 = ϕβ.
Now we allow for a diversification of the orbital part (keeping the functions

real, i.e. staying within the ASDW Fukutome class, usually called UHF in quantum
chemistry) for both spinorbitals. We proceed slowly from the closed-shell situation,
using as the orthonormal spinorbitals:

φ′1 =N−(ϕ− δ)α	 φ′2 =N+(ϕ+ δ)β	
where δ is a small real correction to the ϕ function, and N+ and N− are the nor-
malization factors.84 The electrons hate each other (Coulomb law) and may thank
us for giving them separate apartments: ϕ+ δ and ϕ− δ. We will worry about the
particular mathematical shape of δ in a minute. For the time being let us see what
happens to the UHF function:

ψUHF = 1√
2

∣
∣
∣
∣
∣

φ′1(1) φ′1(2)
φ′2(1) φ′2(2)

∣
∣
∣
∣
∣

= 1√
2
N+N−

∣
∣
∣
∣

[ϕ(1)− δ(1)]α(1) [ϕ(2)− δ(2)]α(2)
φ′2(1) φ′2(2)

∣
∣
∣
∣

= 1√
2
N+N−

{∣
∣
∣
∣

ϕ(1)α(1) ϕ(2)α(2)
φ′2(1) φ′2(2)

∣
∣
∣
∣
−
∣
∣
∣
∣

δ(1)α(1) δ(2)α(2)
φ′2(1) φ′2(2)

∣
∣
∣
∣

}

= 1√
2
N+N−

⎧

⎪⎪⎨

⎪⎪⎩

∣
∣
∣
∣

ϕ(1)α(1) ϕ(2)α(2)
[ϕ(1)+ δ(1)]β(1) [ϕ(2)+ δ(2)]β(2)

∣
∣
∣
∣
−

∣
∣
∣
∣

δ(1)α(1) δ(2)α(2)
[ϕ(1)+ δ(1)]β(1) [ϕ(2)+ δ(2)]β(2)

∣
∣
∣
∣

⎫

⎪⎪⎬

⎪⎪⎭

= 1√
2
N+N−

⎧

⎪⎪⎨

⎪⎪⎩

∣
∣
∣
∣

ϕ(1)α(1) ϕ(2)α(2)
ϕ(1)β(1) ϕ(2)β(2)

∣
∣
∣
∣
+
∣
∣
∣
∣

ϕ(1)α(1) ϕ(2)α(2)
δ(1)β(1) δ(2)β(2)

∣
∣
∣
∣
−

∣
∣
∣
∣

δ(1)α(1) δ(2)α(2)
ϕ(1)β(1) ϕ(2)β(2)

∣
∣
∣
∣
−
∣
∣
∣
∣

δ(1)α(1) δ(2)α(2)
δ(1)β(1) δ(2)β(2)

∣
∣
∣
∣

⎫

⎪⎪⎬

⎪⎪⎭

=N+N−ψRHF

+ 1√
2
N+N−

{[

ϕ(1)δ(2)−ϕ(2)δ(1)][α(1)β(2)+ α(1)β(2)]}

− 1√
2
N+N−

∣
∣
∣
∣

δ(1)α(1) δ(2)α(2)
δ(1)β(1) δ(2)β(2)

∣
∣
∣
∣
�

84Such a form is not fully equivalent to the UHF method, in which a general form of real orbitals is
allowed.
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The first and last functions are singlets (Sz = 0, S = 0), while the second function
represents a triplet state (Sz = 0, S = 1), Appendix Q on p. 1006. Thus a small di-
versification of the orbital functions leads to some triplet (second term) and singlet
(third term) admixtures to the original singlet function N+N−ψRHF (called triplet
contamination). The former is proportional to δ and the latter to δ2. Now the total
wave function is no longer an eigenfunction of the Ŝ2 operator. How is this possi-
ble? If one electron has a spin coordinate of 1

2 and the second one of − 1
2 , aren’t

they paired? Well, not necessarily, because one of the triplet functions (which de-
scribes the parallel configuration of both spins85) is [α(1)β(2)+ α(1)β(2)].

Is the resulting UHF energy (calculated for such a function) lower than the cor-
responding RHF energy (calculated for ψRHF), i.e. is the RHF solution unstable
towards ASDW-type spinorbitals changes (no. 4 in the Table of Fukutome classes)?ASDW

It depends on a particular situation. A while before, we promised to consider
what the δ function should look like for the hydrogen molecule. In the RHF
method, both electrons occupy the same molecular orbital ϕ. If we assume within
the UHF method that whenever one electron is close to the a nucleus, the sec-
ond one prefers to be closer to b, this would happily be accepted by the electrons,
since they repel each other (the mean value of the Hamiltonian would decrease,
this is welcome). Taking the δ= εϕ̃ function (where ϕ̃ is the antibonding orbital,
and ε > 0 is a small coefficient) would have such consequences. Indeed, the sum
ϕ + δ = ϕ + εϕ̃ takes larger absolute value preferentially at one of the nuclei86

(Fig. 8.15). Since both orbitals correspond to electrons with opposite spins, there
will be some net spin on each of the nuclei. This nicely justifies the name of Axial
Spin Density Wave (ASDW) Fukutome gave to the UHF method.

A similar reasoning pertaining function ϕ − δ = ϕ − εϕ̃ results in oppositeAMO method

preferences for the nuclei. Such a particular UHF method, which uses virtual
orbitals ϕ̃ to change RHF orbitals, carries the friendly name of the AMO ap-
proach.87

Now,

ψUHF =N+N−ψRHF

+ 1√
2
N+N−ε

{[

ϕ(1)ϕ̃(2)−ϕ(2)ϕ̃(1)][α(1)β(2)+ α(1)β(2)]}

− 1√
2
N+N−ε2

∣
∣
∣
∣

ϕ̃(1)α(1) ϕ̃(2)α(2)
ϕ̃(1)β(1) ϕ̃(2)β(2)

∣
∣
∣
∣

=N+N−
[

ψRHF + ε
√

2ψT ′′ − ε2ψE
]

	

85To call them parallel is an exaggeration, since they form an angle 70�5◦ (see Chapter 1, p. 28), but
this is customary in physics and chemistry.
86In our example, the approximate bonding orbital is ϕ = 1√

2
(1sa + 1sb), and ϕ̃ = 1√

2
(1sa − 1sb),

hence ϕ+ εϕ̃= 1√
2
[(1+ ε)1sa + (1− ε)1sb], while ϕ− εϕ̃= 1√

2
[(1− ε)1sa + (1+ ε)1sb]. Thus one

of the new orbitals has a larger amplitude at nucleus a, while the other one has it at nucleus b (as we
had initially planned).
87Alternant Molecular Orbitals; P.-O. Löwdin is its author, Symp. Mol. Phys., Nikko (Tokyo Maruzen),

1954, p. 13, also R. Pauncz, “Alternant Molecular Orbitals”, Saunders, Philadelphia, 1967.
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Fig. 8.15. The effect of mixing the bonding or-
bital ϕ (Fig. a) with the antibonding orbital ϕ̃
(Fig. b). A small admixture (c) of ϕ̃ to the orbital
ϕ leads to an increase of the probability ampli-
tude of the resulting orbital at the left nucleus,
while a subtraction of ϕ̃ (d) leads to a larger
probability amplitude of the resulting orbital at
the right nucleus. Thus it results in partial sepa-
ration of the spins 1

2 and − 1
2 .

where the following notation is used
for normalized functions: ψRHF for the
ground state of the energy ERHF, ψT ′′
for the triplet state of the energy ET ,
andψE for the singlet state with a doubly
occupied antibonding orbital that corre-
sponds to the energy EE .

Let us calculate the mean value of the
Hamiltonian using the ψUHF function.
Because of the orthogonality of the spin
functions (remember that the Hamil-
tonian is independent of spin) we have

Per-Olov Löwdin (1916–2000),
Swedish chemist and physi-
cist, student of Pauli, pro-
fessor at the University of
Uppsala (Sweden), founder
and professor of the Quantum
Theory Project at Gainesville
University (Florida, USA), very
active in organizing the sci-
entific life of the international
quantum chemistry commu-
nity

〈ψRHF|ĤψT ′′ 〉 = 〈ψRHF|ψT ′′ 〉 = 0 and obtain (with accuracy up to ε2 terms)

ĒUHF ≈ 〈ψRHF|ĤψRHF〉 + 2ε2〈ψT ′′ |ĤψT ′′ 〉 − 2ε2〈ψRHF|ĤψE〉
〈ψRHF|ψRHF〉 + 2ε2〈ψT ′′ |ψT ′′ 〉

= ERHF + 2ε2ET − 2ε2(ϕϕ|ϕ̃ϕ̃)
1+ 2ε2 ≈ERHF + 2ε2[(ET −ERHF)− (ϕϕ|ϕ̃ϕ̃)

]

	

where the Taylor expansion and the III Slater–Condon rule have been used
(p. 986): 〈ψRHF|ĤψE〉 = (ϕϕ|ϕ̃ϕ̃) > 0. The last integral is greater than zero, be-
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cause it corresponds to the Coulombic self-repulsion of a certain charge distribu-
tion.

It is now clear that everything depends on the sign of the square bracket. IfET �
ERHF, then the spatial diversification of the opposite spin electrons (connected
with the stabilization of−2ε2(ϕϕ|ϕ̃ϕ̃)) will not pay because in such a caseEUHF �
ERHF. However, if the ET is close to the ground state energy, then the total energy

a)

b)
a.u.

a.u.

a.u.

Fig. 8.16. (a) The mean value of Hamiltonian (E) calculated by the RHF and UHF methods. The low-
est curve (EFCI) corresponds to the accurate result (called the full configuration interaction method,
see Chapter 10). (b) The mean value of the Ŝ2 operator calculated by the RHF and UHF methods. The
energies ERHF(R) and EUHF(R) are identical for internuclear distances R < 2�30 a.u. For larger R
values the two curves separate, and the RHF method gives an incorrect description of the dissociation
limit, while the UHF method still gives a correct dissociation limit. For R < 2�30 a.u., the RHF and
UHF wave functions are identical, and they correspond to a singlet, while for R> 2�30 the UHF wave
function has a triplet contamination. T. Helgaker, P. Jørgensen, J. Olsen, “Molecular Electronic Structure
Theory”, Wiley, Chichester, © 2000, reproduced with permission of John Wiley and Sons Ltd.
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will decrease upon the addition of the triplet state, i.e. the RHF solutions will be
unstable towards the AMO-type change of the orbitals.

This is the picture one obtains in numerical calculations for the hydrogen mole-
cule (Fig. 8.16). At short distances between the atoms (up to 2.30 a.u.) the interac-
tion is strong and the triplet state is of high energy. Then the variational principle
does not allow the triplet state to contribute to the ground state and the UHF and
the RHF give the same result. But beyond the 2.30 a.u. internuclear distance, the
triplet admixture results in a small stabilization of the ground state and the UHF
energy is lower than the RHF. For very long distances (when the energy difference
between the singlet and triplet states is very small), the energy gain associated with
the triplet component is very large.

We can see from Fig. 8.16.b the drama occurring at R= 2�30 a.u. for the mean
value of the Ŝ2 operator. For R< 2�30 a.u. the wave function preserves the singlet
character, for larger R the triplet addition increases fast, and at R=∞ the mean
value of the square of the total spin Ŝ2 is equal to 1, i.e. half-way between the
S(S + 1) = 0 result for the singlet (S = 0) and the S(S + 1) = 2 result for the
triplet (S = 1), since the UHF determinant is exactly 50% : 50% singlet and triplet
mixture. Thus, one determinant (UHF) is able to describe properly the dissociation of
the hydrogen molecule in its ground state (singlet), but at the expense of a large spin
contamination (triplet admixture).

RESULTS OF THE HARTREE–FOCK METHOD

8.6 MENDELEEV PERIODIC TABLE OF CHEMICAL
ELEMENTS

8.6.1 SIMILAR TO THE HYDROGEN ATOM – THE ORBITAL MODEL OF
ATOM

The Hartree–Fock method gives an approximate wave function for the atom of
any chemical element from the Mendeleev periodic table (orbital picture). The
Hartree–Fock method stands behind the orbital model of atoms. The model says
essentially that a single Slater determinant can describe the atom to an accuracy
that in most cases satisfies chemists. To tell the truth, the orbital model is in prin-
ciple false,88 but it is remarkable that nevertheless the conclusions drawn from it
agree with experiment, at least qualitatively. It is quite exciting that

the electronic structure of all elements can be generated to a reasonable
accuracy using the Aufbau Prinzip, i.e. a certain scheme of filling the atomic
orbitals of the hydrogen atom.

88Because the contributions of other Slater determinants (configurations) is not negligible (see Chap-
ter 10).
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Dimitrii Ivanovich Mendeleev (1834–1907),
Russian chemist, professor at the University in
Petersburg, and later controller of the Russian
Standards Bureau of Weights and Measures
(after he was expelled from the University
by the tsarist powers for supporting a stu-
dent protest). He was born in Tobolsk, as the
youngest of fourteen children of a headmas-
ter. In 1859 young Mendeleev – thanks to a
tsarist scholarship – went to Paris and Heidel-
berg, where he worked with Robert Bunsen
and Gustav Kirchhoff. After getting his Ph.D. in
1865, he became at 32 professor of Chemistry
at the University in Sankt Petersburg. Since he
had no good textbook, he started to write his
own (“Principles of chemistry”). This is when
he discovered one of the major human gener-
alizations (1869): the periodicity law of chemi-
cal elements.

In 1905 he was nominated for the Nobel
Prize, but lost by one vote to Henri Moissan,
the discoverer of fluorine. The Swedish Royal
Academy thus lost its chance, because in a
year or so Mendeleev died. Many scientists
have had similar intuition as had Mendeleev,

but it was Mendeleev who completed the
project, who organized the known elements
in the Table, and who predicted the existence
of unknown elements. The following example
shows how difficult it was for science to ac-
cept the Periodic Table. In 1864 John New-
lands presented to The Royal Society in Lon-
don his work showing similarities of the light
elements, occurring for each eighth element
with increasing atomic mass. The President of
the meeting, quite amused by these considera-
tions, suggested: “haven’t you tried to organize
them according to the alphabetic order of their
names?”.

Thus, the simple and robust orbital model serves chemistry as a “work horse”.
Let us take some examples. All the atoms are build on a similar principle. A node-
less spherically symmetric atomic orbital (called 1s) of the lowest orbital energy,
next, the second lowest (and also the spherically symmetric, one radial node) is
called 2s, etc. Therefore, when filling orbital energy states by electrons some elec-
tronic shells are formed: K (1s2), L (2s22p6)	 � � � , where the maximum for shell
orbital occupation by electrons is shown.

The very foundations of a richness around us (its basic building blocks being
atoms in the Mendeleev Periodic Table) result from a very simple idea, that the
proton and electron form a stable system called the hydrogen atom.

8.6.2 YET THERE ARE DIFFERENCES. . .

The larger the atomic number, the more complex the electronic structure. For
neutral atoms the following occupation scheme applies.

Aufbau Prinzip

The Aufbau Prinzip relies on a scheme of orbital energies, Fig. 8.17. We cannot
however expect that all nuances of atomic stabilities and of the ions correspond-
ing to them might be deduced from a single simple rule like the Aufbau Prinzip,
and not from the hard work of solving the Schrödinger equation (plus also the
relativistic effects, Chapter 3) individually for each particular system.electronic

configuration
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Fig. 8.17. A diagram of the order (in an energy scale)
of the orbital energies as functions of the atomic
number Z. This diagram, together with the Aufbau
Prinzip, allows to write down the electronic configu-
rations of atoms and explains the physical and chem-
ical properties of chemical elements (adapted from
P. Atkins, “Physical Chemistry”, sixth ed., Oxford Uni-
versity Press, Oxford, 1998).

From Fig. 8.17 can see that:

• the orbital energy depends not only on the principal quantum number n, but also
on the angular quantum number89 l, and the larger the l, the higher the energy,

• since for large n the Aufbau Prinzip is not always valid, the levels of a given n
overlap in the energy scale with the n′ = n+ 1 levels.

Even so, the consecutive occupation of the electronic shells by electrons leads
to a quasi-periodicity (sometimes called the periodicity) of the electronic configu-
rations, and in consequence a quasi-periodicity of all chemical and physical prop-
erties of the elements.

Example 1. Noble gases. The atoms He, Ne, Ar, Kr, Xe, Rn have a remarkable
feature, that all the subshells below and including ns np subshell are fully occupied.

configuration number of electrons
He: 1s2 2
Ne: 1s22s22p6 10= 2+ 8
Ar: 1s22s22p63s23p6 18= 2+ 8+ 8
Kr: 1s22s22p63s23p63d104s24p6 36= 2+ 8+ 8+ 18
Xe: 1s22s22p63s23p63d104s24p64d105s25p6 54= 2+ 8+ 8+ 18+ 18
Rn: 1s22s22p63s23p63d104s24p64d105s25p64f 145d106s26p6 86= 2+ 8+ 8+ 18+ 18+ 32

89If the nucleus were large, then orbitals of different l would have different orbital energies. This
explains the energy differences for the s	p	d, . . . levels, because the outer shell electrons move in the
field of the nucleus shielded by the inner shell electrons (thus, in a field of something that can be seen
as a large pseudo-nucleus).
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According to the discussion on p. 363, what chemistry is all about is the outer-
most occupied orbitals that participate in forming chemical bonds. The noble gases
stand out from other elements by completing their electronic shells, no wonder
then that they are distinguished by very special chemical properties. The noble
gases do not form chemical bonds.90

Example 2. Alkali metals. The atoms Li, Na, K, Rb, Cs, Fr have the following dom-
inant electronic configurations (the inner shells have been abbreviated by reporting
the corresponding noble gas atom configuration):

inner shells valence configuration
Li [He] 2s1

Na [Ne] 3s1

K [Ar] 4s1

Rb [Kr] 5s1

Cs [Xe] 6s1

Fr [Rn] 7s1

No wonder that the elements Li, Na, K, Rb, Cs, Fr exhibit similar chemical
and physical properties. Let us take any property we want, e.g., what will we get if
the element is thrown into water. Lithium is a metal that reacts slowly with water,
producing a colourless basic solution and hydrogen gas. Sodium is a metallic sub-
stance, and with water is a very dangerous spectacle (wild dancing flames). It reacts
rapidly with water to form a colourless basic solution and hydrogen gas. The other
alkali metals are even more dangerous. Potassium is a metal as well, and reacts
very rapidly with water giving a colourless basic solution and hydrogen gas. Rubid-
ium is a metal which reacts very rapidly with water producing a colourless basic
solution and hydrogen gas. Cesium metal reacts rapidly with water. The result is a
colourless solution and hydrogen gas. Francium is very scarce and expensive, and
probably no one has tried its reaction with water. We may however expect, with very
high probability, that if the reaction were made, it would be faster than that with cesium
and that a basic solution would be produced.

However maybe all elements react rapidly with water to form a colourless basic
solution and hydrogen gas? Well, this is not true. The noble gases do not. Helium
does not react with water. Instead it dissolves slightly in it to the extent of about
8.61 cm3/kg at 293 K. Also neon does not react with water, but it does dissolve in
it – just about 10.5 cm3/kg at 293 K. Argon, krypton, xenon and radon also do not
react with water. They dissolve in it to the extent of 33.6, 59.4, 108.1 and 230 cm3/kg
at 293 K, respectively. It is clear that these elements form a family that does not
react with water at 293 K, but instead dissolves (slightly) in water.91 The reason is
that all these elements have closed (i.e. fully occupied) shells, whereas a chemical
reaction needs the opening of closed shells (see Chapter 14).

90We have to add though, that the closed shells of the noble gases can be opened either in extreme
physical conditions or by using aggressive compounds. Then, they may form chemical bonds.
91Note, that the concentration increases monotonically.



8.7 The nature of the chemical bond 383

Example 3. Halogens. Let us see whether there are other families. Let us con-
centrate on atoms which have p5 as the outer-most configuration. Using our
scheme of orbital energies we produce the following configurations with this prop-
erty: [He]2s22p5 with 9 electrons, i.e. F, [Ne]3s23p5 with 17 electrons, i.e. Cl,
[Ar]3d104s24p5 with 35 which corresponds to Br, [Kr]4d105s25p5 with 53 electrons
which is iodine, [Xe]4f 145d106s26p5 means 85 electrons, i.e. astatine, or At. Are
these elements similar? What happens to halogens in contact with water? Maybe
they react very rapidly with water producing a colourless basic solution and hydro-
gen gas like the alkali metals, or do they just dissolve in water like the noble gases?
Let us see.

Fluorine reacts with water to produce oxygen, O2, and ozone O3. This is strange
in comparison with alkali metals. Next, chlorine reacts with water to produce
hypochlorite, OCl−. Bromine and iodine do a similar thing producing hypobromite
OBr− and hypoiodite OI−. Nothing is known about the reaction of astatine with
water. Apart from the exceptional behaviour of fluorine,92 there is no doubt we
have a family of elements. This family is different from the noble gases and from
the alkali metals.

Thus, the families show evidence that elements differ widely among families,
but much less within a family, with rather small (and often monotonic) changes
within it. This is what (quasi) periodicity is all about. The families are called groups group

(usually columns) in the Mendeleev Table.
The Mendeleev Periodic Table represents a kind of compass in chemistry. In-

stead of having a sort of wilderness, where all the elements exhibit their unique
physical and chemical properties as deus ex machina, we obtain understanding that
the animals are in a zoo, and are not unrelated, that there are some families, which
follow from similar structure and occupancy of the outer electronic shells. More-
over, it became clear that there are cages in the zoo waiting for animals yet to be
discovered. The animals could have been described in detail before they were ac-
tually found by experiment. This periodicity pertains not only to the chemical and
physical properties of elements, but also to all parameters that appear in theory
and are related to atoms, molecules and crystals.

8.7 THE NATURE OF THE CHEMICAL BOND

As shown on p. 371, the MO method explains the nature of the chemical bond
via the argument that the orbital energy in the molecule is lower than that in the
isolated atom. But why is this so? Which interactions decide bond formation? Do
they have their origin in quantum or in classical mechanics?

To answer these questions, we will analyze the simplest case: chemical bonding
in a molecular ion H+

2 . It seems that quantum mechanics is not required here: we

92For light elements the details of the electronic configuration play a more important role. For exam-
ple, hydrogen may also be treated as an alkali metal, but its properties differ widely from the properties
of the other members of this family.
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deal with one repulsion and two attractions. No wonder there is bonding, since
the net effect is one attraction. But the same applies, however, to the dissociated
system (the hydrogen atom and the proton). Thus, the story is becoming more
subtle.

8.7.1 H+
2 IN THE MO PICTURE

Let us analyze chemical bonding as viewed by the poor version of the MO method
(only two 1s hydrogen atom orbitals are used in the LCAO expansion, see Ap-
pendix R on p. 1009). Much can be seen thanks to such a poor version. The
mean kinetic energy of the (only) electron of H+

2 , residing on the bonding MO
ϕ= [2(1+ S)]−1/2(a+ b), is given as (a and b denote the atomic 1s orbitals cen-
tred, respectively, on the a and b nuclei)

T̄ ≡ (ϕ|T̂ϕ)= Taa + Tab
1+ S 	 (8.59)

where S is the overlap integral S = (a|b), and

Taa =
(

a

∣
∣
∣
∣
−1

2
�
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a

)

= Tbb	
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(

a
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∣
∣
−1

2
�

∣
∣
∣
∣
b

)

= Tba�

The non-interacting hydrogen atom and the proton have the mean kinetic en-
ergy of the electron equal to Taa. The kinetic energy change is thus

�T = T̄ − Taa = Tab − STaa
1+ S � (8.60)

The denominator is always positive, and the numerator (as known from compu-
tational experience) is negative for any internuclear distance. This means that the
kinetic energy of the electron decreases upon molecule formation.93 Hence,

kinetic energy stabilizes the molecule but not the atom.

Let us note (please recall the a and b functions are the eigenfunctions of the hy-
drogen atom Hamiltonian), that Tab =EHS − Vab	b and Taa =EH − Vaa	a, where

93This agrees with intuition, which suggests that an electron now has more space for penetration
(“larger box”, see p. 145), and the energy levels in the box (potential energy is zero in the box, therefore
we mean kinetic energy here) decrease, when the box dimension increases. This example shows that
some abstract problems which can be solved exactly (here the particle in the box), serve as a beacon for
more complex problems.
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EH is the ground state energy of the H atom,94 and

Vab	b = Vab	a = −
(
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1
rb

∣
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b

)

	

Vaa	a = −
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1
ra

∣
∣
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∣
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)

�

Now, �T can be presented as

�T =−Vab	a − SVaa	a
1+ S 	 (8.61)

because the terms with EH cancel each other. In this way the change in kinetic
energy of the electron when a molecule is formed may be formally presented as the
integrals describing the potential energy.

Now let us calculate the change in the mean potential energy. The mean po-
tential energy of the electron (the nucleus–nucleus interaction will be added later)
equals to

V̄ = (ϕ|V |ϕ)=
(

ϕ

∣
∣
∣
∣
− 1
ra
− 1
rb

∣
∣
∣
∣
ϕ

)

= (Vaa	a + Vaa	b + 2Vab	a)
1+ S (8.62)

while in the hydrogen atom it was equal to Vaa	a. The difference, �V , is

�V = (−SVaa	a + 2Vab	a + Vaa	b)
1+ S � (8.63)

We can see that when the change in total electronic energy �Eel = �T +�V is cal-
culated, some kinetic energy terms will cancel the corresponding potential energy
terms, and potential energy will dominate during bond formation:

�Eel = Vab	a + Vaa	b
1+ S � (8.64)

To obtain the change, �E, in the total energy of the system during bond formation,
we have to add the term 1/R describing the nuclear repulsion

�E = Vab	a
1+ S +

Vaa	b
1+ S +

1
R
� (8.65)

This formula is identical (because Vab	a = Vab	b ) to the difference in orbital en-
ergies in the molecule H+

2 and in the hydrogen atom, as given in Appendix R on
p. 1009.

94For example, Tab = (a| − 1
2�|b)= (a| − 1

2�− 1
rb
+ 1
rb
|b)=EHS + (a| 1

rb
|b)= EHS− Vab	b.
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The formula can be easily interpreted. Let us first consider the electron density
described by the ϕ orbital: ϕ2 = [2(1+ S)]−1(a2 + b2 + 2ab). Let us note that the
density can be divided into the part close to nucleus a, that close to nucleus b, and
that concentrated in the bonding region95

ϕ2 = ρa + ρb + ρab	 (8.66)

where ρa = [2(1 + S)]−1a2, ρb = [2(1 + S)]−1b2, ρab = [(1 + S)]−1ab. It can be
seen,96 that the charge associated with ρa is [−2(1+ S)]−1, the charge connected
with the nucleus b is the same, and the overlap charge ρab is −S/(1+ S). Their
sum gives −2/[2(1+ S)] − 2S/[2(1+ S)] = −1 (the unit electronic charge). The
formula for �E may also be written as (we use symmetry: the nuclei are identical,
and the a and b orbitals differ only in their centres):

�E = Vab	a
[2(1+ S)] +

Vab	b
[2(1+ S)] +

Vaa	b
[2(1+ S)] +

Vbb	a
[2(1+ S)] +

1
R
� (8.67)

Now it is clear that this formula exactly describes the Coulombic interaction
(Fig. 8.18.a,b):

• of the electron cloud from the a atom (with density 1
2ρab) with the b nucleus,

and vice versa (the first two terms of the expression),
• of the electron cloud of density ρa with the b nucleus (third term),
• of the electron cloud of density ρb with the a nucleus (fourth term),
• of the a and b nuclei (fifth term).

If we consider classically a proton approaching a hydrogen atom, the only terms
for the total interaction energy are (Fig. 8.18.c):

�Eclass = Vaa	b + 1
R
� (8.68)

The difference between �E and �Eclass only originates from the difference in elec-
tron density, calculated quantum mechanically and classically, cf. Fig. 8.18.b,c. The
�Eclass is a weak interaction (especially for long distances), and tends to +∞ for
small R, because97 of the 1/R term. This can be understood because �Eclass is the
difference between two Coulombic interactions: of a point charge with a spheri-
cal charge cloud, and of the respective two point charges (called penetration en-penetration

energy ergy). �E contains two more terms in comparison with �Eclass: Vab	a/[2(1 + S)]
and Vab	b/[2(1+ S)], and both decrease exponentially to Vaa	a =−1 a.u., when R
decreases to zero. Thus these terms are not important for long distances, stabi-
lize the molecule for intermediate distances (and provide the main contribution
to the chemical bond energy), and are dominated by the 1/R repulsion for small
distances.
95Function a(1)b(1) has the highest value in the middle of the bond.
96After integrating of ρa .
97Vaa	a is finite.
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Fig. 8.18. The nature of the
chemical bond in the H+2 mole-
cule (schematic interpretation):
— (a) The quantum picture of the
interaction. The total electron
density ϕ2 = ρa+ρb+ρab , con-
sists of three electronic clouds
ρa = [2(1+S)]−1a2 bearing the
− 1

2(1+S) charge concentrated
close to the a nucleus, a similar
cloud ρb = [2(1+ S)]−1b2 con-
centrated close to the b nucleus
and the rest (the total charge is
−1) ρab = [(1 + S)]−1ab bear-
ing the charge of −2 S

2(1+S) ,
concentrated in the middle of
the bond. The losses of the
charge on the a and b atoms
have been shown schematically,
since the charge in the mid-
dle of the bond originates from
these losses. The interactions
have been denoted by arrows:
there are all kinds of interac-
tions of the fragments of one
atom with the fragments of the
second one.
— (b) The quantum picture –
summary (we will need it in just
a moment). This scheme is sim-
ilar to (a), but it has been em-
phasized that the attraction of
ρa by nucleus b is the same as
the attraction of ρb by nucleus
a, hence they were both pre-
sented as one interaction of nu-
cleus b with charge of −2ρa at a
(hence the double contour line
in the figure). In this way two of
the interaction arrows have dis-
appeared as compared to (a).

a)

b)

c)

twice

twice

twice

twice

— (c) The classical picture of the interaction between the hydrogen atom and a proton. The proton (nucleus
b) interacts with the electron of the a atom, bearing the charge of −1=−2 1

2(1+S) − 2 S
2(1+S) and with

nucleus a. Such division of the electronic charge indicates that it consists of two fragments ρa [as in
(b)] and of two − S

2(1+S) charges [i.e. similar to (b), but centred in another way]. The only difference
as compared to (b) is, that in the classical picture nucleus b interacts with two quite distant electronic
charges (put in the vicinity of nucleus a), while in the quantum picture [schemes (a) and (b)] the same
charges attract themselves at short distance.
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In the quantum case, for the electron charge cloud connected with the a nu-
cleus, a2 is decreased by a charge of S/(1 + S), which shifts to the halfway point
towards nucleus b. In the classical case, there is no charge shift – the whole charge
is close to a. In both cases there is the nucleus–nucleus and the nucleus–electron
interaction. The first is identical, but the latter is completely different in both
cases. Yet even in the latter interaction, there is something in common: the in-
teraction of the nucleus with the major part of the electron cloud, with charge
−[1− S/(1+ S)] = −1/(1+ S). The difference in the cases is the interaction with
the remaining part of the electron cloud,98 the charge −S/(1+ S).

In the classical view this cloud is located close to distant nucleus a, in the
quantum view it is in the middle of the bond. The latter is much better for
bonding. This interaction, of the (negative) electron cloud ρab in the middle
of the bond with the positive nuclei, stabilizes the chemical bond.

8.7.2 CAN WE SEE A CHEMICAL BOND?

If a substance forms crystals, it may be subjected to X-ray analysis. Such an analy-
sis is quite exceptional, since it is one of very few techniques (which include
neutronography and nuclear magnetic resonance spectroscopy), which can show
atomic positions in space. More precisely, the X-ray analysis shows electronic den-
sity maps, because the radiation sees electrons, not nuclei. The inverse is true in
neutronography. If we have the results of X-ray and neutron scattering, we can sub-
tract the electron density of atoms (positions shown by neutron scattering) from
the electron density of the molecular crystal (shown by X-ray scattering). This dif-
ference would be a consequence of the chemical bonding (and to a smaller extent
of the intermolecular interactions). This method is called X–N or X–Ray minus
Neutron Diffraction.99 Hence differential maps of the crystal are possible, where
we can see the shape of the “additional” electron density at the chemical bond, or
the shape of the electron deficit (negative density) in places where the interaction
is antibonding.100

98This simple interpretation gets more complex when further effects are considered, such as contribu-
tions to the energy due to the polarization of the spherically symmetric atomic orbitals or the exponent
dependence of the 1s orbitals (i.e. the dimensions of these orbitals) on the internuclear distance. When
there are several factors at play (some positive, some negative) and when the final result is of the order
of a single component, then we decide which component carries responsibility for the outcome. The
situation is similar to that in Parliament, when two MPs from a small party are blamed for the result
of a vote (the party may be called the balancing party) while perhaps 200 others who also voted in a
similar manner are left in peace.
99There is also a pure X-ray version of this method. It uses the fact that the X-ray reflections obtained

at large scattering angles see only the spherically symmetric part of the atomic electron density, similarly
to that which we obtain from neutron scattering.
100R. Boese, Chemie in unserer Zeit 23 (1989) 77; D. Cremer, E. Kraka, Angew. Chem. 96 (1984) 612.
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From the differential maps we can estimate (by comparison with standard sub-
stances):

1) the strength of a chemical bond via the value of the positive electron density at
the bond,

2) the deviation of the bond electron density (perpendicular intersection) from
the cylindrical symmetry, which gives information on the π character of the
chemical bond,

3) the shift of the maximum electron density towards one of the atoms which indi-
cates the polarization of the bond, bond

polarization4) the shift of the maximum electron density away from the straight line connect-
ing the two nuclei, which indicates bent (banana-like) bonding.

This opens up new possibilities for comparing theoretical calculations with experi-
mental data.

8.8 EXCITATION ENERGY, IONIZATION POTENTIAL, AND
ELECTRON AFFINITY (RHF APPROACH)

8.8.1 APPROXIMATE ENERGIES OF ELECTRONIC STATES

Let us consider (within the RHF scheme) the simplest closed-shell system with
both electrons occupying the same orbital ϕ1. The Slater determinant, called ψG
(G from the ground state) is built from two spinorbitals φ1 = ϕ1α and φ2 = ϕ1β.
We also have the virtual orbital ϕ2, corresponding to orbital energy ε2, and we
may form two other spinorbitals from it. We are now interested in the energies of
all the possible excited states which can be formed from this pair of orbitals. These
states will be represented as Slater determinants, built from ϕ1 and ϕ2 orbitals
with the appropriate electron occupancy. We will also assume that excitations do
not deform the ϕ orbitals (which is, of course, only partially true). Now all possible
states may be listed by occupation of the ε1 and ε2 orbital levels, see Table 8.2.

Table 8.2. All possible occupations of levels ε1 and ε2

level function ψG ψT ψT ′ ψ1 ψ2 ψE

ε2 – α β β α αβ
ε1 αβ α β α β –

E is a doubly excited electronic state, T and T ′ are two of three possible triplet
states of the same energy. If we require that any state should be an eigenfunction
of the Ŝ2 operator (it also needs to be an eigenfunction of Ŝz , but this condition is
fortunately fulfilled by all the functions listed above), it appears that only ψ1 and
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ψ2 are illegal. However, their combinations:

ψS = 1√
2
(ψ1 −ψ2) (8.69)

ψT ′′ = 1√
2
(ψ1 +ψ2)� (8.70)

are legal. The first describes the singlet state, and the second the triplet state (the
third function missing from the complete triplet set).101 This may be easily checked
by inserting the spinorbitals into the determinants, then expanding the determi-
nants, and separating the spin part. For ψS , the spin part is typical for the singlet,
α(1)β(2)− α(2)β(1), for T	T ′ and T ′′ the spin parts are, respectively, α(1)α(2),
β(1)β(2) and α(1)β(2)+α(2)β(1). This is expected for triplet functions with com-
ponents of total spin equal to 1	−1	0, respectively (Appendix Q).

Now let us calculate the mean values of the Hamiltonian using the states men-
tioned above. Here we will use the Slater–Condon rules (p. 986), which soon102

produce in the MO representation:

EG = 2h11 +J11	 (8.71)

ET = h11 + h22 +J12 −K12	 (8.72)

(for all three components of the triplet)

ES = h11 + h22 +J12 +K12	 (8.73)

EE = 2h22 +J22	 (8.74)

where hii = (ϕi|ĥ|ϕi), and ĥ is a one-electron operator, the same as that appearing
in the Slater–Condon rules, and explicitly shown on p. 335, Jij and Kij are two two-
electron integrals (Coulombic and exchange): Jij = (ij|ij) and Kij = (ij|ji).

The orbital energies of a molecule (calculated for the state with the doubly oc-
cupied ϕ1 orbital) are:

εi = (ϕi|F̂ |ϕi)= (ϕi|ĥ+ 2Ĵ − K̂|ϕi)	 (8.75)

where

Ĵ (1)χ(1) =
∫

dV2ϕ
∗
1(2)ϕ1(2)

1
r12
χ(1)	 (8.76)

101Let us make a convention, that in the Slater determinant 1√
2

det |φ1(1)φ2(2)|, the spinorbitals are

organized according to increasing orbital energy. This is important because only then are the signs in
formulae (8.69) and (8.70) valid.
102For EG the derivation of the final formula is given on p. 352 (E′RHF). The other derivations are
simpler.
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K̂(1)χ(1) =
∫

dV2ϕ
∗
1(2)χ(2)

1
r12
ϕ1(1)� (8.77)

Thus, we get:

ε1 = h11 +J11	 (8.78)

ε2 = h22 + 2J12 −K12� (8.79)

Now, the energies of the electronic states can be expressed in terms of orbital
energies:

EG = 2ε1 −J11	 (8.80)

ET = ε1 + ε2 −J11 −J12 (8.81)

(for the ground singlet state and for the three triplet components of the common
energy ET ). The distinguished role of ϕ1 (in ET ) may be surprising (since the elec-
trons reside on ϕ1 and ϕ2), but ϕ1 is indeed distinguished, because the εi values
are derived from the Hartree–Fock problem with the only occupied orbital ϕ1. So
we get:

ES = ε1 + ε2 −J11 −J12 + 2K12	 (8.82)

EE = 2ε2 +J22 − 4J12 + 2K12� (8.83)

Now it is time for conclusions.

8.8.2 SINGLET OR TRIPLET EXCITATION?
The Jabłoński diagram plays an impor-
tant role in molecular spectroscopy
(Fig. 8.19). It shows three energy lev-
els: the ground state (G), the first ex-
cited singlet state (S), and the metastable
in-between state. Later on researchers
identified this metastable state as the
lowest triplet (T).103

Let us compute the energy difference
between the singlet and triplet states:

Aleksander Jabłoński (1898–
1980), Polish theoretical physi-
cist, professor at the John
Casimirus University in Vil-
nius, then at the Nicolaus
Copernicus University in Toruń,
studied photoluminescence
problems.

ET −ES =−2K12 < 0 (8.84)

This equation says that

a molecule always has lower energy in the excited triplet state than in the
excited singlet state (both states resulting from the use of the same orbitals),

103A. Jabłoński, Nature 131 (1933) 839; G.N. Lewis, M. Kasha, J. Am. Chem. Soc. 66 (1944) 2100.
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S

T

G Fig. 8.19. The Jabłoński diagram. The ground state
is G. The energy of the singlet excited state (S) is
higher than the energy of the corresponding triplet
state (T; that resulting from use of the same orbitals).

because K12 = (ϕ1(1)ϕ2(2)| 1
r12
|ϕ2(1)ϕ1(2)) is always positive being the interac-

tion of two identical charge distributions (interpretation of an integral, real func-
tions assumed). This rule holds firmly for the energy of the two lowest (singlet and
triplet) states.

8.8.3 HUND’S RULE

The difference between the energies of the ground and triplet states is:

ET −EG = (ε2 − ε1)−J12� (8.85)

This result has a simple interpretation. The excitation of a single electron (to
the triplet state) costs some energy (ε2 − ε1), but (since J12 > 0) there is also

Friedrich Hermann Hund
(1896–1997), professor of the-
oretical physics at the Univer-
sities in Rostock, in Leipzig
(1929–1946), Jena, Frank-
furt am Main, and finally Göt-
tingen, where in his youth
he had worked with Born
and Franck. He applied quan-
tum theory to atoms, ions
and molecules and discov-
ered his famous empirical
rule in 1925 (biography in

German: Intern. J. Quantum
Chem. S11 (1977) 6).

an energy gain (−J12) connected with
the removal of the (mutually repulsing)
electrons from the “common apartment”
(orbital ϕ1) to the two separate “apart-
ments” (ϕ1 and ϕ2). Apartment ϕ2 is ad-
mittedly on a higher floor (ε2 > ε1), but
if ε2− ε1 is small, then it may still pay to
move.

In the limiting case, if ε2−ε1 = 0, the
system prefers to put electrons in sep-
arate orbitals and with the same spins
(according to the empirical Hund rule,
Fig. 8.20).
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a) b)

Fig. 8.20. Energy of each configuration (EG, ET , ES ; left side of the pictures (a) and (b)) corresponds
to an electron occupation of the orbital energy levels (shown in boxes). Two electrons of the HOMO
face a dilemma:
— is it better for one of them (fortunately, they are not distinguishable. . . ) to make a sacrifice and move
to the upper-floor apartment (then they can avoid each other), Fig. (a);
— or is it better to occupy a common apartment on the lower floor (. . . but electrons do not like each
other), Fig. (b).
If the upper floor is not too high in the energy scale (small �, Fig. (a)), then each of the electrons
occupies a separate apartment and they feel best having their spins parallel (triplet state). But when
the upper floor energy is very high (large �, Fig. b), then both electrons are forced to live in the same
apartment, and in that case they have to have antiparallel spins (this ensures lower energy).
The Hund’s rule pertains to case (a) in its extreme form (�= 0). When there are several orbitals of the
same energy and there are many possibilities for their occupation, then the state with the lowest energy
is such that the electrons each go to a separate orbital, and the alignment of their spins is “parallel”
(see p. 32).

8.8.4 IONIZATION POTENTIAL AND ELECTRON AFFINITY (KOOPMANS
RULE)

The ionization potential of the molecule M is defined as the minimum energy
needed for an electron to detach from the molecule. The electron affinity energy of
the moleculeM is defined as the minimum energy for an electron detachment from
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M−. Let us assume again naively, that during these operations the molecular orbitals
and the orbital energies do not undergo any changes. In fact, of course, everything
changes, and the computations should be repeated for each system separately (the
same applies in the previous section for excitations).

In our two-electron system, which is a model of any closed-shell molecule,104

the electron removal leaves the molecule with one electron only, and its energy
has to be

E+ = h11� (8.86)
However,

h11 = ε1 −J11� (8.87)

This formula looks like trouble! After the ionization there is only a single electron
in the molecule, while here some electron–electron repulsion (integral J ) appears!
But everything is fine, because we still use the two-electron problem as a reference,
and ε1 relates to the two-electron problem, in which ε1 = h11 +J11. Hence,

IONIZATION ENERGY
The ionization energy is equal to the negative of the orbital energy of an
electron:

E+ −EG =−ε1� (8.88)

To calculate the electron affinity energy we need to consider a determinant as
large as 3×3, but this proves easy if the useful Slater–Condon rules (Appendix M)
are applied. Rule number I gives (we write everything using the spinorbitals, then
note that the three spinorbitals are derived from two orbitals, and then sum over
the spin variables):

E− = 2h11 + h22 +J11 + 2J12 −K12	 (8.89)

and introducing the orbital energies we get

E− = 2ε1 + ε2 −J11	 (8.90)

which gives

E− −EG = ε2 (8.91)

Hence,

ELECTRON AFFINITY
The electron affinity is the difference of the energies of the system with-
out an electron and one representing an anion, EG −E− =−ε2. It is equal
approximately to the negative energy of the virtual orbital on which the elec-
tron lands.

104Koopmans theorem applies for this case.
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A comment on Koopmans theorem

The MO approximation is, of course,
a rough approximation to reality. So is
Koopmans theorem, which proves to be
poorly satisfied for most molecules. But
these approximations are often used for
practical purposes. This is illustrated by
a certain quantitative relationship, de-
rived by Grochala et al.105

The authors noted, that a very sim-
ple relationship holds surprisingly well
for the equilibrium bond lengths R of
four objects: the ground state M0 of the

Tjalling Charles Koopmans
(1910–1985), American eco-
nometrist of Dutch origin, pro-
fessor at Yale University (USA),
introduced mathematical pro-
cedures of linear program-
ming to economics, and re-
ceived the Nobel Prize for in
1975 “for work on the theory
of optimum allocation of re-
sources”.

closed shell molecule, its excited triplet state MT , its radical–cation M+·, and
radical–anion M−·:

R(MT)=R(M−·)+R(M+·)−R(M0)�

The above relationship is similar to that pertaining to the corresponding ener-
gies

E(MT )=E(M−·)+E(M+·)−E(M0)	

which may be deduced, basing on certain approximations, from Koopmans theo-
rem,106 or from the Schrödinger equation while neglecting the two-electron op-
erators (i.e. Coulomb and exchange). The difference between these two expres-
sions is, however, fundamental: the latter holds for the four species at the same nu-
clear geometry, while the former describes the geometry changes for the “relaxed”
species.107 The first equation proved to be satisfied for a variety of molecules: eth-
ylene, cyclobutadiene, divinylbenzene, diphenylacetylene, trans-N2H2, CO, CN−,
N2, and NO+. It also inspired Andreas Albrecht to derive general inequalities,
holding for any one-electron property. The first equation, inspired by Koopmans
theorem, was analyzed in detail within density functional theory108 (described in
Chapter 11). It is not yet clear, if it would hold beyond the one-electron approxi-
mation, or for experimental bond lengths (these are usually missing, especially for
polyatomic molecules).

105W. Grochala, A.C. Albrecht, R. Hoffmann, J. Phys. Chem. A 104 (2000) 2195.
106Let us check it using the formulae derived by us: E(MT ) = ε1 + ε2 − J11 − J12, and E(M−·) +
E(M+·) − E(M0) = [2ε1 + ε2 − J11] + [ε1 − J11] − [2ε1 − J11] = ε2 + ε1 − J11. The equality is
obtained after neglecting J12 as compared to J11.
107If we assume that a geometry change in these states induces an energy increase proportional to
the square of the change, and that the curvature of all these parabolas is identical, then the above
relationship would be easily proved. The problem is that these states have significantly different force
constants, and the curvature of parabolas strongly varies among them.
108P.W. Ayers, R.G. Parr, J. Phys. Chem. A 104 (2000) 2211.
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8.9 LOCALIZATION OF MOLECULAR ORBITALS WITHIN
THE RHF METHOD

The canonical MOs derived from the RHF method are usually delocalized over the
whole molecule, i.e. their amplitudes are significant for all atoms in the molecule.
This applies, however, mainly to high energy MOs, which exhibit a similar AO am-
plitude for most atoms. Yet the canonical MOs of the inner shells are usually very
well localized. The canonical MOs are occupied, as usual, by putting two electrons
on each low lying orbital (the Pauli exclusion principle).

The picture obtained is in contrast to chemical intuition, which indicates
that the electron pairs are localized within the chemical bonds, free electron
pairs and inner atomic shells. The picture which agrees with intuition may
be obtained after the localization of the MOs.

The localization is based on making new orbitals as linear combinations of the
canonical MOs, a fully legal procedure (see p. 338). Then, the determinantal wave
function, as shown on p. 338, expressed in the new spinorbitals, takes the form
ψ′ = (detA)ψ. For obvious reasons, the total energy will not change in this case.
If linear transformation applied is an orthogonal transformation, i.e. ATA = 1,
or a unitary one, A†A = 1, then the new MOs preserve orthonormality (like the
canonical ones) as shown on p. 339. We emphasize that we can make any non-
singular109 linear transformationA, not only orthogonal or unitary ones. This means
something important, namely

the solution in the Hartree–Fock method depends on the space spanned by
the occupied orbitals (i.e. on the set of all linear combinations which can be
formed from the occupied MOs), and not on the orbitals only.

The new orbitals do not satisfy the Fock equations (8.30), these are satisfied
by canonical orbitals only.

The localized orbitals (being some other orthonormal basis set in the space
spanned by the canonical orbitals) satisfy the Fock equation (8.18) with the off-
diagonal Lagrange multipliers.

Can a chemical bond be defined in a polyatomic molecule?

Unfortunately, the view to which chemists get used, i.e. the chemical bonds be-
tween pairs of atoms, lone electron pairs, inner shells, can be derived in an infinite

109For any singular matrix detA= 0, and this should not be allowed (p. 339).
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number of ways (because of the arbitrariness of transformation A), and in each
case the effects of localization . . . vary. Hence,

we cannot uniquely define the chemical bond in a polyatomic molecule.

It is not a tragedy, however, because what really matters is the probability den-
sity, i.e. the square of the complex modulus of the total many-electron wave func-
tion. The concept of the (localized or delocalized) molecular orbitals represents
simply an attempt to divide this total density into various spatially separated al-
though overlapping parts, each belonging to a single MO. It is similar to dividing
an apple intoN parts. The freedom of such a division is unlimited. For example, we
could envisage that each part would have the dimension of the apple (“delocalized
orbitals”), or an apple would be simply cut axially, horizontally, concentrically etc.
into N equal parts, forming an analogue of the localized orbitals. Yet each time
the full apple could be reconstructed from these parts.

As we will soon convince ourselves, the problem of defining a chemical bond in a
polyatomic molecule is not so hopeless, because various methods lead to essentially
the same results.

Now let us consider some practical methods of localization. There are two cat-
egories of these: internal and external.110 In the external localization methods we
plan where the future MOs will be localized, and the localization procedure only
slightly alters our plans. This is in contrast with the internal methods where cer-
tain general conditions are imposed that induce automatically localization of the
orbitals.

8.9.1 THE EXTERNAL LOCALIZATION METHODS

Projection method
This is an amazing method,111 in which we first construct some arbitrary112 (but
linearly independent113) orbitals χi of the bonds, lone pairs, and the inner shells,
the total number of these being equal to the number of the occupied MOs. Now
let us project them on the space of the occupied HF molecular orbitals {ϕj} using
the projection operator P̂ :

P̂χi ≡
(MO
∑

j

|ϕj〉〈ϕj|
)

χi� (8.92)

110Like medicines.
111A. Meunier, B. Levy, G. Berthier, Theoret. Chim. Acta 29 (1973) 49.
112This is the beauty of the projection method.
113A linear dependence cannot be allowed. If this happens then we need to change the set of func-
tions χi .
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Table 8.3. Influence of the initial approximation on the final localized molecular orbitals in the projec-
tion method (the LCAO coefficients for the CH3F molecule)

Function χ for the CF bond The localized orbital of the CF bond

2s(C) 2p(C) 2s(F) 2p(F) 2s(C) 2p(C) 2s(F) 2p(F) 1s(H)

0.300 0.536 0.000 −0�615 0.410 0.496 −0�123 −0�654 −0�079
0.285 0.510 0.000 −0�643 0.410 0.496 −0�131 −0�655 −0�079
0.272 0.487 0.000 −0�669 0.410 0.496 −0�138 −0�656 −0�079
0.260 0.464 0.000 −0�692 0.410 0.496 −0�144 −0�656 −0�079
0.237 0.425 0.000 −0�730 0.410 0.496 −0�156 −0�658 −0�079

The projection operator is used to create the new orbitals

ϕ′i =
MO
∑

j

〈ϕj|χi〉ϕj� (8.93)

The new orbitals ϕ′i, as linearly independent combinations of the occupied canon-
ical orbitals ϕj , span the space of the canonical occupied HF orbitals {ϕj}. They
are in general non-orthogonal, but we may apply the Löwdin orthogonalization
procedure (symmetric orthogonalization, see Appendix J, p. 977).

Do the final localized orbitals depend on the starting χi in the projection
method? The answer114 is in Table 8.3. The influence is small.

8.9.2 THE INTERNAL LOCALIZATION METHODS

Ruedenberg method: the maximum interaction energy of the electrons
occupying a MO
The basic concept of this method was given by Lennard-Jones and Pople,115 and
applied by Edmiston and Ruedenberg.116 It may be easily shown that for a given
geometry of the molecule the functional

∑MO
i	j=1 Jij is invariant with respect to any

unitary transformation of the orbitals:
MO
∑

i	j=1

Jij = const� (8.94)

The proof is very simple and similar to the one on p. 340, where we derived the
invariance of the Coulombic and exchange operators in the Hartree–Fock method.
Similarly, we can prove another invariance

MO
∑

i	j=1

Kij = const′� (8.95)

114B. Lévy, P. Millié, J. Ridard, J. Vinh, J. Electr. Spectr. 4 (1974) 13.
115J.E. Lennard-Jones, J.A. Pople, Proc. Roy. Soc. (London) A202 (1950) 166.
116C. Edmiston, K. Ruedenberg, Rev. Modern Phys. 34 (1962) 457.
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This further implies that

maximization of
∑MO
i=1 Jii,

which is the very essence of the localization criterion, is equivalent to the mini-
mization of the off-diagonal elements

MO
∑

i<j

Jij � (8.96)

This means that to localize the molecular orbitals we try to make them as small as
possible, because then the Coulombic repulsion Jii will be large.

It may be also expressed in another way, given that

MO
∑

i	j

Kij = const′ =
MO
∑

i

Kii + 2
MO
∑

i<j

Kij =
MO
∑

i

Jii + 2
MO
∑

i<	j

Kij �

Since we maximize the
∑MO
i Jii, then simultaneously

we minimize the sum of the exchange contributions
MO
∑

i<j

Kij � (8.97)

Boys method: the minimum distance between electrons occupying a MO
In this method117 we minimize the functional118

MO
∑

i

(

ii
∣
∣r2

12

∣
∣ii
)

	 (8.98)

where the symbol (ii|r2
12|ii) denotes an integral similar to Jii = (ii|ii), but instead

of the 1/r12 operator, we have r2
12. Functional (8.98) is invariant with respect to any

unitary transformation of the molecular orbitals.119 Since the integral (ii|r2
12|ii)

represents the definition of the mean square of the distance between two elec-
trons described by ϕi(1)ϕi(2), the Boys criterion means that we try to obtain the
localized orbitals as small as possible (small orbital dimensions), i.e. localized in

117S.F. Boys, in “Quantum Theory of Atoms, Molecules and the Solid State”, P.O. Löwdin, ed., Academic
Press, New York, 1966, p. 253.
118Minimization of the interelectronic distance is in fact similar in concept to the maximization of the
Coulombic interaction of two electrons in the same orbital.
119We need to represent the orbitals as components of a vector, the double sum as two scalar products
of such vectors, then transform the orbitals, and show that the matrix transformation in the integrand
results in a unit matrix.
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some small volume in space. The method is similar to the Ruedenberg criterion of
the maximum interelectron repulsion. The detailed technique of localization will
be given in a moment. The integrals (8.98) are trivial. Indeed, using Pythagoras’
theorem, we get the sum of three simple one-electron integrals of the type:

(

i(1)i(2)
∣
∣(x2 − x1)

2∣∣i(1)i(2)
)

= (i(2)∣∣x2
2

∣
∣i(2)

)+ (i(1)∣∣x2
1

∣
∣i(1)

)− 2
(

i(1)
∣
∣x1
∣
∣i(1)

)(

i(2)
∣
∣x2
∣
∣i(2)

)

= 2
(

i
∣
∣x2∣∣i

)− 2
(

i
∣
∣x
∣
∣i
)2

8.9.3 EXAMPLES OF LOCALIZATION

Despite the freedom of the localization criterion choice, the results are usually
similar. The orbitals of the CC and CH bonds in ethane, obtained by various ap-
proaches, are shown in Table 8.4.

Let us try to understand Table 8.4. First note the similarity of the results of var-
ious localization methods. The methods are different, the starting points are dif-
ferent, and yet we get almost the same in the end. It is both striking and important
that
Table 8.4. The LCAO coefficients of the localized orbitals of ethane in the antiperiplanar conforma-
tion [P. Millié, B. Lévy, G. Berthier, in: “Localization and Delocalization in Quantum Chemistry”, ed.
O. Chalvet, R. Daudel, S. Diner, J.P. Malrieu, Reidel Publish. Co., Dordrecht (1975)] . Only the non-
equivalent atomic orbitals have been shown in the table (four significant digits) for the CC and one
of the equivalent CH bonds [with the proton H(1), Fig. 8.21]. The z axis is along the CC′ bond. The
localized molecular orbitals corresponding to the carbon inner shells 1s are not listed

The projection Minimum distance Maximum repulsion
method method energy

CC′ bond
1s(C) −0�0494 −0�1010 −0�0476
2s(C) 0�3446 0�3520 0�3505
2pz(C) 0�4797 0�4752 0�4750
1s(H) −0�0759 −0�0727 −0�0735

CH bond
1s(C) −0�0513 −0�1024 −0�0485
2s(C) 0�3397 0�3373 0�3371
2pz(C) −0�1676 −0�1714 −0�1709
2px(C) 0�4715 0�4715 0�4715
1s(C′) 0�0073 0�0081 0�0044
2s(C′) −0�0521 −0�0544 −0�054
2pz(C′) −0�0472 −0�0503 −0�0507
2px(C′) −0�0082 −0�0082 −0�0082
1s(H1) 0�5383 0�5395 0�5387
1s(H2) −0�0942 −0�0930 −0�0938
1s(H3) −0�0942 −0�0930 −0�0938
1s(H4) 0�0580 0�0584 0�0586
1s(H5) −0�0340 −0�0336 −0�0344
1s(H6) −0�0340 −0�0336 −0�0344
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Fig. 8.21. The ethane molecule
in the antiperiplanar configura-
tion (a). The localized orbital of
the CH bond (b) and the local-
ized orbital of the CC′ bond (c).
The carbon atom hybrid form-
ing the CH bond is quite simi-
lar to the hybrid forming the CC
bond.

the results of various localizations are similar to one another, and in prac-
tical terms (not theoretically) we can speak of the unique definition of a
chemical bond in a polyatomic molecule.

Nobody would reject the statement that a human body is composed of the head,
the hands, the legs, etc. Yet a purist (i.e. theoretician) might get into troubles defin-
ing, e.g., a hand (where does it end up?). Therefore, purists would claim that it is
impossible to define a hand, and as a consequence there is no such a thing as hand
– it simply does not exist. This situation is quite similar to the definition of the
chemical bond between two atoms in a polyatomic molecule.

It can be seen that some localized orbitals are concentrated mainly in one partic-
ular bond between two atoms. For example, in the CC bond orbital, the coefficients
at the 1s orbitals of the hydrogen atom are small (−0�08). Similarly, the 2s and 2p
orbitals of one carbon atom and one (the closest) hydrogen atom, dominate the
CH bond orbital. Of course, localization is never complete. The oscillating “tails”
of the localized orbital may be found even in distant atoms. They assure the mutual
orthogonality of the localized orbitals.

8.9.4 COMPUTATIONAL TECHNIQUE

Let us take as an example the maximization of the electron interaction within the
same orbital (Ruedenberg method):

I =
MO
∑

i

Jii =
MO
∑

i

(ii|ii)� (8.99)
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Suppose we want to make an orthogonal transformation (i.e. a rotation in the
Hilbert space, Appendix B) of – so far only two – orbitals:120 |i〉 and |j〉, in or-
der to maximize I. The rotation (an orthogonal transformation which preserves
the orthonormality of the orbitals) can be written as

∣
∣i′(ϑ)

〉 = |i〉 cosϑ+ |j〉 sinϑ	
∣
∣j′(ϑ)

〉 = −|i〉 sinϑ+ |j〉 cosϑ	

where ϑ is an angle measuring the rotation (we are going to find the optimum
angle ϑ). The contribution from the changed orbitals to I, is

I(ϑ)= (i′i′∣∣i′i′)+ (j′j′∣∣j′j′)� (8.100)

Then,121

I(ϑ) = I(0)
(

1− 1
2

sin2 2ϑ
)

+ (2(ii|jj)+ (ij|ij)) sin2 2ϑ

+ ((ii|ij)− (jj|ij)) sin 4ϑ	 (8.101)

where I(0)= (ii|ii)+(jj|jj) is the contribution of the orbitals before their rotation.
Requesting that dI(ϑ)

dϑ = 0, we easily get the condition for optimum ϑ=ϑopt:

− 2I(0) sin 2ϑopt cos 2ϑopt +
(

2(ii|jj)+ (ij|ij))4 sin 2ϑopt cos 2ϑopt

+ ((ii|ij)− (jj|ij))4 cos 4ϑopt = 0	 (8.102)

and hence

tg(4ϑopt)= 2
(ij|jj)− (ii|ij)

2(ii|jj)+ (ij|ij)− 1
2I(0)

� (8.103)

The operation described here needs to be performed for all pairs of orbitals, and
then repeated (iterations) until the numerator vanishes for each pair, i.e.

(ij|jj)− (ii|ij)= 0� (8.104)

The value of the numerator for each pair of orbitals is thus the criterion for
whether a rotation is necessary for this pair or not. The matrix of the full orthogo-
nal transformation represents the product of the matrices of these successive rota-
tions.

The same technique of successive 2× 2 rotations applies to other localization
criteria.
120The procedure is an iterative one. First we rotate one pair of orbitals, then we choose another pair
and make another rotation etc., until the next rotations do not introduce anything new.
121Derivation of this formula is simple and takes one page.
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8.9.5 THE σ , π , δ BONDS

Localization of the MOs leads to the orbitals corresponding to chemical bonds (as
well as lone pairs and inner shells). In the case of a bond orbital, a given localized
MO is in practice dominated by the AOs of two atoms only, those, which create the
bond.122 According to the discussion on p. 371, the larger the overlap integral of
the AOs the stronger the bonding. The energy of a molecule is most effectively de-
creased if the AOs are oriented in such a way as to maximize their overlap integral,
Fig. 8.22. We will now analyze the kind and the mutual orientation of these AOs.

As shown in Fig. 8.23, the orbitals σ , π, δ (either canonical or not) have the
following features:

Fig. 8.22. Maximization of the AO overlap re-
quests position (a), while position (b) is less pre-
ferred.

Fig. 8.23. Symmetry of the MOs results from the mutual arrangement of those AOs of both atoms
which have the largest LCAO coefficients. Figs. (a–d) show the σ type bonds, (e–g) the π type bonds,
and (h,i) the δ type bonds. The σ bond orbitals have no nodal plane (containing the nuclei), the π
orbitals have one such plane, the δ ones – two such planes. If the z axis is set as the bond axis, and
the x axis is set as the axis perpendicular to the bonding and lying in the plane of the figure, then the
cases (b–i) correspond (compare Chapter 4) to the overlap of the following AOs: (b): s with pz , (c):
pz with pz , (d): 3d3z2−r2 with 3d3z2−r2 , (e): px with px , (f): px with 3dxz , (g): 3dxz -3dxz , (h): 3dxy
with 3dxy , (i): 3dx2−y2 with 3dx2−y2 . The figures show such atomic orbitals which correspond to the
bonding MOs. To get the corresponding antibonding MOs, we need to change the sign of one of the two
AOs.

122That is, they have the largest absolute values of LCAO coefficients.
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Fig. 8.24. Scheme of the bonding and antibonding MOs in homonuclear diatomics from H2 through
F2. This scheme is better understood after we recall the rules of effective mixing of AOs, p. 362. All the
orbital energies become lower in this series (due to increasing of the nuclear charge), but lowering of
the bonding π orbitals leads to changing the order of the orbital energies, when going from N2 to F2.
The sequence of orbital energies (schematically) for the molecules (a) from H2 through N2 and (b) for
O2 and F2.

• the σ-type orbital has no nodal plane going through the nuclei,
• the π-type orbital has one such a nodal plane,
• the δ-type orbital has two such nodal planes.

If a MO is antibonding, then a little star is added to its symbol, e.g., σ∗, π∗,
etc. Usually we also give the orbital quantum number (in order of increasing
energy), e.g., 1σ	2σ	 � � � . etc. For homonuclear diatomics additional notation is
used (Fig. 8.24) showing the main atomic orbitals participating in the MO, e.g.,
σ1s = 1sa + 1sb, σ∗1s = 1sa − 1sb, σ2s = 2sa + 2sb, σ∗2s = 2sa − 2sb, etc.

The very fact that the π and δ molecular orbitals have zero value at the posi-
tions of the nuclei (the region most important for lowering the potential energy of
electrons) suggests that they are bound to be of higher energy than the σ ones, and
they are indeed.

8.9.6 ELECTRON PAIR DIMENSIONS AND THE FOUNDATIONS OF
CHEMISTRY

What are the dimensions of the electron pairs described by the localized MOs?
Well, but how to define such dimensions? All orbitals extend to infinity, so you
cannot measure them easily, but some may be more diffuse than others. It also
depends on the molecule itself, the role of a given MO in the molecular electronic
structure (the bonding orbital, lone electron pair or the inner shell), the influence
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of neighbouring atoms, etc. These are fascinating problems, and the issue is at the
heart of structural studies of chemistry.

Several concepts may be given to calculate the dimensions of the molecular or-
bitals mentioned above. For example, we may take the integrals (ii|r2

12|ii) ≡ 〈r2〉
calculated within the Boys localization procedure, and use them to measure the
square of the dimension of the (normalized) molecular orbital ϕi. Indeed, 〈r2〉 is
the mean value of the interelectronic distance for a two-electron state ϕi(1)ϕi(2),
and ρi(Boys) = √〈r2〉 may be viewed as an estimate of the ϕi orbital dimen-
sion. Or, we may do a similar thing by the Ruedenberg method, by noting that
the Coulombic integral Jii, calculated in atomic units, is nothing more than the
mean value of the inverse of the distance between two electrons described by
the ϕi orbital. In this case, the dimension of the ϕi orbital may be proposed as
ρi(Ruedenberg)= 1

Jii . Below, the calculations are reported, in which the concept
of ρi(Boys) is used. Let us compare the results for CH3OH and CH3SH (Fig. 8.25)
in order to see, what makes these two molecules so different,123 Table 8.5.

Interesting features of both molecules can be deduced from Table 8.5. The most
fundamental is whether formally the same chemical bonds (say, the CH ones) are
indeed similar for both molecules. A purist approach says that each molecule is a
New World, and thus these are two different bonds by definition. Yet chemical intu-
ition says that some local interactions (in the vicinity of a given bond) should mainly
influence the bonding. If such local interactions are similar, the bonds should turn
out similar as well. Of course, the purist approach is formally right, but the New
World is quite similar to the Old World, because of local interactions. If chemists
desperately clung to purist theory, they would know some 0.01% or so of what they
now know about molecules. It is of fundamental importance for chemistry that we
do not study particular cases, case by case, but derive general rules. Strictly speaking,
these rules are false from the very beginning, for they are valid to some extent only,
but they enable chemists to understand, to operate, and to be efficient, otherwise
there would be no chemistry at all.

The periodicity of chemical elements discovered by Mendeleev is another fun-
damental idea of chemistry. It has its source in the shell structure of atoms. Fol-
lowing on, we can say that the compounds of sulphur with hydrogen should be

Fig. 8.25. Methanol (CH3OH) and
methanethiol (CH3SH).

123Only those who have carried out experiments in person with methanethiol (knowns also as methyl
mercaptan), or who have had neighbours (even distant ones) involved in such experiments, understand
how important the difference between the OH and SH bonds really is. In view of the theoretical results
reported, I am sure they also appreciate the blessing of theoretical work. According to the Guinness
book of records, CH3SH is the most smelly substance in the Universe.



406 8. Electronic Motion in the Mean Field: Atoms and Molecules

Table 8.5. The dimensions of the electron pairs, i.e.
√

〈r2〉 (a.u.) for CH3OH and CH3SH according to
Csizmadia.a “Core” means the 1s orbital of the atom indicated

CH3OH CH3SH

core O 0�270 core S (1s) 0�148
core C 0�353 core C 0�357

S (L shell) 0�489
0�489
0�483
0�484

CO 1�499 CS 2.031
CH1

b 1�576 CH1
b 1�606

CH2	3
b 1�576 CH2	3

b 1�589
OH 1�353 SH 1�847
lone pair1	2

c 1�293 lone pair1	2
c 1�886

aI.G. Csizmadia, in “Localization and Delocalization in Quantum Chemistry”, ed. by O. Chalvet and
R. Daudel, D. Reidel Publ. Co., Dordrecht, 1975.
bDifferent electron pair dimensions originate from their different positions vs the OH or SH group.
cThere are two lone pairs in the molecule.

similar to the compounds of oxygen with hydrogen, because sulphur and oxygen
have analogous electronic configuration of the valence electrons (i.e. those of the
highest energies), and they differ only in the inner shells (O: [He]2s22p4 as com-
pared to S: [Ne]3s23p4).

Take a look of Table 8.5. Note that:

1. The dimension of the electron lone pair localized on the 1s orbital of the sul-
phur atom is twice as small as the dimension of a similar pair of the 1s orbital of
the oxygen atom. Nothing special. The electrons occupying the 1s orbital of S
experience a strong electric field of the nucleus charged +16, while the charge
of the O nucleus is only+8. Let us note that the core of the carbon atom is even
larger, because it is controlled by an even less charged nucleus124 (+6).

2. The dimension of the electron pair of the 1s orbital of the carbon atom (core
C) for CH3OH is very similar to that of the corresponding orbital for CH3SH
(0�353 vs 0�357).125 This means that the influence of the S atom (as compared to
the oxygen atom) on the 1s orbital of the neighbouring atom is small. The local
character of the interactions is thus the most decisive.

3. The influence of the S and O atoms on the CH bonds of the methyl group
is only slightly larger. For example, in CH3OH one of the CH bond localized
orbital has the dimension of 1.576 a.u., while in CH3SH 1.606 a.u.

4. The three CH bonds in methanol are very similar to each other (the num-
bers in Table 8.5 are identical), yet only two of them are strictly equivalent

124The mean value of the nucleus–electron distance can be easily computed as 〈1s|r|1s〉 = 3
2

1
Z , where

Z is the charge of the nucleus. The results discussed are consistent with such a simple calculation.
125Even these small changes may be detected experimentally by removal of electrons from the mole-
cules by monochromatic X-ray radiation and subsequent measurement of the kinetic energy of the
removed electrons. Those which were more strongly bound, move slower.
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due to symmetry. It is even more interesting that the CH bonds in CH3SH are
also similar to them, although the differences between the various CH bonds
of methanethiol, and between the corresponding CH bonds in methanol and
methanethiol, are clearer. So, even despite the different atomic environment, the
chemical bond preserves its principal and individual features.

5. Let me apologize for a banality: CH3SH differs from CH3OH in that the O
atom is replaced by the S atom. No wonder then that large differences in the
close vicinity of the O and S atoms are easily noticeable. The dimensions of the
electron pairs at the S atom (lone pairs and the SH and CS bonds) are always
larger than the corresponding pair at the O atom. The differences are at the
30% level. The sulphur atom is simply larger than the oxygen atom, indicating
that the electrons are more loosely bound when we go down within a given
group of the periodic table.

These conclusions are instructive and strongly encouraging, because we see
a locality in chemistry, and therefore chemistry is easier than it might be (e.g.,
CH bonds have similar properties in two different molecules). On the other
hand, we may play a subtle game with local differences on purpose, by mak-
ing suitable chemical substitutions. In this way we have a possibility of tuning
the chemical and physical properties of materials, which is of prime importance
in practical applications.

8.9.7 HYBRIDIZATION

The localized orbitals may serve to present the idea of a hybrid atomic orbital.
A given localized orbital ϕ of a bond represents a linear combination of the atomic
orbitals of mainly two atoms – the partners which form the chemical bond, say a
and b. If so, then (for each localized bond orbital) all the atomic orbitals of atom
a may be added together with their specific LCAO coefficients,126 and the same
can be done for atom b. These two sums represent two normalized hybrid atomic
orbitals χa and χb multiplied by the resulting coefficients ca and cb and together
form the approximate127 bond orbital:

ϕ≈ caha + cbhb
with the corresponding LCAO expansions

ha =
∑

j∈a
cjiχj	

hb =
∑

j∈b
cjiχj�

126That serve to express the localized orbital through the atomic basis set.
127The “tails” of the localized orbital, i.e. its amplitudes on other atoms, have been neglected.
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Such a definition of the hybrid orbitals is not unique, since the localized orbitals
used are also not unique. However, as shown above, this ambiguity is of secondary
importance. The advantage of such an approach to hybridization is that:

• It can be determined for any configuration of the nuclei, e.g., for the tetrahedral
as well as for any other configuration of CH4, etc.

• The definition is applicable at any LCAO basis set used.
• It gives a clear message that all the atoms in a molecule are hybridized (why

not?), e.g., the carbon atom in the methane molecule as well as all the hydro-
gen atoms. The only difference between these two hybridizations is that the χa
for the carbon atom does not resemble any of the χj in

∑

j∈a cjiχj (because of
comparable values128 of |cji|meaning an effective mixing of the atomic orbitals),
while the χb for the hydrogen atom is dominated by the single atomic orbital 1sb,
which may be treated as a lack of hybridization.129

sp3 hybridization (tetrahedral)
How will the hybridization in the optimized geometry of methane look? Well,
among five doubly occupied localized molecular orbitals, four130 protrude from
the carbon nucleus towards one of the hydrogens (four hydrogens form a regular
tetrahedron) and will have only some marginal amplitudes on the three other hy-
drogens. If we neglect these “tails” on the other atoms and the contributions of
the atomic orbitals other than 2s and 2p (i.e. their cji’s) of the carbon atom (also
eliminating from the MO the 1s orbital of the partner hydrogen atom), we obtain
the following normalized hybrid carbon orbitals:

hi = 1
√

1+ λ2
i

[

(2s)+ λi(2pi)
]

for i = 1	2	3	4. If we force the four hybrids to be equivalent, then this means
λi = λ. Forcing the hybrids to be mutually orthogonal:131

〈hi|hj〉 = 1
1+ λ2

[

1+ λ2〈2pi|2pj〉
]= 1

1+ λ2

[

1+ λ2 cosθij
]= 0	

we obtain as the 2s and 2p mixing ratio

λ=
√

−1
cosθij

� (8.105)

128Mainly of 2sa and 2pa , which have the highest values of the LCAO coefficients.
129The reason why the carbon atom (and some other atoms such as N, O, etc.) is effectively hybridized,
while the hydrogen atom not, is that the 2s and 2p orbital energy levels in those atoms are close in the
energy scale, while the energy difference between the 1s hydrogen orbital energy and higher-energy
hydrogen orbitals is larger.
130The fifth will be composed mainly of the 1s carbon orbital.
131“Orthogonal” also means “absolutely independent”.
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Since, for the tetrahedral configuration θij = 109◦28′, hence, from eq. (8.105):
cos 109◦28′ = − 1

3 and λi =
√

3. Therefore the orthogonal hybrids on the carbon
atom (Figs. 8.26.h and 8.27.a) read as:

hi
(

sp3)= 1
2
[

(2s)+√3(2pi)
]

	

where 2s and 2pi are the normalized carbon atomic orbitals132 with i denoting the
direction of the hybrid, one of the four directions from the carbon atom towards
the tetrahedrally located hydrogen atoms.133

sp2 hybridization (trigonal)

If we tried to find the lowest-energy configuration of ethylene (C2H4), it would
correspond to a planar structure (Fig. 8.27.b) of D2h symmetry. After analyzing
the localized molecular orbitals, it would turn out that three hybrids protrude from
each carbon nucleus, their directions lying in the molecular plane (say, xy). These
hybrids form angles very close to 120◦.

For the trigonal hybridization (i.e. pure sp2 hybridization, with the θij = 120◦
angles) we obtain from (8.105) λ=√2, and, therefore, the three orthogonal nor-
malized sp2 hybrids are:

hi
(

sp2)= 1√
3

[

(2s)+√2(2pi)
]

	

where the directions i= 1	2	3 form the Mercedes logo on a plane.

sp hybridization (digonal)

Such hybridization is said to occur in acetylene: HCCH, which after optimization
of the Hartree–Fock energy, corresponds to the linear symmetric configuration.
According to this explanation, each carbon atom exposes two hybrids (Fig. 8.27c):
one towards its carbon and one towards its hydrogen partner. These hybrids use

132Say, the Slater Type Orbitals (STOs), p. 355.
133Such orientation of the (normalized) 2pi ’s may be achieved by the following choices (just look at the
vortices of a cube with the carbon atom at its centre and the four directions forming the tetrahedron):

2p1 =
1√
3
(2px + 2py + 2pz)	

2p2 =
1√
3
(2px − 2py − 2pz)	

2p3 =
1√
3
(−2px + 2py − 2pz)	

2p4 =
1√
3
(−2px − 2py + 2pz)�

The normalization of the above functions is obvious, since the 2px	2py	2pz are orthogonal.
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Fig. 8.26. The Slater-type orbitals shown as contours of the section at z = 0. The background
corresponds to the zero value of the orbital, the darker regions to the negative, the brighter to
the positive value of the orbital. (a) 2px and (b) 2py , and their linear combination (c) equal to
cos 5◦2px + sin 5◦2py , which is also a 2p orbital, but rotated by 5◦ with respect to the 2px orbital.
In (d) and (e) we show the normalized 2s and 2p orbitals, which will now be mixed in various propor-
tions: (f) the 1 : 1 ratio, i.e. the sp hybridization, (g) the 1 : √2 ratio, i.e. the sp2 hybridization, and (h)
the 1 : √3 ratio, i.e. the sp3 hybridization.
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Fig. 8.26. Continued.

the two carbon 2s and the two carbon 2pz , and together with the two 1s orbitals
of the hydrogens, form the two HC σ bonds and one CC σ bond. This means that
each carbon atom has two electrons left, which occupy its 2px and 2py orbitals
(perpendicular to the molecular axis). The 2px orbitals of the two carbon atoms
form the doubly occupied πx bonding localized molecular orbital and the same
happens to the 2py orbitals. In this way the carbon atoms form the C≡C triple
bond composed of one σ and two π (i.e. πx and πy) bonds.

The angle between the two equivalent orthonormal hybrids should be θij =
180◦, then the mixing ratio will be determined by λ = 1. Two such hybrids are
therefore134 hi(sp) = 1√

2
[(2s) + (2pi)], and making the two opposite directions

explicit: h1(sp)= 1√
2
[(2s)+ (2pz)] and h2(sp)= 1√

2
[(2s)− (2pz)].

Is hybridization concept of any value?

The general chemistry textbook descriptions of hybridization for methane, ethyl-
ene and acetylene usually start from the electronic configuration of the carbon
atom: 1s22s22p2. Then it is said that, according to valence bond theory (VB, see
Chapter 10), this configuration predicts CH2 as the carbon hydride (bivalent car-
bon atom) with the CH bonds forming the right angle.135 This differs very much
from the way the methane molecule looks in reality (regular tetrahedron and
tetravalent carbon). If the carbon atom were excited (this might happen at the ex-
pense of future energy gains and is known as “promotion”) then the configuration
might look like 1s22s12p1

x2p1
y2p

1
z . The textbooks usually go directly to the mixing

of the valence atomic orbitals 2s	2px2py2pz to form four equivalent sp3 hybrids,

134This cannot be exact (cf. the ethylene case), because the two hybrids must not be equivalent. One
corresponds to the CC, the other to the CH bond.
135Because 2p2 means, say, 2p1

x2p1
y and these singly occupied atomic orbitals form the two CH bonds

with two 1s hydrogen orbitals.
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Fig. 8.27. (a) The sp3 hybridization in the methane molecule in its tetrahedral equilibrium geometry
[that corresponds to the minimum of the ground-state electronic energy E0

0(R), see p. 229]. There are
four doubly occupied CH σ localized molecular orbitals and one that is essentially the doubly occupied
1s carbon atomic orbital. Each of the CH molecular orbital (of the nearly cylindrical symmetry) is com-
posed mainly of the carbon hybrid and the hydrogen 1s atomic orbital. The figure shows a scheme of
the four carbon hybrids called the sp3 hybrids. (b) An example of the nearly perfect sp2 hybridization
of the carbon atoms in the ethylene (C2H4), which is perfectly planar in its ground electronic state
(D2h symmetry). Such a hybridization is only approximate, because the CCH angle has to differ from
the HCH angle, both slightly deviate from 120◦ . The localized molecular orbitals are the following (oc-
cupied by altogether 16 electrons):
– two essentially 1s carbon orbitals,
– four CH orbitals and one CC orbital having the nearly cylindrical symmetry (i.e. σ type),
– one bond orbital being antisymmetric with respect to the reflection in the molecular plane (i.e. of the
π symmetry).
(c) An example of the sp hybridization: the acetylene molecule. The Hartree–Fock geometry optimiza-
tion gives the lowest-energy linear configuration: HCCH. The localization gives seven localized doubly
occupied molecular orbitals:
— two of them are essentially the 1s carbon orbitals,
— two represent the cylindrical CH orbitals (σ),
— one cylindrical CC σ orbital,
— two CC orbitals that are of π symmetry (perpendicular to each other).

which lead directly to the tetrahedral hydride: the methane. Note, however, that
being in less of a rush, we would draw the conclusion that the 1s22s12p1

x2p1
y2p

1
z

configuration leads to four non-equivalent CH bonds in the CH4 hydride.136 Only
equivalent mixing (hybridization) gives the correct picture. When aiming at eth-
ylene or acetylene the reasoning changes, because some orbitals are left without
mixing. We assume sp2 (one orbital left) or sp (two orbitals left) hybridizations, re-
spectively, which leads to the correct compounds and (almost) correct structures.
It looks as if when we know what we are aiming for, we decide what mixes and what
does not. This seems to be not fair.

Let us check how important the role of hybridization is in the formation of
chemical bonds in methane. Let us imagine four scientists performing Hartree–
Fock computations for methane in its tetrahedral configuration137 of nuclei. They
use four LCAO basis sets. Professor A believes that in this situation it is important
to remember sp3 hybridization and uses the following basis set (first go the 1s
orbitals for the hydrogen atoms, then the carbon orbitals):

A: 1sH1	1sH2	1sH3	1sH4	1sC	h1
(

sp3)	h2
(

sp3)	h3
(

sp3)	h4
(

sp3)�

Student B did not read anything about hybridization and just uses the common
orbitals:

B: 1sH1	1sH2	1sH3	1sH4	1sC	2sC	2px	C	2py	C	2pz	C�

136Three CH bonds would form right angles (because of 2p1
x	2p1

y 	2p1
z), one CH bond however

(formed by 2s1 together with the corresponding 1s hydrogen orbital) would have a quite different
character. This contradicts what we get from experiments.
137Or any other one.



414 8. Electronic Motion in the Mean Field: Atoms and Molecules

Students C and D are not the brightest, they have mixed up the hybridization
for methane with that for ethylene and acetylene and used the following basis
sets:

C: 1sH1	1sH2	1sH3	1sH4	1sC	2px	C	h1
(

sp2)	h2
(

sp2)	h3
(

sp2)�

D: 1sH1	1sH2	1sH3	1sH4	1sC	2px	C	2py	C	h1(sp)	h2(sp)�

Who of these scientists will obtain the lowest total energy, i.e. the best approxi-
mation to the wave function?

Well, we could perform these calculations, but it is a waste of time. Indeed, each
of the scientists used different basis sets, but they all used the same space spanned
by the AOs. This is because all these hybrids are linear combinations of the orbitals
of student B. All the scientists are bound to obtain the same total energy, the same
molecular orbitals138 and the same orbital energies.

Hybridization is useful

Is hybridization a useless concept then? No, it is not. It serves as a first indicator
(when calculations are not yet performed) of what happens to a local atomic elec-
tronic structure, if the atomic configuration is tetrahedral, trigonal, etc. For exam-
ple, the trigonal hybrids describe the main features of the electronic configuration
in the benzene molecule, Fig. 8.28.

Let us take a slightly more complicated example of what is known as a peptide
bond (of great importance in biology), Fig. 8.29.

It is important to remember that we always start from some chemical intu-
ition139 and use the structural formula given in Fig. 8.29.a. Most often we do not
even consider other possibilities (isomers), like those shown in Fig. 8.29.b. Now,
we try to imagine what kind of local electronic structure we have around the par-
ticular atoms. Let us start from the methyl, i.e. –CH3 functional groups. Of course,
such a group resembles methane, except that one carbon hybrid extends to another
atom (not hydrogen). Thus, we expect hybridization over there close to sp3 one
(with all consequences, i.e. angles, etc.). Next, we have the carbon atom that is be-
lieved140 to make the double bond with the oxygen atom. The double bond means
an ethylene-like situation, i.e. both atoms should have hybridizations similar to sp2.

138Although the LCAO coefficients will be, of course, different, because the expansion functions are
different. The orbital plots will be the same.
139Based on the vast experience of chemists
140Here we rely on the concept of what is known as the valency of atoms, i.e. the number of bonds a
given atom is able to form with its neighbours. The valency is equal to the number of valence elec-
trons or valence holes, e.g., the valency of the carbon atom is four (because its electron configuration
is K2s22p2, four valence electrons), of the oxygen atom is two (because its electron configuration is
K2s22p4, two valence holes). An element may have several valencies, because of the opening several
electronic shells.

We are making several assumptions based on chemical intuition or knowledge. The reason is that
we want to go quickly without performing any computations. This ambiguity disappears, if we make real
computations, e.g., using the Hartree–Fock method. Then the chemical bonds, hybrids etc. are obtained as
a result of the computations.
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Fig. 8.28. The benzene molecule. The hybridization concept allows us to link the actual geometry of a
molecule with its electronic structure (a). The sp2 hybrids of the six carbon atoms form the six σ CC
bonds and the structure is planar. Each carbon atom thus uses two out of its three sp2 hybrids, the
third one lying in the same plane protrudes towards a hydrogen atom and forms the σ CH bond. In this
way, each carbon atom uses its three valence electrons. The fourth one resides on the 2p orbital that is
perpendicular to the molecular plane. The six 2p orbitals form six π molecular orbitals, out of which
three are doubly occupied and three are empty. The doubly occupied ones are shown in Fig. (b). The
ϕ0 of the lowest-energy is an all-in-phase linear combination of the 2p atomic orbitals (only their upper
lobes are shown). The ϕ1 and ϕ2 correspond to higher and to the same energy, and have a single node
(apart from the node plane of the AOs). The ϕ3 orbital that apparently completes all combinations
of single-node molecular orbitals is redundant (that is why it is in parentheses), because the orbital
represents a linear combination of the ϕ1 and ϕ2.

Let us begin from the oxygen atom, Fig. 8.29.c. The sp2 means three hybrids (pla-
nar configuration) protruding from the O atom. One of them will certainly bind to
a similar one protruding from the carbon atom (OC σ bond), it therefore needs
a only single electron from the oxygen. The oxygen atom has 6 valence electrons,
therefore there remain five to think of. Four of them will occupy the other two
hybrids protruding into space (nothing to bind; they are lone pairs). Hence there
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Fig. 8.29. How does the
hybridization concept help?
The figure shows the all im-
portant (proteins) example
of the peptide bond. (a) We
assume a certain pattern
of the chemical bonds (this
choice is knowledge based)
ignoring other possibilities,
such as the isomers shown
in (b). Apart from the
methyl groups (they have
the familiar tetrahedral con-
figuration) the molecule is
planar. Usually in chemistry,
knowing the geometry, we
make a conjecture pertain-
ing to the hybridization of
particular atoms. This leads
to the electron count for
each atom: the electrons left
are supposed to participate
in bonds with other atoms.
In the example shown, the
sp2 hybridization is assumed
for the central carbon and
for the nitrogen and oxygen
atoms (c). A π bonding
interaction of the nitrogen,
carbon and oxygen should
therefore stabilize the pla-
narity of the system, which is
indeed an experimental fact.

is one electron left. This is very good, because it will participate in the OC π bond.
Let us go to the partner carbon atom. It is supposed to make a double bond with
the oxygen. Hence it is reasonable to ascribe to it an ethylene-like hybridization as
well. Out of four valence electrons for carbon, two are already used up by the σ
and π CO bonds. Two other sp2 hybrids remain that, of course, accommodate the
two electrons and therefore are able to make two σ bonds: one with –CH3 and one
with the nitrogen atom. Then we go to the nitrogen atom. It has three substituents
in most cases in the (almost) planar configuration (we know this from experiment).
To make the analysis simple, we assume an sp2 ideal hybridization. The nitrogen
atom has five valence electrons. Three of them will go to form the σ NC, NH,
N–CH3 bonds. Note, that although the configuration at N is assumed to be planar,
this plane may not coincide with the analogous plane on the carbon atom. Finally,
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we predict the last two valence electrons of the nitrogen will occupy the 2p orbital
perpendicular to the plane determined by the substituents of the nitrogen. Note
that the 2p orbital could overlap (making a bonding effect) with the analogous 2p
orbital of the carbon atom provided that the two planes will coincide. This is why we
could expect the planarity of the O–C–N–H, known as peptide bond. This bond
plays a prominent role in proteins, because it is responsible for making the chain
of amino acid residues. It is an experimental fact that deviations of the peptide bond
from planarity are very small.

The value of the analyses, as is given above, is limited to qualitative predictions.
Of course, computations would give us a much more precise picture of the mole-
cule. In such computations the orbitals would be more precise, or would not be
present at all, because, to tell the truth, there is no such thing as orbitals. We badly
need to interpret the numbers, to communicate them to others in a understandable
way, to say whether we understand these numbers or they are totally unexpected.
Reasoning like that given above has a great value as part of our understanding of
chemistry, of speaking about chemistry, of predicting and of discussing structures.
This is why we need hybridization. Moreover, if our calculations were performed
within the VB method (in its simplest formulation; the details of the method will
be explained in Chapter 10), then the lowest energy would be obtained by Profes-
sor A (who assumed the sp3 hybridization), because the energy gain over there is
very much connected to the overlap of the atomic orbitals forming the basis, and
the overlap with the 1s hydrogen orbitals is the best for the basis set of Professor A.
The other people would get high total energies, because of poor overlap of their
atomic orbitals with the 1s hydrogen orbitals.

8.10 A MINIMAL MODEL OF A MOLECULE

It is easy to agree that our world is a complex business. It would be great, however,
to understand how the world is operating. Answers look more and more complex
as we go from crude to more and more accurate theories. Therefore, we would like
to consider a simpler world (say, a model of our real world), which

• would work to very good accuracy, i.e. resembled the real world quite well,
• would be based on such simple rules that we could understand it in detail.

We could explain these rules to anybody who were interested. Not only could we
predict almost anything, but we ourselves could be confident that we understand
most of chemistry, because it is based on several simple rules. Moreover, why worry
about details? Most often we want just to grasp the essence of the problem. On top
of that, if this essence were free, only sometimes would we be interested in a more
detailed (and expensive) picture.

Is this utopia or can such a model of chemistry be built?
Well, it seems that theoretical chemistry nowadays offers such a model describing

chemical structures.
The model is based on the following basic simplifications of the real world:
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• The non-relativistic approach, i.e. the speed of light is assumed to be infinite,
which leads to the Schrödinger equation (Chapter 2).

• The Born–Oppenheimer approximation (Chapter 6) that separates the motion
of the nuclei from the motion of the electrons. This approximation allows us
to introduce the concept of the 3D structure of the molecule: the heavy nuclear
framework of the molecule kept together by “electronic glue” moves in space
(translation), and at the same time rotates in space.

• The mean-field approximation of the present Chapter offers us the orbital model
of the electronic structure of molecules within the Restricted Hartree–Fock ap-
proach. In this picture the electrons are described by the doubly occupied mole-
cular orbitals. Localization of the orbitals gives the doubly occupied inner shell,
lone pair and bond molecular orbitals. The first and second are sitting on atoms,
the latter on chemical bonds. Not all atoms are bound to each other, but instead
the molecule has a pattern of chemical bonds.

• These bonds are traditionally and formally represented as single: e.g., C–C; dou-
ble, e.g., C=C or triple, e.g., C≡C, although some intermediate situations usually
take place. The total number of these formal bonds of a given atom is equal
to its valency. This helps a lot in selecting the chemical bond pattern, which af-
terwards may be checked against experiment (e.g., bond distances).141 In most
cases a single bond is of the σ type, a double one is composed of one σ and one
π, a triple bond means one σ and two π bonds (cf. p. 403).

• The minimal model of a molecule may explain most of the chemical reactions,
if besides the closed-shell configuration (double occupancy of the molecular or-
bitals, including HOMO) we consider excited configurations corresponding to
electron transfer(s) from the HOMO to LUMO orbital (see Chapter 14).

• The bonds behave very much like springs of a certain strength and length,142 and
therefore, apart from the translational and rotational motion, the atoms vibrate
about their equilibrium positions.143 As to the structural problems (not chemical
reactions), these vibrations may be treated as harmonic.

• For the 3D shape of our model molecule, most chemical structures can be cor-
rectly predicted using the Hartree–Fock model. The main features of the 3D
structure can be also predicted (without any calculation) by using the concept of
the minimum repulsion energy of the electrons pairs. Within the molecular orbital
model, such repulsion is given by eq. (8.96).

141For some molecules this procedure is not unique, i.e. several chemical bond patterns may be con-
ceived (“resonance structures”, cf. the valence bond method in Chapter 10). In such cases the real
electronic structure corresponds to an averaging of all of them.
142Both depend first of all of the elements making the bond, also a single bond is the weakest and
longest, the triple is the strongest and shortest.
143The model of molecule visualized in virtually all popular computer programs shows spherical atoms
and chemical bonds as shining rods connecting them. First of all, atoms are not spherical, as is revealed
by Bader analysis (p. 573) or atomic multipole representations (Appendix S). Second, a chemical bond
resembles more a “rope” (higher values) of electronic density than a cylindrical rod. The “rope” is not
quite straight and is slimiest at a critical point (see p. 575). Moreover, the rope, when cut perpendicu-
larly, has a circular cross section for pure σ bonds, and an oval cross section for the double bond σ and
π (cf. Fig. 11.1).
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8.10.1 VALENCE SHELL ELECTRON PAIR REPULSION (VSEPR)

The underlying assumptions of VSEPR144 are as follows:

• Atoms in a molecule are bound by chemical bonds residing in a space between
the bounded atoms. The pattern of such bonds has to be assumed. Each chemical
bond represents an electron bonding pair (see the present chapter).

• Some atoms may possess electron pairs that do not participate in a chemical
bond pattern (inner shells, lone pairs, see the present chapter).

• The bonding pairs as well as the lone pairs around any atom of the molecule
adopt positions in space (on a sphere) such as to minimize pair–pair Coulombic
interactions, i.e. they try to be as far away as possible, cf. (8.96).

• The lone pairs repel more than the bonding pairs, and the repulsion bond pair –
lone pair is in-between.

• Multiple bonds occupy more space than single bonds.

The total electronic energy in the Restricted Hartree–Fock model is given by
eq. (8.36). It is worth stressing, that at a fixed geometry of the molecule, the min-
imization of the electron pair repulsion (by redefinition of the orbitals through
a unitary transformation) given by eq. (8.94) does not lead to any change of the
total electronic repulsion energy (including self-interaction), which stays invari-
ant. However, when considering variations of geometry (which is at the heart
of VSEPR) it is plausible, that smaller electron repulsion (i.e. a smaller const
in (8.94)) represents a factor that stabilizes the structure. For small changes of
geometry, self-interaction, i.e. 2

∑MO
i hii +∑MO

i Jii is not supposed to change
very much in eq. (8.36), because each term is connected to a particular localized
orbital, which is not expected to change much when changing the interbond an-
gles. What should change most in (8.36), are the interactions of different localized
orbitals, because their distances are affected. These interactions are composed of
the Coulombic and exchange contributions. The exchange contribution of two dif-
ferent localized orbitals is small, because the orbitals overlap only by their “tails”.
Hence, minimization of the interpair Coulombic interactions of eq. (8.96) as a func-
tion of the geometry of the molecule can be viewed as a rationalization for VSEPR.
Note also, that in each hii there is an attraction of the electrons occupying the lo-
calized orbital i with all the nuclei. This term is responsible for the VSEPR rule
that lone pairs repel more strongly than bond pairs.145

In the VSEPR method the resulting structure depends on the calculated num-
ber of electron pairs around the central atom of the molecule.146 The resulting
geometry is given by Table 8.6

144R.J. Gillespie, R.S. Nyholm, Quart. Rev. Chem. Soc. 11 (1957) 339.
145The Coulombic interaction of electron pairs is damped by those nuclei, which are immersed in the
electron cloud.
146If several atoms may be treated as central, it is necessary to perform the VSEPR procedure for every
such atom.
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Table 8.6.

Number of electron pairs Geometry

2 linear
3 trigonal planar
4 tetrahedral
5 trigonal bipyramidal
6 octahedral

Example 4. Water molecule. First, some guesses before using the minimal model.
The hydrogen atom has a single electron and, therefore valency one, the oxygen
atom has valency two (two holes in the valence shell). We expect, therefore, that
the compounds of the two elements will have the following chemical bond patterns
(that saturate their valencies): H–O–H, H–O–O–H, etc. Now our minimal model
comes into play. Even quite simple Hartree–Fock calculations show that the system
H–O–O–H is less stable than H–O–H + O. Thus, the minimal model predicts, in
accordance with what we see in the oceans, that the H2O compound called water
is the most stable.

Now, what can we say about the 3D structure of the water molecule?
Let us take the VSEPR as a first indication. The central atom is oxygen, the

number of its valence electrons is six. To this number, we add the number of elec-
trons brought by two hydrogens: 6+ 2= 8. Therefore, the number of the electron
pairs is 8

2 = 4. According to the above table, oxygen has a tetrahedral arrange-
ment (the angle 109◦28′) of its four electron pairs. Two of them are lone pairs, two
are bonding pairs with the hydrogens. Since, as the VSEPR model says, the lone
pairs repel more strongly than the bonding pairs, we expect the angle between the
lone pairs to be larger than 109◦28′, and the HOH bond angle to be smaller than
109◦28′.

Let us see what the minimal model is able to tell us about the geometry of
the water molecule. The model (STO 6-31G∗∗ basis set, geometry optimization)
predicts correctly that there are two equivalent OH chemical bonds (and there is
no H–H bond147) of length ROH = 0�943 Å, whereas experiment gives the result
ROH = 0�957 Å. The model predicts, also in accordance with experiment, that the
molecule is non-linear (!): the minimum energy HOH angle is 106�0◦ (the Hartree–
Fock limit corresponds to 105�3◦), while the experimental HOH angle is 104�5◦.
The minimal model is usually able to predict the bond lengths within an accuracy of
about 0.01 Å, and bond angles to an accuracy of about 1◦.

The minimal model (within the STO 6-31G∗∗ basis set) predicts three harmonic
vibrational frequencies of the water molecule: antisymmetric stretching 4264 cm−1,
symmetric stretching 4147 cm−1 and bending 1770 cm−1. It is not easy, though, to
predict the corresponding experimental frequencies. We measure the energy dif-
ferences between consecutive vibrational levels (see Chapter 6, p. 235), which are

147In agreement with common knowledge in chemistry.



8.10 A minimal model of a molecule 421

not equal each other (due to anharmonicity). We may, however, deduce these ex-
perimental values as they would have been if the bottom of the well were per-
fectly quadratic (harmonic approximation), they are the following: 3942, 3832,
1648 cm−1, respectively. Similarly to this case, the minimal model systematically
predicts vibrational frequencies that are 7–8% larger than experimental values. This
is not too bad by itself. In practical applications we often take this systematic er-
ror into account and correct the calculated frequencies by a scaling factor, thus
predicting the frequencies to good accuracy.

Example 5. Chlorine trifluoride ClF3. It is not easy to tell what kind of structure
we will have. Well, it is easy with VSEPR. The central atom will be chlorine. It
has 7 valence electrons. Each fluorine contributes one electron. Thus, altogether
the chlorine has 7+ 3= 10 electrons, i.e. five electron pairs. This means a trigonal
bipyramide in VSEPR. However, this does not tell us where the lone pairs and
where the fluorine atoms are. Indeed, there are two physically distinct positions in
such a bipyramide: the axial and the equatorial, Fig. 8.30.

This corresponds to the interactions of the (lone or bond) electron pairs form-
ing 90◦, 120◦ and 180◦. There are 5 · 4/2 = 10 such interactions. There are three
isomers (a,b,c) possible that differ in interaction energy (L-L or lone pair – lone
pair, b-L or bond pair – lone pair, b-b or bond–bond), Fig. 8.30.

Isomer 90◦ 120◦ 180◦
a 2 b-b 1 L-L 1 b-b

4 b-L 2 b-L
b 2 b-b 1 b-b 1 b-L

3 b-L 2 b-L
1 L-L

c 6 b-L 3 b-b 1 L-L

Fig. 8.30. The trigonal bipyramide has two physically distinct positions: three equatorial and two axial.
In the ClF3 we have two lone pairs (L) and three F atoms as candidates for these positions. There are
three isomers that differ in energy: (a) having the two lone pairs in equatorial positions – this gives a
planar T-shaped molecule (b) having one lone pair equatorial and one axial – this gives a non-planar
molecule with two F–Cl–F angles equal to 90◦ , and one F–Cl–F angle equal to 120◦ (c) having two
lone pairs axial – this gives a planar molecule with F–Cl–F angles equal to 120◦ . All the isomers have 6
interactions of electron pairs (lone or bond) at 90◦ , 3 interactions at 120◦ and one interaction at 180◦ .
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Definitely, the 90◦ interaction of electron pairs is the most important, because
of the shortest L-L distance. In the first approximation, let us look at the 90◦ in-
teractions only. If we subtract from the energy of each isomer the same number: 3
b-L, then it remains the following

Isomer 90◦
a 2 b-b

1 b-L
b 2 b-b

1 L-L
c 3 b-L

According to VSEPR, the L-L repulsion is the strongest, then the b-L follows
and the weakest is the b-b repulsion. Now it is clear that the isomer a is of the lowest
energy. Therefore, we predict a planar T-like structure with the Faxial–Cl–Fequatorial
angle equal to 90◦. Since the lone pairs take more volume than the bond pairs, the
T-shape is a little squeezed. Experiment indeed gives a weird-looking, planar
T-shaped molecule, with the Faxial–Cl–Fequatorial angle equal to 87�5◦.

Summary

• The Hartree–Fock procedure is a variational method. The variational function takes the
form of a single Slater determinant ψ built of orthonormal molecular spinorbitals:

ψ= 1√
N!

∣
∣
∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) � � � φ1(N)
φ2(1) φ2(2) � � � φ2(N)
� � � � � � � � � � � � � � � � � � � � � � � �

φN(1) φN(2) � � � φN(N)

∣
∣
∣
∣
∣
∣
∣
∣

• A molecular spinorbital φi(1) is a one-electron function of the coordinates of elec-
tron 1, i.e. of x1	 y1	 z1	σ1. In the RHF method, it is the product ϕi(x1	 y1	 z1)α(σ1)
or ϕi(x1	 y1	 z1)β(σ1) of a real molecular orbital ϕi(x1	 y1	 z1) and of the spin function
α(σ1) or β(σ1), respectively. In the general HF method (GHF), a spinorbital is a complex
function, which depends both on α(σ1) and β(σ1). The UHF method uses, instead, real
orbitals, which are all different and are multiplied either by α or β (“different orbitals for
different spins”).

• Minimization of the mean value of the Hamiltonian, E = 〈ψ|Ĥψ〉
〈ψ|ψ〉 , with respect to the

orthonormal spinorbitals φi (GHF) leads to equations for optimum spinorbitals (Fock
equations): F̂(1)φi(1) = εiφi(1), where the Fock operator F̂ is F̂(1) = ĥ(1) + Ĵ(1) −
K̂(1), the Coulombic operator is defined by

Ĵ(1)u(1)=
∑

j

Ĵj(1)u(1) and Ĵj(1)u(1)=
∫

dτ2
1
r12
φ∗j (2)φj(2)u(1)	

and the exchange operator by

K̂(1)u(1)=
∑

j

K̂j(1)u(1) and K̂j(1)u(1)=
∫

dτ2
1
r12
φ∗j (2)u(2)φj(1)�
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• In the Restricted Hartree–Fock method (RHF) for closed shell systems, we assume dou-
ble orbital occupancy, i.e. we form two spinorbitals out of each molecular orbital (by mul-
tiplying either by α or β).

• The Fock equations are solved by an iterative approach (with an arbitrary starting point)
and as a result we obtain approximations to:
– the total energy,
– the wave function (the optimum Slater determinant),
– the canonical molecular orbitals (spinorbitals),
– the orbital energies.

• Use of the LCAO expansion leads to the Hartree–Fock–Roothaan equations Fc= Scε.
Our job is then to find the LCAO coefficients c. This is achieved by transforming the ma-
trix equation to the form of the eigenvalue problem, and to diagonalize the corresponding
Hermitian matrix. The canonical molecular orbitals obtained are linear combinations of
the atomic orbitals. The lowest-energy orbitals are occupied by electrons, those of higher
energy are called virtual and are left empty.

• Using the H+2 example, we found that a chemical bond results from an electron density
flow towards the bond region. This results from a superposition of atomic orbitals due to
the variational principle.

• In the simplest MO picture:
– The excited triplet state has lower energy than the corresponding excited singlet state.
– In case of orbital degeneracy, the system prefers parallel electron spins (Hund’s rule).
– The ionization energy is equal to the negative of the orbital energy of the removed elec-

tron. The electron affinity is equal to the negative of the orbital energy corresponding to
the virtual orbital accommodating the added electron (Koopmans theorem).

• The canonical MOs for closed-shell systems (the RHF method) may – completely legally
– be transformed to orbitals localized in the chemical bonds, lone pairs and inner shells.

• There are many methods of localization. The most important ones are: the projection
method, the method of minimum distance between two electrons from the same orbital
(Boys approach), and the method of maximum interaction of electrons from the same
orbital (Ruedenberg approach).

• Different localization methods lead to sets of localized molecular orbitals which are
slightly different but their general shape is very similar.

• The molecular orbitals (localized as well as canonical) can be classified as to the number
of nodal surfaces going through the nuclei. A σ bond orbital has no nodal surface at all,
a π bond orbital has a single nodal surface, a δ bond orbital has two such surfaces.

• The localization allows comparison of the molecular fragments of different molecules. It
appears that the features of the MO localized on the AB bond relatively weakly depend
on the molecule in which this bond is found. This is a strong argument and a true source
of experimental tactics in chemistry.

• Localization may serve to determine hybrids.
• In everyday practice, chemists use a minimal model of molecules that enables them to

compare the geometry and vibrational frequencies with experiment. This model assumes
that the speed of light is infinite (non-relativistic effects only), the Born–Oppenheimer
approximation is valid (i.e. the molecule has a 3D structure), the nuclei are bound by
chemical bonds and vibrate (often harmonic vibrations are assumed), the molecule moves
(translation) and rotates as a whole in space.

• In many cases we can successfully predict the 3D structure of a molecule by using a very
simple tool: the Valence Shell Electron Pair Repulsion concept.
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Main concepts, new terms

molecular spinorbital (p. 330)
Slater determinant (p. 332)
energy functional (p. 335)
conditional extremum (p. 336)
Lagrange multipliers (p. 336 and p. 997)
variation of spinorbital (p. 336)
Coulombic operator (p. 337)
exchange operator (p. 337)
invariance with respect to a unitary

transformation (p. 340)
General Hartree–Fock method (GHF)

(p. 341)
Unrestricted Hartree–Fock method (UHF)

(p. 342)
Restricted Hartree–Fock method (RHF)

(p. 342)
molecular orbital (p. 342)
occupied orbital (p. 343)
virtual orbital (p. 343)
HOMO (p. 343)
LUMO (p. 343)
closed shell (p. 344)
mean field (p. 348)
orbital centring (p. 354)
Slater-type orbital (p. 355)
Slater orbital (p. 356)
Gaussian-type orbital (p. 357)

atomic orbital size (p. 357)
LCAO (p. 360)
atomic basis set (p. 363)
Hartree–Fock–Roothaan method (p. 364)
bonding orbital (p. 371)
antibonding orbital (p. 371)
instability (p. 372)
Fukutome classes (p. 372)
Mendeleev Periodic Table (p. 379)
electronic shells (p. 381)
electronic configuration (p. 381)
chemical bond (p. 383)
penetration energy (p. 386)
Jabłoński diagram (p. 391)
Hund’s rule (p. 392)
Koopmans theorem (p. 393)
orbital localization (p. 396)
σ	π	δ – molecular orbitals (p. 403)
electronic pair dimension (p. 404)
hybrids (p. 408)
tetrahedral hybridization (p. 408)
trigonal hybridization (p. 409)
digonal hybridization (p. 409)
minimal model of a molecule (p. 417)
Valence Shell Electron Pair Repulsion

(VSEPR) (p. 419)

From the research front

The Hartree–Fock method belongs to a narrow 2–3-member class of standard methods of
quantum chemistry. It is the source of basic information about the electronic ground state
of a molecule. It also allows for geometry optimization. At present, the available computa-
tional codes limit the calculations to the systems built of several hundreds of atoms. More-
over, the programs allow calculations to be made by clicking the mouse. The Hartree–Fock
method is always at their core. The GAUSSIAN is one of the best known programs. It is
the result of many years of coding by several tens of quantum chemists working under John
Pople. Pople was given Nobel Prize in 1998 mainly for this achievement. To get a flavour
of the kind of data needed, I provide below a typical data set necessary for GAUSSIAN to
perform the Hartree–Fock computations for the water molecule:

#HF/STO-3G opt freq pop
water, the STO-3G basis set
0 1
O
H1 1 r12
H2 1 r12 2 a213
r12=0.96
a213=104.5
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John Pople (1925–2004), British mathemati-
cian and one of the founders of the modern
quantum chemistry. His childhood was spent in
difficult war time in England (every day 25 mile
train journeys, sometimes under bombing). He
came from a lower middle class family (drap-
ers and farmers), but his parents were ambi-
tious for the future of their children. At the age
of twelve John developed an intense interest in
mathematics. He entered Cambridge Univer-
sity after receiving a special scholarship. John
Pople made important contributions to theoret-
ical chemistry. To cite a few: proposing semi-
empirical methods – the famous PPP method
for π electron systems, the once very pop-
ular CNDO approach for all-valence calcula-
tions, and finally the monumental joint work on

GAUSSIAN – a system of programs that con-
stitutes one of most important computational
tools for quantum chemists. John Pople re-
ceived the Nobel prize in 1998 “for his devel-
opment of computational methods in quantum
chemistry” sharing it with Walter Kohn.

The explanatory comments, line by line:

• #HF/STO-3G opt freq pop is a command which informs GAUSSIAN that the compu-
tations are of the Hartree–Fock type (HF), that the basis set used is of the STO-3G
type (each STO is expanded into three GTOs), that we want to optimize geometry (opt),
compute the harmonic vibrational frequencies (freq) and perform the charge population
analysis for the atoms (known as Mulliken population analysis, see Appendix S, p. 1015);

• just a comment line;
• 0 1 means that the total charge of the system is equal to 0, and the singlet state is to be

computed (1);
• O means that the first atom in the list is oxygen;
• H1 1 r12 means that the second atom in the list is hydrogen named H1, distant from the

first atom by r12;
• H2 1 r12 2 a213 means that the third atom in the list is hydrogen named H2, distant from

atom number 1 by r12, and forming the 2-1-3 angle equal to a213;
• r12=0.96 is a starting OH bond length in Å;
• a213=104.5 is a starting angle in degrees.

Similar inputs are needed for other molecules. The initial geometry is to some extent
arbitrary, and therefore in fact it cannot be considered as real input data. The only true
information is the number and charge (kind) of the nuclei, the total molecular charge (i.e.
we know how many electrons are in the system), and the multiplicity of the electronic state
to be computed. The basis set issue (STO-3G) is purely technical, and gives information
about the quality of the results.

Ad futurum...

Along with the development of computational technique, and with progress in the domain
of electronic correlation, the importance of the Hartree–Fock method as a source of infor-
mation about total energy, or total electron density, will most probably decrease. Simply,
much larger molecules (beyond the HF level) will be within the reach of future comput-
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ers. Yet Hartree–Fock calculations will be still carried out, and their results will be carefully
analyzed. There are at least two reasons for it:

• Hartree–Fock calculations are most often the necessary step before more precise compu-
tations are performed.

• Hartree–Fock computations result in the molecular orbital model: the molecular orbitals
and the orbital energies scheme (“minimal model”), and thus they provide the conceptual
framework for the molecule. It is the sort of model, which may be discussed, thought of,
and used to search for explanation of physical and chemical phenomena. So far such a
possibility does not exist for advanced methods, where often we obtain very good results,
but it is extremely difficult to get an idea why they agree so well with experiments.148

Additional literature

A. Szabo, N.S. Ostlund, “Modern Quantum Chemistry”, McGraw-Hill, New York, 1989,
p. 108–231.

Excellent book.

T. Helgaker, P. Jørgensen, J. Olsen, “Molecular Electronic-Structure Theory”, Wiley,
Chichester, 2000, p. 433–513.

Very good book. It is a contemporary compendium of computational quantum chem-
istry.

“Localization and Delocalization in Quantum Chemistry”, Ed. by O. Chalvet, R. Daudel,
S. Diner, J.-P. Malrieu, D. Reidel Publish. Co., Dordrecht, 1975.

A set of the very interesting articles by the leading quantum chemists.

Questions

1. The HF method for the N electron system leads to the wave function:
a) which depends on all coordinates of N electrons and satisfies the Schrödinger equa-
tion;
b) in a form of one Slater determinant, that depends on all coordinates of N electrons
and which is an eigenfunction of the Fock operator F̂(1);
c) in a form of one Slater determinant, which does not satisfy the Schrödinger equation;
d) in a form of the product of molecular spinorbitals.

2. The canonical orbitals of a molecule:
a) represent the minimum basis set of the atoms of a molecule;
b) do not satisfy the Fock equation and give the lowest-energy Slater determinant;
c) satisfy the Fock equation and give the lowest-energy Slater determinant;
d) are the localized orbitals for the chemical bonds of the molecule.

3. The localized orbitals:
a) are the orthonormal orbitals localized on an atom and satisfying the Fock equation
for this atom;
b) do not satisfy the Fock equation (8.30) and give the lowest-energy Slater determinant;
c) satisfy the Fock equation (8.30) and give the lowest-energy Slater determinant;
d) are the atomic orbitals which satisfy the Fock equations for the atoms.

148The fact of solving the Schrödinger equation, unfortunately, in most cases does not instruct us on
the nature of physical phenomena.
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4. The orbital energy in a molecule:
a) is the energy of the electron that occupies the highest-energy atomic orbital;
b) is the mean energy per one electron in the molecule;
c) is the sum of the energies of two electrons described by a given molecular orbital;
d) is the mean value of the Fock operator computed with the corresponding canonical
orbital.

5. The Fock operator contains (among other operators) the operator:
a) of the kinetic energy of all electrons;
b) of the Coulombic repulsion of all the electrons;
c) of the kinetic energy of the electrons, and the two-electron Coulombic operator;
d) of the kinetic energy of an electron and of its electrostatic repulsion with the density
distribution of all the electrons.

6. In the LCAO MO method, each MO is:
a) a function of the electron position in 3D space;
b) a linear combination of the hybrids generated from the valence atomic orbitals;
c) a product of the AOs for the atoms of a molecule;
d) a linear combination of the orbitals of electron lone pairs.

7. In the Hartree–Fock method (closed shell, U = sum of the orbital energies for the dou-
bly occupied orbitals), the total electronic energy of a system is:
a) 2U − Vee; b) 2U − 2Vee; c) U − Vee; d) 2U + 2Vee.

8. Localization of the molecular orbitals (MOs) is performed to:
a) divide the MOs into bonding and antibonding orbitals;
b) modify the total electron density, to make it closer to experimental results;
c) decrease the total energy of a system;
d) get the MOs of the bonds, electron lone pairs and inner shells.

9. Find the false statement:
a) the UHF method always gives some spin contamination;
b) EGHF 
 ERHF; c) EGHF 
EUHF; d) EUHF 
ERHF.

10. The MO method for the hydrogen molecule (R is the internuclear distance):
a) cannot be applied for large R values;
b) properly describes the dissociation of the molecule;
c) shows large differences for HOMO and LUMO for large R values;
d) takes the electronic correlation into account.

Answers

1c, 2c, 3b, 4d, 5d, 6a, 7a, 8d, 9a, 10a



Chapter 9

ELECTRONIC MOTION
IN THE MEAN FIELD:
PERIODIC SYSTEMS

Where are we?

We are on the upper left branch of the TREE.

An example

Polyacetylene is an example of new technologically interesting materials1 and represents a
practically infinite polymeric chain:2 . . . –CH=CH–CH=CH–CH=CH–CH=CH–. . . There
is no such a thing in Nature as an infinite system. Yet, if we examine larger and larger
portions of a homogeneous material, we come to the idea that such quantities as energy
per stoichiometric unit, electron excitation energy, vibrational frequencies, etc. depend less
and less on system size. This means that a boundary-region (polymer ends, crystal surface)
contribution to these quantities becomes negligible. Therefore, these (known as intensive)
quantities attain limit values identical to those for an infinite system. It pays to investigate the
infinite system, because we can use its translational symmetry.

Herman Staudinger (1881–1965), German
polymer chemist, professor at the University
of Freiburg, received the Nobel Prize in 1953
“for his discoveries in the field of macromolec-
ular chemistry”. However strange it may sound
now, as late as 1926 the concept of polymers
was unthinkable in chemistry. It will be encour-
aging for PhD students to read that a pro-
fessor advised Staudinger in the late 1920s:
“Dear colleague, leave the concept of large
molecules well alone: organic molecules with
a molecular weight above 5000 do not exist.
Purify your products, such as rubber, then they

will crystallise and prove to be lower molecular
substances.”

1The discovery of conducting polymers was highlighted by the Nobel Prize 2000 for Hideki Shirakawa
(who synthesized a crystalline form of poliacetylene) as well as Allan G. MacDiarmid and Allan J.
Heeger, who increased its electric conductivity by 18 orders of magnitude by doping the crystal with
some electron acceptors and donors. This incredible increase is probably the largest known to humanity
in any domain of experimental sciences (H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang,
A.J. Heeger, Chem. Soc. Chem. Commun. 578 (1977)).

2That is, a macromolecule. The concept of polymer was introduced to chemistry by Herman Stau-
dinger.

428
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We would like to know whether polyacetylene represents a metal, a semiconductor or
an insulator, and how its properties change upon doping. For the time being we have at
our disposal the Hartree–Fock method, but it seems to be useless here, because the num-
ber of electrons and nuclei is infinite. We may cut out a finite section from the infinite
polyacetylene chain and to saturate the resulting dangling bonds by hydrogen atoms, e.g.,
CH2=CH–CH=CH–CH=CH2. Calculations for such a molecule of manageable size will
not give us the expected answers, because we will first meet bankruptcy. We take pains to
compute integrals involving atomic orbitals, but the vast majority of the most essential of
them are already in our pocket. It would certainly pay to take into account the translational
symmetry of the infinite system.

What is it all about

Primitive lattice (�) p. 431

Wave vector (�) p. 433

Inverse lattice (�) p. 436

First Brillouin Zone (FBZ) (�) p. 438

Properties of the FBZ (�) p. 438

A few words on Bloch functions (�) p. 439
• Waves in 1D
• Waves in 2D

The infinite crystal as a limit of a cyclic system (�) p. 445

A triple role of the wave vector (�) p. 448

Band structure (�) p. 449
• Born–von Kármán boundary condition in 3D
• Crystal orbitals from Bloch functions (LCAO CO method)
• SCF LCAO CO equations
• Band structure and band width
• Fermi level and energy gap: insulators, semiconductors and metals

Solid state quantum chemistry (�) p. 460
• Why do some bands go up?
• Why do some bands go down?
• Why do some bands stay constant?
• How can more complex behaviour be explained

The Hartree–Fock method for crystals (�) p. 468
• Secular equation
• Integration in the FBZ
• Fock matrix elements
• Iterative procedure
• Total energy

Long-range interaction problem p. 475
• Fock matrix corrections
• Total energy corrections
• Multipole expansion applied to the Fock matrix
• Multipole expansion applied to the total energy

Back to the exchange term p. 485
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Choice of unit cell (�) p. 488
• Field compensation method
• The symmetry of subsystem choice

If a motif (e.g., a cluster of atoms) associated with a unit cell is regularly translated along
three different directions in space, we obtain an infinite periodic structure (with translational
symmetry).

When applying the Hartree–Fock method to such periodic infinite objects one is forced
to exploit the translational symmetry of the system, e.g., in calculating integrals. It would
indeed be prodigal to compute the integrals many times, the equality of which is guaranteed
by translational symmetry. When translational symmetry is taken into account, the problem
reduces to the calculation of interaction of a single unit cell (reference labelled by 0) with
all other unit cells, the nearest neighbour cells being most important. The infinite size of the
system is hidden in the plethora of points (to be taken into account) in what is known as the
First Brillouin Zone (FBZ). The FBZ represents a unit cell in what is called inverse lattice
(associated with a given lattice reflecting the translation symmetry).

The electronic orbital energy becomes a function of the FBZ points and we obtain what
is known as band structure of the energy levels. This band structure decides the electronic
properties of the system (insulator, semiconductor, metal). We will also show how to carry
out the mean field (Hartree–Fock) computations on infinite periodic systems. The calcu-
lations require infinite summations (interaction of the reference unit cell with the infinite
crystal) to be made. This creates some mathematical problems, which will be also described
in the present chapter.

Why is this important?

The present chapter is particularly important for those readers who are interested in solid
state physics and chemistry. Others may treat it as exotic and, if they decide they do not like
exotic stuff, may go directly to other chapters.

The properties of a polymer or a crystal sometimes differ very widely from those of the
atoms or molecules of which they are built. The same substance may form different periodic
structures, which have different properties (e.g., graphite and diamond). The properties of
periodic structures3 could be computed by extrapolation of the results obtained for larger
and larger clusters of the atoms from which the substance is composed. This avenue is how-
ever non-economic. It is easier to carry out quantum mechanical calculations for an infinite
system,4 than for a large cluster.5

What is needed?

• Operator algebra (Appendix B, p. 895, necessary).
• Translation operator (Appendix C, p. 903, necessary).
• Hartree–Fock method (Chapter 8, necessary).

3Also aperiodic but homogeneous.
4The surface effects can be neglected and the units the system is composed of, turn out to be equiva-

lent.
5Sometimes we may be interested in a particular cluster, not in an infinite system. Then it may turn

out that it is more economic to perform the calculations for the infinite system, and use the results in
computations for the clusters (e.g., R.A. Wheeler, L. Piela, R. Hoffmann, J. Am. Chem. Soc. 110 (1988)
7302).
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• Multipole expansion (Appendix X, p. 1038, advised).
• Matrix diagonalization (Appendix K, p. 982, advised).

Classical works

At the age of 23, Felix Bloch published an article “Über die Quantenmechanik der Elektronen
in Kristallgittern” in Zeitschrift für Physik, 52 (1928) 555 (only two years after Schrödinger’s
historic publication) on the translation symmetry of the wave function. This result is known
as the Bloch theorem. This was the first application of LCAO expansion. � A book ap-
peared in 1931 by Leon Brillouin entitled Quantenstatistik (Springer Verlag, Berlin, 1931),
in which the author introduced some of the fundamental notions of band theory. � The
first ab initio calculations for a polymer were carried out by Jean-Marie André in a paper
“Self-Consistent Field Theory for the Electronic Structure of Polymers” published in the Journal
of the Chemical Physics, 50 (1969) 1536.

9.1 PRIMITIVE LATTICE

Let us imagine an infinite crystal, e.g., a system that exhibits the translational sym-
metry of charge distribution (nuclei and electrons). The translational symmetry will
be fully determined by three (linearly independent) basis vectors:6 a1, a2 and a3 basis

having the property that ai beginning at any atom, extends to identically located
atom of the crystal. The lengths of the basis vectors a1, a2 and a3 are called the
lattice constants along the three periodicity axes.7 lattice constant

There are many such basis sets possible. Any basis vectors choice is acceptable
from the point of view of mathematics. For economic reasons we choose one of the
possible vector sets that give the least volume parallelepiped8 with sides a1, a2 and
a3. This parallelepiped (arbitrarily shifted in space,9 Fig. 9.1) represents our choice
of the unit cell,10 which together with its content (motif) is to be translationally unit cell

repeated.11

6Not necessarily perpendicular though; they determine the periodicity axes.
7As shown on p. 372, a symmetry of the nuclear framework does not guarantee the same symmetry

of the electronic charge distribution computed using a mean field method. We may have cope with
the period doubling as compared to the period of the nuclear framework (cf. BOAS, p. 8.5.2). If this
happens, then we should choose such lattice constants that ensure the periodicity of both nuclear and
electron distributions.

8Yes, because multiplicity of ai would also lead to unit cells that, when repeated, would reproduce
the whole crystal. We are, however, interested in the smallest unit cell.

9The choice of the origin of the coordinate system is arbitrary, the basis vectors are determined within
the accuracy of an arbitrary translation.
10An example of a jigsaw puzzle shows that other choices are possible as well. A particular choice may

result from its convenience. This freedom will be used on p. 438.
11The motif can be ascribed to the unit cell (i.e. chosen) in many different ways provided that after

putting the cells together, we get the same original infinite crystal. Let me propose disregarding this
problem for the time being (as well as the problem of the choice of the unit cell) and to think of the
unit cell as a space-fixed parallelepiped with the motif that has been enclosed in it. We will come back to
this complex problem at the end of the present chapter.
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Fig. 9.1. Periodicity in 2D. We choose the unit cell (the parallelogram with vectors a1 and a2)
and its content (motif) in such a way as to reproduce the whole infinite crystal by repeating the
unit cells through its translation vectors Ri = n1a1 + n2a2 with integers n1, n2. In 3D instead of
the parallelogram, we would have a parallelepiped, which would be repeated by translation vectors
Ri = n1a1 + n2a2 + n3a3 with integers n1	n2	n3.

Let us now introduce the space of translation vectors Ri =∑3
j=1 nijaj , where nij

are arbitrary integer numbers (cf. Appendix B, p. 895).motif

The points indicated by all the translation vectors (“lattice vectors”) are
called the crystallographic lattice or the primitive lattice or simply the lattice.

Let us introduce the translation operators T̂ (Ri) defined as translations of a func-translation
operator tion, on which the operator acts, by vector Ri (cf. Chapter 2 and Appendix C on

p. 903):

T̂ (Ri)f (r)= f (r−Ri)� (9.1)

The function f (r)≡ f (r− 0) is centred in the neighbourhood of the origin of the
coordinate system, while the function f (r− Ri) is centred on the point shown by
vector Ri.

The crystal periodicity is reflected by the following property of the potential
energy V for an electron (V depends on its position in the crystal):

V (r)= V (r−Ri)	 (9.2)

for any Ri. The equation simply says that the infinite crystal looks exactly the same
close to the origin O, as it does at the point shown by vector Ri.
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It is easy to see that the operators T̂ (Ri) form a group (Appendix C, p. 903)
with respect to their multiplication as the group operation.12	13 In Chapter 2 it
was shown that the Hamiltonian is invariant with respect to any translation of a
molecule. For infinite systems, the proof looks the same for the kinetic energy
operator, the invariance of V is guaranteed by eq. (9.2). Therefore, the effective
one-electron Hamiltonian commutes with any translation operator:

ĤT̂ (Ri)= T̂ (Ri)Ĥ�

9.2 WAVE VECTOR
If T̂ (Ri) commutes with the Hamiltonian, its eigenfunctions also represent the
eigenfunctions of the translation operator14 (cf. Chapter 2, p. 69, also Appendix C
on p. 903), i.e. in this case Ĥψ= Eψ and T̂ (Rj)ψ(r)=ψ(r−Rj)= λRjψ(r). The
symmetry of V requires the equality of the probability densities

∣
∣ψ(r−Rj)

∣
∣
2 = ∣∣ψ(r)∣∣2	 (9.7)

for any lattice vector Rj	 which gives |λRj |2 = 1, and therefore we may write:

λRj = exp(−iθRj )	 (9.8)

where θRj will be found in a moment.15

12Indeed, first a product of such operators represents a translational operator:

T̂ (R1)T̂ (R2)f (r) = T̂ (R1)f (r −R2)= f (r−R1 −R2)= f
(

r− (R1 +R2)
)

= T̂ (R1 +R2)f (r)

therefore:
T̂ (R1)T̂ (R2)= T̂ (R1 +R2)� (9.3)

The second requirement is to have a unity operator. This role is played by T̂ (0), since

T̂ (0)f (r)= f (r+ 0)= f (r)� (9.4)

The third condition is the existence [for every T̂ (Ri)] of the inverse operator, which in our case is
T̂ (−Ri), because:

T̂ (Ri)T̂ (−Ri)= T̂ (Ri −Ri)= T̂ (0)� (9.5)

The group is Abelian (i.e. the operations commute), since:

T̂ (R1)T̂ (R2)= T̂ (R1 +R2)= T̂ (R2 +R1)= T̂ (R2)T̂ (R1)� (9.6)

13Besides the translational group, the crystal may also exhibit what is called the point group, associated
with rotations, reflections in planes, inversion, etc., and the space group that results from the transla-
tional group and the point group. In such cases, a smaller unit cell may be chosen, because the whole
crystal is reproduced not only by translations, but also by other symmetry operations. In the present
textbook, we will concentrate on the translational symmetry group only.
14The irreducible representations of an Abelian group are one-dimensional. In our case (translation

group) this means that there is no degeneracy, and that an eigenfunction of the Hamiltonian is also an
eigenfunction of all the translation operators.
15The exponent sign is arbitrary, we use “−” following a widely used convention.
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From equation T̂ (Rj)ψ(r)= λRjψ(r) it follows that

λRj λRl = λRj+Rl 	 (9.9)

because
T̂ (Rj +Rl)ψ(r)= λRj+Rlψ(r−Rj −Rl)� (9.10)

On the other hand

T̂ (Rj +Rl)ψ(r) = T̂ (Rj)T̂ (Rl)ψ(r)= λRl T̂ (Rj)ψ(r−Rl)
= λRj λRlψ(r−Rj −Rl)�

Since this relation has to be satisfied for any Rj and Rl , it is therefore sufficient to
have

θRj = k ·Rj	 (9.11)

because a multiplication of λ by λ corresponds to adding the exponents, which
results in adding vectors R, which we need to have. The dot product k · Rj for
simplicity will also be written as kRj�

CONCLUSION:

The eigenfunctions of the one-electron Hamiltonian and the translation op-
erators correspond to the following eigenvalues of the translation operator:
λRj = exp(−ikRj),

where the wave vector k characterizes the function, not the direction ofRj . In other
words, any one-electron wave function (crystal orbital), which is the eigenfunction
of the one-electron Hamiltonian could be labelled by its corresponding vector k,
i.e. ψ(r)→ψk(r).Bloch theorem

BLOCH THEOREM
The value of such a function in the point shifted by the vector Rj is equal to:

ψk(r−Rj)= exp(−ikRj)ψk(r) (9.12)

The above equality is called the Bloch theorem.

Felix Bloch (1905–1983), American physicist
of Swiss origin, from 1936–1971 professor at
Stanford University. Bloch contributed to the
electronic structure of metals, superconductiv-
ity, ferromagnetism, quantum electrodynamics
and the physics of neutrons. In 1946, indepen-
dently of E.M. Purcell, he discovered the nu-
clear magnetic resonance effect. Both scien-
tists received the Nobel Prize in 1952 “for the
development of new methods for nuclear mag-
netic precision measurements and the discov-
eries in connection therewith”.



9.2 Wave vector 435

This relation represents a necessary condition to be fulfilled by the eigenfunc-
tions for a perfect periodic structure (crystal, layer, polymer). This equation differs
widely from eq. (9.2) for potential energy. Unlike potential energy, which does not
change at all upon a lattice translation, the wave function undergoes a change of
its phase acquiring the factor exp(−ikRj).

Any linear combination of functions labelled by the same k represents an eigen-
function of any lattice translation operator, and corresponds to the same k. Indeed,
from the linearity of the translation operator

T̂ (Rl)
(

c1φk(r)+ c2ψk(r)
) = c1φk(r−Rl)+ c2ψk(r−Rl)
= c1 exp(−ikRl)φk(r)+ c2 exp(−ikRl)ψk(r)
= exp(−ikRl)

(

c1φk(r)+ c2ψk(r)
)

�

Let us construct the following function (called a Bloch function) from a function
χ(r), that in future will play the role of an atomic orbital:

φ(r)=
∑

j

exp(ikRj)χ(r−Rj)	

where the summation extends over all possibleRj , i.e. over the whole crystal lattice.
The function φ is automatically an eigenfunction of any translation operator and
may be labelled by the index k similarly ψk. Indeed, first

T̂ (Rl)φ(r) = T̂ (Rl)
∑

j

exp(ikRj)χ(r−Rj)=
∑

j

exp(ikRj)T̂ (Rl)χ(r−Rj)

=
∑

j

exp(ikRj)χ(r−Rj −Rl)�

Instead of the summation over Rj let us introduce a summation over Rj′ =Rj+Rl ,
which means an identical summation as before, but we begin to sum the term up
from another point of the lattice. Then, we can write

∑

j′
exp
(

ik(Rj′ −Rl)
)

χ(r−Rj′) = exp(−ikRl)
∑

j′
exp(ikRj′)χ(r−Rj′)

= exp(−ikRl)φ(r)
which had to be proven.

Our function φ represents, therefore, an eigenfunction of the translation oper-
ator with the same eigenvalue as that corresponding to ψk. In the following, very
often ψk will be constructed as a linear combination of Bloch functions φ.

A Bloch function is nothing but a symmetry orbital built from the functions
χ(r−Rj).

A symmetry orbital is a linear combination of atomic orbitals, that transforms
according to an irreducible representation � of the symmetry group of the Hamil-
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tonian (cf. Appendix C). In order to obtain such a function we may use the corre-
sponding projection operator [see eq. (C.13)].

There is also another way to construct a function φk(r) of a given k from an
auxiliary function u(r) satisfying an equation similar to eq. (9.2) for the potential V

T̂ (Ri)u(r)= u(r−Ri)= u(r)� (9.13)

Then, φk(r)= exp(ikr)u(r). Indeed, let us check

T̂ (Rj)φk(r) = T̂ (Rj)exp(ikr)u(r)= exp
(

ik(r−Rj)
)

u(r−Rj)
= exp(−ikRj)φk(r)	 (9.14)

9.3 INVERSE LATTICE
Let us now construct the so called biorthogonal basis b1	b2	b3 with respect to
the basis vectors a1	a2	a3 of the primitive lattice, i.e. the vectors that satisfy the
biorthogonality relations:biorthogonality

biaj = 2πδij� (9.15)

The vectors bi can be expressed by the vectors ai in the following way

bi = 2π
∑

j

aj
(

S−1)

ji
	 (9.16)

Sij = ai · aj � (9.17)

The vectors b1, b2 and b3 form the basis of a lattice in a 3D space. This
lattice will be called the inverse lattice.

The inverse lattice vectors are, therefore,

Kj =
i=3
∑

i=1

gjibi	 (9.18)

where gij represent arbitrary integers. We have

KjRi = 2πMij	

where Mij are integer numbers.
Indeed,

Kj ·Ri =
3
∑

l=1

gjlbl ·
3
∑

k=1

nikak =
3
∑

l=1

3
∑

k=1

nikgjlbl · ak (9.19)

=
3
∑

l=1

3
∑

k=1

nikgjl(2π)δlk = 2π
3
∑

l=1

nilgjl = 2πMij (9.20)
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with nik, gjl and, therefore also Mij as integers. The inverse lattice is composed,
therefore, from the isolated points indicated from the origin by the vectors Kj . All
the vectors that begin at the origin form the inverse space.

Examples
Let us see how we obtain the inverse lattice (1D, 2D, 3D) in practice.

1D

We have only a single biorthogonality relation: b1 a1 = 2π, i.e. after skipping the
index ba= 2π. Because of the single dimension, we have to have b= 2π

a (
a
a ), where

|a| ≡ a. Therefore,

the vector b has length 2π
a and the same direction as a.

2D

This time we have to satisfy: b1a1 = 2π, b2a2 = 2π, b1a2 = 0	 b2a1 = 0� This means
that the game takes place within the plane determined by the lattice vectors a1
and a2. The vector b1 has to be perpendicular to a2, while b2 has to be perpen-
dicular to a1, their directions such as shown in Fig. 9.2 (each of the b vectors is a
linear combination of a1 and a2 according to (9.16)).

3D

In the 3D case the biorthogonality relations are equivalent to setting

b1 = a2 × a3
2π
V
	 (9.21)

b2 = a3 × a1
2π
V
	 (9.22)

b3 = a1 × a2
2π
V
	 (9.23)

Fig. 9.2. Construction of the inverse lattice in
2D. In order to satisfy the biorthogonality re-
lations (9.15) the vector b1 has to be orthog-
onal to a2, while b2 must be perpendicular
to a1. The lengths of the vectors b1 and b2
also follow from the biorthogonality relations:
b1 · a1 = b2 · a2 = 2π.
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area Fig. 9.3. The volume V of the unit cell
is equal to V = a1 · (area of the base)i=
a1 · (a2 × a3).

where
V = a1 · (a2 × a3) (9.24)

is the volume of the unit cell of the crystal (Fig. 9.3).

9.4 FIRST BRILLOUIN ZONE (FBZ)
As was remarked at the beginning of this chapter, the example of a jigsaw puzzleWigner–Seitz

cell shows us that a parallelepiped unit cell does not represent the only choice. Now,

Léon Nicolas Brillouin (1889–
1969), French physicist, pro-
fessor at the Sorbonne and
College de France in Paris,
after 1941 in the USA: at
the University of Madison,
Columbia University, Harvard
University. His contributions
included quantum mechanics
and solid state theory (he is
one of the founders of elec-
tronic band theory).

we will profit from this extra freedom
and will define the so called Wigner–Seitz
unit cell. Here is the prescription of how
to construct it (Fig. 9.4):

We focus on a nodeW	 saw the crystal
along the plane that dissects (symmet-
rically) the distance to a nearest neigh-
bour node, throw the part that does not
contain W into the fire-place, then re-
peat the procedure until we are left with
a solid containing W . This solid repre-
sents the First Brillouin Zone (FBZ).

9.5 PROPERTIES OF THE FBZ

The vectors k, which begin at the origin and end in the FBZ, label all differ-
ent irreducible representations of the translational symmetry group.

Let us imagine two inverse space vectors k′ and k′′ related by the equality k′′ =
k′ + Ks , where Ks stands for an inverse lattice vector. Taking into account the
way the FBZ has been constructed, if one of them, say, k′ indicates a point in the
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Fig. 9.4. Construction of the First
Brillouin Zone (FBZ) as a Wigner–
Seitz unit cell of the inverse lat-
tice in 2D. The circles represent the
nodes of the inverse lattice. We cut
the lattice in the middle between
the origin node W and all the other
nodes (here it turns out to be suf-
ficient to take only the nearest and
the next nearest neighbours) and
remove all the sawn-off parts that
do not containW . Finally we obtain
the FBZ in the form of a hexagon.
The Wigner–Seitz unit cells (after
performing all allowed translations
in the inverse lattice) reproduce the
complete inverse space.

interior of the FBZ, then the second, k′′, “protrudes” outside the FBZ. Let us try
to construct a Bloch function that corresponds to k′′:

φk′′ =
∑

j

exp(ik′′Rj)χ(r−Rj)=
∑

j

exp
(

i(k′ +Ks)Rj
)

χ(r−Rj) (9.25)

= exp(iKsRj)
∑

j

exp(ik′Rj)χ(r−Rj) (9.26)

= exp(i2πMsj)
∑

j

exp(ik′Rj)χ(r−Rj) (9.27)

=
∑

j

exp(ik′Rj)χ(r−Rj)=φk′ � (9.28)

It turns out that our function φ does behave in a way identical to k′. We say that
the two vectors are equivalent. equivalent

vectors

Vector k outside the FBZ is always equivalent to a vector from inside the
FBZ, while two vectors from inside of the FBZ are never equivalent.

Therefore, if we are interested in electronic states (the irreducible represen-
tation of the translation group are labelled by k vectors) it is sufficient to limit
ourselves to those k vectors that are enclosed in the FBZ.

9.6 A FEW WORDS ON BLOCH FUNCTIONS

9.6.1 WAVES IN 1D

Let us take a closer look of a Bloch function corresponding to the vector k:

φk(r)=
∑

j

exp(ikRj)χ(r−Rj) (9.29)
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and limit ourselves to 1D. In such a case, the wave vector k reduces to a wave
number k, and the vectors Rj can all be written as Rj = ajz, where z stands for the
unit vector along the periodicity axis, ameans the lattice constant (i.e. the nearest-
neighbour distance), while j = 0	±1	±2	 � � � Let us assume that in the lattice nodes
we have hydrogen atoms with orbitals χ= 1s. Therefore, in 1D we have:

φk(r)=
∑

j

exp(ikja)χ(r− ajz)� (9.30)

Let me stress that φk represents a function of position r in the 3D space and
only the periodicity has a 1D character. The function is a linear combination of
the hydrogen atom 1s orbitals. The linear combination depends exclusively on the
value of k. Eq. (9.28) tells us that the allowed k ∈ (0	 2π

a ), or alternatively k ∈
(−π

a 	
π
a ). If we exceed the FBZ length 2π

a , then we would simply repeat the Bloch
functions. For k= 0 we get

φ0 =
∑

j

exp(0)χ(r− ajz)=
∑

j

χ(r− ajz)	 (9.31)

i.e. simply a sum of the 1s orbitals. Such a sum has a large value on the nuclei, and
close to a nucleus φ0 will be delusively similar to its 1s orbital, Fig. 9.5.a.

The function looks like a chain of buoys floating on a perfect water surface. If
we ask whether φ0 represents a wave, the answer could be, that if it does then its
wave length is ∞� What about k= π

a ? In such a case:

φπ
a
(r) =

∑

j

exp(ijπ)χ(r− ajz)=
∑

j

(cosπj + i sinπj)χ(r− ajz)

=
∑

j

(−1)jχ(r− ajz)�

If we decide to draw the function in space, we would obtain Fig. 9.5.b. When asked
this time, we would answer that the wave length is equal to λ = 2a, which by the
way is equal to16 2π

|k| . There is a problem. Does the wave correspond to k = π
a or

k = −π
a ? It corresponds to both of them. Well, does it contradict the theorem

that the FBZ contains all different states? No, everything is OK. Both functions are
from the border of the FBZ, their k values differ by 2π

a (one of the inverse lattice
vectors) and therefore both functions represent the same state.

Now, let us take k= π
2a . We obtain

φk(r) =
∑

j

exp
(
iπj

2

)

χ(r− ajz)

=
∑

j

(

cos
(
πj

2

)

+ i sin
(
πj

2

))

χ(r− ajz) (9.32)

with some coefficients being complex numbers. For j = 0 the coefficient is equal
to 1, for j = 1 equals i, for j = 2 it takes the value −1, for j = 3 it attains −i, for
j = 4 it is again 1, and the values repeat periodically. This is depicted in Fig. 9.5.c.

16In the preceding case the formula λ= 2π
k

also worked, because it gave λ=∞.
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Fig. 9.5. Waves in 1D. Shadowed (white) circles mean negative (positive) value of the function. Despite
the fact that some waves are complex, in each of the cases (a)–(f) we are able to determine their wave
length.

If this time we ask whether we see any wave there, we have to answer that yes
we do, because after the length 4a everything begins to repeat. Therefore, λ= 4a
and again it equals to 2π

k = 2π
π
2a

. Everything is OK except that humans like pictures
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more than schemes. Can we help it somehow? Let us take a look of φk(r) which
corresponds to k=− π

2a . We may easily convince ourselves that this situation cor-
responds to what we have in Fig. 9.5.d.

Let us stress that φ−k = φ∗k represents another complex wave. By adding and
subtracting φk(r) and φ−k(r) we receive the real functions, which can be plotted
and that is all we need. By adding 1

2(φk +φ−k), we obtain

1
2
(φk +φ−k)=

∑

j

cos
(
πj

2

)

χ(r− ajz)	 (9.33)

while 1
2i (φk −φ−k) results in

1
2i
(φk −φ−k)=

∑

j

sin
(
πj

2

)

χ(r− ajz)� (9.34)

Now, there is no problem with plotting the new functions (Fig. 9.5.e,f).17

A similar technique may be applied to any k. Each time we will find that the
wave we see exhibits the wave length λ= 2π

k .

9.6.2 WAVES IN 2D

Readers confident in their understanding of the wave vector concept may skip this
subsection.

This time we will consider the crystal as two-dimensional rectangular lattice,
therefore, the corresponding inverse lattice is also two-dimensional as well as the
wave vectors k= (kx	ky).

Let us take first k= (0	0). We immediately obtain φk shown in Fig. 9.6.a, which
corresponds to infinite wave length (again λ= 2π

k ) or “no wave” at all.
Let us try k = (πa 	0). The summation over j may be replaced by a double

summation (indices m and n along the x and y axes, respectively), therefore,
Rj = max + nby, where m and n correspond to the unit cell j, a and b denote
the lattice constants along the axes shown by the unit vectors x and y. We have

φk =
∑

mn

exp
(

i(kxma+ kynb)
)

χ(r−max− nby)

=
∑

mn

exp(iπm)χ(r−max− nby)=
∑

mn

(−1)mχ(r−max− nby)�

If we go through all m and n, it easily seen that moving along x we will meet the
signs+1	−1	+1	−1	 � � � , while moving along y we have the same sign all the time.
This will correspond to Fig. 9.6.b.

This is a wave.
17And what would happen if we took k= π

a
m
n 	 with the integerm< n? We would again obtain a wave

with the wave length λ= 2π
k

, i.e. in this case λ= n
m2a� It would be quite difficult to recognize such a

wave computed at the lattice nodes, because the closest wave maxima would be separated by n2a and
this length would have been covered by m wavelengths.
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Fig. 9.6. Waves in 2D. Shadowed (white) circles mean negative (positive) value of the function. In any
case λ= 2π

k
, while the wave vector k points to the direction of the wave propagation. a) k= (0	0); b)

k= ( πa 	0); c) k= ( π2a 	0), 1
2i (φk −φ−k); d) k= ( π2a 	0), 1

2 (φk +φ−k); e) k= ( πa 	 πb ).

The wave fronts are oriented along y , i.e. the wave runs along the x axis,
therefore, in the direction of the wave vector k. The same happened in the
1D cases, but we did not express that explicitly: the wave moved along the
(1D) vector k.
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Exactly as before the wave length is equal to 2π divided by the length of k. Since
we are at the FBZ border, a wave with −k simply means the same wave as for k.

If we take k= [ π2a 	0], then

φk =
∑

mn

exp
(

i(kxma+ kynb)
)

χ(r−max− nby)

=
∑

mn

exp
(
iπm

2

)

χ(r−max− nby)�

This case is very similar to that in 1D for k= π
2a , when we look at the index m

and k= 0, and when we take into account the index n. We may carry out the same
trick with addition and subtraction, and immediately get Figs. 9.6.c and d.

Is there any wave over there? Yes, there is. The wave length equals 4a, i.e. ex-
actly λ= 2π

k , and the wave is directed along vector k. When making the figure, we
also used the wave corresponding to −k, therefore, neither the sum nor the dif-
ference correspond to k or −k� but rather to both of them (we have two standing
waves). The reader may guess the wave length and direction of propagation for φk
corresponding to k= [0	 π2b ].

Let us see what happens for k= [πa 	 πb ]. We obtain

φk =
∑

mn

exp
(

i(kxma+ kynb
)

χ(r−max− nby)

=
∑

mn

exp
(

i(mπ + nπ))χ(r−max− nby)

=
∑

mn

(−1)m+nχ(r−max− nby)	

which produces waves propagating along k. And what about the wave length? We
obtain18

λ= 2π
√

(πa )
2 + (πb )2

= 2ab
√

a2 + b2
� (9.35)

In the last example there is something that may worry us. As we can see, our
figure corresponds not only to k1 = (πa 	 πb ) and k2 = (−π

a 	−π
b ), which is under-

standable (as discussed above), but also to the wave with k3 = (−π
a 	

π
b ) and to the

wave evidently coupled to it, namely, with k4 = (πa 	−π
b )! What is going on? Again,

let us recall that we are on the FBZ border and this identity is natural, because the
vectors k2 and k3 as well as k1 and k4 differ by the inverse lattice vector (0	 2π

b ),
which makes the two vectors equivalent.

18The formula can be easily verified in two limiting cases. The first corresponds to a = b. Then, λ =
a
√

2, and this agrees with Fig. 9.6.e. The second case is, when b=∞, which gives λ= 2a, exactly as in
the 1D case with k= π

a . This is what we expected.
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9.7 THE INFINITE CRYSTAL AS A LIMIT OF A CYCLIC
SYSTEM

Band structure
Let us consider the hydrogen atom in its ground state (cf. p. 178). The atom is
described by the atomic orbital 1s and corresponds to energy −0�5 a.u. Let us now
take two such atoms. We have two molecular orbitals: bonding and antibonding
(cf. p. 371), which correspond, respectively, to energies a bit lower than −0�5 and
a bit higher than −0�5 (this bit is larger if the overlap of the atomic orbitals gets
larger). We therefore have two energy levels, which stem directly from the 1s levels
of the two hydrogen atoms. For three atoms we would have three levels, for 1023

atoms we would get 1023 energy levels, that would be densely distributed along the
energy scale, but would not cover the whole scale. There will be a bunch of energy
levels stemming from 1s, i.e. an energy band of allowed electronic states. If we had bands

an infinite chain of hydrogen atoms, there would be a band resulting from 1s levels,
a band stemming from 2s, 2p, etc., the bands might be separated by energy gaps. energy gap

How dense would the distribution of the electronic levels be? Will the distri-
bution be uniform? Answers to such questions are of prime importance for the
electronic theory of crystals. It is always advisable to come to a conclusion by steps,
starting from something as simple as possible, which we understand very well.

Fig. 9.7 shows how the energy level distribution looks for longer and longer rings
(regular polygon) of hydrogen atoms. One of important features of the distribution
is that

Fig. 9.7. Energy level distribution for a regular polygon built from hydrogen atoms. It is seen that the
energy levels are located within an energy band, and are closer to one another at the band edges. The
centre of the band is close to energy 0, taken as the binding energy in the isolated hydrogen atom (equal
to−0�5 a.u.). Next to energy levels the molecular orbitals are shown schematically (the shadowed circles
mean negative values). R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended
Structures”, VCH Publishers, New York, © 1988 VCH Publishers. Reprinted with permission of John
Wiley & Sons, Inc.
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the levels extend over an energy interval and are more numerous at energy
extremes.

How do the wave functions that correspond to higher and higher-energy levels
in a band look? Let us see the situation in the ring Hn molecules. Fig. 9.7 indicates
that the rule is very simple. The number of nodes of the wave function increases by
one, when we go to the next level (higher in the energy scale).19

Born–von Kármán condition in 1D
How is it in the case of a crystal? Here we are confronted with the first difficulty.
Which crystal, of what shape? Should it be an ideal crystal, i.e. with perfectly or-
dered atoms? There is nothing like the perfect crystal in Nature. For the sake of
simplicity (as well as generality) let us assume, however, that our crystal is perfect
indeed. Well, and now what about its surface (shape)? Even if we aimed at study-
ing the surface of a crystal, the first step would be the infinite crystal (i.e. with no
surface). This is the way theoreticians always operate.20

One of the ingenious ideas in this direction is known as the Born–von Kár-
mán boundary conditions. The idea is that instead of considering a crystal
treated as a stick (let us consider 1D case) we treat it as a circle, i.e. the
value of the wavefunction at one end of the stick has to be equal to the wave-
function value at the other end. In this way we remove the problem of the
crystal ends, and on top of that, all the unit cells become equivalent.

Theodore von Kármán (1881–1963), American
physicist of Hungarian origin, director of the
Guggenheim Aeronautical Laboratory at the
California Institute of Technology in Pasadena.
von Kármán was also a founder of the NASA
Jet Propulsion Laboratory and father of the
concept of the first supersonic aeroplane. On
the Hungarian stamp one can see the famous
“Kármán vortex street” behind an aeroplane.
He was asked by the father of the young math-
ematical genius John von Neumann to per-
suade him that the job of a mathematician is far
less exciting than that of a banker. Theodore

von Kármán (to the benefit of science) did not
accomplish this mission well.

The same may be done in 2D and 3D cases. We introduce usually the Born–von
Kármán boundary conditions for a finite N and then go with N to ∞. After such
a procedure is carried out, we are pretty sure that the solution we are going to

19They are bound to differ by the number of nodes, because this assures their mutual orthogonality
(required for the eigenfunctions of a Hermitian operator).
20People say that when theoreticians attack the problem of stability of a table as a function of the

number n of its legs, they do it in the following way. First, they start with n= 0, then they proceed with
n= 1, then they go to n=∞, and after that they have no time to consider other values of n.
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obtain will not only be true for an infinite cycle but also for the mass (bulk) of the
infinite crystal. This stands to reason, provided that the crystal surface does not
influence the (deep) bulk properties at all.21 In the ideal periodic case, we have
to do with the cyclic translational symmetry group (Appendix C on p. 903). The
group is Abelian and, therefore, all the irreducible representations have dimen-
sion 1.

Let us assume we have to do with N equidistant atoms located on a circle, the
nearest-neighbour distance being a. From the Bloch theorem for the wave function
ψ we have

ψ(aN)= exp(−ikaN)ψ(0)	 (9.36)
where we have assumed that the wave function ψ corresponds to the wave vector
k (here, in 1D, wave number k).

The Born–von Kármán condition means:

ψ(aN)=ψ(0)	 (9.37)
or

exp(−ikaN)= 1� (9.38)

From this follows that:
kaN = 2πJ	 (9.39)

where J = 0	±1	±2	 � � � . This means that only some k are allowed, namely k =
2π
a
J
N .
The Bloch functions take the form [cf. eq. (9.29)]:

∑

j

exp(ikja)χj	 (9.40)

where χj denotes a given atomic orbital (e.g., 1s) centred on atom j. The summa-
tion over j in our case is finite, because we only have N atoms, j = 0	1	2	 � � � 	
N − 1. Let us consider J = 0	1	2	 � � � 	N − 1 and the corresponding values of
k= 2π

a
J
N . For each k we have a Bloch function, altogether we have, therefore, N

Bloch functions. Now, we may try to increase J and take J =N . The corresponding
Bloch function may be written as

∑

j

exp(i2πj)χj =
∑

j

χj	 (9.41)

which turns out to be identical to the Bloch function with k = 0, i.e. with J = 0.
We are reproducing what we already have. It is clear, therefore, that we have a
set of those k, that form a complete set of non-equivalent states, they correspond
to J = 0	1	2	 � � � 	N − 1. It is also seen that if the limits of this set are shifted
by the same integer, then we still have the same complete set of non-equivalent
states. Staying for the time being with our primary choice of the set, we will get

21We circumvent the difficult problem of the crystal surface. The boundary (surface) problem is ex-
tremely important for obvious reasons: we usually have to do with this, not with the bulk. The existence
of the surface leads to some specific surface-related electronic states.
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N values of k ∈ [0	 2π
a
N−1
N ], i.e. k ∈ {0	 2π

a
1
N 	

2π
a

2
N 	 � � � 	

2π
a
N−1
N }. Those k values

are equidistant. When N→∞ then the section to be divided attains the length 2π
a .

Hence

the non-equivalent states (going with N to infinity) correspond to those k’s
that are from section [0	 2π

a ] or shifted section [−π
a 	+π

a ], called the FBZ.
We are allowed to make any shift, because, as we have shown, we keep the
same non-equivalent values of k. The allowed k values are distributed uni-
formly within the FBZ. The number of the allowed k’s is equal to∞, because
N =∞ (and the number of the allowed k’s is always equal to N).

k-dependence of orbital energy
Let us take the example of benzene (N = 6, Fig. 9.7) and consider only those
molecular orbitals that can be written as linear combinations of the carbon 2pz ,
where z is the axis orthogonal to the plane of the molecule. The wave vectors22

(k= 2π
a
J
N ) may be chosen as corresponding to J = 0	1	2	 � � � 	5, or equivalently to

J =−3	−2	−1	0	+1	+2. It is seen that J = 0 gives a nodeless function,23 J =±1
lead to a pair of the Bloch functions with a single node, J =±2 give a pair of the
two-node functions, and finally J =−3 corresponds to a three-node function.

It has occasionally been remarked in this book (cf., e.g., Chapter 4), that in-
creasing the number of nodes24 results in higher energy. This rule becomes most
transparent in the present case. A nodeless Bloch function means that all the con-
tacts between the 2p orbitals are bonding, which results in low energy. A singlebonding and

antibonding
interaction

node means introducing two nearest-neighbour antibonding interactions, and this
is bound to cause an energy increase. Two nodes result in four antibonding in-
teractions, and the energy goes up even more. Three nodes already give all the
nearest-neighbour contacts of antibonding character and the energy is the highest
possible.

9.8 A TRIPLE ROLE OF THE WAVE VECTOR
As has already been said, the wave vector (in 1D, 2D and 3D) plays several roles.
Here they are:

1. The wave vector k tells us which type of plane wave arranged from certain
objects (like atomic orbitals) we are concerned with. The direction of k
is the propagation direction, the wave length is λ= 2π

|k| .

22In this case this is a wave number.
23We neglect here the node that follows from the reflection in the molecular plane as being shared by

all the molecular orbitals considered.
24That is, considering another wavefunction that has a larger number of nodes.
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2. The wave vector may also be treated as a label for the irreducible repre-
sentation of the translation group.

In other words, k determines which irreducible representation we are dealing
with (Appendix C on p. 903). This means that k tells us which permitted rhythm
is exhibited by the coefficients at atomic orbitals in a particular Bloch function
(permitted, i.e. assuring that the square has the symmetry of the crystal). There
are a lot of such rhythms, e.g., all the coefficients equal each other (k = 0)	
or one node introduced, two nodes, etc. The FBZ represents a set of such k,
which corresponds to all possible rhythms, i.e. non-equivalent Bloch functions.25

In other words the FBZ gives us all the possible symmetry orbitals that can be
formed from an atomic orbital.

3. The longer the k, the more nodes the Bloch function φk has: |k| = 0
means no nodes, at the boundary of the FBZ there is the maximum num-
ber of nodes.

9.9 BAND STRUCTURE

9.9.1 BORN–VON KÁRMÁN BOUNDARY CONDITION IN 3D

The Hamiltonian Ĥ we were talking about represents an effective one-electron
Hamiltonian. From Chapter 8, we know that it may be taken as the Fock operator.
A crystal represents nothing but a huge (quasi-infinite) molecule, and assuming the
Born–von Kármán condition, a huge cyclic molecule. This is how we will get the
Hartree–Fock solution for the crystal – by preparing the Hartree–Fock solution for
a cyclic molecule and then letting the number of unit cells N go to infinity.

Hence, let us take a large piece of crystal – a parallelepiped with the number
of unit cells in each of the periodicity directions (i.e. along the three basis vectors)
equal to 2N + 1 (the reference cell 0, N cells on the right, N cells on the left). The
particular number, 2N+ 1, is not very important, we have only to be sure that such
a number is large. We assume that the Born–von Kármán condition is fulfilled. This
means that we treat the crystal like a snake eating its tail, and this will happen on
every of the three periodicity axes. This enables us to treat the translation group
as a cyclic group, which gives an enormous simplification to our task. The cyclic
group of the lattice constants a, b, c implies that [cf. eq. (9.38)]

exp
(−ikxa(2N + 1)

) = 1	 (9.42)
exp
(−ikyb(2N + 1)

) = 1	 (9.43)
exp
(−ikzc(2N + 1)

) = 1	 (9.44)

which can be satisfied only for some special vectors k= (kx	ky	kz) satisfying:

25That is, linearly independent.
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kx = 2π
a

Jx

2N + 1
	 (9.45)

ky = 2π
b

Jy

2N + 1
	 (9.46)

kz = 2π
c

Jz

2N + 1
	 (9.47)

with any of Jx	 Jy	 Jz taking 2N + 1 consecutive integer numbers. We may, for
example, assume that Jx	 Jy	 Jz ∈ {−N	−N + 1	 � � � 	0	1	2	 � � � 	N}. Whatever N
is, k will always satisfy

−π
a
< kx <

π

a
	 (9.48)

−π
b
< ky <

π

b
	 (9.49)

−π
c
< kz <

π

c
	 (9.50)

which is what we call the FBZ. We may therefore say that before letting N→∞
the FBZ is filled with the allowed vectors k in a grain-like way; the number
being equal to the number of unit cells, i.e. (2N + 1)3. Note that the distri-
bution of the vectors allowed in the FBZ is uniform. This is assured by the
numbers J, which divide the axes kx, ky , kz in the FBZ into equal pieces.

9.9.2 CRYSTAL ORBITALS FROM BLOCH FUNCTIONS (LCAO CO
METHOD)

What we expect to obtain finally in the Hartree–Fock method for an infinite crys-
tal are the molecular orbitals, which in this context will be called the crystal orbitalscrystal orbitals

(CO). As usual we will plan to expand the CO as linear combinations of atomic
orbitals (cf. p. 360). Which atomic orbitals? Well, those which we consider appro-
priate26 for a satisfactory description of the crystal, e.g., the atomic orbitals of all
the atoms of the crystal. We feel, however, that we have to be defeated in trying to
perform this task.

There will be a lot of atomic orbitals, and therefore also an astronomic num-
ber of integrals to compute (infinite for the infinite crystal) and that is it, we
cannot help this. On the other hand, if we begin such a hopeless task, the
value of any integral would repeat an infinite number of times. This indi-
cates a chance to simplify the problem. Indeed, we have not yet used the
translational symmetry of the system.

If we are going to use the symmetry, then we may create the Bloch functions
representing the building blocks that guarantee the proper symmetry in advance. Each
26As for molecules.
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Bloch function is built from an atomic orbital χ:

φk = (2N + 1)−
3
2
∑

j

exp(ikRj)χ(r−Rj)� (9.51)

The function is identical to that of eq. (9.29), except it has a factor (2N + 1)−
3
2 ,

which makes the function approximately normalized.27

Any CO will be a linear combination of such Bloch functions, each correspond-
ing to a given χ� This is equivalent to the LCAO expansion for molecular orbitals,
the only difference is that we have cleverly preorganized the atomic orbitals (of
one type) into symmetry orbitals (Bloch functions). Hence, it is indeed appropri-
ate to call this approach as the LCAO CO method (Linear Combination of Atomic
Orbitals – Crystal Orbitals), analogous to the LCAO MO (cf. p. 362). There is, how-
ever, a problem. Each CO should be a linear combination of the φk for various
types of χ and for various k. Only then would we have the full analogy: a molecular
orbital is a linear combination of all the atomic orbitals belonging to the atomic
basis set.28

It will be shown below that the situation is far better:

each CO corresponds to a single vector k from the FBZ and is a linear com-
bination of the Bloch functions, each characterized by this k.

There are, however, only a few Bloch functions – their number is equal to the
number of the atomic orbitals per unit cell (denoted byω). Our optimism pertains,
of course, to taking a modest atomic basis set (small ω).

It is easy to show that, indeed, we can limit ourselves to a single vector k. Imag-
ine this is false, and our CO is a linear combination of all the Bloch functions
27The function without this factor is of classQ, i.e. normalizable for any finiteN , but non-normalizable

forN =∞. The approximate normalization makes the function square integrable, even forN =∞. Let
us see:

〈φk|φk〉 = (2N + 1)−3
∑

j

∑

j′
exp
(

ik(Rj −Rj′ )
)
∫

χ(r−Rj)χ(r−Rj′)dτ

= (2N + 1)−3
∑

j

∑

j′
exp
(

ik(Rj −Rj′ )
)
∫

χ(r)χ
(

r− (Rj −Rj′ )
)

dτ	

because the integral does depend on a relative separation in space of the atomic orbitals. Further,

〈φk|φk〉 =
∑

j

exp(ikRj)
∫

χ(r)χ(r−Rj)dτ	 (9.52)

because we can replace a double summation over j and j′ by a double summation over j and j′′ = j− j′
(both double summations exhaust all the lattice nodes), and the later summation always gives the same
independent of j; the number of such terms is equal to (2N + 1)3. Finally, we may write 〈φk|φk〉 =
1+ various integrals. The largest of these integrals is the nearest neighbour overlap integral of the
functions χ. For normalized χ each of these integrals represents a fraction of 1 and additionally the
contributions for further neighbours decay exponentially (cf. p. 1009). As a result, 〈φk|φk〉 is a number
of the order of 1 or 2. This is what we have referred to as an approximate normalization.
28Indeed, for any k the number of distinct Bloch functions is equal to the number of atomic orbitals

per unit cell. The number of allowed vectors, k, is equal to the number of unit cells in the crystal.
Hence, using the Bloch functions for all allowed k would be justified, any CO would represent a linear
combination of all the atomic orbitals of the crystal.
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corresponding to a given k, then, of all the Bloch functions corresponding to the
next k� etc., up to the exhaustion of all the allowed k. When, in the next step,
we solve the orbital equation with the effective (i.e. Fock) Hamiltonian using the
Ritz method, then we will end up computing the integrals 〈φk|F̂φk′ 〉 and 〈φk|φk′ 〉.
For k 	= k′ such integrals are equal zero according to group theory (Appendix C
on p. 903), because F̂ transforms according to the fully symmetric irreducible rep-
resentation of the translation group,29 while φk and φk′ transform according to
different irreducible representations.30 Therefore the secular determinant in the
Ritz method will have a block form (cf. Appendix C). The first block will corre-
spond to the first k, the second to the next k, etc., where every block31 would look
as if in the Ritz method we used the Bloch functions corresponding uniquely to
that particular k. Conclusion: since a CO has to be a wave with a given k, let us
construct it with Bloch functions, which already have just this type of behaviour
with respect to translation operators, i.e. have just this k. This is fully analogous
with the situation in molecules, if we used atomic symmetry orbitals.

Thus each vector, k, from the FBZ is associated with a crystal orbital, and
therefore with a set of LCAO CO coefficients.

The number of such CO sets (each k – one set) in principle has to be equal to
the number of unit cells, i.e. infinite.32 The only profit we may expect could be
associated with the hope that the computed quantities do not depend on k too
much, but will rather change smoothly when k changes. This is indeed what will
happen, then a small number of vectors k will be used, and the quantities requiring
other k will be computed by interpolation.

Only a part of the computed COs will be occupied, and this depends on the
orbital energy of a given CO, the number of electrons, and the corresponding k,
similar to which we had for molecules.

The set of SCF LCAO CO equations will be very similar to the set for the
molecular orbital method (SCF LCAO MO). In principle, the only differ-
ence will be that, in the crystal case, we will consequently use symmetry
orbitals (Bloch functions) instead of atomic orbitals.

That’s it. The rest of this section is associated with some technical details ac-
companying the operation N→∞.

9.9.3 SCF LCAO CO EQUATIONS

Let us write down the SCF LCAO CO equations as if they corresponded to a large
molecule (Bloch functions will be used instead of atomic orbitals). Then the n-th

29Unit cells (by definition) are identical.
30Recall that k also has the meaning of the irreducible representation index (of the translation group).
31The whole problem can be split into the independent problems for individual blocks.
32Well, we cannot fool Mother Nature! Was there an infinite molecule (crystal) to be computed or

not? Then the number of such sets of computations has to be infinite. Full stop.



9.9 Band structure 453

CO may be written as (cf. eq. (8.49))

ψn(r	k)=
∑

q

cqn(k)φq(r	k)	 (9.53)

where φq is the Bloch function corresponding to the atomic orbital χq:

φq(r	k)= (2N + 1)−
3
2
∑

j

exp(ikRj)χ
j
q	 (9.54)

with χjq ≡ χq(r−Rj) (q= 1	2	 � � � 	ω).

The symbol χjq means the q-th atomic orbital (from the set we prepared for
the unit cell motif) located in the cell indicated by vector Rj (j-th cell).

In the expression for ψn, we have taken into account that there is no reason
whatsoever that the coefficients c were k-independent, since the expansion func-
tions φ depend on k. This situation does not differ from that, which we encoun-
tered in the Hartree–Fock–Roothaan method (cf. p. 365), with one technical ex-
ception: instead of the atomic orbitals we have symmetry orbitals, in our case Bloch
functions.

The secular equations for the Fock operator will have, of course, the form
of the Hartree–Fock–Roothaan equations (cf. Chapter 8, p. 365):

ω
∑

q=1

cqn[Fpq − εnSpq] = 0 for p= 1	2	 � � � 	ω	

where the usual notation has been applied. For the sake of simplicity, we have not
highlighted the k-dependence of c, F and S. Whenever we decide to do this in
future, we will put it in the form Fpq(k), Spq(k), etc. Of course, εn will become
a function of k, as will be stressed by the symbol εn(k). Theoretically, the secular
equation has to be solved for every k of the FBZ.

Therefore, despite the fact that the secular determinant is of rather low rank
(ω), the infinity of the crystal, forces us to solve this equation an infinite number
of times. For the time being, though, do not worry too much.

9.9.4 BAND STRUCTURE AND BAND WIDTH

The number of secular equation solutions is equal toω	 and let us label them using
index n. If we focus on one such solution, and check how εn(k) and ψn(r	k) are
sensitive to a tiny change of k within the FBZ, it turns out that εn(k) and ψn(r	k)
change smoothly. This may not be true when k passes through the border of the
FBZ.

The function εn(k) is called the n-th electronic band.
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If we travelled in the FBZ, starting from the origin and continuing along a
straight line, then ε1	 ε2	 � � � etc. would change as functions of k and we would be
concerned with several energy bands. If εn(k) changes very much during our travel
over the FBZ, we would say that the n-th band has a large width or dispersion.band width

As it was shown on p. 445 for the hydrogen atoms an energy band forms due to
the bonding and antibonding effects. If instead of hydrogen atoms, we put a unit
cell with a few atoms inside (motif), then the story is similar: the motif has some
one-electron energy levels (orbital energies), putting together the unit cells makes
changing these energy levels into energy bands, the number of levels in any band
is equal to the number of unit cells, or the number of allowed k vectors in FBZ.

The band width is related to interactions among the unit cell contents, and
is roughly proportional to the overlap integral between the orbitals of the
interacting unit cells.

How do we plot the band structure? For the 1D crystal, e.g., a periodic polymer,
there is no problem: the wave vector kmeans the number k and changes from −π

a
to π

a , we plot the function εn(k). For each n we have a single plot, e.g., for the
hydrogen atom the band ε1 collects energies resulting from the 1s atomic orbital
interacting with other atoms, the band ε2, which resulted from 2s, etc. In the 3D
case we usually choose a path in FBZ. We start from the point � defined as k= 0.
Then, we continue to some points located on the faces and edges of the FBZ sur-
face. It is impossible to go through the whole FBZ. The band structure in the 3D
case is usually shown by putting the described itinerary through the FBZ on the
abscissa (Fig. 9.8), and εn(k) on the ordinate. Fig. 9.8 shows an example of what
we might obtain from such calculations.

9.9.5 FERMI LEVEL AND ENERGY GAP: INSULATORS,
SEMICONDUCTORS AND METALS

First of all we have to know how many electrons we have in the crystal. The answer
is simple: the infinite crystal contains an infinite number of electrons. But infinities
are often different. The decider is the number of electrons per unit cell. Let us
denote this number by n0.

If this means a double occupation of the molecular orbitals of the unit cell, then
the corresponding band in the crystal will also be fully occupied, because the number
of energy levels in a band is equal to the number of unit cells, and each unit cell
contributes two electrons from the above mentioned molecular orbital. Therefore,

conduction band

doubly occupied orbitals lead to fully occupied bands. Accordingly, singly
occupied orbitals lead to bands that are half-occupied, while empty (virtual)
orbitals lead to empty bands (unoccupied, or conduction bands).
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Fig. 9.8. (a) FBZ for four regular layers of nickel atoms (a crystal surface model) (b) the band structure
for this system. We see that we cannot understand much: just a horrible irregular mess of lines. All the
band structures look equally clumsy. Despite this, from such a plot we may determine the electrical
and optical properties of the nickel slab. We will see later on why the bands have such a mysterious
form. R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures”, VCH
Publishers, New York, © 1988 VCH Publishers. Reprinted with permission of John Wiley & Sons, Inc.

The Fermi level in the band structure of a crystal is equivalent to the HOMO of
the crystal.33 The two levels HOMO and LUMO, as always, decide the chemistry of
the system, in our case the crystal. This concept leads to the possibilities depicted
in Fig. 9.9, which we may find in ideal crystals

. metalA metal is characterized by empty levels (conduction band) immediately
(zero distance) above doubly occupied valence ones (highest occupied by
electrons).

Metals are conductors of electric current, and the reason for this is the zero gap.34

valence bands
A semiconductor exhibits a conduction band separated by a small energy
gap (band gap) from the valence band.

33We sometimes find a thermodynamic definition of the Fermi level, but in this book it will always be
the energy of the highest occupied crystal orbital.
34When an electric field is applied to a crystal, its energy levels change. If the field is weak then the

changes may be computed by perturbation theory (treating the zero–field situation as the unperturbed
one). This means that the perturbed states acquire some admixtures of the excited states (cf. Chap-
ter 5). The lower the energy gap, the more mixing is taking place. For metallic systems (gap zero), such
perturbation theory certainly would not be applicable, but real excitation to the conduction band may
take place.
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conduction
band

energy
gap

valence
band

insulator semiconductor metal

Fig. 9.9. Valence bands (highest occupied by electrons) and conduction bands (empty). The electric
properties of a crystal depend on the energy gap between them (i.e. HOMO–LUMO separation).
A large gap (a) is typical for an insulator, a medium gap (b) means a semiconductor, and a zero gap (c)
is typical of metals.

Finally,

insulator an insulator has a large band gap separating the valence band from the con-
duction band.

band gap
We know metallic systems typically represent microscopically 3D objects. Re-

cently, 2D and 1D metals have become more and more fashionable, the latter
called molecular wires. They may have unusual properties, but are difficult to pre-molecular wires

pare for they often undergo spontaneous dimerization of the lattice (known as thePeierls
transition Peierls transition).

Rudolph Peierls (1907–1995),
British physicist, professor at
the universities of Birming-
ham and Oxford. Peierls par-
ticipated in the Manhattan
Project (atomic bomb) as
leader of the British group.

As Fig. 9.10.a shows, dimerization
makes the bonding (and antibonding) ef-
fects stronger a little below (and above)
the middle of the band, whereas at k= 0
the effect is almost zero (since dimer-
ization makes the bonding or antibond-
ing effects cancel within a pair of con-
secutive bonds). As a result, the degen-
eracy is removed in the middle of the
band (Fig. 9.10.b), i.e. the band gap ap-

pears and the system undergoes metal–insulator or metal–semiconductor transi-
tion (Fig. 9.10.c). This is why polyacetylene, instead of having all the CC bonds
equivalent (Fig. 9.10.d), which would make it a metal, exhibits alternation of bond
lengths (Fig. 9.10.e) and it becomes an insulator or semiconductor.

To a chemist, the Peierls transition is natural. The hydrogen atoms will not stay
equidistant in a chain, but will simply react and form hydrogen molecules, i.e. will
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Fig. 9.10. The Peierls effect has the same origin as the Jahn–Teller effect in removing the electronic
level degeneracy by distorting the system (H.A. Jahn, E. Teller, Proc. Roy. Soc. A161 (1937) 220).
(a) The electrons occupy half the FBZ, i.e. − π

2a 
 k 
 π
2a , a standing for the nearest-neighbour dis-

tance. The band has been plotted assuming that the period is equal to 2a, hence a characteristic back
folding of the band (similarly as we would fold a sheet of paper with band structure drawn, the period
equal a). A lattice dimerization amplifies the bonding and antibonding effects close to the middle of the
FBZ, i.e. in the neighbourhood of k=± π

2a . (b) As a result, the degeneracy at k= π
2a is removed and

the band gap appears, which corresponds to lattice dimerization. (c) The system lowers its energy when
undergoing metal–insulator or metal–semiconductor transition. (d) The polyacetylene chain, forcing
equivalence of all CC bonds, represents a metal. However, due to the Peierls effect, the system under-
goes dimerization (e) and becomes an insulator. R. Hoffmann, “Solids and Surfaces. A Chemist’s View
of Bonding in Extended Structures”, VCH Publishers, New York, © 1988 VCH Publishers. Reprinted
with permission of John Wiley & Sons, Inc.
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dimerize like lightning. Also the polyacetylene will try to form π bonds by binding
the carbon atoms in pairs. There is simply a shortage of electrons to keep all the
CC bonds strong, there are only enough for only every second, which means simply
dimerization through creating π bonds. On the other hand, the Peierls transition
may be seen as the Jahn–Teller effect: there is a degeneracy of the occupied and
empty levels at the Fermi level, and it is therefore possible to lower the energy
by removing the degeneracy through a distortion of geometry (i.e. dimerization).
Both pictures are correct and represent the thing.

When a semiconductor is heated, this may cause a non-zero electron population
in the conduction band (according to Boltzmann’s law), and these electrons may
contribute to electric conductance, as for metals. The higher the temperature, the
larger the conductance of such a semiconductor (called an intrinsic semiconductor).intrinsic

semiconductor The electric field will not do great things there (apart from some polarization).
Small energy gaps may appear when we dope an insulator with some dopants

offering their own energy levels within the energy gap (Fig. 9.11).
If the empty energy levels of the dopant are located just over the occupied band,

the dopant may serve as an electron acceptor for the electrons from the occupied
band (thus introducing its own conduction band), we have a p-type semiconductor.p- and n-type

semiconductors If the dopant energy levels are occupied and located just under the conduction
band, the dopant may serve as a n-type semiconductor.

Polyacetylene (mentioned at the beginning of this chapter), after doping be-
comes ionized if the dopants are electron acceptors, or receives extra electrons
if the dopant represents an electron donor (symbolized by D+ in Fig. 9.12). The
perfect polyacetylene exhibits the bond alternation discussed above, but it may

conduction
band

valence
band

intrinsic p-type n-type

empty

occupied

Fig. 9.11. Energy bands for semiconductors. (a) intrinsic semiconductor (small gap), (b) p type semi-
conductor (electron acceptor levels close to the occupied band) (c) n type semiconductor (electron
donor levels close to the conduction band).
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phase phase

Fig. 9.12. Solitons and bipolarons as models of electric conductivity in polymers. (a) two phases of
polyacetylene separated by a defect. Originally the defect was associated with an unpaired electron, but
when a donor, D, gave its electron to the chain, the defect became negatively charged. The energy of
such a defect is independent of its position in the chain (important for charge transportation) (b) in re-
ality the change of phase takes place in sections of about 15 CC bonds, not two bonds as Fig.a suggests.
Such a situation is sometimes modelled by a non-linear differential equation, which describes a soliton
motion (“solitary wave”) that represents the travelling phase boundary. (c) in the polyparaphenylene
chain two phases (low-energy aromatic and high-energy quinoid) are possible as well, but in this case
they are of different energies. Therefore, the energy of a single defect (aromatic structures-kink-quinoid
structures) depends on its position in the chain (therefore, no charge transportation). However, a dou-
ble defect with a (higher-energy) section of a quinoid structure has a position-independent energy,
and when charged by dopants (bipolaron) can conduct electricity. The above mentioned polymers can
be doped either by electron donors (e.g., arsenium, potassium) or electron acceptors (iodine), which
results in a spectacular increase in their electric conductivity.

be that we have a defect that is associated with a region of “changing rhythm”
(or “phase”): from35 (=−=−=) to (−=−=−). Such a kink is sometimes de-
scribed as a soliton wave (Fig. 9.12.a,b), i.e. a “solitary” wave first observed in the soliton

XIX century in England on a water channel, where it preserved its shape while
moving over a distance of several kilometres. The soliton defects cause some new
energy levels (“solitonic levels”) to appear within the gap. These levels too form
their own solitonic band.

Charged solitons may travel when subject to an electric field, and therefore the
doped polyacetylene turns out to be a good conductor (organic metal).

In polyparaphenylene, soliton waves are impossible, because the two phases
(aromatic and quinoid, Fig. 9.12.c) differ in energy (low-energy aromatic phase
and high-energy quinoid phase). However, when the polymer is doped, a charged
double defect (bipolaron, Fig. 9.12.c) may form, and the defect may travel when bipolaron

35This possibility was first recognized by J.A. Pople, S.H. Walmsley, Mol. Phys. 5 (1962) 15, fifteen
years before the experimental discovery of this effect.
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an electric field is applied. Hence, the doped polyparaphenylene, similarly to the
doped polyacetylene, is an “organic metal”.

9.10 SOLID STATE QUANTUM CHEMISTRY

A calculated band structure, with information about the position of the Fermi level,
tell us a lot about the electric properties of the material under study (insulator,
semiconductor, metal). They tell us also about basic optical properties, e.g., the
band gap indicates what kind of absorption spectrum we may expect. We can cal-
culate any measurable quantity, because we have at our disposal the computed
wave function.

However, despite this very precious information, which is present in the band
structure, there is a little worry. When we stare at any band structure, such as
that shown in Fig. 9.8, the overwhelming feeling is a kind of despair. All band
structures look similar, well, just a tangle of plots. Some go up, some down, some
stay unchanged, some, it seems without any reason, change their direction. Can we
understand this? What is the theory behind this band behaviour?

9.10.1 WHY DO SOME BANDS GO UP?

Let us take our beloved chain of hydrogen atoms in the 1s state, to which we al-
ready owe so much (Fig. 9.13).

When will the state of the chain have the lowest energy possible? Of course,
when all the atoms interact in a bonding, and not antibonding, way. This corre-
sponds to Fig. 9.13.a (no nodes of the wave function). When, in this situation,

maximum number
of nodes

2 nodes

1 node

0 nodes

Fig. 9.13. The infinite chain of ground-state hydrogen atoms and the influence of bonding and anti-
bonding effects, p. 371. a) all interactions are bonding; b) introduction of a single node results in an
energy increase; c) two nodes increase the energy even more; d) maximum number of nodes – the
energy is the highest possible.
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Fig. 9.14. Three typical band plots in the FBZ; a) 1s orbitals. Increasing k is accompanied by an increase
of the antibonding interactions and this is why the energy goes up; b) 2pz orbitals (z denotes the
periodicity axis). Increasing k results in decreasing the number of antibonding interactions and the
energy goes down; c) inner shell orbitals. The overlap is small as it is, therefore, the band width is
practically zero.

we introduce a single nearest-neighbour antibonding interaction, the energy will
for sure increase a bit (Fig. 9.13.b). When two such interactions are introduced
(Fig. 9.13.c), the energy goes up even more, and the plot corresponds to two nodes.
Finally, the highest-energy situation: all nearest-neighbour interactions are anti-
bonding (maximum number of nodes), Fig. 9.13.d. Let us recall that the wave vec-
tor was associated with the number of nodes. Hence, if k increases from zero to π

a ,
the energy increases from the energy corresponding to the nodeless wave function
to the energy characteristic for the maximum-node wave function. We understand,
therefore, that some band plots are such as in Fig. 9.14.a.
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9.10.2 WHY DO SOME BANDS GO DOWN?

Sometimes the bands go in the opposite direction: the lowest energy corresponds
to k= π

a , the highest energy to k= 0. What happens over there? Let us once more
take the hydrogen atom chain, this time, however, in the 2pz state (z is the period-
icity axis). This time the Bloch function corresponding to k= 0, i.e. a function that
follows just from locating the orbitals 2pz side by side, describes the highest-energy
interaction – the nearest-neighbour interactions are all antibonding. Introduction of
a node (increasing k) means a relief for the system – instead of one painful an-
tibonding interaction we get a soothing bonding one. The energy goes down. No
wonder, therefore, some bands look like those shown in Fig. 9.14.b.

9.10.3 WHY DO SOME BANDS STAY CONSTANT?

According to numerical rules (p. 362) inner shell atomic orbitals do not form effec-
tive linear combinations (crystal orbitals). Such orbitals have very large exponen-
tial coefficients and the resulting overlap integral, and therefore the band width
(bonding vs antibonding effect), is negligible. This is why the nickel 1s orbitals
(deep-energy level) result in a low-energy band of almost zero width (Fig. 9.14.c),
i.e. staying flat as a pancake all the time. Since they are always of very low energy,
they are doubly occupied and their plot is so boring, they are not even displayed
(as in Fig. 9.8).

9.10.4 HOW CAN MORE COMPLEX BEHAVIOUR BE EXPLAINED?

We understand, therefore, at least why some bands are monotonically going down,
some up, some stay constant. In explaining these cases, we have assumed that a
given CO is dominated by a single Bloch function. Other behaviours can be ex-
plained as well by detecting what kind of Bloch function combination we have in a
given crystal orbital.

2D regular lattice of the hydrogen atoms
Let us take a planar regular lattice of hydrogen atoms in their ground state.36

Fig. 9.8 shows the FBZ of similar lattice, we (arbitrarily) choose as the itinerary
through the FBZ: �−X −M −�. From Fig. 9.6.a we easily deduce, that the band
energy for the point � has to be the lowest, because it corresponds to all the in-
teraction bonding. What will happen at the point X? This situation is related to
Fig. 9.6.b. If we focus on any of the hydrogen atoms, it has four nearest neighbour
interactions: two bonding and two antibonding. This corresponds, to good approx-
imation, to the non-bonding situation (hydrogen atom ground-state energy), be-
cause the two effects nearly cancel. Halfway between � and X , we go through the
point that corresponds to Fig. 9.6.c,d. For such a point, any hydrogen atom has two
bonding and two non-bonding interactions, i.e. the energy is the average of the �

36A chemist’s first thought would be that this could never stay like this, when the system is isolated.
We are bound to observe the formation of hydrogen molecules.
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Fig. 9.15. a) A sketch of the valence band for a regular planar lattice of ground-state hydrogen atoms
and b) the valence band, as computed in the laboratory of Roald Hoffmann, for nearest neighbour
distance equal to 2 Å. The similarity of the two plots confirms that we are able, at least in some cases,
to predict band structure. R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended
Structures”, VCH Publishers, New York, © 1988 VCH Publishers. Reprinted with permission of John
Wiley & Sons, Inc.

andX energies. The pointM is located in the corner of the FBZ, and corresponds
to Fig. 9.6.e. All the nearest-neighbour interactions are antibonding there, and the
energy will be very high. We may, therefore, anticipate a band structure of the kind
sketched in Fig. 9.15.a. The figure has been plotted to reflect the fact that the den-
sity of states for the band edges is the largest, and therefore the slope of the curves
has to reflect this. Fig. 9.15 shows the results of the computations.37 It is seen that,
even very simple reasoning may rationalize the main features of band structure
plots.

Trans-polyacetylene (regular 1D polymer)
Polyacetylene already has quite a complex band structure, but as usual the bands
close to the Fermi level (valence bands) are the most important in chemistry and
physics. All these bands are of the π type, i.e. their COs are antisymmetric with
respect to the plane of the polymer. Fig. 9.16 shows how the valence bands are
formed. We can see, the principle is identical to that for the chain of the hydrogen
atoms: the more nodes the higher the energy. The highest energy corresponds to
the band edge.

The resulting band is only half-filled (metallic regime), because each of the car-
bon atoms offers one electron, and the number of COs is equal to the number

37R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures”, VCH Pub-
lishers, New York, 1988.
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Fig. 9.16. a) π-band formation in polyenes (N stands for the number of carbon atoms) with the assumption of CC bond equivalence (each has length a/2).
For N =∞ this gives the metallic solution (no Peierls effect). As we can see, the band formation principle is identical to that, which we have seen for hydrogen
atoms. b) band structure; c) density of states D(E), i.e. the number of states per energy unit at a given energy E. The density has maxima at the extremal points
of the band. If we allowed the Peierls transition, at k=±π/a we would have a gap. J.-M. André, J. Delhalle, J.-L. Brédas, “Quantum Chemistry Aided Design of
Organic Polymers”, World Scientific, Singapore, 1991. Reprinted with permission from the World Scientific Publishing Co. Courtesy of the authors.
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of carbon atoms (each CO can accommodate two electrons). Therefore, Peierls
mechanism (Fig. 9.10) is bound to enter into play, and in the middle of the band
a gap will open. The system is, therefore, predicted to be an insulator (or semi-
conductor) and indeed it is. It may change to a metal when doped. Fig. 9.16
shows a situation analogous to the case of a chain of the ground state hydrogen
atoms.

Polyparaphenylene

The extent to which the COs conform to the rule of increasing number of nodes
with energy (or k) will be seen in the example of a planar conformation of poly-
paraphenylene.38 On the left-hand side of Fig. 9.17 we have the valence π-orbitals
of benzene:

• the lowest-energy has a nodeless39 doubly occupied molecular orbital ϕ1,
• then, we have a doubly degenerate and fully occupied level with the correspond-

ing orbitals, ϕ2 and ϕ3, each having a single node,
• next, a similar double degenerate empty level with orbitals ϕ4 and ϕ5 (each with

two nodes),
• and finally, the highest-energy empty three-node orbital ϕ6.

Thus, even in the single monomer we have fulfilled the rule.
Binding phenyl rings by using CC σ bonds results in polyparaphenylene. Let us

see what happens when the wave number k increases (the middle and the right-
hand side of Fig. 9.17). What counts now is how two complete monomer orbitals
combine: in-phase or out-of-phase. The lowest-energy π-orbitals of benzene (ϕ1)
arranged in-phase (k = 0) give point � – the lowest-energy in the polymer, while
out-of-phase, point k = π

a – the highest-energy. At k = π
a there is a degeneracy

of this orbital and of ϕ3 arranged out-of-phase. The degeneracy is quite interest-
ing because, despite a superposition of the orbitals with the different number of
nodes, the result, for obvious reasons, corresponds to the same number of nodes.
Note the extremely small dispersion of the band which results from the arrange-
ment of ϕ2. The figure shows that it is bound to be small, because it is caused by the
arrangement of two molecular orbitals that are further away in space than those
so far considered (the overlap results from the overlap of the atomic orbitals sep-
arated by three bonds, and not by a single bond as it has been). We see a similar
regularity in the conduction bands that correspond to the molecular orbitals ϕ4,
ϕ5 and ϕ6� The rule works here without any exception and results from the simple
statement that a bonding superposition has a lower energy than the corresponding
antibonding one.

Thus, when looking at the band structure for polyparaphenylene we stay cool:
we understand every detail of this tangle of bands.

38J.-M. André, J. Delhalle, J.-L. Brédas, “Quantum Chemistry Aided Design of Organic Polymers”,
World Scientific, Singapore, 1991.
39Besides the nodal plane of the nuclear framework.
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polymermonomer

Fig. 9.17. Rationalizing the band structure of polyparaphenylene (π-bands). The COs (in centre) built
as in-phase or out-of-phase combinations of the benzene π molecular orbitals (left-hand side). It is seen
that energy of the COs for k= 0 and k= π

a agree with the rule of increasing number of nodes. A small
band width corresponds to small overlap integrals of the monomer orbitals. J.-M. André, J. Delhalle,
J.-L. Brédas, “Quantum Chemistry Aided Design of Organic Polymers”, World Scientific, Singapore, 1991.
Reprinted with permission from the World Scientific Publishing Co. Courtesy of the authors.

A stack of Pt(II) square planar complexes

Let us try to predict40 qualitatively (without making calculations) the band struc-
ture of a stack of platinum square planar complexes, typically [Pt(CN−)2−

4 ]∞. Con-

40R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Structures”, VCH Pub-
lishers, New York, 1988.
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sider the eclipsed configuration of all the monomeric units. Let us first simplify our
task. Who likes cyanides? Let us throw them away and take something theoreti-
cians really love: H−. This is a little less than just laziness. If needed, we are able to
make calculations for cyanides too, but to demonstrate that we really understand
the machinery we are always recommended to make the system as simple as pos-
sible (but not simpler). We suspect that the main role of CN− is just to interact
electrostatically, and H− does this too (being much smaller).

The electronic dominant configuration of the platinum atom in its ground state
is41 (Xe)(4f 14)5d96s1 (see the Mendeleev Table in the Web Annex). As we can
see, we have the xenon-like closed shell and also the full closed subshell 4f . The
orbital energies corresponding to these closed shells are much lower than the or-
bital energy of the hydrogen anion (they are to be combined to). This is why they
will not participate in the Pt–H bonds. They will of course contribute to the band
structure, but this contribution will be trivial: flat bands (because of small overlap
integrals) with energies very close to the energies characterizing the corresponding
atomic orbitals. The Pt valence shell is therefore 5d96s16p0 for Pt0	 and 5d86s06p0

for Pt2+, which we have in our stack. The corresponding orbital energies are shown
on the left-hand side of Fig. 9.18.a.

Let us choose a Cartesian coordinate system with the origin on the platinum
atom and the four ligands at equal distances on the x and y axes. In the Koopmans

Pt with ligands

ligands
ligands
symmetry
orbitals

Pt

Fig. 9.18. Predicting the band structure of (PtH2−
4 )∞ . (a) monomer (PtH2−

4 ) molecular orbitals built
of the atomic orbitals of Pt2+ (the three p and five d Pt atomic orbitals correspond to two degen-
erate energy p and d levels) and four ligand (H−) orbitals. One of the platinum orbitals (5dx2−y2 )

corresponds to high energy, because it protrudes right across to the negatively charged ligands. The
four ligand AOs, due to the long distance practically do not overlap, and are shown as a quadruply
degenerate level. (b) The ligand orbitals form linear combinations with those of the metal. See the text.

41Xe denotes the xenon-like configuration of electrons.



468 9. Electronic Motion in the Mean Field: Periodic Systems

approximation (cf. Chapter 8, p. 393) an orbital energy represents the electron en-
ergy on a given orbital. We see, that because the ligands are negatively charged,
all the platinum atom orbital energies will go up (destabilization; in Fig. 9.18.a this
shift is not shown, only a relative shift is given). The largest shift up will be under-
gone by the 5dx2−y2 orbital energy	 because the orbital lobes protrude right across
to the negative ligands. Eight electrons of Pt2+ will therefore occupy four other or-
bitals42 (5dxy	5dxz	5dyz	5d3z2−r2 ), while 5dx2−y2 will become LUMO. The four
ligand atomic orbitals practically do not overlap (long distance) and this is why in
Fig. 9.18.a they are depicted as a quadruply degenerate level. The ligand symme-
try orbitals are shown in Fig. 9.18.b: the nodeless orbital (A), and two single-node
orbitals (B) corresponding to the same energy, and the two-node orbital (C). The
effective linear combinations (cf. p. 362, what counts most is symmetry) are formed
by the following pairs of orbitals: 6s with A	6px and 6py with B, and the orbital
5dx2−y2 with C (in each case we obtain the bonding and the antibonding orbital);
the other platinum orbitals, 5d and 6pz do not have partners of the appropriate
symmetry (and therefore their energy does not change). Thus we obtain the energy
level diagram of the monomer in Fig. 9.18.a.

Now, we form a stack of PtH2−
4 along the periodicity axis z. Let us form the

Bloch functions (Fig. 9.19.a) for each of the valence orbitals at two points of the
FBZ: k = 0 and k = π

a � The results are given in Fig. 9.19.b. Because of the large
overlap of the 6pz orbitals with themselves, and 3d3z2−r2 also with themselves,
these σ bands will have very large dispersions. The smallest dispersion will corre-
spond to the 5dxy band (as well as to the empty band 5dx2−y2 ), because the orbital
lobes of 5dxy (also of 5dx2−y2 ) are oriented perpendicularly to the periodicity axis.
Two bands 5dxz and 5dyz have a common fate (i.e. the same plot) due to the sym-
metry, and a medium band width (Fig. 9.19.b). We predict therefore,40 the band
structure shown in Fig. 9.20. The prediction turns out to be correct.

9.11 THE HARTREE–FOCK METHOD FOR CRYSTALS

9.11.1 SECULAR EQUATION

What has been said previously about the Hartree–Fock method is only a sort
of general theory. The time has now arrived to show how the method works in
practice. We have to solve the Hartree–Fock–Roothaan equation (cf. Chapter 8,
pp. 365 and 453).

42Of these four the lowest-energy will correspond to the orbitals 5dxz	5dyz , because their lobes just
avoid the ligands. The last two orbitals 5dxy and 5d3z2−r2 = 5dz2−x2 + 5dz2−y2 will go up somewhat
in the energy scale (each to different extent), because they aim in part at the ligands. However, these
splits will be smaller when compared to the fate of the orbital 5dx2−y2 and therefore, these levels have
been shown in the figure as a single degenerate level.
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Fig. 9.19. Predicting the band structure of (PtH2−
4 )∞ . (a) the Bloch functions for k= 0 and k= π

a corresponding to the atomic orbitals 6pz (σ type orbitals),
5dxy (δ type orbitals), 5dxz (π type orbitals, similarly for 5dyz), 5d3z2−r2 (σ type orbitals); (b) the band width is very sensitive to the overlap of the atomic

orbitals. The band widths in (PtH2−
4 )∞ resulting from the overlap of the (PtH2−

4 ) orbitals.
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Fig. 9.20. The predicted band structure of (PtH2−
4 )∞.

The Fock matrix element is equal to (noting that (χjp|F̂χj
′
q )≡ Fjj

′
pq depends on

the difference43 between the vectors Rj and Rj′):

Fpq = (2N + 1)−3
∑

jj′
exp
(

ik(R′j −Rj)
)(

χ
j
p

∣
∣F̂χ

j′
q

)=
∑

j

exp(ikRj)F
0j
pq�

The same can be done with Spq and therefore the Hartree–Fock–Roothaan secular
equation (see p. 453) has the form:

ω
∑

q=1

cqn(k)

(
∑

j

exp(ikRj)
(

F
0j
pq(k)− εn(k)S0j

pq(k)
)
)

= 0	 (9.55)

for p= 1	2	 � � � 	ω. The integral Spq equals

Spq =
∑

j

exp(ikRj)S
0j
pq	 (9.56)

43As a matter of fact, all depends on how distant the unit cells j and j′ are. We have used the fact that
F̂ exhibits the crystal symmetry and the sums over j all give the same result, independent of j′ .
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the summation
∑

j goes over the lattice nodes. In order to be explicit, let us see

what is inside the Fock matrix elements F0j
pq(k). We have to find a dependence

there on the Hartree–Fock–Roothaan solutions (determined by the coefficients
cpn), and more precisely on the bond order matrix.44 Any CO, according to (9.53),
has the form

ψn(r	k)= (2N + 1)−
3
2
∑

q

∑

j

cqn(k)exp(ikRj)χ
j
q(r)	 (9.57)

where we promise to use such cqn that ψn are normalized. For molecules the bond
order matrix element (for the atomic orbitals χp and χq) has been defined (p. 365)
as Ppq = 2

∑
cpic

∗
qi (the summation is over the doubly occupied orbitals), where

the factor 2 results from the double occupation of the closed shell. We have exactly
the same for the crystal, where we define the bond order matrix element corre-
sponding to atomic orbitals χjq and χlp as:

P
lj
pq = 2(2N + 1)−3

∑

cpn(k)exp(ikRl)cqn(k)∗ exp(−ikRj)	 (9.58)

where the summation goes over all the occupied COs (we assume double occupa-
tion, hence factor 2). This means that, in the summation we have to go over all
the occupied bands (index n), and in each band over all allowed COs, i.e. all the
allowed k vectors in the FBZ. Thus,

P
lj
pq = 2(2N + 1)−3

∑

n

FBZ
∑

k

cpn(k)cqn(k)
∗ exp

(

ik(Rl −Rj)
)

� (9.59)

The matrix element has to have four indices (instead of the two indices in the
molecular case), because we have to describe the atomic orbitals indicating that
atomic orbital p is from unit cell l, and atomic orbital q from unit cell j. It is easily
seen that Pljpq depends on the difference Rl−Rj , not on the Rl , Rj themselves. The
reason for this is that in a crystal everything is repeated and the important thing
are the relative distances.

9.11.2 INTEGRATION IN THE FBZ

There is a problem with P , because it requires a summation over k. We do not like
this, because the number of the permitted k is huge for large N (and N has to be
large, because we are dealing with a crystal). We have to do something with it.

Let us try a small exercise. Imagine, we have to perform a summation
∑

k f (k),
where f represents a smooth function in the FBZ. Let us denote the sum to be
found by X . Let us multiply X by a small number �= VFBZ

(2N+1)3
, where VFBZ stands

44We have met the same in the Hartree–Fock method for molecules, where the Coulomb and exchange
operators depended on the solutions to the Fock equation, cf. p. 346.
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for the FBZ volume:

X�=
FBZ
∑

k

f (k)�� (9.60)

In other words we just cut the FBZ into tiny segments of volume �, their number
equal to the number of the permitted k’s. It is clear that if N is large (as it is in our
case), then a very good approximation of X� would be

X�=
∫

FBZ
f (k)d3k� (9.61)

Hence,

X = (2N + 1)3

VFBZ

∫

FBZ
f (k)d3k� (9.62)

After applying this result to the bond order matrix we obtain

P
lj
pq = 2

VFBZ

∫ FBZ
∑

n

cpn(k)cqn(k)
∗ exp

(

ik(Rl −Rj)
)

d3k� (9.63)

For a periodic polymer (in 1D: VFBZ = 2π
a 	�= V

2N+1 ) we would have:

P
lj
pq = a

π

∫
∑

n

cpn(k)cqn(k)
∗ exp

(

ika(l− j))dk� (9.64)

9.11.3 FOCK MATRIX ELEMENTS

In full analogy with the formula (8.53), we can express the Fock matrix elements
by using the bond order matrix P for the crystal:

F
0j
pq = T 0j

pq −
∑

h

∑

u

ZuV
0j
pq

(

Ahu
)+
∑

hl

∑

rs

Plhsr
[( 0h
pr

∣
∣ jl
qs

)− 1
2
( 0h
pr

∣
∣ lj
sq

)]

	 (9.65)

this satisfies the normalization condition45

45The P matrix satisfies the normalization condition, which we obtain in the following way. As in the
molecular case the normalization of CO’s means:

1 = 〈ψn(r	k)|ψn(r	k)
〉

= (2N + 1)−3
∑

pq

∑

jl

cpn(k)
∗cqn(k)exp

[

ik(Rj −Rl)
]

S
lj
pq

= (2N + 1)−3
∑

pq

∑

jl

cpn(k)
∗cqn(k)exp

[

ik(Rj −Rl)
]

S
0(j−l)
pq

=
∑

pq

∑

j

cpn(k)
∗cqn(k)exp(ikRj)S

0j
pq�

Now let us do the same for all the occupied COs and sum the results. On the left-hand side we sum
just 1, therefore we obtain the number of doubly occupied COs, i.e. n0(2N + 1)3, because n0 denotes
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∑

j

∑

pq

P
j0
qpS

0j
pq = 2n0	 (9.68)

where 2n0 means the number of electrons in the unit cell.
The first term on the right-hand side of (9.65) represents the kinetic energy

matrix element

T
0j
pq =

(

χ0
p

∣
∣
∣
∣
−1

2
�

∣
∣
∣
∣
χ
j
q

)

	 (9.69)

the second term is a sum of matrix elements, each corresponding to the nuclear
attraction of an electron and the nucleus of index u and charge Zu in the unit
cell h:

V
0j
pq

(

Ahu
)=
(

χ0
p

∣
∣
∣
∣

1

|r−Ahu|
∣
∣
∣
∣
χ
j
q

)

	 (9.70)

where the upper index of χ denotes the cell number, the lower index – the num-
ber of the atomic orbital in a cell, the vector Ahu indicates nucleus u (numbering
within the unit cell) in unit cell h (from the coordinate system origin). The third
term is connected to the Coulombic operator (the first of two terms) and the ex-
change operator (the second of two terms). The summations over h and l go over
the unit cells of the whole crystal, and therefore are very difficult and time con-
suming.

The definition of the two-electron integral

( 0h
pr

∣
∣ jl
qs

)=
∫

d3r1 d3r2χ
0
p(r1)

∗χhr (r2)
∗ 1
r12
χ
j
q(r1)χ

l
s(r2) (9.71)

is analogous to eq. (8.5) and Appendix M, p. 986.

the number of doubly occupied bands, and in each band we have in 3D (2N + 1)3 allowed vectors k.
Therefore, we have

n0(2N + 1)3 =
∑

pq

∑

j

(
∑

n

FBZ
∑

k

cpn(k)
∗cqn(k)exp(ikRj)

)

S
0j
pq

=
∑

pq

∑

j

1
2
(2N + 1)3Pj0qpS

0j
pq	

where from (9.59) after exchanging p↔ q	 j↔ l we had:

P
jl
qp = 2(2N + 1)−3

∑

n

FBZ
∑

k

cqn(k)cpn(k)
∗ exp

(

ik(Rj −Rl)
)

(9.66)

and then

P
j0
qp = 2(2N + 1)−3

∑

n

FBZ
∑

k

cqn(k)cpn(k)
∗ exp(ikRj)� (9.67)

Hence,
∑

pq
∑

j P
j0
qpS

0j
pq = 2n0�
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9.11.4 ITERATIVE PROCEDURE

How does the Hartree–Fock method for periodic systems work?

• First (zeroth iteration), we start from a guess46 for P .
• Then, we calculate the elements F0j

pq for all atomic orbitals p, q for unit cells j =
0	1	2	 � � � 	 jmax. What is jmax? The answer is certainly non-satisfactory: jmax =
∞. In practice, however, we often take jmax as being of the order of a few cells,
most often we take47 jmax = 1.

• For each k from the FBZ we calculate the elements Fpq and Spq and then solve
the secular equations within the Hartree–Fock–Roothaan procedure. This step
requires diagonalization48 (see Appendix K, p. 982). As a result, for each k we
obtain a set of coefficients c.

• We repeat all this for the values of k covering in some optimal way (some recipes
exist) the FBZ. We are then all set to carry out the numerical integration in the
FBZ and we calculate an approximate matrix P .

• This enables us to calculate a new approximation to the matrix F and so on,
until the procedure converges in a self-consistent way, i.e. produces P very close
to that matrix P which has been inserted into the Fock matrix F . In this way we
obtain the band structure εn(k) and all the corresponding COs.

9.11.5 TOTAL ENERGY
How do we calculate the total energy for an infinite crystal? We know the an-
swer without any calculation: −∞. Indeed, since the energy represents an exten-
sive quantity, for an infinite number of the unit cells we get −∞, because a single
cell usually represents a bound state (negative energy). Therefore, the question
has to be posed in another way.

How to calculate the total energy per unit cell? Aha, this is a different story. Let
us denote this quantity by ET . Since a crystal only represents a very large molecule,
we may use the expression (8.41) for the total energy of a molecule [noting that
εi = (i|F̂ |i)]. In the 3D case we have:

(2N + 1)3ET = 1
2

∑

pq

∑

lj

P
jl
qp

(

h
lj
pq + Fljpq

)+ 1
2

∑

lj

∑

uv

′ZuZv
R
lj
uv

	 (9.72)

where the summation over p and q extends over the ω atomic orbitals that any
unit cell offers, and l and j tell us in which cells these orbitals are located. The last
term on the right-hand side refers to the nuclear repulsion of all the nuclei in the
crystal, u	v number the nuclei in a unit cell, while l	 j indicate the cells (a prime

46The result is presumed to be independent of this choice.
47“Nearest-neighbour approximation”. We encounter a similar problem inside the F0j

pq , because we
have somehow to truncate the summations over h and l. These problems will be discussed later in this
chapter.
48Unlike the molecular case, this time the matrix to diagonalize is Hermitian, and not necessarily sym-

metric. Methods of diagonalization exist for such matrices, and there is a guarantee that their eigenval-
ues are real.
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means that there is no contribution from the charge interaction with itself). Since
the summations over l and j extend over the whole crystal, therefore

(2N + 1)3ET = 1
2
(2N + 1)3

∑

pq

∑

j

P
j0
qp

[

h
0j
pq + F0j

pq

]

+ (2N + 1)3
1
2

∑

j

∑

uv

′ZuZv
R

0j
uv

	 (9.73)

because each term has an equal contribution, and the number of such terms is
equal to (2N + 1)3.

Therefore, the total energy per unit cell amounts to

ET = 1
2

∑

j

∑

pq

P
j0
qp

(

h
0j
pq + F0j

pq

)+ 1
2

∑

j

∑

u

∑

v

′ZuZv
R

0j
uv

� (9.74)

The formula is correct, but we can easily see that we are to be confronted with
some serious problems. For example, the summation over nuclei represents a di-
vergent series and we will get+∞. This problem appears only because we are dealing
with an infinite system and we confront the long-range interactions. We have to man-
age the problem somehow.

9.12 LONG-RANGE INTERACTION PROBLEM
What is left to be clarified are some problems about how to go withN to infinity.49

It will be soon shown how dangerous this problem is.
We see from eqs. (9.65) and (9.74) that, despite using the translational symme-

try to simplify the problem, we may treat each k separately. There are an infinite

49I will tell you about my adventure with this problem, because I remember very well how as a student
I wanted to hear about struggles with understanding matter and ideas, instead of dry summaries.

The story began quite accidentally. In 1977, at the University of Namur (Belgium) Professor Joseph
Delhalle asked the PhD student Christian Demanet to perform a numerical test. The test consisted of
taking a simple infinite polymer (the infinite chain � � � LiH LiH LiH � � � had been chosen), to use the
simplest atomic basis set possible and to see what we should take as N , to obtain the Fock matrix with
sufficient accuracy. Demanet first took N = 1, then N = 2, N = 3 – the Fock matrix changed all the
time. He got impatient, took N = 10, N = 15 – the matrix continued to change. Only when he used
N = 200 did the Fock matrix elements stabilize within the accuracy of six significant figures. We could
take N = 200 for an extremely poor basis set and for a few such tests, but the quality of calculations will
never be good and their cost would become astronomic. Even for the case in question the computations
had to be done overnight. In a casual discussion at the beginning of my six-week stay at the University
of Namur, Joseph Delhalle told me about the problem. He said also that in a recent paper the Austrian
scientists Alfred Karpfen and Peter Schuster also noted that the results depend strongly on the chosen
value of N . They made a correction after the calculations with a small N had been performed. They
added the dipole–dipole electrostatic interaction of the cell 0 with a few hundred neighbouring cells,
and for the dipole moment of a cell, they took the dipole moment of the isolated LiH molecule. As
a result the Fock matrix elements changed much less with N . This information made me think about
implementing the multipole expansion right from the beginning of the self-consistent Hartree–Fock–
Roothaan procedure for a polymer. Below you will see what has been done. The presented theory
pertains to a regular polymer (a generalization to 2D and 3D is possible).
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number of them and this makes us a little nervous. In eq. (9.65) for F0j
pq we have

a summation (over the whole infinite crystal) of the interactions of an electron
with all the nuclei, and in the next term a summation over the whole crystal of the
electron–electron interactions. This is of course perfectly natural, because our sys-
tem is infinite. The problem is, however, that both summations diverge: the first
tends to −∞, the second to +∞. On top of this to compute the bond order matrix
P we have to perform another summation in eq. (9.63) over the FBZ of the crystal.
We have a similar, very unpleasant, situation in the total energy expression, where
the first term tends to −∞, while the nuclear repulsion term goes +∞.

The routine approach was to replace the infinity by taking the first-neighbour
interactions. This approach is quite understandable, because any attempt to take
further neighbours ends up with an exorbitant bill to pay.50

9.12.1 FOCK MATRIX CORRECTIONS
A first idea we may think of is to carefully separate the long-range part of the Fock
matrix elements and of the total energy from these quantities as calculated in a
traditional way, i.e. by limiting the infinite-range interactions to those for the N
neighbours on the left from cell 0 and N neighbours on the right of it. For the
Fock matrix element we would have:

F
0j
pq = F0j

pq(N)+C0j
pq(N)	 (9.75)

where C0j
pq(N) stands for the long-range correction, while F0j

pq(N) is calculated
assuming interactions with the N right and N left neighbours of cell 0:

F
0j
pq(N)

= T 0j
pq +

h=+N
∑

h=−N

(

−
∑

u

ZuV
0j
pq

(

Ahu
)+

l=h+N
∑

l=h−N

∑

rs

Plhsr

(
(0h
pr

∣
∣jl
qs

)− 1
2
(0h
pr

∣
∣lj
sq

)
))

	 (9.76)

C
0j
pq(N)=

∑

h

#
(

−
∑

u

ZuV
0j
pq

(

Ahu
)+

l=h+N
∑

l=h−N

∑

rs

Plhsr
(0h
pr |jlqs

)
)

	 (9.77)

where the symbol
∑#
h will mean a summation over all the unit cells except the sec-

tion of unit cells with numbers −N	−N + 1	 � � � 	0	1	 � � � 	N , i.e. the neighbour-
hood of cell 0 (“short-range”). The nuclear attraction integral:51

V
0j
pq

(

Ahu
)=
(

χ0
p

∣
∣
∣
∣

1
|r− (Au + haz)|

∣
∣
∣
∣
χ
j
q

)

	 (9.78)

where the vector Au shows the position of the nucleus u in cell 0, while Ahu ≡
Au + haz points to the position of the equivalent nucleus in cell h (z denotes the
unit vector along the periodicity axis).
50The number of two-electron integrals, which quantum chemistry positively dislikes, increases with

the number of neighbours taken (N) and the atomic basis set size per unit cell (ω) as N3ω4. Besides,
the nearest-neighbours are indeed the most important.
51Without the minus sign in the definition the name is not quite adequate.
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The expression for C0j
pq(N) has a clear physical interpretation. The first term

represents the interaction of the charge distribution −χ0
p(1)

∗χjq(1) (of electron 1,
hence the sign −) with all the nuclei,52 except those enclosed in the short-range
region (i.e. extending from −N to +N). The second term describes the interac-
tion of the same electronic charge distribution with the total electronic distribution
outside the short-range region. How do we see this? The integral (0hpr |jlqs) means

the Coulombic interaction of the distribution under consideration −χ0
p(1)

∗χjq(1)
with its partner-distribution −χhr (2)∗χls(2), doesn’t it? This distribution is mul-
tiplied by Plhsr and then summed over all possible atomic orbitals r and s in
cell h and its neighbourhood (the sum over cells l from the neighbourhood of
cell h), which gives the total partner electronic distribution −∑l=h+N

l=h−N
∑

rs P
lh
sr

χhr (2)
∗χls(2). This, however, simply represents the electronic charge distribution

of cell h. Indeed, the distribution, when integrated gives [(just look at eq. (9.68)]
−∑l=h+N

l=h−N
∑

rs P
lh
sr S

hl
rs = 2n0. Therefore, our electron distribution, −χ0

p(1)
∗χjq(1),

interacts electrostatically with the charge distribution of all cells except those en-
closed in the short-range region, because eq. (9.77) contains the summation over
all cells h except the short-range region. Finally,

the long-range correction to the Fock matrix elements C0j
pq(N) represents

the Coulombic interaction of the charge distribution −χ0
p(1)

∗χjq(1) with all
the unit cells (nuclei and electrons) from outside the short-range region.

In the C0j
pq(N) correction, in the summation over l, we have neglected the ex-

change term − 1
2
∑l=h+N
l=h−N

∑

rs P
lh
sr (

0h
pr |ljsq )� The reason for this was that we have

been convinced, that Plhsr vanishes very fast, when cell l separates from cell h. Sub-
sequent reasoning would then be easy: the most important term (l = h) would be
− 1

2
∑

rs P
hh
sr (

0h
pr |hjsq ). It contains the differential overlap χ0

p(1)
∗χhs (1), which decays

exponentially when the cells 0 and h separate, and we have a guarantee [eq. (9.77)],
that this separation is large.53 We will come back to this problem.

9.12.2 TOTAL ENERGY CORRECTIONS

The total energy per unit cell could similarly be written as

ET =ET (N)+CT (N)	 (9.79)

52Cf. interpretation of the integral −V 0j
pq(A

h
u)=−(χ0

p(r)| 1
|r−Ahu |

|χjq(r)).
53The exchange interactions are notorious for an exponential decay with distance when the two object

separate. The matrix elements of P corresponding to distant atomic orbitals “should be” small. For the
time being let us postpone the problem. We will come back to it and will see how delusive such feelings
may be. We have to stress, however, that trouble will come only in some “pathological” situations. In
most common cases everything will be all right.
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where ET (N) means the total energy per unit cell as calculated by the traditional
approach, i.e. with truncation of the infinite series on theN left andN right neigh-
bours of the cell 0. The quantity CT (N) therefore represents the error, i.e. the
long-range correction. The detailed formulae for ET (N) and CT (N) are the fol-
lowing

ET (N) = 1
2

j=+N
∑

j=−N

∑

pq

P
j0
qp

(

h
0j
pq + F0j

pq(N)
)+ 1

2

j=+N
∑

j=−N

∑

u

∑

v

′ZuZv
R

0j
uv

	 (9.80)

CT (N) = 1
2

∑

j

∑

pq

P
j0
qpC

0j
pq(N)

+ 1
2

∑

h

#
(
∑

j

∑

pq

P
j0
qp

∑

u

[−ZuV 0j
pq

(

Ahu
)]+

∑

u

∑

v

′ZuZv
R0h
uv

)

	 (9.81)

where we have already separated from F
0j
pq its long-range contribution C0j

pq(N), so
that CT (N) contains all the long-range corrections.

Eq. (9.81) for CT (N)may be obtained by just looking at eq. (9.80). The first term
with C0j

pq(N) is evident,54 it represents the Coulombic interaction of the electronic
distribution (let us recall condition (9.68)) associated with cell 0 with the whole
polymer chain except the short-range region. What, therefore, is yet to be added to
ET (N)? What it lacks is the Coulombic interaction of the nuclei of cell 0 with the
whole polymer chain, except the short-range region. Let us see whether we have it
in eq. (9.81). The last term means the Coulombic interaction of the nuclei of cell 0
with all the nuclei of the polymer except the short-range region (and again we know,
why we have the factor 1

2 ). What, therefore, is represented by the middle term?55 It

54The factor 1
2 may worry us a little. Why just 1

2 ? Let us see. Imagine N identical objects i =
0	1	2	 � � � 	N − 1 playing identical roles in a system (like our unit cells). We will be interested in the
energy per object, ET . The total energy may be written as (let us assume here pairwise interactions
only) NET =

∑

j Ej +
∑

i<j Eij , where Ej and Eij are, respectively, the isolated object energy and the
pairwise interaction energy. Since the objects are identical, then

NET =NE0 +
1
2

∑

i	j

′
Eij =NE0 +

1
2

∑

i

(
∑

j

′
Eij

)

=NE0 +
1
2
N

(
∑

j

′
E0j

)

	

where the prime means excluding self-interaction and the term in parentheses means the interaction
of object 0 with all others. Finally, ET = E0 + 1

2 (
∑

j
′E0j), where we have the factor 1

2 before the
interaction of one of the objects with the rest of the system.
55As we can see, we have to sum (over j) to infinity the expressions h0j

pq , which contain T 0j
pq [but these

terms decay very fast with j and can all be taken into account in ET (N)] and the long-range terms,
the Coulombic interaction of the electronic charge distribution of cell 0 with the nuclei beyond the
short-range region (the middle term in CT (N)). The argument about fast decay with j of the kinetic
energy matrix elements mentioned before follows from the double differentiation with respect to the
coordinates of the electron. Indeed, this results in another atomic orbital, but with the same centre.
This leads to the overlap integral of the atomic orbitals centred like those in χ0

pχ
j
q . Such an integral

decays exponentially with j.
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is clear, that it has to be (with the factor 1
2 ) the Coulombic interaction of the nuclei

of cell 0 with the total electronic distribution outside the short-range region. We
look at the middle term. We have the sign “−”. This is very good indeed, because
we have to have an attraction. Further, we have the factor 1

2 , that is also OK, then
we have

∑#
h , that is perfect, because we expect a summation over the long-range

only, and finally we have
∑

j

∑

pq P
j0
qp
∑

u[−ZuV 0j
pq(A

h
u)] and we do not like this.

This is the Coulombic interaction of the total electronic distribution of cell 0 with
the nuclei of the long-range region, while we expected the interaction of the nuclei of
cell 0 with the electronic charge distribution of the long-range region. What is going
on? Everything is OK. Just count the interactions pairwise and at each of them
reverse the locations of the interacting objects – the two interactions mean the
same. Therefore,

the long-range correction to the total energy per cell CT (N) represents the
Coulombic interaction of cell 0 with all the cells from outside the short-
range region.

We are now all set to calculate the long-range corrections C0j
pq(N) and CT (N).

It is important to realize that all the interactions to be calculated pertain to ob-
jects that are far away in space.56 This is what we have carefully prepared. This
is the condition that enables us to apply the multipole expansion to each of the
interactions (Appendix X).

9.12.3 MULTIPOLE EXPANSION APPLIED TO THE FOCK MATRIX

Let us first concentrate on C0j
pq(N). As seen from eq. (9.77) there are two type of

interactions to calculate: the nuclear attraction integrals V 0j
pq(A

h
u) and the electron

repulsion integrals (0hpr |jlqs). In the second term, we may use the multipole expansion
of 1

r12
given in the Appendix X on p. 1039. In the first term, we will do the same,

56Let us check this. What objects are we talking about? Let us begin from C
0j
pq(N). As it is seen from

the formula one of the interacting objects is the charge distribution of the first electron χ0
p(1)

∗χjq(1)�
The second object is the whole polymer except the nuclei and electrons of the neighbourhood of the
cell 0. The charge distributions χ0

p(1)
∗χjq(1) with various j are always close to cell 0, because the orbital

χ0
p(1) is anchored at cell 0, and such a distribution decays exponentially when cell j goes away from

cell 0. The fact that the nuclei with which the distribution χ0
p(1)

∗χjq(1) interacts are far apart is evident,
but less evident is that the electrons with which the distribution interacts are also far away from cell 0�
Let us have a closer look at the electron–electron interaction. The charge distribution of electron 2 is
χhr (2)

∗χls(2), and the summation over cells h excludes the neighbourhood of cell 0. Hence, because
of the exponential decay there is a guarantee that the distribution χhr (2)

∗χls(2) is bound to be close to
cell h, if this distribution is to be of any significance. Therefore, the charge distribution χhr (2)

∗χls(2) is
certainly far away from cell 0.

Similar reasoning may be used for CT (N). The interacting objects are of the type χ0
p(1)

∗χjq(1), i.e.
always close to cell 0, with the nuclei of cell h, and there is a guarantee that h is far away from cell 0.
The long distance of the interacting nuclei (second term) is evident.
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but this time one of the interacting particles will be the nucleus indicated by vector
Ahu. The corresponding multipole expansion reads as (in a.u.; the nucleus u of the
charge Zu interacts with the electron of charge −1, nk = nl =∞, S =min(k	 l)):

−Zu
ru1

=
nk∑

k=0

nl∑

l=0

m=+S
∑

m=−S
Akl|m|R−(k+l+1)M̂(k	m)

a (1)∗M̂(l	m)
b (u)	 (9.82)

where R stands for the distance between the origins of the coordinate system cen-
tred in cell 0 and the coordinate system in cell h, which, of course, is equal to
R= ha. The multipole moment operator of electron 1, M̂(k	m)

a (1)	 reads as

M̂(k	m)
a (1)=−rka P |m|k (cosθa1)exp(imφa1)	 (9.83)

while

M̂(l	m)
b (u)=ZurluP |m|l (cosθu)exp(imφu)=M(l	m)

b (u) (9.84)

denotes the multipole moment of nucleus u computed in the coordinate system
of the cell h. When this expansion as well as the expansion for 1

r12
, are inserted

into (9.77) for C0j
pq(N), we obtain

C
0j
pq(N) =

∑

h

#
nk∑

k=0

nl∑

l=0

m=+S
∑

m=−S
Akl|m|R−(k+l+1)

×
(

(

χ0
p

∣
∣M̂(k	m)

a (1)∗
∣
∣χ
j
q

)
[
∑

u

M
(l	m)
b

(

Ahu
)
]

+ (χ0
p

∣
∣M̂(k	m)

a (1)∗
∣
∣χ
j
q

)
l′=h+N
∑

l′=h−N

∑

rs

Pl
′h
sr

(

χhr
∣
∣M̂(l	m)

b (2)
∣
∣χl

′
s

)

)

=
∑

h

#
nk∑

k=0

nl∑

l=0

m=+S
∑

m=−S
Akl|m|R−(k+l+1)(χ0

p

∣
∣M̂(k	m)

a (1)∗
∣
∣χ
j
q

)

×
[
∑

u

M(l	m)
b

(

Ahu
)+

l′=h+N
∑

l′=h−N

∑

rs

Pl
′h
sr

(

χhr
∣
∣M̂(l	m)

b (2)
∣
∣χl

′
s

)

]

�

Let us note that in the square parentheses we have nothing but a multipole mo-
ment of unit cell h. Indeed, the first term represents the multipole moment of all
the nuclei of cell h, while the second term is the multipole moment of electrons
of unit cell h. The later can best be seen if we recall the normalization condi-
tion (9.68):

∑l′=h+N
l′=h−N

∑

rs P
l′h
sr S

hl′
rs =

∑l′=+N
l′=−N

∑

rs P
l′0
sr S

0l′
rs = 2n0, with 2n0 denoting
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the number of electrons per cell. Hence, we can write

C
0j
pq(N)=

∑

h

#∑

k=0

∑

l=0

m=+S
∑

m=−S
Akl|m|R−(k+l+1)(χ0

p

∣
∣M̂(k	m)

a (1)∗
∣
∣χ
j
q

)

M(l	m)(h)	

(9.85)
where the dipole moment of cell h is given by:

M(l	m)(h)=
[
∑

u

M(l	m)
b

(

Ahu
)+

l′=h+N
∑

l′=h−N

∑

rs

Pl
′h
sr

(

χhr
∣
∣M̂(l	m)

b (2)
∣
∣χl

′
s

)

]

	 (9.86)

because the summation over u goes over the nuclei belonging to cell h, and the
coordinate system b is anchored in cell h. Now it is time to say something most
important.

Despite the fact that M(l	m)(h) depends formally on h, in reality it is h-
independent, because all the unit cells are identical.

Therefore, we may safely write that M(l	m)(h)=M(l	m).
Now we will try to avoid a well hidden trap, and then we will be all set to prepare

ourselves to pick the fruit from our orchard. The trap is that Akl|m| depends on h.
How is this? Well, in the Akl|m| there is (−1)l, while the corresponding (−1)k is
absent, i.e. there is a thing that is associated with the 2l-pole in the coordinate
system b, and there no an analogous expression for its partner, the 2k-pole of co-
ordinate system a. Remember, however (Appendix X), that the axes z of both
coordinate systems have been chosen in such a way that a “shoots” towards b, and
b does not shoot towards a. Therefore, the two coordinate systems are not equiv-
alent, and hence one may have (−1)l, and not (−1)k. The coordinate system a
is associated with cell 0, the coordinate system b is connected to cell h. If h > 0,
then it is true that a shoots to b, but if h < 0 their roles are exchanged. In such a
case, in Akl|m| we should not put (−1)l, but (−1)k. If we do this then in the sum-
mation over h in eq. (9.85) the only dependence on h appears in a simple term
(ha)−(k+l+1)!

It appears, therefore, to be a possibility of exactly summing the electrostatic
interaction along an infinite polymer chain.

Indeed, the sum
∞
∑

h=1

h−(k+l+1) = ζ(k+ l+ 1)	 (9.87)

where ζ(n) stands for the Riemann dzeta function, which is known to a high degree Riemann dzeta
functionof accuracy and available in mathematical tables.57

57For example, M. Abramovitz, I. Stegun (eds.), “Handbook of Mathematical Functions”, Dover, New
York, 1968, p. 811.
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Georg Friedrich Bernhard Riemann (1826–
1866), German mathematician and physicist,
professor at the University of Göttingen. Nearly
all his papers gave rise to a new mathematical
theory. His life was full of personal tragedies,
he lived only 40 years, but despite this he made
a giant contribution to mathematics, mainly in
non-Euclidean geometries (his geometry plays
an important role in the general theory of rela-
tivity), in the theory of integrals (Riemann inte-
gral), and in the theory of trigonometric series.

The interactions of cell 0 with all the other cells are enclosed in this number.
When this is inserted into C0j

pq(N), then we obtain

C
0j
pq(N)=

∞
∑

k=0

∞
∑

l=0

U
0j(k	l)
pq

�
(k+l+1)
N

a(k+l+1)
	 (9.88)

where

U
0j(k	l)
pq =

m=+S
∑

m=−S
(−1)m

[

(−1)k + (−1)l
] (k+ l)!
(k+ |m|)!(l+ |m|)!M

0j(k	m)∗
pq M(l	m)	

(9.89)

�(n)N = ζ(n)−
N
∑

h=1

h−n� (9.90)

Note that the formula for C0j
pq(N) represents a sum of the multipole–multipole

interactions. The formula also shows that

electrostatic interactions in a regular polymer come from a multipole–mul-
tipole interaction with the same parity of the multipoles,

which can be seen from the term58 [(−1)k + (−1)l].
According to the discussion in Appendix X, to preserve the invariance of the en-

ergy with respect to translation of the coordinate system, when computing C0j
pq(N)

58The term appears due to the problem discussed above of “who shoots to whom” in the multipole
expansion. What happens, is that the interaction of an even (odd) multipole of cell 0 with an odd
(even) multipole on the right-hand side of the polymer cancels with a similar interaction with the left-
hand side. It is easy to understand. Let us imagine the multipoles as non-pointlike objects built of the
appropriate point charges. We look along the periodicity axis. An even multipole has the same signs at
both ends, an odd one has the opposite signs. Thus, when the even multipole is located in cell 0, and
the odd one on its right-hand side, this interaction will cancel exactly with the interaction of the odd
one located on the left-hand side (at the same distance).



9.12 Long-range interaction problem 483

we have to add all the terms with k+ l+ 1= const, i.e.:

C
0j
pq(N)=

∞
∑

n=3	5	���

�(n)N
an

n−1
∑

l=1

U
0j(n−l−1	l)
pq � (9.91)

The above expression is equivalent to eq. (9.88), but automatically assures the
translational invariance by taking into account all the necessary multipole–mul-
tipole interactions.59

What should we know, therefore, to compute the long-range correction C0j
pq(N)

to the Fock matrix?60 From eq. (9.91) it is seen that one has to know how to calcu-
late three numbers: U0j(k	l)

pq , a−n and �(n)N . The equation for the first one is given
in Table 9.1, the other two are trivial, � is easy to calculate knowing the Riemann
ζ function (from tables): in fact we have to calculate the multipole moments, and
these are one-electron integrals (easy to calculate). Originally, before the multi-
pole expansion method was designed we also had a large number of two-electron
integrals (expensive to calculate). Instead of overnight calculations, the computer
time was reduced to about 1 s and the results were more accurate.

9.12.4 MULTIPOLE EXPANSION APPLIED TO THE TOTAL ENERGY

As shown above, the long-range correction to the total energy means the inter-
action of cell 0 with all the cells from the long-range region multiplied by 1

2 . The
reasoning pertaining to its computation may be repeated exactly in the way we
have shown in the previous subsection. We have, however, to remember a few dif-
ferences:

• what interacts is not the charge distribution χ0∗
p χ

j
q, but the complete cell 0,

• the result has to be multiplied by 1
2 for reasons discussed earlier.

Finally we obtain:

CT (N)= 1
2

∞
∑

k=0

∞
∑

l=0

U
(k	l)
T

�(k+l+1)
N

ak+l+1
	 (9.92)

59Indeed,
∑n−1
l=1 U

0j(n−l−1	l)
pq =U0j(n−2	1)

pq +U0j(n−3	2)
pq + · · · +U0j(0	n−1)

pq , i.e. a review of all terms

with k+ l+1= n except U0j(n−1	0)
pq . This term is absent and that is OK, because it requires calculation

of M(0	0) , i.e. of the charge of the elementary cell, which has to stay electrically neutral (otherwise the
polymer falls apart), therefore M(0	0) = 0. Why, however, does the summation over n not simply rep-
resent n= 1	2	 � � � 	∞, but contains only odd n’s except n= 1? What would happen if we took n= 1?
Look at eq. (9.88). The value n= 1 requires k= l = 0. This leads to the “monopole–monopole” inter-
action, but this is 0, since the whole unit cell (and one of the multipoles is that of the unit cell) carries
no charge. The summation in (9.91) does not contain any even n’s, because they would correspond to
k and l of different parity, and such interactions (as we have shown before) are equal to 0. Therefore,
indeed, (9.91) contains all the terms that are necessary.
60L. Piela, J. Delhalle, Intern. J. Quantum Chem. 13 (1978) 605.
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Table 9.1. The quantities U(k	l) for k + l < 7 are necessary for calculating the long-

range corrections to the Fock matrix elements U0j(k	l)
pq and to the total energy per

unit cell U(k	l)T . The parentheses [ ]mean the corresponding multipole moment. When
computing the Fock matrix correction the first multipole moment [ ] stands for the
multipole moment of the charge distribution χ0

pχ
j
q , the second, of the unit cell. For

example, U(0	2) for the correction C
0j
pq(N) is equal to (0p|jq)

(∑

u Zu(3z
2
u − r2u) −

∑l′=+N
l′=−N

∑

rs P
l′0
sr (χ

0
r |3z2 − r2|χl′s )

)

, while U(0	2) for CT (N) is equal 0, because [1]
means the charge of the unit cell, which is equal to zero. In the table only U ’s for k
 l
are given. If l < k, then the formula is the same, but the order of the moments is re-
versed

n U(k	l)	 k+ l+ 1= n
3 U(0	2) = [1][3z2 − r2]

U(1	1) = 2[x][x] + 2[y][y] − 4[z][z]
5 U(0	4) = 1

4 [1][35z4 − 30z2r2 + 3r4]
U(1	3) = 4[z][3r2z− 5z3] + 3[x][5xz2 − r2x] + 3[y][5yz2 − r2y]
U(2	2) = 3[3z2 − r2][3z2 − r2] − 24[xz][xz] − 24[yz][yz]

+ 3
2 [x2 − y2][x2 − y2] + 6[xy][xy]

7 U(0	6) = 1
8 [1][231z6 − 315z4r2 + 105z2r4 − 5r6]

U(1	5) =− 3
2 [z][63z5 − 70z3r2 + 15zr4] + 15

4 [x][21z4x− 14z2xr2 + xr4]
+ 15

4 [y][21z4y − 14z2yr2 + yr4]
U(2	4) = 15

8 [3z2 − r2][35z4 − 30z2r2 + 3r4] − 30[xz][7z3x− 3xzr2]
−30[yz][7z3y − 3yzr2] + 15

4 [x2 − y2][7z2(x2 − y2)− r2(x2 − y2)]
+ 15[xy][7z2xy − xyr2]

U(3	3) =−10[5z3 − 3zr2][5z3 − 3zr2] + 45
4 [5z2x− xr2][5z2x− xr2]

+ 45
4 [5z2y − yr2][5z2y − yr2] − 45[zx2 − zy2][zx2 − zy2]

− 180[xyz][xyz] + 5
4 [x3 − 3xy2][x3 − 3xy2] + 5

4 [y3 − 3x2y][y3 − 3x2y]

where

U(k	l)T =
m=+S
∑

m=−S

(

(−1)k + (−1)l
) (k+ l)!(−1)m

(k+ |m|)!(l+ |m|)!M
(k	m)∗M(l	m)� (9.93)

Let us note that (for the same reasons as before)

interaction of multipoles of different parity gives zero

and this time we have to do with the interaction of the multipoles of complete cells.
The quantities U(k	l)T are given in Table 9.1.

Do the Fock matrix elements and the total energy per cell represent finite
values?
If the Fock matrix elements were infinite, then we could not manage to carry out
the Hartree–Fock–Roothaan self-consistent procedure. If ET were infinite, the pe-
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riodic system could not exist at all. It is, therefore, important to know when we can
safely model an infinite system.

For any finite system there is no problem: the results are always finite. The only
danger, therefore, is the summation to infinity (“lattice sums”), which always ends
with the interaction of a part or whole unit cell with an infinite number of distant
cells. Let us take such an example in the simplest case of a single atom per cell. Let
us assume that the atoms interact by the Lennard-Jones pairwise potential (p. 284):

E = ε
[(
r0
r

)12

− 2
(
r0
r

)6]

	

where r means the interatomic distance, r0 means the equilibrium distance and
ε the depth of the potential well. Let us try to compute the lattice sum

∑

j E0j ,
where E0j means the interaction energy of the cells 0 and j� We see that, due to
the form of the potential, for long distances what counts is the uniquely attractive
term −2ε( r0r )

6. When we take such interactions which pertain to a sphere of the
radius R (with the origin located on atom 0), each individual term (i.e. its absolute
value) decreases with increasing R. This is very important, because when we have
a 3D lattice, the number of such interactions within the sphere increases as R3. We
see that the decay rate of the interactions will finally win and the lattice sum will
converge. We can, however, easily see that if the decay of the pairwise interaction
energy were slower, then we might have had trouble calculating the lattice sum.
For example, if, instead of the neutral Lennard-Jones atoms, we took ions of the
same charge, the interaction energy would explode to ∞. It is evident, therefore,
that for each periodic system there are some conditions to be fulfilled if we want
to have finite lattice sums.

These conditions are more severe for the Fock matrix elements because each
of the terms represent the interaction of a charge with complete distant unit cells.
The convergence depends on the asymptotic interaction energy of the potential.
In the case of the multipole–multipole interaction, we know what the asymptotic
behaviour looks like, it is R−(0+l+1) = R−(l+1)	 where R stands for the intercell
distance. The lattice summation in a nD lattice (n= 1	2	3) gives the partial sum
dependence on R as Rn

Rl+1 =Rn−l−1. This means that61

in 1D the unit cell cannot have any non-zero net charge (l = 0), in 2D it
cannot have a non-zero charge and dipole moment (l = 1), in 3D it cannot
have a non-zero charge, dipole moment and quadrupole moment (l= 2).

9.13 BACK TO THE EXCHANGE TERM
The long-range effects discussed so far result from the Coulomb interaction in the
Fock equation for a regular polymer. There is, however, also an exchange contri-

61L.Z. Stolarczyk, L. Piela, Intern. J. Quantum Chem. 22 (1982) 911.



486 9. Electronic Motion in the Mean Field: Periodic Systems

bution, which has been postponed in the long-range region (p. 477). It is time now
to consider this again. The exchange term in the Fock matrix element F0j

pq had the
form (see (9.65))

−1
2

∑

h	l

∑

rs

Plhsr
(0h
pr

∣
∣lj
sq

)

(9.94)

and gave the following contribution to the total energy per unit cell

Eexch =
∑

j

Eexch(j)	 (9.95)

where the cell 0-cell j interaction has the form (see (9.81)):

Eexch(j)=−1
4

∑

h	l

∑

pqrs

P
j0
qpP

lh
sr

(0h
pr

∣
∣lj
sq

)

� (9.96)

It would be very nice to have the exchange contribution Eexch(j) decaying fast,
when j increases, because it could be enclosed in the short-range contribution. Do
we have good prospects for this? The above formula shows (the integral) that the
summation over l is safe: the contribution of those cells l that are far from cell 0
is negligible due to differential overlaps of type χ0

p(1)
∗χls(1). The summation over

cells h is safe as well (for the same reasons), because it is bound to be limited to
the neighbourhood of cell j (see the integral).

In contrast, the only guarantee of a satisfactory convergence of the sum over
j is that we hope the matrix element Pj0qp decays fast if j increases.

So far, exchange contributions have been neglected, and there has been an in-
dication suggesting that this was the right procedure. This was the magic word
“exchange”. All the experience of myself and my colleagues in intermolecular in-
teractions whispers “this is surely a short-range type”. In a manuscript by Sandor
Suhai, I read that the exchange contribution is of a long-range type. To our aston-
ishment this turned out to be right (just a few numerical experiments). We have a
long-range exchange. After an analysis was performed it turned out that

the long-range exchange interaction appears if and only if the system is
metallic.

A metallic system is notorious for its HOMO–LUMO quasidegeneracy, there-
fore, we began to suspect that when the HOMO–LUMO gap decreases, the Pj0qp
coefficients do not decay with j.

Such things are most clearly seen when the simplest example is taken, and the
hydrogen molecule at long internuclear distance is the simplest prototype of a
metal. Indeed, this is a system with half-filled orbital energy levels when the LCAO
MO method is applied (in the simplest case: two atomic orbitals). Note that, after
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subsequently adding two extra electrons, the resulting system (let us not worry too
much that such a molecule could not exist!) would model an insulator, i.e. all the
levels are doubly occupied.62

Analysis of these two cases convinces us that indeed our suspicions were justi-
fied. Here are the bond order matrices we obtain in both cases (see Appendix S,
p. 1015, S denotes the overlap integral of the 1s atomic orbitals of atoms a and b):

P = (1+ S)−1
(

1 1
1 1

)

for H2	 (9.97)

P = (1− S2)−1
(

1 −S
−S 1

)

for H2−
2 � (9.98)

We see63 how profoundly these two cases differ in the off-diagonal elements (they
are analogues of Pj0qp for j 	= 0).

In the second case the proportionality of Pj0qp and S ensures an exponential,
therefore very fast, decay if j tends to ∞. In the first case there is no decay of
P
j0
qp at all.

A detailed analysis for an infinite chain of hydrogen atoms (ω= 1) leads to the
following formula64 for Pj0qp:

P
j0
11 =

2
πj

sin
(
πj

2

)

� (9.99)

This means an extraordinarily slow decay of these elements (and therefore of the
exchange contribution) with j. When the metallic regime is even slightly removed,
the decay gets much, much faster.

This result shows that the long-range character of the exchange interactions
does not exist in reality. It represents an indication that the Hartree–Fock
method fails in such a case.

62Of course, we could take two helium atoms. This would also be good. However, the first principle in
research is “in a single step only change a single parameter, analyze the result, draw the conclusions, and
make the second step”.

Just en passant, a second principle, also applies here. If we do not understand an effect, what should
we do? Just divide the system in two parts and look where the effect persists. Keep dividing until the ef-
fect disappears. Take the simplest system in which the effect still exists, analyze the problem, understand
it and go back slowly to the original system (this is why we have H2 and H2−

2 here).
63L. Piela, J.-M. André, J.G. Fripiat, J. Delhalle, Chem. Phys. Lett. 77 (1981) 143.
64I.I. Ukrainski, Theor. Chim. Acta 38 (1975) 139, q= p= 1 means that we have a single 1s hydrogen

orbital per unit cell.
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9.14 CHOICE OF UNIT CELL

The concept of the unit cell has been important throughout the present chapter.
The unit cell represents an object that, when repeated by translations, gives an
infinite crystal. In this simple definition almost every word can be a trap.

Is it feasible? Is the choice unique? If not, then what are the differences among
them? How is the motif connected to the unit cell choice? Is the motif unique?
Which motifs may we think about?

As we have already noted, the choice of unit cell as well as of motif is not unique.
This is easy to see. Indeed Fig. 9.21 shows that the unit cell and the motif can be
chosen in many different and equivalent ways.

Moreover, there is no chance of telling, in a responsible way, which of the
choices are reasonable and which are not. And it happens that in this particular
case we really have a plethora of choices. Putting no limits to our fantasy, we may
choose a unit cell in a particularly capricious way, Figs. 9.21.b and 9.22.

Fig. 9.22 shows six different, fully legitimate, choices of motifs associated with
a unit cell in a 1D “polymer” (LiH)∞. Each motif consists of the lithium nucleus,
a proton and an electronic charge distribution in the form of two Gaussian 1s or-
bitals that accommodate four electrons altogether. By repeating any of these motifs
we reconstitute the same original chain.

We may say there may be many legal choices of motif, but this is without any
theoretical meaning, because all the choices lead to the same infinite system. Well,
this is true with respect to theory, but in practical applications the choice of motif
may be of prime importance. We can see this from Table 9.2, which corresponds to
Fig. 9.22.

The results without the long-range interactions, depend very strongly on the
choice of unit cell motif.

Fig. 9.21. Three of many pos-
sible choices of the unit cell
motif. a) choices I and II dif-
fer, but both look “reasonable”;
b) choice III might be called
strange. Despite this strange-
ness, choice III is as legal (from
the point of view of mathemat-
ics) as I or II.
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cell 0

Fig. 9.22. Six different choices (I–VI) of unit cell content (motifs) for a linear chain (LiH)∞. Each cell
has the same length a= 6�3676 a.u. There are two nuclei: Li3+ and H+ and two Gaussian doubly occu-
pied 1s atomic orbitals (denoted by χ1 and χ2 with exponents 1.9815 and 0.1677, respectively) per cell.
Motif I corresponds to a “common sense” situation: both nuclei and electron distribution determined
by χ1 and χ2 are within the section (0,a). The other motifs (II–VI) all correspond to the same unit cell
(0,a) of length a, but are very strange. Each motif is characterized by the symbol (ka	 la	ma	na). This
means that the Li nucleus, H nucleus, χ1 and χ2 are shifted to the right by ka	 la	ma	na, respectively.
All the unit cells with their contents (motifs) are fully justified, equivalent from the mathematical point of
view, and, therefore, “legal” from the point of view of physics. Note that the nuclear framework and the
electronic density corresponding to a cell are very different for all the choices.

Use of the multipole expansion greatly improves the results and, to very
good accuracy, makes them independent of the choice of unit cell motif.

Note that the larger the dipole moment of the unit cell the worse the results.
This is understandable, because the first non-vanishing contribution in the multi-
pole expansion is the dipole–dipole term (cf. Appendix X). Note how considerably
the unit cell dependence drops after this term is switched on (a−3).

The conclusion is that in the standard (i.e. short-range) calculations we should
always choose the unit cell motif that corresponds to the smallest dipole moment.
It seems however that such a motif is what everybody would choose using their
“common sense”.
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Table 9.2. Total energy per unit cell ET in the “polymer” LiH as a function of unit
cell definition (Fig. 9.22, I–V). For each choice of unit cell this energy is computed
in four ways: (1) without long-range forces (long range = 0), i.e. unit cell 0 interacts
with N = 6 unit cells on its right-hand side and N unit cells on its left-hand side; (2),
(3), (4) with the long range computed with multipole interactions up to the a−3, a−5

and a−7 terms. The bold figures are exact. The corresponding dipole moment μ of
the unit cell (in Debyes) is also given.

Unit cell Long range μ −ET
I 0 6�6432 6.610869

a−3 6�6432 6.612794692
a−5 6�6432 6.612794687
a−7 6�6432 6.612794674

II 0 −41�878 6.524802885
a−3 −41�878 6.612519674
a−5 −41�878 6.612790564
a−7 −41�878 6.612794604

III 0 −9�5305 6.607730984
a−3 −9�5305 6.612788446
a−5 −9�5305 6.612794633
a−7 −9�5305 6.612794673

IV 0 22�82 6.57395630
a−3 22�82 6.612726254
a−5 22�82 6.612793807
a−7 22�82 6.612794662

V 0 −90�399 6.148843431
a−3 −90�399 6.607530384
a−5 −90�399 6.612487745
a−7 −90�399 6.612774317

9.14.1 FIELD COMPENSATION METHOD

In a moment we will unexpectedly find a quite different conclusion. The logical
chain of steps that led to it has, in my opinion, a didactic value, and contains a con-
siderable amount of optimism. When this result was obtained by Leszek Stolarczyk
and myself, we were stunned by its simplicity.

Is it possible to design a unit cell motif with a dipole moment of zero? This
would be a great unit cell, because its interaction with other cells would be
weak and it would decay fast with intercellular distance. We could therefore
compute the interaction of a few cells like this and the job would be over:
we would have an accurate result at very low cost.

There is such a unit cell motif.
Imagine we start from the concept of the unit cell with its motif (with lattice

constant a). This motif is, of course, electrically neutral (otherwise the total energy
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Fig. 9.23. Field compensation
method. (a) the unit cell with
length a and dipole moment
μ > 0. (b) the modified unit cell
with additional fictitious charges
(|q| = μ

a ) which cancel the
dipole moment. (c) the modified
unit cells (with μ′ = 0) give the
original polymer, when added
together.

would be +∞), and its dipole moment component along the periodicity axis is
equal to μ� Let us put its symbol in the unit cell, Fig. 9.23.a.

Now let us add to the motif two extra pointlike opposite charges (+q and −q),
located on the periodicity axis and separated by a. The charges are chosen in such
a way (q = μ

a ) that they alone give the dipole moment component along the peri-
odicity axis equal to −μ, Fig. 9.23.b.

In this way the new unit cell dipole moment (with the additional fictitious
charges) is equal to zero. Is this an acceptable choice of motif? Well, what does
acceptable mean? The only requirement is that by repeating the new motif with
period a, we have to reconstruct the whole crystal. What will we get when repeat-
ing the new motif? Let us see (Fig. 9.23.c).

We get the original periodic structure, because the charges all along the poly-
mer, except the boundaries, have cancelled each other. Simply, the pairs of charges
+q and −q, when located at a point result in nothing.

In practice we would like to repeat just a few neighbouring unit cell motifs
(a cluster) and then compute their interaction. In such case, we will observe the
charge cancellation inside the cluster, but no cancellation on its boundaries (“sur-
face”).

Therefore we get a sort of point charge distribution at the boundaries.

If the boundary charges did not exist, it would correspond to the traditional
calculations of the original unit cells without taking any long-range forces into ac-
count. The boundary charges therefore play the important role of replacing the
electrostatic interaction with the rest of the infinite crystal, by the boundary charge
interactions with the cluster (“field compensation method”).

This is all. The consequences are simple.

Let us not only kill the dipole moment, but also other multipole moments of
the unit cell content (up to a maximum moment), and the resulting cell will
be unable to interact electrostatically with anything. Therefore, interaction
within a small cluster of such cells will give us an accurate energy per cell
result.
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This multipole killing (field compensation) may be carried out in several
ways.65

Application of the method is extremely simple. Imagine unit cell 0 and its neigh-
bour unit cells (a cluster). Such a cluster is sometimes treated as a molecule and
its role is to represent a bulk crystal. This is a very expensive way to describe
the bulk crystal properties, for the cluster surface atom ratio to the bulk atom
is much higher than we would wish (the surface still playing an important role).
What is lacking is the crystal field that will change the cluster properties. In the
field compensation method we do the same, but there are some fictitious charges
at the cluster boundaries that take care of the crystal field. This enables us to use
a smaller cluster than before (low cost) and still get the influence of the infinite
crystal. The fictitious charges are treated in computations the same way as are the
nuclei (even if some of them are negatively charged). However artificial it may
seem, the results are far better when using the field compensation method than
without it.66

9.14.2 THE SYMMETRY OF SUBSYSTEM CHOICE

The example described above raises an intriguing question, pertaining to our un-
derstanding of the relation between a part and the whole.

There are an infinite number of ways to reconstruct the same system from parts.
These ways are not equivalent in practical calculations, if for any reason we are un-
able to compute all the interactions in the system. However, if we have a theory (in
our case the multipole method) that is able to compute the interactions,67 includ-
ing the long-range forces, then it turns out the final result is virtually independent
of the choice of unit cell motif. This arbitrariness of choice of subsystems looks
analogous to the arbitrariness of the choice of coordinate system. The final results
do not depend on the coordinate system used, but still the numerical results (as
well as the effort to get the solution) do.

The separation of the whole system into subsystems is of key importance to
many physical approaches, but we rarely think of the freedom associated with the
choice. For example, an atomic nucleus does not in general represent an elemen-
tary particle, and yet in quantum mechanical calculations we treat it as a point
particle, without an internal structure and we are successful.68 Further, in the Bo-
golyubov69 transformation, the Hamiltonian is represented by creation and annihi-Bogolyubov

transformation lation operators, each being a linear combination of the creation and annihilation

65L. Piela, L.Z. Stolarczyk, Chem. Phys. Letters 86 (1982) 195.
66Using “negative” nuclei looked so strange that some colleagues doubted receiving anything reason-

able from such a procedure.
67With controlled accuracy, i.e. we still neglect the interactions of higher multipoles.
68This represents only a fragment of the story-like structure of science (cf. p. 60), one of its most

intriguing features. It makes science operate, otherwise when considering the genetics of peas in biology
we have had to struggle with the quark theory of matter.
69Nicolai Nicolaevitch Bogolyubov (1909–1992), Russian physicist, director of the Dubna Nuclear In-

stitute, outstanding theoretician.
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operators for electrons (described in Appendix U, p. 1023). The new operators
also fulfil the anticommutation rules – only the Hamiltonian contains more addi-
tional terms than before (Appendix U). A particular Bogolyubov transformation
may describe the creation and annihilation of quasi-particles, such as the electron
hole (and others). We are dealing with the same physical system as before, but
we look at it from a completely different point of view, by considering it is com-
posed of something else. Is there any theoretical (i.e. serious) reason for preferring
one division into subsystems over another? Such a reason may only be of practical
importance.70

SYMMETRY WITH RESPECT TO DIVISION INTO SUBSYSTEMS
The symmetry of objects is important for the description of them, and there-
fore may be viewed as of limited interest. The symmetry of the laws of Na-
ture, i.e. of the theory that describes all objects (whether symmetric or not)
is much more important. This has been discussed in detail in Chapter 2 (cf.
p. 61), but it seems that we did not list there a fundamental symmetry of any
correct theory: the symmetry with respect to the choice of subsystems. A correct
theory has to describe the total system independently of what we decide to treat
as subsystems.

We will meet this problem once more in intermolecular interactions (Chap-
ter 13). However, in the periodic system it has been possible to use, in compu-
tational practice, the symmetry described above.

Our problem resembles an excerpt which I found in “Dreams of a Final Theory”
by Steven Weinberg71 pertaining to gauge symmetry: “The symmetry underlying it
has to do with changes in our point of view about the identity of the different types of
elementary particle. Thus it is possible to have a particle wave function that is neither
definitely an electron nor definitely a neutrino, until we look at it”. Here also we have
freedom in the choice of subsystems and a correct theory has to reconstitute the
description of the whole system.

An intriguing problem.

Summary

• A crystal is often approximated by an infinite crystal (primitive) lattice, which leads to the
concept of the unit cell. By repeating a chosen atomic motif associated with a unit cell, we
reconstruct the whole infinite crystal.

• The Hamiltonian is invariant with respect to translations by any lattice vector. Therefore
its eigenfunctions are simultaneously eigenfunctions of the translation operators (Bloch
theorem): φk(r − Rj) = exp(−ikRj)φk(r) and transform according to the irreducible
representation of the translation group labelled by the wave vector k.

70For example, at temperature t < 0 ◦C we may solve the equations of motion for N frozen water
drops and we may obtain reasonable dynamics of the system. At t > 0 ◦C, obtaining dynamics of the
same drops will be virtually impossible.
71Pantheon Books, New York (1992), Chapter 6.
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• Bloch functions may be treated as atomic symmetry orbitals φ=∑j exp(ikRj)χ(r−Rj)
formed from the atomic orbital χ(r).

• The crystal lattice basis vectors allow the formation of the basis vectors of the inverse
lattice.

• Linear combinations of them (with integer coefficients) determine the inverse lattice.
• The Wigner–Seitz unit cell of the inverse lattice is called the First Brillouin Zone (FBZ).
• The vectors k inside the FBZ label all possible irreducible representations of the transla-

tion group.
• The wave vector plays a triple role:

– it indicates the direction of the wave, which is an eigenfunction of T̂ (Rj) with eigenvalue
exp(−ikRj),

– it labels the irreducible representations of the translation group,
– the longer the wave vector k, the more nodes the wave has.

• In order to neglect the crystal surface, we apply the Born–von Kármán boundary condition:
“instead of a stick-like system we take a circle”.

• In full analogy with molecules, we can formulate the SCF LCAO CO Hartree–Fock–
Roothaan method (CO instead MO). Each CO is characterized by a vector k ∈ FBZ and
is a linear combination of the Bloch functions (with the same k).

• The orbital energy dependence on k ∈ FBZ is called the energy band. The stronger the
intercell interaction, the wider the bandwidth (dispersion).

• Electrons occupy (besides the inner shells) the valence bands, the conduction bands are
empty. The Fermi level is the HOMO energy of the crystal. If the HOMO–LUMO energy
difference (energy gap between the valence and conduction bands) is zero, we have a
metal; if it is large, we have an insulator; if, it is medium, we have a semiconductor.

• Semiconductors may be intrinsic, or n-type (if the donor dopant levels are slightly be-
low the conduction band), or p-type (if the acceptor dopant levels are slightly above the
occupied band).

• Metals when cooled may undergo what is known as the Peierls transition, which denotes
lattice dimerization and band gap formation. The system changes from a metal to a semi-
conductor or insulator. This transition corresponds to the Jahn–Teller effect in molecules.

• Polyacetylene is an example of a Peierls transition (“dimerization”), which results in
shorter bonds (a little “less–multiple” than double ones) and longer bonds (a little “more
multiple” than single ones). Such a dimerization introduces the possibility of a defect sep-
arating two rhythms (“phases”) of the bonds: from “double–single” to “single–double”.
This defect can move within the chain, which may be described as a solitonic wave. The
soliton may become charged and in this case, participates in electric conduction (increas-
ing it by many orders of magnitude).

• In polyparaphenylene, a soliton wave is not possible, because the two phases, quinoid and
aromatic, are not of the same energy. A double defect is possible though, a bipolaron.
Such a defect represents a section of the quinoid structure (in the aromatic-like chain) at
the end of which we have two unpaired electrons. The electrons, when paired with extra
electrons from donor dopants, or when removed by acceptor dopants, form a double ion
(bipolaron), which may contribute to electric conductance.

• The band structure may be foreseen in simple cases and logically connected to the sub-
system orbitals.

• To compute the Fock matrix elements or the total energy per cell, we have to calculate
the interaction of cell 0 with all other cells.
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• The interaction with neighbouring cells is calculated without approximations, while that
with distant cells uses multipole expansion. Multipole expansion applied to the electrosta-
tic interaction gives accurate results, while the numerical effort is dramatically reduced.

• In some cases (metals), we meet long-range exchange interaction, which disappears as
soon as the energy gap emerges. This indicates that the Hartree–Fock method is not
applicable in this case.

• The choice of unit cell motif is irrelevant from the theoretical point of view, but leads
to different numerical results when the long-range interactions are omitted. By including
the interactions the theory becomes independent of the division of the whole system into
arbitrary motifs.

Main concepts, new terms

lattice constant (p. 431)
primitive lattice (p. 432)
translational symmetry (p. 432)
unit cell (p. 432)
motif (p. 432)
wave vector (p. 434)
Bloch theorem (p. 434)
Bloch function (p. 435)
symmetry orbital (p. 435)
biorthogonal basis (p. 436)
inverse lattice (p. 436)
Wigner–Seitz cell (p. 438)
First Brillouin Zone (p. 438)
Born–von Kármán boundary condition

(p. 446)
crystal orbitals (p. 450)
band structure (p. 453)
band width (p. 454)
Fermi level (p. 454)

valence band (p. 455)
band gap (p. 455)
conduction band (p. 455)
insulators (p. 455)
metals (p. 455)
semi-conductor (p. 455)
Peierls transition (p. 456)
n-type semiconductor (p. 458)
p-type semiconductor (p. 458)
Jahn–Teller effect (p. 458)
soliton (p. 459)
bipolaron (p. 459)
long-range interactions (p. 475)
multipole expansion (p. 479)
exchange interaction (p. 485)
field compensation method (p. 490)
symmetry of division into subsystems

(p. 492)

From the research front

The Hartree–Fock method for periodic systems nowadays represents a routine approach
coded in several ab initio computer packages. We may analyze the total energy, its depen-
dence on molecular conformation, the density of states, the atomic charges, etc. Also cal-
culations of first-order responses to the electric field (polymers are of interest for optoelec-
tronics) have been successful in the past. However, non-linear problems (like the second
harmonic generation, see Chapter 12) still represent a challenge. On the one hand, the ex-
perimental results exhibit wide dispersion, which partly comes from market pressure. On
the other hand, the theory itself has not yet elaborated reliable techniques.

Ad futurum. . .

Probably there will soon be no problem in carrying out the Hartree–Fock or DFT (see
Chapter 11) calculations, even for complex polymers and crystals. What will remain for a
few decades is the very important problem of lowest-energy crystal packing and of solid
state reactions and phase transitions. Post-Hartree–Fock calculations (taking into account
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electronic correlation effects) will be more and more important. The real challenge will start
in designing non-periodic materials, where the polymer backbone will serve as a molecular
rack for installing some functions (transport, binding, releasing, signal transmitting). The
functions will be expected to cooperate (“smart materials”, cf. Chapter 15).

Additional literature

A.A. Levin, “Vviedienije w kvantovuyou khimiyou tverdovo tiela. Khimicheskaya sviaz
i struktura energeticheskikh zon w tietraedricheskikh poluprovodnikakh”, Khimija,
Moscow, 1974.

This is the first textbook of solid state chemistry. The theory of periodic systems (es-
pecially semiconductors) is presented in about 230 pages.

R. Hoffmann, “Solids and Surfaces. A Chemist’s View of Bonding in Extended Struc-
tures”, VCH publishers, New York, 1988.

A masterpiece written by a Nobel Prize winner, one of the founders of solid state
quantum chemistry. More oriented towards chemistry than Levin’s book. Solid state the-
ory was traditionally the domain of physicists, some concepts typical of chemistry as, e.g.,
atomic orbitals, bonding and antibonding effects, chemical bonds and localization of or-
bitals were usually absent in such descriptions.

J.-M. André, J. Delhalle, J.-L. Brédas, “Quantum Chemistry Aided Design of Organic
Polymers”, World Scientific, Singapore, 1991.

A well written book oriented mainly towards the response of polymers to the electric
field.

Questions

1. Bloch theorem says that:
a) T̂ (Rj)φk(r)= exp(ikr)φk(r); b)φk(r)=φ−k(r); c)φk(r)+φ−k(r)= 0; d)φk(r−
Rj)= exp(−ikRj)φk(r).

2. The First Brillouin Zone (k stands for the wave vector, CO – for a crystal orbital):
a) represents the smallest unit cell of the primitive lattice; b) represents the smallest
motif in the crystal; c) its interior contains only non-equivalent vectors; d) represents a
basis in the inverse cell.

3. Function φk corresponding to the wave vector k:
a) has to satisfy the Schrödinger equation; b) represents a wave with direction k; c) al-
ways has |k| nodes; d) represents the CO.

4. Crystal orbital (k is a wave vector, CO means a crystal orbital):
a) represents an arbitrary linear combination of the atomic orbitals of cell 0; b) repre-
sents an arbitrary linear combination of the atomic orbitals of cells 0	±1; c) with k= 0
corresponds to the lowest energy in the band; d) always corresponds to a given k.

5. The infinite polyacetylene chain:
a) is an electrical conductor; b) exhibits all CC bonds of equal length; c) if doped be-
comes a conductor due to soliton defects; d) has a zero band gap.

6. Band width (k is a wave vector, CO means a crystal orbital) gets larger if:
a) the orbital overlap is larger; b) the band energy is lower; c) the CO has a larger
number of nodes; d) |k| is smaller.
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7. A semiconductor:
a) has a large band gap; b) means a resistor; c) has a small band gap; d) conducts electric
current, but only in one direction.

8. Fermi level means:
a) the electric affinity of an insulator; b) HOMO energy for the crystal; c) the mean
value of the occupied band; d) the lowest energy of a band.

9. In regular polymer the dipole-quadrupole interaction is:
a) 0; b) the difference of the quadrupole–quadrupole and dipole–dipole interactions;
c) 1

3! ; d) the mean value of the dipole–dipole and quadrupole–quadrupole interactions.

10. The dipole moment of a unit cell in a polymer:
a) is uniquely determined if the polymer is electrically neutral; b) depends on the posi-
tion of the cell with respect to cell 0; c) depends on the choice of the motif; d) is equal
to 0.

Answers

1d, 2c, 3b, 4d, 5c, 6a, 7c, 8b, 9a, 10c



Chapter 10

CORRELATION OF THE
ELECTRONIC MOTIONS

Where are we?

The main road on the trunk lead us to the middle of the crown of the tree.

An example

As usual let us consider the simplest example: the hydrogen molecule. The normalized Re-
stricted Hartree–Fock determinant

ψRHF(1	2)= 1√
2

∣
∣
∣
∣

φ1(1) φ1(2)
φ2(1) φ2(2)

∣
∣
∣
∣

with double occupancy of the normalized molecular orbital ϕ (φ1 = ϕα, φ2 = ϕβ), after
expansion, gives immediately:

ψRHF(1	2)= ϕ(1)ϕ(2) 1√
2

{

α(1)β(2)−β(1)α(2)}�

The key quantity here is the square of the complex modulus of ψRHF(1	2), since the
|ψRHF(1	2)|2 tells us about the probability density of the occurrence of certain coordi-
nates of the electrons. We will study the fundamental problem for the motion of electrons:
whether the electrons react to their presence.

Let us ask some very important questions. Firstly what is the (conditional) probability
density of the occurrence of the situation when

• electron 1 occupies different positions in space on the contour line ϕ = const and has
spin coordinate σ1 = 1/2 while electron 2 has spin coordinate σ2 = −1/2, and its space
coordinates are x2	 y2	 z2.

We calculate
∣
∣ψRHF(1	2)

∣
∣2 =

[

ϕ(1)ϕ(2)
1√
2

{

α(σ1)β(σ2)−β(σ1)α(σ2)
}
]2

=
[

const×ϕ(x2	 y2	 z2)
1√
2

{

α(1/2)β(−1/2)−β(1/2)α(−1/2)
}
]2

=
[

const×ϕ(x2	 y2	 z2)
1√
2
{1× 1− 0× 0}

]2

= 1
2
(const)2 ×ϕ2(x2	 y2	 z2)�

498
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Electron 1 changes its position on the contour line, but the distribution of the probability density
of electron 2 (of the opposite spin) does not change a bit, while electron 2 should move away
from its partner, since the electrons repel each other. Electron 2 is not afraid to approach elec-
tron 1. The latter can even touch electron 2 and it does not react at all. For such a deficiency
we have to pay through the high mean value of the Hamiltonian (since there is a high aver-
age energy of the electron repulsion). The Hartree–Fock method therefore has an obvious
shortcoming.

• We now ask about the probability density of finding a situation in which we leave every-
thing the same as before, but now electron 2 has spin coordinate σ2 = 1/2 (so this is the
situation where both electrons have identical projections of spin angular momentum1).
What will the response to this change be of |ψRHF(1	2)|2 as a function of the position of
electron 2?

• Again we calculate

∣
∣ψRHF(1	2)

∣
∣2 =

[

ϕ(1)ϕ(2)
1√
2

{

α(σ1)β(σ2)−β(σ1)α(σ2)
}
]2

=
[

const×ϕ(x2	 y2	 z2)
1√
2

{

α

(
1
2

)

β

(
1
2

)

−β
(

1
2

)

α

(
1
2

)}]2

=
[

const×ϕ(x2	 y2	 z2)
1√
2
{1× 0− 0× 1}

]2
= 0�

We ask about the distribution of the electron of the same spin. The answer is that this
distribution is everywhere equal to zero, i.e. we do not find electron 2 with spin coordinate 1

2
independently of the position of the electron 1 with spin coordinate 1

2 (in whatever point on
the contour line or beyond it).

The second conclusion can be accepted, since it follows from the pairing of the spins,2 but
the first conclusion is just absurd. Such nonsense is admitted by the Hartree–Fock method.
In this chapter we will ponder how we can introduce a correlation of electronic motions.

The correlation of the motions of the electrons results in an energy gain called a correla- correlation
energytion energy which is defined as

Ecorel =E −ERHF	

whereE is the energy from the Schrödinger equation,3 andERHF is the Restricted Hartree–
Fock energy.4

1We may ask: “How come?” After all, we consider a singlet state, hence the spin projections are
opposite. We will not find the situation with parallel spin projections. Take it easy. If, in fact, we are
right then we will get 0 as the density of the respective conditional probability. Let us see whether it
really will be so.

2And this is ensured by the singlet form of the spin part of the function.
3This is the rigorous nonrelativistic energy of the system in its ground state. This quantity is not

available experimentally, we can evaluate it by subtraction of the calculated relativistic corrections from
the energy of the total ionization of the system.

4Usually we define the correlation energy for the case of double occupancy of the molecular orbitals
(the RHF method, see p. 330). In the case of open shells, especially when the multideterminantal
description is required, the notion of correlation energy still remains to be defined. These problems
will not be discussed in this book.
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What is it all about

The outline of the chapter is as follows:

• First we will discuss the methods which explicitly (via the form of the suggested wave
function) allow the electrons to control their mutual distance (“a correlation of motions”).

• In the second part of the chapter the correlation will be less visible, since it will be ac-
counted for by the application of linear combinations of the Slater determinants. First
we will discuss the variational methods (VB, CI, MC SCF), and then the non-variational
ones (CC, EOM-CC, MBPT).

VARIATIONAL METHODS USING EXPLICITLY CORRELATED WAVE
FUNCTION p. 502

Correlation cusp condition(�) p. 503
The Hylleraas function(�) p. 506
The Hylleraas CI method(�) p. 506
The harmonic helium atom(�) p. 507
James–Coolidge and Kołos–Wolniewicz functions (�) p. 508
• Neutrino mass
Method of exponentially correlated Gaussian functions (�) p. 513
Coulomb hole (“correlation hole”) (�) p. 513
Exchange hole (“Fermi hole”) (�) p. 516
VARIATIONAL METHODS WITH SLATER DETERMINANTS p. 520
Valence bond (VB) method (�) p. 520
• Resonance theory – hydrogen molecule
• Resonance theory – polyatomic case
Configuration interaction (CI) method (�) p. 525
• Brillouin theorem
• Convergence of the CI expansion
• Example of H2O
• Which excitations are most important?
• Natural orbitals (NO)
• Size consistency
Direct CI method (�) p. 533
Multireference CI method (�) p. 533
Multiconfigurational Self-Consistent Field method (MC SCF) (����) p. 535
• Classical MC SCF approach (�)
• Unitary MC SCF method (�)
• Complete active space method (CAS SCF) (���)
NON-VARIATIONAL METHODS WITH SLATER DETERMINANTS
Coupled cluster (CC) method (�) p. 539
• Wave and cluster operators
• Relationship between CI and CC methods
• Solution of the CC equations
• Example: CC with double excitations
• Size-consistency of the CC method
Equation-of-motion method (EOM-CC) (�) p. 548
• Similarity transformation
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• Derivation of the EOM-CC equations
Many body perturbation theory (MBPT) (�) p. 551
• Unperturbed Hamiltonian
• Perturbation theory – slightly different approach
• Reduced resolvent or the “almost” inverse of (E(0)0 − Ĥ(0))
• MBPT machinery
• Brillouin–Wigner perturbation theory
• Rayleigh–Schrödinger perturbation theory
Møller–Plesset version of Rayleigh–Schrödinger perturbation theory (�) p. 558
• Expression for MP2 energy
• Convergence of the Møller–Plesset perturbational series
• Special status of double excitations

In the previous chapter we dealt with the description of electronic motion in the mean
field approximation. Now we use this approximation as a starting point towards methods ac-
counting for electron correlation. Each of the methods considered in this chapter, when rigor-
ously applied, should give an exact solution of the Schrödinger equation. Thus this chapter
will give us access to methods providing accurate solutions of the Schrödinger equation.

Why is this important?

Perhaps, in our theories, the electrons do not need to correlate their motion and the results
will be still all right?

Unfortunately, this is not so. The mean field method provides, to be sure, ca. 99% of
the total energy of the system. This is certainly a lot, in many cases the mean field method
gives quite good results, but still falls short of treating several crucial problems correctly.
For example:

• Only through electron correlation do the noble gas atoms attract each other in accordance
with experiment (liquefaction of gases).

• According to the Hartree–Fock method, the F2 molecule does not exist at all, whereas the
fact is that it exists, and is doing quite well (bonding energy equal to 38 kcal/mol).5

• About half the interaction energy of large molecules (often of biological importance)
calculated at the equilibrium distance originates purely from the correlation effect.

• The RHF method used to describe the dissociation of the chemical bond gives simply
tragic results (cf. Chapter 8, p. 371), qualitatively wrong (the UHF method gives a qualita-
tively correct description).

We see that in many cases electronic correlation must be taken into account.

What is needed?

• Operator algebra (Appendix B, necessary).
• Hartree–Fock method (Chapter 8, necessary).
• Eigenvalue problem (Appendix L, p. 984, necessary).
• Variational method (Chapter 5, necessary).
• Perturbation theory (Chapter 5, recommended).
• Matrix diagonalization (Appendix K, p. 982, recommended).
• Second quantization (Appendix U, p. 1023, necessary).

5Yet this is not a strong bond. For example, the bonding energy of the H2 molecule equals 104
kcal/mol, that of HF equals 135 kcal/mol.
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Classic papers

The first calculations incorporating electron correlation in an atom (helium) were pub-
lished by Egil Andersen Hylleraas in an article “Neue Berechnung der Energie des Heliums im
Grundzustande, sowie des tiefsten Terms von Ortho-Helium”, Zeitschrift für Physik, 54 (1929)
347. � The first calculations with electron correlation for molecules were performed by
Walter Heitler and Fritz Wolfgang London in a paper “Wechselwirkung neutraler Atome
und homöopolare Bindung nach der Quantenmechanik” published in Zeitschrift für Physik,
44 (1927) 455. Formation of the covalent bond (in H2) could be correctly described only
after the electron correlation has been included. June 30, 1927, when Heitler and London
submitted the paper, is the birth date of quantum chemistry. � Later, significantly more
accurate results were obtained for the hydrogen molecule by Hubert M. James and Albert
S. Coolidge in an article “The Ground State of the Hydrogen Molecule”, Journal of the Chem-
ical Physics, 1 (1933) 825, and a contemporary reference point for that molecule are papers
by Włodzimierz Kołos and Lutosław Wolniewicz, among others an article entitled “Potential
Energy Curves for the X1$+g 	 B3$+u 	C1�u States of the Hydrogen Molecule” published in
Journal of Chemical Physics, 43 (1965) 2429. � Christian Møller and Milton S. Plesset in
Physical Review, 46 (1934) 618 published a paper “Note on an Approximation Treatment for
Many-Electron Systems”, where they presented a perturbational approach to electron cor-
relation. � The first calculations with the Multi-Configurational Self-Consistent Field (MC
SCF) method for atoms was published by Douglas R. Hartree, William Hartree and Bertha
Swirles in a paper “Self-Consistent Field, Including Exchange and Superposition of Configu-
rations, with some Results for Oxygen”, Philosophical Transactions of the Royal Society (Lon-
don), A 238 (1939) 229, and the general MC SCF theory was presented by Roy McWeeny in
a work “On the Basis of Orbital Theories”, Proceedings of the Royal Society (London), A 232
(1955) 114. � As a classic paper in electronic correlation we also consider an article by Per-
Olov Löwdin “Correlation Problem in Many-Electron Quantum Mechanics” in Advances in
Chemical Physics, 2 (1959) 207. � The idea of the Coupled Cluster (CC) method was intro-
duced by Fritz Coester in a paper in Nuclear Physics, 7 (1958) 421 entitled “Bound States of
a Many-Particle System”. Jǐrí Čížek introduced the (diagrammatic) CC method into electron
correlation theory in the paper “On the Correlation Problem in Atomic and Molecular Sys-
tems. Calculation of Wavefunction Components in Ursell-type Expansion Using Quantum-Field
Theoretical Methods” published in the Journal of Chemical Physics, 45 (1966) 4256. � The
book edited by Oktay Sinanoğlu and Keith A. Brueckner “Three Approaches to Electron Cor-
relation in Atoms”, Yale Univ. Press, New Haven and London, 1970, contains several reprints
of the papers which cleared the path towards the coupled-cluster method. � A derivation of
the coupled cluster equations (for interacting nucleons) was presented by Herman Kümmel
and Karl-Heinz Lührmann, Nuclear Physics, A191 (1972) 525 in a paper entitled “Equations
for Linked Clusters and the Energy Variational Principle”.

VARIATIONAL METHODS USING EXPLICITLY
CORRELATED WAVE FUNCTION

We have learnt, from the example given at the beginning of this chapter, that the
“genetic defect” of mean field methods is, that they describe electrons and com-



10.1 Correlation cusp condition 503

Fig. 10.1. Absence of electronic correlation in the helium atom as seen by the Hartree–Fock method.
Visualization of the cross-section of the square of the wave function (probability density distribution)
describing electron 2 within the plane xy provided electron 1 is located in a certain point in space:
a) at (−1	0	0); b) at (1	0	0). Note, that in both cases the conditional probability density distributions of
electron 2 are identical. This means electron 2 does not react to the motion of electron 1, i.e. there is
no correlation whatsoever of the electronic motions (when the total wave function is the Hartree–Fock
one).

pletely ignore the fact that they are close or far away from each other. For example,
in the two-electron case previously considered when we established the coordinates
of electron 1, electron 2 has a certain distribution of the probability density. This
distribution does not change when the electron 1 moves to a different position. This
means that the electrons “are not afraid” to get close to each other, although they
should, since when electrons are close the energy increases (Fig. 10.1.a,b).

The explicitly correlated wave function (we will get to it in a moment) has the
interelectronic distance built in its mathematical form. We may compare this to mak-
ing the electrons wear spectacles.6 Now they avoid each other. One of my students
said that it would be the best if the electrons moved apart to infinity. Well, they
cannot. They are attracted by the nucleus (energy gain), and being close to it,
are necessarily close to each other too (energy loss). There is a compromise to
achieve.

10.1 CORRELATION CUSP CONDITION
Short distances are certainly most important for the Coulombic interaction of two
charges, although obviously, the regions of configurational space connected with
the long interelectronic distances are much larger. Thus the region is not large, but
very important, within it “collisions” take place. It turns out that the wave function
calculated in the region of collision must satisfy some very simple mathematical
condition (called correlation cusp condition). This is what we want to demonstrate.
The derived formulae7 are universal, they apply to any pair of charged particles.

6Of course, the methods described further also provide their own “spectacles” (otherwise they would
not give the solution of the Schrödinger equation), but the spectacles in the explicitly correlated func-
tions are easier to construct with a small number of parameters.

7T. Kato, Commun. Pure Appl. Math. 10 (1957) 151.
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Let us consider two particles with charges qi and qj and massesmi andmj sepa-
rated from other particles. This, of course, makes sense since simultaneous collisions
of three or more particles occur very rarely in comparison with two-particle colli-
sions. Let us introduce a Cartesian system of coordinates (say, in the middle of
the beautiful market square in Brussels), so that the system of two particles is de-
scribed with six coordinates. Then (atomic units are used) the sum of the kinetic
energy operators of the particles is

T̂ =− 1
2mi

�i − 1
2mj

�j� (10.1)

Now we separate the motion of the centre of mass of the two particles with
position vectors ri and rj . The centre of mass in our coordinate system is indicated
by the vector RCM = (XCM	YCM	ZCM)

RCM = miri +mjrj
mi +mj � (10.2)

Let us also introduce the total mass of the system M =mi +mj , the reduced mass
of the two particles μ= mimj

mi+mj and the vector of their relative positions r= ri− rj .
Introducing the three coordinates of the centre of mass measured with respect to
the market square in Brussels and the three coordinates x	 y	 z which are compo-
nents of the vector r	 we get (Appendix I, Example 1)

T̂ = − 1
2M

�CM − 1
2μ
�	 (10.3)

�CM = ∂2

∂X2
CM

+ ∂2

∂Y 2
CM

+ ∂2

∂Z2
CM

	 (10.4)

� = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 � (10.5)

After this operation, the Schrödinger equation for the system is separated (as
always in the case of two particles, see Appendix I, p. 971) into two equations:
the first describing the motion of the centre of mass (seen from Brussels) and the
second describing the relative motion of the two particles (with Laplacian of x	 y	 z
and reduced mass μ). We are not interested in the first equation, but the second
one is what we are after. Let us write down the Hamiltonian corresponding to the
second equation

Ĥ =− 1
2μ
�+ qiqj

r
� (10.6)

We are interested in how the wave function looks when the distance between
the two particles r gets very small. If r is small, it makes sense to expand the wave
function in a power series8 of r: ψ= C0 + C1r + C2r

2 + · · · . Let us calculate Ĥψ

8Assuming such a form we exclude the possibility that the wave function goes to ±∞ for r → 0�
This must be so, since otherwise either the respective probability would go to infinity or the operators
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in the vicinity of r = 0. The Laplacian expressed in the spherical coordinates is the
sum of three terms (Appendix I, p. 971): the first, which contains the differenti-
ation with respect to r and the remaining two, which contain the differentiation
with respect to the angles θ and φ: �= 1

r2
∂
∂r r

2 ∂
∂r + terms depending on θ and φ.

Since we have assumed the function to be dependent on r, upon the action of the
Laplacian only the first term gives a nonzero contribution.

We obtain

Ĥψ =
(

− 1
2μ
�+ qiqj

r

)

ψ

= 0− C1

2μ
2
r
+ 6C2 + 12C3r + · · ·

+C0
qiqj

r
+C1qiqj +C2qiqjr + · · · (10.7)

The wave function cannot go to infinity when r tends to zero, while in the above
expression we have two terms which would then “explode” to infinity.

These terms must cancel.

Hence, we obtain

C0qiqj = C1

μ
� (10.8)

This condition is usually expressed in a different way. We use the fact that ψ(r =
0)= C0 and (∂ψ∂r )r=0 = C1. We then obtain the cusp condition as

(
∂ψ

∂r

)

r=0
= μqiqjψ(r = 0)�

• The case of two electrons:
Then mi =mj = 1, hence μ= 1

2 and qi = qj =−1. We get the cusp condition
for the collision of two electrons as

(
∂ψ

∂r

)

r=0
= 1

2
ψ(r = 0)

or

the wave function should be of the form

ψ=φ(r1	 r2)

[

1+ 1
2
r12 + · · ·

]

	

where +· · · means higher powers of r12.

would become non-Hermitian, cf. p. 73. Both possibilities are unacceptable. We covertly assumed also
(to simplify our considerations) that the wave function does not depend on the angles θ and φ. This
dependence can be accounted for by making the constants C0	C1	C2 the functions of θ and φ. Then
the final results still holds, but for the coefficients C0 and C1 averaged over θ and φ.
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• The nucleus–electron case:
When one of the particles is a nucleus of charge Z then μ� 1 and we get

(
∂ψ

∂r

)

r=0
=−Zψ(r = 0)�

Thus

the correct wave function for the electron in the vicinity of a nucleus
should have an expansion ψ= const(1−Zra1 + · · ·), where ra1 is the dis-
tance from the nucleus

Let us see how it is with the 1s function for the hydrogen-like atom (the nucleus
has charge Z) expanded in a Taylor series in the neighbourhood of r = 0. We have
1s =N exp(−Zr)=N(1−Zr + · · ·)� It works.

The correlation cusp condition shows that the wave function is not differentiable
at r = 0.

10.2 THE HYLLERAAS FUNCTION

In 1929, two years after the birth of quantum chemistry, a paper by Hylleraas9 ap-
peared, where, for the ground state of the helium atom, a trial variational function,
containing the interelectronic distance explicitly, was applied. This was a brilliant
idea, since it showed that already a small number of terms provide very good re-
sults. Even though no fundamental difficulties were encountered for larger atoms,
the enormous numerical problems were prohibitive for atoms with larger numbers
of electrons. In this case, the progress made from the nineteen twenties to the
end of the twentieth century is exemplified by transition from two- to ten-electron
systems.

10.3 THE HYLLERAAS CI METHOD

In this method,10 we exploit the Hylleraas idea in such a way that the electronic
wave function is expressed as a linear combinations of Slater determinants, and in
front of each determinant �i (1	2	3	 � � � 	N) we insert, next to the variational co-
efficient ci, correlational factors with some powers (v	u	 � � �) of the interelectronic

9E.A. Hylleraas, Zeit. Phys. 54 (1929) 347. Egil Andersen Hylleraas arrived in 1926 in Göttingen,
to collaborate with Max Born. His professional experience was related to crystallography and to the
optical properties of quartz. When one of the employees fell ill, Born told Hylleraas to continue his
work on the helium atom in the context of the newly developed quantum mechanics. The helium atom
problem had already been attacked by Albrecht Unsöld in 1927 using first order perturbation theory,
but Unsöld obtained the ionization potential equal to 20.41 eV, while the experimental value was equal
to 24.59 eV. In the reported calculations (done on a recently installed calculator) Hylleraas obtained a
value of 24.47 eV (cf. contemporary accuracy, p. 134).
10CI, Configuration Interaction.
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distances (rmn between electron m and electron n, etc.):

ψ=
∑

i

ciÂ
[

r
vi
mnr

ui
kl � � ��i(1	2	3	 � � � 	N)

]

	 (10.9)

where Â denotes an antisymmetrization operator (see Appendix U, p. 1023). If
vi = ui = 0	 we have the CI expansion: ψ=∑i ci�i (we will discuss it on p. 525). If
vi 	= 0, we include a variationally proper treatment of the appropriate distance rmn,
i.e. correlation of the motions of the electrons m and n, etc. The antisymmetriza-
tion operator ensures fulfilment of the requirement for symmetry of the wave func-
tion with respect to the exchange of the arbitrary two electrons. The method de-
scribed was independently proposed in 1971 by Wiesław Woźnicki11 and by Sims
and Hagstrom.12 The method of correlational factors has a nice feature, in that
even a short expansion should give a very good total energy for the system, since
we combine the power of the CI method with the great success of the explicitly
correlated approaches. Unfortunately, the method has also a serious drawback. To
make practical calculations, it is necessary to evaluate the integrals occurring in the
variational method, and they are very difficult to calculate. It is enough to realize
that, in the matrix element of the Hamiltonian containing two terms of the above
expansion, we may find, e.g., a term 1/r12 (from the Hamiltonian) and r13 (from
the factor in front of the determinant), as well as the product of 6 spinorbitals de-
scribing the electrons 1, 2, 3. Such integrals have to be computed and the existing
algorithms are inefficient.

10.4 THE HARMONIC HELIUM ATOM

An unpleasant feature of the electron correlation is that we deal either with intu-
itive concepts or, if our colleagues want to help us, they bring wave functions with
formulae as long as the distance from Cracow to Warsaw (or longer13) and say:
look, this is what really happens. It would be good to analyze such formulae term
by term, but this does not make sense, because there are too many terms. Even
the helium atom, when we write down the formula for its ground-state wave func-
tion, becomes a mysterious object. Correlation of motion of whatever seems to be
so difficult to grasp mathematically that we easily give up. A group of scientists
published a paper in 1993 which aroused enthusiasm.14 They obtained a rigorous
solution of the Schrödinger equation (described in Chapter 4, p. 188), the only
exact solution which has been obtained so far for correlational problems.

11W. Woźnicki, in “Theory of Electronic Shells in Atoms and Molecules” (ed. A. Yutsis), Mintis, Vilnius,
1971, p. 103.
12J.S. Sims, S.A. Hagstrom, Phys. Rev. A4 (1971) 908. This method is known as a Hylleraas–CI.
13This is a very conservative estimate. Let us calculate – half jokingly. Writing down a single Slater

determinant would easily take 10 cm. The current world record amounts to several billion such deter-
minants in the CI expansion. Say, three billion. Now let us calculate: 10 cm× 3× 109 = 3× 1010 cm=
3× 108 m= 3× 105 km= 300000 km. So, this not Warsaw to Cracow, but Earth to Moon.
14S. Kais, D.R. Herschbach, N.C. Handy, C.W. Murray, G.J. Laming, J. Chem. Phys. 99 (1993) 417.
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Note that the exact wave function (its spatial part15) is a geminal (i.e. two-
electron function).

ψ(r1	 r2)=N
(

1+ 1
2
r12

)

e−
1
4 (r

2
1+r2

2 )� (10.10)

Let me be naive. Do we have two harmonic springs here? Yes, we do. Then, let
us treat them first as independent oscillators and take the product of the ground-
state functions of both oscillators: exp[− 1

4(r
2
1 + r2

2)]. Well, it would be good to
account for the cusp condition ψ = φ(r1	 r2)[1 + 1

2 r12 + · · ·] and take care of it
even in a naive way. Let us just implement the crucial correlation factor (1+ 1

2 r12),
the simplest that satisfies the cusp condition (see p. 505). It turns out, that such a
recipe leads to a rigorous wave function.16

From (10.10) we see that for r1 = r2 = const (in such a case both electrons move
on the surface of the sphere), the larger value of the function (and eo ipso of the
probability) is obtained for larger r12. This means that, it is most probable that the
electrons prefer to occupy opposite sides of a nucleus. This is a practical manifes-
tation of the existence of the Coulomb hole around electrons, i.e. the region of the
reduced probability of finding a second electron: the electrons simply repel each
other. They cannot move apart to infinity since both are held by the nucleus. The
only thing they can do is to be close to the nucleus and to avoid each other – this is
what we observe in (10.10).

10.5 JAMES–COOLIDGE AND KOŁOS–WOLNIEWICZ
FUNCTIONS

One-electron problems are the simplest. For systems with two electrons17 we can
apply certain mathematical tricks which allow very accurate results. We are going
to talk about such calculations in a moment.

Kołos and Wolniewicz applied the Ritz variational method (see Chapter 5) to
the hydrogen molecule with the following trial function:

�= 1√
2

[

α(1)β(2)− α(2)β(1)]
M
∑

i

ci
(

�i(1	2)+�i(2	1)
)

	 (10.11)

�i(1	2)= exp
(−Aξ1 − Āξ2

)

ξ
ni
1 η

ki
1 ξ

mi
2 η

li
2

(
2r12

R

)μi

· (exp
(

Bη1 + B̄η2
)+ (−1)ki+li exp

(−Bη1 − B̄η2
))

	

15For one- and two-electron systems the wave function is a product of the spatial and spin factors.
A normalized spin factor for two-electron systems, 1√

2
{α(1)β(2)−β(1)α(2)}, guarantees that the state

in question is a singlet (see Appendix Q, p. 1006). Since we will only manipulate the spatial part of the
wave function, the spin is the default. Since the total wave function has to be antisymmetric, and the
spin function is antisymmetric, the spatial function should be symmetric and it is.
16As a matter of fact, only for a single force constant. Nevertheless, the unusual simplicity of that

analytic formula is most surprising.
17For a larger number of electrons it is much more difficult.
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where the elliptic coordinates of the electrons with index j = 1	2 are given by:

ξj =
raj + rbj
R

	 (10.12)

ηj =
raj − rbj
R

	 (10.13)

R denotes the internuclear distance, raj and rbj are nucleus–electron distances (the
nuclei are labelled by a	b), r12 is the (crucial to the method) interelectronic dis-
tance, ci, A, Ā, B, B̄ are variational parameters, and n, k, l, m are integers.

The simplified form of this function with A = Ā and B = B̄ = 0 is the James–
Coolidge18 function, thanks to which the later authors enjoyed the most accurate
result for the hydrogen molecule in 27 years.

Kołos and Roothaan,19 and later on,
Kołos and Wolniewicz20 as well as Kołos
and Rychlewski and others21 applied
longer and longer expansions (com-
puter technology was improving fast)
up to M of the order of thousands.
The results obtained exceeded the ac-
curacy of experiments, although the lat-
ter represented one of the most accurate
spectroscopic measurements ever done.
Owing to the great precision of these
calculations it was proved that quan-
tum mechanics, and in particular the
Schrödinger equation, describe the real-
ity with remarkable accuracy, Tables 10.1
and 10.2.

As can be seen from Tables 10.1
and 10.2, there was a competition be-
tween theoreticians and the experimen-
tal laboratory of Herzberg. When, in
1964, Kołos and Wolniewicz obtained

Włodzimierz Kołos (1928–
1996), Polish chemist, pro-
fessor at the Warsaw Univer-
sity. His calculations on small
molecules (with Roothaan,
Wolniewicz, Rychlewski) took
into account all known ef-
fects and were of unprece-
dented accuracy in quantum
chemistry. The Department
of Chemistry of Warsaw Uni-
versity and the Polish Chem-
ical Society established the
Włodzimierz Kołos Medal ac-
companying a Lecture (the
first lecturers were: Roald
Hoffmann, Richard Bader and
Paul von Ragué Schleyer). In
the Ochota quarter in Warsaw
there is a Włodzimierz Kołos
Street. Lutosław Wolniewicz
(born 1927), Polish physi-
cist, professor at the Nicolaus
Copernicus University in Toruń.

36117.3 cm−1 (Table 10.1, bold face) for the dissociation energy of the hydro-
gen molecule, quantum chemists held their breath. The experimental result of
Herzberg and Monfils, obtained four years earlier (Table 10.1, bold face), was

18H.M. James, A.S. Coolidge, J. Chem. Phys. 1 (1933) 825. Hubert M. James in the sixties was professor
at Purdue University (USA).
19W. Kołos, C.C.J. Roothaan, Rev. Modern Phys. 32 (1960) 205.
20For the first time in quantum chemical calculations relativistic corrections and corrections resulting

from quantum electrodynamics were included. This accuracy is equivalent to hitting, from Earth, an ob-
ject on the Moon the size of a car. These results are cited in nearly all textbooks on quantum chemistry
to demonstrate that the theoretical calculations have a solid background.
21The description of these calculations is given in the review article by Kołos cited in Table 10.1.
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Table 10.1. Dissociation energy of H2 in the ground state (in cm−1). Comparison of the results of
theoretical calculations and experimental measurements. The references to the cited works can be
found in the paper by W. Kołos, Pol. J. Chem. 67 (1993) 553. Bold numbers are used to indicate the
values connected with the Herzberg–Kołos–Wolniewicz controversy

Year Author Experiment Theory

1926 Witmer 35000
1927 Heitler–London 23100a)

1933 James–Coolidge 36104a)

1935 Beutler 36116± 6
1960 Kołos–Roothaan 36113.5a)

1960 Herzberg–Monfils 36113.6± 0.6
1964 Kołos–Wolniewicz 36117.3a)

1968 Kołos–Wolniewicz 36117.4a)

1970 Herzberg 36118.3c)

1970 Stwalley 36118�6± 0�5
1975 Kołos–Wolniewicz 36118.0
1978 Kołos–Rychlewski 36118.12b)

1978 Bishop–Cheung 36117.92
1983 Wolniewicz 36118.01
1986 Kołos–Szalewicz–Monkhorst 36118.088
1991 McCormack–Eyler 36118�26± 0�20
1992 Balakrishnan–Smith–Stoicheff 36118�11± 0�08
1992 Kołos–Rychlewski 36118.049

a)Obtained from calculated binding energy by subtracting the energy of zero vibrations.
b)Obtained by treating the improvement of the binding energy as an additive correction to the dissoci-
ation energy.
c)Upper bound.

Table 10.2. Ionization energy of H2 (in cm−1). See the caption for Table 10.1

Year Author Experiment Theory

1934 Richardson 124569.2
1933 James–Coolidge 124438
1938 Beutler–Jünger 124429±13
1969 Jeziorski–Kołos 124417.3
1969 Takezawa 124417±2
1970 Takezawa 124417�4± 0�6
1972 Herzberg–Jungen 124417�2± 0�4
1978 Kołos–Rychlewski 124417.44
1986 Jungen–Herzberg 124417�5± 0�1
1986/7 Eyler–Short–Pipkin 124417�42± 0�15
1987 Glab–Hessler 124417�61± 0�07
1989 McCormack–Gilligan–

Comaggia–Eyler 124417.524±0.015
1990 Jungen–Dabrowski–

Herzberg–Vervloet 124417�501± 0�015
1992 Gilligan–Eyler 124417�507± 0�018
1992 Jungen–Dabrowski–

Herzberg–Vervloct 124417�484± 0�017
1992 Eyler et al. 124417�507± 0�012
1992 Kołos–Rychlewski 124417.471
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higher and this seemed to contradict the variational principle (Chapter 5) a foun-
dation of quantum mechanics. There were only three possibilities:

• the theoretical result is wrong,
• the experimental result is wrong,
• quantum mechanics has internal inconsistency.

Kołos and Wolniewicz increased the
accuracy of their calculations in 1968
and excluded the first possibility. It soon
turned out that the problem lay in the
accuracy of the experiment.22 When
Herzberg increased the accuracy, he ob-
tained 36118.3 cm−1 as the dissociation
energy (Table 10.1, bold face), which was
then consistent with the variational prin-
ciple.

Nowadays, these results are recog-
nized in the world as the most reliable
source of information on small mole-
cules. For example, Kołos and Wol-

Gerhard Herzberg (1904–1999),
Canadian chemist of German
origin professor at the Na-
tional Research Council and
at the University of Saskatche-
wan in Saskatoon and the
University of Ottawa. The great-
est spectroscopist of the XX
century. Herzberg laid the
foundations of molecular spec-
troscopy, is author of the fun-
damental monograph on this
subject, received a Nobel prize
in 1971 “for his contribution
to knowledge of the elec-

tronic structure and geometry
of molecules, particularly free
radicals”.

niewicz’s results for the H2 molecule were used to estimate the hydrogen con-
centration on Jupiter.

10.5.1 NEUTRINO MASS

Calculations like those above required unique software, especially in the context of
the non-adiabatic effects included. Additional gains appeared unexpectedly, when
Kołos and others23 initiated work aiming at explaining whether the electronic neu-
trino has a non-zero mass or not.24 In order to interpret the expensive experiments,

22At that time Herzberg was hosting them in Canada and treated them to a home made fruit liquor,
the latter event was considered by his coworkers to be absolutely exceptional. This is probably the best
time to give the recipe for this exquisite drink which is known in the circles of quantum chemists as
“kolosovka”.

Pour a pint of pure spirits into a beaker. Hang an orange on a piece of gauze directly over the meniscus.
Cover tightly and wait for two weeks. Then throw the orange away – there is nothing of value left in it, and
turn your attention to the spirits. It should contain now all the flavours from orange. Next, slowly pour some
spring water until the liquid becomes cloudy and some spirits to make it clear again. Propose a toast to the
future of quantum chemistry!
23W. Kołos, B. Jeziorski, H.J. Monkhorst, K. Szalewicz, Int. J. Quantum Chem. S19 (1986) 421.
24Neutrinos are stable fermions of spin 1

2 . Three types of neutrinos exist (each has its own antiparticle):
electronic, muonic and taonic. The neutrinos are created in the weak interactions (e.g., in β-decay) and
do not participate either in the strong, or in electromagnetic interactions. The latter feature expresses
itself in an incredible ability to penetrate matter (e.g., crossing the Earth almost as through a vacuum).
The existence of the electronic neutrino was postulated in 1930 by Wolfgang Pauli and discovered
in 1956 by F. Reines and C.L. Cowan; the muonic neutrino was discovered in 1962 by L. Lederman,
M. Schwartz and J. Steinberger.
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Alexandr Alexandrovich Fried-
mann (1888–1925), Russian
mathematician and physicist,
in his article in Zeit. Phys. 10
(1922) 377 proved on the ba-
sis of Einstein’s general the-
ory of relativity, that the cur-
vature of the Universe must
change, which became the
basis of cosmological models
of the expanding Universe.
During World War I, Friedman
was a pilot in the Russian
army and made bombing raids
over my beloved Przemyśl. In
one of his letters he asked
his friend cheerfully, the em-
inent Russian mathematician
Steklov, for advice about the
integration of equations he
derived to describe the trajec-
tories of his bombs. Later, in
a letter to Steklov of February
28, 1915 he wrote: “Recently

I had an opportunity to verify
my theory during a flight over
Przemyśl, the bombs fell ex-
actly in the places predicted
by the theory. To get the final
proof of my theory I intend to
test it in flights during next few
days.”

More information in: http://
www-groups.dcs.st-and.ac.
uk/~history/Mathematicians/
Friedmann.html

precise calculations were required for
the β-decay of the tritium molecule as
a function of the neutrino mass. The
emission of the antineutrino (ν) in the
process of β-decay:

T2 →HeT+ + e+ ν

should have consequences for the fi-
nal quantum states of the HeT+ mole-
cule. To enable evaluation of the neu-
trino mass by the experimentalists Kołos
et al. performed precise calculations of
all possible final states of HeT+ and pre-
sented them as a function of the hypo-
thetical mass of the neutrino. There is
such a large number of neutrinos in the
Universe that, if its mass exceeded a cer-
tain value, even a very small threshold
value of the order of 1 eV,25 the mass of
the Universe would exceed the critical

Edwin Powell Hubble (1889–
1953), American astronomer,
explorer of galaxies, found
in 1929, that the distance
between galaxies is propor-
tional to the infrared shift
in their spectrum caused by
the Doppler effect, which is
consequently interpreted as
expansion of the Universe.
A surprise from recent astro-
nomical studies is that the ex-

pansion is faster and faster
(for reasons unknown).

value predicted by Alexandr Friedmann
in his cosmological theory (based on the
general theory of relativity of Einstein).
This would mean that the currently oc-
curring expansion of the Universe (dis-
covered by Hubble) would finally stop
and its collapse would follow. If the neu-
trino mass would turn out to be too
small, then the Universe would continue
its expansion. Thus, quantum chemical
calculations for the HeT+ molecule may
turn out to be helpful in predicting our
fate (unfortunately, being crushed or

frozen). So far, the estimate of neutrino mass gives a value smaller than 1 eV,
which indicates the Universe expansion.26

25The mass of the elementary particle is given in the form of its energetic equivalent mc2.
26At this moment there are other candidates for contributing significantly to the mass of the Universe,

mainly the mysterious “dark matter”. This constitutes the major part of the mass of the Universe. We
know veeeery little.

Recently it turned out that neutrinos undergo what are called oscillations, e.g., an electronic neu-
trino travels from the Sun and on its way spontaneously changes to a muonic neutrino. The oscillations
indicate that the mass of the neutrino is nonzero. According to current estimations, it is much smaller,
however, than the accuracy of the tritium experiments.
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10.6 METHOD OF EXPONENTIALLY CORRELATED
GAUSSIAN FUNCTIONS

In 1960, Boys27 and Singer28 noticed that the functions which are products of
Gaussian orbitals and correlational factors of Gaussian type, exp(−br2

ij), where
rij is the distance between electron i and electron j, generate relatively simple in-
tegrals in the quantum chemical calculations. A product of two Gaussian orbitals
(with positions shown by the vectors A�B) and of an exponential correlation factor
is called an exponentially correlated Gaussian geminal:29 geminal

g(ri	 rj;A	B	 a1	 a2	 b)=Ne−a1(ri−A)2e−a2(rj−B)2e−br
2
ij �

A geminal is an analogue of an orbital, which is a one-electron function. Here
is a two-electron one. A single geminal is very rarely used in computations,30 we
apply hundreds or even thousands of Gaussian geminals. When we want to find out
what are the optimal positions A�B and the optimal exponents a and b in these
thousands of geminals, it turns out that nothing sure is known about them, the
A�B positions are scattered chaotically,31 and in the a > 0 and b > 0 exponents,
there is no regularity either. Nevertheless, the above formula for a single Gaussian
geminal looks like if it suggested b > 0.

10.7 COULOMB HOLE (“CORRELATION HOLE”)
It is always good to count “on fingers” to make sure that everything is all right. Let
us see how a single Gaussian geminal describes the correlation of the electronic
motion. Let us begin with the helium atom with the nucleus in the position A =
B= 0. The geminal takes the form:

gHe =Ne−a1r
2
1e−a1r

2
2 e−br2

12	 (10.14)

where N is a normalization factor. Let us assume32 that electron 1 is at (x1	 y1	
z1)= (1	0	0). Where in such situation does electron 2 prefer to be? We will find
out (Fig. 10.2) from the position of electron 2 for which gHe assumes the largest
value.

Just to get an idea, let us try to restrict the motion of electron 2. For instance,
let us demand that it moves only on the sphere of radius equal to 1 centred at
the nucleus. So we insert r1 = r2 = 1� Then, gHe = const exp[−br2

12] and we will
easily find out what electron 2 likes most. With b > 0 the latter factor tells us that

27S.F. Boys, Proc. Royal Soc. A 258 (1960) 402.
28K. Singer, Proc. Royal Soc. A 258 (1960) 412.
29This is an attempt to go beyond the two-electron systems with the characteristic (for these systems)

approach of James, Coolidge, Hylleraas, Kołos, Wolniewicz and others.
30Ludwik Adamowicz introduced an idea of the minimal basis of the Gaussian geminals (equal to the

number of the electron pairs) and applied to the LiH and HF molecules, L. Adamowicz, A.J. Sadlej,
J. Chem. Phys. 69 (1978) 3992.
31The methods in which those positions are selected at random scored a great success.
32We use atomic units.



514 10. Correlation of the Electronic Motions

Fig. 10.2. Illustration of the correlation and . . . anticorrelation of the electrons in the helium
atom. Figs. (a) and (b) present the machinery of the “anticorrelation” connected with the geminal
gHe = N exp[−r21 ]exp[−r22 ]exp[−2r212]� In Fig. (a) electron 1 has a position (0	0	0), while Fig. (b)
corresponds to electron 1 being at point (1	0	0) (cutting off the top parts of the plots is caused by
graphical limitations, not by the physics of the problem). It can be seen that electron 2 holds on to elec-
tron 1, i.e. it behaves in a completely unphysical manner (since electrons repel each other). Figs. (c)
and (d) show how electron 2 will respond to such two positions of electron 1, if the wave function
is described by the geminal gHe = N exp[−r21 ]exp[−r22 ][1− exp[−2r212]]� In Fig. (c) we see that elec-
tron 2 runs away “with all its strength” (the hollow in the middle) from electron 1 placed at (0	0	0).
We have correlation. Similarly, Fig. (d), if electron 1 is in point (1	0	0), then it causes a slight de-
pression for electron 2 in this position. Again we do have correlation. However, the graphs (c) and (d)
differ widely. This is understandable since the nucleus is all the time at the point (0	0	0). Figs. (e),
(f) correspond to the same displacements of electron 1, but this time the correlation function is equal
to ψ(r1	 r2) = (1+ 1

2 r12)exp[−(r21 + r22)], i.e. is similar to the wave function of the harmonic helium
atom. It can be seen (particularly in Fig. (e)) that there is a correlation, although much less visible than
in the previous examples. To amplify (artificially) the correlation effect Figs. (g), (h) show the same as
Figs. (e), (f) but for the function ψ(r1	 r2) = (1+ 25r12)exp[−(r21 + r22)], which (unlike Figs. (e), (f))
does not satisfy the correlation cusp condition.

what electron 2 likes best is just to sit on electron 1! Is it what the correlation is
supposed to mean that one electron sits on the other? Here we have rather an
anticorrelation. Something is going wrong. According to this analysis we should
rather take the geminal of the form, e.g.:

gHe =Ne−a1r
2
1e−a1r

2
2
[

1− e−br2
12
]

�



10.7 Coulomb hole (“correlation hole”) 515

Fig. 10.2. Continued.

Now everything is qualitatively in order. When the interelectronic distance in-
creases, the value of the gHe function also increases, which means that such a situ-
ation is more probable than that corresponding to a short distance. If the electrons
become too agitated and begin to think that it would be better when their distance
gets very long, they would be called to order by the factors exp[−a1r

2
1 ]exp[−a1r

2
2 ].

Indeed, in such a case, the distance between the nucleus and at least one of the
electrons is long and the probability of such a situation is quenched by one or
both exponential factors. For large r12 distances, the factor [1 − exp[−br2

12]] is
practically equal to 1. This means that for large interelectronic distances gHe is
practically equal toN exp[−a1r

2
1 ]exp[−a1r

2
2 ], i.e. to the product of the orbitals (no

correlation of motions at long interelectronic distances, and rightly so).

Around electron 1 there is a region of low probability of finding electron 2.
This region is called the Coulomb hole.

The Gaussian geminals do not satisfy the correlation cusp condition (p. 505),
because of factor exp(−br2

ij). It is required (for simplicity we write rij = r) that

(∂g∂r )r=0 = 1
2g(r = 0)	 whereas the left-hand side is equal to 0, while the right-hand

side 1
2N exp[−a1(ri − A)2]exp[−a2(rj − B)2] is not equal to zero. This is not a
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disqualifying feature, since the region of space in which this condition should be
fulfilled, is very small.

The area of application of this method is – for practical (computational) reasons
– relatively small. The method of Gaussian geminals has been applied in unusually
accurate calculations for three- and four-electron systems.33

10.8 EXCHANGE HOLE (“FERMI HOLE”)
The mutual avoidance of electrons in helium atom or in hydrogen molecule is
caused by Coulombic repulsion of electrons (“Coulomb hole”, see above). As we
have shown in this Chapter, in the Hartree–Fock method the Coulomb hole is
absent, whereas methods which account for electron correlation generate such a
hole. However, electrons avoid each other not only because of their charge. The
Pauli principle is an additional reason. One of the consequences is the fact that
electrons with the same spin coordinate cannot reside in the same place, see p. 33.
The continuity of the wave function implies that the probability density of them
staying in the vicinity of each other is small, i.e.

around the electron there is a NO PARKING area for other electrons with
the same spin coordinate (“exchange, or Fermi hole”).

Let us see how such exchange holes arise. We will try to make the calculations
as simple as possible.

We have shown above that the Hartree–Fock function does not include any elec-
tron correlation. We must admit, however, that we have come to this conclusion on
the basis of the two-electron closed shell case. This is a special situation, since both
electron have different spin coordinates (σ = 1

2 and σ =− 1
2 ). Is it really true that

the Hartree–Fock function does not include any correlation of electronic motion?
We take the H−

2 molecule in the simplest formulation of the LCAO MO method
(two atomic orbitals only: 1sa = χa and 1sb = χb	 two molecular orbitals: bonding
ϕ1 = 1√

2(1+S) (χa + χb) and antibonding ϕ2 = 1√
2(1−S) (χa − χb), cf. p. 371; the

overlap integral S ≡ (χa|χb)). We have three electrons. As a wave function we will
take the single (normalized) Hartree–Fock determinant (UHF) with the following
orthonormal spinorbitals occupied: φ1 = ϕ1α, φ2 = ϕ1β, φ3 = ϕ2α:

ψUHF(1	2	3)= 1√
3!

∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) φ1(3)
φ2(1) φ2(2) φ2(3)
φ3(1) φ3(2) φ3(3)

∣
∣
∣
∣
∣
∣

�

Example 1
We are interested in electron 3 with electron 1 residing at nucleus a with space
coordinates (0	0	0) and with spin coordinate σ1 = 1

2 and with electron 2 located at

33W. Cencek, Ph.D. Thesis, Adam Mickiewicz University, Poznań, 1993, also J. Rychlewski, W. Cencek,
J. Komasa, Chem. Phys. Letters 229 (1994) 657; W. Cencek, J. Rychlewski, Chem. Phys. Letters 320 (2000)
549. All these results were world records.
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nucleus b with coordinates (R	0	0) and σ2 =− 1
2 , whereas the electron 3 itself has

spin coordinate σ3 = 1
2 � The square of the absolute value of the function calculated

for these values depends on x3	 y3	 z3 and represents the conditional probability
density distribution for finding electron 3 (provided electrons 1 and 2 have the
fixed coordinates given above and denoted by 10	20). So let us calculate individual
elements of the determinant ψUHF(10	20	3), taking into account the properties of
spin functions α and β (cf. p. 28):

ψUHF(10	20	3)= 1√
3!

∣
∣
∣
∣
∣
∣
∣

ϕ1(0	0	0) 0 ϕ1(x3	 y3	 z3)

0 ϕ1(R	0	0) 0
ϕ2(0	0	0) 0 ϕ2(x3	 y3	 z3)

∣
∣
∣
∣
∣
∣
∣

�

Using the Laplace expansion (Appendix A on p. 889) we get

ψUHF(10	20	3) = 1√
3!
[

ϕ1(0	0	0)ϕ1(R	0	0)ϕ2(x3	 y3	 z3)

−ϕ1(x3	 y3	 z3)ϕ1(R	0	0)ϕ2(0	0	0)
]

�

The plot of this function (the overlap integral S is included in normalization
factors of the molecular orbitals) is given in Fig. 10.3.

Qualitatively, however, everything is clear even without the calculations. Due
to the forms of the molecular orbitals (S is small) ϕ1(0	0	0) = ϕ1(R	0	0) ≈
ϕ2(0	0	0)= const we get:

ψUHF(10	20	3)≈−const2 1√
3
χb(3)

Fig. 10.3. Demonstration of the exchange (“Fermi”) hole in the H−2 molecular ion (truncation of
the hills is artificial, without this it would be more difficult to see the details of the figure). (a)
|ψUHF(10	20	3)|2 is the probability density of finding the spatial coordinates of electron 3 (having
σ3 = 1

2 ) provided that electron 1 resides on the nucleus a at (0	0	0) having σ1 = 1
2 and electron 2

sits on nucleus b at (R= 2	0	0) and has σ2 =− 1
2 ; (b) the same as above, but this time electron 1 has

moved to nucleus b (i.e. it shares b with electron 2).
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so the conditional probability density of finding electron 3 is

ρ(3)≈ 1
3

const4[χb(3)
]2
� (10.15)

We can see that for some reason electron 3 has moved in the vicinity of nucleus
b. What scared it so much, when we placed one of the two electrons at each nu-
cleus? Electron 3 ran to be as far away as possible from electron 1 residing on a. It
hates electron 1 so much that it has just ignored the Coulomb repulsion with elec-
tron 2 sitting on b and jumped on it! What the hell has happened? Well, we have
some suspicions. Electron 3 could have been scared only by the spin coordinate of
electron 1, the same as its own.

This is just an indication of the exchange hole around each electron.

Example 2
Maybe electron 3 does not run away from anything, but simply always resides at
nucleus b? Let us make sure of that. Let us move electron 1 to nucleus b (there is
already electron 2 sitting over there, but it does not matter). What then will elec-
tron 3 do? Let us see. We have electrons 1 and 2 at nucleus bwith space coordinates
(R	0	0) and spin coordinates σ1 = 1

2 	 σ2 = − 1
2 	 whereas electron 3 has spin co-

ordinate σ3 = 1
2 � To calculate the conditional probability we have to calculate the

value of the wave function.
This time

ψUHF(10	20	3) = 1√
3!

∣
∣
∣
∣
∣
∣
∣

ϕ1(R	0	0) 0 ϕ1(x3	 y3	 z3)

0 ϕ1(R	0	0) 0
ϕ2(R	0	0) 0 ϕ2(x3	 y3	 z3)

∣
∣
∣
∣
∣
∣
∣

≈ const2 1√
3
χa(3)

or
ρ(3)≈ 1

3
const4[χa(3)

]2
� (10.16)

We see that electron 3 with spin coordinate σ3 = 1
2 runs in panic to nucleus a,

because it is as scared of electron 1 with spin σ1 = 1
2 as the devil is of holy water.

Example 3
And what would happen if we made the decision for electron 3 more difficult? Let
us put electron 1 (σ1 = 1

2 ) in the centre of the molecule and electron 2 (σ2 =− 1
2 )

as before, at nucleus b. According to what we think about the whole machinery,
electron 3 (with σ3 = 1

2 ) should run away from electron 1, because both electrons
have the same spin coordinates, and this is what they hate most. But where should
it run? Will electron 3 select nucleus a or nucleus b? The nuclei do not look equiv-
alent. There is an electron sitting at b, while the a centre is empty. Maybe electron
3 will jump to a then? Well, the function analyzed is Hartree–Fock – electron 3
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ignores the Coulomb hole (it does not see electron 2 sitting on b) and therefore
will not prefer the empty nucleus a to sit at. It looks like electron 3 will treat both
nuclei on the same basis. In the case of two atomic orbitals, electron 3 has only the
choice: either bonding orbital ϕ1 or antibonding orbital ϕ2 (in both situations the
electron densities on a and on b are equal, no nucleus is distinguished). Out of the
two molecular orbitals, ϕ2 looks much more attractive to electron 3, because it has
a node34 exactly, where electron 1 with its nasty spin is. This means that there is a
chance for electron 3 to take care of the Fermi hole of electron 1: we predict that
electron 3 will “select” only ϕ2. Let us check this step by step:

ψUHF(10	20	3) = 1√
3!

∣
∣
∣
∣
∣
∣
∣

ϕ1
(
R
2 	0	0

)

0 ϕ1(x3	 y3	 z3)

0 ϕ1(R	0	0) 0

ϕ2
(
R
2 	0	0

)

0 ϕ2(x3	 y3	 z3)

∣
∣
∣
∣
∣
∣
∣

= 1√
3!

∣
∣
∣
∣
∣
∣
∣

ϕ1
(
R
2 	0	0

)

0 ϕ1(x3	 y3	 z3)

0 ϕ1(R	0	0) 0
0 0 ϕ2(x3	 y3	 z3)

∣
∣
∣
∣
∣
∣
∣

= 1√
3!ϕ1

(
R

2
	0	0

)

ϕ1(R	0	0)ϕ2(x3	 y3	 z3)

= const1ϕ2(x3	 y3	 z3)�

And it does exactly so.

Example 4
Why is the hole called the exchange hole? Perhaps it would be enough to take the
product function35 and then we would also see that electron 3 runs away in panic
from the other electron with the same spin? Let us see how it is in the first case
(Example 1):

ψHartree(1	2	3) = φ1(1)φ2(2)φ3(3)= ϕ1(1)α(1)ϕ1(1)β(1)ϕ2(3)α(3)	

ψHartree(10	20	3) = ϕ1(0	0	0)ϕ1(R	0	0)ϕ2(x3	 y3	 z3)= const2ϕ2(x3	 y3	 z3)�

We get the distribution

ρHartree = const4∣∣ϕ2(x3	 y3	 z3)
∣
∣
2
�

And what do we get in the second case (Example 2)?

ψHartree(1	2	3) = φ1(1)φ2(2)φ3(3)= ϕ1(1)α(1)ϕ1(1)β(1)ϕ2(3)α(3)	
ψHartree(10	20	3) = ϕ1(R	0	0)ϕ1(R	0	0)ϕ2(x3	 y3	 z3)= const2ϕ2(x3	 y3	 z3)�

34That is, low probability of finding electron 3 over there.
35“Illegal” (Hartree approximation), since it does not obey the Pauli principle.
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Hence, electron 3 occupies the antibonding orbital ϕ2 and does not even think
of running away from anything. Its distribution is entirely insensitive to the position
of electron 1.

Thus, this hole results from the Pauli principle, i.e. from the exchange of electron
numbering, hence the name “exchange hole”.

Summing up, the wave function of the electronic system:
– should account for the existence of the Coulomb hole around each elec-

tron, i.e. for the reduced probability for finding any other electron there;
– should also account for the exchange hole, i.e., in the vicinity of an elec-

tron with a definite spin coordinate there should be reduced probability
for finding any other electron with the same spin coordinate;

– as we saw, the Hartree–Fock function does not account at all for the
Coulomb hole, however, it takes into account the existence of the ex-
change hole.

Which hole is more important: Coulomb or exchange? This question will be an-
swered in Chapter 11.

VARIATIONAL METHODS WITH SLATER
DETERMINANTS

10.9 VALENCE BOND (VB) METHOD

10.9.1 RESONANCE THEORY – HYDROGEN MOLECULE

Slater determinants are usually constructed from molecular spinorbitals. If, in-
stead, we use atomic spinorbitals and the Ritz variational method (Slater deter-
minants as the expansion functions) we would get the most general formulation of
the valence bond (VB) method. The beginning of VB theory goes back to papers
by Heisenberg. The first application was made by Heitler and London, and later
theory was generalized by Hurley, Lennard-Jones and Pople.36

The essence of the VB method can be explained by an example. Let us take
the hydrogen molecule with atomic spinorbitals of type 1sa α and 1sb β denoted
shortly as aα and bβ centred at two nuclei. Let us construct from them several
(non-normalized) Slater determinants, for instance:

ψ1 =
∣
∣
∣
∣

a(1)α(1) a(2)α(2)
b(1)β(1) b(2)β(2)

∣
∣
∣
∣
= [a(1)α(1)b(2)β(2)− a(2)α(2)b(1)β(1)]	

ψ2 =
∣
∣
∣
∣

a(1)β(1) a(2)β(2)
b(1)α(1) b(2)α(2)

∣
∣
∣
∣
= [a(1)β(1)b(2)α(2)− a(2)β(2)b(1)α(1)]	

36W. Heisenberg, Zeit. Phys. 38 (1926) 411, ibid. 39 (1926) 499, ibid. 41 (1927) 239; W. Heitler, F. Lon-
don, Zeit. Phys. 44 (1927) 455; A.C. Hurley, J.E. Lennard-Jones, J.A. Pople, Proc. Roy. Soc. London
A220 (1953) 446.
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ψ3 =
∣
∣
∣
∣

a(1)α(1) a(2)α(2)
a(1)β(1) a(2)β(2)

∣
∣
∣
∣
= [a(1)α(1)a(2)β(2)− a(2)α(2)a(1)β(1)]

= [a(1)a(2)][α(1)β(2)− α(2)β(1)]≡ψH−H+	

ψ4 =
∣
∣
∣
∣

b(1)α(1) b(2)α(2)
b(1)β(1) b(2)β(2)

∣
∣
∣
∣
= [b(1)b(2)][α(1)β(2)− α(2)β(1)]≡ψH+H− �

The functions ψ3, ψ4 and the normalized difference ψ1−ψ2 (NHL is a normal- Heitler–London
functionization factor)

ψHL =NHL(ψ1 −ψ2)

=NHL
[

a(1)b(2)+ a(2)b(1)][α(1)β(2)− α(2)β(1)] (10.17)

are eigenfunctions of the operators Ŝ2 and Ŝz (cf. Appendix Q, p. 1006) cor-
responding to the singlet state. The functions ψ3, ψ4 for obvious reasons are
called ionic structures (H−H+ and H+H−),37 whereas the function ψHL is called ionic structure

a Heitler–London function or a covalent structure.38

The VB method relies on optimization of the expansion coefficients c in front of
these structures in the Ritz procedure (p. 202) covalent

structure

ψ= ccovψHL + cion1ψH−H+ + cion2ψH+H− � (10.18)

The covalent structure itself, ψHL, was one great success of Walter Heitler39and
Fritz London. For the first time the correct description of the chemical bond was

Fritz Wolfgang London (1900–1954) was born
in Breslau (now Wrocław) and studied in Bonn,
Frankfurt, Göttingen, Munich (Ph.D. at 21) and
in Paris. Later worked in Zurich, Rome and
Berlin. Escaped from nazism to UK, where he
worked at Oxford University (1933–1936). In
1939 London emigrated to the USA, where he
became professor of theoretical chemistry at
Duke University in Durham.

Fritz London rendered great services to
quantum chemistry. He laid the foundations of
the theory of the chemical (covalent) bond and
also, in addition, introduced dispersion interac-
tions, one of the most important intermolecular

interactions. This is nearly all of what chemistry
is about. He also worked in the field of super-
conductivity.

37Since both electrons reside at the same nucleus.
38Since both electrons belong to the same extent to each of the nuclei.
39Walter Heitler (1904–1981), German chemist, professor at the University in Göttingen, later in Bris-

tol and Zürich.
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obtained. The crucial point turned out to be an inclusion – in addition to the prod-
uct function a(1)b(2) – its counterpart with exchanged electron numbers a(2)b(1),
since the electrons are indistinguishable. If we expand the Hartree–Fock determi-
nant with doubly occupied bonding orbital a+ b	 we would also obtain a certain
linear combination of the three structures mentioned, but with the constant coeffi-
cients independent of the interatomic distance:Hartree–Fock

function in AO

ψRHF =N
(

1
NHL

ψHL +ψH−H+ +ψH+H−
)

� (10.19)

This leads to a very bad description of the H2 molecule at long internuclear
distances with the Hartree–Fock method. The true wave function should contain,
among other things, both the covalent structure (i.e. the Heitler–London function)
and the ionic structures. However, for long internuclear distances the Heitler–
London function should dominate, because it corresponds to the (exact) dissocia-
tion limit (two ground-state hydrogen atoms). The trouble is that, with fixed coeffi-
cients, the Hartree–Fock function overestimates the role of the ionic structure for long
interatomic distances. Fig. 10.4 shows that the Heitler–London function describes
the electron correlation (Coulomb hole), whereas the Hartree–Fock function does
not.

Fig. 10.4. Illustration of electron correlation in the hydrogen molecule. The nuclear positions are
(0	0	0) and (4	0	0) in a.u. Slater orbitals of 1s type have orbital exponent equal to 1. (a) Visual-
ization of the xy cross-section of the wave function of electron 2, assuming that electron 1 resides on
the nucleus (either the first or the second one), has spin coordinate σ1 = 1

2 , whereas electron 2 has spin

coordinate σ2 =− 1
2 and the total wave function is equal ψ=N{ab+ ba+ aa+ bb}{αβ−βα}, i.e. it is

a Hartree–Fock function. The plot is the same independently of which nucleus electron 1 resides, i.e.,
we observe the lack of any correlation of the motions of electrons 1 and 2. If we assume the spins to
be parallel (σ2 = 1

2 ), the wave function vanishes. (b) A similar plot, but for the Heitler–London func-
tion ψHL =NHL[a(1)b(2)+ a(2)b(1)][α(1)β(2)− α(2)β(1)] and with electron 1 residing at nucleus
(0	0	0)� Electron 2 runs to the nucleus in position (4	0	0)� We have the correlation of the electronic
motion. If we assume parallel spins (σ2 = 1

2 ), the wave function vanishes.
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10.9.2 RESONANCE THEORY – POLYATOMIC CASE

The VB method was developed by Linus Pauling under the name of theory of reso- resonance
theorynance.

Linus Carl Pauling (1901–1994), American
physicist and chemist, in the years 1931–1964
professor at the California Institute of Technol-
ogy in Pasadena, in 1967–1969 professor at
the University of California, San Diego, from
1969–1974 professor at the Stanford Univer-
sity. He received the 1954 Nobel prize: “for
his research into the nature of the chemical
bond and its application to the elucidation of
the structure of complex substances”. In 1962
he received the Nobel peace prize. His major
achievements are the development of the the-
ory of chemical bond, i.a., the VB method (also
called resonance theory), and determining the

structure of one of the fundamental structural
elements of proteins, the α-helix.

The method can be applied to all molecules, although a particularly useful field
of applications of resonance theory can be found in the organic chemistry of aro-
matic systems. For example, the total electronic wave function of the benzene
molecule is presented as a linear combination of resonance structures40

ψ=
∑

I

cI�I	 (10.20)

to each (in addition to the mathematical form), a graph is assigned. For example,
six π electrons can participate in the following “adventures” (forming covalent and
ionic bonds)

The first two structures are famous Kekulé structures, the next three are Dewar
structures, the sixth is an example of the possible mixed covalent-ionic structures.
From these graphs, we may deduce which atomic orbitals (out of the 2pz orbital
of carbon atoms, z is perpendicular to the plane of the benzene ring) takes part in
the covalent bond (of the π type). As far as the mathematical form of the�1 struc-
ture is concerned, we can write it as the antisymmetrized (cf. antisymmetrization
operator, p. 986) product of three Heitler–London functions (involving the proper
pairs of 2pz carbon atomic orbitals), the first for electrons 1	2, the second for elec-
trons 3	4, and the third for 5	6. Within the functions �I , the ionic structures can

40Similar to the original applications, we restrict ourselves to the π electrons, the σ electrons are
treated as inactive in each structure, forming, among other things, the six C–C bonds presented below.
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also occur. The rules for writing the structures were not quite clear, and the elec-
trons were located to some extent in an arbitrary manner, making the impression
that it is up to theoretical chemists to use their imaginations and draw imaginary
pictures and – next – to translate them into mathematical form to obtain – after
applying the variational method – an approximation to the wave function (and to
the energy).

In fact, the problem is connected to the Ritz method and to expansion into the
complete set of functions,41 i.e. a purely mathematical problem. Although it may
seem very strange to students (fortunately), many people were threatened for sup-
porting the theory of resonance. Scientists serving the totalitarian regime decided
to attack eq. (10.20). How, was this possible?42 The Stalinists did not like the idea
that “the sum of fictitious structures can describe reality”. Wait a second! If some
artificial functions could interfere with reality then socialist realism may lose to
abstraction, a kolkhoz (collective farm) member to an intellectual, Lysenkoism to
Mendelism,43 goulags to the idea of freedom, and you are on the brink of disaster.

41In principle, they should form the complete set, but even so, in practical calculations, we never deal
with true complete sets.
42Of course, the true reason was not a convergence of a series in the Hilbert space, but their personal

careers at any price. Totalitarian systems never have problems finding such “scientists”. In chemistry,
there was the danger of losing a job, in biology, of losing a life.

It is rather difficult to think about Joseph Stalin as a quantum chemist. He was, however, kept
informed about the current situation of a group of people involved in carrying out the summations in
eq. (10.20), i.e. working in the resonance theory. To encourage young people to value and protect the
freedom they have, and to reflect on human nature, some excerpts from the resolution adopted by the
All-Soviet Congress of Chemists of the Soviet Union are reported. The resolution pertains, i.a., to the
theory of resonance (after the disturbing and reflective book by S.E. Schnoll, “Gieroi i zlodiei rossijskoj
nauki”, Kron-Press, Moscow, 1997, p. 297):

“Dear Joseph Vissarionovich (Stalin),
the participants of the All-Soviet Congress send to you, the Great Leader and Teacher of all progressive
mankind, our warm and cordial greetings. We Soviet chemists gathered together to decide, by means of
broad and free discussion, the fundamental problems of the contemporary theory of the structure of mole-
cules, want to express our deepest gratitude to you for the everyday attention you pay to Soviet science,
particularly to chemistry. Our Soviet chemistry is developing in the Stalin era, which offers unlimited pos-
sibilities for the progress of science and industry. Your brilliant work in the field of linguistics put the tasks
for still swifter progress in front of all scientists of our fatherland (. . . ). Motivated by the resolutions of the
Central Committee of the Bolshevik Communist Party concerning ideological matters and by your instruc-
tions, Comrade Stalin, the Soviet chemists wage war against the ideological concepts of bourgeois science.
The lie of the so called “resonance theory” has been disclosed, and the remains of this idea will be thrown
away from the Soviet chemistry. We wish you, our dear Leader and Teacher, good health and many, many
years of famous life to the joy and happiness of the whole of progressive mankind(. . . ).”

The events connected with the theory of resonance started in the autumn of 1950 at Moscow Uni-
versity. Quantum chemistry lecturers, Yakov Kivovitch Syrkin and Mirra Yefimovna Diatkina, were
attacked. The accusation was about dissemination of the theory of resonance and was launched by for-
mer assistants of Syrkin. Since everything was in the hands of the professionals, Syrkin and Diatkina
pleaded guilty with respect to each of the charges.
43Trofim Lysenko (1898–1976), Soviet scientist of enormous political influence, rejected the genetic

laws of Mendel. In my 7th grade school biology textbook virtually only his “theory” was mentioned. As
a pupil, I recall wanting to learn this theory. It was impossible to find any information. With difficulties
I finally found something: acorns should be placed in a hole in the ground in large numbers to permit
something like the class struggle. The winner will be the strongest oak-tree and this is what we all want.
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Gregor Johann Mendel (1822–1884), modest
Moravian monk, from 1843 a member of the
Augustinian order in Brno (abbot from 1868).
His unusually precise and patient experiments
with sweet peas of two colours and seeds of
two degrees of smoothness, allowed him to
formulate the principal laws of genetics. Only
in 1900 were his fundamental results remem-
bered, and since then the rapid progress of
contemporary genetics began.

10.10 CONFIGURATION INTERACTION (CI) METHOD

In this method44

the variational wave function is a linear combination of Slater determi-
nants constructed from molecular spinorbitals, an expansion analogous to
eq. (10.20).

In most cases we are interested in the function ψ for the electronic ground state of
the system (in addition when solving the CI equations we also get approximations
to the excited states with different values of the cI coefficients).

Generally we construct the Slater determinants �I by placing electrons on the CI method

molecular spinorbitals obtained with the Hartree–Fock method,45 in most cases
the set of determinants is additionally limited by imposing an upper bound for the
orbital energy. In that case, the expansion in (10.20) is finite. The Slater deter-
minants �I are obtained by the replacement of occupied spinorbitals with virtual
ones in the single Slater determinant, which is – in most cases – the Hartree–Fock

44Also called the method of superposition of configurations.
45In this method we obtainM molecular orbitals, i.e. 2M molecular spinorbitals, whereM is the num-

ber of atomic orbitals employed. The Hartree–Fock determinant �0 is the best form of wave function
as long as the electronic correlation is not important. The criterion of this “goodness” is the mean
value of the Hamiltonian. If we want to include the electron correlation, we may think of another form
of the one-determinantal function, more suitable the starting point. Of course, we do not change our
definition of correlation energy, i.e. we consider the RHF energy as that which does not contain any
correlation effects. For instance, we may ask which of the normalized single-determinant functions �
is closest to the normalized exact function ψ. As a measure of this we might use:

∣
∣〈ψ|�〉∣∣=maximum� (10.21)

The single determinantal function �=�B , which fulfils the above condition, is called a Bruckner func-
tion (O. Sinanoğlu, K.A. Brueckner, “Three Approaches to Electron Correlation in Atoms”, Yale Univ.
Press, New Haven and London, 1970).
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function (�0, i.e. ψRHF). When one spinorbital is replaced, the resulting determi-
nant is called singly excited, when two – doubly excited, etc.46	47

The virtual spinorbitals form an orthonormal basis in the virtual space (Appen-
dix B, p. 895). If we carry out any non-singular linear transformation (cf. p. 396) of
virtual spinorbitals, each “new” n-tuply excited Slater determinant becomes a lin-
ear combination of all “old” n-tuply excited determinants and only n-tuply excited
ones.48 In particular, the unitary transformation preserves the mutual orthogonal-
ity of the n-tuply excited determinantal functions.

Thus, the total wave function (10.20) is a linear combination of the known Slater
determinants (we assume that the spinorbitals are always known) with unknown c
coefficients.

The name of the CI methods refers to the linear combination of the configura-
tions rather than to the Slater determinants.

CSF
(configuration)

A configuration (CSF, i.e. Configuration State Function) is a linear combi-
nation of determinants which is an eigenfunction of the operators: Ŝ2 and
Ŝz , and belongs to the proper irreducible representation of the symmetry
group of the Hamiltonian. We say that this is a linear combination of the
(spatial and spin) symmetry adapted determinants. Sometimes we refer to
the spin-adapted configurations which are eigenfunctions only of the Ŝ2 and
Ŝz operators.

The particular terms in the CI expansion may refer to the respective CSFs or
to the Slater determinants. Both versions lead to the same results, but using CSFs

46In the language of the second quantization (see Appendix U, p. 1023) the wave function in the CI
method has the form (the �0 function is a Slater determinant which does not necessarily need to be a
Hartree–Fock determinant)

ψ= c0�0 +
∑

a	p

capp̂
†â�0 +

∑

a<b	 p<q

cabpqq̂
†p̂†âb̂�0 + higher excitations	 (10.22)

where c are the expansion coefficients, the creation operators q̂†	 p̂†	 � � � refer to the virtual spinorbitals
φp	φq	 � � � and the annihilation operators â	 b̂	 � � � refer to occupied spinorbitals φa	φb	 � � � (the oper-
ators are denoted with the same indices as spinorbitals but the former are equipped with hat symbols),
and the inequalities satisfied by the summation indices ensure that the given Slater determinant occurs
only once in the expansion.
47The Hilbert space corresponding to N electrons is the sum of the orthogonal subspaces �n	n =

0	1	2	 � � � 	N	 which are spanned by the n-tuply excited (orthonormal) Slater determinants. Elements
of the space �n are all linear combinations of n-tuply excited Slater determinants. It does not mean, of
course, that each element of this space is an n-tuply excited Slater determinant. For example, the sum
of two doubly excited Slater determinants is a doubly excited Slater determinant only when one of the
excitations is common to both determinants.
48Indeed, the Laplace expansion (Appendix A) along the row corresponding to the first new virtual

spinorbital leads to the linear combination of the determinants containing new (virtual, which means
that the rank of excitation is not changed by this) orbitals in this row. Continuing this procedure with the
Slater determinants obtained, we finally get a linear combination of n-tuply excited Slater determinants
expressed in old spinorbitals.
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may be more efficient if we are looking for a wave function which transforms itself
according to a single irreducible representation.

Next this problem is reduced to the Ritz method (see Appendices L, p. 984, and
K, p. 982), and subsequently to the secular equations (H − εS)c = 0. It is worth
noting here that, e.g., the CI wave function for the ground state of the helium atom
would be linear combinations of the determinants where the largest c coefficient
occurs in front of the �0 determinant constructed from the spinorbitals 1sα and
1sβ, but a nonzero contribution would also come from the other determinants,
e.g., constructed from the 2sα and 2sβ spinorbitals (one of the doubly excited de-
terminants). The CI wave functions for all states (ground and excited) are linear
combinations of the same Slater determinants – they differ only in the c coefficients.

The state energies obtained from the solution of the secular equations always
approach the exact values from above.

10.10.1 BRILLOUIN THEOREM
In the CI method we have to calculate matrix elements HIJ of the Hamiltonian.
The Brillouin theorem says that:

〈�0|Ĥ�1〉 = 0 (10.23)

if �0 is a solution of the Hartree–Fock problem (�0 ≡ ψRHF), and �1 is a singly
excited Slater determinant in which the spinorbital φi′ is orthogonal to all spinor-
bitals used in �0.

Proof: From the II Slater–Condon rule (Appendix M, p. 986) we have:

〈�0|Ĥ�1〉 = 〈i|ĥi′〉 +
∑

j

[〈ij|i′j〉 − 〈ij|ji′〉]� (10.24)

On the other hand, considering the integral 〈i|F̂ i′〉, where F̂ is a Fock operator,
we obtain from (8.27) (using the definition of the Coulomb and exchange operators
from p. 337):

〈i|F̂ i′〉 = 〈i|ĥi′〉 +
∑

j

[〈i|Ĵji′〉 − 〈i|K̂ji′〉
]= 〈i|ĥi′〉 +

∑

j

[〈ij|i′j〉 − 〈ij|ji′〉]

= 〈�0|Ĥ�1〉�
From the Hermitian character of F̂ it follows that

〈i|F̂ i′〉 = 〈F̂i|i′〉 = εiδii′ = 0� (10.25)

We have proved the theorem.
The Brillouin theorem is sometimes useful in discussion of the importance of

particular terms in the CI expansion for the ground state.

10.10.2 CONVERGENCE OF THE CI EXPANSION
Increasing the number of expansion functions by adding a new function lowers or
keeps unchanged the energy (due to the variational principle). It often happens



528 10. Correlation of the Electronic Motions

that the inclusion of only two determinants gives qualitative improvement with
respect to the Hartree–Fock method, however when going further, the situation
becomes more difficult. The convergence of the CI expansion is very slow, i.e. to
achieve a good approximation to the wave function, the number of determinants in
the expansion must usually be large. Theoretically, the shape of the wave function
ensures solution of the Schrödinger equation Hψ = Eψ, but in practice we are
always limited by the basis of the atomic orbitals employed. To obtain satisfactory
results, we need to increase the number M of atomic orbitals in the basis. The
number of molecular orbitals produced by the Hartree–Fock method is also equal
to M , while the number of spinorbitals is equal to 2M . In this case, the number of
all determinants is equal to

(2M
N

)

, where N refers to the number of electrons.

10.10.3 EXAMPLE OF H2O
We are interested in the ground state of the water molecule. This is a singlet state
(S = 0, MS = 0).

The minimal basis set, composed of 7 atomic orbitals (two 1s orbitals of the
hydrogen atoms, 1s	2s and three 2p orbitals of the oxygen atom), is considered
too poor, therefore we prefer what is called double dzeta basis, which providesdouble dzeta

two functions with different exponents for each orbital of the minimal basis. This
creates a basis of M = 14 atomic orbitals. There are 10 electrons, hence

(28
10

)

gives
13 123 110 determinants. For a matrix of that size to be diagonalized is certainly
impressive. Even more impressive is that we achieve only an approximation to the
correlation energy which amounts to about 50% of the exact correlation energy,49

since M is only equal to 14, but in principle it should be equal to∞. Nevertheless,
for comparative purposes we assume the correlation energy obtained is 100%.

The simplest remedy is to get rid of some determinants in such a way that the
correlation energy is not damaged. Which ones? Well, many of them correspond to
the incorrect projection Sz of the total spin. For instance, we are interested in the
singlet state (i.e. S = 0 and Sz = 0), but some determinants are built of spinorbitals
containing exclusively α spin functions. This is a pure waste of resources, since
the non-singlet functions do not make any contributions to the singlet state. When
we remove these and other incorrect determinants, we obtain a smaller matrix to
be diagonalized. The number of Slater determinants with Sz = 0 is equal

( M
N/2

)2
.

In our case, this makes slightly over 4 million determinants (instead of about 13
million). What would happen if we diagonalized the huge original matrix anyway?
Well, nothing would happen. There would be more work, but the computer would
create the block form50 (see Appendix C) from our enormous matrix, and eachblock form

block would correspond to the particular S2 and Sz , while the whole contribution to
the correlation energy of the ground state comes from the block corresponding to S = 0
and Sz = 0.

Let us continue throwing away determinants. This time, however, we have to
make a compromise, i.e. some of the Slater determinants are arbitrarily consid-
49We see here how vicious the dragon of electron correlation is.
50These square blocks would be easily noticed after proper ordering of the expansion functions.
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ered not to be important (which will worsen the results, if they are rejected).
Which of the determinants should be considered as not important? The general
opinion in quantum chemistry is that the multiple excitations are less and less im-
portant (when the multiplicity increases). If we take only the singly, doubly, triply
and quadruply excited determinants, the number of determinants will reduce to
about 25000 and we will obtain 99% of the approximate correlation energy de-
fined above. If we take the singly and doubly excited determinants only, there are
only 360 of them, and 94% of the correlation effect is obtained. This is why this CI SD

CISD (CI Singles and Doubles) method is used so often.
For larger molecules this selection of determinants becomes too demanding,

therefore we have to decide individually for each configuration: to include or re-
ject it? The decision is made either on the basis of the perturbational estimate of
the importance of the determinant51 or by a test calculation with inclusion of the
determinant in question, Fig. 10.5.

To obtain very good results, we need to include a large number of determi-
nants, e.g., of the order of thousands, millions or even billions.52 This means that
contemporary quantum chemistry has made enormous technical progress.53 This,
however, is a sign, not of the strength of quantum chemistry, but of its weakness.
What are we going to do with such a function? We may load it back into the com-
puter and calculate all the properties of the system with high accuracy (although
this cannot be guaranteed). To answer a student’s question about why we obtained
some particular numbers, we have to say that we do not know, it is the computer
which knows. This is a trap. It would be better to get, say, two Slater determinants,
which describe the system to a reasonable approximation and we can understand
what is going on in the molecule.

10.10.4 WHICH EXCITATIONS ARE MOST IMPORTANT?

The convergence can be particularly bad if we use the virtual spinorbitals obtained
by the Hartree–Fock method. Not all excitations are equally important. It turns
out that usually, although this is not a rule, low excitations dominate the ground
state wave function.54 The single excitations themselves do not contribute anything
to the ground state energy (if the spinorbitals are generated with the Hartree–Fock

51The perturbational estimate mentioned relies on the calculation of the weight of the determinant
based on the first order correction to the wave function in perturbation theory, see Chapter 5. In such
an estimate the denominator contains the excitation energy evaluated as the difference in orbital en-
ergies between the Hartree–Fock determinant and the one in question. In the numerator there is a
respective matrix element of the Hamiltonian calculated with the help of the known Slater–Condon
rules (Appendix M, p. 986).
52Recently calculations with 3.6 billion Slater determinants were reported.
53To meet such needs, quantum chemists have had to develop entirely new techniques of applied

mathematics.
54That is, requiring the lowest excitation energies. Later, a psychological mechanism began to work

supported by economics: the high energy excitations are numerous and, because of that, very expensive
and they correspond to high excitations rank (the number of electrons excited). Due to this, a reasonable
restriction for the number of configurations in the CI expansion is excitation rank. We will come back
to this problem later.
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Fig. 10.5. Symbolic illustration of the principle of the CI method with one Slater determinant ψ0 domi-
nant in the ground state (this is a problem of the many electron wave function so the picture cannot be
understood literally). The purpose of this diagram is to emphasize a relatively small role of electronic
correlation (more exactly, of what is known as the dynamical correlation, i.e. correlation of electronic
motion). The function ψCI is a linear combination (the c coefficients) of the determinantal functions
of different shapes in the many electron Hilbert space. The shaded regions correspond to the negative
sign of the function; the nodal surfaces of the added functions allow for the effective deformation of
ψ0 to have lower and lower average energy. (a) Since c1 is small in comparison to c0, the result of the
addition of the first two terms is a slightly deformed ψ0. (b) Similarly the additional excitations just
make cosmetic changes to the function (although they may substantially affect a quantity calculated
with it).

method, then the Brillouin theorem mentioned above applies). They are crucial,
however, for excited states or in dipole moment calculations. Only when coupled to
other types of excitation do they assume non-zero (although small) values. Indeed,
if in the CI expansion we only use the Hartree–Fock determinant and the determi-
nants corresponding to single excitations, then, due to the Brillouin theorem, the
secular determinant would be factorized.55 This factorization (Fig. 10.6) pertains
to the single-element determinant corresponding to the Hartree–Fock function

55That is, could be written out in the block form, which would separate the problem into two subprob-
lems of smaller size.
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Fig. 10.6. The block structure of the Hamiltonian matrix (H) is the result of the Slater–Condon rules
(Appendix M, p. 986). S – single excitations, D – double excitations, T – triple excitations, Q – quadruple
excitations. (a) Block of zero values due to the Brillouin theorem. (b) The block of zero values due to
the IV Slater–Condon rule, (II) the non-zero block obtained according to II and III Slater–Condon
rules, (III) the non-zero block obtained according to III Slater–Condon rule. All the non-zero blocks
are sparse matrices dominated by zero values, which is important in the diagonalization process.

and to the determinants corresponding exclusively to single excitations. Since we
are interested in the ground state, only the first determinant (Hartree–Fock) is of
importance to us, and it does not change whether we include or not, a contribution
coming from single excitations into the wave function.

Performing CI calculations with the inclusion of all excitations (for the assumed
value of M), i.e. the full CI, is not possible in practical calculations due to the too full CI

long expansion. We are forced to truncate the CI basis somewhere. It would be
good to terminate it in such a way that all essential (the problem is what we mean
by essential) terms are retained. The most significant terms for the correlation energy
come from the double excitations since these are the first excitations coupled to the
Hartree–Fock function, Fig. 10.6. Smaller, although important, contributions come
from other excitations (usually of low excitation rank). We certainly wish that it
would be like this for large molecules. Nobody knows what the truth is.

10.10.5 NATURAL ORBITALS (NO)

The fastest convergence is achieved in the basis set of natural orbitals (NO), i.e.
when we construct spinorbitals with these orbitals and from them the Slater deter-
minants. The NO is defined a posteriori in the following way. After carrying out the
CI calculations, we construct the density matrix ρ (see Appendix S, p. 1015)

ρ(1	1′) =
∫

ψ∗(1′	2	3	 � � � 	N)ψ(1	2	3	 � � � 	N)dτ2 dτ3 � � � dτN

=
∑

ij

Djiφ
∗
i (1

′)φj(1)	 Dij =D∗ji	 (10.26)
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where the summation runs over all the spinorbitals. By diagonalization of matrix
D (a rotation in the Hilbert space spanned by the spinorbitals) we obtain the den-
sity matrix expressed in the natural spinorbitals (NO) transformed by the unitary
transformation

ρ(1	1′)=
∑

i

(Ddiag)iiφ
′∗
i (1)φ

′
i(1

′)� (10.27)

The most important φ′i from the viewpoint of the correlation are the NOs with
large occupancies, i.e. (Ddiag)ii values. Inclusion of only the most important φ′i inNO occupancies

the CI expansion creates a short and quite satisfactory wave function.56 Meyer in-
troduced the PNO CI, i.e. pseudonatural orbitals.57 In the first step, we performpseudonatural

orbitals (PNO) the CI calculations for excitations obtained by replacement of two selected spinor-
bitals. The process is repeated for all spinorbital pairs and at the end we carry
out a “large” CI, which includes all important determinants engaged in the partial
calculations (i.e. those with large weights).

10.10.6 SIZE CONSISTENCY

A truncated CI expansion has one unpleasant feature which affects the applicabil-
ity of the method.

Let us imagine we want to calculate the interaction energy of two beryllium
atoms. Let us suppose that we decide that to describe the beryllium atom we have
to include, not only the 1s22s2 configuration, but also the doubly excited 1s22p2.
In the case of beryllium, this is a very reasonable step, since both configurations
have similar energies. Let us assume now that we calculate the wave function for
two beryllium atoms. If we want this function to describe the system correctly, also
at large interatomic distances, we have to make sure that the departing atoms have
appropriate excitations at their disposition, i.e. in our case 1s22p2. To achieve this
we must incorporate quadruple excitations into the method.58

If we include quadruples, we have a chance to achieve (an approximate) size
consistency, i.e., the energy will be proportional to the number of atoms,
otherwise our results will not be size consistent.

Let us imagine 10 beryllium atoms. In order to have size consistency we need
to include 20-fold excitations. This would be very expensive. We clearly see that,
for many systems, the size consistency requires inclusion of multiple excitations. If
we carried out CI calculations for all possible (for a given number of spinorbitals)
excitations, such a CI method (i.e. full CI) would be size consistent.
56Approximate natural orbitals can also be obtained directly without performing the CI calculations.
57R. Ahlrichs, W. Kutzelnigg, J. Chem. Phys. 48 (1968) 1819; W. Meyer, Intern. J. Quantum Chem. S5

(1971) 341.
58See J.A. Pople, R. Seeger, R. Krishnan, Intern. J. Quantum Chem. S11 (1977) 149, also p. 47 of

the book by P. Jørgensen and J. Simons, “Second Quantization-Based Methods in Quantum Chemistry”,
Academic Press, 1981.
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10.11 DIRECT CI METHOD

We have already mentioned that the CI method converges slowly. Due to this, the
Hamiltonian matrices and overlap integral matrices are sometimes so large that
they cannot fit into the computer memory. In practice, such a situation occurs in
all good quality calculations for small systems and in all calculations for medium
and large systems. Even for quite large atomic orbital basis, the number of integrals
is much smaller than the number of Slater determinants in the CI expansion.

Björn Roos59 first noticed that to find the lowest eigenvalues and their eigen-
vectors we do not need to store a huge H matrix in computer memory. Instead,
we need to calculate the residual vector σ = (H − E1)c, where c is a trial vector residual vector

(defining the trial function in the variational method, p. 196). If σ = 0, it means
that the solution is found. Knowing σ , we may find (on the basis of first order
perturbation theory) slightly improved c, etc. The product Hc can be obtained
by going through the set of integrals and assigning to each a coefficient resulting
from H and c, and adding the results to the new c vector. Then the procedure is
repeated. Until 1971, CI calculations with 5000 configurations were considered a
significant achievement. After Roos’s paper, there was a leap of several orders of
magnitude, bringing the number of configurations to the range of billions. For the
computational method this was a revolution.

10.12 MULTIREFERENCE CI METHOD

Usually in the CI expansion, the dominant determinant is Hartree–Fock. We con-
struct the CI expansion, replacing the spinorbitals in this determinant (single refer- single reference

methodence method). We can easily imagine a situation in which taking one determinant
is not justified, since the shell is not well closed (e.g., four hydrogen atoms). We
already know that certain determinants (or, in other words: configurations) ab-
solutely need to be present (“static correlation”) in the correct wave function. To be static correlation

sure, we are the judges, deciding which is good or bad. This set of determinants is
a basis in the model space. model space

multireference
method

In the single reference CI method, the model space (Fig. 10.7) is formed by
one Slater determinant. In the multireference CI method, the set of deter-
minants constitute the model space. This time, the CI expansion is obtained
by replacement of the spinorbitals participating in the model space by other
virtual orbitals. We proceed further as in CI.

There is no end to the problems yet, since, again we have billions of possible
excitations.60 We do other tricks to survive in this situation. We may, for instance,
59B.O. Roos, Chem. Phys. Letters 15 (1972) 153.
60There is another trouble known as intruder states, i.e. states which are of unexpectedly low energy.

How can these states appear? Firstly, the CI states known as “front door intruders” appear, if some im-
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Fig. 10.7. Illustration of the model space in the multireference CI method used mainly in the situation
when no single Slater determinant dominates the CI expansion. In the figure the orbital levels of the
system are presented. Part of them are occupied in all Slater determinants considered (“frozen spinor-
bitals”). Above them is a region of closely spaced orbital levels called active space. In the optimal case,
an energy gap occurs between the latter and unoccupied levels lying higher. The model space is spanned
by all or some of the Slater determinants obtained by various occupancies of the active space levels.

get the idea not to excite the inner shell orbitals, since the numerical effort is seri-
ous, the lowering of the total energy can also be large, but the effect on the energyfrozen orbitals

differences (this is what chemists are usually interested in) is negligible. We say
that such orbitals are frozen. Some of the orbitals are kept doubly occupied in all
Slater determinants but we optimize their shape. Such orbitals are called inactive.inactive orbitals

Finally, the orbitals of varied occupancy in different Slater determinants are called

portant (low-energy) configurations were for some reason not included into the model space. Secondly,
we may have the “back door intruder” states. When the energy gaps between the model space and the
other configurations are too small (quasi-degeneracy), some CI states became low energy states (enter
the model space energy zone) even if they are not composed of the model space configurations.
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active. The frozen orbitals are, in our method, important spectators of the drama, active orbitals

the inactive orbitals contribute a little towards lowering the energy, but the most
efficient work is done by the active orbitals.

10.13 MULTICONFIGURATIONAL SELF-CONSISTENT FIELD
METHOD (MC SCF)

In the configuration interaction method, it is sometimes obvious that certain de-
terminants of the CI expansion must contribute to the wave function, if the latter
is to correctly describe the system. For example, if we want to describe the system
in which a bond is being broken (or is being formed), for its description we need
several determinants for sure (cf. description of the dissociation of the hydrogen
molecule on p. 371).

Why is this? In the case of dissociation, that we are dealing with here, there is
a quasidegeneracy of the bonding and antibonding orbital of the bond in question,
i.e. the approximate equality of their energies (the bond energy is of the order of
the overlap integral and the latter goes to zero when the bond is being broken).
The determinants, which can be constructed by various occupancies of these or-
bitals, have very similar energies and, consequently, their contributions to the total
wave function are of similar magnitude and should be included in the wave func-
tion.

In the MC SCF method, as in CI, it is up to us to decide which set of determi-
nants we consider sufficient for the description of the system.

Each of the determinants is constructed from molecular spinorbitals which
are not fixed (as in the CI method) but are modified in such a way as to have
the total energy as low as possible.

The MC SCF method is the most general scheme of the methods that use a lin-
ear combination of Slater determinants as an approximation to the wave function.
In the limiting case of the MC SCF, when the number of determinants is equal to 1,
we have, of course, the Hartree–Fock method.

10.13.1 CLASSICAL MC SCF APPROACH

We will describe first the classical MC SCF approach. This is a variational method.
As was mentioned, the wave function in this method has the form of a finite linear
combination of Slater determinants �I

ψ=
∑

I

dI�I	 (10.28)

where d are variational coefficients.
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In the classical MC SCF method we:

1. take a finite CI expansion (the Slater determinants and the orbitals for
their construction are fixed)

2. calculate the coefficients for the determinants by the Ritz method (the
orbitals do not change)

3. vary the LCAO coefficients in the orbitals at the fixed CI coefficients to
obtain the best MOs

4. return to point 1 until self-consistency is achieved

10.13.2 UNITARY MC SCF METHOD

Another version of the MC SCF problem, a unitary method suggested by Lévy and
Berthier61 and later developed by Dalgaard and Jørgensen62 is gaining increasing
importance. The eigenproblem does not appear in this method.

We need two mathematical facts to present the unitary MC SCF method. The
first is a theorem:

If Â is a Hermitian operator, i.e. Â† = Â, then Û = exp(iÂ) is a unitary opera-
tor satisfying Û†Û = 1.

Let us see how Û† looks:

Û† = (exp
(

iÂ
))† =

(

1+ iÂ+ 1
2!
(

iÂ
)2 + 1

3!
(

iÂ
)3 + · · ·

)†

=
(

1+ (−i)Â† + 1
2!
(−iÂ†)2 + 1

3!
(− iÂ†)3 + · · ·

)

=
(

1+ (−i)Â+ 1
2!
(−iÂ )2 + 1

3!
(−iÂ )3 + · · ·

)

= exp
(−iÂ )�

Hence, ÛÛ† = 1, i.e. Û is a unitary operator.63

61B. Lévy, G. Berthier, Intern. J. Quantum Chem. 2 (1968) 307.
62E. Dalgaard, P. Jørgensen, J. Chem. Phys. 69 (1978) 3833.
63Is an operator (Ĉ) of multiplication by a constant c Hermitian?

〈ϕ|Ĉψ〉 ?= 〈Ĉϕ|ψ〉	
l�h�s�= 〈ϕ|cψ〉 = c〈ϕ|ψ〉	
r�h�s�= 〈cϕ|ψ〉 = c∗〈ϕ|ψ〉�

Both sides are equal, if c = c∗. An operator conjugate to c is c∗ .
Further: B̂= iÂ, what is a form of B̂†?

〈B̂†ϕ|ψ〉 = 〈ϕB̂|ψ〉	
〈ϕ|iÂ|ψ〉 = 〈−iÂ†ϕ|ψ〉	

B̂† = −iÂ†�
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Now the second mathematical fact. This is a commutator expansion:

e−ÂĤeÂ = Ĥ + [Ĥ	 Â ]+ 1
2!
[[

Ĥ	 Â
]

	 Â
]+ 1

3!
[ [ [

Ĥ	 Â
]

	 Â
]

	 Â
]+ · · · (10.29)

This theorem can be proved by induction, expanding the exponential functions.
Now we are all set to describe the unitary method. We introduce two new oper-

ators:
λ̂=

∑

ij

λij î
†ĵ	 (10.30)

where î† and ĵ are the creation and annihilation operators, respectively, associated
to spinorbitals i	 j, see Appendix U. Further,

Ŝ =
∑

IJ

SIJ |�I〉〈�J |� (10.31)

We assume that λij and SIJ are elements of the Hermitian matrices λ and S (their
determination is the goal of the method), �I are determinants from the MC SCF
expansion (10.28).

It can be seen that the λ̂ operator replaces a single spinorbital in a Slater
determinant and forms a linear combination of such modified determinantal
functions; the Ŝ operator replaces such a combination with another. The
“knobs” which control these changes are coefficients λij and SIJ .

We will need transformations exp(iλ̂) and exp(iŜ). They are unitary, because
λ̂† = λ̂ and Ŝ† = Ŝ, i.e. λ̂ and Ŝ are Hermitian.64

We suggest the form of our variational function:
∣
∣0̃
〉= exp

(

iλ̂
)

exp
(

iŜ
)|0〉 (10.32)

where |0〉 denotes a starting combination of determinants with specific spinorbitals
and the matrices λ and S contain the variational parameters as the matrix ele-
ments. So, we modify the spinorbitals and change the coefficients in front of the
determinants to obtain a new combination of the modified determinants, |0̃〉. The
mean energy value for that function is65

E = 〈0̃∣∣Ĥ∣∣0̃〉= 〈0∣∣exp
(−iŜ)exp

(−iλ̂)Ĥ exp
(

iλ̂
)

exp
(

iŜ
)∣
∣0
〉

� (10.33)

Taking advantage of the commutator expansion (10.29), we have

E = 〈0∣∣Ĥ∣∣0〉− i〈0∣∣[Ŝ + λ̂	 Ĥ]∣∣0〉+ 1
2
〈

0
∣
∣
[

Ŝ	
[

Ĥ	 Ŝ
]]∣
∣0
〉+ 1

2
〈

0
∣
∣
[

λ̂	
[

Ĥ	 λ̂
]]∣
∣0
〉

+ 〈0∣∣[Ŝ	 [Ĥ	 λ̂]]∣∣0〉+ · · ·
64Considering the matrix elements of the operators λ̂ and Ŝ, we would easily be convinced that both

operators are also Hermitian.
65Here we use the equality [exp(iÂ)]† = exp(−iÂ).
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It follows from the last equation, that in order to calculate E, we have to know
the result of the operation of λ̂ on |0〉, i.e. on the linear combination of determi-
nants, which comes down to the operation of the creation and annihilation opera-
tors on the determinants, which is simple. It can also be seen that we need to apply
the operator Ŝ to |0〉, but its definition shows that this is trivial. This expression66

can now be optimized, i.e. the best Hermitian matrices λ and S can be selected. It
is done in the same step (this distinguishes the current method from the classical
one). Usually the calculations are carried out in a matrix form neglecting the higher
terms and retaining only the quadratic ones in Ŝ and λ̂. Neglecting the higher terms
is equivalent to allowing for very small rotations in the transformation (10.32), but
instead we have a large number of rotations (iterative solution).67

The success of the method depends on the starting point. The latter strongly
affects the energy and its hypersurface (in the space of the parameters of the ma-
trices λ and S) is very complicated, it has many local minima. This problem is not
yet solved, but various procedures accelerating the convergence are applied, e.g.,
the new starting point is obtained by averaging the starting points of previous it-
erations. The method also has other problems, since the orbital rotations partially
replace the rotation in the space of the Slater determinants (the rotations do not
commute and are not independent). In consequence, linear dependencies may ap-
pear.

10.13.3 COMPLETE ACTIVE SPACE METHOD (CAS SCF)

An important special case of the MC SCF method is the CAS SCF (Complete Ac-
tive Space Self-Consistent Field, Fig. 10.8) of Roos, Taylor and Siegbahn.68 Let us
assume that we are dealing with a closed-shell molecule. The RHF method (p. 342)
provides the molecular orbitals and the orbital energies. From them we select the
low energy orbitals. Part of them are inactive, i.e. are doubly occupied in all de-
terminants, but they are varied, which results in lowering the mean value of the
Hamiltonian (some of the orbitals may be frozen, i.e. kept unchanged). These are
the spinorbitals corresponding to the inner shells. The remaining spinorbitals be-
long to the active space. Now we consider all possible occupancies and excitations
of the active spinorbitals (this is where the adjective “complete” comes from) to ob-
tain the set of determinants in the expansion of the MC SCF. By taking all possible

66The term with i gives a real number

i · 〈0|[Ŝ + λ̂	 Ĥ]|0〉 = i · (〈(Ŝ+ λ̂)0|Ĥ0〉 − 〈Ĥ0|(Ŝ + λ̂)0〉)→ i · (z− z∗)= i(2i Imz) ∈R�

R is a set of real numbers.
67In the classical MC SCF method when minimizing the energy with respect to the parameters, we

use only linear terms in the expansion of the energy with respect to these parameters. In the unitary
formulation, on the other hand, we use both linear and quadratic terms. This implies much better
convergence of the unitary method.
68B.O. Roos, P.E.M. Siegbahn, in “Modern Theoretical Chemistry”, vol. III, ed. H.F. Schaefer, Plenum

Press, New York, 1977; P.E.M. Siegbahn, J. Chem. Phys. 70 (1979) 5391; B.O. Roos, P.R. Taylor,
P.E.M. Siegbahn, Chem. Phys. 48 (1980) 157.
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Fig. 10.8. CAS SCF, a method of construction of the Slater determinants in the MC SCF expansion.
The inner shell orbitals are usually inactive, i.e. are doubly occupied in each Slater determinant. Within
the active space + inactive spinorbitals we create the complete set of possible Slater determinants to be
used in the MC SCF calculations. The spinorbitals of energy higher than a certain selected threshold
are entirely ignored in the calculations.

excitations within the active space, we achieve a size consistency, i.e. when divid-
ing the system into subsystems and separating them (infinite distances) we obtain
the sum of the energies calculated for each subsystem separately. By taking the
complete set of excitations we also show that the results do not depend on any
(non-singular) linear transformation of the molecular spinorbitals within the given
subgroup of orbitals, i.e. within the inactive or active spinorbitals. This makes the
result invariant with respect to the localization of the molecular orbitals.

NON-VARIATIONAL METHODS WITH SLATER
DETERMINANTS

10.14 COUPLED CLUSTER (CC) METHOD

The problem of a many-body correlation of motion of anything is extremely diffi-
cult and so far unresolved (e.g., weather forecasting). The problem of electron cor-
relation also seemed to be hopelessly difficult. It still remains so, however, it turns
out that we can exploit a certain observation made by Sinanoğlu.69 This author no-
ticed that the major portion of the correlation is taken into account through the in-

69O. Sinanoğlu and K.A. Brueckner, “Three Approaches to Electron Correlation in Atoms”, Yale Univ.
Press, New Haven and London, 1970.
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Fig. 10.9. In order to include the electron correlation,
the wave function should somehow reflect the fact that
electrons avoid each other. Electron 1 jumping from A
(an orbital) to B (another orbital) should make electron
2 escape from C (close to B) to D (close to A). This is the
very essence of electron correlation. The other orbitals
play a role of spectators. However, the spectators change
upon the excitations described above. These changes are
performed by allowing their own excitations. This is how
triple, quadruple and higher excitations emerge and con-
tribute to electronic correlation.

troducing of correlation within electron pairs, next through pair–pair interactions,
then pair–pair–pair interactions, etc. The canonical molecular spinorbitals, which
we can use, are in principle delocalized over the whole molecule, but in practice
the delocalization is not so large. Even in the case of canonical spinorbitals, and
certainly when using localized molecular spinorbitals, we can think about electron
excitation as a transfer of an electron from one place in the molecule to another.
Inclusion of the correlation of electronic motion represents, in the language of
electron excitations, the following philosophy: when electron 1 jumps from an or-
bital localized in place A to an orbital localized in place B, it would be good – from
the point of view of the variational principle – if electron 2 jumped from the or-
bital localized at C to the orbital localized at D (strong electrostatic stabilization),
Fig. 10.9.

The importance of a given double excitation depends on the energy connected
with the electron relocation and the arrangement of points A,B,C,D. Yet this sim-
plistic reasoning suggests single excitations do not carry any correlation (this is
confirmed by the Brillouin theorem) and this is why their role is very small. More-
over, it also suggests that double excitations should be very important.

The general idea of the coupled cluster method relies on the more and more
accurate description of the many-electron system, beginning with the picture of
the independent electrons, next of independent pairs, next of independent pair–
pair sets, etc.

10.14.1 WAVE AND CLUSTER OPERATORS

At the beginning we introduce a special Slater determinant, the reference determi-
nant (called the vacuum state, it can be the Hartree–Fock determinant) �0 and wevacuum state
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write that the exact wave function for the ground state is

ψ= exp(T̂ )�0 (10.34)

where exp(T̂ ) is a wave operator, and T̂ itself is a cluster operator. In the CC method wave and
cluster
operators

an intermediate normalization70 of the function ψ is assumed, i.e.

〈ψ|�0〉 = 1�

Eq. (10.34) represents a very ambitious task. It assumes that we will find an opera-
tor T̂ such that the wave operator (eT̂ ), as with the touch of a wizard’s wand, will
make an ideal solution of the Schrödinger equation from the Hartree–Fock func-
tion. The formula with exp(T̂ ) is an Ansatz. The charming sounding word Ansatz71 intermediate

normalizationcan be translated as arrangement or order, but in mathematics it refers to the con-
struction assumed.

In literature we use the argument that the wave operator ensures the size con-
sistency of the CC. According to this reasoning, for an infinite distance between
molecules A and B, both ψ and �0 functions can be expressed in the form of the
product of the wave functions for A and B. When the cluster operator is assumed
to be of the form (obvious for infinitely separated systems) T̂ = T̂A + T̂B, then the
exponential form of the wave operator exp(T̂A+ T̂B) ensures a desired form of the
product of the wave function [exp(T̂A+ T̂B)]�0 = exp T̂A exp T̂B�0. If we took a fi-
nite CI expansion: (T̂A+ T̂B)�0, then we would not get the product but the sum which
is incorrect. With this reasoning there is a problem, since due to the Pauli principle
(antisymmetry of the wave function with respect to the electron exchange) for long
distance neither the functionψ nor the function�0 are the product of the functions
for the subsystems.72 Although the reasoning is not quite correct, the conclusion is
correct, as will be shown at the end of the description of the CC method (p. 547).

The CC method is automatically size consistent.

As a cluster operator T̂ we assume a sum of the excitation operators (see Ap-
pendix U)

T̂ = T̂1 + T̂2 + T̂3 + · · · + T̂lmax (10.35)

where

T̂1 =
∑

a	r

trar̂
†â (10.36)

70It contributes significantly to the numerical efficiency of the method.
71This word has survived in the literature in its original German form.
72For instance, the RHF function for the hydrogen molecule is not a product function for long dis-

tances, see p. 520.
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is an operator for single excitations,

T̂2 = 1
4

∑

ab
rs

trsabŝ
†r̂†âb̂	 (10.37)

is an operator for double excitations, etc. The subscript l in T̂l indicates the rank
of the excitations involved (with respect to the vacuum state). The symbols a	b	. . .
refer to the spinorbitals occupied in �0, and p	q	 r	 s,. . . refer to the unoccupied
ones, and

t represents amplitudes, i.e. the numbers whose determination is the goal of
the CC method. The rest of this chapter will be devoted to the problem of
how we can obtain these miraculous amplitudes.

In the CC method we want to obtain correct results with the assumption that lmax
of eq. (10.35) is relatively small (usually 2÷ 5). If lmax were equal to N , i.e. to the
number of electrons, then the CC method would be identical to the full (usually
unfeasible) CI method.

10.14.2 RELATIONSHIP BETWEEN CI AND CC METHODS

Obviously, there is a relation between the CI and CC methods. For instance, if we
write exp(T̂ )�0 in such a way as to resemble the CI expansion

exp
(

T̂
)

�0 =
[

1+ (T̂1 + T̂2 + T̂3 + · · ·
)+ 1

2
(

T̂1 + T̂2 + T̂3 + · · ·
)2 + · · ·

]

�0

= (1+ Ĉ1 + Ĉ2 + Ĉ3 + · · ·
)

�0	 (10.38)

the operators Ĉi, pertaining to the CI method, have the following structure

Ĉ1 = T̂1	

Ĉ2 = T̂2 + 1
2! T̂

2
1 	

Ĉ3 = T̂3 + 1
3! T̂

3
1 + T̂1T̂2	

Ĉ4 = T̂4 + 1
4! T̂

4
1 +

1
2! T̂

2
2 + T̂3T̂1 + 1

2! T̂
2
1 T̂2	

� � � (10.39)

We see that the multiple excitations Ĉl result from mathematically distinct terms,
e.g., Ĉ3 is composed of T̂3, T̂ 3

1 and T̂1T̂2. Sometimes we speak about the factorizablefactorizable part
of CI coefficient part of the CI coefficient (like T̂ 3

1 and T̂1T̂2) multiplying the particular Slater deter-
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Fig. 10.10. Why such a name? An artistic impression
on coupled clusters.

minant (corresponding to an n-tuple excitation) as the part which can be expressed
in terms of the lower rank amplitudes.

On the basis of current numerical experience,73 we believe that, within the exci-
tation of a given rank, the contributions coming from the correlational interactions
of the electron pairs are the most important, e.g., within C4 the 1

2! T̂
2
2 excitations

containing the product of amplitudes for two electron pairs are the most important,
T̂4 (which contains the amplitudes of quadruple excitations) is of little importance,
since they correspond to the coupling of the motions of four electrons, the terms
T̂1	 T̂3T̂1 and T̂ 2

1 T̂2 can be made small by using the MC SCF orbitals. Contempo-
rary quantum chemists use diagrammatic language following Richard Feynman.
The point is that the mathematical terms (the energy contributions) appearing in
CC theory can be translated – one by one – into the figures according to certain
rules. It turns out that it is much easier (at least at lower orders) to think in terms
of diagrams than to speak about the mathematical formulae or to write them out.

The coupled cluster method, terminated at T̂2 in the cluster operator automati-
cally includes T̂ 2

2 , etc. We may see in it some resemblance to a group of something
(excitations), or in other words to a cluster, Fig. 10.10.

10.14.3 SOLUTION OF THE CC EQUATIONS

The strategy of the CC method is the following: first, we make a decision with
respect to lmax in the cluster expansion (10.35) (lmax should be small74).

The exact wave function exp(T̂ )�0 satisfies the Schrödinger equation, i.e.

Ĥ exp(T̂ )�0 =E exp(T̂ )�0	 (10.40)

which, after operating from the left with exp(−T̂ ) gives:

exp(−T̂ )Ĥ exp(T̂ )�0 =E�0� (10.41)

73This is a contribution by Oktay Sinanoğlu; O. Sinanoğlu, K.A. Brueckner (eds.), “Three Approaches
to Electron Correlation in Atoms”, Yale Univ. Press, New Haven and London, 1970.
74Only then is the method cost-effective.
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The exp(−T̂ )Ĥ exp(T̂ ) operator can be expressed in terms of the commutators
(see (10.29))75

e−T̂ ĤeT̂ = Ĥ + [Ĥ	 T̂ ] + 1
2!
[[Ĥ	 T̂ ]	 T̂ ]+ 1

3!
[[[Ĥ	 T̂ ]	 T̂ ]	 T̂ ]

+ 1
4!
[[[[Ĥ	 T̂ ]	 T̂ ]	 T̂ ]	 T̂ ]� (10.42)

The expansion (10.42) is finite (justification can be only diagrammatic, and is
not given here) since in the Hamiltonian Ĥ we have only two-particle interactions.
Substituting this into the Schrödinger equation we have:

{

Ĥ + [Ĥ	 T̂ ]+ 1
2!
[[Ĥ	 T̂ ]	 T̂ ]+ 1

3!
[[[Ĥ	 T̂ ]	 T̂ ]	 T̂ ]+ 1

4!
[[[[Ĥ	 T̂ ]	 T̂ ]	 T̂ ]	 T̂ ]

}

�0

=E�0� (10.43)

Multiplying from the left with the function 〈mn���ab��� | representing the determinant
obtained from the vacuum state by the action of the annihilators â	 b̂	 � � � and cre-
ators n̂†	 m̂†	 � � � and integrating, we obtain one equation for each function used:

〈mn���
ab���

∣
∣Ĥ + [Ĥ	 T̂ ] + 1

2!
[[Ĥ	 T̂ ]	 T̂ ]+ 1

3!
[[[Ĥ	 T̂ ]	 T̂ ]	 T̂ ]

+ 1
4!
[[[[Ĥ	 T̂ ]	 T̂ ]	 T̂ ]	 T̂ ]∣∣�0

〉= 0	 (10.44)

where we have zero on the right-hand side due to the orthogonality. The Slater
determinants |mnab 〉 represent all excitations from�0 resulting from the given cluster
expansion T̂ = T̂1 + T̂2 + · · · + T̂lmax . This is the fundamental equation of the CC
method. For such a set of excited configurations the number of CC equations is
equal to the number of the amplitudes sought.

tmn���ab��� are unknown quantities, i.e. amplitudes determining the T̂l , and, con-
sequently, the wave operator (10.34) and wave function for the ground state
�=�0. The equations we get in the CC method are nonlinear

since the t’s occur at higher powers than the first (it can be seen from eq. (10.44)
that the highest power of t is 4), which, on one hand, requires much more demand-
ing and capricious (than linear ones) numerical procedures, and, on the other, con-nonlinearity

tributes to the greater efficiency of the method. The number of such equations very

75It is straightforward to demonstrate the correctness of the first few terms by expanding the wave
operator in the Taylor series.
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often exceeds 100 000 or a million.76 These equations are solved iteratively assum-
ing certain starting amplitudes t and iterating the equations until self-consistency
is achieved.

We hope that in such a procedure an approximation to the ground state wave
function is obtained, although sometimes an unfortunate starting point may lead
to some excited state.77

We usually use as a starting point that which is obtained from the linear ver-
sion (reduced to obtain a linearity) of the CC method. We will write down these
equations as tmnab = � � � various powers of all t for all amplitudes. First we neglect
the non-linear terms, this represents the initial approximation. The amplitudes
are substituted into the right-hand side and we iterate until self-consistency is
achieved. When all the amplitudes are found, then we obtain the energy E by pro-
jecting eq. (10.44) against �0 function instead of |mnab 〉:

E = 〈�0
∣
∣e−T̂ ĤeT̂�0

〉

� (10.45)

The operator (e−T )†, conjugate to e−T , is e−T †
, i.e.

E = 〈e−T̂ †
�0
∣
∣ĤeT̂�0

〉

	 (10.46)

which is not the mean value of the Hamiltonian. Hence, the CC method is not
variational. If we multiplied eq. (10.40) from the left by eT̂

†
we would obtain the

variational character of E

E = 〈�0|eT̂ †
ĤeT̂�0〉

〈�0|eT̂ †
eT̂�0〉

= 〈e
T̂�0|Ĥ|eT̂�0〉
〈eT̂�0|eT̂�0〉

� (10.47)

However, it would not be possible to apply the commutator expansion and in-
stead of the four terms in eq. (10.42) we would have an infinite number (due to
the full normalization of the final function78). For this reason, we prefer the non-
variational approach.

10.14.4 EXAMPLE: CC WITH DOUBLE EXCITATIONS

How does the CC machinery work? Let us show it for a relatively simple case
T̂ = T̂2. Eq. (10.44), written without the commutator expansion, has the form

〈mn
ab

∣
∣e−T̂2ĤeT̂2�0

〉= 0� (10.48)

76This refers to calculations with T̂ = T̂2 for ca. 10 occupied orbitals (for instance, two water mole-
cules) and 150 virtual orbitals. These are not calculations for large systems.
77The first complete analysis of all CC solutions was performed by K. Jankowski and K. Kowalski, Phys.

Rev. Letters 81 (1998) 1195; J. Chem. Phys. 110 (1999) 37, 93; ibid. 111 (1999) 2940, 2952. Recapitulation
can be found in K. Jankowski, K. Kowalski, I. Grabowski, H.J. Monkhorst, Intern. J. Quantum Chem.
95 (1999) 483.
78The (non-variational) CC method benefits from the very economical condition of the intermediate

normalization.
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Taking advantage of the commutator expansion we have

〈mn
ab

∣
∣e−T̂2ĤeT̂2�0

〉 =
〈

mn
ab

∣
∣
∣
∣

(

1− T̂2 + 1
2
T̂ 2

2 + · · ·
)

Ĥ

(

1+ T̂2 + 1
2
T̂ 2

2 + · · ·
)

�0

〉

= 〈mn
ab

∣
∣Ĥ�0

〉+ 〈mn
ab

∣
∣ĤT̂2�0

〉+ 1
2
〈mn
ab

∣
∣ĤT̂ 2

2�0
〉− 〈mn

ab

∣
∣T̂2Ĥ�0

〉

− 〈mn
ab

∣
∣T̂2ĤT̂2�0

〉+A= 0�

However,

A = −1
2
〈mn
ab

∣
∣T̂2ĤT̂

2
2�0

〉+ 1
2
〈mn
ab

∣
∣T̂ 2

2 Ĥ�0
〉+ 1

2
〈mn
ab

∣
∣T̂ 2

2 ĤT̂2�0
〉+ 1

4
〈mn
ab

∣
∣T̂ 2

2 ĤT̂
2
2�0

〉

= 0�

The last equality follows from the fact that each term is equal to zero. The first
vanishes since both determinants differ by four excitations. Indeed, 〈(T̂ †

2 )
mn
ab | de-

notes a double deexcitation79 of the doubly excited function, i.e. something propor-excitations and
deexcitations tional to 〈�0|� For similar reasons (too strong deexcitations give zero) the remain-

ing terms in A also vanish. As a result we need to solve the equation:
〈mn
ab

∣
∣Ĥ�0

〉+ 〈mn
ab

∣
∣ĤT̂2�0

〉+ 1
2
〈mn
ab

∣
∣ĤT̂ 2

2�0
〉− 〈mn

ab

∣
∣T̂2Ĥ�0

〉− 〈mn
ab

∣
∣T̂2ĤT̂2�0

〉= 0�

After several days80 of algebraic manipulations, we get the equations for the t
amplitudes (for each tmnab amplitude one equation):

(εm + εn − εa − εb)tmnab
= 〈mn|ab〉 −

∑

p>q

〈mn|pq〉tpqab −
∑

γ>δ

〈cd|ab〉tmncd

+
∑

c	p

[〈cn|bp〉tmpac − 〈cm|bp〉tnpac − 〈cn|ap〉tmpbc + 〈cm|ap〉tnpbc
]

+
∑

c>d	 p>q

〈cd|pq〉[tpqab tmncd − 2
(

t
mp
ab t

nq
cd + tnqab tmpcd

)

− 2
(

tmnac t
pq
bd + tpqac tmnbd

)+ 4
(

t
mp
ac t

nq
bd + tnqac tmpbd

)]

� (10.49)

It can be seen that the last expression includes: the term independent of t, the
linear terms and the quadratic terms.

How can we find the t’s? We do it with the help of the iterative method.81 First,
we substitute zeros for all t’s on the right-hand side of the equation. Thus, from

79Opposite to excitation.
80Students – more courage!
81We organize things in such a way that a given unknown parameter will occur in the simple form on

one side of the equation, whereas the more complicated terms, also containing the parameter sought,
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the left-hand side the first approximation to tmnab is82 tmnab
∼= 〈mn|ab〉

(εm+εn−εa−εb) �We have
now an estimate of each amplitude – we are making progress. The approximation
to t obtained in this way is substituted into the right-hand side to evaluate the
left-hand side and so forth. Finally, we achieve a self-consistency of the iterative
process and obtain the CC wave function for the ground state of our system. With
the amplitudes we calculate the energy of the system with eq. (10.45).

This is how the CCD (the CC with double excitations in the cluster operator)
works from the practical viewpoint. It is more efficient when the initial amplitudes
are taken from a short CI expansion,83 with subsequent linearization (as above) of
terms containing the initial (known) amplitudes.

The computational cost of the CCD and CCSD (singles and doubles) methods
scales as N6 where N is a number of molecular orbitals (occupied and virtual84),
whereas the analogous cost of the CCSDT (singles, doubles, triples) method re-
quires N8 scaling. This means that, if we increase the orbital basis twice, the in-
crease in the computational cost of the CCSDT method will be four times larger
than that of the CCSD scheme. This is a lot, and because of this, wide-spread pop-
ularity has been gained for the CCSD(T) method, which only partly uses the triple
excitations.

10.14.5 SIZE CONSISTENCY OF THE CC METHOD

The size consistency of the CC method can be proved on the basis of eq. (10.43)
and (10.44). Let us assume that the system dissociates into two85 non-interacting
subsystemsA and B (i.e. at infinite distance). Then the orbitals can be also divided
into two separable (mutually orthogonal) subsets. We will show86 that the cluster
amplitudes, having mixed indices (from the first and second groups of orbitals), are
equal to 0.

Let us note first that, for an infinite distance, the Hamiltonian Ĥ = ĤA + ĤB.
In such a situation the wave operator can be expressed as

T̂ = T̂A + T̂B + T̂AB	 (10.50)

are kept on the other side of the equation. Then we take a certain random value of the unknown
and calculate the complicated side of the equation. On the left-hand side we will then have its new
approximation to the true value. We repeat the whole procedure so many times until we start getting
the same value (if the procedure converges). Then the equation is solved.
82As we see we would have trouble if (εm+εn−εa−εb) is close to 0 (quasidegeneracy of the vacuum

state with some other state), because then tmn
ab
→∞.

83The configuration interaction method with inclusion of single and double excitations only:
CCD: J.A. Pople, R. Krishnan, H.B. Schlegel, J.S. Binkley, Intern. J. Quantum Chem. S14 (1978)

545; R.J. Bartlett, G.D. Purvis III, Intern. J. Quantum Chem. S14 (1978) 561.
CCSD: G.D. Purvis III, J. Chem. Phys. 76 (1982) 1910.

84These estimations are valid for the same relative increase of the number of occupied and virtual
orbitals, as it is, e.g., for going from a molecule to its dimer. In the case of calculations for the same
molecule, but two atomic basis sets (that differ in size) the cost increases only as N4.
85This can be generalized to many non-interacting subsystems.
86B. Jeziorski, J. Paldus, P. Jankowski, Intern. J. Quantum Chem. 56 (1995) 129.
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where T̂A,T̂B	 T̂AB include the operators corresponding to spinorbitals from the
subsystems A	B and from the system AB, respectively. Of course, in this situation
we have the following commutation condition:

[

ĤA	 T̂B
]= [ĤB	 T̂A

]= 0� (10.51)

Then, owing to the commutator expansion in eq. (10.42), we obtain:

e−T̂
(

ĤA + ĤB
)

eT̂ = e−T̂AĤAeT̂A + e−T̂BĤBeT̂B +O
(

T̂AB
)

	 (10.52)

where O(T̂AB) denotes the linear and higher terms in T̂AB� Substituting this into
eq. 10.44 with bra 〈mixed| vector representing mixed excitation, we observe that
the first two terms on the right-hand side of the last equation give zero. It means
that we get the equation

〈

mixed
∣
∣O
(

T̂AB
)

�0
〉= 0	 (10.53)

which, due to the linear term in O(T̂AB), is fulfilled by T̂AB = 0� Conclusion: for
the infinite distance between the subsystems we do not have mixed amplitudes and
the energy of the AB system is bound to be the sum of the energies of subsystem
A and subsystem B (size consistency).

10.15 EQUATION-OF-MOTION METHOD (EOM-CC)

The CC method is used to calculate the ground state energy and wave function.
What about the excited states? This is a task for the equation-of-motion CC
method, the primary goal being not the excited states themselves, but the exci-
tation energies with respect to the ground state.

10.15.1 SIMILARITY TRANSFORMATION

Let us note that for the Schrödinger equation Ĥψ=Eψ, we can perform an inter-
esting sequence of transformations based on the wave operator eT̂ :

e−T̂ Ĥψ = Ee−T̂ ψ	

e−T̂ ĤeT̂ e−T̂ ψ = Ee−T̂ ψ�

We obtain the eigenvalue equation again, but for the similarity transformed
Hamiltonian

Ĥψ̄= Eψ̄	

where Ĥ= e−T̂ ĤeT̂ , ψ̄= e−T̂ ψ, and the energy E does not change at all after this
transformation. This result will be very useful in a moment.
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10.15.2 DERIVATION OF THE EOM-CC EQUATIONS
As the reference function in the EOM-CC method, we take the coupled-cluster
wave function for the ground state:

ψ0 = exp
(

T̂
)

�0	 (10.54)

where �0 is usually a Hartree–Fock determinant. Now, we define the operator Ûk
(“EOM-CC Ansatz”), which performs a miracle: from the wave function of the
ground state ψ0 it creates the wave function ψk for the k-th excited state of the
system:

ψk = Ûkψ0�

The operators Ûk change the coefficients in front of the configurations (see
p. 526). The operators Ûk are (unlike the wave operator exp(T̂ )) linear with re-
spect to the excitations, i.e. the excitation amplitudes occur there in the first pow-
ers. For the case of the single and double excitations (EOM-CCSD) we have T̂ in
the form of the sum of single and double excitations:

T̂ = T̂1 + T̂2
and

Ûk = Ûk	0 + Ûk	1 + Ûk	2	
where the task for the Ûk	0 operator is to change the coefficient in front of the func-
tion�0 to that appropriate to the |k〉 function. The role of the operators Ûk	1	 Ûk	2
is an appropriate modification of the coefficients in front of the singly and doubly
excited configurations. These tasks are done by the excitation operators with τ am-
plitudes (they have to be distinguished from the t amplitudes of the CC method):

Ûk	0 = τ0(k)	

Ûk	1 =
∑

a	p

τ
p
a (k)p̂

†â	

Ûk	2 =
∑

a	b	p	q

τ
pq
ab (k)q̂

†p̂†âb̂	

where the amplitudes τ(k) are numbers, which are the targets of the EOM-CC
method. The amplitudes give the wave function ψk and the energy Ek.

We write down the Schrödinger equation for the excited state:

Ĥψk =Ekψk�
Now we substitute the EOM-CC Ansatz:

ĤÛkψ0 =EkÛkψ0	

and from the definition of the CC wave operator we get87

ĤÛk exp
(

T̂
)

�0 =EkÛk exp
(

T̂
)

�0�

87By neglecting higher than single and double excitations the equation represents an approximation.
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Due to the missing deexcitation part (i.e. that which lowers the excitation rank,
e.g., from doubles to singles) the operators Ûk and T̂ commute,88 hence the oper-
ators Ûk and exp(T̂ ) also commute:

Ûk exp
(

T̂
)= exp

(

T̂
)

Ûk�

Substituting this we have:

Ĥ exp
(

T̂
)

Ûk�0 =Ek exp
(

T̂
)

Ûk�0

and multiplying from the left with exp(−T̂ ) we get:

[

exp
(−T̂ )Ĥ exp

(

T̂
)]

Ûk�0 =EkÛk�0

or introducing the similarity transformed Hamiltonian

Ĥ= e−T̂ ĤeT̂

we obtain

ĤÛk�0 =EkÛk�0�

From the last equation we subtract the CC equation for the ground state

[

exp
(−T̂ )Ĥ exp

(

T̂
)]

�0 =E0�0

multiplied from the left with Ûk, i.e. ÛkĤ�0 =E0Ûk�0 and we get

ĤÛk�0 − ÛkĤ�0 =EkÛk�0 −E0Ûk�0�

Finally, we obtain an important result:

[

Ĥ	 Ûk
]

�0 = (Ek −E0)Ûk�0�

The operator Ûk contains the sought amplitudes τ(k).
We find them in a similar manner as in the CC method. For that purpose we

make a scalar product of the left- and right-hand side of that equation with each
excitation |mn���ab��� 〉 used in Ûk, including89 that of no excitation, i.e. the function �0.
We get the set of the EOM-CC equations whose number is equal to the number of
sought amplitudes plus one more equation due to normalization condition of ψk.
88If Ûk contains true excitations, then it does not matter whether excitations are performed by ÛkT̂

or T̂ Ûk (commutation), because both Ûk and T̂ mean going up in the energy scale. If, however, Ûk
contains deexcitations, then it may happen that there is an attempt in T̂ Ûk to deexcite the ground state
wave function – that makes immediately 0, whereas ÛkT̂ may be still OK, because the excitations in T̂
may be more important than the deexcitations in Ûk .
89More precisely: to get only the excitation energy we do not need the coefficient next to �0.
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The unknown parameters are amplitudes and the excitation energies Ek −E0:

〈mn���
ab���

∣
∣[Ĥ	 Ûk]

∣
∣�0
〉= (Ek −E0)

〈mn���
ab���

∣
∣Ûk
∣
∣�0
〉

�

We solve these equations and the problem is over.

10.16 MANY BODY PERTURBATION THEORY (MBPT)
The majority of routine calculations in quantum chemistry are done with varia-
tional methods (mainly the Hartree–Fock scheme). If we consider post-Hartree–
Fock calculations then non-variational [CCSD, CCSD(T)] as well as perturbational
(among them MBPT) approaches take the lead. The perturbational methods are
based on the simple idea that the system, in a slightly modified condition, is similar
to that before the perturbation is applied (cf. p. 203).

In the formalism of perturbation theory, knowing the unperturbed system and
the perturbation we are able to provide successive corrections to obtain the solu-
tion of the perturbed system. Thus, for instance, the energy of the perturbed sys-
tem is the energy of the unperturbed system plus the first-order correction plus the
second-order correction plus� � � , etc.90 If the perturbation is small then we hope91

the series is convergent, even then however, there is no guarantee that the series
converges fast.

10.16.1 UNPERTURBED HAMILTONIAN

In the perturbational approach (cf. p. 204) to the electron correlation the
Hartree–Fock function, �0, is treated as the zero-order approximation to
the true ground state wave function, i.e. �0 =ψ(0)0 . Thus, the Hartree–Fock
wave function stands at the starting point, while the goal is the exact ground-
state electronic wave function ψ0.

In majority of cases this is a reasonable approximation, since the Hartree–Fock
method usually provides as much as 98–99% of the total energy.92 A Slater deter-
minant �I is constructed from the spinorbitals satisfying the Fock equation. How
to construct the operator for which the Slater determinant is an eigenfunction? We
will find out in a moment that this operator is the sum of the Fock operators (cf.
Appendix U)

Ĥ(0) =
∑

i

F̂(i)=
∑

i

εiı̂
† ı̂� (10.55)

90This is an old trick of perturbation theory, equivalent to saying that the shape of a bridge loaded
with a car is the shape of the bridge without the car plus the deformation proportional to the mass of
the car plus the deformation proportional to the square of the mass of the car, etc. This works, if the
bridge is solid and the car is light (the perturbation is small).
91There is not much known concerning the convergence of series occurring in quantum chemistry.

Commonly, only a few perturbational corrections are computed.
92Sometimes, as we know, the method fails and then the perturbation theory based on the Hartree–

Fock starting point is a risky business, since the perturbation is very large.
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Indeed,

Ĥ(0)�I =
∑

i

εiı̂
† ı̂ ·�I =

(
∑

i

εi

)

·�I	 (10.56)

since the annihilation of one spinorbital in the determinant and the creation of the
same spinorbital leaves the determinant unchanged. This is so on condition that
the spinorbital φi is present in ψ(0)0 .

The eigenvalue of Ĥ0 =∑i εiı̂
† ı̂ is always the sum of the orbital energies

corresponding to all spinorbitals in the Slater determinant �I .

This means that the sum of several determinants, each built from a different
(in the sense of the orbital energies) set of spinorbitals, is not an eigenfunction
of Ĥ(0).

10.16.2 PERTURBATION THEORY – SLIGHTLY DIFFERENT APPROACH

We have to solve the Schrödinger equation for the ground state93 Ĥψ0 =Eψ0, with
Ĥ = Ĥ(0)+ Ĥ(1), where Ĥ(0) denotes the unperturbed Hamiltonian, and Ĥ(1) is a
perturbation operator. We assumed that Ĥ(0) has eigenfunctions and correspond-
ing energy eigenvalues

Ĥ(0)ψ(0)k =E(0)k ψ(0)k � (10.57)

The ground state ψ(0)0 is non-degenerate (assumption).
The Schrödinger equation does not force the normalization of the function. It is

convenient to use the intermediate normalization (Fig. 10.11.a), i.e. to require that
〈ψ0|ψ(0)0 〉 = 1. This means that the (non-normalized) ψ0 must include the normal-
ized function of zeroth order ψ(0)0 and, possibly, something orthogonal to it.

Let us write Ĥψ0 as Ĥψ0 = (Ĥ(0) + Ĥ(1))ψ0, or, in another way, as Ĥ(1)ψ0 =
(Ĥ − Ĥ(0))ψ0. Multiplying this equation by ψ(0)0 and integrating, we get (taking
advantage of the intermediate normalization)

〈

ψ(0)0

∣
∣Ĥ(1)ψ0

〉 = 〈ψ(0)0

∣
∣
(

Ĥ − Ĥ(0))ψ0
〉=E0

〈

ψ(0)0

∣
∣ψ0
〉− 〈ψ(0)0

∣
∣Ĥ(0)ψ0

〉

= E0 −E(0)0 = �E0� (10.58)

Thus,

�E0 =
〈

ψ(0)0

∣
∣Ĥ(1)ψ0

〉

� (10.59)

93We use the notation from Chapter 5.
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projection

Fig. 10.11. Pictorial presentation of (a) the intermediate normalization 〈ψ|ψ(0)0 〉 = 1, ψ(n)0 is the

n-th correction, and (b) the projection onto the axis ψ(0)0 in the Hilbert space using the operator

P̂ = |ψ(0)0 〉〈ψ(0)0 |.

10.16.3 REDUCED RESOLVENT OR THE “ALMOST” INVERSE OF
(E

(0)
0 − Ĥ(0))

Let us define several useful quantities – we need to get familiar with them now –
which will introduce a certain elegance into our final equations.

Let the first be a projection operator on the ground-state zeroth order function projection
operator

P̂ = ∣∣ψ(0)0

〉〈

ψ(0)0

∣
∣� (10.60)

This means that P̂χ is, within accuracy to a constant, equal to ψ(0)0 for an arbitrary
function χ. Indeed, if χ is expressed as a linear combination of the eigenfunctions
ψ(0)n (these functions form an orthonormal complete set as eigenfunctions of the
Hermitian operator)

χ=
∑

n

cnψ
(0)
n 	 (10.61)

then (Fig. 10.11.b)

P̂χ=
∑

n

cnP̂ψ
(0)
n =

∑

n

cn
∣
∣ψ
(0)
0

〉〈

ψ
(0)
0

∣
∣ψ(0)n

〉=
∑

n

cnδ0nψ
(0)
0 = c0ψ

(0)
0 � (10.62)

Let us now introduce a projection operator

Q̂= 1− P̂ =
∞
∑

n=1

∣
∣ψ(0)n

〉〈

ψ(0)n
∣
∣ (10.63)

in the space orthogonal to ψ(0)0 . Obviously, P̂Q̂= 0, P̂2 = P̂ and Q̂2 = Q̂. The latter
holds since Q̂2 = (1− P̂)2 = 1− 2P̂ + P̂2 = 1− P̂ = Q̂.
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Now we define a reduced resolventreduced
resolvent

R̂0 =
∞
∑

n=1

|ψ(0)n 〉〈ψ(0)n |
E(0)0 −E(0)n

� (10.64)

For functions orthogonal to ψ(0)0 , the action of the operator R̂0 is identical to
that of the operator (E(0)0 − Ĥ(0))−1. Let us make sure of this. Let us operate first
on the functionφ orthogonal to ψ(0)0 with the operator R̂0(E

(0)
0 −Ĥ(0)). The result

should be equal to φ. Let us see:

R̂0
(

E(0)0 − Ĥ(0))φ =
∞
∑

n=1

(

E(0)0 −E(0)n
)−1∣∣ψ(0)n

〉〈

ψ(0)n
∣
∣
(

E(0)0 − Ĥ(0))∣∣φ
〉

(10.65)

=
∞
∑

n=1

(

E(0)0 −E(0)n
)−1(

E(0)0 −E(0)n
)∣
∣ψ(0)n

〉〈ψ(0)n
∣
∣φ
〉

(10.66)

=
∞
∑

n=1

∣
∣ψ(0)n

〉〈

ψ(0)n
∣
∣φ
〉= Q̂φ=φ	 (10.67)

since for φ orthogonal to ψ(0)0 the projection Q̂φ equals φ. Let us now operate
on the same function with the operator (E(0)0 − Ĥ(0))R̂0 (i.e. the operators are in
reverse order):

(

E(0)0 − Ĥ(0))R̂0φ =
(

E(0)0 − Ĥ(0))
∞
∑

n=1

(

E(0)0 −E(0)n
)−1∣
∣ψ(0)n

〉〈

ψ(0)n
∣
∣φ
〉

=
∞
∑

n=1

(

E(0)0 −E(0)n
)−1(

E(0)0 − Ĥ(0))∣∣ψ(0)n
〉〈

ψ(0)n
∣
∣φ
〉

=
∞
∑

n=1

∣
∣ψ(0)n

〉〈

ψ(0)n
∣
∣φ
〉= Q̂φ=φ� (10.68)

It really looks as if the R̂0 is the inverse of (E(0)0 − Ĥ(0)). This is not so, since
when acting on the function ψ(0)0 we get

R̂0
(

E(0)0 − Ĥ(0))ψ(0)0 = R̂0 · 0= 0	 (10.69)

and not ψ(0)0 . In other words R̂0(E
(0)
0 − Ĥ(0))ψ(0)0 = 0 	=ψ(0)0 �

Similarly,

(

E(0)0 − Ĥ(0))R̂0ψ
(0)
0 = (E(0)0 − Ĥ(0))

∞
∑

n=1

(

E(0)0 −E(0)n
)−1∣
∣ψ(0)n

〉〈

ψ(0)n
∣
∣ψ(0)0

〉

= (E(0)0 − Ĥ(0)) · 0= 0 	=ψ(0)0 �
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Thus, the reduced resolvent is “almost” the inverse of (E(0)0 − Ĥ(0)), almost, be-
cause it happens only when acting on the functions from the space orthogonal to
ψ(0)0 . When the reduced resolvent operates on an arbitrary function, the result be-
longs to theQ space, but it does not represent a projection on theQ space. Indeed,
let us operate with R̂0 on function φ:

R̂0φ =
∞
∑

n=1

(

E(0)0 −E(0)n
)−1∣∣ψ(0)n

〉〈

ψ(0)n
∣
∣φ
〉

= linear combination of functions orthogonal to ψ(0)0 � (10.70)

Such a linear combination always belongs to theQ space, but we have not obtained
φ, hence R̂0 is not a projection operator.

10.16.4 MBPT MACHINERY
Our goal now will be to present the Schrödinger equation in a different form. Let
us first write it down as follows

(

E0 − Ĥ(0))ψ0 = Ĥ(1)ψ0� (10.71)

We aim at having (E(0)0 − Ĥ(0))ψ0 on the left-hand side. Let us add (E(0)0 −E0)ψ0
to both sides of that equation to obtain

(

E0 − Ĥ(0))ψ0 +
(

E(0)0 −E0
)

ψ0 = Ĥ(1)ψ0 +
(

E(0)0 −E0
)

ψ0 (10.72)

or
(

E(0)0 − Ĥ(0))ψ0 =
(

E(0)0 −E0 + Ĥ(1))ψ0� (10.73)

Let us now operate on both sides of this equation with the reduced resolvent R̂0

R̂0
(

E(0)0 − Ĥ(0))ψ0 = R̂0
(

E(0)0 −E0 + Ĥ(1))ψ0� (10.74)

On the left-hand side we have Q̂ψ0 (as follows from eq. (10.67)), but Q̂ψ0 = (1−
P̂)ψ0 = ψ0 − |ψ(0)0 〉〈ψ(0)0 |ψ0〉 = ψ0 −ψ(0)0 , due to the intermediate normalization.
As a result, the equation takes the form

ψ0 −ψ(0)0 = R̂0
(

E(0)0 −E0 + Ĥ(1))ψ0� (10.75)

Thus, we obtain

ψ0 =ψ(0)0 + R̂0
(

E(0)0 −E0 + Ĥ(1))ψ0� (10.76)

At the same time, based on the expression for �E in perturbation theory
(eq. (10.59)), we have:

E0 =E(0)0 + 〈ψ(0)0

∣
∣Ĥ(1)ψ0

〉

� (10.77)
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These are the equations of the many body perturbation theory, in which the ex-
act wave function and energy are expressed in terms of the unperturbed functions
and energies plus certain corrections. The problem is that, as can be seen, these
corrections involve the unknown function and unknown energy.

Let us not despair in this situation, but try to apply an iterative technique. First
substitute for ψ0 in the right-hand side of (10.76) that, which most resembles ψ0,
i.e. ψ(0)0 . We obtain

ψ0 ∼=ψ(0)0 + R̂0
(

E
(0)
0 −E0 + Ĥ(1))ψ

(0)
0 	 (10.78)

and then the new approximation to ψ0 should again be plugged into the right-hand
side and this procedure is continued ad infinitum. It can be seen that the successive
terms form a series (let us hope that it is convergent).

ψ0 =
∞
∑

n=0

[

R̂0
(

E(0)0 −E0 + Ĥ(1))]nψ(0)0 � (10.79)

Now only known quantities occur on the right-hand side except for E0, the exact
energy. Let us pretend that its value is known and insert into the energy expres-
sion (10.77) the function ψ0

E0 = E(0)0 + 〈ψ(0)0

∣
∣Ĥ(1)ψ0

〉

= E(0)0 + 〈ψ(0)0

∣
∣Ĥ(1)

M
∑

n=0

[

R̂0
(

E
(0)
0 −E0 + Ĥ(1))]n∣∣ψ

(0)
0

〉

� (10.80)

Let us go back to our problem: we want to have E0 on the left-hand side of the
last equation, while – for the time being – E0 occurs on the right-hand sides of
both equations. To exit the situation we will treat E0 occurring on the right-hand
side as a parameter manipulated in such a way as to obtain equality in both above
equations. We may do it in two ways. One leads to Brillouin–Wigner perturbation
theory, the other to Rayleigh–Schrödinger perturbation theory.

10.16.5 BRILLOUIN–WIGNER PERTURBATION THEORY

Let us decide first at what n =M we terminate the series, i.e. to what order of
perturbation theory the calculations will be carried out. Say, M = 3. Let us now
take any reasonable value94 as a parameter of E0. We insert this value into the
right-hand side of eq. (10.80) for E0 and calculate the left-hand side, i.e. E0. Then
let us again insert the new E0 into the right-hand side and continue in this way until
self-consistency, i.e. until (10.80) is satisfied. After E0 is known we go to eq. (10.79)
and compute ψ0 (through a certain order, e.g., M).

94A “unreasonable” value will lead to numerical instabilities. Then we will learn that it was unreason-
able to take it.
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Brillouin–Wigner perturbation theory has, as seen, the somewhat unpleasant
feature that successive corrections to the wave function depend on theM assumed
at the beginning.

We may suspect95 – and this is true – that the Brillouin–Wigner perturbation
theory is not size consistent.

10.16.6 RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY

As an alternative to Brillouin–Wigner perturbation theory, we may consider
Rayleigh–Schrödinger perturbation theory, which is size consistent. In this method
the total energy is computed in a stepwise manner

E0 =
∞
∑

k=0

E
(k)
0 (10.81)

in such a way that first we calculate the first order correction E(1)0 , i.e. of the order
of Ĥ(1), then the second order correction, E(2)0 , i.e. of the order of (Ĥ(1))2, etc.
If we insert into the right-hand side of (10.79) and (10.80) the expansion E0 =
∑∞
k=0E

(k)
0 and then, by using the usual perturbation theory argument, we equalize

the terms of the same order, we get for n= 0:

E(1)0 = 〈ψ(0)0

∣
∣Ĥ(1)ψ(0)0

〉

	 (10.82)

for n= 1:

E(2) = 〈ψ(0)0

∣
∣Ĥ(1)R̂0

(

E
(0)
0 −E0 + Ĥ(1))ψ

(0)
0

〉= 〈ψ(0)0

∣
∣Ĥ(1)R̂0Ĥ

(1)ψ
(0)
0

〉

	 (10.83)

since R̂0ψ
(0)
0 = 0; for n= 2:

E(3) = the third order terms from the expression:
〈

ψ(0)0

∣
∣Ĥ(1)[R̂0

(

E(0)0 −E(0)0 −E(1)0 −E(2)0 − · · · + Ĥ(1))]2ψ(0)0

〉

= 〈ψ(0)0

∣
∣Ĥ(1)R̂0

(−E(1)0 −E(2)0 − · · · + Ĥ(1))R̂0
(−E(1)0 −E(2)0 − · · · + Ĥ(1))ψ(0)0

〉

and the only terms of the third order are:

E(3) = 〈ψ(0)0

∣
∣Ĥ(1)R̂0Ĥ

(1)R̂0Ĥ
(1)ψ(0)0

〉−E(1)0

〈

ψ(0)0

∣
∣Ĥ(1)R2

0Ĥ
(1)ψ(0)0

〉

	 (10.84)

etc.
Unfortunately, we cannot give a general expression for the k-th correction

to the energy although we can give an algorithm for the construction of such
an expression.96 Rayleigh–Schrödinger perturbation theory (unlike the Brillouin–
Wigner approach) has the nice feature that the corrections of the particular orders
are independent of the maximum order chosen.
95Due to the iterative procedure.
96J. Paldus and J. Čížek, Adv. Quantum Chem. 105 (1975).



558 10. Correlation of the Electronic Motions

10.17 MØLLER–PLESSET VERSION OF
RAYLEIGH–SCHRÖDINGER PERTURBATION THEORY

Let us consider the case of a closed shell.97 In the Møller–Plesset perturbation
theory we assume as Ĥ(0) the sum of the Hartree–Fock operators (from the RHF
method), and ψ(0)0 =ψRHF	 i.e.:

Ĥ(0) =
∞
∑

i

εii
†i	

Ĥ(0)ψRHF = E(0)0 ψRHF	 (10.85)

E(0)0 =
∑

i

εi	 (10.86)

(the last summation is over spinorbitals occupied in the RHF function) hence the
perturbation, known in the literature as a fluctuation potential, is equalfluctuation

potential
Ĥ(1) = Ĥ − Ĥ(0)� (10.87)

We may carry out calculations through a given order for such a perturbation. A very
popular method relies on the inclusion of the perturbational corrections to the
energy through the second order (known as MP2 method) and through the fourth
order (MP4).

10.17.1 EXPRESSION FOR MP2 ENERGY
What is the expression for the total energy in the MP2 method?

Let us note first that, when calculating the mean value of the Hamiltonian in the
standard Hartree–Fock method, we automatically obtain the sum of the zeroth or-
der energies

∑

i εi and the first-order correction to the energy 〈ψRHF|Ĥ(1)ψRHF〉:
ERHF = 〈ψRHF|ĤψRHF〉 =

〈

ψRHF|(Ĥ(0) + Ĥ(1))ψRHF
〉

=
(
∑

i

εi

)

+ 〈ψRHF|Ĥ(1)ψRHF
〉

�

So what is left to be done (in the MP2 approach) is the addition of the second order
correction to the energy (p. 208, the prime in the summation symbol indicates
that the term making the denominator equal to zero is omitted), where, as the
complete set of functions, we assume the Slater determinants ψ(0)k corresponding
to the energy E(0)k (they are generated by various spinorbital occupancies):

EMP2 = ERHF +
∑

k

′ |〈ψ(0)k |Ĥ(1)ψRHF〉|2
E(0)0 −E(k)0

= ERHF +
∑

k

′ |〈ψ(0)k |ĤψRHF〉|2
E(0)0 −E(k)0

	 (10.88)

97Møller–Plesset perturbation theory also has its multireference formulation when the function �0 is
a linear combination of determinants (K. Woliński, P. Pulay, J. Chem. Phys. 90 (1989) 3647).



10.17 Møller–Plesset version of Rayleigh–Schrödinger perturbation theory 559

since ψRHF is an eigenfunction of Ĥ(0), and ψ(0)k and ψRHF are orthogonal. It can
be seen that among possible functions ψ(0)k , we may ignore all but doubly excited
ones. Why? This is because
• the single excitations give 〈ψ(0)k |ĤψRHF〉 = 0 due to the Brillouin theorem,
• the triple and higher excitations differ by more-than-two excitations from the

functions ψRHF and, due to the IV Slater–Condon rule (see Appendix M,
p. 986), give a contribution equal to 0.
In such a case, we take as the functions ψ(0)k only doubly excited Slater determi-

nants ψpqab , which means that we replace the occupied spinorbitals: a→ p, b→ q,
and, to avoid repetitions a < b, p< q. These functions are eigenfunctions of Ĥ(0)

with the eigenvalues being the sum of the respective orbital energies (eq. (10.56)).
Thus, using the III Slater–Condon rule, we obtain the energy accurate through the
second order

EMP2 =ERHF +
∑

a<b	 p<q

′ |〈ab|pq〉 − 〈ab|qp〉|2
εa + εb − εp − εq 	 (10.89)

hence, the MP2 scheme viewed as an approximation to the correlation energy
gives98

Ecorel ≈EMP2 −ERHF =
∑

a<b	 p<q

′ |〈ab|pq〉 − 〈ab|qp〉|2
εi + εj − εm − εn � (10.90)

10.17.2 CONVERGENCE OF THE MØLLER–PLESSET PERTURBATION
SERIES

Does the Møller–Plesset perturbation procedure converge? Very often this ques-
tion can be considered surrealist, since most frequently we carry out calculations
through the second, third, and – at most – fourth order of perturbation theory.
Such calculations usually give quite a satisfactory description of the physical quan-
tities considered and we do not think about going to high orders requiring major
computational effort. There were, however, scientists interested to see how fast the
convergence is if very high orders are included (MPn) for n < 45. And there was a
surprise (see Fig. 10.12).

It is true that the first few orders of the MP perturbation theory give reason-
ably good results, but later, the accuracy of the MP calculations gets worse. A lot
depends on the atomic orbital basis set adopted and the wealthy people (using
the augmented basis sets – which is much more rare) encounter some difficulties
whereas poor ones (modest basis sets) do not. Moreover, for long bond lengths

98The MP2 method usually gives satisfactory results, e.g., the frequencies of the normal modes.
There are indications, however, that the deformations of the molecule connected with some vibrations
strongly affecting the electron correlation (vibronic coupling) create too severe a test for the method –
the error may amount to 30–40% for frequencies of the order of hundreds of cm−1 as has been shown
by D. Michalska, W. Zierkiewicz, D.C. Bieńko, W. Wojciechowski, T. Zeegers-Huyskens, J. Phys. Chem.
A 105 (2001) 8734.
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cc-pVDZ at Re

cc-pVDZ at 2,5 Re

aug-cc-p VDZ at Re

aug-cc-p VDZ at 2,5 Re

Fig. 10.12. Convergence of the Møller–Plesset perturbation theory (deviation from the exact value,
a.u.) for the HF molecule as a function of the basis set used (cc-pVDZ and augmented cc-pVDZ) and
assumed bond length, Re denotes the HF equilibrium distance (T. Helgaker, P. Jørgensen, J. Olsen,
“Molecular Electronic-Structure Theory”, Wiley, Chichester, 2000, p. 780, Fig. 14.6. © 2000, John Wiley
and Sons. Reproduced with permission of John Wiley and Sons Ltd.).

(2.5 of the equilibrium distance Re) the MPn performance is worse. For high or-
ders, the procedure is heading for the catastrophe99 already described on p. 210.
The reason for this is the highly excited and diffuse states used as the expansion
functions.100

10.17.3 SPECIAL STATUS OF DOUBLE EXCITATIONS

In Møller–Plesset perturbation theory �E = E0 − E(0)0 = E0 − ERHF − E(0)0 +
ERHF = Ecorel + (ERHF − E(0)0 ). On the other hand �E = 〈ψ(0)0 |Ĥ(1)ψ〉. Substi-
tuting101 the operator Ĥ − Ĥ(0) instead of Ĥ(1) gives

�E = 〈ψ(0)0

∣
∣
(

Ĥ − Ĥ(0))ψ0
〉= 〈ψ(0)0

∣
∣Ĥψ0

〉− 〈ψ(0)0

∣
∣Ĥ(0)ψ0

〉

= 〈ψ(0)0

∣
∣Ĥψ0

〉− 〈Ĥ(0)ψ(0)0

∣
∣ψ0
〉= 〈ψ(0)0

∣
∣Ĥψ0

〉−E(0)0

〈

ψ(0)0

∣
∣ψ0
〉

= 〈ψ(0)0

∣
∣Ĥψ0

〉−E(0)0 �

The function ψ0 can be expanded in Slater determinants of various excitation
rank (we use intermediate normalization): ψ0 =ψ(0)0 + excitations. Then, by equal-
izing the two expressions for �E obtained above, we have

99Except for the smaller basis set and the equilibrium bond length, but the problem has been studied
up to n= 21.
100An analysis of this problem is given in the book cited in the caption to Fig. 10.12, p. 769.
101Also taking advantage of the intermediate normalization and the fact that ψ(0)0 is an eigenfunction

of Ĥ(0) .
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Ecorel +ERHF =
〈

ψ
(0)
0

∣
∣Ĥψ0

〉= 〈ψ(0)0

∣
∣Ĥ
(

ψ
(0)
0 + excitations

)〉

= ERHF +
〈

ψ(0)0

∣
∣Ĥ(excitations)

〉

	

hence
Ecorel =

〈

ψ(0)0

∣
∣Ĥ(excitations)

〉

� (10.91)

The Slater–Condon rules (Appendix M, p. 986) show immediately that the only
excitations which give non-zero contributions are the single and double excitations.
Moreover, taking advantage of the Brillouin theorem, we obtain single excitation
contributions exactly equal to zero. So we get the result that

the exact correlation energy can be obtained from a formula containing ex-
clusively double excitations.

The problem, however, lies in the fact that these doubly excited determinants
are equipped with coefficients obtained in the full CI method, i.e. with all possible
excitations. How is this? We should draw attention to the fact that, in deriving the
formula for �E, intermediate normalization is used. If someone gave us the nor-
malized FCI (Full CI) wave functions as a Christmas gift,102 then the coefficients
occurring in the formula for �E would not be the double excitation coefficient in
the FCI function. We would have to denormalize this function to have the coef-
ficient for the Hartree–Fock determinant equal to 1. We cannot do this without
knowledge of the coefficients for higher excitations, cf. Fig. 10.9.

It is as if somebody said: the treasure is hidden in our room, but to find it we
have to solve a very difficult problem in the Kingdom of Far Far Away. Imagine a
compass which leads us unerringly to that place in our room where the treasure is
hidden. Perhaps a functional exists whose minimization would provide us directly
with the solution, but we do not know it yet.103

Summary
• In the Hartree–Fock method electrons of opposite spins do not correlate their motion104

which is an absurd situation (electrons of the same spins avoid each other – which is rea-
sonable). In many cases (the F2 molecule, incorrect description of dissociation of chem-
ical bonds, interaction of atoms and non-polar molecules) this leads to wrong results. In
this chapter we have learnt about the methods which do take into account a correlation
of electronic motions.

VARIATIONAL METHODS USING EXPLICITLY CORRELATED WAVE
FUNCTION
• Such methods rely on employing in the variational method a trial function which contains

the explicit distance between the electrons. This improves the results significantly, but
requires an evaluation of very complex integrals.

102Dreams. . .
103It looks like the work by H. Nakatsuji, Phys. Rev. A 14 (1976) 41 and M. Nooijen, Phys. Rev. Letters
84 (2000) 2108 go in this direction.
104Although they repel each other (mean field) as if they were electron clouds.
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• An exact wave function satisfies the correlation cusp condition, ( ∂ψ∂r )r=0 = μqiqjψ(r =
0), where r is the distance of two particles with charges qi and qj , and μ is the reduced
mass of the particles. This condition helps to determine the correct form of the wave
function ψ. For example, for the two electrons the correct wave function has to satisfy (in
a.u.): ( ∂ψ∂r )r=0 = 1

2ψ(r = 0).
• The family of variational methods with explicitly correlated functions includes: the Hyller-

aas method, the Hylleraas CI method, the James–Coolidge and the Kołos–Wolniewicz
approaches, and the method with exponentially correlated Gaussians. The method of ex-
plicitly correlated functions is very successful for 2-, 3- and 4-electron systems. For larger
systems, due to the excessive number of complicated integrals, variational calculations
are not yet feasible.

VARIATIONAL METHODS WITH SLATER DETERMINANTS
• The CI (Configuration Interaction) approach is a Ritz method (Chapter 5) which uses the

expansion in terms of known Slater determinants. These determinants are constructed
from the molecular spinorbitals, usually occupied and virtual ones, produced by the
Hartree–Fock method.

• Full CI expansion usually contains an enormous number of terms and is not feasible.
Therefore, the CI expansion must be somewhere truncated. Usually we truncate it at
a certain maximum rank of excitations with respect to the Hartree–Fock determinant
(i.e. the Slater determinants corresponding to single, double, . . . up to some maximal
excitations are included).

• Truncated (limited) CI expansion is not size consistent, i.e. the energy of the system of
non-interacting objects is not equal to the sum of the energies of the individual objects
(calculated separately with the same truncation pattern).

• The MC SCF (Multiconfiguration Self Consistent Field) method is similar to the CI
scheme, but we vary not only the coefficients in front of the Slater determinants, but also
the Slater determinants themselves (changing the analytical form of the orbitals in them).
We have learnt about two versions: the classic one (we optimize alternatively coefficients
of Slater determinants and the orbitals) and a unitary one (we optimize simultaneously
the determinantal coefficients and orbitals).

• The CAS SCF (Complete Active Space) method is a special case of the MC SCF approach
and relies on selection of a set of spinorbitals (usually separated energetically from others)
and on construction from them of all possible Slater determinants within the MC SCF
scheme. Usually low energy spinorbitals are “inactive” during this procedure, i.e. they are
doubly occupied in each Slater determinant (and are either frozen or allowed to vary).
Most important active spinorbitals correspond to HOMO and LUMO.

NON-VARIATIONAL METHODS WITH SLATER DETERMINANTS
• The CC (Coupled-Cluster) method is an attempt to find such an expansion of the wave

function in terms of the Slater determinants, which would preserve size consistency. In
this method the wave function for the electronic ground state is obtained as a result of the
operation of the wave operator exp(T̂ ) on the Hartree–Fock function (this ensures size
consistency). The wave operator exp(T̂ ) contains the cluster operator T̂ 	 which is defined
as the sum of the operators for the l-tuple excitations, T̂l up to a certain maximum l =
lmax� Each T̂l operator is the sum of the operators each responsible for a particular l-tuple
excitation multiplied by its amplitude t. The aim of the CC method is to find the t values,
since they determine the wave function and energy. The method generates non-linear



Main concepts, new terms 563

(with respect to unknown t amplitudes) equations. The CC method usually provides very
good results.

• The EOM-CC (“Equation-of-Motion” CC) method is based on the CC wave function
obtained for the ground state and is designed to provide the electronic excitation energies
and the corresponding excited-state wave functions.

• The MBPT (Many Body Perturbation Theory) method is a perturbation theory in which
the unperturbed system is usually described by a single Slater determinant. We obtain
two basic equations of the MBPT approach: ψ0 = ψ(0)0 + R̂0(E

(0)
0 − E0 + Ĥ(1))ψ0 and

E0 = E(0)0 + 〈ψ(0)0 |Ĥ(1)ψ0〉, where ψ(0)0 is usually the Hartree–Fock function, E(0)0 the
sum of the orbital energies, Ĥ(1) = Ĥ − Ĥ(0) is the fluctuation potential, and R̂0 the
reduced resolvent (i.e. “almost” inverse of the operator E(0)0 −Ĥ(0)). These equations are
solved in an iterative manner. Depending on the iterative procedure chosen, we obtain
either the Brillouin–Wigner or the Rayleigh–Schrödinger perturbation theory. The latter
is applied in the Møller–Plesset (MP) method. One of the basic computational methods for
the correlation energy is the MP2 method, which gives the result correct through the second
order of the Rayleigh–Schrödinger perturbation theory (with respect to the energy).

Main concepts, new terms
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From the research front
The computational cost in the Hartree–Fock method scales with the size N of the atomic
orbital basis set as N4 and, while using devices similar to direct CI, even105 as N3. How-

105This reduction is caused mainly by a preselection of the two-electron integrals. The preselection
allows us to estimate the value of the integral without its computation and to reject the large number
of integrals of values close to zero.
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ever, after doing the Hartree–Fock computations for small (say, up to 10 electrons) systems,
we perform more and more frequently calculations of the electronic correlation. The main
approaches used to this end are: the MP2 method, the CC method with single and dou-
ble excitations in T̂ and partial inclusion of triple ones (the so called CCSD(T) approach).
The-state-of-the art in CC theory currently includes the full CCSDTQP model, which in-
corporates into the cluster expansion all the operators through pentuple excitations.106

The computational cost of the CCSD scheme scales as N6. The computational strategy
often adopted relies on obtaining the optimum geometry of the system with a less sophis-
ticated method (e.g., Hartree–Fock) and, subsequently, calculating the wave function for
that geometry with a more sophisticated approach (e.g., the MP2 that scales as N5, MP4
or CCSD(T) scaling as N7). In the next chapter we will learn about the density functional
theory (DFT) which joins the above mentioned methods and is used for large systems.

Ad futurum. . .
Experimental chemistry is focused, in most cases, on molecules of larger size than those for
which fair calculations with correlation are possible. However, after thorough analysis of the
situation, it turns out that the cost of the calculations does not necessarily increase very fast
with the size of a molecule. Employing localized molecular orbitals and using the multipole
expansion of the integrals involving the orbital separated in space causes, for elongated
molecules, the cost of the post-Hartree–Fock calculations to scale linearly with the size of a
molecule.107 It can be expected that, if the methods described in this Chapter are to survive
in practical applications, such a step has to be made.

There is one more problem which will probably be faced by quantum chemistry when
moving to larger molecules containing heteroatoms. Nearly all the methods including elec-
tron correlation described so far (with the exception of the explicitly correlated functions)
are based on the silent and pretty “obvious” assumption, that the higher the excitation we
consider the higher the configuration energy we get. This assumption seems to be satis-
fied so far, but the molecules considered were always small, and the method has usually
been limited to a small number of excited electrons. This assumption can be challenged
in certain cases. The multiple excitations in large molecules containing easily polarizable
fragments can result in electron transfers which cause energetically favourable strong elec-
trostatic interactions (“mnemonic effect”108) which lower the energy of the configuration.
The reduction can be large enough to make the energy of the formally multiply excited de-
terminant close to that of the Hartree–Fock determinant. Therefore, it should be taken into
account on the same footing as the Hartree–Fock. This is rather unfeasible for the methods
discussed above.

The explicitly correlated functions have a built-in adjustable and efficient basic mecha-
nism accounting for the correlation within the interacting electronic pair. The mechanism is
based on the obvious thing: the electrons should avoid each other.109

Let us imagine the CH4 molecule. Let us look at it from the viewpoint of localized or-
bitals. With the method of explicitly correlated geminal functions for bonds we would suc-
ceed in making the electrons avoid each other within the same bond. And what should

106M. Musiał, S.A. Kucharski, R.J. Bartlett, J. Chem. Phys. 116 (2002) 4382.
107H.-J. Werner, J. Chem. Phys. 104 (1996) 6286.
108L.Z. Stolarczyk, L. Piela, Chem. Phys. Letters 85 (1984) 451, see also A. Jagielska, L. Piela, J. Chem.
Phys. 112 (2000) 2579.
109In special conditions one electron can follow the other together forming a Cooper pair. The Cooper
pairs are responsible for the mechanism of superconductivity. This will be a fascinating field of research
for chemist-engineered materials in the future.
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happen if the centre of gravity of the electron pair of one of the bonds shifts towards the
carbon atom? The centres of gravity of the electron pairs of the remaining three bonds
should move away along the CH bonds. The wave function must be designed in such a way
that it accounts for this. In current theories, this effect is either deeply hidden or entirely
neglected. A similar effect may happen in a polymer chain. One of the natural correlations
of electronic motions should be a shift of
electron pairs of all bonds in the same phase.
As a highly many-electron effect the latter is
neglected in current theories. However, the
purely correlational Axilrod–Teller effect in
the case of linear configuration, discussed in
Chapter 13 (three-body dispersion interac-
tion in the third order of perturbation the-
ory), suggests clearly that the correlated mo-
tion of many electrons should occur.

It seems that the explicitly correlated
functions, in spite of serious problems at the
integral level, can be generalized in future
towards the collective motions of electrons,
perhaps on the basis of the renormalization
theory of Kenneth Wilson (introduced into
chemistry for the first time by Martin Head-
Gordon).110

Kenneth Geddes Wilson (born
1936), American theoretical
physicist. The authorities of
Cornell University worried by
Wilson’s low number of pub-
lished papers. Pressed by his
supervisors, he finally started
to publish, and won in 1982
the Nobel prize for the renor-
malization theory. It is a the-
ory of the mathematical trans-
formations describing a sys-
tem viewed at various scales
(with variable resolution). The
renormalization theory, as ap-
plied by Head-Gordon to the
hydrocarbon molecule, first

uses the LCAO (the usual
atomic orbitals), then, in sub-
sequent approximations, some
linear combinations of func-
tions that are more and more
diffused in space.

Additional literature
A. Szabo, N.S. Ostlund, “Modern Quantum Chemistry”, McGraw-Hill, New York, 1989,
p. 231–378.

Excellent book.

T. Helgaker, P. Jørgensen, J. Olsen, “Molecular Electronic-Structure Theory”, Wiley,
Chichester, 2000, p. 514.

Practical information on the various methods accounting for electron correlation pre-
sented in a clear and competent manner.

Questions
1. The Hartree–Fock method for the helium atom in its ground state. If electron 1 resides

on the one side of the nucleus then electron 2 can be found most likely:
a) on the other side of the nucleus; b) at the nucleus; c) on the same side of a nucleus;
d) at infinite distance from the nucleus.

2. The Gaussian geminal for the helium atom ψ(r1	 r2)=N(1+ κr12)exp[− 1
4 (r

2
1 + r22)],

N is the normalization constant:
a) to satisfy the cusp condition should have κ= 1

2 ;

b) represents the exact wave function for κ= 1
2 ;

c) for κ < 0 takes care of electron repulsion;
d) to satisfy the cusp condition has to have exp[− 1

2 r
2
12] instead of (1+ κr12).

110M. Head-Gordon, “Proc. 5th Intern. Conf. Computers in Chemistry”, Szklarska Poręba, Poland, 1999,
p. L33.



566 10. Correlation of the Electronic Motions

3. The wave function for the H−2 molecule [positions of nuclei a and b: (0	0	0) and
(R	0	0), respectively] in the form of a single Slater determinant, built of three spinor-
bitals φ1(r	σ) = ϕ1(r)α(σ), φ2 = ϕ1(r)β(σ), φ3 = ϕ2(r)α(σ) (ϕ1 is the doubly oc-
cupied bonding, and ϕ2 is the singly occupied antibonding one). If r1 = (R2 	0	0),

σ1 = 1
2 	 r2 = (0	0	0), σ2 = − 1

2 , σ3 = 1
2 then the probability density of finding elec-

tron 3 is:
a) almost zero on nucleus a; b) almost zero on nucleus b; c) equal to 0 everywhere;
d) proportional to |ϕ2|2.

4. A Hartree–Fock function:
a) correlates the positions of all electrons;
b) correlates the positions of electrons with the same spin coordinates;
c) correlates the positions of electrons with opposite spin coordinates;
d) does not correlate the positions of electrons, since in the Hartree–Fock method elec-
tron correlation is not accounted for.

5. The Brillouin theorem says that (Ĥ is the Hamiltonian, �0 is the Hartree–Fock func-
tion, �1 is a singly and �2 a doubly excited Slater determinant):
a)〈�0|Ĥ�1〉 = 0 if all the spinorbitals are orthogonal; b) 〈�1|Ĥ�1〉 = 0; c) 〈�2|Ĥ�1〉 =
0; d) 〈�0|�1〉 = 0.

6. In the Coupled Cluster method (T̂ is the cluster operator, �0 is the Hartree–Fock wave
function) the wave function:
a) is ψ = exp(iT̂ )�0; b) does not vanish in infinity; c) contains only single and double
excitations; d) is ψ= exp(T̂ )�0 and ensures size consistency.

7. MBPT: If the projector P̂ = |ψ(0)0 〉〈ψ(0)0 | and Q̂ =∑∞
n=1 |ψ(0)n 〉〈ψ(0)n | (ψ(0)n form the

complete orthonormal set) then:
a) P̂Q̂= 1; b) (P̂ + Q̂)2 = 1; c) [P̂	 Q̂] = ih̄; d) Q̂= exp(P̂).

8. The Møller–Plesset method (MP2) is:
a) a variational method with two variational parameters; b) a perturbation theory with
unperturbed wave function in the form of a Gaussian geminal; c) a perturbation theory
with the energy computed through the second order; d) a Ritz method limited to double
excitations.

9. To calculate the exact correlation energy:
a) it is enough to have the expansion in singly excited Slater determinants;
b) it is enough to know the Hartree–Fock function;
c) we must use explicitly correlated functions;
d) it is enough to have a certain wave function containing double excitations only.

10. We have the following order of mean values of the Hamiltonian calculated for the func-
tions: I: ψ1 = the Hartree–Fock function, II: ψ2 = the Hartree–Fock function + dou-
bly excited Slater determinant, III: ψ3 = the Hartree–Fock function +λ· doubly excited
Slater determinant (the same as in ψ2), where λ is an optimal variational coefficient:
a) I > III > II; b) I > III and II > III; c) III > II > I; d) I > II > III.

Answers

1b, 2a, 3d, 4b, 5a, 6d, 7b, 8c, 9d, 10b



Chapter 11

ELECTRONIC MOTION:
DENSITY FUNCTIONAL
THEORY (DFT)

Where are we?

We are on an upper right-hand side branch of the TREE.

An example

A metal represents a system that is very difficult to describe using the quantum chem-
istry methods given so far. The Restricted Hartree–Fock method here offers a very bad,
if not pathological, approximation (cf. Chapter 8, p. 371), because the HOMO-LUMO gap
is equal to zero in metals. The methods based on the Slater determinants (CI, MC SCF, CC,
etc., Chapter 10) are ruled out as involving a giant number of excited configurations to be
taken into account, because of the continuum of the occupied and virtual energy levels (see
Chapter 9). Meanwhile, in the past some properties of metals could be obtained, from sim-
ple theories that assumed that the electrons in a metal behave similarly to a homogeneous
electron gas (also known as jellium), and the nuclear charge (to make the whole system electron gas
neutral) has been treated as smeared out uniformly in the metal volume. There has to be
something physically important captured in such theories.

What is it all about

Electronic density – the superstar (�) p. 569

Bader analysis (��) p. 571
• Overall shape of ρ
• Critical points
• Laplacian of the electronic density as a “magnifying glass”

Two important Hohenberg–Kohn theorems (�) p. 579
• Equivalence of the electronic wave function and electron density
• Existence of an energy functional minimized by ρ0

The Kohn–Sham equations (�) p. 584
• The Kohn–Sham system of non-interacting electrons (�)
• Total energy expression (�)
• Derivation of the Kohn–Sham equations

What to take as the DFT exchange–correlation energy Exc? (���) p. 590
• Local density approximation (LDA) (�)
• Non-local approximations (NLDA)
• The approximate character of the DFT vs apparent rigour of ab initio computations

567
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On the physical justification for the exchange–correlation energy (��) p. 592
• The electron pair distribution function
• The quasi-static connection of two important systems
• Exchange–correlation energy vs �aver
• Electron holes
• Physical boundary conditions for holes
• Exchange and correlation holes
• Physical grounds for the DFT approximations

Reflections on DFT success (�) p. 602

The preceding chapter has shown how difficult it is to calculate the correlation energy.
Basically there are two approaches: either to follow configuration interaction type methods
(CI, MC SCF, CC, etc.), or to go in the direction of explicitly correlated functions. The
first means a barrier of more and more numerous excited configurations to be taken into
account, the second, very tedious and time-consuming integrals. In both cases we know the
Hamiltonian and fight for a satisfactory wave function (often using the variational principle,
Chapter 5). It turns out that there is also a third direction (presented in this chapter) that
does not regard configurations (except a single special one) and does not have the bottle-
neck of difficult integrals. Instead, we have the kind of wave function in the form of a single
Slater determinant, but we have a serious problem in defining the proper Hamiltonian.

The ultimate goal of the DFT method is the calculation of the total energy of the system
and the ground-state electron density distribution without using the wave function of the
system.

Why is this important?

The DFT calculations (despite taking electronic correlation into account) are not expensive,
their cost is comparable with that of the Hartree–Fock method. Therefore, the same com-
puter power allows us to explore much larger molecules than with other post-Hartree–Fock
(correlation) methods.

What is needed?

• The Hartree–Fock method (Chapter 8, necessary).
• The perturbational method (Chapter 5, advised).
• Lagrange multipliers (Appendix N, p. 997, advised).

Classic works

The idea of treating electrons in metal as an electron gas was conceived in 1900, indepen-
dently by Lord Kelvin1 and by Paul Drude.2 � The concept explained the electrical con-
ductivity of metals, and was then used by Llewellyn Hilleth Thomas in “The Calculation of
Atomic Fields” published in Proceedings of the Cambridge Philosophical Society, 23 (1926)

1Or William Thomson (1824–1907), British physicist and mathematician, professor at the University
of Glasgow. His main contributions are in thermodynamics (the second law, internal energy), theory
of electric oscillations, theory of potentials, elasticity, hydrodynamics, etc. His great achievements were
honoured by the title of Lord Kelvin (1892).

2Paul Drude (1863–1906), German physicist, professor at the universities in Leipzig, Giessen and
Berlin.
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542 as well as by Enrico Fermi in “A Statistical Method for the Determination of Some Atomic
Properties and the Application of this Method to the Theory of the Periodic System of Elements”
in Zeitschrift für Physik, 48 (1928) 73. They (independently) calculated the electronic kinetic
energy per unit volume (this is therefore the kinetic energy density) as a function of the local
electron density ρ. � In 1930 Paul Adrien Maurice Dirac presented a similar result in “Note
on the Exchange Phenomena in the Thomas Atom”, Proceedings of the Cambridge Philosoph-
ical Society, 26 (1930) 376 for the exchange energy as a function of ρ. � In a classic paper
“A Simplification of the Hartree–Fock Method” published in Physical Review, 81 (1951) 385,
John Slater showed that the Hartree–Fock method applied to metals gives the exchange

energy density proportional to ρ
1
3 � � For classical positions specialists often use a book by

Pál Gombas “Die statistische Theorie des Atoms und ihre Anwendungen”, Springer Verlag,
Wien, 1948. � The contemporary theory was born in 1964–1965, when two fundamental
works appeared: Pierre Hohenberg and Walter Kohn in Physical Review, 136 (1964) B864
entitled “Inhomogeneous Electron Gas” and Walter Kohn and Lu J. Sham in Physical Review,
A140 (1965) 1133 under the title “Self-Consistent Equations including Exchange and Corre-
lation Effects”. � Mel Levy in “Electron Densities in Search of Hamiltonians” published in
Physical Review, A26 (1982) 1200 proved that the variational principle in quantum chem-
istry can be equivalently presented as a minimization of the Hohenberg–Kohn functional
that depends on the electron density ρ. � Richard F.W. Bader in 1994 wrote a book on
mathematical analysis of the electronic density “Atoms in Molecules. A Quantum Theory”,
Clarendon Press, Oxford, that enabled chemists to look at molecules in a synthetic way,
independently of the level of theory that has been used to describe it.

11.1 ELECTRONIC DENSITY – THE SUPERSTAR

In the DFT method we begin from the Born–Oppenheimer approximation, that
allows us to obtain the electronic wave function corresponding to fixed positions
of the nuclei. We will be interested in the ground-state of the system.

As it will turn out later on,

to describe this state instead of the N electron wave function
�(1	2	 � � � 	N), we need only the electron density distribution defined as:

ρ(r)=N
∑

σ1=− 1
2 	

1
2

∫

dτ2 dτ3 � � � dτN
∣
∣�(r	σ1	 r2	σ2	 � � � 	 rN	σN)

∣
∣
2
�

(11.1)

It is seen that we obtain ρ by carrying out the integration of |�|2 over the coor-
dinates (space and spin) of all the electrons except one (in our case electron 1 with
coordinates r	σ1) and in addition the summation over its spin coordinate (σ1).
Thus we obtain a function of the position of electron 1 in space: ρ(r). The wave
function � is antisymmetric with respect to the exchange of the coordinates of any
two electrons, and, therefore, |�|2 is symmetric with respect to such an exchange.
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Hence, the definition of ρ is independent of the label of the electron we do not in-
tegrate over. According to this definition, ρ represents nothing else but the density
of the electron cloud carrying N electrons, hence (integration over the whole 3D
space):

∫

ρ(r)d3r=N� (11.2)

Therefore the electron density distribution ρ(r) is given for a point r in the units:
the number of electrons per volume unit (e.g., 0.37 Å−3). Since ρ(r) represents
an integral of a non-negative integrand, ρ(r) is always non-negative. Let us check
that ρ may also be defined as the mean value of the density operator ρ̂(r), or sum
of the Dirac delta operators (cf. Appendix E on p. 951) for individual electrons at
position r:

ρ(r)= 〈�|ρ̂�〉 ≡
〈

�

∣
∣
∣
∣
∣

(
N
∑

i=1

δ(ri − r)
)

�

〉

=
N
∑

i=1

〈

�
∣
∣
(

δ(ri − r)
)

�
〉

� (11.3)

Indeed, each of the integrals in the summation is equal to ρ(r)/N , the summa-
tion over i gives N , therefore, we obtain ρ(r).

If the function � is taken as a normalized Slater determinant built of N spinor-
bitals φi, from the I rule of Slater–Condon (Appendix M) for 〈�|(∑N

i=1 δ(ri −
r))�〉 we obtain (after renaming the electron coordinates in the integrals, the in-
tegration is over the spatial and spin coordinates of electron 1)3

ρ(r) = 〈φ1(1)
∣
∣δ(r1 − r)φ1(1)

〉

1 +
〈

φ2(1)
∣
∣δ(r1 − r)φ2(1)

〉

1 + · · ·
+ 〈φN(1)

∣
∣δ(r1 − r)φN(1)

〉

1

=
N
∑

i=1

∑

σ1=− 1
2 	+ 1

2

∣
∣φi(r	σ1)

∣
∣
2
� (11.4)

If we assume the double occupancy of the molecular orbitals, we have

ρ(r) =
N
∑

i=1

∑

σ1

∣
∣φi(r	σ1)

∣
∣
2 =

N/2
∑

i=1

∑

σ1

∣
∣ϕi(r)α(σ1)

∣
∣
2 +

N/2
∑

i=1

∑

σ1

∣
∣ϕi(r)β(σ1)

∣
∣
2

=
N/2
∑

i=1

2
∣
∣ϕi(r)

∣
∣
2
	

where ϕi stand for the molecular orbitals. We see that admitting the open shells
we have

ρ(r)=
∑

i

ni
∣
∣ϕi(r)

∣
∣
2 (11.5)

with ni = 0	1	2 denoting orbital occupancy in the Slater determinant.
3This expression is invariant with respect to any unitary transformation of the molecular orbitals, cf.

Chapter 8.
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11.2 BADER ANALYSIS
11.2.1 OVERALL SHAPE OF ρ

Imagine an electron cloud with a charge distribution4 that carries the charge of
N electrons. Unlike a storm cloud, the electron cloud does not change in time
(stationary state), but has density ρ(r) that changes in space (similar to the storm
cloud). Inside the cloud the nuclei are located. The function ρ(r) exhibits non-
analytical behaviour (discontinuity of its gradient) at the positions of the nuclei,
which results from the poles (−∞) of the potential energy at these positions. Re-
call the shape of the 1s wave function for the hydrogen-like atom (see Fig. 4.17),
it has a spike at r = 0. In Chapter 10 it was shown that the correct electronic wave
function has to satisfy the cusp condition in the neighbourhood of each of the nu-
clei, where ρ changes as exp(−2Zr). This condition results in spikes of ρ(r) exactly
at the positions of the nuclei, Fig. 11.1.a. How sharp such a spike is5 depends on
the charge of the nucleus Z: an infinitesimal deviation from the position of the
nucleus (p. 505) has to be accompanied by such a decreasing of the density6 that
∂ρ
∂r /ρ=−2Z.

Thus, because of the Coulombic interactions, the electrons will concentrate
close to the nuclei, and therefore we will have maxima of ρ right on them. It is
evident also, that at long distances from the nuclei the density ρ will decay to prac-
tically zero. Further details will be of great interest, e.g., are there any concentra-
tions of ρ in the regions between nuclei? If yes, will it happen for every pair of
nuclei or for some pairs only? This is of obvious importance for chemistry, which
deals with the concept of chemical bonds and a model of the molecule as the nuclei
kept together by a chemical bond pattern.

11.2.2 CRITICAL POINTS

For analysis of any function, including the electronic density as a function of the
position in space, the critical (or stationary) points are defined as those that have critical points

4Similar to a storm cloud in the sky.
5If non-zero size nuclei were considered, the cusps would be rounded (within the size of the nuclei),

the discontinuity of the gradient would be removed and regular maxima would be observed.
6It has been shown (P.D. Walker, P.G. Mezey, J. Am. Chem. Soc. 116 (1994) 12022) that despite the

non-analytical character of ρ (because of the spikes) the function ρ has the following remarkable prop-
erty: if we know ρ even in the smallest volume, this determines ρ in the whole space. A by-product of
this theorem is of interest for chemists. Namely, this means that a functional group in two different
molecules or in two conformations of the same molecule cannot have an identical ρ characteristic for
it. If it had, from ρ in its neighbourhood we would be able to reproduce the whole density distribu-
tion ρ(r)	 but for which of the molecules or conformers? Therefore, by reductio ad absurdum we have
the result: it is impossible to define (with all details) the notion of a functional group in chemistry.
This is analogous to the conclusion drawn in Chapter 8 about the impossibility of a rigorous definition
of a chemical bond (p. 397). This also shows that chemistry and physics (relying on mathematical ap-
proaches) profit very much, and further, are heavily based on, some ideas that mathematics destroys in
a second. Nevertheless, without these ideas natural sciences would lose their generality, efficiency and
. . . beauty.
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Fig. 11.1. Electron density ρ for the planar ethylene molecule shown in three cross sections.
∫

ρ(r)d3r = 16, the number of electrons in the molecule. Fig. (a) shows the cross section within the
molecular plane. The positions of the nuclei can be easily recognized by the “spikes” of ρ (obviously
much more pronounced for the carbon atoms than for the hydrogens atoms), their charges can be
computed from the slope of ρ. Fig. (b) shows the cross section along the CC bond perpendicular to the
molecular plane, therefore, only the maxima at the positions of the carbon nuclei are visible. Fig. (c) is
the cross section perpendicular to the molecular plane and intersecting the CC bond (through its centre). It
is seen that ρ decays monotonically with the distance from the bond centre. Most interesting, however,
is that the cross section resembles an ellipse rather than a circle. Note that we do not see any separate
σ or π densities. This is what the concept of π bond is all about, just to reflect the bond cross section
ellipticity. R.F.W. Bader, T.T. Nguyen-Dang, Y. Tal, Rep. Progr. Phys. 44 (1981) 893, courtesy of Institute
of Physics Publishing, Bristol, UK.
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vanishing gradient
∇ρ= 0�

These are maxima, minima and saddle points. If we start from an arbitrary point
and follow the direction of ∇ρ, we end up at a maximum of ρ. The compact set
of starting points which converge in this way to the same maximum is called the
basin of attraction of this maximum, and the position of the maximum is known as
attractor. The position may correspond to any of the nuclei or to a non-nuclear
electronic distribution (non-nuclear attractors,7 Fig. 11.2.a). The largest maxima non-nuclear

attractorscorrespond to the positions of the nuclei. Formally, positions of the nuclei are
not the stationary points, because ∇ρ has a discontinuity here connected to the
cusp condition (see Chapter 10, p. 504). A basin has its neighbour-basins and the
border between the basins (a surface) satisfies ∇ρ · n= 0, where n is a unit vector
perpendicular to the surface (Fig. 11.2.b,c).

In order to tell whether a particular critical point represents a maximum (non-
nuclear attractor), a minimum or a saddle point we have to calculate at this point

the Hessian, i.e. the matrix of the second derivatives: { ∂2ρ
∂ξi∂ξj

}, where ξ1 = x, ξ2 = y ,
ξ3 = z� Now, the stationary point is used as the origin of a local Cartesian coordi-
nate system, which will be rotated in such a way as to obtain the Hessian matrix
(computed in the rotated coordinate system) diagonal. This means that the rota-
tion has been performed in such a way that the axes of the new local coordinate
system are collinear with the principal axes of a quadratic function that approx-
imates ρ in the neighbourhood of the stationary point (this rotation is achieved

simply by diagonalization of the Hessian { ∂2ρ
∂ξi∂ξj

}	 cf. Appendix K). The diagonal-
ization gives three eigenvalues. We have the following possibilities:

• All three eigenvalues are negative – we have a maximum of ρ (non-nuclear attrac-
tor, Fig. 11.2.a).

• All three eigenvalues are positive – we have a minimum of ρ. The minimum ap-
pears when we have a cavity, e.g., in the centre of fullerene. When we leave cavity

this point, independently of the direction of this motion, the electron density
increases.

• Two eigenvalues are positive, while one is negative – we have a first-order saddle
point of ρ. The centre of the benzene ring may serve as an example (Fig. 11.2.d). ring

If we leave this point in the molecular plane in any of the two independent direc-
tions, ρ increases (thus, a minimum of ρ within the plane, the two eigenvalues
positive), but when leaving perpendicularly to the plane the electronic density
decreases (thus a maximum of ρ along the axis, the negative eigenvalue).

7For example, imagine a few dipoles with their positive poles oriented towards a point in space. If
the dipole moments exceed some value, it may turn out that around this point there will be a concen-
tration of electron density having a maximum there. This is what happens in certain dipoles, in which
an electron is far away from the nuclear framework (sometimes as far as 50 Å) and keeps following
the positive pole of the dipole (“a dipole-bound electron”) when the dipole rotates in space, see, e.g.,
J. Smets, D.M.A. Smith, Y. Elkadi, L. Adamowicz, Pol. J. Chem. 72 (1998) 1615.
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Fig. 11.2. How does the electronic density change when we leave a critical point? Fig. (a) illustrates a
non-nuclear attractor (maximum of ρ, no cusp). Note that we can tell the signs of some second deriv-

atives (curvatures) computed at the intersection of black lines (slope), the radial curvature ∂2ρ
∂(z′)2 is

positive, while the two lateral ones (only one of them: ∂2ρ
∂(x′)2 is shown) are negative. If for the function

shown the curvatures were computed at the maximum, all three curvatures would be negative, Fig. (b)
shows the idea of the border surface separating two basins of ρ corresponding to two nuclei: A and B.
Right at the border between the two basins the force lines of ∇ρ diverge: if you make a step left from
the border, you end up in the basin of nucleus A, if you make a step right, you get into the basin of B.
Just at the border you have to have ∇ρ · n= 0, because the two vectors: ∇ρ and n are perpendicular.
Fig. (c): The same showing additionally the density function for chemical bond AB. The border surface
is shown as a black line. Two of three curvatures are negative (one of them shown), the third one (along
AB line) is positive. Fig. (d) illustrates the electronic density distribution in benzene. In the middle of
the ring two curvatures are positive (shown), the third curvature is negative (not shown). If the curva-
tures were computed in the centre of the fullerene (not shown), all three curvatures would be positive
(because the electron density increases when going out of the centre).

• One eigenvalue is positive, while two are negative – we have a second-order saddle
point of ρ. It is a very important case, because this is what happens at any cova-
lent chemical bond (Figs. 11.1, 11.2.c). In the region between some8 nuclei of achemical bond

polyatomic molecule we may have such a critical point. When we go perpendicu-

8Only some pairs of atoms correspond to chemical bonds.
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larly to the bond in any of the two possible directions, ρ decreases (a max-
imum within the plane, two eigenvalues negative), while going towards
any of the two nuclei ρ increases (to
achieve maxima at the nuclei; a mini-
mum along one direction, i.e. one eigen-
value positive). The critical point needs
not be located along the straight line go-
ing through the nuclei (“banana” bonds
are possible), also its location may be
closer to one of the nuclei (polarization).
Thus the nuclei are connected by a kind
of electronic density “rope” (most dense
at its core and decaying outside) extend-
ing from one nucleus to the other along a
curved line, having a single critical point
on it, its cross section for some bonds cir-
cular, for others elliptic-like.9 Calcula-

Richard Bader (born 1931),
Canadian chemist, professor
emeritus at McMaster Univer-
sity in Canada. After his PhD
at the Massachusetts Insti-
tute of Technology he won
an international fellowship to
study at Cambridge Univer-
sity in UK under Christopher
Longuet-Higgins. At their first
meeting Bader was given the
titles of two books together
with: “When you have read
these books, maybe we can
talk again”. From these books
Bader found out about theo-
ries of electron density. From

that time on he became con-
vinced that electron density
was the quantity of prime im-
portance for the theory. Photo
reproduced thanks to cour-
tesy of Richard Bader.

tions have shown that when the two nu-
clei separate, the rope elongates and
suddenly, at a certain internuclear dis-
tance it breaks down (this corresponds
to zeroing one of the eigenvalues). The
set of parameters (like the internuclear

distance) at which det{ ∂2ρ
∂ξi∂ξj

} = 0 (cor-
responding to an eigenvalue equal to 0)
is called the catastrophe set. Thus the
catastrophe theory of René Thom turns
out to be instrumental in chemistry.

René Thom (1923–2002),
French mathematician, pro-
fessor at the Université de
Strasbourg and founder of
catastrophe theory (1966).
The theory analyzes abrupt
changes of functions (change
of the number and charac-
ter of stationary points) upon
changing some parameters.
In 1958 René Thom received
the Fields Medal, the highest

distinction for a mathemati-
cian.

11.2.3 LAPLACIAN OF THE ELECTRONIC DENSITY AS A “MAGNIFYING
GLASS”

Now we will focus on the Hessian of ρ beyond the critical points.
Fig. 11.3.a shows a decreasing function f (x), i.e. f ′ ≡ df

dx < 0, with a single well
developed maximum at x = 0 and a small hump close to x2� The function some-
what resembles the electron density decay, say, for the neon atom, when we go

out of the nucleus. Note, that the function −f ′′ ≡ −d2f

dx2 exhibits an easily visible

9All the details may be computed nowadays by using quantum mechanical methods, often most de-
manding ones (with the electronic correlation included). Contemporary crystallography is able to mea-
sure the same quantities in some fine X-ray experiments. Therefore, the physicochemical methods are
able to indicate precisely which atoms are involved in a chemical bond: is it strong or not, is it straight
or curved (“rope-like” banana bond), what is the thickness of the “rope”, has it a cylindrical or oval
cross-section (connected to its σ or π character), etc. A good review is available: T.S. Koritsanszky,
P. Coppens, Chem. Rev. 101 (2001) 1583.
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Fig. 11.3. The principle of the Bader
analysis of electronic density distribution.

The quantity −f ′′ = − d2f
dx2 works as a

“magnifying glass” for almost invisible
humps of the function f (x). Fig. (a) shows
a decreasing function f (x), that is simi-
lar to the dependence of the electron den-
sity of an atom as a function of the dis-
tance from the nucleus, with a trace of a
hump near x2� Figs. (b,c) show the deriv-
atives f ′ and −f ′′ , respectively. The al-
most invisible hump on f turns out to be
very visible when the function −f ′′ has
been plotted. This is why, in the Bader ap-
proach,−� plays the role of a “magnifying
glass”. R.F.W. Bader, “Atoms in Molecules.
A Quantum Theory”, Clarendon Press, Ox-
ford 1994, by permission from the Oxford
University Press.

maximum close to x2� If the cusp at x= 0 were absent,10 −f ′′ would also exhibit a
maximum at x= 0.

We may say that −d2f

dx2 can detect some subtle features of the f (x) plot
and gives maxima where the original function f (x) has only almost invis-
ible “humps”.

10Non-zero size of the nucleus or/and Gaussian type orbitals.
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There is a similar story with the function−�ρ(x	 y	 z)=−(∂2ρ
∂x2 + ∂2ρ

∂y2 + ∂2ρ
∂z2 ), ex-

cept that here we have three Cartesian coordinates. The way we choose the direc-
tions of the Cartesian axes is irrelevant, because at any point of space −�ρ(x	 y	 z)
does not depend on such a choice. Indeed, the coordinate systems, which we may
choose, differ by an orthogonal transformation, which is peculiar for it does leave
the trace of the Hessian (i.e. �ρ) invariant.

Imagine now ρ of an atom decaying with the distance to the nucleus as f (x),
similar to the decay of a smoke cloud (Fig. 11.4.a), dense in the centre and van-
ishing outward. Let us calculate the Hessian at every point along the radius. It
is easy to calculate �ρ(x	 y	 z) simply by summing up the diagonal terms of the
Hessian. If we diagonalized the Hessian (i.e. rotated the axes in a particular way)
its eigenvalues would correspond to the curvatures of the sections of ρ along the
new coordinate axes (x′	 y ′	 z′):

• The section along the radius (say z′). This curvature (see Fig. 11.2.a) is expected
to be large and positive, since this is the direction ρ exponentially decays.

• Two other sections: along x′ and along y ′ (only the first of them is shown in
Fig. 11.2.a). These sections at a given radius mean cutting perpendicularly to
the radius, and whether looking along x′ or along y ′ we see the same: a larger
value at the radius and a decay outside, i.e. both eigenvalues are negative.

Fig. 11.4 displays ρ and −�ρ for the argon atom. Despite an apparent lack
of any internal structure of the function ρ (left figure), the function −�ρ
detected three concentrations of charge similar to the hump of the function
f (x) at x2, Fig. 11.3. Thus, −�ρ(x	 y	 z) plays the role of a “magnifying
glass”: these are the K, L, M shells of the argon atom, seen very clearly.

Fig. 11.5 shows −�ρ for the systems N2, Ar2 and F2. The figure highlights the
shell character of the electronic structure of each of the atoms.11 Fig. 11.2.c shows

Fig. 11.4. A cross section of ρ (Fig. (a)) as well as a cross section of −�ρ (Fig. (b)) for the argon atom.
The three humps (b) correspond to the K, L, M electron shells, cf. p. 380. R.F.W. Bader, “Atoms in Mole-
cules. A Quantum Theory”, Clarendon Press, Oxford, 1994, by permission from the Oxford University
Press.

11Note, that the nitrogen as well as the fluorine have two shells (K and L), while the argon atom has
three shells (K, L, M), cf. Chapter 8.
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Fig. 11.5. A cross section of the quantity−�ρ for N2, Ar2 and F2�We will focus now on the−�ρ value,
computed in the middle of the internuclear distance. We can see that (a) for N2 the value of −�ρ > 0
(chemical bond), (b) for Ar–Ar, −�ρ < 0 (no chemical bond) and (c) a very small positive −�ρ for F2
(weak chemical bond). J.D. Dunitz, P. Seiler, J. Am. Chem. Soc. 105 (1983) 7056 even talk about the
decreasing of ρ in the middle of F2, when compared to the sum of densities of the non-interacting atoms.
R.F.W. Bader, “Atoms in Molecules. A Quantum Theory”, Clarendon Press, Oxford, 1994, by permission
from the Oxford University Press.

that the electronic density is the greatest along the bond and drops outside in each
of the two orthogonal directions. If, however, we went along the bond approaching
any of the nuclei, the density would increase. This means that there is a saddle point
of the second order, because one eigenvalue of the Hessian is positive and two
negative.

If there were no covalent bond at all (non-bonded atoms or ionic bond: no
electron density “rope” connecting the nuclei), the last two values would
be zero, and this means that −�ρ < 0. Thus, if it happens that for a bond
−�ρ > 0, this means a large perpendicular contribution, i.e. a “rope-like”
covalent bond.

For the N2 molecule we have a large value of −�ρ > 0 between the nuclei,
which means an electronic charge concentrated in a strong bond. The nuclei have,
therefore, a dilemma, whether to run off, because they repel each other, or to run
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only a little, because there in the middle of the bond is such a beautiful negative
charge (the nuclei choose the second possibility). This dilemma is absent in the
Ar2 system (Fig. 11.5.b): the electronic charge runs off the middle of the bond, the
nuclei get uncovered and they run off. The molecule F2 sticks together but not very
strongly, just look at the internuclear region, −�ρ is quite low over there.12

11.3 TWO IMPORTANT HOHENBERG–KOHN THEOREMS

11.3.1 EQUIVALENCE OF THE ELECTRONIC WAVE FUNCTION AND
ELECTRON DENSITY

Hohenberg and Kohn proved in 1964 an interesting theorem.13

The ground-state electronic density ρ0(r) and the ground-state wave func-
tion �0 can be used alternatively as full descriptions of the ground state of
the system.

This theorem is sometimes proved in
a quite special way. Imagine somebody
gave us ρ0(r) without a single word of
explanation. We have no idea which sys-
tem it corresponds to. First, we calcu-
late

∫

ρ0(r)d3r, where the integration
goes over the whole space. This gives a
natural number N , which is the number
of electrons in the system. We did not
know it, now we do. Next, we investi-
gate the function ρ0(r) looking at its val-
ues, point by point. We are searching for
the “spikes” (cusps), because every cusp
tells us, where a nucleus is.14 After this

Walter Kohn (b. 1923), Amer-
ican physicist of the Austrian
origin, professor at the Uni-
versity of California – Santa
Barbara. His conviction about
the primary role the electronic
density plays, led him to fun-
damental theoretical discov-
eries. Kohn shared the No-
bel Prize with John A. Pople
in 1998, receiving it “for his
development of the density-
functional theory”.

is done, we know all the positions of the nuclei. Now, we concentrate on each of
the nuclei and look how fast the density drops, when leaving the nucleus. The cal-
culated slope has to be equal to a negative even number: −2Z (see p. 571), and
Z gives us the charge of the nucleus. Thus, we have deduced the composition of
our system. Now we are in a position to write down the Hamiltonian for the sys-
tem and solve the Schrödinger equation. After that we know the ground-state wave
function.15

12We see now why the F2 molecule does not represent an easy task for the Hartree–Fock method
(Chapter 8, the method indicated that the molecule . . . does not exist).
13P. Hohenberg, W. Kohn, Phys. Rev. B 136 (1964) 864.
14ρ(r) represents a cloud similar to those that float in the sky. This “spike”, therefore, means simply a

high density in the cloud.
15And all the excited states wave functions as well!
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We started, therefore, from ρ0(r), and we got the ground-state wave func-
tion �0. According to eq. (11.1), from the wave function by integration we
obtain the density distribution ρ0(r). Hence, ρ0(r) contains the same pre-
cise information about the system as does �0.

Thus, if we know ρ0, we also know �0, and, if we know �0, we also know ρ0.16

The proof we carried out pertains only to the case when the external potential
(everything except the interelectronic interaction) acting on the electrons stems,
from the nuclei. The Hohenberg–Kohn theorem can be proved for an arbitrary
external potential – this property of the density is called the v-representability.v-represent-

ability The arbitrariness mentioned above is necessary in order to define in future the
functionals for more general densities (than for isolated molecules). We will
need that generality when introducing the functional derivatives (p. 587) in which

Johann Lejeune-Dirichlet
(1805–1859), German math-
ematician, professor at the
universities in Berlin and Göt-
tingen. His achievements are
in number theory, infinite se-
ries, variational calculus and
theory of potential. He is also
notorious for designing the
“most strange function ever”
(discontinuous and nondiffer-
entiable in every point) de-
fined as f (x) taking the value

1 for commensurate x and 0
for non-commensurate x.

ρ(r) has to correspond to any exter-
nal potential (or, to be a v-representable
density). Also we will be interested in a
non-Coulombic potential corresponding
to the harmonic helium atom (cf. harmo-
nium, p. 507) to see how exact the DFT
method is. We may imagine a ρ, which is
not v-representable, e.g., discontinuous
(in one, two or even in every point like
the Dirichlet function). The density dis-
tributions that are not v-representable
are out of our field of interest.

11.3.2 EXISTENCE OF AN ENERGY FUNCTIONAL MINIMIZED BY ρ0

Hohenberg and Kohn also proved an analogue of the variational principle (p. 196):

For a given number of electrons (the integral over ρ equals N) and external
potential v, there exists a functional of ρ, denoted by EHK

v [ρ], for which the
following variational principle is satisfied:

EHK
v [ρ]	EHK

v [ρ0] =E0	

where ρ0 stands for the (ideal) electronic density distribution for the ground
state of the energy E0�

16The theorem just proved shines in its simplicity. People thought that the wave function, usually a very
complicated mathematical object (that depends on 3N space and N spin coordinates) is indispensable
for computing the properties of the system. Moreover, the larger the system the greater the difficul-
ties in calculating it (please recall Chapter 10 with billions of excitations, non-linear parameters, etc.).
Besides, how to interpret such a complex object? Horror. And it turns out that everything about the
system just sits in ρ(r), a function of position in our well known 3D space. It turns out that information
about nuclei is hidden in such a simple object. This seems trivial (cusps), but we also have in ρ(r) much
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It appears that the energy E0 represents the minimum value of a certain, unfor-
tunately unknown, functional, and, this minimum value is obtained when inserting
the density distribution ρ equal to the perfect ground-state density distribution ρ0
into the functional.

We will prove this theorem using the variational principle in a way first given by
Levy.17 The variational principle states that E0 =min〈�|Ĥ|�〉, where we search
among the wave functions � normalized to 1 and describing N electrons. This
minimization may be carried out in two steps:

E0 = min
ρ	
∫

ρdV =N
min
�→ρ

〈

�
∣
∣T̂ +U + V ∣∣�〉 (11.6)

where T̂ 	U	V represent the kinetic energy, the electron repulsion and the
electron-nuclei attraction operators, respectively, for all the N electrons of our
system (the hat in operators will be omitted, if the operator has a multiplicative
character).

The minimization goes in two stages:
• The internal minimization is performed at the condition labelled as “�→ ρ”,

which means minimization among the N-electron functions that are normal-
ized to 1, and any of them give a fixed density distribution ρ “carrying” N elec-
trons. As a result of this minimization we obtain a functional of ρ given as
min�→ρ〈�|T̂ +U + V |�〉.

• In the external minimization symbolized by “ρ	
∫

ρdV =N” we go over all the
density distributions ρ that integrate to N (i.e. describe N electrons), and, we
choose ρ = ρ0 which minimizes min�→ρ〈�|T̂ + U + V |�〉� According to the
variational principle (p. 197), this minimum is bound to be the exact ground-
state energy E0, while ρ0 is the exact ground-state density distribution.
Therefore, both minimizations do the same as the variational principle.
It is easy to show that 〈�|V �〉 may be expressed as an integral involving the

density distribution ρ instead of �. Indeed, since

V =
N
∑

i=1

v(i)	 where v(i)≡ v(ri)=
∑

A

− ZA
|ri − rA| (11.7)

(i.e. V is a sum of one-electron operators, 〈�|V �〉 =∑N
i=1〈�|vi�〉), then in each

of the resulting integrals 〈�|v(i)�〉 we may carry out the integration over all
the electrons except one, and for this single one we sum over its spin coordi-
nate. It is easy to see that every such term (their number is N) gives the same
result 〈�|v(i)�〉 = 1

N

∫

v(r)ρ(r)d3r, because the electrons are indistinguishable.
Because of this we will get

〈�|V �〉 =
∫

v(r)ρ(r)d3r� (11.8)

more subtle information about how electrons avoid each other due to Coulombic repulsion and the
Pauli exclusion principle.
17M. Levy, Phys. Rev. A 26 (1982) 1200.
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Fig. 11.6. Levy variational principle. The task of the internal minimization is: at a given fixed density
distribution ρ carryingN electrons, choose among those normalized functions�, that all produce ρ (we
will denote this by the symbol “�→ ρ”), such a function that minimizes 〈�|T̂ + U |�〉 of eq. (11.10).
In the upper part of the figure three sets of such functions � are shown: one set gives ρ1, the second
ρ0, the third ρ2. The external minimization symbolized by “ρ	

∫

ρdV =N” chooses among all possible
electron distributions ρ (that correspond to N electrons, the centre part of the figure) such a distribu-
tion ρ= ρ0, that gives the lowest value (the ground state energy E0, see the bottom part of the figure) of
the Hohenberg–Kohn functional EHK

v , i.e. E0 =minρ	
∫

ρdV =N EHK
v � Note that among the functions

� that give ρ0 there is the exact ground-state wave function �0.

Therefore, the Levy minimization may be written as

E0 = min
ρ	
∫

ρdV =N

{∫

v(r)ρ(r)d3r+ min
�→ρ

〈

�
∣
∣
(

T̂ +U)�〉
}

� (11.9)

At this point we define the auxiliary functional18 FHK:

18A functional is always defined in a domain, in our case a domain of the allowed ρ’s. How do the
allowed ρ’s look? Here are the conditions to fulfil: a) ρ	 0; b)

∫

ρdV =N ; c) ∇ρ1/2 square-integrable.
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FHK[ρ] = min
�→ρ

〈�|(T̂ +U)�〉 ≡ 〈�min|(T̂ +U)�min〉	 (11.10)

where �min stands for a normalized function which has been chosen among those
that produce a given ρ, and makes the smallest 〈�|T̂+U |�〉+const, where const=
∫

vρd3r. In the DFT we define the crucial Hohenberg–Kohn functional EHK
v [ρ] as Hohenberg–

Kohn
functional

EHK
v [ρ] =

∫

v(r)ρ(r)d3r+ FHK[ρ]	 (11.11)

and the minimum of this functional is the ground-state energy

E0 = min
ρ	
∫

ρdV =N
EHK
v [ρ]	 (11.12)

while ρ that minimizes EHK
v [ρ] represents the exact ground-state density distrib-

ution ρ0, Fig. 11.6. Each ρ corresponds to at least one antisymmetric electronic
wave function (the “N-representability” mentioned above), and there is no better
wave function than the ground-state, which, of course, corresponds to the density
distribution ρ0. This is why we have:

HOHENBERG–KOHN FUNCTIONAL:
The Hohenberg–Kohn functional EHK

v [ρ] attains minimum E0 = EHK
v [ρ0]

for the ideal density distribution.
Now our job will be to find out what mathematical form the functional could
have. And here we meet the basic problem of the DFT method: nobody has
so far been able to give such a formula. The best which has been achieved
are some approximations. These approximations, however, are so good that
they begin to supply results that satisfy chemists.

Therefore, when the question is posed: “Is it possible to construct a quan-
tum theory, in which the basic concept would be electronic density?”, we have to
answer: “yes, it is”. This answer, however, has only an existential value (“yes,
there exists”). We have no information about how such a theory could be con-
structed.

An indication may come from the concept of the wave function. In order to
proceed towards the above mentioned unknown functional, we will focus on the
ingenious idea of a fictitious Kohn–Sham system of non-interacting electrons.

Among these conditions we do not find any that would require the existence of such an antisymmetric
� ofN electrons that would correspond [in the sense of eq. (11.1)] to the density ρ under consideration
(this is known as N-representability). It turns out that such a requirement is not needed, since it was
proved by Thomas Gilbert (the proof may be found in the book by R.G. Parr and W. Yang “Density-
Functional Theory of Atoms and Molecules”, Oxford University Press, New York, 1989), that every ρ, that
satisfies the above conditions, is N-representable, because it corresponds to at least one antisymmetric
N-electron �.
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11.4 THE KOHN–SHAM EQUATIONS

11.4.1 THE KOHN–SHAM SYSTEM OF NON-INTERACTING ELECTRONS

Let us consider an electron subject to some “external” potential19 v(r), for example
coming from the Coulombic interaction with the nuclei (with charges Zα in a.u.
and positions rA)

v(r)=
∑

A

− ZA
|r− rA| � (11.13)

In this system we have N electrons, which also interact by Coulombic forces be-
tween themselves. All these interactions produce the ground-state electronic den-
sity distribution ρ0 (ideal, i.e. that we obtain from the exact, 100% correlated wave
function). Now let us consider

FICTITIOUS KOHN–SHAM SYSTEM:
the fictitious Kohn–Sham system of N model electrons (fermions), that do
not interact at all (as if their charge were equal zero), but, instead of the
interaction with the nuclei, they are subject to an external potential v0(r)
so ingeniously tailored that ρ does not change, i.e. we still have the ideal
ground-state electronic density ρ= ρ0.

Let us assume for a while that we have found such a wonder potential v0(r).
We will worry later about how to find it in reality. Now we assume the problem has
been solved. Can we find ρ? Of course, we can. Since the Kohn–Sham electrons do
not interact between themselves, we have only to solve the one-electron equation
(with the wonder v0)

(

−1
2
�+ v0

)

φi = εiφi (11.14)

where φi are some spinorbitals, of course, called the Kohn–Sham spinorbitals.20

19In the DFT the word “external potential” means any potential that is external with respect to a
system of N electrons.
20If the electrons do not interact, the corresponding wave function can be taken as a product of the

spinorbitals for individual electrons. Such a function for electrons is not antisymmetric, and, therefore,
is “illegal”. Taking the Kohn–Sham determinant (instead of the product) helps, because it is antisym-
metric and represents an eigenfunction of the total Hamiltonian of the fictitious system [i.e. the sum of
the one-electron operators given in parenthesis in eq. (11.14)]. This is easy to show, because a deter-
minant represents a sum of products of the spinorbitals, the products differing only by permutation of
electrons. If the total Hamiltonian of the fictitious system acts on such a sum, each term (product) is its
eigenfunction, and each eigenvalue amounts to

∑N
i=1 εi , i.e. is the same for each product. Hence, the

Kohn–Sham determinant represents an eigenfunction of the fictitious system. Scientists compared the
Kohn–Sham orbitals with the canonical Hartree–Fock orbitals with great interest. It turns out that the
differences are small.
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The total wave function is a Slater determinant, which in our situation
should rather be called the Kohn–Sham determinant. The electronic den-
sity distribution of such a system is given by eq. (11.5) and the density dis-
tribution ρ means exact, i.e. correlated 100% (thanks to the “wonder” and
unknown operator v0).

11.4.2 TOTAL ENERGY EXPRESSION

Let us try to write down a general expression for the electronic ground-state energy
of the system under consideration. Obviously, we have to have in it the kinetic
energy of the electrons, their interaction with the nuclei and their repulsion among
themselves. However, in the DFT approach we write the following

E = T0 +
∫

v(r)ρ(r)d3r+ J[ρ] +Exc[ρ]	 (11.15)

where

• instead of the electronic kinetic energy of the system we write down (in cold
blood) the electronic kinetic energy of the fictitious Kohn–Sham system of (non-
interacting) electrons T0 (please, recall the Slater–Condon rules, p. 986),

T0 =−1
2

N
∑

i=1

〈φi|�φi〉; (11.16)

• next, there is the correct electron-nuclei interaction (or other external potential)
term:

∫

v(r)ρ(r)d3r;
• then, there is a self-interaction of the electron cloud with itself:21 self-interaction

J[ρ] = 1
2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2| d3r1 d3r2� (11.17)

No doubt, the energy expression might contain such a self-interaction, but this
is certainly not all that should be included in the electron–electron interaction.
Two electrons repel each other electrostatically and therefore around each of them
there has to exist a kind of no-parking zone for the other one (“Coulomb hole”,

21How to compute the Coulombic interaction within a storm cloud exhibiting certain charge dis-
tribution ρ? At first sight it looks like a difficult problem, but remember we know how to calcu-
late the Coulombic interaction of two point charges. Let us divide the whole cloud into tiny cubes,
each of volume dV . The cube that is pointed by the vector r1 contains a tiny charge ρ(r1)dV ≡
ρ(r1)d3r1. We know that when calculating the Coulombic interaction of two such cubes we have
to write: ρ(r1)ρ(r2)|r1−r2| d3r1 d3r2� This has to be summed over all possible positions of the first and

the second cube:
∫∫ ρ(r1)ρ(r2)|r1−r2| d3r1 d3r2, but in such a way each interaction is computed twice, be-

cause they represent parts of the same cloud. Hence, the final self-interaction of the storm cloud is
1
2
∫∫ ρ(r1)ρ(r2)|r1−r2| d3r1 d3r2� The expression for the self-interaction of the electron cloud is the same.
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cf. p. 515). Also a no-parking zone results, because electrons of the same spin co-
ordinate hate one another22 (“exchange”, or “Fermi hole”, cf. p. 516). The integral
J does not take such a correlation of motions into account.

Thus, we have written a few terms and we do not know what to write down next�
Well,

in the DFT in the expression for E we write in (11.15) the lacking remain-
der as Exc, and we call it the exchange–correlation energy (label x stands for
“exchange”, c is for “correlation”) and declare, courageously, that we will
manage somehow to get it.

The above formula represents a definition of the exchange–correlation energy,exchange–
correlation
energy

although it is rather a strange definition – it requires us to know E. We should
not forget that in Exc a correction to the kinetic energy has also to be included
(besides the exchange and correlation effects) that takes into account that kinetic
energy has to be calculated for the true (i.e. interacting) electrons, not for the non-
interacting Kohn–Sham ones. All this stands to reason if Exc is small as compared
to E. The next question is connected to what kind of mathematical form Exc might
have. Let us assume, for the time being we have no problem with this mathematical
form. For now we will establish a relation between our wonder external potential
v0 and our mysterious Exc, both quantities performing miracles, but not known.

11.4.3 DERIVATION OF THE KOHN–SHAM EQUATIONS
Now we will make a variation of E, i.e. we will find the linear effect of changing E
due to a variation of the spinorbitals (and therefore also of the density). We make
a spinorbital variation denoted by δφi (as before, p. 336, it is justified to vary either
φi or φ∗i , the result is the same, we choose, therefore, δφ∗i ) and see what effect it
will have on E keeping only the linear term. We have (see eq. (11.4)),

φ∗i → φ∗i + δφ∗i 	 (11.18)

ρ→ ρ+ δρ	 (11.19)

δρ(r) =
∑

σ

N
∑

i=1

δφ∗i (r	σ)φi(r	σ)� (11.20)

We insert the right-hand sides of the above expressions into E, and identify the
variation, i.e. the linear part of the change of E. The variations of the individual
terms of E look like (note, see p. 334, that the symbol 〈|〉 stands for an integral over
space coordinates and a summation over the spin coordinates):

δT0 = −1
2

N
∑

i=1

〈δφi|�φi〉	 (11.21)

22A correlated density and a non-correlated density differ in that in the correlated one we have smaller
values in the high-density regions, because the holes make the overcrowding of space by electrons less
probable.
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δ

∫

vρd3r =
∫

vδρd3r=
N
∑

i=1

〈δφi|vφi〉	 (11.22)

δJ = 1
2

[∫
ρ(r1)δρ(r2)

|r1 − r2| d3r1 d3r2 +
∫
δρ(r1)ρ(r2)

|r1 − r2| d3r1 d3r2

]

=
∫
ρ(r1)δρ(r2)

|r1 − r2| d3r1 d3r2

=
N
∑

i	j=1

〈

δφi(r2	σ2)
∣
∣Ĵj(r2)φi(r2	σ2)

〉

2	 (11.23)

where 〈� � � | � � �〉2 means integration over spatial coordinates and the summation
over the spin coordinate of electron 2, with the Coulomb operator Ĵj associated
with the spinorbital φj

Ĵj(r2)=
∑

σ1

∫
φj(r1	σ1)

∗φj(r1	σ1)

|r1 − r2| d3r1� (11.24)

Finally, we come to the variation of Exc, i.e. δExc. We are in a quite difficult situa-
tion, because we do not know the mathematical dependence of the functional Exc
on ρ, and therefore also on δφ∗i . Nevertheless, we somehow have to get the linear
part of Exc, i.e. the variation.

A change of functional F[f ] (due to f → f + δf) contains a part linear in δf
denoted by δF plus some higher powers23 of δf denoted by O((δf )2)

F[f + δf ] − F[f ] = δF +O
(

(δf )2
)

� (11.25)

The δF is defined through the functional derivative (Fig. 11.7) of F with respect functional
derivativeto the function f (denoted by δF[f ]

δf (x) ), for a single variable24 x

δF =
∫ b

a
dx
δF[f ]
δf(x)

δf (x)� (11.26)

Indeed, in our case we obtain as δExc:

δExc =
∫

d3r
δExc

δρ(r)
δρ(r)=

N
∑

i=1

〈

δφi

∣
∣
∣
∣

δExc

δρ
φi

〉

� (11.27)

23If δf is very small, the higher terms are negligible.
24Just for the sake of simplicity. The functional derivative itself is a functional of f and a func-

tion of x� An example of a functional derivative may be found in eq. (11.23), when looking at
δJ = ∫ ρ(r1)δρ(r2)|r1−r2| dr31 dr32 =

∫

dr32{
∫

dr31
ρ(r1)|r1−r2| }δρ(r2)� Indeed, as we can see from eq. (11.26)

∫

dr31
ρ(r1)|r1−r2| ≡

δJ[ρ]
δρ(r2)

, which is a 3D equivalent of δF[f ]
δf (x)

. Note, that
∫

dr31
ρ(r1)|r1−r2| is a functional of

ρ and a function of r2.
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Fig. 11.7. A scheme showing what a functional
derivative is about. The ordinate represents the
values of a functional F[f ], while each point of
the horizontal axis represents a function f (x).
The functional F[f ] depends, of course, on de-
tails of the function f (x). If we consider a small
local change of f (x), this change may result in
a large change of F – then the derivative δF

δf
is

large, or in a small change of F – then the deriv-
ative δF

δf
is small (this depends on the particular

functional).

Therefore, the unknown quantity Exc is replaced by the unknown quantity δExc
δρ , but

there is profit from this: the functional derivative enables us to write an equation
for spinorbitals. The variations of the spinorbitals are not arbitrary in this formula
– they have to satisfy the orthonormality conditions (because our formulae, e.g.,
(11.4), are valid only for such spinorbitals) for i	 j = 1	 � � � 	N , which gives

〈δφi|φj〉 = 0 for i	 j = 1	2	 � � � 	N� (11.28)

Let us multiply each of eqs. (11.28) by a Lagrange multiplier25 εij , add them to-
gether, then subtract from the variation δE and write the result as equal to zero
(in the minimum we have δE = 0). We obtain

δE −
N
∑

i	j

εij〈δφi|φj〉 = 0 (11.29)

or
N
∑

i=1

〈

δφi

∣
∣
∣
∣
∣

{[

−1
2
�+ v+

N
∑

j=1

Ĵj + δExc

δρ

]

φi −
N
∑

i	j

εijφj

}〉

= 0� (11.30)

After inserting the Lagrange multipliers, the variations of φ∗i are already indepen-
dent and the only way to have zero on the right-hand side is that every individual
ket |〉 is zero (Euler equation, cf. p. 998):

{

−1
2
�+ v+ vcoul + vxc

}

φi =
N
∑

i	j

εijφj	 (11.31)

vcoul(r) ≡
N
∑

j=1

Ĵj(r)	 (11.32)

vxc(r) ≡ δExc

δρ(r)
� (11.33)

It would be good now to get rid of the non-diagonal Lagrange multipliers in order
to obtain a beautiful one-electron equation analogous to the Fock equation. To
25Appendix N, p. 997.
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this end we need the operator in the curly brackets in (11.31) to be invariant with
respect to an arbitrary unitary transformation of the spinorbitals. The sum of the
Coulomb operators (vcoul) is invariant, as has been demonstrated on p. 340. As to
the unknown functional derivative δExc/δρ, i.e. potential vxc, its invariance follows
from the fact that it is a functional of ρ (and ρ of eq. (11.4) is invariant). Finally,
we obtain the Kohn–Sham equation (εii = εi).

KOHN–SHAM EQUATION
{

−1
2
�+ v+ vcoul + vxc

}

φi = εiφi� (11.34)

The equation is analogous to the Fock equation (p. 341). We solve the Kohn–Sham
equation by an iterative method. We start from any zero-iteration orbitals. This iterative method

enables us to calculate a zero approximation to ρ, and then the zero approxima-
tions to the operators vcoul and vxc (in a moment we will see how to compute Exc,
and then using (11.33), we obtain vxc). The solution to the Kohn–Sham equation
gives new orbitals and new ρ. The procedure is then repeated until consistency is
achieved.

Hence, finally we “know” what the wonder operator v0 looks like:

v0 = v+ vcoul + vxc� (11.35)

There is no problem with vcoul, a serious difficulty arises with the exchange–
correlation operator vxc, or (equivalent) with the energy Exc. The second Hohen-
berg–Kohn theorem says that the functional EHK

v [ρ] exists, but it does not guaran-
tee that it is simple. For now we worry about this potential, but we courageously go
ahead.

Kohn–Sham equations with spin polarization
Before searching for vxc let us generalize the Kohn–Sham formalism and split ρ
into that part which comes from electrons with the α spin function and those with
the β spin function. If these contributions are not equal (even for some r), we
will have a spin polarization). In order to do this, we consider two non-interacting spin polarization

fictitious electron systems: one described by the spin functions α, and the other – by
functions β, with the corresponding density distributions ρα(r) and ρβ(r) exactly
equal to ρα and ρβ, respectively, in the (original) interacting system. Of course, for
any system we have

ρ= ρα + ρβ	 (11.36)

which follows from the summation over σ in eq. (11.1). Then, we obtain two cou-
pled26 Kohn–Sham equations with potential v0 that depends on the spin coordi-

26Through the common operator vcoul, a functional of ρα + ρβ and through vxc, because the later is
in general a functional of both, ρα and ρβ .
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nate σ
vσ0 = v+ vcoul + vσxc� (11.37)

The situation is analogous to the unrestricted Hartree–Fock method (UHF), cf.
p. 342.

This extension of the DFT is known as spin density functional theory (SDFT).

11.5 WHAT TO TAKE AS THE DFT
EXCHANGE–CORRELATION ENERGY Exc?

We approach the point where we promised to write down the mysterious exchange–
correlation energy. Well, how to tell you the truth? Let me put it straightforwardly:
we do not know the analytical form of this quantity. Nobody knows what the
exchange–correlation is, there are only guesses. The number of formulae will be,
as usual with guesses, almost unlimited.27 Let us take the simplest ones.

11.5.1 LOCAL DENSITY APPROXIMATION (LDA)

The electrons in a molecule are in quite a complex situation, because they not only
interact between themselves, but also with the nuclei. However, a simpler system
has been elaborated theoretically for years: a homogeneous gas model in a box,28

an electrically neutral system (the nuclear charge is smeared out uniformly). It
does not represent the simplest system to study, but it turns out that theory is able
to determine (exactly) some of its properties. For example, it has been deduced
how Exc depends on ρ, and even how it depends on ρα and ρβ. Since the gas is
homogeneous and the volume of the box is known, then we could easily work out
how the Exc per unit volume depends on these quantities.

Then, the reasoning is the following.29

The electronic density distribution in a molecule is certainly inhomoge-
neous, but locally (within a small volume) we may assume its homogeneity.
Then, if someone asks about the exchange–correlation energy contribution
from this small volume, we would say that in principle we do not know, but
to a good approximation the contribution could be calculated as a product
of the small volume and the exchange–correlation energy density from the
homogeneous gas theory (calculated inside the small volume).

Thus, everything is decided locally: we have a sum of contributions from each
infinitesimally small element of the electron cloud with the corresponding density.

27Some detailed formulae are reported in the book by J.B. Foresman and A. Frisch, “Exploring Chem-
istry with Electronic Structure Methods”, Gaussian, Pittsburgh, PA, USA, p. 272.
28With periodic boundary conditions. This is a common trick to avoid the surface problem. We con-

sider a box having such a property, that if something goes out through one wall it enters through the
opposite wall (cf. p. 446).
29W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.
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This is why it is called the local density approximation (LDA, when the ρ depen-
dence is used) or the local spin density approximation (LSDA, when the ρα and ρβ LSDA or LDA

dependencies are exploited).

11.5.2 NON-LOCAL APPROXIMATIONS (NLDA)

Gradient Expansion Approximation
There are approximations that go beyond the LDA. They consider that the depen-
dence Exc[ρ]may be non-local, i.e. Exc may depend on ρ at a given point (locality), non-local

functionalsbut also on ρ nearby (non-locality). When we are at a point, what happens further
off depends not only on ρ at that point, but also the gradient of ρ at the point, etc.30

This is how the idea of the gradient expansion approximation (GEA) appeared

EGEA
xc =ELSDA

xc +
∫

Bxc(ρα	ρβ	∇ρα	∇ρβ)d3r	 (11.38)

where the exchange–correlation function Bxc is carefully selected as a function
of ρα, ρβ and their gradients, in order to maximize the successes of the the-
ory/experiment comparison. However, this recipe was not so simple and some
strange unexplained discrepancies were still taking place.

Perdew–Wang functional (PW91)
A breakthrough in the quality of results is represented by the following proposition
of Perdew and Wang:

EPW91
xc =

∫

f (ρα	ρβ	∇ρα	∇ρβ)d3r (11.39)

where the function f of ρα	ρβ and their gradients has been tailored in an inge-
nious way. It sounds unclear, but it will be shown below that their approximation
used some fundamental properties and this enabled them without introducing any
parameters to achieve a much better agreement between the theory and experi-
ment.

The famous B3LYP hybrid functional
The B3LYP approach belongs to the hybrid approximations for the exchange– hybrid

approximationcorrelation functional. The approximation is famous, because it gives very good
results and, therefore, is extremely popular. So far so good, but there is a danger
of Babylon type science.31 It smells like a witch’s brew for the B3LYP exchange–
correlation potential Exc: take the exchange–correlation energy from the LSDA
method, add a pinch (20%) of the difference between the Hartree–Fock exchange en-
ergy32 EKS

x and the LSDA ELSDA
x . Then, mix well 72% of Becke exchange potential

30As in a Taylor series, then we may need not only the gradient, but also the Laplacian, etc.
31The Chaldean priests working out “Babylonian science” paid attention to making their small formu-

lae efficient. The ancient Greeks (contemporary science owes them so much) were in favour of crystal
clear reasoning.
32In fact, this is Kohn–Sham exchange energy, see eq. (11.69), because the Slater determinant wave

function, used to calculate it, is the Kohn–Sham determinant, not the Hartree–Fock one.
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EB88
x which includes the 1988 correction, then strew in 81% of the Lee–Yang–Parr

correlation potential ELYP
c . You will like this homeopathic magic potion most (a

“hybrid”) if you conclude by putting in 19% of the Vosko–Wilk–Nusair potential33

EVWN
c :

Exc =ELSDA
xc +0�20

(

EHF
x −ELSDA

x
)+0�72EB88

x +0�81ELYP
c +0�19EVWN

c � (11.40)

If you do it this way – satisfaction is (almost) guaranteed, your results will agree
very well with experiment.

11.5.3 THE APPROXIMATE CHARACTER OF THE DFT VS APPARENT
RIGOUR OF ab initio COMPUTATIONS

There are lots of exchange–correlation potentials in the literature. There is an
impression that their authors worried most about theory/experiment agreement.
We can hardly admire this kind of science, but the alternative, i.e. the practice of
ab initio methods with the intact and “holy” Hamiltonian operator, has its own dark
sides and smells a bit of witch’s brew too. Yes, because finally we have to choose
a given atomic basis set, and this influences the results. It is true that we have
the variational principle at our disposal, and it is possible to tell which result is
more accurate. But more and more often in quantum chemistry we use some non-
variational methods (cf. Chapter 10). Besides, the Hamiltonian holiness disappears
when the theory becomes relativistic (cf. Chapter 3).

Everybody would like to have agreement with experiment and no wonder peo-
ple tinker at the exchange–correlation enigma. This tinkering, however, is by no
means arbitrary. There are some serious physical restraints behind it, which will be
shown in a while.

11.6 ON THE PHYSICAL JUSTIFICATION FOR THE
EXCHANGE CORRELATION ENERGY

We have to introduce several useful concepts such as the “electron pair distribu-
tion function”, and the “electron hole” (in a more formal way than in Chapter 10,
p. 515), etc.

11.6.1 THE ELECTRON PAIR DISTRIBUTION FUNCTION
From the N-electron wave function we may compute what is called the electron
pair correlation function �(r1	 r2), in short, a pair function defined as34pair correlation

function
�(r1	 r2)=N(N − 1)

∑

σ1	σ2

∫

|�|2 dτ3 dτ4 � � � dτN (11.41)

33S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58 (1980) 1200.
34The function represents the diagonal element of the two-particle electron density matrix:

�(r1	 r2; r′1	 r′2) = N(N − 1)
∑

all σ

∫

�∗(r′1σ1	 r
′
2	σ2	 r3	σ3	 � � � 	 rN	σN)

×�(r1	σ1	 r2	σ2	 r3	σ3	 � � � 	 rN	σN)d3r3 d3r4 � � �d
3rN	

�(r1	 r2) ≡ �(r1	 r2; r1	 r2)�
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where the summation over spin coordinates pertains to all electrons (for the elec-
trons 3	4	 � � � 	N the summation is hidden in the integrals over dτ), while the inte-
gration is over the space coordinates of the electrons 3	4	 � � � 	N .

The function �(r1	 r2) measures the probability density of finding one elec-
tron at the point indicated by r1 and another at r2, and tells us how the
motions of two electrons are correlated. If � were a product of two func-
tions ρ1(r1) > 0 and ρ2(r2) > 0, then this motion is not correlated (because
the probability of two events represents a product of the probabilities for
each of the events only for independent, i.e. uncorrelated events).

Function � appears in a natural way, when we compute the mean value of the
total electronic repulsion 〈�|U |�〉 with the Coulomb operator U =∑N

i<j
1
rij

and a
normalized N-electron wave function �. Indeed, we have (“prime” in the summa-
tion corresponds to omitting the diagonal term)

〈�|U�〉 = 1
2

N
∑

i	j=1

′〈
�

∣
∣
∣
∣

1
rij
�

〉

= 1
2

N
∑

i	j=1

′{ ∑

σi	σj

∫

d3ri d3rj
1
rij

∫

|�|2 dτ1 dτ2 � � �dτN
dτi dτj

}

= 1
2

N
∑

i	j=1

′∫
d3ri d3rj

1
rij

1
N(N − 1)

�(ri	 rj)

= 1
2

1
N(N − 1)

N
∑

i	j=1

′∫
d3r1 d3r2

1
r12
�(r1	 r2)

= 1
2

1
N(N − 1)

∫

d3r1 d3r2
�(r1	 r2)

r12

N
∑

i	j=1

′
1

= 1
2

∫

d3r1 d3r2
�(r1	 r2)

r12
� (11.42)

We will need this result in a moment. We see, that to determine the contribution
of the electron repulsions to the total energy we need the two-electron function �.
The first Hohenberg–Kohn theorem tells us that it is sufficient to know something
simpler, namely, the electronic density ρ. How to reconcile these two demands?

The further DFT story will pertain to the question: how to change the po-
tential in order to replace � by ρ?
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11.6.2 THE QUASI-STATIC CONNECTION OF TWO IMPORTANT SYSTEMS

To begin let us write two Hamiltonians that are certainly very important for our
goal: the first is the total Hamiltonian of our system (of course, with the Coulombic
electron–electron interactions). Let us denote the operator for some reasons as
H(λ= 1), cf. eqs. (11.6) and (11.7):

Ĥ(λ= 1)=
N
∑

i=1

[

−1
2
�i + v(i)

]

+U� (11.43)

The second Hamiltonian H(λ = 0) pertains to the Kohn–Sham fictitious system
of the non-interacting electrons (it contains our wonder v0, which we solemnly
promise to search for, and the kinetic energy operator and . . . nothing else,
cf. eq. (11.14)):

Ĥ(λ= 0)=
N
∑

i=1

[

−1
2
�i + v0(i)

]

� (11.44)

We will try to connect these two important systems by generating some intermediate
Hamiltonians Ĥ(λ) for λ intermediate between 0, and 1:

Ĥ(λ)=
N
∑

i=1

[

−1
2
�i + vλ(i)

]

+U(λ)	 (11.45)

where

U(λ)= λ
N
∑

i<j

1
rij
�

Note, that our electrons are not real for intermediate values of λ (each electron
carries the electric charge

√
λ).

The intermediate Hamiltonian Ĥ(λ) contains a mysterious vλ, which gen-
erates the exact density distribution ρ that corresponds to the Hamiltonian
Ĥ(λ = 1), i.e. with all interactions in place. The same exact ρ corresponds
to Ĥ(λ= 0).

We have, therefore, the ambition to go from the λ= 0 situation to the λ= 1 situ-
ation, all the time guaranteeing that the antisymmetric ground-state eigenfunction
of Ĥ(λ) for any λ gives the same electron density distribution ρ, the ideal (exact). We
decide to follow the path of the exact electron density distribution and measure
our way by the value of λ. The way chosen represents a kind of “path of life” for
us, because by sticking to it we do not lose the most precious of our treasures: the
ideal density distribution ρ. We will call this path the quasi-static transition, becausequasi-static

transition all the time we will adjust the correction computed to our actual position on the
path.
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Our goal will be the total energy E(λ = 1). The quasi-static transition will be
carried out by tiny steps. We will start with E(λ= 0), and end up with E(λ= 1):

E(λ= 1)=E(λ= 0)+
∫ 1

0
E′(λ)dλ	 (11.46)

where the increments dE(λ)=E′(λ)dλ will be calculated as the first-order pertur-
bation energy correction, eq. (5.22). The first-order correction is sufficient, because
we are going to apply only infinitesimally small λ increments.35 Each time, when
λ changes from λ to λ+ dλ, the situation at λ [i.e. the Hamiltonian Ĥ(λ) and the
wave function�(λ)] will be treated as unperturbed. What, therefore, does the per-
turbation operator look like? Well, when we go from λ to λ+ dλ, the Hamiltonian
changes by perturbation Ĥ(1)(λ)= dĤ(λ). Then, the first-order perturbation cor-
rection to the energy given by (5.22), represents the mean value of dĤ(λ) with the
unperturbed function �(λ):

dE(λ)= 〈�(λ)∣∣dĤ(λ)�(λ)〉	 (11.47)

where in dĤ we only have a change of vλ and of U(λ) due to the change of λ:

dĤ(λ)=
N
∑

i=1

dvλ(i)+ dλ
N
∑

i<j

1
rij
� (11.48)

Note that we have succeeded in writing such a simple formula, because the ki-
netic energy operator stays unchanged all the time (it does not depend on λ). Let us
insert this into the first-order correction to the energy in order to get dE(λ):

dE(λ) = 〈�(λ)∣∣dĤ(λ)�(λ)〉

=
∫

ρ(r)dvλ(r)d3r+ 1
2

dλ
∫ ∫

d3r1 d3r2
�λ(r1	 r2)

r12
� (11.49)

In the last formula we introduced a function �λ that is an analogue of the pair
function �, but pertains to the electrons carrying the charge

√
λ (we have used the

formula (11.42), noting that we have a λ-dependent wave function �(λ)).
In order to go from E(λ= 0) to E(λ= 1), it is sufficient just to integrate this ex-

pression from 0 to 1 over λ (this corresponds to the infinitesimally small increments
of λ as mentioned before). Note that (by definition) ρ does not depend on λ, which
is of fundamental importance in the success of the integration

∫

ρ(r)dvλ(r)d3r
and gives the result

E(λ= 1)−E(λ= 0) =
∫

ρ(r){v− v0}(r)d3r

+ 1
2

∫ 1

0
dλ
∫ ∫

d3r1 d3r2
�λ(r1	 r2)

r12
� (11.50)

The energy for λ= 0, i.e. for the non-interacting electrons in an unknown external

35λ plays a different role here than the perturbational parameter λ on p. 205.
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potential v0 will be written as (cf. the formulas (11.14) and (11.16)):

E(λ= 0)=
∑

i

εi = T0 +
∫

ρ(r)v0(r)d3r� (11.51)

Inserting this into (11.50) we obtainE(λ= 1), i.e. the energy of our original system:

E(λ= 1)= T0 +
∫

ρ(r)v(r)d3r+ 1
2

∫ 1

0
dλ
∫ ∫

d3r1 d3r2
�λ(r1	 r2)

r12
� (11.52)

This expression may be simplified by introducing the pair distribution function
�aver which is the �λ(r1	 r2) averaged over λ= [0	1]:

�aver(r1	 r2)≡
∫ 1

0
�λ(r1	 r2)dλ� (11.53)

Finally we obtain the following expression for the total energy E:

E(λ= 1)= T0 +
∫

ρ(r)v(r)d3r+ 1
2

∫ ∫

d3r1 d3r2
�aver(r1	 r2)

r12
� (11.54)

Note that this equation is similar to the total energy expression appearing in tradi-
tional quantum chemistry36 (without repulsion of the nuclei),

E = T +
∫

ρ(r)v(r)d3r+ 1
2

∫ ∫

d3r1 d3r2
�(r1	 r2)

r12
	 (11.55)

where in the last term we recognize the mean repulsion energy of electrons (ob-
tained a while before). As we can see, the DFT total energy expression, instead
of the mean kinetic energy of the fully interacting electrons T , contains T0, i.e.
the mean kinetic energy of the non-interacting (Kohn–Sham) electrons.37 We pay,
however, a price, which is that we need to compute the function �aver somehow.
Note, however, that the correlation energy dragon has been driven into the problem of
finding a two-electron function �aver.

11.6.3 EXCHANGE–CORRELATION ENERGY vs�aver

What is the relation between �aver and the exchange–correlation energy Exc in-
troduced earlier? We find that immediately, comparing the total energy given in
eqs. (11.15) and (11.17) and now in (11.54). It is seen that the exchange–correlation
energy

Exc = 1
2

∫ ∫

d3r1 d3r2
1
r12

{

�aver(r1	 r2)− ρ(r1)ρ(r2)
}

� (11.56)

36It is evident from the mean value of the total Hamiltonian [taking into account the mean value of
the electron–electron repulsion, eq. (11.8)] and (11.42).
37As a matter of fact the whole Kohn–Sham formalism with the fictitious system of the non-interacting

electrons has been designed precisely because of this.
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The energy looks as if it were a potential energy, but it implicitly incorporates
(in �aver) the kinetic energy correction for changing the electron non-interacting
to the electron-interacting system.

Now let us try to get some information about the integrand, i.e. �aver, by intro-
ducing the notion of the electron hole.

11.6.4 ELECTRON HOLES
Electrons do not like each other, which manifests itself by Coulombic repulsion.
On top of that, two electrons having the same spin coordinates hate each other
(Pauli exclusion principle) and also try to get out of the other electron way. This has
been analyzed in Chapter 10, p. 516. We should somehow highlight these features,
because both concepts are basic and simple.

First, we will decompose the function �aver into the components related to the
spin functions38 of electrons 1 and 2 αα, αβ, βα, ββ,

�aver =�ααaver +�αβaver +�βαaver +�ββaver ≡
∑

σσ ′
�σσ

′
aver	 (11.57)

where�αβaver dV1 dV2 represents a measure of the probability density39 that two elec-
trons are in their small boxes indicated by the vectors r1 and r2, have the volumes
dV1 and dV2, and are described by the spin functions α and β (the other compo-
nents of �aver are defined in a similar way). Since ρ = ρα + ρβ, the exchange–
correlation energy can be written as40

Exc = 1
2

∑

σσ ′

∫ ∫

d3r1 d3r2
�σσ

′
aver(r1	 r2)− ρσ(r1)ρσ ′(r2)

r12
	 (11.58)

where the summation goes over the spin coordinates. It is seen that

Exc tells us how the behaviour of electrons deviates from their indepen-
dence (the later is described by the product of the probability densities,
i.e. the second term in the nominator). This means that Exc has to contain
the electron–electron correlation resulting from Coulombic interaction and
their avoidance from the Pauli exclusion principle.

We wish to represent the integral as a Coulombic interaction of ρσ(r1) with the
density distribution of electron 2 to see how electron 2 “flees in panic” when seeing
electron 1. We will try do this by inserting ρσ(r1) into the nominator of (11.58) and
the correctness of the formula will be assured by the unknown hole function h:

Exc = 1
2

∑

σσ ′

∫

d3r1

∫

d3r2
ρσ(r1)

r12
hσσ

′
xc (r1	 r2)� (11.59)

38Such a decomposition follows from eq. (11.41). We average all the contributions �σσ
′

separately
and obtain the formula.
39λ-averaged.
40Simply, each �aver “in the spin resolution” will find its product of the spin density distributions –

this is what we have as the nominator in the integrand.
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It is precisely the function h that describes the distribution of electron 2, when
electron 1 with spin coordinate σ is characterized by its density distribution ρσ(r1)

EXCHANGE–CORRELATION HOLE

hσσ
′

xc (r1	 r2)= �σσ
′

aver(r1	 r2)

ρσ(r1)
− ρσ ′(r2)� (11.60)

This means that the hole represents that part of the pair distribution func-
tion that is inexplicable by a product-like dependence. Since a product func-
tion describes independent electrons, the hole function grasps the “inten-
tional” avoidance of the two electrons.

We have, therefore, four exchange–correlation holes: hααxc 	h
αβ
xc 	h

βα
xc 	h

ββ
xc .

11.6.5 PHYSICAL BOUNDARY CONDITIONS FOR HOLES

Note that if a hole h were not spherically symmetric (i.e. contained a spherically
symmetric component plus some non-spherical components) with respect to the
position of electron 1, the contribution of such a hole to the integral in (11.59)
over d3r2 would come only from its spherically symmetric component, because the
operator 1/r12 is spherically symmetric.

The hole functions are of fundamental importance in the DFT, because they
have to fulfil some boundary requirements. The requirements are unable to
fix the precise mathematical form of the hole functions (and therefore of
Exc), but the form is heavily restricted by the boundary conditions.

What boundaries we are talking about? These boundaries are different for elec-
trons with the same spin coordinates41 to those corresponding to the opposite
spins. For a pair of electrons with the same spins, we have to have the following
result of integration over r2 (for any r1):42

∫

hααxc (r1	 r2)d3r2 =
∫

h
ββ
xc (r1	 r2)d3r2 =−1	 (11.61)

which means that
41These boundaries come from the symmetry properties of the wave function forced by the Pauli

exclusion principle. For example, from the antisymmetry of the wave function (with respect to the
exchange of labels of two electrons), it follows that two electrons of the same spin coordinate cannot
meet in a point in space. Indeed, if they did, all their coordinates would be the same, their exchange
meant, therefore, nothing, whereas it has to change the sign of the wave function. The only possibility is
to make the value of the function equal to zero. This reasoning cannot be repeated with two electrons of
opposite spins, and such a meeting is, therefore, possible. Of course, around any electron there should
be a Coulombic hole because of Coulomb repulsion. However, the degree of taking such a hole into
account depends on the quality of the wave function (e.g., a Hartree–Fock function will not give any
Coulomb hole, cf. p. 515).
42We do not prove that here.
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just one electron (of the same spin) has escaped from the space around
electron 1 as compared to the independent particle model.

Since for r1 = r2 = r we have to have (Pauli exclusion principle) �αα(r	 r) =
�ββ(r	 r)= 0, therefore, we extend this property on the corresponding �aver not-
ing that the Pauli exclusion principle operates at any λ (the model electrons are
fermions). Then, after inserting �ααaver(r	 r)=�ββaver(r	 r)= 0 into (11.60) we obtain
the following conditions

hααxc (r	 r) = −ρα(r)	 (11.62)

h
ββ
xc (r	 r) = −ρβ(r)� (11.63)

If similar calculations were done for the electrons with opposite spins, we would
obtain ∫

h
αβ
xc (r1	 r2)d3r2 =

∫

h
βα
xc (r1	 r2)d3r2 = 0	 (11.64)

which means that the Pauli exclusion principle alone does not give any restriction
to the residence of electron 2 in the neighbourhood of electron 1 of opposite spin,
compared to what happens when the electrons are independent.

11.6.6 EXCHANGE AND CORRELATION HOLES

The restrictions introduced come from the Pauli exclusion principle and hence
have been related to the exchange energy. So far no restriction has appeared that
would stem from the Coulombic interactions of electrons.43 This made people
think of differentiating the holes into two contributions: exchange hole hx and
correlation hole hc (so far called the Coulombic hole). Let us begin with a formal
division of the exchange–correlation energy into the exchange and the correlation
parts:

EXCHANGE–CORRELATION ENERGY

Exc =Ex +Ec (11.65)

and we will say that we know, what the exchange part is.

The DFT exchange energy (Ex) is calculated in the same way as in the
Hartree–Fock method, but with the Kohn–Sham determinant. The corre-
lation energy Ec represents just a rest.

This is again the same strategy of chasing the electronic correlation dragon into
a hole, this time into the correlation hole. When we do not know a quantity, we

43This is the role of the Hamiltonian.
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write down what we know plus a remainder. And the dragon with a hundred heads
sits in it. Because of this division, the Kohn–Sham equation will contain the sum of
the exchange and correlation potentials instead of vxc:

vxc = vx + vc (11.66)

with

vx ≡ δEx

δρ
	 (11.67)

vc ≡ δEc

δρ
� (11.68)

Let us recall what the Hartree–Fock exchange energy44 looks like [Chapter 8,
eq. (8.35)]. The Kohn–Sham exchange energy looks, of course, the same, except
that the spinorbitals are now Kohn–Sham, not Hartree–Fock. Therefore, we have
the exchange energy Ex as (the sum is over the molecular spinorbitals45)

Ex = −
1
2

SMO
∑

i	j=1

Kij =−1
2

SMO
∑

i	j=1

〈ij|ji〉

= −1
2

∑

σ

∫
{∑N

i=1φ
∗
i (1)φi(2)

}{∑N
j=1φ

∗
j (2)φj(1)

}

r12
d3r1 d3r2

= −1
2

∑

σ

∫ |ρσ(r1	 r2)|2
r12

d3r1 d3r2	 (11.69)

where (cf. p. 531)

ρσ(r1	 r2)≡
N
∑

i=1

φi(r1	σ)φ
∗
i (r2	σ) (11.70)

represents the one-particle density matrix for the σ subsystem, and ρσ is obtained
from the Kohn–Sham determinant. Note that density ρσ(r) is its diagonal, i.e.
ρσ(r)≡ ρσ(r	 r).

The above may be incorporated into the exchange energy Ex equal to

Ex = 1
2

∑

σσ ′

∫ ∫

d3 r1 d3r2
ρσ(r1)

r12
hσσ

′
x (r1	 r2)	 (11.71)

if the exchange hole h is proposed as

hσσ
′

x (r1	 r2)= δσσ ′
{

−|ρσ(r1	 r2)|2
ρσ(r1)

}

� (11.72)

44The one which appeared from the exchange operator, i.e. containing the exchange integrals.
45Note that spinorbital i has to have the same spin function as spinorbital j (otherwise Kij = 0).
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It is seen that the exchange hole is negative everywhere46 and diagonal in the spin
index. What, therefore, does the correlation hole look like? According to the phi-
losophy of dragon hunting it is the rest

hσσ
′

xc = hσσ ′x + hσσ ′c � (11.73)

The correlation energy from eq. (11.65) has, therefore, the form:

Ec = 1
2

∑

σσ ′

∫ ∫

d3r1 d3r2
ρσ(r1)

r12
hσσ

′
c (r1	 r2)� (11.74)

Since the exchange hole has already fulfilled the boundary conditions (11.62)–
(11.64), forced by the Pauli exclusion principle, the correlation hole satisfies a sim-
ple boundary condition

∫

hσσ
′

c (r1	 r2)d3r2 = 0� (11.75)

The dragon of electronic correlation has been chased into the correlation hole.
Numerical experience turns out to conclude later on47 that

the exchange energy Ex is more important than the correlation energy Ec

and, therefore, the dragon in the hole has been considerably weakened by scien-
tists.

11.6.7 PHYSICAL GROUNDS FOR THE DFT APPROXIMATIONS

LDA
The LDA is not as primitive as it looks. The electron density distribution for
the homogeneous gas model satisfies the Pauli exclusion principle and, therefore,
this approximation gives the Fermi holes that fulfil the boundary conditions with
eqs. (11.62), (11.63) and (11.64). The LDA is often used because it is rather in-
expensive, while still giving reasonable geometry of molecules and vibrational fre-
quencies.48 The quantities that the LDA fails to reproduce are the binding ener-
gies,49 ionization potentials and the intermolecular dispersion interaction.

The Perdew–Wang functional (PW91)
Perdew noted a really dangerous feature in an innocent and reasonable looking
GEA potential. It turned out that in contrast to the LDA the boundary conditions
for the electron holes were not satisfied. For example, the exchange hole was not

46Which has its origin in the minus sign before the exchange integrals in the total energy expression.
47Below we give an example.
48Some colleagues of mine sometimes add a malicious remark that the frequencies are so good that

they even take into account the anharmonicity of the potential.
49The average error in a series of molecules may even be of the order of 40 kcal/mol; this is a lot, since

the chemical bond energy is of the order of about 100 kcal/mol.
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negative everywhere as eq. (11.72) requires. Perdew and Wang corrected this de-
ficiency in a way similar to that of Alexander the Great, when he cut in 333 B.C.
the Gordian knot. They tailored the formula for Exc in such a way as to change
the positive values of the function just to zero, while the peripheral parts of the
exchange holes were cut to force the boundary conditions to be satisfied anyway.
The authors noted an important improvement in the results.

The functional B3LYP
It was noted that the LDA and even GEA models systematically give too large
chemical bond energies. On the other hand it was known that the Hartree–Fock
method is notorious for making the bonds too weak. What are we to do? Well, just
mix the two types of potential and hope to have an improvement with respect to any
of the models. Recall the formula (11.53) for �aver, where the averaging extended
from λ= 0 to λ= 1. The contribution to the integral for λ close to 0 comes from
the situations similar to the fictitious model of non-interacting particles, where the
wave function has the form of the Kohn–Sham determinant. Therefore, those con-
tributions contain the exchange energy Ex corresponding to such a determinant.
We may conclude that a contribution from the Kohn–Sham exchange energy EHF

x
might look quite natural.50 This is what the B3LYP method does, eq. (11.40). Of
course, it is not possible to justify the particular proportions of the B3LYP ingredi-
ents. Such things are justified only by their success.51

11.7 REFLECTIONS ON THE DFT SUCCESS
The DFT method has a long history behind it, which began with Thomas, Dirac,
Fermi, etc. At the beginning the successes were quite modest (the electron gas
theory, known as the Xα method). Real success came after a publication by Jan
Andzelm and Erich Wimmer.52 The DFT method, offering results at a correlated
level for a wide spectrum of physical quantities, turned out to be roughly as inex-
pensive as the Hartree–Fock procedure – this is the most sensational feature of the
method.

We have a beacon – exact electron density distribution of harmonium
Hohenberg and Kohn proved their famous theorem on the existence of the en-
ergy functional, but nobody was able to give the functional for any system. All the

50The symbol HF pertains rather to Kohn–Sham than to Hartree–Fock.
51As in homeopathy.
52J. Andzelm, E. Wimmer, J. Chem. Phys. 96 (1992) 1280. Jan was my PhD student in the old days. In

the paper by A. Scheiner, J. Baker, J. Andzelm, J. Comp. Chem. 18 (1997) 775 the reader will find an in-
teresting comparison of the methods used. One of the advantages (or deficiencies) of the DFT methods
is that they offer a wide variety of basis functions (in contrast to the ab initio methods, where Gaussian
basis sets rule), recommended for some particular problems to be solved. For example, in electronics
(Si, Ge) the plane wave exp(ikr) expansion is a preferred choice. On the other hand these functions
are not advised for catalysis phenomena with rare earth atoms. The Gaussian basis sets in the DFT
had a temporary advantage (in the nineties of the twentieth century) over others, because the standard
Gaussian programs offered analytically computed gradients (for optimization of the geometry). Now
this is also offered by many DFT methodologies.
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DFT efforts are directed towards elaborating such a potential, and the only crite-
rion of whether a model is any good, is comparison with experiment. However, it
turned out that there is a system for which every detail of the DFT can be veri-
fied. Uniquely, the dragon may be driven out the hole and we may fearlessly and
with impunity analyze all the details of its anatomy. The system is a bit artificial, it
is the harmonic helium atom (harmonium) discussed on p. 185, in which the two
electrons attract the nucleus by a harmonic force, while repelling each other by
Coulombic interaction. For some selected force constants k, e.g., for k = 1

4 , the
Schrödinger equation can be solved analytically. The wave function is extremely
simple, see p. 507. The electron density (normalized to 2) is computed as

ρ0(r)= 2N2
0 e−

1
2 r

2
{(
π

2

) 1
2
[

7
4
+ 1

4
r2 +

(

r + 1
r

)

erf
(
r√
2

)]

+ e−
1
2 r

2
}

	 (11.76)

where erf is the error function, erf(z)= 2√
π

∫ z
0 exp(−u2)du, and

N2
0 =

π
3
2

(8+ 5
√
π)
� (11.77)

We should look at the ρ0(r) with a great interest – it is a unique occasion, it is
probable you will never again see an exact result. The formula is not only exact,
but on top of this it is simple. Kais et al. compare the exact results with two DFT
methods: the BLYP (a version of B3LYP) and the Becke–Perdew (BP) method.53

Because of the factor exp(−0�5r2) the density distribution ρ is concentrated on
the nucleus.54 The authors compare this density distribution with the correspond-
ing Hartree–Fock density (appropriate for the potential used), and even with the
density distribution related to the hydrogen-like atom (after neglecting 1/r12 in
the Hamiltonian the wave function becomes an antisymmetrized product of the
two hydrogen-like orbitals). In the later case the electrons do not see each other55

and the corresponding density distribution is too concentrated on the nucleus. As
soon as the term 1/r12 is restored, the electrons immediately move apart and ρ
on the nucleus decreases by about 30%. The second result is also interesting: the
Hartree–Fock density is very close to ideal – it is almost the same curve.56

Total energy components
It turns out that in the case analyzed (and so far only in this case) we can calculate
the exact total energyE [eq. (11.15)], “wonder” potential v0 that in the Kohn–Sham
model gives the exact density distribution ρ [eq. (11.76)], exchange potential vx and
correlation vc [eqs. (11.67) and (11.68)].57 Let us begin from the total energy.

53The detailed references to these methods are given in S. Kais, D.R. Herschbach, N.C. Handy,
C.W. Murray, G.J. Laming, J. Chem. Phys. 99 (1993) 417.
54As it should be.
55Even in the sense of the mean field (as it is in the Hartree–Fock method).
56This is why the HF method is able to give 99.6% of the total energy. Nevertheless, in some cases this

may not be a sufficient accuracy.
57These potentials as functions of ρ or r .
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Table 11.1. Harmonium (harmonic helium atom). Comparison of the components (a.u.) of the total
energy E[ρ0] calculated by the HF, BLYP and BP methods with the exact values (row KS)

E[ρ0] T0[ρ0]
∫

vρ0 dr J[ρ0] Ex[ρ0] Ec[ρ0]
KS 2.0000 0.6352 0.8881 1.032 −0�5160 −0�0393
HF 2.0392 0.6318 0.8925 1.030 −0�5150 0
BLYP 2.0172 0.6313 0.8933 1.029 −0�5016 −0�0351
BP 1.9985 0.6327 0.8926 1.028 −0�5012 −0�0538

In the second row of Table 11.1 labelled KS, the exact total energy is reported
(E[ρ0] = 2�0000 a.u.) and its components (bold figures) calculated according to
eqs. (11.15), (11.16), (11.8), (11.17), (11.65) and (11.69). The exact correlation en-
ergy Ec is calculated as the difference between the exact total energy and the listed
components. Thus, T0[ρ0] stands for the kinetic energy of the non-interacting elec-
trons,

∫

vρ0 d3r means the electron–nucleus attraction (positive, because the har-
monic potential is positive), and J[ρ0] represents the self-interaction energy of ρ0.
According to eq. (11.17) and taking into account ρ0, i.e. twice a square of the or-
bital, we obtain J[ρ0] = 2J11 with the Coulombic integral J11. On the other hand
the exchange energy is given by eq. (11.69): Ex = − 1

2
∑SMO
i	j=1Kij , and after sum-

ming over the spin coordinates we obtain the exchange energy Ex =−K11 =−J11.
We see such a relation between J and Ex in the second row (KS58). The other
rows report already various approximations computed by: HF, BLYP, BP, each of
them giving its own Kohn–Sham spinorbitals and its own approximation of the
density distribution ρ0� This density distribution was used for the calculation of the
components of the total energy within each approximate method. Of course, the
Hartree–Fock method gave 0 for the correlation energy (third row), because there
is no correlation in it except that which follows from the Pauli exclusion principle
fully taken into account in the exchange energy (cf. Chapter 10, p. 516).

We see that all the methods are doing quite well. The BLYP gives the total en-
ergy with an error of 0�87% – twice as small as the Hartree–Fock method, while the
BP functional missed by as little as 0�08%. The total energy components are a bit
worse, which proves that a certain cancellation of errors occurs among the energy
components. The KS kinetic energy T0 amounts to 0�6352, while that calculated
as the mean value of the kinetic energy operator (of two electrons) is 0�6644, a bit
larger – the rest is in the exchange–correlation energy.59

Exact “wonder” v0 potential
Fig. 11.8 shows our “wonder” long awaited potential v0 as a function of r, and al-
ternatively as a function of ρ

1
3 . The exact v0(r) represents a monotonic function in-

creasing with r and represents a modification (influence of the second electron) of
the external potential v, we see that v0 is shifted upwards with respect to v, because

58Only for spin-compensated two-electron systems we have Ex[ρ] = − 1
2 J[ρ0] and, therefore vx = δEx

δρ
can be calculated analytically. In all other cases, although Ex can be easily evaluated (knowing orbitals),
the calculation of vx is very difficult and costly (it can only be done numerically). In the present two-
electron case vHFx is a multiplicative operator rather than integral operator.
59As we have described before.
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Fig. 11.8. Efficiency analysis of var-
ious DFT methods and comparison
with the exact theory for the har-
monium (with force constant k =
1
4 ) according to Kais et al. Fig. (a)
shows one-electron effective poten-
tial v0 = v + vcoul + vxc, with ex-
ternal potential v = 1

2kr
2� Fig. (b)

presents the same quantities as func-

tions of ρ
1
3 � The solid line corre-

sponds to the exact results. The sym-
bol HF pertains to the Fock potential
(for the harmonic helium atom), the
symbols BLYP and BP stand for two
popular DFT methods. Reused with
permission from S. Kais, D.R. Her-
schbach, N.C. Handy, C.W. Murray,
and G.J. Laming, J. Chem. Phys. 99
(1993) 417, © 1993, American Insti-
tute of Physics.

exact

exact

the electron repulsion is effectively included. As we can see, the best approximate
potential is the Hartree–Fock.

Exchange potential

As for the exchange potential vx (Fig. 11.9, it has to be negative and indeed
it is), it turns out to correspond to forces 10–20 times larger than those typical
for correlation potential vc (just look at the corresponding slopes). This is
an important message, because, as the reader may remember, at the very
end we tried to push the dragon into the correlation hole and, as we see
now, we have succeeded, the dragon turned out to be quite a small beast.

How are the BLYP and BP exchange potential doing? Their plots are very close
to each other and go almost parallel to the exact exchange potential for most values
of r, i.e. they are very good (any additive constant does not count). For small r
both DFT potentials undergo some strange vibration. This region (high density) is
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exact

exact

Fig. 11.9. Exchange potential. Effi-
ciency analysis of various DFT meth-
ods and comparison with the exact the-
ory for the harmonium (with the force
constant k= 1

4 ) according to Kais et al.
Fig. (a) shows exchange potential vx as
a function of the radius r and Fig. (b) as
a function of the density distribution ρ.
The notation of Fig. 11.8 is used. It is
seen that both DFT potentials produce
plots that differ by nearly a constant
from the exact potential (it is, there-
fore, an almost exact potential). The
two DFT methods exhibit some non-
physical oscillations for small r . Reused
with permission from S. Kais, D.R. Her-
schbach, N.C. Handy, C.W. Murray, and
G.J. Laming, J. Chem. Phys. 99 (1993)
417, © 1993, American Institute of
Physics.

surely the most difficult to describe, and no wonder that simple formulae cannot
accurately describe the exact electronic density distribution.

Correlation potential
The correlation potential Ec is more intriguing (Fig. 11.10). The exact potential
represents a smooth “hook-like” curve. The BLYP and BP correlation plots twine
loosely like eels round about the exact curve,60 and for small r exhibit some vibra-
tion similar to that for vx. It is most impressive that the BLYP and BP curves twine
as if they were in counter-phase, which suggests that, if added, they might produce
good61 results.

Conclusion
The harmonic helium atom represents an instructive example that pertains to
medium electronic densities. It seems that the dragon of the correlation energy

60The deviations are very large.
61Such temptations give birth to Babylon-type science.
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Fig. 11.10. Correlation potential –
efficiency analysis of various DFT
methods and comparison with the
exact theory for the harmonic he-
lium atom (with the force con-
stant k = 1

4 ) according to Kais
et al. Fig. (a) shows correlation
potential vc (less important than
the exchange potential) as a func-
tion of the radius r (a) and of
density distribution ρ (b). Nota-
tion as in Fig. 11.8. The DFT
potentials produce plots that dif-
fer widely from the exact corre-
lation potential. Reused with per-
mission from S. Kais, D.R. Her-
schbach, N.C. Handy, C.W. Murray,
and G.J. Laming, J. Chem. Phys. 99
(1993) 417, © 1993, American Insti-
tute of Physics.

exact

exact

does not have a hundred heads and is quite mild (which is good), though a little bit
unpredictable.

The results of various DFT versions are generally quite good, although this
comes from a cancellation of errors. Nevertheless, great progress has been made.
At present many chemists prefer the DFT method (economy and accuracy) than
to getting stuck at the barrier of the configuration interaction excitations. And yet
the method can hardly be called ab initio, since the exchange–correlation potential
is tailored in a somewhat blind manner.

Summary
• The main theoretical concept of the DFT method is the electronic density distribution

ρ(r)=N
− 1

2∑

σ1= 1
2

∫

dτ2 dτ3 � � � dτN
∣
∣�(r	σ1	 r2	σ2	 � � � 	 rn	σN)

∣
∣2	
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where r indicates a point in 3D space, and the sum is over all the spin coordinates of
N electrons, while the integration is over the space coordinates of N − 1 electrons. For
example, within the molecular orbital (RHF) approximation ρ=∑i 2|ϕi(r)|2 is the sum
of the squares of all the molecular orbitals multiplied by their occupation number. The
electronic density distribution ρ is a function of position in the 3D space.

• ρ carries a lot of information. The density ρ exhibits maxima at nuclei (with a discontinuity
of the gradient, because of the cusp condition, p. 504). The Bader analysis is based on
identification of the critical (stationary) points of ρ (i.e. those for which ∇ρ= 0), for each
of them the Hessian is computed (the second derivatives matrix). Diagonalization of the
Hessian tells us whether the critical point corresponds to a maximum of ρ (non-nuclear
attractor62), a minimum (e.g., cavities), a first-order saddle point (e.g., a ring centre), or
a second-order saddle point (chemical bond).

• The DFT relies on the two Hohenberg–Kohn theorems:
– The ground-state electronic density distribution (ρ0) contains the same information as the

ground-state wave function (�0). Therefore, instead of a complex mathematical object
(the ground-state wave function �0) depending on 4N-variables we have a much sim-
pler object (ρ0) that depends on three variables (Cartesian coordinates) only.

– A total energy functional of ρ exists that attains its minimum at ρ= ρ0� This mysterious
functional is not yet known.

• Kohn and Sham presented the concept of a system with non-interacting electrons, subject
however to some “wonder” external field v0(r) (instead of that of the nuclei), such that
the resulting density ρ remains identical to the exact ground-state density distribution ρ0.
This fictitious system of electrons plays a very important role in the DFT.

• Since the Kohn–Sham electrons do not interact, its wave function represents a single
Slater determinant (known as the Kohn–Sham determinant).

• We write the total energy expression E = T0 +
∫

v(r)ρ(r)d3r+ J[ρ] + Exc[ρ] that con-
tains:
– the kinetic energy of the non-interacting electrons (T0),
– the potential energy of the electron–nuclei interaction (

∫

v(r)ρ(r)d3r),
– the Coulombic electron–electron self-interaction energy (J[ρ]),
– the remainder Exc, i.e. the unknown exchange–correlation energy.

• Using the single-determinant Kohn–Sham wave function (which gives the exact ρ0) we
vary the Kohn–Sham spinorbitals in order to find the minimum of the energy E.

• We are immediately confronted with the problem of how to find the unknown exchange–
correlation energy Exc, which is replaced also by an unknown exchange–correlation po-
tential in the form of a functional derivative vxc ≡ δExc

δρ . We obtain the Kohn–Sham equa-

tion (resembling the Fock equation) {− 1
2� + v0}φi = εiφi, where “wonder-potential”

v0 = v+ vcoul + vxc, vcoul stands for the sum of the usual Coulombic operators (as in the
Hartree–Fock method)63 (built from the Kohn–Sham spinorbitals) and vxc is the poten-
tial to be found.

• The main problem now resides in the nature of Exc (and vxc). We are forced to make a
variety of practical guesses here.

• The simplest guess is the local density approximation (LDA). We assume that Exc can
be summed up from the contributions of all the points in space, and that the individual

62The maxima on the nuclei are excluded from the analysis, because of the discontinuity of ∇ρ men-
tioned above.
63It is, in fact, δJ[ρ]δρ .
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contribution depends only on ρ computed at this point. Now, the key question is what
does this dependence Exc[ρ] look like? The LDA answers this question by using the fol-
lowing approximation: each point r in the 3D space contributes to Exc depending on the
computed value of ρ(r) as if it were a homogeneous gas of uniform density ρ, where the
dependence Exc[ρ] is exactly known.

• There are also more complex Exc[ρ] functionals that go beyond the local approximation.
They not only use the local value of ρ but sometimes also ∇ρ (gradient approximation).

• In each of these choices there is a lot of ambiguity. This, however, is restricted by some
physical requirements.

• The requirements are related to the electron pair distribution function

�(r1	 r2)=N(N − 1)
∑

allσi

∫

|�|2 d3r3 d3r4 � � � d3rN	

which takes account of the fact that the two electrons, shown by r1 and r2, avoid each
other.

• First-order perturbation theory leads to the exact expression for the total energy E as

E = T0 +
∫

ρ(r)v(r)d3r+ 1
2

∫ ∫

d3r1 d3r2
�aver( r1	 r2)

r12
	

where

�aver(r1	 r2)=
∫ 1

0
�λ(r1	 r2)dλ	

with the parameter 0 
 λ 
 1 instrumental when transforming the system of non-
interacting electrons (λ = 0, Kohn–Sham model) into the system of fully interacting ones
(λ= 1) all the time preserving the exact density distribution ρ. Unfortunately, the function
�λ(r1	 r2) remains unknown.

• The function �λ(r1	 r2) serves to define the electron hole functions, which will tell us
where electron 2 prefers to be, if electron 1 occupies the position r1. The exchange–
correlation energy is related to the �σσ

′
aver function by:

Exc = 1
2

∑

σσ ′

∫ ∫

d3r1 d3r2
�σσ

′
aver(r1	 r2)− ρσ(r1)ρσ ′(r2)

r12
	

where the sum is over the spin coordinate σ of electron 1 and spin coordinate σ ′ of
electron 2, with the decomposition �aver =�ααaver +�αβaver +�βαaver +�ββaver� For example,
the number �αβaver dV1 dV2 stands for the probability of finding simultaneously an electron
with the spin function α in the volume dV1 located at r1 and another electron with the
spin function β in the volume dV2 located at r2, etc.

• The definition of the exchange–correlation hole function hσσ
′

xc (r1	 r2) is as follows:

Exc = 1
2

∑

σσ ′

∫

d3r1

∫

d3r2
ρσ(r1)

r12
hσσ

′
xc (r1	 r2)	

which is equivalent to setting

hσσ
′

xc (r1	 r2)=
�σσ

′
aver(r1	 r2)

ρσ(r1)
− ρσ ′(r2)�
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This means that the hole function is related to that part of the pair distribution function
that indicates the avoidance of the two electrons (i.e. beyond their independent motion
described by the product of the densities ρσ(r1)ρσ ′(r2)).

• Due to the antisymmetry requirement for the wave function (Chapter 1) the holes have to
satisfy some general (integral) conditions. The electrons with parallel spins have to avoid
each other: ∫

hααxc (r1	 r2)d3r2 =
∫

h
ββ
xc (r1	 r2)d3r2 =−1

(one electron disappears from the neighbourhood of the other), while the electrons with
opposite spins are not influenced by the Pauli exclusion principle:

∫

h
αβ
xc (r1	 r2)d3r2 =

∫

h
βα
xc (r1	 r2)d3r2 = 0�

• The exchange correlation hole is a sum of the exchange hole and the correlation
hole: hσσ

′
xc = hσσ

′
x + hσσ

′
c , where the exchange hole follows in a simple way from

the Kohn–Sham determinant (and is therefore supposed to be known). Then, we have
to guess the correlation holes. All the correlation holes have to satisfy the condition
∫

hσσ
′

c (r1	 r2)d3r2 = 0, which only means that the average has to be zero, but says noth-
ing about the particular form of hσσ

′
c (r1	 r2). The only sure thing is, e.g., that close to the

origin the function hσσ
′

c has to be negative, and, therefore, for longer distances it has to
be positive.

• The popular approximations, e.g., LDA, PW91, in general, satisfy the integral conditions
for the holes.

• The hybrid approximations (e.g., B3LYP), i.e. such a linear combination of the potentials
that it will ensure good agreement with experiment, become more and more popular.

• The DFT models can be tested when applied to exactly solvable problems with electronic
correlation (like the harmonium, Chapter 4). It turns out that despite the exchange, and
especially correlation and DFT potentials deviating from the exact ones, the total energy
is quite accurate.

Main concepts, new terms

electron gas (p. 567)
electronic density distribution (p. 569)
Bader analysis (p. 571)
critical points (p. 571)
non-nuclear attractor (p. 573)
catastrophe set (p. 575)
Hohenberg–Kohn functional (p. 580)
v-representability (p. 580)
Kohn–Sham system (p. 584)
self-interaction energy (p. 585)
exchange–correlation energy (p. 586)

exchange–correlation potential (p. 588)
spin polarization (p. 589)
local density approximation, LDA (p. 590)
gradient approximation, NLDA (GEA)

(p. 591)
hybrid approximations, NLDA (p. 591)
electron pair distribution (p. 592)
quasi-static transition (p. 594)
exchange–correlation hole (p. 598)
exchange hole (p. 599)
correlation hole (p. 599)

From the research front

Computer technology has been revolutionary, not only because computers are fast. Much
more important is that each programmer uses the full experience of his predecessors and
easily “stands on the shoulders of giants”. The computer era has made an unprecedented
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transfer of the most advanced theoretical tools from the finest scientists to practically every-
body. Experimentalists often investigate large molecules. If there is a method like DFT,
which gives answers to their vital questions in a shorter time than the ab initio methods,
they will not hesitate and choose the DFT, even if the method is notorious for failing to
reproduce the intermolecular interactions correctly (especially the dispersion energy, see
Chapter 13). Something like this has now happened. Nowadays the DFT procedure is ap-
plicable to systems with hundreds of atoms.

The DFT method is developing fast also in the conceptual sense,64 e.g., the theory of re-
activity (“charge sensitivity analysis”65) has been derived, which established a link between
the intermolecular electron transfer and the charge density changes in atomic resolution.
For systems in magnetic fields, current DFT was developed.66 Relativistic effects67 and
time dependent phenomena68 are included in some versions of the theory.

Ad futurum. . .

The DFT will of course be further elaborated. There are already investigations under way,
which will allow us to calculate the dispersion energy.69 The impetus will probably be di-
rected towards such methods as the Density Matrix Functional Theory (DMFT) proposed
by Levy,70 and currently being developed by Jerzy Ciosłowski.71 The idea is to abandon
ρ(r) as the central quantity, and instead use the one-particle density matrix �(r	 r′)

�(r	 r′) = N
1
2∑

σ1= 1
2

∫

dτ2 dτ3 � � � dτN �(r	σ1	 r2	σ2	 � � � 	 rN	σN)

×�∗(r′	σ1	 r2	σ2	 � � � 	 rN	σN)	 (11.78)

in which the coordinates for electron 1 (integration pertains to electrons 2	3	 � � � 	N) are dif-
ferent in �∗ and �� We see that the diagonal element �(r	 r) of �(r	 r′) is simply ρ(r)� The
method has the advantage that we are not forced to introduce the non-interacting Kohn–
Sham electrons, because the mean value of the electron kinetic energy may be expressed

64See, e.g., P. Geerlings, F. De Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.
65R.F. Nalewajski, J. Korchowiec, “Charge Sensitivity Approach to Electronic Structure and Chemical

Reactivity”, World Scientific, Singapore, 1997; R.F. Nalewajski, J. Korchowiec, A. Michalak, “Reactiv-
ity Criteria in Charge Sensitivity Analysis”, Topics in Current Chemistry 183 (1996) 25; R.F. Nalewajski,
“Charge Sensitivities of Molecules and Their Fragments”, Rev. Mod. Quant. Chem., ed. K.D. Sen, World
Scientific, Singapore (2002) 1071; R.F. Nalewajski, R.G. Parr, Proc. Natl. Acad. Sci. USA 97 (2000) 8879.
66G. Vignale, M. Rasolt, Phys. Rev. Letters 59 (1987) 2360, Phys. Rev. B 37 (1988) 10685.
67A.K. Rajagopal, J. Callaway, Phys. Rev. B 7 (1973) 1912; A.H. Mac Donald, S.H. Vosko, J. Phys. C 12

(1979) 2977.
68E. Runge, E.K.U. Gross, Phys. Rev. Letters 52 (1984) 997, R. van Leeuwen, Phys. Rev. Letters 82

(1999) 3863.
69W. Kohn, Y. Meir, D. Makarov, Phys. Rev. Letters 80 (1998) 4153; E. Hult, H. Rydberg,

B.I. Lundqvist, D.C. Langreth, Phys. Rev. B 59 (1999) 4708; J. Ciosłowski, K. Pernal, J. Chem. Phys.
116 (2002) 4802.
70M. Levy, Proc. Nat. Acad. Sci.(USA) 76 (1979) 6062.
71J. Ciosłowski, K. Pernal, J. Chem. Phys. 111 (1999) 3396; J. Ciosłowski, K. Pernal, Phys. Rev. A 61

(2000) 34503; J. Ciosłowski, P. Ziesche, K. Pernal, Phys. Rev. B 63 (2001) 205105; J. Ciosłowski, K. Per-
nal, J. Chem. Phys. 115 (2001) 5784; J. Ciosłowski, P. Ziesche, K. Pernal, J. Chem. Phys. 115 (2001)
8725.
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directly by the new quantity (this follows from the definition):

T =−1
2

∫

d3r [�r�(r	 r′)]|r′=r	

where the symbol |r′=r means replacing r′ by r after the result �r�(r	 r′) is ready. Thus, in
the DMFT exchange–correlation we have no kinetic energy left.

The success of the DFT approach will probably make the traditional ab initio procedures
faster, up to the development of methods with linear scaling (with the number of electrons
for long molecules). The massively parallel “computer farms” with 2000 processors currently
(and millions expected soon), will saturate most demands of experimental chemistry. The
results will be calculated fast and it will be much more difficult to define an interesting target
to compute. We will be efficient.

We will have an efficient hybrid potential, say, of the B3LYP5PW2001/2002-type. There
remains, however, a problem that already appears in laboratories. A colleague delivers a
lecture and proposes a hybrid B3LYP6PW2003update,72 which is more effective for aro-
matic molecules. What will these two scientists talk about? It is very good that the computer
understands all this, but what about the scientists? In my opinion science will move into
such areas as planning new materials and new molecular phenomena (cf. Chapter 15) with
the programs mentioned above as tools.

Additional literature

A.D. Becke, in “Modern Electronic Structure Theory. Part II” , D.R. Yarkony, ed., World
Scientific, p. 1022.

An excellent and comprehensible introduction into DFT written by a renowned expert
in the field.

J. Andzelm, E. Wimmer, J. Chem. Phys. 96 (1992) 1280.
A competent presentation of DFT technique introduced by the authors.

Richard F.W. Bader, “Atoms in Molecules. A Quantum Theory”, Clarendon Press, Ox-
ford, 1994.

An excellent book.

E.J. Baerends, O.V. Gritsenko, “A Quantum Chemical View of Density Functional The-
ory”, J. Phys. Chem. A101 (1997) 5383.

A very well written article.

Other sources:
R.G. Parr, W. Yang, “Density Functional Theory of Atoms and Molecules”, Oxford Univ.
Press, Oxford, 1989.

“Density Functional Theory of Many Fermion Systems”, ed. S.B. Trickey, Academic Press,
New York, 1990.

R.H. Dreizler, E.K.U. Gross, “Density Functional Theory”, Springer, Berlin, 1990.

“Density Functional Theory”, ed. E.K.U. Gross, R.H. Dreizler, Plenum, New York, 1994.

72The same pertains to the traditional methods. Somebody operating billions of the expansion func-
tions meets a colleague using even more functions. It would be very pity if we changed into experts
(“this is what we are paid for...”) knowing, which particular BLYP is good for calculating interatomic
distances, which for charge distribution, etc.
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N.H. March, “Electron Density Theory of Atoms and Molecules”, Academic Press, Lon-
don, 1992.

“DFT I,II,III,IV” Topics in Current Chemistry, vols. 180–183, ed. R. Nalewajski, Springer,
Berlin, 1996.

“Density Functionals: Theory and Applications”, ed. D. Joubert, Lecture Notes in Physics,
vol. 500, Springer, Berlin, 1998.

A. Freeman, E. Wimmer, “DFT as a major tool in computational materials science”, Ann.
Rev. Mater. Sci. 25 (1995) 7.

W. Kohn, A.D. Becke, R.G. Parr, “DFT of electronic structure”, J. Chem. Phys. 100 (1996)
12974.

A. Nagy, “Density Functional Theory and Applications to Atoms and Molecules”, Phys.
Reports 298 (1998) 1.

Questions

1. The Hessian of the electronic density distribution computed for the critical point within
a covalent chemical bond has:
a) exactly one negative eigenvalue; b) the number of eigenvalues equal to the number of
electrons in the bond; c) exactly one positive eigenvalue; d) has two positive eigenvalues.

2. Hohenberg and Kohn (ρ	ρ0	E	E0 stand for the density distribution, the ground-state
density distribution, the mean value of the Hamiltonian, and the ground-state energy,
respectively):
a) have proposed a functional E[ρ] that exhibits minimum E[ρ0] =E0;
b) have proved that a functional E[ρ] exists that satisfies E[ρ]	E[ρ0] = E0;
c) have proved that an energy functional E[ρ]	 0;
d) have proved that a total energy functional E[ρ]>E0.

3. The Kohn–Sham system represents:
a) any set of non-interacting N electrons;
b) a set of N non-interacting electrons subject to an external potential that preserves
the exact density distribution ρ of the system;
c) a set of N electrons interacting among themselves in such a way that preserves the
exact density distribution ρ of the system under consideration;
d) a set of N paired electrons that satisfies ρα = ρ/2.

4. In the LDA (Exc stands for the exchange–correlation energy):
a) the Exc[ρ] for molecules is computed as a sum of local contributions as if they came
from a homogeneous electronic gas of density ρ;
b) Exc =

∫ 1
r12
ρ(r1)ρ(r2), where ρ corresponds to the electronic homogeneous gas den-

sity distribution;
c) Exc is neglected;
d) Exc[ρ(r)] is calculated by multiplying ρ by a constant.

5. In the DFT hybrid approximations (Exc stands for the exchange–correlation energy):
a) the Kohn–Sham orbitals represent the hybrid atomic orbitals described in Chapter 8;
b) Exc = 1

2
∫

d3r1 d3r2
�(r1	r2)
r12

;
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c)Exc is identical to the exchange energy corresponding to the Kohn–Sham determinant
built from hybrid orbitals;
d) as Exc we use a linear combination of the expressions for Exc from several different
DFT approximations.

6. The electron pair distribution function �λ(r1	 r2):
a) pertains to two electrons each of charge

√
λ and with ρ that equals the exact electron

density distribution; b) satisfies
∫

�λ(r1	 r2)dλ = 1; c) is the correlation energy per
electron pair for λ ∈ [0	1]; d) is the pair distribution function for the electrons with
charge λ.

7. In the DFT the exchange–correlation energy Exc: a) contains a part of the electronic
kinetic energy; b) contains the total electronic kinetic energy; c) contains only that part
of the electronic kinetic energy that corresponds to non-interacting electrons; d) does
not contain any electronic kinetic energy.

8. The exchange–correlation holes hαβxc (r1	 r2) and hββxc (r1	 r2) satisfy:
a) hαβxc (r1	 r2)d3r2 = 0 and hββxc (r1	 r2)d3r2 =−2;
b)
∫

h
αβ
xc (r1	 r2)d3r2 =−1 and

∫

h
ββ
xc (r1	 r2)d3r2 = 0;

c)
∫

h
αβ
xc (r1	 r2)d3r2 = 0 and

∫

h
ββ
xc (r1	 r2)d3r2 =−1;

d)
∫

h
αβ
xc (r1	 r2)d3r2 =

∫

h
ββ
xc (r1	 r2)d3r2 = 0.

9. The DFT exchange energy Ex:
a) Ex > 0; b) turns out to be more important than the correlation energy; c) is identical
to the Hartree–Fock energy; d) represents a repulsion.

10. The DFT:
a) describes the argon–argon equilibrium distance correctly;
b) is roughly as time-consuming as the CI procedure;
c) cannot take into account any electronic correlation since it uses a single Kohn–Sham
determinant;
d) is incorrect when describing the dispersion interaction of two water molecules.

Answers

1c, 2b, 3b, 4a, 5d, 6a, 7a, 8c, 9b, 10d



Chapter 12

THE MOLECULE
IN AN ELECTRIC
OR MAGNETIC FIELD

Where are we?

We are already in the crown of the TREE (left-hand side)

An example

How does a molecule react to an applied electric field? How do you calculate the changes
it undergoes? In some materials there is a strange phenomenon: a monochromatic red laser
light beam enters a transparent substance, and leaves the specimen as a blue beam. Why?

Another example, this time with a magnetic field. We apply a long wavelength electro-
magnetic radiation to a specimen. We do not see any absorption whatsoever. However, if, in
addition, we apply a static magnetic field gradually increasing in intensity, at some intensities
we observe absorption. If we analyze the magnetic field values corresponding to the absorp-
tion then they cluster into mysterious groups that depend on the chemical composition of
the specimen. Why?

What is it all about

The properties of a substance with and without an external electric field differ. The problem
is how to compute the molecular properties in the electric field from the properties of the
isolated molecule and the characteristics of the applied field. Molecules react also upon
application of a magnetic field, which changes the internal electric currents and modifies
the local magnetic field. A nucleus may be treated as a small magnet, which reacts to the
local magnetic field it encounters. This local field depends not only on the external magnetic
field, but also on those from other nuclei, and on the electronic structure in the vicinity.
This produces some energy levels in the spin system, with transitions leading to the nuclear
magnetic resonance (NMR) phenomenon which has wide applications in chemistry, physics
and medicine.

The following topics will be described in the present chapter.

Helmann–Feynman theorem p. 618

ELECTRIC PHENOMENA p. 620

The molecule immobilized in an electric field (��) p. 620
• The electric field as a perturbation
• The homogeneous electric field
• The inhomogeneous field: multipole polarizabilities and hyperpolarizabilities

How to calculate the dipole moment? (��) p. 633

615
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• Hartree–Fock approximation
• Atomic and bond dipoles
• Within the ZDO approximation

How to calculate the dipole polarizability? (��) p. 635
• Sum over states method (SOS)
• Finite field method
• What is going on at higher electric fields

A molecule in an oscillating electric field (��) p. 645

MAGNETIC PHENOMENA p. 647

Magnetic dipole moments of elementary particles (��) p. 648
• Electron
• Nucleus
• Dipole moment in the field

Transitions between the nuclear spin quantum states – NMR technique p. 652

Hamiltonian of the system in the electromagnetic field (��) p. 653
• Choice of the vector and scalar potentials
• Refinement of the Hamiltonian

Effective NMR Hamiltonian (�) p. 658
• Signal averaging
• Empirical Hamiltonian
• Nuclear spin energy levels

The Ramsey theory of the NMR chemical shift (��) p. 666
• Shielding constants
• Diamagnetic and paramagnetic contributions

The Ramsey theory of the NMR spin–spin coupling constants (��) p. 668
• Diamagnetic contribution
• Paramagnetic contribution
• Coupling constants
• The Fermi contact coupling mechanism

Gauge invariant atomic orbitals (GIAO) (��) p. 673
• London orbitals
• Integrals are invariant

Why is this important?

There is no such a thing as an isolated molecule, since any molecule interacts with its neigh-
bourhood. In most cases this is the electric field of another molecule or an external electric
field and represents the only information about the external world the molecule has. The
source of the electric field (another molecule or a technical equipment) is of no importance.
Any molecule will respond to the electric field, but some will respond dramatically, while others
may respond quite weakly. This is of importance in designing new materials.

The molecular electronic structure does not respond to a change in orientation of the
nuclear magnetic moments, because the corresponding perturbation is too small. On the
other hand, the molecular electronic structure influences the subtle energetics of interac-
tion of the nuclear spin magnetic moments and these effects may be recorded in the NMR
spectrum. This is of great practical importance, because it means we have in the molecule un-
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der study a system of sounds (nuclear spins) which characterize the electronic structure almost
without perturbing it.

What is needed?
• Perturbation theory (Chapter 5, necessary).
• Variational method (Chapter 5, advised).
• Harmonic oscillator and rigid rotator (Chapter 4, advised).
• Breit Hamiltonian (Chapter 3, advised).
• Appendix S, p. 1015 (advised).
• Appendix G, p. 962 (necessary for magnetic properties).
• Appendix M, p. 986 (advised).
• Appendix W, p. 1032 (advised).

Classical works
Peter Debye, as early as 1921, predicted in “Molekularkräfte und ihre Elektrische Deu-

tung”, Physikalische Zeitschrift, 22 (1921) 302 that a non-polar gas or liquid of molecules
with a non-zero quadrupole moment, when subject to an inhomogeneous electric field,
will exhibit the birefringence phenomenon
due to the orientation of the quadrupoles
in the electric field gradient. � The book
by John Hasbrouck Van Vleck “Electric and
Magnetic Susceptibilities”, Oxford University
Press, 1932 represented enormous progress.
� The theorem that forces acting on nuclei
result from classical interactions with elec-
tron density (computed by a quantum me-
chanical method) was first proved by Hans
Gustav Adolf Hellmann in the world’s first
textbook of quantum chemistry “Einführung

John Hasbrouck Van Vleck
(1899–1980), American physi-
cist, professor at the Univer-
sity of Minnesota, received
the Nobel Prize in 1977 for
“fundamental theoretical in-
vestigations of the electronic
structure of magnetic and dis-
ordered systems”.

in die Quantenchemie”, Deuticke, Leipzig und Wien,1 (1937), p. 285, and then, indepen-
dently, by Richard Philips Feynman in “Forces in Molecules” published in Physical Review,
56 (1939) 340. � The first idea of nuclear magnetic resonance (NMR) came from a Dutch
scholar, Cornelis Jacobus Gorter, in “Negative Result in an Attempt to Detect Nuclear Spins”
in Physica, 3 (1936) 995. � The first electron paramagnetic resonance (EPR) measurement
was carried out by Evgenii Zavoiski from Kazan University (USSR) and reported in “Spin-
Magnetic Resonance in Paramagnetics” published in Journal of Physics (USSR), 9 (1945) 245,
447. � The first NMR absorption experiment was performed by Edward M. Purcell, Henry
C. Torrey and Robert V. Pound and published in “Resonance Absorption by Nuclear Mag-
netic Moments in a Solid”, which appeared in Physical Review, 69 (1946) 37, while the first
correct explanation of nuclear spin–spin coupling (through the chemical bond) was given by
Norman F. Ramsey and Edward M. Purcell in “Interactions between Nuclear Spins in Mole-
cules” published in Physical Review, 85 (1952) 143. � The first successful experiment in
non-linear optics with frequency doubling was reported by Peter A. Franken, Alan E. Hill,
Wilbur C. Peters and Gabriel Weinreich in “Generation of Optical Harmonics” published
in Physical Review Letters, 7 (1961) 118. � Hendrik F. Hameka’s book “Advanced Quantum
Chemistry. Theory of Interactions between Molecules and Electromagnetic Fields” (1965) is also
considered a classic work. � Although virtually unknown outside Poland, the book “Mole-

1A Russian edition had appeared a few months earlier, but it does not contain the theorem.
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cular Non-Linear Optics”, Warsaw–Poznań, PWN (1977) (in Polish) by Stanisław Kielich,
deserves to be included in the list of classic works.

12.1 HELLMANN–FEYNMAN THEOREM

Let us assume that a system with Hamiltonian Ĥ is in a stationary state described
by the (normalized) function ψ. Now let us begin to do a little “tinkering” with the
Hamiltonian by introducing a parameter P . So we have Ĥ(P), and assume we may
change the parameter smoothly. For example, as the parameter P we may take the
electric field intensity, or, if we assume the Born–Oppenheimer approximation,
then as P we may take a nuclear coordinate.2 If we change P in the Hamiltonian
Ĥ(P), then we have a response in the eigenvalue E(P). The eigenfunctions and
eigenvalues of Ĥ become functions of P .

Hans Gustav Adolf Hellmann (1903–1938),
German physicist, one of the pioneers of quan-
tum chemistry. He contributed to the theory of
dielectric susceptibility, theory of spin, chem-
ical bond theory (semiempirical calculations,
also virial theorem and the role of kinetic en-
ergy), intermolecular interactions theory, elec-
tronic affinity, etc. Hellmann wrote the world’s
first textbook of quantum chemistry “Vviedi-
eniye v kvantovuyu khimiyu”, a few months
later edited in Leipzig as “Einführung in die
Quantenchemie”. In 1933 Hellmann presented
his habilitation thesis at the Veterinary College
of Hannover. As part of the paper work he filled
out a form, in which according to the recent
Nazi requirement he wrote that his wife was of
Jewish origin. The Nazi ministry rejected the
habilitation. The situation grew more and more
dangerous (many students of the School were
active Nazis) and the Hellmanns decided to
emigrate. Since his wife originated from the
Ukraine they chose the Eastern route. Hell-
mann obtained a position at the Karpov In-
stitute of Physical Chemistry in Moscow as a
theoretical group leader. A leader of another
group, the Communist Party First Secretary of
the Institute (Hellmann’s colleague and a co-
author of one of his papers) A.A. Zukhovitskyi
as well as the former First Secretary, leader
of the Heterogenic Catalysis Group Mikhail
Tiomkin, denounced Hellmann to the institu-
tion later called the KGB, which soon arrested

him. Years later an investigation protocol was
found in the KGB archives, with a text about
Hellmann’s spying written by somebody else
but with Hellmann’s signature. This was a com-
mon result of such “investigations”. On May
16, 1938 Albert Einstein, and on May 18 three
other Nobel prize recipients: Irene Joliot-Curie,
Frederick Joliot-Curie and Jean-Baptiste Per-
rin, asked Stalin for mercy for Hellmann. Stalin
ignored the eminent scholars’ supplication,
and on May 29, 1938 Hans Hellmann faced
the firing squad and was executed.

After W.H.E. Schwarz et al., Bunsen-Maga-
zin (1999) 10, 60. Portrait reproduced from a
painting by Tatiana Livschitz, courtesy of Pro-
fessor Eugen Schwarz.

2Recall please that in the adiabatic approximation, the electronic Hamiltonian depends parametri-
cally on the nuclear coordinates (Chapter 6). Then E(P) corresponds to E0

k
(R) from eq. (6.8).
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Richard Philips Feynman (1919–1988), Amer-
ican physicist, for many years professor at the
California Institute of Technology. His father
was his first informal teacher of physics, who
taught him the extremely important skill of inde-
pendent thinking. Feynman studied at Massa-
chusetts Institute of Technology, then in Prince-
ton University, where he defended his Ph.D.
thesis under the supervision of John Archibald
Wheeler.

In 1945–1950 Feynman served as a profes-
sor at Cornell University. A paper plate thrown
in the air by a student in the Cornell cafe was
the first impulse for Feynman to think about
creating a new version of quantum electro-
dynamics. For this achievement Feynman re-
ceived the Nobel prize in 1965, cf. p. 14.

Feynman was a genius, who contributed
to several branches of physics (superfluidity,
weak interactions, quantum computers, nano-
technology). His textbook “The Feynman Lec-
tures on Physics” is considered an unchal-
lenged achievement in academic literature.
Several of his books became best-sellers.
Feynman was famous for his unconventional,
straightforward and crystal-clear thinking, as
well as for his courage and humour. Curiosity
and courage made possible his investigations
of the ancient Maya calendar, ant habits, as
well as his activity in painting and music.

From John Slater’s autobiography “Solid
State and Molecular Theory”, London, Wiley
(1975):

“� � � The theorem known as the Hellmann–
Feynman theorem, stating that the force on a
nucleus can be rigorously calculated by elec-
trostatics (. . . ), remained, as far as I was
concerned, only a surmise for several years.
Somehow, I missed the fact that Hellmann,
in Germany, proved it rigorously in 1936, and
when a very bright undergraduate turned up
in 1938–1939 wanting a topic for a bachelor’s
thesis, I suggested to him that he see if it could
be proved. He come back very promptly with
a proof. Since he was Richard Feynman (. . . ),
it is not surprizing that he produced his proof
without trouble.”

The Hellmann–Feynman theorem pertains to the rate of the change3 of E(P):

HELLMANN–FEYNMAN THEOREM:

∂E

∂P
=
〈

ψ

∣
∣
∣
∣

∂Ĥ

∂P

∣
∣
∣
∣
ψ

〉

� (12.1)

The proof is simple. The differentiation with respect to P of the integrand in
E = 〈ψ|H|ψ〉 gives

∂E

∂P
=
〈
∂ψ
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∣
∣
Ĥψ

〉

+
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∂Ĥ
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〉
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(〈
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ψ

〉
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∂ψ
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〉)
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〈

ψ

∣
∣
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∂Ĥ

∂P
ψ

〉

=
〈

ψ

∣
∣
∣
∣

∂Ĥ

∂P
ψ

〉

	 (12.2)

because the expression in parentheses is equal to zero (we have profited from the

3We may define ( ∂Ĥ∂P )P=P0 as an operator, being a limit when P → P0 of the operator sequence
Ĥ(P)−Ĥ(P0)

P−P0
.
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facts that the Ĥ is Hermitian, and that ψ represents its eigenfunction4). Indeed,
differentiating 〈ψ|ψ〉 = 1 we have:

0=
〈
∂ψ

∂P

∣
∣
∣
∣
ψ

〉

+
〈

ψ

∣
∣
∣
∣

∂ψ

∂P

〉

	 (12.3)

which completes the proof.
Soon we will use the Hellmann–Feynman theorem to compute the molecular

response to an electric field.5

ELECTRIC PHENOMENA

12.2 THE MOLECULE IMMOBILIZED IN AN ELECTRIC FIELD

The electric field intensity E at a point represents the force acting on a unit
positive point charge (probe charge): E = −∇V , where V stands for the electric
field potential energy at this point.6 When the potential changes linearly in space

4If, instead of the exact eigenfunction, we use an approximate function ψ, then the theorem would
have to be modified. In such a case we have to take into account the terms 〈 ∂ψ∂P |Ĥ|ψ〉 + 〈ψ|Ĥ| ∂ψ∂P 〉.

5In case P is a nuclear coordinate (say, x coordinate of the nucleus C , denoted by XC ), and E stands
for the potential energy for the motion of the nuclei (cf. Chapter 6, the quantity corresponds to E0

0 of

eq. (6.8)), the quantity − ∂E∂P = FXC represents the x component of the force acting on the nucleus.
The Helmann–Feynman theorem says that this component can be computed as the mean value of the
derivative of the Hamiltonian with respect to the parameter P . Since the electronic Hamiltonian reads

Ĥ0 = −
1
2

∑

i

�i + V 	

V = −
∑

A

∑

i

ZA
rAi

+
∑

i<j

1
rij
+
∑

A<B

ZAZB
RAB

	

then, after differentiating, we have as ∂Ĥ∂P

∂Ĥ0
∂XC

=
∑

i

ZC

(rCi)
3
(XC − xi)−

∑
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ZCZB
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3
(XC −XB)�

Therefore,

FXC =−
〈

ψ
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∣
∣

∂Ĥ
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ψ

〉

=ZC
[∫

dV1 ρ(1)
x1 −XC
(rC1)

3
−
∑

B(	=C)

ZB

(RBC)
3
(XB −XC)

]

	

where ρ(1) stands for the electronic density defined in Chapter 11, eq. (11.1).
The last term can be easily calculated from the positions of the nuclei. The first term requires the

calculation of the one-electron integrals. Note, that the resulting formula states that the forces acting
on the nuclei follow from the classical Coulomb interaction involving the electronic density ρ, even if
the electronic density has been (and has to be) computed from quantum mechanics.

6We see that two potential functions that differ by a constant will give the same forces, i.e. will describe
identical physical phenomena (this is why this constant is arbitrary).
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potential

field intensity

x

Fig. 12.1. Recalling the electric field properties. (a) 1D: the potential V decreases with x. This means
that the electric field intensity E is constant, i.e. the field is homogeneous (b) 3D; (c) homogeneous elec-
tric field E = (E	0	0); (d) inhomogeneous electric field E = (E(x)	0	0); (e) inhomogeneous electric
field E = (Ex(x	 y)	Ey (x	 y)	0).

(Fig. 12.1.a), the electric field intensity is constant (Fig. 12.1.b,c). If at such a po-
tential we shift the probe charge from a to x+ a, x > 0, then the energy will lower
by V (x+ a)− V (a)=−Ex < 0. This is similar to the lowering of the of potential
energy of a stone as it slides downhill.

If, instead of a unit charge, we shift the chargeQ, then the energy will change
by −EQx.

It is seen that if we change the direction of the shift or the sign of the probe
charge, then the energy will go up (in case of the stone we may change only the
direction).

12.2.1 THE ELECTRIC FIELD AS A PERTURBATION

The inhomogeneous field at a slightly shifted point
Imagine a Cartesian coordinate system in 3D space and an inhomogeneous electric
field (Fig. 12.1.d,e) in it E = [Ex(x	 y	 z)	Ey(x	 y	 z)	Ez(x	 y	 z)].

Assume the electric field vector E(r0) is measured at a point indicated by the
vector r0. What will we measure at a point shifted by a small vector r = (x	 y	 z)
with respect to r0? The components of the electric field intensity represent smooth
functions in space and this is why we may compute the electric field from the Taylor
expansion (for each of the components Ex, Ey , Ez separately, all the derivatives are
computed at point r0):

Ex = Ex	0 +
(
∂Ex
∂x

)

0
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∂Ex
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0
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)
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Fig. 12.1. Continued.
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Ey = . . . similarly
Ez = . . . similarly (Fig. 12.2).

Energy gain due to a shift of the electric charge Q

These two electric field intensities (at points r0 and r0 + r) have been calculated
in order to consider the energy gain associated with the shift r of the electric point
charge Q. Similar to the 1D case just considered, we have the energy gain �E =
−QE · r. There is only one problem: which of the two electric field intensities is
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Fig. 12.2. The electric field computed at point x� 1 from its value (and the values of its derivatives)
at point 0. (a) 1D case; (b) 2D case.

to be inserted into the formula? Since the vector r= ix+ jy + kz is small (i	j	k
stand for unit vectors corresponding to axes x	 y	 z, respectively), we may insert,
e.g., the mean value of E(r0) and E(r0 + r). We quickly get the following (indices
q	q′	 q′′ ∈ {x	 y	 z}):

�E = −QE · r=−Q1
2
[

E(r0)+ E(r0 + r)
]

r

= −1
2
Q
[

i(Ex	0 + Ex)+ j(Ey	0 + Ey)+ k(Ez	0 + Ez)
]

(ix+ jy + kz)
= −Ex	0Qx− Ey	0Qy − Ez	0Qz

−Q1
2
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= −
∑

q

Eq	0μ̃q − 1
2

∑

q	q′

(
∂Eq
∂q′

)

0
�̃qq′

− 1
4

∑

q	q′	q′′

(
∂2Eq
∂q′∂q′′

)

0
�̃
qq′q′′ + · · · 	 (12.4)

where “+· · ·” denotes higher order terms, while μ̃q =Qq, �̃qq′ =Qqq′, �̃qq′q′′ =
Qqq′q′′	 � � � represent the components of the successive moments of a particle withelectric

moments electric charge Q pointed by the vector r0+ r and calculated within the coordinate
system located at r0. For example, μ̃x =Qx, �̃xy =Qxy , �̃xzz =Qxz2, etc.

Traceless multipole moments
The components of such moments in general are not independent. The three com-
ponents of the dipole moment are indeed independent, but among the quadru-
pole components we have the obvious relations �̃qq′ = �̃q′q from their definition,
which reduces the number of independent components from 9 to 6. This however
is not all. From the Maxwell equations (see Appendix G, p. 962), we obtain the
Laplace equation, �V = 0 (� means the Laplacian), valid for points without elec-
tric charges. Since E =−∇V and therefore −∇E = �V we obtain

∇E =
∑

q

∂Eq
∂q

= 0� (12.5)

Thus, in the energy expression

−1
2

∑

q	q′

(
∂Eq
∂q′

)

0
�̃qq′

of eq. (12.4), the quantities �̃qq′ are not independent, since we have to satisfy the
condition (12.5).

We have therefore only five independent moments that are quadratic in coordi-
nates. For the same reasons we have only seven (among 27) independent moments
with the third power of coordinates. Indeed, ten original components �q	q′	q′′
with (q	q′	 q′′) = xxx	 yxx	 yyx	 yyy	 zxx, zxy , zzx	 zyy	 zzy	 zzz correspond to
all permutationally non-equivalent moments. We have, however, three relations
these components have to satisfy. They correspond to the three equations, each
obtained from the differentiation of eq. (12.5) over x	 y	 z, respectively. This re-
sults in only seven independent components7 �q	q′	q′′ .

These relations between moments can be taken into account (adding to the
energy expression the zeros resulting from the Laplace equation (12.5)) and we

7In Appendix X on p. 1038 the definition of the multipole moments based on polar coordinates is
reported. The number of independent components of such moments is equal to the number of inde-
pendent Cartesian components and equals (2l+ 1) for l= 0	1	2	 � � � with the consecutive l pertaining,
respectively, to the monopole (or charge) (2l+ 1= 1), dipole (3), quadrupole (5), octupole (7), etc. (in
agreement with what we find now for the particular moments).
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may introduce what are known as the traceless Cartesian multipole moments8 (the traceless
momentssymbol without tilde), which may be chosen in the following way

μq ≡ μ̃q	 (12.6)

�qq′ ≡ 1
2

[

3�̃qq′ − δqq′
∑

q

�̃qq

]

� (12.7)

The adjective “traceless” results from relations of the type Tr�=∑q �qq = 0,
etc.

Then, the expression for the energy contribution changes to (please check that
both expressions are identical after using the Laplace formula)

�E =−
∑

q

Eq	0μq − 1
3

∑

q	q′

(
∂Eq
∂q′

)

0
�qq′ − · · · � (12.8)

Most often we compute first the moments and then use them to calculate the
traceless multipole moments (cf. Table 9.1 on p. 484).

System of charges in an inhomogeneous electric field
Since we are interested in constructing the perturbation operator that is to be added
to the Hamiltonian, from now on, according to the postulates of quantum me-
chanics (Chapter 1), we will treat the coordinates x	 y	 z in eq. (12.8) as operators
of multiplication (by just x	 y	 z). In addition we would like to treat many charged
particles, not just one, because we want to consider molecules. To this end we will
sum up all the above expressions, computed for each charged particle, separately.
As a result the Hamiltonian for the total system (nuclei and electrons) in the elec-
tric field E represents the Hamiltonian of the system without field (Ĥ(0)) and the
perturbation (Ĥ(1)):

Ĥ = Ĥ(0) + Ĥ(1)	 (12.9)

where

Ĥ(1) =−
∑

q

μ̂qEq − 1
3

∑

qq′
�̂qq′Eqq′ · · · (12.10)

with the convention

Eqq′ ≡ ∂Eq
∂q′

	

where the field component and its derivatives are computed at a given point (r0),
e.g., at the centre of mass of the molecule, while μ̂q	 �̂qq′	 � � � denote the opera-
tors of the components of the traceless Cartesian multipole moments of the total
system, i.e. of the molecule.9 How can we imagine multipole moments? We may

8The reader will find the corresponding formulae in the article by A.D. Buckingham, Advan. Chem.
Phys. 12 (1967) 107 or by A.J. Sadlej, “Introduction to the Theory of Intermolecular Interactions”, Lund’s
Theoretical Chemistry Lecture Notes, Lund, 1990.

9Also calculated with respect to this point. This means that if the molecule is large, then rmay become
dangerously large. In such a case, as a consequence, the series (12.8) may converge slowly.
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Fig. 12.3. Explanation of why a dipole moment interacts with the electric field intensity, a quadru-
pole moment with its gradient, while the octupole moment does not interact either with the first or
with the second. The external electric field is produced by two distant electric charges Q > 0 and −Q
(for long distances between them the field in the central region between the charges resembles a ho-
mogeneous field) and interacts with an object (a dipole, a quadrupole, etc.) located in the central re-
gion. A favourable orientation of the object corresponds to the lowest interaction energy with Q and
−Q. Fig. (a) shows such a low-energy situation for a dipole: the charge “+” protrudes towards −Q,
while the charge “−” protrudes towards Q. Fig. (b) corresponds to the opposite situation, energetically
non-favourable. As we can see, the interaction energy of the dipole with the electric field differentiates
these two situations. Now, let us locate a quadrupole in the middle (c). Let us imagine that a neu-
tral point object has just split into four point charges (of the same absolute value). The system lowers
its energy by the “−” charges going off the axis, because they have increased their distance from the
charge−Q, but at the same time the system energy has increased by the same amount, since the charges
went off the symmetrically located charge +Q. What about the “+” charges? The splitting of the “++”
charges leads to an energy gain for the right-hand side “+” charge, because it approached −Q, and
went off the charge +Q, but the left-hand side “+” charge gives the opposite energy effect. Altogether
the net result is zero. Conclusion: the quadrupole does not interact with the homogeneous electric field.
Now, let us imagine an inhomogeneous field having a non-zero gradient along the axis (e.g., both Q
charges differ by their absolute values). There will be no energy difference for the minus charges, but
one of the plus charges will be attracted more strongly than the other. Therefore, the quadrupole inter-
acts with the field gradient. We may foresee that the quadrupole will align with its longer axis along the
field. Fig. (d) shows an octupole (all charges have the same absolute value). Indeed, the total charge,
all the components of the dipole as well as of quadrupole moment are equal to zero, but the octupole
(eight charges in the vertices of a cube) is non-zero. Such an octupole does not interact with a homoge-
neous electric field (because the right and left sides of the cube do not gain anything when interacting).
It also does not interact with the field gradient (because each of the above mentioned sides of the cube
is composed of two plus and two minus charges; what the first ones gain the second ones lose).

associate a given multipole moment with a simple object that exhibits a non-zero
value for this particular moment, but all lower multipole moments equal zero.10

Some of such objects are shown in Fig. 12.3, located between two charges Q and
−Q producing an “external field”. Note that the multipole moment names (dipole,
quadrupole, octupole) indicate the number of the point charges from which these
objects are built.

Eq. (12.10) means that if the system exhibits non-zero multipole moments (be-
fore any interaction or due to the interaction), they will interact with the external
electric field: the dipole with the electric field intensity, the quadrupole with its
gradient, etc. Fig. 12.3 shows why this happens.
10Higher moments in general will be non-zero.
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12.2.2 THE HOMOGENEOUS ELECTRIC FIELD
In case of a homogeneous external electric field, the contribution to Ĥ(1) comes
from the first term in eq. (12.10):

Ĥ = Ĥ(0) + Ĥ(1) = Ĥ(0) − μ̂xEx − μ̂yEy − μ̂zEz = Ĥ(0) − μ̂ · E	 (12.11)

where the dipole moment operator μ̂ has the form:

μ̂=
∑

i

riQi	 (12.12)

with the vector ri indicating the particle i of charge Qi.
Hence,

∂Ĥ

∂Eq
=−μ̂q� (12.13)

From this it follows
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〉

=−〈ψ|μ̂qψ〉 = −μq	 (12.14)

where μq is the expected value of the q-th component of the dipole moment.
From the Hellmann–Feynman theorem we have:
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therefore
∂E

∂Eq
=−μq� (12.16)

On the other hand, in the case of a weak electric field E we certainly may write
the Taylor expansion:
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where E(0) stands for the energy of the unperturbed molecule.

Linear and non-linear responses to a homogeneous electric field
Comparing (12.16) and (12.17) we get,
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Eq′Eq′′ · · · 	 (12.18)
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or replacing the derivatives by their equivalents (permanent dipole moment, mole-
cular polarizability and hyperpolarizabilities)induced dipole

moment

μq = μ0q +
∑

q′
αqq′Eq′ + 1

2

∑

q′q′′
βqq′q′′Eq′Eq′′ + · · · � (12.19)

The meaning of the formula for μq is clear: in addition to the permanent di-
pole moment μ0 of the isolated molecule, we have its modification, i.e. an induced
dipole moment, which consists of the linear part in the field (

∑

q′ αqq′Eq′) and of
the nonlinear part ( 1

2
∑

q′q′′ βqq′q′′Eq′Eq′′ + · · ·). The quantities that characterize
the molecule: vector μ0 and tensors α	β	 � � � are of key importance. By comparingdipole

polarizability (12.18) with (12.19) we have the following relations:

the permanent (field-independent) dipole moment of the molecule (compo-
nent q):

μ0q =−
(
∂E

∂Eq

)

E=0
	 (12.20)

the total dipole moment (field-dependent):

μq =−
(
∂E
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the component qq′ of the dipole polarizability tensor:

αqq′ = −
(

∂2E

∂Eq∂Eq′

)

E=0
=
(
∂μq

∂Eq′

)

E=0
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the component qq′q′′ of the dipole hyperpolarizability tensor:

βqq′q′′ = −
(

∂3E

∂Eq∂Eq′∂Eq′′

)

E=0
� (12.23)

Next, we obtain higher-order dipole hyperpolarizabilities (γ	 � � �), which willdipole hyper-
polarizabilities contribute to the characteristics of the way the molecule is polarized when sub-

ject to a weak electric field.

The homogeneous field: dipole polarizability and dipole
hyperpolarizabilities
From eq. (12.17) we have the following expression for the energy of the molecule
in the electric field

E(E) = E(0) −
∑

q

μ0qEq − 1
2
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qq′
αqq′EqEq′ − 1

3!
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− 1
4!
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qq′q′′q′′′
γqq′q′′q′′′EqEq′Eq′′Eq′′′ · · · � (12.24)
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Fig. 12.4. The direction of the induced di-
pole moment may differ from the direction
of the electric field applied (due to the ten-
sor character of the polarizability and hyper-
polarizabilities). Example: the vinyl molecule
in a planar conformation. Assume the fol-
lowing Cartesian coordinate system: x (hori-
zontal in the figure plane), y (vertical in the
figure plane) and z (perpendicular to the fig-
ure plane), and the external electric field: E =
(0	Ey 	0). The component x of the induced
dipole moment is equal to (within the accu-
racy of linear terms, eq. (12.19)) μind	x = μx−
μ0x ≈ αxyEy , μind	y ≈ αyyEy 	μind	z ≈ αzyEy .
Due to the symmetry plane z = 0 of the mole-
cule (cf. p. 630) αzy = αzx = 0, and similarly
for the hyperpolarizabilities, we have μind	z =
0. As we can see, despite the field having its x
component equal to zero, the induced dipole
moment x component does not (μind	x 	= 0).

This formula pertains exclusively to the interaction of the molecular dipole (the
permanent dipole plus the induced linear and non-linear response) with the elec-
tric field. As seen from (12.19), the induced dipole moment with the components
μq −μ0q may have a different direction from the applied electric field (due to the
tensor character of the polarizability and hyperpolarizabilities). This is quite un-
derstandable, because the electrons will move in a direction which will represent a
compromise between the direction of the electric field which forces them to move,
and the direction where the polarization of the molecule is easiest (Fig. 12.4).

It is seen from eqs. (12.19) and (12.22) that:

• As a second derivative of a continuous function E the polarizability represents
a symmetric tensor (αqq′ = αq′q).

• The polarizability characterizes this part of the induced dipole moment, which is
proportional to the field.

• If non-diagonal components of the polarizability tensor are non-zero, then the
flow direction of the charge within the molecule will differ from the direction of
the field. This would happen when the electric field forced the electrons to flow
into empty space, while they had a “highway” to travel along some chemical
bonds (cf. Fig. 12.4).

• If a molecule is symmetric with respect to the plane q= 0, say, z = 0, then all the
(hyper)polarizabilities with odd numbers of the indices z, are equal to zero (cf.
Fig. 12.4). It has to be like this, because otherwise a change of the electric field
component from Ez to −Ez would cause a change in energy (see eq. (12.24)),
which is impossible, because the molecule is symmetric with respect to the plane
z = 0.
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• The dipole hyperpolarizabilities (β and higher-order) are very important, be-
cause, if we limited ourselves to the first two terms of (12.19) containing only
μ0q and αqq′ (i.e. neglecting β and higher hyperpolarizabilities), the molecule
would be equally easy to polarize in two opposite directions.11 This is why, for a
molecule with a centre of inversion, all odd dipole hyperpolarizabilities (i.e. with
an odd number of indices q) have to equal zero, because the invariance of the
energy with respect to the inversion will be preserved that way. If the molecule
does not exhibit an inversion centre, the non-zero odd dipole hyperpolarizabili-
ties ensure that polarization of the molecule depends, in general, on whether we
change the electric field vector to the opposite direction. This is how it should
be. Why were the electrons able to move to the same extent towards an electron
donor (on one end of the molecule) as to an electron acceptor (on the other
end)?

Does the dipole moment really exist?

Now, let us complicate things. What is μ0? We used to say that it is the dipole
moment of the molecule in its ground state. Unfortunately, no molecule has a non-
zero dipole moment. This follows from the invariance of the Hamiltonian with
respect to the inversion operation and was described on p. 65. The mean value
of the dipole moment operator is bound to be zero since the square of the wave
function is symmetric, while the dipole moment operator itself is antisymmetric
with respect to the inversion. Thus for any molecule12 μ0q = 0 for q= x	 y	 z. The
reason is the rotational part of the wave function (cf. p. 230). This is quite natural.
Dear reader, did you ever think why the hydrogen atom does not exhibit a dipole
moment despite having two poles: the proton and the electron? The reason is the
same. The electron in its ground state is described by the 1s orbital, which does not
prefer any direction and the dipole moment integral for the hydrogen atom gives
zero. Evidently, we have got into trouble.

The trouble disappears after the Born–Oppenheimer approximation (the
clamped nuclei approximation, cf. p. 227) is used, i.e. if we hold the molecule
fixed in space. In such a case, the molecule has the dipole moment and this di-
pole moment is to be inserted into formulae as μ0, and then we may calculate the
polarizability, hyperpolarizabilities, etc. But what do we do, when we do not apply
the Born–Oppenheimer approximation? Yet, in experiments we do not use the
Born–Oppenheimer approximation (or any other). We have to allow the molecule
to rotate and then the dipole moment μ0 disappears.

It is always good to see things working in a simple model, and simple models
resulting in exact solutions of the Schrödinger equation have been described in

11According to eq. (12.19) the absolute value of the q component of the induced dipole moment μind =
μ−μ0 would be identical for Eq as well as for −Eq .
12“Everybody knows” that the HF molecule has a non-zero dipole moment. Common knowledge says

that when an electric field is applied, the HF dipole aligns itself along the electric field vector. At
any field, no matter how small? This would be an incredible scenario. No, the picture has to be more
complex.
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Chapter 4. A good model for our rotating molecule may be the rigid rotator with a
dipole moment (a chargeQ on one mass and−Q on the other).13 The Hamiltonian
remains, in principle, the same as for the rigid rotator, because we have to add a
constant −Q2

R to the potential energy, which does not change anything. Thus the
ground state wave function is Y 0

0 as before, which tells us that every orientation of
the rigid dipolar rotor in space is equally probable.

Well, what if the rotating molecule is located in a very weak electric field? Af-
ter the field is switched on the molecule will of course continue to rotate, but a
tiny preference of those orientations which orient the dipole at least partly along
the electric field, will appear. We may say that the system will have a certain po-
larizability, which can be computed as a negative second derivative of the energy
with respect to the electric field. This effect will be described by our perturbation
theory, eq. (12.22). If the electric field were of medium intensity, instead of the
orientational preferences, the rotator would already pay great attention to it, and
would “oscillate” about the direction of the electric field E . This would already be
beyond the capabilities of perturbation theory (too large perturbation). Finally, if
the electric field were very strong (e.g., along the x axis), the rotator would orient
exactly along the field, the energy gain would be equal to14 −μ ·E =−QREx and its
second derivative would be zero (as well as the polarizability).15 Therefore,16

13This moment therefore has a constant length.
14This is what we often assume in phenomenological theories, forgetting that at weak field intensities

the situation is different.
15The case we have been talking about pertains to the ground state of the system. What if the electric

field were applied to the system in its excited state? For a medium electric field, the subsequent energy
levels as functions of the field will be nearly equidistant. Why? The reason is quite simple. For medium
electric fields the eigenstates of the rotator will be related to its oscillations about the direction of the
field. In the harmonic approximation this means equidistant energy eigenvalues. The corresponding vi-
brational wave functions (that depend on the deviation angle θ from the direction of the field) will have
large amplitudes for small θ values and an increasing number of nodes when the vibrational quantum
number increases.
16A detailed analysis of this problem was carried out by Grzegorz Łach (these results prior to publica-

tion are acknowledged). Two asymptotic dependencies of energy as a function of electric field intensity
have been obtained: E(E)= 1

I f (IμE), where I stands for the moment of the inertia of the rotator, and
the function f (x) for small field intensities (this results from a perturbation theory with the unperturbed
system corresponding to the absence of an electric field)

f (x)=−1
3
x2 + 11

135
x4 − 376

8505
x6 + · · ·

for very large field intensities

f (x)=−x+√x− 1
4
− 1

64
1√
x
+ · · · �

It has been shown, that the first two terms in the last formula also follow from perturbation theory.
However, in this perturbation theory the unperturbed operator does not correspond to the free mole-
cule, but in addition contains a harmonic oscillator potential (with the angle θ as the corresponding
coordinate). The anharmonicity is treated as a perturbation.
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at weak electric fields we expect quadratic dependence of the energy on the
field and only at stronger fields may we expect linear dependence.

12.2.3 THE INHOMOGENEOUS ELECTRIC FIELD: MULTIPOLE
POLARIZABILITIES AND HYPERPOLARIZABILITIES

The formula μq = μ0q +∑q′ αqq′Eq′ + 1
2
∑

q′q′′ βqq′q′′Eq′Eq′′ + · · · pertains to the
dipole
polarizabilities
and hyper-
polarizabilities

polarizabilities and hyperpolarizabilities in a homogeneous electric field. The po-
larizability αqq′ characterizes a linear response of the molecular dipole moment to
the electric field, the hyperpolarizability βqq′q′′ and the higher ones characterize
the corresponding non-linear response of the molecular dipole moment. However,
a change of the charge distribution contains more information than just that of-
fered by the induced dipole moment. For a non-homogeneous electric field the
energy expression changes, because besides the dipole moment, higher multipole
moments (permanent as well as induced) come into play (see Fig. 12.3). Using the
Hamiltonian (12.9) with the perturbation (12.10) (which corresponds to a molecule
immersed in a non-homogeneous electric field) we obtain the following energy ex-
pression from the Hellmann–Feynman theorem (formula (12.15)) and eq. (12.17):

E(E)=E(0) +Eμ +E� +Eμ−� + · · · 	 (12.25)

where besides the unperturbed energy E(0), we have:

• the dipole–field interaction energy Eμ (including the permanent and induced
dipole – these terms appeared earlier for the homogeneous field):

Eμ =−
[
∑

q

μ0qEq + 1
2

∑

qq′
αqq′EqEq′ + 1

6

∑

q	q′	q′′
βq	q′	q′′EqEq′Eq′′ · · ·

]

	 (12.26)

• next, the terms that pertain to the inhomogeneity of the electric field: the energy
E� of the interaction of the field gradient with the quadrupole moment (the
permanent one � – the first term, and of the induced one; C stands for thequadrupole

polarizability quadrupole polarizability, and then, in the terms denoted by “+· · ·” there are the
non-linear responses with quadrupole hyperpolarizabilities):

E� =−
[

1
3

∑

qq′
�qq′Eqq′ + 1

6

∑

qq′q′′q′′′
Cqq′q′′q′′′Eqq′Eq′′q′′′ + · · ·

]

	 (12.27)

• the dipole–quadrupole cross term Eμ−�:

Eμ−� =−
[

1
3

∑

q	q′	q′′
Aq	q′q′′EqEq′q′′ + 1

6

∑

q	q′	q′′	q′′′
Bqq′	q′′q′′′EqEq′Eq′′q′′′

]

(12.28)

and
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• the interaction of higher multipoles (permanent as well as induced: first, the oc-
tupole� with the corresponding octupole polarizabilities and hyperpolarizabilities, octupole

polarizabilityetc.) with the higher derivatives of electric field together with the corresponding
cross terms denoted as: +· · · .

12.3 HOW TO CALCULATE THE DIPOLE MOMENT
The dipole moment in the normalized state |n〉 is calculated (according to the pos-
tulates of quantum mechanics, Chapter 1) as the mean value μ = 〈n|μ̂|n〉 of the
dipole moment operator17

μ̂=−
∑

i

ri +
∑

A

ZARA	 (12.29)

where ri are the vectors indicating the electrons and RA shows nucleus A with the
charge ZA (in a.u.).

For a neutral molecule only, the dipole moment operator and the dipole mo-
ment itself do not depend on the choice of the origin of the coordinate system.
When two coordinate systems differ by translation R, then, in general, we may ob-
tain two different results (ri and Qi stand for the position vector and charge of
particle i):

μ̂ =
∑

i

Qiri	

μ̂′ =
∑

i

Qir
′
i =
∑

i

Qi(ri +R)= μ̂+
∑

i

QiR= μ̂+R
∑

i

Qi� (12.30)

It is seen that μ̂′ = μ̂, only if
∑

i Qi = 0, i.e. for a neutral system.18

This represents a special case of the theorem, saying that the lowest non-
vanishing multipole moment does not depend on the choice of the coordinate sys-
tem; all others may depend on that choice.

12.3.1 HARTREE–FOCK APPROXIMATION
In order to show the reader how we calculate the dipole moment in practice, let
us use the Hartree–Fock approximation. Using the normalized Slater determinant
|�0〉 we have as the Hartree–Fock approximation to the dipole moment:

μ = 〈�0| −
∑

i

ri +
∑

A

ZARA|�0〉 = 〈�0| −
∑

i

ri|�0〉 + 〈�0|
∑

A

ZARA|�0〉
= μel +μnucl	 (12.31)

where the integration goes over the electronic coordinates. The dipole moment
of the nuclei μnucl =

∑

AZARA is very easy to compute, because, in the Born–

17As is seen, this is an operator having x, y and z components in a chosen coordinate system and each
of its components means a multiplication by the corresponding coordinates and electric charges.
18If you ever have to debug a computer program that calculates the dipole moment, then please re-

member there is a simple and elegant test at your disposal that is based on the above theorem. You just
make two runs of the program for a neutral system each time using a different coordinate system (the
two systems differing by a translation). The two results have to be identical.
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Oppenheimer approximation, the nuclei occupy some fixed positions in space.
The electronic component of the dipole moment μel = 〈�0| − ∑i ri|�0〉, ac-
cording to the Slater–Condon rules (Appendix M on p. 986), amounts to: μel =
−∑i ni(ϕi|riϕi), where ni stands for the occupation number of the orbital ϕi (let
us assume double occupation, i.e. ni = 2). After the LCAO expansion is applied
ϕi =∑j cjiχj and combining the coefficients cji into the bond order matrix (see
p. 365) P , we have

μel =−
∑

kl

Plk(χk|r|χl)� (12.32)

This is in principle all we can say about calculation of the dipole moment in the
Hartree–Fock approximation. The rest belongs to the technical side. We choose
a coordinate system and calculate all the integrals of type (χk|rχl), i.e. (χk|xχl),
(χk|yχl), (χk|zχl). The bond order matrix P is just a by-product of the Hartree–
Fock procedure.

12.3.2 ATOMIC AND BOND DIPOLES

It is interesting that the total dipole moment can be decomposed into atomic and
pairwise contributions:

μel =−
∑

A

∑

k∈A

∑

l∈A
Plk(χk|r|χl)−

∑

A

∑

k∈A

∑

B 	=A

∑

l∈B
Plk(χk|r|χl)	 (12.33)

where we assume that the atomic orbital centres (A	B) correspond to the nuclei.
If the two atomic orbitals k and l belong to the same atom, then we insert r=RA+
rA, where RA indicates the atom (nucleus)A from the origin, and rA indicates the
separation of the electron from the local origin centred on A. If k and l belong to
different atoms, then r = RAB + rAB, where RAB indicates the centre of the AB
section, and rAB represents the position of the electron with respect to this centre.
Then,

μel = −
∑

A

RA
∑

k∈A

∑

l∈A
SklPlk −

∑

A

∑

k∈A

∑

l∈A
Plk(χk|rA|χl)

−
∑

A

∑

B 	=A
RAB

∑

k∈A

∑

l∈B
SklPlk −

∑

A

∑

k∈A

∑

B 	=A

∑

l∈B
Plk(χk|rAB|χl)	 (12.34)

where Skl are the overlap integrals. After adding the dipole moment of the nuclei
we obtain

μ=
∑

A

μA +
∑

A

∑

B 	=A
μAB	 (12.35)

where

μA = RA
(

ZA −
∑

k∈A

∑

l∈A
SklPlk

)

−
∑

A

∑

k∈A

∑

l∈A
Plk(χk|rA|χl)

μAB = −
∑

A

∑

B 	=A
RAB

∑

k∈A

∑

l∈B
SklPlk −

∑

A

∑

k∈A

∑

B 	=A

∑

l∈B
Plk(χk|rAB|χl)�
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We therefore have a quite interesting result:19

The molecular dipole moment can be represented as the sum of the individ-
ual atomic dipole moments and the pairwise atomic dipole contributions.

The Plk is large, when k and l belong to the atoms forming the chemical bonds
(if compared to two non-bonded atoms, see Appendix S, p. 1015), therefore the
dipole moments related to pairs of atoms come practically uniquely from chemical
bonds. The contribution of the lone pairs of the atom A is hidden in the second
term of μA and may be quite large (cf. Appendix T on p. 1020).

12.3.3 WITHIN THE ZDO APPROXIMATION

In several semiempirical methods of quantum chemistry (e.g., in the Hückel
method) we assume the Zero Differential Overlap (ZDO) approximation, i.e. that
χkχl ≈ (χk)2δkl and hence the second terms in μA as well as in μAB are equal to
zero,20 and therefore

μ=
∑

A

RA

(

ZA −
∑

k∈A
Pkk

)

=
∑

A

RAQA	 (12.36)

where QA = (ZA −∑k∈APkk) represents the net electric charge of the atom A.
This result is extremely simple: the dipole moment comes from the atomic charges
only.

12.4 HOW TO CALCULATE THE DIPOLE POLARIZABILITY
12.4.1 SUM OVER STATES METHOD (SOS)

Perturbation theory gives the energy of the ground state |0〉 in a weak electric field
as (the sum of the zeroth, first and second-order energies,21 eqs. (5.22) and (5.26)):

E (E)=E(0) + 〈0∣∣Ĥ(1)∣∣0
〉+
∑

n

′ |〈0|Ĥ(1)|n〉|2
E(0)0 −E(0)n

+ · · · � (12.37)

If we assume a homogeneous electric field (see eq. (12.11)), the perturbation is
equal to Ĥ(1) =−μ̂·E , and we obtain

E =E(0) − 〈0|μ̂|0〉 · E +
∑

n

′ [〈0|μ̂|n〉 · E][〈n|μ̂|0〉 · E]
E(0) −E(0)n

+ · · · � (12.38)

The first term represents the energy of the unperturbed molecule, the second term
is a correction for the interaction of the permanent dipole moment with the field.

19This does not represent a unique partitioning, only the total dipole moment should remain the
same. For example, the individual atomic contributions include the lone pairs, which otherwise could
be counted as a separate lone pair contribution.
20The second term in μA is equal to zero, because the integrands χ2

k
x	χ2

k
y	χ2

k
z are all antisymmetric

with respect to transformation of the coordinate system x→−x	y→−y	 z→−z.
21Prime in the summation means that the m-th state is excluded.
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The next term already takes into account that the induced moment also interacts
with the electric field (eq. (12.19)):

∑

n

′ [〈0|μ̂|n〉 · E][〈n|μ̂|0〉 · E]
E(0) −E(0)n

=−1
2

∑

qq′
αqq′EqEq′	 (12.39)

where the component qq′ of the polarizability is equal to

αqq′ = 2
∑

n

′ 〈0|μ̂q|n〉〈n|μ̂q′ |0〉
�n

	 (12.40)

where �n =E(0)n −E(0). The polarizability has the dimension of volume.22

Similarly, we may obtain the perturbational expressions for the dipole, quadru-
pole, octupole hyperpolarizabilities, etc. For example, the ground-state dipole hy-
perpolarizability β0 has the form (the qq′q′′ component, where the prime means
that the ground state is omitted – we skip the derivation):

βqq′q′′ =
∑

n	m

′ 〈0|μ̂q|n〉〈n|μ̂q′ |m〉〈m|μq′′ |0〉
�n�m

− 〈0|μq|0〉
∑

n

′ 〈0|μ̂q′ |n〉〈n|μ̂q′′ |0〉
(�n)2

�

(12.41)

A problem with the SOS method is its slow convergence and the fact that, when-
ever the expansion functions do not cover the energy continuum, the result is in-
complete.

Example 1. The hydrogen atom in an electric field – perturbational
approach
An atom or molecule, when located in electric field undergoes a deformation. We
will show this in detail, taking the example of the hydrogen atom.

First, let us introduce a Cartesian coordinate system, within which the whole
event will be described. Let the electric field be directed towards your right, i.e.
has the form E = (E	0	0), with a constant E > 0. The positive value of E means,
according to the definition of electric field intensity, that a positive unit charge
would move along E , i.e. from left to right. Thus, the anode is on your left and the
cathode on your right.

We will consider a weak electric field, therefore the perturbation theory is ap-
plicable; this means just small corrections to the unperturbed situation. In our case
the first-order correction to the wave function (see eq. (5.25)) will be expanded in
the series of hydrogen atoms orbitals (they form the complete set,23 cf. Chapter 5)

ψ(1)0 =
∑

k( 	=0)

〈k|Ĥ(1)|0〉
− 1

2 −E(0)k
ψ(0)k 	 (12.42)

22Because μ2 has the dimension of charge2× length2, and �n has the dimension of energy as for
example in Coulombic energy: charge2/length.
23Still they do not span the continuum.
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where |k〉 ≡ ψ(0)k with energy E(0)k =− 1
2n2 (n is the principal quantum number of

the state k) denotes the corresponding wave function of the hydrogen atom, Ĥ(1)

is the perturbation, which for a homogeneous electric field has the form Ĥ(1) =
−μ̂ · E = −μ̂xE , and μ̂x is the dipole moment operator (its x component). The
operator, according to eq. (12.29), represents the sum of products: charge (in our
case of the electron or proton) times the x coordinate of the corresponding particle
(let us denote them x and X , respectively): μ̂x =−x+X , where the atomic units
have been assumed. To keep the expression as simple as possible, let us locate
the proton at the origin of the coordinate system, i.e. X = 0. Finally, Ĥ(1) = xE ,
because the electron charge is equal24 to −1. Thus the perturbation Ĥ(1) is simply
proportional to the x coordinate of the electron.25

In order not to work in vain, let us first check which unperturbed states k
will contribute to the summation on the right-hand side of (12.42). The ground
state (k = 0), i.e. the 1s orbital is excluded (by the perturbation theory), next,
k = 1	2	3	4 denote the orbitals 2s	2px	2py	2pz . The contribution of the 2s is
equal to zero, because 〈2s|Ĥ(1)|1s〉 = 0 due to the antisymmetry of the integrand
with respect to reflection x→−x (Ĥ(1) changes its sign, while the orbitals 1s and
2s do not). A similar argument excludes the 2py and 2pz orbitals. Hence, for the
time being we have only a single candidate26 2px. This time the integral is not zero
and we will calculate it in a minute. If the candidates from the next shell (n = 3)
are considered, similarly, the only non-zero contribution comes from 3px. We will
however stop our calculation at n = 2, because our goal is only to show how the
whole machinery works. Thus, we need to calculate

〈2px|Ĥ(1)|1s〉
E
(0)
0 −E(0)1

= 〈2px|x|1s〉
E
(0)
0 −E(0)1

E �

The denominator is equal to −1/2+ 1/8 = −3/8 a.u. Calculation of the integral
(a fast exercise for students27) gives 0�7449 a.u. At E = 0�001 a.u. we obtain the
coefficient −0�001986 at the normalized orbital 2px in the first-order correction
to the wave function. The negative value of the coefficient means that the orbital

24It is, therefore, the operator of multiplication by x times a constant E .
25The proton might be located anywhere. The result does not depend on this choice, because the

perturbation operators will differ by a constant. This, however, means that the nominator 〈k|Ĥ(1)|1s〉
in the formula will remain unchanged, because 〈k|1s〉 = 0.
26Note how fast our computation of the integrals proceeds. The main job (zero or not zero – that is

the question) is done by the group theory.
27From p. 181 we have

〈2px|x|1s〉 = 1

4π
√

2

∫ ∞
0

dr r4 exp
(

−3
2
r

)∫ π

0
dθ sin3 θ

∫ 2π

0
dφ cos2φ

= 1

4π
√

2
4!
(

3
2

)−5 4
3
π = 0�7449	

where we have used the formula
∫∞

0 xn exp(−αx)dx= n!α−(n+1) to calculate the integral over r .
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Fig. 12.5. Polarization of the hydrogen atom in an electric field. The wave function for (a) the unper-
turbed atom (b) the atom in the electric field (a.u.) E = (0�1	0	0). As we can see, there are differences
in the corresponding electronic density distributions: in the second case the wave function is deformed
towards the anode (i.e. leftwards). Please note that the wave function is less deformed in the region
close to the nucleus, than in its left or right neighbourhood. This is a consequence of the fact that the
deformation is made by the −0�1986(2px) function. Its main role is to subtract on the right and add on
the left, and the smallest changes are at the nucleus, because 2px has its node there.

−0�001986(2px) has its positive lobe oriented leftward.28 The small absolute value
of the coefficient results in such a tiny modification of the 1s orbital after the elec-
tric field is applied, that it will be practically invisible in Fig. 12.5. In order to make
the deformation visible, let us use E = 0�1 a.u. Then, the admixture of 2px is equal
to −0�1986(2px), i.e. an approximate wave function of the hydrogen atom has the
form: 1s − 0�19862px. Fig. 12.5 shows the unperturbed and perturbed 1s orbital.
As seen, the deformation makes an egg-like shape of the wave function (from a
spherical one) – the electron is pulled towards the anode.29 This is what we ex-
pected. Higher expansion functions (3px	4px	 � � �) would change the shape of the
wave function by only a small amount.

Just en passant we may calculate an approximation to the dipole polarizabil-
ity αxx. From (12.40) we have

αxx ∼= 16
3
〈

2px
∣
∣x(1s)

〉2 = 16
3
(0�7449)2 = 2�96 a.u.

The exact (non-relativistic) result is αxx = 4�5 a.u. This shows that the number
we have received is somewhat off, but after recalling that only a single expansion

282px ≡ x× the positive spherically symmetric factor, means the positive lobe of the 2px orbital is on
your right (i.e. on the positive part of the x axis).
29This “pulling” results from adding together 1s and (with a negative coefficient) 2px , i.e. we decrease

the probability amplitude on the right-hand side of the nucleus, and increase it on the left-hand side.
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function has been used (instead of infinity of them) we should be quite happy with
our result.30

12.4.2 FINITE FIELD METHOD
The above calculation represents an example of the application to an atom of what
is called the finite field method. In this method we solve the Schrödinger equation
for the system in a given homogeneous (weak) electric field. Say, we are interested
in the approximate values of αqq′ for a molecule. First, we choose a coordinate
system, fix the positions of the nuclei in space (the Born–Oppenheimer approxi-
mation) and calculate the number of electrons in the molecule. These are the data
needed for the input into the reliable method we choose to calculate E(E). Then,
using eqs. (12.38) and (12.24) we calculate the permanent dipole moment, the di-
pole polarizability, the dipole hyperpolarizabilities, etc. by approximating E(E) by
a power series of Eq’s.

How do we put the molecule in an electric field? For example, at a long distance
from the molecule we locate two point-like electric charges qx and qy on x and y
axes, respectively. Hence, the total external field at the origin (where the “centre”
of the molecule is located) has the components Ex = qx

R2
x

and Ey = qy

R2
y
, with Rx

and Ry denoting the distances of both charges from the origin. The field on the
molecule will be almost homogeneous, because of the long Rx and Ry distances.
In our case the E(E) of eq. (12.24) reads as:

E(E) = E(0) −μ0	xEx +μ0	yEy − 1
2αxxE

2
x − 1

2αxyExEy − 1
2αyxExEy

− 1
2αyyE

2
y + · · · � (12.43)

Neglecting the cubic and higher terms for a very small field E (approximation)
we obtain an equation for αxx, αxy and αyy , because the polarizability tensor is
symmetric. Note that
• E(E)−E(0), as well as the components μ0	x	μ0	y can be calculated;
• there is only one equation, while we have three unknowns to calculate. However,

we may apply two other electric fields, which gives us two other equations.31

The results of the above procedure depend very much on the configuration of
the point-charges. This is why the additional term −μ̂ · E in the Hamiltonian of
the system is much more popular, which, according to eq. (12.11), is equivalent to
immersing the system in a homogeneous electric field E .

Example 2. Hydrogen atom in electric field – variational approach
The polarizability of the hydrogen atom may also be computed by using the vari-
ational method (Chapter 5), in which the variational wave function ψ= χ1 + cχ2

30Such a situation is quite typical in the practice of quantum chemistry: the first terms of expansions
give a lot, while next ones give less and less, the total result approaching, with more and more pain,
its limit. Note that in the present case all terms are of the same sign, and we obtain better and better
approximations when the expansion becomes longer and longer.
31We try to apply small fields, because then the hyperpolarizabilities play a negligible role (the cubic

terms in the field intensity will be negligibly small).
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where χ1 ≡ 1s plus an admixture (as variational parameter) of the p type orbital
χ2 with a certain exponential coefficient ζ (Ritz method of Chapter 5), see Appen-
dix V, eq. (V.1). From eq. (V.4), it can be seen that if χ2 is taken as the 2px orbital
(i.e. ζ = 1

2 ) we obtain αxx = 2�96 a.u., the same number we have already obtained
by the perturbational method. If we take ζ = 1 i.e. the same as in hydrogenic or-
bital 1s, we will obtain αxx = 4 a.u. Well, a substantial improvement.

Is it possible to obtain an even better result with the variational functionψ? Yes,
it is. If we use the finite field method (with the electric field equal E = 0�01 a.u.), we
will obtain32 the minimum of E of eq. (V.3) as corresponding to ζopt = 0�797224. If
we insert ζ = ζopt into eq. (V.4), we will obtain 4.475 a.u., only 0�5% off the exact
result. This nearly perfect result is computed with a single correction function!33

Sadlej relation

In order to compute accurate values of E(E) extended LCAO expansions have to
be used. Andrzej Sadlej34 noticed that this huge numerical task in fact only takes
into account a very simple effect: just a kind of shift35 of the electronic charge
distribution towards the anode. Since the atomic orbitals are usually centred on the
nuclei and the electronic charge distribution shifts, compensation (still using the
on-nuclei atomic orbitals) requires monstrous and expensive LCAO expansions.

In LCAO calculations, nowadays, we most often use Gaussian-type orbitals
(GTO, see Chapter 8). They are rarely thought of as representing wave functions
of the harmonic oscillator36 (cf. Chapter 4), but they really do. Sadlej became in-
terested in what would happen if an electron described by a GTO were subject to
the electric field E .

Sadlej noticed that the Gaussian type orbital will change in a similar way to
the wave functions of a charged harmonic oscillator in electric field. These
however simply shift.

Indeed, this can be shown as follows. The Schrödinger equation for the har-
monic oscillator (here: an electron with m= 1 in a.u., its position is x) without any
electric field is given on p. 166. The Schrödinger equation for an electron oscillat-
ing in homogeneous electric field E > 0 has the form:

(

−1
2

d2

dx2 +
1
2
kx2 + Ex

)

ψ(x	E)=E(E)ψ(x	E)� (12.44)

32You may use Mathematica and the command FindMinimum[E,{ζ	1}].
33This means that sometimes long expansions in the Ritz method may result from an unfortunate

choice of expansion functions.
34A.J. Sadlej, Chem. Phys. Letters 47 (1977) 50; A.J. Sadlej, Acta Phys. Polon. A 53 (1978) 297.
35With a deformation.
36At least if they represent the 1s GTOs.
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Now, let us find such constants a and b, that:

1
2
kx2 + Ex= 1

2
k(x− a)2 + b� (12.45)

We immediately get a = −E/k, b = − 1
2ka

2. The constant b is completely irrele-
vant, since it only shifts the zero on the energy scale. Thus,

the solution to a charged harmonic oscillator (oscillating electron) in a ho-
mogeneous electric field represents the same function as for the harmonic
oscillator without the field, but shifted by −E

k .

Indeed, inserting x′ = x+ E
k leads to d/dx= d/dx′ and d2/dx2 = d2/dx′2 which

gives a similar Schrödinger equation except that the harmonic potential is shifted.
Therefore, the solution to the equation can be written as simply a shifted zero-
field solution ψ(x′) = ψ(x+ E

k ). This is quite understandable, because the oper-
ation means nothing more than adding to the parabolic potential energy kx2/2 a
term proportional to x, i.e. again a parabola potential (a displaced one though,
Fig. 12.6.b).

To see how this displacement depends on the GTO exponent, let us recall its re-
lation to the harmonic oscillator force constant k (cf. Chapter 4). The harmonic os-
cillator eigenfunction corresponds to a Gaussian orbital with an exponent equal to
α/2, where α2 = k (in a.u.). Therefore, if we have a GTO with exponent equal toA,

Fig. 12.6. Sadlej relation. The elec-
tric field mainly causes a shift of
the electronic charge distribution
towards the anode (a). A Gaussian
type orbital represents the eigen-
function of a harmonic oscillator.
Suppose an electron oscillates in
a parabolic potential energy well
(with the force constant k). In this
situation a homogeneous electric
field E corresponds to the pertur-
bation Ex, that conserves the har-
monicity with unchanged force con-
stant k (Fig. b).
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this means the corresponding harmonic oscillator has the force constant k= 4A2.
Now, if the homogeneous electric field E is switched on, the centre of this atomic
orbital has to move by �(A) = −E/k = − 1

4E/A2. This means that all the atomic
orbitals have to move opposite to the applied electric field (as expected) and the
displacement of the orbital is small, if its exponent is large, and vice versa. Also, if
the atomic electron charge distribution results from several GTOs (as in the LCAO
expansion) it deforms in the electric field in such a way that the diffuse orbitals
shift a certain amount, while the compact ones (with large exponents) shift by only
a small amount. Altogether this does not mean just a simple shift of the electronic
charge density, it means that instead its shift is accompanied by a deformation. On
the other hand, we may simply optimize the GTO positions within the finite field
Hartree–Fock method, and check whether the corresponding shifts �opt(A) in-
deed follow the Sadlej relation.37 It turns out that the relation �opt(A)∼−E/A2

is satisfied to a good accuracy,38 despite the fact that the potential energy in an
atom does not represent a parabola.

The electrostatic catastrophe of the theory
There is a serious problem in finite field theory. If even the weakest homogeneous
electric field is applied and a very good basis set is used, we are bound to have some
kind of catastrophe. A nasty word, but unfortunately reflecting quite adequately a
mathematical horror we are going to be exposed to after adding to the Hamiltonian
operator Ĥ(1) = xE , here x symbolizes the component of the dipole moment.39

The problem is that this operator is unbound, i.e. for a normalized trial function
φ the integral 〈φ|Ĥ(1)φ〉 may attain ∞ or −∞. Indeed, by gradually shifting the
function φ towards the negative values of the x axis, we obtain more and more
negative values of the integral, and for x=−∞ we get 〈φ|Ĥ(1)φ〉 = −∞. In other
words,

when using atomic orbitals centred far from the nuclei in the region of the
negative x (or allowing optimization of the orbital centres with the field
switched on), we will lower the energy to −∞, i.e. we obtain a catastrophe.
This is quite understandable, because such a system (electrons separated
from the nuclei and shifted far away along the x axis) has a huge dipole
moment, and therefore very low energy.

37We have tacitly assumed that in the unperturbed molecule the atomic orbitals occupy optimal posi-
tions. This assumption may sometimes cause trouble. If the centres of the atomic orbitals in an isolated
molecule are non-optimized, we may end up with a kind of antipolarizability: we apply the electric field
and, when the atomic orbital centres are optimized, the electron cloud moves opposite to that which
we expect. This is possible only because in such a case the orbital centres mainly follow the strong
intramolecular electric field, rather than the much weaker external field E (J.M. André, J. Delhalle,
J.G. Fripiat, G. Hennico, L. Piela, Intern. J. Quantum Chem. 22S (1988) 665).
38This is how the electric-field–variant orbitals (EFVO) were born: Andrzej’s colleagues did not believe

in this simple recipe for calculating polarizabilities, but they lost the bet (a bar of chocolate).
39The most dramatic form of the problem would appear if the finite field method was combined with

the numerical solution of the Schrödinger or Fock equation.
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molecule

Fig. 12.7. A molecule in a homogeneous electric field (a). In Fig. (b) η is a parameter describing the
shift ηE/A2 of the Gaussian atomic orbitals along the electric field E , with η= 0 showing the centring
on the nuclei. The total energy E(E	η) is a function of the electric field intensity E and the basis set
shift parameter η. Optimization of η gives a result close to the Sadlej value η=− 1

4 , larger |η| values
first lead to an increase of E, but then to a decrease towards a catastrophe: limη→−∞E(E	η)=−∞.

Suppose the calculations for a molecule in an electric field E are carried out.
According to the Sadlej relation, we shift the corresponding atomic orbitals pro-
portionally to ηE/A2, with η 
 0, and the energy goes down. Around η = − 1

4 ,
which according to Sadlej corresponds to optimal shifts,40 we may expect the low-
est energy, then, for larger |η|, the energy has to go up. What if we continue to
increase (Fig. 12.7) the shift parameter |η|?

The energy increase will continue only up to some critical value of η. Then,
according to the discussion above, the energy will fall to −∞, i.e. to a catastrophe.
Thus the energy curve exhibits a barrier (Fig. 12.7), that is related to the basis set
quality (its “saturation”). A poor basis means a high barrier and the ideal basis (i.e.
the complete basis set), gives no barrier at all, just falling into the abyss with the
polarizability going to infinity, etc. Therefore, rather paradoxically, reliable values
of polarizability are obtained using a medium quality basis set. An improvement of
the basis will lead to worse results.41

The above relate to variational calculations. What about the perturbational
method? In the first- and second-order corrections to the energy, the formu-
lae contain the zero-order approximation to the wave function ψ(0)0 , e.g., E(2) =
〈ψ(0)0 |Ĥ(1)ψ(1)0 〉. If the origin of the coordinate system is located on the molecule,
then the exponential decay of ψ(0)0 forces the first-order correction to the wave
function ψ(1)0 to be also localized close to the origin, otherwise it would tend to
zero through the shifting towards the negative values of x (this prevents the inte-
gral diverging to −∞). However, the third-order correction to the energy contains
the term 〈ψ(1)0 |Ĥ(1)ψ(1)0 〉, which may already go to −∞. Hence, the perturbation
theory also carries the seed of future electrostatic catastrophe.
40They are optimal for a parabolic potential.
41Once more in this book: excessive wealth does not improve life.
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12.4.3 WHAT IS GOING ON AT HIGHER ELECTRIC FIELDS

Polarization
The theory described so far is applicable only when the electric field intensity is
small. Such a field can polarize (a small deformation) the electronic charge distri-
bution. More fascinating phenomena begin when the electric field gets stronger.

Deformation
Of course, the equilibrium configurations of the molecule with and without an elec-
tric field differ. In a simple case, say the HCl molecule, the HCl distance increases
in an electric field. It has to increase, since the cathode pulls the hydrogen atom
and repels the chlorine atom, while the anode does the opposite. In more com-
plex cases, like a flexible molecule, the field may change its conformation. This
means that the polarizability results both from the electron cloud deformation and
the displacement of the nuclei. It turns out that the later effect (called vibrational
polarization) is of great importance.42

Dissociation
When the electric field gets stronger the molecule may dissociate into ions. To this
end, the external electric field intensity has to become comparable to the elec-
tric field produced by the molecule itself in its neighbourhood. The intramolecular
electric fields are huge, the intermolecular ones are weaker but also very large, of
the order of 108 V/m, much larger than those offered by current technical installa-
tions. No wonder then, that the molecules may interact to such an extent that they
may even undergo chemical reactions. When the interaction is weaker, the electric
fields produced by molecules may lead to intermolecular complexes, many beau-
tiful examples may be found in biochemistry (see Chapters 13 and 15). A strong
external electric field applied to a crystal may cause a cascade of processes, e.g., the
so called displacive phase transitions, when sudden displacements of atoms occur,displacive

phase transition and a new crystal structure appears.

Destruction
A sufficiently strong electric field will destroy the molecules through their ion-
ization. The resulting ions accelerate in the field, collide with the molecules and
ionize them even more (these phenomena are accompanied by light emission as in
vacuum tubes). Such processes may lead to the final decomposition of the system
(plasma) with the electrons and the nuclei finally reaching the anode and cathode.
We will have a vacuum.

Creation!
Let us keep increasing the electric field applied to the vacuum. Will anything inter-
esting happen? We know, from Chapter 3, that when huge electric field intensities

42J.-M. André, B. Champagne, in “Conjugated Oligomers, Polymers, and Dendrimers: From Polyacety-
lene to DNA”, J.L. Brédas (ed.), Bibliothéque Scientifique Francqui, De Boeck Université, p. 349.
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are applied (of the order of the electric field intensity in the vicinity of a proton –
not feasible for the time being), then the particles and antiparticles will leap out of
the vacuum! The vacuum is not just nothing. Formula (3.71) gives the probability
of such a process.

12.5 A MOLECULE IN AN OSCILLATING ELECTRIC FIELD

Constant and oscillating components
A non-zero hyperpolarizability indicates a non-linear response (contributions to
the dipole moment proportional to the second and higher powers of the field in-
tensity). This may mean an “inflated” reaction to the applied field, a highly de-
sired feature for contemporary optoelectronic materials. One such reaction is the
second- and third-harmonic generation (SHG and THG, respectively), where light
of frequency ω generates in a material light with frequencies 2ω and 3ω, respec-
tively. A simple statement about why this may happen is shown below.43

Let us imagine a molecule immobilized in a laboratory coordinate system (like
in an oriented crystal). Let us switch on a homogeneous electric field E , which
has two components, a static component E0 and an oscillating one Eω with fre-
quency ω:

E = E0 + Eω cos(ωt)� (12.46)

We may imagine various experiments here: the steady field along x	 y or z and a
light beam polarized along x	 y or z, we may also vary ω for each beam, etc. Such
choices lead to a rich set of non-linear optical phenomena.44 What will the reaction
of the molecule be in such an experiment? Let us see.45

Induced dipole moment
The total dipole moment of the molecule (i.e. the permanent moment μ0 plus the
induced moment μind) will depend on time, because μind does:

μq(t) = μ0	q +μind	q	 (12.47)

μind	q(t) =
∑

q′
αqq′Eq′ + 1

2

∑

q′q′′
βqq′q′′Eq′Eq′′

+ 1
6

∑

q′	q′′	q′′′
γqq′q′′q′′′Eq′Eq′′Eq′′′ + · · · � (12.48)

Therefore, if we insert Eq = E0
q + Eωq cos(ωt) as the electric field component for

43The problem of how the polarizability changes as a function of inducing wave frequency is described
in detail in J. Olsen, P. Jørgensen, J. Chem. Phys. 82 (1985) 3235.
44S. Kielich, “Molecular non-linear optics”, Warszawa–Poznań, PWN (1977).
45For the sake of simplicity we have used the same frequency and the same phases for the light polar-

ized along x, y and z.
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q= x	 y	 z, we obtain

μq(t) = μ0	q +
∑

q′
αqq′

[

E0
q′ + Eωq′cos(ωt)

]

+ 1
2

∑

q′q′′
βqq′q′′

[

E0
q′ + Eωq′ cos(ωt)

]× [E0
q′′ + Eωq′′ cos(ωt)

]

+ 1
6

∑

q′	q′′	q′′′
γqq′q′′q′′′

[

E0
q′ + Eωq′ cos(ωt)

][

E0
q′′ + Eωq′′ cos(ωt)

]

× [E0
q′′′ + Eωq′′′ cos(ωt)

]+ · · · � (12.49)

Second (SHG) and Third (THG) Harmonic Generation
After multiplication and simple trigonometry we have

μq(t)= μω=0	q +μω	q cosωt +μ2ω	q cos(2ωt)+μ3ω	q cos(3ωt)	 (12.50)

where the amplitudes μ corresponding to the coordinate q ∈ x	 y	 z and to the
particular resulting frequencies 0	ω	2ω	3ω have the following form46

μω=0	q = μ0	q +
∑

q′
αqq′(0;0)E0

q′ +
1
2

∑

q′	q′′
βqq′q′′(0;0	0)E0

q′E
0
q′′

+ 1
6

∑

q′	q′′	q′′′
γqq′q′′q′′′(0;0	0	0)E0

q′E
0
q′′E

0
q′′′

+ 1
4

∑

q′q′′
βq	q′	q′′(0;−ω	ω)Eωq′Eωq′′

+ 1
4

∑

q′	q′′	q′′′
γqq′q′′q′′′(0;0	−ω	ω)E0

q′E
ω
q′′Eωq′′′	

μω	q =
∑

q′
αqq′(−ω;ω)Eωq′ +

∑

q′	q′′
βqq′q′′(−ω;ω	0)Eωq′E0

q′′

+ 1
2

∑

q′	q′′	q′′′
γqq′q′′q′′′(−ω;ω	0	0)Eωq′E0

q′′E
0
q′′′

46According to convention, a given (hyper)polarizability, e.g., γqq′q′′q′′′ (−3ω;ω	ω	ω), is accom-
panied (in parenthesis) by the frequencies ω corresponding to the three directions x	y	 z of the
incident light polarization (here: q′ , q′′ and q′′′, preceded by minus the Fourier frequency of the
term, −3ω, which symbolizes the photon energy conservation law). Some of the symbols, e.g.,
γqq′q′′q′′′(−ω;ω	−ω	ω), after a semicolon have negative values, which means a partial (as in
γqq′q′′q′′′(−ω;ω	−ω	ω)) or complete (as in βq	q′	q′′(0;−ω	ω)) cancellation of the intensity of the
oscillating electric field.
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+ 1
8

∑ ∑

q′	q′′	q′′′
γqq′q′′q′′′(−ω;ω	−ω	ω)Eωq′Eωq′′Eωq′′′	

μ2ω	q = 1
4

∑

q′q′′
βq	q′	q′′(−2ω;ω	ω)Eωq′Eωq′′

+ 1
4

∑ ∑

q′	q′′	q′′′
γqq′q′′q′′′(−2ω;ω	ω	0)Eωq′Eωq′′E0

q′′′	 (12.51)

μ3ω	q = 1
24

∑

q′	q′′	q′′′
γqq′q′′q′′′(−3ω;ω	ω	ω)Eωq′Eωq′′Eωq′′′ � (12.52)

We see that:

• An oscillating electric field may result in a non-oscillating dipole moment related
to the hyperpolarizabilities βq	q′	q′′(0;−ω	ω) and γqq′q′′q′′′(0;0	−ω	ω), which
manifests as an electric potential difference on two opposite crystal faces.

• The dipole moment oscillates with the basic frequency ω of the incident light
and in addition, with two other frequencies: the second (2ω) and third (3ω) har-
monics (SHG and THG, respectively). This is supported by experiment (men-
tioned in the example at the beginning of the chapter), applying incident light of
frequency ω we obtain emitted light with frequencies47 2ω and 3ω.

Note that to generate a large second harmonic the material has to have large
values of the hyperpolarizabilities β and γ. The THG needs a large γ. In both
cases a strong laser electric field is necessary. The SHG and THG therefore re-
quire support from the theoretical side: we are looking for high hyperpolarizability
materials and quantum mechanical calculations may predict such materials before
an expensive organic synthesis is done.48

MAGNETIC PHENOMENA

The electric and magnetic fields (both of them are related by the Maxwell
equations, Appendix G) interact differently with matter, which is highlighted in
Fig. 12.8, where the electron trajectories in both fields are shown. They are totally
different, the trajectory in the magnetic field has a cycloid character, while in the
electric field it is a parabola. This is why the description of magnetic properties
differs so much from that of electric properties.

47This experiment was first carried out by P.A. Franken, A.E. Hill, C.W. Peters, G. Weinreich, Phys.
Rev. Letters 7 (1961) 118.
48In molecular crystals it is not sufficient that particular molecules have high values of hyperpolariz-

ability. What counts is the hyperpolarizability of the crystal unit cell.
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Fig. 12.8. The trajectories of an electron in the (a) electric field – the trajectory is a parabola (b) mag-
netic field, perpendicular to the incident velocity – the trajectory is a cycloid in a plane perpendicular
to the figure.

12.6 MAGNETIC DIPOLE MOMENTS OF ELEMENTARY
PARTICLES

12.6.1 ELECTRON

An elementary particle, besides its orbital angular momentum, may also have in-
ternal angular momentum, or spin, cf. p. 25. In Chapter 3, the Dirac theory led
to a relation between the spin angular momentum s of the electron and its dipolemagnetic dipole

moment magnetic moment M spin	el (eq. (3.62), p. 122):

M spin	el = γels	

with the gyromagnetic factor49

γel =−2
μB
h̄
	

where the Bohr magneton (m0 is the electronic rest mass)

μB = eh̄

2m0c
�

The relation is quite a surprise, because the gyromagnetic factor is twice as large
as that appearing in the relation between the electron orbital angular momentum
L and the associated magnetic dipole moment

Morb	el =−μB
h̄
L� (12.53)

Quantum electrodynamics explains this effect qualitatively – predicting a factor
very close to the experimental value50 2.0023193043737, known with the breath-
taking accuracy of ±0�0000000000082.gyro-magnetic

factor
49From the Greek word gyros, or circle; it is believed that a circular motion of a charged particle is

related to the resulting magnetic moment.
50R.S. Van Dyck Jr., P.B. Schwinberg, H.G. Dehmelt, Phys. Rev. Letters 59 (1990) 26.
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12.6.2 NUCLEUS

Let us stay within the Dirac theory. If, instead of an electron, we take a nucleus of
charge +Ze and atomic mass51 M , then we would presume (after insertion into the
above formulae) the gyromagnetic factor should be γ = 2 ZM

μN
h̄ , where μN = eh̄

2mHc
(mH denoting the proton mass) is known as the nuclear magneton.52 For a proton nuclear

magneton(Z = 1, M = 1), we would have γp = 2μN/h̄, whereas the experimental value53 is
γp = 5�59μN/h̄. What is going on? In both cases we have a single elementary parti-
cle (electron or proton), both have the spin quantum number equal to 1

2 , we might
expect that nothing special will happen to the proton, and only the mass ratio and
charge will make a difference. Instead we see that Dirac theory does relate to the
electron, but not to the nuclei. Visibly, the proton is more complex than the elec-
tron. We see that even the simplest nucleus has internal machinery, which results
in the observed strange deviation. There are lots of quarks in the proton (three va-
lence quarks and a sea of virtual quarks together with the gluons, etc.). The proton
and electron polarize the vacuum differently and this results in different gyromag-
netic factors. Other nuclei exhibit even stranger properties. Sometimes we even
have negative gyromagnetic coefficients. In such a case their magnetic moment is
opposite to the spin angular momentum. The complex nature of the internal ma-
chinery of the nuclei and vacuum polarization lead to the observed gyromagnetic
coefficients.54 Science has had some success here, e.g., for leptons,55 but for nuclei
the situation is worse. This is why we are simply forced to take this into account
in the present book56 and treat the spin magnetic moments of the nuclei as the
experimental data:

MA = γAIA	 (12.54)

where IA represents the spin angular momentum of the nucleus A.

51Unitless quantity.
52Ca. 1840 times smaller than the Bohr magneton (for the electron).
53Also the gyromagnetic factor for an electron is expected to be ca. 1840 times larger than that for a

proton. This means that a proton is expected to create a magnetic field ca. 1840 times weaker than the
field created by an electron.
54The relation between spin and magnetic moment is as mysterious as that between the magnetic

moment and charge of a particle (the spin is associated with a rotation, while the magnetic moment is
associated with a rotation of a charged object) or its mass. A neutron has spin equal to 1

2 and magnetic
moment similar to that of a proton despite the zero electric charge. The neutrino has no charge, nearly
zero mass and magnetic moment, and still has a spin equal to 1

2 .
55And what about the “heavier brothers” of the electron, the muon and taon (cf. p. 268)? For the

muon, the coefficient in the gyromagnetic factor (2.0023318920) is similar to that of the electron
(2�0023193043737), just a bit larger and agrees equally well with experiment. For the taon we have
only a theoretical result, a little larger than for the two other “brothers”. Thus, each of the lepton
family behaves in a similar way.
56With a suitable respect of the Nature’s complexity.
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12.6.3 DIPOLE MOMENT IN THE FIELD

Electric field
The problem of an electric dipole μ rotating in an electric field was described on
p. 631. There we were interested in the ground state. When the field is switched off
(cf. p. 176), the ground state is non-degenerate (J =M = 0). After a weak electric
field (E) is switched on, the ground-state wave function deforms in such a way as to
prefer the alignment of the rotating dipole moment along the field. Since we may
always use a complete set of rigid rotator wave functions (at zero field), this means
the deformed wave functions have to be linear combinations of the wave functions
corresponding to different J.

Magnetic field
Imagine a spinning top which is a magnet. If you make it spin (with angular mo-
mentum I) and leave it in space without any external torque τ , then due to the fact
that space is isotropic, its angular momentum will stay constant, because dI

dt = τ = 0
(τ is time), i.e. the top will rotate about its axis with a constant speed and the axis
will not move with respect to distant stars, Fig. 12.9.a.

The situation changes if a magnetic field is switched on. Now, the space is no
longer isotropic and the vector of the angular momentum is no longer conserved.
However, the conservation law for the projection of the angular momentum on the di-
rection of the field is still valid. This means that the top makes a precession about the

Fig. 12.9. Classical and quantum tops
(magnets) in space. (a) The space is
isotropic and therefore the classical top
preserves its angular momentum I , i.e.
its axis does not move with respect to
distant stars and the top rotates about
its axis with a constant speed. (b) The
same top in a magnetic field. The space
is no longer isotropic, and therefore the
total angular momentum is no longer
preserved. The projection of the total
momentum on the field direction is still
preserved. The magnetic field causes a
torque τ (orthogonal to the picture)
and dI

dt = τ . This means precession of
the top axis about the direction of the
field. (c) A quantum top, i.e. an elemen-
tary particle with spin quantum number
I = 1

2 in the magnetic field. The pro-
jection Iz of its spin angular momen-
tum I is quantized: Iz =mIh̄ with mI =
− 1

2 	+ 1
2 and, therefore, we have two en-

ergy eigenstates that correspond to two
precession cones, directed up and down.
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field axis, because dI
dt = τ 	= 0, and τ is orthogonal to I and to the field, Fig. 12.9.b.

In quantum mechanics the magnetic dipole moment M = γI in the magnetic field
H = (0	0	H), H > 0, has as many stationary states as is the number of possible
projections of the spin angular momentum on the field direction. From Chapter 1,
we know that this number is 2I + 1, where I is the spin quantum number of the
particle (e.g., for a proton: I = 1

2 ). The projections are equal (Fig. 12.9.c)mIh̄ with
mI =−I	−I + 1	 � � � 	0	 � � � 	+I. Therefore,

the energy levels in the magnetic field

EmI =−γmIh̄H� (12.55)

Note, that the energy level splitting is proportional to the magnetic field
intensity, Fig. 12.10.

If a nucleus has I = 1
2 , then the energy difference �E between the two states

in a magnetic field H: one with mI = − 1
2 and the other one with mI = 1

2 , equals
�E = 2× 1

2γh̄H = γh̄H, and

�E = hνL	 (12.56)

where the Larmor57 frequency is defined as

νL = γH

2π
� (12.57)

We see (Fig. 12.10) that for nuclei with γ > 0, lower energy corresponds tomI =
1
2 , i.e. to the spin moment along the field (forming an angle θ = 54◦44′ with the
magnetic field vector, see p. 28).

Fig. 12.10. Energy levels in magnetic field H = (0	0	H)
for a nucleus with spin angular momentum I correspond-
ing to spin quantum number I = 1

2 . The magnetic dipole
moment equals to M = γI (a) at the zero field the level
is doubly degenerate. (b) For γ > 0 (e.g., a proton) I and
M have the same direction. In a non-zero magnetic field
the energy equals to E =−M ·H =−MzH =−γmIh̄H ,
where mI =± 1

2 . Thus, the degeneracy is lifted: the state

with mI = 1
2 , i.e. with the positive projection of I on di-

rection of the magnetic field has lower energy. (c) For
γ < 0 I andM have the opposite direction. The state with
mI = 1

2 , i.e. has higher energy.

57Joseph Larmor (1857–1942), Irish physicist, professor at Cambridge University.
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Note that

there is a difference between the energy levels of the electric dipole moment
in an electric field and the levels of the magnetic dipole in a magnetic field.
The difference is that, for the magnetic dipole of an elementary particle the
states do not have admixtures from the other I values (which is given by
nature), while for the electric dipole there are admixtures from states with
other values of J.

This suggests that we may also expect such admixtures in a magnetic field. In fact
this is true if the particle is complex. For example, the singlet state (S = 0) of the
hydrogen molecule gets an admixture of the triplet state (S = 1) in the magnetic
field, because the spin magnetic moments of both electrons tend to align parallel
to the field.

12.7 TRANSITIONS BETWEEN THE NUCLEAR SPIN
QUANTUM STATES – NMR TECHNIQUE

Is there any possibility of making the nuclear spin flip from one quantum state
to another? Yes. Evidently, we have to create distinct energy levels correspond-
ing to different spin projections, i.e. to switch the magnetic field on, Figs. 12.10
and 12.11.a. After the electromagnetic field is applied and its frequency matches
the energy level difference, the system absorbs the energy. It looks as if a nucleus
absorbs the energy and changes its quantum state. In a genuine NMR experiment,
the electromagnetic frequency is fixed (radio wave lengths) and the specimen is
scanned by a variable magnetic field. At some particular field values the energy dif-
ference matches the electromagnetic frequency and the transition (Nuclear Mag-
netic Resonance) is observed.

The magnetic field that a particular nucleus feels differs from the external mag-
netic field applied, because the electronic structure in which the nucleus is im-
mersed in, makes its own contribution (see Fig. 12.11.b,c). Also the nuclear spins
interact by creating their own magnetic fields.

We have not yet considered these effects in the non-relativistic Hamiltonian (2.1)
(e.g., no spin–spin or spin–field interactions). The effects which we are now dealing
with are so small, of the order of 10−11 kcal/mole, that they are of no importance
for most applications, including UV-VIS, IR, Raman spectra, electronic structure,
chemical reactions, intermolecular interactions, etc. This time, however, the sit-
uation changes: we are going to study very subtle interactions using the NMR
technique which aims precisely at the energy levels that result from spin–spin and
spin–magnetic field interactions. Even if these effects are very small, they can be
observed. Therefore, we have to consider more exact Hamiltonians. First, we have
to introduce

• the interaction of our system with the electromagnetic field,
• then we will consider the influence of the electronic structure on the magnetic

field acting on the nuclei
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Fig. 12.11. Proton’s shielding by the electronic structure. (a) The energy levels of an isolated proton in
a magnetic field. (b) The energy levels of the proton of the benzene ring (no nuclear spin interaction
is assumed). The most mobile π electrons of benzene (which may be treated as a conducting circular
wire) move around the benzene ring in response to the external magnetic field (perpendicular to the
ring) thus producing an induced magnetic field. The latter one (when considered along the ring six-fold
axis) opposes the external magnetic field, but at the position of the proton actually leads to an additional
increasing of the magnetic field felt by the proton. This is why the figure shows energy level difference
increases due to the electron shielding effect. (c) The energy levels of another proton (located along the
ring axis) in a similar molecule. This proton feels a local magnetic field that is decreased with respect
to the external one (due to the induction effect).

• and finally, the nuclear magnetic moment interaction (“coupling”) will be con-
sidered.

12.8 HAMILTONIAN OF THE SYSTEM IN THE
ELECTROMAGNETIC FIELD

The non-relativistic Hamiltonian58 Ĥ of the system ofN particles (the j-th particle
having mass mj and charge qj) moving in an external electromagnetic field with

58To describe the interactions of the spin magnetic moments, this Hamiltonian will soon be supple-
mented by the relativistic terms from the Breit Hamiltonian (p. 131).
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vector potential A and scalar potential φ may be written as59

Ĥ =
∑

j=1

[
1

2mj

(

p̂j −
qj

c
Aj

)2
+ qjφj

]

+ V̂ 	 (12.58)

where V̂ stands for the “internal” potential coming from the mutual interactions
of the particles, and Aj and φj denote the external vector60 and scalar potentials
A and φ, respectively, calculated at the position of particle j.

12.8.1 CHOICE OF THE VECTOR AND SCALAR POTENTIALS

In Appendix G on p. 962 it is shown that there is a certain arbitrariness in the
choice of both potentials, which leaves the physics of the system unchanged. If for
a homogeneous magnetic field H we choose the vector potential at the point indi-
cated by r = (x	 y	 z) as (eq. (G.13)) A(r) = 1

2 [H × r], then, as shown in Appen-
dix G, we will satisfy the Maxwell equations, and in addition obtain the commonly
used relation (eq. (G.12)) divA≡ ∇A= 0, known as the Coulombic gauge. In thisCoulombic

gauge way the origin of the coordinate system (r = 0) was chosen as the origin of the
vector potential (which need not be a rule).

Because E = 0 and A is time-independent, φ= const (p. 962), which of course
means also that φj = const, and as an additive constant, it may simply be elimi-
nated from the Hamiltonian (12.58).

12.8.2 REFINEMENT OF THE HAMILTONIAN

Let us assume the Born–Oppenheimer approximation (p. 229). Thus, the nuclei
occupy some fixed positions in space, and in the electronic Hamiltonian (12.58)
we have the electronic charges qj = −e and masses mj = m0 = m (we skip the
subscript 0 for the rest mass of the electron). Now, let us refine the Hamiltonian
by adding the interaction of the particle magnetic moments (of the electrons and
nuclei; the moments result from the orbital motion of the electrons as well as from
the spin of each particle) with themselves and with the external magnetic field.
We have, therefore, a refined Hamiltonian of the system [the particular terms of

59To obtain this equation we may use eq. (3.33) as the starting point, which together with E = mc2

gives with the accuracy of the first two terms in the expression E =m0c
2+ p2

2m0
. In the electromagnetic

field, after introducing the vector and scalar potentials for particle of charge q we have to replace E by
E − qφ, and p by (p− q

cA). Then, after shifting the zero of the energy by m0c
2, the energy operator

for a single particle reads as 1
2m(p̂−

q
cA)

2 + qφ, where A and φ are the values of the corresponding
potentials at the position of the particle. For many particles we sum these contributions up and add
the interparticle interaction potential (V ). This is what we wanted to obtain (H. Hameka, “Advanced
Quantum Chemistry”, Addison-Wesley Publishing Co., Reading, Massachusetts (1965), p. 40).
60Note that the presence of the magnetic field (and therefore ofA)makes it to appear as if the charged

particle moves faster on one side of the vector potential origin and slower on the opposite side.
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the Hamiltonian correspond61 to the relevant terms of the Breit Hamiltonian62

(p. 131)]
Ĥ= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4	 (12.59)

where (δ stands for the Dirac delta function, Appendix E, N is the number of
electrons, and the spins have been replaced by the corresponding operators)

Ĥ1 =
N
∑

j=1

1
2m

(

p̂j +
e

c
Aj

)2
+ V̂ + ĤSH + ĤIH + ĤLS + ĤSS + ĤLL	 (12.60)

Ĥ2 = γel

N
∑

j=1

∑

A

γA

[
ŝj · ÎA
r3
Aj

− 3
(ŝj · rAj)(ÎA · rAj)

r5
Aj

]

	 (12.61)

Ĥ3 = −γel
8π
3

N
∑

j=1

∑

A

γAδ(rAj)ŝj · ÎA	 (12.62)

Ĥ4 =
∑

A<B

γAγB

[
ÎA · ÎB
R3
AB

− 3
(ÎA ·RAB)(ÎB ·RAB)

R5
AB

]

	 (12.63)

where in the global coordinate system the internuclear distance means the length
of the vector RAB =RB−RA, while the electron–nucleus distance (of the electron
j with nucleus A) will be the length of rAj = rj− RA. We have:

• In the term Ĥ1, besides the kinetic energy operator in the external magnetic field
[with vector potential A, and the
convention Aj ≡ A(rj)] given by
∑N
j=1

1
2m(p̂j + e

cAj)
2, we have the

Coulomb potential V̂ of the interaction
of all the charged particles. Next, we
have:
– The interaction of the spin magnetic

moments of the electrons (ĤSH) and
of the nuclei (ĤIH) with the field H .
These terms come from the first part
of the term Ĥ6 of the Breit Hamil-
tonian, and represent the simple Zee-
man terms:

Pieter Zeeman (1865–1943),
Dutch physicist, professor at
the University of Amsterdam.
He became interested in the
influence of a magnetic field
on molecular spectra and dis-
covered a field-induced split-
ting of the absorption lines in
1896. He shared the Nobel
Prize with Hendrik Lorentz
“for their researches into the
influence of magnetism upon
radiation phenomena” in 1902.
The Zeeman splitting of star
spectra allows us to deter-

mine the value of the mag-
netic field that was on the star
at the moment the light was
emitted!

61All the terms used in the theory of magnetic susceptibilities and the Fermi contact term can be
derived from classical electrodynamics.
62Not all of them. As we will see later, the NMR experimental spectra are described by using, for each

nucleus, what is known as the shielding constant (related to the shielding of the nucleus by the electron
cloud) and the internuclear coupling constants. The shielding and coupling constants enter in a specific
way into the energy expression. Only those terms are included in the Hamiltonian that give non-zero
contributions to these quantities.
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– μ̂ ·H , where μ̂ is the magnetic moment operator of the corresponding particle.
Why do we not have together with ĤSH + ĤIH in Ĥ1 the term ĤLH, i.e. the
interaction of the electron orbital magnetic moment with the field? It would
be so nice to have the full set of terms: the spin and the orbital magnetic
moments interacting with the field. Everything is fine though, such a term is
hidden in the mixed term resulting from 1

2m(p̂j + e
cAj)

2. Indeed, we get the
corresponding Zeeman term from the transformationZeeman term

e

mc
p̂j ·Aj =

e

mc
Aj · p̂j =

e

2mc
(H × rj) · p̂j =

e

2mc
H · (rj × p̂j)

= e

2mc
H · L̂j =−H · (− e

2mc
L̂j)=−H ·Morb	el(j)	

whereMorb	el(j) is, according to the definition of eq. (12.53), the orbital mag-
netic moment of the electron j. Next, we have the terms

– the electronic spin–orbit terms (ĤLS), i.e. the corresponding magnetic dipole
moment interactions; related to the term Ĥ3 in the Breit Hamiltonian.

– the electronic spin–spin terms (ĤSS), i.e. the corresponding spin magnetic mo-
ment interactions, related to the term Ĥ5 in the Breit Hamiltonian.

– the electronic orbit–orbit terms (ĤLL), i.e. the electronic orbital magnetic di-
pole interactions (corresponding to the term Ĥ2 in the Breit Hamiltonian).

• The terms Ĥ2	 Ĥ3	 Ĥ4 (crucial for the NMR experiment) correspond to the
magnetic “dipole–dipole” interaction involving nuclear spins (the term Ĥ5 of
the Breit Hamiltonian). In more details these are the classical electronic spin–
nuclear spin interaction (Ĥ2), the corresponding Fermi contact term63 (Ĥ3) and
the classical interaction of the nuclear spin magnetic dipoles (Ĥ4), this time
without the contact term, because the nuclei are kept at long distances by the
chemical bond framework.64

The magnetic dipole moment (of a nucleus or electron) “feels” the magnetic
field acting on it through the vector potential Aj at the particle’s position rj . This
Aj is composed of the external field vector potential 1

2 [H×(rj−R)] (i.e. associated
with the external magnetic field65 H), the individual vector potentials coming from
the magnetic dipoles of the nuclei66 ∑

A γA
IA×rAj
r3
Aj

(and having their origins on the

individual nuclei) and the vector potentialAel(rj) coming from the orbital and spin

63Let us take the example of the hydrogen atom in its ground state. Just note that the highest probabil-
ity of finding the electron described by the orbital 1s is on the proton. The electron and the proton have
spin magnetic moments that necessarily interact after they coincide. This effect is certainly something
other than just the dipole–dipole interaction, which as usual describes the magnetic interaction for long
distances. We have to have a correction for very short distances – this is the Fermi contact term.
64And atomic electronic shell structure.
65The vector R indicates the origin of the external magnetic field H vector potential from the global

coordinate system (cf. Appendix G and the commentary there related to the choice of origin).
66Recalling the force lines of a magnet, we see that the magnetic field vector H produced by the

nuclear magnetic moment γAIA should reside within the plane of rAj and γAIA . This means that A
has to be orthogonal to the plane. This is assured by Aj proportional to γAIA × rAj .
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magnetic moments of all the electrons

Aj ≡A(rj)= 1
2
[H × r0j] +

∑

A

γA
IA × rAj
r3
Aj

+Ael(rj)	 (12.64)

where
r0j = rj −R� (12.65)

For closed-shell systems (the majority of molecules) the vector potential Ael
may be neglected, i.e. Ael(rj) ∼= 0, because the magnetic fields of the electrons
cancel out for a closed-shell molecule (singlet state).

Rearranging terms
When such a vector potential A is inserted into Ĥ1 (just patiently make the square
of the content of the parentheses) we immediately get

Ĥ= Ĥ0 + Ĥ(1)	 (12.66)

where Ĥ0 is the usual non-relativistic Hamiltonian for the isolated system

Ĥ0 = −
∑

j

h̄2

2m
�j + V̂ 	 (12.67)

Ĥ(1) =
11
∑

k

B̂k	 (12.68)

while a few minutes of a careful calligraphy leads to the result67

B̂1 = e2

2mc2

∑

A	B

∑

j

γAγB
ÎA × rAj
r3
Aj

ÎB × rBj
r3
Bj

	 (12.69)

B̂2 = e2

8mc2

∑

j

(H × r0j) · (H × r0j)	 (12.70)

B̂3 = − ih̄e
mc

∑

A

∑

j

γA∇j ·
ÎA × rAj
r3
Aj

	 (12.71)

B̂4 = − ih̄e2mc

∑

j

∇j · (H × r0j)	 (12.72)

B̂5 = e2

2mc2

∑

A

∑

j

γA(H × r0j) ·
ÎA × rAj
r3
Aj

	 (12.73)

B̂6 = Ĥ2 = γel

N
∑

j=1

∑

A

γA

[
ŝj · ÎA
r3
Aj

− 3
(ŝj · rAj)(ÎA · rAj)

r5
Aj

]

	 (12.74)

67The operators B̂3 and B̂4 contain the nabla (differentiation) operators. It is worth noting that this
differentiation pertains to everything on the right hand side of the nabla, including any function on which
B̂3 and B̂4 operators will act.
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B̂7 = Ĥ3 =−γel
8π
3

∑

j=1

∑

A

γAδ(rAj)ŝj · ÎA	 (12.75)

B̂8 = ĤSH =−γel
∑

j

ŝj ·H	 (12.76)

B̂9 = Ĥ4 =
∑

A<B

γAγB

[
ÎA · ÎB
R3
AB

− 3
(ÎA ·RAB)(ÎB ·RAB)

R5
AB

]

	 (12.77)

B̂10 = ĤIH =−
∑

A

γAÎA ·H	 (12.78)

B̂11 = ĤLS + ĤSS + ĤLL� (12.79)

We are just approaching the coupling of our theory with the NMR experiment.
To this end, let us first define an empirical Hamiltonian, which serves in the NMR
experiment to find what are known as the nuclear shielding constants and the spin–
spin coupling constants. Then we will come back to the perturbation Ĥ(1).

12.9 EFFECTIVE NMR HAMILTONIAN

NMR spectroscopy68 means recording the electromagnetic wave absorption by a
system of interacting nuclear magnetic dipole moments.69 It is important to note
that the energy differences detectable by contemporary NMR equipment are of the
order of 10−13 a.u., while the breaking of a chemical bond corresponds to about
10−1 a.u. This is why

all possible changes of the spin state of a system of nuclei do not change the
chemical properties of the molecule. This is really what we could only dream
of: we have something like observatory stations (the nuclear spins) that are
able to detect tiny chemical bond details.

As will be seen in a moment, to reproduce NMR spectra we need an effective
and rotation-averaged Hamiltonian that describes the interaction of the nuclear
magnetic moments with the magnetic field and with themselves.

12.9.1 SIGNAL AVERAGING

NMR experiments usually pertain to long (many hours) recording of the radio-
wave radiation coming from a liquid specimen. Therefore, we obtain a static (time-
averaged) record, which involves various kinds of averaging:

68The first successful experiment of this kind was described by E.M. Purcell, H.C. Torrey, R.V. Pound,
Phys. Rev. 69 (1946) 37.
69The wave lengths used in the NMR technique are of the order of meters (radio frequencies).
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• over the rotations of any single molecule that contributes to the signal (we as-
sume that each dipole keeps the same orientation in space when the molecule is
rotating). These rotations can be free or restrained;

• over all the molecules present in the specimen;
• over the vibrations of the molecule (including internal rotations).

12.9.2 EMPIRICAL HAMILTONIAN
The effective NMR Hamiltonian contains some parameters that take into account
the electronic cloud structure in which the nuclei are immersed. These NMR para-
meters will represent our target.

Now, let us proceed in this direction.
To interpret the NMR data, it is sufficient to consider an effective Hamiltonian

(containing explicitly only the nuclear magnetic moments, the electron coordinates
are absent and the electronic structure enters only implicitly through some inter-
action parameters). In the matrix notation we have shielding

constants
Ĥ=−

∑

A

γAH
T (1−σA)IA +

∑

A<B

γAγB
{

ITA(DAB +KAB)IB
}

	 (12.80)

where IC ≡ (IC	x	 IC	y	 IC	z)T stands for the spin angular momentum of the nu-
cleus C , while σA, DAB	KAB denote the symmetric square matrices of dimension
three (tensors):
• σA is a shielding constant tensor of the nucleusA. Due to this shielding, nucleus
A feels a local field H loc = (1−σA)H =H −σAH instead of the external field local field

H applied (due to the tensor character of σA the vectors H loc and H may differ
in their length and direction). The formula assumes that the shielding is propor-
tional to the external magnetic field intensity that causes the shielding. Thus, the
first term in the Hamiltonian Ĥ may also be written as −∑A γAH

T
locIA.

• DAB is the 3× 3 matrix describing the (direct) dipole–dipole interaction through
space defined above.

• KAB is also a 3 × 3 matrix that takes into account that two magnetic dipoles
interact additionally through the framework of the chemical bonds or hydrogen
bonds that separate them. This is known as the reduced spin–spin intermediate
coupling tensor.

Without electrons. . .
Let us imagine, just for fun, removing all the electrons from the molecule (and
keep them safely in a drawer), while the nuclei still reside in their fixed positions
in space. The Hamiltonian would consist of two types of term:
• the Zeeman term: interaction of the nuclear magnetic moments with the external

electric field (the nuclear analogue of the first term in Ĥ6 of the Breit Hamil-
tonian, p. 131) −∑AH · M̂A =−∑A γAH · ÎA;

• the “through space” dipole–dipole nuclear magnetic moment interaction (the
nuclear analogue of the Ĥ5 term in the Breit Hamiltonian)

∑

A<B γAγB{ÎA·
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DABÎB)}:

DAB = i · j
R3
AB

− 3
(i ·RAB)(j ·RAB)

R5
AB

	

where i	j denote the unit vectors along the x, y , z axes, e.g.,

(DAB)xx = 1

R3
AB

− 3
(RAB	x)

2

R5
AB

	 (DAB)xy =−3
RAB	xRAB	y

R5
AB

	 etc.

withRAB denoting the vector separating nucleusB from nucleusA (of lengthRAB).

Rotations average out the dipole–dipole interaction
What would happen if we rotated the molecule? In the theory of NMR, there are
a lot of notions stemming from classical electrodynamics. In the isolated molecule
the total angular momentum has to be conserved (this follows from the isotropic
properties of space). The total angular momentum comes, not only from the par-
ticles’ orbital motion, but also from their spin contributions. The empirical (non-
fundamental) conservation law pertains to the total spin angular momentum alone
(cf. p. 68), as well as the individual spins separately. The spin magnetic moments
are oriented in space and this orientation results from the history of the molecule
and may be different in each molecule of the substance. These spin states are non-
stationary. The stationary states correspond to some definite values of the square of
the total spin of the nuclei and of the spin projection on a chosen axis. According to
quantum mechanics (Chapter 1), only these values are to be measured. For exam-
ple, in the hydrogen molecule there are two stationary nuclear spin states: one with
parallel spins (ortho-hydrogen) and the other with antiparallel (para-hydrogen).
Then we may assume that the hydrogen molecule has two “nuclear gyroscopes”
that keep pointing them in the same direction in space when the molecule rotates
(Fig. 12.12).

Let us see what will happen if we average the interaction of two magnetic di-
pole moments (the formula for the interaction of two dipoles will be derived in
Chapter 13, p. 701):

Edip–dip = MA ·MB

R3
AB

− 3
(MA ·RAB)(MB ·RAB)

R5
AB

�

Assume (without losing the generality of the problem) that MA resides at the ori-
gin of a polar coordinate system and has a constant direction along the z axis, while
the dipoleMB just moves on the sphere of the radiusRAB aroundMA (all orienta-
tions are equally probable), the MB vector preserving the same direction in space
(θ	φ)= (u	0) all the time. Now, let us calculate the average value of Edip–dip with
respect to all possible positions of MB on the sphere:

Ēdip–dip = 1
4π

∫ π

0
dθ sinθ

∫ 2π

0
dφEdip–dip

= 1
4π

∫ π

0
dθ sinθ
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Fig. 12.12. Rotation of a molecule and the nuclear magnetic moments. Fig. (a) shows the orientation of
the nuclear magnetic moments in the orthohydrogen at the vertical configuration of the nuclei. Fig. (b)
shows the same, but the molecule is oriented horizontally. In the theory of NMR, we assume (in a clas-
sical way), that the motion of the molecule does not influence the orientation of both nuclear magnetic
moments (c) averaging the dipole–dipole interaction over all possible orientations. Let us immobilize
the magnetic moment MA along the z axis, the magnetic moment MB will move on the sphere of ra-
dius 1 both moments still keeping the same direction in space (θ	φ) = (u	0). Fig. (d) shows one of
such configurations. Averaging over all possible orientations gives zero (see the text).

×
∫ 2π

0
dφ
[

1

R3
AB

MA ·MB − 3

R5
AB

(MA ·RAB)(MB ·RAB)
]

= MAMB

4πR3
AB

∫ π

0
dθ sinθ

∫ 2π

0
dφ
[

cosu− 3 cosθ cos(θ− u)]

= MAMB

2R3
AB

∫ π

0
dθ sinθ

[

cosu− 3 cosθ cos(θ− u)]

= MAMB

R3
AB

{

cosu− 3
2

∫ π

0
dθ sinθ cosθ[cosθ cosu+ sinθ sinu]

}

= MAMB

R3
AB

{

cosu− 3
2

[

cosu · 2
3
+ sinu · 0

]}

= 0� (12.81)
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Thus, the averaging gave 0 irrespective of the radius RAB and of the angle u be-
tween the two dipoles. This result was obtained when assuming the orientations of
both dipoles do not change (the above mentioned “gyroscopes”) and that all angles θ
and φ are equally probable.

Averaging over rotations

An NMR experiment requires long recording times. This means that each mole-
cule, when rotating freely (gas or liquid70) with respect to the NMR apparatus,
acquires all possible orientations with equal probability. The equipment will de-
tect an averaged signal. This is why the proposed effective Hamiltonian has to be
averaged over the rotations. As we have shown, such an averaging causes the mean
dipole–dipole interaction (containing DAB) to be equal to zero. If we assume that
the external magnetic field is along the z axis, then the averaged Hamiltonian reads
as

Ĥav =−
∑

A

γA(1− σA)HzÎA	z +
∑

A<B

γAγBKAB
(

ÎA · ÎB
)

	 (12.82)

where σA = 1
3(σA	xx + σA	yy + σA	zz)= 1

3 TrσA, with KAB = 1
3 TrKAB.

This Hamiltonian is at the basis of NMR spectra interpretation. An experi-
mentalist adjusts σA for all the magnetic nuclei and KAB for all their inter-
actions, in order to reproduce the observed spectrum. Any theory of NMR
spectra should explain the values of these parameters.

Adding the electrons – why the nuclear spin interaction does not average
out to zero

We know already why DAB averages out to zero, but why is this not true for KAB?
Ramsey and Purcell71 explained this by what is known as the spin induction

mechanism described in Fig. 12.13. Spin induction results in the averaging of KAB
and the spin–spin configurations have different weights than in the averaging of
DAB. This effect is due to the chemical bonds, because it makes a difference if
the correlating electrons have their spins oriented parallel or perpendicular to the
bond line.

Where does such an effect appear in quantum chemistry? One of the main can-
didates may be the term Ĥ3 (the Fermi contact term in the Breit Hamiltonian,
p. 131) which couples the orbital motion of the electrons with their spin magnetic

70This is not the case in the solid state.
71N.F. Ramsey, E.M. Purcell, Phys. Rev. 85 (1952) 143.
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Norman F. Ramsey (born in 1915), American
physicist, professor at the University of Illinois
and Columbia University, then from 1947 at
the Harvard University. He is first of all an
outstanding experimentalist in the domain of
NMR measurements in molecular jets, but his
“hobby” is theoretical physics. Ramsey car-
ried out the first accurate measurement of the
neutron magnetic moment and gave a lower
bound theoretical estimation to its dipole mo-
ment. In 1989 he received the Nobel prize “for
the invention of the separated oscillatory fields

method and its use in the hydrogen maser and
other atomic clocks.”

Edwards Mills Purcell (1912–1997), American
physicist, professor at the Massachusetts In-
stitute of Technology and Harvard University.
His main domains were relaxation phenomena
and magnetic properties in low temperatures.
He received the Nobel prize together with Fe-
lix Bloch “for their development of new meth-
ods for nuclear magnetic precision measure-
ments and discoveries in connection therewith”
In 1952.

moments. This is a relativistic effect, hence it is very small and therefore the rota-
tional averaging results in only a small value for KAB.

Fig. 12.13. The nuclear spin–spin coupling (Fermi contact) mechanism through chemical bond AB.
The electrons repel each other and therefore correlate their motion (cf. p. 515). This is why, when
one of them is close to nucleus A, the second prefers to run off to nucleus B. For some nuclei the
electron–nucleus interaction of the magnetic dipole moments of A, and of the first electron near the
last, will exhibit a tendency (i.e. the corresponding energy will be lower than in the opposite case) to
have a spin antiparallel to the spin of A – this is what happens for protons and electrons. The second
electron, close to B, must have an opposite spin to its partner, and therefore will exhibit a tendency to
have its spin the same as that of nucleus A. We may say that the electron exposes the spin of nucleus
A right at the position of the nucleus B. Such a mechanism gives a much stronger magnetic dipole
interaction than that through empty space. Fig. (a) shows a favourable configuration of nuclear and
electron spins, all perpendicular to the bond, Fig. (b) shows the same situation after the molecule is
rotated by 90◦ . The electronic correlation energy will obviously differ in these two orientations of the
molecule, and this results in different averaging than in the case of the interaction through space.
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12.9.3 NUCLEAR SPIN ENERGY LEVELS

From calculating the mean value of the Hamiltonian (12.82), we obtain the energy
of the nuclear spins in the magnetic field

E =−
∑

A

(1− σA)γAHmI	Ah̄+
∑

A<B

γAγBKAB
〈

ÎA · ÎB
〉

	

where 〈ÎA · ÎB〉 is the mean value of the scalar product of the two spins calculated
by using their spin functions. This expression can be simplified by the following
transformation

E = −
∑

A

(1− σA)γAHmI	Ah̄+
∑

A<B

γAγBKAB
〈

ÎA	xÎB	x + ÎA	y ÎB	y + ÎA	zÎB	z
〉

= −
∑

A

(1− σA)γAHmI	Ah̄+
∑

A<B

γAγBKAB
(

0 · 0+ 0 · 0+ h̄2mI	AmI	B
)

	

because the mean values of ÎC	x and ÎC	y calculated for the spin functions of nu-
cleus C both equal 0 (for the α or β functions describing a nucleus with IC = 1

2 ,
see Chapter 1, p. 30). Therefore, the energy becomes a function of the magnetic
spin quantum numbers mI	C for all the nuclei with a non-zero spin IC

E(mI	A	mI	B	 � � �)=−h̄H
∑

A

(1− σA)γAmI	A +
∑

A<B

hJABmI	AmI	B	 (12.83)

where the commonly used nuclear spin–spin coupling constant is defined ascoupling
constant

JAB ≡ h̄

2π
γAγBKAB� (12.84)

Note that since hJAB has the dimension of the energy, then JAB itself is a fre-
quency and may be expressed in Hz.

Due to the presence of the rest of the molecule (electron shielding) the Larmor
frequency νA = HγA

2π (1 − σA) is changed by −σAHγA2π with respect to the Lar-
mor frequency HγA

2π for an isolated proton. Such changes are usually expressed (as
“ppm”, i.e. “parts per million”72) by the chemical shift δAchemical shift

δA = νA − νref

νref
· 106 = σref − σA

σref
· 106	 (12.85)

where νref is the Larmor frequency for a reference nucleus [for protons this means
by convention the proton Larmor frequency in tetramethylsilane, Si(CH3)4]. The
chemical shifts (unlike the Larmor frequencies) are independent of the magnetic
field applied.

Example 3. The carbon nucleus in an external magnetic field
Let us consider a single carbon 13C nucleus (spin quantum number IC = 1

2) in a
molecule.

72This means the chemical shift (unitless quantity) has to be multiplied by 10−6 to obtain νA−νref
νref

.
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Fig. 12.14. The energy levels of the 13C magnetic moment in the methane molecule and in an exter-
nal magnetic field. (a) The spin energy levels of the 13C atom in an external magnetic field; (b) ad-
ditional interaction of the 13C spin with the four equivalent proton magnetic moments switched on.
As we can see the energy levels in each branch follow the Pascal triangle rule. The splits within the
branch come from the coupling of the nuclei and are field-independent. The E+ and E− energies
are field-dependent: increasing field means a tuning of the separation between the energy levels. The
resonance takes place when the field-dependent energy difference matches the energy of the electro-
magnetic field quanta. The NMR selection rule means that only the transitions indicated take place.
Since the energy split due to the coupling of the nuclei is very small, the levels E+ are equally occupied
and therefore the NMR intensities satisfy the ratio: 1 : 4 : 6 : 4 : 1.

As seen from eq. (12.83) such a nucleus in magnetic field H has two energy
levels (for mI	C =± 1

2 , Fig. 12.14.a)

E(mI	C)=−h̄H(1− σC)γCmI	C	
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where the shielding constant σC characterizes the vicinity of the nucleus. For the
isolated nucleus σC = 0.

Example 4. The methane molecule 13CH4 in magnetic fieldH
This time there is an additional magnetic field coming from four equivalent pro-
tons, each having IH = 1

2 . The energy levels of the carbon magnetic spin result from
the magnetic field and from the mI	H ’s of the protons according to eq. (12.83),
Fig. 12.14. The resonance of the 13C nucleus means a transition between energy
levels that correspond to mI	C =± 1

2 with all the mI	Hi being constant.73 Thus, the
lower level corresponds to

E+(mI	H1	mI	H2	mI	H3	mI	H4)

=− h̄
2
H(1− σC)γC + h2

1
JCH(mI	H1 +mI	H2 +mI	H3 +mI	H4)	

and at the higher level we have the energy

E−(mI	H1	mI	H2	mI	H3	mI	H4)

= h̄

2
H(1− σC)γC − h2

1
JCH(mI	H1 +mI	H2 +mI	H3 +mI	H4)�

SincemI	Hi =± 1
2 then each of the levels E± will be split into 5 levels, Fig. 12.14:

• a non-degenerate level arising from all mI	Hi = 1
2 ,

• a quadruply degenerate level that comes from allmI	Hi = 1
2 , except one equal to

− 1
2 (there are four positions of this one),

• a sextuply degenerate level that results from two mI	Hi = 1
2 and two mI	Hi =− 1

2
(six ways of achieving this),

• a quadruply degenerate level that comes from all mI	Hi = − 1
2 , except one that

equals 1
2 (there are four positions of this one),

• a non-degenerate level arising from all mI	Hi =− 1
2 .

12.10 THE RAMSEY THEORY OF THE NMR CHEMICAL
SHIFT

An external magnetic field H or/and the magnetic field produced by the nuclei
magnetic dipole moments M1	M2	M3	 � � � certainly represent an extremely weak
perturbation to the energy of a molecule, and therefore, the changes they induce
in the molecule are suitable for perturbational methods.

We decide to apply the theory through the second order. Such an effect is com-
posed of two parts:

• the first-order correction (the diamagnetic contribution),
• the second-order correction (the paramagnetic contribution).

73The NMR selection rule for a given nucleus says that the single nucleus undergoes a flip.
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The corresponding energy change due to the perturbation Ĥ(1) from eq. (12.68)
(prime means that k= 0, i.e. the ground state is excluded from the summation)

�E =E(1)0 +E(2)0 = 〈ψ(0)0

∣
∣Ĥ(1)ψ(0)0

〉+
∑

k

′ 〈ψ(0)0 |Ĥ(1)ψ(0)k 〉〈ψ(0)k |Ĥ(1)ψ(0)0 〉
E(0)0 −E(0)k

�

(12.86)
12.10.1 SHIELDING CONSTANTS

In the Hamiltonian (12.82) the shielding constants occur in the term IA ·H . The
perturbation operator Ĥ(1) contains a lot of terms, but most of them, when in-
serted into the above formula, are unable to produce terms that behave like IA ·H .
Only some very particular terms could produce such a dot product dependence.
A minute of reflection leads directly to B̂3, B̂4, B̂5 and B̂10 as the only terms of the
Hamiltonian that have any chance of producing the dot product form.74 Therefore,
using the definition of the reduced resolvent R̂0 of eq. (10.64) we have75

�E = E(1)0 +E(2)0 = 〈ψ(0)0

∣
∣
(

B̂10 + B̂5
)

ψ(0)0

〉

+ 〈ψ(0)0

∣
∣
(

B̂3R̂0B̂4 + B̂4R̂0B̂3
)

ψ(0)0

〉

� (12.87)

After averaging the formula over rotations and extracting the proper term (de-
tails given in Appendix W, p. 1032) we obtain as the shielding constant of the
nucleus A

σA = e2

3mc2

〈

ψ(0)0

∣
∣
∣
∣

∑

j

(r0j · rAj) 1

r3
Aj

ψ(0)0

〉

− e2

6m2c2

〈

ψ(0)0

∣
∣
∣
∣

[(
∑

j

L̂Aj

r3
Aj

)

R̂0

(
∑

j

L̂0j

)

+
(
∑

j

L̂0j

)

R̂0

(
∑

j

L̂Aj

r3
Aj

)]

ψ(0)0

〉

	 (12.88)

74There is an elegant way to single out the only necessary Bi ’s that give a contribution to the en-
ergy proportional to the product xixj (no higher terms included), where xi and xj stand for some
components of the magnetic field intensity H or of the nuclear spin IA ’s (that cause perturbation
of the molecule). As to the first-order correction (“diamagnetic”) we calculate the second derivative

( ∂
2Ĥ(1)
∂xi∂xi

)H=0	Ii=0 of the Hamiltonian Ĥ(1) with respect to the components of H or IA, afterwards
inserting H = 0 and IA = 0 (i.e. calculating the derivative at zero perturbation). Then the diamagnetic

correction to the energy is 〈ψ(0)0 |( ∂2Ĥ(1)
∂xi∂xi

)H=0	Ii=0ψ
(0)
0 〉. As to the second-order correction (“para-

magnetic”), we calculate the first derivatives: ( ∂Ĥ
(1)

∂xi
)H=0	Ii=0 and ( ∂Ĥ

(1)
∂xj

)H=0	Ii=0 and, therefore,

the contribution to the energy is

∑

k

′
〈

ψ
(0)
0
∣
∣
( ∂Ĥ(1)
∂xi

)

H=0	Ii=0ψ
(0)
k

〉〈

ψ
(0)
k

∣
∣
( ∂Ĥ(1)
∂xj

)

H=0	Ii=0ψ
(0)
0
〉

E
(0)
0 −E(0)

k

�

75Note that whenever the reduced resolvent appears in a formula, infinite summation over unper-
turbed states is involved.
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where
L̂Aj =−ih̄(rAj ×∇j) (12.89)

and
L̂0j =−ih̄(r0j ×∇j) (12.90)

stand for the angular momenta operators for the electron j calculated with respect
to the position of nucleus A and with respect the origin of vector potential A,
respectively.

12.10.2 DIAMAGNETIC AND PARAMAGNETIC CONTRIBUTIONS
The result (12.88) has been obtained (apparently) in two parts:

σA = σdia
A + σpara

A 	 (12.91)

called the diamagnetic contribution

σdia
A = e2

3mc2

〈

ψ(0)0

∣
∣
∣
∣

∑

j

(r0j · rAj) 1

r3
Aj

ψ(0)0

〉

and the paramagnetic contribution

σ
para
A = − e2

6m2c2

〈

ψ(0)0

∣
∣
∣
∣

[(
∑

j

L̂Aj

r3
Aj

)

R̂0

(
∑

j

L̂0j

)

+
(
∑

j

L̂0j

)

R̂0

(
∑

j

L̂Aj

r3
Aj

)]

ψ(0)0

〉

�

Each of these contributions looks suspicious. Indeed, the diamagnetic contri-
bution explicitly depends on the choice of origin R of vector potential A through
r0j = rj −R, see (12.65). Similarly, the paramagnetic contribution also depends on
choice through L̂0j and (12.65). We have already stressed the practical importance
of the choice of R in Appendix G. Since both contributions depend on the choice,
they separately cannot have any physical significance.

Is it possible that the sum of the two contributions is invariant with respect to
choice of R? Yes, it is! The invariance has fortunately been proved.76 This is good,
because any measurable quantity cannot depend on an arbitrary choice of the ori-
gin of the coordinate system.

12.11 THE RAMSEY THEORY OF NMR SPIN–SPIN
COUPLING CONSTANTS

We will apply the same philosophy as that used for shielding constants (or, equiv-
alently, of the NMR chemical shift) to calculate the nuclear coupling constant.

76A. Abragam, “The Principles of Nuclear Magnetism”, Clarendon Press, Oxford (1961).
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Taking into account the Hamiltonian Ĥ(1) from eq. (12.68), we note that the only
terms in Ĥ(1) that have the chance to contribute to the NMR coupling constants
(see eq. (12.83)) are

�E = E(1)0 +E(2)0 = 〈ψ(0)0

∣
∣
(

B̂1 + B̂9
)

ψ
(0)
0

〉

(12.92)

+
∑

k

′ 〈ψ(0)0 |(B̂3 + B̂6 + B̂7)ψ
(0)
k 〉〈ψ(0)k |(B̂3 + B̂6 + B̂7)ψ

(0)
0 〉

E(0)0 −E(0)k
= Edia +Epara	 (12.93)

because we are looking for terms that could result in the scalar product of the
nuclear magnetic moments. The first term is the diamagnetic contribution (Edia),
the sum is the paramagnetic contribution (Epara).

12.11.1 DIAMAGNETIC CONTRIBUTIONS

There are two diamagnetic contributions in the total diamagnetic effect 〈ψ(0)0 |(B̂1+
B̂9)ψ

(0)
0 〉:

• The 〈ψ(0)0 |B̂9ψ
(0)
0 〉 term simply represents the

∑

A<B γAγBI
T
ADABIB contribu-

tion of eq. (12.80), i.e. the direct (“through space”) nuclear spin–spin interaction. direct spin–spin
contributionThis calculation does not require anything except summation over spin–spin

terms. However, as has been shown, averaging over free rotations of the molecule
in the specimen renders this term equal to zero.

• The 〈ψ(0)0 |B̂1ψ
(0)
0 〉 term can be transformed in the following way:

〈

ψ
(0)
0

∣
∣B̂1ψ

(0)
0

〉 =
〈

ψ
(0)
0

∣
∣
∣
∣

(
e2

2mc2

∑

A	B

∑

j

γAγB
IA × rAj
r3
Aj

IB × rBj
r3
Bj

)

ψ
(0)
0

〉

= e2

2mc2

∑

A	B

∑

j

γAγB

〈

ψ(0)0

∣
∣
∣
∣

(IA × rAj) · (IB × rBj)
r3
Ajr

3
Bj

ψ(0)0

〉

�

Now, note that (A×B) ·C=A · (B×C). Taking A= IA, B= rAj , C= IB× rBj
we first have the following

〈

ψ(0)0

∣
∣B̂1ψ

(0)
0

〉= e2

2mc2

∑

A	B

∑

j

γAγBIA ·
〈

ψ(0)0

∣
∣
∣
∣

rAj × (IB × rBj)
r3
Ajr

3
Bj

ψ(0)0

〉

�

Recalling that A× (B×C)=B(A ·C)−C(A ·B) this term (called the diamag- diamagnetic
spin–orbitnetic spin–orbit contribution, DSO77) reads as

EDSO = e2

2mc2

∑

A	B

∑

j

γAγBIA ·
[

IB

〈

ψ
(0)
0

∣
∣
∣
∣

rAj · rBj
r3
Ajr

3
Bj

ψ
(0)
0

〉

−
〈

ψ
(0)
0

∣
∣
∣
∣
rBj
rAj · IB
r3
Ajr

3
Bj

ψ
(0)
0

〉]

�

77The name comes, of course, from the nuclear spin–electronic orbit interaction.
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We see that we need to calculate some integrals with mono-electronic operators,
which is an easy task.

12.11.2 PARAMAGNETIC CONTRIBUTIONS

The paramagnetic contribution Epara to the energy resulting from the perturbation
given in eq. (12.68) can be written in a simpler form using the reduced resolvent
R̂0 of eq. (10.62):

Epara =
∑

k

′ 〈ψ(0)0 |(B̂3 + B̂6 + B̂7)ψ
(0)
k 〉〈ψ(0)k |(B̂3 + B̂6 + B̂7)ψ

(0)
0 〉

E(0)0 −E(0)k
= 〈ψ(0)0

∣
∣
(

B̂3 + B̂6 + B̂7
)

R̂0
(

B̂3 + B̂6 + B̂7
)

ψ(0)0

〉

= EPSO +ESD +EFC +mixed terms	

where

• the paramagnetic spin–orbit contribution:paramagnetic
spin–orbit

EPSO =
〈

ψ(0)0

∣
∣B̂3R̂0B̂3ψ

(0)
0

〉

with B̂3 meaning the interaction between the nuclear spin magnetic moment and
the magnetic moment resulting from the electronic angular momenta of the indi-
vidual electrons in an atom,

• the spin–dipole contributionspin–dipole

ESD =
〈

ψ
(0)
0

∣
∣B̂6R̂0B̂6ψ

(0)
0

〉

	

which describes the interaction energy of the magnetic spin dipoles: the nuclear
with the electronic dipole,

• the Fermi contact interactionFermi contact

EFC =
〈

ψ(0)0

∣
∣B̂7R̂0B̂7ψ

(0)
0

〉

	

which is related to the electronic spin–nuclear spin interaction with zero distance
between them.

• the mixed terms contain 〈ψ(0)0 |B̂iR̂0B̂jψ
(0)
0 〉 for i	 j = 3	6	7 and i 	= j� These

terms are either exactly zero or (in most cases, not always) small.78

78Let us consider all cross terms. First, let us check that 〈ψ(0)0 |B̂3R̂0B̂6ψ
(0)
0 〉 = 〈ψ(0)0 |B̂6R̂0B̂3ψ

(0)
0 〉 =

〈ψ(0)0 |B̂3R̂0B̂7ψ
(0)
0 〉 = 〈ψ(0)0 |B̂7R̂0B̂3ψ

(0)
0 〉 = 0. Note, that B̂6 and B̂7 both contain electron spin opera-

tors, while B̂3 does not. Let us assume that, as it is usually the case, ψ(0)0 is a singlet function. Recalling

eq. (10.62) this implies that for 〈ψ(0)0 |B̂3ψ
(0)
k
〉 to survive, the function ψ(0)

k
has to have the same multi-

plicity as ψ(0)0 . This however kills the other factors: 〈ψ(0)0 |B̂6ψ
(0)
k
〉 and 〈ψ(0)0 |B̂7ψ

(0)
k
〉, terms describing

the magnetic interaction of nuclei with exactly the same role played by electrons with α and β spins.
Thus, the products 〈ψ(0)0 |B̂3ψ

(0)
k
〉〈ψ(0)

k
|B̂6ψ

(0)
0 〉 and 〈ψ(0)0 |B̂3ψ

(0)
k
〉〈ψ(0)

k
|B̂7ψ

(0)
0 〉 are zero.
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12.11.3 COUPLING CONSTANTS

The energy contributions have to be averaged over rotations of the molecule and
the coupling constants are to be extracted from the resulting formulae. How this is
performed is shown in Appendix W on p. 1032.

Finally, the nuclear spin–spin coupling constant is calculated as the sum of the
diamagnetic (JDSO

AB ) and paramagnetic contributions (JPSO
AB 	J

SD
AB	J

FC
AB	J

mixed
AB )

JAB = Jdia
AB + Jpara

AB 	 (12.94)

Jdia
AB ≡ JDSO

AB 	 (12.95)

J
para
AB = JPSO

AB + JSD
AB + JFC

AB + Jmixed
AB 	 (12.96)

where the particular contributions to the coupling constant are:79

JDSO
AB = e2h̄

3πmc2γAγB
∑

j

〈

ψ(0)0

∣
∣
∣
∣

rAj · rBj
r3
Ajr

3
Bj

ψ(0)0

〉

	

JPSO
AB = 1

3π
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(
e

mc

)2
γAγB

∑

j	l	Aj

〈

ψ(0)0

∣
∣L̂AjR̂0L̂Blψ

(0)
0

〉

	

JSD
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elγAγB

×
N
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〈
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∣
∣
∣
∣
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ŝj
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]

R̂0
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ŝl

r3
Bl

− 3
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]

ψ(0)0

〉

	

JFC
AB =

1
3π
h̄

(
8π
3

)2
γ2

elγAγB
∑

j	l=1

〈

ψ(0)0

∣
∣δ(rAj)ŝjR̂0δ(rBl)ŝlψ

(0)
0

〉

�

Thus, the nuclear spin magnetic moments are coupled via their magnetic inter-
action with the electronic magnetic moments:

• the JDSO
AB + JPSO

AB results from the electronic orbital magnetic dipole moments,
• while JSD

AB + JFC
AB corresponds to such interactions with the electronic spin mag-

netic dipole moments.

The mixed term 〈ψ(0)0 |B̂6R̂0B̂7ψ
(0)
0 〉 vanishes for the isotropic electron cloud around the nucleus,

because in the product 〈ψ(0)0 |B̂6ψ
(0)
k
〉〈ψ(0)

k
|B̂7ψ

(0)
0 〉 the Fermi term 〈ψ(0)

k
|B̂7ψ

(0)
0 〉 survives, if ψ(0)0 ψ

(0)
k

calculated at the nucleus is non-zero. This kills, however, 〈ψ(0)0 |B̂6ψ
(0)
k
〉, because for ψ(0)0 ψ

(0)
k
	= 0

(which as a rule comes from a 1s orbital, this is isotropic situation) the electron–nucleus dipole–dipole
magnetic interaction averages to zero when different positions of the electron are considered. For non-
isotropic cases this mixed contribution can be of importance.
79The empirical Hamiltonian (12.83) contains only the A > B contributions, therefore the factor 2

appears in J.



672 12. The Molecule in an Electric or Magnetic Field

As to the integrals involved, the Fermi contact contribution JFC
AB (just the value

of the wave function at the nucleus position) is the easiest to compute. Assuming
that ψ(0)k states are Slater determinants, the diamagnetic spin–orbit contribution
JDSO
AB requires some (easy) one-electron integrals of the type 〈ψ1|xAjr3

Aj

ψ2〉, the para-

magnetic spin–orbit contribution JPSO
AB needs some one-electron integrals involving

L̂Aj operators, which require differentiation of the orbitals, the spin–dipole con-
tribution JSD

AB leads also to some simple one-electron integrals, but handling the
spin operators is needed (see p. 28), as for JFC

AB. All the formulae require an infi-
nite summation over states (due to the presence of R̂0), which is very tedious. This
is why, in contemporary computational technique, some other approaches, mainly
what is called propagator theory, are used.80

12.11.4 THE FERMI CONTACT COUPLING MECHANISM

There are no simple rules, but usually the most important contribution to JAB
comes from the Fermi contact term (JFC

AB), the next most important is paramag-
netic spin-orbit term JPSO

AB , other terms, including the mixed contributions Jmixed
AB ,

are of small importance. Let us consider the Fermi contact coupling mechanism
between two protons through a single bond (the coupling constant JAB denoted
as 1JHH). The proton and the electron close to it prefer to have opposite spins.
Then the other electron of the bond (being closer to the other nucleus) shows the
other nucleus the spin of first nucleus, therefore the second nucleus prefers to have
the opposite spin with respect to the first nucleus. According to eq. (12.83), since
mI	AmI	B < 0, this means JAB ≡ 1JHH > 0. What about 2JHH? This time, to have
a through-bond interaction we have to have a central atom, like carbon 12C (i.e.
with zero magnetic moment), Fig. 12.15. The key point now is what happens at the
central atom: whether it is preferable to have on it two parallel or two antiparallel
electron spins? We do not know, but we may have a suggestion. Hund’s rule says
that, in case of orbital degeneracy (in our case: this corresponds to two equiva-
lent C–H bonds), the electrons prefer to have parallel spins. This suggests that the
two distant proton spins have a negative coupling constant, i.e. 2JHH < 0, which is
indeed the case. The same argument suggests that 3JHH > 0, etc.81

80J. Linderberg, Y. Öhrn, “Propagators in Quantum Chemistry”, 2nd edition, John Wiley & Sons, Ltd,
2004.
81Thus, although calculation of the coupling constants is certainly complex, we have in mind a simple

model of the nuclear spin–spin interaction that seems to work. We love such models, because they
enable us to predict numbers knowing other numbers, or to predict new phenomena. This gives the
impression that we understand what happens. This is by no means true. What the electrons are doing
and how the spin magnetic moments interact is too complicated, but nevertheless we may suspect the
main principles of the game. Such models help us to discuss things with others, to communicate some
conjectures, to verify them, and to get more and more confidence in ourselves. Until one day something
goes wrong. Then we try to understand why it happened. This may require a revision of our model, i.e.
a new model, etc.
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Fig. 12.15. Is the proton–proton coupling constant through two bonds (H–
C–H), i.e. is 2JHH positive or negative? Please recall that 1JHH > 0, see
Fig. 12.13a, where the induction mechanism is described. The interaction of
proton spins (wide arrows) through two bonds depends on what happens at
the central carbon atom: are the spins of the two electrons there (one from
each bond C–H) parallel or antiparallel? Hund’s rule suggests they prefer to
be parallel. This means that the situation with the two proton spins parallel is
more energetically favourable, and this means 2JHH < 0. This rule of thumb
may fail when the carbon atom participates in multiple bonds, as in ethylene,
see section “From the research front”.

12.12 GAUGE INVARIANT ATOMIC ORBITALS (GIAO)
The coupling constants in practical applications may depend on the choice of vec-
tor and scalar potentials. The arbitrariness in the choice of the potentials A and φ
(“gauge choice”) does not represent any problem for an atom, because it is natural
to locate the origin (related to the formula (G.13) on p. 964) on the nucleus. The
same reasoning however means a serious problem for a molecule, because even
though any choice is equally justified, this justification is only theoretical, not prac-
tical. Should the origin be chosen at the centre of mass, at the centre of the electron
cloud, halfway between them, or at another point? An unfortunate (although math-
ematically fully justified) choice of the vector potential origin would lead to correct
results, but only after calculating and summing up all the contributions to infinity, in-
cluding application of the complete set of atomic orbitals. These requirements are
too demanding.

12.12.1 LONDON ORBITALS

Atomic orbitals are used in quantum chemistry as the building blocks of many-
electron functions (cf. p. 357). Where to centre the orbitals sometimes represents
a serious problem. On top of this, in the case of a magnetic field, there is, addi-
tionally, the above mentioned arbitrariness of choice of the vector potential ori-
gin. A remedy to the second problem was found by Fritz London82 in the form
of atomic orbitals that depend explicitly on the field applied. Each atomic orbital
χ(r−RC) centred on nucleus C (with position shown by vector RC) and describing
an electron pointed by vector r, is replaced by the London orbital in the following London orbital

way

LONDON ATOMIC ORBITALS

χL(r−RC;AC)= exp(−iAC · r)χ(r−RC)	 (12.97)

82F. London, J. Phys. Radium 8 (1937) 397.
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where AC stands for the value of vector field A at nucleus C , and A corresponds to
the origin O according to formula (G.13) on p. 964, where H denotes the intensity
of a homogeneous magnetic field (no contribution from the magnetic field created
by the nuclei, etc.).

As seen, the London orbitals are not invariant with respect to the choice of
vector potential origin,

e.g., with respect to shifting the origin of the coordinate system in formula (G.13)
by vector R:

A′(r)= 1
2
[

H × (r−R)]=A(r)− 1
2
[H ×R]� (12.98)

Indeed,

χL(r−RC;A′C) = exp(−iA′C · r)χ(r−RC)
= exp(−iAC · r)exp

(

i
1
2
[H ×R] · r

)

χ(r−RC)

= exp
(

i
1
2
[H ×R] · r

)

χL(r−RC;AC) 	= χL(r−RC;AC)�

Despite this property the London orbitals are also known as Gauge Invariant
Atomic Orbitals (GIAO).

12.12.2 INTEGRALS ARE INVARIANT
Let us calculate the overlap integral S between two London orbitals centred at
points C and D. After shifting the origin of the coordinate system in eq. (G.13) by
vector R we get

S = 〈χL	1
(

r−RC;A′C
)∣
∣χL	2

(

r−RD;A′D
)〉

= 〈exp
(−iA′C · r

)

χ1|exp
(−iA′D · r

)

χ2
〉

= 〈χ1
∣
∣exp

(−i(A′D −A′C
) · r)χ2

〉

	

i.e. the result is independent of R. It turns out83 that all the integrals needed – those
of kinetic energy, nuclear attraction and electron repulsion (cf. Appendix P on
p. 1004) – are invariant with respect to an arbitrary shift of the origin of vector
potential A.

This means that when we use the London orbitals the results do not depend
on the choice of vector potential origin.

Summary

• The Hellmann–Feynman theorem tells us about the rate the energy changes, when we
increase parameter P in the Hamiltonian (e.g., the intensity of the electric field). This

83T. Helgaker, P. Jørgensen, J. Chem. Phys. 95 (1991) 2595.
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rate is ∂E
∂P = 〈ψ(P)| ∂Ĥ∂P |ψ(P)〉, where ψ(P) means the exact solution to the Schrödinger

equation [with energy E(P)] at value P of the parameter.

ELECTRIC PHENOMENA

• When a molecule is located in an inhomogeneous electric field the perturbation operator
has the form Ĥ(1) =−∑q μ̂qEq − 1

3
∑

qq′ �̂qq′Eqq′ · · · , where Eq for q = x	 y	 z denote
the electric field components along the corresponding axes of a Cartesian coordinate sys-
tem, Eqq′ is the q′ component of the gradient of Eq , while μ̂q	 �̂qq′ stand for the operators
of the corresponding components of the dipole and quadrupole moments. In a homoge-
neous electric field (Eqq′ = 0) this reduces to Ĥ(1) =−∑q μ̂qEq .

• After using the last expression in the Hellmann–Feynman theorem we obtain the de-
pendence of the dipole moment components on the (weak) field intensity: μq = μ0q +
∑

q′ αqq′Eq′ + 1
2
∑

qq′ βqq′q′′EqEq′Eq′′ + · · · , where μ0q stands for the component cor-
responding to the isolated molecule, αqq′ denotes the q	q′ component of the (dipole)
polarizability tensor, βqq′q′′ is the corresponding component of the (dipole) first hyper-
polarizability tensor, etc. The quantities μ0q	αqq′ 	βqq′q′′ in a given Cartesian coordinate
system characterize the isolated molecule (no electric field) and represent the target of the
calculation methods.

• Reversing the electric field direction may in general give different absolute values of the
induced dipole moment only because of non-zero hyperpolarizability βqq′q′′ and higher-
order hyperpolarizabilities.

• In an inhomogeneous field we have the following interactions:
– of the permanent dipole moment of the molecule with the electric field −μ0E ,
– of the induced dipole moment proportional to the field (

∑

q′ αqq′Eq′ ) with the field plus
higher-order terms proportional to higher powers of the field intensity involving dipole
hyperpolarizabilities,

– of the permanent quadrupole moment �qq′ of the molecule with the field gradient:

− 1
3
∑

qq′ �qq′Eqq′ ,
– of the induced quadrupole moment proportional to the field gradient with the field gra-

dient (− 1
4
∑

qq′q′′q′′′ Cqq′q′′q′′′Eqq′Eq′′q′′′ , the quantity C is called the quadrupole polar-
izability) + higher-order terms containing quadrupole hyperpolarizabilities,

– higher multipole interactions.
• In the LCAO MO approximation, the dipole moment of the molecule can be divided into

the sum of the atomic dipole moments and the dipole moments of the atomic pairs.
• The dipole polarizability may be computed by:

– the Sum Over States method (SOS), which is based on second-order correction to the
energy in the perturbational approach;

– the finite field method, e.g., a variational approach in which the interaction with a weak
homogeneous electric field is included in the Hamiltonian. The components of the po-
larizability are computed as the second derivatives of the energy with respect to the
corresponding field components (the derivatives are calculated at zero field). In practi-
cal calculations within the LCAO MO approximation we often use the Sadlej relation
that connects the shift of a Gaussian atomic orbital with its exponent and the electric
field intensity.

• In laser fields we may obtain a series of non-linear effects (proportional to higher
powers of field intensity), including the doubling and tripling of the incident light fre-
quency.
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MAGNETIC PHENOMENA

• An elementary particle has a magnetic dipole momentM proportional to its spin angular
momentum I , i.e. M = γI , where γ stands for what is called the gyromagnetic factor
(characteristic for the kind of particle).

• The magnetic dipole of a particle with spin I (corresponding to spin quantum number
I) in homogeneous magnetic field H has 2I + 1 energy states EmI = −γmIh̄H, where
mI =−I	−I + 1	 � � � 	+I. Thus, the energy is proportional to H.

• The Hamiltonian of a system in an electromagnetic field has the form

Ĥ =
∑

j=1

[
1

2mj

(

p̂j −
qi
c
Aj

)2
+ qjφj

]

+ V̂ 	

where Aj and φj denote the vector and scalar fields at particle j (both are functions of
position in the 3D space) that characterize the external electromagnetic field.

• A and φ potentials contain, in principle (see Appendix G), the same information as the
magnetic and electric field H and E . There is an arbitrariness in the choice of A and φ.

• In order to calculate the energy states of a system of nuclei (detectable in NMR spec-
troscopy) we have to use the Hamiltonian Ĥ given above, supplemented by the inter-
action of all magnetic moments related to the orbital and spin of the electrons and the
nuclei.

• The refinement is based on classical electrodynamics and the usual quantum mechanical
rules for forming operators (Chapter 1) or, alternatively, on the relativistic Breit Hamil-
tonian (p. 131). This is how we get the Hamiltonian (12.66) which contains the usual
non-relativistic Hamiltonian (12.67) plus the perturbation (12.68) with a number of terms
(p. 657).

• Experimentalists use an empirical Hamiltonian (eq. (12.82)), in which they have the
interaction of the nuclear spin magnetic moments with the magnetic field (the Zee-
man effect), the latter weakened by the shielding of the nuclei by the electrons plus
the dot products of the nuclear magnetic moments weighted by the coupling con-
stants. The experiment gives both the shielding (σA) and the coupling (JAB) con-
stants.

• Nuclear spin coupling takes place through the induction mechanism in the chemical bond
(cf. Figs. 12.13, 12.15). Of key importance for this induction is high electron density at the
position of the nuclei (the so called Fermi contact term, Fig. 12.13).

• The theory of shielding and coupling constants was given by Ramsey. According to
the theory, each quantity consists of diamagnetic and paramagnetic contributions.
The diamagnetic term is easy to calculate, the paramagnetic one is more demand-
ing.

• Each of the contributions to the shielding constant individually depends on the choice
of the origin of the vector potential A, while their sum is invariant with respect to this
choice.

• The London atomic orbitals χL = exp(−iAC · r)χ(r − RC) used in calculations for
a molecule in a magnetic field depend explicitly on that field, through the value AC
of the vector potential A calculated at the centre RC of the usual atomic orbital
χ(r−RC).

• The most important feature of London orbitals is that all the integrals appearing in calcu-
lations are invariant with respect to the origin of the vector potential. This is why results
obtained using London orbitals are also independent of that choice.
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Main concepts, new terms

Hellmann–Feynman theorem (p. 618)
Cartesian multipole moments (p. 624)
dipole, quadrupole, octupole moments

(p. 624)
multipole polarizability (p. 628)
multipole hyperpolarizability (p. 628)
induced dipole moment (p. 628)
ZDO (p. 635)
sum over states method (p. 635)
finite field method (p. 639)
Sadlej relation (p. 640)
second/third harmonic generation (p. 646)
nuclear magnetic dipole (p. 648)
spin magnetic moment (p. 648)
gyromagnetic factor (p. 648)
Bohr magneton (p. 648)
nuclear magneton (p. 648)
Maxwell equations (p. 962)

NMR (p. 658)
NMR Hamiltonian (p. 658)
shielding constants (p. 659)
spin–spin intermediate coupling (p. 659)
local field (p. 659)
chemical shift (p. 664)
Ramsey theory (p. 666)
diamagnetic effect (p. 668)
paramagnetic effect (p. 668)
coupling constant (p. 668)
direct spin–spin interaction (p. 669)
diamagnetic spin–orbit contribution (p. 669)
paramagnetic spin–orbit (p. 670)
spin–dipole contribution (p. 670)
Fermi contact contribution (p. 670)
coupling mechanism (p. 672)
London orbitals (p. 673)
GIAO (p. 673)

From the research front

The electric dipole (hyper)polarizabilities are not easy to calculate, because:

• the sum over states method (SOS) converges slowly, i.e. a huge number of states have to
be taken into account, including those belonging to a continuum;

• the finite field method requires a large quantity of atomic orbitals with small exponents
(they describe the lion’s share of the electron cloud deformation), although, being diffuse,
they do not contribute much to the minimized energy (and lowering the energy is the only
indicator that tells us whether a particular function is important or not).

More and more often in their experiments chemists investigate large molecules. Such
large objects cannot be described by “global” polarizabilities and hyperpolarizabilities (ex-
cept perhaps optical properties, where the wave length is often much larger than size of
molecule). How such large molecules function (interacting with other molecules) depends
first of all on their local properties. We have to replace such characteristics by new ones
offering atomic resolution, similar to those proposed in the techniques of Stone or Sokalski
(p. 1018), where individual atoms are characterized by their multipole moments, polariz-
abilities, etc.

Even a few years ago, the shielding and especially spin–spin coupling constants were
very hard to calculate with reasonable accuracy. Nowadays these quantities are computed
routinely using commercial software with atomic London orbitals (or other than GIAO basis
sets).

The current possibilities of the theory in predicting the nuclear shielding constants and
the nuclear spin–spin coupling constants are shown in Tables 12.1 and 12.2. Note that the
accuracy of the theoretical results for shielding constants is nearly the same as that of ex-
periment. As to the spin–spin coupling constants, the theoretical results are only slightly off
experimental values.
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Table 12.1. Comparison of theoretical and experimental shielding constants. The shielding constant
σA (unitless quantity) is (as usual) expressed in ppm, i.e. the number given has to be multiplied by
10−6 to obtain σA of eq. (12.83). The Hartree–Fock, MP2, MP4 results are calculated in J. Gauss,
Chem. Phys. Letters 229 (1994) 198; the CCSD(T) in J. Gauss, J.F. Stanton, J. Chem. Phys. 104 (1996)
2574, and the CASSCF in K. Ruud, T. Helgaker, R. Kobayashi, P. Jørgensen, K.L. Bak, H.J. Jensen,
J. Chem. Phys. 100 (1994) 8178. For the Hartree–Fock method see Chapter 8, for the other methods
mentioned here, see Chapter 10. The references to the corresponding experimental papers are given in
T. Helgaker, M. Jaszuński, K. Ruud, Chem. Rev. 99 (1999) 293. The experimental error is estimated for
σH in ammonia as ±1�0, for σO as ±17�2, for σH in water as ±0�015, for σF as ±6, for σH in hydrogen
fluoride as ±0�2

CH4 NH3 H2O HF

Method σC σH σN σH σO σH σF σH

Hartree–Fock 194�8 31�7 262�3 31�7 328�1 30�7 413�6 28�4
MP2 201�0 31�4 276�5 31�4 346�1 30�7 424�2 28�9
MP4 198�6 31�5 269�9 31�6 337�5 30�9 418�7 29�1
CCSD(T) 198�9 31�6 270�7 31�6 337�9 30�9 418�6 29�2
CASSCF 200�4 31�19 269�6 31�02 335�3 30�21 419�6 28�49
experiment 198.7 30.61 264.54 31.2 344.0 30.052 410 28.5

Table 12.2. Comparison of theoretical and experimental spin–spin coupling constants nJAB for eth-
ylene (n denotes the number of separating bonds), in Hz. For the methods used see Chapter 10. All
references to experimental and theoretical results are in T. Helgaker, M. Jaszuński, K. Ruud, Chem.
Rev. 99 (1999) 293

Spin–spin coupling constants JAB for ethylene, in Hz

Method 1JCC
1JCH

2JCH
2JHH

3JHH-cis
3JHH-trans

MC SCF 71�9 146�6 −3�0 −2�7 10�9 18�1
EOM-CCSD 70�1 153�23 −2�95 0�44 11�57 17�80
experiment 67�457 156�302 −2�403 2�394 11�657 19�015

Ad futurum. . .

It seems that the SOS method will be gradually sent out of business. The finite field method
(in the electric field responses) will become more and more important, due to its simplicity.
It remains however to solve the problem, how to process the information we get from such
computations and translate it into the above mentioned local characteristics of the molecule.

Contemporary numerical methods allow routine calculation of polarizability. It is diffi-
cult with the hyperpolarizabilities that are much more sensitive to the quality of the atomic
basis set used. The hyperpolarizabilities relate to non-linear properties, which are in high
demand in new materials for technological applications.

Such problems as the dependence of the molecular spectra and of the molecular con-
formations and structure on the external electric field (created by our equipment or by a
neighbouring molecule) will become more and more important.

The theory of the molecular response to an electric field and the theory of the molecular
response to a magnetic field, despite some similarities, look as if they were “from another
story”. One of the reasons is that the electric field response can be described by solving the
Schrödinger equation, while that corresponding to the magnetic field is based inherently
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on relativistic effects. The latter ones are much less investigated except some quite simple
examples. Another reason may be the scale difference: the electric effects are much larger
than the magnetic ones.

However, the theory for the interaction of matter with the electromagnetic field has to
be coherent. The finite field method, so gloriously successful in electric field effects, is in
the “stone age” stage for magnetic field effects. The propagator methods84 look the most
promising, these allow for easier calculation of NMR parameters than the sum-over-states
methods.

Additional literature

A.D. Buckingham, Advan. Chem. Phys. 12 (1967) 107.
A classical paper on molecules in a static or periodic electric field.

H.F. Hameka, “Advanced Quantum Chemistry. Theory of Interactions between Mole-
cules and Electromagnetic Fields”, Addison-Wesley Publishing Co., Reading, Massa-
chusetts, USA (1965).

This is a first class book, although it presents the state of the art before the ab initio
methods for calculating the magnetic properties of molecules.

T. Helgaker, M. Jaszuński, K. Ruud, Chem. Rev. 99 (1999) 293.
A competent review article on the magnetic properties of molecules (NMR) with pre-

sentation of suitable contemporary theoretical methods.

Questions

1. The Hellmann–Feynman theorem says that (Ĥ means the Hamiltonian depending on
the parameter P):

a) ∂E∂P = 〈ψ| ∂Ĥ∂P |ψ〉, if ψ is the variational trial function;

b) ∂E∂P = 〈ψ| ∂Ĥ∂P |ψ〉, if ψ is the Hartree–Fock wave function;

c) ∂E∂P = 〈ψ| ∂Ĥ∂P |ψ〉, for any normalized ψ;

d) ∂E∂P = 〈ψ| ∂Ĥ∂P |ψ〉, if ψ is an eigenfunction of Ĥ .

2. The proportionality constant at the third-power term (the powers of electric field in-
tensity) in the expression for the energy of a molecule in a homogeneous electric field
is:
a) a component of the quadrupole moment;
b) a component of the dipole moment;
c) − 1

3!β, where β denotes a hyperpolarizability component;
d) a component of the octupole moment.

3. A non-polar molecule (with a non-zero quadrupolar moment) in an electric field with a
non-zero gradient:
a) does not interact with the field;
b) will rotate to align its dipole moment along the field;
c) will orient to align its longer quadrupole axis along the field;
d) will orient to align its longer quadrupole axis along the gradient of the field.

84J. Linderberg, Y. Öhrn, “Propagators in Quantum Chemistry”, 2nd edition, John Wiley & Sons, Ltd,
2004.
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4. Second harmonic generation requires that the molecule has:
a) large dipole hyperpolarizabilities;
b) large quadrupole and octupole polarizabilities;
c) large octupole and higher order hyperpolarizabilities;
d) a large quadrupole hyperpolarizability.

5. In variational calculations for the benzene molecule (zero electric field) the GTO expo-
nents and positions have been optimized. A small shift of the GTOs when using a finite
field method:
a) will always lower the energy;
b) always increases the energy;
c) will increase the energy if the GTOs move in the direction of the field and decrease
if they move in the opposite direction;
d) will always give a polarizability greater than zero.

6. The magnetic moment M of a particle:
a) always has the direction of the particle’s spin angular momentum;
b) its length is always an integer or half-integer;
c) interacts with a homogeneous magnetic field H , and the interaction energy is equal
to 1

2MH
2;

d) interacts with a homogeneous magnetic field H , and the interaction energy is equal
to −H ·M .

7. If we choose the vector potential A(r)= 1
2 [H × r], where H is the magnetic field inten-

sity, then:
a) we have ∇A= 0 and A agrees with the Maxwell equations;
b) A(r) is a homogeneous field;
c) A(r) is directed towards the origin;
d) A(r) is parallel to H .

8. The vector potential A(r) of electromagnetic field corresponds to homogeneous mag-
netic field H . Then A:
a) is uniquely determined from the Maxwell equation;
b) is uniquely determined from the Maxwell equation A= curlH ;
c) is also a homogeneous field;
d) curl[A−∇(x2 + y3 + z4)] =H .

9. A nuclear shielding constant consists of diamagnetic and paramagnetic parts. Each of
these parts:
a) represents a second-order effect in perturbation theory;
b) represents a first-order effect in perturbation theory;
c) changes when the origin of the vector potential A changes;
d) represents the Fermi contact term.

10. The London or Gauge-Invariant Atomic Orbital χL(r−R):
a) depends on the vector potential calculated at position R;
b) depends on the vector potential calculated at position r;
c) does not depend on the vector potential;
d) depends on the vector potential at the point shown by r−R.

Answers

1d, 2c, 3d, 4a, 5c, 6d, 7a, 8d, 9c, 10a



Chapter 13

INTERMOLECULAR
INTERACTIONS

Where are we?

We are already in the crown of the TREE.

An example

Why does liquid water exist? Why do molecules stick together at low temperatures? Visibly
they attract each other for some reason. The interaction is not however very strong since
water evaporates when heated (without destroying the water molecules).

What is it all about

THEORY OF INTERMOLECULAR INTERACTIONS

Interaction energy concept (�) p. 684
• Natural division and its gradation
• What is most natural?

Binding energy (�) p. 687

Dissociation energy (�) p. 687

Dissociation barrier (�) p. 687

Supermolecular approach (�) p. 689
• Accuracy should be the same
• Basis set superposition error (BSSE)

. . . and the remedy
• Good and bad news about the supermolecular method

Perturbational approach (���) p. 692
• Intermolecular distance – what does it mean?
• Polarization approximation (two molecules) (�)
• Intermolecular interactions: physical interpretation
• Electrostatic energy in the multipole representation and the penetration energy
• Induction energy in the multipole representation
• Dispersion energy in the multipole representation

Symmetry-Adapted Perturbation Theories (SAPT) (���) p. 710
• Polarization approximation is illegal
• Constructing a symmetry adapted function
• The perturbation is always large in polarization approximation

681
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• Iterative scheme of the symmetry adapted perturbation theory
• Symmetry forcing
• A link to the variational method – the Heitler–London interaction energy
• When we do not have at our disposal the ideal ψA	0 and ψB	0
Convergence problems (�) p. 721

Non-additivity of intermolecular interactions (��) p. 726
• Many-body expansion of interaction energy
• Additivity of the electrostatic interaction
• Exchange non-additivity
• Induction energy non-additivity
• Additivity of the second-order dispersion energy
• Non-additivity of the third-order dispersion interaction

ENGINEERING OF INTERMOLECULAR INTERACTIONS

Noble gas interaction p. 741

Van der Waals surface and radii (�) p. 742
• Pauli hardness and the van der Waals surface
• Quantum chemistry of confined space – the nanovessels

Synthons and supramolecular chemistry (�) p. 744
• Bound or not bound
• Distinguished role of the electrostatic interaction and the valence repulsion
• Hydrogen bond
• Coordination interaction
• Hydrophobic effect
• Molecular recognition – synthons
• “Key-and-lock”, template and “hand-and-glove” synthon interactions

Chapter 8 dealt with the question of why atoms form molecules. Electrons and nuclei
attract each other, and this results in almost exact neutralization of matter. Despite this,
atoms and molecules interact, because

• two atoms or molecules cannot occupy the same space,
• electrons and nuclei in an atom or molecule may still interact with those in other atoms

or molecules.

This chapter will tell us about the very reason for this and will give details of the interac-
tion.

Why is this important?

What is the most important message humanity ever learned about matter? According to
Richard Feynman the message would be: “The world is built of atoms, which repel each other
at short distances and attract at longer ones”. If the intermolecular interactions were suddenly
switched off, the world would disintegrate in about a femtosecond, that is in a single period
of atomic vibration (the atoms simply would not come back when shifted from their equilib-
rium positions). Soon after, everything would evaporate and a sphere of gas, the remainder
of the Earth, would be held by gravitational forces. Isn’t it enough?

What is needed?

• Perturbation theory (Chapter 5, absolutely).
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• Variational method (Chapter 5, recommended).
• Appendix X, p. 1038 (absolutely).
• Many-Body Perturbation Theory (MBPT) (Chapter 10, p. 554, necessary).
• Reduced resolvent (Chapter 10, p. 554, necessary).
• Appendix Y, p. 1050 (recommended).
• Appendix T (mentioned).

Classical works
Such an important subject was recognized
very early. The idea that the cohesion of
matter stems from the interaction of small
indivisible particles (“atoms”) comes from
Democritus. � An idea similar to that cited
by Feynman was first stated clearly by the
Croat scientist Rudjer Bosković in “Theoria
Philosophiae naturalis”, Venice, 1763. � Padé
approximants were first proposed in the PhD
thesis of Henri Padé entitled “Sur la représen-
tation approchée d’une fonction pour des frac-
tions rationnelles”, which was published in
Annales des Sciences d’Ecole Normale Su-
perieure, Suppl. [3], 9 (1892) 1. � The role

Democritus of Abdera (ca.
460 B.C. – ca. 370 B.C.),
Greek philosopher, founder
of the first atomic theory. Ac-
cording to him, nature repre-
sents a constant motion of in-
divisible and permanent par-
ticles (atoms), whose interac-
tions result in various materi-
als. It turned out after almost
25 centuries that this hypoth-
esis was basically correct! All
the written works of Democri-
tus have been lost, but his

ideas continued to have an
important impact on science
for centuries.

of intermolecular interactions was highlight-
ed in the work of Johannes Diderik van
der Waals, especially in “Die Kontinuität des
gasformigen und flüssigen Zustandes”, Barth,
Leipzig (1899, 1900). From that time on,
intermolecular interactions are often called
van der Waals interactions. � The concept
of ionic radii was first proposed by Linus
Pauling in “The Sizes of Ions and the Struc-
ture of Ionic Crystals”, Journal of the Ameri-
can Chemical Society, 49 (1927) 765. � The

Rudjer Josip Bosković (1711–
1787), a Croat physicist, math-
ematician, astronomer and
philosopher from beautiful Dub-
rovnik.

quantum mechanical explanation of inter-
molecular forces, including the ubiquitous
dispersion interactions, was given by Fritz
London in “Zur Theorie und Systematik der
Molekularkräfte”, Zeitschrift für Physik, 63
(1930) 245 and in “Über einige Eigenschaften
und Anwendungen der Molekularkräfte” from
Zeitschrift für Physikalische Chemie (B), 11
(1930) 222. � Linus Pauling, invited Baker
Lecturer to Cornell University, wrote one of
the most seminal books in chemistry “The
Nature of the Chemical Bond”, Cornell Univ.
Press, Ithaca, 1948, where inter alia he eluci-
dated the role of hydrogen bonds in forming

Johannes Diderik van der
Waals (1837–1923), Dutch
physicist, professor at the
University of Amsterdam. His
research topic was the influ-
ence of intermolecular forces
on the properties of gases
(equation of state of the real
gas, 1873) and liquids. In
1910 van der Waals received
a Nobel Prize “for his work
on the equation of state for
gases and liquids”.

structures. � The hydrophobic effect was first
highlighted by Walter Kauzmann in a paper “Some Factors in the Interpretation of Protein
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Denaturation”, in Advances in Protein Chemistry, 14 (1959) 1, the effect was further elabo-
rated by George Nemethy, Harold Scheraga, Frank Stillinger and David Chandler among
others. � Resonance interactions were first described by Robert S. Mulliken in an article
“The Interaction of Differently Excited Like Atoms at Large Distances”, in Physical Reviews,
120 (1960) 1674. � Bogumił Jeziorski and Włodzimierz Kołos extended the existing the-
ory of intermolecular forces to intermediate distances (“On the Symmetry Forcing in the
Perturbation Theory of Weak Intermolecular Interactions”, International Journal of Quantum
Chemistry, 12 Suppl. 1 (1977) 91).

THEORY OF INTERMOLECULAR INTERACTIONS

There are two principal methods of calculating the intermolecular interac-
tions: the supermolecular method and the perturbational method. Both assume
the Born–Oppenheimer approximation.

13.1 INTERACTION ENERGY CONCEPT

The idea of interaction energy is based on the Born–Oppenheimer (clamped nu-
clei, see eq. (6.4)) approximation. Let us define interaction energy at the configu-
ration R of the nuclei as

Eint(R)=EABC���(R)−
[

EA(R)+EB(R)+EC(R)+ · · ·
]

	 (13.1)

where EABC���(R) is the electronic energy (corresponding to E(0)0 from eq. (6.21))
of the total system, and EA(R), EB(R), EC(R), . . . are the electronic energies of
the interacting subsystems, calculated at the same positions of the nuclei as those in
the total system.

13.1.1 NATURAL DIVISION AND ITS GRADATION

Although the notion of interaction energy is of great practical value, its theoretical
meaning is a little bit fuzzy. Right at the beginning we have a question: interac-
tion of what? We view the system as composed of particular subsystems, that once
isolated, then have to be put together.

For instance, the supersystem

may be considered as two interacting water molecules, but even then we still have
an uncertainty, whether the two molecules correspond to (I) or to (II):
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In addition the system might be considered as composed of a hydrogen molecule
interacting with two OH radicals:

etc.
Choice of subsystems is of no importance from the point of view of mathematics,

but is of crucial importance from the point of view of calculations in theoretical
chemistry.

The particular choice of subsystem should depend on the kind of experiment
with which we wish to compare our calculations:

• we are interested in the interaction of water molecules when studying water
evaporation or freezing;

• we are interested in the interaction of atoms and ions that exist in the system
when heating water to 1000 ◦C.

Let us stress, that in any case when choosing subsystems we are forced to sin-
gle out particular atoms belonging to subsystem1 A and B. It is not sufficient to
define the kind of molecules participating in the interaction, see our examples I
and II.

If when dividing a system into n subsystems in two ways (I and II), we obtain
|Eint|I < |Eint|II, division I will be called more natural than division II. natural

subsystems

13.1.2 WHAT IS MOST NATURAL?

Which division is most natural? We do not have any experience in answering such
questions. What? Why should we have any difficulties? It is sufficient to consider
all possible divisions and to choose the one which requires lowest energy. Unfortu-
nately, this is not so obvious. Let us consider two widely separated water molecules
(Fig. 13.1.a).

1This means that the interaction energy idea belongs to classical concepts. In a quantum system,
particles of the same kind are indistinguishable. A quantum system does not allow us to separate a part
from the system. Despite this, the interaction energy idea is important and useful.



686 13. Intermolecular Interactions

Fig. 13.1. Part-entity relationship. Two distinct ways of dividing the (H2O)2 system into subsystems.
Division (a) is traditional. The interacting objects are two isolated water molecules and the interaction
energy is equal to about −5 kcal/mol (attraction). Division (b) is more subtle – a certain point in space
is treated as being composed of two fictitious charges q > 0 and −q, and one of the charges is ascribed
to one, and the other to the second molecule. In this way two new subsystems are defined, each of them
composed of a water molecule and the corresponding point charge. The value of q may be chosen in
such a way as to produce the interaction energy of the new subsystems close to 0. Therefore this is a
more natural choice of subsystems than the traditional one. The total interaction energy of the two
water molecules is now absorbed within the interactions of the fictitious point charges with “their”
water molecules. Each of the point charges takes over the interaction of “its” water molecule with the
rest of the Universe. Hence, I have permitted myself (with the necessary licentia poetica) to use the yin
and yang symbols – the two basic elements of ancient Chinese philosophy.

Right between the molecules, e.g., in the middle of the OO separation, we place
two point charges q > 0 and −q	 i.e. we place nothing, since the charges cancel
each other (please compare a similar trick on p. 492). We therefore have just two
water molecules. Now we start our game. We say that the charges are real: one be-
longs to one of the molecules and the other to the second (Fig. 13.1.b). The charge
q could be anything, but we want to use it for a very special goal: to construct the
two subsystems in a more natural way than just two water molecules. It is inter-
esting that after the choice is made, any of the subsystems has lower energy than
that of isolated water, since the molecules are oriented in such a way as to attract
each other. This means that the value of q can be chosen from an interval making
the choice of subsystems more natural. For a certain q = qopt we would obtain as
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the interaction energy of the new subsystems: E′int = 0� This certainly would be the
most natural choice,2 with the “dressed” water molecules, not seeing each other.3

Below in this chapter we will not use any fictitious charges.

13.2 BINDING ENERGY
Interaction energy can be calculated at any configuration R of the nuclei. We may
ask whether any “privileged” configuration exists with respect to the interaction
energy. This was our subject in Chapter 7, and it turned out that the electronic
energy may have many minima (equilibria) as a function of R. For each of such equilibrium

geometryconfigurations we may define the binding energy with respect to a particular dissoci-
ation channel as the difference of the corresponding interaction energies (all sub-
systems at the optimal positions Ropt(j) of the nuclei with respect to the electronic
energy Ej):

Ebind =EABC���(Ropt(tot))−
∑

j=A	B	C	���
Ej(Ropt(j))� (13.2)

At a given configuration Ropt(tot) we usually have many dissociation channels.

13.3 DISSOCIATION ENERGY
The calculated interaction energy of eq. (13.1), as well as the binding energies are
only theoretical quantities and cannot be measured. What is measurable is the
closely connected dissociation energy

Ediss =Ebind −
[

�E0	tot −
∑

j=A	B	C	���
�E0	j

]

	 (13.3)

where �E0	tot stands for what is known as the zero vibration energy of the total sys-
tem (cf. p. 304) at the equilibrium geometryRopt(tot)	 and �E0	j for j =A	B	C	 � � �
representing the zero vibration energies for the subsystems. In the harmonic
approximation �E0	tot = 1

2
∑

i hν1	tot, �E0	A = 1
2
∑

i hνi	A, �E0	B = 1
2
∑

i hνi	B,
�E0	C = 1

2
∑

i hνi	C	 � � � at their equilibrium geometries Ropt(A), Ropt(B), Ropt(C)	
� � � , respectively.

13.4 DISSOCIATION BARRIER

If a molecule receives dissociation energy it is most often a sufficient condition for
its dissociation. Sometimes however the energy is too low, and the reason is that
there is an energy barrier to be overcome. Sometimes the barrier is very high and

2Although not unique, since the charges could be chosen at different points in space, and we could
also use point multipoles, etc.

3Allusion to the elementary particles “dressed” by interactions, see section “What is it all about?”,
Chapter 8. It is worth noting that we have to superpose the subsystems first (then the fictitious charges
disappear), and then calculate the interaction energy of the water molecules deformed by the charges.
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Fig. 13.2. (a) Interaction energy Eint, binding energy Ebind, dissociation energy Ediss and barrier en-
ergy Ebar. �E0 is the zero vibration energy. Please note that the height of the barrier is different (Ebar1
or Ebar2) depending on the starting point considered. The first is connected with the energy cost re-
quired to go from jail to freedom (large), while the second is the energetic price for going to jail (much
easier). Figs. (b), (c), (d) represent rather exceptional cases of intermolecular interactions, when a part
of the total system is somehow confined (Fig. (a)) by the rest of the system. The catenan shown in
Fig. (b) consists of two intertwined rings, the rotaxan (scheme) is composed of a “molecular stick” with
a molecular ring on it, Fig. (c), the latter having two stable positions (“stations A and B” to be used in
future molecular computers). Fig. (d) shows what is called an endohedral complex. In this particular
case a water molecule is confined in the fullerene cage. The systems have been trapped in metastable
states, as they were formed. To free the subsystems, high energy has to be used to break some chemical
bonds. One of the advantages of theory is that we can consider compounds which sometimes would be
difficult to obtain in experiment.

the system is stable even if the dissociation products have (much) lower energy.
Catenans, rotaxans and endohedral complexes shown in Fig. 13.2 may serve as
examples.
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Fig. 13.2. Continued.

The energy necessary to overcome the barrier from the trap side is equal to

Ebar =E# −
(

Emin + 1
2

∑

j

hνj

)

	

where Emin is the energy of the bottom of the well, E# represents the barrier top
energy, and 1

2
∑

j hνj is the zero vibration energy of the well.

13.5 SUPERMOLECULAR APPROACH
In the supermolecular method the interaction energy is calculated from its defi-
nition (13.1) using any reliable method of electronic energy calculations. For the
sake of brevity we will consider the interaction of two subsystems: A and B.

13.5.1 ACCURACY SHOULD BE THE SAME

There is a problem though. The trouble is that we are unable to solve the
Schrödinger equation exactly either for AB or for A or for B� We have to use
approximations. If so, we have to worry about the same accuracy of calculation for
AB as for A and B. From this we may expect that

in determining EAB as well as EA and EB the same theoretical method
should be preferred, because any method introduces its own systematic er-
ror and we may hope that these errors will cancel at least partially in the
above formula.

This problem is already encountered at the stage of basis set choice. For exam-
ple, suppose we have decided to carry out the calculations within the Hartree–Fock
method in the LCAO MO approximation, p. 360. The same method has to be used
for AB	A and B. However what does this really mean? Should we use the follow-
ing protocol:
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AO basis set AO basis set

AB system

AO basis set

molecule molecule

molecule

molecule
molecule

molecule

“ghost”

necessary
to complete

necessary
to complete

“ghost”

Fig. 13.3. (a) Basis set superposition problem (BSSE). Each of the molecules offers its own atomic
orbitals to the total basis set �=�A ∪�B� Fig. (b) illustrates the counter-poise method, in which the
calculations for a single subsystem are performed within the full atomic basis set �: the atomic orbitals
centred on it and what are called ghost orbitals centred on the partner.

1. Consider the atomic basis set � that consists of the atomic orbitals centred on
the nuclei of A (set �A) and on the nuclei of B (set �B)	 i.e. �=�A ∪�B.

2. Calculate EAB using �, EA using �A and EB using �B (Fig. 13.3a). Apparently
everything looks logical, but we did not use the same method when calculating
the energies of AB, A and B. The basis set used has been different depending
on what we wanted to calculate.

Thus, it seems more appropriate to calculate all three quantities using the same
basis set �.

13.5.2 BASIS SET SUPERPOSITION ERROR (BSSE)
Such an approach is supported by the following reasoning. When the calculations
are performed for EAB within the basis set � we calculate implicitly not only the
interaction energy, but also we allow the individual subsystems to lower their en-
ergy. Conclusion: by subtracting from EAB the energies: EA calculated with �A
and EB with �B, we are left not only with the interaction energy (as should be),
but also with an unwanted and non-physical extra term (an error) connected with
the artificial lowering of the subsystems’ energies, when calculating EAB. This error
is called the BSSE (Basis Set Superposition Error).

. . . and the remedy
To remove the BSSE we may consider the use of the basis set � not only for EAB
but also for EA and EB. This procedure called the counter-poise method, was firstcounter-poise

method introduced by Boys and Bernardi.4 Application of the full basis set � when calcu-
lating EA results in the wave function of A containing not only its own atomic or-
bitals, but also the atomic orbitals of the (“absent”) partner B, the “ghost orbitals”“ghost orbitals”

(Fig. 13.3b). As a by-product, the charge density of A exhibits broken symmetry

4S.F. Boys, F. Bernardi, Mol. Phys. 19 (1970) 553.
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with respect to the symmetry of A itself (if any), e.g., the helium atom would have
a small dipole moment, etc. Unfortunately, the counter-poise method depends on
which channel of dissociation is considered. If several channels are considered at
one time, not only are we confronted with an ambiguity, but also this inevitably
leads to discontinuities in the calculated energies. This problem is not yet solved in
the literature.

13.5.3 GOOD AND BAD NEWS ABOUT THE SUPERMOLECULAR METHOD

Two deficiencies
When performing the subtraction in formula (13.1), we obtain a number repre-
senting the interaction energy at a certain distance and orientation of the two sub-
systems.

The resulting Eint has two disadvantages: it is less precise than EAB, EA
and EB, and it does not tell us anything about why the particular value is
obtained.

The first disadvantage could be compared (following Coulson5) to weighing the
captain’s hat by first weighing the ship with the captain wearing his hat and the
ship with the captain without his hat (Fig. 13.4). Formally everything is perfect, but
there is a cancellation of significant digits in EAB and (EA +EB), that may lead to
a very poor interaction energy.

The second deficiency deals with the fact that the interaction energy obtained
is just a number and we will have no idea why the number is of such magnitude.6

Both deficiencies will be removed in the perturbational approach to intermolecular

Fig. 13.4. In the supermolecular method we subtract two large numbers that differ only slightly and
lose accuracy in this way. It resembles determining the weight of the captain’s hat by weighing first the
ship with the captain wearing his hat, then repeating the same with the captain without his hat and
subtracting the two results. In order not to obtain a result like 240 kg or so, we have to have at our
disposal a very accurate method of weighing things.

5C.A. Coulson, “Valence”, Oxford University Press (1952).
6The severity of this can be diminished by analyzing the supermolecular interaction energy expression

(using molecular orbitals ofA and B) and identifying the physically distinguishable terms by the kind of
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interaction. Then, the interaction energy will be calculated directly and we will be
able to tell which physical contributions it consists of.

Important advantage

A big advantage of the supermolecular method is its applicability at any
intermolecular distance, i.e. independently of how strong the interaction is.

13.6 PERTURBATIONAL APPROACH
13.6.1 INTERMOLECULAR DISTANCE – WHAT DOES IT MEAN?

What is the distance (in kilometers) between the Polish and German populations,
or what does the distance between two buses mean? Because of the non-zero di-
mensions of both objects, it is difficult to tell what the distance could be and any
measure of it will be arbitrary. It is the same story with molecules. Up till now we
did not need a notion for the intermolecular distance, the positions of the nuclei
were sufficient. At the beginning we need only an infinite distance and therefore
any definition will be acceptable. Later, however, we will be forced to specify the
intermolecular distance (cf. p. 698 and Appendix X on p. 1038). The final numeri-
cal values should not depend on this choice, but intermediate results could depend
on it. It will turn out that despite the existing arbitrariness, we will prefer those
definitions which are based upon the charge barycentre distance or similar.

13.6.2 POLARIZATION APPROXIMATION (TWO MOLECULES)
According to the Rayleigh–Schrödinger perturbation theory (Chapter 5) the un-
perturbed Hamiltonian Ĥ(0) is a sum of the isolated molecules’ Hamiltonians:
Ĥ(0) = ĤA + ĤB. Following quantum theory tradition in the present chapter the
symbol for the perturbation operator will be changed (when compared to Chap-
ter 5): Ĥ(1) ≡ V .

Despite the fact that we may also formulate the perturbation theory for ex-
cited states, we will assume that we are dealing with the ground state (and
denote it by subscript “0”). In what is called the polarization approximation,
the zeroth-order wave function will be taken as a product

ψ(0)0 =ψA	0ψB	0	 (13.4)

where ψA	0 and ψB	0 are the exact ground state wave functions for the iso-
lated molecules A and B	 respectively, i.e.

ĤAψA	0 = EA	0ψA	0	
ĤBψB	0 = EB	0ψB	0�

molecular integrals of which they are composed (K. Kitaura, K. Morokuma, Intern. J. Quantum Chem.
10 (1976) 325).
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We will assume that, because of the large separation of the two molecules, the
electrons of molecule A are distinguishable from the electrons of molecule B. We
have to stress the classical flavour of this approximation. Secondly, we assume that
the exact wave functions of both isolated molecules:7 ψA	0 and ψB	0 are at our

resonance
interaction

disposal.
Of course, function ψ(0)0 is only an approximation to the exact wave function of

the total system. Intuition tells us that this approximation is probably very good,
because we assume the perturbation is small and the product function ψ(0)0 =ψA	0
ψB	0 is an exact wave function for the non-interacting system.

The chosen ψ(0)0 has a wonderful feature, namely it represents an eigen-
function of the Ĥ(0) operator, as is required by the Rayleigh–Schrödinger
perturbation theory (Chapter 5).

The function has also an unpleasant feature: it differs from the exact wave func-
tion by symmetry. For example, it is easy to see that

the functionψ(0)0 is not antisymmetric with respect to the electron exchanges
between molecules, while the exact function has to be antisymmetric with
respect to any exchange of electron labels.

This deficiency exists for any intermolecular distance.8 We will soon pay a high
price for this.

First order effect: electrostatic energy
The first order correction (see eq. (5.22), p. 207)

E(1)0 ≡Eelst ≡E(1)pol =
〈

ψ(0)0

∣
∣V ψ(0)0

〉

	 (13.5)

7We will eliminate an additional complication which sometimes may occur. The n-th state of the two
non-interacting molecules comes, of course, from some states of the isolated molecules A and B. It
may happen (most often when the two molecules are identical), that two different sets of the states give
the same energy E(0)n , typically, this may happen upon the exchange of excitations of both molecules.
Then, ψ(0)n has to be taken as a linear combination of these two possibilities, which leads to profound
changes of the formulae with respect to the usual cases. Such an effect is called the resonance interaction
(R.S. Mulliken, Phys. Rev. 120 (1960) 1674). The resulting interaction decays with the distance as R−3,
i.e. quite slowly, making possible an excitation energy transfer through long distances between the
interacting molecules. The resonance interaction turns out to be very important (e.g., in biology). An
interested reader may find more in the review article J.O. Hirschfelder, W.J. Meath, Advan. Chem. Phys.
12 (1967) 3.

8We may say that the range of the Pauli principle is infinity. If somebody paints some electrons green
and others red (distinguishable electrons, we do this in the perturbational method), they are in no
man’s land, between the classical and quantum worlds. Since the wave function ψ(0)0 does not have the

proper symmetry, the corresponding operator Ĥ(0) = ĤA + ĤB is just a mathematical object having
little relation to the total system under study.
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represents what is called the electrostatic interaction energy (Eelst). To stress that
Eelst is the first-order correction to the energy in the polarization approximation,
the quantity will alternatively be denoted by E(1)pol. The electrostatic energy repre-electrostatic

energy sents the Coulombic interaction of two “frozen” charge distributions correspond-
ing to the isolated moleculesA and B, because it is the mean value of the Coulom-
bic interaction energy operator V calculated with the wave function ψ(0)0 being the
product of the wave functions of the isolated molecules9 ψ

(0)
0 =ψA	0ψB	0.

Second-order energy: induction and dispersion energies

The second-order energy (p. 208) in the polarization approximation approach can
be expressed in a slightly different way. The n-th state of the total system at long
intermolecular distances corresponds to some states nA and nB of the individual
molecules, i.e.

ψ(0)n =ψA	nAψB	nB (13.6)

and10

E(0)n =EA	nA +EB	nB � (13.7)

Using this assumption, the second-order correction to the ground-state energy
(we assume n= 0 andψ(0)0 =ψA	0ψB	0) can be expressed as (see Chapter 5, p. 208)

E(2)0 =
∑

nA

∑

nB

′ |〈ψA	nAψB	nB |V ψA	0ψB	0〉|2
(EA	0 −EA	nA)+ (EB	0 −EB	nB)

	 (13.8)

where “prime” in the summation means excluding n= 0, or (nA	nB)= (0	0). The
quantity E(2)0 can be divided in the following way

E(2)0 =
∑

nA

∑

nB

′
� � �=

∑

(nA=0	 nB 	=0)

· · · +
∑

(nA 	=0	 nB=0)

· · · +
∑

(nA 	=0	 nB 	=0)

· · · � (13.9)

Let us construct a matrixA (of infinite dimension) composed of the elementA00 =
0 and the other elements calculated from the formula

AnA	nB =
|〈ψA	nAψB	nB |V ψA	0ψB	0〉|2

(EA	0 −EA	nA)+ (EB	0 −EB	nB)
(13.10)

and divide it into the following parts (I, II, III on the scheme)

9We will see later that taking the zero-order wave function with the proper symmetry leads to the first
order energy containing what is called the valence repulsion, besides the E(1)pol term.
10Also in this case we exclude the resonance interaction.
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nA→
0 1 2 3 4 5 ...

nB 0 0 II
↓ 1

2
3 I III
4
5
���

The quantity E(2)0 is a sum of all the elements of A. This summation will be
carried out in three steps. First, the sum of all the elements of column 0 (part I,
nA = 0) represents the induction energy associated with forcing a change in the induction energy

charge distribution of the molecule B by the charge distribution of the isolated
(“frozen”) moleculeA. Second, the sum of all the elements of row 0 (part II, nB =
0) has a similar meaning, but the roles of the molecules are interchanged. Finally,
the sum of all the elements of the “interior” of the matrix (part III, nA and nB not
equal to zero) represents the dispersion energy. Therefore, dispersion

energy
E(2)0 = Eind(A→ B)+ Eind(B→A)+ Edisp	

I II III
(13.11)

where

Eind(A→ B) =
∑

nB

′ |〈ψA	0ψB	nB |V ψA	0ψB	0〉|2
(EB	0 −EB	nB)

	

Eind(B→A) =
∑

nA

′ |〈ψA	nAψB	0|V ψA	0ψB	0〉|2
(EA	0 −EA	nA)

	

Edisp =
∑

nA

′∑

nB

′ |〈ψA	nAψB	nB |V ψA	0ψB	0〉|2
(EA	0 −EA	nA)+ (EB	0 −EB	nB)

� (13.12)

What do these formulae tell us?
One thing has to be made clear. In formula (13.12) we sometimes see arguments
for the interacting molecules undergoing excitations. We have to recall however
that all the time we are interested in the ground state of the total system, and cal-
culating its energy and wave function. The excited state wave functions appearing
in the formulas are the consequence of the fact that the first-order correction to
the wave function is expanded in a complete basis set chosen deliberately as {ψ(0)n }�
If we took another basis set, e.g., the wave functions of another isoelectronic mole-
cule, we would obtain the same numerical results (although formulae (13.12) will
not hold), but the argument would be removed. From the mathematical point of
view, the very essence of the perturbation theory means a small deformation of the
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Fig. 13.5. A perturbation of the wave function is a small correction.
Fig. (a) shows in a schematic way, how a wave function, spherically
symmetric with respect to the nucleus, can be transformed into a func-
tion that is shifted off the nucleus. The function representing the cor-
rection is shown schematically in Fig. (b). Please note the function has
symmetry of a p orbital.

starting ψ(0)0 function. This tiny deformation is the target of the expansion in the
basis set {ψ(0)n }. In other words, the perturbation theory involves just a cosmetic ad-
justment of the ψ(0)0 : add a small hump here (Fig. 13.5), subtract a small function
there, etc. Therefore, the presence of the excited wave functions in the formulae
is not an argument for observing some physical excitations. We may say that the
system took what we have prepared for it, and we have prepared excited states.

This does not mean that the energy eigenvalues of the molecule have no influ-
ence on its induction or dispersion interactions with other molecules.11 However
this is a different story. It has to do with whether the small deformation we have
been talking about does or does not depend on the energy eigenvalues spectrum
of the individual molecules. The denominators in the expressions for the induction
and dispersion energies suggest that the lower excitation energies of the molecules,
the larger their deformation, induction and dispersion energies.

13.6.3 INTERMOLECULAR INTERACTIONS: PHYSICAL INTERPRETATION

Now the author would like to recommend the reader to study the multipole expan-
sion concept (Appendix X on p. 1038, also cf. Chapter 12, p. 624).“intermolecular

distance”

The very essence of the multipole expansion is a replacement of the
Coulombic interaction of two particles (one from molecule A, the other
from the molecule B) by an infinite sum of interactions of what are called
multipoles, where each interaction term has in the denominator an integer
power of the distance (called the intermolecular distance R) between the
origins of the two coordinate systems localized in the individual molecules.

11The smaller the gap between the ground and excited states of the molecule, the larger the polariz-
ability, see Chapter 12.
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In other words, multipole expansion describes the intermolecular interaction of
two non-spherically symmetric, distant objects by the “interaction” of deviations
(multipoles) from spherical symmetry.

To prepare ourselves for the application of the multipole expansion, let us in-
troduce two Cartesian coordinate systems with x and y axes in one system parallel
to the corresponding axes in the other system, and with the z axes collinear (see
Fig. X.1 on p. 1039). One of the systems is connected to molecule A, the other
one to molecule B, and the distance between the origins is R (“intermolecular
distance”).12

The operator V of the interaction energy of two molecules may be written as

V =−
∑

j

∑

a

Za

raj
−
∑

i

∑

b

Zb
rbi
+
∑

ij

1
rij
+
∑

a

∑

b

ZaZb
Rab

	 (13.13)

where we have used the convention that the summations over i and a correspond
to all electrons and nuclei of molecule A, and over j and b of molecule B. Since
the molecules are assumed to be distant, we have a practical guarantee that the
interacting particles are distant too. In V many terms with inverse interparticle
distance are present. For any such term we may write the corresponding multipole
expansion (Appendix X, p. 1039, s is smaller of numbers k and l):

−Za
raj
=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (a)∗M̂(l	m)
B (j)	

−Zb
rbi
=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (i)∗M̂(l	m)
B (b)	

1
rij
=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (i)∗M̂(l	m)
B (j)	

ZaZb
Rab

=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (a)∗M̂(l	m)
B (b)	

where

Akl|m| = (−1)l+m (k+ l)!
(k+ |m|)!(l+ |m|)! 	 (13.14)

12A sufficient condition for the multipole expansion convergence is such a separation of the charge
distributions of both molecules, that they could be enclosed in two non-penetrating spheres located at
the origins of the two coordinate systems. This condition cannot be fulfilled with molecules, because
their electronic charge density distribution extends to infinity. The consequences of this are described
in Appendix X. However, the better the sphere condition is fulfilled (by a proper choice of the origins)
the more effective in describing the interaction energy are the first terms of the multipole expansion.

The very fact that we use closed sets (like the spheres) in the theory, indicates that in the polarization
approximation we are in no man’s land between the quantum and classical worlds.



698 13. Intermolecular Interactions

and the multipole moment M(k	m)
C (n) pertains to particle n and is calculated in

“its” coordinate system C =A	B. For example,

M̂(k	m)
A (a)=ZaRkaP |m|k (cosθa)exp(imφa)	 (13.15)

where Ra	θa	φa are the polar coordinates of nucleus a (with charge Za) of mole-
cule A taken in the coordinate system of molecule A. When all such expansions
are inserted into the formula for V , we may perform the following chain of trans-
formations

V = −
∑

j

∑

a

Za

raj
−
∑

i

∑

b

Zb
rbi
+
∑

ij

1
rij
+
∑

a

∑

b

ZaZb
Rab

∼=
∑

j

∑

a

∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂

(k	m)
A (a)∗M̂(l	m)

B (j)

+
∑

i

∑

b

∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (i)∗M̂(l	m)
B (b)

+
∑

ij

∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (i)∗M̂(l	m)
B (j)

+
∑

a

∑

b

∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

A (a)∗M̂(l	m)
B (b)

=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)

{[
∑

a

M̂(k	m)
A (a)

]∗[∑

j

M̂(l	m)
B (j)

]

+
[
∑

i

M̂(k	m)
A (i)

]∗[∑

b

M̂(l	m)
B (b)

]

+
[
∑

i

M̂(k	m)
A (i)

]∗[∑

j

M̂(l	m)
B (j)

]

+
[
∑

a

M̂(k	m)
A (a)

]∗[∑

b

M̂(l	m)
B (b)

]}

=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)

[
∑

a

M̂(k	m)
A (a)+

∑

i

M̂(k	m)
A (i)

]∗

×
[
∑

b

M̂(l	m)
B (b)+

∑

j

M̂(l	m)
B (j)

]

=
∑

k=0

∑

l=0

m=s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)∗

A M̂(l	m)
B � (13.16)
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In the square brackets we can recognize the multipole moment operators
for the total molecules calculated in “their” coordinate systems

M̂(k	m)
A =

∑

a

M̂(k	m)
A (a)+

∑

i

M̂(k	m)
A (i)	

M̂(l	m)
B =

∑

b

M̂(l	m)
B (b)+

∑

j

M̂(l	m)
B (j)�

Eq. (13.16) has the form of a single multipole expansion, but this time the multipole
moment operators correspond to entire molecules.

Using the table of multipoles (p. 1042), we may easily write down the multi-
pole operators for the individual molecules. The lowest moment is the net charge
(monopole) of the molecules

M̂(0	0)
A = qA = (ZA − nA)	

M̂(0	0)
B = qB = (ZB − nB)	

where ZA is the sum of all the nuclear charges of moleculeA, and nA is its number
of electrons (similarly for B). The next moment is M̂(1	0)

A , which is a component of
the dipole operator equal to

M̂(1	0)
A =−

∑

i

zi +
∑

a

Zaza	 (13.17)

where the small letters z denote the z coordinates of the corresponding particles
measured in the coordinate system A (the capital Z denotes the nuclear charge).
Similarly, we could very easily write other multipole moments and the operator V
takes the form (see Appendix X)

V = qAqB
R

−R−2(qAμ̂Bz − qBμ̂Az
)+R−3(μ̂Axμ̂Bx + μ̂Ayμ̂By − 2μ̂Azμ̂Bz

)

+R−3(qAQ̂B	z2 + qBQ̂A	z2
)+ · · · 	

where
μ̂Ax = −

∑

i

xi +
∑

a

Zaxa	

Q̂A	z2 = −
∑

i

1
2
(

3z2
i − r2

i

)+
∑

a

Za
1
2
(

3z2
a −R2

a

)

and symbolAmeans that all these moments are measured in coordinate systemA.
The other quantities have similar definitions, and are easy to derive. There is one
thing that may bother us, namely that μ̂Bz and μ̂Az appear in the charge–dipole
interaction terms with opposite signs, so are not on equal footing. The reason is
that the two coordinate systems are also not on equal footing, because the z co-
ordinate of the coordinate system A points to B, whereas the opposite is not true
(see Appendix X).



700 13. Intermolecular Interactions

13.6.4 ELECTROSTATIC ENERGY IN THE MULTIPOLE REPRESENTATION
AND THE PENETRATION ENERGY

Electrostatic energy (p. 693) represents the first-order correction in polarization
perturbational theory and is the mean value of V with the product wave function
ψ
(0)
0 = ψA	0ψB	0. Because we have the multipole representation of V , we may in-

sert it into formula (13.5).
Let us stress, for the sake of clarity, that V is an operator that contains the op-

erators of the molecular multipole moments, and that the integration is, as usual,
carried out over the x	 y	 z	σ coordinates of all electrons (the nuclei have posi-
tions fixed in space according to the Born–Oppenheimer approximation), i.e. over
the coordinates of electrons 1, 2, 3, etc. Since in the polarization approximation
we know perfectly well which electrons belong to molecule A (“we have painted
them green”), and which belong to B (“red”), therefore we perform the integration
separately over the electrons of molecule A and those of molecule B. We have a
comfortable situation, because every term in V represents a product of an operator
depending on the coordinates of the electrons belonging to A and of an operator
depending on the coordinates of the electrons of molecule B. This (together with
the fact that in the integral we have a product of |ψA	0|2 and |ψB	0|2) results in a
product of two integrals: one over the electronic coordinates of A and the other
one over the electronic coordinates of B. This is the reason why we like multipoles
so much.

Therefore,

the expression for E(1)0 = Eelst formally has to be of exactly the same form
as the multipole representation of V , the only difference being that in V
we have the molecular multipole operators, whereas in Eelst we have the
molecular multipoles themselves as the mean values of the corresponding
molecular multipole operators in the ground state (the index “0” has been
omitted on the right-hand side).

However, the operator V from the formula (13.13) and the operator in the mul-
tipole form (13.16) are equivalent only when the multipole form converges. It does
so when the interacting objects are non-overlapping, which is not the case here.
The electronic charge distributions penetrate and this causes a small difference
(penetration energy Epenetr) between the Eelst calculated with and without the mul-
tipole expansion. The penetration energy vanishes very fast with intermolecular
distance R, cf. Appendix R, p. 1009.

Eelst =Emultipol +Epenetr	 (13.18)

where Emultipol contains all the terms of the multipole expansion
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Emultipol = qAqB
R

−R−2(qAμBz − qBμAz)
+R−3(μAxμBx +μAyμBy − 2μAzμBz)

+R−3(qAQB	z2+ qBQA	z2)+ · · · �
The molecular multipoles are

qA = 〈ψA	0| −
∑

i

1+
∑

a

Za|ψA	0〉 =
(

−
∑

i

1+
∑

a

Za

)

〈ψA	0|ψA	0〉

=
∑

a

Za − nA = the same as operator qA	

μAx = 〈ψA	0|μ̂AxψA	0〉 = 〈ψA	0| −
∑

i

xi +
∑

a

Zaxa|ψA	0〉

= 〈ψA	0| −
∑

i

xi|ψA	0〉 +
∑

a

Zaxa (13.19)

and similarly the other multipoles.

Since the multipoles in the formula for Emultipol pertain to the isolated mole-
cules, we may say that the electrostatic interaction represents the interaction
of the permanent multipoles. permanent

multipoles

The above multipole expansion also represents a useful source for the expressions
for particular multipole–multipole interactions.

Dipole–dipole
Let us take as an example of the important case of the dipole–dipole interaction.

From the above formulae the dipole–dipole interaction reads as

Edip–dip = 1
R3 (μAxμBx +μAyμBy − 2μAzμBz)�

This is a short and easy to memorize formula, and we might be completely satisfied
in using it provided we always remember the particular coordinate system used for its
derivation. This may end up badly one day for those who have a short memory.
Therefore, we will write down the same formula in a “waterproof” form.

Taking into account our coordinate system, the vector (pointing the coordinate
system origin a from b) is R = (0	0	R). Then we can express Edip–dip in a very
useful form independent of any choice of coordinate system (cf., e.g., pp. 131, 655):

DIPOLE–DIPOLE INTERACTION:

Edip–dip = μA ·μB
R3 − 3

(μA ·R)(μB ·R)
R5 � (13.20)

This form of the dipole–dipole interaction has been used in Chapters 3 and 12.

Is the electrostatic interaction important?
Electrostatic interaction can be attractive or repulsive. For example, in the elec-
trostatic interaction of Na+ and Cl− the main role will be played by the charge–
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charge interaction, which is negative and therefore represents attraction, while for
Na+ � � �Na+ the electrostatic energy will be positive (repulsion). For neutral mole-
cules the electrostatic interaction may depend on their orientation to such an extent
that the sign may change. This is an exceptional feature peculiar only to electrosta-
tic interaction.

When the distance R is small when compared to size of the interacting sub-
systems, multipole expansion gives bad results. To overcome this the total charge
distribution may be divided into atomic segments (Appendix S). Each atom would
carry its charge and other multipoles, and the electrostatic energy would be the
sum of the atom–atom contributions, any of which would represent a series simi-
lar13 to E(1)0 .

Reality or fantasy?
In principle, this part (about electrostatic interactions) may be considered as com-
pleted. I am tempted, however, to enter some “obvious” subjects, which will turn
out to lead us far away from the usual track of intermolecular interactions.

Let us consider the Coulomb interaction of two point charges q1 on molecule
A and q2 on molecule B, both charges separated by distance r

Eelst = q1q2

r
� (13.21)

This is an outstanding formula:

• first of all we have the amazing exponent of the exact value −1;
• second, change of the charge sign does not make any profound changes in the

formula, except the change of sign of the interaction energy;
• third, the formula is bound to be false (it has to be only an approximation), since

instantaneous interaction is assumed, whereas the interaction has to have time
to travel between the interacting objects and during that time the objects change
their distance (see Chapter 3, p. 131).

From these remarks follow some apparently obvious observations, that Eelst is
invariant with respect to the following operations:

II q′1 =−q1, q′2 =−q2 (charge conjugation, Chapter 2, 2.1.8),
III q′1 = q2, q′2 = q1 (exchange of charge positions),
IV q′1 =−q2, q′2 =−q1 (charge conjugation and exchange of charge positions).

These invariance relations, when treated literally and rigorously, are not of par-
ticular usefulness in theoretical chemistry. They may, however, open new possi-
bilities when considered as some limiting cases. Chemical reaction mechanisms
very often involve the interaction of molecular ions. Suppose we have a particular
reaction mechanism. Now, let us make the charge conjugation of all the objects
involved in the reaction (this would require the change of matter to antimatter).

13A.J. Stone, Chem. Phys. Lett. 83 (1981) 233; A.J. Stone, M. Alderton, Mol. Phys. 56 (1985) 1047;
W.A. Sokalski, R. Poirier, Chem. Phys. Lett. 98 (1983) 86; W.A. Sokalski, A. Sawaryn, J. Chem. Phys. 87
(1987) 526.
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This will preserve the reaction mechanism. We cannot do such changes in chem-
istry. However, we may think of some other molecular systems, which have similar
geometry but opposite overall charge pattern (“counter pattern”). The new reac-
tion has a chance to run in a similar direction as before. This concept is parallel to
the idea of Umpolung functioning in organic chemistry. It seems that nobody has Umpolung

looked, from that point of view, at all known reaction mechanisms.14

13.6.5 INDUCTION ENERGY IN THE MULTIPOLE REPRESENTATION

The induction energy contribution consists of two parts: Eind(A→ B) and
Eind(B→A) or, respectively, the polarization energy of molecule B in the
electric field of the unperturbed molecule A and vice versa.

The goal of the present section is to take apart the induction mechanism by
showing its multipole components. If we insert the multipole representation of V
into the induction energy Eind(A→ B) then

Eind(A→ B) =
∑

nB

′ |〈ψA	0ψB	nB |V ψA	0ψB	0〉|2
EB	0 −EB	nB

=
∑

nB

′ 1
EB	0 −EB	nB

{∣
∣R−1qA · 0−R−2qA〈ψB	nB |μ̂BzψB	0〉 +R−2 · 0

+R−3[μAx〈ψB	nB |μ̂BxψB	0〉 +μAy〈ψB	nB |μ̂ByψB	0〉
− 2μAz〈ψB	nB |μ̂BzψB	0〉

]+ · · · ∣∣}2

=
∑

nB

′ 1
EB	0 −EB	nB

{∣
∣−R−2qA〈ψB	nB |μ̂BzψB	0〉

+R−3[μAx〈ψB	nB |μ̂BxψB	0〉 +μAy〈ψB	nB |μ̂ByψB	0〉
− 2μAz〈ψB	nB |μ̂BzψB	0〉

]+ · · · ∣∣}2

= −1
2

1
R4 q

2
AαB	zz + · · · 	

where

• the zeros appearing in the first part of the derivation come from the orthogonal-
ity of the eigenstates of the isolated molecule B,

• symbol “+· · ·” stands for higher powers of R−1,
• αB	zz represents the zz component of the dipole polarizability tensor of the

molecule B, which absorbed the summation over the excited states of B accord-
ing to definition (12.40).

14The author is aware of only a single example of such a pair of counter patterns: the Friedel–Crafts
reaction and what is called the vicarious nucleophilic substitution discovered by Mieczysław Mąkosza
(M. Mąkosza, A. Kwast, J. Phys. Org. Chem. 11 (1998) 341).
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A molecule in the electric field of another molecule

Note that 1
R4 q

2
A represents the square of the electric field intensity Ez(A→ B)=

qA
R2 measured on molecule B and created by the net charge of molecule A. There-
fore, we have

Eind(A→ B)=−1
2
αB	zzE2

z (A→ B)+ · · ·
according to formula (12.24) describing the molecule in an electric field. For mole-
cule B its partner – molecule A (and vice versa. . . ) represents an external world
creating the electric field, and molecule B has to behave as described in Chap-
ter 12. The net charge of A created the electric field Ez(A→ B) on molecule B	
which as a consequence induced on B a dipole moment μB	ind = αB	zz Ez(A→ B)
according to formula (12.19). This is associated with the interaction energy term
− 1

2αB	zzE2
z (A→ B), see eq. (12.24), p. 628.

There is however a small problem. Why is the induced moment proportional
only to the net charge of molecule A? This would be absurd. Molecule B does
not know anything about multipoles of molecule A, it only knows about the local
electric field that acts on it and has to react to that field by a suitable polariza-
tion. Everything is all right, though. The rest of the problem is in the formula for
Eind(A→ B). So far we have analyzed the electric field on B coming from the net
charge of A, but the other terms of the formula will give contributions to the elec-
tric field coming from all other multipole moments of A� Then, the response of B
will pertain to the total electric field created by “frozen” A on B, as it should be.
A similar story can be given for Eind(B→A). This is all we have in the induction
energy (second-order perturbation theory). Interaction of the induced multipoles
of A and B is a subject of the third-order terms.

13.6.6 DISPERSION ENERGY IN THE MULTIPOLE REPRESENTATION

After inserting V in the multipole representation (p. 701) into the expression for
the dispersion energy we obtain

Edisp =
∑

nA

′∑

nB

′ 1
(EA	0 −EA	nA)+ (EB	0 −EB	nB)

× ∣∣R−1qAqB · 0 · 0−R−2qA · 0 · (μBz)nB	0
−R−2qB · 0 · (μAz)nA	0 +R−3[(μAx)nA	0(μBx)nB	0 + (μAy)nA	0(μBy)nB	0
− 2(μAz)nA	0(μBz)nB	0

]+ · · · ∣∣2

=
∑

nA

′∑

nB

′∣
∣R−3[(μAx)nA	0(μBx)nB	0 + (μAy)nA	0(μBy)nB	0

− 2(μAz)nA	0(μBz)nB	0
]+ · · · ∣∣2[(EA	0 −EA	nA)+ (EB	0 −EB	nB)

]−1
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where (μAx)nA	0 = 〈ψA	nA |μ̂AxψA	0〉	 (μBx)nB	0 = 〈ψB	nB |μ̂BxψB	0〉 and similarly
the other quantities. The zeros in the first part of the equality chain come from the
orthogonality of the eigenstates of each of the molecules.

The square in the formula pertains to all terms. The other terms, not shown in
the formula, have the powers of R−1 higher than R−3.

Hence, if we squared the total expression, the most important term would
be the dipole–dipole contribution with the asymptotic R−6 distance depen-
dence.

As we can see from formula (13.12), its calculation requires double electronic
excitations (one on the first, the other one on the second interacting molecules),
and these already belong to the correlation effect (cf. Chapter 10, p. 558).

The dispersion interaction is a pure correlation effect and therefore the
methods used in a supermolecular approach, that do not take into account
the electronic correlation (as for example the Hartree–Fock method) are
unable to produce any non-zero dispersion contribution.

Where does this physical effect come from?
Imagine we have two hydrogen atoms, each in its ground state, i.e. 1s state, and

with a long internuclear distance R. Let us simplify things as much as possible and
give only the possibility of two positions for each of the two electrons: one closer to
the other proton and the opposite (crosses in Fig. 13.6), the electron–proton dis-
tance being a� R. Let us calculate the instantaneous dipole–dipole interactions
for all four possible situations from formula (13.20) assuming the local coordinate
systems on the protons (Table 13.1).

Fig. 13.6. Dispersion energy origin shown schematically for two hydrogen atoms. A popular explana-
tion for the dispersion interaction is that, due to electron repulsion: the situations (a) and (b) occur
more often than situation (c) and this is why the dispersion interaction represents a net attraction of
dipoles. The positions of the electrons that correspond to (a) and (b) represent two favourable instan-
taneous dipole – instantaneous dipole interactions, while (c) corresponds to a non-favourable instan-
taneous dipole – instantaneous dipole interaction. The trouble with this explanation is that there is
also the possibility of having electrons far apart as in (d). This most favourable situation (the longest
distance between the electrons) means, however, repulsion of the resulting dipoles. It may be shown,
though, that the net result (dispersion interaction) is still an attraction (see the text) as it should be.
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Table 13.1.

Situation, i Fig. 13.6 Interaction energy Eint(i)

1 a −2μ
2

R3

2 b −2μ
2

R3

3 c +2μ
2

R3

4 d +2μ
2

R3

Here μ = (0	0	±a) for electrons i = 1	2 according to definition (13.17), and
μ≡ a in a.u. Note that if we assume the same probability for each situation, the net
energy would be zero, i.e.

∑

i Eint(i)= 0. These situations have, however, different
probabilities (pi), because the electrons repel each other, and the total potential
energy depends on where they actually are. Note, that the probabilities should be dif-
ferent only because of the electron correlation. In this total energy, there is a common
contribution, identical in all the four situations: the interaction within the individ-
ual atoms [the remainder is the interaction energy Eint(i)]. If we could somehow
guess these probabilities pi, i= 1	2	3	4, then we could calculate the mean inter-
action energy of our model one-dimensional atoms as Ēint =∑i piEint(i). In this
way we could see whether it corresponds to net attraction (Ēint < 0) or repulsion
(Ēint > 0), which is most interesting for us. Well, but how to calculate them?15 We
may suspect that for the ground state (we are interested in the ground state of
our system) the lower the potential energy V (x) the higher the probability density
p(x)� This is what happens for the harmonic oscillator, for the Morse oscillator, for
the hydrogen-like atom, etc. Is there any tip that could help us work out what such
a dependence might be? If you do not know where to begin, then think of the har-
monic oscillator model as a starting point! This is what people usually do as a first
guess. As seen from eq. (4.16), the ground-state wave function for the harmonic
oscillator may be written as ψ0 =Aexp[−BV (x)], where B > 0, and V (x) stands
for the potential energy for the harmonic oscillator. Therefore the probability den-
sity changes asA2 exp[−2BV (x)]� Interesting. . . Let us assume that a similar thing
happens16 for the probabilities pi of finding the electrons 1 and 2 in small cubes of
volumes dV1 and dV2	 respectively, i.e. they may be reasonably estimated as

pi =NA2 exp
[−2BEint(i)

]

dV1dV2	

where Eint plays a role of potential energy, and

N = 1
/
(
∑

i

A2 exp
[−2BEint(i)

]

dV1dV2

)

15In principle we could look at what people have calculated in the most sophisticated calculations for
the hydrogen molecule at a large R, and assign the pi ’s as the squares of the wave function value for
the corresponding four positions of both electrons. Since these wave functions are awfully complex, we
leave this path without regret.
16This is like having the electron attached to the nucleus by a harmonic spring (instead of Coulombic

attraction).
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is the normalization constant assuring that in our model
∑

i pi = 1� For long dis-
tances R [small Eint(i)] we may expand this expression in a Taylor series and obtain

pi = A2[1− 2BEint(i)]dV1 dV2
∑

j A
2 exp[−2BEint(j)]dV1 dV2

≈ 1− 2BEint(i)+ · · ·
∑

j(1− 2BEint(j)+ · · ·)

= 1− 2BEint(i)+ · · ·
4− 2B · 0+∑j

1
2 [2BEint(j)]2 + · · ·

≈ 1
4
− B

2
Eint(i)	

where the Taylor series has been truncated to the accuracy of the linear terms in
the interaction� Then, the mean interaction energy

Ēint =
∑

i

piEint(i)≈
∑

i

[
1
4
− B

2
Eint(i)

]

Eint(i)

= 1
4

∑

i

Eint(i)− B2
∑

i

[

Eint(i)
]2 = 0− B

2
16μ4

R6 =−8B
μ4

R6 < 0�

We may not expect our approximation to be extremely accurate, but it is
worth noting that we have grasped two important features of the correct
dispersion energy: that it corresponds to attractive interaction and that it
vanishes with distance as R−6.

Examples
The electrostatic interaction energy of two molecules can be calculated from for-
mula (13.5). However, it is very important for a chemist to be able to predict the
main features of the electrostatic interaction without any calculation at all, based
on some general rules. This will create chemical intuition or chemical common
sense so important in planning, performing and understanding experiments. The
data of Table 13.2 were obtained assuming a long intermolecular distance and the
molecular orientations as shown in the table.

In composing Table 13.2 some helpful rules have been used:

• Induction and dispersion energies always represent attraction, except in some special
cases when they are zero. These special cases are obvious, e.g., it is impossible to
induce some changes on molecule B, if molecule A does not have any non-
zero permanent multipoles. Also, the dispersion energy is zero if an interacting
subsystem has no electrons on it.

• Electrostatic energy is non-zero, if both interacting molecules have some non-zero
permanent multipoles.

• Electrostatic energy is negative (positive), if the lowest non-vanishing multipoles of
the interacting partners attract (repel) themselves.17 How to recognize that a par-
ticular multipole–multipole interaction represents attraction or repulsion? First
we replace the molecules by their lowest non-zero multipoles represented by

17This statement is true for sufficiently long distances.
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Table 13.2. The table pertains to two molecules in their electronic ground
states. For each pair of molecules a short characteristic of their electrostatic,
induction and dispersion interactions is given. It consists of the sign of the
corresponding interaction type (the minus sign means attraction, the plus
sign means repulsion and 0 corresponds to the absence of such an interac-
tion, the penetration terms have been neglected)

System Electrost. Induc. Disper.

He· · ·He 0 0 −
He· · ·H+ 0 − 0
He· · ·HCl 0 – −
H+ · · ·HCl + − 0
HCl· · ·ClH + − −
HCl· · ·HCl − − −
H–H· · ·He 0 − −
H–H· · ·H–H + − −
H
H· · ·H–H − − −
H
H

––O· · ·H–O– H − − −
H
H

––O· · ·O–
–
H
H + − −

Table 13.3. The exponentm in the asymptotic dependenceR−m of the elec-
trostatic (column 2), induction (column 3) and dispersion (column 4) con-
tributions for the systems given in column 1. Zero denotes that the corre-
sponding contribution is equal to zero in the multipole approximation

System Electrost. Induc. Disper.

He· · ·He 0 0 6
He· · ·H+ 0 4 0
He· · ·HCl 0 6 6
H+· · ·HCl 2 4 0
HCl· · ·ClH 3 6 6
HCl· · ·HCl 3 6 6
H–H· · ·He 0 8 6
H–H· · ·H–H 5 8 6
H
H · · ·H–H 5 8 6
H
H

––O· · ·H–O– H 3 6 6

H
H

––O· · ·O–
–
H
H 3 6 6

point charges, e.g., ions by + or −, dipolar molecules by +−, quadrupoles by
+−−+, etc. In order to do this we have to know which atoms are electronegative
and which electropositive.18 After doing this we replace the two molecules by
the multipoles. If the nearest neighbour charges in the two multipoles are of
opposite sign, the multipoles attract each other, otherwise they repel (Fig. 13.7).

18This is common knowledge in chemistry and is derived from experiments as well as from quantum
mechanical calculations. The later provides the partial atomic charges from what is called population
analysis (see Appendix S). Despite its non-uniqueness it would satisfy our needs. A unique and elegant
method of calculation of atomic partial charges is related to the Bader analysis described on p. 573.
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Fig. 13.7. For sufficiently large intermolecular separations the interaction of the lowest non-vanishing
multipoles dominates. Whether this is an attraction or repulsion can be recognized by representing the
molecular charge distributions by non-point-like multipoles (clusters of point charges). If such multi-
poles point to each other by point charges of the opposite (same) sign, then the electrostatic interaction
of the molecules is attraction (repulsion). (a) A few examples of simple molecules and the atomic par-
tial charges. (b) Even the interaction of the two benzene molecules obeys this rule: in the face-to-face
configuration they repel, while they attract each other in the perpendicular configuration.



710 13. Intermolecular Interactions

Since we can establish which effect dominates, its asymptotic dependence (Ta-
ble 13.3), as the intermolecular distance R tends to ∞, can be established.

Table 13.3 was composed using a few simple and useful rules:

1. The dispersion energy always decays as R−6.
2. The electrostatic energy vanishes as R−(k+l+1), where the 2k-pole and 2l-pole

represent the lowest non-vanishing multipoles of the interacting subsystems.
3. The induction energy vanishes as R−2(k+2), where the 2k-pole is the lower of

the two lowest non-zero permanent multipoles of the molecules A and B. The
formula is easy to understand if we take into account that the lowest induced
multipole is always a dipole (l= 1), and that the induction effect is of the second
order (hence 2 in the exponent).

13.7 SYMMETRY ADAPTED PERTURBATION THEORIES
(SAPT)

The SAPT approach is applicable for intermediate intermolecular separations,
where the electron clouds of both molecules overlap to such an extent, that

• the polarization approximation, i.e. ignoring the Pauli principle (p. 692), be-
comes a very poor approximation,

• the multipole expansion becomes invalid.

13.7.1 POLARIZATION APPROXIMATION IS ILLEGAL
First, the polarization approximation zero-order wave function ψA	0ψB	0 will be
deprived of the privilege of being the unperturbed function ψ(0)0 in a perturbation
theory. Since it will still play an important role in the theory, let us denote it by
ϕ(0) =ψA	0ψB	0.

The polarization approximation seems to have (at first glimpse) a very
strong foundation, because at long intermolecular distances R, the zero-
order energy is close to the exact one. The trouble is, however, that a similar
statement is not true for the zero-order wave function ϕ(0) and the exact
wave-function at any intermolecular distance (even at infinity).

Let us take an example of two ground-state hydrogen atoms. The polarization
approximation zero-order wave function

ϕ(0)(1	2)= 1sa(1)α(1)1sb(2)β(2)	 (13.22)

where the spin functions have been introduced (the Pauli principle is ignored19)

This function is neither symmetric (since ϕ(0)(1	2) 	= ϕ(0)(2	1)), nor anti-
symmetric (since ϕ(0)(1	2) 	= −ϕ(0)(2	1)), and therefore is “illegal” and in
principle not acceptable.

19This is the essence of the polarization approximation.
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13.7.2 CONSTRUCTING A SYMMETRY ADAPTED FUNCTION

In the Born–Oppenheimer approximation the electronic ground-state wave func-
tion of H2 has to be the eigenfunction of the nuclear inversion symmetry operator
Î interchanging nuclei a and b (cf. Appendix C). Since Î2 = 1, the eigenvalues can
be either −1 (called u symmetry) or +1 (g symmetry).20 The ground-state is of
g symmetry, therefore the projection operator 1

2(1 + Î) will take care of that (it
says: make fifty-fifty combination of a function and its counterpart coming from
the exchange of nuclei a and b).21 On top of this, the wave function has to fulfil zero-order wave

functionthe Pauli exclusion principle, which we will ensure with the antisymmetrizer Â (cf.
p. 986). Altogether the proper symmetry will be assured by projecting ϕ(0) using
the projection operator

Â= 1
2
(

1+ Î )Â� (13.23)

We obtain as a zero-order approximation to the wave function (N ensures normal-
ization)

ψ
(0)
0 =NÂ1

2
(

1+ Î )ϕ(0) = 1
2!N

1
2
(

1+ Î )
∑

P

(−1)pP̂
[

1sa(1)α(1)1sb(2)β(2)
]

= 1
2
N

1
2
(

1+ Î )[1sa(1)α(1)1sb(2)β(2)− 1sa(2)α(2)1sb(1)β(1)
]

= 1
2
N

1
2
[

1sa(1)α(1)1sb(2)β(2)− 1sa(2)α(2)1sb(1)β(1)

+ 1sb(1)α(1)1sa(2)β(2)− 1sb(2)α(2)1sa(1)β(1)
]

=N 1
2
[

1sa(1)1sb(2)+ 1sa(2)1sb(1)
]
{

1
2
[

α(1)β(2)− α(2)β(1)]
}

�

Heitler–London
wave function

This is precisely the Heitler–London wave function from p. 521, where its
important role in chemistry has been highlighted:

ψHL ≡ψ(0)0 =N[1sa(1)1sb(2)+ 1sa(2)1sb(1)
]
{

1
2
[

α(1)β(2)− α(2)β(1)]
}

�

(13.24)

The function is of the same symmetry as the exact solution to the Schrödinger
equation (antisymmetric with respect to the exchange of electrons and symmetric
with respect to the exchange of protons). It is easy to calculate,22 that normaliza-

20The symbols come from German: g or gerade (even) and u or ungerade (odd).
21We ignore the proton spins.
22

∫
∣
∣ψ
(0)
0
∣
∣2 dτ1 dτ2 = |N|2

1
4

1
2

∑

σ1

∑

σ2

1
2
[

α(1)β(2)− α(2)β(1)]2[2+ 2S2]

= |N|2 1
4
(

1+ S2)= 1	 (13.25)



712 13. Intermolecular Interactions

tion of ψ(0) means N = 2[(1+S2)]−1/2, where S = (1sa|1sb) stands for the overlap
integral of the atomic orbitals 1sa and 1sb.

13.7.3 THE PERTURBATION IS ALWAYS LARGE IN POLARIZATION
APPROXIMATION

Let us check (Appendix B) how distant are functions ϕ(0) and ψ(0) in the Hilbert
space (they are both normalized, i.e. they are unit vectors in the Hilbert space). We
will calculate the norm of difference ϕ(0) −ψ(0)0 . If the norm were small, then the
two functions would be close in the Hilbert space. Let us see:

∥
∥ϕ(0) −ψ(0)0

∥
∥

≡
[∫

(

ϕ(0) −ψ(0)0

)∗(
ϕ(0) −ψ(0)0

)

dτ
] 1

2 =
[

1+ 1− 2
∫

ψ(0)0 ϕ(0) dτ
] 1

2

=
{

2− 2
∫
[

1sa(1)α(1)1sb(2)β(2)
]

N
1
2
[

1sa(1)1sb(2)+ 1sa(2)1sb(1)
]

×
{

1
2
[

α(1)β(2)− α(2)β(1)]
}

dτ
} 1

2

=
{

2−N 1
2

∫
[

1sa(1)1sb(2)
][

1sa(1)1sb(2)+ 1sa(2)1sb(1)
]

dv
} 1

2

=
{

2− 1
√

1+ S2

(

1+ S2)
} 1

2 = {2−
√

1+ S2
}1/2

where we have assumed that the functions are real. When R→∞, then S→ 0 and

lim
R→∞

∥
∥ϕ(0) −ψ(0)0

∥
∥= 1 	= 0� (13.27)

Thus, the Heitler–London wave function differs from ϕ(0), this difference is
huge and does not vanish, when R→∞.

The two normalized functions ϕ(0) and ψ(0)0 represent two unit vectors in the
Hilbert space. The scalar product of the two unit vectors 〈ϕ(0)|ψ(0)0 〉 is equal to
cosθ� Let us calculate this angle θlim which corresponds to R tending to ∞� The
quantity

lim
R→∞

∥
∥ϕ(0) −ψ(0)0

∥
∥

2 = lim
R→∞

∫
(

ϕ(0) −ψ(0)0

)∗(
ϕ(0) −ψ(0)0

)

dτ

= lim
R→∞

[2− 2 cosθ] = 1�

N = 2
√

1+ S2
� (13.26)

In a moment we will need function ψ(0)0 with the intermediate normalization with respect to ϕ(0) ,

i.e. satisfying 〈ψ(0)0 |ϕ(0)〉 = 1. Then N will be different and equal to 〈ϕ(0)|Âϕ(0)〉−1.
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Fig. 13.8. The normalized functions
ϕ(0) andψ(0)0 for the hydrogen molecule
as unit vectors belonging to the Hilbert
space. The functions differ widely at any
intermolecular distanceR. For S = 0, i.e.
for long internuclear distances the dif-
ference ψ(0)0 − ϕ(0) represents a vector
of the Hilbert space having the length 1.
Therefore, for R =∞ the three vectors
ϕ(0) , ψ(0)0 and ψ(0)0 −ϕ(0) form an equi-
lateral angle. For shorter distances the
angle between ϕ(0) and ψ

(0)
0 becomes

smaller than 60◦ .

Hence, cosθlim = 1
2 	 and therefore θlim = 60◦, see Fig. 13.8. This means that the

three unit vectors: ϕ(0)	ψ(0)0 and ϕ(0) − ψ(0)0 for R→∞ form an equilateral tri-
angle, and therefore, ϕ(0) represents a highly “handicapped” function, which lacks
about a half with respect to a function of the proper symmetry.23 This is certainly
bad news.

Therefore, the perturbation V has to be treated as always large, because it is
responsible for a huge wave function change: from the unperturbed one of
bad symmetry to the exact one of the correct symmetry.

In contrast to this, there would be no problem at all with the vanishing of the
‖ψ(0)0 −ψ0‖ as R→∞, where ψ0 represents the ground state solution of the Schrö-

dinger equation. Indeed, ψ(0)0 correctly describes the dissociation of the molecule into
two hydrogen atoms (both in the 1s state), as well as both functions having the same
symmetry for all interatomic distances. Therefore,

the Heitler–London wave function represents a good approximation to the
exact function for long (and we hope medium) intermolecular distances.
Unfortunately, it is not the eigenfunction of the Ĥ(0) and therefore we cannot
construct the usual Rayleigh–Schrödinger perturbation theory.

And this is the second item of bad news today. . .

13.7.4 ITERATIVE SCHEME OF THE SYMMETRY ADAPTED
PERTURBATION THEORY

We now have two issues: either to construct another zero-order Hamiltonian, for
which the ψ(0)0 function would be an eigenfunction (then the perturbation would
be small and the Rayleigh–Schrödinger perturbation theory might be applied),
or to abandon any Rayleigh–Schrödinger perturbation scheme and replace it by
23In Appendix Y, p. 1050, we show, how the charge distribution changes when the Pauli exclusion

principle is forced by a proper projection of the ϕ(0) wave function.
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something else. The first of these possibilities was developed intensively in many
laboratories. The approach had the deficiency that the operators appearing in the
theories depended explicitly on the basis set used, and therefore there was no guar-
antee that a basis independent theory exists.

The second possibility relies on an iterative solution of the Schrödinger equa-
tion, forcing the proper symmetry of the intermediate functions. The method was
proposed mainly by Bogumił Jeziorski and Włodzimierz Kołos.

Claude Bloch was probably the first to write the Schrödinger equation in the
form shown in formulae24 (10.76) and (10.59). Let us recall them in a notation
adapted to the present situation:Bloch equations

ψ0 = ϕ(0) + R̂0
(

E(0)0 −E0 + V
)

ψ0	

E0 = E(0)0 + 〈ϕ(0)∣∣V ψ0
〉

	

where we assume that ϕ(0) satisfies

Ĥ(0)ϕ(0) =E(0)0 ϕ(0)

with the eigenvalues of the unperturbed Hamiltonian Ĥ(0) = ĤA + ĤB given as
the sum of the energies of the isolated molecules A and B:

E(0)0 =EA	0 +EB	0	
andψ0 is the exact ground-state solution to the Schrödinger equation with the total
non-relativistic Hamiltonian Ĥ of the system:

Ĥψ0 =E0ψ0�

We focus our attention on the difference E0 between E0, which is our target and
E(0)0 , which is at our disposal as the unperturbed energy. We may write the Bloch
equations in a form exposing the interaction energy E0 =E0 −E(0)0

ψ0 = ϕ(0) + R̂0(−E0 + V )ψ0	

E0 =
〈

ϕ(0)
∣
∣V ψ0

〉

	

the equations are valid for intermediate normalization 〈ϕ(0)|ψ0〉 = 1. This system
of equations for E0 and ψ0 might be solved by an iterative method:25

ITERATIVE SCHEME:
ψ0(n) = ϕ(0) + R̂0

[−E(n)+ V ]ψ0(n− 1)	 (13.28)

E0(n) =
〈

ϕ(0)
∣
∣V ψ0(n− 1)

〉

	 (13.29)
where the iteration number n is in the parentheses.

24C. Bloch, Nucl. Phys. 6 (1958) 329.
25In such a method we have freedom in choosing the starting point – this is one of its most beautiful

features.
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Polarization scheme replaced
We start in the zeroth iteration with ψ0(0)= ϕ(0).

When repeating the above iterative scheme and grouping the individual
terms according to the powers of V , at each turn we obtain the exact ex-
pression appearing in the Rayleigh–Schrödinger polarization approximation
(Chapter 5) plus some higher order terms.

It is worth noting that E0(n) is the sum of corrections of the Rayleigh–Schrödin-
ger up to the n-th order with respect to V (not the n-th perturbation correction).
For large R, the quantity E0(n) is an arbitrarily good approximation of the exact
interaction energy.

Of course, the rate, at which the iterative procedure converges depends very
much on the starting point chosen. From this point of view, the start from ψ0(0)=
ϕ(0) is particularly unfortunate, because the remaining (roughly) 50% of the wave
function has to be restored by the hard work of the perturbational series (high-
order corrections are needed). This will be especially pronounced for long inter-
molecular distances, where the exchange interaction energy will not be obtained in
any finite order.

Murrell–Shaw and Musher–Amos (MS–MA) perturbation theory
A much more promising starting point in eq. (13.28) seems to be ψ0(0) = ψ(0)0 ,
because the symmetry of the wave function is already correct. For convenience the
intermediate normalization is used (see p. 204) 〈ϕ(0)|ψ(0)0 〉 = 1, i.e. ψ(0)0 =NÂϕ(0) intermediate

normalizationwith N = 〈ϕ(0)|Âϕ(0)〉−1� The first iteration of eqs. (13.28) and (13.29) gives the
first-order correction to the energy

E0(1) =N
〈

ϕ(0)
∣
∣V Âϕ(0)

〉=E(1)pol +E(1)exch	

E(1)pol ≡ Eelst =
〈

ϕ(0)
∣
∣V ϕ(0)

〉

�

We have obtained the electrostatic energy already known plus a correction E(1)exch
which we will discuss in a minute.

The first-iteration wave function will be obtained in the following way. First, we
will use the commutation relation ÂĤ = ĤÂ or

Â
(

Ĥ(0) + V )= (Ĥ0 + V
)

Â� (13.30)

Of course
Â
(

Ĥ(0) −E(0)0 + V )= (Ĥ(0) −E(0)0 + V )Â	 (13.31)

which gives26 V Â− ÂV = [Â	 Ĥ(0) − E(0)0 ], as well as (V − E1)Â= Â(V − E1)+
26Let us stress en passant that the left-hand side is of the first order in V , while the right-hand side is of

the zeroth order. Therefore, in symmetry adapted perturbation theory, the order is not a well defined
quantity, its role is taken over by the iteration number.
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[Â	 Ĥ0 −E(0)0 ]. Now we are ready to use formula (13.28) with n= 1:

ψ0(1) = ϕ(0) + R̂0
(

V − E0(1)
)

ψ(0)0 = ϕ(0) +NR̂0
(

V − E0(1)
)

Âϕ(0)

= ϕ(0) +NR̂0
{

Â
(

V − E0(1)
)+ Â

(

Ĥ(0) −E(0)0

)− (Ĥ(0) −E(0)0

)

Â
}

ϕ(0)

= ϕ(0) +NR̂0Â
(

V − E0(1)
)

ϕ(0) +NR̂0Â
(

Ĥ(0) −E(0)0

)

ϕ(0)

−NR̂0
(

Ĥ(0) −E(0)0

)

Âϕ(0)�

The third term is equal to 0, because ϕ(0) is an eigenfunction of Ĥ(0) with an
eigenvalue E(0)0 . The fourth term may be transformed by decomposing Âϕ(0)
into the vector (in the Hilbert space) parallel to ϕ(0) or 〈Âϕ(0)|ϕ(0)〉ϕ(0) and the
vector orthogonal to ϕ(0), or (1 − |ϕ(0)〉〈ϕ(0)|)Aϕ(0). The result of R̂0(Ĥ

(0) −
E(0)0 ) acting on the first vector is zero (p. 554), while the second vector gives
(1− |ϕ(0)〉〈ϕ(0)|)Aϕ(0). This gives as the first iteration ground-state wave function
ψ0(1):

ψ0(1) = ϕ(0) +NR̂0Â
(

V − E0(1)
)

ϕ(0) +NÂϕ(0) −N 〈ϕ(0)∣∣Âϕ(0)〉ϕ(0)

= Âϕ(0)

〈ϕ(0)|Âϕ(0)〉 +NR̂0Â
(

V − E0(1)
)

ϕ(0)

= B̂ϕ(0) −NR̂0Â
(

E0(1)− V
)

ϕ(0)	

where

B̂ϕ(0) = Âϕ(0)

〈ϕ(0)|Âϕ(0)〉 � (13.32)

After inserting ψ0(1) into the iterative scheme (13.29) with n = 2 we obtain the
second-iteration energy

E0(2) =
〈

ϕ(0)
∣
∣V ψ0(1)

〉

= 〈ϕ
(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 −N

〈

ϕ(0)
∣
∣V R̂0Â

[

E0(1)− V
]

ϕ(0)
〉

� (13.33)

These equations are identical to the corresponding corrections in perturbation the-
ories derived by Murrell and Shaw27 and by Musher and Amos28 (MS–MA).

13.7.5 SYMMETRY FORCING

Finally, there is good news. It turns out that we may formulate a general iterative
scheme which is able to produce various perturbation procedures, known and un-
known in the literature. In addition the scheme has been designed by my nearest-
neighbour colleagues (Jeziorski and Kołos). This scheme reads as:
27J.N. Murrell, G. Shaw, J. Chem. Phys. 46 (1967) 1768.
28J.I. Musher, A.T. Amos, Phys. Rev. 164 (1967) 31.
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Table 13.4. Symmetry forcing in various perturbation schemes. The operator B̂ is
defined by: B̂χ= Âχ/〈ϕ(0)|Âχ〉

Perturbation scheme ψ(0) F̂ Ĝ

polarization ϕ(0) 1 1
symmetrized polarizationa ϕ(0) 1 B̂
MS–MA B̂ϕ(0) 1 1
Jeziorski-Kołos schemeb B̂ϕ(0) Â 1
EL–HAVc B̂ϕ(0) Â B̂

aB. Jeziorski, K. Szalewicz, G. Chałasiński, Int. J. Quantum Chem. 14 (1978) 271; in
the expression for the energy in the polarization perturbation theory all corrections
to the wave function are first subject to the operator B̂.
bB. Jeziorski, W. Kołos, Int. J. Quantum Chem. 12 (1977) 91.
cEisenschitz–London and Hirschfelder–van der Avoird perturbation theory:
R. Eisenschitz, F. London, Zeit. Phys. 60 (1930) 491; J.O. Hirschfelder, Chem. Phys.
Letters 1 (1967) 363; A. van der Avoird, J. Chem. Phys. 47 (1967) 3649.

ψ0(n) = ϕ(0) + R̂0
[−E0(n)+ V

]

F̂ψ0(n− 1)	

E0(n) =
〈

ϕ(0)
∣
∣V Ĝψ0(n− 1)

〉

where in eqs. (13.28) and (13.29) we have inserted operators F̂ and Ĝ which have
to fulfil the obvious condition

F̂ψ0 = Ĝψ0 =ψ0	 (13.34)

where ψ0 is the solution to the Schrödinger equation.

WHY FORCE THE SYMMETRY?
At the end of the iterative scheme (convergence) the insertion of the op-
erators F̂ and Ĝ has no effect at all, but before that their presence may be
crucial for the numerical convergence. This is the goal of symmetry forcing.

This method of generating perturbation theories has been called by the authors
the symmetry forcing method in symmetry adapted perturbation theory (SAPT).

Polarization collapse removed

The corrections obtained in SAPT differ from those of the polarization perturba-
tional method. The first-order energy correction is already different.

To show the relation between the results of the two approaches, let us first in-
troduce some new quantities. The first is an idempotent antisymmetrizer

Â= CÂAÂB(1+ P̂) with C = NA!NB!
(NA +NB)! 	
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where ÂA, ÂB are idempotent antisymmetrizers for molecules A and B	 each
molecule contributing NA and NB electrons. Permutation operator P̂ contains all
the electron exchanges between molecules A and B:

P̂ = P̂AB + P̂ ′	 P̂AB =−
∑

i∈A

∑

j∈B
P̂ij	

with P̂AB denoting the single exchanges only, and P̂ ′ the rest of the permuta-
tions, i.e. the double, triple, etc. exchanges. Let us stress that ϕ(0) = ψA	0ψB	0
represents a product of two antisymmetric functions29 and therefore Âϕ(0) =
C(1+ P̂AB + P̂ ′)ψA	0ψB	0. Taking into account the operator P̂ in 〈ϕ(0)|V Âϕ(0)〉
and 〈ϕ(0)|Âϕ(0)〉 produces (p. 715, E(1) ≡ E0(1)):

E(1) = 〈ψA	0ψB	0|V ψA	0ψB	0〉 + 〈ψA	0ψB	0|V P̂
ABψA	0ψB	0〉 +O(S4)

1+ 〈ψA	0ψB	0|P̂ABψA	0ψB	0〉 +O(S4)
	 (13.35)

where the integrals with P̂AB are of the order30 of S2.exchange
interaction

In the polarization approximation

E(1)pol ≡Eelst =
〈

ϕ(0)
∣
∣V ϕ(0)

〉

(13.36)

while in the symmetry adapted perturbation theory

E(1) = 〈ϕ
(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 	 (13.37)

E(1) = E(1)pol +E(1)exch	 (13.38)

where the exchange interaction in first-order perturbation theory

E(1)exch =
〈

ψA	0ψB	0
∣
∣V PABψA	0ψB	0

〉

− 〈ψA	0ψB	0|V ψA	0ψB	0〉
〈

ψA	0ψB	0
∣
∣PABψA	0ψB	0

〉+O
(

S4)� (13.39)

In the most commonly encountered interaction of closed shell molecules the
E(1)exch term represents the valence repulsion.

The symbol O(S4) stands for all the terms that vanish with the fourth power of
the overlap integrals or faster. The valence repulsion already appears (besides thevalence

repulsion
29The product itself does not have this symmetry.
30This means that we also take into account such a decay in other than overlap integrals S, e.g.,
(1sa1sb|1sb1sa) is of the order S2, where S = (1sa|1sb). Thus the criterion is the differential overlap
rather than the overlap integral.
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Fig. 13.9. Interaction energy of Na+ and Cl− . The polarization approximation gives an absurdity for
small separations: the subsystems attract very strongly (mainly because of the electrostatic interaction),
while they have had to repel very strongly. The absurdity is removed when the valence repulsion is taken
into account (a). Fig. (b) shows the valence repulsion alone modelled by the term Aexp(−BR), where
A and B are positive constants.

electrostatic energy E(1)pol) in the first order of the perturbation theory as a result of

the Pauli exclusion principle.31

We have gained a remarkable thing, which may be seen by taking the example
of two interacting subsystems: Na+ and Cl−. In the polarization approximation
the electrostatic, induction and dispersion contributions to the interaction energy
are negative, the total energy will go down and we would soon have a catastrophe:
both subsystems would occupy the same place in space and according to the energy
calculated (Fig. 13.9) the system would be extremely happy (very low energy). This
is absurd.

If this were true, we could not exist. Indeed, sitting safely on a chair we have an
equilibrium of the gravitational force and� � � , well, and what? First of all, the force
coming from valence repulsion. It is claimed sometimes that quantum effects are
peculiar to small objects (electrons, nuclei, atoms, molecules) and are visible only
when dealing with such particles. We see, however, that we owe even sitting on a
chair to the Pauli exclusion principle (a quantum effect).

The valence repulsion removes the absurdity of the polarization approxima-
tion, which made the collapse of the two subsystems possible.

31An intriguing idea: the polarization approximation should be an extremely good approximation for
the interaction of a molecule with an antimolecule (built from antimatter). Indeed, in the molecule
we have electrons, in the antimolecule positrons and no antisymmetrization (between the systems) is
needed. Therefore a product wave function should be a very good starting point. No valence repulsion
will appear, the two molecules will penetrate like ghosts. Soon after, the tremendous lightning will be
seen and the terrible thunder of annihilation will be heard. The system will disappear.
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13.7.6 A LINK TO THE VARIATIONAL METHOD – THE HEITLER–LONDON
INTERACTION ENERGY

Since the Âϕ(0) wave function is a good approximation of the exact ground state
wave function at high values of R, we may calculate what is called the Heitler–
London interaction energy (EHL

int ) as the mean value of the total (electronic)
Hamiltonian minus the energies of the isolated subsystems

EHL
int =

〈Âϕ(0)|ĤÂϕ(0)〉
〈Âϕ(0)|Âϕ(0)〉 − (EA	0 +EB	0)�

This expression may be transformed in the following way

EHL
int =

〈ϕ(0)|ĤÂϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 − (EA	0 +EB	0)

= 〈ϕ
(0)|Ĥ(0)Âϕ(0)〉 + 〈ϕ(0)|V Âϕ(0)〉

〈ϕ(0)|Âϕ(0)〉 − (EA	0 +EB	0)

= (EA	0 +EB	0)〈ϕ(0)|Âϕ(0)〉 + 〈ϕ(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 − (EA	0 +EB	0)

= 〈ϕ
(0)|V Âϕ(0)〉
〈ϕ(0)|Âϕ(0)〉 �

Therefore, the Heitler–London interaction energy is equal to the first order
SAPT energy

EHL
int =E(1)�

13.7.7 WHEN WE DO NOT HAVE AT OUR DISPOSAL THE IDEAL ψA�0
AND ψB�0

Up till now we have assumed that the ideal ground-state solutions of the
Schrödinger equation for molecules A and B are at our disposal. In practice this
will never happen. Instead of ψA	0 and ψB	0 we will have some approximate func-
tions, ψ̃A	0 and ψ̃B	0, respectively. In such a case

EHL
int 	=E(1)�

Let us assume that ψ̃A	0 and ψ̃B	0, respectively, represent Hartree–Fock solu-
tions for the subsystems A and B. Then the corresponding Heitler–London inter-
action energy equal to ẼHL

int may be written as

ẼHL
int = Ẽ(1) +�L +�M	

where Ẽ(1) is what the old formula gives in the new situation

Ẽ(1) = 〈ψ̃A	0ψ̃B	0|V Âψ̃A	0ψ̃B	0〉〈ψ̃A	0ψ̃B	0|Âψ̃A	0ψ̃B	0〉
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and �L denotes a correction – called the Landshoff delta Landshoff �

�L = �AL +�BL
with the Landshoff’s delta for individual molecules32

�AL =
〈ψ̃A	0ψ̃B	0|Â(F̂A − 〈F̂A〉)ψ̃A	0ψ̃B	0〉

〈ψ̃A	0ψ̃B	0|Â(ψ̃A	0ψ̃B	0)〉
and similar definition for �BL. The other correction – called the Murrell delta33 – is Murrell �

defined as34

�M = �AM +�BM
with

�AM =
〈ψ̃A	0ψ̃B	0|Â(ŴA − 〈ŴA〉)ψ̃A	0ψ̃B	0〉

〈ψ̃A	0ψ̃B	0|Â(ψ̃A	0ψ̃B	0)〉
where F̂A and F̂B are the sums of the Fock operators for molecules A and B,
respectively, whereas ŴA = ĤA − F̂A and ŴB = ĤB − F̂B are the corresponding
fluctuation potentials (see p. 558), i.e. Ĥ(0) = F̂A + F̂B + ŴA + ŴB. The symbols fluctuation

potential〈F̂A〉 and 〈ŴA〉 denote the mean values of the corresponding operators calcu-
lated with the approximate wave functions: 〈F̂A〉 ≡ 〈ψ̃A	0|F̂Aψ̃A	0〉 and 〈ŴA〉 ≡
〈ψ̃A	0|ŴAψ̃A	0〉, and similarly for B.

13.8 CONVERGENCE PROBLEMS

In perturbation theories all calculated corrections are simply added together. This
may lead to partial sums that do not converge. This pertains also to the symme-
try adapted perturbation theories. Why? Let us see Table 13.4. One of the per-
turbational schemes given there, namely that called the symmetrized polarization
approximation, is based on the calculation of the wave function exactly as in the po-
larization approximation scheme, but just before the calculation of the corrections
to the energy, the polarization wave function is projected on the antisymmetrized
space. This procedure is bound to have trouble. The system changes its charge dis-
tribution without paying any attention to the Pauli exclusion principle (thus allow-

32It has been shown that the Landshoff’s deltas �AL and �BL vanish for the Hartree–Fock solutions
for individual molecules A and B (R. Landshoff, Zeit. Phys. 102 (1936) 201). They vanish as well for
the SCF solutions (i.e. for finite basis sets) for individual molecules calculated in the basis of all atomic
orbitals of the total system (B. Jeziorski, M. Bulski, L. Piela, Intern. J. Quantum Chem. 10 (1976) 281;
M. Gutowski, G. Chałasiński, J. van Duijneveldt-van de Rijdt, Intern. J. Quantum Chem. 26 (1984)
971).
33J.N. Murrell, A.J.C. Varandas, Mol. Phys. 30 (1975) 223.
34It has been shown (B. Jeziorski, M. Bulski, L. Piela, Intern. J. Quantum Chem. 10 (1976) 281) that
�AM and �BM are of the order of O(S4).
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ing it to polarize itself in a non-physical way), while it turns out that it has to fulfilover-
polarization a principle35 (the Pauli principle). This may be described as “overpolarization”.

This became evident after a study called the Pauli blockade.36 It was shown that,Pauli blockade

if the Pauli exclusion principle is not obeyed, the electrons of the subsystem A can
flow, without any penalty and totally unphysically, to the low-energy orbitals of B.
This may lead to occupation of that orbital by, e.g., four electrons, whereas the
Pauli principle admits only a maximum of a double occupation.

Thus, any realistic deformation of the electron clouds has to take into account
simultaneously the exchange interaction (valence repulsion), or the Pauli princi-
ple. Because of this, we have introduced what is called the deformation–exchange
interaction energy asdeformation–

exchange
interaction
energy

Edef–exch =E(2) − (Eelst +Edisp)� (13.40)

Padé approximants may improve convergence
Any perturbational correction carries information. Summing up (this is the way
we calculate the total effect) these corrections means a certain processing of the
information. We may ask an amazing question: is there any possibility of taking the
same corrections and squeezing out more information37 than just making the sum?

In 1892 Henri Padé38 wrote his doctoral dissertation in mathematics and pre-
sented some fascinating results.

For a power series

f (x)=
∞
∑

j=0

ajx
j (13.41)

we may define a Padé approximant [L/M] as the ratio of two polynomials:

[L/M] = PL(x)

QM(x)
(13.42)

where PL(x) is a polynomial of at most L-th degree, while QM(x) is a poly-
nomial of M-th degree. The coefficients of the polynomials PL and QM will
be determined by the following condition

f (x)− [L/M] = terms of higher degree than xL+M� (13.43)

In this way it will be guaranteed that for x = 0 the Padé approximant [L	M]
will have the derivatives up to the (L+M)-th degree identical with those of the
original function f (x). In other words,

35This is similar to letting all plants grow as they want and just after harvesting everything selecting
the wheat alone.
36M. Gutowski, L. Piela, Mol. Phys. 64 (1988) 337.
37That is, a more accurate result.
38H. Padé, Ann. Sci. Ecole Norm. Sup., Suppl. [3] 9 (1892) 1.
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the first L+M terms of the Taylor expansion for a function f (x) and for its
Padé approximant are identical.

Since the nominator and denominator of the approximant can be harmlessly
multiplied by any non-zero number, we may set, without losing anything, the fol-
lowing normalization condition

QM(0)= 1� (13.44)

Let us assume also that PL(x) and QM(x) do not have any common factor.
If we now write the polynomials as:

PL(x) = p0 +p1x+p2x
2 + · · · +pLxL	

QM(x) = 1+ q1x+ q2x
2 + · · · + qMxM	

then multiplying eq. (13.42) byQM and forcing the coefficients at the same powers
of x being equal we obtain the following system of equations for the unknowns pi
and qi (there are L+M + 1 of them, the number of equations is the same):

a0 = p0	

a1 + a0q1 = p1	

a2 + a1q1 + a0q2 = p2	

aL + aL−1q1 + · · · + a0qL = pL	
aL+1 + aLq1 + · · · + aL−M+1qM = 0	
���

aL+M + aL+M−1q1 + · · · + aLqM = 0�

(13.45)

Note please, that the sum of the subscripts in either term is a constant {from
the range [0	L+M]}, which is connected to the above mentioned equal powers
of x.

Example 1 (Mathematical). The method is best illustrated in action. Let us take a
function

f (x)= 1√
1− x� (13.46)

Suppose we have an inspiration to calculate f ( 1
2). We get of course

√
2 =

1�414213562 � � � Let us expand f in a Taylor series:

f (x)= 1+ 1
2
x+ 3

8
x2 + 5

16
x3 + 35

128
x4 + · · · � (13.47)

Therefore, a0 = 1; a1 = 1
2 ; a2 = 3

8 ; a3 = 5
16 ; a4 = 35

128 . Now let us forget that these
coefficients came from the Taylor expansion of f (x)� Many other functions may
have the same beginning of the Taylor series. Let us calculate some partial sums of
the right-hand side of eq. (13.47):
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f ( 1
2) sum up to the n-th term

n= 1 1�00000
n= 2 1�25000
n= 3 1�34375
n= 4 1�38281
n= 5 1�39990

We see that the Taylor series “works very hard”, it succeeds but not without pain
and effort.

Now let us check out how one of the simplest Padé approximants, namely, [1/1]	
performs the same job. By definition

(p0 +p1x)

(1+ q1x)
� (13.48)

Solving (13.45) gives as the approximant:39

(1− 1
4x)

(1− 3
4x)

� (13.49)

Let us stress that information contained in the power series (13.41) has been lim-
ited to a0, a1, a2 (all other coefficients have not been used). For x = 1

2 the Padé
approximant has the value

(1− 1
4

1
2)

(1− 3
4

1
2)
= 7

5
= 1�4	 (13.50)

which is more effective than the painful efforts of the Taylor series that used a coeffi-
cients up to a4 (this gave 1.39990). To be fair, we have to compare the Taylor series
result that used only a0, a1, a2 and this gives only 1.34375! Therefore, the approx-
imant failed by 0�01, while the Taylor series failed by 0�07. The Padé approximant
[2/2] has the form:

[2	2] = (1− 3
4x+ 1

16x
2)

(1− 5
4x+ 5

16x
2)
� (13.51)

For x = 1
2 its value is equal to 41

29 = 1�414, which means accuracy of 10−4, while
without Padé approximants, but using the same information contained in the coeffi-
cients, we get accuracy two orders of magnitude worse.

Our procedure did not have the information that the function expanded is (1−
x)−

1
2 , for we gave the first five terms of the Taylor expansion only. Despite this,

the procedure determined, with high accuracy, what will give higher terms of the
expansion.

39Indeed, L =M = 1, and therefore the equations for the coefficients p and q are the following:
p0 = 1	 1

2 + q1 = p1	
3
8 + 1

2q1 = 0. This gives the solution: p0 = 1, q1 =− 3
4 , p1 =− 1

4 .
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Example 2 (Quantum mechanical). This is not the end of the story yet. The reader
will see in a minute some things which will be even stranger. Perturbation theory
also represents a power series (with respect to λ) with coefficients that are energy
corrections. If perturbation is small, the corrections are small as well. In general
the higher the perturbation order, the smaller the corrections. As a result, a partial
sum of a few low-order corrections, usually gives sufficient accuracy. However, the
higher the order the more difficult are the corrections to calculate. Therefore, we
may ask if there is any possibility of obtaining good results and at a low price by
using the Padé approximants. In Table 13.5 some results of a study by Jeziorski
et al. are collected.40

For R= 12�5 a.u., we see that the approximants had a very difficult task to do.
First of all they “recognized” the series limit, only at about 2L + 1 = 17. Before
that, they have been less effective than the original series. It has to be stressed,
however, that they “recognized” it extremely well (see 2L + 1 = 21). In contrast
to this, the (traditional) partial sums ceased to improve when L increased. This
means that either the partial sum series converges to a false limit or it converges
to the correct limit, but does it extremely slowly. We see from the variational result
(the error is calculated with respect to this) that the convergence is false. If the
variational result had not been known, we would say that the series has already
converged. However, the Padé approximants said: “no, this is a false convergence”
and they were right.

For R = 3�0 a.u. (see Table 13.5) the original series represents a real tragedy.
For this distance, the perturbation is too large and the perturbational series just
evidently diverges. The greater our effort, the greater the error of our result. The
error is equal to 13% for 2L+1= 17, then to 22% for 2L+1= 19 and attains 36%
for 2L + 1 = 21. Despite of these hopeless results, it turns out that the problem

Table 13.5. Convergence of the MS–MA (p. 715) perturbational series for the hydrogen atom in the
field of a proton (state 2pσu) for internuclear distance R (a.u.). The error (in %) is given for the sum
of the original perturbational series and for the Padé [L + 1	L] approximant, and is calculated with
respect to the variational method (i.e. the best for the basis set used)

2L+ 1 R= 12�5 R= 3�0
pert. series [L+ 1	L] pert. series [L+ 1	L]

3 0�287968 0�321460 0�265189 0�265736
5 0�080973 −0�303293 0�552202 −1�768582
7 0�012785 −0�003388 0�948070 0�184829
9 −0�000596 −0�004147 1�597343 0�003259
11 −0�003351 −0�004090 2�686945 0�002699
13 −0�003932 −0�004088 4�520280 0�000464
15 −0�004056 −0�004210 7�606607 0�000009
17 −0�004084 −0�001779 12�803908 0�000007
19 −0�004090 0�000337 21�558604 −0�000002
21 −0�004092 −0�000003 36�309897 0�000001

40B. Jeziorski, K. Szalewicz, M. Jaszuński, Chem. Phys. Letters 61 (1979) 391.
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represent “peanuts” for the Padé approximants.41 They were already much better
for L= 3.

Why are the Padé approximants so effective?
The apparent garbage produced by the perturbational series represented for the
Padé approximants precise information that the absurd perturbational corrections
pertain the energy of the 2pσu state of the hydrogen atom in the electric field of the
proton. How come? Low-order perturbational corrections, even if absolutely crazy,
somehow carry information about the physics of the problem. The convergence
properties of the Rayleigh–Schrödinger perturbation theory depend critically on
the poles of the function approximated (see discussion on p. 210). A pole cannot
be described by any power series (as happens in perturbation theories), whereas
the Padé approximants have poles built in the very essence of their construction
(the denominator as a polynomial). This is why they may fit so well with the nature
of the problems under study.42

13.9 NON-ADDITIVITY OF INTERMOLECULAR
INTERACTIONS

Interaction energy represents the non-additivity of the total energy

The total energy of interacting molecules is not an additive quantity, i.e. does not
represent the sum of the energies of the isolated molecules. The reason for this
non-additivity is the interaction energy.

Let see, whether the interaction energy itself has some additive properties. First
of all the interaction energy requires the declaration of which fragments of the total
system we treat as (interacting) molecules (see beginning of this chapter). The only
real system is the total system, not these fragments. The fragments or subsystems
can be chosen in many ways (Fig. 13.10).

If the theory is exact, the total system can be described at any such choice (cf.
p. 492).

A theory has to be invariant with respect to any choice of subsystems in
the system under consideration. Such a choice (however in many cases ap-
parently evident) represents an arbitrary operation, similar to the choice of
coordinate system.

Only the supermolecular theory is invariant with respect to such choices.43 The
perturbation theory so far has no such powerful feature (this problem is not even
raised in the literature), because it requires the intra and intermolecular interac-

41Similar findings are reported in T.M. Perrine, R.K. Chaudhuri, K.F. Freed, Intern. J. Quantum Chem.
105 (2005) 18.
42There are cases, however, where Padé approximants may fail in a spectacular way.
43However for rather trivial reasons, i.e. interaction energy represents a by-product of the method.

The main goal is the total energy, which by definition is independent of the choice of subsystems.
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Fig. 13.10. Schematic illustration
of arbitrariness behind the selec-
tion of subsystems within the to-
tal system. The total system under
study is in the centre of the fig-
ure and can be divided into subsys-
tems in many different ways. The
isolated subsystems may differ from
those incorporated in the total sys-
tem (e.g., by shape). Of course, the
sum of the energies of the isolated
molecules depends on the choice
made. The rest of the energy repre-
sents the interaction energy and de-
pends on choice too. A correct the-
ory has to be invariant with respect
to these choices, which is an ex-
treme condition to fulfil. The prob-
lem is even more complex. Using
isolated subsystems does not tell us
anything about the kind of complex
they are going to make. We may
imagine several stable aggregates
(our system in the centre of the fig-
ure is only one of them). In this way
we encounter the fundamental and
so far unsolved problem of the most
stable structure (cf. Chapter 7).

subsystems 1

subsystems 2

subsystems 3

total system

tions to be treated on the same footing. However this is extremely difficult in such a
theory, because the assumption that the perturbation is small is inherent to pertur-
bational theories.44 Of course, choice of subsystems as with choice of coordinate
systems, influences very strongly the mathematical difficulties and therefore the
economy of the solution to be reached. Before performing calculations, a scien-
tist already has some intuitive knowledge as to which choice is the most realistic.
The intuition is applied when considering different ways in which our system may
disintegrate and concentrating on those that require the least energy. The smaller
the changes in the subsystems when going from isolated to bound, the smaller the
interaction energy and the easier the application of the perturbational theory (cf.
p. 685). The smaller the intermolecular distance(s) the more difficult and ambigu-
ous the problem of subsystem choice becomes. In Chapter 9 probably the only
example of the invariance of a quantum mechanical method is described.

13.9.1 MANY-BODY EXPANSION OF INTERACTION ENERGY
A next question could be: is the interaction energy pair-wise additive, i.e.

is the interaction energy a sum of pairwise interactions?

44It has to be an infinite order perturbation theory with a large radius of convergence.



728 13. Intermolecular Interactions

If this were true, it would be sufficient to calculate all possible interactions of
pairs of molecules in the configuration identical to that of the total system45 and
our problem would be solved.

For the time being let us take the example of a stone, a shoe and a foot. The
owner of the foot will certainly remember the three-body interaction, while nothing
special happens when you put a stone into the shoe, or your foot into the shoe, or a
small stone on your foot (two-body interactions). The molecules behave like this –

their interactions are not pairwise additive.

In the case of three interacting molecules, there is an effect of a strictly three-
body character, which cannot be reduced to any two-body interactions. Similarly
for larger numbers of molecules, there is a non-zero four-body effect, because all
cannot be calculated as two- and three-body interactions, etc.

In what is called the many-body expansion forN moleculesA1	A2	 � � � 	AN the
interaction energy Eint(A1A2 � � �AN), i.e. the difference between the total energy
EA1A2���AN and the sum of the energies of the isolated molecules

∑

i EAi can be
represented as a series of m-body terms �E(m	N), m= 2	3	 � � � 	N :

Eint = EA1A2���AN −
N
∑

i=1

EAi =
N
∑

i>j

�EAiAj (2	N)

+
N
∑

i>j>k

�EAiAjAk(3	N)+ · · · +�EA1A2���AN (N	N)� (13.52)

The �E(m	N) contribution to the interaction energy of N molecules (m

N) represents the sum of the interactions of m molecules (all possible com-
binations of m molecules among N molecules keeping their configurations
fixed as in the total system) inexplicable by the interactions ofm′ <mmole-
cules.

One more question. Should we optimize the geometry, when calculating the
individual many-body terms? In principle, we should not do this, because we are
interested in the interaction energy at a given configuration of the nuclei. However,
we may present the opposite point of view. For instance, we may be interested in
how the geometry of the AB complex changes in the presence of molecule C. This
is also a three-body interaction. These dilemmas have not yet been solved in the
literature.

Example 3. Four molecules. The many-body expansion concept is easiest to un-
derstand by taking an example. Suppose we have four (point-like, for the sake of
simplicity) molecules: A, B, C and D lying on a straight line. Their distances (in
arbitrary units) are equal to the number of “stars”: A∗B∗∗∗C∗∗D. Let us assume

45This would be much less expensive than the calculation for the total system.
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Table 13.6.

Three molecules Interaction energy Pairwise interactions Difference

A∗B∗∗∗C −8 −10 +2
A∗B∗∗∗∗∗D −5 −6 +1
A∗∗∗∗C∗∗D −7 −8 +1
B∗∗∗C∗∗D −9 −10 +1

that the total energy calculated for this configuration equals to −3000 kcal/mol,
whereas the sum of the energies of the isolated molecules is −2990 kcal/mol.
Hence, the interaction energy of the four molecules is −10 kcal/mol. The nega-
tive sign means that the interaction corresponds to attraction, i.e. the system is
stable (as far as the binding energy is concerned) with respect to dissociation on
A+B+C+D. Now we want to analyze the many-body decomposition of this inter-
action energy. First, we calculate the two-body contribution, let us take all possible
pairs of molecules and calculate the corresponding interaction energies (the re-
sults are in parentheses, kcal/mol): A∗B (−4), A∗∗∗∗C (−2), A∗∗∗∗∗∗D (−1), B∗∗∗C
(−4), B∗∗∗∗∗D (−1), C∗∗D (−5). As we can see, the sum of all the pairwise interac-
tion energies is �E(2	4)=−17 kcal/mol. We did not obtain−10 kcal/mol, because
the interactions are not pairwise additive. Now let us turn to the three-body con-
tribution �E(3	4). To calculate this we consider all possible three-molecule sys-
tems in a configuration identical to that in the total system: A∗B∗∗∗C, A∗B∗∗∗∗∗D,
A∗∗∗∗C∗∗D, B∗∗∗C∗∗D, and calculate, in each case, the interaction energy of three
molecules minus the interaction energies of all pairwise interactions involved. In
Table 13.6 we list all the three-body systems possible and in each case give three
numbers (in kcal/mol): the interaction energy of the three bodies (with respect to
the isolated molecules), the sum of the pairwise interactions and the difference of
these two numbers, i.e. the contribution of these three molecules to �E(3	4).

Hence, the three-body contribution to the interaction energy �E(3	4) = 2 +
1+ 1+ 1=+5 kcal/mol. The last step in the example is to calculate the four-body
contribution. This can be done by subtracting from the interaction energy (−10)
the two-body contribution (−17) and the three-body contribution (+5). We obtain
�E(4	4)=−10+ 17− 5= 2 kcal/mol.

We may conclude that in our (fictitious) example, at the given configuration,
the many-body expansion of the interaction energy Eint = −10 kcal/mol repre-
sents a series decaying rather quickly: �E(2	4)=−17 kcal/mol for the two-body,
�E(3	4) = +5 for the three-body and �E(4	4) = +2 for the four-body interac-
tions.

Are non-additivities large?
Already a vast experience has been accumulated and some generalizations are pos-
sible.46 The many-body expansion usually converges faster than in our fictitious
example.47 For three argon atoms in an equilibrium configuration, the three-body

46V. Lotrich, K. Szalewicz, Phys. Rev. Letters 79 (1997) 1301.
47In quantum chemistry this almost always means a numerical convergence, i.e. a fast decay of indi-

vidual contributions.
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term is of the order of 1%. It should be noted, however, that in the argon crys-
tal there is a lot of three-body interactions and the three-body effect increases to
about 7%. On the other hand, for liquid water the three-body effect is of the order
of 20%, and the higher contributions are about 5%. Three-body effects are some-
times able to determine the crystal structure and have significant influence on the
physical properties of the system close to a phase transition (“critical region”).48

In the case of the interaction of metal atoms, the non-additivity is much larger
than that for the noble gases, and the three-body effects may attain a few tens of
percent. This is important information since the force fields widely used in mole-
cular mechanics (see p. 284) are based almost exclusively on effective pairwise
interactions (neglecting the three- and more-body contributions).49

Although the intermolecular interactions are non-additive, we may ask
whether individual contributions to the interaction energy (electrostatic, in-
duction, dispersion, valence repulsion) are additive?

Let us begin from the electrostatic interaction.

13.9.2 ADDITIVITY OF THE ELECTROSTATIC INTERACTION

Suppose we have three molecules A, B, C, intermolecular distances are long and
therefore it is possible to use the polarization perturbation theory, in a very similar
way to that presented in the case of two molecules (p. 692). In this approach, the
unperturbed Hamiltonian Ĥ(0) represents the sum of the Hamiltonians for the
isolated molecules A, B, C. Let us change the abbreviations a little bit to be more
concise for the case of three molecules. A product function ψA	nAψB	nBψC	nC will
be denoted by |nAnBnC〉 = |nA〉|nB〉|nC〉, where nA	nB	nC (= 0	1	2	 � � �) stand
for the quantum numbers corresponding to the orthonormal wave functions for
the molecules A, B, C, respectively. The functions |nAnBnC〉 = |nA〉|nB〉|nC〉 are
the eigenfunctions of Ĥ(0):

Ĥ(0)|nAnBnC〉 =
[

EA(nA)+EB(nB)+EC(nC)
]|nAnBnC〉�

The perturbation is equal to Ĥ − Ĥ(0) = V = VAB + VBC + VAC , where the
operators VXY contain all the Coulomb interaction operators involving the nuclei
and electrons of molecule X and those of molecule Y.

Let us recall that the electrostatic interaction energy Eelst(ABC) of the ground-
state (nA = 0, nB = 0, nC = 0) molecules is defined as the first-order correction to
the energy in the polarization approximation perturbation theory50

48R. Bukowski, K. Szalewicz, J. Chem. Phys. 114 (2001) 9518.
49That is, the effectivity of a force field relies on such a choice of interaction parameters, that the

experimental data are reproduced (in such a way the parameters implicitly contain part of the higher-
order terms).
50The Eelst(ABC) term in symmetry-adapted perturbation theory represents only part of the first-

order correction to the energy (the rest being the valence repulsion).
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E
(1)
pol ≡Eelst(ABC)= 〈0A0B0C |V |0A0B0C〉 = 〈0A0B0C |VAB+VBC+VAC |0A0B0C〉	

where the quantum numbers 000 have been supplied (maybe because of my exces-
sive caution) by the redundant and self-explanatory indices (0A	0B	0C).

The integration in the last formula goes over the coordinates of all electrons. In
the polarization approximation, the electrons can be unambiguously divided into
three groups: those belonging to A, B and C. Because the zero-order wave func-
tion |0A0B0C〉 represents a product |0A〉|0B〉|0C〉, the integration over the electron
coordinates of one molecule can be easily performed and yields

Eelst =
〈

0A0B
∣
∣VAB

∣
∣0A0B

〉+ 〈0B0C
∣
∣VBC

∣
∣0B0C

〉+ 〈0A0C
∣
∣VAC

∣
∣0A0C

〉

	

where, in the first term, the integration was performed over the electrons of C, in
the second over the electrons of B, and in the third over those of C.

Now, let us look at the last formula. We easily see that the individual terms sim-
ply represent the electrostatic interaction energies of pairs of molecules: AB, BC
and AC, that we would obtain in the perturbational theory (within the polarization
approximation) for the interaction of AB, BC and AC, respectively. Conclusion:

the electrostatic interaction is pairwise additive.

13.9.3 EXCHANGE NON-ADDITIVITY
What about the exchange contribution? This contribution does not exist in the po-
larization approximation. It appears only in symmetry-adapted perturbation theory,
in pure form in the first-order energy correction and coupled to other effects in
higher order energy corrections.51 The exchange interaction is difficult to inter-
pret, because it appears as a result of the antisymmetry of the wave function (Pauli
exclusion principle). The antisymmetry is forced by one of the postulates of quan-
tum mechanics (see Chapter 1) and its immediate consequence is that the proba-
bility density of finding two electrons with the same spin and space coordinates is
equal to zero.

A CONSEQUENCE OF THE PAULI EXCLUSION PRINCIPLE
In an atom or molecule, the Pauli exclusion principle results in a shell-like
electronic structure (electrons with the same spin coordinates hate each
other and try to occupy different regions in space). The valence repulsion
may be seen as the same effect manifesting itself in the intermolecular in-
teraction. Any attempt to make the molecular charge distributions overlap
or occupy the same space (“pushing”) leads to a violent increase in the en-
ergy.

51Such terms are bound to appear. For example, the induction effect is connected to deformation of
the electron density distribution. The interaction (electrostatic, exchange, dispersive, etc.) of such a
deformed object will change with respect to that of the isolated object. The coupling terms take care of
this change.
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PAULI DEFORMATION
The Pauli exclusion principle leads to a deformation of the wave functions
describing the two molecules (by projecting the product-like wave function
by the antisymmetrizer Â) with respect to the product-like wave function.
The Pauli deformation (cf. Appendix Y) appears in the zeroth order of per-
turbation theory, whereas in the polarization approximation, the deforma-
tion of the wave function appears in the first order and is not related to the
Pauli exclusion principle.

The antisymmetrizer pertains to the permutation symmetry of the wave function
with respect to the coordinates of all electrons and therefore is different for a pair
of molecules and for a system of three molecules.

The expression for the three-body non-additivity of the valence repulsion52

[given by formula (13.39), based on definition (13.37) of the first-order correc-
tion in symmetry-adapted perturbation theory53 and from definition (13.52) of the
three-body contribution] is:

E(1)exch	ABC =NABC
〈

0A0B0C
∣
∣VAB + VBC + VAC

∣
∣ÂABC(0A0B0C)

〉

−
∑

(XY)=(AB)	(AC)	(BC)
NXY

〈

0X0Y
∣
∣VXY

∣
∣ÂXY (0X0Y

)〉

	 (13.53)

where NABCÂABC |0A0B0C〉 and NABÂAB|0A0B〉, and so forth represent the nor-
malized (NABC etc. are the normalization coefficients) antisymmetrized product-
like wave function of the systems ABC, AB, etc. The antisymmetrizer ÂABC per-
tains to subsystems A	B	C , similarly ÂAB pertains to A and B, etc., all antisym-
metrizers containing only the intersystem electron exchanges and the summation
goes over all pairs of molecules.

There is no chance of proving that the exchange interaction is additive, i.e. that
eq. (13.53) gives 0. Let us consider the simplest possible example: each molecule
has only a single electron: |0A(1)0B(2)0C(3)〉. The operator ÂABC (see p. 986)
makes (besides other terms) the following permutation:

ÂABC
∣
∣0A(1)0B(2)0C(3)

〉= · · · − 1
(NA +NB +NC)!

∣
∣0A(3)0B(2)0C(1)

〉+ · · · 	

which according to eq. (13.53) leads to the integral

− 1
(NA +NB +NC)!NABC

〈

0A(1)0B(2)0C(3)
∣
∣

1
r12

∣
∣0A(3)0B(2)0C(1)

〉

=− 1
(NA +NB +NC)!NABC

〈

0A(1)0B(2)
∣
∣

1
r12

∣
∣0B(2)0C(1)

〉〈

0C(3)
∣
∣0A(3)

〉

52B. Jeziorski, M. Bulski, L. Piela, Intern. J. Quantum Chem. 10 (1976) 281.
53Because, as we have already proved, the rest, i.e. the electrostatic energy, is an additive quantity.



13.9 Non-additivity of intermolecular interactions 733

involving the wave functions centred on A, B and C . This means that the term
belongs to the three-body effect.

The permutation operators of which the ÂABC operator is composed, corre-
spond to the identity permutation54 as well as to the exchange of one or more elec-
trons between the interacting subsystems: ÂABC = 1+ single exchanges + double
exchanges +· · · .

It is easy to demonstrate,55 that

the larger the number of electrons exchanged, the less important such exchanges
are, because the resulting contributions would be proportional to higher and
higher powers of the (as a rule small) overlap integrals (S).

Single Exchange (SE) Mechanism

The smallest non-zero number of electron exchanges in ÂABC is equal to 1 (two
electrons involved). Such an exchange may only take place between two molecules,
say, AB.56 This results in terms of the order of S2 in the three-body expression.
The third molecule does not participate in the electron exchanges, but is not just a
spectator in the interaction (Fig. 13.11.a,b,c). If it were, the interaction would not be
three-body.

SE MECHANISM
Molecule C interacts electrostatically with the Pauli deformation of mole-
cules A and B (i.e. with the multipoles that represent the deformation). Such a
mixed interaction is called the SE mechanism.

It would be nice to have a simple formula which could replace the tedious cal-
culations involving the above equations. The three-body energy may be approx-
imated57 by the product of the exponential term bexp(−aRAB) and the electric
field produced by C, calculated, e.g., in the middle of the distance RAB between
molecules A and B. The goal of the exponential terms is to grasp the idea that the
overlap integrals (and their squares) vanish exponentially with distance. The expo-
nent a should depend on molecules A and B as well as on their mutual orientation
and reflects the hardness of both molecules. These kind of model formulae have
low scientific value but are of practical use.

54The operator reproduces the polarization approximation expressions in SAPT.
55• First, we write down the exact expression for the first-order exchange non-additivity.
• Then, we expand the expression in the Taylor series with respect to those terms that arise from all

electron exchanges except the identity permutation.
• Next, we see that the exchange non-additivity expression contains terms of the order of S2 and

higher, where S stands for the overlap integrals between the orbitals of the interacting molecules.
S decays very fast (exponentially), when intermolecular distance increases.

56After that we have to consider AC and BC.
57Three-body effects are difficult to calculate. Researchers would like to understand the main mecha-

nism and then capture it by designing a simple approximate formula ready to use in complex situations.
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Fig. 13.11. A scheme of the SE and TE exchange non-additivities. Figs. (a), (b), (c) show the single
exchange mechanism (SE). (a) Three non-interacting molecules (schematic representation of electron
densities). (b) Pauli deformation of molecules A and B. (c) Electrostatic interaction of the Pauli defor-
mation (resulting from exchange of electrons 1 and 2 between A and B) with the dipole moment of C.
(d) The TE mechanism: molecules A and B exchange an electron with the mediation of molecule C.

When the double electron exchanges are switched on, we would obtain part of
the three-body effect of the order of S4. Since S is usually of the order of 10−2,
this contribution is expected to be small, although caution is advised, because the
number of such terms is much more important.

Triple Exchange (TE) Mechanism
Is there any contribution of the order of S3? Yes. The antisymmetrizer ÂABC is
able to make the single electron exchange between, e.g., A and B, but by mediation
of C. The situation is schematically depicted in Fig. 13.11.d.

TE MECHANISM
This effect is sometimes modelled as a product of three exponential func-
tions: const exp(−aABRAB)exp(−aBCRBC)exp(−aACRAC) and is mislead-
ingly called a triple electron exchange. A molecule is involved in a single
exchange with another molecule by mediation of a third.
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Let us imagine that molecule B is very long and the configuration corresponds
to: A B C. When C is far from A, the three-body effect is extremely small, because
almost everything in the interaction is of the two-body character, Appendix Y. If
molecule C approaches A and has some non-zero low-order multipoles, e.g., a
charge, then it may interact by the SE mechanism even from a far. The TE mech-
anism operates only at short intermolecular distances.

The exchange interaction is non-additive, but the effects pertain to the contact
region of both molecules.58 The Pauli exclusion principle does not have any finite
range in space, i.e. after being introduced it has serious implications for the wave
function even at infinite intermolecular distance (cf. p. 712). Despite this, it always
leads to the differential overlap of atomic orbitals (as in overlap or exchange inte-
grals), which decays exponentially with increasing intermolecular distance (the SE
mechanism has a partly long-range character).

13.9.4 INDUCTION ENERGY NON-ADDITIVITY

The non-additivity of the intermolecular interaction results mainly from the
non-additivity of the induction contribution.

How do we convince ourselves about the non-additivity? This is very easy. It will
be sufficient to write the expression for the induction energy for the case of three
molecules and to see whether it gives the sum of the pairwise induction interac-
tions. Before we do this, let us write the formula for the total second order energy
correction (similar to the case of two molecules on p. 694):

E(2)(ABC)

=
∑

nA	nB	nC

′ |〈nAnBnC |V |0A0B0C〉|2
[EA(0A)−EA(nA)] + [EB(0B)−EB(nB)] + [EC(0C)−EC(nC)] �

(13.54)

According to perturbation theory, the term with all the indices equal to zero
has to be omitted in the above expression. It is much better like this, because oth-
erwise the denominator would “explode”. The terms with all non-zero indices are
equal to zero. Indeed, let us recall that V is the sum of the Coulomb potentials
corresponding to all three pairs of the three molecules. This is the reason why it is
easy to perform the integration over the electron coordinates of the third molecule
(not involved in the pair). A similar operation was performed for the electrostatic
interaction. This time, however, the integration makes the term equal to zero, be-
cause of the orthogonality of the ground and excited states of the third molecule.
All this leads to the conclusion that to have a non-zero term in the summation,
among the three indices, one or two of them have to be of zero value. Let us per-
form the summation in two stages: all the terms with only-two-zeros (or a single

58See Appendix Y.
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non-zero) indices will make a contribution to Eind(ABC), while all the terms with
only-one-zero (or, two non-zero) indices will sum to Edisp(ABC):

E(2)(ABC)=Eind(ABC)+Edisp(ABC)	 (13.55)
where the first term represents the induction energy:

Eind(ABC)=Eind(AB→ C)+Eind(AC→ B)+Eind(BC→A)	

where

Eind(BC→A)≡
∑

nA 	=0

|〈nA0B0C |V |0A0B0C〉|2
[EA(0A)−EA(nA)]

means that the “frozen” molecules B and C acting together polarize molecule A,
etc. The second term in (13.55) represents the dispersion energy (this will be con-
sidered later on, see p. 740).

For the time being let us consider the induction energy Eind(ABC). Writing V
as the sum of the Coulomb interactions of the pairs of molecules we have
Eind(BC→A)

=
∑

nA 	=0

〈nA0B0C |VAB+VBC +VAC |0A0B0C〉〈0A0B0C |VAB+VBC +VAC |nA0B0C〉

× [EA(0A)−EA(nA)
]−1

=
∑

nA 	=0

[〈nA0B|VAB|0A0B〉 + 〈nA0C |VAC |0A0C〉
]

× [〈0A0B|VAB|nA0B〉 + 〈0A0C |VAC |nA0C〉
]

× [EA(0A)−EA(nA)
]−1
�

Look at the product in the nominator. The induction non-additivity arises just
because of this product. If the product (being the square of the absolute value of
〈nA0B|VAB|0A0B〉 + 〈nA0C |VAC |0A0C〉) were equal to the square of the absolute
values of the first and second component, the total expression shown explicitly
would be equal to the induction energy corresponding to the polarization of A
by the frozen charge distribution of B plus a similar term corresponding to the
polarization of A by C , i.e. the polarization occurring separately. Together with the
other terms inEind(AB→C)+Eind(AC→ B) we would obtain the additivity of the
induction energy Eind(ABC). However, besides the sum of squares we also have
the mixed terms. They will produce the non-additivity of the induction energy:

Eind(ABC)=Eind(AB)+Eind(BC)+Eind(AC)+�ind(ABC)� (13.56)

Thus, we obtain the following expression for the induction non-additivity
�ind(ABC):

�ind(ABC)= 2 Re
∑

nA 	=0

〈nA0B|VAB|0A0B〉〈nA0C |VAC |0A0C〉
[EA(0A)−EA(nA)] + · · · 	 (13.57)

where “+· · ·” stands for the non-additivities of Eind(AB→ C)+Eind(AC→ B).
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Example 4. Induction non-additivity. To show that the induction interaction of two
molecules depends on the presence of the third molecule let us consider the system
shown in Fig. 13.12.

Let molecule B be placed half-way between A+ and C+, thus the configuration
of the system is: A+.......B.........C+ with long distances between the subsystems. In
such a situation, the total interaction energy is practically represented by the in-
duction contribution plus the constant electrostatic repulsion of A+ and C+. Is the
three-body term (induction non-additivity) large? We will show in a minute that
this term is large and positive (destabilizing). Since the electric field intensities
nearly cancel within molecule B, then despite the high polarizability of the latter,
the induction energy will be small. On the contrary, the opposite is true when con-
sidering two-body interaction energies. Indeed, A+ polarizes B very strongly, C+
does the same, resulting in high stabilization due to high two-body induction en-
ergy. Since the total effect is nearly zero, the induction non-additivity is bound to
be a large positive number.59

a) isolated subsystems

b) interaction

c) interaction

d) interaction

Fig. 13.12. The induction interaction may produce a large non-additivity. (a) Two distant
non-polarizable cations: A+, C+ and a small, polarizable neutral molecule B placed exactly in the mid-
dle between AC. (b) The two-body induction interaction A+B, a strong polarization. (c) The two-body
induction interaction BC+ , a strong polarization. (d) The two cations polarize molecule B. Their elec-
tric field vectors cancel each other in the middle of B and give a small electric field intensity within B
(a weak polarization).

59If the intermolecular distances were small, B were not in the middle of AC or molecule B were of
large spatial dimension, the strength of our conclusion would diminish.
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Self-consistency and polarization catastrophe
The second-order induction effects pertain to polarization by the charge distrib-
utions corresponding to the isolated molecules. However, the induced multipoles
introduce a change in the electric field and in this way contribute to further changes
in charge distribution. These effects already belong to the third60 and higher orders
of perturbation theory.

It is therefore evident that a two-body interaction model cannot manage the
induction interaction energy. This is because we have to ensure that any subsys-
tem, e.g., A, should experience polarization in an electric field, which is the vector
sum of the electric fields from all its partner subsystems (B	C	 � � �) calculated at
the position of A. The calculated induced dipole moment of A (we focus on the
lowest multipole) creates the electric field that produces some changes in the di-
pole moments of B	C	 � � � , which in turn change the electric field acting on all the
molecules, including A. The circle closes and the polarization procedure has to
be performed till self-consistency is reached. This can often be done, although
such a simplified interaction model does not allow for geometry optimization,
which may lead to a polarization catastrophe ending up with induction energy equalpolarization

catastrophe to −∞ (due to excessive approach and lack of the Pauli blockade described on
p. 722).

Three-body polarization amplifier
After recognizing that self-consistency may be achieved safely within a variational
method (with the Pauli exclusion principle satisfied), this may end the story. How-
ever, it would be instructive to get a feeling for the polarization machinery. Let us
pose a simple question: is it possible that the polarization of molecule B by mole-
cule A, both separated by distance R	 is amplified by the presence of molecule C
which is unable by itself to polarize B? An interesting problem. If it appears that
the mediator C might increase the polarization of A or B, C would play the role of
an amplifier based on three-body induction non-additivity.

Suppose A is represented by a non-polarizable cation A+, molecule B separated
from A by R, is medium-polarizable, and a strongly polarizable molecule C (to-
be-amplifier) enters between A+ and B: A+. . . C. . . B, Fig. 13.13.a. How do we
measure the polarization of B due to the presence of C? We might propose the
electric dipole moment induced on B (of course, there will be nothing induced
on A+). Let RBC be the BC separation. A simple calculation of the electric field
intensities gives the following result61 for the ratio of the induced dipole moments
on B with and without the presence of C:

60Each of the induced multipoles is proportional to V , their interaction introduces another V ; alto-
gether this gives a term proportional to V V V , i.e. indeed of the third-order.
61Let us denote the distance AB by R. The axis x is directed from A to B, C is between A and B. If

C possessed dipole moment μC	 then the unit positive charge +1 on B would feel the potential (the
charge–dipole term from the multipole expansion): μC

R2
BC

� The corresponding electric field

EC→B =−
∂

∂RBC

(
μC

R2
BC

)

= 2
μC

R3
BC

�
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Fig. 13.13. A three-body polarization amplifier. (a) A rep-
resents a non-polarizable cation, B and C are polarizable
molecules (C is the amplifier). (b) An electroscope. C is a
metal wire, B represents two strips of paper. (c) The mole-
cular amplifier resembles an electroscope with A being a
positively charged metal ball, C a metal wire (i.e. a body
with high polarizability) and B undergoes a huge charge
redistribution due to the mediation of wire C.

δ= 1+ 2αC
R2

(R−RBC)2R3
BC

� (13.58)

For the polarizabilities chosen, polarization amplification (δ − 1) takes place
and at any RBC exceeds 60%, see Fig. 13.14. When the amplifier is about in the
middle of the AB distance the amplification is about 60%. When the amplifier
approaches the electric field source (i.e. A+), the amplification increases to about
100%. When the amplifier is close to B, it increases to about 200%.

This seems to be an interesting three-body effect we could investigate both the-
oretically and experimentally. Let us go a little crazy and assume C is made of a
metal plate perpendicular to the AB line. Why a metal plate? Because the polariz-
ability of a piece of metal is huge.62 There is trouble though. The dipoles induced

Fig. 13.14. Polarization amplification (δ − 1
in %) on molecule B due to the mediation
(three-body effect) of a polarizable molecule C
(αC = 100 a.u.). The distance R = 20 a.u. The
cation A+ strongly polarizes molecule C. The di-
pole moment induced in this way on C, creates
an additional electric field on B. This leads to
polarization amplification on B.

Molecule C has the dipole moment (induced by the electric field from A+). Let us calculate it as
follows. The electric field created on mediator C by A+ equals EA→C = 1

(R−RBC)2
	 and therefore the

corresponding induced dipole moment (component x) on C is μC = αC 1
(R−RBC)2

�

In the absence of the mediator C, the electric field on B would equal EA→B = 1
R2 , while with it

(neglecting the self-consistency of the dipole moments on B and C) EA→B + EC→B� The ratio of the
second and the first is given by eq. (13.58).
62Let us recall the description of the metallic state of Chapter 9, p. 454 (HOMO-LUMO degeneracy)

and then the definition of polarizability in Chapter 12, p. 635. Since the HOMO-LUMO separation is
0, the polarizability of a metal gives ∞.
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in the metal plate perpendicular to AB will be parallel to each other (side by side),
which is energetically unfavourable. However, if the metal-plate is replaced by a
metal wire oriented along line AB, everything would be amplified: the elementary
dipoles would form a chain thus giving a big dipole within the wire. This means
that the cation A+ would attract a lot of the electrons within wire, so that on the
opposite side of the wire we would have a sort of copy of it. Since the copy of A+
would be very close to B, the polarization of B would increase very much.63

13.9.5 ADDITIVITY OF THE SECOND-ORDER DISPERSION ENERGY

The dispersion energy is a second-order correction, eq. (13.12) on p. 695 gives
the formula for the interaction of two molecules. For three molecules we obtain
the following formula for the dispersion part of the second-order effect (cf. the
discussion on the induction energy on p. 736)

Edisp(ABC)=
∑

nA	nB 	=(0A	0B)

|〈nAnB0C |VAB + VBC + VAC |0A0B0C〉|2
[EA(0A)−EA(nA)] + [EB(0B)−EB(nB)] + · · · 	

where +· · · denotes analogous terms with summations over nA	nC as well as
nB	nC . Among three integrals in the nominator only the first one will survive,
since the other vanish due to the integration over the coordinates of the electrons
of molecule Z not involved in the interaction VXY :

Edisp(ABC)

=
∑

nA	nB 	=(0A	0B)

|〈nAnB0C |VAB|0A0B0C〉 + 0+ 0|2
[EA(0A)−EA(nA)] + [EB(0B)−EB(nB)] +

∑

nA	nC 	=(0A	0C)
· · ·

+
∑

nB	nC 	=(0B	0C)
· · · �

In the first term we can integrate over the coordinates of C. Then the first term
displayed in the above formula turns out to be the dispersion interaction of A
and B,

Edisp(ABC) =
∑

nA	nB 	=(0	0)

|〈nAnB|VAB|0A0B〉|2
[EA(0A)−EA(nA)] + [EB(0B)−EB(nB)]

+
∑

nA	nC 	=(0A	0C)
· · · +

∑

nB	nC 	=(0B	0C)
· · ·

= Edisp(AB)+Edisp(AC)+Edisp(BC)�

63Is it something (Fig. 13.13.b) you may recall from a lesson in physics with an electroscope in your
school? A glass rod (Fig. 13.13.c) rubbed by fur acquires a charge (an analogue of A+), then it ap-
proaches a metal (analogue of C) protruding from a glass vessel it causes repulsion of two pieces of
paper attached to the metal in the vessel. The induction has reached distant regions of space. If, in-
stead of the pieces of paper we have molecule B, it would exhibit a large induced dipole moment.
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Thus, we have proved that

the dispersion interaction (second-order of the perturbation theory) is addi-
tive:

Edisp(ABC)=Edisp(AB)+Edisp(AC)+Edisp(BC)�

13.9.6 NON-ADDITIVITY OF THE THIRD-ORDER DISPERSION
INTERACTION

One of the third-order energy terms represents a correction to the dispersion en-
ergy. The correction as shown by Axilrod and Teller64 has a three-body character.
The part connected to the interaction of three distant instantaneous dipoles on A,
B and C reads as

E(3)disp = 3C(3)ddd
1+ 3 cosθA cosθB cosθC

R3
ABR

3
ACR

3
BC

	 (13.59)

where RXY and θX denote the sides and the angles of the ABC triangle, and
C(3)ddd > 0 represents a constant. The formula shows that

when the ABC system is in a linear configuration, the dispersion contribu-
tion is negative, i.e. stabilizing, while the equilateral triangle configuration
corresponds to a destabilization.

ENGINEERING OF INTERMOLECULAR
INTERACTIONS

13.10 NOBLE GAS INTERACTION

Theoretical description of the noble gas interaction requires quite advanced com-
putational techniques, because here the binding effect comes from the disper-
sion interaction, which represents an electronic correlation effect. Such an effect
is inaccessible in Hartree–Fock calculations. Some very expensive post-Hartree–
Fock methods have to be used. The larger the number of electrons (N), the more
expensive the calculations quickly become as N increases (as we have seen in
Chapter 10): proportionally to N5 for the MP2 method, and even as N7 for the
CCSD(T) method. Therefore, whereas He2 CCSD(T) calculations would take a
minute, similar Xe2 calculations would take about ( 108

4 )
7 = 267 minutes, i.e. about

3000 years. No wonder, the xenon atom has 54 electrons, and in a system of 108
electrons there are plenty of events to correlate, but because of the 3000 years this

64B.M. Axilrod, E. Teller, J. Chem. Phys. 11 (1943) 299.
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is scary. To complete the horror, the calculations would have to be performed for
many interatomic distances.

We may, however, make use of the following. First the calculations may be per-
formed for He2, Ne2	 Ar2, Kr2	 Xe2 using some reasonably poor basis sets. For
each of the systems we obtain the equilibrium distance R0 and the corresponding
binding energy ε. Then, every curve E (R) will be transformed (energy in ε units,

distance in R0 units) to
E( RR0

)

ε . Every curve (independently of the system consid-
ered) has therefore depth 1 and minimum at R

R0
= 1�

It turns out that all the curves coincide to good accuracy.65

Thus, all these objects are made out of the same matrix, despite the fact that this
is so difficult to reveal using our computers. If we assume that this property were
preserved for larger basis sets, we would be able to foresee the curve E(R) for Xe2
from good quality calculations for smaller noble gas dimers calculating E(Rmin).

13.11 VAN DER WAALS SURFACE AND RADII
It would be of practical importance to know how close two molecules can approach
each other. We will not enter this question too seriously, because this problem
cannot have an elegant solution: it depends on the direction of approach, and the
atoms involved, as well as how strongly the two molecules collide. Searching for the
effective radii of atoms would be nonsense, if the valence repulsion were not a sort
of “soft wall” or if the atom sizes were very sensitive to molecular details. Fortu-
nately, it turns out that an atom, despite different roles played in molecules, can be
characterized by its approximate radius, called the van der Waals radius. The radiusvan der Waals

radius may be determined in a naive, but quite effective, way. For example, we may ap-
proach two HF molecules axially with the fluorine atoms heading on, then find the
distance66 RFF at which the interaction energy is equal to, say, 5 kcal/mol (repul-
sion). The proposed fluorine atom radius would be rF = RFF

2 � A similar procedure
may be repeated with two HCl molecules with the resulting rCl. Now, let us con-
sider an axial complex H–F....Cl–H with the intermolecular distance corresponding
to 5 kcal/mol. What F...Cl distance are we expecting? Of course, something close to
rF + rCl� It turns out that we are about right. This is why the atomic van der Waals
radius concept is so attractive from the practical point of view.

We may define a superposition of atomic van der Waals spheres. This defines
what is called the van der Waals surface of the molecule,67 or a molecular shape – amolecular shape

concept of great importance and of the same arbitrariness as the radii themselves.

65Similar results have been obtained for the noble gas atom and sulphur atom interactions [J. Kłos,
G. Chałasiński, R.V. Krems, A.A. Buchachenko, V. Aquilanti, F. Pirani, D. Cappelletti, J. Chem. Phys.
116 (2002) 9269].
66Using a reliable quantum mechanical method.
67The van der Waals surface of a molecule may sometimes be very complex, e.g., a molecule may have

two or more surfaces (like fullerenes).
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In a similar way we may define ionic radii,68 to reproduce the ion packing in
ionic crystals, as well as covalent radii to foresee chemical bond lengths.

13.11.1 PAULI HARDNESS OF THE VAN DER WAALS SURFACE
How would an atom penetrate the van der Waals surface? It depends on the partic-
ular molecule, surface point and atom. The helium atom seems to be a good probe,
because of its simplicity and small size. The question may be more specific: what is
the value of the valence repulsion gradient or, alternatively, the interaction energy
gradient, when the atomic probe penetrates perpendicularly at a given point of the
van der Waals isosurface? Such hardness depends on the particular spot on the
isosurface and exhibits the symmetry of the molecule.69

The van der Waals surface might be modelled as one of the isosurfaces of
the function D(r)=∑i Ai exp(−Bi|r− Ri|), where the summation goes over the
atoms of the molecule and the coefficients Ai and Bi depend not only on their
kind (element), but also on their neighbourhood in the molecule. Therefore, we
may propose

T(r0)=
∣
∣(∇D)r=r0

∣
∣

as the Pauli hardness at point r0 of the isosurface. Any point of the isosurface
defined this way corresponds to a Pauli deformation of the wave function (Appen-
dix Y) of the system: molecule and probe. This represents another kind of deforma-
tion than that corresponding to the polarization of the molecule in an external electric
field. In one case the perturbation corresponds to a mechanical pushing, while in
the other it pertains to the external electric field. The Pauli deformation will have
complex anisotropic characteristic, when the probe penetrates the molecule. It is
intriguing that, while the deformation due to the electric field results in an en-
ergy contribution of the second and higher orders, the Pauli deformation already
appears in the first order energy correction.

13.11.2 QUANTUM CHEMISTRY OF CONFINED SPACE –
THE NANOVESSELS

Molecules at long distances interact through the mediation of the electric fields
created by them. The valence repulsion is of a different character, since it results
from the Pauli exclusion principle, and may be interpreted as an energy penalty for
an attempt by electrons of the same spin coordinate to occupy the same space (cf.
Chapter 1 and p. 516).

Luty and Eckhardt70 have highlighted the role of pushing one molecule by an-
other. Let us imagine an atomic probe, e.g., a helium atom. The pushing by the
probe deforms the molecular electronic wave function (Pauli deformation), but

68This concept was introduced by Pauling, based on crystallographic data (L. Pauling, J. Amer. Chem.
Soc. 49 (1927) 765).
69Interestingly, water molecule is the hardest when approached in its plane about 44◦ off the OH

direction, and the softest normal to the plane right above (and below) the oxygen atom. Data from
E. Małolepsza, L. Piela, J. Phys. Chem. 107 (2003) 5356.
70T. Luty, C.J. Eckhardt, in “Reactivity of Molecular Solids”, eds. E. Boldyreva, V. Boldyrev, Wiley,

1999, p. 51.
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motion of the electrons is accompanied by the motion of the nuclei. Both motions
may lead to dramatic events. For example, we may wonder how an explosive reac-
tion takes place. Nothing happens during tens of years, and suddenly: boom! The
spike hitting the material in its metastable chemical state is similar to the helium
atom probe pushing a molecule. Due to the pushing, the molecule distorts to such
an extent that the HOMO-LUMO separation vanishes and the system rolls down
(see Chapter 14) to a deep potential energy minimum on the corresponding po-
tential energy hypersurface. The HOMO-LUMO gap closing takes place within
the reaction barrier. Since the total energy is conserved, the large reaction net en-
ergy gain goes to highly excited vibrational states (in the classical approximation
corresponding to large amplitude vibrations). The amplitude may be sufficiently
large to assure the pushing of the next molecules in the neighbourhood and a chain
reaction starts with exponential growth.

Now imagine a lot of atomic probes confining the space (like a cage or tem-
plate) available to a molecule under study. In such a case the molecule will behave
differently from a free one. For example,
• a protein molecule, when confined, will fold to another conformation;71

• some photochemical reactions that require a space for the rearrangement of
molecular fragments will not occur, if the space is not accessible;

• in a restricted space some other chemical reactions will take place (new chem-
istry – chemistry in “nanovessels”);

• some unstable molecules may become stable when enclosed in a nanovessel.
These are fascinating and little explored topics.

13.12 SYNTHONS AND SUPRAMOLECULAR CHEMISTRY

Alexandr Butlerov (1828–1886)
Russian chemist, professor
at the University of Kazan
and Saint Petersburg. In 1861
Butlerov presented a concept
of molecular spatial structure,
where the atoms are bound
by atom-to-atom chemical
bonds, with properties char-
acteristic for the atoms in-
volved, an atom being able to
bind only a few nearest neigh-
bour atoms. Kazan Univer-
sity may be proud of several
excellent scholars. Besides
Butlerov, among others, there

are one of the founders of
the non-Euclidean geometry
Nicolai Lobachevsky as well
as the inventor of electronic
paramagnetic resonance Ev-
geniy Zavoiski.

To make complex chemical structures,
synthetic chemists take advantage of the
large scale of the atom–atom binding
energies: from strong chemical bonds
(of the order of 100 kcal/mol) to weak
intermolecular interactions (of the or-
der of a fraction of kcal/mol). For over
one hundred and fifty years (since the
time of Butlerov and Kekulé) chemists
have used theory (of various levels) to
plan and then build chemical structures
with some chemical bonds to be broken
and others to be created. Often the sub-
stances do not resemble the reagents,
and the structure is held together by

73For example, in E. Małolepsza, M. Boniecki, A. Koliński, L. Piela, Proc. Nat. Acad. Sciences 102
(2005) 7835 a theoretical model of the conformational autocatalysis is investigated. The native confor-
mation of a protein becomes unstable in presence of a misfolded conformation of another molecule of
the protein. The native conformation unfolds and refolds to the metastable conformation.
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strong chemical bonds, and therefore
may be called “hard architecture”. The
use of intermolecular interactions in syn-
thesis (“soft architecture”, supramolec-
ular chemistry) has arisen only during
the last few decades (since Cram, Ped-
ersen and Lehn72). The supramolecu-
lar structures contain (as bricks) some
loosely bound molecules, which there-
fore do not lose their individual proper-
ties.73

Friedrich August Kekulé von
Stradonitz (1829–1896), Ger-
man organic and theoretical
chemist, professor at the uni-
versities in Gent and Bonn.
In 1858 Kekulé proved, that
carbon has valency four and
in 1865 proposed the correct
ring-like formula for benzene
after a peculiar dream about
a serpent eating its own tail.

It would seem that these “soft” structures are not interesting as they are unsta-
ble (it is sufficient to increase the temperature to make the structure disappear).
The opposite is true, because such structures, after performing their function, may
be destroyed without any significant energy expense.

13.12.1 BOUND OR NOT BOUND

Do the confined complexes such as catenans, rotaxans74 and endohedral com-
plexes (see Fig. 13.2, p. 688) represent intermolecular or intramolecular com-
plexes? Certainly, when the distance between the subsystems, still within the struc-
ture of the complex, is large enough (this might be achieved by synthesis) the in-
teraction is weak, as in any typical intermolecular interaction.

And what about the interaction of fragments of the same macromolecule that
are close in space and at the same time distant, when walking through the frame-
work of the chemical bonds? In this case we will also have some constraint for
approaching two fragments, but chemists treat the interaction of two fragments of
the DNA as if they were separate molecules. In such a way we have a coupling of
the present section of the book with Chapter 7, where the force field contained
the electrostatic interaction energy (of the net atomic charges, thus also taking
into account higher-order molecular multipoles), valence repulsion and dispersion
interaction (e.g., via terms r−12 and r−6 in the Lennard-Jones, p. 287). Among
important contributions, only the induction energy is neglected in typical force
fields.75

72Three scholars shared the 1987 Nobel Prize in chemistry for creating supramolecular chemistry, in
particular “for their development and use of molecules with structure-specific interactions of high selec-
tivity”. Donald James Cram (b. 1919), American chemist, professor at the University of California–
Berkeley; Charles John Pedersen (1904–1989), American chemist, employee of Dupont; Jean-Marie
Lehn (b. 1939), French chemist, professor at the Université de Strasbourg and College de France in
Paris.
73Although small modifications still take place.
74See a review article A.B. Braunschweig, B.H. Northrop, J.F. Stoddart, J. Materials Chem. 16 (2006)

32.
75Although the new generation of force fields take it into account, see W.D. Cornell, P. Cieplak,

C.I. Bayly, I.R. Gould, K.M. Merz, Jr., D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell,
P.A. Kollman, J. Am. Chem. Soc. 117 (1995) 5179.



746 13. Intermolecular Interactions

13.12.2 DISTINGUISHED ROLE OF THE ELECTROSTATIC INTERACTION
AND THE VALENCE REPULSION

The electrostatic contribution plays a prominent role in intermolecular in-
teraction. The electrostatic forces already operate effectively at long inter-
molecular distances (their range may, however, be reduced in polar sol-
vents).

The induction and dispersion contributions, even if sometimes larger than the
electrostatic interaction, usually play a less important role. This is because only the
electrostatics may change the sign of the energy contribution when the molecules
reorient, thus playing the pivotal role in the interaction energy.

The induction and dispersion contributions are negative (at any orientation
of the molecules), and we may say, as a rule of thumb, that their role is to
make the configurations (already being stabilized by the electrostatics) more
stable.

The valence repulsion plays the role of a hard wall (covered by a “soft blan-
ket”) that forbids the closed-shell molecules to approach too closely. This
represents a very important factor, since those molecules that do not fit to-
gether receive an energy penalty.

13.12.3 HYDROGEN BOND

Among the electrostatic interactions, the most important are those having a strong
dependence on orientation, the most representative being the hydrogen bonds X–
H. . . Y, where an electronegative atom X plays the role of a proton donor, while an elec-
tronegative atom Y – plays the role of a proton acceptor. Most often the hydrogen bond
X–H. . . Y deviates only a little from linearity. Additionally, the XY separation usually
falls into a narrow range: 2.5–3.2 Å, at least for the most important X	Y ∈ {O	N}.
The hydrogen bond features are unique, because of the extraordinary properties
of the hydrogen atom itself. This is the only atom which occasionally may attain
the partial charge equal to +0�45 e, which means it represents a nucleus devoid to
a large extent of an electron density. This is one of the reasons why the hydrogen
bond is so strong when compared with other types of intermolecular interactions.

Example 5. Water–water dimer. Let us take the example of two water molecules to
show the dominant role of electrostatics in the hydrogen bond.

As it is seen, while at the equilibrium distance ROO = 3�00 Å all the contribu-
tions are of equal importance (although the electrostatics dominates), all the con-
tributions except electrostatics, diminish considerably after increasing separation
by only about 0�70 Å. For the largest separation (ROO = 4�76), the electrostatics
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Table 13.7. Energy contributions to the interaction energy Eint in the system
HO–H. . . OH2 (hydrogen bond) calculateda within the SAPT method: elec-
trostatic energy Eelst	 valence repulsion energy E(1)exch	 induction energy Eind
and dispersion energy Edisp for three O. . . O distances: equilibrium distance

ROO = 3�00 and two distances a little larger: medium 3.70 Å and large 4.76 Å

Contributions to Eint (in kcal/mol)

ROO (Å) Eelst E
(1)
exch Eind Edisp

3�00 −7�12 4�90 −1�63 −1�54
3�70 −2�79 0�30 −0�18 −0�31
4�76 −1�12 0�00 −0�02 −0�05

aB. Jeziorski, M. van Hemert, Mol. Phys. 31 (1976) 713.

dominates by far. This is why the hydrogen bond is said to have a mainly electro-
static character.76

13.12.4 COORDINATION INTERACTION

Coordination interaction appears if an electronic pair of one subsystem (electron
donor) lowers its energy by interacting77 with an electron acceptor offering an
empty orbital, e.g., a cation (acceptor) interacts with an atom or atoms (donors)
offering lone electronic pairs. This may be also seen as a special kind of electrosta-
tic interaction.78 Fig. 13.15.a shows a derivative of porphyrin as well as a cryptand
(the name comes from the ritual of burying the dead in crypts), Fig. 13.15.b, the cryptands

compounds offering lone pairs for the interaction with a cation.

When concentrating on the ligands we can see that in principle they repre-
sent a negatively charged cavity (lone pairs) waiting for a monoatomic cation
with dimensions of a certain range only. The interaction of such a cation with
the ligand would be exceptionally large and therefore “specific” for such a
pair of interacting moieties, which is related to the selectivity of the interac-
tion.

Let us consider a water solution containing ions: Li+, Na+, K+, Rb+, Cs+. Af-
ter adding the above mentioned cryptand and after the equilibrium state is at-
tained (ions/cryptand, ions/water and cryptand/water solvation), only for K+ will
the equilibrium be shifted towards the K+/cryptand complex. For the other ions
the equilibrium will be shifted towards their association with water molecules, not
the cryptand.79 This is remarkable information.

76It has been proved that covalent structures (cf. p. 520) also contribute to the properties of the hy-
drogen bond, but their role decreases dramatically when the molecules move apart.
77Forming a molecular orbital.
78A lone pair has a large dipole moment (see Appendix T), which interacts with the positive charge of

the acceptor.
79J.-M. Lehn, “Supramolecular Chemistry”, Institute of Physical Chemistry Publications, 1993, p. 88:

the equilibrium constants of the ion/cryptand association reactions are: for Li+ , Na+, K+, Rb+, Cs+
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M

Fig. 13.15. A cation fits (a) the porphyrin ring or (b) the cryptand.

We are able to selectively extract objects of some particular shape and di-
mensions (recognition).

13.12.5 HYDROPHOBIC EFFECT

This is quite a peculiar type of interaction, which appears mainly (not only) in
water solutions.80 The hydrophobic interaction does not represent any particular
new interaction (beyond those we have already considered), because at least po-
tentially they could be explained by the electrostatic, induction, dispersion, valence
repulsion and other interactions already discussed, cf. pp. 718 and 695.

The problem may be seen from a different point of view. The basic interactions
have been derived as if operating in vacuum. However, in a medium the mole-
cules interact with one another through the mediation of other molecules, includ-
ing those of the solvent. In particular, a water medium creates a strong network of

(only the order of magnitude is given): 102	107	1010	108	104, respectively. As seen the cryptand’s
cavity only fits well to the potassium cation.
80W. Kauzmann, Advan. Protein Chem. 14 (1959) 1. A contemporary theory is given in K. Lum,

D. Chandler, J.D. Weeks, J. Phys. Chem. 103 (1999) 4570.



13.12 Synthons and supramolecular chemistry 749

the hydrogen bonds that surround the hydrophobic moieties expelling them from
the solvent81 and pushing together which imitates their mutual attraction, resulting
in the formation of a sort of “oil drop”.

We may say in a rather simplistic way that hydrophobic molecules aggregate
not because they attract particularly strongly, but because water strongly
prefers them to be out of its hydrogen bond net structure.

Hydrophobic interactions have a complex character and are not yet fully under-
stood. The interaction depends strongly on the size of the hydrophobic synthons.
For small sizes, e.g., such as two methane molecules in water, the hydrophobic amphiphilic

moleculesinteraction is small, increasing considerably for larger synthons. The hydropho-
bic effects become especially important for what is called the amphiphilic macro-
molecules with their van der Waals surfaces differing in hydrophobic character
(hydrophobic/hydrophilic). The amphiphilic molecules are able to self-organize, self-

organizationforming structures up to the nanometer scale (“nanostructures”).
nano-structuresFig. 13.16 shows an example of the hierarchic (“multi-level”) character of a

molecular architecture:

• The chemical binding of the amino acids into the oligopeptides is the first level
(“hard architecture”).

• The second level (“soft architecture”) corresponds to a beautiful network of
hydrogen bonds responsible for forming the α-helical conformation of each of
the two oligopeptides.

• The third level corresponds to an extremely effective hydrophobic interaction, leucine-valine
zipperthe leucine-valine zipper. Two α-helices form a very stable structure82 winding up

around each other and thus forming a kind of a superhelix, known as coiled-coil,
due to the hydrophobic leucine-valine zipper.83 coiled-coil

The molecular architecture described above was first planned by a chemist.
The system fulfilled all the points of the plan and self-organized in a spontaneous
process.84

81Hydrophobic interactions involve not only the molecules on which we focus our attention, but also,
to an important extent, the water molecules of the solvent. The hydrogen bond network keeps the
hydrophobic objects together, as a shopping bag keeps lard slabs together.

The idea of solvent-dependent interactions represents a general and fascinating topic of research.
Imagine the interaction of solutes in mercury, in liquid gallium, liquid sodium, in a highly polarizable
organic solvent, etc. Due to the peculiarities of these solvents, we will have different chemistry going
on in them.
82B. Tripet, L. Yu, D.L. Bautista, W.Y. Wong, T.R. Irvin, R.S. Hodges, Prot. Engin. 9 (1996) 1029.
83Leucine may be called the “flag ship” of the hydrophobic amino acids, although this is not the most

polite compliment for a hydrophobe.
84One day I said to my friend Leszek Stolarczyk: “If those organic chemists wanted to, they could syn-

thesize anything you might dream of. They are even able to cook up in their flasks a molecule composed of
the carbon atoms that would form the shape of a cavalry man on his horse”. Leszek answered: “Of course!
And the cavalry man would have a little sabre, made of iron atoms.”
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Fig. 13.16. An example of formation of the coiled-coil in the case of two oligopeptide chains (a):
(EVSALEK)n with (KVSALKE)n, with E standing for the glutamic acid, V for valine, S for serine,
A for alanine, L for leucine, K for lysine. This is an example of a multi-level molecular architecture.
First, each of the two oligopeptide chains form α-helices, which afterwards form a strong hydrophobic
complex due to a perfect matching (leucine and valine of one of the α-helices with valine and leucine
of the second one, known as the leucine-valine zipper (b)). The complex is made stronger additionally
by two salt bridges (COO− and NH+3 electrostatic interaction) involving pairs of glutamic acid (E) and
lysine (K). The resulting complex (b) is so strong that it serves in analytical chemistry for the separation
of some proteins.

13.12.6 MOLECULAR RECOGNITION – SYNTHONS

Organic molecules often have quite a few donor and acceptor substituents. These
names may pertain to donating/accepting electrons or protons (cf. the charge con-
jugation described on p. 702). Sometimes a particular side of a molecule displays a
system of donors and acceptors. Such a system “awaiting” interaction with a com-
plementary object is called a synthon,85 and their matching represents the molec-
ular recognition. The cryptand in Fig. 13.15.b therefore contains a synthon able to
recognize a narrow class of cations (with sizes within a certain range).

In Fig. 13.17 we show another example of synthons based on hydrogen bonds.
Due to the particular geometry of the molecules as well as to the above mentioned
weak dependence of the XY distance on X and Y, both synthons are complemen-
tary. The example is of immense importance, because it pertains to guanine (G),
cytosine (C), adenine (A) and thymine (T). Thanks to these two pairs of synthons
(GC and AT) we exist, because the G, C together with the A and T represent the
four letters which are sufficient to write the Book of Life word by word in a single
molecule of DNA. The words, the sentences and the chapters of this Book decide
the majority of the very essence of your (and my) personality. The whole DNA
strand may be considered as a large single synthon. The synthon has its important
counterpart which fits the DNA perfectly because of the complementarity. The
molecular machine which synthesizes this counterpart molecule (a “negative”) is

85G.R. Desiraju, “Crystal Engineering, The Design of Organic Solids”, Elsevier, Amsterdam, 1989.
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about 1 about 1.5 2.2

Fig. 13.17. Synthons are often based on a hydrogen bond pattern (a). The synthon of guanine (G) fits
the synthon of cytosine (C), while the synthon of adenine (A) fits that of the thymine (T) (b).

the polymerase, a wonderful molecule (you will read about in Chapter 15). Any
error in this complementarity results in a mutation.86

13.12.7 “KEY-LOCK”, TEMPLATE AND “HAND-GLOVE” SYNTHON
INTERACTIONS

The energy spectrum of a molecule represents something like its finger print. The
particular energy levels correspond to various electronic, vibrational and rotational
states (Chapter 6). Different electronic states87 may be viewed as representing dif-
ferent chemical bond patterns. Different vibrational states88 form series, each se-
ries for an energy well on the PES. The energy level pattern is completed by the
rotational states of the molecule as a whole. Since the electronic excitations are of
the highest energy, the PES of the ground electronic state is most important. For
flexible molecules such a PES is characterized by a lot of potential energy wells cor-
responding to the conformational states. If the bottoms of the excited conforma-
tional wells are of high energy (with respect to the lowest-energy well, Fig. 13.18.a),
then the molecule in its ground state may be called “rigid”, because high energy is
needed to change the molecular conformation.

86Representing a potential or real danger, as well as a chance for evolution.
87In the Born–Oppenheimer approximation, each corresponding to a potential energy hypersurface,

PES.
88Including internal rotations, such as those of the methyl group.
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Fig. 13.18. The key-lock, template and hand-glove molecular recognition. Any molecule may be char-
acterized by a spectrum of its energy states. (a) In the key-lock type interaction of two rigid molecules A
and B their low-energy conformational states are separated from the quasi-continuum high-energy con-
formational states (including possibly those of some excited electronic states) by an energy gap, in gen-
eral different for A and B. Due to the effective synthon interactions the energy per molecule lowers
substantially with respect to that of the isolated molecules leading to the molecular recognition without
significant changes of molecular shape. (b) In the template-like interaction one of the molecules is rigid
(large energy gap), while the other one offers a quasi-continuum of conformational states. Among the
later, there is one that (despite of being a conformational excited state), due to the perfect matching of
synthons results in considerable energy lowering, much below the energy of isolated molecules. Thus,
one of the molecules has to distort in order to get perfect matching. (c) In the hand-glove type of in-
teraction the two interacting molecules offer quasi-continua of their conformational states. Two of the
excited conformational states correspond to such molecular shapes as match each other perfectly and
lower the total energy considerably. This lowering is so large that it is able to overcome the conforma-
tional excitation energy (an energy cost of molecular recognition).

If such rigid molecules A and B match each other, this corresponds to the key-
lock type of molecular recognition. To match, the interacting molecules sometimes
have only to orient properly in space when approaching one another and then dock
(the AT or GC pairs may serve as an example). The key-lock concept of Fischer
from 100 years ago (concerning enzyme–substrate interaction) is considered as
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the foundation of supramolecular chemistry – the chemistry that deals with the
complementarity and matching of molecules.

One of the molecules, if rigid enough, may serve as a template for another mole-
cule, which is flexible, Fig. 13.18.b, and together they form a strong complex. Fi-
nally two flexible molecules (Fig. 13.18.c) may pay an energy penalty for acquiring
higher-energy conformations, but such ones which lead to a very strong interaction
of the molecules in the hand-glove type of molecular recognition.89

Still another variation of this interac-
tion comes into play, when during the
approach, a new type of synthon ap-
pears, and the synthons match after-
wards. For example in the Hodges su-
perhelical structure (Fig. 13.16), only
after formation of the α-helices does
it turn out that the leucine and va-
line side chains of one helix match per-
fectly similar synthons of the second he-
lix (“leucine-valine zipper”).

Nature has done it routinely for mil-
lions of years. Endonuclease (EcoRV)
represents an enzyme whose function is

Hermann Emil Fischer (1852–
1919), German chemist, pro-
fessor at the universities in
Strasbourg, Munich, Erlan-
gen, Würzburg, Berlin. Known
mainly for his excellent works
on the structure of sugar com-
pounds. His (recognized dec-
ades later) correct determina-
tion of the absolute confor-
mation of sugars was based
solely on the analysis of their
chemical properties. Even to-
day this would require ad-
vanced physicochemical in-

vestigations. In 1902 Fischer
received the Nobel Prize “for
his work on sugar and purine
syntheses”.

selective chemical bond breaking between nucleotides (linking the adenine and
thymine) in a single DNA strand. Fig. 13.19 shows a model of the complex of
EcorV with a fragment of DNA,90 altogether about 62000 atoms. Fig. 13.19 high-
lights some aspects of the interaction.

Note the hierarchic structure of the host–guest complex (DNA-EcoRV). DNA “host–guest”
complexis a double-helix (Fig. 13.19.a) and this shape results mainly from the intermolec-

ular A. . . T and G. . . C interactions through mediation of the hydrogen bonds. The
enzyme EcoRV (Fig. 13.19.b) also has a highly organized structure, in particular
six α-helices and a few β strands exhibit their characteristic hydrogen bond pat-
terns (not displayed in the figure), these secondary structure elements fit together
through the mediation of hydrophobic interactions. As we can see, the cavity of the
EcorV is too small, but becomes larger when the guest molecule is accommodated
(“hand-glove” effect), thus enabling an effective host–guest interaction. This ex-
ample shows how important valence repulsion is. If the EcoRV cavity differed much
from that suitable to accommodate the guest molecule, the host when deforming would
pay a too high an energetic price and the energetic gain connected to docking would
become too small to compensate for this energy expense.

89Our immunological system represents an excellent example. When a foreign agent enters the blood
system, it is bound by an antibody that is able to adapt its shape to practically any agent. Moreover, a
complex mechanism transmits the information about the agent’s size and shape, and all this results in
mass production of antibodies with the particular shape needed to bind the invader.
90L. Wróblewska, Master thesis, University of Warsaw, 2000.
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Fig. 13.19. The DNA fragment (“guest”) fits the cavity in the enzyme EcoRV (“host”) structure very
well. (a) A fragment of the double-strand DNA helix (side view). (b) EcoRV. (c) Host–guest complex
(the DNA molecule shown in the top view). Besides the geometric fitting (i.e. a lack of considerable
valence repulsion) there is also an electrostatic and amphiphilic fitting of both subsystems.

Another masterpiece of nature – self-organization of the tobacco virus is shown
in Fig. 13.20. Such a complex system self-assembles, because its parts not only fit
one another (synthons), but also found themselves in solution and made perfect
matching accompanied by an energy gain. Even more spectacular is the structure
and functioning of bacteriophage T (Fig. 13.21).
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Fig. 13.20. Self-organization of the tobacco virus. The virus consists of an RNA helix (shown as a single
strand) containing about 7000 nucleotides – sufficient genetic material to code the production of 5–10
proteins (first level of supramolecular self-organization). The RNA strand interacts very effectively with
a certain protein (shown as a “drop”; the second level). The protein molecules associate with the RNA
strand forming a kind of necklace, and then the system folds (third level) into a rod-like shape, typical
for this virus. The rods are able to form a crystal (level four, not shown here), which melts after heating,
but is restored when cooled down.

Summary

• Interaction energy of two molecules (at a given geometry) may be calculated within any
reliable quantum mechanical method by subtracting from the total system energy the sum
of the energies of the subsystems. This is called a supermolecular method.

• The supermolecular method has at least one important advantage: it works independently
of the interaction strength and of the intermolecular distance. The method has the disadvan-
tage that due to the subtraction, a loss of accuracy occurs and no information is obtained
about the structure of the interaction energy.

• In the supermolecular method there is a need to compensate for what is called the basis
set superposition error (BSSE). The error appears because due to the incompleteness of
the atomic basis set (�A	�B), the individual subsystem A with the interaction switched
off profits from the �A basis set only, while when interacting lowers its energy due to
the total �A ∪�B basis set (the same pertains to any of the subsystems). As a result a
part of the calculated interaction energy does not come from the interaction, but from the
problem of the basis set used (BSSE) described above. A remedy is called the counter-
poise method, in which all quantities (including the energies of the individual subsystems)
are calculated within the �A ∪�B basis set.
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Fig. 13.21. Bacteriophage T represents a supramolecular construction that terrorizes bacteria. The
hexagonal “head” contains a tightly packed double helix of DNA (the virus genetic material) wrapped
in a coat build of protein subunits. The head is attached to a tube-like molecular connector built of 144
contractible protein molecules. On the other side of the connector there is a plate with six spikes pro-
truding from it as well as six long, kinked “legs” made of several different protein molecules. The legs
represent a “landing aparatus” which, using intermolecular interactions, attaches to a particular recep-
tor on the bacterium cell wall. This reaction is reversible, but what happens next is highly irreversible.
First, an enzyme belonging to the monster makes a hole in the cell wall of the bacterium. Then the
144 protein molecules contract probably at the expense of energy from hydrolysis of the ATP molecule
(adenosine triphosphate – a universal energy source in biology), which the monster has at its disposal.
This makes the head collapse and the whole monster serves as a syringe. The bacteriophage’s genetic
material enters the bacterium body almost in no time. That is the end of the bacterium.

• Perturbational method has limited applicability:
– at long intermolecular separations what is called the polarization approximation may

be used,
– at medium distances a more general formalism called the symmetry adapted perturba-

tion theory may be applied,
– at short distances (of the order of chemical bond lengths) perturbational approaches

are inapplicable.
• One of the advantages of a low-order perturbational approach is the possibility of dividing

the interaction energy into well defined physically distinct energy contributions.
• In a polarization approximation approach, the unperturbed wave function is assumed as

a product of the exact wave functions of the individual subsystems: ψ(0)0 =ψA	0ψB	0. The

corresponding zero-order energy is E(0)0 =EA	0 +EB	0.
• Then, the first-order correction to the energy represents what is called the electrostatic

interaction energy: E(1)0 = Eelst = 〈ψA	0ψB	0|V ψA	0ψB	0〉, which is the Coulombic in-
teraction (at a given intermolecular distance) of the frozen charge density distributions of
the individual, non-interacting molecules. After using the multipole expansion Eelst can
be divided into the sum of the multipole–multipole interactions plus a remainder, called
the penetration energy. A multipole–multipole interaction corresponds to the permanent
multipoles of the isolated molecules. An individual multipole–multipole interaction term
(2k-pole with 2l-pole) vanishes asymptotically as R−(k+l+1), e.g., the dipole–dipole term
decreases as R−(1+1+1) =R−3.
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• In the second order we obtain the sum of the induction and dispersion terms: E(2) =
Eind +Edisp.

• The induction energy splits into

Eind(A→ B)=
∑

nB

′ |〈ψA	0ψB	nB |V ψA	0ψB	0〉|2
(EB	0 −EB	nB)

	

which pertains to polarization of molecule B by the unperturbed molecule A	 and

Eind(B→A)=
∑

nA

′ |〈ψA	nAψB	0|V |ψa	0ψb	0〉|2
(EA	0 −EA	nA)

	

with the roles of the molecules exchanged. The induction energy can be represented as
the permanent multipole – induced multipole interaction, where the interaction of the
2k-pole with the 2l-pole vanishes as R−2(k+l+1).

• The dispersion energy is defined as

Edisp =
∑

nA

′∑

nB

′ |〈ψA	nAψB	nB |V ψA	0ψB	0〉|2
(EA	0 −EA	nA)+ (EB	0 −EB	nB)

and represents a result of the electronic correlation. After applying the multipole expan-
sion, the effect can be described as a series of instantaneous multipole – instantaneous
multipole interactions, with the individual terms decaying asymptotically as R−2(k+l+1).
The most important contribution is the dipole–dipole (k= l= 1), which vanishes as R−6.

• The polarization approximation fails for medium and short distances. For medium sepa-
rations we may use symmetry-adapted perturbation theory (SAPT). The unperturbed wave
function is symmetry-adapted, i.e. has the same symmetry as the exact function. This is not
true for the polarization approximation, where the product-like ϕ(0) does not exhibit the
proper symmetry with respect to electron exchanges between the interacting molecules.
The symmetry-adaptation is achieved by a projection of ϕ(0)�

• Symmetry-adapted perturbation theory reproduces all the energy corrections that appear
in the polarization approximation (Eelst	Eind	Edisp	 � � �) plus provides some exchange-type
terms (in any order of the perturbation except the zeroth).

• The most important exchange term is the valence repulsion appearing in the first-order
correction to the energy:

E
(1)
exch =

〈

ψA	0ψB	0
∣
∣V P̂ABψA	0ψB	0

〉

− 〈ψA	0ψB	0|V ψA	0ψB	0〉
〈

ψA	0ψB	0
∣
∣P̂ABψA	0ψB	0

〉+O
(

S4)	

where O(S4) represents all the terms decaying as the fourth power of the overlap inte-
gral(s) or faster, P̂AB stands for the single exchanges’ permutation operator.

• The interaction energy of N molecules is not pairwise additive, i.e. is not the sum of the
interactions of all possible pairs of molecules. Among the energy corrections up to the
second order, the exchange and, first of all, the induction terms contribute to the non-
additivity. The electrostatic and dispersion (in the second order) contributions are pair-
wise additive.

• The non-additivity is highlighted in what is called the many-body expansion of the interac-
tion energy, where the interaction energy is expressed as the sum of two-body, three-body,
etc. energy contributions. Them-body interaction is defined as that part of the interaction
energy that is non-explicable by any interactions of m′ <m molecules, but explicable by
the interactions among m molecules.
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• The dispersion interaction in the third-order perturbation theory contributes to the three-
body non-additivity and is called the Axilrod–Teller energy. The term represents a corre-
lation effect. Note that the effect is negative for three bodies in a linear configuration.

• The most important contributions: electrostatic, valence repulsion, induction and disper-
sion lead to a richness of supramolecular structures.

• The electrostatic interaction plays a particularly important role, because it is of a long-
range character as well as very sensible to relative orientation of the subsystems. The
hydrogen bond X–H. . . Y represents an example of the domination of the electrostatic
interaction. This results in its directionality, linearity and a small (as compared to typical
chemical bonds) interaction energy of the order of 5 kcal/mol.

• Also the valence repulsion is one of the most important energy contributions, because it
controls how the interacting molecules fit together in space.

• The induction and dispersion interactions for polar systems, although contributing signif-
icantly to the binding energy, in most cases do not have a decisive role and only slightly
modify the geometry of the resulting structures.

• In aqueous solutions the solvent structure contributes very strongly to the intermolecular
interaction, thus leading to what is called the hydrophobic effect. The effect expels the
non-polar subsystems from the solvent, thus causing them to approach, which looks like
an attraction.

• A molecule may have such a shape that it fits that of another molecule (synthons, small
valence repulsion and a large number of attractive atom–atom interactions).

• In this way molecular recognition may be achieved by the key-lock-type fit (the molecules
non-distorted), template fit (one molecule distorted) or by the hand-glove-type fit (both
molecules distorted).

• Molecular recognition may be planned by chemists and used to build complex molecular
architectures, in a way similar to that in which living matter operates.

Main concepts, new terms

interaction energy (p. 684)
natural division (p. 684)
binding energy (p. 687)
dissociation energy (p. 687)
dissociation barrier (p. 687)
catenans (p. 688)
rotaxans (p. 688)
endohedral complexes (p. 688)
supermolecular method (p. 689)
basis set superposition error (BSSE) (p. 690)
ghosts (p. 690)
polarization perturbation theory (p. 692)
electrostatic energy (p. 693)
induction energy (p. 694)
dispersion energy (p. 694)
multipole moments (p. 698)
permanent multipoles (p. 701)
SAPT (p. 710)
function with adapted symmetry (p. 711)
symmetry forcing (p. 716)

polarization collapse (p. 717)
symmetrized polarization approximation

(p. 717)
MS–MA perturbation theory (p. 717)
Jeziorski–Kołos perturbation theory (p. 717)
valence repulsion (p. 718)
Padé approximants (p. 722)
Pauli blockade (p. 722)
exchange–deformation interaction (p. 722)
interaction non-additivity (p. 726)
many-body expansion (p. 727)
SE mechanism (p. 733)
TE mechanism (p. 734)
polarization catastrophe (p. 738)
three-body polarization amplifier (p. 738)
Axilrod–Teller dispersion energy (p. 741)
van der Waals radius (p. 742)
van der Waals surface (p. 742)
supramolecular chemistry (p. 744)
hydrogen bond (p. 746)
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hydrophobic effect (p. 748)
amphiphilicity (p. 749)
nanostructures (p. 749)
leucine-valine zipper (p. 749)

synthon (p. 750)
template (p. 751)
“key-lock” interaction (p. 751)
“hand-glove” interaction (p. 751)

From the research front

Intermolecular interactions influence any liquid and solid state measurements. Physicoche-
mical measurement techniques give only some indications of the shape of a molecule, except
NMR, X-ray and neutron analyses, which provide the atomic positions in space, but are very
expensive. This is why there is a need for theoretical tools which may offer such information
in a less-expensive way. For very large molecules, such an analysis uses the force fields de-
scribed in Chapter 7. This is currently the most powerful theoretical tool for determining the
approximate shape of molecules with numbers of atoms even of the order of hundreds of
thousands. To obtain more reliable information about intermolecular interactions we may
perform calculations within a supermolecular approach, necessarily of an ab initio type, be-
cause other methods give rather poor quality results. The DFT method popular nowadays
fails at its present stage of development, because the intermolecular interactions area, espe-
cially the dispersion interaction, is a particularly weak point of the method. If the particular
method chosen is the Hartree–Fock approach (currently limited to about 300 atoms), we
have to remember that it cannot take into account any dispersion contribution to the inter-
action energy by definition.91 Ab initio calculations of the correlation energy still represent a
challenge. Good quality calculations for a molecule with a dozen atoms may be carried out
using the MP2 method. Still more time consuming are the CCSD(T) or SAPT calculations,
which are feasible for only a few atom systems, but offer an accuracy of 1 kcal/mol required
for chemical applications.

Ad futurum. . .

No doubt the computational techniques will continue to push the limits mentioned above.
The more coarse the method used, the more spectacular this pushing will be. The most
difficult to imagine would be a great progress in methods using explicitly correlated wave
functions. It seems that pushing the experimental demands and calculation time required
will cause experimentalists (they will perform the calculations92) to prefer a rough estima-
tion using primitive methods rather than wait too long for a precise result (still not very
appropriate, because the results are obtained without taking the influence of solvent, etc.
into account). It seems that in the near future we may expect theoretical methods exploiting
the synthon concept. It is evident that a theoretician has to treat the synthons on an equal
footing with other atoms, but a practice-oriented theoretician cannot do that, otherwise he
would wait virtually forever for something to happen in the computer, while in reality the
reaction takes only a picosecond or so. Still further into the future we will see the planning
of hierarchic multi-level supramolecular systems, taking into account the kinetics and com-
petitiveness among such structures. In the still more distant future, functions performed by
such supramolecular structures, as well as their sensitivity to changing external conditions,
will be investigated.

91The dispersion energy represents an electronic correlation effect, absent in the Hartree–Fock en-
ergy.
92What will theoreticians do? My answer is given in Chapter 15.
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Additional literature

J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, “Molecular Theory of Gases and Liquids”,
Wiley, New York, 1964.

A thick “bible” (1249 pages) of intermolecular interactions. We find there everything
before the advent of computers and of the symmetry-adapted perturbation theory.

H. Margenau, N.R. Kestner, “Theory of Intermolecular Forces”, Pergamon, Oxford,
1969.

A lot of detailed derivations. There is also a chapter devoted to the non-additivity of
the interaction energy – a rara avis in textbooks.

A.J. Stone, “The Theory of Intermolecular Forces”, Oxford Univ. Press, Oxford, 1996.
The book contains the basic knowledge in the field of intermolecular interactions given

in the language of perturbation theory as well as the multipole expansion (a lot of use-
ful formulae for the electrostatic, induction and dispersion contributions). This very well
written book presents many important problems in a clear and comprehensive way.

“Molecular Interactions”, ed. S. Scheiner, Wiley, Chichester, 1997.
A selection of articles written by experts.

P. Hobza, R. Zahradnik, “Intermolecular Complexes”, Elsevier, Amsterdam, 1988.
Many useful details.

I.G. Kaplan, “Intermolecular Interactions”, Wiley, Chichester, 2006.
A very well written book, covering broad and fundamental aspects of the field.

Questions

1. In order to avoid the basis set superposition error using the counter-poise method:
a) all quantities have to be calculated within the total joint atomic basis set;
b) the energy of the total system has to be calculated within the total joint atomic basis
set, while the subsystem energies have to be calculated within their individual atomic
basis sets;
c) the total energy has to be calculated within a modest quality basis set, while for the
subsystems we may allow ourselves a better quality basis set;
d) all the atomic orbitals have to be centred in a single point in space.

2. In the polarization approximation the zero-order wave function is:
a) the sum of the wave functions of the polarized subsystems;
b) the product of the wave functions of the polarized subsystems;
c) a linear combination of the wave functions for the isolated subsystems;
d) the product of the wave functions of the isolated subsystems.

3. Please find the false statement:
a) dissociation energy depends on the force constants of the normal modes of the mole-
cule;
b) interaction energy calculated for the optimal geometry is called the binding energy;
c) the absolute value of the dissociation energy is larger than the absolute value of the
binding energy;
d) some systems with energy higher than the dissociation limit may be experimentally
observed as stable.
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4. Please find the false statement. The induction energy (R stands for the intermolecular
distance):
a) represents an electronic correlation effect;
b) for two water molecules decays asymptotically as R−6;
c) is always negative (attraction);
d) for the water molecule and the argon atom vanishes as R−6.

5. Dispersion energy (R stands for the intermolecular distance):
a) is non-zero only for the noble gas atom interaction;
b) is equal to zero for the interaction of the two water molecules calculated with the
minimal basis set;
c) represents an electronic correlation effect;
d) decays asymptotically as R−4.

6. A particle has electric charge equal to q and Cartesian coordinates x	 y	 z. Please find
the false statement:
a) the multipole moments of the particle depend in general on the choice of the coordi-
nate system;
b) the operator of the z component of the dipole moment (μz) of the particle is equal
to qz;
c) a point-like particle does not have any dipole moment, therefore μz = 0;
d) the octupole moment operator of the particle is a polynomial of the third degree.

7. In symmetry adapted perturbation theory for He2:
a) we obtain the dispersion energy in the first order of the perturbation theory;
b) the electronic energy exhibits a minimum as a function the interatomic distance;
c) the binding energy is non-zero and is caused by the induction interaction;
d) the unperturbed wave function is asymmetric (do not mix with antisymmetry) with
respect to every electron permutation.

8. Please choose the false statement. In symmetry adapted perturbation theory:
a) the zeroth order wave function is a product of the wave functions of the individual
molecules;
b) the electrostatic energy together with the valence repulsion appears in the first order;
c) the exchange corrections appear in all (non-zero) orders;
d) the Pauli exclusion principle is taken into account.

9. The non-additivity of the interaction energy has the following features:
a) the electrostatic energy is additive, while the induction energy is not;
b) the valence repulsion is additive for single exchanges;
c) the dispersion interaction being a correlation effect is non-additive;
d) the Axilrod–Teller interaction is additive.

10. Typical distances X. . . Y and H. . . Y for a hydrogen bond X–H. . . Y are closest to the
following values (Å):
a) 1.5, 1; b) 2.8, 1.8; c) 3.5, 2.5; d) 2.8, 1.

Answers

1a, 2d, 3c, 4a, 5c, 6c, 7b, 8a, 9a, 10b



Chapter 14

INTERMOLECULAR
MOTION OF ELECTRONS
AND NUCLEI:
CHEMICAL REACTIONS

Where are we?

We are already picking fruit in the crown of the TREE.

Example

Why do two substances react and another two do not? Why does increasing the temperature
often start a reaction? Why does a reaction mixture change colour? As we know from Chap-
ter 6, this tells us about some important electronic structure changes. On the other hand the
products (as opposed to the reactants) tell us about profound changes in the positions of
the nuclei that take place simultaneously. Something dramatic is going on. But what?

What is it all about

How atom A eliminates atom C from diatomic molecule BC? How can a chemical reac-
tion be described as a molecular event? Where does the reaction barrier come from? Such
questions will be discussed in this chapter.

The structure of the chapter is the following.

Hypersurface of the potential energy for nuclear motion (�) p. 766
• Potential energy minima and saddle points
• Distinguished reaction coordinate (DRC)
• Steepest descent path (SDP)
• Our goal
• Chemical reaction dynamics (pioneers’ approach)

AB INITIO APPROACH p. 775

Accurate solutions for the reaction hypersurface (three atoms) (��) p. 775
• Coordinate system and Hamiltonian
• Solution to the Schrödinger equation
• Berry phase

APPROXIMATE METHODS p. 781

Intrinsic Reaction Coordinate (IRC) or statics (�) p. 781

Reaction path Hamiltonian method (��) p. 783
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• Energy close to IRC
• Vibrationally adiabatic approximation
• Vibrationally non-adiabatic model
• Application of the reaction path Hamiltonian method to the reaction

H2 +OH→H2O+H

Acceptor–donor (AD) theory of chemical reactions (��) p. 798
• Maps of the molecular electrostatic potential
• Where does the barrier come from?
• MO, AD and VB formalisms
• Reaction stages
• Contributions of the structures as the reaction proceeds
• Nucleophilic attack H− + ethylene → ethylene + H−
• Electrophilic attack H+ +H2 →H2 +H+
• Nucleophilic attack on the polarized chemical bond in the VB picture
• What is going on in chemist’ flask?
• Role of symmetry
• Barrier means a cost of opening the closed-shells

Barrier for the electron transfer reaction (��) p. 828
• Diabatic and adiabatic potential
• Marcus theory

We are already acquainted with the toolbox for describing the electronic structure at
any position of the nuclei. It is time now to look at possible large changes of the electronic
structure at large changes of nuclear positions. The two motions: of the electrons and nuclei
will be coupled together (especially in a small region of the configurational space).

Our plan consists of four parts:

• In the first part (after using the Born–Oppenheimer approximation, fundamental to this
chapter), we assume that we have calculated the ground-state electronic energy, i.e. the
potential energy for the nuclear motion. It will turn out that the hypersurface has a char-
acteristic “drain-pipe” shape, and the bottom in the central section, in many cases, exhibits a
barrier. Taking a three-atom example, we will show how the problem could be solved, if
we were capable of calculating the quantum dynamics of the system accurately.

• In the second part we will concentrate on a specific representation of the system’s energy
that takes explicitly into account the above mentioned reaction drain-pipe (“reaction path
Hamiltonian”). Then we will focus on describing how a chemical reaction proceeds. Just
to be more specific, an example will be shown in detail.

• In the third part (acceptor–donor theory of chemical reactions) we will find the answer to
the question, of where the reaction barrier comes from and what happens to the electronic
structure when the reaction proceeds.

• The fourth part will pertain to the reaction barrier height in electron transfer (a subject
closely related to the second and the third parts).

Why is this important?

Chemical reactions are at the heart of chemistry, making possible the achievement of its
ultimate goals, which include synthesizing materials with desired properties. What happens
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in the chemist’s flask is a complex phenomenon1 which consists of an astronomical number
of elementary reactions of individual molecules. In order to control the reactions in the
flask, it would be good to first understand the rules which govern these elementary reaction
acts.

What is needed?

• Hartree–Fock method (Chapter 8, necessary).
• Conical intersection (Chapter 6, necessary).
• Normal modes (Chapter 7, necessary).
• Appendices M (recommended), E (recommended), Z (necessary), I (recommended),

G (just mentioned).
• Elementary statistical thermodynamics or even phenomenological thermodynamics: en-

tropy, free energy (necessary).

Classical works

Everything in chemistry began in the twenties of the twentieth century.
The first publications that considered conical intersection – a key concept for chemi-

cal reactions – were two articles from the Budapest schoolmates: Janos (John) von Neu-
mann and Jenó Pál (Eugene) Wigner “Über merkwürdige diskrete Eigenwerte” published in
Physikalische Zeitschrift, 30 (1929) 465 and “Über das Verhalten von Eigenwerten bei adi-
abatischen Prozessen” which also appeared in Physikalische Zeitschrift, 30 (1929) 467. �
Then a paper “The Crossing of Potential Surfaces” by their younger schoolmate Edward
Teller was published in the Journal of Chemical Physics, 41 (1937) 109. � A classical theory
of the “reaction drain-pipe” with entrance and exit channels was first proposed by Henry
Eyring, Harold Gershinowitz and Cheng E. Sun in “Potential Energy Surface for Linear H3”,
the Journal of Chemical Physics, 3 (1935) 786, and then by Joseph O. Hirschfelder, Henry
Eyring and Bryan Topley in an article “Reactions Involving Hydrogen Molecules and Atoms”
in Journal of Chemical Physics, 4 (1936) 170 and by Meredith G. Evans and Michael Polanyi
in “Inertia and Driving Force of Chemical Reactions” which appeared in Transactions of the
Faraday Society, 34 (1938) 11. � Hugh Christopher Longuet-Higgins, U. Öpik, Maurice
H.L. Pryce and Robert A. Sack in a splendid paper “Studies of the Jahn–Teller Effect”, Pro-
ceedings of the Royal Society of London, A244 (1958) 1 noted for the first time, that the wave
function changes its phase close to a conical intersection, which later on became known
as the Berry phase. � The acceptor–donor description of chemical reactions was first pro-
posed by Robert S.J. Mulliken in “Molecular Compounds and their Spectra”, Journal of the
American Chemical Society, 74 (1952) 811. � The idea of the intrinsic reaction coordinate
(IRC) was first given by Isaiah Shavitt in “The Tunnel Effect Corrections in the Rates of Reac-
tions with Parabolic and Eckart Barriers”, Report WIS-AEC-23, Theoretical Chemistry Lab.,
University of Wisconsin (1959) as well as by Morton A. Eliason and Joseph O. Hirschfelder
in the Journal of the Chemical Physics, 30 (1959) 1426 in an article “General Collision Theory
Treatment for the Rate of Bimolecular, Gas Phase Reactions”. � The symmetry rules allow-
ing some reactions and forbidding others were first proposed by Robert B. Woodward and
Roald Hoffmann in two letters to the editor: “Stereochemistry of Electrocyclic Reactions”
and “Selection Rules for Sigmatropic Reactions”, Journal of American Chemical Society, 87
(1965) 395, 2511 as well as by Kenichi Fukui and Hiroshi Fujimoto in an article published

1See Chapter 15.
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in the Bulletin of the Chemical Society of
Japan, 41 (1968) 1989. � The concept of the
steepest descent method was formulated by
Kenichi Fukui in “A Formulation of the Reac-
tion Coordinate”, which appeared in the Jour-
nal of Physical Chemistry, 74 (1970) 4161, al-
though the idea seems to have a longer his-
tory. � Other classical papers include a sem-
inal article by Sason S. Shaik “What Happens
to Molecules as They React? Valence Bond Ap-
proach to Reactivity” in Journal of the Ameri-
can Chemical Society, 103 (1981) 3692. � The
Hamiltonian path method was formulated
by William H. Miller, Nicolas C. Handy and
John E. Adams, in an article “Reaction Path

John Charles Polanyi (born
1929), Canadian chemist of
Hungarian origin, son of Mic-
hael Polanyi (one of the pio-
neers in the field of chemical
reaction dynamics), professor
at the University of Toronto.
John was attracted to chem-
istry by Meredith G. Evans,
who was a student of his fa-
ther. Three scholars: John
Polanyi, Yuan Lee and Dudley
Herschbach shared the 1986
Nobel prize “for their contribu-

tions concerning the dynam-
ics of chemical elementary
processes”.

Hamiltonian for Polyatomic Molecules” in the
Journal of the Chemical Physics, 72 (1980)
99. � The first quantum dynamics simula-
tion was performed by a PhD student George
C. Schatz (under the supervision of Aron
Kupperman) for the reaction H2 + H → H
+ H2, reported in “Role of Direct and Res-
onant Processes and of their Interferences in
the Quantum Dynamics of the Collinear H +
H2 Exchange Reaction”, in Journal of Chem-
ical Physics, 59 (1973) 964. � John Polanyi,
Dudley Herschbach and Yuan Lee proved
that the lion’s share of the reaction energy is

Yuan T. Lee is a native of Tai-
wan, called by his colleagues
“a Mozart of physical chem-
istry”. He wrote that he was
deeply impressed by a biog-
raphy of Mme Curie and that
her idealism decided his own
path.

delivered through the rotational degrees of
freedom of the products, e.g., J.D. Barn-
well, J.G. Loeser, D.R. Herschbach, “Angu-
lar Correlations in Chemical Reactions. Statis-
tical Theory for Four-Vector Correlations” pub-
lished in the Journal of Physical Chemistry, 87
(1983) 2781. � Ahmed Zewail (Egypt/USA)
developed an amazing experimental tech-
nique known as femtosecond spectroscopy,
which for the first time allowed the study
of the reacting molecules at different stages
of an ongoing reaction (“Femtochemistry –
Ultrafast Dynamics of The Chemical Bond”,
vol. I and II, A.H. Zewail, World Scientific,
New Jersey, Singapore (1994)). � Among
others, Josef Michl, Lionel Salem, Donald
G. Truhlar, Robert E. Wyatt, and W. Ronald
Gentry contributed to the theory of chemical
reactions.

Dudley Herschbach writes in
his CV, that he spent his child-
hood in a village close to
San Jose, picking fruit, milk-
ing cows, etc. Thanks to his
wonderful teacher he became
interested in chemistry. He
graduated from Harvard Uni-
versity (physical chemistry),
where as he says, he has
found “an exhilarating acad-
emic environment”. In 1959
he became professor at Uni-
versity of California at Berke-
ley. In 1967 the group was
joined by Yuan Lee and con-
structed a “supermachine” for
studying crossing molecular
beams and the reactions in

them. One of the topics was
the alkali metal atom – io-
dine collisions. These inves-
tigations were supported by
John Polanyi, who studied the
chemiluminescence in IR, i.e.
the heat radiation of chemical
reactions.
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14.1 HYPERSURFACE OF THE POTENTIAL ENERGY FOR
NUCLEAR MOTION

Theoretical chemistry is still in a stage which experts in the field characterized as
“the primitive beginnings of chemical ab initio dynamics”.2 The majority of the
systems studied so far are three-atomic systems.3

The Born–Oppenheimer approximation works wonders, as it is possible to con-
sider the (classical or quantum) dynamics of the nuclei, while the electrons disap-
pear from the scene (their role became, after determining the potential energy for
the motion of the nuclei, described in the electronic energy, the quantity corre-
sponding to E0

0(R) from eq. (6.8) on p. 225).
Even with this approximation our job is not simple:

• The reactants as well as the products may be quite large systems and the many-
dimensional ground-state potential energy hypersurface E0

0(R) may have a very
complex shape, whereas we are most often interested in the small fragment of
the hypersurface that pertains to a particular one of many possible chemical
reactions.

• We have many such hypersurfaces E0
k(R), k = 0	1	2	 � � � , each corresponding

to an electronic state: k= 0 means the ground state, k= 1	2	 � � � correspond to
the excited states. There are processes which take place on a single hypersurface
without changing the chemical bond pattern,4 but the very essence of chemical
reaction is to change the bond pattern, and therefore excited states come into
play.

It is quite easy to see where the fundamental difficulty is. Each of the hypersur-
faces E0

k(R) for the motion ofN > 2 nuclei depends on 3N−6 atomic coordinates
(the number of translational and rotational degrees of freedom was subtracted).

Determining the hypersurface is not an easy matter:

• A high accuracy of 1 kcal/mol is required, which is (for a fixed configuration)
very difficult to achieve for ab initio methods,5 and even more difficult for the
semi-empirical or empirical methods.

2R.D. Levine and R.B. Bernstein, “Molecular Reaction Dynamics and Chemical Reactivity”, Oxford
University Press, 1987.

3John Polanyi recalls that the reaction dynamics specialists used to write as the first equation on the
blackboard A + BC → AB + C, which made any audience burst out laughing. However, one of the
outstanding specialists (Richard Zare) said about the simplest of such reactions (H3) (Chem. Engin.
News, June 4 (1990) 32): “I am smiling, when somebody calls this reaction the simplest one. Experiments
are extremely difficult, because one does not have atomic hydrogen in the stockroom, especially the high
speed hydrogen atoms (only these react). Then, we have to detect the product, i.e. the hydrogen, which is a
transparent gas. On top of that it is not sufficient to detect the product in a definite spot, but we have to know
which quantum state it is in”.

4Strictly speaking a change of conformation or formation of an intermolecular complex represents
a chemical reaction. Chemists, however, reserve this notion for more profound changes of electronic
structure.

5We have seen in Chapter 10, that the correlation energy is very difficult to calculate.
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• The number of points on the hypersurface which have to be calculated is ex-
tremely large and increases exponentially with the system size.6

• There is no general methodology telling us what to do with the calculated points.
There is a consensus that we should approximate the hypersurface by a smooth
analytical function, but no general solution has yet been offered.7

14.1.1 POTENTIAL ENERGY MINIMA AND SADDLE POINTS

Let us denote E0
0(R)≡ V . The most interesting points of the hypersurface V are

its critical points, i.e. the points for which the gradient ∇V is equal to zero: critical points

Gi = ∂V

∂Xi
= 0 for i= 1	2	 � � � 	3N	 (14.1)

where Xi denote the Cartesian coordinates that describe the configurations of N
nuclei. Since−Gi represents the force acting along the axisXi, therefore no forces
act on the atoms in the configuration of a critical point.

There are several types of critical points. Each type can be identified after con-
sidering the Hessian, i.e. the matrix with elements Hessian

Vij = ∂2V

∂Xi∂Xj
(14.2)

calculated for the critical point. There are three types of critical points: maxima,
minima and saddle points (cf. Chapter 7 and Fig. 7.11, as well as the Bader analy-
sis, p. 573). The saddle points, as will be shown in a while, are of several classes
depending on the signs of the Hessian eigenvalues. Six of the eigenvalues are equal
to zero (rotations and translations of the total system, see p. 294), because this type
of motion proceeds without any change of the potential energy V .

We will concentrate on the remaining 3N − 6 eigenvalues:

• In the minimum the 3N − 6 Hessian eigenvalues λk ≡ ω2
k (ω is the angular

momentum of the corresponding normal modes) are all positive,
• In the maximum – all are negative.
• For a saddle point of the n-th order, n= 1	2	 � � � 	3N − 7, the n eigenvalues are

negative, the rest are positive. Thus, a first-order saddle point corresponds to all

6Indeed, if we assume that ten values for each coordinate axis is sufficient (and this looks like a rather
poor representation), then for N atoms we have 103N−6 quantum mechanical calculations of good
quality to perform. This means that for N = 3 we may still pull it off, but for larger N everybody has to
give up. For example, for the reaction HCl+NH3 →NH4Cl we would have to calculate 1012 points in
the configurational space, while even a single point is a computational problem.

7Such an approximation is attractive for two reasons: first, we dispose of the (approximate) values of
the potential energy for all points in the configuration space (not only those for which the calculations
were performed), and second, the analytical formula may be differentiated and the derivatives give the
forces acting on the atoms.

It is advisable to construct the above mentioned analytical functions following some theoretical
arguments. These are supplied by intermolecular interaction theory (see Chapter 13).
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but one the Hessian eigenvalues positive, i.e. one of the angular frequencies ω
is therefore imaginary.

The eigenvalues were obtained by diagonalization of the Hessian. Such diag-
onalization corresponds to a rotation of the local coordinate system (cf. p. 297).
Imagine a two-dimensional surface that at the minimum could be locally approx-saddle

imated by an ellipsoidal valley. The diagonalization means such a rotation of the
coordinate system x	 y that both axes of the ellipse coincide with the new axes x′	 y ′
(Chapter 7). On the other hand, if our surface locally resembled a cavalry saddle,
diagonalization would lead to such a rotation of the coordinate system that one
axis would be directed along the horse, and the other across.8

IR and Raman spectroscopies providing the vibration frequencies and force
constants tell us a lot about how the energy hypersurface close to minima, looks,
both for the reactants and the products. On the other hand theory and recently
also femtosecond spectroscopy,9 are the only source of information about the firstfemtosecond

spectroscopy order saddle points. However, the latter are extremely important for determining
reaction rates since any saddle point is a kind of pivot point – it is as important for
the reaction as the Rubicon was for Caesar.10

The simplest chemical reactions are those which do not require crossing any
reaction barrier. For example, the reaction Na+ + Cl− → NaCl or other simi-
lar reactions (like recombination of radicals) that are not accompanied by bond
breaking take place without any barrier.11

After the barrierless reactions, there is a group of reactions in which the reac-
tants and the products are separated by a single first-order saddle point (no inter-
mediate products). How do we describe such a reaction in a continuous way?

14.1.2 DISTINGUISHED REACTION COORDINATE (DRC)

We often define a reaction path in the following way. First, we make

• a choice of a particular distance (s) between the reacting molecules (e.g., an
interatomic distance, one of the atoms belongs to molecule A, the other to B);

• then we minimize the potential energy by optimization of all atomic positions,
while keeping the s distance fixed;

• change s by small increments from its reactant value until the product value is
obtained (for each s optimizing all other distances);

8A cavalry saddle represents a good example of the first order saddle of a two-dimensional surface.
9In this spectroscopy we hit a molecule with a laser pulse of a few femtoseconds. The pulse per-

turbs the system, and when relaxing it is probed by a series of new pulses, each giving a spectroscopic
fingerprint of the system. A femtosecond is an incredibly short time, light is able to move only about
3 · 10−5 cm. Ahmed Zewail, the discoverer of this spectroscopy received the Nobel prize 1999.
10In 49 B.C. Julius Caesar with his Roman legions crossed the Rubicon river (the border of his province

of Gaul), and this initiated a civil war with the central power in Rome. His words, “alea iacta est” (the
die is cast) became a symbol of a final and irreversible decision.
11As a matter of fact, the formation of van der Waals complexes may also belong to this group. How-

ever in large systems, when precise docking of molecules take place, the final docking may occur with a
steric barrier.
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• this defines a path (DRC) in the configurational space, the progress along the
path is measured by s.

A deficiency of the DRC is an arbitrary choice of the distance. The energy pro-
file obtained (the potential energy vs s) depends on the choice. Often the DRC is
reasonably close to the reactant geometry and becomes misleading when close to
the product value (or vice versa). There is no guarantee that such a reaction path
passes through the saddle point. On top of this other coordinates may undergo
discontinuities, which feels a little catastrophic.

14.1.3 STEEPEST DESCENT PATH (SDP)

Because of the Boltzmann distribution the potential energy minima are most im-
portant, mainly low-energy ones.12

The saddle points of the first order are also important, because we may prove
that any two minima may be connected by at least one saddle point13 which corre-
sponds to the highest energy point on the lowest-energy path from one minimum to
the other (pass). Thus, the least energy-demanding path from the reactants to prod-
ucts goes via a saddle point of the first order. This steepest descent path (SDP) is
determined by the direction −∇V . First, we choose a first-order saddle point R0,
then diagonalize the Hessian matrix calculated at this point and the eigenvector L
corresponding to the single negative eigenvalue of the Hessian (cf. p. 297). Now,
let us move a little from position R0 in the direction indicated by L, and then let us
follow vector −∇V until it reduces to zero (then we are at the minimum). In this
way we have traced half the SDP. The other half will be determined starting down
from the other side of the saddle point and following the −L vector first.

In a moment we will note a certain disadvantage of the SDP, which causes us to
prefer another definition of the reaction path (see p. 781).

14.1.4 OUR GOAL

We would like to present a theory of elementary chemical reactions within the
Born–Oppenheimer approximation, i.e. which describes nuclear motion on the po-
tential energy hypersurface.

We have the following alternatives:

1. To perform molecular dynamics14 on the hypersurface V (a point on the hyper-
surface represents the system under consideration).

12Putting aside some subtleties (e.g., does the minimum support a vibrational level), the minima cor-
respond to stable structures, since a small deviation from the minimum position causes a gradient of the
potential to become non-zero, and this means a force pushing the system back towards the minimum
position.
13Several first-order saddle points to pass mean a multi-stage reaction that consists of several steps,

each one representing a pass through a single first-order saddle point (elementary reaction).
14A classical approach. We have to assume that the bonds may break – this is a very non-typical mole-

cular dynamics problem.
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2. To solve the time-independent Schrödinger equation Ĥψ=Eψ for the motion of
the nuclei with potential energy V .

3. To solve the time-dependent Schrödinger equation with the boundary condition
for ψ(x	 t = 0) in the form of a wave packet.15 The wave packet may be di-
rected into the entrance channel towards the reaction barrier (from various
starting conditions). In the barrier range, the wave packet splits into a wave
packet crossing the barrier and a wave packet reflected from the barrier (cf.
p. 153).

4. To perform a semi-classical analysis that highlights the existence of the SDP, or
a similar path, leading from the reactant to the product configuration.

Before going to more advanced approaches let us consider possibility 1.

14.1.5 CHEMICAL REACTION DYNAMICS (A PIONEERS’ APPROACH)

The SDP does not represent the only possible reaction path. It is only the least-
energy expensive path from reactants to products. In real systems, the point rep-
resenting the system will attempt to get through the pass in many different ways.
Many such attempts are unsuccessful (non-reactive trajectories). If the system leaves
the entrance channel (reactive trajectories), it will not necessarily pass through thereactive

trajectories saddle point, because it may have some extra kinetic energy, which may allow it to
go with a higher energy than that of the barrier. Everything depends on the starting
position and velocity of the point running through the entrance channel.

In the simplest case of a three-atom reaction

A+BC→AB+C

the potential energy hypersurface represents a function of 3N − 6= 3 coordinates
(the translations and rotations of the total system were separated). Therefore, even
in such a simple case, it is difficult to draw this dependence. We may simplify the
problem by considering only a limited set of geometries, e.g., the three atoms in a
linear configuration. In such a case we have only two independent variables16 RAB

15For example, a Gaussian function (in the nuclear coordinate space) moving from a position in this
space with a starting velocity.
16After separating the centre-of-mass motion. The separation may be done in the following way. The

kinetic energy operator has the form

T̂ =− h̄2

2MA

∂2

∂X2
A

− h̄2

2MB

∂2

∂X2
B

− h̄2

2MC

∂2

∂X2
C

�

We introduce some new coordinates:

• the centre-of-mass coordinate XCM = (MAXA +MBXB +MCXC)/M with the total mass M =
MA +MB +MC ,

• RAB =XB −XA,
• RBC =XC −XB .
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and RBC and the function V (RAB	RBC) may be visualized by a map quite similar
to those used in geography. The map has a characteristic shape shown in Fig. 14.1.

• Reaction map. First of all we can see the characteristic “drain-pipe” shape
of the potential energy V for the motion of the nuclei, i.e. the function reaction

drain-pipeV (RAB	RBC)→∞ for RAB → 0 or for RBC → 0, therefore we have a high
energy wall along the axes. When RAB and RBC are both large we have a kind
of plateau that goes gently downhill towards the bottom of the curved drain-
pipe extending nearly parallel to the axes. The chemical reaction A + BC →
AB + C means a motion close to the bottom of the “drain-pipe” from a point
corresponding to a large RAB, while RBC has a value corresponding to the equi-
librium BC length to a point, corresponding to a largeRBC andRAB with a value
corresponding to the length of the isolated molecule AB (arrows in Fig. 14.1).

• Barrier. A projection of the “drain-pipe” bottom on the RAB RBC plane gives reaction barrier

the SDP. Therefore, the SDP represents one of the important features of the
“landscape topography”. Travel on the potential energy surface along the SDP

To write the kinetic energy operator in the new coordinates we start with relations

∂

∂XA
= ∂RAB

∂XA

∂

∂RAB
+ ∂XCM

∂XA

∂

∂XCM
=− ∂

∂RAB
+ MA

M

∂

∂XCM
	

∂

∂XB
= ∂RAB

∂XB

∂

∂RAB
+ ∂RBC
∂XB

∂

∂RBC
+ ∂XCM

∂XB

∂

∂XCM
= ∂

∂RAB
− ∂

∂RBC
+ MB
M

∂

∂XCM
	

∂

∂XC
= ∂RBC

∂XC

∂

∂RBC
+ ∂XCM

∂XC

∂

∂XCM
= ∂

∂RBC
+ MC
M

∂

∂XCM
�

After squaring these operators and substituting them into T̂ we obtain, after a brief derivation,

T̂ =− h̄2

2M
∂2

∂X2
CM

− h̄2

2μAB

∂2

∂R2
AB

− h̄2

2μBC

∂2

∂R2
BC

+ T̂ABC	

where the reduced masses

1
μAB

= 1
MA

+ 1
MB

	
1

μBC
= 1
MB

+ 1
MC

	

whereas T̂ABC stands for the mixed term

T̂ABC =−
h̄2

MB

∂2

∂RAB∂RBC
�

In this way we obtain the centre-of-mass motion separation (the first term). The next two terms repre-
sent the kinetic energy operators for the independent pairs AB and BC, while the last one is the mixed
term T̂ABC , whose presence is understandable: atom B participates in two motions, those associated
with: RAB and RBC . We may eventually get rid of T̂ABC after introducing a skew coordinate system
with the RAB and RBC axes (the coordinates are determined by projections parallel to the axes). After
a little derivation, we obtain the following condition for the angle θ between the two axes, which assures
the mixed term:

cosθopt = 2
MB

μABμBC
μAB +μBC

vanish. If all the atoms have their masses equal, we obtain θopt = 60◦ .
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Fig. 14.1. The “drain-pipe” A + BC→ AB + C (for a fictitious system). The surface of the potential
energy for the motion of the nuclei is a function of distances RAB and RBC. On the left-hand side
there is the view of the surface, while on the right-hand side the corresponding maps are shown. The
barrier positions are given by the crosses on the right-hand figures. Figs. (a) and (b) show the symmetric
entrance and exit channels with the separating barrier. Figs. (c) and (d) correspond to an exothermic
reaction with the barrier in the entrance channel (“an early barrier”). Figs. (e) and (f) correspond to an
endothermic reaction with the barrier in the exit channel (“a late barrier”). This endothermic reaction
will not proceed spontaneously, because due to the equal width of the two channels, the reactant free
energy is lower than the product free energy. Figs. (g) and (h) correspond to a spontaneous endothermic
reaction, because due to the much wider exit channel (as compared to the entrance channel) the free
energy is lower for the products. There is a van der Waals complex well in the entrance channel just
before the barrier. There is no such well in the exit channel.

is not a flat trip, because the drain-pipe consists of two valleys: the reactant val-
ley (entrance channel) and the product valley (exit channel) separated by a passentrance and

exit channel (saddle point), which causes the reaction barrier. The saddle point corresponds
to the situation, in which the old chemical bond is already weakened (but still
exists), while the new bond is just emerging. This explains (as has been shown by
Henry Eyring, Michael Polanyi and Meredith Evans) why the energy required
to go from the entrance to the exit barrier is much smaller than the dissociation
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Fig. 14.1. Continued.

energy of BC , e.g., for the reaction H + H2 → H2 + H the activation energy
(to overcome the reaction barrier) amounts only to about 10% of the hydrogen
molecule binding energy. Simply, when the BC bond breaks, a new bond AB
forms at the same time compensating for the energy cost needed to break the
BC bond.

The barrier may have different positions in the reaction “drain-pipe”, e.g., it
may be in the entrance channel (early barrier), Fig. 14.1.c,d, or in the exit channel early or late

barrier(late barrier), Fig. 14.1.e,f, or, it may be inbetween (symmetric case, Fig. 14.1.a,b).
The barrier position influences the course of the reaction.

When determining the SDP, kinetic energy was neglected, i.e. the motion of the
point representing the system resembles a “crawling”. A chemical reaction does
not, however, represent any crawling over the energy hypersurface, but rather a
dynamics that begins in the entrance channel and ends in the exit channel, includ-
ing motion “uphill” against the potential energy V . Overcoming the barrier thus is
possible only, when the system has an excess of kinetic energy.
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What will happen, if we have an early barrier? A possible reactive trajectory for
such a case is shown in Fig. 14.2.a.

It is seen that the most effective way to pass the barrier is to set the point (rep-
resenting the system) in fast motion along the entrance channel. This means that
atom A has to have lots of kinetic energy when attacking the molecule BC . After
passing the barrier the point slides downhill, entering the exit channel. Since, after
sliding down, it has large kinetic energy, a bobsleigh effect takes place, i.e. the pointbobsleigh effect

climbs up the potential wall (as a result of the repulsion of atoms A and B) and
then moves by making zigzags similar to a bobsleigh team. This zigzag means, of
course, that strong oscillations of AB take place (and the C atom leaves the rest
of the system). Thus,

early location of a reaction barrier may result in a vibrationally excited prod-
uct.

A different thing happens when the barrier is late. A possible reactive (i.e. suc-
cessful) trajectory is shown in Fig. 14.2.b. For the point to overcome the barrier it
has to have a large momentum along the BC axis, because otherwise it would climb
up the potential energy wall in vain as the energy cost is too large. This may hap-
pen if the point moves along a zigzag-like way in the entrance channel (as shown in
Fig. 14.2.b). This means that

Fig. 14.2. A potential energy map for the collinear reaction A+BC→AB+C as a function of RAB
and RBC . The distances R#

AB and R#
BC determine the saddle point position. Fig. (a) shows a reactive

trajectory. If the point that represents the system runs sufficiently fast along the entrance channel to-
wards the barrier, it will overcome the barrier by a “charge ahead”. Then, in the exit channel the point
has to oscillate, which means product vibrations. Fig. (b) shows a reaction with a late barrier. In the
entrance channel a promising reactive trajectory is shown as the wavy line. This means the system os-
cillates in the entrance channel in order to be able to attack the barrier directly after passing the corner
area (bobsleigh effect).
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to overcome a late barrier, the vibrational excitation of the reactant BC is
effective,

because an increase in the kinetic energy of A will not produce much. Of course,
the conditions for the reaction to occur matter less for high collision energies of the
reactants. On the other hand, a too fast a collision may lead to unwanted reactions
occurring, e.g., dissociation of the system into A+B+C . Thus there is an energy
window for any given reaction.

AB INITIO APPROACH

14.2 ACCURATE SOLUTIONS FOR THE REACTION
HYPERSURFACE (THREE ATOMS17)

14.2.1 COORDINATE SYSTEM AND HAMILTONIAN

This approach to the chemical reaction problem corresponds to point 2 on p. 770.

Jacobi coordinates
For three atoms of massesM1	M2	M3, with total massM =M1+M2+M3 we may
introduce the Jacobi coordinates (see p. 279) in three different ways (Fig. 14.3.a).

Each of the coordinate systems (let us label them k = 1	2	3) highlights two
atoms “close” to each other (i	 j) and a third “distant” (k). Now, let us choose
a pair of vectors rk	Rk for each of the choices of the Jacobi coordinates by the
following procedure (Xi represents the vector identifying nucleus i in a space-fixed
coordinate system, SFCS, cf. Appendix I). First, let us define rk:

rk = 1
dk
(Xj −Xi)	 (14.3)

where the square of the mass scaling parameter equals mass scaling
parameter

d2
k =

(

1− Mk

M

)
Mk

μ
	 (14.4)

while μ represents the reduced mass (for three masses) reduced mass

μ=
√

M1M2M3

M
� (14.5)

Now the second vector needed for the Jacobi coordinates is chosen as

Rk = dk
[

Xk −
MiXi +MjXj

Mi +Mj

]

� (14.6)

17The method was generalized for an arbitrary number of atoms [D. Blume, C.H. Greene, “Monte
Carlo Hyperspherical Description of Helium Cluster Excited States”, 2000].
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Fig. 14.3. (a) The three equivalent Jacobi coordinate systems. (b) The Euler angles show the mutual
orientation of the two Cartesian coordinate systems. First, we project the y axis on the x′	 y′ plane (the
result is the dashed line). The first angle α is the angle between axes z′ and z	 the two other (β and γ)
use the projection line described above. The relations among the coordinates are given by H. Eyring,
J. Walter, G.E. Kimball, “Quantum Chemistry”, John Wiley, New York, 1967.

The three Jacobi coordinate systems are related by the following formulae (cf.
Fig. 14.3):

(

ri
Ri

)

=
(

cosβij sinβij
− sinβij cosβij

)(

rj
Rj

)

	 (14.7)

tanβij = −Mk

μ
	 (14.8)

βij = −βji�
The Jacobi coordinates will now be used to define what is called the (more con-

venient) hyperspherical democratic coordinates.

Democratic hyperspherical coordinates
When a chemical reaction proceeds, the role of the atoms changes and using the
same Jacobi coordinate system all the time leads to technical problems. In order
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not to favour any of the three atoms despite possible differences in their masses,
we introduce democratic hyperspherical coordinates. democratic

hyperspherical
coordinates

First, let us define the axis z of a Cartesian coordinate system, which is perpen-
dicular to the molecular plane at the centre of mass, i.e. parallel to A = 1

2r × R,
where r andR are any (just democracy, the result is the same) of the vectors rk	Rk.
Note that by definition |A| represents the area of the triangle built of the atoms.
Now, let us construct the axes x and y of the rotating with molecule coordinate
system (RMCS, cf. p. 245) in the plane of the molecule taking care that:

• the Cartesian coordinate system is right-handed,
• the axes are oriented along the main axes of the moments of inertia,18 with Iyy =
μ(r2

y +R2
y)	 Ixx = μ(r2

x +R2
x).

Finally, we introduce democratic hyperspherical coordinates equivalent to
RMCS:

• the first coordinate measures the size of the system, or its “radius”:

ρ=
√

R2
k + r2

k	 (14.9)

where ρ has no subscript, because the result is independent of k (to check this use
eq. (14.7)),

• the second coordinate describes the system’s shape:

cosθ= 2|A|
ρ2 ≡ u� (14.10)

Since |A| is the area of the triangle, 2|A|means, therefore, the area of the corre-
sponding parallelogram. The last area (in the nominator) is compared to the area
of a square with side ρ (in the denominator; if u is small, the system is elongated
like an ellipse with three atoms on its circumference)

• the third coordinate represents the angle φk for any of the atoms (in this way
we determine, where the k-th atom is on the ellipse)

cosφk = 2(Rk · rk)
ρ2 sinθ

≡ cosφ� (14.11)

As chosen, the hyperspherical democratic coordinates (which cover all possible
atomic positions within the plane z = 0) have the following ranges: 0 
 ρ <∞,
0 
 θ
 π

2 , 0 
φ
 4π.

Hamiltonian in these coordinates
The hyperspherical democratic coordinates represent a useful alternative for
RMCS from Appendix I (they themselves form another RMCS), and therefore

18These directions are determined by diagonalization of the inertia moment matrix (cf. Appendix K).
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do not depend on the orientation with respect to the body-fixed coordinate sys-
tem (BFCS). However, the molecule has somehow to “be informed” that it rotates
(preserving the length and the direction of the total angular momentum), because
a centrifugal force acts on its parts and the Hamiltonian expressed in BFCS (cf.
Appendix I) has to contain information about this rotation.

The exact kinetic energy expression for a polyatomic molecule in a space
fixed coordinate system (SFCS, cf. Appendix I) has been derived in Chapter 6
(eq. (6.34)). After separation of the centre-of-mass motion, the Hamiltonian is
equal to Ĥ = T̂ + V , where V represents the electronic energy playing the role
of the potential energy for the motion of the nuclei (an analogue of E0

0(R) from
eq. (6.8), we assume the Born–Oppenheimer approximation). In the democratic
hyperspherical coordinates we obtain19

Ĥ =− h̄2

2μρ5
∂

∂ρ
ρ5 ∂

∂ρ
+ Ĥ+ Ĉ + V (ρ	θ	φ)	 (14.12)

with

Ĥ = h̄2

2μρ2

[

− 4
u

∂

∂u
u
(

1− u2) ∂

∂u
− 1

1− u2

(

4
∂2

∂φ2 − Ĵ2
z

)]

	 (14.13)

Ĉ = h̄2

2μρ2

[
1

1− u2 4iĴzu
∂

∂φ
+ 2
u2

[

Ĵ2
x + Ĵ2

y +
√

1− u2
(

Ĵ2
x − Ĵ2

y

)]
]

	 (14.14)

where the first part, and the term with ∂2

∂φ2 in Ĥ, represent what are called de-

formation terms, the term with Ĵ2
z and the terms in Ĉ describe the rotation of the

system.

14.2.2 SOLUTION TO THE SCHRÖDINGER EQUATION

Soon we will need some basis functions that depend on the angles θ and φ, prefer-
entially each of them somehow adapted to the problem we are solving. These basis
functions will be generated as the eigenfunctions of Ĥ obtained at a fixed value
ρ= ρp:

Ĥ(ρp)�k�(θ	φ;ρp)= εk�(ρp)�k�(θ	φ;ρp)	 (14.15)

where, because of two variables θ	φwe have two quantum numbers k and� (num-
bering the solutions of the equations).

The total wave function that also takes into account rotational degrees of free-
dom (θ	φ) is constructed as (the quantum number J = 0	1	2	 � � � determines
the length of the angular momentum of the system, while the quantum number
M = −J	−J + 1	 � � � 	0	 � � � 	 J gives the z component of the angular momentum)

19J.G. Frey, B.J. Howard, Chem. Phys. 99 (1985) 415.
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a linear combination of the basis functions Uk� =DJM� (α	β	γ)�k�(θ	φ;ρp):

ψJM = ρ− 5
2
∑

k�

FJk�(ρ;ρp)Uk�(α	β	γ	θ	φ;ρp)	 (14.16)

where α	β	γ are the three Euler angles (Fig. 14.3.b) that define the orienta-
tion of the molecule with respect to the distant stars, DJM� (α	β	γ) represent the
eigenfunctions of the symmetric top,20 �k� are the solutions to eq. (14.15), while
FJk�(ρ;ρp) stand for the ρ-dependent expansion coefficients, i.e. functions of ρ
(centred at point ρp). Thanks to DJM� (α	β	γ) the function ψJM is the eigenfunc-
tion of the operators Ĵ2 and Ĵz .

In what is known as the close coupling method the function from eq. (14.16) close coupling
methodis inserted into the Schrödinger equation ĤψJM = EJψJM . Then, the resulting

equation is multiplied by a function Uk′�′ =DJM�′ (α	β	γ)�k′�′(θ	φ;ρp) and in-
tegrated over angles α	β	γ	θ	φ, which means taking into account all possible ori-
entations of the molecule in space (α	β	γ) and all possible shapes of the molecule
(θ	φ) which are allowed for a given size ρ. We obtain a set of linear equations for
the unknowns FJk�(ρ;ρp):

ρ−
5
2
∑

k�

FJk�(ρ;ρp)
〈

Uk′�′
∣
∣
(

Ĥ −EJ
)

Uk�
〉

ω
= 0� (14.17)

The summation extends over some assumed set of k	 � (the number of k	 �
pairs is equal to the number of equations). The symbol ω≡ (α	β	γ	θ	φ) means
integration over the angles. The system of equations is solved numerically.

If, when solving the equations, we apply the boundary conditions suitable for
a discrete spectrum (vanishing for ρ =∞), we obtain the stationary states of the
three-atomic molecule. We are interested in chemical reactions, in which one of state-to-state

reactionthe atoms comes to a diatomic molecule, and after a while another atom flies out
leaving (after reaction) the remaining diatomic molecule. Therefore, we have to
apply suitable boundary conditions. As a matter of fact we are not interested in
details of the collision, we are positively interested in what comes to our detector
from the spot where the reaction takes place. What may happen at a certain energy
E to a given reactant state (i.e. what the product state is; such a reaction is called
“state-to-state”) is determined by the corresponding cross section21 σ(E). The cross cross section

section can be calculated from what is called the S matrix, whose elements are
constructed from the coefficients FJk�(ρ;ρp) found from eqs. (14.17). The Smatrix
plays a role of an energy dependent dispatcher: such a reactant state changes to
such a product state with such and such probability.

We calculate the reaction rate k assuming all possible energies E of the system reaction rate
constant(satisfying the Boltzmann distribution) and taking into account that fast products

20D.M. Brink, G.R. Satchler, “Angular Momentum”, Clarendon Press, Oxford, 1975.
21After summing up the experimental results over all the angles, this is ready to be compared with the

result of the above mentioned integration over angles.
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arrive more often at the detector when counting per unit time

k= const
∫

dEEσ(E)exp
(

− E

kBT

)

	 (14.18)

where kB is the Boltzmann constant.
The calculated reaction rate constant k may be compared with the result of the

corresponding “state-to-state” experiment.

14.2.3 BERRY PHASE

When considering accurate quantum dynamics calculations (point 3 on p. 770) we
encounter the problem of what is called Berry phase.

In Chapter 6 wave function (6.19) corresponding to the adiabatic approximation
was assumed. In this approximation the electronic wave function depends paramet-
rically on the positions of the nuclei. Let us imagine we take one (or more) of the
nuclei on an excursion. We set off, go slowly (in order to allow the electrons to ad-
just), the wave function deforms, and then, we are back home and put the nucleus
exactly in place. Did the wave function come back exactly too? Not necessarily. By
definition (cf. Chapter 2) a class Q function has to be a unique function of coordi-
nates. This, however, does not pertain to a parameter. What certainly came back
is the probability density ψk(r;R)∗ψk(r;R), because it decides that we cannot dis-
tinguish the starting and the final situations. The wave function itself might undergo
a phase change, i.e. the starting function is equal to ψk(r;R0), while the final function
is ψk(r;R0)exp(iφ) and φ 	= 0. This phase shift is called the Berry phase.22 Did it
happen or not? Sometimes we can tell.

Let us consider a quantum dynamics description of a chemical reaction accord-
ing to point 3 from p. 770. For example, let us imagine a molecule BC fixed in
space, with atom B directed to us. Now, atom A, represented by a wave packet,
rushes towards atom B. We may imagine that the atom A approaches the mole-
cule and makes a bond with the atom B (atom C leaves the diatomic molecule) or
atom A may first approach atom C, then turn back and make a bond with atom B
(as before). The two possibilities correspond to two waves, which finally meet and
interfere. If the phases of the two waves differed, we would see this in the re-
sults of the interference. The scientific community was surprised that some details
of the reaction H + H2 →H2 + H at higher energies are impossible to explain
without taking the Berry phase23 into account. One of the waves described above
made a turn around the conical intersection point (because it had to by-pass the
equilateral triangle configuration, cf. Chapter 6). As it was shown in the work of
Longuet-Higgins et al. mentioned above, this is precisely the reason why the func-
tion acquires a phase shift. We have shown in Chapter 6 (p. 264) that such a trip

22The discoverers of this effect were H.C. Longuet-Higgins, U. Öpik, M.H.L. Pryce and R.A. Sack,
Proc. Roy. Soc. London, A 244 (1958) 1. The problem of this geometric phase diffused into the con-
sciousness of physicists much later after an article by M.V. Berry, Proc. Roy. Soc. London A392 (1984)
45.
23Y.-S.M. Wu, A. Kupperman, Chem. Phys. Letters 201 (1993) 178.
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around a conical intersection point results in changing the phase of the function
by π.

The phase appears, when the system makes a “trip” in configurational space. We
may make the problem of the Berry phase more familiar by taking an example from
everyday life. Let us take a 3D space. Please put your arm down against your body
with the thumb directed forward. During the operations described below, please
do not move the thumb with respect to the arm. Now stretch your arm horizontally
sideways, rotate it to your front and then put down along your body. Note that now
your thumb is not directed towards your front anymore, but towards your body.
When your arm has come back, the thumb had made a rotation of 90◦.

Your thumb corresponds to ψk(r;R), i.e. a vector in the Hilbert space, which
is coupled with a slowly varying neighbourhood (R corresponds to the hand posi-
tions). When the neighbourhood returns, the vector may have been rotated in the
Hilbert space [i.e. multiplied by a phase exp(iφ)].

APPROXIMATE METHODS

14.3 INTRINSIC REACTION COORDINATE (IRC) OR STATICS
This section addresses point 4 of our plan from p. 770.

On p. 770 two reaction coordinates were proposed: DRC and SDP. Use of the
first of them may lead to some serious difficulties (like energy discontinuities). The
second reaction coordinate will undergo in a moment a useful modification and
will be replaced by the so called intrinsic reaction coordinate (IRC).

What the IRC is?
Let us use the Cartesian coordinate system once more with 3N coordinates for
the N nuclei: Xi, i = 1	 � � � 	3N , where X1	X2	X3 denote the x	 y	 z coordinates
of atom 1 of mass M1, etc. The i-th coordinate is therefore associated with mass
Mi of the corresponding atom. The classical Newtonian equation of motion for an
atom of mass Mi and coordinate Xi is:24

MiẌi =− ∂V
∂Xi

for i= 1	 � � � 	3N� (14.19)

Let us introduce what are called mass-weighted coordinates (or, more precisely, mass-weighted
coordinatesweighted by the square root of mass)

xi =
√

MiXi� (14.20)

In such a case we have
√

Mi

√

MiẌi =− ∂V
∂xi

∂xi
∂Xi

=√Mi

(

− ∂V
∂xi

)

(14.21)

24Mass × acceleration equals force; a dot over the symbol means a time derivative.
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or
ẍi =− ∂V

∂xi
≡−gi	 (14.22)

where gi stands for the i-th component of the gradient of potential energy V cal-
culated in mass-weighted coordinates. This equation can easily be integrated and
we obtain

ẋi =−git + v0	i (14.23)

or, for a small time increment dt and initial speed v0	i = 0 (for the definition of the
IRC as a path characteristic for potential energy V we want to neglect the influence
of the kinetic energy) we obtain

dxi
−gi = t dt = independent of i� (14.24)

Thus,

in the coordinates weighted by the square roots of the masses, a displace-
ment of atom number i is proportional to the potential gradient (and does
not depend on the atom mass).

If mass-weighted coordinates were not introduced, a displacement of the point
representing the system on the potential energy map would not follow the direction
of the negative gradient or the steepest descent (on a geographic map such a motion
would look natural, because slow rivers flow this way). Indeed, the formula analo-
gous to (14.24) would have the form: dXi−Gi = t

Mi
dt, and therefore, during a single

watch tick dt, light atoms would travel long distances while heavy atoms short dis-
tances.

Thus, after introducing mass-weighted coordinates, we may forget about masses, in
particular about the atomic and the total mass, or equivalently, we may treat these as
unit masses. The atomic displacements in this space will be measured in units of√

mass× length, usually in:
√
ua0, where 12u= 12C atomic mass, u= 1822�887m

(m is the electron mass), and sometimes also in units of
√
u Å.

Eq. (14.24) takes into account our assumption about the zero initial speed of the
atom in any of the integration steps (also called “trajectory-in-molasses”), becausetrajectory-in-

molasses otherwise we would have an additional term in dxi: the initial velocity times time.
Broadly speaking, when the watch ticks,

the system, represented by a point in 3N-dimensional space, crawls over the
potential energy hypersurface along the negative gradient of the hypersur-
face (in mass weighted coordinates). When the system starts from a saddle
point of the first order, a small deviation of the position makes the system
slide down on one or the other side of the saddle. The trajectory of the nuclei
during such a motion is called the intrinsic reaction coordinate or IRC.

The point that represents the system slides down with infinitesimal speed along
the IRC.
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Fig. 14.4. A schematic representation of the IRC: (a) curve xIRC(s) and (b) energy profile when moving
along the IRC [i.e. curve V0(xIRC(s))] in the case of two mass-weighted coordinates x1	x2.

Measuring the travel along the IRC

In the space of the mass-weighted coordinates, trajectory IRC represents a certain
curve xIRC that depends on a parameter s: xIRC(s).

The parameter s measures the length along the reaction path IRC

(e.g., in
√
ua0 or

√
uÅ). Let us take two close points on the IRC and construct the

vector: ξ(s)= xIRC(s+ ds)− xIRC(s), then

(ds)2 =
∑

i

[

ξi(s)
]2
� (14.25)

We assume that s = 0 corresponds to the saddle point, s =−∞ to the reactants,
and s =∞ to the products (Fig. 14.4).

For each point on the IRC, i.e. on the curve xIRC(s) we may read the mass-
weighted coordinates, and use them to calculate the coordinates of each
atom. Therefore, each point on the IRC corresponds to a certain structure
of the system.

14.4 REACTION PATH HAMILTONIAN METHOD

14.4.1 ENERGY CLOSE TO IRC

A hypersurface of the potential energy represents an expensive product. We have
first to calculate the potential energy for a grid of points. If we assume that ten
points per coordinate is a sufficient number, then we have to perform 103N−6
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advanced quantum mechanical calculations, for N = 10 atoms this gives . . . 1024

calculations, which is an unreasonable task. Now you see why specialists so much
prefer three-atomic systems.

Are all the points necessary? For example, if we assume low energies, the system
will in practice, stay close to the IRC. Why, therefore, worry about other points?
This idea was exploited by Miller, Handy and Adams.25 They decided to introduce
the coordinates that are natural for the problem of motion in the reaction “drain-
pipe”. The approach corresponds to point 4 from p. 770.

The authors derived the

REACTION PATH HAMILTONIAN:
an approximate expression for the energy of the reacting system in the form,
that stresses the existence of the IRC and of deviations from it.

This formula (Hamilton function of the reaction path) has the following form:

H
(

s	ps	 {Qk	Pk}
)= T (s	ps	 {Qk	Pk}

)+ V (s	 {Qk}
)

	 (14.26)

where T is the kinetic energy, V stands for the potential energy, s denotes the re-
action coordinate along the IRC, ps = ds

dt represents the momentum coupled with
s (mass = 1), {Qk}	 k = 1	2	 � � � 	3N − 7, stand for other coordinates orthogonal
to the reaction path xIRC(s) (this is why Qk will depend on s) and the momenta
{Pk} conjugated with them.

We obtain the coordinates Qk in the following way. At point s on the reaction
path we diagonalize the Hessian, i.e. the matrix of the second derivatives of the
potential energy and consider all the resulting normal modes (ωk(s) are the cor-
responding frequencies; cf. Chapter 7) other than that, which corresponds to the
reaction coordinate s (the later corresponds to the “imaginary”26 frequency ωk).
The diagonalization also gives the normal vectors Lk(s), each having a direction
in the (3N − 6)-dimensional configurational space (the mass-weighted coordinate
system). The coordinate Qk ∈ (−∞	+∞) measures the displacement along the di-
rection of Lk(s). The coordinates s and {Qk} are called the natural coordinates. Tonatural

coordinates stress that Qk is related to Lk(s), we will write it as Qk(s).
The potential energy, close to the IRC, can be approximated (harmonic approx-

imation) by

V
(

s	 {Qk}
)∼= V0(s)+ 1

2

3N−7
∑

k=1

ωk(s)
2Qk(s)

2	 (14.27)

where the term V0(s) represents the potential energy that corresponds to the bot-
tom of the reaction “drain-pipe” at a point s along the IRC, while the second term
tells us what will happen to the potential energy if we displace the point (i.e. the

25W.H. Miller, N.C. Handy, J.E. Adams, J. Chem. Phys. 72 (1980) 99.
26For large |s| the corresponding ω2 is close to zero. When |s| decreases (we approach the saddle

point), ω2 becomes negative (i.e. ω is imaginary). For simplicity we will call this the “imaginary fre-
quency” for any s.
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system) perpendicular to xIRC(s) along all the normal oscillator coordinates. In the
harmonic approximation for the oscillator k, the energy goes up by half the force
constant × the square of the normal coordinate Q2

k. The force constant is equal to
ω2
k, because the mass is equal to 1.
The kinetic energy turns out to be more complicated

T
(

s	ps	 {Qk	Pk}
)= 1

2

[

ps −∑3N−7
k=1

∑3N−7
k′=1 Bkk′Qk′Pk

]2

[

1+∑3N−7
k=1 BksQk

]2 +
3N−7
∑

k=1

P2
k

2
� (14.28)

The last term is recognized as the vibrational kinetic energy for the oscillations
perpendicular to the reaction path (recall that the mass is treated as equal to 1).
If in the first term we insert Bkk′ = 0 and Bks = 0, the term would be equal to
1
2p

2
s and, therefore, would describe the kinetic energy of a point moving as if the

reaction coordinate were a straight line.

Coriolis
coupling
constant

CORIOLIS AND CURVATURE COUPLINGS:
Bkk′ are called the Coriolis coupling constants. They couple the normal
modes perpendicular to the IRC.
The Bks are called the curvature coupling constants, because they would be
equal zero if the IRC was a straight line. They couple the translational mo-
tion along the reaction coordinate with the vibrational modes orthogonal to
it. All the above coupling constants B depend on s.

curvature
coupling
constant

Therefore, in the reaction path Hamiltonian we have the following quantities
that characterize the reaction “drain-pipe”:

• The reaction coordinate s that measures the progress of the reaction along the
“drain-pipe”.

• The value V0(s) ≡ V0(xIRC(s)) represents the energy that corresponds to the
bottom of the “drain-pipe”27 at the reaction coordinate s.

• The width of the “drain-pipe” is characterized by {ωk(s)}.28

• The curvature of the “drain-pipe” is hidden in constants B, their definition will
be given later in this chapter. Coefficient Bkk′(s) tells us how normal modes k
and k′ are coupled together, while Bks(s) is responsible for a similar coupling
between reaction path xIRC(s) and vibration k perpendicular to it.

14.4.2 VIBRATIONALLY ADIABATIC APPROXIMATION

Most often when moving along the bottom of the “drain-pipe”, potential energy
V0(s) only changes moderately when compared to the potential energy changes
27I.e. the classical potential energy corresponding to the point of the IRC given by s (this gives an idea

of how the potential energy changes when walking along the IRC).
28A small ω corresponds to a wide valley, when measured along a given normal mode coordinate

(“soft” vibration), a large ω means a narrow valley (“hard” vibration).
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the molecule undergoes when oscillating perpendicularly29 to xIRC(s). Simply, the
valley bottom profile results from the fact that the molecule hardly holds together
when moving along the reaction coordinate s, a chemical bond breaks, while other
bonds remain strong and it is not so easy to stretch their strings. This suggests that
there is slow motion along s and fast oscillatory motion along the coordinates Qk.

Since we are mostly interested in the slow motion along s, we may average
over the fast motion.

The philosophy behind the idea is that while the system moves slowly along s,
it undergoes a large number of oscillations along Qk. After such vibrational aver-
aging the only information that remains about the oscillations are the vibrational
quantum levels for each of the oscillators (the levels will depend on s).

VIBRATIONALLY ADIABATIC APPROXIMATION:
The fast vibrational motions will be treated quantum mechanically and their
total energy will enter the potential energy for the classical motion along s.

This approximation parallels the adiabatic approximation made in Chapter 6,
where the fast motion of electrons was separated from the slow motion of the nu-
clei. There the total electronic energy became the potential energy for the motion
of nuclei, here the total vibrational energy (the energy of the corresponding har-
monic oscillators in their quantum states) becomes the potential energy for the
slow motion along s. This concept is called the vibrationally adiabatic approxima-
tion.

In this approximation, to determine the stage of the reaction we give two classi-
cal quantities: where the system is on the reaction path (s), and how fast the system
moves along the reaction path (ps). Also we need the quantum states of the oscil-
lators vibrating perpendicularly to the reaction path (vibrational quantum number
vk = 0	1	2	 � � � for each of the oscillators). Therefore, the potential energy for the
(slow) motion along the reaction coordinate s is:30

Vadiab(s;v1	 v2	 � � � 	 v3N−7)

= V0(s)+
3N−7
∑

k=1

(

vk + 1
2

)

h̄
[

ωk(s)−ωk(−∞)
]

	 (14.29)

where we have chosen an additive constant in the potential as equal to the vibra-
tional energy of the reactants (with minus sign):−∑3N−7

k=1 (vk+ 1
2)h̄ωk(−∞). Note

that even though vk = 0 for each of the oscillators, there is a non-zero vibrational
correction to the classical potential energy V0(s), because the zero-vibrational en-
ergy changes if s changes.
29I.e. when moving along the coordinates Qk , k= 1	2	 � � � 	3N − 7.
30Even if (according to the vibrationally adiabatic approximation) the vibrational quantum numbers

were kept constant during the reaction, their energies as depending on s through ω would change.
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The vibrationally adiabatic potential Vadiab was created for a given set of
vibrational quantum numbers vk, fixed during the reaction process. There-
fore, it is impossible to exchange energy between the vibrational modes (we
assume therefore the Coriolis coupling constants Bkk′ = 0), as well as be-
tween the vibrational modes and the reaction path (we assume the curvature
coupling constants Bks = 0). This would mean a change of vk’s.

From eq. (14.29) we may draw the following conclusion.

When during the reaction the frequency of a normal mode decreases dra-
matically (which corresponds to breaking of a chemical bond), the square
bracket becomes negative. This means that an excitation of the bond before
the reaction decreases the (vibrationally adiabatic) reaction barrier and the
reaction rate will increase.

As a matter of fact, this is a quite obvious: a vibrational excitation that engages
the chemical bond to be broken already weakens the bond before the reaction.

Why do chemical reactions proceed?

Exothermic reactions. When the reactants (products) have a kinetic energy
higher than the barrier and the corresponding momentum ps is large enough, with
a high probability the barrier will be overcome (cf. p. 155). Even if the energy is
lower than the barrier there is still a non-zero probability of passing to the other
side because of the tunnelling effect. In both cases (passing over and under the
barrier) it is easier when the kinetic energy is large.

The barrier height is usually different for the reaction reactants→ products and
for the products→ reactants (Fig. 14.1). If the barrier height is smaller for the re-
actants, this may result in an excess of the product concentration over the reactant
concentration.31 Since the reactants have higher energy than the products, the po-
tential energy excess will change into the kinetic energy32 of the products (which is
observed as a temperature increase – the reaction is exothermic). This may happen
if the system has the possibility to pump the potential (i.e. electronic) energy ex-
cess into the translational and rotational degrees of freedom or to a “third body or
bodies” (through collisions, e.g., with the solvent molecules) or has the possibility
to emit light quanta. If the system has no such possibilities the reaction will not take
place.

Endothermic reactions. The barrier height does not always decide.

Besides the barrier height the widths of the entrance and exit channels also
count.

31Because a lower barrier is easier to overcome.
32Most often rotational energy.
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Fig. 14.5. Why do some endothermic reactions proceed spontaneously? The figure shows the energy
profile as a function of s, i.e. along the intrinsic reaction coordinate (IRC). As we can see, the reactants
have lower energy than the products. Yet it is not V that decides the reaction to proceed, but the free
energy F = E − TS	 where T is the temperature and S the entropy. The free energy depends on the
density of the vibrational states of the reactants and products. The more numerous the low-energy
vibrational levels the larger the entropy and the lower the free energy, if T > 0. As we can see, the
reactant vibrational levels are scarce, while on the product side they are densely distributed. When the
energy gain related to the entropy overcomes the potential energy loss, then the (endothermic) reaction
will proceed spontaneously.

For the time being let us take an example with V0(−∞)= V0(∞), i.e. the barrier
calculated from IRC is the same in both directions. Imagine a narrow entrance
channel, i.e. large force constants for the oscillators, and a wide exit channel, i.e.
low force constants.

The vibrational energies in the entrance channel are high, while in the exit chan-
nel they are low. This results in Vadiab(−∞;v1	 v2	 � � � 	 v3N−7) > Vadiab(∞;v1	 v2	
� � � 	 v3N−7), i.e. the barrier for the reaction reactants→ products is low, while for
the reaction products → reactants it is high. The products will form more often
than the reactants.

On top of that if the entrance channel is narrow, while the exit channel is wide,
the density of the vibrational states will be small in the entrance channel and large
in the exit channel (Figs. 14.1.g,h and 14.5). Therefore, for T > 0 there will be a lot
of possibilities to occupy the low-energy vibrational levels for the products, while
only a few possibilities for the reactants. This means a high entropy of the products
and a small entropy of the reactants, i.e. the products will be more stabilized by the
entropy than the reactants.33 Once again we can see, that

while the energy in the endothermic reaction increases, the decisive factor is
the free energy which decreases. The reactants→ products reaction occurs
“uphill” in potential energy, but “downhill” in free energy.

Kinetic and thermodynamic pictures

• In a macroscopic reaction carried out in a chemist’s flask we have a statistical
ensemble of the systems that are in different microscopic stages of the reaction.

33It pertains to the term −TS in the free energy.
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• The ensemble may be modelled by a reaction “drain-pipe” (we assume the bar-
rier) with a lot of points, each representing one of the reacting systems.

• When the macroscopic reaction begins (e.g., we mix two reactants) a huge num-
ber of points appear in the entrance channel, i.e. we have the reactants only. As
the reactant molecules assemble or dissociate the points appear or disappear.

• If the barrier were high (no tunnelling) and temperature T = 0, all the reactants
would be in their zero-vibrational states34 and in their ground rotational states.
This state would be stable even when the product valley corresponded to a lower
energy (this would be a metastable state).

• Raising the temperature causes some of the ensemble elements in the entrance
channel to acquire energy comparable to the barrier height. Those elements
might have a chance to pass the barrier either by tunnelling (for energy smaller
than the barrier) or by going over the barrier. Not all of the elements with suffi-
cient energies would pass the barrier, only those with reactive trajectories.

• After passing the barrier the energy is conserved, but changes into the transla-
tional, vibrational and rotational energy of products or may be transferred to a
“third body” (e.g., the solvent molecules) or changed into electromagnetic radi-
ation.

• The probability of the reactive trajectories might be calculated in a way similar
to that described in Chapter 4 (tunnelling35), with additional taking into account
the initial vibrational and rotational states of the reactants as well as averaging
over the energy level populations.

• The products would have also a chance to pass the barrier back to the reactant
side, but at the beginning the number of the elements passing the barrier in the
reactant-to-product direction would be larger (non-equilibrium state).

• However the higher the product concentration, the more often the products
transform into the reactants. As an outcome we arrive at the thermodynamic
equilibrium state, in which the average numbers of the elements passing the bar-
rier per unit time in either direction are equal.

• If the barrier is high and the energies considered low, then the stationary states
of the system could be divided into those (of energy Ei	R)	 which have high
amplitudes in the entrance channel (the reactant states) and those (of energy
Ei	P) with high amplitudes in the exit channel (product states). In such a case we
may calculate the partition function for the reactants:

ZR(T)=
∑

i

gi exp
(

−Ei	R −E0	R

kBT

)

and for the products

ZP(T)=
∑

i

gi exp
(

−Ei	P −E0	R

kBT

)

=
∑

i

gi exp
(

−Ei	P −E0	P −�E
kBT

)

	

34Please note, that even in this case (T = 0) the energy of these states would not only depend on the
bottom of the valley, V0(s), but also on the valley’s width through ωk(s), according to eq. (14.29).
35See also H. Eyring, J. Walter, G.E. Kimball, “Quantum Chemistry”, John Wiley, New York, 1967.
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where gi stands for the degeneracy of the i-th energy level and the difference of
the ground-state levels is �E =E0	R −E0	P .

• Having the partition functions, we may calculate (at a given temperature, volume
and a fixed number of particles36) the free or Helmholtz energy (F) correspond-
ing to the entrance and to the exit channels (in thermodynamic equilibrium)

FR(T) = −kBT ∂

∂T
lnZR(T)	 (14.30)

FP(T) = −kBT ∂

∂T
lnZP(T)� (14.31)

• The reaction goes in such a direction as to attain the minimum of free energy F .
• The higher the density of states in a given channel (this corresponds to higher

entropy) the lower F . The density of the vibrational states is higher for wider
channels (see Fig. 14.5).

14.4.3 VIBRATIONALLY NON-ADIABATIC MODEL

Coriolis coupling
The vibrationally adiabatic approximation is hardly justified, because the reac-
tion channel is curved. This means that motion along s couples with some vibra-
tional modes, and also the vibrational modes couple among themselves. We have
therefore to use the non-adiabatic theory and this means we need coupling coef-
ficients B. The Miller–Handy–Adams reaction path Hamiltonian theory gives the
following expression for the Bkk′ :

Bkk′(s)= ∂Lk(s)

∂s
·Lk′(s)	 (14.32)

where Lk, k = 1	2	 � � � 	3N − 7, represent the orthonormal eigenvectors (3N-
dimensional, cf. Chapter 7, p. 297) of the normal modes Qk of frequency ωk
(Fig. 14.6).

If the derivative in the above formula is multiplied by an increment of the re-
action path �s, we obtain ∂Lk(s)

∂s �s which represents a change of normal mode
vector Lk when the system moved along the IRC by the increment �s. This change
might be similar to normal mode eigenvector Lk′ . This means that Bkk′ measures
how much eigenvector Lk′(s) resembles the change of eigenvector Lk(s) (when
the system moves along the reaction path).37 Coupling coefficient Bkk′ is usually

36Similar considerations may be performed for a constant pressure (instead of volume). The quantity
that then attains the minimum at the equilibrium state is the Gibbs potential G.
37From differentiating the orthonormality condition Lk(s) ·Lk′ (s)= δkk′ we obtain

∂

∂s

[

Lk(s) ·Lk′ (s)
] =

[
∂Lk(s)

∂s
·Lk′ (s)+Lk(s) ·

∂Lk′ (s)
∂s

]

=
[
∂Lk(s)

∂s
·Lk′ (s)+

∂Lk′ (s)
∂s

·Lk(s)
]

= Bkk′ +Bk′k = 0�

Hence, Bkk′ = −Bk′k.
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reactants

products

Fig. 14.6. Calculation of the Coriolis coupling coefficient (B12) and the curvature coefficients (B1s
and B2s) related to the normal modes 1 and 2 and reaction coordinate s. Diagonalization of the two
Hessians calculated at points s = s1 and s = s2 gives two corresponding normal mode eigenvectors
L1(s1) and L2(s1) as well as L1(s2) and L2(s2). At both points s1 and s2 we also calculate the versors
w(s1) and w(s1) that are tangent to the IRC. The calculated vectors inserted into the formulae give the
approximations to B1s	B2s and B12.

especially large close to those values of s, for which ωk ∼= ωk′ , i.e. for the cross-
ing points of the vibrational frequency (or energy) curves ωk(s). These are the
points where we may expect an important energy flow from one normal mode to
another, because the energy quanta match (h̄ωk(s)∼= h̄ωk′(s)). Coriolis coupling
means that the directions of Lk and Lk′ change, when the reaction proceeds and
this resembles a rotation in the configurational space about the IRC.

Curvature couplings
Curvature coupling constant Bks links the motion along the reaction valley with
the normal modes orthogonal to the IRC (Fig. 14.6):

Bks(s)= ∂Lk(s)

∂s
·w(s)	 (14.33)

wherew(s) represents the unit vector tangent to the intrinsic reaction path xIRC(s)
at point s. Coefficient Bks(s) therefore represents a measure of how the change
in the normal mode eigenvector Lk(s) resembles a motion along the IRC. Large
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Bks(s)makes energy flow from the normal mode to the reaction path (or vice versa)
much easier.

DONATING MODES:
The modes with large Bks(s) in the entrance channel are called the donating
modes, because an excitation of such modes makes possible an energy trans-
fer to the reaction coordinate degree of freedom (an increase of the kinetic
energy along the reaction path). This will make the reaction rate increase.

In the vibrationally adiabatic approximation, coefficients Bks are equal to zero.donating modes

This means that in such an approximation an exothermic reaction would transform
the net reaction energy (defined as the difference between the energy of the reac-
tants and the products) into the kinetic energy of translational motion of products,
because the energy of the system in the entrance channel could not be changed
into the vibrational energy of the products (including the “vibrations” of a rota-
tional character). However, as was shown by John Polanyi and Dudley Herschbach,
the reactions do not go this way – a majority of the reaction energy goes into the
rotational degrees of freedom (excited states of some modes). The rotations are
hidden in the vibrations at s = 0 which are similar to the internal rotations and
in the limit of s→+∞ transform into product rotations. Next, the excited prod-
ucts emit infrared quanta in the process of infrared fluorescence (the chemist’s test
tube gets hot). This means that in order to have a realistic description of reaction
we have to abandon the vibrationally adiabatic approximation.

14.4.4 APPLICATION OF THE REACTION PATH HAMILTONIAN METHOD
TO THE REACTION H2 + OH → H2O + H

The reaction represents one of a few polyatomic systems for which precise calcu-
lations were performed.38 It may be instructive to see how a practical implementa-
tion of the reaction path Hamiltonian method looks.

Potential energy hypersurface
The ab initio configuration interaction calculations (Chapter 10) of the potential
energy hypersurface for the system under study were performed by Walsh and
Dunning39 within the Born–Oppenheimer (“clamped nuclei”) approximation de-
scribed in Chapter 6. The electronic energy obtained as a function of the nuclear
configuration plays the role of the potential energy for the motion of the nuclei.
The calculation gave the electronic energy for a relatively scarce set of configu-

38G.C.J. Schatz, J. Chem. Phys. 74 (1981) 113; D.G. Truhlar, A.D. Isaacson, J. Chem. Phys. 77 (1982)
3516; A.D. Isaacson, D.G. Truhlar, J. Chem. Phys. 76 (1982) 380 and above all the paper by Thom
Dunning Jr. and Elfi Kraka in “Advances in Molecular Electronic Structure Theory: The Calculation and
Characterization of Molecular Potential Energy Surfaces”, ed. T.H. Dunning, Jr., JAI Press, Inc., Green-
wich, CN (1989) 1.
39S.P. Walsh, T.H. Dunning, Jr., J. Chem. Phys. 72 (1980) 1303.
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s, a.u.

Fig. 14.7. The reaction H2 +OH→H2O + H energy profile V0(s) for −∞
 s 
∞. The value of the
reaction coordinate s =−∞ corresponds to the reactants, while s =∞ corresponds to the products. It
turns out that the product energy is lower than the energy of the reactants (i.e. the reaction is exother-
mic). The barrier height in the entrance channel calculated as the difference of the top of the barrier
and the lowest point of the entrance channel amounts to 6.2 kcal/mol. According to T. Dunning, Jr.
and E. Kraka, from “Advances in Molecular Electronic Structure Theory”, ed. T. Dunning, Jr., JAI Press,
Greenwich, CN (1989), courtesy of the authors.

rations of the nuclei, but then the numerical results were fitted by an analytical
function.40 The IRC energy profile is shown in Fig. 14.7.

It is seen from Fig. 14.7 that the barrier height for the reactants is equal to about
6.2 kcal/mol, while the reaction energy calculated as the difference of the products
minus the energy of the reactants is equal to about −15�2 kcal/mol (an exothermic
reaction). What happens to the atoms when the system moves along the reaction
path? This is shown in Fig. 14.8.

The saddle point configuration of the nuclei when compared to those corre-
sponding to the reactants and to products tells us whether the barrier is early or
late. The difference of the OH distances for the saddle point and for the product
(H2O) amounts to 0�26 Å, which represents 0�26

0�97 = 27%, while the HH distance
difference for the saddle point and of the reactant (H2) is equal to 0�11 Å, which
corresponds to 0�11

0�74 = 15%. In conclusion, the saddle point resembles the reactants
more than the products, i.e. the barrier is early.

Normal mode analysis

Let us see what the normal mode analysis gives when performed for some selected
points along the IRC. The calculated frequencies are shown in Fig. 14.9 as wave
numbers ν̄ =ω/(2πc).

As we can see, before the reaction takes place we have two normal mode fre-
quencies ωHH and ωOH. When the two reacting subsystems approach one another

40G.C. Schatz, H. Elgersma, Chem. Phys. Letters 73 (1980) 21.
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Fig. 14.8. The optimum atomic positions in the reacting system H2 + OH → H2O + H as functions
of the reaction coordinate s. According to T. Dunning, Jr. and E. Kraka, from “Advances in Molecular
Electronic Structure Theory”, ed. T. Dunning, Jr., JAI Press, Greenwich, CN (1989), courtesy of the
authors.

we have to treat them as an entity. The corresponding number of vibrations is
3N − 6 = 3 × 4 − 6 = 6 normal modes. Two of them have frequencies close to
those of HH and OH, three others have frequencies close to zero and corre-
spond to the vibrational and rotational motions of the loosely bound reactants,41

the last “vibrational mode” is connected with a motion along the reaction path
and has an imaginary frequency. Such a frequency means that the correspond-
ing curvature of the potential energy is negative.42 For example, at the saddle
point, when moving along the reaction path, we have a potential energy maxi-
mum instead of minimum as would be for a regular oscillator. Fig. 14.9 shows
five (real) frequencies. The frequency ωHH drops down close to the saddle point.
This is precisely the bond to be broken. Interestingly, the frequency minimum is

41van der Waals interactions, see Chapter 13.
42Note that ω=√k/m, where the force constant k stands for the second derivative of the potential

energy, i.e. its curvature.
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s, a.u.

HOHbend

Fig. 14.9. The reaction H2 + OH → H2O + H. The vibrational frequencies (in wave numbers
ν̄ = ω/(2πc).) for the normal modes along the coordinate s. Only the real wave numbers are given
(the “vibration” along s is imaginary and not given). According to T. Dunning, Jr. and E. Kraka, from
“Advances in Molecular Electronic Structure Theory”, ed. T. Dunning, Jr., JAI Press, Greenwich, CN
(1989), courtesy of the authors.

attained at 9 a.u. beyond the saddle point. Afterwards the frequency increases
fast and when the reaction is completed it turns out to be the OH symmetric
stretching frequency of the water molecule. Knowing only this, we can tell what
has happened: the HH bond was broken and a new OH bond was formed. At
the end of the reaction path we have, in addition, the antisymmetric stretching
mode of the H2O (ν̄OHasym), which evolved from the starting value of ωOH while
changing only a little (this reflects that one OH bond exists all the time and in
fact represents a “spectator” to the reaction) as well as the HOH bending mode spectator bond

(ν̄HOHbend), which appeared as a result of the strengthening of an intermolecu-
lar interaction in H2 + OH when the reaction proceeded. The calculations have
shown that this vibration corresponds to the symmetric stretching mode43 of the
H2O (ν̄OHsym). The two other modes at the beginning of the reaction have al-
most negligible frequencies, and after an occasional increasing of their frequen-
cies near the saddle point end up with zero frequencies for large s. Of course, at
the end we have to have 3 × 3 − 6 = 3 vibrational modes of the H2O and so we
do.

43At first sight this looks like contradicting chemical intuition since the antisymmetric mode is appar-
ently compatible to the reaction path (one hydrogen atom being far away while the other is close to the
oxygen atom). However, everything is all right. The SCF LCAO MO calculations for the water mole-
cule within a medium size basis set give the OH bond length equal to 0�95 Å, whereas the OH radical
bond length is equal to 1.01 Å. This means that when the hydrogen atom approaches the OH radical
(making the water molecule), the hydrogen atom of the radical has to get closer to the oxygen atom.
The resulting motion of both hydrogen atoms is similar to the symmetric (not antisymmetric) mode.
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Example 1. Vibrationally adiabatic approximation

Let us consider several versions of the reaction that differ by assuming various
vibrational states of the reactants.44 Using eq. (14.29), for each set of the vibra-
tional quantum numbers we obtain the vibrationally adiabatic potential Vadiab as a
function of s (Fig. 14.10).

The adiabatic potentials obtained are instructive. It turns out that:

• The adiabatic potential corresponding to the vibrational ground state
(vOH	 vHH)= (0	0) gives lower barrier height than the classical potential V0(s)
(5.9 kcal/mol vs 6.1). The reason for this is the lower zero-vibration energy for
the saddle point configuration than for the reactants.45

• The adiabatic potential for the vibrational ground state has its maximum at s =
−5 a.u., not at the saddle point s = 0.

• Excitation of the OH stretching vibration does not significantly change the en-
ergy profile, in particular the barrier is lowered by only about 0�3 kcal/mol. Thus,
the OH is definitely a spectator bond.

• This contrasts with what happens when the H2 molecule is excited. In such a
case the barrier is lowered by as much as about 3 kcal/mol. This suggests that
the HH stretching vibration is a “donating mode”.donating mode

a.u.

Fig. 14.10. The reaction H2 + OH → H2O + H (within the vibrationally adiabatic approximation).
Three sets of the vibrational numbers (vOH	 vHH) = (0	0)	 (1	0)	 (0	1) were chosen. Note, that the
height and position of the barrier depend on the vibrational quantum numbers assumed. An excitation
of H2 considerably decreases the barrier height. The small squares on the right show the limiting values.
According to T. Dunning, Jr. and E. Kraka, from “Advances in Molecular Electronic Structure Theory”,
ed. T. Dunning, Jr., JAI Press, Greenwich, CN (1989), courtesy of the authors.

44We need the frequencies of the modes which are orthogonal to the reaction path.
45This stands to reason, because when the Rubicon is crossed, all the bonds are weakened with respect

to the reactants.
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Example 2. Non-adiabatic theory

Now let us consider the vibrationally non-adiabatic procedure. To do this we have
to include the coupling constants B. This is done in the following way. Moving
along the reaction coordinate s we perform the normal mode analysis resulting
in the vibrational eigenvectors Lk(s). This enables us to calculate how these vec-
tors change and to determine the derivatives ∂Lk/∂s. Now we may calculate the
corresponding dot products (see eqs. (14.32) and (14.33)) and obtain the coupling
constants Bkk′(s) and Bks(s) at each selected point s. A role of the coupling con-
stants B in the reaction rate can be determined after dynamic studies assuming
various starting conditions (the theory behind this approach will not be presented
in this book). Yet some important information may be extracted just by inspecting
functions B(s). The functions Bks(s) are shown in Fig. 14.11.

As we can see:

• In the entrance channel the value of BOH,s is close to zero, therefore, there is
practically no coupling between the OH stretching vibrations and the reaction
path and hence there will be practically no energy flow between those degrees
of freedom. This might be expected from a weak dependence of ωOH as a func-
tion of s. Once more we see that the OH bond plays only the role of a reaction
spectator.

• This is not the case for BHH	s . This quantity attains maximum just before the
saddle point (let us recall that the barrier is early). The energy may, therefore,
flow from the vibrational mode of H2 to the reaction path (and vice versa) and a

s, a.u.

a.
u.

Fig. 14.11. The reaction H2 +OH→H2O + H. The curvature coupling constants Bks(s) as functions
of s. The Bks(s) characterize the coupling of the k-th normal mode with the reaction coordinate s.
According to T. Dunning, Jr. and E. Kraka, from “Advances in Molecular Electronic Structure Theory”,
ed. T. Dunning, Jr., JAI Press, Greenwich, CN (1989), courtesy of the authors.
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s, a.u.

HOHbendHOHbend

HOHbend HOHbend

Fig. 14.12. The reaction H2 +OH→H2O + H. The Coriolis coupling constants Bkk′(s) as functions
of s. A high value of Bkk′(s) means that close to reaction coordinate s the changes of the k-th normal
mode eigenvector resemble eigenvector k′ . According to T. Dunning, Jr. and E. Kraka, from “Advances
in Molecular Electronic Structure Theory”, ed. T. Dunning, Jr., JAI Press, Greenwich, CN (1989), courtesy
of the authors.

vibrational excitation of H2 may have an important impact on the reaction rate
(recall please the lowering of the adiabatic barrier when this mode is excited).

The Coriolis coupling constants Bkk′ as functions of s are plotted in Fig. 14.12
(only for the OH and HH stretching and HOH bending modes).

The first part of Fig. 14.12 pertains to the HH vibrational mode, the second to
the OH vibrational mode. As we can see:

• the maximum coupling for the HH and OH modes occurs long before the saddle
point (close to s =−18 a.u.) enabling the system to exchange energy between the
two vibrational modes;

• in the exit channel we have quite significant couplings between the symmetric
and antisymmetric OH modes and the HOH bending mode.

14.5 ACCEPTOR–DONOR (AD) THEORY OF CHEMICAL
REACTIONS

14.5.1 MAPS OF THE MOLECULAR ELECTROSTATIC POTENTIAL

Chemical reaction dynamics is possible only for very simple systems. Chemists,
however, have most often to do with medium-size or large molecules. Would it be
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possible to tell anything about the barriers for chemical reactions in such systems?
Most of chemical reactions start from a situation when the molecules are far away,
but already interact. The main contribution is the electrostatic interaction energy,
which is of long-range character (Chapter 13). Electrostatic interaction depends
strongly on the mutual orientation of the two molecules (steric effect). Therefore, steric effect

the orientations are biased towards the privileged ones (energetically favourable).
There is quite a lot of experimental data suggesting that privileged orientations
lead, at smaller distances, to low reaction barriers. There is no guarantee of this,
but it often happens for electrophilic and nucleophilic reactions, because the at-
tacking molecule prefers those parts of the partner that correspond to high elec-
tron density (for electrophilic attack) or to low electron density (for nucleophilic electrophilic

attackattack).
We may use an electrostatic probe (e.g., a unit positive charge) to detect, which

parts of the molecule “like” the approaching charge (energy lowering), and which
do not (energy increasing).

The electrostatic interaction energy of the point-like probe in position r with
molecule A is described by the formula (the definition of the electrostatic potential
produced by molecule A, see Fig. 14.13.a): nucleophilic

attack

VA(r)=+
∑

a

Za

|ra − r| −
∫
ρA(r

′)
|r′ − r| d3r′	 (14.34)

where the first term describes the interaction of the probe with the nuclei denoted
by index a, and the second means the interaction of the probe with the electron
density distribution of the molecule A denoted by ρA (according to Chapter 11).46

In the Hartree–Fock or Kohn–Sham approximation (Chapter 11, p. 570; we
assume the ni-tuple occupation of the molecular orbital ϕA	i	 ni = 0	1	2)

ρA(r)=
∑

i

ni
∣
∣ϕA	i(r)

∣
∣2� (14.35)

In order to obtain VA(r) at point r it is sufficient to calculate the distances of the
point from any of the nuclei (trivial) as well as the one-electron integrals, which ap-
pear after inserting into (14.34) ρA(r′)= 2

∑

i |ϕA	i(r′)|2. Within the LCAO MO
approximation the electron density distribution ρA represents the sum of prod-
ucts of two atomic orbitals (in general centred at two different points). As a result
the task reduces to calculating typical one-electron three-centre integrals of the
nuclear attraction type (cf. Chapter 8 and Appendix P), because the third centre
corresponds to the point r (Fig. 14.13). There is no computational problem with
this for contemporary quantum chemistry.

46By the way, to calculate the electrostatic interaction energy of the molecules A and B we have to
take (instead of a probe) the nuclei of the molecule B and sum of the corresponding contributions,
and then to do the same with the electronic cloud of B. This corresponds to the following formula:
Eelst =

∑

b ZbVA(rb) −
∫

d3rρB(r)VA(r)	 where b goes over the nuclei of B, and ρB represents its
electronic cloud.
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Fig. 14.13. Interaction of the positive unit charge (probe) with molecule A. Fig. (a) shows the coordi-
nate system and the vectors used in eq. (14.34). Fig. (b) shows the equipotential surfaces |VA(r)| for
the crown ether molecule. The light shadowed surface corresponds to VA(r) > 0, and the darker one to
VA(r) < 0 (in more expensive books this is shown by using different colours). It is seen that the crown
ether cavity corresponds to the negative potential, i.e. it would attract strongly cations.

In order to represent VA(r) graphically we usually choose to show an equipo-
tential surface corresponding to a given absolute value of the potential, while addi-
tionally indicating its sign (Fig. 14.13.b). The sign tells us which parts of the mole-
cule are preferred for the probe-like object to attack and which not. In this way we
obtain basic information about the reactivity of different parts of the molecule.47ESP charges

Who attacks whom?
In chemistry a probe will not be a point charge, but rather a neutral molecule or
an ion. Nevertheless our new tool (electrostatic potential) will still be useful:

• If the probe represents a cation, it will attack those parts of the molecule A
which are electron-rich (electrophilic reaction).

• If the probe represents an anion, it will attack the electron-deficient parts (nu-
cleophilic reaction).

• If the probe represents a molecule (B), its electrostatic potential VB is the most
interesting. Those AB configurations that correspond to the contacts of the as-
sociated sections of VA and VB with the opposite signs are the most (electrosta-
tically) stable.

The site of the molecular probe (B) which attacks an electron-rich site of A
itself has to be of electron-deficient character (and vice versa). Therefore, from

47Having the potential calculated according to (14.34) we may ask about the set of atomic charges that
reproduce it. Such charges are known as ESP (ElectroStatic Potential).
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the point of view of the attacked molecule (A), everything looks “upside down”:
an electrophilic reaction becomes nucleophilic and vice versa. When two objects
exhibit an affinity to each other, who attacks whom represents a delicate and am-
biguous problem and let it be that way. Therefore where does such nomenclature
in chemistry come from? Well, it comes from the concept of didactics.

The problem considered is related to the Umpolung problem from p. 703.
A change of sign or an exchange of charges on the interacting molecules (both
operations may have only a limited meaning in chemistry) should not influence the
key features of some reaction mechanisms involving intermediate ionic species.

We may ask whether there is any difference between a reaction taking place in
a vacuum and the same reaction proceeding in the electric field resulting from the
neighbouring point charges. Why might this be of interest? Well, many important
chemical reactions proceed in the presence of catalysts, e.g., in the active centre of
enzymes. To proceed, many chemical reactions require a chemist to heat the flask
to very high temperatures, while in enzymes the same reaction proceeds in mild
conditions. For example, in order to synthesize ammonia from atmospheric nitro-
gen chemists use the hellish conditions of an electric arc. However a similar reac-
tion takes place in lupin roots. The enzymes are proteins, which Nature took care
to make of a self-assembling character with a nearly unique, final conformation,48

assuring active centre formation. Only in this native conformation does the active native
conformationcentre work as a catalyst: the reactant is recognized (cf. p. 750), and then docked in

the reaction cavity, a particular bond is broken, the products are released and the
enzyme comes back to the initial state. Well, why does the bond break? The major- reaction cavity

ity of amino acids in an enzyme play an important yet passive role: just to allow a
few important amino acids to make the reaction cavity as well as the reaction site.
The role of the reaction cavity is to assure the reactant is properly oriented in space
with respect to those amino acids that form the reaction site. The role of the latter
is to create a specific electric field at the reactant position. Such a field lowers the
reaction barrier, thus making it easier. Andrzej Sokalski,49 reversing the problem,
asked a very simple question: for a given reaction how should the field-producing
charges look in order to lower (most-effectively) the reaction barrier? This is what we
will need first when planning artificial enzymes for the reactions desired.

As we have seen, for computational reasons we are able to take into account
only reactions involving a few nuclei. However, chemists are interested in the re-
activity of much larger molecules. We would like to know what particular features
of the electronic structure make a chemical reaction proceed. This is the type of
question that will be answered in the acceptor–donor theory.50

Molecules attract each other at long distances
Let us assume that two molecules approach each other, say, because of their
chaotic thermic motion. When the molecules are still far away, they already un-
48Among myriads of other conformations, cf. Chapter 7.
49W.A. Sokalski, J. Mol. Catalysis 30 (1985) 395.
50More details about the acceptor–donor theory may be found in excellent paper by S. Shaik, J. Am.

Chem. Soc. 103 (1981) 3692. The results reported in Tables 14.2–14.6 also originate from this paper.
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dergo tiny changes due to the electric field produced by their partner (Chapters 12
and 13). The very fact that each of the molecules having permanent multipole
moments is now immersed in a non-homogeneous electric field, means the mul-
tipole moments interact with the field and the resulting electrostatic interaction
energy.

The electric field also distorts the partner’s electronic cloud, and as a conse-
quence of the Hellmann–Feynman theorem (Chapter 12) this creates a distortion
of the nuclear framework. Thus, the multipole moments of a distorted molecule
are a little changed (“induced moments”) with respect to the permanent ones. If
we take the induced moment interaction with the field into account, then apart
from the electrostatic interaction energy we obtain the induction energy contribu-
tion.51

Besides this, each of the molecules feels electric field fluctuations coming from
motion of the electrons in the partner and adjusts to that motion. This leads to the
dispersion interaction (Chapter 13).

Even at long intermolecular distances the dominating electrostatic interac-
tion orients the molecules to make them attract each other. The induction
and dispersion energies are always attractive. Therefore, in such a case all
important energy contributions mean attraction.

They are already close. . .

What happens when the molecules are closer? Besides the effects just described a
new one appears – the valence repulsion coming from the electron clouds overlap.
Such an interaction vanishes exponentially with intermolecular distance. This is
why we were able to neglect this interaction at longer distances.

Two molecules, even simple ones, may undergo different reactions depending
not only on their collision energy, but also on their mutual orientation with respect
to one another (steric factor). The steric factor often assures selectivity, since onlysteric factor

molecules of a certain shape (that fit together) may get their active centres close
enough (cf. Chapter 13).

Suppose that two molecules under consideration collide with a proper orien-
tation in space.52 What will happen next? As we will see later, it depends on the
molecules involved. Very often at the beginning there will be an energetic barrier
to overcome. When the barrier is too high compared with the collision energy, then
a van der Waals complex is usually formed, otherwise the barrier is overcome andvan der Waals

complex the chemical reaction occurs. On the other hand for some reactants no reaction
barrier exists.

51If one or both molecules do not have any non-zero permanent multipole moments, their electrostatic
interaction energy is zero. If at least one of them has a non-zero permanent moment (and the partner
has electrons), then there is a non-zero induction energy contribution.
52A desired reaction to occur.
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14.5.2 WHERE DOES THE BARRIER COME FROM?

The barrier always results from the intersection of diabatic potential energy hyper-
surfaces. We may think of diabatic states as preserving the electronic state (e.g.,
the system of chemical bonds): I and II, respectively.

Sometimes it is said that the barrier results from an avoided crossing (cf. Chap-
ter 6) of two diabatic hypersurfaces that belong to the same irreducible representa-
tion of the symmetry group of the Hamiltonian (in short: “of the same symmetry”).
This, however, cannot be taken literally, because, as we know from Chapter 6, the
non-crossing rule is valid for diatomics only. The solution to this dilemma is the
conical intersection described in Chapter 6 (cf. Fig. 6.15).53 Instead of diabatic we
have two adiabatic hypersurfaces (“upper” and “lower”54), each consisting of the
diabatic part I and the diabatic part II. A thermic reaction takes place as a rule on
the lower hypersurface and corresponds to crossing the border between I and II.

14.5.3 MO, AD AND VB FORMALISMS

Let us take an example of a simple substitution reaction:

H :− +H−H→H−H+H :− (14.36)

and consider the acceptor–donor formalism (AD). The formalism may be treated
as intermediate between the configuration interaction (CI) and the valence bond
(VB) formalisms. Any of the three formalisms is equivalent to the two others, pro-
vided they differ only by a linear transformation of many-electron basis functions.

In the CI formalism the Slater determinants are built of the molecular
spinorbitals
In the VB formalism the Slater determinants are built of the atomic spinor-
bitals
In the AD formalism the Slater determinants are built of the acceptor and
donor spinorbitals

MO picture → AD picture
Molecular orbitals for the total system ϕ1, ϕ2, ϕ3 in a minimal basis set may be
expressed (Fig. 14.14) using the molecular orbital of the donor (n, in our case
the 1s atomic orbital of H−) and the acceptor molecular orbitals (bonding χ and
antibonding χ∗):

ϕ1 = a1n+ b1χ− c1χ
∗	

ϕ2 = a2n− b2χ− c2χ
∗	 (14.37)

ϕ3 = −a3n+ b3χ− c3χ
∗	

53The term “conical” stems from a linear (or “conical-like”) dependence of the two adiabatic energy
hypersurfaces on the distance from the conical intersection point.
54On the energy scale.
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Fig. 14.14. A schematic representation of the molecular orbitals and their energies: of the donor (n rep-
resenting the hydrogen atom 1s orbital), of the acceptor (bonding χ and antibonding χ∗ of the hydro-
gen molecule) as well as of the total system H3 in a linear configuration (centre of the figure). The
lowest-energy molecular orbital of H3 does not have any node, the higher has one while the highest has
two nodes. In all cases we use the approximation that the molecular orbitals are built of the three 1s
hydrogen atomic orbitals.

where ai	 bi	 ci > 0, for i = 1	2	3. This convention comes from the fact that ϕ1
is of the lowest energy and therefore exhibits no node, ϕ2 has to play the role of
the orbital second in energy scale and therefore has a single node, while ϕ3 is the
highest in energy and therefore has two nodes.55

Any N-electron Slater determinant � composed of the molecular spinorbitals
{φi}, i= 1	2	 � � � (cf. eq. (M.1) on p. 986) may be written as a linear combination of
the Slater determinants �AD

i composed of the spinorbitals ui	 i = 1	2	 � � � , of the
acceptor and donor56 (AD picture)

�MO
k =

∑

i

Ck(i)�
AD
i � (14.38)

A similar expansion can also be written for the atomic spinorbitals (VB picture)
instead of the donors and acceptors (AD picture).

55Positive a, b, c make possible the node structure described above.
56We start from the Slater determinant built of N molecular spinorbitals. Any of these is a linear com-

bination of the spinorbitals of the donor and acceptor. We insert these combinations into the Slater
determinant and expands the determinant according to the first row (Laplace expansion, see Appen-
dix A on p. 889). As a result we obtain a linear combination of the Slater determinants all having the
donor or acceptor spinorbitals in the first row. For each of the Slater determinants we repeat the proce-
dure, but focusing on the second row, then the third row, etc. We end up with a linear combination of
the Slater determinants that contain only the donor or acceptor spinorbitals. We concentrate on one of
them, which contains some particular donor and acceptor orbitals. We are interested in the coefficient
Ck(i) that multiplies this Slater determinant.
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In a moment we will be interested in some of the coefficients Ck(i). For exam-
ple, the expansion for the ground-state Slater determinant (in the MO picture)

�0 =N0|ϕ1ϕ̄1ϕ2ϕ̄2| (14.39)

gives

�0 = C0(DA)�DA +C0(D+A−)�D+A− + · · · 	 (14.40)

where ϕ̄i denotes the spinorbital with spin function β, and ϕi – the spinorbital with
spin function α, N0 stands for the normalization coefficient, while �DA, �D+A−
represent the normalized Slater determinants with the following electronic config-
urations, in �DA : n2χ2, in �D+A− : n1χ2(χ∗)1, etc.

We are first interested in the coefficient C0(DA). As shown by Fukui, Fujimoto
and Hoffmann (cf. Appendix Z, p. 1058)57

C0(DA)≈ 〈�DA|�0〉 =
∣
∣
∣
∣

a1 b1
a2 −b2

∣
∣
∣
∣

2

= (a1b2 + a2b1)
2	 (14.41)

where in the determinant, the coefficients of the donor and acceptor orbitals ap-
pear in those molecular orbitals ϕi of the total system that are occupied in ground-
state Slater determinant �0 (the coefficients of n and χ in ϕ1 are a1 and b1, re-
spectively, while those in ϕ2 are a2 and −b2, respectively, see eqs. (14.37)).

Roald Hoffmann, American chemist, born 1937
in Złoczów (then Poland) to a Jewish fam-
ily, professor at Cornell University in Ithaca,
USA. Hoffmann discovered the symmetry rules
that pertain to some reactions of organic com-
pounds. In 1981 he shared the Nobel Prize
with Kenichi Fukui “for their theories, devel-
oped independently, concerning the course of
chemical reactions”. Roald Hoffmann is also a
poet and playwright. His poetry is influenced by
chemistry, in which, as he wrote, was inspired
by Marie Curie.

His CV reads like a film script. When in
1941 the Germans entered Złoczów, the four
year old Roald was taken with his mother to a
labour camp. One of the Jewish detainees be-
trayed a camp conspiration network to the Ger-
mans. They massacred the camp, but Roald
and his mother had earlier been smuggled
out of the camp by his father and hidden in
a Ukrainian teacher’s house. Soon after, his fa-
ther was killed. The Red Army pushed the Ger-
mans out in 1944 and Roald and his mother
went via Przemyśl to Cracow. In 1949 they fi-

nally reached America. Roald Hoffmann grad-
uated from Stuyvesant High School, Columbia
University and Harvard University. In Harvard
Roald met the excellent chemist Professor
Robert Burns Woodward (syntheses of chloro-
phyll, quinine, strychnine, cholesterol, penicillin
structure, vitamins), a Nobel Prize winner in
1965. Woodward alerted Hoffmann to a mys-
terious behaviour of polyens in substitution re-
actions. Roald Hoffmann clarified the problem
using the symmetry properties of the molec-
ular orbitals (now known as the Woodward–
Hoffmann symmetry rules, cf. p. 825).

57We assume that the orbitals n, χ and χ∗ are orthogonal (approximation).
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Kenichi Fukui (1918–1998),
Japanese chemist, profes-
sor at the Kyoto University.
One of the first scholars who
stressed the importance of
the IRC, and introduced what
is called the frontier orbitals
(mainly HOMO and LUMO),
which govern practically all
chemical processes. Fukui
received the Nobel Prize in
chemistry in 1981.

Now instead of �0 let us take two
doubly excited configurations of the to-
tal system:58

�2d =N2|ϕ1ϕ̄1ϕ3ϕ̄3| (14.42)

and

�3d =N3|ϕ2ϕ̄2ϕ3ϕ̄3|	 (14.43)

whereNi stand for the normalization co-
efficients. Let us ask about the coeffi-

cients that they produce for the DA configuration (let us call these coefficients
C2(DA) for �2d and C3(DA) for �3d), i.e.

�2d = C2(DA)�DA +C2(D+A−)�D+A− + · · · 	 (14.44)
�3d = C3(DA)�DA +C3(D+A−)�D+A− + · · · � (14.45)

According to the result described above (see p. 1058) we obtain:

C2(DA) =
∣
∣
∣
∣

a1 b1
−a3 b3

∣
∣
∣
∣

2
= (a1b3 + a3b1)

2	 (14.46)

C3(DA) =
∣
∣
∣
∣

a2 −b2
−a3 b3

∣
∣
∣
∣

2

= (a2b3 − a3b2)
2� (14.47)

Such formulae enable us to calculate the contributions of the particular donor-
acceptor resonance structures (e.g., DA, D+A−, etc., cf. p. 520) in the Slater de-
terminants built of the molecular orbitals (14.37) of the total system. If one of these
structures prevailed at a given stage of the reaction, this would represent important
information about what has happened in the course of the reaction.

Please recall that at every reaction stage the main object of interest will be the
ground-state of the system. The ground-state will be dominated59 by various reso-
nance structures. As usual the resonance structures are associated with the corre-
sponding chemical structural formulae with the proper chemical bond pattern. If
at a reaction stage a particular structure dominated, then we would say that the system
is characterized by the corresponding chemical bond pattern.

14.5.4 REACTION STAGES

We would like to know the a, b, c values at various reaction stages, because we
could then calculate the coefficients C0, C2 and C3 for the DA as well as for other
donor-acceptor structures (e.g., D+A−, see below) and deduce what really hap-
pens during the reaction.
58We will need this information later to estimate the configuration interaction role in calculating the

CI ground state.
59I.e. these structures will correspond to the highest expansion coefficients.
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Reactant stage (R)

The simplest situation is at the starting point. When H− is far away from H–H, then
of course (Fig. 14.14) ϕ1 = χ, ϕ2 = n, ϕ3 =−χ∗. Hence, we have b1 = a2 = c3 = 1,
while the other a, b, c = 0, therefore:

i ai bi ci
1 0 1 0
2 1 0 0
3 0 0 1

Using formulae (14.41), (14.46) and (14.47) (the superscript R recalls that the
results correspond to reactants):

CR0 (DA) = (0 · 1+ 1 · 1)2 = 1	 (14.48)

CR2 (DA) = 0	 (14.49)

CR3 (DA) = (1 · 0− 0 · 0)2 = 0� (14.50)

When the reaction begins, the reactants are correctly described as a Slater
determinant with doubly occupied n and χ orbitals, which corresponds to
the DA structure.

This is, of course, what we expected to obtain for the electronic configuration of
the non-interacting reactants.

Intermediate stage (I)

What happens at the intermediate stage (I)?
It will be useful to express the atomic orbitals 1sa, 1sb, 1sc through orbitals

n	χ	χ∗ (they span the same space). From Chapter 8, p. 371, we obtain

1sa = n	 (14.51)

1sb = 1√
2

(

χ−χ∗)	 (14.52)

1sc = 1√
2

(

χ+χ∗)	 (14.53)

where we have assumed that the overlap integrals between different atomic or-
bitals are equal to zero.

The intermediate stage corresponds to the situation in which the hydrogen atom
in the middle (b) is at the same distance from a as from c, and therefore the two
atoms are equivalent. This implies that the nodeless, one-node and two-node or-
bitals have the following form (where ! stands for the 1s orbital and " for the −1s
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orbital)

ϕ1 = !!! = 1√
3
(1sa + 1sb + 1sc)	

ϕ2 = ! · " = 1√
2
(1sa − 1sc)	

ϕ3 = "!" = 1√
3
(−1sa + 1sb − 1sc)�

(14.54)

Inserting formulae (14.52) we obtain:

ϕ1 = 1√
3

(

n+√2χ+ 0 ·χ∗
)

	

ϕ2 = 1√
2

(

n− 1√
2

(

χ+χ∗)
)

	 (14.55)

ϕ3 = 1√
3

(

− n+ 0 ·χ−√2χ∗
)

	

ai bi ci

i= 1 1√
3

√

2
3 0

i= 2 1√
2

1
2

1
2

i= 3 1√
3

0
√

2
3

(14.56)

From eq. (14.41) we have

CI0(DA) =
(

1√
3

1
2
+ 1√

2

√

2
3

)2

= 3
4
= 0�75	 (14.57)

CI2(DA) =
(

1√
3
· 0+

√

2
3

1√
3

)2

= 2
9
= 0�22	 (14.58)

CI3(DA) =
(

1√
2
· 0− 1

2
1√
3

)2
= 1

12
= 0�08� (14.59)

The first of these three numbers is the most important. Something happens to
the electronic ground-state of the system. At the starting point, the ground-state
wave function had a DA contribution equal to CR0 (DA)= 1	 while now this contri-
bution has decreased to CI0(DA)= 0�75. Let us see what will happen next.

Product stage (P)
How does the reaction end up?
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Let us see how molecular orbitals ϕ corresponding to the products are ex-
pressed by n, χ and χ∗ (they were defined for the starting point). At the end we
have the molecule H–H (made of the middle and left hydrogen atoms) and the
outgoing ion H− (made of the right hydrogen atom).

Therefore the lowest-energy orbital at the end of the reaction has the form

ϕ1 = 1√
2
(1sa + 1sb)= 1√

2
n+ 1

2
χ− 1

2
χ∗	 (14.60)

which corresponds to a1 = 1√
2

, b1 = 1
2 , c1 = 1

2 .
Since the ϕ2 orbital is identified with 1sc , we obtain from eqs. (14.52): a2 = 0,

b2 = c2 = 1√
2

(never mind that all the coefficients are multiplied by −1) and finally
as ϕ3 we obtain the antibonding orbital

ϕ3 = 1√
2
(1sa − 1sb)= 1√

2
n− 1

2
χ+ 1

2
χ∗	 (14.61)

i.e. a3 = 1√
2

, b3 = 1
2 , c3 = 1

2 (the sign is reversed as well). This leads to

i ai bi ci

1 1√
2

1
2

1
2

2 0 1√
2

1√
2

3 1√
2

1
2

1
2

(14.62)

Having ai, bi, ci for the end of reaction, we may easily calculate CP0 (DA) of
eq. (14.41) as well as CP2 (DA) and CP3 (DA) from eqs. (14.46) and (14.47), respec-
tively, for the reaction products

CP0 (DA) =
(

1√
2
· 1√

2
+ 0 · 1

2

)2
= 1

4
	 (14.63)

CP2 (DA) =
(

1√
2
· 1

2
+ 1√

2
· 1

2

)2

= 1
2
	 (14.64)

CP3 (DA) =
(

0 · 1
2
− 1√

2
· 1√

2

)2
= 1

4
� (14.65)

Now we can reflect for a while. It is seen that during the reaction some important
changes occur, namely

when the reaction begins, the system is 100% described by the structure DA,
while after the reaction it resembles this structure only by 25%.
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Role of the configuration interaction
We may object that our conclusions look quite naive. Indeed, there is something to
worry about. We have assumed that, independent of the reaction stage, the ground-
state wave function represents a single Slater determinant �0, whereas we should
rather use a configuration interaction expansion. In such an expansion, besides
the dominant contribution of �0, double excitations would be the most important
(p. 560), which in our simple approximation of the three ϕ orbitals means a leading
role for �2d and �3d :

�CI =�0 + κ1�2d + κ2�3d + · · · �

The two configurations would be multiplied by some small coefficients (because
all the time we deal with the electronic ground-state dominated by �0). It will be
shown that the κ coefficients in the CI expansion � = �0 + κ1�2d + κ2�3d are
negative. This will serve us to make a more detailed analysis (than that performed
so far) of the role of the DA structure at the beginning and end of the reaction.

The coefficients κ1 and κ2 may be estimated using perturbation theory with �0
as unperturbed wave function. The first-order correction to the wave function is
given by formula (5.25) on p. 208, where we may safely insert the total Hamiltonian
Ĥ instead of the operator60 Ĥ(1) (this frees us from saying what Ĥ(1) looks like).
Then we obtain

κ1 ∼= 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉
E0 −E2d

< 0	 (14.66)

κ2 ∼= 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉
E0 −E3d

< 0	 (14.67)

because from the Slater–Condon rules (Appendix M) we have 〈�0|Ĥ�2d〉 =
〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 − 〈ϕ2ϕ̄2|ϕ̄3ϕ3〉 = 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 − 0 = 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 and, similarly,
〈�0|Ĥ�3d〉 = 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉, where E0	E2d	E3d represent the energies of the cor-
responding states. The integrals 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉 and 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉 are Coulombic re-
pulsions of a certain electron density distribution with the same charge distribution,
therefore, 〈ϕ2ϕ̄2|ϕ3ϕ̄3〉> 0 and 〈ϕ1ϕ̄1|ϕ3ϕ̄3〉> 0.

Thus, the contribution of the DA structure to the ground-state CI function results
mainly from its contribution to the single Slater determinant�0 [coefficient C0(DA)],
but is modified by a small correction κ1C2(DA)+ κ2C3(DA), where κ < 0.

What are the values of C2(DA) and C3(DA) at the beginning and at the
end of the reaction? At the beginning our calculations gave: CR2 (DA) = 0 and
CR3 (DA)= 0. Note that CR0 (DA)= 1. Thus the electronic ground-state at the start
of the reaction mainly represents the DA structure.

And what about the end of the reaction? We have calculated that CP2 (DA) =
1
2 > 0 and CP3 (DA) = 1

4 > 0. This means that at the end of the reaction the coef-
ficient corresponding to the DA structure will be certainly smaller than CP0 (DA)=
60Because the unperturbed wave function �0 is an eigenfunction of the Ĥ(0) Hamiltonian and is

orthogonal to any of the expansion functions.
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0�25, the value obtained for the single determinant approximation for the ground-
state wave function.

Thus, taking the CI expansion into account makes our conclusion based on the
single Slater determinant even sharper.

When the reaction starts, the wave function means the DA structure, while
when it ends, this contribution is very strongly reduced.

14.5.5 CONTRIBUTIONS OF THE STRUCTURES AS REACTION
PROCEEDS

What therefore represents the ground-state wave function at the end of the reac-
tion? To answer this question let us consider first all possible occupations of the
three energy levels (corresponding to n, χ, χ∗) by four electrons. As before we as-
sume for the orbital energy levels: εχ < εn < εχ∗ . The number of such singlet-type
occupations is equal to six, Table 14.1 and Fig. 14.15.

Now, let us ask what is the contribution of each of these structures61 in �0,
�2d and �3d in the three stages of the reaction. This question is especially impor-
tant for�0, because this Slater determinant is dominant for the ground-state wave
function. The corresponding contributions in �2d and �3d are less important, be-
cause these configurations enter the ground-state CI wave function multiplied by
the tiny coefficients κ. We have already calculated these contributions for the DA
structure. The contributions of all the structures are given62 in Table 14.2.

First, let us focus on which structures contribute to�0 (because this determines
the main contribution to the ground-state wave function) at the three stages of the
reaction. As has been determined,

at point R we have only the contribution of the DA structure.

Table 14.1. All possible singlet-type occupations of the orbitals:
n, χ and χ∗ by four electrons

ground state DA (n)2(χ)2

singly excited state D+A− (n)1(χ)2(χ∗)1
singly excited state DA∗ (n)2(χ)1(χ∗)1
doubly excited state D+A−∗ (n)1(χ)1(χ∗)2
doubly excited state D+2A−2 (χ)2(χ∗)2
doubly excited state DA∗∗ (n)2(χ∗)2

61We have already calculated some of these contributions.
62Our calculations gave CI0(DA) = 0�75, CI2(DA) = 0�22, CI3(DA) = 0�08. In Table 14.2 these quan-

tities are equal: 0.729, 0.250, 0.020. The only reason for the discrepancy may be the non-zero overlap
integrals, which were neglected in our calculations and were taken into account in those given in Ta-
ble 14.2.
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Fig. 14.15. The complete set of the six singlet wave functions (“structures”), that arise from occupation
of the donor orbital n and of the two acceptor orbitals (χ and χ∗).

However, as we can see (main contributions in bold in Table 14.2),

when the reaction advances along the reaction path to point I, the contri-
bution of DA decreases to 0�729, other structures come into play with the
dominant D+A− (the coefficient equal to −0�604).

At point P there are three dominant structures: D+A−, D+A−∗ and
D+2A−2.

Now we may think of going beyond the single determinant approximation by
performing the CI. In the R stage the DA structure dominates as before, but has
some small admixtures of DA∗∗ (because of �3d) and D+2A−2 (because of �2d),
while at the product stage the contribution of the DA structure almost vanishes.
Instead, some important contributions of the excited states appear, mainly of the
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Table 14.2. The contribution of the six donor–acceptor structures in the three Slater determinants �0,
�2d and�3d built of molecular orbitals at the three reaction stages: reactant (R), intermediate (I) and
product (P) [S. Shaik, J. Am. Chem. Soc. 103 (1981) 3692. Adapted with permission from the American
Chemical Society. Courtesy of the author.]

Structure MO determinant R I P

DA �0 C0(DA) 1 0.729 0�250
�2d C2(DA) 0 0�250 0�500
�3d C3(DA) 0 0�020 0�250

D+A− �0 C0(D+A−) 0 −0�604 −0�500
�2d C2(D+A−) 0 0�500 0�000
�3d C3(D+A−) 0 0�103 0�500

DA∗ �0 C0(DA∗) 0 0�177 0�354
�2d C2(DA∗) 0 0�354 −0�707
�3d C3(DA∗) 0 0�177 0�354

D+A−∗ �0 C0(D+A−∗) 0 0�103 0.500
�2d C2(D+A−∗) 0 0�500 0�000
�3d C3(D+A−∗) 0 −0�604 −0�500

DA∗∗ �0 C0(DA∗∗) 0 0�021 0�250
�2d C2(DA∗∗) 0 0�250 0�500
�3d C3(DA∗∗) 1 0�729 0�250

D+2A−2 �0 C0(D+2A−2) 0 0�250 0.500
�2d C2(D+2A−2) 1 0�500 0�000
�3d C3(D+2A−2) 0 0�250 0�500

D+A−, D+A−∗ and D+2A−2 structures, but also other structures of smaller im-
portance.

The value of the qualitative conclusions comes from the fact that they do not
depend on the approximation used, e.g., on the atomic basis set, neglecting
the overlap integrals, etc.

For example, the contributions of the six structures in �0 calculated using the
Gaussian atomic basis set STO-3G and within the extended Hückel method are
given in Table 14.3 (main contributions in bold). Despite the fact that even the
geometries used for the R, I, P stages are slightly different, the qualitative results
are the same. It is rewarding to learn things that do not depend on detail.

Where do the final structures D+A−, D+A−∗ and D+2A−2 come from?

As seen from Table 14.2, the main contributions at the end of the reaction come
from the D+A−, D+A−∗ and D+2A−2 structures. What do they correspond to
when the reaction starts? From Table 14.2 it follows that the D+2A−2 structure
simply represents Slater determinant �2d (Fig. 14.16). But where do the D+A−
and D+A−∗ structures come from? There are no such contributions either in �0,
or in �2d or in �3d . It turns out however that a similar analysis applied to the
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Table 14.3. Contributions of the six donor–acceptor structures in the �0 Slater determinant at three
different stages (R, I, P) of the reaction [S. Shaik, J. Am. Chem. Soc. 103 (1981) 3692. Adapted with
permission from the American Chemical Society. Courtesy of the author.]

STO-3G Extended Hückel

Structure R I P R I P

DA 1.000 0.620 0�122 1.000 0.669 0�130
D+A− 0.000 −0�410 −0�304 −0�012 −0�492 −0�316
DA∗ 0.000 0�203 0�177 0�000 0�137 0�179
D+A−∗ 0.000 0�125 0.300 0�000 0�072 0.298
DA∗∗ 0.000 0�117 0.302 0�000 0�176 0.301
D+2A−2 0.000 0�035 0�120 0�000 0�014 0�166

Most important acceptor–donor structures at P

These structures correspond to the following MO configurations at R

Fig. 14.16. What final structures are represented at the starting point?
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normalized configuration63 N|ϕ1ϕ̄1ϕ2ϕ̄3| at stage R gives exclusively the D+A−
structure, while applied to the N|ϕ1ϕ̄2ϕ3ϕ̄3| determinant, it gives exclusively the
D+A−∗ structure (Fig. 14.16). So we have traced them back. The first of these con-
figurations corresponds to a single-electron excitation from HOMO to LUMO –
this is, therefore, the lowest excited state of the reactants. Our picture is clarified:

the reaction starts from DA, at the intermediate stage (transition state)
we have a large contribution of the first excited state that at the starting
point was the D+A− structure related to the excitation of an electron from
HOMO to LUMO.

The states DA and D+A− undergo the “quasi-avoided crossing” in the sense
described on p. 262. This means that at a certain geometry, the roles played by
HOMO and LUMO interchange, i.e. what was HOMO becomes LUMO and vice
versa.64

Donor and acceptor orbital populations at stages R, I, P
Linear combinations of orbitals n, χ and χ∗ construct the molecular orbitals of the
system in full analogy with the LCAO expansion of the molecular orbitals. There-
fore we may perform a similar population analysis as that described in Appendix S,
p. 1015. The analysis will tell us where the four key electrons of the system are
(more precisely how many of them occupy n, χ and χ∗), and since the population
analysis may be performed at different stages of the reaction, we may obtain infor-
mation as to what happens to the electrons when the reaction proceeds. The object
to analyze is the wave function�. We will report the population analysis results for
its dominant component, namely �0. The results of the population analysis are re-
ported in Table 14.4. The content of this table confirms our previous conclusions.

Table 14.4. Electronic population of the donor and acceptor
orbitals at different reaction stages (R, I, P) [S. Shaik, J. Am.
Chem. Soc. 103 (1981) 3692. Adapted with permission from the
American Chemical Society. Courtesy of the author.]

Population
Orbital R I P

n 2.000 1.513 1.000
χ 2.000 1.950 1.520
χ∗ 0.000 0.537 1.479

63N stands for the normalization coefficient.
64The two configurations differ by a single spinorbital and the resonance integral 〈DA|Ĥ|D+A−〉

when reduced using the Slater–Condon rules is dominated by the one-electron integral involving
HOMO (or n) and the LUMO (or χ∗). Such an integral is of the order of the overlap integral be-
tween these orbitals. The energy gap between the two states is equal to twice the absolute value of the
resonance integral (the reason is similar to the bonding-antibonding orbital separation in the hydrogen
molecule).



816 14. Intermolecular Motion of Electrons and Nuclei: Chemical Reactions

• The starting point (R) has occupation: (n)2(χ)2, and that is fine, because we are
dealing with the DA structure.

• The intermediate stage represents a mixture of two structures mainly (with al-
most equal contributions): (n)2(χ)2, i.e. DA and (n)1(χ)2(χ∗)1, i.e. D+A−.
Therefore we may expect that the population of χ is close to 2, of n is about
1.5, while of χ∗ is about 0.5. This is indeed the case.

• The final stage (P) is a mixture of the D+A− structure, which corresponds
to the occupation (n)1(χ)2(χ∗)1, of the structure D+A−∗ corresponding to
(n)1(χ)1(χ∗)2 and the structure D+2A−2 with occupation (n)0(χ)2(χ∗)2. Equal
contributions of these structures should therefore give the occupations of
n	χ	χ∗ equal to 2

3 , 5
3 and 5

3 , respectively. The population analysis gives simi-
lar numbers, see Table 14.4, last column.

14.5.6 NUCLEOPHILIC ATTACK H−+ ETHYLENE → ETHYLENE + H−

Maybe the acceptor–donor theory described above pertains only to the H− +H–H
reaction? Fortunately enough, its applicability goes far beyond. Let us consider a
nucleophilic attack of the H− ion on the ethylene molecule (Fig. 14.17), perpen-
dicular to the ethylene plane towards the position of one of the carbon atoms. The
arriving ion binds to the carbon atom forming the CH bond, while another proton
with two electrons (i.e. H− ion) leaves the system. Such a reaction looks like it is
of academic interest only (except some isotopic molecules are involved, e.g., when
one of the protons is replaced by a deuteron), but comprehension comes from the
simplest examples possible, when the least number of things change.

The LCAO MO calculations for the ethylene molecule give the following result.
The HOMO orbital is of the π bonding character, while the LUMO represents the
antibonding π∗ orbital (both are linear combinations of mainly carbon 2pz atomic
orbitals, z being the axis perpendicular to the ethylene plane). On the energy scale
the H− 1s orbital goes between the π and π∗ energies, similarly as happened with
the χ and χ∗ orbitals in the H− +H–H reaction. The virtual orbitals (let us call
them 2χ∗, 3χ∗, 4χ∗) are far away up in the energy scale, while the occupied σ-type
orbitals are far down in the energy scale. Thus, the H− n = 1s orbital energy is
close to that of χ and χ∗, while other orbitals are well separated from them.

This energy level scheme allows for many possible excitations, far more numer-
ous than considered before. Despite this, because of the effective mixing of only
those donor and acceptor orbitals that are of comparable energies, the key partners
are, as before, n, χ and χ∗. The role of the other orbitals is only marginal: their
admixtures will only slightly deform the shape of the main actors of the drama n,
χ and χ∗ known as the frontier orbitals. The coefficients at various acceptor–donorfrontier orbitals

structures in the expansion of �0 are shown in Table 14.5. The calculations were
performed using the extended Hückel method65 at three stages of the reaction (R,
in which the H− ion is at a distance of 3 Å from the attacked carbon atom; I, with a
65Introduced to chemistry by Roald Hoffmann. He often says that he cultivates chemistry with an old,

primitive tool, which because of this ensures access to the wealth of the complete Mendeleev periodic
table.
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Fig. 14.17. Nucleophilic substitution of ethylene
by H−. The figure aims to demonstrate that, de-
spite considering a more complex system than the
H−+H2 →H2+H− reaction discussed so far, the
machinery behind the scene works in the same way.
The attack of H− goes perpendicularly to the eth-
ylene plane, onto one of the carbon atoms. The fig-
ure shows the (orbital) energy levels of the donor
(H−, left hand side) and of the acceptor (ethyl-
ene, right hand side). Similarly as for H− + H2
the orbital energy of the donor orbital n is between
the acceptor orbital energies χ and χ∗ correspond-
ing to the bonding π and antibonding π∗ orbitals.
Other molecular orbitals of the ethylene (occupied
and virtual: 2χ∗	3χ∗	 � � �) play a marginal role, due
to high energetic separation from the energy level
of n.

Table 14.5. Expansion coefficients at the acceptor–donor structures in the ground-
state wave function at various stages of the reaction: reactant (R), intermediate (I)
and product (P) [S. Shaik, J. Am. Chem. Soc. 103 (1981) 3692. Adapted with permis-
sion from the American Chemical Society. Courtesy of the author.]

Coefficients

Structure R I P

DA 1.000 0.432 0�140
D+A−(n→ π∗) 0�080 0.454 0.380
DA∗ (π→ π∗) −0�110 −0�272 −0�191
D+A−∗(n→ π∗, π→ π∗) −0�006 −0�126 −0�278
D+A−(n→ 2σ∗) <10−4 0�006 0�004
D+A−(n→ 3σ∗) <10−4 −0�070 −0�040

distance 1.5 Å and P, with a distance equal to 1.08 Å; in all cases the planar geom-
etry of the ethylene was preserved). It is seen that, despite the fact that a more
complex method was used, the emerging picture is quite similar: at the beginning
the DA structure prevails, at the intermediate stage we have a “hybrid” of the DA
and D+A− structures, while at the end we have a major role for the D+A− and
D+A−∗ structures. We can see also that even if some higher excitations were taken
into account (to the orbitals 2σ∗	3σ∗) they play only a marginal role. The cor-
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responding population analysis (not reported here) indicates a basically identical
mechanism. This resemblance extends also to the SN2 nucleophilic substitutions
in aromatic compounds.

14.5.7 ELECTROPHILIC ATTACK H+ + H2 → H2 + H+

Let us see whether this mechanism is even more general and consider the
electrophilic substitution in the model reaction H+ + H–H → H–H + H+.
This time the role of the donor is played by the hydrogen molecule, while
that of the acceptor is taken over by the proton. The total number of elec-
trons is only two. The DA structure corresponds to (χ)2(n)0(χ∗)0. Other struc-
tures are defined in an analogous way to the previous case of the H3 system:
structure D+A− means (χ)1(n)1(χ∗)0, structure D+∗A− obviously corresponds
to (χ)0(n)1(χ∗)1, structure D∗A to (χ)1(n)0(χ∗)1, D∗∗A to (χ)0(n)0(χ∗)2 and
D+2A−2 to (χ)0(n)2(χ∗)0. As before, the ground-state Slater determinant may
be expanded into the contributions of these structures. The results (the overlap
neglected) are collected in Table 14.6.

Table 14.6. Expansion coefficients at the acceptor–donor structures for the
reaction of proton with the hydrogen molecule at three different stages of
the reaction: reactant (R), intermediate (I) and product (P) [S. Shaik, J. Am.
Chem. Soc. 103 (1981) 3692. Adapted with permission from the American
Chemical Society. Courtesy of the author.]

Coefficients

Structure R I P

DA 1.000 0.729 0�250
D+A− 0 0.604 0.500
D+∗A− 0 −0�104 −0�500
D∗A 0 −0�177 −0�354
D∗∗A 0 0�021 0�250
D+2A−2 0 0�250 0�500

It is worth stressing that we obtain the same reaction machinery as before. First,
at stage R the DA structure prevails, next at intermediate stage I we have a mixture
of the DA and D+A− structures, and we end up (stage P) with D+A− and D+∗A−
(the energy levels for the donor are the same as the energy levels were previously
for the acceptor, hence we have D+∗A−, and not D+A−∗ as before). This picture
would not change qualitatively if we considered electrophilic substitution of the
ethylene or benzene.

14.5.8 NUCLEOPHILIC ATTACK ON THE POLARIZED CHEMICAL BOND IN
THE VB PICTURE

X− + ––C=Y → ––C=X + Y−

What does the quasi-avoided crossing described above really mean? At the be-
ginning we have the DA structure almost exclusively. The DA structure obviously
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corresponds to a chemical bond in the acceptor and the lack of any bond between
the donor and acceptor. In the D+A− structure which comes into play at the in-
termediate stage, we have two paired electrons: one on D+ occupying orbital n,
and the second on A− occupying χ∗. These electrons represent the pair that will be
responsible for formation of the new bond, the D–A bond. At the same time, the old
bond in A is positively weakened, because one of the electrons in A occupies the
antibonding χ∗ orbital. Therefore, the quasi-avoided crossing between the diabatic
hypersurfaces DA and D+A− represents the key region, in which breaking of the
old bond in A and formation of new bond D–A are taking place.

The above theory is based on the acceptor/donor expansion functions (AD for-
malism). As has already been mentioned (p. 803), the third possibility (apart from
AD and MO) is VB, in which the Slater determinants (playing the role of the ex-
pansion functions for �0) are built of the atomic orbitals of the interacting species
(Chapter 10, p. 520). How does such a VB picture look? Let us consider a nu-
cleophilic attack of the species X on the polarized double bond ––C=Y, where Y
represents an atom more electronegative than carbon (say, oxygen). Our goal is to
expand the AD structures into the VB. The arguments of the kind already used for
ethylene make it possible to limit ourselves exclusively to the frontier orbitals n, π
and π∗ (Fig. 14.18).

The bonding π orbital may be approximated as a linear combination of the 2pz
atomic orbitals of Y and C66

π = a · (2pz)C + b · (2pz)Y	 (14.68)

where we assume (by convention) that the coefficients satisfy: a	b > 0. Note that
the orbital π is polarized this time, and due to a higher electronegativity of Y we

Fig. 14.18. Nucleophilic attack
X− + – –C=Y → – –C=X + Y− . The
orbitals π and π∗ are polarized (their
polarizations are opposite). [S. Shaik,
J. Am. Chem. Soc. 103 (1981) 3692.
Adapted with permission from the
American Chemical Society. Courtesy
of the author.]

66The z axis is perpendicular to the
––C=Y plane.
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have b > a with the normalization condition a2 + b2 = 1 (we neglect the overlap
integrals between the atomic orbitals). In this situation the antibonding orbital π∗
may be obtained from the orthogonality condition of the orbital π as:67

π∗ = b · (2pz)C − a · (2pz)Y� (14.69)

The role of the donor orbital n will be played by (2pz)X. Note that π∗ has the
opposite polarization to that of π, i.e. the electron described by π∗ prefers to be
close to the less electronegative carbon atom, Fig. 14.18.

At the starting point the DA structure which corresponds to the double occupa-
tion of n and χ turned out to be the most important. In Chapter 8 on p. 371, a Slater
determinant was analyzed that corresponded to double occupation of bonding or-
bital σ1s of the hydrogen molecule. In the present situation this corresponds to
a double occupation of the π orbital of the acceptor. The Slater determinant was
then expanded onto the VB structures (eq. (10.18), p. 521), and as it turns out,
there are three of them. The first was the Heitler–London structure, which de-
scribed a covalent bond: if one electron is close to the first nucleus then the other
(with opposite spin) will be close to the second nucleus. Both electrons played ex-
actly the same role with respect to the two nuclei. The second and third structures
were of the ionic character, because both electrons were at the same nucleus (one
or the other). The two ionic structures had equal coefficients and together with
the Heitler–London structure, this led to treating both nuclei on an equal footing.
If one of the nuclei were a bit different to the other (e.g., by increasing its charge,
which would simulate its higher electronegativity), as is the case in a polarized bond
(a 	= b), then the Heitler–London function would continue to treat the nuclei in the
same way, but the polarity would be correctly restored by making the coefficients
of the ionic structures different. The reason for this asymmetry is setting b > a.

This is why the chemical bond pattern corresponding to the VB picture may be
expressed by the pictorial description shown in Fig. 14.19.a.

What happens at the intermediate stage, when the D+A− structure enters into
play? In this structure one electron occupying n goes to χ∗. The Slater determinant

Fig. 14.19. Pictorial description of the DA and D+A− structures. For a large donor–acceptor distance
the electronic ground state is described by the DA structure (a). Structure D+A− already becomes
very important for the intermediate stage (I). This structure, belonging to the acceptor–donor picture,
is shown (b) in the VB representation, where the opposite spins of the electrons remind us that we have
the corresponding covalent structure.

67Let us check:

〈π|π∗〉 = 〈a · (2pz)C + b · (2pz)Y
∣
∣b · (2pz)C − a · (2pz)Y

〉= ab+ 0+ 0− ba= 0�
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that corresponds to this structure [one of its rows contains a spinorbital corre-
sponding to orbital π∗ = b(2pz)C − a(2pz)Y] may be expanded as a linear combi-
nation of the two Slater determinants, which instead of the spinorbital mentioned
above have the corresponding atomic spinorbital [(2pz)C or (2pz)Y]. The corre-
sponding pictorial notation is shown in Fig. 14.19.b. Note that the weight of the
second structure is higher. Therefore, we see what is going on in the VB picture.
The DA structure corresponds to the “old” CY bond, while the D+A− structure
becomes more and more important (when the reaction proceeds) and mainly rep-
resents the Heitler–London structure for the new CX covalent bond.

The avoided crossing is needed to cause such a change of the electronic struc-
ture as to break the old bond and form the new one. Taking the leading VB struc-
tures only, we may say that

the avoided crossing appears between two hypersurfaces, from which one
corresponds to the old bond pattern (the first diabatic hypersurface) and
the other to the new bond pattern (the second diabatic hypersurface).

We see from the VB results, why the variational method has chosen the D+A−
structure among the six possible ones.

This configuration was chosen, because it corresponds exactly to the for-
mation of the new bond: the two unpaired electrons with opposite spins
localized on those atoms that are going to bind.

The mechanism given is general and applies wherever at least one of the
reactants has a closed shell. When both the reacting molecules are of the
open-shell type, there will be no avoided crossing and no reaction barrier:
the reactants are already prepared for the reaction.

When we have a closed-shell system among the reactants, for the reaction to
happen we have to reorganize the electronic structure. The reorganization may
happen only via an avoided crossing and that means the appearance of a reaction
barrier.

14.5.9 WHAT IS GOING ON IN THE CHEMIST’S FLASK?

Let us imagine the molecular dynamics on energy hypersurface calculated using a
quantum-mechanical method (classical force fields are not appropriate since they
offer non-breakable chemical bonds). The system is represented by a point that
slides downhill (with an increasing velocity) and climbs uphill (with deceasing ve-
locity). The system has a certain kinetic energy, because chemists often heat their
flasks.

Let us assume that, first the system wanders through those regions of the hy-
persurface which are far from other electronic states in the energy scale. In such
a situation, the adiabatic approximation (Chapter 6) is justified and the electronic
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energy (corresponding to the hypersurface) represents potential energy for the mo-
tion of the nuclei. The system corresponds to a given chemical bond pattern (we
may work out a structural formula). Bond lengths vibrate as do bond angles, tor-
sional angles also change, even leading to new isomers (conformers), but a single
bond remains single, double remains double, etc.

After a while the system climbs to a region of the configurational space in which
another diabatic hypersurface (corresponding to another electronic state) lowers
its energy to such an extent that the two hypersurfaces tend to intersect. In this
region the adiabatic approximation fails, since we have two electronic states of
comparable energies (both have to be taken into account), and the wave function
cannot be taken as the product of an electronic function and a function describing
the nuclear motion (as is required by the adiabatic approximation). As a result
of mixing, electronic states crossing is avoided, and two adiabatic hypersurfaces
(upper and lower) appear. Each is composed of two parts. One part corresponds
to a molecule looking as if it had one bond pattern, while the other part pertains to
a different bond pattern. The bond pattern on each of the adiabatic hypersurfaces
changes and the Rubicon for this change is represented by the boundary, i.e. the
region of the quasi-avoided crossing that separates the two diabatic parts of the
adiabatic hypersurface. Therefore, when the system in its dynamics goes uphill and
enters the boundary region, the corresponding bond pattern becomes fuzzy, and
changes to another pattern after crossing the boundary. The reaction is completed.

What will happen next? The point representing the system in the configurational
space continues to move and it may happen to arrive at another avoided-crossing
region68 and its energy is sufficient to overcome the corresponding barrier. This
is the way multistep chemical reactions happen. It is important to realize that, in
experiments, we have to do with an ensemble of such points rather than one. The
points differ by their positions (configurations of the nuclei) and momenta. Only
a fraction of them has sufficiently high kinetic energy to cross the reaction barrier.
The rest wander through a superbasin (composed of numerous basins) of the initial
region thus undergoing vibrations, rotations including internal rotations, etc. Of
those which cross a barrier, only a fraction crosses the same barrier again (i.e. the
barrier of the same reaction). Others, depending on the initial conditions (nuclear
positions and momenta) may cross other barriers. The art of chemistry means that
in such a complicated situation it is still possible to perform reactions with nearly
100% yield and obtain a pure chemical compound – the chemist’s target.

14.5.10 ROLE OF SYMMETRY

A VB point of view is simple and beautiful, but sometimes the machinery gets
stuck. For example, this may happen when the described mechanism has to be
rejected, because it does not meet some symmetry requirements. Imagine that in-
stead of a linear approach of H− to H2, we consider a T-shape configuration. In

68This new avoided crossing may turn out to be the old one. In such a case the system will cross the
barrier in the opposite direction. Any chemical reaction is reversible (to different extents).
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such a case the all-important D+A− structure becomes useless for us, because the
resonance integral which is proportional to the overlap integral between the 1s or-
bital of H− (HOMO of the donor) and χ∗ (LUMO of the acceptor) is equal to
zero for symmetry reasons. If the reaction were to proceed, we would have had to
form molecular orbitals from the above orbitals and this is impossible.

Yet there is an emergency exit from this situation. Let us turn our attention
to the D+A−∗ structure, which corresponds to a doubly occupied χ∗, but a singly
occupied χ. This structure would lead to the avoided crossing, because the overlap
integral of 1s H− and χ H–H has a non-zero value. In this way,

a forbidden symmetry will simply cause the system to choose as the lead,
another structure, such that it allows the formation of new bonds in this
situation.

The above example shows that symmetry can play an important role in chemical
reactions. The role of symmetry will be highlighted in what follows.

The cycloaddition reaction

Let us take the example of the cycloaddition of two ethylene molecules when
they bind together forming the cyclobutane. The frontier orbitals of the ground-
state ethylene molecule are: the doubly occupied π (HOMO) and the empty π∗
(LUMO) molecular orbitals.

The right-hand side of Fig. 14.20.a shows that the reaction would go towards
the products, if we prepared the reacting ethylene molecules in their triplet states.
Such a triplet state has to be stabilized during the reaction, while the state cor-
responding to the old bond pattern should loose its importance. Is it reasonable
to expect the triplet state to be of low energy in order to have the chance to be
pulled sufficiently down the energy scale? Yes, it is, because the triplet state arises
by exciting an electron from the HOMO (i.e. π) to the LUMO (i.e. π∗), and this
energy cost is the lowest possible (in the orbital picture). Within the π-electron
approximation the Slater determinant corresponding to the triplet state (and rep-
resenting the corresponding molecular orbitals as linear combination of the carbon
2pz atomic orbitals denoted simply as a and b) has the form

N det
(

π(1)α(1)π∗(2)α(2)
)

(14.70)

=N[π(1)α(1)π∗(2)α(2)−π(2)α(2)π∗(1)α(1)] (14.71)

=Nα(1)α(2)[(a(1)+ b(1))(a(2)− b(2))

− (a(2)+ b(2))(a(1)− b(1))] (14.72)

=−2Nα(1)α(2)
[

a(1)b(2)− a(2)b(1)]� (14.73)

This means that when one electron is on the first carbon atom, the other is on
the second carbon atom (no ionic structures!). The “parallel” electron spins of
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Fig. 14.20. Two equivalent schemes for the cycloaddition reaction of ethylene. Two ethylene molecules,
after excitation to the triplet state, dimerize forming cyclobutane (a), because everything is prepared
for electron pairing and formation of the new bonds (see text). We obtain the same from the Wood-
ward–Hoffmann rules (Fig. (b), (c), (d)). According to these rules we assume that the ethylene mole-
cules preserve two planes of symmetry: P1 and P2 during all stages of the reaction. We concentrate on
four π electrons – the main actors in the drama. At the beginning the lowest-energy molecular orbital
of the total system (b,c) is of the SS type (i.e. symmetric with respect to P1 and P2). The other three
orbitals (not shown in Fig. (c)) are of higher energies that increases in the following order: SA, AS, AA.
Hence, the four electrons occupy SS and SA, (b). Fig. (d) shows the situation after the reaction. The
four electrons are no longer of the π type, we now call them the σ type, and they occupy the hybrid or-
bitals shown in the figure. Once more, the lowest energy (b) corresponds to the SS symmetry orbital (d).
The three others (not shown in Fig. (d)) have higher energy, but their order is different than before (b):
AS, SA, AA. The four electrons should occupy, therefore, the SS and AS type orbitals, whereas (accord-
ing to the Woodward–Hoffmann rule) they still occupy SS and SA. This is energetically unfavourable
and such a thermic reaction does not proceed. Yet, if before the reaction the ethylene molecules were
excited to the triplet state (π)1(π∗)1, then at the end of the reaction they would correspond to the
configuration: (SS)2(AS)2, of very low energy, and the photochemical reaction proceeds.

one molecule may be in the opposite direction to the similar electron spins of the
second molecule. Everything is prepared for the cycloaddition, i.e. formation of
the new chemical bonds.



14.5 Acceptor–donor (AD) theory of chemical reactions 825

Fig. 14.20. Continued.

Similar conclusions can be drawn from the Woodward–Hoffmann symmetry
rules.

Woodward–Hoffmann symmetry rules
The rules pertain to such an approach of two molecules that all the time some
symmetry elements of the nuclear framework are preserved (there is a symmetry
group associated with the reaction, see Appendix C). Then,

• the molecular orbitals belong to the irreducible representations of the group,
• we assume that during the approach the orbital energies change, but their elec-

tron occupancies do not,
• the reaction is allowed when the sum of the (occupied) orbital energies lowers,

otherwise it is forbidden.

Example 3.Two ethylene molecules – Diels–Alder reaction
The two ethylene molecules are oriented as shown in Fig. 14.20.c. Let us focus on
the frontier (HOMO and LUMO) orbitals at long intermolecular distances. All are
built of symmetry orbitals composed of four 2p carbon atomic orbitals (perpendic-
ular to the planes corresponding to the individual molecules) and can be classified
as symmetric (S) or antisymmetric (A) with respect to the symmetry planes P1 and
P2. Moreover, by recognizing the bonding or antibonding interactions, without per-
forming any calculations, we can tell that the SS-symmetry orbital is of the lowest
energy (because of the bonding character of the intra- as well as intermolecular
interactions), then the SA-symmetry (the bonding intramolecular – the π orbitals
and the antibonding intermolecular), next the AS-symmetry (the antibonding in-
tramolecular and bonding intermolecular orbitals π∗), and the highest-energy or-
bital AA (the antibonding intra- and intermolecular). Since the number of elec-
trons involved is four, they occupy the SS and SA orbitals.69 This is what we have
at the beginning of the reaction.

What do we have at the end of the reaction? At the end there are no π-electrons
whatsoever, instead we have two new σ chemical bonds, each built from the two
69What a nasty historical association.
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sp3 hybrids (Fig. 14.20.d) oriented towards the other ethylene molecule.70 There-
fore, we may form the symmetry orbitals once again, recognize their bonding and
antibonding character and hence the order of their orbital energies without any
calculations, just by inspection (Fig. 14.20.b). The lowest energy corresponds, of
course, to SS (because the newly formed σ chemical bonds correspond to the
bonding combination and the lateral overlap of the hybrids is also of the bonding
character), the next in energy however is the AS (because of the bonding interactions
in the newly formed σ bonds, while the lateral interaction is weakly antibonding),
then follows the SA-symmetry orbital (antibonding interaction along the bonds
that is only slightly compensated by the lateral bonding overlap of the hybrids),
and finally, the highest-energy corresponds to the totally antibonding orbital of the
AA-symmetry.

According to the Woodward–Hoffmann rules, the four π electrons, on which
we focus, occupy the SS and SA orbitals from the beginning to the end of the
reaction. This corresponds to low energy at the beginning of the reaction (R), but
is very unfavourable at its end (P), because the unoccupied AS orbital is lower in
the energy scale. And what if we were smart and excited the reactants by laser?
This would allow double occupation of the AS orbital right at the beginning of
the reaction and end up with a low energy configuration. To excite an electron
per molecule, means to put one on orbital π∗, while the second electron stays on
orbital π. Of two possible spin states (singlet and triplet) the triplet state is lower in
energy (see Chapter 8, p. 391). This situation was described by eq. (14.73) and the
result is that when one electron sits on nucleus a, the other sits on b. These electrons
have parallel spins – everything is prepared for the reaction.

Therefore, the two ethylene molecules, when excited to the triplet state, open
their closed-shells in such a way that favours cycloaddition.

14.5.11 BARRIER MEANS A COST OF OPENING THE CLOSED-SHELLS

Now we can answer more precisely the question of what happens when two mole-
cules react. When the molecules are of the closed-shell character, first a change
of their electronic structure has to take place. For that to happen, the kinetic en-
ergy of molecular collisions (the temperature plays important role) has to be suf-
ficiently high in order to push and distort71 the nuclear framework, together with
the electron cloud of each of the partners (kinetic energy contra valence repul-
sion described in Chapter 13), to such an extent that the new configuration already
corresponds to that behind the reaction barrier. For example, in the case of an
electrophilic or nucleophilic attack, these changes correspond to the transforma-
tion D→D+ and A→A−, while in the case of the cycloaddition to the excitation
of the reacting molecules, to their triplet states. These changes make the unpaired

70We have to do with a four-membered ring, therefore the sp3 hybrids match the bond directions only
roughly.
71Two molecules cannot occupy the same volume due to the Pauli exclusion principle, cf. p. 744.
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electrons move to the proper reaction centres. As long as this state is not achieved,
the changes within the molecules are small and, at most, a molecular complex forms,
in which the partners preserve their integrity and their main properties. The pro-
found changes follow from a quasi-avoided crossing of the DA diabatic hypersur-
face with an excited-state diabatic hypersurface, the excited state being to a large
extent a “picture of the product”. Even the noble gases open their electronic shells
when subject to extreme conditions. For example, xenon atoms under pressure of
about 150 GPa72 change their electronic structure so much,73 that their famous
closed-shell electronic structure ceases to be the ground-state. The energy of some
excited states lowers so much that the xenon atoms begin to exist in the metallic
state.

Reaction barriers appear because the reactants have to open their valence
shells and prepare themselves to form new bonds. This means their energy
goes up until the “right” excited structure (i.e. the one which resembles the
products) lowers its energy so much that the system slides down the new
diabatic hypersurface to the product configuration.

The right structure means the electronic distribution in which, for each to-be-
formed chemical bond, there is a set of two properly localized unpaired electrons.
The barrier height depends on the energetic gap between the starting structure and the
excited state which is the “picture” of the products. By proper distortion of the geom-
etry (due to the valence repulsion with neighbours) we achieve a “pulling down” of
the excited state mentioned, but the same distortion causes the ground state to go
up. The larger the initial energy gap, the harder to make the two states interchange
their order. The reasoning is supported by the observation that the barrier height
for electrophilic or nucleophilic attacks is roughly proportional to the difference
between the donor ionization energy and the acceptor electronic affinity, while the bar-
rier for cycloaddition increases with the excitation energies of the donor and acceptor
to their lowest triplet states. Such relations show the great interpretative power of
the acceptor–donor formalism. We would not see this in the VB picture, because it
would be difficult to correlate the VB structures based on the atomic orbitals with
the ionization potentials or the electron affinities of the molecules involved. The
best choice is to look at all three pictures (MO, AD and VB) simultaneously. This
is what we have done.

72M.I. Eremetz, E.A. Gregoryantz, V.V. Struzhkin, H. Mao, R.J. Hemley, N. Mulders, N.M. Zimmer-
man, Phys. Rev. Letters 85 (2000) 2797. The xenon was metallic in the temperature range 300 K–25 mK.
The pioneers of these investigations were R. Reichlin, K.E. Brister, A.K. McMahan, M. Ross, S. Martin,
Y.K. Vohra, A.L. Ruoff, Phys. Rev. Letters 62 (1989) 669.
73Please recall the Pauli Blockade, p. 722. Space restrictions for an atom or molecule by the excluded

volume of other atoms, i.e. mechanical pushing leads to changes in its electronic structure. These
changes may be very large under high pressure.
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14.6 BARRIER FOR THE ELECTRON-TRANSFER REACTION

In the AD theory, a chemical reaction of two closed-shell entities means opening
their electronic shells (accompanied by an energy cost), and then forming the new
bonds (accompanied by an energy gain). The electronic shell opening might have
been achieved in two ways: either an electron transfer from the donor to the accep-
tor, or an excitation of each molecule to the triplet state and subsequent electron
pairing between the molecules.

Now we will be interested in the barrier height when the first of these possibilities
occurs.

14.6.1 DIABATIC AND ADIABATIC POTENTIAL

Example 4. Electron transfer in H+
2 + H2

Let us imagine two molecules, H+
2 and H2, in a parallel configuration74 at distance

R from one another and having identical length 1.75 a.u. ( Fig. 14.21.a). The value
chosen is the arithmetic mean of the two equilibrium separations (2.1 a.u. for H+

2 ,
1.4 a.u. for H2).

There are two geometry parameters to change (Fig. 14.21): the length q1 of the
left (or “first”) molecule and the length q2 of the right (or “second”) molecule.
Instead of these two variables we may consider the other two: their sum and their
difference. Since our goal is to be as simple as possible, we will assume,75 that
q1 + q2 = const, and therefore the geometry of the total nuclear framework may
be described by a single variable: q= q1 − q2, with q ∈ (−∞	∞).

It is quite easy to imagine, what happens when q changes from 0 (i.e. from both
bonds of equal length) to a somewhat larger value. Variable q= q1−q2 > 0 means
that q1 > q2, therefore when q increases, the energy of the system will decrease,
because the H+

2 molecule elongates, while the H2 shortens, i.e. both approach their
equilibrium geometries. If q increases further, it will soon reach the value q= q0 =
2�1− 1�4= 0�7 a.u., the optimum value for both molecules. A further increase of q
will mean, however, a kind of discomfort for each of the molecules and the energy
will go up, for large q – very much up. This means that the potential energy E(q)
has a parabola-like shape.

And what will happen for q < 0? It depends on where the extra electron resides.
If it is still on the second molecule (which means it is H2), then q < 0 means an
elongation of an already-too-long H2 and a shortening of an already-too-short H+

2 .
The potential energy goes up and the total plot is similar to a parabola with the
minimum at q = q0 > 0. If, however, we assume that the extra electron resides all
the time on the first of the molecules, then we will obtain the identical parabola-
like curve as before, but with the minimum position at q=−q0 < 0.
74We freeze all the translations and rotations.
75The assumption stands to reason, because a shortening of one molecule will be accompanied by an

almost identical lengthening of the other, when they exchange an electron.
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Fig. 14.21. An electron transfer is accompanied by a geometry change. (a) When H2 molecule gives
an electron to H+2 , both undergo some geometry changes. Variable q equals the difference of the bond
lengths of both molecules. At q =±q0 both molecules have their optimum bond lengths. (b) The HF
pendulum oscillates between two sites, A and B, which accommodate an extra electron becoming either
A−B or AB− . The curves similar to parabolas denote the energies of the diabatic states as functions of
the pendulum angle θ. The thick solid line indicates the adiabatic curves.

DIABATIC AND ADIABATIC POTENTIALS:
Each of these curves with a single minimum represents the diabatic poten-
tial energy curve for the motion of the nuclei. If, when the donor-acceptor
distance changes, the electron keeps pace with it and jumps on the accep-
tor, then increasing or decreasing q from 0 gives a similar result: we obtain
a single electronic ground-state potential energy curve with two minima in
positions ±q0. This is the adiabatic curve.

Whether the adiabatic or diabatic potential has to be applied is equivalent to
asking whether the electron will keep pace (adiabatic) or not (diabatic) with the mo-
tion of the nuclei.76 This is within the spirit of the adiabatic approximation, cf.
Chapter 6, p. 253. Also, a diabatic curve corresponding to the same electronic

76In the reaction H+2 +H2 →H2+H+2 the energy of the reactants is equal to the energy of the prod-
ucts, because the reactants and the products represent the same system. Is it therefore a kind of fiction?
Is there any reaction at all taking place? From the point of view of a bookkeeper (thermodynamics) no
reaction took place, but from the point of view of a molecular observer (kinetics) – such a reaction may
take place. It is especially visible, when instead of one of the hydrogen atoms we use deuterium, then
the reaction HD+ +H2 → HD +H+2 becomes real even for the bookkeeper (mainly because of the
difference in the zero-vibration energies of the reactants and products).
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structure (the extra electron sitting on one of the molecules all the time) is an ana-
logue of the diabatic hypersurface that preserved the same chemical bond pattern
encountered before.

Example 5. The “HF pendulum”
Similar conclusions come from another ideal system, namely the hydrogen fluo-
ride molecule treated as the pendulum of a grandfather clock (the hydrogen atom
down, the clock axis going through the fluorine atom) moving over two molecules:
A and B, one of them accommodates an extra electron (Fig. 14.21.b).

The electron is negatively charged, the hydrogen atom in the HF molecule car-
ries a partial positive charge, and both objects attract each other. If the electron sits
on the left-hand molecule and during the pendulum motion does not keep pace,77

the potential energy has a single minimum for the angle −θ0 (the diabatic poten-
tial might be approximated by a parabola-like curve with the minimum at −θ0).
An analogous curve with the minimum at θ0 arises, when the electron resides on B
all the time. When the electron keeps pace with any position of the pendulum, we
have a single adiabatic potential energy curve with two minima: at −θ0 and θ0.

14.6.2 MARCUS THEORY

Rudolph Arthur Marcus (b.
1923), American chemist, pro-
fessor at the University of Illi-
nois in Urbana and at Cali-
fornia Institute of Technology
in Pasadena. In 1992 Marcus
received the Nobel Prize “for
his contribution to the theory
of electron transfer reactions
in chemical systems”.

The contemporary theory of the elec-
tron transfer reaction was proposed by
Rudolph Marcus.78 The theory is based
to a large extent on the harmonic ap-
proximation for the diabatic potentials
involved, i.e. the diabatic curves repre-
sent parabolas. One of the parabolas
corresponds to the reactants VR(q), the
other to the products VP(q) of the elec-
tron transfer reaction (Fig. 14.22).79

Now, let us assume that both parabo-
las have the same curvature (force constant f ).80 The reactants correspond to the
parabola with the minimum at qR (without loosing generality we adopt a conven-
tion that at qR = 0 the energy is equal zero)

VR(q)= 1
2
f (q− qR)2	

while the parabola with the minimum at qP is shifted in the energy scale by �G0

77That is, does not jump over to the right-hand side molecule.
78The reader may find a good description of the theory in a review article by P.F. Barbara, T.J. Meyer,

M.A. Ratner, J. Phys. Chem. 100 (1996) 13148.
79Let the mysterious q be a single variable for a while, whose deeper meaning will be given later. In

order to make the story more concrete let us think about two reactant molecules (R) that transform
into the product molecules (P): A− + B→A+ B− .
80This widely used assumption is better fulfilled for large molecules when one electron more or less

does not change much.
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R P
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P

Fig. 14.22. The Marcus theory is based on two parabolic diabatic potentials VR(q) and VP(q) for the re-
actants and products, having minima at qR and qP , respectively. The quantity �G0 ≡ VP(qP)−VR(qR)
represents the energy difference between the products and the reactants, the reaction barrier
�G∗ ≡ VR(qc) − VR(qR) = VR(qc), where qc corresponds to the intersection of the parabolas. The
reorganization energy λ≡ VR(qP)− VR(qR)= VR(qP) represents the energy expense for making the
geometry of the reactants identical with that of the products (and vice versa).

(�G0 < 0 corresponds to an exothermic reaction81).

VP(q)= 1
2
f (q− qP)2 +�G0 �

So far we just treat the quantity �G0 as a potential energy difference VP(qP) −
VR(qR) of the model system under consideration (H+

2 +H2 or the “pendulum” HF),
even though the symbol suggests that this interpretation will be generalized in the future.

Such parabolas represent a simple situation.82 The parabolas’ intersection point
qc satisfies by definition VR(qc)= VP(qc). This gives

qc = �G0

f

1
qP − qR +

qP + qR
2

�

Of course on the parabola diagram, the two minima are the most important, the
intersection point qc and the corresponding energy, which represents the reaction
barrier reactants → products.

ET barrier

MARCUS FORMULA:
The electron-transfer reaction barrier is calculated as

�G∗ = VR(qc)= 1
4λ
(

λ+�G0)2	 (14.74)

81That is, the energy of the reactants is higher than the energy of the products (as in Fig. 14.22).
82If the curves did not represent parabolas, we might have serious difficulties. This is why we need

harmonicity.
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where the energy λ (reorganization energy) represents the energy difference be-reorganization
energy tween the energies of the products in the equilibrium configuration of the reactants

VP(qR) and the energy in the equilibrium configuration of the products VP(qP):

λ= VP(qR)− VP(qP)= 1
2
f (qR − qP)2 +�G0 −�G0 = 1

2
f (qR − qP)2�

The reorganization energy is therefore always positive (energy expense).

REORGANIZATION ENERGY:
Reorganization energy is the energy cost needed for making products in the
nuclear configuration of the reactants.

If we ask about the energy needed to transform the optimal geometry of the
reactants into the optimal geometry of the products, we obtain the same number.
Indeed, we immediately obtain VR(qP) − VR(qR) = 1

2f (qR − qP)2, which is the
same as before. Such a result is a consequence of the harmonic approximation and
the same force constant assumed for VR and VP , and shows that this is the energy
cost needed to stretch a harmonic string from the equilibrium qP position to the
final qR position (or vice versa). It is seen that the barrier for the thermic electron
transfer reaction is higher if the geometry change is wider for the electron transfer
[large (qR − qP)2] and if the system is stiffer (large f ).

Svante August Arrhenius
(1859–1927), Swedish phys-
ical chemist and astrophysi-
cist, professor at the Stock-
holm University, originator of
the electrolytic theory of ionic
dissociation, measurements
of the temperature of plan-
ets and of the solar corona,
also of the theory deriving life
on Earth from outer space.
In 1903 he received the No-
bel Prize in chemistry “for the
services he has rendered to

the advancement of chem-
istry by his electrolytic theory
of dissociation”.

From the Arrhenius theory the elec-
tron transfer reaction rate constant reads
as

kET =Ae−
(λ+�G0)2

4λkBT � (14.75)

How would the reaction rate change,
if parabola VR(q) stays in place, while
parabola VP(q) moves with respect to
it? In experimental chemistry this cor-
responds to a class of the chemical re-
actions A− + B →A + B−, with A
(or B) from a homological series of com-
pounds. The homology suggests that the

parabolas are similar, because the mechanism is the same (the reactions pro-
ceed similarly), and the situations considered differ only by a lowering the second
parabola with respect to the first. We may have four qualitatively different cases,
eq. (14.74):

Case 1: If the lowering is zero, i.e. �G0 = 0, the reaction barrier is equal to λ/4
(Fig. 14.23.a).

Case 2: Let us consider an exothermic electron transfer reaction (�G0 < 0,
|�G0|< λ). In this case the reaction barrier is lower, because of the subtraction in
the exponent, and the reaction rate increases (Fig. 14.23.b). Therefore the −�G0

is the “driving force” in such reactions.
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Fig. 14.23. Four qualitatively different cases in the Marcus theory. (a) �G0 = 0, hence �G∗ = λ
4 .

(b) |�G0|< λ (c) |�G0| = λ (d) inverse Marcus region |�G0|> λ.

Case 3: When the |�G0| keeps increasing, at |�G0| = λ the reorganization energy
cancels the driving force, and the barrier vanishes to zero. Note that this represents
the highest reaction rate possible (Fig. 14.23.c).

Case 4: Inverse Marcus region (Fig. 14.23.d). Let us imagine now that we keep
increasing the driving force. We have a reaction for which �G0 < 0 and |�G0|> λ.
Compared to the previous case, the driving force has increased, whereas the reaction
rate decreases. This might look like a possible surprise for experimentalists. A case
like this is called the inverse Marcus region, foreseen by Marcus in the sixties, using inverse Marcus

regionthe two parabola model. People could not believe this prediction until experimen-
tal proof83 in 1984.

New meaning of the variable q
Let us make a subtraction:

VR(q)− VP(q) = f (q− qR)2/2− f (q− qP)2/2−�G0

= f

2
[2q− qR − qP ][qP − qR] −�G0 =Aq+B (14.76)

where A and B represent constants. This means that
83J.R. Miller, L.T. Calcaterra, G.L. Closs, J. Am. Chem. Soc. 97 (1984) 3047.
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Fig. 14.24. The diabatic potential energy curves (VR for the reactants and VP for the products) per-
taining to the electron transfer reaction Fe2+ + Fe3+ → Fe3+ + Fe2+ in aqueous solution. The curves
depend on the variable q= r2 − r1 that describes the solvent, which is characterized by the radius r1 of
the cavity for the first (say, left) ion and by the radius r2 of the cavity for the second ion. For the sake
of simplicity we assume r1 + r2 = const and equal to the sum of the ionic radii of Fe2+ and Fe3+. For
several points q the cavities were drawn as well as the vertical sections that symbolize the diameters
of the left and right ions. In this situation, the plots VR and VP have to differ widely. The dashed lines
represent the adiabatic curves (in the peripheral sections they coincide with the diabatic curves).

the diabatic potential energy difference depends linearly on coordinate q.

In other words for a given electron transfer reaction either q or VR(q) − VP(q)
represents the same information.

The above examples and derivations pertain to a one-dimensional model of
electron transfer (a single variable q), while in reality (imagine a solution) the
problem pertains to a huge number of variables. What happens here? Let us take
the example of electron transfer between Fe2+ and Fe3+ ions in an aqueous solu-
tion Fe2+ + Fe3+ → Fe3+ + Fe2+ (Fig. 14.24)84

The solvent behaviour is of key importance for the electron-transfer process.

84In this example �G0 = 0, i.e. case 1 considered above.
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The ions Fe2+ and Fe3+ are hydrated. For the reaction to proceed, the solvent
has to reorganize itself next to both ions. The hydration shell of Fe2+ ion is of larger
radius than the hydration shell of Fe3+ ion, because Fe3+ is smaller than Fe2+ and,
in addition, creates a stronger electric field due to its higher charge (Fig. 14.24).
Both factors add to a stronger association of the water molecules with the Fe3+
ion than with Fe2+. In a crude approximation, the state of the solvent may be
characterized by two quasi-rigid cavities, say: left and right (or, numbers 1 and 2)
that could accommodate the ions. Let us assume the cavities have radii r1 and r2,
whereas the ionic radii are rFe2+ and rFe3+ with rFe2+ > rFe3+. Let us assume, for
the sake of simplicity, that r1 + r2 = rFe2+ + rFe3+ = const and introduce a single
variable q= r2 − r1 that in this situation characterizes the state of the solvent. Let
us see what happens when q changes.

We first consider that the extra electron sits on the left ion all the time (reactant
curve VR) and the variable q is a negative number (with a high absolute value,
i.e. r1 � r2). As seen from Fig. 14.24, the energy is very high, because the solvent
squeezes the Fe3+ ion out (the second cavity is too small). It does not help that
the Fe2+ ion has a lot of space in its cavity. Now we begin to move towards higher
values of q. The first cavity begins to shrink, for a while without any resistance
from the Fe2+ ion, the second cavity begins to lose its pressure thus making Fe3+
ion more and more happy. The energy decreases. Finally we reach the minimum
of VR, at q = qR and the radii of the cavities match the ions perfectly. Meanwhile
variable q continues to increase. Now the solvent squeezes the Fe2+ ion out, while
the cavity for Fe3+ becomes too large. The energy increases again, mainly because
of the first effect. We arrive at q = 0. The cavities are of equal size, but do not
match either of the ions. This time the Fe2+ ion experiences some discomfort, and
after passing the point q = 0 the pain increases more and more, and the energy
continues to increase. The whole story pertains to extra electron sitting on the left
ion all the time (no jump, i.e. the reactant situation). A similar dramatic story can
be told when the electron is sitting all the time on the right ion (products situation).
In this case we obtain the VP plot.

The VR and VP plots just described represent the diabatic potential energy
curves for the motion of the nuclei, valid for the extra electron residing on the
same ion all the time. Fig. 14.24 also shows the adiabatic curve (dashed line) when
the extra electron has enough time to adjust to the motion of the approaching
nuclei and the solvent, and jumps at the partner ion.

Taking a single parameter q to describe the electron transfer process in a solvent
is certainly a crude simplification. Actually there are billions of variables in the
game describing the degrees of freedom of the water molecules in the first and
further hydration shells. One of the important steps towards successful description
of the electron transfer reaction was the Marcus postulate,85 that

85Such collective variables are used very often in every-day life. Who cares about all the atomic posi-
tions when studying a ball rolling down an inclined plane? Instead, we use a single variable (the position
of the centre of the ball), which gives us a perfect description of the system in a certain energy range.
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despite the multidimensionality of the problem, eq. (14.76) is still valid, i.e.
VR−VP is a single variable describing the position of system on the electron-
transfer reaction path (it is therefore a collective coordinate that describes
the positions of the solvent molecules).

No doubt the potential energy value is important, but how often can this value
be reached by the system, is equally important. This is connected to the width of the
low-energy basin associated with the entropy86 and to the free energy. In statistical
thermodynamics we introduce the idea of the potential of the mean force, related
to the free energy. Imagine a system in which we have two motions on different
time scales: fast (e.g., of small solvent molecules) and slow (e.g., which change the
shape of a macromolecule). To focus on the slow motion, we average the energy
over the fast motions (the Boltzmann factor will be needed, which will introduce a
temperature dependence on the resulting energy). In this way, from the potential
energy we obtain the mean force potential depending only on the slow variables,
sometimes called the free energy (which is a function of geometry of the macro-
molecule), cf. p. 293.mean force

potential

The second Marcus assumption is that the ordinate axis should be treated as
the mean force potential, or the free energy rather than just potential energy.

It is very rare in theoretical chemistry87 that a many-dimensional problem can
be transformed to a single variable problem. This is why the Marcus idea described
above of a collective coordinate, provokes the reaction: “no way”. However, as it
turned out later, this simple postulate lead to a solution that grasps the essential
features of electron transfer.

What do the Marcus parabolas mean?
The example just considered of the electron transfer reaction: Fe2+ + Fe3+ →
Fe3+ + Fe2+ reveals that in this case the reaction barrier is controlled by the sol-
vent, i.e. by billions of coordinates. As shown by Marcus, this plethora can be ef-
fectively replaced by a single collective variable. Only after this approximation,
may we draw the diabatic parabola-like curves. The intersection point of the two

86A wide potential energy well can accommodate a lot of closely lying vibrational levels and therefore
the number of possible states of the system in a given energy range may be huge (large entropy). Please
recall the particle-in-a-box problem: the longer the box the closer the energy levels.
87The free energy is defined as F(T)= −kT ∂

∂T lnZ, where Z =∑i exp(− Ei
kT
) represents the parti-

tion function, Ei stands for the i-th energy level. In the classical approach this energy level corresponds
to the potential energy V (x), where x represents a point in configurational space, and the sum cor-
responds to an integral over the total configurational space Z = ∫ dx exp(− V

kT
). Note that the free

energy is a function of temperature only, not of the spatial coordinates x. If however, the integration
were only carried out over part of the variables, say, only the fast variables, thenZ, and therefore also F ,
would become a function of the slow variables and of temperature (mean force potential). Despite the
incomplete integration, we sometimes use the name “free energy” for this mean force potential by
saying that “the free energy is a function of coordinates. . . ”.
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diabatic curves can easily be found only after assuming their parabolic character.
And yet any collective variable means motion along a line in an extremely com-
plex configurational space (solvent molecules plus reactants). Moving along this
line means that, according to Marcus, we encounter the intersection of the ground
and excited electronic states. As shown in Chapter 6, such a crossing occurs at the
conical intersection. Is it therefore that during the electron transfer reaction, the
system goes through the conical intersection point? How to put together such no-
tions as reaction barrier, reaction path, entrance and exit channels, not to speak
of acceptor–donor theory? Fig. 14.25.a shows the paraboloid model of the diabatic
DA and D+A− surfaces, while Fig. 14.25.b shows them in a more realistic way.

• The diabatic hypersurfaces, one corresponds to DA (i.e. the extra electron is on
the donor all the time) and the second to D+A− (i.e. the extra electron resides
on the acceptor), undergo the conical intersection. For conical intersection to
happen at least three atoms are required. Imagine a simple model, with a di-
atomic acceptor A and an atom D as donor. Atom D has a dilemma: either to
transfer the electron to the first or the second atom of A. This dilemma means
conical intersection. Like the coordinate system shown in Fig. 14.25, the vari-
ables ξ1 and ξ2 described in Chapter 6 were chosen (they lead to splitting of
the adiabatic hypersurfaces), which measure the deviation of the donor D with
respect to the corner of the equilateral triangle of side equal to the length of
the diatomic molecule A. The conical intersection point, i.e. (0	0) corresponds
to the equilateral triangle configuration. The figure also shows the upper and
lower cones touching at (0	0).

• The conical intersection led to two adiabatic hypersurfaces: lower (electronic
ground state) and upper (electronic excited state). Each of the adiabatic hy-
persurfaces shown in Fig. 14.25.b consists of the “reactant half” (the diabatic
state of the reactants, DA) and the “product half” (the diabatic state of the
products, D+A−). The border between them reveals the intersection of the two
diabatic states and represents the line of change of the electronic structure reac-
tants/products. Crossing the line means the chemical reaction happens.

• The “avoided crossing” occurs everywhere along the border except at the conical
intersection. It is improbable that the reactive trajectory passes through the con-
ical intersection, because it usually corresponds to higher energy. It will usually
pass at a distance from the conical intersection and this resembles an avoided
crossing. This is why we speak of the avoided crossing in a polyatomic molecule,
whereas the concept pertains to diatomics only.

• Passing the border is easiest at two points. These are the two saddle points (bar-
riers I and II). A thermic electron transfer reaction goes through one of them,
the corresponding IRCs are denoted by dotted lines. In each case we obtain dif-
ferent products. Both saddle points differ in that D, when attacking A has the
choice of joining either of the two ends of A, usually forming two different prod-
ucts. We therefore usually have two barriers. In the example given (H3) they
are identical, but in general they may differ. When the barrier heights are equal
because of symmetry, it does not matter which is overcome. When they are dif-
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Fig. 14.25. Electron transfer in the reaction DA→D+A− as well as the relation of the Marcus parabo-
las to the concepts of the conical intersection, diabatic and adiabatic states, entrance and exit channels
and the reaction barrier. Fig. (a) shows two diabatic (and adiabatic) surfaces of the electronic energy as
functions of the ξ1 and ξ2 variables that describe the deviation from the conical intersection point (cf.
p. 262). Both diabatic surfaces are shown schematically in the form of the two paraboloids: one for the
reactants (DA), the second for products (D+A−). The region of the conical intersection is also indi-
cated. Fig. (b) also shows the conical intersection, but the surfaces are presented more realistically. The
upper and lower parts of Fig. (b) touch at the conical intersection point. On the lower part of the sur-
face we can see two reaction channels each with its reaction barrier (see the text), on the upper part (b)
an energy valley is shown that symbolizes a bound state that is separated from the conical intersection
by a reaction barrier.
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ferent, one of them dominates (usually the lower barrier88). The channels shown
in the figure are not curved, because we use a coordinate system different from
that used in the collinear reaction.

• The Marcus parabolas represent a special section (along the collective variable)
of the hypersurfaces passing through the conical intersection (parabolas VR and
VP in Fig. 14.25.b). Each parabola represents a diabatic state, therefore a part
of each reactant parabola is on the lower hypersurface, while the other one on
the upper hypersurface. We see that the parabolas are only an approximation to
the hypersurface profile. The reaction is of a thermic character, and as a conse-
quence, the parabolas should not pass through the conical intersection, because
it corresponds to high energy, instead it passes through one of the saddle points.

• The “product half” of the excited state hypersurface runs up to the “reactant
half” of the ground state hypersurface and vice versa. This means that photoex-
citation (following the Franck–Condon rule this corresponds to a vertical exci-
tation) means a profound change: the system looks as if it has already reacted
(photoreaction). photoreaction

Quantum mechanical modification
In Marcus formula (14.74) we assume that in order to make the electron transfer
effective, we have to supply at least the energy equal to the barrier height. The for-
mula does not obviously take into account the quantum nature of the transfer. The
system may overcome the barrier not only by having energy higher than the barrier,
but also by tunnelling, when its energy is lower than the barrier height (cf. p. 153).
Besides, the reactant and product energies are quantized (vibrational-rotational
levels89). The reactants may be excited to one of such levels. The reactant vibra-
tional levels will have different abilities to tunnel.

According to Chapter 2 only a time-dependent perturbation is able to change
the system’s energy. Such a perturbation may serve the electric field of the elec-
tromagnetic wave. When the perturbation is periodic, with the angular frequency
ω matching the energy difference of initial state k and one of the states of
higher energy (n), then the transition probability between these states is equal
to: Pnk(t)= 2πt

h̄ |vkn|2 δ(E(0)n −E(0)k − h̄ω) (the Fermi golden rule, eq. (2.23), p. 85
is valid for relatively short times t), where vkn = 〈k|v|n〉, with v(r) representing
the perturbation amplitude,90 V (r	 t) = v(r)eiωt . The Dirac delta function δ is a
quantum-mechanical way of saying that the total energy has to be conserved. In
phototransfer of the electron, state “k” represents the quantum mechanical state
of the reactants, and “n” – a product state, each of diabatic character.91 In prac-
tice the adiabatic approximation is used, in which the reactant and product wave
88There may be some surprises. Barrier height is not all that matters. Sometimes it may happen that

what decides is access to the barrier region, in the sense of its width (this is where the entropy and free
energy matter).
89For large molecules, we may forget the rotational spectrum, since, because of the large moment of

inertia, the rotational states form a quasi-continuum (“no quantization”).
90r stands for those variables on which the wave functions depend.
91They will be denoted by the subscripts R and P.
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functions are products of the electronic wave functions (which depend on the elec-
tronic coordinates r and, parametrically, on the nuclear configuration R) and the
vibrational functions f (R) describing the motion of the nuclei: ψk	R(r;R)fv1	R(R)
andψn	P(r;R)fv2	P(R). The indices v1 and v2 in functions f denote the vibrational
quantum numbers.

Then, the transition probability depends on the integral (Chapter 2)

vkn =
〈

ψk	R(r;R)fv1	R(R)
∣
∣v(r)

∣
∣ψn	P(r;R)fv2	P(R)

〉

�

Let us rewrite it, making the integration over the nuclear and electronic coordi-
nates explicit (where dVnucl and dτe mean that the integrations is over the nuclear
and electronic coordinates, respectively)

vkn =
∫

dVnucl f
∗
v1	R

(R)fv2	P(R)

∫

dτe ψ∗k	R(r;R)v(r)ψn	P(r;R)�

Now, let us use the Franck–Condon approximation that the optical perturba-
tion makes the electrons move instantaneously while the nuclei do not keep pace
with the electrons and stay in the same positions (we assume therefore equilibrium
positions of the nuclei R0 in the reactants):

vkn ≈
∫

dVnucl f
∗
v1	R

(R)fv2	P(R)

∫

dτe ψ∗kR(r;R0)v(r)ψn	P(r;R0)�

The last integral therefore represents a constant and therefore

vkn = VRPSosc(v1	 v2)	

where

VRP =
∫

dτe ψ∗k	R(r;R0)v(r)ψn	P(r;R0)	

Sosc(v1	 v2) =
∫

dVnucl f
∗
v1	R

(R)fv2	P(R)� (14.77)

The last integral is called the Franck–Condon factor.

Franck–Condon
factor

FRANCK–CONDON FACTOR:
A Franck–Condon factor is the overlap integral of the vibrational wave func-
tions: one pertaining to the reactants with dVnucl vibrational quantum num-
ber v1 and the second, pertaining to the products with vibrational quantum
number v2.
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The calculation of VRP is not an easy matter, we prefer often therefore an em-
pirical approach by modelling the integral as92

VRP = V0 exp
[−β(R−R0)

]

	

where R0 stands for the van der Waals distance of the donor and acceptor, R rep-
resents their distance, β > 0 represents a constant and V0 means VRP for the van
der Waals distance.93

A large Franck–Condon factor means that by exciting the reactants to the vibra-
tional state v1 there is a particularly high probability for the electron transfer (by
tunnelling) with the products in vibrational state v2.

Reorganization energy

In the Marcus formula, reorganization energy plays an important role. This
energy is the main reason for the electron-transfer reaction barrier.

The reorganization pertains to the neighbourhood of the transferred electron,94

i.e. to the solvent molecules, but also to the donors and acceptors themselves.95

This is why the reorganization energy, in the first approximation, consists of the
internal reorganization energy (λi) that pertains to the donor and acceptor mole-
cules, and of the solvent reorganization energy (λ0):

λ= λi + λ0�

Internal reorganization energy. For the electron to have the chance of jumping
from molecule A− to molecule96 B, it has to have the neighbourhood reorganized
in a special way. The changes should make the extra electron’s life hard on A−
(together with solvation shells) and seduce it by the alluring shape of molecule B
and its solvation shells. To do this, work has to be done. First, this is an energy
cost for the proper deformation of A− to the geometry of molecule A, i.e. already
without the extra electron (the electron obviously does not like this – this is how it
is forced out). Next, molecule B is deformed to the geometry of B− (this is what

92Sometimes the dependence is different. For example, in Twisted Intramolecular Charge Transfer
(TICT), after the electron is transferred between the donor and acceptor moieties (a large VRP) the
molecule undergoes an internal rotation of the moieties, which causes an important decreasing of the
VRP [K. Rotkiewicz, K.H. Grellmann, Z.R. Grabowski, Chem. Phys. Letters 19 (1973) 315].
93As a matter of fact, such formulae only contain a simple message: VRP decreases very fast when the

donor and acceptor distance increases.
94The neighbourhood is adjusted perfectly to the extra electron (to be transferred) in the reactant

situation, and very unfavourable for its future position in the products. Thus the neighbourhood has to
be reorganized to be adjusted for the electron transfer products.
95It does not matter for an electron what in particular prevents it from jumping.
96“Minus” denotes the site of the extra electron. It does not necessarily mean that A− represents an

anion.
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makes B attractive to the extra electron – everything is prepared for it in B). These
two energy effects correspond to λi.

Calculation of λi is simple:

λi =E
(

A−B;geom AB−
)−E

(

A−B;geom A−B
)

where E(A−B;geom AB−) denotes the energy of A−B calculated for the equilib-
rium geometry of another species, namely AB−, while E(A−B;geom A−B) stands
for the energy of A−B at its optimum geometry.

Usually the geometry changes in AB− and A−B attain several percent of the
bond lengths or the bond angles. The change is therefore relatively small and
we may represent it by a superposition of the normal mode vectors97 Lk	k =
1	2	 � � � 	3N , described in Chapter 7. We may use the normal modes of the mole-
cule A−B (when we are interested in electron transfer from A− to B) or of the
molecule AB− (back transfer). What for? Because some normal modes are more
effective than others in facilitating electron transfer. The normal mode analysis
would show98 that

the most effective normal mode of the reactants deforms them in such a way as
to resemble the products. This vibration reorganizes the neighbourhood in the
desired direction (for electron transfer to occur), and therefore effectively
lowers the reaction barrier.

Solvent reorganization energy. Spectroscopic investigations are unable to distin-
guish between the internal or solvent reorganization, because Nature does not dis-
tinguish between the solvent and the rest of the neighbourhood. An approximation
to the solvent reorganization energy may be calculated by assuming a continuous
solvent model. Assuming that the mutual configuration of the donor and acceptor
(separated by distance R) allows for enclosing them in non-overlapping spheres of
radii a1 and a2, the following formula was derived by Marcus:

λ0 = (�e)2
{

1
2a1

+ 1
2a2

− 1
R

}{
1
ε∞

− 1
ε0

}

	

where ε∞ and ε0 denote the dielectric screening constants measured at infinite
and zero electromagnetic field frequency, respectively, and �e is equal to the ef-
fective electric charge transferred between the donor and acceptor. The dielectric
screening constant is related to the polarization of the medium. The value ε0 is

97Yet the normal modes are linear combinations of the Cartesian displacements.
98It usually turns out that there are several such vibrations. They will help electron transfer from A−

to B. The reason is quite obvious, e.g., the empirical formula for VRP implies that a vibration that makes
the AB distance smaller will increase the transfer probability. This can be seen in what is known as res-
onance Raman spectroscopy close to a charge transfer optical transition. In such spectroscopy, we have
the opportunity to observe particular vibronic transitions. The intensity of the vibrational transitions
(usually from v= 0 to v= 1) of those normal modes which facilitate electron transfer will be highest.



Summary 843

larger than ε∞, because, at a constant electric field, the electrons as well as the nu-
clei (mainly an effect of the reorientation of the molecules) keep pace to adjust to
the electric field. At high frequency only the electrons keep pace, hence ε∞ < ε0.
The last parenthesis takes care of the difference, i.e. of the reorientation of the
molecules in space (cf. Chapter 12).

Summary

• A chemical reaction represents a molecular catastrophe, in which the electronic struc-
ture, as well as the nuclear framework of the system changes qualitatively. Most often a
chemical reaction corresponds to the breaking of an old and creation of a new bond.

• Simplest chemical reactions correspond to overcoming single reaction barrier on the way
from reactants to products through saddle point along the intrinsic reaction coordinate
(IRC). The IRC corresponds to the steepest descent trajectory (in the mass-weighted
coordinates) from the saddle point to configurations of reactants and products.

• Such a process may be described as the system passing from the entrance channel (reac-
tants) to the exit channel (products) on the electronic energy map as a function of the
nuclear coordinates. For a collinear reaction A + BC → AB + C the map shows a char-
acteristic reaction “drain-pipe”. Passing along the “drain-pipe” bottom usually requires
overcoming a reaction barrier, its height being a fraction of the energy of breaking the
“old” chemical bond.

• The reaction barrier reactants→ products, is as a rule, of different height to the corre-
sponding barrier for the reverse reaction.

• We have shown how to obtain an accurate solution for three atom reaction. After intro-
ducing the democratic hyperspherical coordinates it is possible to solve the Schrödinger
equation (within the Ritz approach). We obtain the rate constant for the state-to-state
elementary chemical reaction.

A chemical reaction may be described by the reaction path Hamiltonian in order to focus
on the intrinsic reaction coordinate (IRC) measuring the motion along the “drain-pipe”
bottom (reaction path) and the normal mode coordinates orthogonal to the IRC.

• During the reaction, energy may be exchanged between the vibrational normal modes, as
well as between the vibrational modes and the motion along the IRC.

• Two atoms or molecules may react in many different ways (reaction channels). Even if
under some conditions they do not react (e.g., the noble gases), the reason for this is that
their kinetic energy is too low with respect to the corresponding reaction barrier, and the
opening of their electronic closed shells is prohibitively expensive on the energy scale.
If the kinetic energy increases, more and more reaction channels open up, because it is
possible for higher and higher energy barriers to be overcome.

• A reaction barrier is a consequence of the “quasi-avoided crossing” of the correspond-
ing diabatic hypersurfaces, as a result we obtain two adiabatic hypersurfaces (“lower” or
electronic ground state, and “upper” or electronic excited state). Each of the adiabatic
hypersurfaces consists of two diabatic parts stitched along the border passing through the
conical intersection point. On both sides of the conical intersection there are usually two
saddle points along the border line leading in general to two different reaction products
(Fig. 14.25).

• The two intersecting diabatic hypersurfaces (at the reactant configuration) represent
(a) the electronic ground state DA (b) and that electronic excited state that resembles the
electronic charge distribution of the products, usually D+A−.
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• The barrier appears therefore as the cost of opening the closed shell in such a way as to
prepare the reactants for the formation of new bond(s).

• In Marcus electron transfer theory, the barrier also arises as a consequence of the inter-
section of the two diabatic potential energy curves. The barrier height depends mainly on
the (solvent and reactant) reorganization energy.

Main concepts, new terms

critical points (p. 767)
femtosecond spectroscopy (p. 768)
saddle point (p. 768)
steepest descent path (SDP) (p. 769)
reactive and non-reactive trajectories

(p. 770)
skew coordinate system (p. 770)
reaction “drain-pipe” (p. 772)
entrance and exit channels (p. 772)
early and late reaction barriers (p. 773)
bobsleigh effect (p. 774)
democratic coordinates (p. 776)
cross section (p. 779)
reaction rate (p. 779)
Berry phase (p. 780)
mass-weighted coordinates (p. 781)
intrinsic reaction coordinate (IRC) (p. 781)
“trajectory-in-molasses” (p. 782)
reaction path Hamiltonian (p. 783)
natural coordinates (p. 784)
vibrationally adiabatic approximation

(p. 785)
vibrationally adiabatic potential (p. 786)
Coriolis coupling (p. 785 and 791)

curvature coupling (p. 785 and 791)
exo- and endothermic reactions (p. 787)
donating mode (p. 792)
spectator bond (p. 795)
molecular electrostatic potential (p. 798)
steric effect (p. 799)
acceptor–donor (AD) reaction theory

(p. 803)
MO and AD pictures (p. 805)
reaction stages (p. 806)
role of states DA, D+A−, D+A−∗ (p. 811)
HOMO-LUMO crossing (p. 815)
nucleophilic attack (p. 816)
electrophilic attack (p. 818)
cycloaddition reaction (p. 823)
Woodward–Hoffmann rules (p. 825)
Diels–Alder reaction (p. 825)
diabatic and adiabatic potentials (p. 828)
inverse Marcus region (p. 833)
collective coordinate (p. 836)
mean force potential (p. 836)
Franck–Condon factors (p. 840)
reorganization energy (p. 841)

From the research front

Chemical reactions represent a very difficult problem for quantum chemistry, because:

• There are a lot of possible reaction channels. Imagine the number of all combinations of
atoms in a monomolecular dissociation reaction, also in their various electronic states. We
have to select first which reaction to choose and a good clue may be the lowest possible
reaction barrier.

• A huge change in the electronic structure is usually quite demanding for standard quan-
tum mechanical methods.

• Given a chosen single reaction channel we confront the problem of calculating the po-
tential energy hypersurface. Let us recall (Chapters 6 and 7) the number of quantum
mechanical calculations to perform this is of the order of 103N−6. For as small number
of nuclei as N = 4 we already have a million computation tasks to perform.

• Despite unprecedented progress in the computational technique, the cutting edge possi-
bilities are limited in ab initio calculations to two diatomic molecules.
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On the other hand, a chemist always has some additional information on which chemical
reactions are expected to occur. Very often the most important changes happen in a limited
set of atoms, e.g., in functional groups, their reactivity being quite well understood. Freezing
the positions of those atoms which are reaction spectators only, allows us to limit the number
of degrees of freedom to consider.

Ad futurum. . .

Chemical reactions with the reactants precisely oriented in space will be more and more
important in chemical experiments of the future. Here it will be helpful to favour some re-
actions by supramolecular recognition, docking in reaction cavities or reactions on prepared
surfaces. For theoreticians, such control of orientation will mean the reduction of certain
degrees of freedom. This, together with eliminating or simulating the spectator bonds, may
reduce the task to manageable size. State-to-state calculations and experiments that will de-
scribe an effective chemical reaction that starts from a given quantum mechanical state of
the reactants and ends up with another well defined quantum mechanical state of the prod-
ucts will become more and more important. Even now, we may design with great precision
practically any sequence of laser pulses (a superposition of the electromagnetic waves, each
of a given duration, amplitude, frequency and phase). For a chemist, this means that we are
able to change the shape of the hypersurfaces (ground and excited states) in a controllable
way, because every nuclear configuration corresponds to a dipole moment that interacts
with the electric field (cf. Chapter 12). The hypersurfaces may shake and undulate in such a
way as to make the point representing the system move to the product region. In addition,
there are possible excitations and the products may be obtained via excited hypersurfaces.
As a result we may have selected bonds broken, and others created in a selective and highly
efficient way. This technique demands important developments in the field of chemical re-
action theory and experiment, because currently we are far from such a goal.

Note that the most important achievements in the chemical reaction theory pertained
to concepts (von Neumann, Wigner, Teller, Woodward, Hoffmann, Fukui, Evans, Polanyi,
Shaik) rather than computations. The potential energy hypersurfaces are so complicated
that it took the scientists fifty years to elucidate their main machinery. Chemistry means
first of all chemical reactions, and most chemical reactions still represent terra incognita.
This will change considerably in the years to come. In the longer term this will be the main
area of quantum chemistry.

Additional literature

R.D. Levine, R.B. Bernstein, “Molecular Reaction Dynamics and Chemical Reactivity”,
Oxford University Press, 1987.

An accurate approach to the reactions of small molecules.

H. Eyring, J. Walter, G.F. Kimball, “Quantum chemistry”, John Wiley, New York, 1967.
A good old textbook, written by the outstanding specialists in the field. To my knowl-

edge no later textbook has done it in more detail.

R.B. Woodward, R. Hoffmann, “The Conservation of Orbital Symmetry”, Academic
Press, New York, 1970.

A summary of the important discoveries made by these authors (Woodward–
Hoffmann symmetry rules).
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S.S. Shaik “What Happens to Molecules as They React? Valence Bond Approach to Re-
activity”, Journal of the American Chemical Society 103 (1981) 3692.

An excellent paper that introduces many important concepts in a simple way.

Questions

1. The intrinsic reaction coordinate means:
a) a trajectory of an atom when the reaction proceeds;
b) the steepest descent path in the Cartesian space of the nuclear coordinates;
c) the steepest descent path from a saddle point in the Cartesian space of the mass-
weighted nuclear coordinates;
d) a straight line in the Cartesian space of 3N− 6 coordinates that connects the minima
of the two basins.

2. In the vibrationally adiabatic approximation (reaction path Hamiltonian method) with
all the normal modes in their ground states:
a) the potential energy does not depend on the normal mode frequencies;
b) the zero-vibrations depend on the reaction path coordinate s;
c) the normal modes may exchange energy;
d) the oscillators may exchange energy with the reaction path degree of freedom.

3. An endothermic reaction proceeds spontaneously (T > 0), because:
a) the “drain-pipe” bottom potential energy plus the energies of the normal modes is
lower in the entrance than in the exit channel;
b) the oscillators are anharmonic;
c) the “drain-pipe” bottom potential energy in the entrance channel is lower than that
in the exit channel;
d) the exit channel is wider than the entrance channel.

4. Donating mode:
a) couples with the reaction path in the entrance channel;
b) increases the reaction barrier;
c) corresponds to high Coriolis couplings with other modes;
d) corresponds to the lowest zero-vibration energy in the entrance channel.

5. In the acceptor–donor picture at the intermediate reaction stage (I) the following struc-
tures prevail:
a) DA; b) D+A− and D2+A2−; c) D+A− and D+A−∗; d) DA and D+A−.

6. In the acceptor–donor picture at the product reaction stage (P) the following structures
prevail:
a) DA; b) D+A−, D2+A2− and D+A−∗; c) D+A−∗; d) DA and D+A−.

7. The ground-state adiabatic hypersurface in the neighbourhood of the conical intersec-
tion for three atoms:
a) does not touch the excited-state adiabatic hypersurface;
b) is a plane;
c) consists of two diabatic parts of different electronic structures;
d) does not touch a diabatic hypersurface.

8. In Marcus electron transfer theory:
a) the reaction barrier is always equal to 1

4 of the reorganization energy;



Answers 847

b) the larger the absolute value of the energy difference between products and reactants,
the faster the reaction;
c) the activation energy is equal to the reorganization energy;
d) if the reactant energy is equal to the product energy, then the reaction barrier is equal
to 1

4 of the reorganization energy.

9. In Marcus theory of electron transfer:
a) we assume the same force constant for the reactants and products;
b) the reorganization energy in the reaction Fe2+ + Fe3+ → Fe3+ + Fe2+ in solution
is equal to zero;
c) to have electron transfer we have to have the inverse Marcus region;
d) the solvent reorganization energy is equal to zero.

10. The reaction barrier:
a) has the same height from the reactant side and from the product side;
b) appears, because the hypersurface of an excited state that resembles the products
intersects with the ground-state hypersurface for reactants;
c) means that the reactants have to have kinetic energy higher than its height;
d) results from the tunnelling effect.

Answers

1c, 2b, 3d, 4a, 5d, 6b, 7c, 8d, 9a, 10b



Chapter 15

INFORMATION
PROCESSING – THE
MISSION OF CHEMISTRY

Where are we?

We have now explored almost the whole TREE.

An example

Chemistry has played, and continues to play, a prominent role in human civilization. If you
doubt it, just touch any surface around you – most probably it represents a product of the
chemical industry.1 Pharmaceutical chemistry may be seen as a real benefactor, for it makes
our lives longer and more comfortable. Is the mission of chemistry therefore to produce
better dyes, polymers, semi-conductors, drugs? No, its true mission is much, much more ex-
citing.

What is it all about

MOLECULAR STRUCTURES (STATICS) p. 852

Complex systems (��) p. 852

Self-organizing complex systems (��) p. 853

Cooperative interactions (��) p. 854

Sensitivity analysis (�) p. 855

Combinatorial chemistry – molecular libraries (��) p. 855

DYNAMICS p. 857

Non-linearity (�) p. 857

Attractors (�) p. 858

Limit cycles (�) p. 859

Bifurcations and chaos (�) p. 860

Catastrophes (�) p. 862

Collective phenomena (�) p. 863
• Scale symmetry (renormalization)
• Fractals

1Just a quick test around myself (random choice of surfaces): laptop (polymers), marble table (holes
filled with a polymer), pencil (wood, but coated by a polymer), box of paper tissue (dyes and polymer
coat), etc.
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Chemical feedback – non-linear chemical dynamics (���) p. 866
• Brusselator – dissipative structures
• Hypercycles

CHEMICAL INFORMATION PROCESSING p. 875

Functions and their space-time organization (��) p. 875

The measure of information p. 875

The mission of chemistry p. 877

Molecular computers based on synthon interactions p. 878

Why is this important?
In this book we have dealt with many problems in quantum chemistry. If this book were
only about quantum chemistry, I would not write it. My goal was to focus on perspectives and
images, rather than on pixel-like separate problems. Before we are quantum chemists we are
scientists, happy eye-witnesses of miracles going on around us. We are also human beings,
and have the right to ask ourselves, just what are we aiming for? Why is the Schrödinger
equation to be solved? Why do we want to understand the chemical foundations of the
world? Just for curiosity? Well, should curiosity legitimize any investigation?2 What will the
future role of chemistry be?

Chemistry is on the threshold of a big leap forward. Students of today will participate
in this revolution. The limits will be set by our imagination, maybe by our responsibility as
well. The direction we choose for the future progress in chemistry and biochemistry will
determine the fate of human civilization. This is important. . .

What is needed?
• Elements of chemical kinetics.
• Elements of differential equations.
• Let us leave the traditional topics of chemistry, let us look around, let us look at how

Nature operates.

Classical works
The classic papers pertain to three, at first sight unrelated, topics: molecular recogni-
tion, oscillatory solutions in mathematics and information flow. These topics evolved vir-
tually separately within chemistry, mathematics and radio-communication, and only now3

are beginning to converge. � Emil Hermann Fischer was the first to stress the impor-
tance of molecular recognition. In “Einfluss
der Konfiguration auf die Wirkung der En-
zyme” published in Berichte, 27 (1894) 2985
Fischer used the self-explanatory words “key-
lock” for the perfect fit of an enzyme and its
ligand. � In 1903 Jules Henri Poincaré pub-
lished in Journal de Mathematiques Pures et
Appliques, 7 (1881) 251 an article “Mémoire
sur les courbes définies par une équation dif-
férentielle”, where he showed that a wide class
of two coupled non-linear differential equa-
tions leads to oscillating solutions that tend

Jules Henri Poincaré (1854–
1912), French mathematician
and physicist, professor at
the Sorbonne, made impor-
tant contributions to the the-
ory of differential equations,
topology, celestial mechan-
ics, probability theory, and the
theory of functions.

2Do not answer “yes” too easily, for it gives people the right to any experiments on you and me.
3The aim of the present chapter is to highlight these connections.



850 15. Information Processing – the Mission of Chemistry

Boris Pavlovich Belousov
(1893–1970) looked for an in-
organic analogue of the bio-
chemical Krebs cycle. The in-
vestigations began in 1950 in
a Soviet secret military insti-
tute. Belousov studied mix-
tures of potassium bromate
with citric acid, and a small
admixture of a catalyst: a
salt of cerium ions. He ex-
pected a monotonic transfor-
mation of the yellow Ce4+
ions into the colourless Ce3+.
Instead, he found oscillations
of the colour of the solvent
(colourless-yellow-colourless-
. . . etc., also called by Rus-
sians “vodka-cognac-vodka-
. . . ”).
He wrote a paper and sent
it to a Soviet journal, but the
paper was rejected with a ref-
eree’s remark that what the
author had described was
simply impossible. His involve-
ment in classified research
caused him to limit himself
to bringing (by intermediacy
of somebody) a piece of pa-
per with reactants and his
phone number written on it.
He refused to meet anybody.
Finally, Simon Schnoll per-

suaded him to publish his
results. Neither Schnoll nor
his PhD student Zhabotinsky
ever met Belousov, though all
they lived in Moscow.

Belousov’s first chemistry
experience was at the age of
12, while engaged in mak-
ing bombs in the Marxist un-
derground. Stalin thought of
everything. When, formally
underqualified, Belousov had
problems as head of the lab,
Stalin’s handwriting in ordi-
nary blue-pencil on a piece of
paper: “Has to be paid as a
head of laboratory as long as
he has this position” worked
miracles.

After S.E. Schnoll “Geroi
i zladiei rossiyskoi nauki”,
Kron-Press, Moscow, 1997.

to a particular behaviour independently of the
initial conditions (called the limit cycle). � It
seems that the first experiment with an os-
cillatory chemical reaction was reported by
Robert Boyle in the XVII century (oxidation
of phosphorus). Then several new reports on
chemical oscillations were published (includ-
ing books). All these results did not attract any
significant interest in the scientific community,
because they contradicted the widely known,
all important, and successful equilibrium ther-
modynamics. � The Soviet general Boris
Belousov finally agreed to publish his only
unclassified paper “Periodichesky deystvouy-
oushchaya rieakcya i yeyo miekhanism” in
an obscure Soviet medical journal Sbornik
Riefieratow Radiacjonnoj Miediciny, Medgiz,
Moskwa, 1 (1959) 145 reporting spectacu-
lar colour oscillations in his test tube: yellow
Ce4+ and then colourless Ce3+, and again
yellow, etc. (nowadays called the Belousov–
Zhabotinsky reaction). � Independently,
there was a continuing parallel progress in
oscillatory solutions in mathematics. In 1910
Alfred J. Lotka in “Contributions to the the-
ory of chemical reactions” published in the
Journal of Physical Chemistry, 14 (1910) 271
proposed some differential equations that
corresponded to the kinetics of an autocat-
alytic chemical reaction, and then with Vito
Volterra gave a differential equation that de-

Ilya Prigogine (1917–2003)
Belgian physicist, professor
at the Université Libre de
Bruxelles. In 1977 he received
the Nobel prize “for his con-
tributions to non-equilibrium
thermodynamics, particularly
the theory of dissipative struc-
tures”.

scribes a prey-predator feedback (oscillation)
known as Lotka–Volterra model. � In Feb-
ruary 1943, at the Dublin Institute for Ad-
vanced Studies,4 Erwin Schrödinger gave
several lectures trying to reconcile thermo-
dynamics and biology. He stressed that bi-
ological systems are open: there is a flow of
matter and energy. Independently of all these
investigations there were attempts in radio-
communication to look quantitatively at in-
formation flow. � Ralph V.L. Hartley, pub-
lished the first article on measuring informa-

tion entitled “Transmission of Information” in The Bell Systems Technical Journal, 7 (1928)
535. � Twenty years later, the same topic was developed by Claude E. Shannon in “A Math-

4In that period of the war certainly looking like a tiny nucleus of civilization beyond the reach of
barbarians. The lecture notes were published in 1944 by Cambridge University Press under the title
“What is Life?”



Classical works 851

ematical Theory of Communication” also published in The Bell Systems Technical Journal,
27 (1948) 379, 623, in which he related the notion of information and that of entropy. �
The Belgian scientists Paul Glansdorff and Ilya Prigogine published a paper “Sur les pro-
priétés différentielles de la production d’entropie” in Physica, 20 (1954) 773, that became the
basis of irreversible thermodynamics. Ilya Prigogine and Gregoire Nicolis in an article “On
Symmetry-Breaking Instabilities in Dissipative Systems”, Journal of Chemical Physics 46 (1967)
3542 introduced the notion of dissipative structures. � Charles John Pedersen reopened
(after the pioneering work of Emil Fischer) the field of supramolecular chemistry, publish-
ing an article “Cyclic Polyethers and their Complexes with Metal Salts”, which appeared in the
Journal of the American Chemical Society, 89 (1967) 7017 and dealt with molecular recogni-
tion (cf. Chapter 13). � Manfred Eigen and Peter Schuster, in three articles “The Hypercy-
cle. A Principle of Natural Self-Organization” in Naturwissenschaften 11 (1977), 1 (1978) and
7 (1978) introduced the idea of a hypercycle and of the natural selection of molecules to
chemistry. � The mathematician Leonard Adleman published in Science, 266 (1994) 1021
“Molecular Computation of Solutions to Combinatorial Problems”, in which he described his
own chemical experiments that shed new light on the role molecules can play in processing
information.

What are the most important problems in chemistry? Usually we have no time
to compose such a list, not even to speak of presenting it to our students. The
choice made reflects the author’s personal point of view. The author tried to keep
in mind that he is writing for mainly young (undergraduate and graduate) students,
who are seeking not only for detailed research reports, but also for new guidelines
in chemistry, for some general trends in it, and who want to establish strong and
general links between mathematics, physics, chemistry and biology. An effort was
made to expose the ideas, not only to students’ minds but also to their hearts.

It is good to recall from time to time that all of us: physicists, chemists and bi-
ologists share the same electrons and nuclei as the objects of our investigation. It
sounds trivial, but sometimes there is the impression that these disciplines investi-
gate three different worlds. In the triad physics–chemistry–biology, chemistry plays
a bridging role. By the middle of the twentieth century, chemistry had closed the

Kurt Gödel (1906–1978), German mathemati-
cian (then American, he was hardly persuaded
in a taxi going to the ceremony of his naturali-
sation not to present inconsistencies in the US
Constitution he had found). This mathematical
genius proved a theorem now called Gödel’s
Undecidability Theorem that has shaken the
foundations of mathematics (K. Gödel, Monat-
shefte Math. Phys., 38 (1931) 173). Roughly
speaking, the theorem says that any sys-
tem of axioms leads to theorems neither true
nor false. Gödel was probably inspired by old
Greek paradoxes, like “all Creteans lie – said a
Cretean”.

Kurt Gödel was permanently afraid of being
poisoned. After his wife’s death, when nobody
could persuade him that his food was safe, he
died of hunger. . .
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period of the exploration of its basic building blocks: elements, chemical bonds and
their typical lengths, typical values of angles between chemical bonds, etc. Future
discoveries in this field are not expected to change our ideas fundamentally. Now
we are in a period of using this knowledge for the construction of what we only
could dream of. In this Chapter I will refer now and then to mathematicians and
mathematics, who deal with ideal worlds. For some strange reason at the foun-
dation of (almost5) everything there is logic and mathematics. We have to notice,
however, that after Kurt Gödel’s proof of the incompleteness of any axiomatic sys-
tem mathematics has become more like natural sciences. Physics, while describing
the real rather than the ideal world, more than other natural sciences is symbiotic
with mathematics.

Important cornerstones of this frontier region are given in brief below in three
sections: Molecular Structures, Dynamics and Chemical Information Processing.

MOLECULAR STRUCTURES (STATICS)

15.1 COMPLEX SYSTEMS

Even a relatively simple system (e.g., an atom) often exhibits strange properties.
Understanding simple objects seemed to represent a key for description of com-
plex systems (e.g., molecules). Complexity can be explained using the first princi-
ples.6 However, the complexity itself may add some important features. In a com-
plex system some phenomena may occur, which would be extremely difficult to
foresee from a knowledge of their component parts. Most importantly, sometimes
the behaviour of a complex system is universal, i.e. independent of the proper-
ties of the parts of which it is composed (some of them will be mentioned in the
present chapter) and related to the very fact that the system is composed of many
small parts interacting in a simple way.

The behaviour of a large number of argon atoms represents a difficult task for
theoretical description, but is still quite predictable. When the number of atoms
increases, they pack together in compact clusters similar to those we would have
with the densest packing of tennis balls (the maximum number of contacts). We
may have to do here with complicated phenomena (similar to chemical reactions)
and connected to the different stability of the clusters (e.g., “magic numbers” re-
lated to particularly robust closed shells7). Yet, the interaction of the argon atoms,
however difficult for quantum mechanical description, comes from the quite prim-
itive two-body, three-body etc. interactions (Chapter 13).

5Yes, almost: e.g., generosity is not included here.
6In the 20-ties of the twentieth century, after presenting his equation (see Chapter 3), Paul Dirac said

that now chemistry is explained. Yet, from the equation to foreseeing the properties of complex organic
molecules is a long, long way.

7Similar closed shells are observed in nuclear matter, where the “tennis balls” correspond to nucleons.
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15.2 SELF-ORGANIZING COMPLEX SYSTEMS

Chemistry offers a plethora of intermolecular interactions.
Some intermolecular interactions are specific, i.e. a substrate A interacts with a

particular molecule Bi from a set B1	B2	 � � � 	BN (N is large) much more strongly
than with others. The reasons for this are their shape, the electric field8 compati-
bility, a favourable hydrophobic interaction etc. resulting either in the “key-lock”
or “hand-glove” types of interaction, cf. Chapter 13. A molecule may provide a set
of potential contacts localized in space (synthon, p. 744), which may fit to another
synthon of another molecule. Two of nature’s most important pairs of synthons
are the hydrogen bond system of guanine and cytosine (GC) and of adenine and
thymine (AT)9 (see Fig. 13.17): in the case of extended synthons exhibiting an inter-
nal structure (“polysynthons” like, e.g., GAATC and CTTAG being sections of a
DNA strand) finding in solution the first two matching synthons, e.g., in our case G
and C, makes the next ones much easier, i.e. A and T etc., to fit, since they are al-
ready close in space and the entropy barrier is much easier to overcome.10

This idea is used in supramolecular chemistry. Suppose a particular reaction
does not proceed with sufficient yield. Usually the reason is that, to run just this
reaction the molecules have to find themselves in a very specific position in space
(a huge entropy barrier to overcome), but before this happens they undergo some
unwanted reactions. We may however “instruct” the reactants by substituting them
with such synthons that the latter lock the reactants in the right position in space.
The reaction we want to happen becomes inevitable. The driving force for all this
is the particularly high interaction energy of the reactants. Very often however, the
interaction energy has to be high, but not too high, in order to enable the reaction
products to separate. This reversibility is one of the critically important features
for “intelligent” molecules, which could adapt to external conditions in a flexible
way. If a system with synthons is not flexible enough, we will still have to do with a
relatively primitive structure.

If the system under consideration is relatively simple, even if the matching of
corresponding synthons is completed, we would still have a relatively primitive spa-
tial structure. However, we may imagine far more interesting situation, when:

• The molecules were chosen in such a way as to ensure that some intermolecular
interaction is particularly attractive. A specific matching is known as molecular molecular

recognitionrecognition.
• The molecular complexes formed this way may recognize themselves again by

using synthons previously existing or created in situ. In this way a multilevel
structure can be formed, each level characterized by its own stability (cf. p. 744).

8Both molecules carry their charge distributions, their interaction at a certain geometry may consid-
erably lower the Coulombic energy.

9G, C, A, T are four letters used by nature to compose the words, sentences, chapters, essays and
poems of the Book of Life (the DNA code). The complementarity of the related synthons is of prime
importance.
10The entropy barrier for A and B to make a complex AB is large when there are a lot of non-reactive

A and B positions, and only a few that lead to formation of the complex.
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Fig. 15.1. A “universal” biological sensor based on
rhodopsin. The sensor consists of seven α-helices
connected by some oligopeptide links (a schematic
view), the α-helices are shown as cylinders. The he-
lices form a cavity, in which (in one of version of
the sensor) there is a cis-retinal molecule (a chain
of alternating single and double bonds), not shown
in the figure, stretching between two helices. The
cis-retinal is able to absorb a photon and change its
conformation to trans. This triggers the cascade of
processes responsible for our vision. The total sys-
tem is hydrophobic outside, which makes it sponta-
neously anchor inside the cell walls composed of a
lipid bilayer. The protruding protein loops exhibit
specific interactions with some drugs. Such a sys-
tem is at the basis of interaction with about 70% of
drugs.

• The multilevel molecular structure may depend very strongly on its environment.
When this changes, the structure may decompose, and eventually another struc-
ture may emerge.

A hierarchical multilevel structure may be formed, where the levels exhibit
different stability with regard to external perturbations. The stability differs
due to the different binding energies of the synthons involved and/or on the
steric constraints.

The coiled-coil structure of oligopeptides described on p. 748 may serve as an
example of such a multilevel structure, or the spontaneous folding of enzymes to
their native structure, e.g., rhodopsin is composed of seven α-helices linked by
some oligopeptide links (Fig. 15.1).

There is nothing accidental in this system. The helices are composed of such
amino acids, that ensure that the external surface of the helices is hydrophobic,
and therefore enter the hydrophobic lipid bilayer of the cell walls. The peptide
links serve to recognize and dock some particular signalling molecules. The 7-helix
systems serve in biology as a universal sensor, with variations to make it specific
for some particular molecular recognition and the processes that occur afterwards.
After docking with a ligand or by undergoing photochemical isomerization of the
retinal, some conformational changes take place, which after involving several in-
termediates, finally resulting in a signal arriving at a nerve cell. We see how won-
derful things this sophisticated structure is able to do in a dynamic way.

15.3 COOPERATIVE INTERACTIONS
Some events may cooperate. Suppose we have an extended object, which may un-
dergo a set of events: A, B, C, . . . , each taking place separately and locally with
a small probability. However, it may happen that for a less extended object the
events cooperate, i.e. event A makes it easier for event B to occur, and when A
and then B happens this makes it easier for event C to happen, etc.
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Self-organization is possible without cooperativity, but cooperativity may greatly
increase the effectiveness of self-organization. The hemoglobin molecule may
serve as an example of cooperativity in intermolecular interactions, where its inter-
action with the first oxygen molecule makes its interaction with the second easier
despite a considerable separation of the two binding events in space.

15.4 SENSITIVITY ANALYSIS
Sensitivity analysis represents a fast developing branch of applied mathematics.
The essence of this approach is determining the response of a structure to a per-
turbation. The structure may represent a building or a molecule, and the perturba-
tions may be of different kinds.11 Experimental chemists very often introduce some
substitutions, exchanging one functional group for another, and then observing
the changes in the structure and properties of the system. Similarly, in biochem-
istry, both in experiment and theory (e.g., in molecular mechanics or dynamics),
we make some artificial mutations. However, the current limitations of theory do
not enable us to perform global molecular mechanics (cf. Chapter 7) and carry out
sensitivity analysis when large responses of the system are admitted. It is very prob-
able that this type of analysis will be of great importance in the future, because we
will try to control the system globally, e.g., to foresee what will be the most stable
structure after a perturbation is switched on.

15.5 COMBINATORIAL CHEMISTRY – MOLECULAR
LIBRARIES

Chemistry is often regarded as dealing with pure substances,12 which is obviously
too demanding. This is difficult to achieve even for a pure compound, because
of isomerization. In most cases we are interested in having a single isomer in the
specimen. However, there are cases when the chemist is interested in a mixture of
all possible isomers instead of a single isomer. Such a mixture is called a chemical
library, and the chemistry that uses such libraries is called combinatorial chemistry.
Thanks to the libraries we can search and find a given isomer. This is particularly
spectacular in cases in which we have a labile equilibrium (i.e. easily shiftable)
among the isomers.

A complex system may adjust itself to an external stimulus by changing its mole-
cular structure. A good example is liquid water, which may be regarded as a “li-
brary” of different clusters, all of them being in an easy-to-shift equilibrium with
others. This is why water is able to hydrate a nearly infinite variety of molecules,
shifting the equilibrium towards the clusters that are needed to “wrap the solute
by a water coat”.

11Sensitivity analysis is universal. We apply it in everyday life (we see how our organism reacts to a
perturbation by drug A, drug B, . . . ).
12This is stressed by the Dutch name for chemistry: “scheikunde” – i.e. the art of separation.
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Fig. 15.2. A model of the immune system. (a) The figure shows schematically some monomers in a sol-
vent. They have the shape of a slice of pie with two synthons: protruding up and protruding down, differ-
ing in shape. The monomers form some side-by-side aggregates containing from two to six monomers,
each aggregate resulting in some pattern of synthons on one face and the complementary pattern on the
other face. We have then a library of all possible associates in thermodynamical equilibrium. Say, there
are plenty of monomers, a smaller number of dimers, even fewer trimers, etc. up to a tiny concentration
of hexamers. (b) The attacking factor I (the irregular body shown) is best recognized and bound by one
of the hexamers. If the concentration of I is sufficiently high, the equilibrium among the aggregates shifts
towards the hexamer mentioned above, which therefore binds all the molecules of I, making them harm-
less. If the attacking factor was II and III, binding could be accomplished with some trimers or dimers
(as well as some higher aggregates). The defence is highly specific and at the same time highly flexible
(adjustable).

The immune system in our body is able to fight and win against practically any
enemy, irrespective of its shape and molecular properties (charge distribution).
How is it possible? Would the organism be prepared for everything? Well, yes and
no.

Let us imagine a system of molecules (building blocks) having some synthons
and able to create some van der Waals complexes, Fig. 15.2. Since the van der
Waals forces are quite weak, the complexes are in dynamic equilibrium. All possi-
ble complexes are present in the solution, none of the complexes dominates.

Now, let us introduce some “enemy-molecules”. The building blocks use part of
their synthons for binding the enemies (that have complementary synthons), and
at the same time bind among themselves in order to strengthen the interaction.
Some of the complexes are especially effective in this binding. Now, the Le Chate-
lier rule comes into play and the equilibrium shifts to produce as many of the most
effective binders as possible. On top of this, the most effective binder may undergo
a chemical reaction that replaces the weak van der Waals forces by strong chemi-
cal forces (the reaction rate is enhanced by the supramolecular interaction). The
enemy was tightly secured, the invasion is over.13

13A simple model of immunological defence, similar to that described above, was proposed by
F. Cardullo, M. Crego Calama, B.H.M. Snelling-Ruël, J.-L. Weidmann, A. Bielejewska, R. Fokkens,
N.M.M. Nibbering, P. Timmerman, D.N. Reinhoudt, J. Chem. Soc. Chem. Commun. 367 (2000).
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DYNAMICS

15.6 NON-LINEARITY

Its origin is mathematical, where non-linearity is defined as opposed to linearity.
Linearity, in the sense of the proportionality between a cause and an effect, is
widely used in physics and technical sciences. There is common sense in this, since
when a cause is small, the result is in most cases also small.14 For instance, when a
light object is hanging on a spring, the spring elongates in proportion to its weight
(to high accuracy).15 Similarly, when a homogeneous weak electric field is applied
to the helium atom, its electrons will shift slightly towards the anode, while the nu-
cleus will be displaced a little in the direction of the cathode, cf. Chapter 12. This
results in an induced dipole moment, which to a high degree of accuracy is pro-
portional to the electric field intensity, and the proportionality coefficient is the
polarizability of the helium atom. Evidently, reversing the direction of the elec-
tric field would produce exactly the same magnitude of induced dipole moment,
but its direction will be opposite. We can perform such an experiment with the
HCl molecule (the molecule is fixed in space, the electric field directed along the
H....Cl axis, from H to Cl).16 When an electric field is applied, the dipole moment
of the molecule will change slightly, and the change (an induced dipole moment)
is to a good accuracy proportional to the field with the proportionality coefficient
being the longitudinal polarizability of HCl. However, when the direction of the
field is reversed, the absolute value of the induced dipole moment will be the same
as before. Wait a minute! This is pure nonsense. The electrons move with the same
facility towards the electron acceptor (chlorine) as to the electron donor (hydro-
gen)? Yes, as far as the polarizability (i.e. linearity) decides, this is true indeed.
Only, when going beyond the linearity, i.e. when the induced dipole moment de-
pends on higher powers of the electric field intensity, we recover common sense:
electrons move more easily towards an electron acceptor than towards an electron
donor. . . Thus, the non-linearity is there and is important.

Non-linearity was an unwanted child of physics. It sharply interfered with mak-
ing equations easy to solve. Without it, the solutions often represent beautiful,
concise expressions, with great interpretative value, whereas with it everything gets
difficult, clumsy and most often impossible to treat. We are eventually left with nu-
merical solutions, which have to be treated case by case with no hope of a nice gen-
eralization. Sometimes the non-linearity could be treated by perturbation theories,
14“Most” is a dangerous word. What about such things dice, roulette, etc.? There is a kind of “his-

terical” dependence of the result from the initial conditions. The same is true for the solution of the
equation. . .x3 = −1. Until the nineteen-eighties mathematicians thought that nothing new would be
added to this solution. However, when they applied Newton’s method to solve it numerically, a fractal
dependence on the initial conditions appeared.
15Non-linearity is, however, entering into play if the object is heavy and/or if the spring is compressed

with the same force instead of elongated.
16In this molecule, without any external electric field applied, the electrons are slightly shifted from

the hydrogen (electron donor) to the chlorine atom (electron acceptor), which results in a permanent
dipole moment.
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where the linear case is considered as a reference and the non-linear corrections
are taken into account and calculated. Nothing particularly important emerged
from this. Now we know why. Perturbation theory requires a small perturbation (a
weak non-linearity), while the most interesting phenomena discovered in the 1970-
ties by Prigogine, emerged when non-linearity is large (large fluctuations exploring
new possibilities of the system).

With the advent of computers that which was difficult to solve (numerically)
before, often became easy. Without computers, we would understand much less
about dissipative structures, chaos theory, attractors, etc. These subjects are of a
mathematical nature, but have a direct relation to physics and chemistry, and most
of all to biology. The relation happens on remarkably different scales and in re-
markably different circumstances:17 from chemical waves in space rationalizing the
extraordinary pattern of the zebra skin to population waves of lynxes and rabbits
as functions of time. In all these phenomena non-linearity plays a prominent role.

Quite surprisingly, it turns out that a few non-linear equations have analytical
and simple solutions. One of such cases is a soliton, i.e. a solitary wave (a kind
of hump). Today solitons already serve to process information, thanks to the non-
linear change of the refractive index in a strong laser electric field. Conducting
polymers turn out to be channels for another kind of solitons18 (cf. Chapter 9).

15.7 ATTRACTORS

Mitchell Feigenbaum (b. 1944),
American physicist, employee
of the Los Alamos National
Laboratory, then professor at
the Cornell University and
at the Rockefeller University.
Feigenbaum discovered at-
tractors after making some
observations just playing with
a pocket calculator.

Non-linearity in mathematics is connect-
ed to the notion of attractors.

The theory of attractors was created
by Mitchell Feigenbaum. When apply-
ing an iterative method of finding a so-
lution,19 we first decide which operation
is supposed to bring us closer to the solu-
tion as well as what represents a reason-
able zero-order guess (starting point: a
number, a function, a sequence of func-

tions). Then we force an evolution (“dynamics”) of the approximate solutions by
applying the operation first to the starting point, then to the result obtained by
the operation on the starting point, and then again and again until convergence is
achieved.

Let us take an example and choose as the operation on a number x the following
xn+1 = sin(x2

n+ 1), where n stands for the iteration number� The iterative scheme
therefore means choosing any x0, and then applying many times a sequence of

17This witnesses the universality of Nature’s strategy.
18The word “channel” has been used on purpose to allude to the first soliton wave observed in an

irrigation channel.
19Cf. the SCF LCAO MO method, p. 364, or the iterative version of perturbational theory, p. 717.
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four keys on the calculator keyboard. Here are the results of two different starting
points: x0 = 1410 and −2000.

1410 −2000
−0�0174524 0�656059

0�0174577 0�0249628
0�0174577 0�0174633
0�0174577 0�0174577

The result is independent of the starting point chosen. The number 0.0174577 rep-
resents an attractor or a fixed point for the operation. In the SCF method the fixed fixed point

point is identical with the single Slater-determinant function (a point in the Hilbert
space, cf. Appendix B) – a result of the SCF iterative procedure.

Let us consider some other attractors. If we take the clamped-nuclei electronic
energy V (R) as a function of the nuclear configuration R (V (R) represents a gen-
eralization of E0

0(R) from eq. (6.18), p. 227, that pertains to a diatomic mole-
cule). The forces acting on atoms can be computed as the components of the
vector F = −∇V � Imagine we are looking for the most stable configurations of
the nuclei, i.e. for the minima of V (R). We know that when such a configuration
is achieved, the forces acting on all the atoms are zero. When we start from an
initial guess R0 and follow the computed force F = −∇V (this defines the op-
eration in question), then it is hoped that we end up at a local minimum of V
independent of the starting point, provided the point belongs to the basin corre-
sponding to the minimum (cf. p. 769). If, however, the starting point were out-
side the basin, we would find another minimum (having its own basin, where the
starts would all lead to the same result). Thus, we may have to do with many at-
tractors at the same time. The positions of the maxima of V may be called re-
pellers to stress their action opposite to the attractors. For a repeller the procedure repellers

of following the direction of −∇V gets us further and further away from the re-
peller.

In thermodynamics, the equilibrium state of an isolated system (at some fixed
external parameters) may be regarded as an attractor, that any non-equilibrium
state attains after a sufficiently long time.

15.8 LIMIT CYCLES
Sometimes an attractor represents something other than just a point at which the
evolution of the system definitely ends up.

Consider a set of two differential equations with time t as variable. Usually their
solution [x(t) and y(t)] depends on the initial conditions assumed, Fig. 15.3.a.

Now let us take a particular set of two non-linear differential equations. As seen
from Fig. 15.3.b, this time the behaviour of the solution as a function of time is
completely different: for high values of t the solution does not depend on the ini-
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Fig. 15.3. Two different behaviours of solutions of differential equations, depending on initial condi-
tions. (a) The plots represent x(t) for three sets of initial conditions. As seen, the trajectories differ
widely, i.e. the fate of the system depends very much on the initial conditions. Fig. (b) shows the idea of
the limit cycle for a set of hypothetical non-linear differential equations. For large values of t, the three
sets of initial conditions lead to the same trajectory.

tial conditions chosen. We obtain the y(x) dependence in a form called the limit
cycle, and the functions x(t) and y(t) exhibit periodic oscillations. The system is
condemned to repeat forever the same sequence of positions – the limit cycle.

In chemistry x and y may correspond to the concentrations of two substances.
The limit cycles play a prominent role in new chemistry, since they ensure that the
system evolves to the same periodic oscillations independent of the initial condi-
tions of some chemical reactions (with the non-linear dependence of their velocity
on concentrations, cf. p. 872). Such reactions could, therefore,

• provide a stimulus for the periodic triggering of some chemical processes (chem-chemical clock

ical clock),
• provide chemical counting, which (similar to today’s computers) could be related

to chemical programming in the future.

15.9 BIFURCATIONS20 AND CHAOS
Non-linear dynamics turned out to be extremely sensitive to coupling with some
external parameters (representing the “neighbourhood”).

Let us take what is called the logistic equationlogistic equation

x=Kx(1− x)	

where K > 0 is a constant. The Oxford biologist, Sir Robert May, gave a numerical
exercise to his Australian graduate students. They had to calculate how a rabbit

20A bifurcation (corresponding to a parameter p) denotes in mathematics a doubling of an object
when the parameter exceeds a value p0. For example, when the object corresponds to the number of
solutions of equation x2 +px+ 1= 0, then the bifurcation point p0 = 2. Another example of bifurca-
tion is branching of roads, valleys, etc.
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population evolves when we let it grow according to the rule

xn+1 =Kxn(1− xn)	
which is obviously related to the logistic equation. The natural number n denotes
the current year, while xn stands for the (relative) population of, say, rabbits in a
field, 0 
 xn 
 1. The number of the rabbits in year (n+ 1) is proportional to their
population in the preceding year (xn)	 because they reproduce very fast, but the
rabbits eat grass and the field has a finite size. The larger xn the less the amount of
grass to eat, which makes the rabbits a bit weaker and less able to reproduce (this
effect corresponds to 1− xn).

The logistic equation contains a feed back mechanism.

The constant K measures the population–grass coupling strength (low-quality
grass means a small K). What interests us is the fixed point of this operation, i.e.
the final population the rabbits develop after many years at a given coupling con-
stant K. For example, for K = 1 the evolution leads to a steady self-reproducing
population x0, and x0 depends on K (the larger K the larger x0). The graduate
students took various values of K. Nobody imagined this quadratic equation could
hide a mystery.

If K were small (0 
K < 1, extremely poor grass), the rabbit population would
simply vanish (the first part of Fig. 15.4). IfK increased (the second part of the plot,
1 
 K < 3), the population would flourish. When K exceeded 3 this flourishing
would give, however, a unexpected twist: instead of reaching a fixed point, the
system would oscillate between two sizes of the population (every second year the
population was the same, but two consecutive years have different populations).
This resembles the limit cycle described above – the system just repeats the same
cycle all the time.

This mathematical phenomenon was carefully investigated and the results were
really amazing. Further increase in K introduces further qualitative changes.
First, for 3 
 K < 3�44948 the oscillations have period two (bifurcation), then at bifurcation

3�44948 
K < 3�5441 the oscillations have period four (next bifurcation, the four-
member limit cycle), then for 3�5441 
K < 3�5644 the period is eight (next bifur-
cation).21

Then, the next surprise: exceeding K = 3�56994 we obtain populations that do
not exhibit any regularity (no limit cycle, just chaos). A further surprise is that this chaos

is not the end of the surprises. Some sections of K began to exhibit odd-period
behaviour, separated by some sections of chaotic behaviour.
21Mitchell Feigenbaum was interested to see at which value K(n) the next bifurcation into 2n

branches occurs. It turned out that there is a certain regularity, namely, limn→∞ Kn+1−Kn
Kn+2−Kn+1

=
4�669201609 � � � ≡ δ. To the astonishment of scientists, the value of δ turned out to be “universal”,
i.e. characteristic for many very different mathematical problems and, therefore, reached a status similar
to that of the numbers π and e. The numbers π and e satisfy the exact relation eiπ = −1, but so far
no similar relation was found for the Feigenbaum constant. There is an approximate relation (used by
physicists in phase transition theory) which is satisfied: π + tan−1 eπ = 4�669201932≈ δ.
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Fig. 15.4. The diagram of the fixed points and the limit cycles for the logistic equation as a function of
the coupling constantK. From J. Gleick, “Chaos”, Viking, New York, 1988, reproduced with permission
of the author.

15.10 CATASTROPHES

The problems described above have to do with another important mathematical
theory.

As has been shown for electronic energy V (R), we may have several minima.
Having a deterministic procedure that leads from a given point to a minimum
means creating the dynamics of the system (along a trajectory), in which any min-
imum may be treated as an attractor (Chapter 6), with its basin meaning those
points that, following the dynamics, produce trajectories that end up at the mini-
mum. We can also imagine trajectories that do not end up at a point, but in a closed
loop (limit cycle).

Imagine V (R) depends on a parameter t. What would happen to the attractors
and limit cycles if we changed the value of the parameter? When a change has
a qualitative character (e.g., the number of basins changes), the founder of the
theory, René Thom, called it a catastrophe.
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15.11 COLLECTIVE PHENOMENA

Imagine some subunits cooperate so strongly that many events require less energy
than a single one or a few. In such a case, a few events may trigger an avalanche
of other events (domino effect). Numerous examples of this are phase transitions, domino effect

where a change of the position, orientation or conformation of a few molecules
requires energy, whereas when a barrier is overcome the changes occur sponta-
neously for all the molecules. Imagine a photoisomerization (such as that of az-
abenzene) in the solid state. If a single molecule in a crystal were to undergo the
change, such an excitation might cost a lot of energy, because there might not
be enough space to perform the trans to cis transition.22 When, however, a lot
of molecules undergo such a change in a concerted motion, the atomic collision
would not necessarily take place and the cost in energy would be much smaller
than the sum of all the single excitations.

An example of electronic collectivity may also be the electronic bistability ef-
fect expected to occur in a rigid donor–acceptor oligomer; (DA)N, composed of
suitable electron donors (D) and acceptors (A) at a proper DA distance and ori-
entation, Fig. 15.5.

15.11.1 SCALE SYMMETRY (RENORMALIZATION)

It turns out that different substances, when subject to phase transition, behave
in exactly the same way exhibiting therefore a universal behaviour.

Imagine a system of N identical equi-
distant spin magnetic moments located
on the z axis, each spin parallel or an-
tiparallel to the axis.23 The j-th spin
has two components (cf. p. 28) σj =
1	−1� Often the Hamiltonian H of a
system is approximated by taking into
account nearest-neighbour interactions
only (Ising model) in the following way
(the constants K	h	C fully determine
the Hamiltonian)

Ernst Ising (1900–1998), Ger-
man mathematician and physi-
cist. In 1939, after interroga-
tion by the gestapo in Berlin,
Ising emigrated to Luxem-
burg, and there in a German
labour camp he held out until
liberation by the Allies. From
1948 he became a professor
at Bradley University (USA).
His two-state chain model is
very often used in mathemat-
ical physics.

H=K
∑

j

σjσj+1 + h
∑

j

σj +C	 (15.1)

where the first term corresponds to dipole-dipole magnetic interactions like those
described on p. 655, the second term takes care of the interactions with an external
magnetic field (Zeeman effect, p. 659), and C is a constant.

22Some atoms would simply hit others, causing an enormous increase in energy resulting in an energy
barrier.
23The objects need not be spins, they may represent two possible orientations of the molecules, etc.
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number of unglued dominoes

number of transferred electrons

Fig. 15.5. Collective phenomena. (a) The domino principle. An energy cost corresponding to unglueing
and knocking down the dominoes. (b) Hypothetical electronic domino (or “mnemon” – an element of
molecular memory) composed of electron donors (D) and electron acceptors (A). In order to transfer
the first electron we have to pay energy �� The second electron transfer (when the first is already
transferred) needs less energy, because it is facilitated by the dipole created. The transfer of the third
and further electrons does not need any energy at all (the energy actually decreases). The hypothetical
electronic domino starts running (L.Z. Stolarczyk, L. Piela, Chem. Phys. 85 (1984) 451).

The partition function (which all the thermodynamic properties can be com-
puted from) is defined as:

Z(T)= 1
2N
∑

σ1

∑

σ2

� � �
∑

σN

exp
(

−H(K	h	C)
kBT

)

� (15.2)
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Each of the N sums in eq. (15.2) pertains to a single spin. A trivial observation
that the summation in eq. (15.2) can be carried out in (two) steps, leads to some-
thing extraordinary. We may first sum over every other object.24 Then, the spins of
the objects we have summed formally disappear from the formula, we have the
summation over spins of the remaining objects only. Such a procedure is called
decimation25 from a form of collective capital punishment in the regulations of the decimation

Roman legions (very unpleasant for every tenth legionary). As a result of the pro-
cedure, the Hamiltonian H is changed and now corresponds to the interaction of
the spins of the remaining objects. These spins, however, are “dressed” in the in-
teraction with the other spins, which have been killed in the decimation procedure.
What purpose may such a decimation serve? Well,

after this is done, the expression Z(T) from formula (15.2) will look similar
to that before the transformation (self-similarity.). Only the constants K→
K′	h→ h′	C→C ′ change.26

The two Hamiltonians are related by a self-similarity. The decimation may then self-similarity

be repeated again and again, leading to a trajectory in the space of the parame-
ters K	h	C . It turns out that a system undergoing a phase transition is located
on such a trajectory. By repeating the decimation, we may reach a fixed point (cf.
p. 858), i.e. further decimations do not change the parameters, the system attains
self-similarity on all scales. The fixed point may be common for a series of substances,
because the trajectories (each for a given substance) may converge to a common
fixed point. The substances may be different, may interact differently, may undergo
different phase transitions, but since they share the fixed point, some features of
their phase transitions are nevertheless identical.

This section links together several topics: attractors, self-similarity (renormal-
ization group theory), catastrophe theory.

15.11.2 FRACTALS

Self-similarity, highlighted by renormalization, represents the essence of fractals. Sierpiński
carpetLet us consider what is called the Sierpiński carpet (Fig. 15.6.a).

24Here we follow D.R. Nelson and M.E. Fisher, Ann. Phys. (N.Y.) 91 (1975) 226.
25Although in this situation the name does not fit quite so well.
26It is a matter of fifteen minutes to show (e.g., M. Fisher, Lecture Notes in Physics 186 (1983)), that

the new constants are expressed by the old ones as follows:

exp
(

4K′
) = cosh(2K + h) cosh(2K − h)

cosh2 h
	

exp
(

2h′
) = exp(2h)

cosh(2K + h)
cosh(2K − h) 	

exp(4C′) = exp(8C) cosh(2K + h) cosh(2K − h) cosh2 h�
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The self-similarity of this mathematical object (when we decide to use more and
more magnifying glasses) is evident.

Wacław Sierpiński (1882–1969),
Polish mathematician, from
1910 professor at the Jan
Casimir University in Lwów,
and from 1918 at the Univer-
sity of Warsaw. One of the
founders of the famous Pol-
ish school of mathematics.
His most important achieve-
ments are related to set the-
ory, number theory, theory of
real functions and topology

(there is the carpet in ques-
tion).

On the other hand, it is striking that
fractals of fantastic complexity and shape
may be constructed in an amazingly sim-
ple way by using the dynamics of the iter-
ation processes described on p. 858. Let
us take, for example, the following oper-
ation defined on the complex plane: let
us choose a complex number C , and then
let us carry out the iterations

zn+1 = z2
n +C

Benoit Mandelbrot, French
mathematician, born in 1924
in Warsaw, first worked at
the Centre National de la
Recherche Scientifique in
Paris, then at the Université
de Lille, from 1974 an em-
ployee of the IBM Research
Center in New York. When
playing with a computer, Man-
delbrot discovered the world
of fractals.

for n= 0	1	2	3	 � � � starting from z0 = 0�
The point C will be counted as belong-
ing to what is called the Mandelbrot set,
if the points zn do not exceed a circle of
radius 1. The points of the Mandelbrot
set will be denoted by black, the other
points will be coloured depending on
the velocity at which they flee the circle.
Could anybody ever think that we would
get the incredibly rich pattern shown in
Fig. 15.6.b?

15.12 CHEMICAL FEEDBACK – NON-LINEAR CHEMICAL
DYNAMICS

Could we construct chemical feedback? What for? Those who have ever seen feed-
back working know the answer27 – this is the very basis of control. Such control of
chemical concentrations is at the heart of how biological systems operate.

The first idea is to prepare such a system in which an increase in the concentra-
tion of species X triggers the process of its decreasing. The decreasing occurs by
replacing X by a very special substance Y, each molecule of which, when disinte-
grating, produces several X molecules. Thus we would have a scheme (X denotes
a large concentration of X, x denotes a small concentration of X; similarly for the
species Y): (X	 y)→ (x	Y)→ (X	 y) or oscillations of the concentration of X and Y
in time.28

27For example, an oven heats until the temperature exceeds an upper bound, then it switches off. When
the temperature reaches a lower bound, the oven switches itself on (therefore, we have temperature
oscillations).
28Similar to the temperature oscillations in the feedback of the oven.
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Fig. 15.6. Fractals. (a) Sierpiński carpet. (b) Mandelbrot set. Note that the incredibly complex (and
beautiful) set exhibits some features of self-similarity, e.g., the central “turtle” is repeated many times
in different scales and variations, as does the fantasy creature in the form of an S. On top of this, the
system resembles the complexity of the Universe: using more and more powerful magnifying glasses,
we encounter ever new elements that resemble (but not just copy) those we have already seen. From
J. Gleick, “Chaos”, Viking, New York, 1988, reproduced by permission of the author.



868 15. Information Processing – the Mission of Chemistry

15.12.1 BRUSSELATOR – DISSIPATIVE STRUCTURES

Brusselator without diffusion
Imagine we carry out a complex chemical reaction in flow conditions,29 i.e. the
reactants A and B are pumped with a constant speed into a long narrow tube reac-
tor, there is intensive stirring in the reactor, then the products flow out to the sink
(Fig. 15.7). After a while a steady state is established.30

After the A and B are supplied, the substances31 X and Y appear, which play the
role of catalysts, i.e. they participate in the reaction, but in total their amounts do
not change. To model such a situation let us assume the following chain of chemical
reactions:

A→ X
B+X→ Y+D

2X+Y→ 3X
X→ E

in total :
A+B+ 4X+Y→D+E+ 4X+Y

This chain of reactions satisfies our feedback postulates. In step 1 the concentra-
tion of X increases, in step 2 Y is produced at the expense of X, in step 3 substance
Y enhances the production of X (at the expense of itself, this is an autocatalyticautocatalysis

step), then again X transforms to Y (step 2), etc.
If we shut down the fluxes in and out, after a while a thermodynamic equilibrium

is attained with all the concentrations of the six substances (A, B, D, E, X, Y; their
concentrations will be denoted as A	B	D	E	X	Y , respectively) being constant

sink

stirring

Fig. 15.7. A flow reactor (a narrow tube – in order to make a 1D description possible) with stirring (no
space oscillations in the concentrations). The concentrations of A and B are kept constant at all times
(the corresponding fluxes are constant).

29Such reaction conditions are typical for industry.
30To be distinguished from the thermodynamic equilibrium state, where the system is isolated (no

energy or matter flows).
31Due to the chemical reactions running.
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in space (along the reactor) and time. On the other hand, when we fix the in and
out fluxes to be constant (but non-zero) for a long time, we force the system to
be in a steady state and as far from thermodynamic equilibrium as we wish. In
order to simplify the kinetic equations, let us assume the irreversibility of all the
reactions considered (as shown in the reaction equations above) and put all the
velocity constants equal to 1. This gives the kinetic equations for what is called the
Brusselator model (of the reactor) brusselator

dX
dt
=A− (B+ 1)X +X2Y	

(15.3)
dY
dt
= BX −X2Y�

These two equations, plus the initial concentrations of X and Y, totally deter-
mine the concentrations of all the species as functions of time (due to the stirring
there will be no dependence on position in the reaction tube).

Steady state

A steady state (at constant fluxes of A and B) means dX
dt = dY

dt = 0 and therefore
we easily obtain the corresponding steady-state concentrations Xs	Ys by solving
eq. (15.3)

0 =A− (B+ 1)Xs +X2
s Ys	

0 = BXs −X2
s Ys�

Please check that these equations are satisfied by

Xs =A	
Ys = B

A
�

Evolution of fluctuations from the steady state

Any system undergoes some spontaneous concentration fluctuations, or we
may perturb the system by injecting a small amount of X and/or Y. What
will happen to the stationary state found a while before, if such a fluctuation
happens?

Let us see. We have fluctuations x and y from the steady state

X (t) =Xs + x(t)	
(15.4)

Y (t) = Ys + y(t)�

What will happen next?
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After inserting (15.4) in eqs. (15.3) we obtain the equations describing how the
fluctuations evolve in time

dx
dt
= −(B+ 1)x+Ys

(

2Xsx+ x2)+ y(X2
s + 2xXs + x2)	

(15.5)
dy
dt
= Bx−Ys

(

2Xsx+ x2)− y(X2
s + 2xXs + x2)�

Since a mathematical theory for arbitrarily large fluctuations does not exist, we
will limit ourselves to small x and y . Then, all the quadratic terms of these fluctu-
ations can be neglected (linearization of (15.5)). We obtainlinearization

dx
dt
= −(B+ 1)x+Ys(2Xsx)+ yX2

s 	

(15.6)
dy
dt
= Bx−Ys(2Xsx)− yX2

s �

Let us assume fluctuations of the form32

x = x0 exp(ωt)	
(15.7)

y = y0 exp(ωt)

and represent particular solutions to eqs. (15.6) provided the proper values of ω,
x0 and y0 are chosen. After inserting (15.7) in eqs. (15.6) we obtain the following
set of equations for the unknowns ω, x0 and y0

ωx0 = (B− 1)x0 +A2y0	
(15.8)

ωy0 = −Bx0 −A2y0�

This represents a set of homogeneous linear equations with respect to x0 and
y0	 and this means we have to ensure that the determinant, composed of the co-
efficients multiplying the unknowns x0 and y0, vanishes (characteristic equation, cf.
secular equation, p. 202)

∣
∣
∣
∣

ω−B+ 1 −A2

B ω+A2

∣
∣
∣
∣
= 0�

This equation is satisfied by some special values of33 ω:

ω1	2 = T ±
√

T 2 − 4�
2

	 (15.9)

where

32Such a form allows for exponential growth (ω > 0), decaying (ω < 0) or staying constant (ω = 0),
as well as for periodic behaviour (Reω = 0	 Imω 	= 0), quasiperiodic growth (Reω > 0	 Imω 	= 0) or
decay (Reω< 0	 Imω 	= 0).
33They represent an analogue of the normal mode frequencies from Chapter 7.
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T = −(A2 −B+ 1
)

	 (15.10)

� =A2� (15.11)

Fluctuation stability analysis

Now it is time to pick the fruits of our hard work.
How the fluctuations depend on time is characterized by the roots ω1(t) and

ω2(t) of eq. (15.9), because x0 and y0 are nothing but some constant amplitudes
of the changes. We have the following possibilities (Fig. 15.8, Table 15.1.):

Fig. 15.8. Evolution types of fluctuations from the reaction steady state. The classification is based on
the numbers ω1 and ω2 of eq. (15.9). The individual figures correspond to the rows of Table 15.1. The
behaviour of the system (in the space of chemical concentrations) resembles sliding of a point or rolling
a ball over certain surfaces in a gravitational field directed downward:
(a) unstable node resembles sliding from the top of a mountain;
(b) stable node resembles moving inside a bowl-like shape;
(c) the unstable stellar node is similar to case (a), with a slightly different mathematical reason behind

it;
(d) similarly for the stable stellar node [resembles case (b)];
(e) saddle – the corresponding motion is similar to a ball rolling over a cavalry saddle (applicable for a

more general model than the one considered so far);
(f) stable focus – the motion resembles rolling a ball over the interior surface of a cone pointing

downward;
(g) unstable focus – a similar rolling but on the external surface of a cone that points up;
(h) centre marginal stability corresponds to a circular motion.
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Table 15.1. Fluctuation stability analysis, i.e. what happens if the concentrations undergo a fluctuation
from the steady state values. The analysis is based on the values of ω1 and ω2 from eq. (15.9); they may
have real (subscript r) as well as imaginary (subscript i) parts, hence: ωr	1	ωi	1	ωr	2	ωi	2

T � T 2 − 4� ωr	1 ωi	1 ωr	2 ωi	2 Stability

+ + + + 0 + 0 unstable node
− + + − 0 − 0 stable node
− + 0 − 0 − 0 stable stellar node
+ + 0 + 0 + 0 unstable stellar node
− + − − iω − −iω stable focus
+ + − + iω + −iω unstable focus
0 + − 0 iω 0 −iω centre marginal stability

• Both roots are real, which happens only if T 2 − 4� 	 0� Since � > 0, the two
roots are of the same sign (sign of T ). If T > 0	 then both roots are positive,
which means that the fluctuations x = x0 exp(ωt)	 y = y0 exp(ωt) increase over
time and the system will never return to the steady state (“unstable node”). Thus theunstable node

steady state represents a repeller of the concentrations X and Y.
• If, as in the previous case at T 2 − 4� 	 0, but this time T < 0	 then both roots

are negative, and this means that the fluctuations from the steady state will van-
ish (“stable node”). It looks as if we had in the steady state an attractor of thestable node

concentrations X and Y.
• Now let us take T 2− 4�= 0, which means that the two roots are equal (“degen-

eracy”). This case is similar to the two previous ones. If the two roots are positive
then the point is called the stable stellar node (attractor), if they are negative it isstable and

unstable stellar
nodes

called the unstable stellar node (repeller).
• If T 2 − 4� < 0, we have an interesting situation: both roots are complex con-

jugate ω1 = ωr + iωi	ω2 = ωr − iωi, or expω1	2t = expωrt exp(±iωit) =
expωr(cosωit ± i sinωit)� Note that ωr = T

2 � We have therefore three special
cases:
– T > 0� Because of expωrt we have, therefore, a monotonic increase in the

fluctuations, and at the same time because of cosωit ± i sinωit the two con-
centrations oscillate. Such a point is called the unstable focus (and representsstable and

unstable
focuses

a repeller).
– T < 0� In a similar way we obtain the stable focus, which means some damped

vanishing concentration oscillations (attractor).
– T = 0� In this case expω1	2t = exp(±iωit), i.e. we have the undamped oscilla-centre marginal

stability tions of X and Y about the stationary point Xs	Ys , which is called, in this case,
the centre marginal stability.

Qualitative change

Can we qualitatively change the behaviour of the reaction? Yes. It is sufficient
just to change the concentrations of A or B (i.e. to rotate the reactor taps). For
example, let us gradually change B. Then, from eqs. (15.10), it follows that the
key parameter T begins to change, which leads to an abrupt qualitative change in
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the behaviour (a catastrophe in the mathematical sense, p. 862). Such changes
may be of great importance, and as the control switch may serve to regulate the
concentrations of some substances in the reaction mixture.

Note that the reaction is autocatalytic, because in step 3 the species X catalyzes the
production of itself.34

Brusselator with diffusion

If the stirrer were removed from the reactor, eqs. (15.3) have to be modified by
adding diffusion terms

dX
dt
=A− (B+ 1)X +X2Y +DX ∂

2X

∂r2 	 (15.12)

dY
dt
= BX −X2Y +DY ∂

2Y

∂r2 � (15.13)

A stability analysis similar to that carried out a moment before results not only
in oscillations in time, but also in space, i.e. in the reaction tube there are waves of the
concentrations ofX and Y moving in space (dissipative structures). Now, look at the dissipative

structuresphoto of a zebra (Fig. 15.9) and at the bifurcation diagram in the logistic equation,
Fig. 15.4.

15.12.2 HYPERCYCLES

Let us imagine a system with a chain of consecutive chemical reactions. There
are a lot of such reaction chains around, it is difficult to single out an elementary
reaction without such a chain being involved. They end up with a final product and
everything stops. What would happen however, if at a given point of the reaction
chain, a substance X were created, the same as one of the reactants at a previous
stage of the reaction chain? The X would take control over its own fate, by the Le
Chatelier rule. In such a way, feedback would have been established, and instead
of the chain, we would have a catalytic cycle. A system with feedback may adapt to
changing external conditions, reaching a steady or oscillatory state. Moreover, in
our system a number of such independent cycles may be present. However, when
two of them share a common reactant X, both cycles would begin to cooperate,
usually exhibiting a very complicated stability/instability pattern or an oscillatory
character. We may think of coupling many such cycles in a hypercycle, etc. hypercycle

Cooperating hypercycles based on multilevel supramolecular structures could
behave in an extremely complex way when subject to variable fluxes of energy and
matter.35 No wonder, then, that a single photon produced by the prey hidden in
the dark and absorbed by the retinal in the lynx’s eye may trigger an enormous

34If autocatalysis were absent, our goal, i.e. concentration oscillations (dissipative structures), would
not be achieved.
35Note that similar hypercycles function in economics. . .
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Fig. 15.9. (a) Such an animal “should not exist”. Indeed, how did the molecules know that they have to
make a beautiful pattern. I looked many times on zebras, but only recently I was struck by the observa-
tion that what I see on the zebra’s skin is described by the logistic equation. The skin on the zebra’s neck
exhibits quasiperiodic oscillations of the black and white colour (period 2), in the middle of the zebra’s
body we have a period doubling (period 4), the zebra’s back has period 8. Fig. (b) shows the waves of
the chemical information (concentration oscillations in space and time) in the Belousov–Zhabotinski
reaction from several sources in space. A “freezing” (for any reason) of the chemical waves leads to
a striking similarity with the zebra’s skin, from A. Babloyantz, “Molecules, Dynamics and Life”, Wi-
ley-Interscience Publ., New York, 1986, reproduced with permission from John Wiley and Sons, Inc.
Fig. (c) shows similar waves of an epidemic in a rather immobile society. The epidemic broke out in
centre A. Those who have contact with the sick person get sick, but after some time they regain their
health, and for some time become immune. After the immune period is over these people get sick again,
because there are a lot of microbes around. This is how the epidemic waves may propagate.

variety of hunting behaviours. Or, maybe from another domain: a single glimpse
of a girl may change the fates of many people,36 and sometimes the fate of the
world. This is the retinal in the eye hit by the photon of a certain energy changes
its conformation from cis to trans. This triggers a cascade of further processes,
which end up as a nerve impulse travelling to the brain, and it is over.

36Well, think of a husband, children, grandchildren, etc.
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CHEMICAL INFORMATION PROCESSING

15.13 FUNCTIONS AND THEIR SPACE-TIME
ORGANIZATION

Using multi-level supramolecular architectures we may tailor new materials ex-
hibiting desired properties, e.g., adapting themselves to changes in the neighbour-
hood (“smart materials”). Such materials have a function to perform, i.e. an action
in time like ligand binding and/or releasing, transport of a ligand, an electron, a
photon.37

A molecule may perform several functions. Sometimes these functions may be
coupled, giving functional cooperation. The cooperation is most interesting when
the system is far from thermodynamic equilibrium, and the equilibrium is most
important when it is complex. In such a case the energy and matter fluxes result in
structures with unique features.

Biology teaches us that an unbelievable effect is possible: molecules may spon-
taneously form some large aggregates with very complex dynamics and the whole
system searches for energy-rich substances to keep itself running. However, one
question evades answer: what is the goal of the system?

The molecular functions of very many molecules may be coupled in a complex
space-time relationship on many time and space scales involving enormous trans-
port problems at huge distances of the size of our body, engaging many structural
levels, at the upper level the internal organs (heart, liver, etc.), which themselves
have to cooperate38 by exchanging information.

Chemists of the future will deal with molecular functions and their interactions.
The achievements of today, such as molecular switches, molecular wires, etc. rep-
resent just simple elements of the big machinery of tomorrow.

15.14 THE MEASURE OF INFORMATION

The TV News service presents a series of information items each evening. What
kind of selection criteria are used by the TV managers? One of possible answers is
that, for a given time period, they maximize the amount information given. A par-
ticular news bulletin contains a large amount of information, if it does not repre-
sent trivial common knowledge, but instead reports some unexpected facts. Claude
Shannon defined the amount of information in a news bulletin as

I =− log2p	 (15.14)

37For example, a molecular antenna on one side of the molecule absorbs a photon, another antenna
at the opposite end of the molecule emits another photon.
38This recalls the renormalization group or self-similarity problem in mathematics and physics.
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Claude Elwood Shannon
(1916–2001), American math-
ematician, professor at the
Massachusetts Institute of
Technology, his professional
life was associated with the
Bell Laboratories. His idea,
now so obvious, that informa-
tion may be transmitted as a
sequence of “0” and “1” was
shocking in 1948. It was said
that Shannon used to under-
stand problems ‘in zero time’.

where p stands for the probability of
the event the information reports. How
much information is contained in the
news that in a single trial coin came
down tails? Well, it is I = − log2

1
2 = 1

bit. The news “there is air in Paris” is of
no use in a TV news service,39 because
in this case I =− log2 1= 0�

Claude Shannon introduced the no-
tion of the average information associ-
ated with all possible N results of an
event in the usual way

H =
N
∑

i=1

piIi =−
N
∑

i=1

pi log2pi	 (15.15)

where H is called the entropy of information, because a similar formula works ininformation
entropy thermodynamics for entropy.

The quantity H (a measure of our ignorance) is largest, if all pi are equal.

At a given instant we estimate the probabilities of all possible results of an event
(we compute Ho), then reliable information arrives and the estimation changes
(we compute the information entropy in the new situation Hf ). Then, according
to Shannon the measure of the information received is

I =Ho −Hf � (15.16)

Example 1. Information flow in transcription. The sequence of three DNA bases
(there are four bases possible: A, T, G, C), or a codon, codes for a single aminocodon

acid (there are 20 possible amino acids) in protein. Why three? Maybe three is too
many? Let us see, what the problem looks like from the point of view of informa-
tion flow.

A single codon carries the following information (in bits)

Icodon3 =− log2

(
1
4
· 1

4
· 1

4

)

= 6	

39Now we know why the everyday TV news is full of thefts, catastrophes and unbridled crimes. . .
Although it apparently looks upsetting, in fact it represents an optimistic signal: this is just incredibly
rare.
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while a single amino acid in a protein

Iaa =− log2

(
1

20

)

= 4�23�

Thus, the codon information is sufficient to choose a particular amino acid from
20 possibles.

If nature designed the two-base codons, then such a codon would contain only
Icodon2 =− log2(

1
4 · 1

4)= 4 bits, which would be insufficient to code the amino acid.
Thus, the protein coding that uses the information from the DNA sequence,

takes place with the information excess of 6− 4�23= 1�77 bits per amino acid.

15.15 THE MISSION OF CHEMISTRY

There is an impression that chemistry in biology is only a kind of substitute, a pre-
text, no more than a material carrier of the mission of the whole organism. Text-
books of biochemistry do not say much about chemistry, they talk about molecular
functions to perform, in a sense about metachemistry. A particular molecule seems
not to be so important. What counts is its function. A good example are enzymes.
One type of enzyme may perform the same or similar functions in many different
organisms (from fungi to man). The function is the same, but the composition of
the enzyme changes from species to species: two species may differ by as much
as 70% of the amino acids. However, those amino acids that are crucial for the
enzyme function are preserved in all species.

We may perceive chemistry as a potential medium for information processing.
This unbelievable chemical task would be collecting, transporting, changing, dis-
patching and transferring of information.

Chemistry, as we develop it, is far from such a masterpiece. What we are doing
currently might be compared to chemical research by a Martian with a beauti-
fully edited “Auguries of Innocence” by William Blake. The little green guy would
perform a chemical analysis of the paper (he probably would even make a whole
branch of science of that), examine the chemical composition of the printing dye;
with other Martian Professors he would make some crazy hypotheses on the pos-
sible source of the leather cover, list the 26 different black signs as well as their
perpendicular and horizontal clusters, analyze their frequencies, etc. He would,
however, be very far from the information the book contains, including the boring
matrix of black marks:

To see a world in a grain of sand
And heaven in a wild flower
Hold infinity in the palm of your hand
And eternity in an hour

and most importantly he could not even imagine his heart40 beating any faster

40If any. . .



878 15. Information Processing – the Mission of Chemistry

after reading this passage, because of thousands of associations he could never have
had. . . We are close to what the Martian Professor would do. We have wonderful
matter in our hands from which we could make chemical poems, but so far we are
able to do only very little.

Molecules could play much more demanding roles than those, we have foreseen
for them: they can process information. The first achievement in this direction came
from Leonard Adleman – a mathematician.

15.16 MOLECULAR COMPUTERS BASED ON SYNTHON
INTERACTIONS

Computers have changed human civilization. Their speed doubles every year or
so, but the expectations are even greater. A possible solution is parallel process-
ing, or making lots of computations at the same time, another is miniaturization.
As will be seen in a moment, both these possibilities could be offered by mole-
cular computers, in which the elementary devices would be the individual mole-
cules chemists work with all the time. This stage of technology is not yet achieved.
The highly elaborated silicon lithographic technology makes it possible to create

Leonard M. Adleman (b. 1945),
American mathematician, pro-
fessor of computer science
and of molecular biology at
the University of California,
Los Angeles. As a young boy
he dreamed of becoming a
chemist, then a medical doc-
tor. These dreams led him to
the discovery described here.

electronic devices of size of the order of
1000 Å. Chemists would be able to go
down to the hundreds or even tens of Å.
Besides, the new technology would be
based on self-organization (supramole-
cular chemistry) and self-assembling. In
1 cm3 we could store the information
of a huge number of todays CD-ROMs.
People thought a computer had to have
the form of a box with metallic and non-

metallic tools inside, as it is now. However, . . .
In 1994 mathematician Leonard M. Adleman41 began his experiments in one

of the American genetics labs, while learning the biological stuff in the evenings.polymerase

Once, reading in bed Watson’s textbook “The Molecular Biology of the Gene”, he
recognized that the features of the polymerase molecule interacting with the DNA
strand described in the textbook perfectly match the features of what is called
Turing machine, or, an abstract representation of a computing device, made just be-Turing machine

fore the Second World War by Alan Turing.
Therefore, it was certain that the polymerase and the DNA (and certainly some

other molecules) could be used as computers. If we think about it now, the com-
puter in our head is more similar to excusez le mot water, than to a box with hard
disks, etc. The achievement of Adleman was that he was able to translate a known
and important mathematical problem into the language of laboratory recipes, and
then using a chemical procedure he was able to solve the mathematical prob-
lem.
41L. Adleman, Science 266 (1994) 1021.
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Alan Mathison Turing (1912–1954), British
mathematical genius, in a paper in Proc. Lon-
don Math. Soc. 42 (1937) 230), defined a sim-
ple device (known now as the Turing machine).
The machine consists of a read/write head that
scans a 1D tape divided into squares, each
of which contains a “0” or “1”. The behaviour
of the machine is completely characterized by
the current state of the machine, the content
of the square it is just reading, and a table of
instructions. Such a theoretical concept was of
importance in considering the feasibility of any
program coded on the tape. During the Second
World War Turing continued Polish achieve-
ments by decoding further versions of the Ger-
man Enigma code at Bletchley Park, the British
wartime cryptanalytic headquarter. He was re-

membered for his eccentric habits. People saw
him riding his bicycle with a gas mask on (he
claimed it relieved his allergies). Alan Turing
was found dead in his bed with a half eaten
poisoned apple.

Fig. 15.10. A graph of airplane flights. Is the graph of the Hamilton type? This was a question for the
molecular computer. (a) The graph from the Adleman’s experiment. (b) A simplified graph described
in this book.

Fig. 15.10 shows the original problem of Adleman: a graph with 14 airplane
flights involving seven cities.

The task is called the travelling salesman problem, notorious in mathematics as travelling
salesman
problem

extremely difficult.42 The salesman begins his journey from the city START and
wants to go to the city GOAL, visiting every other city precisely once. This is fea-
sible only for some flight patterns. Those graphs for which it is feasible are called
the Hamilton graphs. When the number of cities is small, such a problem may be Hamilton graphs

quite effectively solved by the computer in our head. For seven cities it takes on
average 56 s, as stated by Adleman, for a little larger number we need a desk com-
puter, but for a hundred cities all the computers of the world would be unable to
provide the answer. But, . . . a molecular computer would have the answer within a
second.

42The problem belongs to what is called NP-hard (NP from non-polynomial), in which the difficulties
increase faster than any polynomial with the size of the problem.
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William Rowan Hamilton (1805–1865) was a
Astronomer Royal in Ireland. At the age of
17 he found an error in the famous “Celes-
tial Mechanics” by Laplace. This drew the at-
tention of scientists and was the beginning of
the Hamilton’s scientific career. In the present
book his name is repeated many times (be-
cause of Hamiltonian).

How does a molecular computer work?

Let us recall two important examples of complementary synthons: guanine and
cytosine (GC) and adenine with tymine, see p. 751.

Let us repeat Adleman’s algorithm for a much simpler graph (Fig. 15.10.b).
What Adleman did was the following.

1. He assigned for every city some particular piece of DNA (sequence) composed
of eight nucleic bases:

City A A C T T G C A G
City B T C G G A C T G
City C G G C T A T G T
City D C C G A G C A A

2. Then to each existing flight X→Y, another eight-base DNA sequence was as-
signed: composed of the second half of the sequence of X and the first part of
the sequence of Y:

Flight A→B G C A G T C G G
Flight A→D G C A G C C G A
Flight B→C A C T G G G C T
Flight B→D A C T G C C G A
Flight B→A A C T G A C T T
Flight C→D A T G T C C G A

3. Then, Adleman ordered the synthesis of the DNA sequences of the flights and
the DNA sequences complementary to the cities, i.e.

co-City A T G A A C G T C
co-City B A G C C T G A C
co-City C C C G A T A C A
co-City D G G C T C G T T

4. All these substances are to be mixed together, dissolved in water, add a bit of
salt and an enzyme called ligase.43

43To be as effective as Nature, we want to have conditions similar to those in living cells.
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How to read the solution

What happened in the test tube? First of all matching and pairing of the corre-
sponding synthons took place. For example, the DNA strand that codes the AB-
flight (i.e. GCAGTCGG) found in the solution the complementary synthon of city
B (i.e. the co-City AGCCTGAC) and because of the molecular recognition mech-
anism made a strong intermolecular complex:

G C A G T C G G
���

���
���

���
A G C C T G A C

where the upper part is flights, and the lower part is co-Cities. Note that the flights
are the only feasible ones, because only feasible flights’ DNA sequences were syn-
thesized. The role of a co-City’s DNA is to provide the information that there is
the possibility to land and take-off in this particular city.

In the example just given, the complex will also find the synthon that corre-
sponds to flight B→ C, i.e. ACTGGGCT, and we obtain a more extended strand

G C A G T C G G |A C T G G G C T
���

���
���

���
���

���
���

���
A G C C T G A C

In this way from the upper part44 of the intermolecular complexes we can read
a particular itinerary. The ligase was needed, because this enzyme binds the loose
ends of the DNA strands (thus removing the perpendicular separators above).
Therefore, every possible itinerary is represented by a DNA oligomer. If the graph were
Hamiltonian, then in the solution there would be the DNA molecule composed of 24
nucleotides that codes the proper itinerary:

GCAGTCGGACTGGGCTATGTCCGA.

Eliminating wrong trajectories. . .

Practically, independent of how large N is, after a second the solution to the travelling
salesman problem is ready. The only problem now is to be able to read the solution.
This will currently take much more than a second, but in principle only depends
linearly on the number of cities.

To get the solution we use three techniques: polymerase chain reaction (PCR),
electrophoresis and separation through affinity. The machinery behind all this is
recognition of synthons and co-synthons (known in biochemistry as hybridization,
it has nothing to do with hybridization described in Chapter 8).

44From the lower part as well.
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The itineraries coded by the hybridization are mostly wrong. One of the reasons
is that they do not start from the START CITY (A) and do not end up at the GOAL
CITY (D). Using the PCR technique45 it is possible to increase the concentration
of only those itineraries, which start from START and end at GOAL to such an
extent that all other concentrations may be treated as marginal.

Still there are a lot of wrong itineraries. First of all there are a lot of itineraries
that are too long or too short. This problem may be fixed by electrophoresis,46

which allows the separation of DNA strands of a given length, in our case the 24-
city itineraries. In this way we have itineraries starting from START and ending at
GOAL and having 24 cities. They can be copied again by PCR.

Now we have to eliminate more wrong itineraries: those which repeat some
transit cities and leave others unvisited. This is done by the affinity separation
method.47 First, the co-synthon for the first transit city (in our case: C) on the
list of transit cities (in our case: C and D) is prepared and attached to the surface
of iron balls. The iron balls are then added to the solution and after allowing a
second to bind to those itineraries that contain the city, they are picked out using
a magnet. The balls are then placed in another test tube, the attached “itineraries”
released from the surface of the iron balls and the empty iron balls are separated.
Thus, we have in a test tube the “itineraries” that begin and end correctly, have the
correct number of 24 nucleotides and certainly go through the first transit city (C)
on our list of transit cities.

The process is repeated for the second etc. transit cities. If, in the last test tube,
there is an “itinerary”, the answer to the salesman problem is positive and the cor-
responding “itinerary” is identified (after copying by PCR and sequencing). Oth-
erwise the answer is negative.

Thus, a mathematical problem was solved using a kind of molecular biocom-
puter. From the information processing point of view, this was possible because
parallel processing was under way – a lot of DNA oligomers interacted with them-
selves at the same time. The number of such molecular processors was of the order
of 1023. This number is so huge, that such a biocomputer is able to check (virtually)
all possibilities and to find the solution.

45The PCR technique is able to copy a chosen DNA sequence and to grow its population even from a
single molecule to a high concentration by using the repeated action of an enzyme, a polymerase.

The reaction was invented by Kary B. Mullis (b. 1944), American technical chemist in an industrial
company. In 1983 Mullis was driving to his favourite California surfing area, when the idea of a DNA
copying molecular machine struck him suddenly. He stopped the car and made a note of the reaction.
His company gave him a prize of $10 000 and sold the patent to another company for $300 000 000.
In 1993 Kary Mullis received the Nobel Prize in chemistry “for his invention of the polymerase chain
reaction (PCTR) method”.
46Electrophoresis is able to physically separate DNA sequences according to their length. It is based

on the electrolysis of a gel. Since DNA is an anion, it will travel through the gel to anode. The shorter
the molecule, the longer distance it will reach. The DNA molecules of a given length can then be picked
out by cutting the particular piece of gel and then they can be multiplied by PCR.
47Affinity separation method makes possible to separate particular sequences from a mixture of DNA

sequences. This is achieved by providing its co-synthon attached to iron spheres. The particular se-
quence we are looking for binds to the surface of the iron ball, which may afterwards be separated from
the solution using a magnet.
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Summary

Chemistry has attained such a stage that soon a new quality can be achieved:

• chemistry entered the second half of the twentieth century with detailed knowledge of
the main building blocks of molecular structures: atoms, chemical bonds, bond angles
and intermolecular interactions;

• the accumulated knowledge now serves to build more and more complex molecular ar-
chitectures;

• in these architectures we may use chemical bonds (with energy of the order of 50–
150 kcal/mol) to build the molecules as well as intermolecular interactions (with energy
of about 1–20 kcal/mol) to construct supramolecular structures from them;

• in supramolecular chemistry we operate with synthons, i.e. some special systems of func-
tional groups that fit together perfectly when rigid (“key-lock” mechanism) or flexible
(“hand-glove” mechanism), giving rise to molecular recognition;

• the interaction leads to a molecular complex that facilitates further evolution of the sys-
tem: either by a chemical reaction going on selectively at such a configuration of the
molecules, or by further self-organization due to next-step molecular recognition of the
newly formed synthons;

• this may result in forming complex systems of multilevel architecture, each level charac-
terized by its own stability;

• the self-organization may take place with significant interaction non-additivity effects
(“non-linearity” in mathematical terms) that may lead to cooperation in forming the mul-
tilevel structure;

• high cooperation may lead to spontaneous transformation of the structure, called collec-
tive transformation, to another state (“domino effect”);

• the self-organized structures may interact with other such structures (chemical reactions
or association);

• in particular they may create the autocatalytic cycle which represents chemical feed back;
• such cycles may couple in a higher-order cycle forming hypercycles;
• a dynamic system with hypercycles, when perturbed by an external stimulus, reacts in a

complex and non-linear way;
• one of the possibilities in non-equilibrium conditions are the limit cycles, which lead to

dissipative structures, which may exhibit periodicity (in space and time) as well as chaotic
behaviour;

• some dynamic systems may represent molecular libraries with the proportions of species
strongly depending on external conditions (cf. the immune system);

• molecules may act (e.g., transfer photon, electron, proton, ion, conformational change,
etc.) thus performing a function;

• several functions may cooperate exhibiting a space/time organization of the individual
functions;

• some molecules may serve for effective information processing;
• information processing seems to represent the ultimate goal of the future chemistry.

Main concepts, new terms

complex systems (p. 852)
self-organization (p. 853)
cooperativity (p. 854)
combinatorial chemistry (p. 855)

molecular libraries (p. 855)
non-linearity (p. 857)
attractors (p. 858)
repellers (p. 858)
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fixed point (p. 858)
limit cycle (p. 858)
logistic equation (p. 860)
chaos (p. 860)
bifurcation (p. 861)
catastrophe (p. 862)
domino (p. 863)
renormalization (p. 863)
collectivity (p. 863)
decimation (p. 865)
self-similarity (p. 865)
fractals (p. 865)
feed-back (p. 866)
autocatalysis (p. 868)
brusselator (p. 868)
nodes (stable and unstable, p. 872)
saddle point of reaction (p. 872)

stellar nodes (stable and unstable, p. 872)
focus (stable and unstable, p. 872)
reaction centre (p. 872)
dissipative structures (p. 873)
hypercycles (p. 873)
molecular function (p. 875)
information (p. 876)
information entropy (p. 876)
DNA computing (p. 878)
Turing machine (p. 878)
Hamilton graph (p. 879)
travelling salesman problem (p. 879)
NP-hard problem (p. 879)
DNA hybridization (p. 881)
PCR (p. 882)
separation by affinity (p. 882)

From the research front

To say that organic chemists are able to synthesize almost any molecule one may think of
is certainly an exaggeration, but the statement seems sometimes to be very close to real-
ity. Chemists were able to synthesize the five-olympic-ring molecule, the three interlocked
Borromean rings, the football made of carbon atoms, the “cuban” – a hydrocarbon cube,
“basketan” – in the form of an apple basket, the rotaxans shown in Fig. 13.2, a molecular
in the form of Möbius band, etc. Now we may ask why the enormous synthetic effort was
undertaken and what these molecules were synthesized for. Well, the answer seems to be
that contemporary chemists are fascinated by their art of making complex and yet perfect
and beautiful molecular objects. The main goal apparently was to demonstrate the master-
ship of modern chemistry. However, high symmetry does not necessarily means a particular
usefulness. The synthetic targets should be identified by the careful planning of molecular
functions, rather than molecular beauty.

Ad futurum. . .

We may expect that more and more often chemical research will focus on molecular func-
tion, and (later) on the space/time cooperation of the functions. Research projects will be
formulated in a way that will highlight the role of the molecular function, and will consist of
several (interrelated) steps:

• first, the technical goal will be defined,
• the molecular functions will be identified which will make this goal achievable,
• theoreticians will design and test in computers (“in silico”) the molecules which will ex-

hibit the above functions,
• synthetic chemists will synthesize the molecules designed,
• physicochemists will check whether the molecular functions are there,
• finally, the material will be checked against the technical goal.

We will be able to produce “smart” materials which will respond to external conditions
in a previously designed, complex, yet we hope, predictable way. The materials that will
be created this way will not resemble the materials of today, which are mostly carrying out
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one primitive function. The drugs of today are usually quite simple molecules, which enter
the extremely complex system of our body. The drugs of tomorrow will involve much larger
molecules (like proteins). Will we be clever enough to avoid unpredictable interactions with
our body? What in principle do we want to achieve?

What will the motivation of our work be? Will we take into account the psychological
needs of the human being, equilibrium of their minds?

What will the future of the human family be, which was able in the past to create such
wonderful music, Chartres cathedral, breathtaking painting, moving poetry, abstract math-
ematics, proudly landed on other celestial bodies? In the past nothing could stop their cu-
riosity and ingeniousness, they were able to resist the harshest conditions on their planet.
Humans have reached nowadays the technical level that probably will assure avoiding the
next glaciation,48 maybe allow a small asteroid be pushed off the target by nuclear war-
heads if it were aimed dangerously at the Earth, also . . . erasing in nuclear war most of its
own population together with the wonders of our civilization.

What is the goal of these beings and what will be the final limit of their existence? What
are they aiming at? Do we want to know the smell of fresh bread, to be charmed by Chartres
cathedral with all it has in it, to use our knowledge to cherish the friendship of the human
family, or will it be sufficient to pack a newborn into a personal container and make com-
puters inject substances that will make his neural system as happy as in Seventh Heaven?

Which of the goals we do want, as chemists, to participate in?

Additional literature

M. Eigen, P. Schuster, “The Hypercycle. A Principle of Natural Organization”, Springer
Verlag, Berlin, 1979.

An excellent, comprehensible book, written by the leading specialists in the domain of
molecular evolution.

I. Prigogine, “From Being to Becoming. Time and Complexity in Physical Sciences”, Free-
man, San Francisco, 1980.

A book written by the most prominent specialist in the field.

A. Babloyantz, “Molecules, Dynamics and Life”, Wiley, New York, 1987.
The author describes the scientific achievements of Prigogine and his group, which she

participated in. An excellent, competent book, the most comprehensible among the first
three recommended books.

J.-M. Lehn, “Supramolecular chemistry: Concept and Perspectives”, VCH, 1995.
A vision of supramolecular chemistry given by one of its founders.

Questions

1. Decimation means:
a) bifurcation; b) renormalization of the Hamiltonian and reaching self-similarity;
c) scaling all the distances by a factor of ten; d) taking explicitly every tenth electron
in a wave function.

2. A dissipative structure in a complex system:
a) appears in a system far from equilibrium;
b) means the largest molecular complex in the system;

48Well, it is expected within the next 500 years.
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c) is independent of external conditions;
d) is the least stable structure appearing in equilibrium conditions.

3. A molecular library composed of the associates of the molecules A and B represents:
a) a mixture of the complexes AB; b) a mixture of all possible complexes of the A and
B species; c) the complete physicochemical characterization of A and B; d) a mixture of
all AnBn.

4. The self-organization of molecules is the spontaneous formation of:
a) molecular complexes only in equilibrium conditions; b) a structure with minimum
entropy; c) a structure with maximum entropy; d) complexes of molecules with synthons.

5. In the iterative solution of the logistic equation xn+1 =Kxn(1− xn):
a) there is a fixed point at any K; b) at any attempt to increase of K we obtain a bifur-
cation; c) some values of K lead to chaotic behaviour; d) at no value of K do we have
extinction of the population.

6. In the Brusselator without diffusion the stable focus means:
a) monotonic decreasing of the fluctuations x and y; b) dumped oscillations of the fluc-
tuations x and y; c) non-vanishing oscillations of the fluctuations x and y; d) a limit
circle.

7. In the thermodynamic equilibrium of an isolated system:
a) the entropy increases; b) we may have a non-zero gradient of temperature; c) we may
have a non-zero gradient of concentration; d) no dissipative structures are possible.

8. The bifurcation point for the number of solutions of x2 −px+ 2= 0 corresponds to:
a)p= 2

√
2; b) p= 1; c) p=−1; d) p=√2.

9. An event has only four possible outputs with a priori probabilities p1 = p2 = p3 = p4 =
1
4 � Reliable information comes that in fact the probabilities are different: p1 = 1

2 , p2 =
1
4 	 p3 = 1

8 , p4 = 1
8 � The information had I1 bits and I1 is equal to:

a) 1 bit; b) 0�5 bit; c) 2 bits; d) 0.25 bit.

10. The situation corresponds to Question 9, but a second piece of reliable information
coming says that the situation has changed once more and now: p1 = 1

2 , p2 = 0	 p3 =
0, p4 = 1

2 � The second piece of information had I2 bits. We pay for information in
proportion to its quantity. Therefore, for the second piece of information we have to
pay:
a) the same as for the first piece of information; b) twice as much as for the first piece of
information; c) half of the prize for the first piece of information; d) three times more
than for the first piece of information.

Answers

1b, 2a, 3b, 4d, 5c, 6b, 7d, 8a, 9d, 10d
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A. A REMINDER: MATRICES AND
DETERMINANTS

1 MATRICES

Definition

A n × m matrix A represents a rectangular table of numbers1 Aij standing like
soldiers in n perfect rows and m columns (index i tells us in which row, and index
j tells in which column the number Aij is located)

A=

⎛

⎜
⎜
⎝

A11 A12 � � � A1m
A21 A22 � � � A2m
� � � � � � � � � � � �
An1 An2 � � � Anm

⎞

⎟
⎟
⎠
�

Such a notation allows us to operate whole matrices (like troops), instead of
specifying what happens to each number (“soldier”) separately. If matrices were
not invented, the equations would be very long and clumsy, instead they are short
and clear.

Addition

Two matrices A and Bmay be added if their dimensions n andmmatch. The result
is matrix C=A+B (of the same dimensions as A and B), where each element of
C is the sum of the corresponding elements of A and B:

Cij =Aij +Bij	
e.g.,

(

1 −1
−3 4

)

+
(

2 1
−2 3

)

=
(

3 0
−5 7

)

�

Multiplying by a number

A matrix may be multiplied by a number by multiplying every element of the matrix

by this number: cA=B with Bij = cAij� For example, 2
(

1 −1
3 −2

)

=
(

2 −2
6 −4

)

�

1If instead of numbers a matrix contained functions, everything below would remain valid (at partic-
ular values of the variables instead of functions we would have their values).
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Matrix product

The product of two matrices A and B is matrix C denoted by C=AB, its elements
are calculated using elements of A and B:

Cij =
N
∑

k=1

AikBkj	

where the number of columns (N) of matrix A has to be equal to the number of
rows of matrix B. The resulting matrix C has the number of rows equal to the
number of rows of A and the number of columns equal to the number of columns
of B. Let us see how it works in an example. The product AB=C:

⎛

⎝

A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34

⎞

⎠

⎛

⎜
⎜
⎝

B11 B12 B13 B14 B15 B16 B17
B21 B22 B23 B24 B25 B26 B27
B31 B32 B33 B34 B35 B36 B37
B41 B42 B43 B44 B45 B46 B47

⎞

⎟
⎟
⎠

=
⎛

⎝

C11 C12 C13 C14 C15 C16 C17
C21 C22 C23 C24 C25 C26 C27
C31 C32 C33 C34 C35 C36 C37

⎞

⎠ 	

e.g., C23 is simply the dot product of two vectors or in matrix notation

C23 =
(

A21 A22 A23 A24
) ·

⎛

⎜
⎜
⎝

B13
B23
B33
B43

⎞

⎟
⎟
⎠

=A21B13 +A22B23 +A23B33 +A24B43�

Some remarks:

• The result of matrix multiplication depends in general on whether we have to
multiply AB or BA, i.e. AB 	=BA.2

• Matrix multiplication satisfies the relation (easy to check): A(BC)= (AB)C, i.e.
the parentheses do not count and we can simply write: ABC.

• Often we will have multiplication of a square matrix A by a matrix B composed
of one column. Then, using the rule of matrix multiplication, we obtain matrix
C in the form of a single column (with the number of elements identical to the
dimension of A):

⎛

⎜
⎜
⎝

A11 A12 � � � A1m
A21 A22 � � � A2m
� � � � � � � � � � � �
Am1 Am2 � � � Amm

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

B1
B2
� � �
Bm

⎞

⎟
⎟
⎠
=

⎛

⎜
⎜
⎝

C1
C2
� � �
Cm

⎞

⎟
⎟
⎠
�

2Although it may happen, that AB=BA.
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Transposed matrix

For a given matrix A we may define the transposed matrix AT defined as (AT )ij =
Aji�

For example,

if A=
(

1 2
−2 3

)

	 then AT =
(

1 −2
2 3

)

�

If matrix A = BC, then AT = CTBT , i.e. the order of multiplication is reversed.
Indeed, (CTBT )ij =∑k (C

T )ik (B
T )kj =

∑

k Cki Bjk =
∑

k BjkCki = (BC)ji =
(AT )ij .

Inverse matrix

For some square matrices A (which will be called non-singular) we can define
what is called the inverse matrix denoted as A−1, which has the following prop-
erty: AA−1 =A−1A= 1, where 1 stands for the unit matrix:

1=

⎛

⎜
⎜
⎝

1 0 � � � 0
0 1 � � � 0
� � � � � � � � � � � �
0 0 � � � 1

⎞

⎟
⎟
⎠
�

For example, for matrix A=
(

2 0
0 3

)

we can find A−1 =
( 1

2 0
0 1

3

)

�

For square matrices A1= 1A=A.
If we cannot find A−1 (because it does not exist), A is called a singular matrix. singular matrix

For example, matrix A =
(

1 1
1 1

)

is singular. The inverse matrix for A = BC is

A−1 =C−1B−1. Indeed, AA−1 =BCC−1B−1 =B1B−1 =BB−1 = 1.

Adjoint, Hermitian, symmetric matrices

If matrix A is transposed and in addition all its elements are changed to their com-
plex conjugate, we obtain the adjoint matrix denoted as A† = (AT )∗ = (A∗)T � If,
for a square matrix, we have A† =A, A is called Hermitian. If A is real, then, of
course, A† =AT . If, in addition, for a real square matrix AT =A, then A is called
symmetric. Examples:

A=
(

1+ i 3− 2i
2+ i 3− i

)

; AT =
(

1+ i 2+ i
3− 2i 3− i

)

; A† =
(

1− i 2− i
3+ 2i 3+ i

)

�

Matrix A =
(

1 −i
i −2

)

is an example of a Hermitian matrix, because A† = A.

Matrix A=
(

1 −5
−5 −2

)

is a symmetric matrix.
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Unitary and orthogonal matrices

If for a square matrix A we have A† = A−1, A is called a unitary matrix. If B is
Hermitian, the matrix exp(iB) is unitary, where we define exp(iB) by using the
Taylor expansion: exp(iB)= 1+ iB+ 1

2!(iB)
2+· · · . Indeed, [exp(iB)]† = 1− iBT +

1
2!(−iBT )2 + · · · = 1 − iB + 1

2!(−iB)2 + · · · = exp(−iB), while exp(iB)exp(−iB)
= 1.

If A is a real unitary matrix A† = AT , it is called orthogonal with the property
AT =A−1. For example, if

A=
(

cosθ sinθ
− sinθ cosθ

)

	 then AT =
(

cosθ − sinθ
sinθ cosθ

)

=A−1�

Indeed,

AAT =
(

cosθ sinθ
− sinθ cosθ

)(

cosθ − sinθ
sinθ cosθ

)

=
(

1 0
0 1

)

�

2 DETERMINANTS
Definition

For any square matrix A= {Aij} we may calculate a number called its determinant
and denoted by detA or |A|. The determinant is calculated by using the Laplace
expansion

detA=
N
∑

i

(−1)i+jAijĀij =
N
∑

j

(−1)i+jAijĀij	

where (N is the dimension of the matrix) the result does not depend on which
column j has been chosen in the first expression or which row i in the second
expression. The symbol Āij stands for the determinant of the matrix, which is ob-
tained from A by removing the i-th row and the j-th column. Thus we have defined
a determinant (of dimension N) by saying that it is a certain linear combination of
determinants (of dimension N − 1). It is then sufficient to say what we mean by
a determinant that contains only one number c (i.e. has only one row and one
column), this is simply detc ≡ c.

For example, for matrix

A=
⎛

⎝

1 0 −1
2 2 4
3 −2 −3

⎞

⎠ 	

its determinant is

detA=
∣
∣
∣
∣
∣
∣

1 0 −1
2 2 4
3 −2 −3

∣
∣
∣
∣
∣
∣

= (−1)1+1 × 1×
∣
∣
∣
∣

2 4
−2 −3

∣
∣
∣
∣
+ (−1)1+2 × 0×

∣
∣
∣
∣

2 4
3 −3

∣
∣
∣
∣

+ (−1)1+3 × (−1)×
∣
∣
∣
∣

2 2
3 −2

∣
∣
∣
∣
=
∣
∣
∣
∣

2 4
−2 −3

∣
∣
∣
∣
−
∣
∣
∣
∣

2 2
3 −2

∣
∣
∣
∣
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= (2× (−3)− 4× (−2)
)− (2× (−2)− 2× 3

)

= 2+ 10= 12�

In particular,
∣
∣
∣
∣

a b
c d

∣
∣
∣
∣
= ad− bc.

By repeating the Laplace expansion again and again (i.e. expanding Āij , etc.)
we finally arrive at a linear combination of the products of the elements

detA=
∑

P

(−1)pP̂[A11A22 · · ·ANN ]	

where the permutation operator P̂ pertains to the second indices (shown in bold),
and p is the parity of permutation P̂ .

Slater determinant

In this book we will most often have to do with determinants of matrices whose
elements are functions, not numbers. In particular what are called Slater determi-
nants will be the most important. A Slater determinant for the N -electron system
is built of functions called spinorbitals φi(j), i = 1	2	 � � � 	N , where the symbol j
denotes the space and spin coordinates (xj	 yj	 zj	σj) of electron j:

ψ(1	2	 � � � 	N)=

∣
∣
∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) � � � φ1(N)
φ2(1) φ2(2) � � � φ2(N)
� � � � � � � � � � � �

φN(1) φN(2) � � � φN(N)

∣
∣
∣
∣
∣
∣
∣
∣

�

After this is done the Laplace expansion gives

ψ(1	2	 � � � 	N)=
∑

P

(−1)pP̂
[

φ1(1)φ2(2) � � �φN(N)
]

	

where the summation is over N! permutations of the N electrons, P̂ stands for the
permutation operator that acts on the arguments of the product of the spinorbitals
[φ1(1)φ2(2) � � �φN(N)], p is the parity of permutation P̂ (i.e. the number of the
transpositions that change [φ1(1)φ2(2) � � �φN(N)] into P̂[φ1(1)φ2(2) � � �φN(N)].

All properties of determinants pertain also to Slater determinants.

Some useful properties

• detAT = detA.
• From the Laplace expansion it follows that if one of the spinorbitals is composed

of two functions φi = ξ+ ζ, the Slater determinant is the sum of the two Slater
determinants, one with ξ instead of φi, the second with ζ instead of φi�

• If we add to a row (column) any linear combination of other rows (columns), the
value of the determinant does not change.
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• If a row (column) is a linear combination of other rows (columns), then detA=
0. In particular, if two rows (columns) are identical then detA= 0. Conclusion:
in a Slater determinant the spinorbitals have to be linearly independent, other-
wise the Slater determinant is equal zero.

• If in a matrix A we exchange two rows (columns), then detA changes sign. Con-
clusion: the exchange of the coordinates of any two electrons leads to a change
of sign of the Slater determinant (Pauli exclusion principle).

• det(AB)= detAdetB.
• From the Laplace expansion it follows that multiplying the determinant by a

number is equivalent to multiplication of an arbitrary row (column) by this num-
ber. Therefore, det(cA)= cNdetA, where N is the matrix dimension.3

• If matrix U is unitary then detU = exp(iφ), where φ is a real number. This
means that if U is an orthogonal matrix, detU =±1.

3Note, that to multiply a matrix by a number we have to multiply every element of the matrix by this
number. However, to multiply a determinant by a number means multiplication of one row (column)
by this number.



B. A FEW WORDS ON SPACES,
VECTORS AND FUNCTIONS

1 VECTOR SPACE

A vector space means a set V of elements x	 y	 � � �, that form an Abelian group and
can be “added” together1 and “multiplied” by numbers z = αx+βy thus produc-
ing z ∈ V . The multiplication (α	β are, in general, complex numbers) satisfies the
usual rules (the group is Abelian, because x+ y = y + x):

1 · x= x	
α(βx)= (αβ)x	
α(x+ y)= αx+ αy	
(α+β)x= αx+βx�

Example 1. Integers. The elements x	 y	 � � � are integers, the “addition” means
simply the usual addition of integers, the numbers α	β	 � � � are also integers, “mul-
tiplication” means just usual multiplication. Does the set of integers form a vector
space? Let us see. The integers form a group (with the addition as the operation
in the group). Checking all the above axioms, we can easily prove that they are
satisfied by integers. Thus, the integers (with the operations defined above) form a
vector space.

Example 2. Integers with real multipliers. If, in the previous example, we admitted
α	β to be real, the multiplication of integers x	 y by real numbers would give real
numbers (not necessarily integers). Therefore, in this case x	 y	 � � � do not represent
any vector space.

Example 3. Vectors. Suppose x	 y	 � � � are vectors, each represented by a N-
element sequence of real numbers (they are called the vector “components”)
x= (a1	 a2	 � � � 	 aN), y = (b1	 b2	 � � � 	 bN)	 etc. Their addition x+y is an operation
that produces the vector z = (a1+ b1	 a2+ b2	 � � � 	 aN + bN). The vectors form an
Abelian group, because x+ y = y+x, the unit (“neutral”) element is (0	0	 � � � 	0),
the inverse element to (a1	 a2	 � � � 	 aN) is equal to (−a1	−a2	 � � � 	−aN). Thus,
the vectors form a group. “Multiplication” of a vector by a real number α means
α(a1	 a2	 � � � 	 aN)= (αa1	αa2	 � � � 	αaN). Please check that the four axioms above
are satisfied. Conclusion: the vectors form a vector space.

1See Appendix C, to form a group any pair of the elements can be “added” (operation in the group),
the addition is associative, there exists a unit element and for each element an inverse exists.

895



896 B. A FEW WORDS ON SPACES, VECTORS AND FUNCTIONS

Note that if only the positive vector components were allowed, they would not
form an Abelian group (no neutral element), and on top of this their addition
(which might mean a subtraction of components, because α	β could be negative)
could produce vectors with non-positive components. Thus vectors with all positive
components do not form a vector space.

Example 4. Functions. This example is important in the context of this book. This
time the vectors have real components.2 Their “addition” means the addition of
two functions f (x)= f1(x)+ f2(x). The “multiplication” means multiplication by
a real number. The unit (“neutral”) function means f = 0, the “inverse” function
to f is −f (x). Therefore, the functions form an Abelian group. A few seconds are
needed to show that the four axioms above are satisfied. Such functions form a
vector space.

Linear independence. A set of vectors is called a set of linearly independent vec-
tors if no vector of the set can be expressed as a linear combination of the other
vectors of the set. The number of linearly independent vectors in a vector space is
called the dimension of the space.

Basis means a set of n linearly independent vectors in n-dimensional space.

2 EUCLIDEAN SPACE

A vector space (with multiplying real numbers α	β) represents the Euclidean
space, if for any two vectors x	 y of the space we assign a real number called an
inner (or scalar) product 〈x|y〉 with the following properties:

• 〈x|y〉 = 〈y|x〉,
• 〈αx|y〉 = α〈x|y〉,
• 〈x1 + x2|y〉 = 〈x1|y〉 + 〈x2|y〉,
• 〈x|x〉 = 0, only if x= 0.

Inner product and distance. The concept of the inner product is used to introduce

• the length of the vector x defined as ‖x‖ ≡√x|x, and
• the distance between two vectors x and y as a non-negative number ‖x − y‖ =√〈x− y|x− y〉. The distance satisfies some conditions which we treat as obvious

from everyday experience:
• the distance from Paris to Paris has to equal zero (just insert x= y);
• the distance from Paris to Rome has to be the same as from Rome to Paris (just

exchange x↔ y);
• the Paris–Rome distance is equal to or shorter than the sum of two distances:

Paris–X and X–Rome for any town X (a little more difficult to show).

2Note the similarity of the present example with the previous one: a function f (x)may be treated as a
vector with an infinite number of components. The components are listed in the sequence of increasing
x ∈R, the component f (x) corresponding to x.
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Schwarz inequality. For any two vectors belonging to the Euclidean space the
Schwarz inequality holds3

∣
∣〈x|y〉∣∣
 ‖x‖‖y‖ (B.1)

or equivalently |〈x|y〉|2 
 ‖x‖2‖y‖2�

Orthogonal basis means that all basis vectors xj , j = 1	2	 � � � 	N , are orthogonal
to each other: 〈xi|xj〉 = 0 for i 	= j.
Orthonormal basis is an orthogonal basis set with all the basis vectors of length
‖xi‖ = 1. Thus for the orthonormal basis set we have 〈xi|xj〉 = δij , where δij = 1
for i= j and δij = 0 for i 	= j (Kronecker delta).

Example 5. Dot product. Let us take the vector space from Example 3 and intro-
duce the dot product (representing the inner product) defined as

〈x|y〉 =
N
∑

i=1

aibi� (B.2)

Let us check whether this definition satisfies the properties required for a inner
product:

• 〈x|y〉 = 〈y|x〉, because the order of a and b in the product is irrelevant.
• 〈αx|y〉 = α〈x|y〉, because the sum says that multiplication of each ai by α is

equivalent to multiplying the inner product by α.
• 〈x1+x2|y〉 = 〈x1|y〉+ 〈x2|y〉, because if vector x is decomposed into two vectors
x= x1+ x2 in such a way that ai = ai1+ ai2 (with ai1	 ai2 being the components
of x1	x2, respectively), the summation of 〈x1|y〉 + 〈x2|y〉 gives 〈x|y〉�

• 〈x|x〉 =∑N
i=1(ai)

2, and this equals zero if, and only if, all components ai = 0.
Therefore, the proposed formula operates as the inner product definition re-
quires.

3 UNITARY SPACE

If three changes were introduced into the definition of the Euclidean space, we
would obtain another space: the unitary space. These changes are as follows:

• the numbers α	β	 � � � instead of being real are complex;
• the inner product, instead of 〈x|y〉 = 〈y|x〉 has the property 〈x|y〉 = 〈y|x〉∗;
• instead of 〈αx|y〉 = α〈x|y〉 we have:4 〈αx|y〉 = α∗〈x|y〉.

3The Schwarz inequality agrees with what everyone recalls about the dot product of two vectors:
〈x|y〉 = ‖x‖‖y‖ cosθ, where θ is the angle between the two vectors. Taking the absolute value of both
sides, we obtain |〈x|y〉| = ‖x‖‖y‖| cosθ|
 ‖x‖‖y‖.

4While we still have 〈x|αy〉 = α〈x|y〉.
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After the new inner product definition is introduced, related quantities: the
length of a vector and the distance between the vectors are defined in exactly the
same way as in the Euclidean space. Also the definitions of orthogonality and of
the Schwarz inequality remain unchanged.

4 HILBERT SPACE
This is for us the most important unitary space – its elements are wave functions,
which instead of x	 y	 � � � will be often denoted as f	g	 � � � 	φ	χ	ψ	 � � � etc. The
wave functions which we are dealing with in quantum mechanics (according to
John von Neumann) are the elements (i.e. vectors) of the Hilbert space. The inner
product of two functions f and g means 〈f |g〉 ≡ ∫ f ∗gdτ, where the integration
is over the whole space of variables, on which both functions depend. The length
of vector f is denoted by ‖f‖ = √〈f |f 〉. Consequently, the orthogonality of two
functions f and g means 〈f |g〉 = 0, i.e. an integral

∫

f ∗gdτ = 0 over the whole
range of the coordinates on which the function f depends. The Dirac notation (1.9)
is in fact the inner product of such functions in a unitary space.

David Hilbert (1862–1943),
German mathematician, pro-
fessor at the University of
Göttingen. At the II Congress
of Mathematicians in Paris
Hilbert formulated 23 goals
for mathematics he consid-
ered to be very important.
This had a great impact on
mathematics and led to some
unexpected results (e.g., Gö-
del theorem, cf. p. 851). Hil-
bert’s investigations in 1900–
1910 on integral equations
resulted in the concept of
the Hilbert space. Hilbert also
worked on the foundations of
mathematics, on mathemat-

ical physics, number theory,
variational calculus, etc. This
hard working and extremely
prolific mathematician was
deeply depressed by Hitler’s
seizure of power. He regularly
came to his office, but did not
write a single sheet of paper.

Let us imagine an infinite sequence
of functions (i.e. vectors) f1	 f2	 f3	 � � � in
a unitary space, Fig. B.1. The sequence
will be called a Cauchy sequence, if for
a given ε > 0 a natural number N can
be found, such that for i > N we will
have ‖fi+1− fi‖< ε. In other words, in a
Cauchy sequence the distances between
consecutive vectors (functions) decrease
when we go to sufficiently large indices,
i.e. the functions become more and more
similar to each other. If the converging
Cauchy sequences have their limits (func-
tions) which belong to the unitary space,
such a space is called a Hilbert space.

A basis in the Hilbert space is such
a set of linearly independent functions

(vectors) that any function belonging to the space can be expressed as a linear com-
bination of the basis set functions. Because of the infinite number of dimensions,
the number of the basis set functions is infinite. This is difficult to imagine. In a
way analogous to a 3D Euclidean space, we may imagine an orthonormal basis as
the unit vectors protruding from the origin in an infinite number of directions (like
a “hedgehog”, Fig. B.2).

Each vector (function) can be represented as a linear combination of the hedge-
hog functions. We see that we may rotate the “hedgehog” (i.e. the basis set)5 and
the completeness of the basis will be preserved, i.e. any vector of the Hilbert space
can be represented as a linear combination of the new basis set vectors.

5The new orthonormal basis set is obtained by a unitary transformation of the old one.
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Fig. B.1. A pictorial representation of the Hilbert space.
We have a vector space (each vector represents a wave func-
tion) and a series of unit vectors fi that differ less and
less (Cauchy series). If any convergent Cauchy series has
its limit belonging to the vector space, the space represents
the Hilbert space.

f

f
f

f

f

Fig. B.2. A pictorial representation of something that surely
cannot be represented: an orthonormal basis in the Hilbert
space looks like a hedgehog of the unit vectors (their number
equal to ∞), each pair of them orthogonal. This is analogous
to a 2D or 3D basis set, where the hedgehog has two or three
orthogonal unit vectors.

Linear operator

Operator Â transforms any vector x from the operator’s domain into vector y
(both vectors x	 y belong to the unitary space): Â(x) = y , which is written as
Âx= y . A linear operator satisfies Â(c1x1+ c2x2)= c1Âx1+ c2Âx2, where c1 and
c2 stand for complex numbers.

We define:

• Sum of operators: Â+ B̂= Ĉ as Ĉx= Âx+ B̂x.
• Product of operators: ÂB̂= Ĉ as Ĉx= Â(B̂(x)).

If, for two operators, we have ÂB̂ = B̂Â, we say they commute, or their com- commutation

mutator [Â	 B̂] ≡ ÂB̂ − B̂Â = 0. In general ÂB̂ 	= B̂Â, i.e. the operators do not
commute.

• Inverse operator (if it exists): Â−1(Âx)= x�
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Adjoint operator

If, for an operator Â, we can find a new operator Â†, such that for any two vectors
x and y of the unitary space6 we have7

〈

x
∣
∣Ây

〉= 〈Â†x
∣
∣y
〉

(B.3)

then we say that Â† is the adjoint operator to Â.

Hermitian operator

If Â† = Â, we will call operator Â a self-adjoint or Hermitian operator:8

〈

x
∣
∣Ây

〉= 〈Âx∣∣y〉� (B.4)

Unitary operator

A unitary operator Û transforms a vector x into y = Ûx both belonging to the
unitary space (the domain is the unitary space) and the inner product is preserved:

〈

Ûx
∣
∣Ûy

〉= 〈x|y〉�

This means that any unitary transformation preserves the angle between the
vectors x and y , i.e. the angle between x and y is the same as the angle between
Ûx and Ûy . The transformation also preserves the length of the vector, because
〈Ûx|Ûx〉 = 〈x|x〉. This is why operator Û can be thought of as a transformation
related to a motion in the unitary space (rotation, reflection, etc.). For a unitary
operator we have Û†Û = 1	 because 〈Ûx|Ûy〉 = 〈x|Û†Ûy〉 = 〈x|y〉.

5 EIGENVALUE EQUATION

If, for a particular vector x, we have

Âx= ax	 (B.5)

where a is a complex number and x 	= 0, x is called the eigenvector9 of operator Â
corresponding to eigenvalue a. Operator Â may have an infinite number, a finite
number including number zero of the eigenvalues, labelled by subscript i:

6The formal definition is less restrictive and the domains of the operators Â† and Â do not need to
extend over the whole unitary space.

7Sometimes we make a useful modification in the Dirac notation: 〈x|Ây〉 ≡ 〈x|Â|y〉.
8The self-adjoint and Hermitian operators differ in mathematics (a matter of domains), but we will

ignore this difference in the present book.
9In quantum mechanics, vector x will correspond to a function (a vector in the Hilbert space) and

therefore is called the eigenfunction.
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Âxi = aixi�

Hermitian operators have the following important properties:10

If Â represents a Hermitian operator, its eigenvalues ai are real numbers,
and its eigenvectors xi, which correspond to different eigenvalues, are or-
thogonal.

The number of linearly independent eigenvectors which correspond to a given
eigenvalue a is called the degree of degeneracy of the eigenvalue. Such vectors degeneracy

form the basis of the invariant space of operator Â, i.e. any linear combination of the
vectors represents a vector that is also an eigenvector (with the same eigenvalue a).
If the eigenvectors corresponded to different eigenvalues, their linear combination
is not an eigenvector of Â. Both things need a few seconds to show.

One can show that the eigenvectors of a Hermitian operator form the complete
basis set11 in Hilbert space, i.e. any function of class Q12 can be expanded in a
linear combination of the basis set.

Sometimes an eigenvector x of operator Â (with eigenvalue a) is subject to an
operator f (Â), where f is an analytic function. Then,13

f
(

Â
)

x= f (a)x� (B.6)

Commutation and eigenvalues

We will sometimes use the theorem that, if two linear and Hermitian operators Â
and B̂ commute, they have a common set of eigenfunctions and vice versa.

10We have the eigenvalue problem Âx = ax. Making a complex conjugate of both sides, we obtain
(Âx)∗ = a∗x∗� Multiplying the first of the equations by x∗ and integrating, and then using x and doing
the same with the second equation, we get: 〈x|Âx〉 = a〈x|x〉 and 〈Âx|x〉 = a∗〈x|x〉. But Â is Hermitian,
and therefore the left-hand sides of both equations are equal. Subtracting them we have (a−a∗)〈x|x〉 =
0� Since 〈x|x〉 	= 0, because x 	= 0, then a= a∗� This is what we wanted to show.

The orthogonality of the eigenfunctions of a Hermitian operator (corresponding to different eigen-
values) may be proved as follows. We have Âx1 = a1x1, Âx2 = a2x2	 with a1 	= a2�Multiplying the first
equation by x∗2 and integrating, we obtain 〈x2|Âx1〉 = a1〈x2|x1〉� Then, let us make the complex con-

jugate of the second equation: (Âx2)
∗ = a2x

∗
2, where we have used a2 = a∗2 (this was proved above).

Then let us multiply by x1 and integrate: 〈Âx2|x1〉 = a2〈x2|x1〉. Subtracting the two equations, we have
0= (a1 − a2)〈x2|x1〉, and taking into account a1 − a2 	= 0 this gives 〈x2|x1〉 = 0.
11This basis set may be assumed to be orthonormal, because the eigenfunctions

• as square-integrable can be normalized;
• if they correspond to different eigenvalues, are automatically orthogonal;
• if they correspond to the same eigenvalue, they can be orthogonalized (still remaining eigenfunc-

tions) by a method described in Appendix J.

12That is, continuous, single-valued and square integrable, see Fig. 2.5.
13The operator f (Â) is defined through the Taylor expansion of the function f : f (Â) = c0 + c1Â+
c2Â

2 + · · · � If the operator f (Â) now acts on an eigenfunction of Â, then, because Ânx = anx	 we
obtain the result.
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We will prove this theorem in the case of no degeneracy (i.e. there is only one
linearly independent vector for a given eigenvalue). We have an eigenvalue equa-
tion B̂yn = bnyn� Applying this to both sides of operator Â and using the commu-
tation relation ÂB̂ = B̂Â we have: B̂(Âyn)= bn(Âyn). This means that Âyn is an
eigenvector of B̂ corresponding to the eigenvalue bn� But, we already know such
a vector, this is yn. The two vectors have to be proportional: Âyn = anyn	 which
means that yn is an eigenvector of Â.

Now, the inverse theorem. We have two operators and any eigenvector of Â is
also an eigenvector of B̂. We want to show that the two operators commute. Let
us write the two eigenvalue equations: Âyn = anyn and B̂yn = bnyn� Let us take a
vector φ. Since the eigenvectors {yn} form the complete set, then

φ=
∑

n

cnyn�

Applying the commutator [Â	 B̂] = ÂB̂− B̂Â we have
[

Â	 B̂
]

φ = ÂB̂φ− B̂Âφ= ÂB̂
∑

n

cnyn − B̂Â
∑

n

cnyn

= Â
∑

n

cnB̂yn − B̂
∑

n

cnÂyn = Â
∑

n

cnbnyn − B̂
∑

n

cnanyn

=
∑

n

cnbnÂyn −
∑

n

cnanB̂yn =
∑

n

cnbnanyn −
∑

n

cnanbnyn = 0�

This means that the two operators commute.



C. GROUP THEORY IN
SPECTROSCOPY

Quite a lot of what we will be talking about in
this Appendix was invented by Evariste Ga-
lois. He was only 21 when he died in a duel
(cherchez la femme!). Galois spent his last
night writing down his group theory.

Evariste Galois (1811–1832), French math-
ematician, also created many fundamental
ideas in the theory of algebraic equations.

The group theory in this textbook will be treated in a practical way, as one of useful
tools.1

Our goal will be to predict the selection rules in ultraviolet (UV), visual
(VIS) and infrared (IR) molecular spectra.

We will try to be concise, but examples need explanations, there are few lovers
of dry formulae.

1 GROUP

Imagine a set of elements R̂i, i = 1	2	 � � � 	 g. We say that they form a group G of
order2 g, if the following four conditions are satisfied:

1. An operation exists called “multiplication”, R̂i · R̂j , which associates every pair
of the elements of G with another element of G, i.e. R̂i · R̂j = R̂k� Hereafter

1Rather than as a field of abstract mathematics. Symmetry may be viewed either as something beauti-
ful or primitive. It seems that, from the psychological point of view, symmetry stresses people’s longing
for simplicity, order and understanding. On the other hand, symmetry means less information and
hence often a kind of wearingly dull stimuli. Possibly the interplay between these two opposite features
leads us to consider broken symmetry as beautiful. Happily enough, trees and leaves exhibit broken
symmetry and look beautiful. Ancient architects knew the secrets of creating beautiful buildings, which
relied on breaking symmetry, in a substantial way, but almost invisible from a distance.

2g may be finite or infinite. In most applications of the present Appendix, g will be finite.

903



904 C. GROUP THEORY IN SPECTROSCOPY

the multiplication R̂i · R̂j will be denoted simply as R̂iR̂j . Thus the elements can
multiply each other and the result always belongs to the group.

2. The multiplication is associative,3 i.e. for any three elements of G we have
R̂i(R̂jR̂k)= (R̂iR̂j)R̂k.

3. Among R̂i ∈G an identity element exists, denoted by Ê, with a nice property:
R̂iÊ = R̂i and ÊR̂i = R̂i for any i.

4. For each R̂i we can find an element of G (denoted as R̂−1
i , called the inverse

element with respect to R̂i), such that R̂iR̂−1
i = Ê, also R̂−1

i R̂i = Ê.

Example 1. A four-element group. The elements 1	−1	 i	−i with the chosen oper-
ation the ordinary multiplication of numbers, form a group of order 4. Indeed, any
product of these numbers gives one of them. Here is the corresponding “multipli-
cation table”

second in the product
1 −1 i −i

first in the product 1 1 −1 i −i
−1 −1 1 −i i
i i −i −1 1

−i −i i 1 −1

Note that

ABELIAN GROUP:
The table is symmetric with respect to the diagonal. A group with a symmet-
ric multiplication table is called Abelian.

Abelian group

The associativity requirement is of course satisfied. The unit element is 1. You
can always find an inverse element. Indeed, for 1 it is 1, for −1 it is −1, for i it is
−i, for −i it is i. Thus, all conditions are fulfilled and g= 4.

Example 2. Group of integers. Let us take as G the set of integers with the “mul-
tiplication” being the regular addition of numbers. Let us check. The sum of two
integers is an integer, so requirement 1 is satisfied. The operation is associative,
because addition is. The unit element is, of course, 0. The inverse element to an
integer means the opposite number. Thus, G is a group of order g=∞.

Example 3. Group of non-singular matrices. All non-singular n× n matrices4 with
matrix multiplication as the operation, form a group. Let us see. Multiplication of
a non-singular matrix A (i.e. detA 	= 0) by a non-singular matrix B gives a non-
singular matrix C = AB, because detC = detAdetB 	= 0� The unit element is the
unit matrix 1, the inverse element exists (this is why we needed the non-singularity)
and is equal to A−1. Also from the matrix multiplication rule we have (AB)C =
A(BC). This is a group of order ∞.

3Thanks to this, expressions similar to R̂iR̂jR̂k have unambiguous meaning.
4See Appendix A.
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Example 4. Group of unitary matrices U(n). In particular, all the unitary n × n
matrices form a group with matrix multiplication as the group multiplication oper-
ation. Let us check. Any such multiplication is feasible and the product represents
a unitary matrix (if matrices U1 and U2 are unitary, i.e. U†

1 = U−1
1 and U†

2 = U−1
2 ,

then U =U1U2 is also unitary, because U−1 =U−1
2 U−1

1 =U†
2U

†
1 = (U1U2)

† =U†),
matrix multiplication is associative, the identity element means the n× n unit ma-
trix, and the inverse matrix U−1 = U† ≡ (UT )∗ always exists. In physics this group
is called U(n)�

Example 5. SU(n) group. The group (famous in physics) SU(n) for n 	 2 is de-
fined as the subset of U(n) of such matrices U that detU = 1 with the same multi-
plication operation. Indeed, since det(U1U2)= detU1 detU2, then multiplication
of any two elements of the SU(n) gives an element of SU(n)� Also of great im-
portance in physics is the SO(n) group, that is the SU(n) group with real (i.e. SO(3)
orthogonal) matrices.5

Unitary vs symmetry operation

Let us take the SO(3) group of all rotations of the coordinate system in 3D (the
Cartesian 3D Euclidean space, see Appendix B, p. 895). The rotation operators
acting in this space will be denoted by R̂ and defined as follows: operator R̂ acting
on a vector r produces vector R̂r:

R̂r=Rr	 (C.1)

where6 R represents an orthogonal matrix of dimension 3. The orthogonality guar-
antees that the transformation preserves the vector dot (or scalar) products (and
therefore their lengths as well).

Let us take an arbitrary function f (r) of position r. Now, for each of the oper-
ators R̂ let us construct the corresponding operator R̂ that moves the function in
space without its deformation. Generally, we obtain another function, which means
that R̂ operates in the Hilbert space. The construction of operator R̂ is based on the
following description

R̂f (r)= f (R̂−1r
)

� (C.2)

5Recall (Appendix A) that for a unitary matrix U we have detU = exp(iφ). For orthogonal matrices
(i.e. unitary ones with all the elements real) detU =±1� This does not mean that the SU(n) is composed
of the orthogonal matrices only. For example, all four 2× 2 matrices:

{

1 0
0 1

}

	

{−1 0
0 −1

}

	

{

0 i
i 0

}

	

{

0 −i
−i 0

}

have determinants equal to 1 and belong to SU(2), while only the first two belong to SO(2)�

6The point in 3D space is indicated by vector r=
⎛

⎝

x
y
z

⎞

⎠.
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This means that the displacement in space of function f (r) is simply equivalent
to leaving the function intact, but instead inversing the displacement of the coordi-
nate system.7

Operators R̂ rotate functions without their deformation, therefore they pre-
serve the scalar products in the Hilbert space and are unitary. They form a group
isomorphic with the group of operators R̂, because they have the same multiplica-
tion table as operators R̂: if R̂= R̂1R̂2	 then R̂= R̂1R̂2, where R̂1f (r)= f (R̂−1

1 r)

and R̂2f (r)= f (R̂−1
2 r)� Indeed,8 R̂f = (R̂1R̂2)f (r)= f (R̂−1

2 R̂−1
1 r)= f (R̂−1r)�

UNITARY VS SYMMETRY OPERATION
A unitary operation is a symmetry operation of function f (r), when R̂f (r)=
f (r)�

Example 6. Rotation of a point. Operator R̂(α;z) of the rotation of a point with
coordinates x	 y	 z by angle α about axis z gives a point with coordinates x′	 y ′	 z′
(Fig. C.1.a)

x′ = r cos(φ+ α)= r cosφ cosα− r sinφ sinα= x cosα− y sinα	

y ′ = r sin(φ+ α)= r sinφ cosα+ r cosφ sinα= x sinα+ y cosα	

z′ = z	
the corresponding transformation matrix of the old to the new coordinates, there-
fore, is

U =
⎡

⎣

cosα − sinα 0
sinα cosα 0

0 0 1

⎤

⎦ �

We obtain the same new coordinates if the point remains still while the coordinate
system rotates in the opposite direction (i.e. by angle −α).

Example 7. Rotation of an atomic orbital. Let us construct a single spherically sym-
metric Gaussian orbital f (r) = exp[−|r− r0|2] in Hilbert space for one electron.
Let the atomic orbital be centred on the point indicated by vector r0. Opera-
tor R̂(α;z) has to perform the rotation of a function9 by angle α about axis z

7Motion is relative. Let us concentrate on a rotation by angle α� The result is the same if:

• the coordinate system stays still, but the point rotates by angle α
• or, the point does not move, while the coordinate system rotates by angle −α.

What would happen if function f (r1	 r2	 � � � 	 rN) is rotated? Then we will do the following:
R̂f (r1	 r2	 � � � 	 rN)= f (R̂−1r1	 R̂

−1r2	 � � � 	 R̂
−1rN).

8This result is correct, but the routine notation works in a quite misleading way here when sug-
gesting that (R̂1R̂2)f (r) and f (R̂−1

1 R̂−1
2 r) mean the same. However, we derive the correct result

in the following way. First, from the definition we have R̂2f (r) = (R−1
2 r) ≡ g2(r)� Then we get

(R̂1R̂2)f (r)= R̂1[R̂2f (r)] = R̂1g2(r)= g2(R
−1
1 r)= R̂2f (R

−1
1 r)= f (R−1

2 R−1
1 r).

9This orbital represents our object rotating by α� The coordinate system remains unchanged while the
object moves. The job will be done by operator R̂(α;z).
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Fig. C.1. Examples of an isometric operation. (a) Unitary operation: rotation of a point by angle
α about axis z. The old position of the point is indicated by the vector r, the new position by
r′ (of the same length). (b) Unitary operation: rotation of function f (r − r0) by angle α about
axis z. As a result we have function f (r − Ur0), which in general represents a function which
differs from f (r − r0)� (c) The unitary operation which represents a symmetry operation: rotation
by angle α = 120◦ of function f (r) = exp[−|r − rA|2] + exp[−|r − rB|2] + exp[−|r − rC |2],
where vectors rA	 rB	 rC are of the same length and form a “Mercedes trademark”
(angle 120◦). The new function is identical to the old one. (d) Translational opera-
tor by vector r1: R̂(r1) applied to the Gaussian function f (r) = exp[−|r − r0|2] gives
R̂(r1)f (r)= f (R̂−1r)= exp[−|R̂−1r−r0|2] = exp[−|r−r1−r0|2] = exp[−|r−(r1+r0)|2] = f (r−r1),
i.e. the function is shifted in space by vector r1 with respect to the original function.

(Fig. C.1.b), which corresponds to a rotation in Hilbert space.10 According to the
definition of a rotation, what we need is R̂f (r)= f (R̂−1r)� Since operator R̂ cor-
responds to matrix U , then R̂−1 corresponds to U−1. The last matrix is simply

10We will obtain another (because differently centred) function.
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U−1 =UT =
⎡

⎣

cosα sinα 0
− sinα cosα 0

0 0 1

⎤

⎦ �

We obtain the following chain of transformations

f
(

R̂−1r
) = exp

[−∣∣R̂−1r− r0
∣
∣
2]= exp

[−∣∣R̂−1r− R̂−1R̂r0
∣
∣
2]

= exp
[−〈R̂−1r− R̂−1R̂r0

∣
∣R̂−1r− R̂−1R̂r0

〉]

= exp
[−〈R̂R̂−1r− R̂R̂−1R̂r0

∣
∣r− R̂r0

〉]

= exp
[−〈r− R̂r0

∣
∣r− R̂r0

〉]= exp
[−∣∣r− R̂r0

∣
∣
2]
�

Thus, the centre of the orbital undergoes rotation and therefore R̂f (r) indeed
represents the spherically symmetric orbital11 displaced by angle α�

Since in general for any value of angle α function exp[−|r − Ur0|2] is not
equal to exp[−|r − r0|2], unitary operation R̂ is not a symmetry operation
on the object.

If, however, α= 2πn	n= 0	±1	±2	 � � � , then R̂f (r)= f (r) and R̂(2πn;z) is12

a symmetry operation.

Example 8. Rotation of a particular sum of atomic orbitals. Let us take the example
of the sum of three spherically symmetric Gaussian orbitals:

f (r)= exp
[−|r− rA|2

]+ exp
[−|r− rB|2

]+ exp
[−|r− rC |2

]

	

where vectors rA	 rB	 rC are of the same length and form the “Mercedes sign” (an-
gles equal to 120◦), Fig. C.1.c. Let us take operator R̂(α= 120◦;z) corresponding
to matrix U . Application of R̂ to function f (r) is equivalent to13

f
(

R̂−1r
) = exp

[−∣∣R̂−1r− rA
∣
∣
2]+ exp

[−∣∣R̂−1r− rB
∣
∣
2]+ exp

[−∣∣R̂−1r− rC
∣
∣
2]

= exp
[−∣∣r− R̂rA

∣
∣
2]+ exp

[−∣∣r− R̂rB
∣
∣
2]+ exp

[−∣∣r− R̂rC
∣
∣
2]
�

11The definition R̂f (r)= f (R̂−1r) can transform anything: from the spherically symmetric Gaussian
orbital through a molecular orbital (please recall it can be represented by the LCAO expansion) to the
Statue of Liberty. Indeed, do you want to rotate the Statue of Liberty? Then leave the Statue in peace,
but transform (in the opposite way) your Cartesian coordinate system.

More general transformations, allowing deformation of objects, could also be described by this for-
mula R̂f (r)= f (R̂−1r), but operator R̂ would be non-unitary.
12The transformed and non-transformed orbitals coincide.
13We use the result from the last example.
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From the figure (or from the matrix) we have R̂rA = rB; R̂rB = rC ; R̂rC = rA�
This gives

R̂f (r)= exp
[−|r− rB|2

]+ exp
[−|r− rC |2

]+ exp
[−|r− rA|2

]= f (r)�

We have obtained our old function. R̂(α = 120◦;z) is therefore the symmetry
operation14 f (r).

R̂(α= 120◦;z) represents a symmetry operation not only for function f , but
also for other objects which have the symmetry of an equilateral triangle.

Example 9. Rotation of a many-electron wave function. If, in the last example, we
had taken a three-electronic function as the product of the Gaussian orbitals

f (r1	 r2	 r3)= exp
[−|r1 − rA|2

] · exp
[−|r2 − rB|2

] · exp
[−|r3 − rC |2

]

	

then after applying R̂(α= 120◦;z) to f we would obtain, using an almost identical
procedure,

R̂f (r1	 r2	 r3) = f
(

R̂−1r1	 R̂
−1r2	 R̂

−1r3
)

= exp
[−|r1 − rB|2

] · exp
[−|r2 − rC |2

] · exp
[−|r3 − rA|2

]

	

which represents a completely different function than the original f (r1	 r2	 r3)!
Thus, R̂ does not represent any symmetry operation for f (r1	 r2	 r3). If, how-
ever, we had taken a symmetrized function, e.g., f̃ (r1	 r2	 r3)=∑P P̂f (r1	 r2	 r3)	

where P̂ permutes the centres A, B, C, and the summation goes over all permuta-
tions, we would obtain an f̃ that would turn out to be symmetric with respect to
R̂(α= 120◦;z).
Example 10. Translation. Translation cannot be represented as a matrix transfor-
mation (C.1). It is, however, an isometric operation, i.e. preserves the distances isometric

operationamong the points of the transformed object. This is sufficient for us. Let us enlarge
the set of the allowed operations in 3D Euclidean space by isometry. Similarly, as
in the case of rotations let us define a shift of the function f (r). A shift of function
f (r) by vector r1 is such a transformation R̂(r1) (in the Hilbert space) that the new
function f̃ (r)= f (r−r1)�As an example let us take function f (r)= exp[−|r−r0|2]
and let us shift it by vector r1� Translations obey the known relation (C.2):

R̂(r1)f (r) = f
(

R̂−1r
)= exp

[−∣∣R̂−1r− r0
∣
∣
2]

= exp
[−|r− r1 − r0|2

]= exp
[−∣∣r− (r1 + r0)

∣
∣2
]= f (r− r1)�

14Note that, e.g., if one of the 1s orbitals had the opposite sign, function f (r) would not have the
symmetry of an equilateral triangle, although it would also be invariant with respect to some of the
operations of an equilateral triangle.
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Function f (r) had been concentrated around point r0, while the new function
R̂(r1)f (r) is concentrated around the point indicated by vector r1 + r0, i.e. the
function has been shifted by r1 (Fig. C.1.d). This transformation is (similar to case
of rotations) unitary, because the scalar product between two functions f1 and f2
shifted by the same operation is preserved: 〈f1(r)|f2(r)〉 = 〈f1(r− r1)|f2(r− r1)〉�

Symmetry group of the ammonia molecule

Imagine a model of the NH3 molecule (rigid trigonal pyramid), Fig. C.2. A student
sitting at the table plays with the model. We look at the model, then close our
eyes for a second, and open them again. We see that the student smiles, but the
coordinate system, the model and its position with respect to the coordinate system
look exactly the same as before. Could the student have changed the position of the
model? Yes, it is possible. For example, the student could rotate the model about
the z axis (perpendicular to the table) by 120◦	 he might exchange two NH bonds
in the model, he may also do nothing. Whatever the student could do is called a
symmetry operation.

Let us make a list of all the symmetry operations allowed for the ammonia mole-
cule (Table C.1). To this end, let us label the vertices of the triangle a	b	 c and lo-
cate it in such a way that the centre of the triangle coincides with the origin of the
coordinate system, and the y axis indicates vortex a.

Now let us check whether the operations given in Table C.1 form a group. Four
conditions have to be satisfied. The first condition requires the existence of “multi-
plication” in the group, and that the product of any two elements gives an element
of the group: R̂iR̂j = R̂k� The elements will be the symmetry operations of the
equilateral triangle. The product R̂iR̂j = R̂k means that operation R̂k gives the
same result as applying to the triangle operation R̂j first, and then the result is

Fig. C.2. The equilateral triangle and the coordinate system. Positions a	b	 c are occupied by hydrogen
atoms, the nitrogen atom is (symmetrically) above the plane.
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Table C.1. Symmetry operations of the ammonia molecule (the reflections pertain to
the mirror planes perpendicular to the triangle, Fig. C.2, and go through the centre
of the triangle)

Symbol Description Symbolic explanation

Ê do nothing Ê

[

a
c b

]

=
[

a
c b

]

Â reflection in the plane going through point
a shown in Fig. C.2

Â

[

a
c b

]

=
[

a
b c

]

B̂ reflection in the plane going through point
b shown in Fig. C.2

B̂

[

a
c b

]

=
[

c
a b

]

Ĉ reflection in the plane going through point
c shown in Fig. C.2

Ĉ

[

a
c b

]

=
[

b
c a

]

D̂ rotation by 120◦ (clockwise) D̂

[

a
c b

]

=
[

c
b a

]

F̂ rotation by −120◦ (counter-clockwise) F̂

[

a
c b

]

=
[

b
a c

]

subject to operation R̂i. In this way the “multiplication table” C.2 can be obtained.
Further, using the table we may check whether the operation is associative. For

example, we check whether Â(B̂Ĉ)= (ÂB̂)Ĉ . The left-hand side gives: Â(B̂Ĉ)=
ÂD̂= B̂. The right-hand side is: (ÂB̂)Ĉ = D̂Ĉ = B̂. It agrees. It will agree for all
the other entries in the table.

The unit operation is Ê, as seen from the table, because multiplying by Ê does
not change anything: ÊR̂i = R̂iÊ = R̂i. Also, using the table again, we can find the
inverse element to any of the elements. Indeed, Ê−1 = Ê, because Ê times just
Ê equals to Ê. Further, Â−1 = Â, because Â times Â equals Ê, etc., B̂−1 = B̂,
Ĉ−1 = Ĉ , D̂−1 = F̂ , F̂−1 = D̂.

Thus all the requirements are fulfilled and all these operations form a group of
order g = 6. Note that in this group the operations do not necessarily commute,
e.g., ĈD̂= Â, but D̂Ĉ = B̂ (the group is not Abelian).

Table C.2. Group multiplication table

second in the product
R̂j Ê Â B̂ Ĉ D̂ F̂

first in the product R̂i
Ê Ê Â B̂ Ĉ D̂ F̂

Â Â Ê D̂ F̂ B̂ Ĉ

B̂ B̂ F̂ Ê D̂ Ĉ Â

Ĉ Ĉ D̂ F̂ Ê Â B̂

D̂ D̂ Ĉ Â B̂ F̂ Ê

F̂ F̂ B̂ Ĉ Â Ê D̂
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Classes

The group elements can be all divided into disjoint sets called classes. A class (to
put it first in a simplified way) represents a set of operations that are similar, e.g.,
three reflection operations Â, B̂ and Ĉ constitute one class, the rotations D̂ and
F̂ form the second class, the third class is simply the element Ê. Now, the precise
definition.

CLASS
A class is a set of elements that are conjugate one to another. An element
R̂i is conjugate with R̂j if we can find in group G such an element (let us
denote it by X̂) that X̂−1R̂jX̂ = R̂i.

Then, of course, element R̂j is a conjugate to R̂i as well. We check this by mul-
tiplying R̂i from the left by X̂ = Ŷ−1, and from the right by X̂−1 = Ŷ (which yields
Ŷ−1R̂iŶ = X̂R̂iX̂−1 = X̂X̂−1R̂jX̂X̂

−1 = ÊR̂jÊ = R̂j).
Let us have some practice using our table. We have X̂−1ÊX̂ = X̂−1X̂Ê = ÊÊ =

Ê for each X̂ ∈G, i.e. Ê alone represents a class. Further, making X̂−1ÂX̂ for all
possible X̂ gives:

Ê−1ÂÊ = ÊÂÊ = ÂÊ = Â	
Â−1ÂÂ = ÂÂÂ= ÊÂ= Â	
B̂−1ÂB̂ = B̂ÂB̂= F̂B̂= Ĉ	
Ĉ−1ÂĈ = ĈÂĈ = D̂Ĉ = B̂	
D̂−1ÂD̂ = F̂ÂD̂= B̂D̂= Ĉ	
F̂−1ÂF̂ = D̂ÂF̂ = B̂F̂ = Ĉ�

This means that Â belongs to the same class as B̂ and Ĉ . Now we will create
some conjugate elements to D̂ and F̂ :

Â−1D̂Â = ÂD̂Â= B̂Â= F̂	
B̂−1D̂B̂ = B̂D̂B̂= ĈB̂= F̂	
Ĉ−1D̂Ĉ = ĈD̂Ĉ = ÂĈ = F̂	

etc. Thus D̂ and F̂ make a class. Therefore the group under consideration consists
of the following classes: {Ê}{Â	 B̂	 Ĉ}{D̂	 F̂}.

It is always like this: the group is the sum of the disjoint classes.
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2 REPRESENTATIONS

A representation of the group is such a g-element sequence of square ma-
trices (of the same dimension; a matrix is associated with each element of
the group), that the matrices have a multiplication table consistent with the
multiplication table of the group.

By consistency we mean the following. To each element of the group we assign a
square matrix (of the same dimension for all elements). If the multiplication table
for the group says that R̂iR̂j = R̂k, the matrix corresponding to R̂i times the matrix
corresponding to R̂j is the matrix corresponding to R̂k. If this agrees for all R̂, then
we say that the matrices form a representation.15

We may create many group representations, see Table C.3.
The easiest thing is to see that �1 satisfies the criterion of being a representation

(the matrices have dimension 1, i.e. they are numbers). After looking for a while
at �2 we will say the same. Multiplying the corresponding matrices we will prove
this for �3 and �4. For example, for �3 the product of the matrices B̂ and Ĉ gives
the matrix corresponding to operation D̂

[
1
2 −

√
3

2

−
√

3
2 − 1

2

][
1
2

√
3

2√
3

2 − 1
2

]

=
[

− 1
2

√
3

2

−
√

3
2 − 1

2

]

�

If we had more patience, we could show this equally easily for the whole multipli-
cation table of the group. Note that

there are many representations of a group.

Note also an interesting thing. Let us take a point with coordinates (x	 y	0) and
see what will happen to it when symmetry operations are applied (the coordinate
system rests, while the point itself moves). The identity operation Ê leads to the
following transformation matrix

[

x′
y ′
]

=
[

1 0
0 1

][

x
y

]

The results of the other operations are characterized by the following transfor-
mation matrices (you may check this step by step):

Â:
[−1 0

0 1

]

B̂:

[
1
2 −

√
3

2

−
√

3
2 − 1

2

]

Ĉ:

[
1
2

√
3

2√
3

2 − 1
2

]

D̂:

[

− 1
2

√
3

2

−
√

3
2 − 1

2

]

F̂ :

[

− 1
2 −

√
3

2√
3

2 − 1
2

]

�

15More formally: a representation is a homomorphism of the group into the above set of matrices.



914
C

.
G

R
O

U
P

T
H

E
O

R
Y

IN
S

P
E

C
T

R
O

S
C

O
P

Y

Table C.3. Several representations of the equilateral triangle symmetry group

Group elements

Repr. Ê Â B̂ Ĉ D̂ F̂

�1 1 1 1 1 1 1

�2 1 −1 −1 −1 1 1

�3

[

1 0
0 1

] [−1 0
0 1

]
⎡

⎣

1
2 −

√
3

2

−
√

3
2 − 1

2

⎤

⎦

⎡

⎣

1
2

√
3

2√
3

2 − 1
2

⎤

⎦

⎡

⎣
− 1

2

√
3

2

−
√

3
2 − 1

2

⎤

⎦

⎡

⎣
− 1

2 −
√

3
2√

3
2 − 1

2

⎤

⎦

�4

⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣

−1 0 0
0 −1 0
0 0 1

⎤

⎦

⎡

⎢
⎢
⎣

−1 0 0

0 1
2 −

√
3

2

0 −
√

3
2 − 1

2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

−1 0 0

0 1
2

√
3

2

0
√

3
2 − 1

2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

0 − 1
2

√
3

2

0 −
√

3
2 − 1

2

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0

0 − 1
2 −

√
3

2

0
√

3
2 − 1

2

⎤

⎥
⎥
⎦
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Note that the matrices obtained are identical to those for the representation �3.
Thus by transforming the coordinates of a point, we have generated a representa-
tion of the symmetry.

By transforming “anything” (coordinates of a point, vectors, functions) us-
ing the symmetry operations and collecting the results in the form of matri-
ces, we always obtain a representation of the group.

Characters of representation

For any representation �, we may define vector χ(�) of dimension g, having as
elements the traces of the representation matrices �(R̂i)

Tr�=
∑

i

�ii	 (C.3)

χ(�) ≡

⎡

⎢
⎢
⎣

Tr�(R̂1)

Tr�(R̂2)
� � �

Tr�(R̂g)

⎤

⎥
⎥
⎦
≡

⎡

⎢
⎢
⎣

χ(�)(R̂1)

χ(�)(R̂2)
� � �

χ(�)(R̂g)

⎤

⎥
⎥
⎦
� (C.4)

The number χ(�)(R̂i) is called the character of representation � that corre-
sponds to operation R̂i. The characters of representations will play a most
important role in the application of group theory to spectroscopy.

Irreducible representations

To explain what irreducible representation is, let us first define reducible represen- reducible
representationtations.

A representation is called reducible if its matrices can be transformed into
what is called block form by using the transformation P−1�(R̂i)P for every
matrix �(R̂i), where P is a non-singular matrix.

In block form the non-zero elements can only be in the square blocks located
on the diagonal, Fig. C.3. block form

If, using the same P , we can transform each of the matrices �(R̂i) and obtain
the same block form, the representation is called reducible.

If we do not find such a matrix (because it does not exist), the representa-
tion is irreducible. If we carry out the transformation P−1�(R̂i)P (similarity
transformation) for i= 1	2	 � � � 	 g of a representation, the new matrices also
form a representation �′ called equivalent to �.
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complete decomposition (into the smallest blocks possible)

g

Fig. C.3. Reducible representation, block form and irreducible representation. In the first row the ma-
trices �(R̂i) are displayed which form a reducible representation (each matrix corresponds to the symme-
try operation R̂i); the matrix elements are in general non-zero. The central row shows a representation
�′ equivalent to the first, i.e. related by a similarity transformation (through matrix P ); the new repre-
sentation exhibits block form, i.e. in this particular case each matrix has two blocks of zeros, identical
in all matrices. The last row shows an equivalent representation �′′ that corresponds to the smallest
square blocks (of non-zeros), i.e. the maximum number of blocks of identical form in all matrices. Not
only �	�′ and �′′ are representations of the group, but also any sequence of individual blocks (as this
shaded) is a representation. Thus, �′′ is decomposed into the four irreducible representations.

This is easy to show. Indeed, group operations R̂i and R̂j correspond to ma-
trices �(R̂i) and �(R̂j) in the original representation and to �′(R̂i)= P−1�(R̂i)P

and �′(R̂j)= P−1�(R̂j)P in the equivalent representation (we will check in a mo-
ment whether this is indeed a representation). The product �′(R̂i)�′(R̂j) equals to
P−1�(R̂i)PP

−1�(R̂j)P = P−1�(R̂i)�(R̂j)P , i.e. to the matrix �(R̂i)�(R̂j) trans-
formed by similarity transformation, therefore everything goes with the same mul-similarity

transformation tiplication table. Thus matrices �′(R̂i) also form a representation (�′). This means
that we can create as many representations as we wish, it is sufficient to change
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matrix P , and this is easy (since what we want is its singularity, i.e. the P−1 matrix
has to exist).

The blocks are square matrices. It turns out that the set of the first blocks
�1(R̂1)	�1(R̂2)	 � � � 	�1(R̂g) (each block for one operation) is a representation,
the set of the second blocks �2(R̂1), �2(R̂2)	 � � � 	�2(R̂g) forms a representation as
well, etc. This is evident. It is sufficient to see what happens when we multiply two
matrices in the same block form. The matrix product has the same block form and
a particular block results from multiplication of the corresponding blocks of the
matrices which are being multiplied.16

irreducible
representation

In particular, maximum decomposition into blocks leads, of course, to
blocks that are no longer decomposable, and therefore are irreducible rep-
resentations.

Properties of irreducible representations

For two irreducible representations α and β, the following group orthogonality the-
orem is satisfied:17

∑

i

[

�(α)
(

R̂i
)]

mn

[

�(β)
(

R̂i
)]∗
m′n′ =

g

nα
δαβδmm′δnn′	 (C.5)

where �(α)(R̂) and �(β)(R̂) denote matrices that correspond to the group ele-
ment R̂ (m	n and m′	 n′ determine the elements of the matrices), the summation
goes over all the group elements, and nα is the dimension of the irreducible rep-
resentation α, i.e. the dimension of the matrices which form the representation.
The symbol ∗ means complex conjugation.18 We create two g-dimensional vec-
16Let us explain this by taking an example. We have two square matrices of dimension 4: A and B,

both having the block form:

A =
[

A1 0
0 A2

]

	 B=
[

B1 0
0 B2

]

with

A1 =
[

3 1
1 2

]

	 A2 =
[

2 2
2 3

]

	 B1 =
[

1 3
3 2

]

	 B2 =
[

2 1
1 2

]

�

Let us check that C=AB has the same block form

C=
[

C1 0
0 C2

]

and that (which is particularly important for us) C1 = A1B1 and C2 = A2B2� Indeed, multiplying AB
we have

C=

⎡

⎢
⎢
⎣

6 11 0 0
7 7 0 0
0 0 6 6
0 0 7 8

⎤

⎥
⎥
⎦
	 i.e.

[

6 11
7 7

]

=C1	

[

6 6
7 8

]

=C2�

Hence, indeed C1 =A1B1 and C2 =A2B2.
17For the proof see H. Eyring, J. Walter, G.E. Kimball, “Quantum Chemistry”, New York, Wiley (1944).
18It is important only for complex representations �.
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tors: one composed of components [�(α)(R̂i)]mn, the other from [�(β)(R̂i)]∗m′n′ ,
i= 1	2	 � � � 	 g. Group orthogonality theorem says that

• if α 	= β, the vectors are orthogonal,
• if m 	= m′ or n 	= n′, again the two vectors are orthogonal. The formula kills

everything, except the two identical irreducible representations and we choose
the same elements as the vector components.

Characters of irreducible representations

The most important consequence of the group orthogonality theorem is the equa-
tion:

∑

i

χ(α)
(

R̂i
)

χ(β)
(

R̂i
)∗ = gδαβ	 (C.6)

where χ(α)(R̂i) is a character of the irreducible representation α corresponding to
symmetry operation R̂i. Eq. (C.6), in view of eq. (C.4), may be rewritten as a scalar
product in a unitary space (Appendix B)

〈

χ(β)
∣
∣χ(α)

〉= gδαβ� (C.7)

Eq. (C.7) can be obtained from the group orthogonality theorem after setting
m= n and m′ = n′, and summing over m and m′:

〈

χ(β)
∣
∣χ(α)

〉 =
∑

i

∑

m

∑

m′

[

�(α)
(

R̂i
)]

mm

[

�(β)
(

R̂i
)]∗
m′m′

= g

nα
δαβ

∑

m

∑

m′
(δmm′)

2 = g

nα
δαβnα = gδαβ�

Decomposing reducible representations into irreducible ones

It is important that

equivalent representations have identical characters,

because the trace of a matrix is invariant with respect to any similarity transfor-
mation. Indeed, for two equivalent representations � and �′, for any R̂i we have
�′(R̂i)= P−1�(R̂i)P 	 which gives

χ(�
′)(R̂i

) =
∑

m

(

P−1�
(

R̂i
)

P
)

mm
=
∑

mkl

P−1
mk�klPlm =

∑

kl

�kl
∑

m

PlmP
−1
mk

=
∑

kl

�kl
(

PP−1)

lk
=
∑

kl

�klδlk =
∑

k

�kk = χ(�)
(

R̂i
)

�
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In particular, the character of a representation is the same as its block form
(with the maximum number of blocks, which correspond to irreducible represen-
tations):

χ
(

R̂i
)=
∑

α

a(α)χ(α)
(

R̂i
)

	 (C.8)

or, in other words,

χ =
∑

α

a(α)χ(α)	 (C.9)

where a(α) is a natural number telling us how many times the irreducible representa-
tion α appears in block form. The above formula comes from the very definition of
the trace (the sum of the diagonal elements).

We will need another property of the characters. Namely,

the characters corresponding to the elements of a class are equal.

Indeed, two elements of group R̂i and R̂j which belong to the same class are
related to one another by relation R̂i = X−1R̂jX , where X is an element of the
group. The same multiplication table is valid for the representations (from the
definition of the representation), thus

�
(

R̂i
)= �(X−1)�

(

R̂j
)

�(X)= [�(X)]−1
�
(

R̂j
)

�(X)� (C.10)

This concludes the proof, because here the matrices �(R̂i) and �(R̂j) are related by
a similarity transformation, and therefore have identical characters. From now on
we can write χ(C) instead of χ(R̂), where C denotes the class to which operation
R̂i belongs.

Eq. (C.8) can be now modified appropriately. It can be rewritten as

〈

χ(β)
∣
∣χ(α)

〉 =
∑

C

nCχ
α(C)χβ(C)∗ =

∑

C

[√
nCχ

(α)(C)
][√

nCχ
(β)(C)∗

]

= gδαβ	 (C.11)

where C stands for the class, and nC tells us how many operations belong to the
class. This notation reminds us that the numbers [√nCχ(α)(C)] for a fixed α and
changing class C may be treated as the components of a vector (its dimension is
equal to the number of classes) and that the vectors which correspond to different
irreducible representations are orthogonal. The dimension of the vectors is equal
to the number of classes, say, k. Since the number of orthogonal vectors, each
of dimension k	 cannot exceed k, then the number of the different irreducible
representations is equal the number of classes.



920 C. GROUP THEORY IN SPECTROSCOPY

In future applications it will be of key importance to find such a natural
number a(α) which tells us how many times the irreducible representation
α is encountered in a reducible representation. The formula for a(α) is the
following

a(α)= 1
g

∑

C

nCχ(C)χ
(α)(C)∗� (C.12)

The proof is simple. From the scalar product of both sides of eq. (C.9) with the
vector χ(β) after using eq. (C.7) we obtain

〈

χ(β)
∣
∣χ
〉=
∑

α

a(α)
〈

χ(β)
∣
∣χ(α)

〉=
∑

α

a(α)gδαβ = a(β)g or a(α)= 1
g

〈

χ(α)
∣
∣χ
〉

�

This is the formula sought, because the characters are the same for all operations
of the same class.

Note that

to find a(α) it is sufficient to know the characters of the representations, the
representations themselves are not necessary.

Tables of characters of irreducible representations

Any textbook on the application of group theory in molecular spectroscopy con-
tains tables of characters of irreducible representations which correspond to vari-
ous symmetry groups of molecules.19

To apply group theory to a particular molecule, we first have to find the table of
characters mentioned above. To this end:

• the Born–Oppenheimer approximation is used, therefore the positions of the
nuclei are fixed in space (“geometry”),

• from the geometry, we make a list of all the symmetry operations which trans-
form it into itself,

• we identify the corresponding symmetry group.20

To find the proper table, we may use the Schoenflies notation for the symmetry21

(there are also some other notations):

Ê the symbol of the identity operation (i.e. do nothing);

19The tables are constructed by considering possible symmetries (symmetry groups), creating suitable
matrix representations, using similarity transformations to find the irreducible representations, by sum-
ming the diagonal elements, we obtain the required character tables.
20This may be done by using a flow chart, e.g., given by P.W. Atkins, “Physical Chemistry”, sixth edition,

Oxford University Press, Oxford, 1998.
21Artur Moritz Schoenflies (1853–1928), German mathematician, professor at the universities in

Göttingen, Königsberg, Frankfurt am Main. Schoenflies proved (independently of J.S. Fiodorow and
W. Barlow) the existence of the complete set of 230 space groups of crystals.
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Ĉn rotation by angle 2π
n about the n-fold symmetry axis;

Ĉmn rotation by 2πm
n about the n-fold symmetry axis;

σ̂v reflection in the plane through the axis of the highest symmetry;
σ̂h reflection in the plane perpendicular to the axis of the highest symmetry;
ı̂ inversion with respect to the centre of symmetry;
Ŝn rotation by angle 2π

n about the n-fold symmetry axis with subsequent reflection
in the plane perpendicular to it;

Ŝmn rotation by angle 2πm
n about the n-fold symmetry axis with subsequent reflec-

tion in the plane perpendicular to it.

The set of symmetry operations obtained forms the symmetry group. The sym-
metry groups also have their special symbols. The Schoenflies notation for the sym-
metry groups of some simple molecules is given in Table C.4 (their geometry cor-
responding to the energy minimum).

A molecule may be much more complicated, but often its symmetry is identical
to that of a simple molecule (e.g., one of those reported in the table).

When we finally identify the table of characters suitable for the molecule un-
der consideration, it is time to look at it carefully. For example, for the ammonia
molecule we find the table of characters (Table C.5).

In the upper left corner the name of the group is displayed (C3v). The sym-
metry operations are listed in the same row (in this case Ê, σ̂v	 Ĉ3).22 The oper-
ations are collected in classes, and the number of such operations in the class is
given: the identity operation (Ê) forms the first class, the three reflection oper-
ations (hence 3σ̂v, previously called Â	 B̂	 Ĉ) corresponding to the planes which
contain the threefold symmetry axis, two rotation operations (hence, 2Ĉ3, previ-

Table C.4. Examples of the symmetry group
(for a few molecules in their ground-state
optimum geometry)

Molecule Group

H2O C2v
NH3 C3v
CH4 Td
benzene D6h
naphthalene D2h

Table C.5. C3v group. Table of characters

C3v Ê 3σ̂v 2Ĉ3

A1 1 1 1 z x2 + y2	 z2

A2 1 −1 1 Rz
E 2 0 −1 (x	 y)(Rx,Ry ) (x2 − y2	xy)(xz	 yz)

22The same symmetry operations as discussed on p. 911.
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ously called D̂ and F̂) about the threefold symmetry axis (by 120◦ and by 240◦, or
−120◦, and the rotation by 360◦ is identical to Ê).

We have information about the irreducible representations in the second and
subsequent rows, one row for each representation. The number of irreducible rep-
resentations is equal to the number of classes (three in our case), i.e. the table of
characters is square. On the left-hand side we have the symbol of the representa-
tion telling us about its dimension (if the symbol is A, the dimension is 1, if it is E
the dimension is 2, if T then 3). Thus, unfortunately, the letter E plays a double role
in the table:23 as the identity operation Ê and as E – the symbol of an irreducible
representation. In a given row (irreducible representation), the number below the
symbol for class is the corresponding character. For the identity operation Ê, the
corresponding matrices are unit matrices, and the calculated character is therefore
equal to the dimension of the irreducible representation.

The simplest representation possible is of great importance, all the charac-
ters equal 1 (in our case A1). This will be called the fully symmetric repre-
sentation.

Example 11. Decomposition of a reducible representation. Let us find how the re-
ducible representation �4 from p. 914 may be decomposed into irreducible repre-
sentations. First we see from eq. (C.12) that characters rather than the representa-
tions themselves are required. The characters χ(�4) are calculated by summing up
the diagonals of the matrix representations for the corresponding classes, χ(�4): 3
(class Ê),−1 (class σ̂v)	0 (class Ĉ3)� Let us first ask how many times (aA1 ) the irre-
ducible representation A1 is encountered in �4� The characters of A1 (Table C.5)
are: 1	1	1 for the corresponding classes. The number of the operations in the
classes is respectively nC : 1	3	2. From (C.12) we find a(A1)= 1

6(1 · 3 · 1+ 3 · (−1) ·
1+ 2 · 0 · 1)= 0� Similarly we find a(A2)= 1

6(1 · 3 · 1+ 3 · (−1) · (−1)+ 2 · 0 · 1)= 1
and a(E) = 1

6(1 · 3 · 2 + 3 · (−1) · 0 + 2 · 0 · (−1)) = 1� Thus, we may write that
�4 = A2 + E. This exercise will be of great help when the selection rules in spec-
troscopy are considered.

Projection operator on an irreducible representation

We will soon need information about whether a particular function exhibits cer-
tain symmetry properties in the system under consideration. We will need certain
projection operators to do this.

P̂(α) = nα

g

∑

i

χ(α)∗
(

R̂i
)

R̂i (C.13)

represents the projection operator which projects onto the space of such
functions which transform according to the irreducible representation �(α).

23This unfortunate traditional notation will not lead to trouble.



2 Representations 923

This means that either P̂(α)f transforms according to the irreducible representa-
tion �(α) or we obtain zero. To be a projection operator, P̂(α) has to satisfy24

P̂(α)P̂(β) = δαβP̂(α)� (C.14)

We can also prove that

∑

α

P̂(α) = 1	 (C.15)

where the summation goes over all irreducible representations of the group.

24This means that two functions which transform according to different irreducible representations are
orthogonal, and that the projection of an already projected function changes nothing. Here is the proof.
After noting that R̂Ŝ = Q̂	 or Ŝ = R̂−1Q̂ we have

P̂(α)P̂(β) = nαnβ

g2

∑

R̂	S

χ(α)∗
(

R̂
)

χ(β)∗(S)R̂Ŝ

= nαnβ

g2

∑

Q

Q̂
∑

R̂

χ(α)∗
(

R̂
)

χ(β)∗
(

R̂−1Q̂
)

�

Note, that

χ(β)∗
(

R̂−1Q̂
)=
∑

k

�
(β)∗
kk

(

R̂−1Q̂
)=
∑

k

∑

l

�
(β)∗
kl

(

R̂−1)�
(β)∗
lk

(

Q̂
)

�

After inserting this result we have

P̂(α)P̂(β) = nαnβ

g2

∑

Q

Q̂
∑

R̂

∑

m

�
(α)∗
mm

(

R̂
)∑

k

∑

l

�
(β)∗
kl

(

R̂−1)�
(β)∗
lk

(

Q̂
)

= nαnβ

g2

∑

Q

Q̂
∑

R̂

∑

k	l	m

�
(α)∗
mm

(

R̂
)

�
(β)
lk

(

R̂
)

�
(β)∗
lk

(

Q̂
)

= nαnβ

g2

∑

Q

Q̂
∑

k	l	m

�
(β)∗
lk

(

Q̂
)∑

R̂

[

�
(α)∗
mm

(

R̂
)

�
(β)
lk

(

R̂
)]

	

because from the unitary character of the representation matrices �(β)(R̂−1) and �(β)(R̂) we have
�
(β)∗
kl

(R̂−1)= �(β)
lk
(R̂)� From the group theorem of orthogonality (eq. (C.5)) we have

P̂(α)P̂(β) = nαnβ

g2
g

nα

∑

Q

Q̂
∑

k	l	m

�
(β)∗
lk

(

Q̂
)

δmlδmkδαβ

= δαβ nαg
∑

Q

Q̂
∑

m

�
(α)∗
mm

(

Q̂
)

= δαβ nαg
∑

Q

χ(α)∗(Q)Q̂= δαβP̂(α)	

as we wished to show, eq. (C.14).
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The transformation of a function according to irreducible representation

The right-side of a character table (like Table C.5) contains the symbols x, y , z,
(x2 − y2	xy), Rx, Ry , Rz . These symbols will be needed to establish the selection
rules in spectroscopy (UV-VIS, IR, Raman). They pertain to the coordinate system
(the z axis coincides with the axis of highest symmetry). Let us leave the symbols
Rx, Ry , Rz for a while.

We have some polynomials in the rows of the table. The polynomials transform
according to the irreducible representation which corresponds to the row.25 If a poly-
nomial (displayed in a row of the table of characters) is subject to the projection
P̂(α), then:

• if α does not correspond to the row, we obtain 0;
• if α corresponds to the row, we obtain either the polynomial itself (if the irre-

ducible representation has dimension 1), or, if the dimension of the irreducible
representation is greater than 1, a linear combination of the polynomials given
in the same row (in parentheses).

If function f transforms according to a one-dimensional irreducible represen-
tation, the function is an eigenfunction of all the symmetry operators R̂, with the
corresponding eigenvalues χ(α)(R̂)�

Let us come back to Rx, Ry , Rz� Imagine Rx, Ry , Rz as oriented circles per-
pendicular to a rotation axis (i.e. x	 y or z) which symbolizes rotations about these
axes. For example, operation Ê and the two rotations Ĉ3 leave the circle Rz un-
changed, while operations σ̂v change its orientation to the opposite one, hence Rz

transforms according to the irreducible representation A2. It turns out, that Rx

and Ry transform into their linear combinations under the symmetry operations
and therefore correspond to a two-dimensional irreducible representation (E).

3 GROUP THEORY AND QUANTUM MECHANICS

Representation basis

If we have two equivalent26 nuclei in a molecule, this always results from a molecu-
lar symmetry, i.e. at least one symmetry operation exchanges the positions of these
two nuclei. There is no reason at all that electrons should prefer one such nucleus
rather than the other.27 Let us focus on molecular orbitals calculated for a fully
symmetric Fock operator.28 Therefore,
25Please recall the definition of the symmetry operation given on p. 907: R̂f (r) = f (r), where
R̂f (r)= f (R̂−1r).
26With respect to physical and chemical properties.
27This may be not true for non-stationary states. The reason is simple. Imagine a long polymer mole-

cule with two equivalent atoms at its ends. If one is touched by the tip of a tunnelling microscope and
one electron is transferred to the polymer, a non-stationary asymmetric electron state is created.
28Limiting ourselves to molecular orbitals is not essential.



3 Group theory and quantum mechanics 925

each molecular orbital has to be such, that when it is squared the electron
density is the same on the equivalent nuclei.

What will happen, however, to the molecular orbital itself? Squaring removes
information about its sign. The signs of both atoms may be the same (symmetric
orbital), but they may also be opposite29 (antisymmetric orbital). For example, the
bonding orbital for the hydrogen molecule is symmetric with respect to the reflec-
tion in the plane perpendicular to the internuclear axis30 and passing through its
centre, while the antibonding orbital is antisymmetric with respect to the opera-
tion.

We know how to apply symmetry operations on molecular orbitals (p. 908) and
transform them to other functions.

Under such a symmetry operation the orbital either remains unchanged
(like the bonding mentioned above), or changes sign (like the antibond-
ing).

or, if the orbital level is degenerate, we may obtain a different function. This func-
tion corresponds to the same energy, because in applying any symmetry operation
we only exchange equivalent nuclei, which are otherwise treated on an equal foot-
ing in the Hamiltonian.

29This pertains to non-degenerate orbital levels. For a degenerate level any linear combination of the
eigenfunctions (associated with the same level) is also an eigenfunction as good as those which entered
the linear combination. A symmetry operation acting on an orbital gives another orbital corresponding
to the same energy. In such a case, the squares of both orbitals in general does not exhibit the symmetry
of the molecule. However, we can find such a linear combination of both, the square preserves the
symmetry.
30Let us see what it really means in a very formal way (it may help us in more complicated cases). The

coordinate system is located in the middle of the internuclear distance (on the x axis, the internuclear
distance equals 2A). The bonding orbital ϕ1 =N1(a+ b) and the antibonding orbital ϕ2 =N2(a− b),
where N1 and N2 are the normalization constants, the 1s atomic orbitals have the following form

a ≡ 1√
π

exp
[−|r−A|]= 1√

π
exp
[

−
√

(x−A)2 + y2 + z2
]

	

b ≡ 1√
π

exp
[−|r+A|]= 1√

π
exp
[

−
√

(x+A)2 + y2 + z2
]

	

A = (A	0	0)�

The operator σ̂ of the reflection in the plane x= 0 corresponds to the following unitary transforma-

tion matrix of the coordinates U =
⎛

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎠. Therefore, the inverse matrix U−1 =
⎛

⎝

−1 0 0
0 1 0
0 0 1

⎞

⎠,

i.e. the transformation U−1rmeans x→−x, y→ y , z→ z, which transforms a→ b and b→ a. Hence
σ̂(a+ b)= (b+ a)= (a+ b), σ̂(a− b)= (b− a)=−(a− b)�

In both cases the molecular orbital represents an eigenfunction of the symmetry operator with eigen-
values +1 and −1, respectively.



926 C. GROUP THEORY IN SPECTROSCOPY

If we obtain another orbital (ϕ2), then we may begin to play with it by applying
all the symmetry operations. Some operations will lead to the same (new) orbital,
sometimes with the opposite sign. After other operations we will obtain the old
orbital ϕ1, sometimes with the opposite sign, and sometimes these operations will
lead to a third orbital ϕ3. Then we apply the symmetry operations to the third or-
bital, etc. until the final set of orbitals is obtained which transform into themselves
when subject to symmetry operations. The set of such linearly independent orbitals
ϕi, i= 1	 � � � 	 n, may be treated as the basis set in a vector space.

All the results of the application of operation R̂i on the orbitals ϕi are collected
in a transformation matrix Ri:

R̂iϕ=RTi ϕ	 where ϕ=
⎡

⎣

ϕ1
� � �
ϕn

⎤

⎦ � (C.16)

The matrices Ri, i = 1	2	 � � � 	 g, form the n-dimensional representation (in
general reducible) of the symmetry group of the molecule.

Indeed, let us see what happens if we apply operation T̂ = R̂1R̂2 to the func-
tion ϕi:

T̂ ϕi =
(

R̂1R̂2
)

ϕi = R̂1R
T
2 ϕ=RT2 R̂1ϕ=RT2 RT1 ϕ= (R1R2)

Tϕ�

This means that all the matrices Ri form a representation.

BASIS OF A REPRESENTATION
The set of linearly independent functions ϕi, which served to create the
representation, forms the basis of the representation.

The basis need not have been composed of the orbitals, it could be expressions
like x, y , z or x2, y2, z2, xy , xz, yz or any linearly independent functions, provided
they transform into themselves under symmetry operations. We may begin from an
atomic orbital, and after applying symmetry operations will soon obtain a basis set
which contains this orbital and all the other equivalent orbitals.

Decomposition of a function into irreducible representation components

Let us take a function f belonging to a Hilbert space. Since (see eq. (C.15))
∑

α P̂
(α) = 1, where α goes over all the irreducible representations of the group,

f can be written as the sum of its components fα, each component (belonging to
the corresponding subspace of the Hilbert space) transforming according to the
irreducible representation α

f = 1 · f =
∑

α

P̂(α)f =
∑

α

fα� (C.17)

In view of (C.14), components fα and fβ are automatically orthogonal if α 	= β�
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Example 12. Decomposition of a function. Let us take three hydrogen atoms in the
configuration of an equilateral triangle, and assume we are in the simplest version
of the molecular orbitals in the LCAO MO approximation, i.e. the atomic basis
set is composed of the three 1s orbitals a	b	 c centred on the three nuclei. Let us
check whether the following functions:

u1 = a+ b+ c	
u2 = b− c	
u3 = a− c	

form the basis to a (reducible) representation. If symmetry operations are applied
to a	b	 c, they transform into each other (cf. Fig. C.2), and the results obtained
are easily shown as linear combinations of the functions u1	u2	u3 (with RTi as
transformation matrices). For example (see Table C.1, p. 911), Âu1 = a+ b+ c =
u1, Âu2 =−b+ c =−u2, Âu3 = a− b=−u2 + u3. Hence,

AT =
⎡

⎣

1 0 0
0 −1 0
0 −1 1

⎤

⎦ � (C.18)

In this way (see (C.16)) we obtain Ri as:

E =
⎡

⎣

1 0 0
0 1 0
0 0 1

⎤

⎦ 	 A=
⎡

⎣

1 0 0
0 −1 −1
0 0 1

⎤

⎦ 	 B=
⎡

⎣

1 0 0
0 1 0
0 −1 −1

⎤

⎦ 	 (C.19)

C =
⎡

⎣

1 0 0
0 0 1
0 1 0

⎤

⎦ 	 D=
⎡

⎣

1 0 0
0 0 1
0 −1 −1

⎤

⎦ 	 F =
⎡

⎣

1 0 0
0 −1 −1
0 1 0

⎤

⎦ � (C.20)

Let us check that DF = E and AD = B, i.e. exactly as for operations: D̂F̂ = Ê,
ÂD̂= B̂, and so on. Thus this is a representation, moreover, this is a representa-
tion in a block form, because u1 always transforms within itself, while u2 and u3
mix between themselves. It can be shown that this mixing cannot be avoided by
any choice of u. Hence, u1 alone represents the basis of a one-dimensional irre-
ducible representation (A1 – this is seen from the characters corresponding to the
first block 1× 1), while u2 and u3 form the basis of a two-dimensional irreducible
representation (E). Note that from the mathematical form of the functions u, it
follows that u2 and u3 have to correspond to the same energy and this energy is
different from that corresponding to u1. The conclusion is that a	b	 c form the ba-
sis for a reducible representation, while their linear combinations u1 and {u2	 u3}
form the basis sets of two irreducible representations: A1 and E. Any function
which is a linear combination of a	b	 c can also be represented as a linear combi-
nation of u1	u2	u3.

The same symmetry orbitals can be obtained using the projection operators
(C.13). Let us take any of functions a	b	 c (the result does not depend on this
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choice), e.g., function a. In view of the beautiful equilateral triangle, such a func-
tion is no doubt a deformed object, which does not take the trouble to make the
three vertices of the triangle equivalent. Let us see whether such a function has
any component which transforms according to the irreducible representation A1.
To this end, let us use the projection operator P̂(A1) (Table C.5 of characters on
p. 921 and eq. (C.13)): P̂(A1)a = 1

6(a+ b+ c + a+ b+ c) = 1
3(a+ b+ c). There

is thus a fully symmetric component31 in a. Now, let us use the same orbital a to
obtain: P̂(A2)a= 1

6(a+ b+ c− a− b− c)= 0. This means that a does not contain
anything which transforms according to A2. Now it is the turn of the irreducible
representation E: P̂(E)a= 2

6(2a−b−c+0 ·a+0 ·b+0 ·c)= 1
3 [2(a−c)− (b−c)].

We have now obtained is a linear combination of u2 and u3.
If the projections were made for function b, we would obtain a trivial repeti-

tion32 for the irreducible representations A1 and A2 and a non-trivial result for
the irreducible representation E: P̂(E)b = 2

6(2b − a − c + 0 · a + 0 · b + 0 · c) =
1
3 [2(b− c)− (a− c)], which is just another linear combination of u2 and u3. These
two functions are therefore inseparable and form the basis for a two-dimensional
irreducible representation.

DECOMPOSITION INTO IRREDUCIBLE REPRESENTATIONS
Any function that is a linear combination of the basis functions of a reducible
representation can be decomposed into a linear combination of the basis
functions of those irreducible representations which form the reducible rep-
resentation.

Most important

MOST IMPORTANT. . .
The wavefunctions corresponding to an energy level

– form the basis of an irreducible representation of the symmetry group of
the molecule, or in other words, transform according to this irreducible
representation

– the dimension of the representation is equal to the degeneracy of the en-
ergy level.

This is how it should be, because if a symmetry operation acts on an eigen-
function of the Hamiltonian, we will have only two possible results: 1) we obtain
the same function to the accuracy of the sign (in the case of a one-dimensional
representation, by definition irreducible); 2) another function corresponding to the

31This sentence carries a simple message, that by mixing symmetric objects we may obtain an asymmet-
ric object, e.g., the asymmetric function a+ 2b can be represented by the linear combination u1 + u2,
both functions transforming according to an irreducible representation of the symmetry group.
32P̂(A1)b= 1

3 (a+ b+ c) and P̂(A2)b= 0.
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Fig. C.4. Each energy level corresponds to an irreducible rep-
resentation of the symmetry group of the Hamiltonian. Its
linearly independent eigenfunctions corresponding to a given
level form the basis of the irreducible representation, or in
other words, transform according to this representation. The
number of the basis functions is equal to the degeneracy of
the level.

same energy (because of the same physical situation). Acting on the function ob-
tained and repeating the whole procedure, we will finally arrive at a set of n lin-
early independent functions which correspond to the same energy (the basis of a
n-dimensional irreducible representation).

This means (Fig. C.4) that

the energy levels may be labelled, each label corresponding to a single irre-
ducible representation.

Eugene Wigner was the first who obtained this result. This will be of fundamen-
tal importance when the selection rules in spectroscopy will be considered.

We usually have plenty of energy levels, while the number of irreducible repre-
sentations is small. Thus, in general there will be many levels with the same label.
Group theory will never tell us either how many levels correspond to a particular
irreducible representation, or to what energy they correspond.

4 INTEGRALS IMPORTANT IN SPECTROSCOPY

Direct product of the irreducible representations

We are quickly approaching the application of group theory to optical transitions
in spectroscopy. The most important issue here will be a decision as to whether an
integral is zero or non-zero. If the integral is zero, the transition is forbidden, if it
is non-zero, it is allowed. To make such a decision we have to use what is known
as the direct product of irreducible representations. Imagine basis functions {ϕi} and
{ψj} which correspond to irreducible representations α and β of the symmetry
group of a molecule. Let us make a set {ϕiψj} of all their possible products (i.e.
the Cartesian product).
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DIRECT PRODUCT
The products {ϕiψj} when subject to symmetry operations, lead (as usual) to
a representation, and this representation is called the direct product �α×�β
of the irreducible representations �α and �β.

The functions {ϕiψj} form the basis set of a representation (reducible in gen-
eral). The matrices of the representations we obtain as usual by applying symmetry
operations (eq. (C.16)):

R̂
[

ϕi(r)ψj(r)
] = ϕi

(

R̂−1r
)

ψj
(

R̂−1r
)=
∑

k

�(α)ki ϕk
∑

l

�
(β)
lj ψl

=
∑

kl

�
(α)
ki �

(β)
lj ϕkψl =

∑

kl

Zij	klϕkψl	

where �(γ)ki are the matrix elements of the irreducible representation γ	 Zij	kl =
�(α)ki �

(β)
lj . Of course,

the dimension of this representation is the product of the dimensions of the
representations α and β, because this is the number of the functions ϕkψl .

The characters χ(α×β) of the representation can easily be obtained from the
characters of the irreducible representations, we just have to multiply the latter:

χ(α×β)
(

R̂
)= χ(α)(R̂)χ(β)(R̂)� (C.21)

Indeed, the formula is justified by:

χ(α×β)
(

R̂
) =

∑

kl

Zkl	kl =
∑

kl

�
(α)
kk �

(β)
ll =

(
∑

k

�
(α)
kk

)(
∑

l

�
(β)
ll

)

= χ(α)(R̂)χ(β)(R̂)� (C.22)

This rule can be naturally generalized for higher number of irreducible rep-
resentations in the direct product (just multiply the characters of the irreducible
representations). in a while we will have the product of three irreducible represen-
tations.

When is an integral bound to be zero?

Everyone studying this book should know how to calculate the integral
∫ +1

−1
xdx=

[
x2

2

]+1

−1
= 1

2
− 1

2
= 0�

Note, however, that we can tell what the value of the integral is without any calcu-
lation, just by looking at the integrand. Indeed, the integrand is odd with respect to
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the transformation x→−x, i.e. the plot of the integral is an antisymmetric func-
tion with respect to the reflection in the plane perpendicular to x at x = 0. The
integration limits are symmetric with respect to that point. An integral means the
area under the plot, therefore what we gain for x > 0, we lose for x < 0 and the
integral will be exactly zero.

The force of group theory relies, even with a complicated integrands, on
being able to tell immediately whether the integral is equal to zero. This
allows us to predict whether an optical transition is allowed or forbidden.

We have to stress that these conclusions will be valid independent of the ap-
proximations used to calculate the molecular wave functions. The reason is that
they follow from the symmetry, which is identical for exact and approximate wave
functions.

The previous example can be generalized. Let us take the integral
∫

fαfβfγ � � � dτ	 (C.23)

where fα	 fβ	 fγ	 � � � transform according to the irreducible representations �(α)	�(β)	
�(γ)	 � � � , of a symmetry group, and the integration is over the whole space.

WHEN IS THE INTEGRAL EQUAL TO ZERO?
If a representation (in general reducible), being the direct product of the
irreducible representations �(α)	�(β)	�(γ)	 � � � does not contain the fully
symmetric representation (its all characters are equal to 1), the integral is
equal to zero.

This is precisely our goal in this Appendix and this is why we have been working
so hard with symmetry groups, operations, characters, etc. The essence of the theo-
rem is very simple. The product fαfβfγ � � � transforms according to the (in general
reducible) representation, which is the direct product of the irreducible represen-
tations �(α)	�(β)	�(γ)	 � � � . This means that according to eq. (C.17) the integrand
fαfβfγ � � � can be represented as a linear combination of the basis functions of all
the irreducible representations: fαfβfγ � � �=∑μ gμ, where gμ transforms accord-
ing to the irreducible representation �(μ). Therefore, the integral (C.23) is the sum
of the integrals

∫

fαfβfγ � � � dτ =
∑

μ

∫

gμ dτ� (C.24)

Let us take one such integral:
∫

gμ dτ. Note that the integration is over the whole
space (i.e. the integration limits are symmetric). If the integrand gμ were anti-
symmetric with respect to one or more symmetry operations, the integral would
automatically be zero (the same argument as for

∫

xdx). From this it follows that
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all integrals in the sum would be zero except the single one which contains the
integrand transforming according to the fully symmetric representation.33

There are two (important to us) special cases of this theorem.

Two special cases

∫

fαfβ dτ = δαβA, i.e. in order for the integral not to vanish we have to
have: �(α) = �(β).
The proof is very simple and relies on the fact that the characters of the fully

symmetric irreducible representation are equal to 1. The number of times, a(A),
the fully symmetric representation A, is present in the direct product �(α) × �(β)	
we calculate from the formula:

a(A) = 1
g

∑

i

χ(α×β)
(

R̂i
)

χ(A)
(

R̂i
)∗ = 1

g

∑

i

χ(α×β)
(

R̂i
)

= 1
g

∑

i

χ(α)
(

R̂i
)

χ(β)
(

R̂i
)∗ = δαβ� (C.25)

This means that the fully symmetric representation is always present in �(α) ×
�(α) and therefore the integral does not vanish.34

Let us take the integral
∫

fαfβfγ dτ	 (C.26)

where fα	 fβ	 fγ transform according to the irreducible representations
α	β	γ. For the integral not to vanish the direct product �(α) × �(β) has
to contain the representation �(γ).

This means that to have integral (C.26) not vanish, the function fαfβ decom-
poses (eq. (C.17)) in such a way that there is a non-zero component belonging to
�(γ). If this happens, according to the previous case, a component of the integrand
will transform according to the fully symmetric representation, which will save the
integral (C.26) from vanishing.

Selection rules for electronic transitions (UV-VIS)

The selection rules will be shown taking the example of pyrazine and its mono- and
diprotonated ions (Fig. C.5).

33Only for the fully symmetric representation are all the characters equal to 1, and therefore the
corresponding function does not change under symmetry operations.
34This is easy to understand. What transforms, according to �(α) × �(α), is the product of two (in

general different) functions, each belonging to �(α). It means that the function behaves in a very special
way (typical for �(α)) under symmetry operations, e.g., changes sign under R̂1, while other operations
leave it unchanged. If we have a product of two such functions, this means the product does not change
at all under R̂1 (and, of course, the other operations), i.e. transforms according to the fully symmetric
operation. This is why the fully symmetric representation is always present in �(α) × �(α) .
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Fig. C.5. Pyrazine (a) and its mono- (b) and diprotonated (c) derivatives. The x axis is perpendicular
to the ring plane, the y axis is in the ring plane perpendicular to the NN axis, and z is the NN axis.

A glimpse at the chemical formulae is sufficient to tell that the monocation of
pyrazine has the same symmetry as H2O, which corresponds to symmetry group
C2v (see Table C.4), while pyrazine and its diprotonated derivative have the sym-
metry identical with that of naphthalene, i.e. D2h. Let us focus first on the last
case.

Example 13. Pyrazine and its diprotonated derivative. Every book on group theory
contains a table of characters of the symmetry group D2h (Table C.6, x axis per-
pendicular to the plane of the molecule, z goes through the nitrogen atoms).

Table C.6. D2h group table of characters

D2h Ê Ĉ2(z) Ĉ2(y) Ĉ2(x) ı̂ σ̂(xy) σ̂(xz) σ̂(yz)

Ag 1 1 1 1 1 1 1 1 x2	 y2	 z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy

B2g 1 −1 1 −1 1 −1 1 −1 Ry xz

B3g 1 −1 −1 1 1 −1 −1 1 Rx yz

Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 1 −1 x
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From Table C.6 we see35 that what we call irreducible representations are sim-
ply the distinct rhythms of pluses and minuses, which after squaring, give the fully
symmetric behaviour. All the electronic states of pyrazine and its diprotonated
derivative can be described by the irreducible representation labels: Ag	B1g	B2g,
B3g	Au	B1u	B2u	B3u.

We may ask: what are the selection rules for state-to-state optical transitions?
Are all transitions allowed, or are some of them forbidden? From the theory of
the electromagnetic field (cf. Chapters 7 and 12) it follows that the probability of
the transition between states k and l is proportional to |μkl(x)|2 or to |μkl(y)|2 or
to |μkl(z)|2, respectively,36 depending on the electromagnetic wave polarization
along axes x	 y or z axes, with:

μkl(x) =
∫

ψ∗kμ̂xψl dτ	

μkl(y) =
∫

ψ∗kμ̂yψl dτ	 (C.27)

μkl(z) =
∫

ψ∗kμ̂zψl dτ	

where ψ stands for the electronic states k, and l [eq. (6.8) on p. 225], μ̂x	 μ̂y	 μ̂z
are the operators of the molecular dipole moment components,37 e.g.,

μ̂z =
∑

i

qizi	

qi is the electric charge of the particle (electron or nucleus) having its z component
equal to zi. Since we will decide, by using group theory, whether this integral38

vanishes or not, the important thing is that μx transforms in exactly the same way
as the coordinate x. The integrand ψ∗kμ̂xψl transforms as the direct product of the
three irreducible representations: that of ψk, that of μ̂x and that of ψl.

Excitations from the ground-state

Suppose we

• have a molecule in its ground-state ψk (thus, belonging to the fully symmetric
irreducible representation Ag),

35Note that all the irreducible representations of the symmetry group of the molecules under consid-
eration are one-dimensional, hence their energy levels are non-degenerate.
36From the equality |μkl(x)|2 = |μlk(x)|2 and similarly for y and z	 it follows that the optical excita-

tion and the corresponding emission have the same probability.
37This may look alarming, because the operator depends on the choice of the coordinate system (cf.

Appendix X). Do not worry, everything is all right. Even if the dipole moment depends on such a choice,
any two choices give dipole moments differing by a constant vector. This vector being a constant can be
shifted outside the integral and the integral itself will become zero, because ψk and ψl are orthogonal.
Thus, to our delight, light absorption does not depend on the choice of the coordinate system. This is
fine.
38The integration goes over all the electronic coordinates.
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• immobilize the molecule in space (say, in a crystal),
• introduce the coordinate system in the way described above,
• irradiate the molecule with light polarized along the x axis

and ask which states will the molecule be excited to. The direct product of Ag and polarization x

the irreducible representation to which x belongs, decomposes into some irre-
ducible representations. For the optical transition to be allowed, we have to find
among them the irreducible representation to which ψl belongs (just recall that
∫

fαfβ dτ = δαβA). Only then will the integrand contain something that has the
chance to transform according to the fully symmetric representation. The x coor-
dinate belongs to the representation B3u (see Table C.6, last column). Therefore,
let us see what represents the direct product Ag ×B3u. We have eq. (C.12) for the
integer a(α) that is the number of irreducible representations α in a given reducible
representation. Let us calculate this number for the representation (in general re-
ducible) being the direct product, and all the irreducible representations α. In this
particular case the direct product is39 Ag ×B3u. We have

a(Ag) = 1
8
[1× 1+ 1× (−1)+ 1× (−1)+ 1× 1+ 1× (−1)+ 1× 1

+ 1× 1+ 1× (−1)] = 0	

a(B1g) = 1
8
[1× 1+ 1× (−1)+ (−1)× (−1)+ (−1)× 1

+ 1× (−1)+ 1× 1+ (−1)× 1+ (−1)× (−1)]	
= 0

etc., all zeros, and finally

a(B3u) = 1
8
[1× 1+ (−1)× (−1)+ (−1)× (−1)+ 1× 1+ (−1)× (−1)+ 1× 1

+ 1× 1+ (−1)× (−1)] = 1	

exactly as we have expected. Thus, we can write40

Ag ×B3u = B3u�

39The characters of Ag × B3u are as follows (in order of the symmetry operations in the table of
characters):

1 −1 −1 1 −1 1 1 −1

i.e. they are identical to those of the (it turns out irreducible) representation B3u . Such a product is
really easy to form. In the table of characters one finger goes horizontally over the characters of Ag
(they are all equal to 1), while the second finger moves similarly over the characters of B3u and we
multiply what the first finger shows by what the second finger shows. The result is the character of the
direct product Ag ×B3u , which in this case turns out to be exactly the character of B3u . This is why we
may expect that a(α) will all be zero except a(B3u)= 1.
40We may say that the fully symmetric representation plays the role of unity in the multiplication of

irreducible representations.
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Now only those ψl are allowed in optical transitions (from the ground state Ag)
that are labelled by B3u, because only the direct product B3u × B3u may contain
the fully symmetric irreducible representation Ag. Thus, the transitions Ag⇒ B3u
as well as B3u⇒Ag are allowed, if the light is polarized along x, i.e. perpendicular
to the ring of the molecule.

Now let us take light polarized along y , i.e. within the molecular plane, per-polarization y

pendicularly to the N–N line. This time we are interested in the irreducible repre-
sentations that arise from Ag × B2u, because y transforms according to B2u. Very
similarly [by analyzing a(α)] we find that

Ag ×B2u = B2u�

This means that the allowed states are now of the B2u type.
Similarly, for polarization along z (z belongs to B1u), i.e. along the nitrogen-polarization z

nitrogen direction, we have
Ag ×B1u = B1u�

Thus for polarization parallel to the NN axis of the molecule, absorption may
occur from the ground state to any state of the B1u type (and vice versa).

Nothing more can be said when relying solely on group theory. We will not get any
information about the energies of the transitions, or about the corresponding intensi-
ties. To get this additional (and important) information we have work hard to solve
the Schrödinger equation, rather than count on some easy profits obtained by the
primitive multiplication of integers (as in group theory). To obtain the intensities,
we have to calculate the transition moment integrals μkl . However, group theory,
by excluding from the spectrum many transitions (forbidden ones), provides a lottransition

moment of important information on the molecule. Table C.7 collects the calculated light
frequencies41 (ν̄ in wavenumbers, or cm−1, ν = cν̄, where ν is the usual frequency),
the oscillator strengths fkl (in a.u.)

fkl = 4πc
3
ν|μkl|2	 (C.28)

as well as the polarization of light for excitations from the electronic ground state
for pyrazine and the pyrazine monocation. It is seen that the left-hand side of Ta-
ble C.7 is consistent with the selection rules derived above. Indeed, a large fkl only
corresponds to those transitions from the ground state of the pyrazine that have
been predicted as allowed (B1u, B2u and B3u). The predicted polarization also
agrees with the observed polarization.oscillator

strength

Excitations from an excited state

Calculations for absorption from the ground-state were particularly simple.
Now let us see whether anything will be more complicated for the transitions from
an excited state of the B2g type of symmetry. We are going to calculate a(α) (for
every α) for the following representations:

41J. Koput, unpublished results.
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Table C.7. Wave numbers (ν̄), oscillator strengths (fkl) and light polarization (in parentheses)

Pyrazine Pyrazine monocation

Excited state ν̄ fkl Excited state ν̄ fkl

B3u 28960 0�015(x) B1 27440 0�007(x)
B2u 36890 0�194(y) B2 34130 0�280(y)
B2g 38890 0�0 A2 45100 0�0
Au 41710 0�0 A1 49720 0�126(z)
B1u 49800 0�183(z) B1 57380 0�012(x)
B1g 57070 0�0 A2 57710 0�0
B1u 57420 0�426(z) A1 58210 0�625(z)
Au 60170 0�0 A2 59830 0�0
B2g 60970 0�0 B2 60370 0�010(y)

for polarization along x: B2g ×B3u
for polarization along y: B2g ×B2u
for polarization along z: B2g ×B1u.

The characters of the representation B2g×B3u are the following (Table C.6, the
first finger goes along B2g , the second – along B3u, etc.)

1 −1 −1 −1 −1 1 1

and are identical with the characters of B1u. Hence, even without any calculation
of a(α), we have B2g ×B3u = B1u. Thus the transitions (for the polarization along
x) are allowed only for the states labelled by B1u	 because otherwise there is no
chance of obtaining a fully symmetric integrand. Similarly, by multiplying B2g and
B2u we obtain the following characters of B2g ×B2u:

1 1 1 1 −1 −1 −1 −1

and these are identical to the characters of Au, therefore B2g × B2u = Au. If the
polarization of light is along y , the only excitations (or deexcitations) possible are
for states belonging to Au. Finally, for polarization along z, we find the characters
of B2g ×B1u:

1 −1 −1 1 −1 1 1 −1

that turn out to be those of B3u. This means that B2g × B1u = B3u and that the
transitions are possible only for states belonging to B3u.

Example 14. Pyrazine monocation. As to the selection rules, nothing was said so
far about the pyrazine monocation. We will be interested in excitations from the
electronic ground state (as in Table C.7). The pyrazine monocation corresponds to
symmetry group C2v (Table C.8).

The ground state belongs to the fully symmetric irreducible representation A1.
Since (as before) we begin by excitations from the ground state, let us see which
irreducible representations arise from A1 × B1 (for the x polarization of light,
see Table C.8, x transforms according to B1), A1 × B2 (for the y polarization)
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Table C.8. C2v group characters

C2v E C2 σv(xz) σv(yz)

A1 1 1 1 1 z x2	 y2	 z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x	Ry xz
B2 1 −1 −1 1 y	Rx yz

and A1 × A1 (for the z polarization). We calculate the characters of A1 × B1 by
multiplying 1 by

1 −1 1 −1 	

and checking in Table C.8 that these correspond to B1 (it has to be like this, because
the characters of A1 are all equal to 1), i.e. A1 × B1 = B1. Similarly, even without
immediate checking, we see that A1 ×B2 = B2 and A1 ×A1 =A1. In this way the
following allowed transitions from the ground state (A1) have been predicted:

for polarization along x: A1 → B1
for polarization along y: A1 → B2
for polarization along z: A1 →A1.

This agrees with fkl 	= 0 values of Table C.7.
Now we are able to compare the spectrum for pyrazine and for its monocation,

Table C.7. Attaching a proton to the pyrazine (creating its monocation) does not
look like something that would ruin the UV-VIS spectrum. We might expect that
the frequencies of the bands, even their intensities should be somehow similar in
both molecules. As we can see from the Table, the frequencies are similar indeed.
For both molecules there are forbidden (fkl = 0) and allowed (fkl 	= 0) transitions.
Note that what is allowed for the pyrazine is also allowed for its cation, the light po-
larization coincides, even the values of fkl are similar (we have taken into account
that the transition to B1u in pyrazine with frequency 49800 cm−1 corresponds to
the transition to A1 in the monocation with frequency 49720 cm−1). In the mono-
cation there are some additional transitions allowed: to B1 and to B2. This is quite
understandable, because the number of symmetry operations for the monocation
is smaller, and the higher molecular symmetry the more numerous are forbidden
transitions. If a molecule had no symmetry operations at all (except of course the
identity symmetry), then all transitions would be allowed.

Thus, practically with zero effort, we find the selection rules in UV-VIS for any
molecule we want.

Selection rules in IR and Raman spectra

The selection rules derived above pertain to electronic transitions, when the posi-
tions of the nuclei are fixed in space. Now a vibrational excitation of the molecule
will be considered, while the electronic state is assumed to be unchanged. The vi-
brations of a molecule are related to its vibrational levels (each corresponding to
an irreducible representation) and the corresponding vibrational wave functions,
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Fig. C.6. Small amplitude harmonic vibrations of a molecule (N atoms) are described by 3N − 6 in-
dependent harmonic oscillators (normal modes). Each normal mode is characterized by an irreducible
representation. A diagram shows the vibrational energy levels of three normal modes corresponding to
the irreducible representations �1	�2	�3� The modes have different frequencies, hence the interlevel
separations are different for all of them (but equal for a given mode due to the harmonic potential).
On the right-hand side all these levels are shown together.

and the IR spectrum results from transitions between such levels. Fig. C.6 shows
the energy levels of three normal modes.

In the harmonic approximation the problem of small amplitude vibrations
(Chapters 6 and 7) reduces to the 3N − 6 normal modes (N is the number of
atoms in the molecule). Each of the normal modes may be treated as an indepen-
dent harmonic oscillator. A normal mode moves all the atoms with a certain fre-
quency about their equilibrium positions in a concerted motion (the same phase).
The relative deviations (i.e. the ratios of the amplitudes) of the vibrating atoms
from equilibrium are characteristic for the mode, while the deviation itself is ob-
tained from them by multiplication by the corresponding normal mode coordinate
Q ∈ (−∞	∞). The value Q = 0 corresponds to the equilibrium positions of all
the atoms, Q and −Q correspond to two opposite deviations of any atom from its
equilibrium position.

Each normal mode belongs to an irreducible representation of the symmetry
group of the molecule. What does it really mean? In any mode the displacements
of the equivalent atoms from equilibrium have the same absolute value, although
they may differ in sign.
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We assume that small atomic deviations satisfy the symmetry requirements
of the symmetry group of the molecule (valid for all atoms in equilibrium po-
sitions) and transform according to the irreducible representation, to which
the normal mode belongs. Squaring the deviations destroys information
about their signs, i.e. the absolute values of the deviations of the equivalent
atoms are the same. This means that the squares of deviations transform
according to the fully symmetric representation of the group.

To establish the vibrational selection rules, let us first define the vibrational
states of 3N − 6 harmonic oscillators (normal modes). The ground state of the
system is no doubt the state in which every normal mode i is in its ground state,
ψi	0. The ground-state wave function of the i-th normal mode reads as (p. 166)

ψi	0 =N0 exp
(−aiQ2

i

)

	 (C.29)

where ai > 0 is a constant, and Qi is the normal mode coordinate. Whatever this
normal mode is, the wave function contains the square of Qi, i.e. the sign of the
deviations of the equivalent atoms is irrelevant.

The squares of the deviations, and therefore function ψi	0 itself, transform
independently of i.

Let us denote this fully symmetric irreducible representation by A1. The wave-
function of the first excited state of a normal mode has the form (p. 166)

ψi	1 =N1Qi exp
(−aiQ2

i

)

(C.30)

and we see that ψi	1 transforms exactly as the coordinate Qi does, i.e. according to
the irreducible representation to which the normal mode belongs (because Q2

i in
the exponent and therefore the exponent itself both belong to the fully symmetric
representation). In the harmonic approximation the total vibrational wavefunction
of the system of 3N − 6 normal (i.e. independent) oscillators can be written as:

ψosc
0 =ψ1	0ψ2	0ψ3	0 � � �ψ3N−6	0	 (C.31)

the zeros in the indices mean that all the modes are in their ground states. This
means that ψosc

0 transforms according to the representation being the direct prod-
uct A1×A1×A1×· · ·×A1 =A1 (a banality, all the characters of A1 are equal 1).
Now let us focus on the excited states of the 3N−6 vibrational modes. The excited
states may be quite complex, but the most important (and the simplest) are those
with all the normal modes in their ground states, except a single mode that is in
its first excited state. A transition from the many-oscillator ground state to such an
excited state is called a fundamental transition. The intensities of the fundamentalfundamental

transition transitions are by at least one order of magnitude larger than the others. This is
why we will focus on the selection rules for such transitions. Let us take one such
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singly excited state (with the first mode excited):

ψosc
1 =ψ1	1ψ2	0ψ3	0 � � �ψ3N−6	0� (C.32)

The function ψ1	1 corresponding to the first excited state transforms according
to the irreducible representation �, to which the normal mode 1 belongs. Thus,
ψosc

1 transforms according to � × A1 × A1 × A1 × · · · × A1 = �, i.e. it belongs
to the same irreducible representation as ψ1	1. Of course, if the only excited mode
were the i-th one, then the many-oscillator wavefunction would belong to the same
irreducible representation as the wavefunction of the particular oscillator does. We
will need this result later.

IR selection rules. Let us consider a molecule with a fixed position in a Cartesian
coordinate system. To excite the molecule, IR light (because the separation of the
vibrational levels corresponds to the infrared region) is used, which is polarized
along the x axis. Theory of electromagnetism says the transition integral42 decides
the intensity of the absorption

∫

ψosc
0 μ̂xψ

osc
1 dτ	 (C.33)

where μ̂x stands for the dipole moment component x. The selection rules estab-
lish which integrals of this kind will be zero for symmetry reasons. To this end we
need information about the irreducible representations to which ψosc

0 	 μ̂x	 ψ
osc
1

belong.43 Since ψosc
0 transforms according to A1, for the integral to survive, the

function ψosc
1 has to belong to the same irreducible representation as μ̂x (and

therefore x itself). We showed above that ψosc
1 belongs to the same irreducible

representation to which the normal mode 1 belongs. In other words, the rule is:

SELECTION RULE IN IR
the transition from the ground state is allowed for those normal modes that
transform as x, where x is the direction of light polarization, and similarly
for light polarization along y and z.

Raman selection rules. The physics of Raman spectra44 is different: rather than
direct absorption this is light scattering (in the UV-VIS region) on molecules. It
turns out, that beside the light the source is emitting, we also detect quanta of
energy lower or higher by hν, where ν is the vibrational frequency of the molecule.

42The integration goes over the coordinates of the nuclei.
43We are going to analyze the direct product of these three representations. If it contains the fully

symmetric representation, the integral is not zero.
44Chandrasekhar Venkata Raman (1888–1970), Indian physicist, professor at the University of Cal-

cutta and at the Indian Scientific Institute in Bangalore. In 1928 Raman discovered light scattering that
is accompanied by a change of frequency (by frequency of the molecular vibrations). Raman received
the Nobel prize in 1930 “for his work on the scattering of light and for the discovery of the effect named
after him”.
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For the Raman scattering to be non-zero, at least one of the following integrals
should be non-zero

∫

ψosc
0 α̂qq′ψ

osc
1 dτ	 (C.34)

where α̂qq′ with q	q′ = x	 y	 z is a component of the polarizability tensor which
transforms as one of the following (cf. eq. (12.40), p. 636): qq′ = x2, y2, z2, xy ,
xz, yz or their linear combinations (this information is available in the tables of
characters). Identical reasoning leads to the conclusion that

the normal mode excited in a fundamental transition has to belong to the
same irreducible representation as the product qq′.

It remains to be seen to which irreducible representations the normal modes be-
long. The procedure consists of two stages.

Stage 1. First, the global Cartesian coordinate system is chosen, Fig. C.7. In
this system we draw the equilibrium configuration of the molecule, with numbered
atoms. A local Cartesian coordinate system is located on each atom with axes par-
allel to the axes of the global coordinate system. For each atom, we draw the arrows
of its displacements along x, y and z, oriented towards the positive values (alto-
gether 3N displacements), assuming that the displacements of equivalent atoms
have to be the same. When symmetry operations are applied, these displacements
transform into themselves45 and therefore form a basis set of a (reducible) repre-
sentation � of the symmetry group of the molecule (in its equilibrium position).
This representation will be decomposed into the irreducible representations.

Stage 2. The reducible representation describes the genuine (internal) vibra-
tions as well as the six apparent vibrations (three translations and three rotations).
The apparent vibrations correspond to those irreducible representations that are
associated to x, y , z (translations) and Rx, Ry , Rz (rotations). We know from the
corresponding table of characters what the later ones are. Summing up: the re-
ducible representation mentioned above has to be decomposed into irreducible
representations. The decomposition yields � = a(�1)�1 + a(�2)�2 + a(�3)�3 � � � .
From this decomposition we have to subtract (in order to eliminate the appar-
ent vibrations) all the irreducible representations the x	 y , z, Rx	 Ry and Rz be-
long.

After these two stages we are left with the number of the irreducible represen-
tations which pertain to the genuine vibrations.46 Only after this can we establish
the vibrational selection rules according to the procedure used before. All this will
be shown by a simple example of the carbonate anion CO2−

3 that in its equilibrium
configuration corresponds to the D3h symmetry group, Fig. C.7.

45For example, a displacement of an atom along x under a symmetry operation turns out to be a
displacement of another equivalent atom.
46Rather internal motions. Note that some of these genuine vibrations may correspond to rotations of

the functional groups in the molecule.
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Fig. C.7. The carbonate anion CO2−
3 , the

coordinate system used and the versors de-
scribing the displacements of the atoms.

Example 15. IR and Raman spectra of the carbonate anion. To decompose a re-
ducible representation into irreducible ones, we do not need the reducible rep-
resentation be given in full details. It is sufficient to know its characters (p. 920).
These characters are easy to deduce by considering what happens to the displace-
ment vectors along xi, yi, zi (for atom i) under all the symmetry operations. What
will greatly simplify our task is that only the diagonal elements of the matrices of
the reducible representation contribute to the characters. How it looks in practice
is shown in Table C.9.

Thus, the characters of the reducible representation have been found. To de-
compose the representation, we have to know the table of characters for the D3h
symmetry group, Table C.10.

Let us write (in the same order as in Table C.10) the characters of the reducible
representation just found:

12 0 −2 4 −2 2�

Now, let us find (p. 920) how many times [a(α)] the irreducible representa-
tion α is present in the reducible representation (the sum over classes: number
of operations in class × the calculated character × the character of irreducible
representation):

a
(

A′
) = 1

12
[1× 12× 1+ 2× 0× 1+ 3× (−2)× 1+ 1× 4× 1+ 2× (−2)× 1

+ 3× 2× 1] = 1�

Similarly, we find (only needing to know how to multiply such numbers as 1	2	3)
that

a(A)= 1	 a
(

E′
)= 3	 a

(

A′′1
)= 0	 a

(

A′′2
)= 2	 a(E)= 1�

This means that the reducible representation in question decomposes into

�=A′1 +A′2 + 3E′ + 2A′′2 +E′′� (C.35)
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Table C.9.

Class The character of the corresponding matrix

E χ(E)= 12
Justification: each versor transforms into itself. Hence each diagonal element is equal to 1,
and the number of them is equal to 3 times the number of atoms = 12

2C3 χ(C3)= 0
Justification: 0 from the oxygens, because they transform into other oxygens +1(from z4)+
cos 120◦(from x4)+ cos 120◦(from y4)= 0

3C2 χ(C2)=−2
Justification: it is sufficient to consider only one of the operations of the class – others will
have the same character. Let us take the rotation about the C2 axis going through O1 and C.
Then the only unit vectors that transform into themselves (eventually changing sign – then
the contribution to the character is −1) are those related to O1 and C. We have χ(C2) =
−1(from z4)+ (−1)(from z1)− 1(from x1)− 1(from x4)+ 1(from y1)+ 1(from y4)=−2

σh χ(σh)= 4
Justification: the contribution from each atom will be the same, i.e. χ will be equal to
4 times the contribution from a single atom, the latter equals: −1(from z) + 1(from x) +
1(from y)= 1

2S3 χ(S3)=−2
Justification: only C gives a contribution, which is equal to: −1(from z4) − 1

2 (from x4) −
1
2 (from y4)=−2

3σv χ(σv)= 2
Justification: Let us take only a single operation from the class, the one, which represents the
reflection in the plane going through O1 and C4. Then the contributions to χ are the same
for both atoms, and one gives: −1(from x)+ 1(from z)+ 1(from y)= 1.

Table C.10. Characters of the irreducible representations of symmetry group D3h

D3h E 2C3 3C2 σh 2S3 3σv

A′1 1 1 1 1 1 1 x2 + y2	 z2

A′2 1 1 −1 1 1 −1 Rz

E′ 2 −1 0 2 −1 0 x	 y x2 − y2	 xy

A′′1 1 1 1 −1 −1 −1
A′′2 1 1 −1 −1 −1 1 z

E′′ 2 −1 0 −2 1 0 Rx	 Ry xz	 yz

From the table of characters, we see that the apparent vibrations (see the irre-
ducible representations corresponding to x	 y	 z	 Rx	 Ry	 Rz) belong to A′′2, E′,
A′2, E′′. After subtracting them from �, we obtain the irreducible representations
that correspond to the genuine vibrations:

A′1	 A′′2	 2E′	

i.e. one vibration of symmetry A′1 (and a certain frequency ν1), two vibrations (each
doubly degenerate) of symmetry E′ (they differ by frequency ν3 	= ν4) and one
vibration of A′′2 symmetry (corresponding to frequency ν2).



4 Integrals important in spectroscopy 945

SELECTION RULES FOR IR:
Therefore, we expect the following selection rules for the fundamental tran-
sitions in the IR spectrum for the CO2−

3 anion:

1. x and y belong to representation E′, and therefore frequencies ν3 and ν4
are active in IR;

2. z belongs to representation A′′2, and therefore frequency ν2 is active in
IR.

SELECTION RULES FOR RAMAN SPECTRA
For the Raman spectra we expect the following selection rules. The vibra-
tions with the frequency will be active:

1. ν1, because x2 + y2 and z2 belong to A′1;
2. ν3 and ν4, because x2 − y2 and xy belong to E′,

while the vibration of the frequency ν2 will be inactive in Raman spectroscopy,
because none of the polarizability components (symbolized by x2	 y2, etc.) belongs
to A′′2.

The results are collected in Table C.11 (sign “+” = active vibration, sign “–”
= inactive vibration, the polarization of the light is shown in parentheses).

As seen from Table C.11, in case of the carbonate anion the vibration ν1 is inac-
tive in IR, but active in Raman spectroscopy, while the opposite is true for ν2. The
vibrations with frequencies ν3 and ν4 are active both in IR and in Raman spectra.

EXCLUSION RULE
If the molecule under study has a centre of symmetry, the exclusion rule
is valid, i.e. the vibrations that are active in IR are inactive in the Raman
spectrum, and vice versa.

This follows from the fact that, in this case, x	 y	 z belong to different irreducible
representations than x2	 y2	 z2	 xy	 xz	 yz. Indeed, the x	 y	 z are antisymmet-
ric with respect to the inversion operation, whereas x2	 y2	 z2	 xy	 xz	 yz or
their combinations are symmetric with respect to inversion. This guarantees that
they belong to different irreducible representations, therefore for a molecule with

Table C.11. Transitions in CO2−
3 active (+) and inactive (−)

in IR and in Raman spectra

Representation ν IR (polarization) Raman

A′1 ν1 − +
A′′2 ν2 + (z) −
E′ ν3 + (circular) +
E′ ν4 + (circular) +
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a centre of inversion, the vibrations active in IR are inactive in Raman spectra and
vice versa.

When do the conclusions drawn from group theory fail?

When deriving the selection rules the following assumptions have been made:

• the molecule is isolated,
• elements are represented by the same isotope,
• the molecule is in a stationary state,
• the vibrations have small amplitudes,
• the vibrations are harmonic,
• the electromagnetic field interacts with the molecule only through the electric

field-molecule interaction,
• in the interaction of the molecule with the electromagnetic field only what are

called the dipole transitions are involved.47

However, in practice the molecule is never isolated. In particular, the interac-
tions it undergoes in the liquid or solid state are sufficiently strong to deform the
molecule. As a result, we have to do (especially in a liquid) with a population of
molecules, each in a different geometry, usually devoid of any particular symmetry
(for a single molecule this means a non-stationary state), although the molecule is
not far away from perfect symmetry (“broken symmetry”).

Suppose for a while that the molecule under consideration is indeed isolated.
In a substance we usually have several isotopomers, with different distributions of
isotopes in the molecules. In most cases this also means broken symmetry. Broken
symmetry means that the selection rules are violated.

In practice, broken symmetry means that the selection rules cause only a
small intensity of forbidden transitions with respect to allowed transitions.

When considering electronic transitions, we assumed that the molecule stays in
its equilibrium geometry, often of high symmetry. This may be the most probable
configuration,48 but the vibrations and rotations deform it. An electronic excitation
is fast, and usually takes place with a molecular geometry that differs slightly from
the most probable and most symmetric one. This will cause a transition, forbidden
for perfectly symmetric geometry, to have a non-negligible intensity.

Deriving the selection rules for IR and Raman spectra, we assumed that the
equivalent atoms can differ only by the sign of the deviation from the equilibrium
position, but its absolute value is the same. This is how it would be for a harmonic

47That is, the electric field of the electromagnetic wave within the molecule is assumed to be homoge-
neous. Then the only term in the Hamiltonian related to the light-molecule interaction is −μ̂E , where
μ̂ stands for the dipole moment operator of the molecule and E is the electric field intensity.
48The maximum of the ground-state probability density for the harmonic oscillator indeed corresponds

to the equilibrium geometry. This is why the selection rules work at all (although in an approximate
way).
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oscillator. An anharmonicity therefore introduces another reason why a (harmon-
ically) forbidden transition will have non-negligible intensity.

The electromagnetic field has an electric and magnetic component. The selec-
tion rules we have derived have not taken into account the presence of the mag-
netic field. Taking into account the magnetic field introduces some additional selec-
tion rules. Also, the wavelength of an electromagnetic wave in the UV-VIS region
is of the order of thousands of Å, whereas the length of the molecule is usually
of the order of a few Å. This means that the assumption that the electric field of
the electromagnetic wave is homogeneous looks good, but in any case the field is
not perfectly homogeneous. The deviations will be small, but non-zero. Taking this
into account by including further terms besides −μ̂E , we obtain the interaction of
the electric field gradient with the quadrupole moment of the molecule, as well as
further terms. This also weakens the selection rules.

Despite these complications, group theory allows for understanding the basic fea-
tures of molecular spectra. It sometimes works even if the molecule being studied has
no symmetry at all, because of a substituent that interferes. Some electronic or vibra-
tional excitations are of a local spatial character and pertain to a portion of the mole-
cule that is (nearly) symmetric. Due to this some optical transitions that are absolutely
allowed, because the molecule as a whole does not have any symmetry,49 will still have
a very low intensity.

49But they would be forbidden if the portion in question represented a separate molecule and were
symmetric.



D. A TWO-STATE MODEL

The Schrödinger equation Ĥψ= Eψ is usually solved by expanding the unknown
wave function ψ in a series1 of complete basis set {φi}Ni=1 of states φi, where N
in principle equals ∞ (instead in practice we end up with a chosen large value
of N). The expansion gives Ĥ

∑

j cjφj = E
∑

j cjφj , or
∑

j cj(Ĥφj − Eφj) = 0�
By multiplying this equation successively by φ∗i , i= 1	2	 � � � 	N , and integrating we
obtain a set of N linear equations for the unknown coefficients2 ci:

∑

j

cj(Hij −ESij)= 0	

where the Hamiltonian matrix elements Hij ≡ 〈φi|Ĥφj〉, and the overlap integrals
Sij ≡ 〈φi|φj〉� The summation going to infinity makes impossible any simple insight
into the physics of the problem. However, in many cases what matters most are only
two states of comparable energies, while other states, being far away on the energy
scale, do not count in practice (have negligible cj). If indeed only two states were
in the game (the two-state model), the situation could be analyzed in detail. The
conclusions drawn are of great conceptual (and smaller numerical) importance.

For the sake of simplicity, in further analysis the functions φj will be assumed
normalized and real.3 Then, for N = 2 we have H12 = 〈φ1|Ĥφ2〉 = 〈Ĥφ1|φ2〉 =
〈φ2|Ĥφ1〉 = H21, and all Hij are real numbers (in most practical applications
H12	H11	H22 
 0). The overlap integral will be denoted by S ≡ 〈φ1|φ2〉 =
〈φ2|φ1〉� After introducing the abbreviation h≡H12 we have

c1(H11 −E)+ c2(h−ES) = 0	

c1(h−E)+ c2(H22 −ES) = 0�

A non-trivial solution of these secular equations exists only if the secular deter-
minant satisfies

∣
∣
∣
∣

H11 −E h−ES
h−ES H22 −E

∣
∣
∣
∣
= 0�

1As a few examples just recall the CI, VB (Chapter 10), and MO (Chapter 8) methods.
2The same set of equations (“secular equations”) is obtained after using the Ritz method (Chapter 5).
3This pertains to almost all applications. For complex functions the equations are only slightly more

complicated.
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After expanding the determinant, we obtain a quadratic equation for the un-
known energy E:

(H11 −E)(H22 −E)− (h−ES)2 = 0

with its two solutions4

E± = 1
1− S2

{

H11 +H22

2
− hS

∓
√
(
H11 −H22

2

)2
+ (h− S√H11H22

)2+2hS
(
√

H11H22− H11 +H22

2

)}

�

After inserting the above energies into the secular equations we obtain the fol-
lowing two sets of solutions c1 and c2:

(
c1

c2

)

±
= 1
(h−H11S)

{

H11 −H22

2
±
√
(
H11 −H22

2

)2
+ (h−H11S)(h−H22S)

}

�

Using the abbreviations

�= H11 −H22

2
	

and Ear = (H11+H22)/2 for the arithmetic mean, as well as Egeom =√H11H22 for
the geometric mean, we get a simpler formula for the energy

E± = 1
1− S2

{

Ear − hS ∓
√

�2 + (h− SEgeom)2 + 2hS(Egeom −Ear)
}

�

Now, let us consider some important special cases.

Case I. H11 =H22 and S = 0 (φ1 and φ2 correspond to the same energy and do
not overlap).

Then, �= 0, Ear =Egeom =H11 and we have

E± =H11 ± h	
(
c1

c2

)

±
=±1�

For h< 0 this means that E+ corresponds to stabilization (with respect to φ1 or
φ2 states), while E− corresponds to destabilization (by the same value of |h|). The
wave functions contain equal contributions of φ1 and φ2 and (after normalization)
are

4It is most practical to use Mathematica coding:
Solve[(H11-EdS)*(H22-EdS)-(h-EdS*S)^2==0,EdS]
Solve[(H11-EdS)*(H22-EdS)-(h-EdS*S)^2==0
&&c1*(H11-EdS)+c2*(h-EdS*S)==0
&&c1*(h-EdS*S)+c2*(H22-EdS)==0,{c1,c2},{EdS}]
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ψ+ = 1√
2
(φ1 +φ2)	 ψ− = 1√

2
(φ1 −φ2)�

Case II. H11 =H22 and S 	= 0 (φ1 and φ2 correspond to the same energy, but
their overlap integral is non-zero).

Then,

E± = H11 ± h
1± S 	

(
c1

c2

)

±
=±1�

Here also E+ corresponds to stabilization, and E− to destabilization (because of
the denominator, this time the destabilization is larger than the stabilization). The
wave functions have the same contributions ofφ1 andφ2 and (after normalization)
are equal to

ψ+ = 1√
2(1+ S)(φ1 +φ2)	 ψ− = 1√

2(1− S)(φ1 −φ2)�

Case III. H11 	=H22 and S = 0 (φ1 and φ2 correspond to different energies and
the overlap integral equals zero).

This time

E± = Ear ∓
√

�2 + h2	
(
c1

c2

)

±
= 1
h

(

�±
√

�2 + h2
)

� (D.1)

Here also the state of E+ means stabilization, while E− corresponds to destabi-
lization (both effects are equal).

Let us consider a limiting case when the mean energy in state φ1 is much lower
than that in φ2 (H11 �H22), and in addition �

h � 0. For the state with energy E+
we have c1

c2
� 2�

h , i.e. c1 is very large, while c2 is very small (this means that ψ+ is
very similar to φ1). In state ψ− the same ratio of coefficients equals c1

c2
� 0	 which

means a domination of φ2�

Thus, if two states differ very much in their energies (or h is small, which
means the overlap integral is also small), they do not change in practice (do
not mix together).

This is why at the beginning of this appendix, we admitted only φ1 and φ2 of
comparable energies.



E. DIRAC DELTA FUNCTION

Paul Dirac introduced some useful formal tools (for example his notation for inte-
grals and operators, p. 19) including an object then unknown to mathematicians,
which turned out to be very useful in physics. This is called the Dirac delta function
δ(x). We may think of it as of a function1

• which is non-zero only very close to x= 0, where its value is +∞;
• the surface under its plot is equal to 1, which is highlighted by a symbolic equa-

tion
∫ ∞

−∞
δ(x)dx= 1�

When we look at a straight thin reed protruding from a lake (the water level=
0), then we have to do with something similar to the Dirac delta function. The only
importance of the Dirac delta function lies in its specific behaviour, when integrat-
ing the product f (x)δ(x) and the integration includes the point x= 0, namely:

∫ b

a
f (x)δ(x)dx= f (0)� (E.1)

This result is well understandable: the integral means the surface under the
curve f (x)δ(x), but since δ(x) is so concentrated at x = 0, then it pays to take
seriously only those f (x) that are “extremely close” to x = 0. Over there f (x)
is equal to f (0). The constant f (0) can be taken out of the integral, which itself
therefore has the form

∫∞
−∞ δ(x)dx= 1. This is why we get the right hand side of

the previous equation. Of course, δ(x− c) represents the same narrow peak, but
at x= c, therefore, for a
 c 
 b we have

∫ b

a
f (x)δ(x− c)dx= f (c)� (E.2)

1 APPROXIMATIONS TO δ(x)

The Dirac delta function δ(x) can be approximated by many functions, which de-
pend on a certain parameter and have the following properties:

1More precisely this is not a function, but what is called a distribution. The theory of distributions was
developed by mathematicians only after Dirac.

951



952 E. DIRAC DELTA FUNCTION

• when the parameter tends to a limit, the values of the functions for x distant
from 0 become smaller and smaller, while for x close to zero they get larger and
larger (a peak close to x= 0);

• the integral of the function tends to (or is close to) 1 when the parameter ap-
proaches its limit value.

Here are several functions that approximate the Dirac delta function:

• a rectangular function centred at x = 0 with the surface of the rectangle equal
to 1 (a→ 0):

f1(x;a)=
⎧

⎨

⎩

1
a

for − a
2


 x
 a

2
	

0 for other;

• a (normalized to 1) Gaussian function2 (a→∞):

f2(x;a)=
√

a

π
e−ax2;

• a function:

f3(x;a)= 1
π

lim
sinax
x

when a→∞;

• the last function is (we will use this when considering the interaction of matter
with radiation):3

f4(x;a)= 1
πa

lim
sin2(ax)

x2 when a→∞�

2Let us see how an approximation f2 =
√
a
π e
−ax2

does the job of the Dirac delta function when

a→∞. Let us take a function f (x)= (x− 5)2 and consider the integral

∫ ∞
−∞

f (x)f2(x)dx=
√

a

π

∫ ∞
−∞

(x− 5)2e−ax2
dx=

√

a

π

(
1

4a

√
π

a
+ 0+ 25

√
π

a

)

= 1
4a
+ 25�

When a→∞, the value of the integral tends to 25= f (0), as it has to be when the Dirac delta function
is used instead of f2.

3The function under the limit symbol may be treated as A[sin(ax)]2 with amplitude A decaying as
A = 1/x2, when |x| → ∞. For small values of x, the sin(ax) changes as ax (as seen from its Taylor
expansion), hence for small x the function changes as a2. This means that when a→∞, there will be a
dominant peak close to x= 0, although there will be some smaller side-peaks clustering around x= 0.
The surface of the dominating peak may be approximated by a triangle of base 2π/a and height a2, and
we obtain its surface equal to πa, hence the “approximate normalization factor” 1/(πa) in f4.
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2 PROPERTIES OF δ(x)

Function δ(cx)

Let us see what δ(cx) is equal to:

δ(cx) = lim
a→∞

√

a

π
exp
(−ac2x2)= lim

a→∞

√

ac2

πc2 exp
(−ac2x2)

= 1
|c| lim

ac2→∞

√

ac2

π
exp
(−ac2x2)= 1

|c|δ(x)�

Therefore,

δ(cx)= 1
|c|δ(x)� (E.3)

Dirac δ in 3D

The 3D Dirac delta function is defined in the Cartesian coordinate system as

δ(r)= δ(x)δ(y)δ(z)	
where r = (x	 y	 z). Then, δ(r) denotes a peak of infinite height at r = 0, and
δ(r−A) denotes an identical peak at the position shown by the vector A from
the origin. Each of the peaks is normalized to 1, i.e. the integral over the whole
3D space is equal to 1. This means that the formula (E.1) is satisfied, but this time
x ∈R3.

3 AN APPLICATION OF THE DIRAC DELTA FUNCTION

When may such a concept as the Dirac delta function be useful? Here is an exam-
ple. Let us imagine that we have (in 3D space) two molecular charge distributions:
ρA(r) and ρB(r). Each of the distributions consists of an electronic part and an
nuclear part.

How can such charge distributions be represented mathematically? There is no
problem in mathematical representation of the electronic parts, they are simply
some functions of the position r in space: −ρel	A(r) and −ρel	B(r) for each mole-
cule. The integrals of the corresponding electronic distributions yield, of course,
−NA and−NB (in a.u.), or minus the number of the electrons (minus, because the
electrons carry negative charge). How do we write the nuclear charge distribution
as a function of r? There is no way to do it without the Dirac delta function. With
the function our task is simple:

ρnucl	A(r) =
∑

a∈A
ZA	aδ(r− ra)	
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ρnucl	B(r) =
∑

b∈B
ZB	bδ(r− rb)�

We put delta functions with the “intensities” equal to the nuclear charges in the
nuclear positions . For neutral molecules

∫

ρnucl	A(r)d3r and
∫

ρnucl	B(r)d3r have
to give +NA and +NB, respectively. Indeed, we have

∫

ρnucl	A(r)d3r =
∑

a∈A
ZA	a

∫

δ(r− ra)d3r=
∑

a∈A
ZA	a =NA	

∫

ρnucl	B(r)d3r =
∑

b∈B
ZB	b

∫

δ(r− rb)d3r=
∑

b∈B
ZB	b =NB�

Thus the Dirac delta function enables us to write the total charge distributions
and their interactions in an elegant way:

ρA(r) = −ρel	A(r)+ ρnucl	A(r)	

ρB(r) = −ρel	B(r)+ ρnucl	B(r)�

To demonstrate the difference, let us write the electrostatic interaction of the
two charge distributions with and without the Dirac delta functions. The first gives
the following expression

Einter =
∑

a∈A

∑

b∈B

ZA	aZB	b
|ra − rb| −

∑

a∈A

∫

ρel	B(r)
ZA	a
|r− ra| d3r

−
∑

b∈B

∫

ρel	A(r)
ZB	b
|r− rb| d3r+

∫ ∫
ρel	A(r)ρel	B(r

′)
|r− r′| d3rd3r′�

The four terms mean the following interactions respectively: nuclei of A – nuclei
of B, nuclei of A – electrons of B, electrons of A – nuclei of B, electrons of A –
electrons of B. With the Dirac delta function the same expression reads:

Einter =
∫
ρA(r)ρB(r

′)
|r− r′| d3rd3r′�

The last expression comes from the definition of the Coulomb interaction and
the definition of the integral.4

No matter how the charge distributions looks, whether they are diffuse (the
electronic ones) or point-like (those of the nuclei), the formula is always the same.

4Of course, the two notations are equivalent, because inserting the total charge distributions into the
last integral as well as using the properties of the Dirac delta function, gives the first expression for
Einter.



F. TRANSLATION VS MOMENTUM
AND ROTATION VS ANGULAR
MOMENTUM

It was shown in Chapter 2 that the Hamiltonian Ĥ commutes with any translation
(p. 61) or rotation (p. 63) operator, denoted as Û :

[

Ĥ	 Û
]= 0� (F.1)

1 THE FORM OF THE Û OPERATOR

Below it will be demonstrated for κ, meaning first a translation vector, and then a
rotation angle about an axis in 3D space, that operator Û is of the form

Û = exp
(

− i
h̄
κ · K̂

)

	 (F.2)

where K̂ stands for a Hermitian operator (with x	 y	 z components) acting on func-
tions of points in 3D Cartesian space.

Translation and momentum operators

Translation of a function by a vector �r just represents function f in the coordinate
system translated in the opposite direction, i.e. f (r− �r)	 see Fig. 2.3 and p. 62.
If vector �r is infinitesimally small, then, in order to establish the relation between
f (r− �r) and f (r), it is of course sufficient to know the gradient of f (neglecting,
obviously, the quadratic and higher terms in the Taylor expansion):

f (r−�r)= f (r)−�r · ∇f = (1−�r · ∇)f (r)� (F.3)

We will compose a large translation of a function (by vector T) from a number
of small increments �r = 1

N T , where N is a veeery large natural number. Such
a tiny translation will be repeated N times, thus recovering the translation of the
function by T . In order for the gradient formula to be exact, we have to ensure N
tending to infinity. Recalling the definition exp(ax)= limN→∞(1+ a

x)
N , we have:

Û(T)f (r) = f (r− T)= lim
N→∞

(

1− T

N
∇
)N

f(r)

= exp(− T·∇)f = exp
(

− i
h̄
T · p̂

)

f (r)	

955
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where p̂=−ih̄∇ is the total momentum operator (see Chapter 1). Thus, for trans-
lations we have κ≡ T and K̂≡ p̂�

Rotation and angular momentum operator

Imagine a function f (r) of positions in 3D Cartesian space (think, e.g., about a
probability density distribution centred somewhere in space). Now suppose the
function is to be rotated about the z axis (the unit vector showing its direction is e)
by an angle α, so we have another function, let us denote it by Û(α; e)f (r)�What is
the relation between f (r) and Û(α; e)f (r)? This is what we want to establish. This
relation corresponds to the opposite rotation (i.e. by the angle−α, see Fig. 2.1 and
p. 58) of the coordinate system:

Û(α; e)f (r)= f (U−1r
)= f (U(−α; e)r)	

where U is a 3 × 3 orthogonal matrix. The new coordinates x(α)	 y(α)	 z(α) are
expressed by the old coordinates x	 y	 z through1

r′ ≡
⎛

⎝

x(α)
y(α)
z(α)

⎞

⎠=
⎛

⎝

cosα sinα 0
− sinα cosα 0

0 0 1

⎞

⎠

⎛

⎝

x
y
z

⎞

⎠ �

Therefore the rotated function Û(α; e)f (r) = f (x(α)	 y(α)	 z(α))� The func-
tion can be expanded in the Taylor series about α= 0:

Û(α; e)f (r) = f (x(α)	 y(α)	 z(α))= f (x	 y	 z)+ α
(
∂f

∂α

)

α=0
+ · · ·

= f (x	 y	 z)+ α
(
∂x(α)

∂α

∂f

∂x
+ ∂y(α)

∂α

∂f

∂y
+ ∂z(α)

∂α

∂f

∂z

)

α=0
+ · · ·

= f (x	 y	 z)+ α
[

y
∂

∂x
− x ∂

∂y

]

f + · · ·

Now instead of the large rotation angle α, let us consider first an infinitesimally
small rotation by angle ε = α/N , where N is a huge natural number. In such a
situation we retain only the first two terms in the previous equation:

Û
(
α

N
; e
)

f (r) = f (x	 y	 z)+ α

N

[

y
∂

∂x
− x ∂

∂y

]

f (x	 y	 z)

=
(

1+ α

N

ih̄

ih̄

[

y
∂

∂x
− x ∂

∂y

])

f =
(

1+ α

N

1
ih̄

[

xp̂y − yp̂x
])

f

=
(

1− α

N

i

h̄
Ĵz

)

f�

1A positive value of the rotation angle means an anticlockwise motion within the xy plane (x axis
horizontal, y vertical, z axis pointing to us).
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If such a rotation is repeated N times, we recover the rotation of the function
by a (possibly large) angle α (the limit assures that ε is infinitesimally small):

Û(α; e)f (r) = lim
N→∞

[

Û
(
α

N
; e
)]N

f(r)= lim
N→∞

(

1− α

N

i

h̄
Ĵz

)N

f(r)

= exp
(

−iα
h̄
Ĵz

)

f = exp
(

− i
h̄
αe · Ĵ

)

f�

Thus for rotations Û(α; e)= exp(− i
h̄αe · Ĵ), and, therefore, we have κ≡ αe and

K̂≡ Ĵ .
This means that, in particular for rotations about the x	 y	 z axes (with the cor-

responding unit vectors x	y	z) we have, respectively
[

Û(α;x)	 Ĵx
] = 0	 (F.4)

[

Û(α;y)	 Ĵy
] = 0	 (F.5)

[

Û(α;z)	 Ĵz
] = 0� (F.6)

Useful relation

The relation (F.1) means that for any translation or rotation

ÛĤÛ−1 = Ĥ
and taking into account the general form of eq. (F.2) we have for any such trans-
formation a series containing nested commutators (valid for any κ)

Ĥ = ÛĤÛ−1 = exp
(

− i
h̄
κ · K̂

)

Ĥ exp
(
i

h̄
κ · K̂

)

=
(

1− i

h̄
κ · K̂+ · · ·

)

Ĥ

(

1+ i

h̄
κ · K̂+ · · ·

)

= Ĥ − i

h̄
κ · [K̂	 Ĥ]− κ2

2h̄2

[[

K̂	 Ĥ
]

	 K̂
]+ · · · 	

where each term in “+· · ·” contains [K̂	 Ĥ]� This means that to satisfy the equation
we necessarily have

[

K̂	 Ĥ
]= 0� (F.7)

2 THE HAMILTONIAN COMMUTES WITH THE TOTAL
MOMENTUM OPERATOR

In particular this means [p̂	 Ĥ] = 0, i.e.
[

p̂μ	 Ĥ
]= 0 (F.8)
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for μ= x	 y	 z. Of course, we also have [p̂μ	 p̂ν] = 0 for μ	ν = x	 y	 z.
Since all these four operators mutually commute, the total wave function is si-

multaneously an eigenfunction of Ĥ and p̂x	 p̂y	 p̂z , i.e. the energy and the mo-
mentum of the centre of mass can both be measured (without making any error)
in a space-fixed coordinate system (see Appendix I). From the definition, the mo-
mentum of the centre of mass is identical to the total momentum.2

3 THE HAMILTONIAN, Ĵ2 AND Ĵz DO COMMUTE

Eq. (F.7) for rotations means [Ĵ	 Ĥ] = 0, i.e. in particular

[

Ĵx	 Ĥ
] = 0	 (F.9)

[

Ĵy 	 Ĥ
] = 0	 (F.10)

[

Ĵz	 Ĥ
] = 0� (F.11)

The components of the angular momentum operators satisfy the following com-
mutation rules: 3

[

Ĵx	 Ĵy
] = ih̄Ĵz	

[

Ĵy 	 Ĵz
] = ih̄Ĵx	 (F.12)

[

Ĵz	 Ĵx
] = ih̄Ĵy �

2Indeed the position vector of the centre of mass is defined as RCM =
∑

i miri∑

i mi
, and after differ-

entiation with respect to time (
∑

i mi)ṘCM =∑i mi ṙi =
∑

i pi . The right-hand side represents the
momentum of all the particles (i.e. the total momentum), whereas the left is simply the momentum of
the centre of mass.

3The commutation relations can be obtained by using the definitions of the operators involved di-
rectly: Ĵx = yp̂z − zp̂y 	 etc. For example,

[

Ĵx	 Ĵy
]

f = [(yp̂z − zp̂y
)(

zp̂x − xp̂z
)− (zp̂x − xp̂z

)(

yp̂z − zp̂y
)]

f

= [(yp̂zzp̂x − zp̂xyp̂z
)− (yp̂zxp̂z − xp̂zyp̂z

)

− (zp̂yzp̂x − zp̂xzp̂y
)+ (zp̂yxp̂z − xp̂zzp̂y

)]

f

= (yp̂zzp̂x − zp̂xyp̂z
)

f − (yxp̂zp̂z − yxp̂zp̂z
)

− (z2p̂y p̂x − z2p̂xp̂y
)+ (xzp̂y p̂z − xp̂zzp̂y

)

= (yp̂zzp̂x − yzp̂xp̂z
)

f − 0− 0+ (xzp̂y p̂z − xp̂zzp̂y
)

f

= (−ih̄)2
[

y
∂f

∂x
− x ∂f

∂y

]

= ih̄Ĵzf�
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Eqs. (F.9)–(F.11) are not independent, e.g., eq. (F.11) can be derived from
eqs. (F.9) and (F.10). Indeed,

[

Ĵz	 Ĥ
] = ĴzĤ − ĤĴz
= 1
ih̄

[

Ĵx	 Ĵy
]

Ĥ − 1
ih̄
Ĥ
[

Ĵx	 Ĵy
]

= 1
ih̄

[

Ĵx	 Ĵy
]

Ĥ − 1
ih̄

[

Ĵx	 Ĵy
]

Ĥ

= 0�

Also, from eqs. (F.9), (F.10) and (F.11) it also follows that

[

Ĵ2	 Ĥ
]= 0	 (F.13)

because from Pythagoras’ theorem Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z �

Do Ĵx	 Ĵy	 Ĵz commute with Ĵ2? Let us check the commutator [Ĵz	 Ĵ2]:
[

Ĵz	 Ĵ
2] = [Ĵz	 Ĵ2

x + Ĵ2
y + L̂2

z

]

= [Ĵz	 Ĵ2
x + Ĵ2

y

]

= ĴzĴ2
x − Ĵ2

xĴz + ĴzĴ2
y − Ĵ2

y Ĵz

= (ih̄Ĵy + ĴxĴz
)

Ĵx − Ĵx
(−ih̄Ĵy + ĴzĴx

)+ (−ih̄Ĵx + Ĵy Ĵz
)

Ĵy

− Ĵy
(

ih̄Ĵx + ĴzĴy
)

= 0�

Thus,
[

Ĵz	 Ĵ
2] = 0	 (F.14)

and also by the argument of symmetry (the space is isotropic)
[

Ĵx	 Ĵ
2] = 0	 (F.15)

[

Ĵy 	 Ĵ
2] = 0� (F.16)

Now we need to determine the set of the operators that all mutually commute.
Only then can all the physical quantities, to which the operators correspond, have
definite values when measured. Also the wave function can be an eigenfunction
of all of these operators and it can be labelled by quantum numbers, each corre-
sponding to an eigenvalue of the operators in question. We cannot choose, for these
operators, the whole set of Ĥ	 Ĵx	 Ĵy	 Ĵz	 Ĵ2	 because, as was shown above, Ĵx	 Ĵy	 Ĵz
do not commute among themselves (although they do with Ĥ and Ĵ2).
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The only way is to choose as the set of operators either Ĥ	 Ĵz	 Ĵ2 or Ĥ	 Ĵx	 Ĵ2

or Ĥ	 Ĵy	 Ĵ2� Traditionally, we choose Ĥ	 Ĵz	 Ĵ2 as the set of mutually com-
muting operators (z is known as the quantization axis).

4 ROTATION AND TRANSLATION OPERATORS DO NOT
COMMUTE

Now we may think about adding p̂x	 p̂y	 p̂z , to the above set of operators. The
operators Ĥ	 p̂x	 p̂y	 p̂z	 Ĵ2 and Ĵz do not represent a set of mutually commuting
operators. The reason for this is that [p̂μ	 Ĵν] 	= 0 for μ 	= ν, which is a consequence
of the fact that, in general, rotation and translation operators do not commute as
shown in Fig. F.1.

5 CONCLUSION

It is, therefore, impossible to make all the operators Ĥ	 p̂x	 p̂y	 p̂z	 Ĵ2 and Ĵz com-
mute in a space fixed coordinate system. What we are able to do, though, is to write
the total wave function �pN in the space fixed coordinate system as a product of
the plane wave exp(ipCM · RCM) depending on the centre-of-mass variables and
on the wave function �0N depending on internal coordinates4

�pN =�0N exp(ipCM ·RCM)	 (F.17)

which is an eigenfunction of the total (i.e. centre-of-mass) momentum operators:

p̂x = p̂CM	x	 p̂y = p̂CM	y	 p̂z = p̂CM	z�

The function �0N is the total wave function written in the centre-of-mass coor-
dinate system (a special body-fixed coordinate system, see Appendix I), in which
the total angular momentum operators Ĵ2 and Ĵz are now defined. The three op-
erators Ĥ	 Ĵ2 and Ĵz commute in any space-fixed or body-fixed coordinate system
(including the centre-of-mass coordinate system), and therefore the correspond-
ing physical quantities (energy and angular momentum) have exact values. In this
particular coordinate system: p̂= p̂CM = 0� We may say, therefore, that

in the centre-of-mass coordinate system Ĥ	 p̂x	 p̂y	 p̂z	 Ĵ
2 and Ĵz all do com-

mute.

4See Chapter 2 and Appendix I, where the total Hamiltonian is split into the sum of the centre-of-
mass and internal coordinate Hamiltonians; N is the quantum number for the spectroscopic states.
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Fig. F.1. In general, translation Û(T) and rotation Û(α;e) operators do not commute. The example
shows what happens to a point belonging to the xy plane. (a) A rotation Û(α;z) by angle α about
the z axis takes place first and then a translation Û(T) by a vector T (restricted to the xy plane)
is carried out. (b) The operations are applied in the reverse order. As we can see the results are
different (two points 1

′′
have different positions in Figs. (a) and (b)), i.e. the two operators do not

commute: Û(T)Û(α;z) 	= Û(α;z)Û(T)� This after expanding Û(T) = exp[− i
h̄
(Txp̂x + Typ̂y)] and

Û(α;z)= exp(− i
h̄
αĴz) in Taylor series, and taking into account that Tx	Ty	α are arbitrary numbers,

leads to the conclusion that [Ĵz	 p̂x] 	= 0 and [Ĵz	 p̂y ] 	= 0. Note, that some translations and rotations
do commute, e.g., [Ĵz	 p̂z] = [Ĵx	 p̂x] = [Ĵy 	 p̂y ] = 0, because we see by inspection (c,d) that any trans-
lation by T = (0	0	Tz) is independent of any rotation about the z axis, etc.



G. VECTOR AND SCALAR
POTENTIALS

Maxwell equations

The electromagnetic field is described by two vector fields: the electric field in-
tensity E and the magnetic field intensity H , both depending on position in space
(Cartesian coordinates x	 y	 z) and time t. The vectors E and H are determined
by the electric charges and their currents. The charges are defined by the chargecharge density

density function ρ(x	 y	 z	 t) such that ρ(x	 y	 z	 t)dV at time t represents the
charge in the infinitesimal volume dV that contains the point (x	 y	 z). The ve-
locity of the charge in position x	 y	 z measured at time t represents the vec-
tor field v(x	 y	 z	 t), while the current at point x	 y	 z measured at t is equal tocurrent

i(x	 y	 z	 t)= ρ(x	 y	 z	 t)v(x	 y	 z	 t)�
It turns out (as shown by James Maxwell), that H	E	ρ and i are interrelated by

the Maxwell equations (c stands for the speed of light)

∇ × E + 1
c

∂H

∂t
= 0	 (G.1)

∇ ×H − 1
c

∂E
∂t
= 4π

c
i	 (G.2)

∇ · E = 4πρ	 (G.3)

∇ ·H = 0� (G.4)

The Maxwell equations have an alternative notation, which involves two new
quantities: the scalar potential φ and the vector potential A that replace E and H :

E = −∇φ− 1
c

∂A

∂t
	 (G.5)

H = ∇ ×A� (G.6)

After inserting E from eq. (G.5) into eq. (G.1), we obtain its automatic satisfac-
tion:

∇ × E + 1
c

∂H

∂t
= ∇ ×

(

−∇φ− 1
c

∂A

∂t

)

+ 1
c

∂H

∂t

= −∇ ×∇φ− 1
c

∂∇ ×A
∂t

+ 1
c

∂H

∂t
= 0	

962
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because

∇ ×∇φ =
[
∂

∂y

(
∂φ

∂z

)

− ∂

∂z

(
∂φ

∂y

)

	
∂

∂z

(
∂φ

∂x

)

− ∂

∂x

(
∂φ

∂z

)

	
∂

∂x

(
∂φ

∂y

)

− ∂

∂y

(
∂φ

∂x

)]

= [0	0	0] = 0 (G.7)

and ∇ ×A=H .
Eq. (G.4) gives also automatically

∇ · (∇ ×A)= ∂

∂x

(
∂Az

∂y
− ∂Ay

∂z

)

+ ∂

∂y

(
∂Ax

∂z
− ∂Az

∂x

)

+ ∂

∂z

(
∂Ay

∂x
− ∂Ax

∂y

)

= 0�

Eqs. (G.2) and (G.3) transform into

∇ × (∇ ×A)+ 1
c

∂∇φ
∂t

+ 1
c2
∂2A

∂t2
= 4π

c
i	

−∇ · (∇φ)− 1
c

∂∇ ·A
∂t

= 4πρ	

which in view of the identity ∇ × (∇ × A) = ∇(∇ · A)− �A and ∇ · (∇φ) = �φ,
gives two additional Maxwell equations (besides eqs. (G.5) and (G.6))

∇
(

∇ ·A+ 1
c

∂φ

∂t

)

−�A+ 1
c2
∂2A

∂t2
= 4π

c
i	 (G.8)

�φ+ 1
c
∇ · ∂A

∂t
= −4πρ� (G.9)

To characterize the electromagnetic field we may use either E and H or the two
potentials, φ and A.

Arbitrariness of the potentials φ and A

Potentials φ and A are not defined uniquely, i.e. many different potentials lead to the
same intensities of electric and magnetic fields. If we made the following modifica-
tions in φ and A:

φ′ = φ− 1
c

∂f

∂t
	 (G.10)

A′ = A+∇f	 (G.11)

where f is an arbitrary differentiable function (of x	 y	 z	 t), then φ′ and A′ lead to
the same (see the footnote) E and H :

E ′ = −∇φ′ − 1
c

∂A′

∂t
=
(

−∇φ+ 1
c
∇ ∂f
∂t

)

− 1
c

(
∂A

∂t
+ ∂

∂t
(∇f )

)

= E	

H ′ = ∇ ×A′ = ∇ ×A+∇ ×∇f =H �
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Choice of potentials A and φ for a homogeneous magnetic field

From the second Maxwell equation (G.6), we see that, if the magnetic field H
is time-independent, we get the time-independent A. Profiting from the non-
uniqueness of A, we choose it in such a way as to satisfy (what is called the
Coulombic gauge)1Coulombic

gauge ∇ ·A= 0	 (G.12)

which diminishes the arbitrariness, but does not remove it.
Let us take the example of an atom in a homogeneous magnetic field H . Let

us locate the origin of the coordinate system on the nucleus, the choice being
quite natural for an atom, and let us construct the vector potential at position
r= (x	 y	 z) as

A(r)= 1
2
[H × r]� (G.13)

As has been shown above, this is not a unique choice, there are an infinite num-
ber of them. All the choices are equivalent from the mathematical and physical
point of view, they differ however by a peanut, the economy of computations. It
appears that this choice of A is at least a logical one. The choice is also consistent
with the Coulombic gauge (eq. (G.12)), because

∇ ·A = 1
2
∇ · [H × r] = 1

2
∇ · [H × r]

= 1
2
∇ · [Hyz− yHz	Hzx− zHx	Hxy − xHy ]

= 1
2

[
∂

∂x
(Hyz− yHz)+ ∂

∂y
(Hzx− zHx)+ ∂

∂z
(Hxy − xHy)

]

= 0	

and also with the Maxwell equations (p. 962), because

∇ ×A
= 1

2
∇ × [H × r] = 1

2
∇ · [H × r]

= 1
2
∇ × [Hyz− yHz	Hzx− zHx	Hxy − xHy ]

= 1
2

[ ∂
∂y (Hxy − xHy)− ∂

∂z (Hzx− zHx)	 ∂∂z (Hyz− yHz)− ∂
∂x(Hxy − xHy)	

∂
∂x(Hzx− zHx)− ∂

∂y (Hyz− yHz)

]

=H �

Thus, this is the correct choice.

1The Coulombic gauge, even if only one of the possibilities, is almost exclusively used in molecular
physics. The word “gauge” comes from the railway terminology referring to the different distances
between the rails.
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Practical importance of this choice

An example of possible choices of A is given in Fig. G.1.
If we shifted the vector potential origin far from the physical system under con-

sideration (Fig. G.1.b), the values of |A| on all the particles of the system would be
gigantic. A would be practically homogeneous within the atom or molecule. If we
calculated ∇ ×A=H on a particle of the system, then however horrifying it might
look, we would obtain almost 0, because ∇×Ameans the differentiation of A, and
for a homogeneous field this yields zero. Thus we are going to study the system in
a magnetic field, but the field disappeared! Very high accuracy would be needed
to calculate ∇ × A correctly as differences between two large numbers, which is
always a risky business numerically due to the cancellation of accuracies. It is there-
fore seen that the numerical results do depend critically on the choice of the origin of
A (arbitrary from the point of view of mathematics and physics). It is always better
to have the origin inside the system.

Vector potential causes the wave function to change phase

The Schrödinger equation for a particle of mass m and charge q is

− h̄
2

2m
��(r)+ V �=E�(r)	

where V = qφ with φ standing for the scalar electric potential.
The probability density of finding the particle at a given position depends on

|�| rather than � itself. This means that the wave function could be harmlessly
multiplied by a phase factor �′(r)=�(r)exp[− iq

h̄c χ(r)], where χ(r) could be any
(smooth2) function of the particle’s position r. Then we have |�| = |�′| at any r.
If �′(r) is as good as � is, it would be nice if it kindly satisfied the Schrödinger
equation like � does, of course with the same eigenvalue

− h̄
2

2m
��′(r)+ V �′(r)=E�′(r)�

Let us see what profound consequences this has. The left-hand side of the last
equation can be transformed as follows

− h̄2

2m
��′(r)+ V �′(r)

=− h̄
2

2m

[

exp
(

− iq
h̄c
χ

)

��+��exp
(

− iq
h̄c
χ

)

+ 2(∇�)
(

∇ exp
(

− iq
h̄c
χ)

)]

+ V exp
(

− iq
h̄c
χ

)

�

=− h̄
2

2m

[

exp
(

− iq
h̄c
χ

)

��+�∇
[(

− iq
h̄c

)

exp
(

− iq
h̄c
χ

)

∇χ
]

2See Fig. 2.5.
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Fig. G.1. How do we understand the arbitrariness of the vector potential A? Figs. (a), (b), (c) repre-
sent schematically three physically equivalent vector potentials A. Fig. (a) shows a section in the plane
z = 0 (axis z protrudes towards the reader from the xy plane) of the vector field A = 1

2 (H × r) with
H = (0	0	H) and H > 0� We see that vectors A become longer and longer, when we leave the origin
(where A = 0), they “rotate” counter-clockwise. Such A therefore determines H directed perpendic-
ularly to the page and oriented towards the reader. By the way, note that any shift of the potential
obtained should give the same magnetic field perpendicular to the drawing, Fig. (b). This is what we get
(Fig. (b)) after adding, according to eq. (G.11), the gradient of function f = ax+by+ c to potential A	
because A+∇f =A+ (ia+ jb)=A−R=A′ , where R=−(ia+ jb)= const� The transformation is
only one of the possibilities. If we took an arbitrary smooth function f (x	 y), e.g., with many maxima,
minima and saddle points (as in the mountains), we would deform Fig. (b) by expanding or shrinking it
like a pancake. In this way we might obtain the situation shown in Fig. (c). All these situations a,b,c are
physically indistinguishable (on condition that the scalar potential φ is changed appropriately).
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+ 2(∇�)
[(

− iq
h̄c

)

exp
(

− iq
h̄c
χ

)

∇χ
]]

+ V exp
(

− iq
h̄c
χ

)

�

=− h̄
2

2m

[

exp
(

− iq
h̄c
χ

)

��+�
(

− iq
h̄c

)[(

− iq
h̄c

)

exp
(

− iq
h̄c
χ

)

(∇χ)2

+ exp
(

− iq
h̄c
χ

)

�χ

]]

− h̄2

2m
2(∇�)

[(

− iq
h̄c

)

exp
(

− iq
h̄c
χ

)

∇χ
]

+ V exp
(

− iq
h̄c
χ

)

��

Dividing the Schrödinger equation by exp(− iq
h̄c χ) we obtain

− h̄2

2m

[

��+�
(

− iq
h̄c

)[(

− iq
h̄c

)

(∇χ)2 +�χ
]

+ 2(∇�)
[(

− iq
h̄c

)

∇χ
]]

+ V �

=E�(r)�

Let us define a vector field A(r) using function χ(r)

A(r)=∇χ(r)� (G.14)

Hence, we have

− h̄
2

2m

[

��+�
(

− iq
h̄c

)[(

− iq
h̄c

)

A2+∇A
]

+2(∇�)
[(

− iq
h̄c

)

A

]]

+V �=E�(r)	

and introducing the momentum operator p̂=−ih̄∇ we obtain

1
2m

[

p̂2�+�
[(
q

c

)2
A2 −

(
q

c

)

ˆpA
]

− 2(p̂�)
(
q

c

)

A

]

+ V �=E�(r)	

or finally

1
2m

(

ˆp−q
c
A

)2

�+ V �=E�	 (G.15)

which is the equation corresponding to the particle moving in electromagnetic field
with vector potential A, see p. 654.

Indeed, the last equation can be transformed in the following way

1
2m

[

p̂2�+
(
q

c

)2
A2�− q

c
ˆp(A�)− q

c
Ap̂�

]

+ V �=E�	

which after using the equality3 p̂(A�) = �p̂A + Ap̂� gives the expected result
[eq. (G.15)].

3Remember that p̂ is proportional to the first derivative operator.
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In conclusion, if a particle moves in a vector potential field A from r0 to r, then
its wave function changes the phase by δ

δ=− q

h̄c

∫ r

r0

A(r)dr	

or, putting it in a different way: if the wave function undergoes a phase change, it
means that the particle moves in the vector potential of an electromagnetic field.

The incredible Aharonov–Bohm effect

In a small area (say, in the centre of the Grand Place in Brussels, where we like
to locate the origin of the coordinate system) there is a magnetic field flux corre-
sponding to field intensityH directed along the z axis (perpendicular to the market
place surface). Now let us imagine a particle of electric charge q enclosed in a 3D
box (say, a cube) of small dimensions located at a very long distance from the ori-
gin, and therefore from the magnetic flux, say, in Lisbon. Therefore, the magnetic
field in the box is equal to zero. Now we decide to travel with the box: Lisbon, Cairo,
Ankara, StPetersburg, Stockholm, Paris, and back to Lisbon. Did the wave function
of the particle in the box change during the journey?

Let us see. The magnetic fieldH is related to the vector potential A through the
relation ∇ ×A=H . This means that the particle was subject to a huge vector po-
tential field (see Fig. G.1) all the time, although the magnetic field was practically
zero. Since the box is back to Lisbon, the phase acquired by the particle in the box4

is an integral over the closed trajectory (loop)

δ=− q

h̄c

∮

A(r)dr�

However, from the Stokes equation, we can replace the integral by an integral
over a surface enclosed by the loop

δ=− q

h̄c

∮

A(r)dr=− q

h̄c

∫ ∫

∇ ×A(r)dS�

This may be written as

δ=− q

h̄c

∫ ∫

H dS=− q

h̄c
�	

where � is the magnetic flux (of the magnetic field H) intersecting the loop sur-
face, which contains, in particular, the famous market place of Brussels. Thus, de-
spite the fact that the particle could not feel the magnetic field H (because it was
zero in the box), its wave function underwent a change of phase, which is detectable
experimentally (in interference experiments).

Does the pair of potentials A and φ contain the same information as E and
H? The Aharonov–Bohm effect (see also p. 780) suggests that A and φ are more
important.

4A non-zero δ requires a more general A than that satisfying eq. (G.14).



H. OPTIMAL WAVE FUNCTION
FOR A HYDROGEN-LIKE ATOM

In several contexts we encounter the problem of the mean value of the Hamil-
tonian for a hydrogen-like atom (the a.u. are used throughout)

Ĥ =−1
2
�− Z

r

with the normalized function

�(r	θ	φ; c)=
√

c3

π
exp(−cr)	

where r	 θ	φ are the spherical coordinates of the electron (the position of the nu-
cleus is fixed at the origin).

Calculation of the mean value of the Hamiltonian, i.e. the mean value of the
energy

ε(�)= 〈�∣∣Ĥ∣∣�〉

requires calculation of the mean value of the kinetic energy:

T̄ =
〈

�

∣
∣
∣
∣
−1

2
�

∣
∣
∣
∣
�

〉

and the mean value of the potential energy (Coulombic attraction of an electron
by a nucleus of charge Z)

V̄ =−Z
〈

�

∣
∣
∣
∣

1
r

∣
∣
∣
∣
�

〉

�

Therefore,

ε= T̄ + V̄ �
First, the Laplacian �= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 may be expressed in spherical coordi-
nates

�= 1
r2
∂

∂r
r2 ∂

∂r
+ 1
r2 sinθ

∂

∂θ
sinθ

∂

∂θ
+ 1

r2 sin2 θ

∂2

∂φ2 	 (H.1)
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and in view of the fact that � is spherically symmetric (it only depends on r)

〈

�

∣
∣
∣
∣
−1

2
�

∣
∣
∣
∣
�

〉

= −1
2

〈

�

∣
∣
∣
∣

1
r2
∂

∂r
r2 ∂

∂r

∣
∣
∣
∣
�

〉

= −1
2
c3

π
(−c)

[∫ ∞

0
r2
[

2
r
− c
]

exp(−2cr)dr
∫ π

0
sinθdθ

∫ 2π

0
dφ
]

= 1
2
c44
[∫ ∞

0

[

2r − cr2]exp(−2cr)dr
]

= 2c4
[

2
∫ ∞

0
r exp(−2cr)dr − c

∫ ∞

0
r2 exp(−2cr)dr

]

= 4c4(2c)−2 − 2c52(2c)−3 = c2 − 1
2
c2 = 1

2
c2	

where we have used (this formula is often exploited throughout the book)
∫ ∞

0
rn exp(−βr)dr = n!β−(n+1)� (H.2)

Similarly the second integral gives

−Z
〈

�

∣
∣
∣
∣

1
r

∣
∣
∣
∣
�

〉

= −Zc
3

π

[∫ ∞

0
r exp(−2cr)dr

∫ π

0
sinθdθ

∫ 2π

0
dφ
]

= −4Zc3(2c)−2 =−Zc�

Therefore, finally

ε= 1
2
c2 −Zc� (H.3)

We may want to use the variational method for finding the ground-state wave
function. In this method we minimize the mean value of the Hamiltonian with
respect to parameters in the variational function �. We may treat c as such a para-
meter. Hence, minimizing ε we force ∂ε

∂c = 0, and therefore copt =Z� Note that in
this particular case:

• Such a value of c gives the exact ground-state of the hydrogen-like atom from
the variational function.

• The ground-state energy computed with copt =Z gives ε= 1
2Z

2 −ZZ =− 1
2Z

2,
which is the exact ground-state energy.

• The quantity − V̄
T̄
= Zc

1
2 c

2 = 2Zc � For c = copt =Z we have what is called the virialvirial theorem

theorem

− V̄
T̄
= 2� (H.4)



I. SPACE- AND BODY-FIXED
COORDINATE SYSTEMS

Space-fixed coordinate system (SFCS)

A planetoid (or molecule) moves through empty space, we observe it from our
(inertial1) space ship. To carry out observations of the planetoid (molecule), we
have to install some equipment in our space ship and to fix a Cartesian coordinate
system on it. This will enable us to describe the planetoid whatever happens to it.
This is the Space-Fixed Coordinate System (SFCS), its orientation with respect to
distant stars does not change in time.

If the molecule does not interact with anything, then with respect to the SFCS
(see Chapter 2)

• its total energy remains invariant (because of the homogeneity of time),
• its total momentum remains invariant (because of the homogeneity of space),
• its total angular momentum vector remains invariant (because of the isotropy of

space).

An observer on another space ship (also inertial) will see the same phenomena
in exactly the same way,2 the energy, momentum and angular momentum will also
be invariant, but in general they will be different from what was measured in the
first space ship.

Let us introduce the vectors ri = (xi	 yi	 zi) into the SFCS showing (from the
origin of the coordinate system) the particles, from which our molecule is com-
posed (i.e. the electrons and the nuclei), i= 1	2	 � � � 	N . Then, using the SFCS, we
write the Hamiltonian of the system, the operators of the mechanical quantities
we are interested in, we calculate all the wave functions we need, compare with
spectra measured in the SFCS, etc.

Body-fixed coordinate system (BFCS)

One day, however, we may feel that we do not like the SFCS, because to describe
the molecule we use too many variables. Of course, this is not a sin, but only a

1No rotation. We will convince ourselves that our SFCS is inertial by measuring how a point-like mass
moves (assumed to be non-interacting with the rest of the space ship). If it moves along a straight line
with a constant velocity, the SFCS is inertial. In a non-inertial coordinate system the description of the
physical phenomena in the molecule will look different.

2In the non-relativistic approximation. The Doppler effect, with the change in electromagnetic wave
frequency due to the motion (even uniform) of the emitting object is seen in the experiment. The effect
is of a relativistic character, i.e. vanishes, if we assume an infinite velocity of light.

971
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waste of our time. Indeed, since in all inertial systems we have the same physics,
we can separate the motion of the centre of mass3 (the total mass M =∑i mi).
The centre of mass with position

RCM =
∑

i miri
M

moves with a constant velocity along a straight line in the SFCS, which can easily be
taken into account after the solution is obtained, and in most cases it is irrelevant.
This is why we decide to introduce the Cartesian coordinates (XCM	YCM	ZCM)=
RCM in the hope that in future we will be able to get rid of them. Now we need
to introduce a coordinate system (of the missing 3N − 3 variables) located on the
molecule, called the body-fixed coordinate system (BFCS). How to define this? Well,
it should be a coordinate system that will define any configuration of the particles
in the molecule unambiguously. There are a lot of such coordinate systems. Here
you have some of the possibilities for the BFCS (in all of them their axes are parallel
to the corresponding axes of the SFCS4). We may choose one of the following sets5

of position vectors:

• RCM	 then, we locate in the BFCS on any of the particles (say, the one indicated
by vector r1), and the BFCS positions of the other particles are shown by: r′i =
ri − r1 for i= 2	3	 � � � 	N .

• RCM	 the vector R= r2 − r1 indicating particle 2 from particle 1, and the remain-
ing particles are shown by the vectors which begin in the centre of the section
linking particles 1 and 2: r′i = ri − (r1+r2)

2 for i= 3	4	 � � � 	N .
• RCM, and all the vectors showing the particles (except particle 1): r′i = ri −RCM

for i = 2	3	 � � � 	N . the position vector of the particle 1 can be calculated from
the coordinates already given.

Centre-of-mass separation

After writing the Hamiltonian Ĥ in the SFCS, and introducing any of the
above choices of coordinate system, we obtain Ĥ= ĤCM + Ĥ , where

ĤCM =− h̄2

2M
�CM

with �CM = ∂2

∂X2
CM
+ ∂2

∂Y 2
CM
+ ∂2

∂Z2
CM

, and Ĥ that does not contain XCM, YCM,

ZCM.

3The exact separation of the centre-of-mass motion in SFCS, as well as (not shown in this Appen-
dix) the exact separation of rotation of the molecule have been shown in the paper by R.T. Pack,
J.O. Hirschfelder, J. Chem. Phys. 49 (1968) 4009 for the first time.

4Only after introducing the axes of the coordinate system associated with the particles, and not with
the SFCS, separation of rotation is possible.

5There are other possible choices.
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At any of the choices the operator Ĥ is identical, but the mathematical formula
for Ĥ will be different, because different coordinates are used.

Thus, the total Hamiltonian in the SFCS is

Ĥ= ĤCM(XCM	YCM	ZCM)+ Ĥ(r)	

where r symbolizes6 all the other variables. The key result is that the two operators
on the right do depend on different variables.

The goal of the above changes to the coordinate system was to show that
the Schrödinger equation written in the SFCS, i.e. Ĥ� = E�, splits into two
Schrödinger equations (“separation of variables”):

• ĤCMψCM = ECMψCM describing the motion of a free “particle” of mass M
and coordinates XCM	YCM	ZCM (the “centre-of-mass motion”), with ψCM =
exp(ipCM ·RCM), where pCM stands for the total momentum of the system;

• Ĥψ=Eψ, where

E = E +ECM	

�(RCM	 r) = ψCM(RCM) ·ψ(r)�

The proof is simple. Let us check that the product wave function satisfies the
Schrödinger equation. The left-hand side is:

Ĥ
[

ψCM(RCM) ·ψ(r)
] = ĤCM

[

ψCM(RCM) ·ψ(r)
]+ Ĥ[ψCM(RCM) ·ψ(r)

]

= ψ(r) · ĤCMψCM(RCM)+ψCM(RCM) · Ĥψ(r)
= ψ(r) ·ECMψCM(RCM)+ψCM(RCM) ·Eψ(r)
= (E +ECM)

[

ψCM(RCM) ·ψ(r)
]

and this equals the right side E�.

Example 1. Centre-of-mass separation for the first choice of the coordinates. We use
the first choice of coordinates for the system of two particles. In the SFCS

Ĥ=− h̄2

2m1
�1 − h̄2

2m2
�2 + V �

The new coordinates are:

XCM =
∑

i mixi
M

	 YCM =
∑

i miyi
M

	 ZCM =
∑

i mizi
M

	

x= x2 − x1	 y = y2 − y1	 z = z2 − z1�

6For the sake of brevity.
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Then,7

∂

∂x1
= ∂XCM

∂x1

∂

∂XCM
+ ∂YCM

∂x1

∂

∂YCM
+ ∂ZCM

∂x1

∂

∂ZCM
+ ∂x

∂x1

∂

∂x
+ ∂y

∂x1

∂

∂y
+ ∂z

∂x1

∂

∂z

= m1

M

∂

∂XCM
+ 0+ 0− ∂

∂x
+ 0+ 0= m1

M

∂

∂XCM
− ∂

∂x

and similarly for y1 and z1� Further,

∂

∂x2
= ∂XCM

∂x2

∂

∂XCM
+ ∂YCM

∂x2

∂

∂YCM
+ ∂ZCM

∂x2

∂

∂ZCM
+ ∂x

∂x2

∂

∂x
+ ∂y

∂x2

∂

∂y
+ ∂z

∂x2

∂

∂z

= m2

M

∂

∂XCM
+ 0+ 0+ ∂

∂x
+ 0+ 0= m2

M

∂

∂XCM
+ ∂

∂x

and similarly for y2 and z2�
Hence, the kinetic energy operator (after constructing the proper Laplacians

from the operators above)

T̂ = − h̄2

2m1
�1 − h̄2

2m2
�2

= − h̄2

2m1

[(
m1

M

)2 ∂2

∂X2
CM

+ ∂2

∂x2 − 2
m1

M

∂2

∂XCM∂x

]

+ (similarly for y and z)

− h̄2

2m2

[(
m2

M

)2 ∂2

∂X2
CM

+ ∂2

∂x2 + 2
m2

M

∂2

∂XCM∂x

]

+ (similarly for y and z)

= − h̄2

2M
�CM − h̄2

2μ
�	

where the reduced mass μ of the two particles: 1
μ = 1

m1
+ 1
m2
	 and �= ∂2

∂x2 + ∂2

∂y2 +
∂2

∂z2 �

Our derivation is over, and the operator Ĥ has been found� It turns out to be8

(note, that the new coordinates also have to be introduced in the potential energy
V ) of the form

7According to the mathematical analysis we have to write the contributions of all the differential
operators ∂

∂u of the new coordinates umultiplied by their “coupling constants” ∂u
∂x1

with the coordinate
x1.

8The kinetic energy operator has a quite interesting form. Particle 1 rests right at the origin of the
BFCS (x = 0, y = 0, z = 0), and therefore its kinetic energy operator is absent in Ĥ . There is the
kinetic energy of particle 2, but its mass is equal to μ, not to m2� The coordinates x	y	 z (measured
from the origin of the BFCS) correspond to particle 2. For example, for the hydrogen-like atom, if
someone takes the nucleus as particle 1, and the electron as particle 2, then x	y	 z show the electron
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Ĥ =− h̄
2

2μ
�+ V �

Example 2. Centre-of-mass separation for the third choice of coordinates. Let us take
the same two particles again, but this time use the third choice of coordinate sys-
tem.

XCM =
∑

i mixi
M

	 YCM =
∑

i miyi
M

	 ZCM =
∑

i mizi
M

	

x= x2 −XCM	 y = y2 −YCM	 z = z2 −YCM�

Then,

∂

∂x1
= ∂XCM

∂x1

∂

∂XCM
+ ∂YCM

∂x1

∂

∂YCM
+ ∂ZCM

∂x1

∂

∂ZCM
+ ∂x

∂x1

∂

∂x
+ ∂y

∂x1

∂

∂y
+ ∂z

∂x1

∂

∂z

= m1

M

∂

∂XCM
+ 0+ 0− m1

M

∂

∂x
+ 0+ 0= m1

M

(
∂

∂XCM
− ∂

∂x

)

and similarly for y1 and z1� Further,

∂

∂x2
= ∂XCM

∂x2

∂

∂XCM
+ ∂YCM

∂x2

∂

∂YCM
+ ∂ZCM

∂x2

∂

∂ZCM
+ ∂x

∂x2

∂

∂x
+ ∂y

∂x2

∂

∂y
+ ∂z

∂x2

∂

∂z

= m2

M

∂

∂XCM
+ 0+ 0+

(

1− m2

M

)
∂

∂x
+ 0+ 0= m2

M

∂

∂XCM
+
(

1− m2

M

)
∂

∂x

= m2

M

∂

∂XCM
+ m1

M

∂

∂x

and similarly for y2 and z2�
Thus, the kinetic energy operator takes the form (after inserting the squares of

the corresponding operators)

from the Cartesian coordinate system BFCS located on the nucleus. The potential energy operator

V =− Ze2
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2
=− Ze2

√

x2 + y2 + z2

corresponds to the Coulombic interaction of the electron of charge −e and the nucleus of charge Ze�
After the separation of the centre of mass, we are left with equation Ĥψ=Eψ� The electron of mass μ

is described by the wave function ψ. In the ground state ψ= 1√
π
e
−
√

x2+y2+z2
� This a the description

of the hydrogen-like atom according to an observer sitting at the nucleus.
If another observer puts his armchair (with the axes of the BFCS carved on it) at the electron, then

he would see the hydrogen-like atom “according to the electron”. Since in V there are squares of
x	y	 z, and in the kinetic energy operator there are the second derivatives with respect to x	y	 z, we

would obtain the same wave function as before: ψ= 1√
π
e
−
√

x2+y2+z2
, where the particle moving with

respect to the electron is the nucleus, but with mass equal to μ, i.e. the same as before. By the way, this
μ is almost equal to the mass of the electron.

Thus, the two descriptions mean the same.
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T̂ = − h̄2

2m1
�1 − h̄2

2m2
�2

= − h̄2

2m1

[(
m1

M

)2( ∂2

∂X2
CM

+ ∂2

∂x2 − 2
∂2

∂XCM∂x

)]

+ (similarly for y and z)

− h̄2

2m2

[(
m2

M

)2 ∂2

∂X2
CM

+
(
m1

M

)2 ∂2

∂x2 + 2
m1m2

M2
∂2

∂XCM∂x

]

+ (similarly for y and z)

= − h̄2

2M
�CM − h̄2

2m1

(
m1

M

)2

�xyz

− h̄2

2m2

(
m1

M

)2
�xyz − h̄2

2m1

(
m1

M

)2(

−2
∂2

∂XCM∂x

)

+ · · ·

− h̄2

2m2
2
m1m2

M2
∂2

∂XCM∂x
+ · · ·

= − h̄2

2M
�CM − h̄2

2m1

(
m1

M

)2
�xyz − h̄2

2m2

(
m1

M

)2
�xyz

= − h̄2

2M
�CM − h̄

2

2

(
m1

m2M

)

�xyz�

It is seen that once again we have reached a situation allowing us to separate the
motion of the centre of mass in the Schrödinger equation. This time, however, the
form of the operator Ĥ is different (e.g., �xyz has only formally the same form as
�), only because the variables are different (the operator remains the same). Once
again this is the kinetic energy of a point-like particle9 with coordinates x	 y	 z
(defined in this example) and mass equal to m2M

m1
�

9Let us first denote the nucleus as particle 1 and the electron as particle 2. Then, RCM almost shows
the position of the nucleus, and x	y	 z are almost the coordinates of the electron measured from the nu-
cleus, while m2M

m1
is almost equal to the mass of the electron. Thus we have a situation which resembles

Example 1.
If the particles are chosen the other way (the electron is particle 1 and the nucleus is particle 2), the

same physical situation looks completely different. The values of x	y	 z are very close to 0, while the
mass of the effective point-like particle becomes very large.

Note, that the new coordinates describe the potential energy in a more complex way. We need
differences of the kind x2 − x1, to insert them into Pythagoras’ formula for the distance. We have

x1 =XCM
m1 +m2
m1

− m2
m1

x2 =XCM
m1 +m2
m1

− m2
m1

(x+XCM)=XCM − m2
m1

x	

x1 − x2 =XCM − m2
m1

x− x−XCM =−x
(

1+ m2
m1

)

�

This gives immediately (r stands for the electron-centre of mass distance): V (new)=− Ze2

(1+m2
m1
)r
�



J. ORTHOGONALIZATION

1 SCHMIDT ORTHOGONALIZATION

Two vectors

Imagine two vectors u and v, each of length 1 (i.e. normalized), with the dot prod-
uct 〈u|v〉 = a. If a = 0, the two vectors are orthogonal. We are interested in the
case a 	= 0. Can we make such linear combinations of u and v, so that the new
vectors, u′ and v′, will be orthogonal? We can do this in many ways, two of them
are called the Schmidt orthogonalization:

Case I: u′ = u, v′ = v− u〈u|v〉,
Case II: u′ = u− v〈v|u〉, v′ = v.

It is seen that Schmidt orthogonalization is based on a very simple idea. In
Case I the first vector is left unchanged, while from the second vector, we cut out
its component along the first (Fig. J.1). In this way the two vectors are treated
differently (hence, the two cases above).

In this book the vectors we orthogonalize will be Hilbert space vectors (see
Appendix B), i.e. the normalized wave functions. In the case of two such vectors
φ1 and φ2 having a dot product 〈φ1|φ2〉 we construct the new orthogonal wave

Fig. J.1. The Schmidt orthogonalization of the unit
(i.e. normalized) vectors u and v. The new vectors
are u′ and v′ . Vector u′ ≡ u, while from vector v we
subtract its component along u. The new vectors are
orthogonal.
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functions ψ1 = φ1, ψ2 = φ2 − φ1〈φ1|φ2〉 or ψ1 = φ1 − φ2〈φ2|φ1〉, ψ2 = φ2 by
analogy to the previous formulae.

More vectors

In case of many vectors the procedure is similar. First, we decide the order of
the vectors to be orthogonalized. Then we begin the procedure by leaving the first
vector unchanged. Then we continue, remembering that from a new vector we have
to cut out all its components along the new vectors already found. Of course, the
final set of vectors depends on the order chosen.

2 LÖWDIN SYMMETRIC ORTHOGONALIZATION

Imagine the normalized but non-orthogonal basis set wave functions collected as
the components of the vectorφ. By making proper linear combinations of the wave
functions, we will get the orthogonal wave functions. The symmetric orthogonaliza-
tion (as opposed to the Schmidt orthogonalization) treats all the wave functions on
an equal footing. Instead of the old non-orthogonal basis setφ, we construct a new
basis set φ′ by a linear transformation φ′ = S− 1

2φ	 where S is the overlap matrix
with the elements Sij = 〈φi|φj〉, and the square matrix S−

1
2 	 and its cousin S

1
2 	 are

defined in the following way. First, we diagonalize S using a unitary matrix U , i.e.
U†U =UU† = 1 (for real S the matrix U is orthogonal, UTU =UUT = 1),

Sdiag =U†SU �

The eigenvalues of S are always positive, therefore the diagonal elements of
Sdiag can be replaced by their square roots, thus producing the matrix denoted by

the symbol S
1
2
diag. Using the latter matrix we define the matrices

S
1
2 =US

1
2
diagU

† and S−
1
2 = (S 1

2
)−1 =US−

1
2

diagU
†�

Their symbols correspond to their properties:

S
1
2S

1
2 =US

1
2
diagU

†US
1
2
diagU

† =US
1
2
diagS

1
2
diagU

† =USdiagU
† = S	

similarly S−
1
2S−

1
2 = S−1. Also, a straightforward calculation gives1 S−

1
2S

1
2 = 1.

1The matrix S
− 1

2 is no longer a symbol anymore. Let us check whether the transformation

φ′ = S− 1
2φ indeed gives orthonormal wave functions (vectors). Remembering that φ represents

a vertical vector with components φi (being functions):
∫

φ∗φT dτ = S, while
∫

φ′∗φ′T dτ =
∫

S
− 1

2φ∗φT S−
1
2 dτ = 1� This is what we wanted to show.
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An important feature of symmetric orthogonalization is2 that among all possible
orthogonalizations it ensures that

∑

i

∥
∥φi −φ′i

∥
∥

2 =minimum

where ‖φi −φ′i‖2 ≡ 〈φi −φ′i|φi −φ′i〉. This means that

the symmetrically orthogonalized functions φ′i are the “least distant” from
the original functions φi. Thus symmetric orthogonalization means a gentle
pushing the directions of the vectors in order to get them to be orthogonal.

Example

Symmetric orthogonalization will be shown taking the example of two non-
orthogonal vectors u and v (instead of functions φ1 and φ2), each of length 1, with
a dot product3 〈u|v〉 = a 	= 0� We decide to consider vectors with real components,
hence a ∈ R. First we have to construct matrix S−

1
2 . Here is how we arrive there.

Matrix S is equal to S =
(

1 a
a 1

)

, and as we see it is symmetric� First, let us di-

agonalize S. To achieve this, we apply the orthogonal transformation U†SU (thus,
in this case U† = UT ), where (to ensure the orthogonality of the transformation
matrix) we choose

U =
(

cosθ sinθ
− sinθ cosθ

)

	 and therefore U† =
(

cosθ − sinθ
sinθ cosθ

)

with angle θ to be specified. After the transformation we have:

U†SU =
(

1− a sin 2θ a cos 2θ
a cos 2θ 1+ a sin 2θ

)

�

We see that if we chose θ= 45◦, the matrix U†SU will be diagonal4 (this is what
we would like to have):

Sdiag =
(

1− a 0
0 1+ a

)

�

We then construct

S
1
2
diag =

(√
1− a 0
0

√
1+ a

)

�

2G.W. Pratt, S.P. Neustadter, Phys. Rev. 101 (1956) 1248.
3−1 
 a
 1.
4In such a case the transformation matrix is

U =
⎛

⎝

1√
2

1√
2

− 1√
2

1√
2

⎞

⎠= 1√
2

(

1 1
−1 1

)

�
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Next, we form5

S
1
2 =US

1
2
diagU

† = 1
2

(√
1− a+√1+ a √

1+ a−√1− a√
1+ a−√1− a √

1− a+√1+ a

)

and the matrix S−
1
2 needed for the transformation is equal to

S−
1
2 =US−

1
2

diagU
† =U

( 1√
1−a 0

0 1√
1+a

)

U† = 1
2

⎛

⎝

1√
1−a + 1√

1+a
1√
1+a − 1√

1−a
1√
1+a − 1√

1−a
1√
1−a + 1√

1+a

⎞

⎠ �

Now we are ready to construct the orthogonalized vectors:6

(

u′
v′
)

= 1
2

⎛

⎝

1√
1−a + 1√

1+a
1√
1+a − 1√

1−a
1√
1+a − 1√

1−a
1√
1−a + 1√

1+a

⎞

⎠

(

u
v

)

	

u′ = Cu+ cv	
v′ = cu+Cv�

where the “large” coefficient

C = 1
2

(
1√

1− a +
1√

1+ a
)

	

and there is a “small” admixture

c = 1
2

(
1√

1+ a −
1√

1− a
)

�

As we can see the new (orthogonal) vectors are formed from the old ones (non-
orthogonal) by an identical (hence the name “symmetric orthogonalization”) admix-
ture of the old vectors, i.e. the contribution of u and v in u′ is the same as that of v
and u in v′.

The new vectors are obtained by correcting the directions of the old ones,
each by the same angle.

This is illustrated in Fig. J.2.

5They are symmetric matrices. For example,

(

S
1
2
)

ij =
(

US
1
2
diagU

†)
ij =

∑

k

∑

l

Uik
(

S
1
2
diag
)

klUjl =
∑

k

∑

l

Uik
(

S
1
2
diag
)

klδklUjl

=
∑

k

Uik
(

S
1
2
diag
)

kkUjk =
(

S
1
2
)

ji�

6We see that if the vectors u and v were already orthogonal, i.e. a = 0, then u′ = u and v′ = v. Of
course, we like this result.
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Fig. J.2. The symmetric (or Löwdin’s) orthogonal-
ization of the normalized vectors u and v. The vec-
tors are just pushed away by the same angle in such
a way as to ensure u′ and v′ become orthogonal.

The new vectors automatically have length 1, the same as the starting vectors.



K. DIAGONALIZATION OF A MATRIX

In quantum chemistry we often encounter the following mathematical problem.
We have a Hermitian1 matrixA (of dimension n), i.e.A† =A, and are interested

in all numbers λ (called “eigenvalues”2) and the corresponding column vectors
(“eigenvectors” of dimension n) L, that satisfy the following equation

(A− λ1)L= 0	 (K.1)

where 1 is the unit matrix (of dimension n). There are n solutions to the last equa-
tion: n eigenvalues of λ and also n eigenvectors L. Some eigenvalues λ may be
equal (degeneracy), i.e. two or more linearly independent eigenvectors L corre-
spond to a single eigenvalue λ. From (K.1) it is shown that any vector L is deter-
mined only to the accuracy of a multiplicative factor.3 This is why, in future, there
will be justification for normalizing them to unity.

In quantum chemistry the eigenvalue problem is solved in two ways: one is easy
for n
 2, but more and more difficult for larger n, the second (using computers)
treats all cases uniformly.

• The first way sees the eigenvalue equation as a set of linear homogeneous equa-
tions for the unknown components of vector L. Then the condition for the non-
trivial solution4 to exist is: det(A− λ1)= 0. This condition can be fulfilled only
for some particular values of λ, which are to be found by expanding the determi-
nant and solving the resulting n-th degree polynomial equation for λ. Then each
solution λ is inserted into eq. (K.1) and the components of the corresponding
vector L are found using any method applicable to linear equations. Thus, we
end up with λk and Lk for k= 1	2	3	 � � � 	 n.

• The second way is based on diagonalization of A.

First, let us show that the same λ’s satisfy the eigenvalue equation (K.1), but
with a much simpler matrix. To this end let us multiply (K.1) by (at the moment)

1In practice, matrix A is usually real, and therefore satisfies (AT )∗ =AT =A, i.e. A is symmetric.
2They are real.
3In other words, a unnormalized wave function still satisfies the Schrödinger equation, or an arbitrary

amplitude can be assigned to any normal mode.
4The trivial one is obviously L = 0, which is however unacceptable, since the wave function cannot

vanish everywhere, or atoms have to vibrate, etc.
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the arbitrary non-singular5 square matrix6 B. We obtain the following chain of
transformations B−1(A − λ1)L = B−1(ABB−1 − λ1)L = (B−1AB − λ1)B−1L =
(Ã − λ1)L̃ = 0, where7 Ã = B−1AB, and L̃ = B−1L. Thus, another matrix and
other eigenvectors, but the same λ’s! Now, let us choose such a special B so as
to have the resulting equation as simple as possible, i.e. with a diagonal Ã. Then
we will know,8 what the λ values have to be in order to satisfy the equation
(Ã− λ1)L̃= 0.

Indeed, if Ã were diagonal, then

det
(

Ã− λ1
)=

n
∏

k=1

(

Ãkk − λ
)= 0	

which gives the solution λk = Ãkk. Then, it is easy to find the corresponding vec-
tor L̃k. For example, L̃1 we find from equation (Ã− λ11)L̃1 = 0 in the following
way:9

⎛

⎜
⎜
⎜
⎜
⎝

0 0 0 � � � 0
0 Ã22 − λ1 0 � � � 0
0 0 Ã33 − λ1 � � � 0
� � � � � � � � � � � � � � �

0 0 0 � � � Ãnn − λ1

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

L̃1	1
L̃1	2
L̃1	3
� � �

L̃1	n

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

	

which means that to get 0 on the right side, we have to have an arbitrary L̃1	1, while
the other L̃1	j = 0 for j = 2	3	 � � � 	 n.

To have the length of L̃1 equal to 1, it is sufficient to put L̃1	1 = 1. Similarly, we
easily find that the vectors L̃k corresponding to λk simply represent the column
vectors with all components equal to 0 except component k, which equals 1. We
are interested in vectors L, rather than L̃. We get these vectors from L= BL̃, and
taking into account the form of L̃, this means that Lk is nothing else but the k-th
column of matrix B. Since B is known, because this is precisely the matrix which
led to the diagonalization, there is therefore no problem with L:

the columns of B represent the eigenvectors L of the equation (A− λ1)L
= 0.

This is it.

5That is, its inverse matrix exists.
6To be found.
7Such a unitary matrix B (i.e. satisfying (BT )∗ =B−1) can be found, that B−1AB is real and diagonal.

When (as is the case in most applications) we have to do with real matrices, then instead of unitary and
Hermitian matrices, we have to do with orthogonal and symmetric matrices, respectively.

8Just by looking.
9The λ has been replaced by λ1, because we are interested in getting L̃1.



L. SECULAR EQUATION
(H − εS)c= 0

A typical ε approach for solving an eigenvalue problem is its “algebraization”, i.e.
representation of the wave function as a linear combination of the known basis
functions with the unknown coefficients. Then instead of searching for a function,
we try to find the expansion coefficients c from the secular equation1 (H − εS)c=
0. Our goal is to reduce this task to the eigenvalue problem of a matrix. If the
basis set used is orthonormal, the goal would be immediately achieved, because the
secular equation would be reduced to (H − ε1)c= 0, i.e. the eigenvalue problem.
However, in most cases the basis set used is not orthonormal. We may, however,
orthonormalize the basis. We will achieve this using symmetric orthogonalization
(see Appendix J, p. 977).

Instead of the old basis set (collected in the vector φ), in which the matrices H
and S were calculated: Hij = 〈φi|Ĥφj〉, Sij = 〈φi|φj〉 we will use the orthogonal

basis set φ′ = S− 1
2φ, where S−

1
2 is calculated as described in Appendix J. Then we

multiply the secular equation (H − εS)c = 0 from the left by S−
1
2 and make the

following transformations
(

S−
1
2H − εS− 1

2S
)

c = 0	
(

S−
1
2H1− εS− 1

2S
)

c = 0	
(

S−
1
2HS−

1
2S

1
2 − εS− 1

2S
)

c = 0	
(

S−
1
2HS−

1
2S

1
2 − εS 1

2
)

c = 0	
(

S−
1
2HS−

1
2 − ε1

)

S
1
2 c = 0	

(

H̃ − ε1
)

c̃ = 0

with H̃ = S− 1
2HS−

1
2 and c̃= S 1

2 c.
The new equation represents the eigenvalue problem, which we solve by diago-

nalization of H̃ (Appendix K, p. 982). Thus,

the equation (H − εS)c = 0 is equivalent to the eigenvalue problem (H̃ −
ε1)c̃= 0. To obtain H̃ , we have to diagonalize S to calculate S

1
2 and S−

1
2 .

1See Chapter 5.
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Secular equation and normalization

If we used non-normalized basis functions in the Ritz method, this would not
change the eigenvalues obtained from the secular equation. The only thing that
would change are the eigenvectors. Indeed, imagine we have solved the secular
equation for the normalized basis set functions: (H − εS)c = 0. The eigenvalues
ε have been obtained from the secular determinant det(H − εS) = 0. Now we
wish to destroy the normalization and take new basis functions, which are the old
basis set functions multiplied by some numbers, the i-th function by ai. Then a
new overlap integral and the corresponding matrix element of the Hamiltonian Ĥ
would be S′ij = aiajSij , H ′ij = aiajHij . The new secular determinant det(H ′ − εS′)
may be expressed by the old secular determinant times a number.2 This number is
irrelevant, since what matters is that the determinant is equal to 0. Thus, whether
in the secular equation we use the normalized basis set or not, the eigenvalues do
not change. The eigenfunctions are also identical, although the eigenvectors c are
different – they have to be, because they multiply different functions (which are
proportional to each other).

If we ask whether the eigenvalues of the matricesH areH ′ identical, the answer
would be: no.3 However, in quantum chemistry we do not calculate the eigenval-
ues4 of H , but solve the secular equation (H ′ − εS′)c = 0. If H ′ changes with
respect to H , there is a corresponding change of S′ when compared to S. This
guarantees that the ε′s do not change.

2We divide the new determinant by a1, which means dividing the elements of the first row by a1 and
in this way removing from them a1, both in H ′ and in S′ . Doing the same with a2 and the second row,
etc., and then repeating the procedure for columns (instead of rows), we finally get the old determinant
times a number.

3This is evident, just think of diagonal matrices.
4Although we often say it this way.



M. SLATER–CONDON RULES

The Slater determinants represent something like the daily bread of quantum
chemists. Our goal is to learn how to use the Slater determinants when they are
involved in the calculation of the mean values or the matrix elements of some im-
portant operators. We will need this in the Hartree–Fock method, as well as in
other important methods of quantum chemistry.

Only the final results of the derivations presented in this Appendix are the most
important.

Antisymmetrization operator

The antisymmetrization operator is defined as

Â= 1
N!
∑

P

(−1)pP̂	 (M.1)

where P̂ represents the permutation operator of N objects (in our case – elec-
trons), while (−1)p stands for the parity of the permutation P , “even” (“odd”) – if
a given permutation P can be created from an even (odd) number p of transposi-
tions (i.e. exchanges) of two elements.

The operator Â has some nice features. The most important is that, when ap-
plied to any function, it produces either a function that is antisymmetric with re-
spect to the permutations of N elements, or zero.1 This means that Â represents
a sort of magic wand: whatever it touches it makes antisymmetric or causes it dis-
appear! The antisymmetrizer is also idempotent, i.e. does not change any function
that is already antisymmetric, which means Â2 = Â.

Let us check that Â is indeed idempotent. First we obtain:

Â2 = (N!)−1
∑

P

(−1)pP̂(N!)−1
∑

P

(−1)pP̂ = (N!)−2
∑

PP ′
(−1)p+p′ P̂P̂ ′� (M.2)

Of course P̂P̂ ′ represents a permutation opera tor,2 which is then multiplied by its
own parity (−1)p+p′ and there is a sum over such permutations at a given fixed P̂ ′.

1In the near future these elements will be identified with the electronic coordinates (one element will
be represented by the space and spin coordinates of a single electron: x	y	 z	σ).

2The permutations form the permutation group.
From “Solid State and Molecular Theory”, Wiley, London, 1975 by John Slater on the permutation

group: “(. . . ) It was at this point that Wigner, Hund, Heitler and Weyl entered the picture, with their “Grup-

986



M. SLATER–CONDON RULES 987

Independently of what P̂ ′ is we obtain the same result3 N! times, and therefore:

Â2 = (N!)−2N!
∑

P

(−1)pP̂ = Â�

This is what we wanted to show.
The operator Â is Hermitian. Since P̂ represents a (permutational) symmetry

operator, it therefore conserves the scalar product. This means that for the two
vectors ψ1 and ψ2 of the Hilbert space we obtain4

〈

ψ1(1	2	 � � � 	N)
∣
∣Âψ2(1	2	 � � � 	N)

〉

= (N!)−1
∑

P

(−1)p
〈

P̂−1ψ1(1	2	 � � � 	N)
∣
∣ψ2(1	2	 � � � 	N)

〉

�

The summation over P̂ can be replaced by the summation over P̂−1:

(N!)−1
∑

P−1

(−1)p
〈

P̂−1ψ1(1	2	 � � � 	N)
∣
∣ψ2(1	2	 � � � 	N)

〉

�

Since the parity p of the permutation P̂−1 is the same as that of P̂ , hence
(N!)−1∑

P−1(−1)pP̂−1 = Â, what shows that Â is Hermitian: 〈ψ1|Âψ2〉 =
〈Âψ1|ψ2〉, or5

Â† = Â� (M.3)

Slater–Condon rules

The Slater–Condon rules serve to express the matrix elements involving the Slater
determinants (which represent many-electron wave functions):

penpest”: the pest of group theory, as certain disgruntled individuals who had never studied group theory in
school described it. (. . . ) The authors of the “Gruppenpest” wrote papers, which were incomprehensible to
those like me who had not studied group theory (. . . ). The practical consequences appeared to be negligible,
but everyone felt that to be in the mainstream of quantum mechanics, we had to learn about it. (. . . ) It was
a frustrating experience, worthy of the name of a pest”.

3Of course, P̂P̂ ′ = P̂ ′′ has the parity (−1)p+p′ , because this is how such a permutation parity is to
be calculated: first we make p transpositions to get P̂ , and next making p′ transpositions we obtain
the permutation P̂P̂ ′. Note that when keeping P̂ ′ fixed and taking P̂ from all possible permutations,
we are running with P̂P̂ ′ over all possible permutations as well. This is because the complete set of
permutations is obtained independently of what the starting permutation looks like, i.e. independently
of P̂ ′.

4The conservation of the scalar product 〈ψ1|ψ2〉 = 〈P̂ψ1|P̂ψ2〉 means that the lengths of the vectors
ψ1 and P̂ψ1 are the same (similarly withψ2), and that the angle between the vectors is also conserved. If
P̂ is acting on ψ2 alone, and ψ1 does not change, the angle resulting from the scalar product 〈ψ1|P̂ψ2〉
is of course different, because only one of the vectors (ψ2) has been transformed (which means the
rotation of a unit vector in the Hilbert space). The same angle would be obtained, if its partner ψ1 were
transformed in the opposite direction, i.e. when the operation P̂−1ψ1 has been performed. Hence from
the equality of the angles we have 〈ψ1|P̂ψ2〉 = 〈P̂−1ψ1|ψ2〉.

5Â† stands for the adjoint operator with respect to Â, i.e. for arbitrary functions belonging to its
domain we have 〈ψ1|Âψ2〉 = 〈Â†ψ1|ψ2〉. There is a subtle difference (ignored in the present book)
among the self-adjoint (Â† = Â) and Hermitian operators in mathematical physics (they differ by
definition of their domains).
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�= 1√
N!

∣
∣
∣
∣
∣
∣
∣
∣

φ1(1) φ1(2) � � � φ1(N)
φ2(1) φ2(2) � � � φ2(N)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
φN(1) φN(2) � � � φN(N)

∣
∣
∣
∣
∣
∣
∣
∣

� (M.4)

The normalized Slater determinant has the form:�=√N!Â(φ1φ2 · · ·φN),
where φ1φ2 · · ·φN represents the product φ1(1)φ2(2) · · ·φN(N), and
therefore, the normalization constant before the determinant itself
det[φ1(1)φ2(2) · · ·φN(N)] is equal to (N!)−1/2.

Quantum chemists love Slater determinants, because they are built of one-
electron “bricks” φi called the spinorbitals (we assume them orthonormal) and
because any Slater determinant is automatically antisymmetric with respect to the
exchange of the coordinates of any two electrons (shown as arguments of φi’s),
the factor 1√

N! ensures the normalization. At the same time any Slater determi-
nant automatically satisfies the Pauli exclusion principle, because any attempt to
use the same spinorbitals results in two rows being equal, and in consequence,
having �= 0 everywhere.6

Using Slater determinants gives quantum chemists a kind of comfort, since all
the integrals which appear when calculating the matrix elements of the Hamil-
tonian are relatively simple. The most complicated ones contain the coordinates of
two electrons.

WHAT KIND OF OPERATORS WILL WE BE DEALING WITH?
1. The sum of one-electron operators F̂ =∑i ĥ(i).
2. The sum of two-electron operators Ĝ=∑i<j ĝ(i	 j).

In both cases the summation goes over all the electrons. Note that ĥ has
the identical form independent of the particular electron; the same pertains
to ĝ.

The future meaning of the F̂ and Ĝ operators is quite obvious, the first pertains
to the non-interacting electrons (electronic kinetic energy with ĥ(i)=− 1

2�i or the
interaction of the electrons with the nuclei), the second operator deals with the
electronic repulsion, with ĝ(i	 j)= 1

rij
.

WHAT ARE THE SLATER–CONDON RULES ALL ABOUT?
The Slater–Condon rules show how to express the matrix elements of
many-electron operators F̂ and Ĝ with the Slater determinants by the ma-
trix elements of the operators ĥ and ĝ calculated with orthonormal spinor-
bitals φi.

6Which is a kind of catastrophe in theory: because our system is somewhere and can be found there
with a certain non-zero probability.
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The operators F̂ and Ĝ are invariant with respect to any permutation of the
electrons (Chapter 2). In other words, the formulae for F̂ and Ĝ do not change
before and after any relabelling of the electrons. This means that any permuta-
tion operator commutes with F̂ and Ĝ. Since Â is a linear combination of such
commuting operators, then ÂF̂ = F̂Â and ÂĜ= ĜÂ.

A simple trick used in the proofs below

All the proofs given below are based on the same simple trick. First, the in-
tegral under consideration is transformed into the sum of the following terms
〈φ1(1)φ2(2) · · ·φN(N)|ÂX̂|φ1(1)φ2(2) · · ·φN(N)〉, where X̂ = ĥ(i) or ĝ(i	 j).
Then we recall that Â is a linear combination of the permutation operators,
and that in the integral 〈φ1(1)φ2(2) · · ·φN(N)|X̂|φn1(1)φn2(2) · · ·φnN (N)〉 only
a few terms will survive.

• In the case X̂ = ĥ(i) we obtain a product of one-electron integrals
〈

φ1(1)φ2(2) · · ·φN(N)
∣
∣X̂
∣
∣φn1(1)φn2(2) · · ·φnN (N)

〉

= 〈φ1(1)
∣
∣φn1(1)

〉〈

φ2(2)
∣
∣φn2(2)

〉 · · · 〈φi(i)
∣
∣ĥ(i)

∣
∣φni(i)

〉 · · · 〈φN(N)
∣
∣φnN (N)

〉

�

Since the spinorbitals are orthonormal, only one term will survive, the one which
has (n1	 n2	 � � � 	 ni−1	 ni+1	 � � � 	 nN)= (1	2	 � � � 	 i−1	 i+1	 � � � 	N). All the over-
lap integrals which appear there are equal to 1. Only one of the one-electron
integrals will give something else: 〈φi(i)|ĥ(i)|φni(i)〉, but in this integral also we
have to have ni = i, because of the overlap integrals which force the matching of
the indices mentioned above.

• In the case X̂ = ĝ(i	 j) we make the same transformations, but the rule for sur-
vival of the integrals pertains to the two-electron integral which involves the co-
ordinates of the electrons i and j (not one-electron as before). Note that this
time we will have some pairs of integrals which are going to survive, because the
exchange of indices ij→ ji also makes an integral survive.

I Slater–Condon rule

If ψ represents a normalized Slater determinant, then

F = 〈ψ∣∣F̂∣∣ψ〉=
N
∑

i=1

〈

i
∣
∣ĥ
∣
∣i
〉

	 (M.5)

G = 〈ψ∣∣Ĝ∣∣ψ〉= 1
2

∑

i	j

(〈ij|ij〉 − 〈ij|ji〉)	 (M.6)

where
〈

i
∣
∣ĥ
∣
∣r
〉 ≡
∑

σ1

∫

φ∗i (1)ĥ(1)φr(1)dV1	 (M.7)
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〈ij|kl〉 ≡
∑

σ1

∑

σ2

∫ ∫

φ∗i (1)φ
∗
j (2)g(1	2)φk(1)φl(2)dV1 dV2	 (M.8)

where the summation pertains to two spin coordinates (for electrons 1 and 2).
Proof: Operator F̂ .

F = 〈ψ∣∣F̂∣∣ψ〉=N!〈Â(φ1φ2 · · ·φN)
∣
∣F̂
∣
∣Â(φ1φ2 · · ·φN)

〉

�

Using ÂF̂ = F̂Â	 Â† = Â and Â2 = Â we get

F =N!〈φ1φ2 · · ·φN
∣
∣Â
[(

ĥ(1)φ1φ2 · · ·φN
)+ · · · + (φ1φ2 · · · ĥ(N)φN

)]〉

= N!
N!
〈

φ1φ2 · · ·φN
∣
∣
[(

ĥ(1)φ1φ2 · · ·φN
)+ · · · + (φ1φ2 · · · ĥ(N)φN

)]〉

	

because what gives the non-zero contribution from the antisymmetrizer Â =
(N!)−1(1 + other permutations) is only the first term with the operator of mul-
tiplication by 1. Other terms disappear after any attempt at integration. As a result
we have:

F = 〈φ1
∣
∣ĥ
∣
∣φ1
〉+ 〈φ2

∣
∣ĥ
∣
∣φ2
〉+ · · · + 〈φN

∣
∣ĥ
∣
∣φN

〉=
∑

i

hii	 (M.9)

which is what we wanted to show.

Operator Ĝ. Now let us consider the expression for G

G=N!〈Â(φ1φ2 · · ·φN)
∣
∣Ĝ
∣
∣Â(φ1φ2 · · ·φN)

〉

	

where once again N! comes from the normalization of ψ. Taking (as above) into
account that Â† = Â, Â2 = Â	 ĜÂ= ÂĜ, we get

G =N!〈(φ1φ2 · · ·φN)
∣
∣Â
∣
∣
[

ĝ(1	2)φ1φ2 · · ·φN + ĝ(1	3)φ1φ2 · · ·φN + · · ·
]〉

= 〈φ1(1)φ2(2)
∣
∣ĝ(1	2)

∣
∣φ1(1)φ2(2)

〉

− 〈φ1(1)φ2(2)
∣
∣ĝ(1	2)

∣
∣φ2(1)φ1(2)

〉

+ 〈φ1(1)φ3(3)
∣
∣ĝ(1	3)

∣
∣φ1(1)φ3(3)

〉

− 〈φ1(1)φ3(3)
∣
∣ĝ(1	3)

∣
∣φ3(1)φ1(3)

〉+ · · · (M.10)

This transformation needs some explanation. The factor N! before the inte-
gral is annihilated by 1/N! coming from the antisymmetrizer. The remainder
of the antisymmetrizer permutes the electrons in the ket |[ĝ(1	2)φ1φ2 · · ·φN +
ĝ(1	3)φ1φ2 · · ·φN + · · ·]〉. In the first term [with ĝ(1	2)] the integrals with only
those permutations of electrons 3	4	 � � � 	N will survive which perfectly match the
permutationφ1(1)φ2(2) · · ·φN(N), because otherwise the overlap integrals of the
spinorbitals (over the coordinates of the electrons 2	3	 � � � 	N) will make them
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zero. This is why the first term will give rise to only two permutations which re-
sult in non-zero integrals: in the first two positions we will have φ1(1)φ2(2), and
in the other φ1(2)φ2(1). Of course, they will differ by sign, and this is why we have
the minus sign in the second surviving integral. Similar reasoning may be followed
for the term with ĝ(1	3), as well as for the other terms.

Thus, we have shown that

G=
∑

i<j

(〈ij|ij〉 − 〈ij|ji〉)= 1
2

∑

i	j

(〈ij|ij〉 − 〈ij|ji〉)	 (M.11)

the factor 1
2 takes care of the fact that there are only N(N−1)

2 interelectronic in-
teractions g(i	 j) (the upper triangle of table N × N). There is no restriction in
the summation over i	 j = 1	2	 � � � 	N , because any attempt to take the “illegal”
self-interaction (corresponding to i = j) gives zero, because of the identity of the
Coulomb (〈ij|ij〉) and exchange (〈ij|ji〉) integrals. This is the formula we wanted to
prove.

A special case: double occupation

The integrals in the expressions for F and G contain spinorbitals and the integra-
tion goes over the electronic space-and-spin coordinates. When the spinorbitals
are expressed by the orbitals and the spin functions, we may perform the summa-
tion over the spin coordinates. The double occupation case is the most popular and
the most important, when every orbital is used to form two spinorbitals7

φ1(1) = ϕ1(1)α(1)	

φ2(1) = ϕ1(1)β(1)	

φ3(1) = ϕ2(1)α(1)	

φ4(1) = ϕ2(1)β(1)	 (M.12)

� � �

or

φ2i−1(1) = ϕi(1)α(1)	
φ2i(1) = ϕi(1)β(1)	 (M.13)

i= 1	2	 � � � 	N/2.
Thus, the one electron spinorbitals which represent the building blocks of the

Slater determinant, are products of a spatial function (orbital ϕ), and one of the
two simple functions of the spin coordinate σ (α or β functions, cf. p. 28).

7The functions below are written as if they were dependent on the coordinates of electron num-
ber 1. The reason is that we want to stress that they all are one-electron functions. Electron 1 serves
here as an example (and when needed may be replaced by the other electron). The symbol “1” means
(x1	 y1	 z1	σ1) if it is an argument of a spinorbital, (x1	 y1	 z1) if it corresponds to an orbital, and σ1 if
it corresponds to a spin function.
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The first Slater–Condon rule (M.9) may be transformed as follows (for defini-
tion of the integrals see p. 334)

F =
N
∑

i=1

〈

i
∣
∣ĥ
∣
∣i
〉=

MO
∑

i=1

∑

σ

〈

iσ
∣
∣ĥ
∣
∣iσ
〉= 2

MO
∑

i

(

i
∣
∣ĥ
∣
∣i
)≡ 2

MO
∑

i

hii (M.14)

where the summations denoted by MO go over the occupied orbitals (their number
being N/2), the factor 2 results from the summation over σ , which gives the same
result for the two values of σ (because of the double occupation of the orbitals).

Let us perform a similar operation with G. The formula for G is composed of
two parts

G= I− II� (M.15)

The first part reads as

I= 1
2

MO
∑

i

∑

σi

MO
∑

j

∑

σj

〈iσi	 jσj|iσi	 jσj〉

where iσi	 � � � etc. stands for the spinorbital composed of the orbital ϕi and a spin
function that depends on σi. For any pair of values of σi	σj , the integral yields the
same value (at a given pair of i	 j) and therefore (cf. p. 334),

I= 1
2

MO
∑

i

MO
∑

j

4(ij|ij)= 2
MO
∑

i

MO
∑

j

(ij|ij)�

The fate of part II will be a little different:

II= 1
2

MO
∑

i

∑

σi

MO
∑

j

∑

σj

〈iσi	 jσj|jσj	 iσi〉 = 1
2

MO
∑

i

MO
∑

j

2(ij|ji)=
MO
∑

i

MO
∑

j

(ij|ji)	

because this time the summation over σi and σj gives a non-zero result in half the
cases when compared to the previous case. The pairs (σi	σj)= ( 1

2 	
1
2)	 (− 1

2 	− 1
2)

give a non-zero (and the same) result, while ( 1
2 	− 1

2)	 (− 1
2 	

1
2) end up with zero

(recall that, by convention, the electrons in the integral have the order 1 2 1 2).
Finally the double occupation leads to

G=
MO
∑

i	j

[

2(ij|ij)− (ij|ji)]� (M.16)

II Slater–Condon rule

Suppose we are interested in two matrix elements: F12 ≡ 〈ψ1|F̂ |ψ2〉 and G12 ≡
〈ψ1|Ĝ|ψ2〉 and the two Slater determinants ψ1 and ψ2 differ only in that spinor-
bital φi in ψ1 has been replaced by φ′i (orthogonal to all other spinorbitals) in ψ2.
Then the Slater–Condon rule states that
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F12 =
〈

i
∣
∣ĥ
∣
∣i′
〉

	 (M.17)

G12 =
∑

j=1

(〈

ij
∣
∣i′j
〉− 〈ij∣∣ji′〉)� (M.18)

Proof : Operator F̂ . Using F̂Â = ÂF̂ , Â† = Â and Â2 = Â, we obtain Â†F̂Â =
ÂF̂Â= ÂÂF̂ = ÂF̂ and therefore

F12 =N!
〈

φ1 · · ·φi · · ·
∣
∣ÂF̂

∣
∣φ1 · · ·φ′i · · ·φN

〉

�

F12 =N!
〈

φ1φ2 · · ·φi · · ·φN
∣
∣Â
∣
∣
[

ĥ(1)φ1 · · ·φ′i · · ·φN
+φ1ĥ(2)φ2 · · ·φ′i · · ·φN + · · · +φ1 · · ·φ′i · · · ĥ(N)φN

]〉

=
∑

P

(−1)p
〈

φ1φ2 · · ·φi · · ·φN
∣
∣P̂
[

ĥ(1)φ1 · · ·φ′i · · ·φN

+φ1ĥ(2)φ2 · · ·φ′i · · ·φN + · · · +φ1 · · ·φ′i · · · ĥ(N)φN
]〉

�

Note first that the only integral to survive should involve φi and φ′i in such a way
that it leads to the one-electron integral 〈φi|ĥ|φ′i〉. This however happens only
if the i-th term in the square bracket intervenes [that with ĥ(i)]. Indeed, let us
take an integral which is not like that (i 	= 1): 〈φ1φ2 · · ·φi · · ·φN |P̂ĥ(1)φ1φ2 · · ·φ′i
· · ·φN〉. Whatever permutation P̂ is, ĥ will always go with φ1, while φ′i will there-
fore be without ĥ. When integrating over the electronic coordinates we obtain the
product of one-electron integrals (for subsequent electrons), and in this product
we always pinpoint the overlap integral of φ′i multiplied by one of the spinorbitals
φ1	φ2	 � � � 	φN . This integral (and therefore the whole product) is equal to 0, be-
cause φ′i is orthogonal to all the spinorbitals. Identical reasoning can be given for
ĥ(2)	 ĥ(3)	 � � � , but not for ĥ(i), and we obtain:

F12 =
∑

P

(−1)p
〈

φ1φ2 · · ·φi · · ·φN
∣
∣P̂
[

φ1φ2 · · · ĥ(i)φ′i · · ·φN
]〉

�

The only integral to survive is that which corresponds to P̂ = 1, because in
other cases the orthogonality of the spinorbitals will make the product of the one-
electron integrals equal to zero. Thus, finally we prove that

F12 =
〈

i
∣
∣h
∣
∣i′
〉

� (M.19)

Operator Ĝ. From Â† = Â, ÂĜÂ= ÂÂĜ= ÂĜ we obtain the following trans-
formation

G12 =N!
〈

Â(φ1φ2 · · ·φN)
∣
∣ÂĜ

∣
∣φ1 · · ·φ′i · · ·φN

〉〉

=N!〈Â(φ1φ2 · · ·φN)
∣
∣
{[

ĝ(1	2)
∣
∣φ1 · · ·φ′i · · ·φN

〉]
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+ [ĝ(1	3)
∣
∣φ1 · · ·φ′i · · ·φN

〉]+ · · ·}〉

= 1
2

∑

k	l

′∑

P

(−1)p
〈

P̂(φ1 · · ·φi · · ·φN)
∣
∣ĝ(k	 l)

∣
∣φ1 · · ·φ′i · · ·φN

〉

�

The number of g terms is equal to the number of interelectronic interactions. The
prime in the summation k	 l= 1	2	 � � � 	N over interactions ĝ(k	 l)means that k 	=
l (we count the interactions twice, but the factor 1

2 takes care of that). Note that,
due to the orthogonality of the spinorbitals, for a given ĝ(k	 l) the integrals are
all zero if k 	= i and l 	= i. Thus, the integrals to survive have to have k = i or
l = i. Therefore (prime in the summation means the summation index i is to be
excluded),

G12 = 1
2

∑

l

′∑

P

(−1)p
〈

P̂(φ1 · · ·φi · · ·φN)
∣
∣ĝ(i	 l)

∣
∣φ1 · · ·φ′i · · ·φN

〉

+ 1
2

∑

k

′∑

P

(−1)p
〈

P̂(φ1 · · ·φi · · ·φN)
∣
∣ĝ(k	 i)

∣
∣φ1 · · ·φ′i · · ·φN

〉

= 1
2

∑

l

′[〈
φiφl

∣
∣φ′iφl

〉− 〈φiφl
∣
∣φlφ

′
i

〉]+ 1
2

∑

k

′[〈
φiφk

∣
∣φ′iφk

〉− 〈φiφk
∣
∣φkφ

′
i

〉]

=
∑

j

′[〈
φiφj

∣
∣φ′iφj

〉− 〈φiφj
∣
∣φjφ

′
i

〉]

	

because only those two-electron integrals will survive which involve both φi and
φ′i, and the two other spinorbitals involved are bound to be identical (and have
either the index k or l depending on whether l= i or k= i). The difference in the
square brackets results from two successful permutations P̂ , in which we have the
order i	 j or j	 i (in the last term). Finally, for the sake of simplicity leaving only the
indices for the spinorbitals, we obtain

G12 =
∑

j( 	=i)

[〈

ij
∣
∣i′j
〉− 〈ij∣∣ji′〉] (M.20)

and after adding 0= 〈ii|i′i〉 − 〈ii|ii′〉 we have8

G12 =
∑

j

{〈

ij
∣
∣i′j
〉− 〈ij∣∣ji′〉}� (M.21)

This is our result.

8With this formula, we may forget at once that the integration has been carried out over the coor-
dinates of electrons i and j. It does not matter what the symbol of the coordinate is over which an
integration is performed in a definite integral. When in the future, we have to declare which coordi-
nates we are going to integrate over in 〈ij|i′j〉, it is absolutely safe to put any electrons. In the present
book it will be electron 1 and electron 2.
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III Slater–Condon rule

If ψ1 and ψ2 differ by two spinorbitals, say, in ψ1 are φi and φs , and in ψ2 we have
φ′i and φ′s (normalized and orthogonal to themselves and to all other spinorbitals),
i.e. φ′i replaces φi while φ′s replaces φs (all other spinorbitals are of the same
order), then

F12 = 0	 (M.22)

G12 =
〈

is
∣
∣i′s′
〉− 〈is∣∣s′i′〉	 (M.23)

Proof: Operator F̂ .

F12 =N!
〈

(φ1φ2 · · ·φN)
∣
∣ÂF̂

(

φ′1φ
′
2 · · ·φ′N

)〉

=N!〈(φ1φ2 · · ·φN)
∣
∣Â
{(

ĥ(1)φ′1φ
′
2 · · ·φ′N

)+ (φ′1ĥ(2)φ′2 · · ·φ′N
)+ · · ·

+ (φ′1φ′2 · · · ĥ(N)φ′N
)}〉

= 0	

where the spinorbitals in ψ2 have been additionally labelled by primes (to stress
that they may differ from those of ψ1). In each term there will be N − 1 over-
lap integrals between spinorbitals and one integral involving ĥ. Therefore, there
will always be at least one overlap integral involving different spinorbitals. This will
produce zero.

Operator Ĝ. There will be something surviving in G12. Using the previous argu-
ments, we have

G12 =N!
〈

(φ1φ2 · · ·φN)
∣
∣Â
(

g(1	2)φ′1φ
′
2 · · ·φ′N

)+ (g(1	3)φ′1φ
′
2 · · ·φ′N

)+ · · · 〉

= 〈φ1φ2
∣
∣g(1	2)

∣
∣φ′1φ

′
2
〉− 〈φ1φ2

∣
∣g(1	2)

∣
∣φ′2φ

′
1
〉

+ 〈φ1φ3
∣
∣g(1	3)

∣
∣φ′1φ

′
3
〉− 〈φ1φ3

∣
∣g(1	3)

∣
∣φ′3φ

′
1
〉+ · · ·

= 〈φ1φ2
∣
∣φ′1φ

′
2
〉− 〈φ1φ2

∣
∣φ′2φ

′
1
〉

+ 〈φ1φ3
∣
∣φ′1φ

′
3
〉− 〈φ1φ3

∣
∣φ′3φ

′
1
〉+ · · · �

Note that N! cancels 1/N! from the antisymmetrizer, and in the ket we have all
possible permutations. A term to survive, it has to engage all four spinorbitals:
i	 i′	 s	 s′, otherwise the overlap integrals will kill it. Therefore, only two terms will
survive and give

G12 =
〈

is
∣
∣i′s′
〉− 〈is∣∣s′i′〉� (M.24)

IV Slater–Condon rule

Using the above technique it is easy to show that if the Slater determinants ψ1 and
ψ2 differ by more than two (orthogonal) spinorbitals, the matrix elements F12 = 0
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Fig. M.1. Four Slater–Condon rules (I, II, III,
IV) for easy remembering. On the left side we
see pictorial representations of matrix elements
of the total Hamiltonian Ĥ . The squares inside
the brackets represent the Slater determinants.
Vertical lines in bra stand for those spinorbitals,
which are different in bra and in ket functions.
On the right we have two square matrices collect-
ing the hij ’s and 〈ij|ij〉−〈ij|ji〉 for i	 j = 1	 � � � 	N .
The dots in the matrices symbolize non-zero ele-
ments.

and G12 = 0. This happens because operators F̂ and Ĝ represent the sum of, at
most, two-electron operators, which will involve at most four spinorbitals and there
will always be an extra overlap integral over the orthogonal spinorbitals.9

The Slater–Condon rules are schematically depicted in Fig. M.1.

9If the operators were more than two-particle, the result would be different.



N. LAGRANGE MULTIPLIERS
METHOD

Imagine a Cartesian coordinate system of n+m dimensions with the axes labelled
x1	x2	 � � � 	 xn+m and a function1 E(x), where x = (x1	x2	 � � � 	 xn+m). Suppose
that we are interested in finding the lowest value of E, but only among such x
that satisfy m conditions (conditional extremum): conditional

extremum
Wi(x)= 0 (N.1)

for i = 1	2	 � � � 	m. The constraints cause the number of independent variables to
be n.

If we calculated the differential dE at point x0, which corresponds to an ex-
tremum of E, then we obtain 0:

0=
n+m
∑

j=1

(
∂E

∂xj

)

0
dxj	 (N.2)

where the derivatives are calculated at the point of the extremum. The quanti-
ties dxj stand for infinitesimally small increments. From (N.2) we cannot draw the
conclusion that the ( ∂E∂xj )0 are equal to 0. This would be true if the increments dxj
were independent, but they are not. Indeed, we find the relations between them by
making differentials of conditions Wi:

n+m
∑

j=1

(
∂Wi
∂xj

)

0
dxj = 0 (N.3)

for i = 1	2	 � � � 	m (the derivatives are
calculated for the extremum).

This means that the number of truly
independent increments is only n. Let us
try to exploit this. To this end let us mul-
tiply each equation (N.3) by a number εi
(Lagrange multiplier), which will be fixed

Joseph Louis de Lagrange
(1736–1813), French mathe-
matician of Italian origin, self-
taught; professor at the Ar-
tillery School in Turin, then at
the École Normale Supérieure
in Paris. His main achieve-
ments are in variational cal-
culus, mechanics, and also in
number theory, algebra and
mathematical analysis.

in a moment. Then, let us add together all the conditions (N.3), and subtract the
result from eq. (N.2). We get

1Symbol E is chosen to suggest that, in our applications, the quantity will have the meaning of energy.
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n+m
∑

j=1

[(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0

]

dxj = 0	

where the summation extends over n+m terms. The summation may be carried
out in two steps. First, let us sum up the first n terms, and afterwards sum the other
terms
n
∑

j=1

[(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0

]

dxj +
n+m
∑

j=n+1

[(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0

]

dxj = 0�

The multipliers εi have so far been treated as “undetermined”. Well, we may
force them to make each of the terms in the second summation equal zero2

(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0
= 0	 for j = n+ 1	 � � � 	 n+m� (N.4)

Hence, the first summation alone is 0
n
∑

j=1

[(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0

]

dxj = 0	

which means that now we have only n increments dxj , and therefore they are in-
dependent. Since for any (small) dxj , the sum is always 0, the only reason for this
could be that each parenthesis [ ] individually equals zero

(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0
= 0 for j = 1	 � � � 	 n�

This set of n equations (called the Euler equations) together with the m condi-Euler equation

tions (N.1) and m equations (N.4), gives a set of n + 2m equations with n + 2m
unknowns (m epsilons and n+m components xi of the vector x0).

For a conditional extremum, the constraint Wi(x)= 0 has to be satisfied for
i= 1	2	 � � � 	m and

(
∂E

∂xj

)

0
−
∑

i

εi

(
∂Wi
∂xj

)

0
= 0 for j = 1	 � � � 	 n+m�

The xi found from these equations determine the position x0 of the condi-
tional extremum E.

Whether it is a minimum, a maximum or a saddle point, is decisive for the analy-
sis of the matrix of the second derivative (Hessian). If its eigenvalues calculated at
x0 are all positive (negative), it is a minimum3 (maximum), in other cases it is a
saddle point.

2This is possible if the determinant which is built of coefficients ( ∂Wi∂xj
)0 is non-zero (this is what we

have to assume). For example, if several conditions were identical, the determinant would be zero.
3In this way we find a minimum; no information is available as to whether is it global or local.
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Example 1. Minimizing a paraboloid going along a straight line off centre. Let us
take a paraboloid

E(x	 y)= x2 + y2�

This function has, of course, a minimum at (0	0), but the minimum is of no
interest to us. What we want to find is a minimum of E, but only when x and y
satisfy some conditions. In our case there will only be one:

W = 1
2
x− 3

2
− y = 0� (N.5)

This means that we are interested in a minimum of E along the straight line
y = 1

2x− 3
2 .

The Lagrange multipliers method works as follows:

• We differentiate W and multiply by an unknown (Lagrange) multiplier ε thus
getting: ε( 1

2 dx− dy)= 0.
• This result (i.e. 0) is subtracted4 from dE = 2xdx + 2y dy = 0 and we obtain

dE = 2xdx+ 2y dy − 1
2εdx+ εdy = 0.

• In the last expression, the coefficients at dx and dy have to be equal to zero.5 In
this way we obtain two equations: 2x− 1

2ε= 0 and 2y + ε= 0.
• The third equation needed is the constraint y = 1

2x− 3
2 .

• The solution to these three equations gives a set of x	 y	 ε which corresponds
to an extremum. We obtain: x = 3

5 , y = − 6
5 , ε = 12

5 . Thus we have obtained,
not only the position of the minimum (x = 3

5 , y = − 6
5 ), but also the Lagrange

multiplier ε. The minimum value of E, which has been encountered along the
straight line y = 1

2x− 3
2 is equal to E( 3

5 	− 6
5)= ( 3

5)
2 + (− 6

5)
2 = 9+36

25 = 9
5 �

Example 2. Minimizing a paraboloid moving along a circle (off centre). Let us take
the same paraboloid (N.5), but put another constraint

W = (x− 1)2 + y2 − 1= 0� (N.6)

This condition means that we want to go around a circle of radius 1, centred at
(1	0), and see at which point (x	 y) we have the lowest value6 of E. The example
is chosen in such a way as to answer the question first without any calculations.
Indeed, the circle goes through (0	0), therefore, this point has to be found as the
minimum. Beside this, we should find a maximum at (2	0), because this is the point
on the circle which is most distant from (0	0).

Well, let us see whether the Lagrange multipliers method will give the same
result.

After differentiation of W , multiplying it by the multiplier ε, subtracting the
result from dE and rearranging the terms, we obtain

4Or added – no matter (in that case we get a different value of ε).
5This is only possible now.
6Or, in other words, we intersect the paraboloid with the cylindrical surface of radius 1 and the cylin-

der axis (parallel to the axis of symmetry of the paraboloid) is shifted to (1	0).
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dE = [2x− ε(2x− 2)
]

dx+ 2y(1− ε)dy = 0	

which (after forcing the coefficients at dx and dy to be zero) gives a set of three
equations

2x− ε(2x− 2) = 0	

2y(1− ε) = 0	

(x− 1)2 + y2 = 1�

Please check that this set has the following solutions: (x	 y	 ε) = (0	0	0) and
(x	 y	 ε) = (2	0	2). The solution (x	 y) = (0	0) corresponds to the minimum,
while the solution (x	 y) = (2	0) corresponds to the maximum.7 This is what we
expected to get.

Example 3. Minimizing the mean value of the harmonic oscillator Hamiltonian. This
example is different: it will pertain to the extremum of a functional.8 We are often
going to encounter this in the methods of quantum chemistry. Let us take the energy
functional

E[φ] =
∫ ∞

−∞
dxφ∗Ĥφ≡ 〈φ∣∣Ĥφ〉	

where Ĥ stands for the harmonic oscillator Hamiltonian:

Ĥ =− h̄
2

2m
d2

dx2 +
1
2
kx2�

If we were asked what function φ ensures the minimum value of E[φ], such a
function could be found right away, it is φ = 0. Yes, indeed, because the kinetic
energy integral and the potential energy integral are positive numbers, except in
the situation when φ = 0, then the result is zero. Wait a minute! This is not what
we thought of. We want φ to have a probabilistic interpretation, like any wave
function, and therefore 〈φ|φ〉 = 1, and not zero. Well, in such a case we want
to minimize E[φ], but forcing the normalization condition is satisfied all the time.
Therefore we search for the extremum of E[φ] with condition W = 〈φ|φ〉 − 1= 0.
It is easy to foresee that what the method has to produce (if it is to be of any value)
is the normalized ground-state wave function for the harmonic oscillator. How will
the Lagrange multipliers method get such result?

The answer is on p. 198.

7The method does not give us information about the kind of extremum found.
8The argument of a functional is a function that produces the value of the functional (a number).



O. PENALTY FUNCTION METHOD

Very often we are interested in the minimization of a (“target”) function,1 i.e. in
finding such values of variables, which ensure a minimum of the function when
some constraints are satisfied. Just imagine hiking in the Smoky Mountains: we
want to find the point of the lowest ground elevation provided that we hike along
a straight line from, say, Gatlinburg to Cherokee.

Suppose the target function for minimization (which corresponds to the eleva-
tion of the ground in the Smoky Mountains region) is the function f (x1	x2	 � � � 	
xn+m), but the variables xi have to fulfil m equations (“constraints”):

φi(x1	x2	 � � � 	 xn+m)= 0 for i= 1	2	 � � � 	m�

For such tasks we have at least three possibilities. The first is to eliminate m
variables (by using the conditions) and express them by others. In this way the
target function f takes into account all the constraints and depends only on n
independent variables. Then the target function is to be minimized. The second
possibility is to use the Lagrange multipliers method (see Appendix N). In both
cases there is, however, the complication that the conditions to be satisfied might
be quite complex and therefore solution of the corresponding equations may be
difficult to achieve. An easier solution may be to choose a penalty method. The
idea behind the penalty method is quite simple. Why go to the trouble of trying
to satisfy the conditions φi = 0, when we could propose the following: instead of
function f let us minimize its modification

F = f +
m
∑

i=1

Kiφ
2
i 	

where the penalty coefficients Ki > 0 are chosen to be large.2 When minimizing
F we admit that the conditions φi = 0 could be non-satisfied, but any attempt to
violate them introduces to F a positive contribution

∑m
i=1Kiφ

2
i . This means that,

for minimization of F , it would always be better to explore such points in space
(Fig. O.1) for which

∑m
i=1Kiφ

2
i = 0. If the K’s are large enough, the procedure

will force the choice φ2
i = 0, or φi = 0 for i = 1	2	 � � � 	m, and this is what has to

be satisfied during minimization.
Note that the task would be much more difficult if φ2

i had more than one mini-
mum that corresponds to φi = 0. This penalty method is worth keeping in our tool

1If we change the sign of the target function, the task is equivalent to maximization.
2This means a high penalty.

1001



1002 O. PENALTY FUNCTION METHOD

Fig. O.1. How does the penalty method work? We have to minimize f (x	 y), but under the condition
that x and y satisfy the equation φ1(x	 y)= 0 (black line). Function f (x	 y) exhibits a single minimum
at point B, but this minimum is of no interest to us, because we are looking for a conditional minimum.
To find it we minimize the sum f (x	 y)+Kφ2

1 with the penalty functionKφ2
1 	 0 allowing any deviation

from the black lineφ1(x	 y)= 0. However, going off this line does not pay, because this is precisely what
switches the penalty on. As a result, at sufficiently large K we obtain the conditional minimum W. This
is what the game is all about.

box, because it is general and easily applicable. For the method to work, it has to
have a sufficiently large K. However, if K is too large, the numerical results might
be of poor quality, since the procedure would first of all take care of the penalty,
paying little attention to f . It is recommended that we take a few values of K and
check whether the results depend on this.

As an example of the penalty function method, let us take the docking of two
molecules. Our goal is to give such values of the atomic coordinates of both mole-
cules as to ensure the contacts of some particular atoms of both molecules within
some precise distance limits for the contacting atoms. The task sounds trivial, until
we try to accomplish it in practice (especially for large molecules). The goal can be
rather easily achieved when the penalty function method is used. We do the follow-
ing. To the existing force field (i.e. an approximate electronic energy, Chapter 7)
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we simply add a penalty for not satisfying the desired contacts. For a single pair of
the atoms (a contact) the penalty could be set as

K(r − r0)2	
where r stands for the distance of the atoms, and r0 is the optimum (desired) con-
tact distance. At a chosen starting geometry the atoms are far from achieving the
optimum distance, and therefore the force field energy is supplemented by a large
distance-dependent penalty. The energy is so high that the minimization proce-
dure tries to remove the penalty and relax the system. Often this can be done in
only one way: by docking the molecules in such a way as to achieve the proper
contact distance.



P. MOLECULAR INTEGRALS WITH
GAUSSIAN TYPE ORBITALS 1S

The normalized 1s spherically symmetric Gaussian Type Orbital (GTO) centred at
the point shown by the vector Rp reads as

χp ≡
(

2αp
π

) 3
4

exp
(−αp|r−Rp|2

)

�

The molecular integrals usually involve, at most, four such orbitals: χp	χq	
χr	χs , with corresponding centres Rp	Rq	Rr 	Rs , and exponents αp	αq	αr	αs ,
respectively. Since any product of the 1s GTOs represents a (non-normalized)
1s GTO centred between the centres of the individual GTOs (see p. 359), let
us denote the centre of χpχq by Rk = αpRp+αqRq

αp+αq , and the centre of χrχs by

Rl = αrRr+αsRs
αr+αs . Then all the integrals needed are as follows:1

overlap integral:

Spq = 〈χp|χq〉 =
(

4αpαq
(αp + αq)2

) 3
4

exp
( −αpαq
αp + αq |Rp −Rq|

2
)

; (P.1)

kinetic energy integral:

Tpq =
〈

χp

∣
∣
∣
∣
−1

2
�

∣
∣
∣
∣
χq

〉

= αpαq

αp + αq
(

3− 2αpαq
αp + αq |Rp −Rq|

2
)

Spq; (P.2)

nuclear attraction integral:2

V αpq =
〈

χp

∣
∣
∣
∣

1
|r−Rα|

∣
∣
∣
∣
χq

〉

= 2

√

αp + αq
π

F0
(

(αp + αq)|Rα −Rk|2
)

Spq; (P.3)

electron repulsion integral:

(pr|qs)= (χpχr |χqχs)=
∫

χp(1)∗χq(1)
1
r12
χ∗r (2)χs(2)dv1 dv2

= 2√
π

√
αp + αq√αr + αs

√
αp + αq + αr + αs F0

(
(αp + αq)(αr + αs)
αp + αq + αr + αs |Rk −Rl|

2
)

SpqSrs (P.4)

1S.F. Boys, Proc. Roy. Soc. (London) A200 (1950) 542.
2In order to interpret this integral (in a.u.) as the Coulombic attraction of the electronic charge

χ∗p(1)χq(1) by a nucleus (of charge Z, located at Rα) we have to multiply the integral by −Z.
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with F0 defined as3

F0(t)= 1√
t

∫
√
t

0
exp
(−u2)du� (P.5)

Note that for an atom (all the centres coincide) we have t = 0 and F0(0)= 1.

Do these formulae work?

The formulae look quite complex. If they are correct, they have to work in several
simple situations. For example, if the electronic distribution χ∗p(1)χq(1) centred at
Rk is far away from the nucleus, then we have to obtain the Coulombic interaction
of the charge of χ∗p(1)χq(1) and the nucleus. The total charge of the electron cloud

χ∗p(1)χq(1) is obviously equal to Spq, and therefore Spq
|Rα−Rk| should be a very good

estimation of the nuclear attraction integral, right?
What we need is the asymptotic form of F0(t), if t→∞. This can be deduced

from our formula for F0(t). The integrand is concentrated close to t = 0. For t→
∞, the contributions to the integral become negligible and the integral itself can
be replaced by

∫∞
0 exp(−u2)du=√π/2. This gives [F0(t)]asympt� =

√
π

2
√
t

and

(

V αpq
)

asympt� = 2

√

αp + αq
π

F0
(

(αp + αq)|Rα −Rk|2
)

Spq

= 2

√

αp + αq
π

√
π

2
√

(αp + αq)|Rα −Rk|2
Spq = Spq

|Rα −Rk| 	

exactly as we expected. If χp = χq, then Spq = 1 and we simply get the Coulombic
law for the unit charges. It works.

Similarly, if in the electronic repulsion integral χp = χq, χr = χs and the dis-
tance |Rk − Rl| = R is large, then we should get the Coulombic law for the two
point-like unit charges at distance R. Let us see. Asymptotically

(pr|qs)asympt� = 2√
π

√
αp + αq√αr + αs

√
αp + αq + αr + αs F0

(
(αp + αq)(αr + αs)
αp + αq + αr + αs |Rk −Rl|

2
)

= 2√
π

√
αp + αq√αr + αs

√
αp + αq + αr + αs

√
π

2
√

(αp+αq)(αr+αs)
αp+αq+αr+αs |Rk −Rl|2

= 1
R
	

which is exactly what we should obtain.

3The values of F0(t) are reported in L.J. Schaad, G.O. Morrell, J. Chem. Phys. 54 (1971) 1965.



Q. SINGLET AND TRIPLET STATES
FOR TWO ELECTRONS

An angular momentum is a vector, and this pertains also to spin angular momenta
(see Chapter 1). The spin angular momentum of a certain number of elementary
particles is the sum of their spin vectors. To obtain the total spin vector, we there-
fore have to add the x components of the spins of the particles, similarly for the
y and z components, and to construct the total vector from them. Then we might
be interested in the corresponding spin operators. These operators will be created
using Pauli matrices.1

In this way we find immediately that, for a single particle, the following identity
holds

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = Ŝ2

z + Ŝ+Ŝ− − h̄Ŝz	 (Q.1)

where Ŝ2 ≡ Ŝ2
and Ŝ+ and Ŝ− are the lowering and raising operators, respectively,lowering and

raising
operators Ŝ+ = Ŝx + iŜy 	 (Q.2)

Ŝ− = Ŝx − iŜy 	 (Q.3)

which satisfy the useful relations justifying their names:

Ŝ+α = 0	 Ŝ+β= h̄α	
Ŝ−α = h̄β	 Ŝ−β= 0�

For any stationary state the wave function is an eigenfunction of the square of
the total spin operator and of the z-component of the total spin operator. The one
and two-electron cases are the only ones for which the total wave function is the
product of space and spin parts.

The maximum projection of the electron spin on the z axis is equal to 1
2 (in

a.u.). Hence, the maximum projection for the total spin of two electrons is equal
to 1. This means that in this case only two spin states are possible: the singlet state
corresponding to S = 0 and the triplet state with S = 1 (see Postulate V). In the
singlet state the two electronic spins are opposite (“pairing of electrons”), while
in the triplet state the spin vectors are “parallel” (cf. Fig. 1.11 in Chapter 1). As
always, the possible projection of the total spin takes one of the values: MS =

1See Postulate VI in Chapter 1.
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−S	−S + 1	 � � � 	+S, i.e. MS = 0 for the singlet state and MS = −1	0	+1 for the
triplet state.

Now it will be shown that the two-electron spin function α(1)β(2)− α(2)β(1)
ensures the singlet state. First, let us construct the square of the total spin of the
two electrons:

S2 = (s1 + s2)
2 = s21 + s22 + 2s1s2�

Thus to create operator Ŝ
2

we need operators ŝ21 and ŝ22, which will be expressed
by the lowering and raising operators according to eq. (Q.1), and the scalar product
ŝ1ŝ2 expressed as the sum of the products of the corresponding components x, y
and z (we know how they act, see Postulate V in Chapter 1). If Ŝ2 acts on α(1)β(2),
after five lines of derivation we obtain

Ŝ2[α(1)β(2)
]= h̄2[α(1)β(2)+ α(2)β(1)]

similarly

Ŝ2[α(2)β(1)
]= h̄2[α(1)β(2)+ α(2)β(1)]�

Now we will use this result to calculate

Ŝ2[α(1)β(2)− α(2)β(1)] and Ŝ2[α(1)β(2)+ α(2)β(1)]�

We have

Ŝ2[α(1)β(2)− α(2)β(1)]

= 0× [α(1)β(2)− α(2)β(1)]

≡ S(S + 1)h̄2[α(1)β(2)− α(2)β(1)]	

where S = 0 (singlet) and

Ŝ2[α(1)β(2)+ α(2)β(1)]= 2	

h̄2[α(1)β(2)+ α(2)β(1)]≡ S(S + 1)h̄2[α(1)β(2)+ α(2)β(1)]	

where S = 1 (triplet).
If operator Ŝz = ŝ1z + ŝ2z acts on [α(1)β(2)− α(2)β(1)], we obtain

0× [α(1)β(2)− α(2)β(1)]�

This means that, in the singlet state, the projection of the spin on the z axis is equal
to 0. This is what we expect from a singlet state function.

On the other hand, if Ŝz = ŝ1z + ŝ2z acts on [α(1)β(2)+ α(2)β(1)], we have

0× [α(1)β(2)+ α(2)β(1)]	
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i.e. the function [α(1)β(2)+α(2)β(1)] is such a triplet function which corresponds
to the zero projection of the total spin. A similarly simple calculation for the spin
functions α(1)α(2) and β(1)β(2) gives the eigenvalue Sz = h̄ and Sz = −h̄, re-
spectively. Therefore, after normalization2 finally

1√
2
[α(1)β(2) − α(2)β(1)] is a singlet function, while: 1√

2
[α(1)β(2) +

α(2)β(1)], α(1)α(2) and β(1)β(2) represent three triplet functions.

2For example let us check the normalization of the singlet function 1√
2
[α(1)β(2)− α(2)β(1)]:

∑

σ1

∑

σ2

{
1√
2

[

α(1)β(2)− α(2)β(1)]
}2

=
∑

σ1

∑

σ2

1
2
{[

α(1)
]2[
β(2)

]2 + [α(2)]2[β(1)]2 − 2
[

α(2)β(2)
][

α(1)β(1)
]}

= 1
2

{
∑

σ1

[

α(1)
]2∑

σ2

[

β(2)
]2 +

∑

σ2

[

α(2)
]2∑

σ1

[

β(1)
]2 − 2

∑

σ2

[

α(2)β(2)
]∑

σ1

[

α(1)β(1)
]
}

= 1
2
{1 · 1+ 1 · 1− 2 · 0 · 0} = 1�



R. THE HYDROGEN MOLECULAR ION
IN THE SIMPLEST ATOMIC BASIS
SET

Consider the quantum mechanical description of the hydrogen molecular ion in
its simplest version. Let us use molecular orbital theory with the atomic basis set
composed of only two Slater Type Orbitals (STO): 1sa and 1sb centred on the
nuclei a and b. The mean value of the Hamiltonian calculated with the bonding
(+) and antibonding (−) orbital (see Chapter 8 and Appendix D) reads as

E± = Haa ±Hab
1± S 	

where the Hamiltonian (in a.u.)1 Ĥ = − 1
2� − 1

ra
− 1

rb
+ 1

R and S stands for the
overlap integral of the two atomic orbitals. Thus we have

E± = 1
R
+ Haa ±Hab

1± S = 1
R
+
(− 1

2�− 1
ra
− 1
rb

)

aa
± (− 1

2�− 1
ra
− 1
rb

)

ab

1± S
= 1
R
+ EH + Vaa	b ±EHS ± Vab	b

1± S =EH + 1
R
+ Vaa	b ± Vab	b

1± S 	

where EH means the energy of the hydrogen atom, while the nuclear attraction
integrals are

Vaa	b =−
(

a

∣
∣
∣
∣

1
rb

∣
∣
∣
∣
a

)

	 Vab	b =−
(

a

∣
∣
∣
∣

1
rb

∣
∣
∣
∣
b

)

�

The energy E± is a function of the internuclear distance R, which is hidden in
the dependence of the integrals on R. We want to have this function explicitly. To
this end we have to compute the integrals S, Vaa	b and Vab	b. We use the elliptic
coordinates (Fig. R.1):

μ= ra + rb
R

	 ν = ra − rb
R

	 φ= arctan
(
y

x

)

�

The volume element in the elliptic coordinates is dV =R3/8(μ2−ν2)dμdν dφ,
where 1 
 μ<∞, −1 
 ν 
 1	0 
φ
 2π.

1See Fig. R.1 for explaining symbols.
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electron

Fig. R.1. The elliptic coordinates μ =
ra+rb
R , ν = ra−rb

R built using distances ra
and rb from the two foci (where the nu-
clei are, their distance is R) of the ellipse.
The angle φ measures the rotation of the
plane defined by ab and the correspond-
ing electron about the ab axis.

We will need two auxiliary integrals:

An(σ	α) =
∫ ∞

σ
μn exp(−αx)dx= exp(−ασ)

n
∑

k=0

n!
(n− k)!

σn−k

αk+1
	

Bn(α) =
∫ +1

−1
xn exp(−αx)dx=An(−1	α)−An(1	α)�

The integrals An (σ	α) satisfy the following recurrence relation:

An(σ	α) = σnA0(σ	α)+ n

α
An−1(σ	α)	

A0(σ	α) = 1
α

exp(−σα)�

These are some simple auxiliary integrals (we will need them in a moment):

A1(σ	α) = σ 1
α

exp(−σα)+ 1
α

1
α

exp(−σα)= 1
α

(

σ + 1
α

)

exp(−σα)	

A2(σ	α) = σ2 1
α

exp(−σα)+ 2
α

(
1
α

(

σ + 1
α

)

exp(−σα)
)

= 1
α

exp(−σα)
[

σ2 + 2
α

(

σ + 1
α

)]

	

B0(α) = 1
α

exp(α)− 1
α

exp(−α)= 1
α

[

exp(α)− exp(−α)]	

B1(α) = 1
α

(

−1+ 1
α

)

exp(α)− 1
α

(

1+ 1
α

)

exp(−α)

= 1
α

[(
1
α
− 1
)

exp(α)−
(

1
α
+ 1
)

exp(−α)
]

�

Thus, the overlap integral S is calculated in the following way

S = R3

8π

∫ ∞

1
dμ exp(−Rμ)

∫ +1

−1
dν
(

μ2 − ν2)
∫ 2π

0
dφ
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= R3

2

[∫ ∞

1
dμμ2 exp(−Rμ)− 1

3

∫ ∞

1
dμexp(−Rμ)

]

= R3

2

[

A2(1	α)− 1
3
A0(1	α)

]

= R3

2

[
1
R

exp(−R)
(

1+ 2
R
+ 2
R2

)

− 1
3

1
R

exp(−R)
]

= exp(−R)
(
R2

3
+R+ 1

)

�

Thus we have explicit dependence on R. The formula for S satisfies correctly
the limiting cases: limR→∞S(R)= 0 and limR→0S(R)= 1 (normalization of the 1s
orbital). Besides

dS
dR

= −exp(−R)
(
R2

3
+R+ 1

)

+ exp(−R)
(

2
3
R+ 1

)

= −exp(−R)
(
R2 +R

3

)

< 0	

i.e. the overlap integral of the 1s functions decreases from 1 to 0, if R→∞ (see
Fig. R.2.a).

We see that for small R the function S decreases gently, while for larger R it
decreases fast.2

Using the elliptic coordinates and the formulae for the integrals An(σ	α) and
Bn(α) we obtain

−Vaa	b =
(

a

∣
∣
∣
∣

1
rb

∣
∣
∣
∣
a

)

= 1
π

∫

exp(−2ra)
1
rb

dτ

= R3

8π
2
R

∫ ∞

1
dμ exp

[−R(μ+ ν)]
∫ +1

−1
dν
(μ2 − ν2)

μ− ν
∫ 2π

0
dφ

= R2

4π
2π
∫ ∞

1
dμ
∫ +1

−1
dν exp(−Rμ)exp(−Rν)(μ+ ν)

= R2

2

[∫ ∞

1
dμμexp(−Rμ)

∫ +1

−1
dν exp(−Rν)

+
∫ ∞

1
dμ exp(−Rμ)

∫ +1

−1
dν ν exp(−Rν)

]

= R2

2
[

A1(1	R)B0(R)+A0(1	R)B1(R)
]= 1

R
− exp(−2R)

(

1+ 1
R

)

�

2Just to get an idea: at R= 5 a.u. (quite typical for van der Waals complexes) the value of the overlap
integral is of the order of 0.1.
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Fig. R.2. The hydrogen molecule in the simplest
basis set of two 1s Slater type orbitals (STO).
(a) The overlap integral S as a function of the
internuclear distance R. (b) The penetration
energy represents the difference between the
electron–proton interaction calculated assuming
the electronic charge distribution and the same
energy calculated with the point charges (the
electron is located on nucleus a). (c) The ener-
gies E+ and E− of the bonding (lower curve)
and of the antibonding (upper curve) orbitals.
Energies and distances in a.u.

This is an interesting result. The integral −Vaa	b means (a| 1
rb
|a), which at large R

should give the Coulombic interaction of the two unit point charges, i.e. 1
R . This

is what we have as the first term. The second term: Epenetr =−exp(−2R)(1+ 1
R)

represents what is known as penetration energy resulting from the non-point-likepenetration
energy character of one of the interacting charges.3

From Fig. R.2.b we see that the penetration energy vanishes much faster that
the overlap integral. No wonder it vanishes as exp(−2R), while the overlap integral
vanishes only as exp(−R).

It is seen that

the diffuse charges interact more weakly.

3The electron cloud of electronic density a2.
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On the one hand diffuse charges offer the chance to be close in space (this in-
creases the interaction), on the other hand some charges become more distant. The
second effect prevails and therefore the penetration energy makes the Coulombic
interaction weaker.

What will happen if R→ 0?
Let us expand the exponential function in the Taylor series. We obtain

lim
R→0

[

Vaa	b(R)
] = − lim

R→0

[
1
R
−
[

1− 2R+ 1
2
R2 + · · ·

](

1+ 1
R

)]

= − lim
R→0

(
1
R
− 1+ 2R− 1

2
R2 − 1

R
+ 2+ 1

2
R+ · · ·

)

=−1�

This is exactly what we get for the hydrogen atom when calculating:

Vaa	a = −
∫

dv
1
r
(1s)2 =− 1

π

∫

exp(−2r)
1
r
r2 sinθdr dθdφ

= −4
∫ ∞

0
r exp(−2r)dr =−4× 2−2 =−1�

Thus everything is all right.
Similarly we calculate

−Vab	b =
(

a

∣
∣
∣
∣

1
rb

∣
∣
∣
∣
b

)

= 1
π

∫

exp
(−(ra + rb)

) 1
rb

dv

= 1
π

2
R

∫

exp(−Rμ) 1
(μ− ν)

R3

8
(

μ2 − ν2)dμdν dφ

= R2

2

∫ ∞

1

∫ +1

−1
dμdν

[

μexp(−Rμ)+ ν exp(−Rμ)]

= R2

2
2A1(1	R)+ 0= (1+R)exp(−R)�

If R→∞, then −Vab	b→ 0, which is the correct behaviour. Do we get Vaa	a =
−1, if R→ 0? Again, let us expand the exponential function:

Vaa	a = − lim
R→0

(1+R)exp(−R)=− lim
R→0

(1+R)
(

1−R+ R
2

2
+ · · ·

)

= − lim
R→0

[

1+R−R−R2 + R
2

2
+ · · ·

]

=−1�

This is what we expected.

Bonding and antibonding orbital energy

If we insert the results into the formula for the energy of the bonding and anti-
bonding orbitals, we obtain the most important formulae for the problem being
considered:
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E± = EH + 1
R
+ Vaa	b ± Vab	b

1± S

= EH + 1
R
+ −

1
R + exp(−2R)

(

1+ 1
R

)± (−1−R)exp(−R)
1± [exp(−R)(R2

3 +R+ 1
)] �

The plots of E± are shown in Fig. R.2.c. It is seen that in the quite primitive
LCAO MO approximation, the bonding energy is lower than the energy of the
hydrogen atom EH for all sufficiently large R (a single minimum). The energy of
the antibonding orbital is higher than EH for all R (no minimum). This simple
theory predicts the position of the energy minimum for the ground state as Re =
2�5 a.u., while the experimental value is equal4 ca. 2.0 a.u.

4These two quantities are not directly comparable, because the experimental value does not corre-
spond exactly to the position of the minimum (because of anharmonicity).
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On p. 569 the electronic density ρ is defined. If the wave function is a Slater de-
terminant (p. 332) and assuming the double occupancy of orbitals ϕi, we have
(see (11.5)):

ρ(r)= 2
[∣
∣ϕ1(r)

∣
∣
2 + ∣∣ϕ2(r)

∣
∣
2 + · · · + ∣∣ϕN

2
(r)
∣
∣
2]
� (S.1)

The density distribution ρ may be viewed as a cloud carrying a charge −Ne and
eq. (S.1) says that the cloud is composed of individual clouds of molecular orbitals,
each carrying two electrons. On the other hand in the LCAO approximation any
molecular orbital is represented by the sum of atomic orbitals. If we insert the
LCAO expansion into ρ, then ρ becomes the sum of the contributions, each being
the product of two atomic orbitals. There is a temptation to go even further and
to divide ρ somehow into the contributions of particular atoms, calculate the charge
corresponding to such contributions and locate the (point) charge on the nucleus.1

We might say therefore, what the “electron population” residing on the particular
atoms is (hence the name: population analysis).

Mulliken population analysis

Such tricks are of course possible, and one of them is called Mulliken popula-
tion analysis. From (S.1), after using the LCAO expansion ϕi =∑r criχr , we have
(Srs stands for the overlap integrals between the atomic orbitals r and s, and c are
the corresponding LCAO coefficients)

N =
∫

ρ(r)dV = 2
N/2
∑

i=1

∫
∣
∣ϕi(r)

∣
∣2 dV =

∑

i

∑

rs

2c∗ricsiSrs

=
∑

rs

PrsSrs = Tr(PS)	 (S.2)

where P is called the charge and bond-order matrix

Psr =
∑

i

2c∗ricsi� (S.3)

The summation over r and s may be carried out, being careful from which atom
A the particular atomic orbital comes (we assume that the AO’s are centred on the
nuclei). We get an equivalent formula (A ad B denote atoms):

1This number need not be an integer.
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N =
∑

A

∑

r∈A

∑

B

∑

s∈B
PrsSrs�

Afterwards we may choose the following partitionings:

Atomic partitioning:

N =
∑

A

qA	 qA =
∑

r∈A

(
∑

B

∑

s∈B
PrsSrs

)

	

where q are called the Mulliken charges. They are often calculated in practical ap-Mulliken
charges plications and serve to provide information on how much of the electronic den-

sity ρ is concentrated on atom A. Such a quantity is of interest because it may
be directly linked to the reactivity of atom A, often identified with its ability to
be attacked by nucleophilic or electrophilic agents.2 Also, if we measure the di-
pole moment, we would like to know why this moment is large in a molecule. By
performing Mulliken analysis, we might be able to identify those atoms that are
responsible for this. This might be of value when interpreting experimental data.

Atomic and bond partitioning: The summation may also be performed in a
slightly different way

N =
∑

A

∑

r	s∈A
PrsSrs +

∑

A<B

2
∑

r∈A

∑

s∈B
PrsSrs =

∑

A

q̄A +
∑

A<B

q̄AB�

The first term represents the contributions q̄A of the atoms, the second pertains
to the atomic pairs q̄AB.

The latter populations are large and positive for those pairs of atoms for
which chemists assign chemical bonds.

The bond population q̄AB may be treated as a measure of whether in the A−B
atomic interaction, bonding or antibonding character prevails.3 If, for two atoms,
q̄AB < 0, we may say that they are not bound by any chemical bond, if q̄AB is large,
then we may treat it as an indication that these two atoms are bound by a chemical
bond or bonds.

2We have to remember that, besides electrons, this atom has a nucleus. This has to be taken into
account when calculating the atomic net charge.

3Prs is the sum (over the occupied orbitals) of the products of the LCAO coefficients of two atoms
in each of the occupied molecular orbitals. The equal signs of these coefficients (with Srs > 0) means a
bonding interaction (recall Chapter 8 and Appendix R on p. 1009) and such a contribution increases Prs .
The opposite signs of the coefficients (with Srs > 0) corresponds to the antibonding interactions and
in such a case the corresponding contribution decreases Prs . If Srs < 0, then the words “bonding”
and “antibonding” above have to be exchanged, but the effect remains the same. This means that the
product PrsSrs in all cases correctly controls the bonding (PrsSrs > 0) or antibonding (PrsSrs < 0)
effects.
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Example 1. The hydrogen molecule. Let us take the simplest example. First, let us
consider the electronic ground-state in the simplest molecular orbital approxima-
tion, i.e. two electrons are described by the normalized orbital in the form (a	b
denote the 1s atomic orbitals centred on the corresponding nuclei; note that this is
the famous bonding orbital)

ϕ1 =N1(a+ b)	

where N1 = (2+ 2S)−
1
2 , and S ≡ (a|b). Then,

Psr =
∑

i

2c∗ricsi = 2c∗r1cs1 = (1+ S)−1	

independent of the indices r and s. Of course,

S=
(

1 S
S 1

)

	 and therefore PS=
(

1 1
1 1

)

�

Thus, Tr (PS)= 2 = the number of electrons = P11S11 +P22S22 + 2P12S12 = qA+
qB+qAB, with qA = qB = (1+S)−1, and qAB = 2S

1+S > 0. Thus we immediately see
that the HH bond has an electronic population greater than zero, i.e. the atom–atom
interaction is bonding.

Let us now consider H2 with two electrons occupying the normalized orbital of
a different character4 ϕ2 =N2(a− b), with N2 = (2− 2S)−

1
2 , then

Psr =
∑

i

2c∗ricsi = 2c∗r2cs2 = (1− S)−1

for (r	 s)= (1	1) and (r	 s)= (2	2) while Prs =−(1− S)−1 for (r	 s)= (1	2) and
(r	 s)= (2	1).

Now, let us calculate

PS=
(

1 −1
−1 1

)

and Tr(PS) = 2 = the number of electrons = P11S11 + P22S22 + 2P12S12 = qA +
qB + qAB, but now qA = qB = (1− S)−1 and qAB =− 2S

1−S < 0. Thus, a glance at
qAB tells us that this time the atoms are interacting in an antibonding way.

A similar analysis for polyatomic molecules gives more subtle and more inter-
esting results.

Other population analyses

Partitioning of the electron cloud ofN electrons according to Mulliken population
analysis represents only one of possible choices. For a positively definite matrix5 S
(and the overlap matrix is always positively definite) we may introduce the powers

4We do not want to suggest anything, but this orbital is notorious for antibonding character.
5I.e. all the eigenvalues positive.
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of the matrix6 Sx, where x is an arbitrary real number (in a way shown in Appen-
dix J on p. 977), and we have S1−xSx = S. Then we may write7

N = Tr(PS)= Tr
(

SxPS1−x)� (S.4)

Now, we may take any x and for this value construct the corresponding partition
of N electronic charges into atoms. If x= 0 or 1, then we have a Mulliken popula-
tion analysis, if x= 1

2 then we have what is called the Löwdin population analysis,Löwdin
population
analysis

etc.

Multipole representation

Imagine a charge distribution ρ(r). Let us choose a Cartesian coordinate system.
We may calculate the Cartesian moments of the distribution:

∫

ρ(r)dV , i.e. the
total charge, then

∫

xρ(r)dV ,
∫

yρ(r)dV ,
∫

zρ(r)dV , i.e. the components of the
dipole moment,

∫

x2ρ(r)dV ,
∫

y2ρ(r)dV ,
∫

z2ρ(r)dV ,
∫

xyρ(r)dV ,
∫

xzρ(r)dV ,
∫

yzρ(r)dV – the components of the quadrupole moment, etc. The moments mean
a complete description of ρ(r) as concerns its interaction with another (distant)
charge distribution. The higher the powers of x	 y	 z (i.e. the higher the moment)
the more important distant parts of ρ(r) are. If ρ(r) extends to infinity (and for
atoms and molecules it does), higher order moments tend to infinity. This means
trouble when the consecutive interactions of the multipole moments are calcu-
lated (multipole expansion, Appendix X) and indeed, the multipole expansion
“explodes”, i.e. diverges.8 This would not happen if the interacting charge distrib-
utions could be enclosed in two spheres.

There is also another problem: where to locate the origin of the coordinate sys-
tem, with respect to which the moments are calculated? The answer is: anywhere.
Wherever such an origin is located it is OK from the point of view of mathematics.
However, such choices may differ enormously from the practical point of view. For
example, let us imagine a spherically symmetric charge distribution. If the origin is
located at its centre (as “most people would do”), then we have a quite simple de-
scription of ρ(r) by using the moments, namely, the only non-zero moment is the
charge, i.e.

∫

ρ(r)dV . If, however, the origin is located off centre, all the moments
would be non-zero. They are all needed to calculate accurately the interaction of
the charge distribution (with anything). As we can see, it is definitely better to lo-
cate the origin at the centre of ρ(r).

Well, and what if the charge distribution ρ(r) were divided into segments and
each segment represented by a set of multipoles? It would be all right, although, in
view of the above example, it would be better to locate the corresponding origins
at the centre of the segments. It is clear that, in particular, it would be OK if the
segments were very small, e.g., the cloud was cut into tiny cubes and we consider

6They are symmetric matrices as well.
7We easily check that Tr(ABC)= Tr(CAB). Indeed, Tr(ABC)=∑i	k	l AikBklCli , while Tr(CAB)=
∑

i	k	l CikAklBli . Changing summation indices k→ i, l→ k, i→ l in the last formula, we obtain
Tr(ABC).

8Although the first terms (i.e. before the “explosion”) may give accurate results.
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every cube’s content as a separate cloud.9 But, well. . . , what are the multipoles for?
Indeed, it would be sufficient to take only the charges of the cubes, because they
approximate the original charge distribution. In this situation higher multipoles
would certainly be irrelevant! Thus we have two extreme cases:

• a single origin and an infinite number of multipoles,
• or an infinite number of centres and monopoles (charges) only.

We see that when the origins are located on atoms, we have an intermediary
situation and it might be sufficient to have a few multipoles per atom.10 This is
what the concept of what is called the cumulative multipole moments is all about cumulative

multipole
moments

(CAMM11). Besides the isotropic atomic charges qa =M(000)
a calculated in an ar-

bitrary population analysis, we have, in addition, higher multipolesM(klm)
a (atomic

dipoles, quadrupoles, octupoles, etc.) representing the anisotropy of the atomic
charge distribution (i.e. they describe the deviations of the atomic charge distribu-
tions from the spherical)

M(klm)
a = Zaxkaylazma −

∑

r∈a

∑

s

Dsr
(

r
∣
∣xkylzm

∣
∣s
)

−
∑

k′�k

∑

l′�l

∑

m′�m	
(k′	l′	m′) 	=(k	l	m)

(

k
k′
)(

l
l′
)(

m
m′
)

× xk−k′a yl−l′a zm−m′a ·Mk′l′m′
a 	

where M(klm)
a is the multipole moment of the “klm” order with respect to the

Cartesian coordinates x	 y	 z located on atom a, M(000)
a stands for the atomic

charge, e.g., from the Mulliken population analysis, Za is the nuclear charge of
the atom a, (r|xkylzm|s) stands for the one-electron integral of the corresponding
multipole moment, and Dsrχ∗r χs represents the electronic density contribution re-
lated to AO’s: χs and χr and calculated by any method (LCAO MO SCF, CI, MP2,
DFT, etc.). We may also use multipole moments expressed by spherical harmonic
functions as proposed by Stone.12

9The clouds might eventually overlap.
10If the clouds overlapped, the description of each centre by an infinite number of multipoles would

lead to a redundancy (“overcompleteness”). I do not know of any trouble of that kind, but in my opinion
trouble would come if the number of origins were large. This is in full analogy with the overcomplete-
ness of the LCAO expansion. These two examples differ by a secondary feature: in the LCAO, instead
of moments, we have the s, p, d, . . . orbitals, i.e. some moments multiplied by exponential functions.
11W.A. Sokalski and R. Poirier, Chem. Phys. Lett. 98 (1983) 86; W.A. Sokalski, A. Sawaryn, J. Chem.

Phys. 87 (1987) 526.
12A.J. Stone, Chem. Phys. Lett. 83 (1981) 233; A.J. Stone, M. Alderton, Mol. Phys. 56 (1985) 1047.



T. THE DIPOLE MOMENT OF A LONE
ELECTRON PAIR

The electronic lone pairs play an important role in intermolecular interactions.
In particular, a lone pair protruding in space towards its partner has a large dipole
moment,1 which may interact electrostatically with its partner’s multipole moments
(see Appendix X, p. 1038). Let us see how the dipole moment depends on the atom
to which it belongs and on the type of hybridization.

Suppose the electronic lone pair is described by the normalized hybrid

h= 1
√

1+ λ2

[

(2s)+ λ(2px)
]

	

with the normalized 2s and 2px atomic orbitals. The coefficient λ may change
from −∞ to +∞ giving a different degree of hybridization. Fig. T.1 shows for
comparison two series of the hybrids: for carbon and fluorine atoms. If λ= 0, we
have the pure 2s orbital, if λ=±∞ we obtain the pure ±2px orbital.

The dipole moment of a single electron described by h is calculated2 as (N =
1√

1+λ2
):

μx = 〈h|−x|h〉 = −N2[〈2s|x|2s〉 + λ2〈2px|x|2px〉 + 2λ〈2s|x|2px〉
]

	

μy = μz = 0	

where x stands for the x coordinate of the electron.
The first two integrals equal zero, because the integrand represents an odd func-

tion3 with respect to the reflection in the plane x= 0. As a result

μx =−N22λ〈2s|x|2px〉�

We will limit ourselves to λ 	 0, which means we are considering hybrids pro-
truding to the right-hand side4 as in Fig. T.1, and since 〈2s|x|2px〉> 0	 then μx 
 0.
The negative sign stresses the fact that a negative electron is displaced to the right-
hand side (positive x).

1Calculated with respect to the nucleus; a large dipole moment means here a large length of the
dipole moment vector.

2Atomic units have been used throughout, and therefore μ is expressed in a.u.
3Please recall that the orbital 2px represents a spherically symmetric factor multiplied by x.
4The hybrids with λ < 0 differ only by protruding to the left-hand side.
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Fig. T.1. The length of the dipole moment vector μlone (in a.u.) as a function of the mixing parameter
λ for carbon (upper curve) and fluorine (lower curve) atoms. The figure shows the shape of different
hybrids h= 1√

1+λ2
[(2s)+λ(2px)] which correspond to various mixing of the 2s and 2px carbon Slater

orbitals (with exponential factor ζ = 1�625) and fluorine orbitals (ζ = 2�60); from the left: λ= 0, λ= 1
(sp), λ= 1�41 (sp2), λ= 1�73 (sp3), λ= 1000. All the hybrids are shown in square windows of 10 a.u.
The fluorine orbitals are more compact due to the larger charge of the nucleus. A hybrid orbital which
corresponds to λ < 0 looks exactly like that with λ′ = −λ, except it is reflected with respect to the yz
plane. The maximum dipole moment corresponds to the sp hybridization.

To calculate 〈2s|x|2px〉 we need to specify the atomic orbitals 2s and 2p. As the
2s and 2p atomic orbitals, let us take Slater type orbitals:

2s =N ′r exp(−ζr)	
2px =N ′′xexp(−ζr)	

where the exponential factor ζ (the same for both orbitals) is calculated using
simple rules for building the Slater orbitals, see p. 355.

Using the integral
∫ ∞

0
xn exp(−αx)dx= n!α−(n+1)	

we obtain the normalization constants N ′ = ζ2
√

ζ
3π and N ′′ = ζ2

√
ζ
π . The contri-

bution of two electrons (“lone electron pair”) to the dipole moment is, therefore,
equal to
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μlone = 2μx = −N2|λ|(2s|xpx)=−2N2N ′N ′′(2λ)
∫

rx2 exp(−2ζr)dv

= −2N2N ′N ′′2λ
∫

r3x2 exp(−2ζr) sinθdr dθdφ

= −2N2N ′N ′′2λ
∫ ∞

0
dr r5 exp(−2ζr)

∫ π

0
sin3 θdθ

∫ 2π

0
cos2φdφ

= −2N2N ′N ′′2λ 5!
(2ζ)6

4
3
π =− 4λ

(1+ λ2)
ζ2

√

ζ

3π
ζ2

√

ζ

π

5!
(2ζ)6

4
3
π

= − λ

1+ λ2
10

ζ
√

3
�

THE DIPOLE MOMENT OF A LONE PAIR μlone =− λ
1+λ2

10
ζ
√

3
.

The dipole moment at λ= 0, i.e. for the pure 2s orbital, is equal to 0, for λ=∞,
i.e. for the pure 2px orbital it is also equal 0. It is interesting to see for which
hybridization the length of dipole moment has a maximum. We easily find

∂|μlone|
∂λ

= 10

ζ
√

3

(1+ λ2)− 2λ2

(1+ λ2)
= 0	

which gives λ=±1, independently of ζ.
Thus

the maximum dipole moment is at the 1 : 1 mixing of 2s and 2p, i.e. for
digonal hybridization (for any element), Fig. T.1.

From Table T.1 it is seen that the dipole moment of a lone pair strongly depends
on the chemical element,5 and to a lesser extent on hybridization.

Table T.1. The length of the dipole moments μlone (a.u.) corresponding to doubly occu-
pied hybrid atomic orbitals. The orbital exponents of 2s and 2p STO’s are identical and
calculated using the rules given by Slater: ζC = 1�625, ζN = 1�95, ζO = 2�275, ζF = 2�60

Atom Digonal λ= 1 Trigonal λ=√2 Tetrahedral λ=√3

C 1�776 1�675 1�538
N 1�480 1�396 1�282
O 1�269 1�196 1�099
F 1�110 1�047 0�962

5From the practical point of view, it is probably most important to compare nitrogen and oxygen lone
pairs. Thus, coordination of a cation by amines should correspond to a stronger interaction than that
by hydroxyl groups.
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When we work with a basis set composed of Slater determinants we are usually
confronted with a large number of matrix elements involving one- and two-electron
operators. The Slater–Condon rules (Appendix M) are doing the job to express
these matrix elements by the one-electron and two-electron integrals. However, we
may introduce an even easier tool called second quantization, which is equivalent
to the Slater–Condon rules.

The vacuum state

In the second quantization formalism we introduce a reference state for the system
under study, which is a Slater determinant (usually the Hartree–Fock wave func-
tion) composed of N orthonormal spinorbitals, where N is the number of elec-
trons. This function will be denoted in short by �0 or in a more detailed way by
�N(n1	 n2	 � � � 	 n∞). The latter notation means that we have to do with a normal-
ized N electron Slater determinant, and in parenthesis we give the occupancy list
(ni = 0	1) for the infinite number of orthonormal spinorbitals considered in the
basis set and listed one by one in the parenthesis. This simply means that some
spinorbitals are present in the determinant (they have ni = 1), while others are
absent1 (ni = 0). Hence,

∑

i ni = N . The reference state is often called the vac-
uum state. The subscript 0 in �0 means that we are going to consider a single-
determinant approximation to the ground state. Besides the reference state, some
normalized Slater determinants of the excited states will be considered, with other
occupancies, including those corresponding to the number of electrons which differs
from N .

The creation and annihilation of electrons

Let us make quite a strange move, and consider operators that change the number
of electrons in the system. To this end, let us define the creation operator2 k̂† of
the electron going to occupy spinorbital k and the annihilation operator k̂ of an
electron leaving spinorbital k:

1For example, the symbol �2(001000100000 � � �) means a normalized Slater determinant of dimen-
sion 2, containing the spinorbitals 3 and 7. The symbol �2(001000 � � �) is a nonsense, because the num-
ber of “ones” has to be equal to 2, etc.

2The domain of the operators represents the space spanned by the Slater determinants built of spinor-
bitals.

Richard Feynman, in one of his books, says jokingly that he could not understand the very sense of
the operators. If we annihilate or create an electron, then what about the system’s electroneutrality?
Happily enough, these operators will always act in creator–annihilator pairs.
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CREATION AND ANNIHILATION OPERATORS

k̂†�N(� � � nk � � �)= θk(1− nk)�N+1(� � �1k	 � � �)	

k̂�N(� � � nk � � �)= θknk�N−1(� � �0k	 � � �)	

where θk = (−1)$j<knj .

The symbol 1k means that the spinorbital k is present in the Slater determi-
nant, while 0k means that this spinorbital is empty, i.e. is not present in the Slater
determinant. The factors (1− nk) and nk ensure an important property of these
operators, namely that

any attempt at creating an electron on an already occupied spinorbital gives
zero, similarly any attempt at annihilating an empty spinorbital also gives
zero.

It can be easily shown,3 that (as the symbol suggests) k̂† is simply the adjoint
operator with respect to k̂.

The above operators have the following properties that make them equivalent
to the Slater–Condon rules:

ANTICOMMUTATION RULES
[

k̂	 l̂
]

+ = 0	
[

k̂†	 l̂†
]

+ = 0	
[

k̂†	 l̂
]

+ = δkl	

where the symbol [Â	 B̂]+ = ÂB̂+ B̂Â is called the anticommutator.4 It is simpleranticommutator

than the Slater–Condon rules, isn’t it? Let us check the rule [k̂†	 l̂]+ = δkl . We
have to check how it works for all possible occupancies of the spinorbitals k and l,
(nk	nl): (0	0), (0	1), (1	0) and (1	1).

Case: (nk	nl)= (0	0)
[

k̂†	 l̂
]

+�
N(� � �0k � � �0l � � �) =

[

k̂† l̂+ l̂k̂† ]�N(� � �0k � � �0l � � �)

= k̂† l̂�N(� � �0k � � �0l � � �)+ l̂k̂†�N(� � �0k � � �0l � � �)

3Proof. Let us take two Slater determinants �a =�N+1(� � �1k � � �) and �b =�N(� � �0k � � �), in both
of them the occupancies of all other spinorbitals are identical. Let us write the normalization condition
for �b in the following way: 1= 〈�b|θkk̂�a〉 = θk〈�b|k̂�a〉 = θk〈k̂#�b|�a〉, where as k̂# has been
denoted the operator adjoint to k̂, θk appeared in order to compensate for (θ2

k
= 1) the θk produced by

the annihilator. On the other hand, from the normalization condition of �a we see that 1= 〈�a|�a〉 =
θk〈k̂†�b|�a〉. Hence, θk〈k̂#�b|�a〉 = θk〈k̂†�b|�a〉 or k̂# = k̂†, This is what we wanted to show.

4The above formulae are valid under the (common) assumption that the spinorbitals are orthonor-
mal. If this assumption is not true, only the last anticommutator changes to the form [k̂†	 l̂]+ = Skl ,
where Skl stands for the overlap integral of spinorbitals k and l.



U. SECOND QUANTIZATION 1025

= 0+ l̂θk�N+1(� � �1k � � �0l � � �)

= θkl̂�N+1(� � �1k � � �0l � � �)
= θkδklθk�N(� � �0k � � �)
= δkl�N(� � �0k � � �)�

So far so good.
Case: (nk	nl)= (0	1)
[

k̂†	 l̂
]

+�
N(� � �0k � � �1l � � �) =

[

k̂† l̂+ l̂k̂† ]�N(� � �0k � � �1l � � �)

= k̂† l̂�N(� � �0k � � �1l � � �)+ l̂k̂†�N(� � �0k � � �1l � � �)
= θkθl�N(� � �1k � � �0l � � �)− θkθl�N(� � �1k � � �0l � � �)
= δkl�N(� � �0k � � �1l � � �)�

This is what we expected.5

Case: (nk	nl)= (1	0)
[

k̂†	 l̂
]

+�
N(� � �1k � � �0l � � �) =

[

k̂† l̂+ l̂k̂† ]�N(� � �1k � � �0l � � �)

= k̂† l̂�N(� � �1k � � �0l � � �)+ l̂k̂†�N(� � �1k � � �0l � � �)
= (0+ 0)�N(� � �1k � � �0l � � �)
= δkl�N(� � �1k � � �0l � � �)�

This is OK.
Case: (nk	nl)= (1	1)
[

k̂†	 l̂
]

+�
N(� � �1k � � �1l � � �) =

[

k̂† l̂+ l̂k̂† ]�N(� � �1k � � �1l � � �)

= k̂† l̂�N(� � �1k � � �1l � � �)+ l̂k̂†�N(� � �1k � � �1l � � �)

= k̂† l̂�N(� � �1k � � �1l � � �)+ 0
= θ2

kδkl�
N(� � �1k � � �1l � � �)

= δkl�N(� � �1k � � �)�
The formula has been proved.

Operators in the second quantization

Creation and annihilation operators may be used to represent one- and two-
electron operators.6 The resulting matrix elements with Slater determinants cor-
respond exactly to the Slater–Condon rules (see Appendix M, p. 986).

5What decided is the change of sign (due to θk) when the order of the operators has changed.
6The original operator and its representation in the language of the second quantization are not

identical in practical applications. The second ones can act only on the Slater determinants or their
combinations. Since we are going to work with the creation and annihilation operators in only those
methods which use Slater determinants (CI, MC SCF, etc.), the difference is irrelevant.



1026 U. SECOND QUANTIZATION

One-electron operators

The operator F̂ =∑i ĥ(i) is the sum of the one-electron operators7 ĥ(i) acting on
functions of the coordinates of electron i.

The I Slater–Condon rule says (see Appendix M), that for the Slater determi-
nant ψ built of the spinorbitals φi, the matrix element 〈ψ|F̂ψ〉 =∑i hii, where
hij = 〈φi|ĥφj〉.

In the second quantization

F̂ =
∞
∑

ij

hij î
†ĵ�

Interestingly, the summation extends to infinity, and therefore the operator is
independent of the number of electrons in the system.

Let us check whether the formula is correct. Let us insert F̂ =∑ij hij ı̂
†ĵ into

〈ψ|F̂ψ〉. We have

〈

ψ
∣
∣F̂ψ

〉=
〈

ψ

∣
∣
∣
∣

∑

ij

hij ı̂
†ĵψ

〉

=
∑

ij

hij
〈

ψ
∣
∣ı̂†ĵψ

〉=
∑

ij

hijδij =
∑

i

hii�

This is correct.
What about the II Slater–Condon rule (the Slater determinantsψ1 andψ2 differ

by a single spinorbital: the spinorbital i in ψ1 is replaced by the spinorbital i′ in
ψ2)? We have

〈

ψ1
∣
∣F̂ψ2

〉=
∑

ij

hij
〈

ψ1
∣
∣ı̂†ĵψ2

〉

�

The Slater determinants that differ by one spinorbital produce an overlap inte-
gral equal to zero,8 therefore 〈ψ1|F̂ψ2〉 = hii′ . Thus, the operator in the form
F̂ =∑ij hij ı̂

†ĵ ensures equivalence with all the Slater–Condon rules.

Two-electron operators

Similarly, we may use the creation and annihilation operators to represent the two-
electron operators Ĝ= 1

2
∑′
ij ĝ(i	 j). In most cases ĝ(i	 j)= 1

rij
and Ĝ has the form:

Ĝ= 1
2

∑

ij

′ 1
rij
= 1

2

∞
∑

ijkl

〈ij|kl〉ĵ† î†k̂l̂�

7Most often this will be the kinetic energy operator, the nuclear attraction operator, the interaction
with the external field or the multipole moment.

8It is evident, that if in this situation the Slater determinants ψ1 and ψ2 differed by more than a single
spinorbital, we would get zero (III and IV Slater–Condon rule).
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Here also the summation extends to infinity and the operator is independent of
the number of electrons in the system.

The proof of the I Slater–Condon rule relies on the following chain of equalities

〈

ψ
∣
∣Ĝψ

〉 = 1
2

∑

ijkl

〈ij|kl〉〈ψ∣∣ĵ† ı̂†k̂l̂ψ〉= 1
2

∑

ijkl

〈ij|kl〉〈ı̂ĵψ∣∣k̂l̂ψ〉

= 1
2

∑

ijkl

〈ij|kl〉(δikδjl − δilδjk)= 1
2

∑

ij

(〈ij|ij〉 − 〈ij|ji〉)	

because the overlap integral 〈ı̂ĵψ|k̂l̂ψ〉 of the two Slater determinants ı̂ĵψ and k̂l̂ψ
is non-zero in the two cases only: either if i = k, j = l or if i = l, j = k (then the
sign has to change). This is what we get from the Slater–Condon rules.

For the II Slater–Condon rule we have (instead of the spinorbital i in ψ1 we
have the spinorbital i′ in ψ2):

〈

ψ1
∣
∣Ĝψ2

〉= 1
2

∑

Ijkl

〈Ij|kl〉〈ψ1
∣
∣ĵ†Î†k̂l̂ψ2

〉= 1
2

∑

Ijkl

〈Ij|kl〉〈Î ĵψ1
∣
∣k̂l̂ψ2

〉

	 (U.1)

where the summation index I has been introduced in order not to mix with spinor-
bital i. In the overlap integral 〈Î ĵψ1|k̂l̂ψ2〉 the sets of the spinorbitals in the Slater
determinant Î ĵψ1 and in the Slater determinant k̂l̂ψ2 have to be identical, other-
wise the integral will equal zero. However, in ψ1 and ψ2 we already have a differ-
ence of one spinorbital. Thus, first we have to get rid of these spinorbitals (i and i′).
For the integral to survive9 we have to have at least one of the following conditions
satisfied:

• I = i and k= i′ (and then j = l),
• j = i and k= i′ (and then I = l),
• I = i and l= i′ (and then j = k),
• j = i and l= i′ (and then I = k).

This means that, taking into account the above cases in eq. (U.1), we obtain
〈

ψ1
∣
∣Ĝψ2

〉 = 1
2

∑

j

〈

ij
∣
∣i′j
〉〈

ı̂ĵψ1
∣
∣ı̂′ĵψ2

〉+ 1
2

∑

l

〈

li
∣
∣i′l
〉〈

l̂ı̂ψ1
∣
∣ı̂′ l̂ψ2

〉

+ 1
2

∑

j

〈

ij
∣
∣ji′
〉〈

ı̂ĵψ1
∣
∣ĵı̂′ψ2

〉+ 1
2

∑

k

〈

ki
∣
∣ki′
〉〈

k̂ı̂ψ1
∣
∣k̂ı̂′ψ2

〉

= 1
2

∑

j

〈

ij
∣
∣i′j
〉− 1

2

∑

l

〈

li
∣
∣i′l
〉− 1

2

∑

j

〈

ij
∣
∣ji′
〉+ 1

2

∑

k

〈

ki
∣
∣ki′
〉

= 1
2

∑

j

〈

ij
∣
∣i′j
〉− 1

2

∑

j

〈

ji
∣
∣i′j
〉− 1

2

∑

j

〈

ij
∣
∣ji′
〉+ 1

2

∑

j

〈

ji
∣
∣ji′
〉

9This is a necessary, but not a sufficient condition.
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= 1
2

∑

j

〈

ij
∣
∣i′j
〉− 1

2

∑

j

〈

ij
∣
∣ji′
〉− 1

2

∑

j

〈

ij
∣
∣ji′
〉+ 1

2

∑

j

〈

ij
∣
∣i′j
〉

=
∑

j

〈

ij
∣
∣i′j
〉−
∑

j

〈

ij
∣
∣ji′
〉

	

where the coordinates of electrons 1 and 2 have been exchanged in the two sums.
Notice that the overlap integrals

〈

ı̂ĵψ1
∣
∣ı̂′ĵψ2

〉= 〈k̂ı̂ψ1
∣
∣k̂ı̂′ψ2

〉= 1	

because the Slater determinants îψ1 and î′ψ2 are identical. Also, from the anti-
commutation rules

〈

l̂ı̂ψ1
∣
∣ı̂′ l̂ψ2

〉= 〈ı̂ĵψ1
∣
∣ĵı̂′ψ2

〉=−1�

Thus the II Slater–Condon rule has been correctly reproduced:
〈

ψ1
∣
∣Ĝψ2

〉=
∑

j

[〈

ij
∣
∣i′j
〉− 〈ij∣∣ji′〉]�

We may conclude that the definition of the creation and annihilation operators
and the simple anticommutation relations are equivalent to the Slater–Condon
rules. This opens up the space spanned by the Slater determinants for us, i.e. all
the integrals involving Slater determinants can be easily transformed into one- and
two-electron integrals involving spinorbitals.



V. THE HYDROGEN ATOM IN THE
ELECTRIC FIELD – VARIATIONAL
APPROACH

Polarization of an atom or molecule can be calculated by using the finite field
method described on p. 639. Let us apply this method to the hydrogen atom. Its
polarizability was already calculated using a simple version of perturbation theory
(p. 636). This time we will use the variational method.

The Hamiltonian for the isolated hydrogen atom (within the Born–Oppenhei-
mer approximation) reads as

Ĥ(0) =−1
2
�e − 1

r
	

where the first term is the electronic kinetic energy operator, and the second its
Coulomb interaction energy with the nucleus (proton–electron distance is denoted
by r). The atom is in a homogeneous electric field E = (0	0	E) with E > 0 and as
in perturbation theory (p. 636), the total Hamiltonian has the form

Ĥ = Ĥ(0) + V

with V = zE , where z denotes the coordinate of the electron and the proton is at
the origin (the derivation of the formula is given on p. 636, the exchange of z to x
does not matter).

The variational wave function ψ is proposed in the form

ψ= χ1 + cχ2	 (V.1)

where χ1 = 1√
π

exp(−r) is the 1s orbital of the hydrogen atom (ground state) and

χ2 is the normalized1 p-type orbital

χ2 =Nz exp(−ζr)�
1N can be easily calculated from the normalization condition

1 = N2
∫
[

z exp(−ζr)]2 dV =N2
∫ ∞

0
dr r4 exp(−2ζr)

∫ π

0
dθ sinθ cos2 θ

∫ 2π

0
dφ

= N24! (2ζ)−5 2
3

2π =N2 π

ζ5 �

This gives N =
√

ζ5
π .
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There are two variational parameters c and ζ. Let us assume for a while that
we have fixed the value of ζ, so the only variational parameter is c. The wave
function ψ is a linear combination of two expansion functions (“two-state model”):
χ1 and χ2. Therefore, optimal energy follows from the Ritz method, according to
case III of Appendix D on p. 948:

E =Ear ±
√

�2 + h2	 (V.2)

where arithmetic mean energy Ear ≡ H11+H22
2 , while � ≡ H11−H22

2 and h ≡H12 =
H21 with

Hij ≡
〈

χi
∣
∣Ĥχj

〉= 〈χi
∣
∣Ĥ(0)χj

〉+ 〈χi|V χj〉�
Let us calculate all the ingredients of the energy given by (V.2).
First, let us note that H11 ≡ 〈χ1|Ĥ(0)χ1〉 = − 1

2 a.u., since χ1 is the ground state
of the isolated hydrogen atom (p. 178), and V11 = 〈χ1|V χ1〉 = 0, because the inte-
grand is antisymmetric with respect to z→−z.

Now let us calculate H22 =H(0)
22 + V22. Note that V22 = 0, for the same reason

as V11. We have

H(0)
22 =−

1
2
〈χ2|�eχ2〉 −

〈

χ2

∣
∣
∣
∣

1
r
χ2

〉

�

The second integral is
〈

χ2

∣
∣
∣
∣

1
r
χ2

〉

=N2
∫ ∞

0
dr r3 exp(−2ζr)

∫ π

0
dθ sinθ cos2 θ

∫ 2π

0
dφ

= ζ5

π
· 3!(2ζ)−4 · 2

3
· 2π = 1

2
ζ	

where the dots separate the values of the corresponding integrals.2 In Appendix R,
the reader will find the main ingredients needed to calculate the first integral of
H(0)

22 :

〈χ2|�eχ2〉 =N2
〈

r cosθexp(−ζr)
∣
∣
∣
∣

[
1
r2
∂

∂r
r2 ∂

∂r
+ 1
r2 sinθ

∂

∂θ
sinθ

∂

∂θ

+ 1

r2 sin2 θ

∂2

∂φ2

]

r cosθexp(−ζr)
〉

=N2

[〈

r cosθexp(−ζr)∣∣ cosθ 1
r2
∂
∂r

[

r2 exp(−ζr)− ζr3 exp(−ζr)〉+
〈

r cosθexp(−ζr)∣∣ (−2 cosθ)
r2 r exp(−ζr)〉+ 0

]

=N2
[〈

r cosθexp(−ζr)
∣
∣
∣
∣
cosθ

[
2
r
− ζ − 3ζ + ζ2r

]

exp(−ζr)
〉

2Note that, in spherical coordinates, the volume element dV = r2 sinθdr dθdφ. In derivations of this
Appendix (and not only) we often use the equality

∫∞
0 dxxn exp(−αr)= n!α−(n+1).
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+
〈

r cosθexp(−ζr)
∣
∣
∣
∣

(−2 cosθ)
r

exp(−ζr)
〉]

= ζ5

π

(
2
3
· 2π

)[
2 · 2
(2ζ)3

− 4ζ · 3!
(2ζ)4

+ ζ
2 · 4!
(2ζ)5

− 2 · 2!
(2ζ)3

]

= −ζ2�

Thus, we obtain H22 = 1
2ζ

2 − 1
2ζ. This formula looks good, since for χ2 = 2pz ,

i.e. for ζ = 1
2 we get correctly (see p. 178) H22 = E2p = − 1

8 a.u., the energy of
orbital 2p.

Let us turn to the non-diagonal matrix element of the Hamiltonian: H12 =
H(0)

12 + V12. Note, that H(0)
12 = 0, because χ1 is an eigenfunction of Ĥ(0) and

〈χ1|χ2〉 = 0. Thus,

h =NE
〈

r cosθexp(−ζ)
∣
∣
∣
∣
r cosθ

1√
π

exp(−r)
〉

=NE 1√
π

∫ ∞

0
dr r4 exp

[−(ζ + 1)r
]
∫ π

0
dθ sinθ cos2 θ

∫ 2π

0
dφ

= E
√

ζ5

π
· 4!(ζ + 1)−5 · 2

3
· 2π = 32

√

ζ5

(ζ + 1)5
E �

Now we can write eq. (V.2) as a function of ζ:

E = 1
4
(

ζ2 − ζ − 1
)−
√

1
16
(

ζ2 − ζ + 1
)2 + ζ5

(
2

ζ + 1

)10

E2� (V.3)

We would like to expand this expression in a power series of E to highlight
the coefficient at E2, because this coefficient is related to the polarizability. The
expansion gives (in a.u.)

E ≈ 1
4
(

ζ2 − ζ − 1
)− 1

4
(

ζ2 − ζ + 1
)− 1

2
αzzE2 + · · · = −1

2
− 1

2
αzzE2 + · · · 	

where, according to eq. (12.24), the polarizability (in a.u.) reads as

αzz = 4 · ζ5

|ζ2 − ζ + 1|
(

2
ζ + 1

)10
� (V.4)

Several numerical values of αzz calculated using (V.3) and (V.4), are given on
p. 639. They may be compared with the exact result αzz = 4�5 a.u.



W. NMR SHIELDING AND COUPLING
CONSTANTS – DERIVATION

This section is for those who do not fully believe the author, and want to check
whether the final formulae for the shielding and coupling constants in nuclear mag-
netic resonance are indeed valid (Chapter 12).

1 SHIELDING CONSTANTS

Let us begin with eq. (12.87).

Applying vector identities

We are going to apply some vector identities1 in the operators B̂3	 B̂4	 B̂5. The
first identity is u · (v ×w) = v · (w × u) = w · (u× v), which simply means three
equivalent ways of calculating the volume of a parallelepiped (cf. p. 437). This
identity applied to B̂3 and B̂4 gives

B̂3 = e

mc

∑

A

∑

j

γA
IA · L̂Aj
r3
Aj

	 (W.1)

B̂4 = e

2mc

∑

j

H · L̂0j � (W.2)

Let us transform the term B̂5 by using the following identity (u× v) · (w× s)=
(u ·w)(v · s)− (v ·w)(u · s):

B̂5 = e2

2mc2

∑

A

∑

j

γA(H × r0j) ·
IA × rAj
r3
Aj

= e2

2mc2

∑

A

∑

j

γA
[

(H · IA)(r0j · rAj)− (r0j · IA)(H · rAj)
] · 1

r3
Aj

�

Putting things together

Now we are all set to put all this baroque furniture into its place, i.e. into eq. (12.87)
for �E

1The reader may easily check each of them.
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�E =
∑

A

�EA	 (W.3)

where �EA stands for the contribution of nucleus A:

�EA = −γA
〈

ψ
(0)
0

∣
∣(IA ·H)ψ(0)0

〉

+ e2

2mc2γA

〈

ψ(0)0

∣
∣
∣
∣

∑

j

[

(H · IA)(r0j · rAj)− (r0j · IA)(H · rAj)
] · 1

r3
Aj

ψ(0)0

〉

+ e2

2m2c2γA

[〈

ψ(0)0

∣
∣
∣
∣

(
∑

j

IA · L̂Aj
r3
Aj

)

R̂0

(
∑

j

H · L̂0j

)

ψ(0)0

〉

+
〈

ψ(0)0

∣
∣
∣
∣

(
∑

j

H · L̂0j

)

R̂0

(
∑

j

IA · L̂Aj
r3
Aj

)

ψ(0)0

〉]

�

Averaging over rotations

The expression for �EA represents a bilinear form with respect to the components
of vectors IA and H

�EA = ITACAH	
where CA stands for a square matrix2 of dimension 3, and IA and H are vertical
three-component vectors.

A contribution to the energy such as �EA cannot depend on our choice of co-
ordinate system axes x	 y	 z, i.e. on the components of IA and H . We will obtain
the same energy if we rotate the axes (orthogonal transformation) in such a way
as to diagonalize CA. The resulting diagonalized matrix CA	diag has three eigen-
values (composing the diagonal) corresponding to the new axes x′	 y ′	 z′. The very
essence of averaging is that none of these axes are to be privileged in any sense. This is
achieved by constructing the averaged matrix

1
3
[

(CA	diag)x′x′ + (CA	diag)y ′y ′ + (CA	diag)z′z′
]

= (C̄A	diag
)

x′x′ =
(

C̄A	diag
)

y ′y ′ =
(

C̄A	diag
)

z′z′ ≡ CA
where (C̄A	diag)qq′ = δqq′CA for q	q′ = x′	 y ′	 z′� Note that since the transforma-
tion was orthogonal (i.e. the trace of the matrix is preserved), the number CA may
also be obtained from the original matrix CA

CA = 1
3
[

(CA	diag)x′x′ + (CA	diag)y ′y ′ + (CA	diag)z′z′
]

= 1
3
[CA	xx +CA	yy +CA	zz]� (W.4)

2We could write its elements from equation for �EA, but their general form will turn out to be not
necessary.
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Then the averaged energy �E becomes (note the resulting dot product)

�Ē =
∑

A

ITAC̄A	diagH =
∑

A

CA(IA ·H)�

Thus we obtain the sum of energy contributions over the nuclei, each contribu-
tion with its own coefficient averaged over rotations3

�Ē =−
∑

A

γAIA ·H
{

1− e2

2mc2

〈

ψ(0)0

∣
∣
∣
∣

∑

j

2
3
(r0j · rAj)

1

r3
Aj

ψ(0)0

〉

− e2

2m2c2
1
3

〈

ψ(0)0

∣
∣
∣
∣

[(
∑

j

L̂Aj

r3
Aj

)

R̂0

(
∑

j

L̂0j

)

+
(
∑

j

L̂0j

)

R̂0

(
∑

j

L̂Aj

r3
Aj

)]

ψ(0)0

〉}

	

(W.5)

with the matrix elements
(

Û
)

kl
= 〈ψ(0)k

∣
∣Ûψ(0)l

〉

of the corresponding operators Û = (Ûx	 Ûy	 Ûz).
Finally, after comparing the formula with eq. (12.80), we obtain the shielding

constant for nucleusA (the change of sign in the second part of the formula comes
from the change in the denominator) given in eq. (12.88).

3Indeed, making CA = 1
3 [CA	xx +CA	yy +CA	zz] for the terms of eq. (W.3) we have the following

contributions (term by term):

• −γA 1
3 [1+ 1+ 1]=−γA;

• e2

2mc2
γA

1
3

[〈

ψ
(0)
0

∣
∣
∣
∣

∑

j

r0j · rAj
1

r3Aj

ψ
(0)
0

〉

+
〈

ψ
(0)
0

∣
∣
∣
∣

∑

j

r0j · rAj
1

r3Aj

ψ
(0)
0

〉

+
〈

ψ
(0)
0

∣
∣
∣
∣

∑

j

r0j · rAj
1

r3Aj

ψ
(0)
0

〉]

= e2

2mc2
γA

〈

ψ
(0)
0

∣
∣
∣
∣

∑

j

r0j · rAj
1

r3Aj

ψ
(0)
0

〉

;

• − e2

2mc2 γA

〈

ψ
(0)
0

∣
∣
∣
∣

∑

j

1
3
[x0jxAj + y0jyAj + z0jzAj ]

1

r3Aj

ψ
(0)
0

〉

=− e2

2mc2 γA

〈

ψ
(0)
0

∣
∣
∣
∣

∑

j

1
3
r0j · rAj

1

r3Aj

ψ
(0)
0

〉

+ 1
3

e2

2m2c2 γA
∑

k

′ 1

E
(0)
0 −E(0)

k

×
[〈

ψ
(0)
0

∣
∣
∣
∣

(
∑

j

L̂Ajx

r3Aj

)

ψ
(0)
k

〉〈

ψ
(0)
k

∣
∣
∣
∣

∑

j

L̂0jxψ
(0)
0

〉

+ similarly y	 z+ cc
]

= 1
3

e2

2m2c2
γA
∑

k

′ 1

E
(0)
0 −E(0)

k

× 1
3

[〈

ψ
(0)
0

∣
∣
∣
∣

(
∑

j

L̂Aj

r3Aj

)

ψ
(0)
k

〉〈

ψ
(0)
k

∣
∣
∣
∣

∑

j

L̂0jψ
(0)
0

〉

+ cc
]

	

where cc means the “complex conjugate” counterpart. This reproduces eq. (W.5).
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2 COUPLING CONSTANTS

Averaging over rotations

In each contribution on p. 670 there is a double summation over the nuclear spins,
which, after averaging over rotations (as for the shielding constant) gives rise to an
energy dependence of the kind

∑

A<B

γAγBKAB
(

ÎA · ÎB
)

	

which is required in the NMR Hamiltonian. Now, let us take the terms EDSO,
EPSO, ESD, EFC and average them over rotations producing ĒDSO, ĒPSO, ĒSD,
ĒFC:

• ĒDSO = e2

2mc2

∑

A	B

∑

j

γAγBIA · IB
〈

ψ(0)0

∣
∣
∣
∣

rAj · rBj
r3
Ajr

3
Bj

ψ(0)0

〉

− e2

2mc2

∑

A	B

∑

j

γAγB
1
3
IA · IB

×
{〈

ψ(0)0

∣
∣
∣
∣

xAjxBj

r3
Ajr

3
Bj

ψ(0)0

〉

+
〈

ψ(0)0

∣
∣
∣
∣

yAjyBj

r3
Ajr

3
Bj

ψ(0)0

〉

+
〈

ψ(0)0

∣
∣
∣
∣

zAjzBj

r3
Ajr

3
Bj

ψ(0)0

〉}

	

because the first part of the formula does not need any averaging (it is already in
the appropriate form), the second part is averaged according to (W.4). Therefore,

ĒDSO = e2

3mc2

∑

A	B

∑

j

γAγBIA · IB
〈

ψ(0)0

∣
∣
∣
∣

rAj · rBj
r3
Ajr

3
Bj

ψ(0)0

〉

�

• ĒPSO =
〈

ψ(0)0

∣
∣B̂3R̂0B̂3ψ

(0)
0

〉

aver

=
(
ih̄e

mc

)2∑

A	B

∑

j	l

γAγB

〈

ψ
(0)
0

∣
∣
∣
∣
∇j · IA × rAj

r3
Aj

R̂0∇l · IB × rBl
r3
Bl

ψ
(0)
0

〉

aver

=
(
ih̄e

mc

)2∑

A	B

∑

j	l

γAγB

〈

ψ(0)0

∣
∣
∣
∣
∇j · rAj × IA

r3
Aj

R̂0∇l · rBl × IB
rBl

ψ(0)0

〉

aver

= −
(
h̄e

mc

)2∑

A	B

∑

j	l

γAγB

×
〈

ψ(0)0

∣
∣
∣
∣
IA ·

(

∇j × rAj
r3
Aj

)

R̂0IB ·
(

∇l × rBl
rBl

)

ψ(0)0

〉

aver
	

where the subscript “aver” means the averaging of eq. (W.4) and the identity A ·
(B × C) = (A × B) · C has been used. We have the following chain of equalities
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(involving4 the electronic momenta p̂j and angular momenta LAj with respect to
the nucleus A, where j means electron number j)

(
ih̄e

mc

)2∑

A	B

∑

j	l

γAγB

〈

ψ(0)0

∣
∣
∣
∣
IA · 1

ih̄

(

rAj × p̂j
)

R̂0IB · 1
ih̄

(

rBl × p̂l
)

ψ(0)0

〉

aver

=
(
e

mc

)2∑

A	B

∑

j	l

γAγB
〈

ψ(0)0

∣
∣IA ·

(

rAj × p̂j
)

R̂0IB ·
(

rBl × p̂l
)

ψ(0)0

〉

aver

=
(
e

mc

)2∑

A	B

∑

j	l

γAγB
〈

ψ(0)0

∣
∣IA · L̂AjR̂0IB · L̂Blψ(0)0

〉

aver

=
(
e

mc

)2∑

A	B

∑

j	l

γAγBIA · IB 1
3
{〈

ψ(0)0

∣
∣L̂Aj	xR̂0L̂Bl	xψ

(0)
0

〉

+ 〈ψ(0)0

∣
∣L̂Aj	yR̂0L̂Bl	yψ

(0)
0

〉+ 〈ψ(0)0

∣
∣L̂Aj	zR̂0L̂Bl	zψ

(0)
0

〉}

�

Thus, finally

ĒPSO = 1
3

(
e

mc

)2∑

A	B

∑

j	l

γAγBIA · IB
〈

ψ(0)0

∣
∣L̂AjR̂0L̂Blψ

(0)
0

〉

�

• ĒSD =
〈

ψ(0)0

∣
∣B̂6R̂0B̂6ψ

(0)
0

〉

aver

4Let us have a closer look at the operator
(∇j×

rAj

r3Aj

)

acting on a function (it is necessary to remember

that ∇j in ∇j ×
rAj

r3Aj
is not just acting on the components of

rAj

r3Aj
alone, but in fact on

rAj

r3Aj
times a wave

function) f : Let us see:
(

∇j ×
rAj

r3Aj

)

f = i
(

∇j ×
rAj

r3Aj

)

x
f + j

(

∇j ×
rAj

r3Aj

)

y
f + k

(

∇j ×
rAj

r3Aj

)

z
f

= i
(
∂

∂yj

zAj

r3Aj

− ∂

∂zj

yAj

r3Aj

)

x
f + similarly with y and z

= i
(

−3
yAjzAj

r4Aj

+ zAj

r3Aj

∂

∂yj
+ 3

yAjzAj

r4Aj

− yAj

r3Aj

∂

∂zj

)

x
f + similarly with y and z

= i
(
zAj

r3Aj

∂

∂yj
− yAj

r3Aj

∂

∂zj

)

x
f + similarly with y and z

= i
(
zAj

r3Aj

∂

∂yj
− yAj

r3Aj

∂

∂zj

)

x
f + similarly with y and z

= − 1
ih̄

(−rAj × p̂j
)

f = 1
ih̄

(

rAj × p̂j
)

f�
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= γ2
el

N
∑

j	l=1

∑

A	B

γAγB

〈

ψ(0)0

∣
∣
∣
∣

[
ŝj · IA
r3
Aj

− 3
(ŝj · rAj)(IA · rAj)

r5
Aj

]

× R̂0

[
ŝl · IB
r3
Bl

− 3
(ŝl · rBl)(IB · rBl)

r5
Bl

]

ψ(0)0

〉

aver

= γ2
el

N
∑

j	l=1

∑

A	B

γAγBIA · IB 1
3

{〈

ψ(0)0

∣
∣
∣
∣

[
ŝj	x

r3
Aj

− 3
(ŝj · rAj)xAj

r5
Aj

]

× R̂0

[
ŝl	x

r3
Bl

− 3
(ŝl · rBl)(xBl)

r5
Bl

]

ψ(0)0

〉

+
〈

ψ(0)0

∣
∣
∣
∣

[
ŝj	y

r3
Aj

− 3
(ŝj · rAj)yAj

r5
Aj

]

R̂0

[
ŝl	y

r3
Bl

− 3
(ŝl · rBl)(yBl)

r5
Bl

]

ψ(0)0

〉

+
〈

ψ(0)0

∣
∣
∣
∣

[
ŝj	z

r3
Aj

− 3
(ŝj · rAj)zAj

r5
Aj

]

R̂0

[
ŝl	z

r3
Bl

− 3
(ŝl · rBl)(zBl)

r5
Bl

]

ψ(0)0

〉}

�

Therefore,

ĒSD = 1
3
γ2

el

N
∑

j	l=1

∑

A	B

γAγBIA · IB

×
〈

ψ(0)0

∣
∣
∣
∣

[
ŝj

r3
Aj

− 3
(ŝj · rAj)rAj

r5
Aj

]

R̂0

[
ŝl

r3
Bl

− 3
(ŝl · rBl)(rBl)

r5
Bl

]

ψ(0)0

〉

�

• ĒFC =
〈

ψ(0)0

∣
∣B̂7R̂0B̂7ψ

(0)
0

〉

= γ2
el

∑

j	l=1

∑

A	B

γAγB
〈

ψ(0)0

∣
∣δ(rAj)ŝj · IAR̂0δ(rBl)ŝl · IBψ(0)0

〉

aver

= γ2
el

∑

j	l=1

∑

A	B

γAγBIA · IB 1
3
{〈

ψ(0)0

∣
∣δ(rAj)ŝj	xR̂0δ(rBl)ŝl	xψ

(0)
0

〉

+ 〈ψ(0)0

∣
∣δ(rAj)ŝj	yR̂0δ(rBl)ŝl	yψ

(0)
0

〉

+ 〈ψ(0)0

∣
∣δ(rAj)ŝj	zR̂0δ(rBl)ŝl	zψ

(0)
0

〉}

�

Hence,

ĒFC = 1
3

(
8π
3

)2
γ2

el

∑

j	l=1

∑

A	B

γAγBIA · IB
〈

ψ(0)0

∣
∣δ(rAj)ŝjR̂0δ(rBl)ŝlψ

(0)
0

〉

�

The results mean that the coupling constants J are just as reported on p. 671.



X. MULTIPOLE EXPANSION

What is the multipole expansion for?

In the perturbational theory of intermolecular interactions (Chapter 13) the per-
turbation operator (V ) plays an important role. The operator contains all the
Coulombic charge–charge interactions, where one of the point charges belongs
to subsystem A, the second to B. Therefore, according to the assumption behind
the perturbational approach (large intermolecular distance) there is a guarantee
that both charges are distant in space. For example, for two interacting hydrogen
atoms (electron 1 at the nucleus a, electron 2 at nucleus b, a.u. are used)

V =− 1
ra2
+ 1
r12
− 1
rb1
+ 1
R
	 (X.1)

where R stands for the internuclear distance. A short inspection convinces
us that the mean value of the operator − 1

ra2
+ 1

r12
, with the wave function1

ψA	n1(1)ψB	n2(2), would give something close to zero, because both distances in
the denominators are almost equal to each other, Fig. X.1.a. The same can be said
of the two other terms of V . This is why, the situation is similar (see Chapter 13)
to weighing the captain’s hat, which we criticized so harshly in the supermolecular
approach to supermolecular forces, see Fig. 13.4.

What could we do to prevent a loss of accuracy? This is precisely the goal of
the multipole expansion for each of the operators 1

rij
.

Coordinate system

What is the multipole expansion really? We will explain this in a moment. Let
us begin quietly with introducing two Cartesian coordinate systems: one on mole-
cule A, the second on molecule B (Fig. X.1.b).

This can be done in several ways. Let us begin by choosing the origins of the
coordinate systems. How do we choose them? Is it irrelevant? It turns out that the
choice is important. Let us stop the problem here and come back to it later on. Just
as a signal, let me communicate the conclusion: the origins should be chosen in the
neighbourhood of the centres of mass (charges) of the interacting molecules. Let

1ψA	n1
(1) means an excited state (n1 is the corresponding quantum number) of atom A, ψB	n2(2)

similarly for atom B. Note that electron 1 is always close to nucleus a, electron 2 close to nucleus b,
while A and B are far distant.

1038



X. MULTIPOLE EXPANSION 1039

Fig. X.1. The coordinate system used in the multipole expansion. (a) Interparticle distances. The large
black dots denote the origins of the two Cartesian coordinate systems, labelled a and b, respectively. We
assume particle 1 always resides close to a, particle 2 always close to b. The figure gives a notation re-
lated to the distances considered. (b) Two Cartesian coordinate systems (and their polar counterparts):
one associated with the centre a, the second one with centre b (the x and y axes are parallel in both
systems, the z axes are collinear). Note that the two coordinate systems are not on the same footing:
the z axis of a points towards b, while the coordinate system b does not point to a. Sometimes in the
literature we introduce an alternative coordinate system with “equal footing” by changing zb→−zb
(then the two coordinate systems point to each other), but this leads to different “handedness” (“right-”
or “left-handed”) of the systems and subsequently to complications for chiral molecules. Let us stick to
the “non-equivalent choice”.

us introduce the axes by taking the z axes (za and zb) collinear pointing in the same
direction, axes xa and xb as well as ya and yb, pairwise parallel.

The multipole series and the multipole operators of a particle

With such a coordinate system the Coulomb interaction of particles 1 and 2 (with
charges q1 and q2) can be expanded using the following approximation2

q1q2

r12
∼=

nk∑

k=0

nl∑

l=0

m=+s
∑

m=−s
Akl|m|R−(k+l+1)M̂(k	m)

a (1)∗M̂(l	m)
b (2)	 (X.2)

2It represents an approximation because it is not valid for R < |ra1 −rb2 |, and this may happen in
real systems (the electron clouds extend to infinity), also because nk	nl are finite instead of equal to
∞.
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where the coefficient

Akl|m| = (−1)l+m (k+ l)!
(k+ |m|)!(l+ |m|)! (X.3)

whereas

MULTIPOLE MOMENT OPERATORS
M̂
(k	m)
a (1) and M̂(l	m)

b (2) represent, respectively, the m-th components of
the 2k-pole and 2l-pole of particle 1 in the coordinate system on a and of
particle 2 in the coordinate system on b:

M̂(k	m)
a (1) = q1r

k
a1P

|m|
k (cosθa1)exp(imφa1)	 (X.4)

M̂(l	m)
b (2) = q2r

l
b2P

|m|
l (cosθb2)exp(imφb2)	 (X.5)

with r	 θ	φ standing for the spherical coordinates of a particle (in coordinate sys-
tem a or b, Fig. X.1.b), the associated Legendre polynomials P |m|k with |m|
 k are
defined as (cf. p. 176)

P
|m|
k (x)= 1

2kk!
(

1− x2)|m|/2 dk+|m|

dxk+|m|
(

x2 − 1
)k
	 (X.6)

nk and nl in principle have to be equal to ∞, but in practice take finite integer
values, s is the lower of the summation indices k, l.

Maybe an additional remark would be useful concerning the nomenclature: any
multipole may be called a 2k-pole (however strange this name looks), because this
“multi” means the number 2k. If we know how to make powers of two, and in ad-
dition have some contact with the world of the ancient Greeks and Romans, we
will know how to compose the names of the successive multipoles: 20 = 1, hence
monopole; 21 = 2, hence dipole, 22 = 4, hence, quadrupole, etc. The names, how-
ever, are of no importance. The formulae for the multipoles are important.

Multipole moment operators for many particles

A while ago a definition of the multipole moments of a single point-like charged
particle was introduced. However, the multipole moments will be calculated in
future, practically always for a molecule. Then,

THE TOTAL MULTIPOLE MOMENT OPERATOR
The total multipole moment operator represents the sum of the same oper-
ators for the individual particles (of course, all them have to be calculated
in the same coordinate system): M̂(k	m)

a (A)=∑i∈A M̂
(k	m)
a (i).

The first thing we have to stress about multipole moments is that, in principle,
they depend on the choice of the coordinate system (Fig. X.2).

This will soon be seen when inspecting the formulae for multipole moments.
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Fig. X.2. The multipole moments (or, simply multipoles) in general depend on the choice of coordinate
system. (a) The dipole moment of a point-like particle with charge q1 is equal to μ1. (b) The dipole
moment of the same particle in a coordinate system with the origin on the particle. Here we obtain
μ′1 = 0. (c) The dipole moment of two particles represents the sum of the dipole moments of the
individual particles (in a common coordinate system).

Examples

Let us take a few examples for particle 1 in the coordinate system a (for the sake
of simplicity we skip the indices). The case with k = 0 is obviously the simplest
one, and we should always begin with the simplest things. If k= 0, then (because
of P |m|k ) m= 0, and the monopole therefore has a single component M(00)

M̂(0	0) = qr0P0
0 (cosθ)exp(i0φ)= q� (X.7)
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Table X.1. Multipole moments M̂(k	m) divided by q

m 0 ±1 ±2 ±3
k

0 1 – – –
charge

1 z x+ iy – –
dipole

x− iy

2 1
2
(

3z2 − r2) 3z(x+ iy) 3(x+ iy)2 –
quadrupole

3z(x− iy) 3(x− iy)2 –

3 1
2
(

5z3 − 3zr2
) 3

2 (x+ iy)
(

5z2 − r2) 15z(x+ iy)2 15(x+ iy)3

octupole
3
2 (x− iy)

(

5z2 − r2) 15z(x− iy)2 15(x− iy)3

Hence,

MONOPOLE
The monopole for a particle simply means its charge.

Let us go to k = 1, i.e. to the dipole moment. Since m = −1	0	+1, the dipole
moment has three components. First, let us consider M̂(1	0)

M̂(1	0) = qr1P0
1 (cosθ)exp(i0φ)= qr cosθ= qz� (X.8)

DIPOLE MOMENT OPERATOR
Thus the z-component of the dipole moment operator of a single particle is
equal to qz. The other components are:

M(1	1) = qr1P1
1 (cosθ)exp(iφ)= qr sinθ(cosφ+ i sinφ)

= q(x+ iy)	
M(1	−1) = qr1P1

1 (cosθ)exp(−iφ)= qr sinθ(cosφ− i sinφ)
= q(x− iy)�

After a careful (but a little boring) derivation, we arrive at Table X.1 (up to the
octupole). Just to make the table simpler, every multipole moment of the particle
has been divided by q.

Thus the operator of the 2k-pole moment of a charged particle simply repre-
sents a k-th degree polynomial of x	 y	 z.

The multipoles depend on the coordinate system chosen

Evidently any multipole moment value (except the monopole) depends on my
imagination because I am free to choose any coordinate system I want and, e.g.,
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the z coordinate of the particle in such a system will also depend on me! It turns
out that if we calculate the multipole moments, then

the lowest non-vanishing multipole moment does not depend on the coor-
dinate system translation, the other moments in general do depend on it.

This is not peculiar for the moments defined by eqs. (X.4) or (X.5), but repre-
sents a property of every term of the form xnylzm. Indeed, k= n+ l +m tells us
that we have to do with a 2k-pole. Let us shift the origin of the coordinate system
by the vector L. Then the xnylzm moment calculated in the new coordinate system,
i.e. x′ny ′lz′m is equal to

(

x′
)n(
y ′
)l(
z′
)m = (x+Lx)n(y +Ly)l(z+Lz)m

= xnylzm + a linear combination of lower multipole moments� (X.9)

If, for some reason, all the lower moments are equal to zero, this would mean the
invariance of the moment of choice of the coordinate system.

Let us take, e.g., the system ZnCl+. In the first approximation, the system may
be approximated by two point-like charges Zn++ and Cl−. Let us locate these
charges on the z axis in such a way that Zn++ has the coordinate z = 0, and Cl−
z = 5. Now we would like to calculate the z component of the dipole moment:3

M(1	0) = μz = q1z1+q2z2 = (+2)0+ (−1)5=−5. What if we had chosen another
coordinate system? Let us check what would happen if the origin of the coordinate
system were shifted towards the positive z by 10 units. In such a case the ions have
the coordinates z′1 = −10, and z′2 = −5, and, as the z component of the dipole
moment we obtain

M(1	0)′ = μ′z = q1z
′
1 + q2z

′
2 = (+2)(−10)+ (−1)(−5)=−15� (X.10)

Thus, the dipole moment depends on the choice of the coordinate system. How-
ever, the monopole of the system is equal to (+2)+ (−1) = +1 and this number
will not change with any shift of the coordinate system. Therefore,

the dipole moment of a molecular ion depends on us, through arbitrary
choice of the coordinate system.

Interaction energy of non-point like multipoles

In our chemical understanding of intermolecular interactions, multipole–multipole
(mainly dipole–dipole, as for interactions in, e.g., water) interactions play an im-
portant role. The dipolar molecules have non-zero dimensions and therefore they

3Since we have to do with point charges, the calculation of the multipole moments reduces simply to
inserting the values of the coordinates of the corresponding charges into the multipole operator.
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Fig. X.3. The interaction of non-pointlike dipoles also contains interactions of higher multipoles.

represent something other than point-like dipoles. Let us clarify this by taking the
simple example of two dipolar systems located on the z axis (Fig. X.3): the sys-
tem A consists of the two charges +1 at z = 0 and −1 at z = 1, while system B also
has two charges +1 with z = 10 and −1 with z = 11.

The first idea is that we have to do with the interaction of two dipoles and that’s
all there is to it. Let us check whether everything is OK. The checking is very easy,
because what really interacts are the charges, no dipoles whatsoever. Thus the ex-
act interaction of systemsA and B is (+1)(+1)/10+(+1)(−1)/11+(−1)(+1)/9+
(−1)(−1)/10= 2/10− 1/11− 1/9=−0�0020202. What would give such a dipole–
dipole interaction? Such a task immediately poses the question of how such an
interaction is to be calculated.

The first advantage of the multipole expansion is that it produces the for-
mulae for the multipole–multipole interactions.

We have the dipole–dipole term in the formR−3(μaxμbx+μayμby−2μazμbz)=
−2R−3μazμbz , because the x and y components of our dipole moments are equal
zero. Since A and B are neutral, it is absolutely irrelevant which coordinate sys-
tem is to be chosen to calculate the dipole moment components. Therefore let us
use the global coordinate system, in which the positions of the charges have been
specified. Thus, μaz = (+1) ·0+(−1) ·1=−1 and μbz = (+1) ·10+(−1) ·11=−1.

What is R?

Now, we are encountering a serious problem (which we always encounter in the
multipole expansion), what is R? We are forced to choose the two local coordi-
nate systems in A and B. We arbitrarily decide here to locate these origins in the
middle of each dipolar system, and therefore R = 10. It looks like a reasonable
choice, and as will be shown later on, it really is. We are all set to calculate the
dipole–dipole interaction:−2 ·10−3(−1)(−1)=−0�0020000. Close! The exact cal-
culated interaction energy is −0�0020202. Where is the rest? Is there any error in
our dipole–dipole interaction formula? We simply forgot that our dipolar systems
represent not only the dipole moments, but also have non-zero octupole moments
(the quadrupoles are equal zero) and non-zero higher odd-order multipoles, and
we did not take them into account. If somebody calculated all the interactions
of such multipoles, we would recover the correct interaction energy with any de-
sired accuracy. How come, however, that such a simple dipolar system also has a
non-zero octupole moment? The answer is simple: it is because the dipole is not
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Table X.2. Are the multipole moments zero or non-zero?

Li+ HCl H2 CH4 HCl+

monopole
k= 0 q 0 0 0 q

dipole
k= 1 0 μ 0 0 μ

quadrupole
k= 2 0 Q Q 0 Q

octupole
k= 3 0 Oct 0 Oct Oct

point-like.4 The conclusion from this story is that the reader has to pay attention
to whether we have to deal with point-like or non-point-like multipole moments.

Just as a little exercise, Table X.2 shows which multipole moments are zero and
which are non-zero for a few simple chemical systems. All this follows from the
symmetry of their nuclear framework in the electronic ground state.

Properties of the multipole expansion

When performing multipole expansions, at least three simple questions arise:

a) How do we truncate the expansion, i.e. how do we choose the values of nk and
nl in eq. (X.2)?

b) Since the multipole moments depend, in general, on the coordinate system cho-
sen, what sort of miracle makes the multipole expansion of the energy, indepen-
dent of the coordinate system?

c) When does the multipole expansion make sense, i.e. when does it converge?

Truncating the multipole expansion and its coordinate system dependence

It turns out that questions a and b are closely related to each other. When nk and
nl are finite and non-zero,5 then, however horrifying it might be, the result of the
multipole expansion is in general coordinate-dependent. If, however, nk and nl
satisfy nk+nl = const, we may shift both coordinate systems (the same translation
for both) however we like, and the interaction energy calculated remains invari-
ant.6 Such a recipe for nk and nl corresponds to taking all the terms with a given
power of R−1.

In other words, if we take all the terms with a given R−m dependence, the
result does not depend on the same translations of both coordinate sys-
tems.

4Just think about a multipole component of the form qzn calculated with respect to the centre of
each subsystem.

5Zero would introduce large errors in most applications.
6L.Z. Stolarczyk, L. Piela, Int. J. Quantum Chem. 15 (1979) 701.
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This means that to maintain the invariance of the energy with respect to equal
translations of both coordinate systems, we have to calculate all terms satisfying
nk + nl = nmax in the multipole expansion. If, e.g., nmax = 2, we have to calculate
the term proportional to R−1 or the charge–charge interaction (it will be invari-
ant), proportional to R−2 or charge–dipole and dipole–charge terms (their sum
is also invariant), proportional to R−3 or charge–quadrupole, quadrupole–charge
and dipole–dipole (their sum is invariant as well).

Let us imagine scientists calculating the interaction energy of two molecules.
As will be shown later, in their multipole expansion they will have the charges
of both interacting molecules, their dipole moments, their quadrupole moments,
etc. Our scientists are systematic fellows, and therefore I bet they will begin by
calculating the multipole moments for each molecule, up to a certain maximum
multipole moment (say, the quadrupole; the calculations become more and more
involved, which makes their decision easier). Then they will be ready to calculate
all the individual multipole–multipole interaction contributions. They will make a
table of such interactions (rows: the multipole moments of A; columns: the multi-
pole moments of B) and calculate all the entries in their table. Then many of their
colleagues would sum all the entries of the table in order not to waste their time.
This will be a mistake. The scientists might not suspect that, due to this procedure,
their result depends on the choice of coordinate system, which is always embarrass-
ing. However, our scientists will do something else. They will sum the entries cor-
responding to: charge–charge, charge–dipole, dipole–charge, charge–quadrupole,
quadrupole–charge, dipole–dipole and they will throw the other entries into the
waste paper basket. Having made this decision, the scientists will gain a lot: their
interaction energy will not depend on how they translated the a and b coordinate
systems.

Now, we will illustrate this by a simple formulae and see how it works in prac-
tice. We have said before that it is decisive to take the complete set of terms with
the given dependence on R−1. Otherwise horrible things happen. Let us take such
a complete set of terms with k+ l = 2. We will see how nicely they behave upon
the translation of the coordinate system, and how nasty the behaviour of individ-
ual terms is. Let us begin with the charge–dipole term. The term in the multipole
expansion corresponds to k= 0 and l= 2:

(−1)2
2!

2!R3 M̂
(00)(1)∗M̂(20)(2)= q1q2R

−3 1
2
(

3z2
2 − r2

2
)

�

The next term (k= 1, l = 1) has three contributions coming from the summation
over m:

(−1)
2!

1!1!R3 M̂
(10)(1)∗M̂(10)(2)+ (−1)2

2!
2!2!R3 M̂

(11)(1)∗M̂(11)(2)

+ (−1)0
2!

2!2!R3 M̂
(1−1)(1)∗M̂(1−1)(2)= q1q2R

−3[(x1x2 + y1y2)− 2z1z2
]

�

The third term (k= 2, l= 0):
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(−1)2
2!

2!R3 M̂
(20)(1)∗M̂(00)(2)= q1q2R

−3 1
2
(

3z2
1 − r2

1
)

�

Note that each of the calculated terms depends separately on the translation along
the z axis of the origins of the interacting objects. Indeed, by taking z+ T instead
of z we obtain: for the first term

q1q2R
−3
[

1
2
(

3(z2 + T)2 − x2
2 − y2

2 − (z2 + T)2
)
]

= q1q2R
−3
[

1
2
(

3z2
2 − r2

2
)+ 1

2
(

6Tz2 + 3T 2 − 2Tz2 − T 2)
]

	

for the second term

q1q2R
−3[(x1x2 + y1y2)− 2(z1 + T)(z2 + T)

]

= q1q2R
−3[(x1x2 + y1y2)− 2z1z2

]+R−3[−2Tz1 − 2Tz2 − 2T 2]	

for the third term

q1q2R
−3 1

2
(

3(z1 + T)2 − x2
1 − y2

1 − (z1 + T)2
)

= q1q2R
−3
[

1
2
(

3z2
1 − r2

1
)+ 1

2
(

6Tz1 + 3T 2 − 2Tz1 − T 2)
]

�

If someone still has the illusion that the coordinate system dependence is negli-
gible, this is about the right time to change their opinion. Evidently, each term
depends on what we chose as T , and T can be anything! If I were really malicious,
I would obtain a monstrous dependence on T .

Now, let us add all the individual terms together to form the complete set for
k+ l= 2:

q1q2

{

R−3
[

1
2
(

3z2 − r2
2
)+ (2Tz2 + T 2)

]

+R−3[(x1x2 + y1y2)− 2z1z2
]

+R−3[−2Tz1 − 2Tz2 − 2T 2]+R−3
[

1
2
(

3z1 − r2
1
)+ (2Tz1 + T 2)

]}

= q1q2R
−3
{

1
2
(

3z2 − r2
2
)+ [(x1x2 + y1y2)− 2z1z2

]+ 1
2
(

3z1 − r2
1
)
}

�

The dependence on T has disappeared as if touched by a magic wand.7 The com-
plete set does not depend on T ! This is what I wanted to show.

7We may also prove that equal but arbitrary rotations of both coordinate systems about the z axis also
lead to a similar invariance of interaction energy.
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Convergence of the multipole expansion

I owe the reader an explanation about the convergence of the multipole expansion
(point c, Fig. X.4). Well,

we may demonstrate that the multipole expansion convergence depends on
how the molecules are located in space with respect to one another. The
convergence criterion reads

|rb2 − ra1|<R	 (X.11)

where ra1 denotes the vector pointing the particle 1 from its coordinate sys-
tem origin, similarly for vector rb2.

The readers will easily be convinced if they draw two spheres that are tangent
to each other (this is the most dangerous situation) and then consider possible ra1
and rb2 vectors. Whatever the ra1 and rb2 vectors are, our criterion will be fulfilled.
The criterion is, however, even more general than to allow two non-overlapping

Fig. X.4. Convergence of the multipole
expansion. The expansion converges in
situations (a–c), diverges in (d).
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spheres. It is easy to find locations of the two particles that are outside the spheres,
and yet the convergence criterion is fulfilled. For example, let us take two tangent
spheres with radii ρ1 and ρ2 (their centres are on the x axis) as well as vectors
ra1 = (0	ρ1	0) and rb2 = (0	u	0), where u= ρ1 +R/10 and u > ρ2. Then, |rb2 −
ra1| = R/10 < R, i.e. the convergence criterion is satisfied, despite the fact that
particle 2 is outside its sphere.

For our purposes it is sufficient to remember that

when the two particles are in their non-overlapping spheres, the multipole
expansion converges.

Can we make such an assumption? Our goal is the application of the multipole
expansion in the case of intermolecular interactions. Are we able to enclose both
molecules in two non-overlapping spheres? Sometimes certainly not, e.g., if a small
molecule A is to be docked in the cavity of a large molecule B. This is a very
interesting case (Fig. X.4.d), but what we have most often in quantum chemistry
are two distant molecules. Is everything all right then? Apparently the molecules
can be enclosed in the spheres, but if we recall that the electronic density extends
to infinity (although it decays very fast), we feel a little scared. Almost the whole
density distribution could be enclosed in such spheres, but outside the spheres
there is also something. It turns out that this very fact causes

the multipole expansion for the interaction energy of such diffused charge
distributions to diverge, i.e. if we go to very high terms we will get infinity.

However strange it might look, in mathematics we are also able to extract very
useful information from divergent series, if they converge asymptotically, see p. 210.
This is precisely the situation when multipole expansion is applied to the diffuse
charge distributions that such molecules have. This is why the multipole expan-
sion is useful.8 It also has the important advantage of being physically appealing,
because thanks to it we may interpret interaction energy in terms of the proper-
ties of the individual interacting molecules (their charges, dipole, quadrupole, etc.
moments).

8If the calculations were feasible to a high degree of accuracy, the multipole expansion might be of
small importance.
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Two molecules, when non-interacting are independent and the wave function of
the total system might be taken as a product of the wave functions for the indi-
vidual molecules. When the same two molecules are interacting, any product-like
function represents only an approximation, sometimes a very poor approximation,1

because according to a postulate of quantum mechanics, the wave function has to
be antisymmetric with respect to the exchange of electronic labels, while the prod-
uct does not fulfil this. More exactly, the approximate wave function has to belong
to the irreducible representation of the symmetry group of the Hamiltonian (see
Appendix C, p. 903), to which the ground state wave function belongs. This means
first of all that the Pauli exclusion principle is to be satisfied.

PAULI DEFORMATION
The product-like wave function has to be made antisymmetric. This causes
some changes in the electronic charge distribution (electronic density),
which will be called the Pauli deformation.

The Pauli deformation may be viewed as a mechanical distortion of both inter-
acting molecules due to mutual pushing. The reason why two rubber balls deform
when pushed against each other is the same: the electrons of one ball cannot oc-
cupy the same space as the electrons (with the same spin coordinates) of the second
ball. The most dramatic deformation takes place close to the contact area of these
balls.

The norm of the difference of ϕ(0) and ψ(0) represents a very stringent measure
of the difference between two functions: any deviation gives a contribution to the
measure. We would like to know, how the electronic density has changed, where
the electrons flow from, and where they go to. The electron density ρ (a function of
position in space) is defined as the sum of densities ρi of the particular electrons:

ρ(x	 y	 z) =
N
∑

i=1

ρi(x	 y	 z)	

ρi(xi	 yi	 zi) =
+ 1

2∑

σi=− 1
2

∫
dτ
dτi
|ψ|2	 (Y.1)

1For example, when the intermolecular distance is short, the molecules push each other and deform
(maybe strongly), and the product-like function is certainly inadequate.

1050
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where dτ = dτ1dτ2 · · ·dτN , and therefore the integration goes over the coordinates
(space and spin) of all the electrons except electron i. In addition, there is also a
summation over the spin coordinate of electron “i”, simply because we are not in-
terested in its value. As seen, the integral of ρ(x	 y	 z) over x	 y	 z is equal to N ,
therefore ρ(x	 y	 z) represents an electron cloud carrying N electrons, as defined
in eq. (11.1) on p. 569. We make the two molecules approach without changing
their charge distribution (the system is described by the electron density corre-
sponding to the wave function ψ = ϕ(0)), and then we allow the Pauli exclusion
principle to operate to ensure the proper symmetry of the wave function (the sys-
tem is therefore described by a new wave function ψ=ψ(0)) by applying a suitable
projection operator. What happens to the electronic density? Will it change or not?

Let us see what happens when we make two hydrogen atoms approach and then
two helium atoms.

H2 case

In the case of two hydrogen atoms2

ϕ(0) = 1sa(1)α(1)1sb(2)β(2)≡ a(1)α(1)b(2)β(2)	

where we have used the abbreviation 1sa(1) ≡ a and 1sb(1) ≡ b. After inserting
ψ= ϕ(0) into (Y.1), integration over space and summation over spin coordinates
gives

ρ(0) = ρ1(x	 y	 z)+ ρ2(x	 y	 z)	

where

ρ1(x	 y	 z) =
+ 1

2∑

σ1=− 1
2

∫
dτ
dτ1

∣
∣a(1)α(1)b(2)β(2)

∣
∣2

=
+ 1

2∑

σ1=− 1
2

∫

dτ2
∣
∣a(1)α(1)b(2)β(2)

∣
∣
2 = a2�

Similarly,

ρ2(x	 y	 z) =
+ 1

2∑

σ2=− 1
2

∫
dτ
dτ2

∣
∣a(1)α(1)b(2)β(2)

∣
∣
2

=
+ 1

2∑

σ2=− 1
2

∫

dτ1
∣
∣a(1)α(1)b(2)β(2)

∣
∣
2 = b2�

2We arbitrarily assign the spin function α to electron 1 and the spin function β to electron 2. We
might have done this in the opposite way, but it does not change anything.
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Thus finally ρ(0) = a2+b2. This density is normalized to 2 – as it has to be, because
the electron cloud ρ(x	 y	 z) carries two electrons. Now, let us do the same for
the wave function ψ(0) =NÂϕ(0), where Â stands for the idempotent projection
operator (13.23), and the normalization constant N = 2√

1+S2
with S = (a|b), all

quantities described in Chapter 13 on the symmetry adapted perturbation theory:

ρ(x	 y	 z)= ρ1(x	 y	 z)+ ρ2(x	 y	 z)	

ρ1(x	 y	 z) =
∑

σ1=± 1
2

∫

dτ2
∣
∣ψ(0)

∣
∣
2

=N2 1
8

∫

dV2
[

a(1)b(2)+ a(2)b(1)]2
∑

σ1

∑

σ2

1
2
[

α(1)β(2)− α(2)β(1)]2

=N2 1
8

∫

dV2
[

a(1)b(2)+ a(2)b(1)]2

=N2 1
8
(

a2 + b2 + 2abS
)

= 1
2(1+ S2)

(

a2 + b2 + 2abS
)

	

ρ2(x	 y	 z) = ρ1(x	 y	 z)�

As seen, the density ρ1(x	 y	 z) is normalized to 1 – this is what we get after inte-
gration over dV1. A similar calculation for ρ2 would give the same result, because
|ψ(0)|2 is symmetric with respect to the exchange of electrons3 1 and 2. Therefore,
the change in the electron density due to the proper symmetry projection (includ-
ing the Pauli exclusion principle) is:

ρ−ρ(0) = a2 + b2 + 2abS
1+ S2 − (a2+b2)= 2S

1+ S2 ab−
S2

1+ S2 a
2− S2

1+ S2 b
2� (Y.2)

Thus, it turns out that as a result of the Pauli exclusion principle (i.e. of the
antisymmetrization of the wave function) an electron density a2S2/(1+ S2) flows
from atom a, a similar thing happens to atom b, where the electronic density de-
creases by b2S2/(1+ S2). Both these electronic clouds go to the bond region – we
find them as an electron cloud 2abS/(1+S2) with a maximum in the middle of the
bond, and of course, the integral of ρ− ρ(0) is equal to zero (Fig. Y.1.a).

Thus,

in the hydrogen molecule the Pauli exclusion principle caused the two atoms
to stick together (the two electrons increase their probability to be in the
region between the two nuclei).

3This was not the case for ϕ(0) .
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Fig. Y.1. Comparison of the Pauli deformation for two hydrogen atoms and for two helium atoms. (a)
Two hydrogen atoms. Visualization of ρ− ρ(0) calculated in the plane containing the nuclei (“the net
result is zero”). One of the protons is located at the origin, the other has coordinates (0	R	0), with

R= 4 a.u. For this distance the overlap integral (see Appendix R, p. 1009) S = (1+R+ R2
3 )exp(−R)

is 0.189. As we can see, the electron density has flown from the nuclei to the bond. (b) Two helium
atoms. The only difference with respect to (a) is that two electrons have been added. The visualization
of ρ− ρ(0) reveals a completely different pattern. This time the electron density has been removed from
the bond region and increased in the region of the nuclei.

This is what the Pauli exclusion principle dictates. Besides this we have, of
course, all the physical interactions (electron repulsion, attraction with the nuclei)
and the kinetic energy, but none of these effects has yet been taken into account.4

Fig. Y.1(a) shows only the deformation that results from forcing the proper sym-
metry in the wave function.

He2 case

Let us see what happens if we make similar calculations for two helium atoms. To
compare the future result with the H2 case, let us keep everything the same (the
internuclear distance R, the atomic orbitals, the overlap integral S, etc.), except
that the number of electrons changes from two to four. This time the calculation
will be a little bit more tedious, because four-electron wave functions are more
complicated than two-electron functions. For example, the function ϕ(0) this time
is the product of the two Slater determinants – one for atom a, the other for atom b:

4Indeed, all these effects have been ignored, because we neither calculated the energy, nor used the
Hamiltonian. However, the very fact that we write: ϕ(0) = a(1)α(1)b(2)β(2), where a and b stand for
the properly centred 1s orbitals, means that the electron–nucleus interaction has been implicitly taken
into account (this is why the 1s orbital appears). Similarly, when we project the product-like function
and obtain ψ(0) proportional to [a(1)b(2)+ a(2)b(1)][α(1)β(2)− α(2)β(1)], then besides the above
mentioned electron–nucleus interactions (manifested by the 1s orbitals) we obtain an interesting effect:
when one electron is on nucleus a, the second electron runs to nucleus b. It looks as if they have repelled
each other. This is, however, at the level of the mathematical formula of the function (“function design”),
as if the function has already been quite well designed for the future, and takes into account the physical
interactions.
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ϕ(0) =N
∣
∣
∣
∣

aα(1) aα(2)
aβ(1) aβ(2)

∣
∣
∣
∣

∣
∣
∣
∣

bα(3) bα(4)
bβ(3) bβ(4)

∣
∣
∣
∣

=N ′a(1)a(2)b(3)b(4)
[

1√
2

[

α(1)β(2)− α(2)β(1)]
]

×
[

1√
2

[

α(3)β(4)− α(4)β(3)]
]

	 (Y.3)

where the normalization constant N ′ = 1 (easy to verify: just square the function
and integrate). We obtain directly from the definition5

ρ(0) = ρ1 + ρ2 + ρ3 + ρ4 = 2a2 + 2b2	

which, after integration, gives four electrons, as should be. The function ϕ(0) is
“illegal”, because it does not fulfil the Pauli exclusion principle, e.g., the exchange
of electrons 1 and 3 does not lead to a change of the sign of the wave function.

Now let us focus on ψ(0). Please note that ϕ(0) of eq. (Y.3) may be written
alternatively as:

ϕ(0) =N

∣
∣
∣
∣
∣
∣
∣
∣

aα(1) aα(2) 0 0
aβ(1) aβ(2) 0 0

0 0 bα(3) bα(4)
0 0 bβ(3) bβ(4)

∣
∣
∣
∣
∣
∣
∣
∣

	

where N is a normalization constant.
Antisymmetrization of ϕ(0), in which electrons 1 and 2 occupy orbital a, and

electrons 3 and 4 occupy orbital b, is equivalent to completing the Slater determi-
nant6 in such a way as to allow for the exchange of electrons between the subsys-
tems:

ψ(0) =N 1
2
(1+ I)Âϕ(0) =N 1

2
(1+ I)

∣
∣
∣
∣
∣
∣
∣
∣

aα(1) aα(2) aα(3) aα(4)
aβ(1) aβ(2) aβ(3) aβ(4)
bα(1) bα(2) bα(3) bα(4)
bβ(1) bβ(2) bβ(3) bβ(4)

∣
∣
∣
∣
∣
∣
∣
∣

=N

∣
∣
∣
∣
∣
∣
∣
∣

aα(1) aα(2) aα(3) aα(4)
aβ(1) aβ(2) aβ(3) aβ(4)
bα(1) bα(2) bα(3) bα(4)
bβ(1) bβ(2) bβ(3) bβ(4)

∣
∣
∣
∣
∣
∣
∣
∣

	

where, according to (13.23), Â stands for the idempotent antisymmetrization op-
erator, and 1

2(1+ I) represents an idempotent symmetrization operator acting on
the nuclear coordinates. The last equality follows from the fact that this particular

5This may also be calculated in your head (note that the spin functions in the square brackets are
normalized).

6The Slater determinant containing linearly independent spinorbitals guarantees the antisymmetry.
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Slater determinant is already symmetric with respect to the exchange of nuclei,7

which is equivalent to a↔ b.
Any determinant is invariant with respect to the addition of any linear combina-

tion of rows (columns) to a given row (column). For reasons that will become clear
soon, let us make a series of such operations. First, let us add the third row to the
first one, then multiply the third row by 2 (any multiplication is harmless for the
determinant, because at the end it will be normalized) and subtract the first row
from the third one. Then let us perform a similar series of operations on rows 2 and
4 (instead of 1 and 3), and at the end let us multiply rows 1 and 3 by 1√

2(1+S) , and

rows 2 and 4 by 1√
2(1−S) . The result of these operations is the Slater determinant

with the doubly occupied bonding molecular orbital σ = 1√
2(1+S) (a+ b) and the

doubly occupied antibonding molecular orbital σ∗ = 1√
2(1−S) (a− b)

ψ(0) = 1√
4!

∣
∣
∣
∣
∣
∣
∣
∣

σα(1) σα(2) σα(3) σα(4)
σβ(1) σβ(2) σβ(3) σβ(4)
σ∗α(1) σ∗α(2) σ∗α(3) σ∗α(4)
σ∗β(1) σ∗β(2) σ∗β(3) σ∗β(4)

∣
∣
∣
∣
∣
∣
∣
∣

�

All the spinorbitals involved are orthonormal (in contrast to what was in the
original determinant) and the corresponding electronic density is easy to write –
it is the sum of squares of the molecular orbitals multiplied by their occupancies
(cf. p. 1015):

ρ(x	 y	 z)= 2σ2 + 2(σ∗)2�

Now let us calculate the Pauli deformation

ρ− ρ(0) = a2 + b2 + 2ab
1+ S + a

2 + b2 − 2ab
1− S − 2

(

a2 + b2)

= − 4S
1− S2 ab+

2S2

1− S2 a
2 + 2S2

1− S2 b
2� (Y.4)

Integration of the difference gives zero, as should be. Note that the formula
is similar to that which we obtained for the hydrogen molecule, but this time the
electron flow is completely different (Fig. Y.1.b).

In the case of He2 the Pauli exclusion principle makes the electron density
decrease in the region between the nuclei and increase close to the nuclei.
In the case of the hydrogen molecule, the two atoms stuck together, while
the two helium atoms deform as if they were rubber balls squeezed together
(Pauli deformation).

7This corresponds to the exchange of rows in the determinant: the first with the third, and the second
with the fourth. A single exchange changes the sign of the determinant, therefore the two exchanges
leave the determinant invariant.
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Fig. Y.2. The locality of the Pauli deformation (diagram). (a) Two polymeric chains A and B (with
electronic densities in the form of the elongated rectangles corresponding to the isolated molecules
A and B) approach one another (b) the Pauli deformation consists of the two density gains (the rec-
tangles with +) and a single electron loss (the rectangles with −). Let us assume that the surfaces of
the rectangles are equal to the corresponding integrals of the charge distributions −4S/(1− S2)ab in
the contact region, 2S2/(1 − S2)a2 on molecule A and 2S2/(1 − S2)b2 on polymer B – this is why
the electron density loss has a rectangle twice as large as any of the electron density gains (c) a partial
Pauli deformation: the density gain 2S2/(1−S2)a2 for molecule A has been added to the initial density
distribution, and similarly for molecule B (the rectangles became larger, but locally the corresponding
increase is small). (d) In order to represent the total Pauli deformation from the result obtained at point
c we subtracted the density distribution 4S/(1−S2)ab which is located in the contact region. As a result
the Pauli deformation, when viewed locally, is large only in the contact region.

The only thing that has been changed with respect to the hydrogen molecule is
the increase in the number of electrons from two to four (we have kept the orbital
exponents equal to 1 and the internuclear distance equal to 4 a.u. unchanged). This
change results in a qualitative difference in the Pauli deformation.

Two large molecules

For two helium atoms, the Pauli deformation means decreasing the electron den-
sity in the region between the nuclei and a corresponding increase in the density on
the nuclei. This looks dangerous! What if, instead of two helium atoms, we have
two closed-shell long molecules A and B that touch each other with their termi-
nal parts? Would the Pauli deformation be local, or would it extend over the whole
system? Maybe the distant parts of the molecules would deform as much as the
contact regions?
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The answer may be deduced from eq. (Y.4). The formula suggests that the elec-
tronic density change pertains to the whole system. When the formula was de-
rived, we concentrated on two helium atoms. However, nothing would change in
the derivation if we had in mind a doubly occupied molecular orbital a that ex-
tends over the whole polymer A and a similar orbital b that extends over B. In
such a case the formula (Y.4) would be identical. The formula says: the three de-
formation contributions cancel if we integrate them over the total space.8 The first
deformation means a density deficiency (minus sign), the other two mean density
gains (plus sign). The first of these contributions is certainly located close to the con-
tact region of A and B. The two others (of the same magnitude) have a spatial form
such that a2 and b2 (i.e. extend over the whole polymer chains A and B), but are
scaled by the factor 2S2/(1 − S2). Since the contributions cancel in space (when
integrated), this means that the density gain extends over the polymeric molecules
and, therefore, locally is very small; the larger the interacting molecules the smaller the
local change. The situation is therefore similar to an inflatable balloon pressed with
your finger. We have a large deformation at the contact region , what corresponds
to − 4S

1−S2 ab, but in fact the whole balloon deforms. Because this deformation has
to extend over the whole balloon, the local deformation on the other side of the toy
is extremely small. Therefore, common sense has arrived at a quantum mechanical
explanation.9

This means that the Pauli deformation has a local character: it takes place
almost exclusively in the region of contact between both molecules.

Two final remarks

• The Pauli deformation, treated as a spatial charge density distribution has a re-
gion with positive charge (some electron density flowed from there) and negative
charge (where the electron density has increased). The Pauli charge distribution
participates in the Coulombic interactions within the system. If such an interac-
tion is represented by a multipole–multipole interaction, the Pauli deformation
has no monopole, or charge. In general, the other multipole moments of the
Pauli deformation are non-zero. In particular, the Pauli deformation multipoles
resulting from the exchange interaction of molecules A and B may interact with
the electric multipoles of molecule C, thus contributing to the three-body effect.

• If the two systems A and B approach each other in such a way that S = 0, the
Pauli deformation is zero. S = 0 might occur, e.g., if the two molecules approach
along the nodal surfaces of the frontier molecular orbitals.

8But of course at a given point they do not cancel in general.
9Good for both of them.



Z. ACCEPTOR–DONOR STRUCTURE
CONTRIBUTIONS IN THE MO
CONFIGURATION

In Chapter 14 the Slater determinants were constructed in three different ways
using:

• molecular orbitals (MO picture),
• acceptor and donor orbitals (AD picture),
• atomic orbitals (VB picture).

Then, the problem appeared of how to express one picture by another, in partic-
ular this was of importance for expressing the MO picture as an AD. More specifi-
cally, we are interested in calculating the contribution of an acceptor–donor struc-
ture1 in the Slater determinant written in the MO formalism, where the molecular
orbitals are expressed by the donor (n) and acceptor (χ and χ∗) orbitals in the
following way

ϕ1 = a1n+ b1χ− c1χ
∗	

ϕ2 = a2n− b2χ− c2χ
∗	 (Z.1)

ϕ3 = −a3n+ b3χ− c3χ
∗�

We assume that {ϕi} form an orthonormal set. For simplicity, it is also assumed
that in the first approximation the orbitals {n	χ	χ∗} are also orthonormal. Then
we may write that a Slater determinant in the MO picture (denoted by Xi) repre-
sents a linear combination of the Slater determinants (Yj) containing exclusively
donor and acceptor orbitals:

Xi =
∑

j

ci(Yj)Yj	

where the coefficient ci(Yk)= 〈Yk|Xi〉 at the Slater determinant Yk is the contri-
bution of the acceptor–donor structure Yk in Xi.

In Chapter 14 three particular cases are highlighted, and they will be derived
below. We will use the antisymmetrizer

Â= 1
N!
∑

P

(−1)pP̂

introduced in Chapter 10 (P̂ is the permutation operator, and p is its parity).

1That is, of a Slater determinant built of acceptor and donor orbitals.

1058
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Case c0(DA)

The c0(DA) coefficient means the contribution of the structure n2χ2, i.e.

�(DA)= (4!)− 1
2 det[nn̄χχ̄] = (4!) 1

2 Â[nn̄χχ̄]

in the ground-state Slater determinant

�0 = (4!)− 1
2 det[ϕ1ϕ̄1ϕ2ϕ̄2] = (4!) 1

2 Â[ϕ1ϕ̄1ϕ2ϕ̄2]�

We have to calculate

c0(DA) = 〈Yk|Xi〉 =
〈

�(DA)
∣
∣�0
〉

= 4!〈Â[nn̄χχ̄]∣∣Â[ϕ1ϕ̄1ϕ2ϕ̄2]
〉

= 4!〈[nn̄χχ̄]∣∣Â2[ϕ1ϕ̄1ϕ2ϕ̄2]
〉

= 4!〈[nn̄χχ̄]∣∣Â[ϕ1ϕ̄1ϕ2ϕ̄2]
〉

= 4!〈[n(1)n̄(2)χ(3)χ̄(4)]∣∣Â[ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)
]〉

	

where we have used Â as Hermitian and idempotent. Next, we have to write all
the 24 permutations [ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)] (taking into account their parity) and
then perform integration over the coordinates of all the four electrons (together
with summation over the spin variables):

c0(DA) =
∫

dτ1 dτ2 dτ3 dτ4
[

n(1)n̄(2)χ(3)χ̄(4)
]∗

×
∑

P

(−1)pP
[

ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)
]

�

The integral to survive has to have perfect matching of the spin functions be-
tween [n(1)n̄(2)χ(3)χ̄(4)] and P̂[ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)]. This makes 20 of these
permutations vanish. Only four integrals will survive:

c0(DA)

=
∫

dτ1 dτ2 dτ3 dτ4
[

n(1)n̄(2)χ(3)χ̄(4)
]∗[
ϕ1(1)ϕ̄1(2)ϕ2(3)ϕ̄2(4)

]

−
∫

dτ1 dτ2 dτ3 dτ4
[

n(1)n̄(2)χ(3)χ̄(4)
]∗[
ϕ1(1)ϕ̄1(4)ϕ2(3)ϕ̄2(2)

]

−
∫

dτ1 dτ2 dτ3 dτ4
[

n(1)n̄(2)χ(3)χ̄(4)
]∗[
ϕ1(3)ϕ̄1(2)ϕ2(1)ϕ̄2(4)

]

+
∫

dτ1 dτ2 dτ3 dτ4
[

n(1)n̄(2)χ(3)χ̄(4)
]∗[
ϕ1(3)ϕ̄1(4)ϕ2(1)ϕ̄2(2)

]
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=
∫

dτ1 n(1)∗ϕ1(1)
∫

dτ2 n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)∗ϕ2(3)
∫

dτ4 χ̄(4)∗ϕ̄2(4)

−
∫

dτ1 n(1)∗ϕ1(1)
∫

dτ2 n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)∗ϕ2(3)
∫

dτ4 χ̄(4)∗ϕ̄1(4)

−
∫

dτ1 n(1)∗ϕ2(1)
∫

dτ2 n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)∗ϕ1(3)
∫

dτ4 χ̄(4)∗ϕ̄2(4)

+
∫

dτ1 n(1)∗ϕ2(1)
∫

dτ2 n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)∗ϕ1(3)
∫

dτ4 χ̄(4)∗ϕ̄1(4)

= (a1)
2(−b2)

2 − a1a2(−b2)b1 − a2a1b1(−b2)+ (a2)
2(b1)

2

= (a1)
2(b2)

2 + a1a2b2b1 + a2a1b1b2 + (a2)
2(b1)

2

= a1b2(a1b2 + a2b1)+ a2b1(a1b2 + a2b1)

= (a1b2 + a2b1)
2 =
∣
∣
∣
∣

a1 a2
b1 −b2

∣
∣
∣
∣

2
�

Hence,

c0(DA)=
∣
∣
∣
∣

a1 a2
b1 −b2

∣
∣
∣
∣

2

which agrees with the formula on p. 805.

Case c2(DA)

The c2(DA) represents the contribution of the structure �(DA)= (4!) 1
2 Â[nn̄χχ̄]

in the Slater determinant corresponding to the double excitation �2d =
(4!) 1

2 Â[ϕ1ϕ̄1ϕ3ϕ̄3]. We are interested in the integral

c2(DA) =
〈

�(DA)
∣
∣�2d

〉

= 4!〈[n(1)n̄(2)χ(3)χ̄(4)]∣∣Â[ϕ1(1)ϕ̄1(2)ϕ3(3)ϕ̄3(4)
]〉

�

This case is very similar to the previous one, the only difference is the substitu-
tion ϕ2 → ϕ3. Therefore, everything goes the same way as before, but this time we
obtain:

c2(DA)

=
∫

dτ1 n(1)∗ϕ1(1)
∫

dτ2 n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)∗ϕ3(3)
∫

dτ4 χ̄(4)∗ϕ̄3(4)

−
∫

dτ1 n(1)∗ϕ1(1)
∫

dτ2 n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)∗ϕ3(3)
∫

dτ4 χ̄(4)∗ϕ̄1(4)

−
∫

dτ1 n(1)∗ϕ3(1)
∫

dτ2 n̄(2)∗ϕ̄1(2)
∫

dτ3χ(3)∗ϕ1(3)
∫

dτ4 χ̄(4)∗ϕ̄3(4)
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+
∫

dτ1 n(1)∗ϕ3(1)
∫

dτ2 n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)∗ϕ1(3)
∫

dτ4 χ̄(4)∗ϕ̄1(4)	

or

c2(DA) = (a1)
2(b3)

2 − a1(−a3)b3b1 − (−a3)a1b1b3 + (−a3)
2(b1)

2

= (a1)
2(b3)

2 + a1a3b3b1 + a3a1b1b3 + (a3)
2(b1)

2 = (a1b3 + a3b1)
2

=
∣
∣
∣
∣

a1 b1
−a3 b3

∣
∣
∣
∣

2
�

We have

c2(DA)=
∣
∣
∣
∣

a1 b1
−a3 b3

∣
∣
∣
∣

2

which also agrees with the result used on p. 806.

Case c3(DA)

This time we have to calculate the contribution of �(DA)= (4!) 1
2 Â[nn̄χχ̄] in the

Slater determinant �3d = (4!) 1
2 Â[ϕ2ϕ̄2ϕ3ϕ̄3], therefore

c2(DA) =
〈

�(DA)
∣
∣�3d

〉

= 4!〈[n(1)n̄(2)χ(3)χ̄(4)]∣∣Â[ϕ2(1)ϕ̄2(2)ϕ3(3)ϕ̄3(4)
]〉

�

This is a similar case to the previous one, but we have to exchange ϕ1 → ϕ2. We
obtain:

c3(DA)

=
∫

dτ1 n(1)∗ϕ2(1)
∫

dτ2 n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)∗ϕ3(3)
∫

dτ4 χ̄(4)∗ϕ̄3(4)

−
∫

dτ1 n(1)∗ϕ2(1)
∫

dτ2 n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)∗ϕ3(3)
∫

dτ4 χ̄(4)∗ϕ̄2(4)

−
∫

dτ1 n(1)∗ϕ3(1)
∫

dτ2 n̄(2)∗ϕ̄2(2)
∫

dτ3χ(3)∗ϕ2(3)
∫

dτ4 χ̄(4)∗ϕ̄3(4)

+
∫

dτ1 n(1)∗ϕ3(1)
∫

dτ2 n̄(2)∗ϕ̄3(2)
∫

dτ3χ(3)∗ϕ2(3)
∫

dτ4 χ̄(4)∗ϕ̄2(4)	

or

c3(DA) = (a2)
2(b3)

2 − a2(−a3)b3(−b2)− (−a3)a2(−b2)b3 + (−a3)
2(−b2)

2

= (a2)
2(b3)

2 − a2a3b3b2 − a3a2b2b3 + (a3)
2(b2)

2

= a2b3[a2b3 − a3b2] − a3b2[a2b3 − a3b2]

= (a2b3 − a3b2)
2 =
∣
∣
∣
∣

a2 −b2
−a3 b3

∣
∣
∣
∣

2

�
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Finally,

c3(DA)=
∣
∣
∣
∣

a2 −b2
−a3 b3

∣
∣
∣
∣

2

and again agreement with the formula on p. 806 is obtained.

Table Z.1. Units of physical quantities

Quantity Unit Symbol Value

light velocity c 299792�458 km
s

Planck constant h 6�6260755 · 10−34 J · s
mass electron rest mass m0 9�1093897 · 10−31 kg

charge element. charge = a.u. of charge e 1�60217733 · 10−19 C

action h
2π h̄ 1�05457266 · 10−34 J · s

length bohr = a.u. of length a0 5�29177249 · 10−11 m

energy hartree = a.u. of energy Eh 4�3597482 · 10−18 J

time a.u. of time h̄
Eh

2�418884 · 10−17 s

velocity a.u. of velocity a0Eh
h̄

2�187691 · 106 m
s

momentum a.u. of momentum h̄
a0

1�992853 · 10−24 kg m
s

electr. dipole moment a.u. of electr. dipole ea0 8�478358 · 10−30 C ·m
(2.5415 D)

magn. dipole Bohr magneton eh̄
2m0c

0�92731 · 10−20 erg
gauss

polarizability
e2a2

0
Eh

1�648778 · 10−41 C2m2
J

electric field Eh
ea0

5�142208 · 1011 V
m

Boltzm. constant kB 1�380658 · 10−23 J
K

Avogadro constant NA 6�0221367 · 1023 mol−1
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Table Z.2. Conversion coefficients

a.u. erg eV kcal
mole 1 cm−1 1 Hz 1 K

1 a.u. 1 4�35916 · 10−11 27�2097 627�709 2�194746 · 105 6�579695 · 1015 3�15780 · 105

1 erg 2�29402 · 1010 1 6�24197 · 1011 1�43998 · 1013 5�03480 · 1015 1�50940 · 1026 7�2441 · 1015

1 eV 3�67516 · 10−2 1�60206 · 10−12 1 23�0693 8�06604 · 103 2�41814 · 1014 1�16054 · 104

1 kcal
mol 1�59310 · 10−3 6�9446 · 10−14 4�33477 · 10−2 1 3�49644 · 102 1�048209 · 1013 5�0307 · 102

1 cm−1 4�556336 · 10−6 1�98618 · 10−16 1�23977 · 10−4 2�86005 · 10−3 1 2�997930 · 1010 1�43880
1 Hz 1�519827 · 10−16 6�62517 · 10−27 4�13541 · 10−15 9�54009 · 10−14 3�335635 · 10−11 1 4�7993 · 10−11

1 K 3�16676 · 10−6 1�38044 · 10−16 8�6167 · 10−5 1�98780 · 10−3 0�69502 2�08363 · 1010 1
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asymptotic convergence 210
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