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Preface

Quantum Computation and Quantum Information (generally referred as QIP) deals with
the identification and use of quantum resources for information processing. This includes
three main branches of investigation: quantum algorithm design, quantum simulation and
quantum communication, including quantum cryptography. Along the past few years, QIP
has become one of the most active areas of research in both theoretical and experimen-
tal physics, attracting young students and researchers fascinated, not only by the potential
practical applications of quantum computers, but also by the possibility of studying funda-
mental physics at the deepest level of quantum phenomena.

From a practical viewpoint, any experimental technique candidate to implement QIP in
large scale, must satisfy the following basic demands: (i) to have a good physical represen-
tation for the quantum unit of information: the qubit; (ii) to be able to generate a complete
set of universal quantum gates, and (iii) to be applicable to a scalable physical system. Nu-
clear Magnetic Resonance (NMR) perfectly satisfies the first two demands. Indeed, nuclear
spins are nearly ideal qubits, and radiofrequency pulses correctly implement unitary trans-
formations which can easily build a complete set of universal quantum logic gates. Since
1997, after the discovery of the so-called pseudo-pure states, every single quantum algo-
rithm has been demonstrated by the use of liquid-state NMR. In this approach, qubits are
represented by nuclear spins in molecules of a liquid. The main advantage of this approach
is the straight use in QIP of a highly advanced technique, definitely established in sci-
ence and technology by more than 50 years of development! However, it has also a main
drawback: it is not scalable. That basically means that liquid-state NMR is an excellent
technique to study the fundamentals of QIP, but not to build a large-scale quantum com-
puter. However, this also means that if we want to take the advantages of NMR technology
to build large-scale quantum computers, one must develop alternatives to liquid-state sam-
ples. And this is quickly developing in different fronts. In one front, techniques of atom-
by-atom manipulation became a reality which will allow in the near future the construction
of solid-state qubit arrays for large-scale QIP. In another front, Magnetic Resonance Force
Microscopy (MRFM) has raised as a main breakthrough, capable of increasing NMR sen-
sitivity from the current 1014 to a single spin! This technique can be used to implement the
main steps necessary to practical implementation of NMR QIP.

This book describes the fundamentals of NMR QIP, and the main developments which
can lead to a large-scale quantum processor. It is aimed at senior undergraduate students
and graduates entering this area of research. It can also be used as a reference book in
advanced quantum mechanics courses. It is our wish that the book will be useful as a ref-
erence for researches in the area of QIP, and other correlated areas. The text starts with a
general chapter on the interesting topic of the physics of computation. The very first ideas
which sparkled the development of QIP came from basic considerations of the physical
processes underlying computational actions. In Chapter 2 an introduction it is made to
NMR, including the hardware and other experimental aspects of the technique. In Chap-
ter 3 we revise the fundamentals of Quantum Computation and Quantum Information.
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The chapter is very much based on the extraordinary book of Michael A. Nielsen and
Isaac L. Chuang (Cambridge, 2002), with an upgrade containing some of the latest devel-
opments, such as QIP in phase space. Chapter 4 describes how NMR generates quantum
logic gates from radiofrequency pulses, upon which quantum protocols are built. It also
describes the important technique of Quantum State Tomography for both quadrupole and
spin 1/2 nuclei. Chapter 5 describes some of the main experiments of quantum algorithm
implementation by NMR, quantum simulation and QIP in phase space. The important is-
sue of (pseudo-)entanglement in NMR QIP experiments is discussed in Chapter 6. This has
been a particularly exciting topic in the literature. The chapter contains a discussion on the
theoretical aspects of NMR entanglement, as well as some of the main experiments where
this phenomenon is reported. Finally, Chapter 7 is an attempt to address the future of NMR
QIP, based on very recent developments in nanofabrication and single-spin detection ex-
periments. Each chapter is followed by a number of problems, all with detailed solutions,
which confers to the whole text a didactic character and allows it to be used as text-book
in undergraduate or graduate courses. It is therefore our wish that this book will be useful
for researches in the area of QIP and other correlated areas, as well as for general readers
interested in the applications of quantum mechanics.
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Brief Historical Survey and Perspectives

Various names are commonly associated to the invention and development of modern com-
puting science. Among them, are George Boole (1815–1864), author of a work published
in 1854 with the title: An investigation into the laws of thought, on which are founded
the mathematical theories of logic and probabilities, which founded the nowadays called
Boolean Algebra, and Claude Shannon (1916–2001) who, in 1938 on his MIT MSc The-
sis, A symbolic analysis of relay and switching circuits, proposed a way for representing
Boolean logic operators through relays and switches.

However, the Theory of Computation became an area of abstract mathematics only after
the work of Alan Turing (1912–1954) and Alonzo Church (1903–1995). On his attempt to
answer one of the challenges proposed by the great mathematician David Hilbert in 1928,
the entscheidungsproblem or decision problem, Turing arrived to an abstract model of com-
putation known as the Turing Machine. His idea was published in 1936 as a ground breaker
paper entitled On computable numbers, with an application to the entscheidungsprob-
lem [1]. A Turing Machine operates with a minimum number of symbols and instructions
to perform logic operations: it is the embryo of all modern programmable computers.

Another breakthrough paper appeared twelve years afterwards, in 1948, again by Claude
Shannon: A mathematical theory of communication [2]. On this paper, Shannon defined the
unit of information, the binary digit, or bit,1 and established the theory which tells us the
amount of information (i.e., the number of bits) which can be sent per unit time through
a communication channel, and how this information can be fully recovered, even in the
presence of noise in the channel. This work founded the Theory of Information.

The computation and information technologies have developed very close to each other,
in an astonishingly rapidly pace, for the last 50 years. Nowadays, a few square centimeters
computer chip possesses hundreds of millions of electronic constituents, and a hairy thin
optical fibre can transmit and maintain millions of conversations simultaneously!

On the side of pure Physics, the 20th Century also produced some “miracles”, one of
them – and possibly the most important of all – was Quantum Mechanics. The early devel-
opment of this theory has attached to it a whole team of brilliant scientists: Max Planck,
Niels Bohr, Albert Einstein, Louis de Broglie, Erwin Schrödinger, Wolfgang Pauli, Werner
Heisenberg, only to name some of the best known. Quantum mechanics contains the rules
of how to approach and solve problems involving particles such as electrons, protons, nu-
clei, atoms, molecules, and the interactions between these particles and radiation. Along
the years, computers entered physics as a powerful ally for the analysis and development
of physical models in particle and nuclear physics, condensed matter, gravitation, astro-
physics, biological and ecological systems, and so on. In particular, the development of
condensed matter magnetism and semiconductor physics resulted in important feedback to
computer technology itself. This symbiotic relationship between physics and computers,
deepened for decades until the point where computers themselves started to be seen by

1On his original paper, Shannon attributes the word bit to a suggestion made by J.W. Turkey.
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the physicists, no longer as an auxiliary tool for the solution of complicated mathematical
problems, but as physical systems, subject to the laws of physics, just like everything else!
This insight led to a novel and exciting area of research in Physics: Quantum Computation
and Quantum Information.

Quantum Information is the area of research in physics in which quantum resources are
identified for the application in information processing, as well as the means to produce,
store, send and recover information traveling through communication channels. One exam-
ple of quantum resource for communication is entanglement, and one example of quantum
information processing is superdense coding. To the more specific application of quantum
resources to the development of quantum computer algorithms and quantum hardware, we
call Quantum Computation. One example of quantum algorithm is the Shor factorization
algorithm, and one example of quantum computing hardware are nuclear spins.

The “formal” beginning of the research field called Quantum Computation and Quan-
tum Information can be attributed to a paper published in 1980 by Paul Benioff [3]: The
computer as a physical system: a microscopical quantum mechanical Hamiltonian model
of computers as represented by Turing machines. In this paper it is pointed out for the first
time that unitary transformations undergone by quantum systems can be used to implement
computing logical operations. However, the work of Benioff was inspired by an earlier pa-
per, published in 1973 by the IBM physicist Charles Bennett [4]. In his paper, Logical
reversibility of computation, Bennett showed that computation could be built entirely on
the basis of reversible logic, although actual computers operate with irreversible processes.
Indeed, computation is carried out in computers through the action of the so-called logic
gates. One complete set of such gates are the NOT, AND and OR gates. Whereas NOT is a
reversible gate (in the sense that the information at the input of the gate can be recovered
applying the gate to the output), AND and OR are irreversible, in the sense that information
is lost in their action, implying an increase of entropy equal to at least kB ln 2 for each bit
which is lost.2 On the other hand, quantum unitary transformations are reversible: from the
knowledge of the state of a quantum system in time t0, one can obtain the state in later
time t : |ψ(t)〉 = U(t, t0)|ψ(t0)〉, where U(t, t0) is a unitary propagator which satisfies the
Schrödinger equation. However, since UU† = 1, where 1 is the identity matrix, one can
recover |ψ(t0)〉 from |ψ(t)〉 through the operation: |ψ(t0)〉 = U†(t, t0)|ψ(t)〉. Of course,
this is only valid for isolated systems. One of the major triumphs of Quantum Informa-
tion Theory has been the development of tools which allow the treatment of non-isolated
systems for quantum computation.

After Benioff, in the year of 1985, David Deutsch gave a decisively important step to-
wards quantum computers presenting the first example of a quantum algorithm [6]. The
Deutsch algorithm shows how quantum superposition can be used to speed up compu-
tational processes. Another influent name is Richard Feynman, who was involved about
the same time in the discussions of the viability of quantum computers and their use for
quantum systems simulations [7].

However, it was in 1994 that a main breakthrough happened, calling the attention of
the scientific community for the potential practical importance of quantum computation
and its possible consequences for modern society. Peter Shor discovered a quantum algo-
rithm capable of factorizing large numbers in polynomial time [8]. Classical factorization
is a kind of problem considered by computation scientists to be of exponential complexity.

2This result is due to R. Landauer (see Landauer 1961 [5]).
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Figure 1 Number of papers published on quantum information and quantum computation in indexed scientific
journals since 1990.

This basically means that the amount of time required to factorize a number N bits long,
increases exponentially with N . In contrast, a quantum computer running Shor algorithm
would require an amount of time which would be a polynomial function of N . This is a
huge difference! To give an example, if N = 1024 bits, a classical algorithm would take
about 100 thousand years to factorize the number, whereas Shor algorithm would accom-
plish the task in a few minutes!

Shor algorithm has not yet been tested in numbers that long, but its quantum working
principles have already been demonstrated in laboratory, through the technique of nuclear
magnetic resonance (NMR) [9]. The algorithm clearly raises important concerns about the
security of cryptosystems based on the factorization of large numbers, such as the RSA
protocol. Arthur Eckert captures the essence of the problem in the quote [10] “. . . modern
security systems are in a sense already insecure. . . ”.

A few years after the discovery of Shor algorithm, in 1997, another important algorithm
was discovered by Lov Grover [11]. The so-called Grover algorithm is a quantum search
algorithm, which makes use of quantum superposition and quantum phase interference to
find an item in a disordered list of N items with a squared speedup with respect to an
equivalent classical algorithm. After the discoveries of Shor and Grover algorithms the
interest in quantum computation and quantum information has grown dramatically along
the years, as exemplified in Figure 1, which shows the number of refereed papers published
in the subject from 1990 till nowadays.3

Quantum computation and quantum information, as much as their classical counterparts,
depend upon the availability of natural resources, such as energy and entropy. However,
if we think of classical phenomena as an approximation of the quantum world, one can
expect the existence of quantum resources with no classical correspondence. One example
of such a quantum resource is the quantum information unit, the qubit. One qubit can

3Database: Web of Science.
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assume the classical values ‘0’ or ‘1’, but can also be put in any superposition of both
‘0’ and ‘1’. However, possibly, the most counterintuitive and strange quantum resource
is called entanglement. This property of some quantum superposition states implies non-
local effects between qubits. It is interesting to note that entangled states are eigenstates of
the so-called Heisenberg Hamiltonian [12], which is the basis of condensed matter models
for magnetic phenomena in matter! For two particles, one example of such state is the
so-called singlet spin state:

|ψ〉 = | ↑↓〉 − | ↓↑〉√
2

Quantum mechanics tells us that, before observation is made, both spins share – with equal
weight – the states | ↑〉 and | ↓〉. Before a measurement, the probability of either spin to be
found in either state is 50%. However, if one performs a measurement, say, in the first spin,
the state of the second spin becomes determined, no matter the distance between them!
For many years, this non-local property of entanglement has been perhaps the most con-
troversial and debated aspect of quantum mechanics, since Einstein, Podolsky and Rosen
pointed the problem out in a historical paper published in 1935 [13]. Since the EPR pa-
per, as it became known, many decades were necessary until the discovery of a criterion
to decide whether non-locality was a physical reality or just a mathematical property of
the quantum formalism. This was a main contribution of John Bell, who in 1964 presented
such a criterion [14]. The so-called Bell inequality is a statistical test for quantum non-
locality. However, in 1964 there were no experimental conditions to implement such a test
in a real physical system. This came about only in 1982 as a seminal work published by
Aspect, Grangier and Roger [15], entitled Experimental realization of Einstein–Podolsky–
Rosen–Bohm gedankenexperiment: a new violation of Bell’s inequalities. This paper is
considered – at least for the great majority of physicists – as the work where the non-
locality, inherent to entangled states, is demonstrated to be definitely part of the physical
world.

In the context of quantum computation and quantum information, entanglement is the
natural resource which is behind the exponential speedup observed in algorithms such as
Shor algorithm [16,17]. Furthermore, entanglement is at the basis of a number of novel
applications in quantum computation and quantum information [18]: superdense coding,
quantum error correction codes, quantum cryptography, and quantum teleportation. Every
one of these applications has been demonstrated in successful experiments. Teleportation,
in particular, was first implemented in 1997 by Bouwmeester and collaborators utilizing
photons [19], by Nielsen, Knill and Laflamme in 1998 [20] utilizing NMR, and by Barret
and collaborators [21] and Riebe and collaborators [22] in 2004 utilizing atomic traps.

In the year of 1997 NMR appeared in the context of quantum information and quantum
computation as one of the most promising techniques candidate to be part of the quantum
computing hardware. This was due to the discovery of the so-called pseudo-pure states,
made by Gershenfeld and Chuang [23] and Cory, Fahmy and Havel [24]. Isolated nuclear
spins were first pointed out by Seth Lloyd as possible good qubits, and radiofrequency
pulses as good ways to implement the necessary unitary transformation for quantum in-
formation processing [25,26]. However, NMR deals not with isolated spins, but rather
with statistical ensembles. Gershenfeld, Chuang and Cory showed how to produce non-
equilibrium states of ensembles which effectively behave as pure quantum states, hence
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the name pseudo-pure states. Since these landmark works, every single quantum algorithm
has been demonstrated by NMR, the first successful implementation being the Deutsch
algorithm, done by Jones and Mosca, in 1998 [27].

However, in 1997, even before Jones’ and Mosca’s experiment, Warren raised important
questions about the usefulness of liquid-state NMR for quantum computation [28], and
in 1999 Braunstein and co-workers [29] presented a mathematical proof that NMR den-
sity matrices representing room temperature pseudopure states could always be written as
product states, at least for the experiments reported until then, utilizing less than 12 qubits.
The most important consequence of this result for liquid-state NMR quantum computing is
the fact that no true entanglement can take place in such samples. In Ref. [29] no account is
taken on the effects of unitary transformations implemented by radiofrequency pulses over
the density matrices. This was considered afterwards by Linden and Popescu [17], in the
context of the role of entanglement for quantum computation. These authors showed that
entanglement is a necessary but not sufficient condition to produce an exponential gain in
the processing speed of a quantum computer. It is also necessary that the noise to be be-
low some threshold. The result is applicable to any n-qubits density matrix which can be
written in the form

ρε = (1 − ε)
1
2n

+ ερ1

where 1 is the 2n × 2n identity matrix, and ε a parameter which measures the amount of
“white noise” present in the system. ρ1 is a density matrix representing a pure state.

In the case of NMR, ε goes with the so-called scaling factor, 1/2n, related to the am-
plitude of the NMR signal. The presence of such a factor means an exponential loss of
intensity with the increase in the number of qubits, and it is intrinsic to conventional exper-
iments made at room temperature. It tells us that, far beyond the entanglement problem, a
liquid-state sample at room temperature will never be a useful large scale quantum com-
puter! Yet, it is worth mentioning that very highly pure initial states have been achieved,
as described by Anwar and collaborators in Ref. [30]. In such a highly polarized systems
genuine entanglement could possibly take place. It is still worth mentioning the very re-
cent results of Negrevergne and co-workers [31] reporting a NMR benchmark experiment
in which a 12 qubit pseudo cat-state is created. The entanglement limits found by Braun-
stein et al., could be tested in such a system.

The question raised by Braunstein [29] and Linden and Popescu [17] concerns rather
the kind of samples used in NMR quantum computing experiments (liquid solutions at
room temperature), and not the dynamics implemented by radiofrequency pulses. NMR
quantum computation takes place when the density matrix is transformed upon the unitary
action of radiofrequency pulses which represent quantum logic operations. The technique
called quantum state tomography [18] allows the measurement of every complex element
of a density matrix. The application of this technique has been demonstrated in various
experiments, from which it is possible to conclude that, under the action of radiofrequency
pulses, density matrices indeed transform according to the quantum mechanics prescrip-
tions. Therefore, the question is: if we could circumvent the scaling problem, would NMR
quantum computing be viable? The answer is yes, and a number of theoretical proposals
and impressive experiments that have appeared since 1998 encourage us to think of NMR
as playing an important part in the future of quantum computing.
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The first concrete proposal for a NMR scalable quantum computer was made by Kane in
1998 [32]. He showed that an array of 31P atoms (nuclear spin 1/2) embedded in a Silicon
lattice, with the hyperfine field and interaction between nuclei controlled by electric gates,
could work as a scalable NMR quantum computer. Difficulties with Kane original approach
were raised by Koiller and co-workers [33]. Afterwards, Skinner, Davenport and Kane [34]
proposed an alternative scheme in which such difficulties could be circumvented.

A very interesting proposal using Magnetic Resonance Force Microscopy (MRFM) was
made by Berman and co-workers in 2000 [35]. In that paper it is shown that through
single-spin electron measurement and electron-nucleus hyperfine coupling, NMR quan-
tum computation could be implemented, including the steps of initial state preparation,
unitary transformations and final readout.

In 2002, Ladd and co-workers [36] proposed an architecture for a Silicon scalable quan-
tum computer. In this scheme, arrays of 29Si atoms (nuclear spin 1/2) lay on the steps of a
28Si superlattice (nuclear spin zero). The NMR frequencies are determined by a magnetic
field gradient generated by a Dy-based micromagnet, and spin-spin interactions by the di-
pole fields. Upon initial polarization beyond a threshold, the scheme becomes scalable and
could be used in a NMR quantum computer.

On the experimental side, impressive advances on NMR technology and nanofabrication
can lead to the implementation of the schemes similar to those described above, particularly
the proposal of Berman et al. [35]. In 2004 Rugar and co-workers [37] reported the detec-
tion of one single electron spin in silicon dioxide. In the direction of chip integration, Yusa
and collaborators [38] reported in 2005 the construction of part of a NMR spectrometer
inside a single semiconductor chip! Finally, Kitchen et al. [39] report an Mn atom-by-atom
substitution in GaAs using STM, and Savukov, Lee and Romalis describe the Optical de-
tection of liquid-state NMR [40]. All these amazing works are important developments in
the direction of quantum chip manufacturing and further increase the NMR resolution and
sensitivity. For sure, they point to an optimistic future for NMR QIP.
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Physics, Information and Computation

The Universe is not just a giant computer; it is a giant quantum computer – S. Lloyd and
Y. Jack Ng [Sci. Am. November 2004, pp. 53–61]

1.1 TURING MACHINES, LOGIC GATES AND COMPUTERS

What is a computer? May be, for most computer users, computers are just those nice “black
boxes” which connect us to the world through the Internet; or machines which entertain
kids (and adults!) with fancy games; or auxiliary tools to help us planing our domestic bud-
gets, etc. For engineers and technologists, may be, computers are essential tools without
which would be impossible to safely couple a spacecraft to the International Space Station,
or to land a robot in Mars, or yet to build the giant European A380 Airbus. For mathe-
maticians and computer scientists computers may be viewed as a physical realization of a
Turing Machine.

For scientists in general, for physicists in particular, computers have been a valuable tool
in helping them with their research work and teaching. This help comes basically in three
kinds of use: (i) solving complicated mathematical problems, (ii) controlling experiments
and data acquisition in laboratories and, (iii) reviewing the literature through the Internet,
preparing lectures, writing papers, theses, books, etc. Computers have become so inextri-
cably tied to the scientific activity that we can hardly regard them as a simple chunk of
matter, which is subject to very same Nature laws they help to unreveal! Yet, this seems to
becoming the prevailing vision about computers, at least among the physicists. As put by
David Deutsch [1],

Computers are physical objects, and computations are physical processes. What computers can or
cannot compute is determined by the laws of physics alone, and not by pure mathematics.

Besides using computers to help in their research, what are the possible interests of
physicists in computers and computational processes? Even this question could lead to
different routes. Researchers could, for instance, attack on the material science side, study-
ing the physical properties of bulk semiconductor materials, the basic stuff from which
chips are made of, or studying the magnetic materials, the basic stuff hard-discs are built
from. One could take the route of the so-called nanoscience and nanotechnology and ex-
ploit the ultimate limits of miniaturization of computer components, down to the molecular
size. Yet, we can take an entirely different route, and ask for very fundamental questions
about computers and about computation. One could ask, for instance, what is the minimum
amount of energy and time necessary to flip a bit of information, or whether it is possible
to perform computation without any energy expenditure at all. Or still, what is the limit
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imposed by thermodynamics laws for the amount of information which can be stored in
a computer memory. On this direction, Roger Penrose put together computer science and
the laws of physics to raise instigating questions about the capabilities of computers to
reproduce mental phenomena exclusive (so far!) of the human brain [2].

The approach towards computers and computation on the side of fundamental reasoning
has led to deep insights about the nature of computing processes. One example is the solu-
tion of a century-old problem concerning the second law of thermodynamics. The problem
is known as the Maxwell demon, and it was proposed by the great Scottish physicists,
James Clerk Maxwell, in 1871 [3]. The solution to this problem, as it will be discussed
below, came only in the eighties, thanks to the investigation of Rolf Landauer in 1961,
about the energy requirements of computational processes. On the other hand, Seth Lloyd
[4,5] has considered the “ultimate physical limits of computation”, and has adopted the
very appealing view that not less than the entire universe is a gigantic (quantum) computer.
According to him, every single natural process can be interpreted as a computational action
of the universe, whose output is everything we observe in Nature!

So, what is a computer? There seems to be no single answer to this question. The answer
you give depends on the way you look at a computer, or actually, the way you see the
world. Quantum computation (QC) and quantum information processing (QIP) appeared
from considerations about the very basic physical processes of computation.

However interesting may be, QC and QIP would be restricted to a bunch of mathe-
matical results if there was no way to implement them in the physical world, as much
as a Turing Machine (see below) would be a mere theoretical curiosity without the exis-
tence of computers! This book deals with a particular way to implement QC and QIP: it
is called Nuclear Magnetic Resonance, or simply NMR. There are excellent books in the
subjects of quantum computation and quantum information [6,7], in NMR [8] and in (clas-
sical) computation [9]. This book exploits elements of these three different fields, and put
them together in order we can understand NMR-QIP. In this chapter we will introduce the
basic elements of computation, and will discuss the physics of computational processes.
Chapters 2 and 3 introduce the necessary background of NMR and quantum computation
theories, in order we can exploit the realizations of NMR-QIP in the subsequent chapters.

We will start with a very basic model of computation called Turing Machine [10]. This
name is in honor of the great British mathematician Alan Turing (1912–1954). A Turing
Machine is not a real computer, made of chips, printed boards and wires, but a mathe-
matical idea which captures the essence of a computing action. What is most interesting
and most important about Turing Machines is the fact that there is not known computation
which can be proved to be carried out by an actual computer, but which cannot be carried
out by a Turing Machine. It is in this sense that a real computer (made of chips and wires)
is a physical realization of a Turing Machine.

Any Turing Machine is composed by the following basic ingredients:

• A tape, divided in cells;
• A tape read/write head;
• A set of symbols which can be written in the tape, called the alphabet;
• A set of very simple instructions. Each instruction is associated to an internal state of

the machine, that tells her which action to take.

The tape is the analogous of a computer memory, and the set of instructions is the equiva-
lent of a computer program. The tape has a starting cell, but is infinite in length, which is
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of course, an abstraction. In fact, only with this assumption a Turing Machine is capable of
computing any function.

The head moves along the tape according to a specific instruction. It can move right or
left, and it can write any symbol taken from the alphabet in a tape cell, if so instructed.

The way it works is as following: the head starts from the leftmost part of the tape, reads
the symbol which is written in the first cell, takes an action, and moves to the next cell. The
procedure is repeated until the machine eventually concludes the computation and halts.
Let us give a very simple illustrative example: a Turing Machine to perform the addition
operation 3 + 5. In order to do so, we must first define the symbols to represent these
numbers on the tape. We will adopt the following representation: 3 ≡ ∗∗∗ and 5 ≡ ∗∗∗∗∗.
So, the expected result of our calculation is 8 = ∗∗∗∗∗∗∗∗. The input state is simply the
initial two blocks of ‘∗’s separated by a blank, which we will represent by a small box: �.
So, our alphabet has only two symbols: {∗,�}.

Next, we have to define the actions the machine must take at each step. Each action is
labeled by an internal state of the machine. The table below shows the states and actions
necessary to accomplish the task we want:

Machine state labels Action to be taken Action to be taken
if the head reads ‘∗’ if the head reads ‘�’

1 move to the right; erase; write ‘∗’;
remain in 1 move to the right;

go to state 2

2 move to the right; move to the left;
remain in 2 go to state 3

3 erase; stop

The machine begins in the state 1, with its tape written with the symbols sequence on its
leftmost cells:

∗ ∗ ∗ � ∗ ∗ ∗ ∗ ∗ �� · · ·

The head starts moving to the right and reads ‘∗’ in the first cell. Therefore, it is instructed
to stay in state 1, and move right until the � cell is reached. Then, it replaces ‘�’ by ‘∗’ and
jump to state 2. It keeps moving to the right until the last symbol ‘∗’ is reached. After this,
the head reads ‘�’, and the machine is instructed to move one cell left and jump to state 3.
Then, it erases the last ‘∗’ symbol and stops. The final sequence in the tape is therefore:

∗ ∗ ∗ ∗ ∗ ∗ ∗∗

which is the desired result. This example is oversimplified, but it captures the essence of the
working principle of a Turing Machine. The most important fact is that with enough time,
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and the appropriate alphabet and instructions, any computation which can be performed in
the most powerful computer in World can also be computed in a specific Turing Machine!

A rather more practical way to approach computers is through the basic elements of any
computer action: the logic gates. Logic gates are logical operators which act on bits, taking
them from an initial state to a final one. There is not a single choice for a complete set
of logic gates, as much as there is not a single choice for the vector basis to represent a
3-dimensional vector: one can, for instance write a vector A in rectangular coordinates,

A = Ax i + Ayj + Azk

or in spherical coordinates:

A = Aρeρ + Aθ eθ + Aφeφ

The vector is the same, but the basis is different. In a similar fashion, computational actions
can be written as combinations of different sets of elementary logic gates.

One example of logic gates formed by three elements is the set of gates AND, OR and
NOT. It is an amazing fact that any computational operation can be decomposed in a spe-
cific action of a combination of these three gates.

The action of a logic gate can be characterized through the so-called truth table. The
truth table returns the output of the gate, given its input. For instance, the action of the gate
NOT is simply to invert the value of the input bit: if the input is ‘0’, NOT transforms it into
‘1’, and if the input is ‘1’, NOT returns ‘0’. As simple as that! Table 1.1 is the truth table
of NOT.

The gates AND and OR are a little bit more complicated than that. They take two bits at
the input and return only one bit at the output. The simple fact that one bit is lost, or erased,
in the action of these gates, has deep thermodynamics consequences. It is related to irre-
versibly, entropy growth and energy consumption, as we will see in the following sections.
The truth tables for the gates AND and OR are shown in Tables 1.2 and 1.3, respectively.

Besides truth tables, logic gates have circuit representations. This is a very useful way
to visualize the action of the gates in diagrammatic logic circuits. Figure 1.1 shows the
symbols of AND, OR and NOT gates.

The gates AND, OR and NOT can be combined to produce more complicated logical
operations, which can in turn be considered new gates. Two of such combinations are NOR
(NOT-OR) and NAND (NOT-AND). These gates are simply the NOT operation following
OR and AND operations, respectively. Figure 1.2 shows their circuit symbols.

One very important combination of gates is shown in Figure 1.3. It is called Exclus-
ive-OR gate, or simply XOR. It is a conditional NOT operation: the first bit acts as

Table 1.1.

Truth table of logic gate NOT

Input Output

0 1
1 0
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Table 1.2.

Truth table of logic gate AND

Inputs (AND) Output

0 0 0
0 1 0
1 0 0
1 1 1

Table 1.3.

Truth table of logic gate OR

Inputs (OR) Output

0 0 0
0 1 1
1 0 1
1 1 1

Figure 1.1 Circuit representation of AND, OR and NOT logic gates.

Figure 1.2 Circuit representation of NOR and NAND logic gates.

a control bit over the state of the second bit. For this reason it is called control bit, whereas
the second bit is called target bit. The target bit flips only if the control bit is set to ‘1’. The
truth table of XOR is shown in Table 1.4. Notice that gate implements the addition of two
bits, except for the fact that there is no carry bit.

As we said before, the set AND, OR and NOT is only one possible choice for the elemen-
tary logic gates. It is possible, for instance, to generate an AND gate from a combination of
only NAND or NOR gates. Actually, any logical operation can be built from NAND or NOR.
Therefore, any of these gates form a basic set on their own. These gates can now be com-
bined to implement different logical operations. Figure 1.4 is an example of combination
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Figure 1.3 Representation of Exclusive-OR, or XOR gate.

Table 1.4.

Truth table of logic gate XOR

Inputs (XOR) Output

0 0 0
0 1 1
1 0 1
1 1 0

Figure 1.4 Half-adder circuit. A and B are input bits, S the sum and C the carry bit, which is not used in this
circuit.

Figure 1.5 The full adder circuit is built from two half adders.

of NOR and AND gates to produce a half-adder circuit. A full adder circuit, built from two
half-adders and an OR gate, is shown in Figure 1.5.

But what is the actual physical stuff a logic gate is made of? The description so far has
been only symbolic and does not tell us anything about how those actions can be imple-
mented in physical systems. Of course this has to do with the complex computer technol-
ogy, and a detailed description of how conventional computer elements work is beyond
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the scope of this book. There are excellent books on the subject (see, for instance, [11])
explaining how logic gates can be built from very basic electronic circuit elements, such as
diodes and resistors, and how these gates are integrated into chips containing millions of
them.

This is all we will see about classical logic gates. Quantum computation is also con-
structed upon the action of (quantum) logic gates (Chapter 3). Besides, quantum logic gates
can reproduce the action of the classical ones, but the opposite is not true. This should not
be surprising, since classical phenomena is only a particular case of quantum phenom-
ena. On the following sections we will discuss some interesting aspects of the physics of
computation.

1.2 KNOWLEDGE, STATISTICS AND THERMODYNAMICS

Both, computation and communication deal with the processing of information. Informa-
tion, on its turn, can assume different forms: it can be an image, a text, a set of numbers,
a sound, etc. Besides, sometimes we want information to be publicly displayed, as in an
advertisement, and sometimes we want it to be secret, as when we buy something through
the Internet using our credit cards. Whatever the situation, information can always be con-
verted into a bunch of 0’s and 1’s. But to make something useful with information, we must
have the means to represent the 0s and 1s in the physical world, in order we can process
information. In doing so, information becomes subject to the laws of physics.

In computers, information is represented by bits in electronic circuits. But any physical
object with two clearly stable distinguishable states can represent a bit of information.
A collection of such objects is a physical system where information can be stored and
processed. Let us take a very simple object to work as a bit: a coin. The head and tail
“states” of a regular coin are very stable, and they can be associated to the usual logic
labels of a bit: ‘0’ and ‘1’. How much information can be stored in a collection of coins?
For the sake of argument let us considerer 4 coins. Heads will be represented by an empty
circle, and tails by a full circle. Let us associate the logic label ‘0’ to heads, and ‘1’ to tails.

It is intuitive that if we could not change the state of a coin, our capability of representing
information would be dramatically reduced in this system. For instance, if we glue all four
coins on the desk, tails up, we would have the bit sequence ‘1111’, which may represent,
for instance, the number 15.1 This would be all we could do! In order to represent other
numbers, one must be able to change the state of each coin. If we allow each coin to have
its state changed, there would be 16 different configuration in this system. This number
turns out to be equal 24. In general, if we had n coins, there would be 2n different config-
urations. So, the number of different configurations grows exponentially with the number
of elements in the system.

Let us take a closer look in the possible configurations of 4 coins. This is shown in
Figure 1.6. Notice that there are 6 configurations for the case of two heads and two tails.
Then, there are four configurations for either three heads and one tail or three tails and one
heads. Finally, there is only one configuration for either four heads or four tails.

Now, let us imagine that instead of choosing one particular configuration among the 16
available ones, we simply adopt a statistical procedure: we throw each coin and simply

1Notice that 15 = 1 × 20 + 1 × 21 + 1 × 22 + 1 × 23.
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Figure 1.6 Possible configurations of heads and tails of 4 coins. Numbers are the probabilities for each config-
uration, obtained dividing the multiplicity of the configuration by the total number of possibilities.

look the resulting configuration. What is the one most likely to occur? Common sense tells
us that since the configuration “half–half” (two heads and two tails) is the most numer-
ous one, this must be the most likely to occur. Proving this is simple: the probability for
heads or tails of each coin is 1/2. Thus, the probability of any particular configuration of
the four coins2 is 1/24 = 1/16. However, since we do not distinguish the coins and the
configuration of two heads and two tails has 6 different possibilities, the total probability
for this configuration is 6 × 1/16 = 3/8. The probabilities for the other configurations are
4 × 1/16 = 1/4 and 1 × 1/16. Notice that the total probability is:

3

8
+ 2 × 1

4
+ 2 × 1

16
= 1

The fact that the configuration with two heads and two tails is the most likely one has
nothing to do with physics; it is purely statistical. It reflects the fact that if we take a single
coin and throw it a large number of times, at the end we will have about half heads and half
tails.

But why this statistical game is so important to the physics of computation? Simply be-
cause when we deal with physical systems containing a large number of components,3 we
cannot follow the behavior of each individual, and must make use of statistical methods!
That means we must talk about probabilities, instead of certainties, and have a way to quan-
tify our lack of information about the state of the system. For instance, suppose you close
your eyes and throw each of the four coins. Keeping the eyes closed, what would be your
guess for the result? According to the above, the best you can say is that the “half–half”
configuration is the most likely to occur. Of course, when you open your eyes, you can
verify the actual result, which can be far different from your guess. However, the point is
that if you repeat the procedure a large number of times, the “half–half” configuration will
occur more times than the others, in the exact proportion of the probabilities calculated
above. In one single throw, what changes between the point your eyes are shut to when
they are open, is the information you have about the system. It goes from many possibili-
ties (eyes shut) to a single one (eyes opened)! In physics the quantity which is associated to

2The other way to see this is simply observing that, since the total number of configurations is 16, the probability
to get a particular one is 1/16.

3Imagine that instead of only 4 coins, we had to deal with 1023 coins!
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knowledge and information is the entropy. There are different definitions of entropy. One
of them is the so-called Shannon or information entropy:4

S = −
∑

k

pk log(pk) (1.2.1)

where pk is the probability associated to the occurrence of an event. The logarithm is taken
in base two, and the sum is over all possible configurations. The Shannon entropy for the
case of our 4 coins game is:

S = −
[

3

8
log

(
3

8

)
+ 2 × 1

4
log

(
1

4

)
+ 2 × 1

16
log

(
1

16

)]
≈ 2.03

This number somehow quantifies your lack of information before you open your eyes!
At the moment you open them, you become aware of the actual configuration, and all
pk collapse to zero, except a specific one, which will be equal to 1. In this situation, the
entropy is S = 0.

Of course, a physical system such as 4 coins is useless for any practical purpose con-
cerning computation and information processing. We are interested in systems containing
a very large number of components, something like 1023, such as spins in a solid or in a liq-
uid, in the presence of a magnetic field. In such systems, the spins occupy the energy levels
according to some probability distribution, but of course in this case we cannot “open our
eyes” and see which spin is in which state!

Entropy is also a key concept in thermodynamics.5 For instance, if you apply a static
magnetic field in an initially demagnetized paramagnetic system in contact with a thermal
reservoir,6 there will appear a net magnetization in the system. Before the field is applied,
the magnetic moments are at random and magnetization is zero; after the field is applied,
they point, on average, to the direction of the field, giving rise to a net magnetization.
This change from a disordered situation (moments at random) to an ordered one (moments
aligned with the field) corresponds to a decrease in the entropy of the magnetic system.
The second law of thermodynamics tells us that to compensate the decrease of entropy
in the magnetic system, there must be a heat flow to the bath. If the field is removed, the
magnetic moments become disordered again, and entropy increases.

Whenever disorder occurs, the entropy increases. Disorder, on its turn, can be caused by
different agents: friction, magnetic hysteresis, electric resistance, corrosion, etc. When two
gases of different species are mixed, the entropy increases. When a volume containing a
gas is doubled, the entropy increases. And so on. Increase in entropy always corresponds
to a loss of information. When the volume of a gas is doubled, there will be more positions
for its constituents molecules to occupy and therefore a loss of information about the posi-
tions of the molecules. Of course, if the volume is reduced, keeping the temperature of the
gas constant, we gain information about the positions of the molecules.7 In this case, the
entropy of the gas is reduced.

4We will use throughout the same symbol for entropy: S.
5Notice the fact that entropy is a fundamental concept for both, information theory and physics. This is no

accident!
6For instance, a paramagnetic salt in contact with a liquid helium bath at 4.2 K.
7Consider the limit case in which the volume is reduced until all the molecules occupy a single point in space.

We would know exactly their position!
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Entropy appears in thermodynamic functions, such as the Helmholtz free-energy [12]:

A = U − T S (1.2.2)

Here, U is the internal energy and T the temperature. On another hand, there is a definition
of the Helmholtz free-energy from a statistical approach [12]. Given a system with an
energy spectrum {Ek}, the Helmholtz free-energy is defined as:

A = −kBT lnZ (1.2.3)

where kB is de Boltzmann constant, and Z the so-called partition function of the system:

Z =
∑

k

e−Ek/kBT (1.2.4)

The bridge which connects the thermodynamic equation (1.2.2) to the statistical definition
(1.2.3) is precisely the statistical entropy, defined as:

S = −kB

∑

k

pk ln(pk) (1.2.5)

This expression differ from the Shannon entropy in two basic aspects: first, it has the mul-
tiplying Boltzmann factor, a signature of thermodynamic phenomena, and second, the log-
arithm is taken in the natural basis. The probability pk is the occupation number for the
energy level Ek , or its population. At thermal equilibrium at temperature T , the probabili-
ties can be obtained from the principle of maximization of the entropy [12]:

pk = e−Ek/kBT

Z (1.2.6)

These numbers represent the chance the level k is occupied.8

1.3 REVERSIBLE VERSUS IRREVERSIBLE COMPUTATION

We saw in the last section that entropy is a measure of order, and therefore of the informa-
tion we have about the configuration of a physical system. In particular, every time entropy
increases, there is a loss of information. On another hand, computationally speaking, loss
of information means loss of bits, or erasure. Consider, for instance, the action of the logic
gate AND. This gate accepts two bits on its input, and returns only one bit at the output.
The same happens in the action of the gate OR. Consequently, information is lost. On the
contrary, the gate NOT conserves the number of bits and, therefore, conserves informa-
tion. If we apply NOT to its output, what we obtain the input back. This property is called
reversibility. The NOT gate is reversible whereas the AND and OR gates are irreversible,
because we cannot obtain the input bits of either these gates, by applying them to their
output. So, there is a connection between entropy, information and reversibility.

8Notice that
∑

k pk = Z/Z = 1.
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Table 1.5.

Truth table of Toffoli gate

Input Output

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Whenever an irreversible process happens, entropy increases. This can be seen from a
simple example taken from standard thermodynamics: consider two isolated objects, A

and B , at different temperatures, TA and TB . Let us assume that TA > TB . Suppose the
two objects are brought together, and an amount of heat �Q flows from A to B . This
is clearly an example of irreversible process. Thermodynamics tells us that the entropy
of A will decrease by an amount �SA = �Q/TA and the entropy of B will increase by
�SB = �Q/TB . But since TA > TB , the increase of the entropy in B will be larger than
the decrease of the entropy in A. Consequently, the total entropy increases in the process.

Another nice example of loss of information caused by an irreversible process is given
by Bennett and Landauer [13]: suppose a rubber ball is dropped from two meters of height
from the ground. If there is no friction, the ball will bounce back to exactly two meters
high. So, just by watching the bouncing height, we can deduce the height it was dropped in
first place. However, if there is friction, energy will be lost at each bounce and the height
will decrease in an irreversible manner. In this case, the information about the initial height
is lost. Yet another example (from the same reference) of irreversible loss of information,
this time in a simple maths operation: if we are presented with the expression 2 + 2 we
gain more information than if we are presented with the result 4. This is because there are
infinite ways to obtain 4 from the addition of two integers, but there is only one unique
result for 2 + 2!

So, every time an AND and OR gate is executed an irreversible operation takes place,
information is lost, and the entropy increases. However, a main breakthrough happened in
1973, when Charles Bennett9 showed [15] that computation can be performed entirely on
the basis of reversible logic!10 One way to see this is to consider a logic gate called the
Toffoli gate. This gate has three input bits and three output bits. Two of the input bits are
control bits and the third one is the target bit. Therefore, the Toffoli gate is similar to a
XOR gate with two control bits. The operation of the Toffoli gate is simple: the target bit
flips only if the two control bits are set 1; otherwise the target bit remains unchanged. The
truth-table for the Toffoli gate is shown in Table 1.5. The first two bits on the left columns
are control, and the last one the target.

9The first report on reversible Turing Machines was actually due to Y. Lecerf in 1963 [14].
10This discovery of Bennett lead to the idea of quantum computation by Paul Benioff almost a decade after-

wards [16].
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Table 1.6.

Truth table of NAND gate

Input Output

0 0 1
0 1 1
1 0 1
1 1 0

It is obvious to see from Table 1.5 that the input bits can be recovered by applying the
gate to the output! Therefore, the Toffoli gate is reversible. Now, if a basic set of gates
could be built from Toffoli, then it will be demonstrated that computation can be made
reversible. In fact, it is a simple matter to implement NAND from Toffoli. All we have to
do is to set the target bit as 1 at the input, and Toffoli will work just as NAND. In Table 1.5,
these correspond to the 2nd, 5th, 6th and 8th lines. The first two entries of these lines, plus
the corresponding bits on the last column, is just NAND logic (see Table 1.6).

Therefore, computation can be made entirely from reversible logic gates!11

Reversible computation has a very important consequence: until 1961 scientists believed
that any computational action would result in an energy cost. But in 1961 Rolth Landauer
showed [17] that what do cost energy is erasure. In other words, if no bit is lost during the
computation, it can be made at energy-free cost! This discovery lead to the solution of a
century-old problem in thermodynamics: the Maxwell demon problem.

1.4 LANDAUER’S PRINCIPLE AND THE MAXWELL DEMON

In 1961 Rolf Landauer [17], studying the thermodynamics of computational processes,
discovered that the action of erasing one bit of information has an energy cost of at least
kBT ln 2, and increases the entropy of the environment by an amount of at least kB ln 2.
Computation does not cost energy, but erasure does.

Landauer discovery opened the path to the solution of a century old problem in ther-
modynamics: the Maxwell demon problem. An excellent discussion about this problem is
made in Refs. [18,19]. The Maxwell demon problem concerns a hypothetical situation in
which the second law of thermodynamics is violated. The situation conceived by Maxwell
was the following: suppose we have a container with its volume divided in the middle by
a blocking wall, which contains an ideal (frictionless) sliding window. A gas at a certain
equilibrium temperature fills the volume of the container. By opening the sliding window,
molecules can pass either way. Maxwell imagined an intelligent being, a demon, control-
ling the window (Figure 1.7). The demon job is to open the sliding window every time a
fast molecule hits the window from one side, or a slow molecule hits it from the other side.
By doing so, after a while, the most energetic molecules would be separated from the less
energetic ones, and we end up with two gases at different temperatures. This violates the
second law of thermodynamics because no work was expended to produce a difference of

11There is another gate which can be used to prove reversible computation. It is the Fredkin gate; it performs a
controlled swap operation between two bits [6].
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Figure 1.7 The Maxwell demon is capable of measuring the energy of each molecule in the gas, and let the
slower (light ones) pass to the left, and the faster (dark ones) to the right, through the opening aperture he controls.
After a while the left side of the container is at a temperature lower than the right side. Has the demon cheated
the second law of thermodynamics?

temperature between the gases initially at equilibrium. If such a mechanism was possible,
one would have a perpetual means to produce energy without expenditure!12

Maxwell proposed this problem in 1871 [3]. Since then many attempts have been made
to refute the argument, and save the second law of thermodynamics. A detailed discus-
sion is made by Bennett in Refs. [18,13,19], who also arrived to the final solution of the
problem. It has to do with Landauer’s result: in order to configure a true thermodynamical
cycle, every time the demon makes a measurement on the speed of a molecule, it has to
forget the previous measurement.13 But, according to Landauer’s result, erasing informa-
tion expends energy and increases entropy. Therefore, the demon cannot cheat the second
law of thermodynamics!

1.5 NATURAL PHENOMENA AS COMPUTING PROCESSES.
THE PHYSICAL LIMITS OF COMPUTATION

You look at a mirror and see your image reflected on it. What does this common act have
to do with computers? Apparently, everything! You can regard light as carrying the input
information to the mirror, the physical laws which govern light reflection by a body as a
computer program and the image you see as the output. Any physical phenomenon can be
interpreted as a process containing these three stages of a computer action: (1) information
input, (2) logical processing, and (3) information output. David Deutsch [20] called the
attention to the analogy between physical phenomena and computation; Table 1.7 resumes
the parallel.

This view has been deepened by Seth Lloyd [21], who considers natural phenomena,
not only as analog to computation, but as a result of computation itself! According to this
view, the entire universe can be seen as a computer running a very peculiar program: the

12In a fridge, for instance, work must be done in order a difference of temperature can be maintained. Conversely,
work can be extracted from systems in which a difference of temperature exists.
13Otherwise there would be no cycle, with the information growing forever on the demon’s memory.
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Table 1.7.

Comparison between physics and computation

Computation Physics

Computer ←→ Physical system
Computation ←→ Experiment

Input ←→ Initial state
Computer program ←→ Physical laws

Output ←→ Final state

laws of physics. The output is everything we observe in Nature! Since the laws of physics
are fundamentally governed by quantum mechanics, the Universe can be view as a quan-
tum computer. Within this expanded view of natural phenomena, it becomes natural to ask
whether there are limits imposed by the physical laws to computation [4]. The answer is
yes, there are natural limits for computation, for both, processing speed and memory ca-
pability. The speed is limited by the amount of energy available in the system, and the
memory is limited by the entropy. To arrive to quantitative results, Lloyd [4] assumes a
computer model of a mass of 1 kg occupying a volume of 1 litre. Since this is approxi-
mately the dimensions for a conventional laptop, the model is named the ultimate laptop.

The first step to calculate the ultimate computer speed, is to show that the minimum
amount of time necessary to flip a bit is that given by the uncertainty principle. At this
point we will advance some ideas which will be developed in detail in the subsequent
chapters. We will consider a known quantum system, composed by a magnetic moment
evolving under a magnetic field. The nuclear magnetic moment, μ, relates to the nuclear
spin I through μ = γnh̄I, where γn is the nuclear gyromagnetic ratio. Let us represent the
spin eigenstates of Iz by the vectors:

|↑〉 =
(

1
0

)
; |↓〉 =

(
0
1

)
(1.5.1)

Since Iz|↑〉 = +1/2|↑〉 and Iz|↓〉 = −1/2|↓〉, the matrix for Iz is:

Iz = 1

2

(
1 0

0 −1

)
(1.5.2)

Suppose that at t = t0 the spin is in the eigenstate |↑〉. Then, a magnetic field of ampli-
tude B is applied along the x-direction. This field will interact with the magnetic moment
according to the Hamiltonian

H = −μ · Bi = −h̄ωIx = −1

2
h̄ωσx (1.5.3)

where ω ≡ γnB is a characteristic frequency, and σx is the x-component of Pauli matrices.
Obviously, H is not diagonal in the basis of Iz:

H = −1

2
h̄ω

(
0 1

1 0

)
(1.5.4)
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The energy eigenvalues of this Hamiltonian are E0 = −h̄ω/2 and E1 = +h̄ω/2. Therefore,
an estimate for the spread in energy is simply �E ≈ h̄ω. Replacing in the time-energy
expression to the uncertainty principle, �E × �t ≈ h/2, yields �t ≈ h/h̄ω = π/ω. We
will show now that this is the minimum time necessary to rotate the spin from the state |↑〉
to |↓〉.

The action of the field on the spin is to produce a torque that causes the spin to rotate
about the field direction. Quantum mechanics tells us that the state evolution during an
interval of time �t is given by:14

∣∣ψ(t)
〉 = U(t − t0)

∣∣ψ(t0)
〉= eiω�tσx/2|↑〉

=
[

cos

(
ω�t

2

)
1 + i sin

(
ω�t

2

)
σx

]
|↑〉 (1.5.5)

where we have used the relation exp(θσx) = cos(θ)1 + i sin(θ)σx . We are interested in the
time the field takes to lead the spin from the state |↑〉 to the state |↓〉. As we will see in
the subsequent chapters, this transformation can be viewed as the logic quantum NOT op-
eration, and it is the simplest logic operation we can perform in the system. Remembering
that σx |↑〉 = |↓〉, all we have to do is to set ω�t/2 = π/2 in Equation (1.5.5) to find:

�t = π

ω
(1.5.6)

which matches the time given by the uncertainty principle. This result is no accident. In
fact, the modern interpretation of the time-energy uncertainty principle [22,23] is that a
system with average energy �E takes an interval of time of at least �t = πh̄/(2�E)

to evolve from a quantum state to another one which is orthogonal to it, and therefore
distinguishable. This is precisely the case of the states |↑〉 and |↓〉, since 〈↑ |↓〉 = 0.

We have shown that the minimum time to perform a logical operation is that given
by the uncertainty principle. How can we use this fact to estimate the maximum speed
of a computer? The maximum speed will be given by the inverse of the minimum time
required to perform a logical operation. According to Special Relativity, the maximum
energy available in a physical system with mass m is E = mc2. Replacing m = 1 kg for
the ultimate laptop, we find E ≈ 9 × 1016 J, and therefore:

1

�t
≈ mc2

h
≈ 9 × 1016

6 × 10−34
≈ 1050 Hz

An estimate for the maximum memory is not so straightforward. The memory is limited
by the entropy of the system, and the number of operations per second depends also on
the temperature. Lloyd [4] estimates the maximum memory space of the ultimate laptop as
approximately 1031 bits and the maximum number of operations per bit per second it can
perform is about 1019.

Of course, usual computers will probably never achieve the performance of the ultimate
laptop, but this is not the point. What is important here is that: first the recognition that
natural phenomena can be interpreted as computing processes, and second that the laws

14We are assuming that in t = t0 the spin was in the state |↑〉, and that �t = t − t0.
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of physics put a limit for the maximum processing capabilities of a computer. Seth Lloyd
extends this discussion to the case of matter compressed to the limit of black holes [21].
Again, the discussion is about fundamental principles: if ordinary matter computes, would
the compressed matter of a black hole compute too? The importance of this question lies
in the fact until the 70s it was believed that nothing could escape the action of black holes.
From the point of view of natural phenomena as computing process, this would put black
hokes in a special category: it would have an input (whatever falls in it!), a processing
action, but no output! Lloyd discuss this curious situation [21] in the light of Hawking
radiation of black holes.

1.6 MOORE’S LAW. QUANTUM COMPUTATION

The transistor, invented in 1947 by John Bardeen, Walter Houser Brattain and Willian
Bradford Shockley, is the main electronic component of computers. The first transistor
was about 5 cm in length (Figure 1.8), and its miniaturization along the years lead to the
present revolution in computation and communication. In the early 60s, Gordon Moore
[24] observed that the number of transistors within computer chips was doubling at nearly
every 18 months (Figure 1.9). This represents an exponential growth in the density of
transistors inside computer chips. The discovery is known as the Moore’s law, and is a
consequence of the fast development of semiconductor technology. Table 1.8 shows the
number of transistors in the various processors from 1971 to 2000.

The chip Pentium IV would cover an area of approximately 1 square kilometer if the
size of the transistor was that of the first transistor!

Of course that if the number of transistors increases, but the size of the chips remain
nearly the same, it means that the size of transistors decreases. From the point of view
of physics, it is more interesting to express Moore’s law in terms of the number of atoms
necessary to represent a bit of information in computers. This is shown in Figure 1.9, taken
from the excellent book of Williams and Clearwater [25], who adapted the figure from the

Figure 1.8 A photograph of the first transistor (Courtesy of The Porticus Centre).
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Figure 1.9 Reproduction of the original plot from Moore’s paper published in the Electronics Magazine in
1965 [24].

Table 1.8.

Moore’s law in number of transistors within computer processors until 2000

Processor model Release year Number of transistors

4004 1971 2 250
8008 1972 2 500
8080 1974 5 000
8086 1978 29 000
Intel 286 1982 120 000
Intel 386 1985 275 000
Intel 486 1989 1 180 000
Pentium 1993 3 100 000
Pentium II 1997 7 500 000
Pentium III 1999 24 000 000
Pentium IV 2000 42 000 000

work of Keyes [26]. Notice that the vertical scale is logarithmic. We see that at the time of
Moore’s observation, it was necessary about 1019 atoms to represent a bit of information in
computers. In modern computers this number goes about a few thousand atoms.15 If we be-
lieve that Moore’s law will continue to hold for approximately two decades, we will come
to the astonishing conclusion that by the year 2020 a bit of information will be represented
by a single atom! On another hand, we know that the physics which govern the behavior
of single atoms is quantum mechanics. Therefore, the observation made by Gordon Moore
rises a problem that goes far beyond the “simple task” of manipulating smaller and smaller

15In August 2004, INTEL announced the manufacture of a SRAM chip containing over half-a-billion transistors.
The dimension of a logic gate on these new generation circuits is of 35 nm!
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Figure 1.10 Decrease in the number of atoms necessary to represent one bit of information. Adapted with
permission from Williams and Clearwater [25].

electronic components to fabricate computer chips. It is about something much deeper:
a change in the current paradigm of computation and information processing, which is
based in classical physics!

The proposal of implementing computer logic operations using the laws of quantum
mechanics was first made in 1980 by Paul Benioff [16], who was building upon Bennett’s
paper of 1973 about reversible computation [15]. This proposal became to be known as
quantum computation, and an amazing number of new ideas and results have appeared
in this subject since the work of Benioff. Since quantum mechanics is such a nonintuitive
theory, one can expect very strange behavior of quantum computers. At this point, there are
three things we would like to say about strangeness in quantum mechanics, which will be
detailed in the following chapters. First of all, the transformations in quantum computers
are reversible. This is because the time evolution of isolated quantum states is governed by
the Schrödinger equation: given an initial state |ψ(0)〉, quantum mechanics tells us that in
a subsequent time t it will be |ψ(t)〉 = U(t)|ψ(0)〉, where U(t) is an unitary operator,16

that is, U(t)U†(t) = 1. Reversibility means that the state |ψ(0)〉 can be recovered from
|ψ(t)〉 through the operation |ψ(0)〉 = U†(t)|ψ(t)〉.

Second, the superposition principle for quantum states means that logic states, which
would be mutually excluding in a classical computer, in a quantum computer they can
co-exist! To exemplify this, let us consider our previous example of a nuclear spin 1/2.
There are two eigenstates of Iz: |↑〉 and |↓〉. Since these states are orthogonal to each
other, they can be distinguished. As we will see in Chapter 3, spin states can be associated
to the quantum bit of information, called the qubit.17 One can make the following logical
association to the spin eigenstates:

Physical state Logical state

|↑〉 ←→ |0〉
|↓〉 ←→ |1〉

16This operator satisfies the Schrödinger equation.
17This is entirely similar to the example of coins given at the beginning of this chapter: a coin has two distin-

guishable states (heads and tails), which can be associated to the logic states of a classical bit.
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The superposition principle of quantum states, says that one can construct qubit states like:

|ψ〉 = α|0〉 + β|1〉 (1.6.1)

as long as |α|2 +|β|2 = 1. Upon the action of an unitary transformation U(t), the state |ψ〉
goes to:

U(t)|ψ〉 = αU(t)|0〉 + βU(t)|1〉 (1.6.2)

This means that one can operate with ‘0’s’ and ‘1’s’ simultaneously in a quantum computer,
something which is obviously impossible in a classical machine!

Finally, here it comes the really “weird” property. It concerns quantum states which can
be produced in more-than-one qubit systems, like:

|ψ〉 = |00〉 + |11〉√
2

(1.6.3)

Such states are called entangled. This means that there are no individual qubit states |φ1〉
and |φ2〉 such that |ψ〉 = |φ1〉 ⊗ |φ2〉, where the symbol ‘⊗’ denotes tensor product.18

Quantum mechanics tells us that if a measurement is made on either qubit in the state
given in (1.6.3), there will be 50% of chance to find it on |0〉 and 50% to find it on |1〉. But,
if we find one of the qubits in, for instance, |0〉, it means that, after the measurement, the
second qubit will also be in |0〉, even if no measurement is made over it! In other words,
the measurement of the state of one qubit in an entangled state, affects the state of the other
qubit, independent on how distant19 they can be from each other!

Perhaps the most striking feature about these strange properties of quantum states, is the
fact that they all have been verified experimentally in laboratories! In other words, they
are not just mathematical properties of the quantum formalism, but the very way Nature
works at her deepest level. Furthermore, they are not only part of physical reality, but they
are also the natural resources which make quantum computers so much powerful than the
classical ones! If it was not so, quantum computation and quantum information would be
nothing, but a mere mathematical curiosity.

PROBLEMS WITH SOLUTIONS

P1.1 - Work out the truth table for the half adder circuit of Figure 1.4.

Solution
From the figure it is easy to work out the following truth table:

A B S C

0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

18This notion, with the mathematical background necessary for this book, will be developed in Chapter 3.
19As long as the two qubits remain isolated from the environment.
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Figure 1.11 Three NOR gates are equivalent to an AND gate (Problem P1.2).

Notice that the output S is just the XOR output, which in turn is the addition of two bits, and the output C is the

carry bit.

P1.2 - Show that the combination of three NOR gates of Figure 1.11 is equivalent to an AND
gate.

Solution
It is instructive to write down all possible combinations of inputs and outputs for the circuit:

A B C D S1 S2 R

0 0 0 0 1 1 0
0 0 0 1 1 0 0
0 0 1 0 1 0 0
0 1 0 0 0 1 0
1 0 0 0 0 1 0
0 0 1 1 1 0 0
0 1 0 1 0 0 1
1 0 0 1 0 0 1
1 0 1 0 0 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 1 1 0 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 1 1 1 0 0 1

Notice that whenever A or B and C or D is ‘1’, R is ‘1’. Otherwise R is ‘0’. That is AND logic.

P1.3 - What is the Shannon entropy associated with the throw of a fair coin? What happens
to the entropy if there is a slight probability excess towards one of the faces?

Solution
For a fair coin, the probability of either output is 1/2. Therefore,

S = − 1

2
log

1

2
− 1

2
log

1

2
= 1

This is the maximum entropy for one bit of information.
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Suppose now there is an unbalance for the probabilities. For the sake of argument, let us write p1 = 1/2 + δ

and p2 = 1/2 − δ. Let us assume that δ  1/2. In this case,

S = −
(

1

2
+ δ

)
log

(
1

2
+ δ

)
−
(

1

2
− δ

)
log

(
1

2
− δ

)

Using the approximation:

log

(
1

2
+ δ

)
≈ −1 + 2δ

ln 2

we obtain:

S ≈ 1 − 2δ2

ln 2

Therefore, the effect of favoring one of the outcomes is to slightly decrease the entropy.

P1.4 - Consider an ideal gas containing N molecules, which is isothermally compressed
from an initial volume V0 to a final volume V1. Calculate the “information content” of the
gas, defined as

I = NkB ln
Ω0

Ω1

where Ω0 and Ω1 are the volumes in the phase space, before and after compression, re-
spectively, and kB the Boltzmann constant. Relate the result to the entropy variation in the
gas.

Solution
Since the compression is made isothermally, there is no variation in the kinetic energy of the gas, and the ratio

Ω0/Ω1 will be equal to the ratio V0/V1. Therefore,

I = NkB ln
V0

V1

Now, the entropy associated to a volume Ω in phase space is

S = NkB lnΩ

The entropy difference when the volume changes from Ω0 to Ω1 is therefore,

S0 − S1 = NkB lnΩ0 − NkB lnΩ1 = NkB ln
Ω0

Ω1

which is precisely the expression for I .

P1.5 - Calculate the Boltzmann entropy of N spins 1/2 subject to a static magnetic field
B0, at equilibrium temperature T .

Solution
There are N ! different permutations of N spins 1/2. In a magnetic field, there will be N↑ spins parallel to the

field and N↓ contrary to the field. Obviously, N = N↑ + N↓. The multiplicity of a given spin configuration20 is:

Ω = N !
N↑!N↓!

20In the example of the 4 coins discussed in the text, the multiplicity of the half–half configuration, for instance,
is 4!/2!2! = 6.
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The entropy is

S = kB lnΩ = kB ln
N !

N↑!N↓!
For large N , one can make use of the Stirling’s formula:

ln(x!) ≈ x lnx − x,

to arrive at:

S = NkB lnN − N↑kB lnN↑ − N↓kB lnN↓

Now, let p↑ and p↓ be the respective probabilities to find a spin in a state up and down. At a temperature T , they
are given by

p↑ = e−E↑/kBT

Z and p↓ = e−E↓/kBT

Z

where Z is the partition function, and

E↑ = − 1

2
γnh̄B0 and E↓ = + 1

2
γnh̄B0

where γn is the nuclear gyromagnetic ratio.
Replacing N↑ = Np↑ and N↓ = Np↓ in the expression for S, and using the above expressions for the proba-

bilities, we arrive at:

S = NkB lnZ − Nγnh̄B0

2T
coth

(
γnh̄B0

2kBT

)

Notice that the first term also depends on the ratio B0/T through Z . However, in the limit of high temperature,

lnZ ≈ ln 2, and coth(x) → 0. In this limit, NkB ln 2 is the maximum entropy. The application of a magnetic field

reduces the entropy.

P1.6 - The Fredkin gate is a controlled-swap gate, which can be used to demonstrate re-
versible classical computation. The gate has three input bits; the first bit is the control, and
the other two bits are target. The gate swaps the states of the target bits if the control bit is
set ‘1’. Otherwise nothing happens. Work the truth table of a Fredkin gate out.

Solution
Let A be the control bit and B and C the input target bits. If A = 1, B and C are swapped. Let us call B′ and

C′ the output target bits. The truth table is:

A B C B ′ C′

0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 0 0
1 0 1 1 0
1 1 0 0 1
1 1 1 1 1

Obviously that B and C can be recovered by applying the gate to B′ and C′. Therefore, the gate is reversible.

Fredkin gate can be used to built an universal set of classical logic gates.
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P1.7 - (a) Consider the result (1.5.5) for the evolution of the quantum state of a spin 1/2
in a magnetic field. Calculate the time necessary to take the initial state |↑〉 to the non-
orthogonal state

|φ〉 = |↑〉 + i|↓〉√
2

Why this state cannot be distinguished from the initial state?
(b) Calculate the expectation value for the magnetic moment, 〈ψ(t)|μ|ψ(t)〉, with

|ψ(t)〉 given by (1.5.5). Interpret the result in the light of the Erhenfest theorem.

Solution
(a) To reach the state |φ〉 from (1.5.5), take ω�t/2 = π/4, that is:

�t = π

2ω

and remember that σx |↑〉 = |↓〉. Notice that this time is half of that required to evolve the initial state to an
orthogonal one. The state |φ〉 cannot be distinguished from the initial state, because in a measurement of |φ〉
there is 50% of chance to find |↑〉.

(b)

〈
ψ(t)

∣∣μ
∣∣ψ(t)

〉= γnh̄
〈
ψ(t)

∣∣I
∣∣ψ(t)

〉

Let us calculate the expected value of the component z of the magnetic moment. The other components can be
calculated in a straightforward way. Since Iz|↑〉 = +1/2|↑〉 and Iz|↓〉 = −1/2|↑〉, we obtain from (1.5.5):

Iz
∣∣ψ(t)

〉= 1

2
cos

(
ω�t

2

)
|↑〉 − 1

2
i sin

(
ω�t

2

)
|↓〉

Therefore,

〈
ψ(t)

∣∣Iz
∣∣ψ(t)

〉= 1

2
cos2

(
ω�t

2

)
− 1

2
sin2

(
ω�t

2

)
= 1

2
cos(ω�t)

and we have for the expected value of μz:

〈
ψ(t)

∣∣μz

∣∣ψ(t)
〉= γnh̄

2
cos(ω�t)

It is easy to show that:

〈
ψ(t)

∣∣μy

∣∣ψ(t)
〉= γnh̄

2
sin(ω�t)

〈
ψ(t)

∣∣μx

∣∣ψ(t)
〉= 0

This result tells us that, upon the application of a magnetic field in the x direction, the z component starts to

precess about the field with angular frequency equal to ω. The same is true for μy . The component along the

field, μx , remains constant, equal to zero. This is consistent with the classical torque equation, dμ/dt = γnμ×B.
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Basic Concepts on Nuclear Magnetic
Resonance

The world of the nuclear spins is a true paradise for theoretical and experimental physicists. It
supplies, for example, most simple test systems for demonstrating the basic concepts of quantum
mechanics and quantum statistics, and numerous textbook-like examples have emerged. On the
other hand, the ease of handling nuclear spin systems predestinates them for testing novel experi-
mental concepts. Indeed, the universal procedures of coherent spectroscopy have been developed
predominantly within nuclear magnetic resonance (NMR) and have found widespread application
in a variety of other fields. – Richard R. Ernst (Nobel Prize Lecture, 1992)

Resonance is a ubiquitous phenomenon in Nature. Every time a system with a natural fre-
quency is excited by an external periodic perturbation of frequency close to that natural
frequency, then a strong increase in the amplitude of vibration takes place. If a particle
possessing magnetic dipole moment is simultaneously placed in the presence of a static
magnetic field and an electromagnetic field oscillating with appropriate frequency, resonant
absorption/emission can occur. This phenomenon, named magnetic resonance, is present
in many closely related techniques such as electron spin resonance, nuclear magnetic res-
onance, ferromagnetic resonance, and nuclear quadrupole resonance, among others [1].
Nuclear magnetic resonance (NMR) is one of the most extensively studied and applied
magnetic resonance techniques. Along the past five decades, NMR has found an astonish-
ing increase in the number of subjects where it is employed, going from the now routine
use in medicine to applications in biological, chemical, physical, petrophysical, and mate-
rials sciences. The aim of this chapter is to give a brief overview on the main foundations
of NMR, with emphasis on the aspects relevant for quantum computing. The subject is
excessively lengthy to be treated in detail in a moderate sized text, so the reader is referred
to specialized books such as references [2,3] for a more comprehensive treatment of the
theoretical and practical aspects of NMR.

2.1 GENERAL PRINCIPLES

The phenomenon of nuclear magnetic resonance can be generally observed for nuclei hav-
ing non-vanishing total angular momentum. The nuclear total angular momentum is usu-
ally called nuclear spin. It is a vector operator, in the formalism of quantum mechanics,
and is usually represented by h̄I, where I is a dimensionless operator representing the total
angular momentum of the nucleus. The nuclear spin has the same general properties as
any angular momentum operator in quantum mechanics; it is characterized by a quantum
number I , called the nuclear spin quantum number. Incidentally, the name nuclear spin is
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commonly used to refer to the spin quantum number itself, as well as the spin operator,
so the context should make it clear which meaning is being used for the term “nuclear
spin”. The quantum characteristics of the spin nuclear operator are given by the eigenval-
ues and eigenvectors of its square modulus (denoted by I2) and its z-component (denoted
by Iz) [2]:

I2|I,m〉 = I (I + 1)|I,m〉 (2.1.1)

Iz|I,m〉 = m|I,m〉 (2.1.2)

The state vectors denoted by |I,m〉 correspond to the common eigenvectors of I2 and
Iz, being specified by the quantum numbers I and m, with m = −I,−I + 1, . . . , I − 1, I .
Other spin operators essential for the understanding of magnetic resonance experiments
are the raising and lowering operators, which are defined from the transverse components
of the spin operator respectively by I+ = Ix + iIy and I− = Ix − iIy . The actions of such
operators on the |I,m〉 vectors are given by [2]:

I+|I,m〉 =√I (I + 1) − m(m + 1) |I,m + 1〉 (2.1.3)

I−|I,m〉 =√I (I + 1) − m(m − 1) |I,m − 1〉 (2.1.4)

In most usual NMR experiments, the magnitude of the energy involved is much smaller
than the spacing between the ground and excited nuclear energy levels (typically meV
for the former as compared to keV for the latter). Therefore, one can consider that the
nucleus is permanently in its ground state and all states of interest are contained in the
vector subspace spanned by the vectors |I,m〉, with I fixed. In this case one says that the
nucleus is in a state of well-defined total angular momentum or that the nuclear spin is a
constant of motion, and we can omit the label I in the state, and represent it simply by |m〉.
The energy of a nucleus in such situations is therefore determined only by the quantum
number m, which in a semiclassical picture specifies the orientation of the nuclear total
angular momentum with respect to external electromagnetic fields.

The total angular momentum of an atomic nucleus is due to the contributions of all
orbital and intrinsic angular momenta of the protons and neutrons constituting the nucleus
(the so-called nucleons). Therefore, in spite of the name, the nuclear spin is actually the
result of the addition of orbital and spin angular momenta of all nucleons. The detailed
way in which these angular momenta couple to form the total nuclear angular momentum
is in general complex, depending on the characteristics of the interactions (nuclear plus
electromagnetic) between the nucleons [3]. In certain cases there are general rules, similar
to the ones present in Atomic Physics, which allow the prediction of the nuclear spin from
the number of protons and neutrons in a given nucleus. For instance, if the number of
protons and the number of neutrons are both even, the nuclear spin is zero, indicating a
compensation mechanism of angular momenta for pairs of nucleons. If there is only an
unpaired nucleon, then the nuclear spin is equal to the total angular momentum of that
single nucleon. These rules allow the understanding of the nuclear spin values for some
common nuclei such as 1H (I = 1/2), 12C (I = 0), 13C (I = 1/2), and so on.

All atomic nuclei having non-zero nuclear spin also posses a magnetic dipole moment
(represented by μ). Likewise the angular momentum, the nuclear magnetic dipole mo-
ment is also the result of the composition of the magnetic dipole moments of all nucleons.
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There is a general result from angular momentum theory in quantum mechanics, known as
the Wigner–Eckart theorem [4], which allows the magnetic dipole moment to be directly
related to the nuclear spin, according to:

μ = γnh̄I (2.1.5)

where γn is called the gyromagnetic ratio of the nucleus. This parameter is characteristic
of each nuclear species. The result (2.1.5) can be understood based on a simple model that
depicts the nucleus as a rapid rotating body with axis defined by the nuclear spin vector.
Therefore, the magnetic dipole moment, although not strictly parallel to the vector I, is on
average given by its projection on the axis defined by I. It is this average that is effectively
involved in usual situations where the nucleus is kept in its ground state and the total
angular momentum of the nucleus is kept constant, as is the case of NMR experiments.
Therefore, in these situations the Wigner–Eckart theorem can be applied and the result
(2.1.5) is obtained.

Besides the magnetic dipole moment, nuclei with spin higher than 1/2 also possesses an
electric quadrupole moment.1 In a semiclassical picture, the nuclear electric quadrupole
moment informs about the deviation of the nuclear charge distribution from a spherical
symmetry. Nuclei with spin 0 or 1/2 are therefore said to be spherical, with zero electric
quadrupole moment. Quadrupolar nuclei, on the other hand, are not spherical, assuming
cylindrically symmetrical shapes around the symmetry axis defined by the nuclear spin.
Within the subspace |I,m〉, the nuclear electric quadrupole moment operator is a traceless
tensor operator of second rank, with Cartesian components written is terms of the nuclear
spin:

Qαβ = eQ

I (2I − 1)

[
3

2
(IαIβ + IβIα) − δαβI2

]
(2.1.6)

where α and β indicate Cartesian coordinates, δαβ is the Kronecker delta (equal to 1 if
α = β and zero otherwise), e is the elemental electric charge, and Q is called the electric
quadrupole moment of the nucleus (measured in units of square length, usually in barns,
with 1 barn = 10−24 cm2). The value of Q, similarly to the gyromagnetic ratio γn, is also
a property of each nuclear species, its magnitude informing about the degree of deviation
of the nuclear charge distribution from spherical symmetry.

2.2 INTERACTION WITH STATIC MAGNETIC FIELDS

Atomic nuclei with non-zero total angular momentum interact with the electromagnetic
fields present in their environment through the nuclear magnetic dipole moment and, in the
case of nuclei with I > 1/2, the nuclear electric quadrupole moment. The basic interaction
necessary to understand NMR is the so-called Zeeman interaction, occurring between a
magnetic dipole moment and the magnetic fields (applied plus local fields) existing at the
nuclear site. In this section one is concerned with this magnetic interaction, which consti-
tutes the basis of all NMR experiments. The discussion about the details of the interaction

1Electric dipole moments are zero for all nuclei because of symmetry requirements on the nuclear wave func-
tion, which must have defined parity [3,4].
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Figure 2.1 Analogy between a spinning top in a gravitational field and a magnetic moment in a magnetic field.

between the nuclear electric quadrupole moment of quadrupolar nuclei and local electric
field gradients will be deferred to another section.

The Zeeman interaction between the nuclear magnetic dipole and an external static mag-
netic field gives rise to a manifold of energy levels for the nucleus depending on its orienta-
tion with respect to the axis defined by the magnetic field. The absorption and irradiation of
energy associated with transitions between these levels constitute the physical phenomena
observed in an experiment of magnetic resonance.

The classic interaction between a body with magnetic dipole moment μ and an external
static magnetic field B0 is described by an orientation-dependent potential energy −μ · B0
and an associated torque μ×B0. If the magnetic dipole moment is parallel and proportional
to the angular momentum L of the body, as it is the case for example of spinning charged
bodies, then this torque will cause the precession of the body around the axis of B0, in
complete analogy with the motion of a child’s spinning top acted on by the gravitational
force (Figure 2.1). The resultant motion is called Larmor precession and the frequency of
precession (named Larmor frequency) is easily obtained by solving the dynamic equation
of motion. It is given by (see Problem P2.1):

ωL = −γnB0 (2.2.1)

This precession of the magnetic moment around the field is exactly what occurs for
atomic nuclei with non-zero nuclear spin when in the presence of a static magnetic field.
When an atomic nucleus with magnetic dipole moment given by (2.1.5) is placed in an
external static magnetic field B0, the nuclear states |m〉 assume different energy values
depending on the orientation of the nuclear spin with respect to the direction of B0. This
splitting is known as nuclear Zeeman effect and the orientation-dependent interaction is
described by a Hamiltonian of the form (named Zeeman Hamiltonian):

HZ = −μ · B0 = −μzB0 = −γnh̄B0Iz = −h̄ωLIz (2.2.2)

where ωL is a positive number (for the more usual case of γn > 0 [5]) that yields the
magnitude of the Larmor frequency. The z-direction corresponds to the axis defined by the
magnetic field B0 and all quantum operators act in the subspace spanned by |m〉 where m =
−I,−I + 1, . . . , I − 1, I . Under the action of such Hamiltonian, the expectation values of
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the Cartesian components of the nuclear spin operator in the plane perpendicular to the
z-direction (i.e., 〈Ix〉 and 〈Iy〉) show an oscillatory behavior with time, with a frequency
given by (2.2.1), whereas 〈Iz〉 is stationary (see Problem P2.2). Therefore, one can regard
the nucleus as performing a precession motion around B0, in complete analogy with the
Larmor precession of a classical magnetic dipole.

The eigenvalues of the Zeeman Hamiltonian (2.2.2), which are clearly proportional to
the eigenvalues of the operator Iz, represent the energy levels of the nucleus, given by:

Em = −mh̄ωL (2.2.3)

Therefore, for a nucleus with spin I , there are 2I + 1 energy levels equally spaced by
the amount h̄ωL. The lower energy states correspond to the higher (positive) m values. The
ground state is thus the state with m = I , which means, in a semiclassical picture, that the
nucleus is as aligned as possible with the direction of the field B0.

For an ensemble of identical nuclei in thermal equilibrium, the population of each energy
level is given by the Boltzmann distribution [6]. In the case of I = 1/2, for example, one
has a two-level system, with the populations n− and n+ of the m = −1/2 and m = +1/2
levels, respectively, related by the Boltzmann factor:

n−
n+

= e−h̄ωL/kBT (2.2.4)

where kB is the Boltzmann constant and T is the absolute temperature of the ensemble. For
protons (1H nuclei) in a magnetic field of 5 T, h̄ωL is around 10−6 eV, whereas, at room
temperature, kT ∼= 2.5 × 10−2 eV, so the Boltzmann factor e−h̄ωL/kT is very close to the
unity. The fractional difference of populations in this case is about 1 part in 105, which
shows the intrinsically low sensitivity of such experiments involving magnetic properties
of nuclear populations (such as NMR).

The result (2.2.4) can be naively interpreted as meaning that there are more nuclei in the
parallel than in the anti-parallel direction with respect to the magnetic field (see however
the arguments given in [5] against this oversimplified point of view). This slight imbalance
in the populations of the m = −1/2 and m = +1/2 levels is therefore the cause of ap-
pearance of a net equilibrium magnetization along the z-direction (parallel to the applied
magnetic field). Semiclassically, one can visualize this net magnetization as the result of
the Larmor precession of the nuclear spins around the direction of B0, resulting in a non-
vanishing component of the magnetization along the z-direction and zero components in
the transversal plane, due to the randomness of the motion of the spins around the preces-
sion cone (see Figure 2.2).

Therefore, the effect resulting of the application of a static magnetic field is the appear-
ance of a nuclear magnetization parallel to that field. The thermal equilibrium magnetiza-
tion for an ensemble of nuclei with I = 1/2, is given by [4,7]:

M0 = n0γ
2
n h̄2B0

4kBT
(2.2.5)

where n0 is the number of nuclei per unit volume. The dependence of the magnetization,
increasing linearly with the field strength and inversely proportional to the temperature,
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Figure 2.2 In the presence of a static magnetic field, there will be more spins precessing around the direc-
tion parallel to the field than against it. This inbalance creates a macroscopic magnetization which points to the
direction of the field.

is characteristic of the nuclear paramagnetism, which is analogous to the electronic para-
magnetism, but of magnitude much smaller. This means that the static magnetic properties
of atomic nuclei are completely overwhelmed by electronic magnetism even in the case of
diamagnetic substances, and such effects are never observed under ordinary circumstances
(see however [8] for a discussion of exotic cases where these effects can be observed).

2.3 INTERACTION WITH A RADIOFREQUENCY FIELD – THE
RESONANCE PHENOMENON

Transitions between the energy levels defined by the Hamiltonian (2.2.2) can be induced
by the application of oscillating magnetic fields with the appropriate Larmor frequency,
given by (2.2.1). For nuclear spins, the Larmor frequencies are of the order of MHz (for
static fields of a few Tesla), so the excitation is achieved by a radiofrequency (RF) field.
Incidentally, in the case of electron spin resonance, the Larmor frequency falls in the GHz
range for similar magnetic field strengths, which means that the excitation electromagnetic
field in such case is provided by microwaves.

The excitation of the nuclear spins system can be understood considering the effect
of a second time-dependent magnetic field, B1(t), applied perpendicularly to the static
magnetic field B0, along the x-direction, for example. The Hamiltonian operator associated
with this oscillating field, named RF Hamiltonian (HRF), is obtained in a similar way as the
Zeeman Hamiltonian. Writing B1(t) = 2B1 cos(Ωt + φ)i, where Ω and φ are respectively
the frequency and the phase of the RF field and i is the unitary vector along the x-direction,
then HRF will be given by:

HRF = −μ · B1(t) = −γnh̄Ix

[
2B1 cos(Ωt + φ)

]
(2.3.1)
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The RF Hamiltonian can be treated as a perturbation to the main Zeeman Hamiltonian,
considering that the magnitude of B1(t), typically around a few Gauss (1 G = 10−4 T), is
much smaller than that of B0. Therefore, the dominating role is still played by HZ and the
effect of HRF can be determined using standard time-dependent perturbation theory [9].
Briefly, the result is that, when the frequency of the RF field is close to the Larmor fre-
quency (Ω ∼= ωL), i.e., on resonance, transitions between the eigenstates of HZ (specified
by the quantum numbers m and n) are induced with a transition rate (or probability per
unit time) given by the Fermi golden rule:

Pm−→n = Pn−→m ∝ γ 2
n h̄2B2

1

∣∣〈m|Ix |n〉∣∣2 (2.3.2)

As one can see, this transition rate grows with the square of both, the gyromagnetic
ratio of the nucleus and the magnitude of the RF magnetic field. Also, only magnetic fields
B1(t) perpendicular to B0 can induce such transitions, so as to give a non-vanishing value
to the matrix element between the m,n states (as is the case of the operators Ix and Iy ).
The selection rule for the transitions is also obtained from the properties of the Ix (or Iy )
operator: �m = ±1 [2].

A semiclassical interpretation for the excitation of the nuclear spins is obtained by con-
sidering the linearly polarized magnetic field B1(t) as composed of two circularly polarized
fields, both with the same frequency and amplitude B1, but precessing around the z-axis in
opposite directions:

B1(t) = B+
1 (t) + B−

1 (t) (2.3.3)

B+
1 (t) = B1

[
cos(Ωt + φ)i+ sin(Ωt + φ)j

]
(2.3.4)

B−
1 (t) = B1

[
cos(Ωt + φ)i− sin(Ωt + φ)j

]
(2.3.5)

For Ω = ωL, i.e., on resonance, the field B−
1 (t) rotates around the z-axis coherently

with the nuclear Larmor precession described by Equation (2.2.1), whereas B+
1 (t) rotates

in the opposite sense. In a coordinate frame rotating around the z-axis with frequency
Ω = −Ωk (named rotating frame), the field B−

1 (t) is stationary, as well as the nuclear
spins, while B+

1 (t) rotates with twice the Larmor frequency. Therefore, only B−
1 (t) will

have an effective influence on the nuclear spins, provided that both fields have magnitude
much smaller than that of the static field B0.

The torque μ × B−
1 will cause each magnetic moment μ, which is stationary in the

rotating frame, to precess around the direction of the field B−
1 . This direction is fixed in

the rotating frame (let us call it the x′-direction) and rotates around the z-axis with the
Larmor frequency in the laboratory reference frame. If the frequency of the RF field Ω is
not equal to ωL, i.e., in the off-resonance case, the precession of the magnetic moments in
the rotating frame is around an axis defined by an effective magnetic field given by:

Beff =
(

B0 − Ω

γn

)
k + B1i′ (2.3.6)

where i′ is a unit vector along the x′-direction in the rotating frame, being it related to the
unit vectors in the laboratory-fixed frame by i′ = cos(Ωt + φ)i − sin(Ωt + φ)j.
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Figure 2.3 The effects of the RF field B1 on the nuclear magnetization is to drive the magnetization vector
away from the z-axis towards the transverse plane. Depending on the amplitude and duration of the RF pulse one
can have a π/2 pulse, a π pulse, or, more generally, a pulse with a nutation angle θp .

The effect of the torque μ × B−
1 on the collection of nuclear spins is to cause the net

magnetization to deviate from the z-direction (Figure 2.3). In the on-resonance case, the
magnetization M precesses, in the rotating frame, around the x′-direction with an angular
frequency (named nutation frequency) with magnitude given by ω1 = γnB1, in analogy
with Equation (2.2.1). After the RF field is turned off, the magnetization points to a direc-
tion deviated from the z-axis by a nutation angle given by θp = γnB1tp , where tp is the
time interval during which the RF field was turned on. This transient RF field is named
a RF pulse, and tp is therefore the pulse duration. If θp = π/2, the magnetization M im-
mediately after the pulse lies in the plane transversal to B0; this is called a π/2 pulse. For
a π pulse, on the other hand, the magnetization M is inverted at the end of the time of
application of the pulse.

It should be remembered, however, that in the laboratory frame the magnetization is al-
ways precessing around the z-axis, with frequency corresponding to the Larmor frequency.
Therefore, after a π/2 pulse, for example, there is an alternate electric signal induced by
the precessing nuclear magnetization, which can be readily detected by a coil placed in the
transversal plane. Basically this is the signal that is recorded in a conventional pulse NMR
experiment. The signal, for reasons to be discussed in the next section, is not constant in
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amplitude. Instead, its amplitude decays with time after the RF pulse, typically in an expo-
nential way. So the signal is commonly referred to as the free induction decay (FID), that
is, a decaying signal detected in the absence of the excitation RF field.

The connection of such semiclassical description with the transitions between the quan-
tum energy levels described by Equation (2.3.2) can be understood, for spin 1/2 systems
in the simple case of π/2 and π pulses, as an equalization and an inversion of populations,
respectively. This means that, after a π/2 or π pulse, the populations are not anymore given
by the thermal equilibrium relation (2.2.4). The return to equilibrium needs the system give
up some energy to the environment (generally named the lattice). This process is termed
relaxation and is detailed in the next section.

2.4 RELAXATION PHENOMENA

After a single π/2 pulse, the collection of nuclear spins presents a resultant magnetiza-
tion in the plane perpendicular to B0 (named transverse plane) and precessing around this
static field (as viewed from the laboratory-fixed coordinate system). This is clearly a non-
equilibrium situation, since the only magnetic field existent now is the field B0. If the spins
were completely isolated from external influences and if there were no interactions be-
tween them, such non-equilibrium state would persist forever, with a sinusoidal electric
signal induced in a coil placed in the transverse plane. However, the behavior observed
in practice is completely different: the electric signal is not constant in amplitude; other-
wise, it decays with time typically in an exponential way. Furthermore, after some time has
elapsed, the magnetization returns completely to the initial z-direction, satisfying again the
thermal equilibrium requirements (see Equations (2.2.4) and (2.2.5)). It is worth empha-
sizing that the exact meaning of the expression “some time” is largely dependent on the
details of each particular nuclear spin system and its environment, ranging typically from
microseconds to several hours. Two different processes, occurring simultaneously but (in
general) independently, can be identified for this relaxation of the system of spins: the
transverse relaxation and the longitudinal relaxation.

The transverse relaxation is the process that leads, after the end of the RF pulse, to the
disappearance of the components of the nuclear magnetization M that are perpendicular to
the field B0. The origin of the transverse relaxation relies on the loss of coherence in the
precession motion of the spins (or dephasing of the spins), caused by the existence of a
spread in precession frequencies for the collection of nuclear spins. As shown before, the
precession (or Larmor) frequency of each spin is dictated by the local magnetic field in the
z-direction, which is affected by the external field and also by the internal fields that each
nuclear spin creates on the position of other nuclei. This is the reason why the transverse
relaxation is also known as spin-spin relaxation. However, this term can me misleading,
since there are many other sources of local fields that can contribute to transverse relax-
ation, as will be discussed later. The spread in precession frequencies progressively results
in a reduction of the resultant transverse components Mx and My of the magnetization, as
depicted schematically in Figure 2.4. After some time, the spins distribute randomly in a
precession cone around B0 and the transverse magnetization is again zero, as it was before
the application of the RF pulse.

In many simple cases, the decaying of the transverse components of the nuclear magne-
tization in the rotating frame can be described by a phenomenological differential equation
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Figure 2.4 Sequence of the process of relaxation of nuclear spins: (a) application of a π/2 RF pulse; (b) to
(e) time evolution of the transverse and longitudinal components of the magnetization. Note that the transverse
relaxation has been concluded in (d), but the process of longitudinal relaxation continues up to (e), indicating the
common situation of T1 > T2.

of the form:

dMx,y

dt
= −Mx,y

T2
(2.4.1)

where T2 is a parameter known as transverse or spin-spin relaxation time. The solution to
Equation (2.4.1) is straightforward:

Mx,y = M0e
−t/T2 (2.4.2)

where M0 is the initial value of the transverse magnetization after the application of the
RF pulse. This time-variation is superimposed in the laboratory frame to the oscillatory
behavior of the transverse magnetization, which means that the decay expressed in Equa-
tion (2.4.2) is reflected in the amplitude of the signal detected in the coil. That is the reason
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why the detected electric signal is termed free induction decay (FID). When the NMR spec-
trum is obtained by Fourier transform of the FID, this time-decay gives rise to a broadening
of the resonance lines [5]. Therefore, materials with short T2 values present generally broad
resonance lines.

Simultaneously to the transverse magnetization, the longitudinal component of the nu-
clear spin magnetization also tends to recover its equilibrium value, after the end of the
RF pulse. This process is physically distinct from the previously described transverse re-
laxation. The recovery of the Mz component of the magnetization is related to transitions
between the nuclear spin levels mentioned in Section 2.2. When Mz = 0, just after the π/2
pulse, the populations of the m = ±1/2 levels (for a spin 1/2 nuclei system) are equalized.
This state does not correspond to the thermal equilibrium described by Equation (2.2.4).
Therefore, the natural tendency is the system gives up its excess of energy by effecting
transitions preferably from the upper to the lower energy level, till the Boltzmann distribu-
tion is reestablished. This is exactly the same process that occurs when a non-magnetized
sample is placed in the presence of the static magnetic field. When such transitions occur,
energy is exchanged between the system of nuclear spins and its environment, which is
generally named the lattice. That is why this process is also named spin-lattice relaxation.
It involves necessarily the exchange of energy between the system of spins and the lat-
tice, which is the main difference in comparison to the transverse relaxation case, which
involves only the loss of coherence in the precession motion of the spins. It is important to
stress that these transitions are not related to spontaneous emission of radiation. Otherwise,
the transitions are of the induced type, being associated with time-fluctuating electromag-
netic fields present in the material as consequence of the set of interactions involving the
nuclear spins and their environment (to be described in detail later) [5].

Similarly to the transverse case, the longitudinal relaxation can also be described by a
phenomenological equation of the form:

dMz

dt
= M0 − Mz

T1
(2.4.3)

where T1 is known as the longitudinal or spin-lattice relaxation time and M0 is the thermal
equilibrium magnetization. The solution of such equation is clearly:

Mz = M0
(
1 − e−t/T1

)
(2.4.4)

The magnetization evolution described by Equation (2.4.4) cannot be directly detected,
since it does not induce an electric signal in the coil placed in the transverse plane. The
importance of such evolution in pulse NMR experiments is dictated by the fact that in most
cases it is necessary to accumulate many FID’s successively in order to attain a good signal-
to-noise (S/N) ratio. Therefore, one has to wait the complete recovery of the longitudinal
magnetization before the application of the next pulse in the loop, so as to avoid the loss
of signal in the beginning of the next FID (an effect known as saturation). The materials
presenting large values of T1 are thus problematic from the point of view of acquiring
NMR signals with suitable S/N ratio.

The relaxation times T1 and T2 are parameters characteristic of each particular system,
whose magnitudes depend on factors such as temperature, physical state of the matter
(solid or liquid), molecular mobility, magnitude of the external magnetic field, etc. [4,5].
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It is universally found that T1 � T2, with the equality occurring mostly in liquids. On the
other hand, in crystalline solids one has typically quite short values of T2 and long values
of T1, which leads to broad resonance lines and poor sensitivity. This is one of the reasons
why solid-state NMR is not so easy and informative as the liquid-state counterpart [5].
Moreover, it should be emphasized that the simple behavior described by Equations (2.4.2)
and (2.4.4) is not actually observed in many practical cases, where there occurs a distribu-
tion of relaxation times leading to a multiexponential behavior for the decaying transverse
magnetization and/or the recovery of the longitudinal magnetization.

2.5 DENSITY MATRIX FORMALISM: POPULATIONS, COHERENCES,
AND NMR OBSERVABLES

The semiclassical description given in Section 2.3, using a vector model to describe the
changes in the nuclear magnetization caused by the application of static and oscillating
magnetic fields is oversimplified. There are many features of a NMR experiment that can-
not be completely explained using this simple model. The most appropriate approach to
describe NMR phenomena involves the use of the density matrix formalism from Quan-
tum Statistical Mechanics. This approach is specifically appropriate for situations where
a large number of particles is involved and one does not have access to the individual
quantum states of the particles, only to macroscopic averages (or ensemble averages). This
formalism is fully described in specialized textbooks (see References [11,12] for exam-
ple). Only the general principles will be reviewed here, with emphasis on the most relevant
aspects for the description of NMR phenomena as a quantum information processing tech-
nique.

The density operator ρ of a collection of identical, independent nuclei (an ensemble) is
defined in such way that the macroscopic average of the expectation value of any observ-
able A over the ensemble is given by [11]:

〈A〉 = Tr{ρA} (2.5.1)

It should be emphasized that the left-hand side of this equation represents the statistical
average over the entire ensemble and not the expectation value for a given particular system
in the ensemble. Notice that one uses here for the ensemble average of the expectation
values the same symbols used previously for the expectation values over a single system.
This is common practice, and the context should make clear if one is referring to the whole
ensemble or to an individual system.

In NMR experiments, the observables of interest are generally the components of the
macroscopic nuclear magnetization, which are proportional to the ensemble average values
of the components of the nuclear spin operator: 〈Ix〉, 〈Iy〉, and 〈Iz〉. The magnetization in
the x-direction of an ensemble of nuclear spins, for example, is given by:

〈Mx〉 ∝ Tr{ρIx} (2.5.2)

The time evolution of the density operator is given by the Liouville–von Neumann equa-
tion, which can be deduced from the Schrödinger equation [2,4]:

dρ

dt
= i

h̄
[ρ,H] (2.5.3)
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where H is the Hamiltonian of the system.
If the Hamiltonian H commutes with the density operator, then ρ is constant. If H is

time-independent, then ρ will be given by:

ρ(t) = e−(i/h̄)Ht ρ(0)e(i/h̄)Ht (2.5.4)

The unitary operator U = e−(i/h̄)Ht is called the evolution operator, or the propagator
of the system [9]. In terms of U , Equation (2.5.4) reads:

ρ(t) = Uρ(0)U† (2.5.5)

In a more general case, when the Hamiltonian is not time-independent but can be split
in a finite number of time-independent terms (not necessarily commuting between them-
selves) acting during finite intervals, the evolution of the density operator can be calculated
by the expression [13,14]:

ρ(t) = e−(i/h̄)Hntn . . .−(i/h̄)H2t2e−(i/h̄)H1t1ρ(0)e(i/h̄)H1t1

× e(i/h̄)H2t2 . . . e(i/h̄)Hntn (2.5.6)

This expression is very useful for understanding NMR experiments consisting of se-
quences of RF pulses and free evolution periods.

In thermal equilibrium, the density operator is simply related to the Hamiltonian of the
system by [4,11]:

ρ0 = e−H/kBT

∑
me−Em/kBT

(2.5.7)

where the sum is extended over all Hamiltonian eigenstates and Em represents the eigen-
values of H. The sum in the denominator is called the partition function of the system:
Z =∑m = e−Em/kBT .

In a given orthonormal basis, the density operator has, as any other operator, a matrix
representation, which is called the density matrix:

ρ =
⎡

⎢⎣

ρ11 ρ12 . . .

ρ21 ρ22 . . .

...
...

. . .

⎤

⎥⎦ (2.5.8)

The density operator of any statistical ensemble must satisfy some general requirements:
(1) it is a Hermitian operator; (2) the diagonal elements of its matrix representation are
greater than or equal to zero; and (3) the sum of these diagonal elements equals to unity
[11,12].

The diagonal elements of the density matrix are called the populations, whereas the off-
diagonal elements are called the coherences. The populations have a physical interpretation
related to the probability of finding a member of the ensemble in a given state, when per-
forming a macroscopic measurement. Specifically, the element ρmm gives the probability
of finding a member of the ensemble in the state specified by the quantum number m. The
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previously mentioned condition that the sum of the diagonal elements is equal to unity is,
therefore, equivalent to the usual normalization condition imposed on probability evalua-
tion [2].

This physical meaning of the populations was already introduced in Equation (2.2.4)
in the context of nuclear paramagnetism, where the populations were interpreted as the
fractional number of spins in each of the m = ±1/2 states. Surely one cannot speak of
the exact number of nuclei that lies in each particular state; most nuclei are in general
in superposition states [5]. However, it is common practice to talk about populations as
referring to the mean number of nuclei in each state, expressing actually the chance of
finding a nucleus in that state when performing a macroscopic measurement.

Thus, in the context of NMR, the populations are related to the raising of longitudinal
magnetization along a static magnetic field. On the other hand, the coherences are related
to the existence of transverse magnetization, always arising after the application of some
external RF excitation. This point will be made clear in the next section, with the detailed
analysis of spin 1/2 systems.

In the basis of the Hamiltonian eigenstates, the thermal equilibrium density matrix con-
structed from Equation (2.5.7) is diagonal:

ρ0 = 1

Z

⎛

⎝
e−E1/kBT 0 . . .

0 e−E2/kBT . . .
...

...
. . .

⎞

⎠ (2.5.9)

This simple form for the density matrix implies that, in thermal equilibrium, the popu-
lations obey to the Boltzmann distribution, whereas the coherences are identically zero.

For an ensemble of identical nuclei with spin quantum number I placed in a static mag-
netic field B0, the Zeeman Hamiltonian is given by Equation (2.2.2): HZ = −h̄ωLIz. Using
the basis formed by the eigenstates of the operator Iz (see Equation (2.1.2)), the popula-
tions in thermal equilibrium are given by:

[ρ0]mm = emh̄ωL/kBT

∑I
s=−I esh̄ωL/kBT

(2.5.10)

In the so-called high-temperature limit, where the thermal energy kBT is much greater
than the Zeeman level spacing h̄ωL (which is always true for temperatures above c.a. 1 K
under ordinary magnetic fields of a few teslas; see Problem P.2.3), it is surely legitimate to
keep only the leading terms in the polynomial expansions of the exponentials above:

emh̄ωL/kBT ∼= 1 + mh̄ωL

kBT
(2.5.11)

I∑

s=−I

esh̄ωL/kBT ∼= 2I + 1 (2.5.12)

It is helpful to define the ratio � = h̄ωL

kBT
, which is a dimensionless parameter that mea-

sures the deviation of populations from a uniform value due the application of the static
magnetic field. It is this parameter (typically around 10−5) that determines the magnitude
of the thermal equilibrium magnetization characteristic of nuclear paramagnetism.
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In the high-temperature limit, the thermal equilibrium density operator for a system of
nuclei under action of a static magnetic field is therefore given by:

ρ0 =
(

1

2I + 1

)
1 +

(
1

2I + 1
�

)
Iz (2.5.13)

where 1 is the identity matrix. As one can see, the density operator in this situation is simply
related to the operator Iz. The first term describes a uniform background, independent of
the application of the magnetic field. As the identity operator commutes with all operators,
Equation (2.5.3) shows that this term does not evolves in time and can be ignored for
purposes of time evolution calculations. The second term is called the deviation density
matrix and it is usually represented by �ρ. It is this traceless operator that is acted upon by
the evolution operator in any NMR experiment. In thermal equilibrium, the matrix �ρ is
therefore directly proportional to the operator Iz, which is associated with the appearance
of the longitudinal magnetization. The thermal equilibrium density matrix deviation can
thus be written as:

�ρ0 = αIz (2.5.14)

where α = �
2I+1 . This constitutes the starting point for all NMR pulse sequences, to be

detailed in the next sections.

2.6 NMR OF NON-INTERACTING SPINS 1/2

The matrix representations of the nuclear spin operators in the |I,m〉 basis for the simple
I = 1/2 case are given by:

Ix = 1

2

[
0 1
1 0

]
Iy = 1

2

[
0 −i

i 0

]
Iz = 1

2

[
1 0
0 −1

]
(2.6.1)

These matrices are thus directly related to the famous Pauli matrices, largely used in
problems involving the spin of the electron [2].

From Equation (2.5.14), the deviation density matrix in thermal equilibrium under a
static magnetic field is:

�ρ0 = α

2

[
1 0
0 −1

]
= h̄ωL

4kBT

[
1 0
0 −1

]
(2.6.2)

As described previously, the analysis of the effect of RF pulses is best conducted
by using the concept of the rotating frame. The transformation of the density operator
from the laboratory to the rotating frame (which rotates around the z-axis with frequency
Ω = −Ωk) is accomplished with the use of the rotation operator eiΩtIz [4]:

ρRot = e−iΩtIzρLabeiΩtIz (2.6.3)

where ρRot and ρLab indicate the density matrices in the rotating and laboratory frames,
respectively. Applying this relation to the thermal equilibrium density matrix deviation
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�ρ0 leads to exactly the same matrix in both frames, since the operators eiΩtIz , Iz, and
e−iΩtIz commute. This is obviously an immediate consequence of the fact that rotations
around the z-axis do not change the longitudinal magnetization. Therefore:

�ρRot
0 = h̄ωL

4kBT

[
1 0
0 −1

]
(2.6.4)

From this point on, one will drop the superscript Rot, with the assumed convention that,
unless otherwise stated, all density operators are given in the rotating-frame.

The effect of a RF pulse can be obtained by transforming the complete Hamiltonian
HZ + HRF from the laboratory to the rotating-frame [4], which is equivalent to express-
ing the effective Hamiltonian associated with the rotating-frame effective field given in
Equation (2.3.6):

Heff = −h̄(ωL − Ω)Iz − h̄ω1Ix (2.6.5)

This describes a RF pulse applied along the x-direction of the rotating-frame. If the
pulse is applied along another direction (i.e., with another phase), the only change will
be in the angular momentum component appearing in the second term of the right-hand
member of such equation. The most important aspect of this effective Hamiltonian is that it
is time-independent, so that the solution given by Equation (2.5.4) for the density operator
can now be used. In other words, the rotating-frame transformation has removed the time
dependence from the RF Hamiltonian, which corresponds to the classical view given in
Section 2.3 of a stationary magnetic field B−

1 in the rotating-frame [4,5].
If the nutation frequency ω1 = γnB1 is much larger than the resonance offset (given by

ωL − Ω), then the effective Hamiltonian is approximated by:

Heff ∼= −h̄ω1Ix (2.6.6)

This expression is exactly true on resonance, i.e., when Ω = ωL. In the case of strong
RF pulses and for small resonance offsets, the approximation is usually appropriate. Con-
sidering thus a strong RF pulse with duration tp applied along the x-direction, its effect
can be calculated by Equation (2.5.5) and the Hamiltonian (2.6.6). The evolution operator
in this case is then:

U = e−(i/h̄)Heff tp = eiω1tpIx = Rx(−θp) (2.6.7)

The operator Rx(θp) = e−iθpIx is a rotation operator [5], which produces a nutation of an
angle θp = ω1tp around the x-axis (according to the right-hand rule) of the rotating-frame.
The density operator following this pulse is therefore:

ρ(tp) = Rx(−θp)ρ0Rx(θp), (2.6.8)

where it was used the property R
†
x(θ) = Rx(−θ), which follows from the Hermitian nature

of the angular momentum operators.
The explicit form of the matrix representation of the operator Rx(θp) can be obtained

with some algebraic manipulation of the properties of exponential operators in the simple
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case of I = 1/2 [5]. This matrix is given below, together with those corresponding to the
rotation operators around other axes:

Rx(θp) =
[

cos(θp/2) −i sin(θp/2)

−i sin(θp/2) cos(θp/2)

]
(2.6.9)

Ry(θp) =
[

cos(θp/2) − sin(θp/2)

sin(θp/2) cos(θp/2)

]
(2.6.10)

Rφp(θp) =
[

cos(θp/2) −i sin(θp/2)e−iφp

−i sin(θp/2)eiφp cos(θp/2)

]
(2.6.11)

The last rotation operator corresponds to a RF pulse applied with phase φp , i.e., a pulse
whose magnetic field vector is aligned in the rotating-frame with an axis making an angle
φp with the x-axis.

We can now use these explicit forms to calculate the effect of RF pulses on the deviation
matrix densities for spin 1/2 nuclei. In the case of a π/2 pulse with the magnetic field B−

1
aligned with the x-direction of the rotating frame, we have:

�ρ(tp) = Rx(−π/2)�ρ0Rx(π/2)

= 1√
2

[
1 i

i 1

]
× h̄ωL

4kBT

[
1 0
0 −1

]
× 1√

2

[
1 −i

−i 1

]

= h̄ωL

4kBT

[
0 −i

i 0

]
= h̄ωL

2kBT
(Iy) (2.6.12)

Therefore, after the pulse the deviation density matrix is proportional to the operator Iy ,
which indicates a magnetization pointing along the y-direction. In fact, this is exactly what
is achieved by a geometrical rotation of the magnetization initially along the z-direction
through an angle of π/2 around the x-axis in a left-hand sense. This rotation can be
viewed, in a semi-classical description, as result of the torque exerted by the field B−

1
on the longitudinal magnetization in the rotating frame. As this is as clockwise rotation
around the x-axis, such pulse is known as a “−x π/2 pulse” or, in a more convenient nota-
tion, a (π/2)−x pulse. (The symbol (θp)φp is a convenient way to characterize a RF pulse,
yielding the nutation angle θp and the phase φp of the pulse.) Obviously, a (π/2)x pulse
has the opposite effect, i.e., it drives a magnetization initially aligned with the z-axis to
the −y-axis.

The same result could be obtained by using the following general property of rotation
operators [5,9]:

e−iθI1I2e
iθI1 = I2 cos θ + I3 sin θ (2.6.13)

where I1, I2, and I3 indicate the components of angular momentum operators that com-
mute cyclically, i.e., [I1, I2] = iI3, [I2, I3] = iI1, and [I3, I1] = iI2. Writing this rule for
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the specific case of a RF pulse applied along the x-axis starting form thermal equilibrium,
one obtains2:

eiθpIx Ize
−iθpIx = Iz cos θp + Iy sin θp (2.6.14)

Applying Equation (2.6.14) with θp = π/2 leads to the same result as Equation (2.6.12),
that is, the deviation density matrix has changed from Iz to Iy with the application of the
pulse. Writing the complete density matrices before and after the pulse, one obtains:

ρ0 =
[ 1

2 + h̄ωL

4kBT
0

0 1
2 − h̄ωL

4kBT

]
(π/2)−x�⇒ ρ(tp) =

[ 1
2 −i h̄ωL

4kBT

i h̄ωL

4kBT
1
2

]

(2.6.15)

The physical interpretation of the net effect of the π/2 pulse is now clear: the pulse
promotes an equalization of the populations of the m = ±1/2 states and, at the same time,
creates coherence between these states. This coherence is associated with the transverse
magnetization appearing in the y-direction of the rotating-frame. The equalization of pop-
ulations is easily understood using the transition rates between the m = ±1/2 states de-
scribed by Equation (2.3.2). The system absorbs energy from the RF source until the end
of the pulse, when a saturation situation occurs, with the same mean number of nuclei in
each state. However, the production of coherence is difficult to describe using this simple
picture. Saturation also occurs for example for thermal equilibrium in the absence of static
magnetic fields (ωL = 0 in Equation (2.6.15)), but in this case there is obviously no coher-
ence. Therefore, in order to understand the complete effect of the π/2 pulse one needs more
than the simple picture of spins “going up or down”. This simple example shows the power
of the density operator approach to understand pulse sequences in NMR experiments.

The effect of other RF pulses can be readily determined by similar methods, either by
using the explicit matrix forms given in Equation (2.6.11) or by applying Equation (2.6.14).
Another quite common situation is that of a π pulse applied along, say, the x-direction.
Putting θp = π in Equation (2.6.14), one obtains for the deviation density matrix the result
�ρp ∼ −Iz. In terms of the complete density matrices3:

ρ0 =
[ 1

2 + h̄ωL

4kBT
0

0 1
2 − h̄ωL

4kBT

]
(π)−x�⇒ ρ(tp) =

[ 1
2 − h̄ωL

4kBT
0

0 1
2 + h̄ωL

4kBT

]

(2.6.16)

The interpretation is now straightforward: the π pulse leads to the inversion of the popu-
lations of the m = ±1/2 states, with no creation of coherence. Therefore, after such pulse
the magnetization is simply inverted, pointing now in the −z-direction, with no transverse
magnetization appearing as consequence of the pulse.

2Note that there are two compensating changes of signal with respect to Equation (2.6.13): the first due to the
inverse order of the rotation operators in the left-hand side of both equations, and the second because Ix and Iz
are in the “wrong” order in the left-hand member, which corresponds to using Equation (2.6.13) with I1 = Ix ,
I2 = Iz , and I3 = −Iy , since [Ix , Iz] = −iIy .

3Note that the effects of the pulses (π)−x and (π)x are exactly the same.
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The effects of pulses with phases other than the four transverse conventional ones
(x, y,−x,−y) can be calculated by using the matrix given in (2.6.11). Alternatively, the
rotation operator Rφp(θp) can be written in the form [5]:

Rφp(θp) = Rz(φp)Rx(θp)Rz(−φp), (2.6.17)

where the rotation operator Rz(φp) is:

Rz(φ) = e−iφIz =
[

e−iφ/2 0

0 eiφ/2

]
(2.6.18)

Then, the effect of Rφp(θp) can be obtained by sequentially applying Equation (2.6.13)
and the time evolution of the density operator:

ρ(tp) = Rφp(−θp)ρ0Rφp(θp) (2.6.19)

The case of off-resonance pulses is a little bit more involved, since now the axis of
nutation is given by the effective magnetic field in Equation (2.3.6) and, therefore, is not
contained in the transverse plane. The extent to which this axis is tilted out of the transverse
plane and the sense of the tilt is determined by the frequency offset (ωL − Ω). Also the
nutation frequency is no longer given by ω1 = γnB1, but depends on the offset. It can be
shown that the rotation operator describing such off-resonance pulse can be written as a
product of five rotations about orthogonal axes [5]:

R
off
φp

(tp) = Rz(φp)Ry(βp)Rz(ωeff tp)Ry(−βp)Rz(−φp) (2.6.20)

where βp = arctan[ω1/(ωL − Ω)] is the angle that measures the deviation of the nuta-

tion axis from the transverse plane, ωeff =
√

ω2
1 + (ωL − Ω)2 is the effective nutation fre-

quency, and φp is the phase of the pulse. Therefore, the presence of non-negligible offsets
leads to an increase in the nutation frequency and a change in the rotation axis direction.
It is easy to see that, if a given pulse duration has been carefully adjusted to give, say, a π

pulse on resonance, the same pulse will not have the same performance for nuclei far from
resonance.

In practical cases, the extent to which off-resonance effects are important depend on
the dispersion of Larmor frequencies in the system. As we will see in the next section,
due to internal interactions, magnetically distinct nuclei in diamagnetic substances have
slightly distinct Larmor frequencies (an effect named chemical shift). Therefore, in any
sample containing chemically distinct nuclei, there will be always some nuclei that are
off resonance. If the chemical shifts are small compared to the nutation frequency, then
approximation (2.6.6) is good and off-resonance effects can be neglected. For example,
typical chemical shifts for spin 1/2 nuclei in diamagnetic substances fall in the range of
Hz, whereas the nutation frequency ω1/2π is typically of some kHz (for strong pulses).
Therefore, ωeff ∼= ω1 for all nuclei of interest in this case. The situation is completely dif-
ferent in the case of metallic and/or magnetic materials, where the dispersion of Larmor
frequencies can be much larger [4]. Also, for nuclei with I > 1/2 experiencing a strong
quadrupolar interaction (to be described later) the difference in effective nutation frequen-
cies cannot be disregarded [10].
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This feature can be a problem, but also offers a means of applying selective pulses to
excite only some selected resonance lines in a given window defined by the frequency
and bandwidth of the RF pulse. Therefore, it is quite common to use pulses with large
intensity (named hard pulses) for non-selective irradiation (i.e., excitation of all nuclei
irrespective of their particular resonant frequencies) and low-power pulses (named soft
pulses) to selective excitation [5].

After the application of the RF pulse (or sequence of RF pulses), the time evolution of the
system of non-interacting spins 1/2 is again governed solely by the Zeeman Hamiltonian,
which, in the rotating frame is:

HZ = −h̄(ωL − Ω)Iz (2.6.21)

The time evolution of the density matrix in this case is straightforward. It corresponds to
a free precession (ignoring for the time being all relaxation effects), with frequency equal
to the frequency offset:

ρ(τ) = ei(ωL−Ω)τIzρ(tp)e−i(ωL−Ω)τIz (2.6.22)

where τ is the time from the end of application of the pulse. After a (π/2)−x , for example,
one has �ρ(tp) = h̄ωL

2kBT
Iy . Then, �ρ(τ) describes a transverse magnetization precessing

around the z-axis in the rotating-frame with frequency equal to (ωL − Ω) in the negative
sense:

�ρ(τ) = ei(ωL−Ω)τIz

(
h̄ωL

2kBT
Iy

)
e−i(ωL−Ω)τIz

= h̄ωL

2kBT

[
Iy cos(ωL − Ω)τ + Ix sin(ωL − Ω)τ

]
(2.6.23)

The motion of the magnetization in the laboratory frame can be easily obtained now
from the inverse of Equation (2.6.3) and the result is obviously a transverse magnetization
precessing around the z-axis with frequency ωL (in the negative sense). This time-varying
magnetization can be detected by a RF coil placed in the transverse plane and, consid-
ering also the effect of transverse relaxation, this gives rise to the decaying signal (FID)
mentioned in Section 2.3.

We can summarize the results of this section saying that the effects of RF pulses can
be described in the rotating frame in terms of the rotation operators (usually around the
x, y,−x,and −y axes) applied to the deviation density matrix starting from thermal equi-
librium. The evolution of the system after or between the RF pulses is described as a free
precession around the z-axis, with a frequency that depends on the frequency offset and is
therefore different for nuclei experiencing distinct local fields (due to chemical shifts, for
example).

2.7 NUCLEAR SPIN INTERACTIONS

Up to now, we have described the nuclear spins as isolated entities, interacting only with
the externally applied magnetic fields. If this were the whole story, NMR would not have
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many interesting applications, except perhaps as a means of directly determining the gy-
romagnetic ratio of a given nucleus. However, fortunately the nuclear spins are not at all
isolated from each other and from the local environment where they are located. Other-
wise, each nuclear spin experiences a number of electromagnetic fields originated from
internal interactions present in the material. These interactions influence the exact value of
the resonance frequency of each nucleus, and so the measurement of the spectrum of fre-
quencies for a nucleus in a given material constitutes a way to achieve information on the
internal interactions between the nucleus and its environment for that particular substance.
This feature is in the core of all applications of NMR as a tool for structural and chemical
characterization of materials. Furthermore, as it will be detailed later, these internal inter-
actions provide the way through which logical gates can be implemented in NMR quantum
computing schemes. In what follows we present the basics of the main interactions involv-
ing the nuclear spin in a given material, without going deeply into the physics of any of
the interactions. More detailed descriptions can be found in the classic texts by Slichter [4]
and Abragam [8].

Under conditions at which NMR experiments are usually performed, the interactions
between the nucleus and the electromagnetic fields present in its environment (including
the interactions with electrons, other nuclei, other ions, and so on) are well described using
the concept of the nuclear spin Hamiltonian (Hnuclear). This Hamiltonian contains only
terms that depend on the orientation of the nuclear spin and, therefore, its matrix represen-
tation is usually given in the |m〉 basis, which corresponds to eigenstates of the Zeeman
Hamiltonian (HZ). It is convenient to write the nuclear spin Hamiltonian in the form:

Hnuclear = Hext +Hint (2.7.1)

where Hext represents the interactions of the nucleus with applied electromagnetic fields
(external interactions) and Hint corresponds to internal interactions with the local environ-
ment of the nucleus. The two contributions to Hext are the Zeeman and the RF Hamiltoni-
ans, already discussed before:

Hext = HZ +HRF (2.7.2)

Usually, these correspond to the dominant terms in the nuclear spin Hamiltonian, so
that in many cases of interest (but not always), the internal interactions can be treated by
perturbation methods. The effect of the RF pulse is better described in the rotating frame,
where HRF plays the dominant role. If the magnitude of HRF is so large that all terms in
Hint can be neglected during the pulse, then the result of the application of the RF pulse
is straightforward, as described before for the case of isolated spins 1/2. This situation is
not always true, especially when large quadrupolar couplings are present, so in these cases
the combined effect of HRF and the relevant terms in Hint must be taken into account even
during the RF pulse.

There are several contributions to the internal Hamiltonian, depending on the physical
characteristics of the analyzed material. In the case of diamagnetic insulating substances
(which correspond the vast majority of current applications of NMR in liquids and in
solids), the main interactions are usually classified according to:

Hint = HCS +HD +HJ +HQ (2.7.3)
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In such expression, HCS is the chemical-shift interaction of the nucleus with the orbital
motion of the surrounding electrons; HD is the direct (through space) dipolar interaction
between nuclei; HJ is the electron-mediated interaction between nuclei; and HQ is the
quadrupolar interaction between a nucleus with spin > 1/2 and the electric field gradient
at the nuclear position. Each of these terms are briefly described below and simplified
forms for the Hamiltonians are given.

For paramagnetic substances (or samples containing paramagnetic centres), there are
other terms in Hint involving the interactions between the nucleus and the spin magnetic
dipole moment of unpaired electrons, such as the paramagnetic shift and the Knight shift
(for interaction with conduction electrons in metals). In the case of solids presenting any
type of magnetic ordering (as in ferro or antiferromagnetic materials), there are strong hy-
perfine magnetic fields at the nucleus, which are in many instances much larger than the
external magnetic field and this opens the possibility of realization of NMR without exter-
nally applied static magnetic fields (method known as “zero-field NMR”). The interested
reader is referred to the books by Guimarães [7] and Turov & Petrov [15] for a detailed
description of this subject.

2.7.1 Chemical shift

The magnetic field actually experienced at the nuclear position is not equal to the external
magnetic field. Even disregarding bulk magnetic susceptibility effects, which are minor in
diamagnetic substances [4], the disturbance of the orbital motion of nearby electrons gives
rise to an induced magnetic field that adds to the externally applied magnetic field, leading
to a local magnetic field given by:

Bloc = (1 − σ̃ )B0 (2.7.4)

The quantity σ̃ is known as the chemical shielding tensor associated with that particular
nuclear site. The tensorial character of σ̃ implies that Bloc is in general in a direction
different from that of B0, which reflects the anisotropy of the molecular environment of
the considered nucleus. As this is a purely magnetic interaction, analogous to the Zeeman
one, the Hamiltonian HCS is given by:

HCS = −μ · (−σ̃B0) ∼= γnh̄σzzB0Iz (2.7.5)

The last step in the equation above is known as secular approximation and it is a gen-
erally appropriate simplification valid as consequence of the much larger magnitude of
the Zeeman interaction with the external magnetic field as compared to the chemical shift
one [5].

It is important to stress that the component σzz depends on the relative orientation of the
electron cloud in the molecule with respect to the external magnetic field. In a monocrys-
talline solid there is only one value of the parameter σzz for each orientation of the spec-
imen. For an isotropic liquid substance, the average of all possible molecular orientations
leads to an average value for the chemical shift known as the isotropical chemical shift
(σiso) [4]:

HCS ∼= γnh̄σisoB0Iz (2.7.6)
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The parameter σiso is related to the trace of the tensor σ̃ , which is usually written in
a molecular reference frame where this tensor is diagonal, known as the principal axis
system (PAS) of the tensor σ̃ :

σiso = (σXX + σYY + σZZ)/3 (2.7.7)

where σXX , σYY , and σZZ represent the Cartesian components of the tensor σ̃ in the PAS.
Therefore, the net effect of the chemical shift interaction in this case is the production

of a small correction added to the magnetic field. Therefore, the practical consequence
is a shift of the resonance frequency away from the Larmor frequency of a free isolated
nucleus:

ω = ωL(1 − σiso) (2.7.8)

A similar expression (but involving σzz instead of σiso) also applies to the case of a
monocrystalline material. For polycrystalline or powdered samples, on the other hand, the
continuous distribution of orientations of the several crystallites with respect to the direc-
tion of B0 causes an anisotropic broadening of the resonance spectrum, known as broad-
ening due to chemical shift anisotropy (CSA) [10].

It is the dependence of the resonance frequency on the specific molecular environment of
each nucleus expressed by Equation (2.7.8) that makes the NMR technique so widespread
and useful as a tool for identification and characterization of chemical groups in liquid
substances (and also in solids if some special techniques are employed, as it will be detailed
later). The resonance frequency is usually expressed in practice as a relative shift measured
with reference to the resonance frequency (ωref ) of a standard substance:

δ = ω − ωref

ωref
(2.7.9)

The δ values, simply called as the chemical shifts of the resonance lines, are usually
expressed in parts per million (ppm), which indicates the order of magnitude of the typical
shifts in diamagnetic substances.

2.7.2 Dipolar coupling

Any two magnetic dipole moments interact directly through the magnetic fields created by
each one on the position of the other. The magnetic field created by a classical point dipole
at a point located by the vector r with origin on the dipole is (in SI units) [16]:

Bdip = μ0

4π

3(μ · e)e − μ

r3
(2.7.10)

where μ is the magnetic dipole moment, r and e are respectively the magnitude of the
vector r and the unit vector in its direction, and μ0 is the magnetic permeability of free
space.
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The interaction of a dipole μ1with such field created by a dipole μ2 is given by the
classical Zeeman interaction energy: −μ1 · B(2)

dip. The Hamiltonian describing the dipolar
interaction can thus be written in the form

Hdip = μ0

4π

γn1γn2h̄
2

r3
12

[
I1 · I2 − 3(I1 · e12)(I2 · e12)

]
(2.7.11)

This expression can be rearranged by grouping the terms involving each combination of
the Cartesian components of the operators I1 and I2, associated with the two spins. When
this is done, only the dominant terms are retained in the secular approximation. For the
heteronuclear case (i.e., the interaction between two unlike nuclei with γn1 �= γn2) this
leads to the simple expression:

Hdip = −μ0

4π

γn1γn2h̄
2

r3
12

I1zI2z(3 cos2 θ12 − 1) (2.7.12)

where θ12 is the angle between the vector e12 and the external magnetic field B0. The main
characteristics of this Hamiltonian are its dependence with the inverse cube of the distance
between the spins (which restricts usually this interaction to spins located within short
distances) and the orientational dependence. In the case of a single crystal, the resulting
spectrum (for each nucleus) is composed of two resonance lines separated by an amount
proportional to γn1γn2/r3

12, known as Pake doublet [4]. In an isotropic liquid, the complete
averaging of the term 3 cos2 θ12 − 1 leads to zero contribution due to the direct dipolar
interaction for the NMR spectrum in such case (Problem P2.8). On the other hand, in
a polycrystalline solid or powder, the superposition of the contributions of all crystallites
gives rise to a broad powder spectrum, with singularities resembling the Pake doublet found
in monocrystals [10]. The homonuclear dipolar interaction involves further terms [4], but
the qualitative features described above remain the same.

2.7.3 J -coupling

The J -coupling (also called indirect or scalar coupling) is also an interaction between the
nuclear magnetic dipole moments of neighbor nuclei, but in this case the interaction is
not direct, being mediated by the electron cloud involved in the chemical bonds between
the corresponding atoms. The main practical distinction between J - and direct couplings
resides on the fact that the former possesses an isotropic part that survives to the random
molecular motion in isotropic substances, being therefore easily observable in NMR spec-
tra of liquids. As consequence, besides the chemical shift that allows the identification of
each chemical environment, the spectrum shows a further splitting that allows the assess-
ment of the details of the chemical bonds connecting neighbor atoms, usually inside the
same molecule [5]. In solids, this interaction is in general overwhelmed by the more intense
direct dipolar interaction, not being thus normally observed (some examples of J -coupling
in solids can be found in [10]).

The Hamiltonian describing the J -coupling between two nuclear spins I1 and I2 is gen-
erally written in the form:

HJ = 2πh̄I1 · J̃ · I2 (2.7.13)
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The tensor J̃ possesses non-vanishing trace, which gives rise to the isotropic contribu-
tion mentioned above in the NMR spectra of liquids. In terms of the PAS components of
the tensor J̃ the following definition is used:

J = (JXX + JYY + JZZ)/3 (2.7.14)

The secular form of the Hamiltonian HJ in liquids for the simple heteronuclear case is
then [5]:

HJ = 2πh̄J I1zI2z (2.7.15)

When this Hamiltonian is taken as perturbation to the Zeeman Hamiltonian (including
isotropic chemical shift effects), it is found that each line is split in a multiplet that depends
on the number of identical nuclei coupled by the same constant J as well as the spin of
each of these nuclei. For two distinct spin 1/2 nuclei, for example, each line is split into
two other lines separated by an amount (in frequency units) equal to the magnitude of J .
The parameter J can be positive or negative, which means the coupling can favor either an
antiparallel or parallel alignment of the nuclear spins, respectively. The physical meaning
of the J -coupling is related to second-order effects in the interaction between the nucleus
and the spin magnetic moment of the electrons, under the influence of the external magnetic
field. These electron spin-dependent effects vanish to first order in diamagnetic materials,
but through second-order perturbation theory it can be shown that there is a non-vanishing
coupling manifested as an interaction between the nuclear spins [4].

2.7.4 Quadrupolar coupling

As mentioned previously, all nuclei with spin I > 1/2 possess non-spherical charge dis-
tribution and so they are subjected to electrostatic interaction with neighbor electrons and
ions. Through its electric quadrupole moment, the nucleus interacts with the electric field
gradient (EFG) at the nuclear position. Although such interaction is of electrostatic origin,
it influences the spatial orientation of the nucleus and thus it must be related to the nuclear
spin coordinates. A simple example of a quadrupolar electrostatic coupling is depicted
in Figure 2.5 and an instructive classic calculation of the orientational dependence of the
interaction energy in this case is proposed in Problem P2.9.

The EFG is described by a second rank tensor Ṽ whose components correspond to the
second derivative of the scalar electric potential V evaluated at the nucleus:

Vαβ =
(

∂2V

∂xα∂xβ

)

0
(2.7.16)

where the subscript indicates a derivative calculated at the nuclear position, taken as the
origin, and xα and xβ correspond to Cartesian coordinates. By construction, the EFG ten-
sor is symmetric and traceless [4]. In its PAS, therefore, there are only two independent
parameters characterizing the tensor Ṽ . Usually these are chosen to be the parameters eq
and η defined below:

eq = VZZ (2.7.17)

η = VXX − VYY

VZZ

(2.7.18)
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Figure 2.5 A non-spherically symmetric charge distribution (like a quadrupolar nucleus) interacting with an
EFG produced by nearby point charges (like ions in a crystal lattice). The resulting coupling energy depends on
the angle θ that specifies the orientation of the distribution with respect to the EFG.

where the upper case letters indicate PAS coordinates and the Cartesian coordinates in this
system are ordered following the convention |VZZ| � |VXX| � |VYY |. The parameter eq,
sometimes simply named the electric field gradient, is a measure of the maximum strength
of the second derivative of the potential V . The parameter η is called the asymmetry pa-
rameter of the EFG tensor, giving thus information about the deviation of the EFG from
axial symmetry about the Z-axis.

It can be generally shown that the quadrupolar coupling is described by the following
Hamiltonian, written in the PAS associated with the EFG tensor [4]:

HQ = e2qQ

4I (2I − 1)

[
3I 2

Z − I2 + η
(
I 2
X − I 2

Y

)]
(2.7.19)

For application of the perturbation theory, it is necessary to transform this expression
to the laboratory frame, where the dominant Hamiltonian HZ is proportional do the spin
operator Iz. When such transformation is conducted, using Wigner matrices and Euler
angles [10], the resulting form for HQ in the laboratory frame, assuming axial symmetry
for the EFG tensor (η = 0) and using the secular approximation to keep only terms that
commute with HZ , is:

HQ = e2qQ

8I (2I − 1)
(3 cos2 θ − 1)

(
3I 2

z − I2) (2.7.20)

where θ is the angle between the Z-axis of the PAS of the EFG tensor and the external
magnetic field B0 that defines the z-axis in the laboratory-frame.

This Hamiltonian is usually written in terms of a parameter with frequency dimensions,
named ωQ, defined as:

ωQ = e2qQ

8I (2I − 1)h̄
(3 cos2 θ − 1) (2.7.21)
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so that:

HQ = h̄ωQ

(
3I 2

z − I2) (2.7.22)

It is important to mention here that this simple form is appropriate only in situa-
tions where first-order perturbation theory can be safely applied. If the magnitude of the
quadrupolar coupling is large, as it occurs commonly in solids with non-cubic symmetry,
then it is necessary to use second order corrections. In such cases other terms in the ex-
pression for HQ with different angular dependence must be considered and the complete
form of the Hamiltonian is much more complicated than the expression given above.

In the cases where first-order calculation is appropriate, the effects of the Hamiltonian
HQ given in Equation (2.7.22) can be readily computed as both operators Iz and I2 com-
mute with the main Hamiltonian HQ. The result is that the energy levels are not equally
spaced as they were in the case of the Zeeman interaction only. Otherwise, the energy
depends on the quantum number m and the parameter ωQ in the form:

Em = −mh̄ωL + h̄ωQ

[
3m2 − I (I + 1)

]
(2.7.23)

The energy difference between adjacent levels gives the frequency of observable tran-
sitions, which means that there are 2I transitions with different frequencies. The situation
is illustrated in Figure 2.6 for the case I = 3/2. It is important to observe that the en-
ergy values of symmetric levels (±m) are shifted by the same amount as consequence of
the quadrupolar coupling. Therefore, the central transition (1/2 ↔ −1/2) frequency is not
affected by the quadrupolar coupling to first-order, which means that second-order contri-
butions are specially important for calculation of the frequency corresponding to the central
transition in half-integer spin nuclei [10].

The frequency separation between the different peaks depends on the parameter ωQ,
which by its turn depends on the orientation of the EFG with respect to B0. In a single
crystal there is only one value of θ and therefore all peaks are distinctly observed. In a
liquid crystal sample, there occurs a partial spatial averaging of the term (3 cos2 θ − 1),
but again all peaks are usually observed. For an isotropic liquid sample, on the other hand,
the complete averaging to zero of such term indicates that the quadrupolar coupling cannot
be observed directly in the NMR spectrum (although it still has important effects on the
nuclear spin relaxation [5]). For a polycrystalline material, the superposition of all orienta-
tions possible for the collection of crystallites leads to a typically broadened spectrum with
sharp singularities, similar to that described for the chemical shift case. The study of the
methods to either remove or, more interestingly, to take advantage of typically quadrupolar
lineshapes in NMR spectra for attaining structural information on solid substances is one
of the more rapidly growing research areas of solid state NMR [10].

2.7.5 General form of the internal Hamiltonians

All internal nuclear spin Hamiltonians described above present common features that can
be explored for a theoretical description of their effects onto the appearance of a NMR
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Figure 2.6 (a) Illustration of the energy-level splitting due to Zeeman plus first-order quadrupolar coupling in
the case of a spin 3/2 nucleus. (b) A typical NMR spectrum corresponding to the energy levels given in part (a).
Note that this type of spectrum with sharp peaks is observed only in oriented samples, such as single crystals or
liquid crystal samples.

spectrum. By appropriate manipulations, it can be shown that all these Hamiltonians can
be written in the form [10,17]:

Hint = C

3∑

α,β=1

IαRαβAβ (2.7.24)

In this expression, C is a constant specific for each interaction, depending on gyromag-
netic ratios and nuclear electric quadrupole moments. Iα is a Cartesian component of the
nuclear spin, with the sum extended to all three Cartesian coordinates. Rαβ represents the
components of a 3 × 3 Cartesian tensor of second rank that specifies the detailed nature
of each interaction, some examples of which appeared in the expressions given previously
(σ̃ , Ṽ , and J̃ ). Finally, Aβ is a Cartesian component of a vector that can be the same
nuclear spin vector (quadrupolar interaction), another nuclear spin vector (dipolar inter-
action or J -coupling), or the external magnetic field (chemical shift interaction). Some
of the tensors represented by Rαβ are traceless (cases of dipolar and quadrupolar interac-
tions), whereas others (cases of chemical shift and J -coupling) posses non-vanishing trace,
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Figure 2.7 A typical 1H NMR spectrum of ethanol (CH3–CH2–OH), showing the effects of chemical shift and
J -coupling in liquid substances. The three well separated clusters of peaks refer to protons in each of the three
different chemical groups in the molecule (CH3, CH2, and OH), evidencing the effect of chemical shift and its
order of magnitude. The multiplet structures within the CH3 and CH2 groups of peaks are due to J -coupling
between protons inside the same molecule.

which leads in the latter case to the appearance of isotropic shifts in NMR spectra in liquid
substances.

With this general common form, the behavior of all internal Hamiltonians under rota-
tions can be nicely described using irreducible spherical tensorial representations for the
tensor and vector products given in Equation (2.7.24) [4,17]. This formalism allows the
complete understanding of the behavior and evolution of all these Hamiltonians during
complex experimental manipulations carried out in high-resolution NMR, all of which in-
volves rotations performed either spatially or in the spin space.

To summarize the main contents of this section, we show in Figure 2.7 the typical ap-
pearance of NMR spectra in liquid substances, evidencing the role played by chemical
shift and J -coupling interactions, which, as discussed above, are the only ones that sur-
vive to the random molecular motion in liquids. On the other hand, Figure 2.8 exhibits
some typical powder patterns associated with the anisotropic nature of these interactions,
as commonly found in solid-state NMR spectra of polycrystalline samples.

2.8 NMR OF TWO COUPLED SPINS 1/2

As described in Section 2.6, the dynamics of an ensemble of non-interacting nuclei with
spin 1/2 is described with use of the density matrix approach in a two-fold matrix space,
which allows the understanding of the behavior of such collection of nuclei when submit-
ted to static magnetic field, RF pulses, free evolution times, and so on. This description is
complete only if one has a material composed of identical units (molecules, ionic groups,
etc.) with just one chemically distinct NMR-active nucleus in each unit and with all inter-
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Figure 2.8 Typical powder-pattern spectra observed in polycrystalline solids: Chemical Shift under (a) cubic,
(b) axial, and (c) non-axial symmetries; (d) Dipolar interaction between two spins 1/2 (I and S); Quadrupolar
interaction for spins e) 1 and f) 3/2, considering an EFG with axial symmetry. The zero of the frequency scale in
each case corresponds to the frequency associated with isotropic average (as occurring in liquids). The parameter
� depends on the anisotropy of the tensors describing each of the interactions.

nal nuclear spin interactions vanishing for this nucleus (except for the isotropical chemical
shift, which only leads to a shifted resonance frequency). This occurs in the case of chemi-
cally simple substances and/or when some kind of averaging process or symmetry require-
ment is effective in vanishing those interactions. Some specific examples are water (one 1H
site), tetra-methyl-silane (Si(CH3)4, with one 13C, one 29Si, and one 1H site), cubic sodium
chloride (NaCl, with one site for the quadrupolar nucleus 23Na, but vanishing quadrupolar
interaction because of the cubic symmetry), and others, which give so simple NMR spectra
that they are usually employed as references for establishing chemical shift scales. Even
in the liquid state, most substances present both chemical shifts and J -couplings, as in-
troduced in Section 2.7, so that the nuclei feel intramolecular interactions with neighbours
and cannot anymore be described as isolated entities. The next simplest case is then the
study of two J -coupled chemically distinct nuclei in a liquid substance. This description
could be applicable for example to molecules like as chloroform (CHCl3), where there are
only two chemically and magnetically distinct nuclei (13C and 1H) interacting through the
J -coupling. A detailed description of the concepts of chemical and magnetic equivalence,
the motional processes that can lead to vanishing of J -couplings, and other chemical as-
pects of the problem can be found in references [4,5]. Our aim in this section is to give
the basic description of the dynamics of two coupled nuclei with spin 1/2, involving now
a four-fold matrix space, and thus generalizing the description of Section 2.6. The exten-
sion to larger numbers of coupled spins can then be immediately guessed, although the
algebraic aspects would be much more complicated.

Let us consider two J -coupled nuclear spins denoted as I and S. The simplest case to
examine is that of heteronuclear interaction (13C and 1H nuclei in the chloroform molecule,
for example), so that the magnitude of the J -coupling is much smaller than the difference
between the resonant frequencies of the two nuclei. This is named the “AX system” in the
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Chemistry literature.4 The secular Hamiltonian in the heteronuclear case is then given by
(see Equation (2.7.15)):

H = −h̄ωI Iz − h̄ωSSz + 2πh̄J IzSz (2.8.1)

The resonant frequencies ωI and ωS include the effects of isotropical chemical shifts.
The eigenstates and eigenvalues of this Hamiltonian are easily obtained from the matrix
representations of each operator Iz and Sz. As these operators commute and act on different
vector spaces [2], the eigenstates of the Hamiltonian above are simply given by the direct
product of the eigenstates of the operators Iz and Sz. The eigenstates are then written as
|mI ,mS〉, where mI = ±1/2, mS = ±1/2 are the eigenvalues of Iz and Sz, respectively.
The eigenvalues of the Hamiltonian, i.e., the energy levels associated with the Hamiltonian
(2.8.1), are directly evaluated from the acting of the operators Iz and Sz on the |mI ,mS〉
basis, leading to:

|+1/2,+1/2〉: E+1/2,+1/2 = h̄

(
−ωI

2
− ωS

2
+ πJ

2

)
(2.8.2)

|+1/2,−1/2〉: E+1/2,−1/2 = h̄

(
−ωI

2
+ ωS

2
− πJ

2

)
(2.8.3)

|−1/2,+1/2〉: E−1/2,+1/2 = h̄

(
ωI

2
− ωS

2
− πJ

2

)
(2.8.4)

|−1/2,−1/2〉: E−1/2,−1/2 = h̄

(
ωI

2
+ ωS

2
+ πJ

2

)
(2.8.5)

In the case of positive values for J , γI , and γS , and if ωI > ωS , then the levels above
are arranged from the top to the bottom in order of increasing energy. Transitions between
these levels are allowed (i.e., give rise to NMR signal) according to the selection rules
�mI,S = ±1. Therefore, there are four peaks in the full NMR spectrum, at the frequencies
ωI ± πJ and ωS ± πJ . The separation within each doublet is, in angular frequency units,
equal to 2πJ , or, in frequency units, equal to J .

It is clear then that one needs to describe all relevant operators (related to the spin compo-
nents) using their matrix representations in the four-fold vector space generated by the state
vectors |mI ,mS〉. These matrices can be constructed by evaluating each matrix element or
they can be built by the direct tensorial product of the corresponding 2 × 2 matrices that
describe the dynamics of the separate spin 1/2 systems [5,12]. The direct tensorial product
of two n × n matrices A and B lead to a n2 × n2 matrix C = A ⊗ B whose elements are

4Two nuclei of the same chemical species, with a J -coupling comparable to the difference between their chem-
ically shifted resonant frequencies are known as “AB system” and the treatment is a little bit more involved [5,
12].
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related to the products between the elements of A and B by:

C1;1 = A1;1B1;1; . . .C1;n = A1;1B1;n;
C1;n+1 = A1;2B1;1; . . .C1;n2 = A1nB1n (2.8.6)

C2;1 = A1;1B2;1; . . .C2;n = A1;1B2;n;
C2;n+1 = A1;2B2;1; . . .C2;n2 = A1nB2n (2.8.7)

(. . .) (2.8.8)

It is easier then to think of C as being a “matrix of matrices”. For instance, the matrix
representation of the operator Iz is given by:

Iz = I (2×2)
z ⊗ 1(2×2) = 1

2

[
1 0
0 −1

]
⊗
[

1 0
0 1

]

= 1

2

⎡

⎢⎢⎣

1

[
1 0
0 1

]
0

[
1 0
0 1

]

0

[
1 0
0 1

]
−1

[
1 0
0 1

]

⎤

⎥⎥⎦= 1

2

⎡

⎢⎣

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎤

⎥⎦ (2.8.9)

where I
(2×2)
z is the matrix given in Equation (2.6.1) (which represents the operator Iz in

the 2 × 2 space of a single spin 1/2) and 1(2×2) is the 2 × 2 identity matrix.
On the other hand, the matrix representation for Sz is:

Sz = 1(2×2) ⊗ S(2×2)
z =

[
1 0
0 1

]
⊗ 1

2

[
1 0
0 −1

]

= 1

2

⎡

⎢⎢⎣

1

[
1 0
0 −1

]
0

[
1 0
0 −1

]

0

[
1 0
0 −1

]
1

[
1 0
0 −1

]

⎤

⎥⎥⎦= 1

2

⎡

⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎦ (2.8.10)

The density operator of the system can be constructed using the results of Section 2.5
(see Equation (2.5.7)). At thermal equilibrium and in the high temperature limit, the density
matrix obtained from the Hamiltonian given in Equation (2.8.1) is:

ρ0 = 1

Z
e−H/kBT ∼= 1

4
1 + 1

4

h̄ωI

kBT
Iz + 1

4

h̄ωS

kBT
Sz (2.8.11)

The small terms involving J were neglected in this expression. The deviation density
matrix is:
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�ρ0 = 1

4

h̄ωI

kBT
Iz + 1

4

h̄ωS

kBT
Sz

= 1

8

⎡

⎢⎢⎢⎢⎣

h̄ωI

kBT
+ h̄ωS

kBT
0 0 0

0 h̄ωI

kBT
− h̄ωS

kBT
0 0

0 0 − h̄ωI

kBT
+ h̄ωS

kBT
0

0 0 0 − h̄ωI

kBT
− h̄ωS

kBT

⎤

⎥⎥⎥⎥⎦
(2.8.12)

It is clear in this matrix how the differences in populations between the several (mI ,mS)

levels appear in the matrix density. The differences involving the term h̄ωI

kBT
between the

pairs (�ρ011,�ρ022) and (�ρ033,�ρ044) reflect the population differences related to spin I ,
whereas the differences involving the term h̄ωS

kBT
between the pairs (�ρ011,�ρ033) and

(�ρ022,�ρ044) reflect population differences related to spin S.
The concept of the rotating frame is used here again to describe the effects of RF pulses.

But now we have actually two independent rotating frames, each one related to either fre-
quency ωI or ωS . The use of two independent rotating frames in this theoretical description
is related in practice to the use of double-resonance probes for performing actual NMR ex-
periments, i.e., probes that can be tuned independently to two very different frequencies.
This point will be further detailed in Section 2.12. Each rotating frame precesses about
the common z-axis with frequency ΩI or ΩS . The effective Hamiltonian for a RF pulse
applied along the x-direction to the spin I in the double rotating frame is therefore:

H(Ix)
eff = −h̄(ωI − ΩI )Iz − h̄(ωS − ΩS)Sz + 2πh̄J IzSz − γI h̄B

(I)
1 Ix (2.8.13)

The expression corresponding to a RF pulse applied to the spin S is analogous. Usu-
ally, for strong RF pulses applied close to resonance, the term involving the J -coupling as
well as those corresponding to frequency offsets are small compared to the term involving
the RF field, so that the effective Hamiltonian during the pulse can be approximated by
−γI h̄B

(I)
1 Ix or −γSh̄B

(S)
1 Sx . Therefore, the effects of RF pulses are simply described as

rotations around the transverse axis defined by the phase of the pulse. Also, as the res-
onance frequencies in the heteronuclear case are far apart one from another, each pulse
applied at the frequency of one spin has no effect on the other spin, and therefore it is
completely disregarded when computing the time evolutions of the respective density ma-
trices. For example, the operators below describe, respectively, the effects of (π/2)x pulses
applied to the I and S spins:5

R(I)
x (π/2) = R(2×2)

x (π/2) ⊗ 1(2×2) = 1√
2

⎡

⎢⎣

1 0 −i 0
0 1 0 −i

−i 0 1 0
0 −i 0 1

⎤

⎥⎦ (2.8.14)

R(S)
x (π/2) = 1(2×2) ⊗ R(2×2)

x (π/2) = 1√
2

⎡

⎢⎣

1 −i 0 0
−i 1 0 0
0 0 1 −i

0 0 −i 1

⎤

⎥⎦ (2.8.15)

5It is important to note that in the case of strong coupling between identical nuclei, the RF pulses act simulta-
neously on both spins and the matrices describing such pulses are completely different from the above ones [5].
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After such (π/2)x pulses, the deviation density matrix can be obtained using either the
operators R

(I)
x (π/2) or R

(S)
x (π/2) and following the same reasoning used in Section 2.6 for

non-interacting spins 1/2 (see Equation (2.6.12), for example). Starting from �ρ0 given in
Equation (2.8.12), after a (π/2)x applied to spin I one has �ρ(tp) ∼ −Iy , whereas for a
(π/2)x applied to spin S, �ρ(tp) ∼ −Sy .

Next, it is necessary to consider the evolution of the density matrix during the periods
between the RF pulses. The time evolution occurs under action of the frequency offsets
(related to chemical shifts of each spin), which is analogous to the case of non-interacting
spin 1/2 systems, but now there is also evolution under the J -coupling interaction. Using
the Hamiltonian given in (2.8.1) (properly transformed to the rotating frame) and the matrix
representations for Iz and Sz given in Equations (2.8.9) and (2.8.10), respectively, one
arrives at the evolution operator evaluated a time τ after the end of application of the RF
pulse:

U = e−(i/h̄)Hτ

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ei(ωI −ΩI )τ/2 0 0 0
×ei(ωS−ΩS)τ/2e−iπJ τ/2

0 ei(ωI −ΩI )τ/2 0 0
×e−i(ωS−ΩS)τ/2eiπJτ/2

0 0 e−i(ωI −ΩI )τ/2 0
×ei(ωS−ΩS)τ/2eiπJτ/2

0 0 0 e−i(ωI −ΩI )τ/2

×e−i(ωS−ΩS)τ/2e−iπJ τ/2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.8.16)

The first two exponentials in each element can be interpreted as rotations around the
z-axis at the frequency offsets ±(ωI −ΩI) and ±(ωS −ΩS), where the plus or minus sign
depends on the mI and mS values. As for the e±iπJ τ/2 terms, they also describe preces-
sions around the z-axis, but now with a frequency that depends, for each spin, on the state
of the other spin in the coupled pair. For the elements 1;1 and 4;4 (which correspond to
the |+1/2,+1/2〉 and |−1/2,−1/2〉 states, respectively) one has a parallel coupling be-
tween the spins I and S, which leads to a change in the precession frequency by the amount
−πJ both for I and S spins. On the other hand, the elements 2;2 and 3;3 (corresponding
to |+1/2,−1/2〉 and |−1/2,+1/2〉 states, respectively) involve an antiparallel coupling
between the spins I and S, leading now to a change in precession frequency by the amount
+πJ both for I and S spins. It is clear then that we have now a coupled evolution of
the spins: the acting (by application of RF pulses and allowing some time evolution) on
a given spin will produce a measurable effect on the other spin. Therefore, determining
how a nuclear spin pair behaves under a given RF pulse sequence allows the assessment
of the magnitudes and signs of the scalar coupling constants, and thus of the possible in-
terconnectivity between the involved atoms. This is the basis of many multiple resonance
experiments performed in modern NMR applications aiming structural elucidation of com-
plex molecules.

Furthermore, the existence of this internal coupling mechanism opens the possibility
of construction of logical gates using the spins as logical indicators. This feature is in
the essence of NMR applications in Quantum Computing and will be detailed in later
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Figure 2.9 Conditional inversion of a spin in a weakly coupled spin 1/2 system, following the pulse sequence
given in (2.8.17).

Chapters. Now we just present a simple example of this coupled evolution for a basic pulse
sequence that allows a vector model interpretation of the evolution, without carrying out
the detailed matrix calculations. This experiment is related to a method known in NMR
Chemistry as INEPT (Insensitive Nuclei Enhanced via Population Transfer) [5,43,12]. The
pulse sequence is as follows:

R(I)
x (π/2) U(1/2J ) R(I)

y (π/2) (2.8.17)

The π/2 pulses are applied only to the I spin, and the signal is also recorded for that spin.
The U(1/2J ) operator indicates an evolution under the J -coupling for the interval τ =
1/2J . Let us consider two different spin pairs, one with parallel (let us call it pair 1) and
the other (pair 2) with antiparallel orientation of the I and S spins. In a real sample these
would correspond to different molecules, with the nuclei coupled in a different relative
orientation in each one. The vector model description for the time evolution of the pairs 1
and 2 is shown in Figure 2.9 in the left- and right-hand sides, respectively. Considering
a rotating frame with a frequency exactly midway between the doublet peaks for spin
I , which means that ΩI = ωI , then the precession frequency is �ωI = −πJ for pair 1
and �ωI = +πJ for pair 2. After the (π/2)x pulse, the I spins from both pairs 1 and 2
are driven to the transverse plane into the −y direction. During the subsequent time they
precess in opposite directions; after the interval τ = 1/2J , the precession angle reaches
the absolute value of π/2 and the I spin magnetization vectors point either to the −x (for
pair 1) or to the +x (for pair 2) direction. Now the (π/2)y pulse is applied and drives
the I spins belonging to each pair to opposite directions. For pair 1, the spin ends in the
+z direction, whereas it ends in the −z direction for pair 2. Therefore, this simple pulse
sequence leads to a conditional inversion of spin I and thus it is capable of distinguishing
the signals arising from pairs containing nuclei coupled in different ways.
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With the evolution and rotation operators, all pulse sequences describing experiments in
weakly coupled AX systems can be properly followed. To determine the state of the system
after a given sequence of events involving pulses and free evolution periods, it is usual to
expand the density matrix in a series of operators constructed from the products involving
the spin operators Ix , Iy , Iz, Sx , Sy , and Sz, as well as the identity matrix. These operators
are known as product operators. In the case of the AX system, there are 16 product opera-
tors, some examples of which being Ix , Sz, IySy , IzSx , and so on. Each particular product
has a physical meaning related to the populations and coherences of the coupled spin sys-
tem. Each coherence is classified according to the difference in the quantum number of the
total angular momentum operator of the system (Iz + Sz) between the states connected by
the coherence. In this way, one can have zero, single, or double quantum coherences in the
AX system. For example, the operators Ix and Iy represent single quantum coherences for
spin I , whereas Sx and Sy are related to single quantum coherences for spin S. The oc-
currence of such single quantum coherences points to observable transverse magnetization
for the respective spin species. The operator IxSz is known as antiphase x-magnetization
for spin I , whereas IzSz represents an antiphase z-magnetization for both spins. The oper-
ator IxSx contains a combination of zero and double quantum coherences, which are not
directly observable experimentally but play an important role in many NMR experiments
because they evolve in time along the pulse sequence and can be converted into observable
single quantum coherences by suitable RF pulses [4,5].

2.9 NMR OF QUADRUPOLAR NUCLEI

In this section we will give the basics of the dynamics of nuclei with I > 1/2 experi-
encing a non-vanishing quadrupolar interaction with an electric-field gradient (EFG). As
mentioned previously, this situation is quite common in crystalline solids with non-cubic
symmetry and also in liquid crystals. In isotropic liquids, on the other hand, the quadrupo-
lar interaction is, as mentioned before, averaged out by the rapid motion of the molecules,
leading to vanishing quadrupolar effects. Most examples will be given taking I = 3/2 as a
specific case, since this is of great importance both in quantum computation schemes and
also in many solid-state NMR investigations. The extension to other spin values is mostly
straightforward, although more laborious.

For an ensemble of nuclei with spin I > 1/2 experiencing no quadrupolar interaction,
such as in an isotropic liquid or a crystal with cubic symmetry, the equations describing
the time evolution of the density matrix under action of static and RF magnetic fields are
a natural extension of the I = 1/2 case. The Hamiltonian contains only the Zeeman and
RF terms; the effects of RF pulses are described by rotations of the spin operators around
the transverse axes in the rotating frame, whereas free evolution corresponds to rotations
around the z-axis.

To be more specific, let us detail the I = 3/2 case. The matrix representations of the
nuclear spin operators in the |m〉 basis are given by:

Ix = 1

2

⎡

⎢⎢⎣

0
√

3 0 0√
3 0 2 0

0 2 0
√

3

0 0
√

3 0

⎤

⎥⎥⎦ Iy = i

2

⎡

⎢⎢⎣

0 −√
3 0 0√

3 0 −2 0

0 2 0 −√
3

0 0
√

3 0

⎤

⎥⎥⎦
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Iz = 1

2

⎡

⎢⎢⎣

3 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −3

⎤

⎥⎥⎦ (2.9.1)

The thermal equilibrium density matrix is:

ρ0 = 1

4
1 + 1

4

h̄ωL

kBT
Iz =

⎡

⎢⎢⎢⎢⎣

1
4 + 3h̄ωL

8kBT
0 0 0

0 1
4 + h̄ωL

8kBT
0 0

0 0 1
4 − h̄ωL

8kBT
0

0 0 0 1
4 − 3h̄ωL

8kBT

⎤

⎥⎥⎥⎥⎦

(2.9.2)

And the deviation density matrix corresponding to an ensemble of identical nuclei at
thermal equilibrium is:

�ρ0 = 1

4

h̄ωL

kBT
Iz = 1

4

⎡

⎢⎢⎢⎢⎣

3h̄ωL

2kBT
0 0 0

0 h̄ωL

2kBT
0 0

0 0 − h̄ωL

2kBT
0

0 0 0 − 3h̄ωL

2kBT

⎤

⎥⎥⎥⎥⎦
(2.9.3)

The effects of RF pulses are analysed in the rotating frame, precessing around the z-axis
with frequency Ω . The effective Hamiltonian for a RF pulse applied along the x-direction
in this case is given simply by:

Heff = −h̄(ωL − Ω)Iz − γnh̄B1Ix (2.9.4)

On resonance, i.e., when Ω = ωL, we have Heff = −h̄ω1Ix and the time-evolution is
accomplished by the operator U = e−(i/h̄)Heff tp = eiω1tpIx = Rx(−θp), associated with
left-hand rotations around the x-axis with nutation frequency ω1 = γnB1. The expressions
for the rotation operators can be obtained from the evaluation of the exponential series
expansion:

Rx(θp) = e−iθpIx =
∞∑

k=0

(−i)k
θk
p

k! I
k
x (2.9.5)

This series can be evaluated either by numerical methods or by collecting the partial
series of common spin operators (such as Ix , I 2

x , and so on) [5,12]. For the present case,
I = 3/2, we have for a π/2 pulse, for example:

Rx(π/2) = 1

2
√

2

⎡

⎢⎢⎣

1 −i
√

3 −√
3 i

−i
√

3 −1 −i −√
3

−√
3 −i −1 −i

√
3

i −√
3 −i

√
3 1

⎤

⎥⎥⎦ (2.9.6)



70 2. Basic Concepts on Nuclear Magnetic Resonance

It can be easily shown from direct matrix products that Rx(−π/2)IzRx(π/2) = Iy . This
result shows thus that, starting from thermal equilibrium, where the deviation density ma-
trix is given by Equation (2.9.3), one can generate single-quantum coherences in the den-
sity operator by applying a RF pulse with proper phase and duration. Therefore, a trans-
verse magnetization can be excited and detected in the same way as the spin 1/2 case.
These considerations show then that, in the absence of quadrupolar interaction, the action
of RF pulses in the spin 3/2 case is completely analogous to the case of spin 1/2.

When there is a non-vanishing quadrupolar coupling, the situation is much more com-
plicated. Now the Hamiltonian in the laboratory frame, before the application of the RF
pulse, is given by:

H = −h̄ωLIz + h̄ωQ

(
3I 2

z − I2) (2.9.7)

where, as before, ωL is the Larmor frequency (including the corresponding chemical shifts)
and ωQ is the effective quadrupolar coupling constant, which includes an orientational
dependence as shown in Equation (2.7.21). For a RF pulse applied in the x-direction, the
effective Hamiltonian in the rotating-frame is:

Heff = −h̄(ωL − Ω)Iz + h̄ωQ

(
3I 2

z − I2)− h̄ω1Ix (2.9.8)

When we are close to resonance (ωL
∼= Ω) and the RF amplitude is sufficiently large

(ω1 � ωQ), the effective Hamiltonian in the rotating-frame is once more given simply
by Heff ∼= −h̄ω1Ix . Therefore, in this case we have again the result that RF pulses cause
rotations around the x-axis, leading to coherences that can be readily detected as trans-
verse magnetization. For I = 3/2, the population differences between the adjacent levels
(3/2,1/2), (1/2,−1/2), and (−1/2;−3/2) are converted into single quantum coherences
and therefore all contribute to the transverse magnetization. The resultant NMR spectrum
in this case is composed by three peaks, centered at the frequencies ωL, ωL − 6ωQ, and
ωL + 6ωQ. This can readily be computed by applying first-order perturbation theory to
the Hamiltonian (2.9.7), considering the quadrupolar term as a perturbation to the main
Zeeman Hamiltonian [4].

We have therefore established the important result that, in principle, even in the presence
of the quadrupolar interaction, RF pulses with sufficiently high power can excite all al-
lowed transitions and the whole NMR spectrum can then be obtained. These RF pulses are
termed hard or non-selective pulses. It is important to stress that this can only be achieved
if the condition ω1 � ωQ is satisfied (with both ω1 and ωQ being much smaller than ωL).

The opposite extreme regime, when ω1  ωQ, involves the so-called soft or selective RF
pulses. In this case, pulses of long duration and low power can be used to excite just one
of the transitions, which is achieved by a suitable choice of the resonance offset (Ω) and
also of the pulse length. The main aspect to be considered here is that each transition has
associated with it a specific frequency and a different effective nutation frequency, which
depends on the values of I and m. For selective excitation of a transition between the levels
m+1 and m, it is found that the ideal soft π/2 pulse must be shorter than the corresponding
hard π/2 pulse (which excites all transitions) by a factor of

√
I (I + 1) − m(m + 1). For

excitation of just the central transition (1/2 ←→ −1/2) for half-integer spin nuclei, the
length of an ideal soft π/2 pulse is reduced by a factor of I + 1/2 in comparison to a hard
pulse. Thus, for I = 3/2, the ideal pulse for the selective excitation of the central transition
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is half the length of a π/2 pulse used for non-selective excitation, whereas the excitation
of the 3/2 ←→ 1/2 and −1/2 ←→ −3/2 transitions requires a pulse shorter by a factor
of

√
3 in comparison to the hard pulse [18,19].

The theoretical basis for such features can be obtained by analysis of the time evolution
in the rotating frame under action of the Hamiltonian (2.9.8). This requires the diagonaliza-
tion of such Hamiltonian and the solution of the Liouville–von Neumann equation (Equa-
tion (2.5.3)). Usually, the results are properly described using the fictitious spin-1/2 for-
malism or the single-transition operator approach [18,20,21]. As example, we give below
the matrix representation of the rotation operator corresponding to the selective excitation
of the central transition in the case I = 3/2 for a π/2 pulse [22]:

R
1/2←→−1/2
x (−π/2) =

⎡

⎢⎢⎢⎣

e−iωQtp 0 0 0

0 1√
2
eiωQtp i√

2
eiωQtp 0

0 i√
2
eiωQtp 1√

2
eiωQtp 0

0 0 0 e−iωQtp

⎤

⎥⎥⎥⎦ (2.9.9)

where tp is the pulse length. The terms involving eiωQtp are related to the evolution occur-
ring during the pulse interval as consequence of the quadrupolar interaction. If the pulse
length satisfies the criterion ωQtp  1, then this evolution can be disregarded, and the
matrix above assumes the form:

R
1/2←→−1/2
x (−π/2) =

⎡

⎢⎢⎢⎣

1 0 0 0

0 1√
2

i√
2

0

0 i√
2

1√
2

0

0 0 0 1

⎤

⎥⎥⎥⎦ (2.9.10)

This matrix can be written as

R
1/2←→−1/2
x (−π/2) = ei(π/2)I

1/2←→−1/2
x (2.9.11)

where the fictitious spin-1/2 operator I
1/2←→−1/2
x is defined below:

I
1/2←→−1/2
x = 1

2

⎡

⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

⎤

⎥⎦ (2.9.12)

It is clearly seen that the central fragments of this matrix correspond to the matrix repre-
sentation of the operator Ix for the spin 1/2 case, as shown in Equation (2.6.1). Thus, the
equations above show that the selective excitation actually changes only the populations
of the m = ±1/2 levels, generating coherences only between these levels and therefore
giving rise to a spectrum containing only the corresponding resonance line.

When ω1 ∼ ωQ (the so-called intermediate regime) the evolution of the density matrix in
the rotating-frame exhibits a much more complex behavior as function of the pulse length
and this is the basis of the method known as nutation NMR spectroscopy [10,19]. The dis-
tinction between selective (ω1  ωQ), non-selective (ω1 � ωQ), and intermediate regimes
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(ω1 ∼ ωQ) can bring some difficulties regarding the quantitativeness of NMR spectra in
materials with more than one value of ωQ. In a solid polycrystalline sample, the spread
of ωQ values due to the orientation distribution of the crystallites with respect to the B0
direction makes the selectivity condition difficult to be equally fulfilled for all crystallites
in a given sample. The same obviously occurs if the material has different crystalline sites
with widely differing quadrupolar parameters. The problem is that the intensities of the
observed resonance lines will be largely dependent on the particular relation between ω1
and ωQ for each specific nuclear site in a solid material. The same pulse that is selective
for, say, the central transition for a nucleus in a given site can be non-selective for a nucleus
in another site. The relation between the observed intensities will not be therefore propor-
tional to the relation between the respective amounts of nuclei in each site. In such cases,
for uniform non-selective excitation, it is preferable to work with short high-power pulses,
with flip angles significantly below π/2 (typically in the order of π/12 or π/20). It can be
shown that for small flip angles the pulse response depends linearly on the pulse length and
thus in this linear regime the relation between the intensities of the resonance lines is not
greatly affected by differences in the ratio ωQ/ω1. The use of such small flip-angle pulses
aims to guarantee the quantitativeness of the response of the nuclei in the material to the
RF excitation, since the intensity of the detected signal depends in a complex way on the
magnitude of both ω1 and ωQ [10,19,23].

The time evolution of the density operator after the end of the RF pulse (or sequence
of RF pulses) can be easily calculated by the same methods applied to spin 1/2 systems.
Considering the on-resonance case, the Hamiltonian in the rotating-frame is now:

HRot
Q = h̄ωQ

(
3I 2

z − I2) (2.9.13)

The corresponding evolution operator is:

UH = e−iωQt(3I 2
z −I2) (2.9.14)

Disregarding relaxation effects, the deviation density operator evaluated a time τ from
the end of the pulse is:

�ρ(τ) = e−3iωQτI 2
z �ρ(tp)e3iωQτI 2

z (2.9.15)

where the contribution of the term I2 was neglected, because it is proportional to the iden-
tity operator, I2 = I (I + 1)1, and therefore has no net effect on the time evolution of the
density operator. After a non-selective (π/2)−x , for example, one has �ρ(tp) ∼ Iy . Then,
the time evolution described by Equation (2.9.15) shows a precession in the rotating-frame
associated with the quadrupolar interaction. The resulting density matrix allows the calcu-
lation of the expectation value of the transverse magnetization and, consequently, of the
FID. For I = 3/2, it is straightforward to show that:

〈Ix + iIy〉 = Tr
[
ρ(τ)(Ix + iIy)

]= 3 cos(6ωQτ) + 2 cos(0.τ ) (2.9.16)

Thus, the expectation value of the magnetization evolves in the rotating frame with the
frequencies 0 and ±6ωQ. When viewed from the laboratory frame, these precessing mag-
netizations give rise to alternate electric signals detected with frequencies ωL − 6ωQ, ωL,
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and ωL + 6ωQ and with intensities respectively in the proportion 3 : 4 : 3. The Fourier
transform of the associated FID thus contains three lines centered at these frequencies,
whose separation is proportional to the quadrupolar coupling parameter ωQ.

On the other hand, after a selective pulse applied to a given transition connecting the
levels specified by m and m − 1, the deviation density matrix contains coherences only
between those levels. For I = 3/2 and considering a selective (π/2)−x pulse applied to the
central transition (1/2 ←→ −1/2), the deviation matrix is proportional to a fictitious spin-
1/2 operator I

1/2←→−1/2
y , whose form is analogous to the one given in Equation (2.9.12).

The time evolution of such operator can be calculated from Equation (2.9.15), and the
resulting FID from the calculation of the expectation value 〈Ix + iIy〉. In this case, it is
found that the FID involves only one oscillating signal with frequency ωL. Therefore, the
NMR spectrum now contains only one line, centered at frequency ωL, but with intensity
reduced as compared to the corresponding line detected in the non-selective case [18,23].

Also multiple-quantum (MQ) coherences (i.e., coherences corresponding to density ma-
trix elements of the type ρmn, with |m−n| > 1) can be generated following the application
of RF pulses in the case of nuclei experiencing strong quadrupolar coupling. (The same
is true for systems of nuclear spins coupled by dipolar or J -couplings.) These coherences
cannot be directly observed in an NMR experiment, but their production and evolution has
many important consequences both in solid-state NMR applications [10,14] and in quan-
tum computing processes involving quadrupolar nuclei (to be detailed later). In practice,
MQ coherences are indirectly detected by applying RF pulses that convert them into single
quantum coherences. The RF pulses for generation and for reconversion of MQ coher-
ences need to be carefully designed with respect to amplitude, phase, and offset frequency
to properly provide the desired coherence transfer pathways [13,20].

2.10 DENSITY MATRIX APPROACH TO NUCLEAR SPIN RELAXATION

The relaxation processes can be also described using the density operator formalism. To
account for the longitudinal and transverse relaxations for a simple spin 1/2 system in
a phenomenological way [24], the relaxation effects on the time evolution of the density
matrix, ρ(t), can be estimated by:

dρ

dt
= i

h̄
[ρ,H0] − 1

h̄
R (2.10.1)

where H0 is the static nuclear spin Hamiltonian which defines the NMR spectrum, and R

is a phenomenological relaxation matrix whose components are given by:

Rij = h̄
[ρij (t) − ρij (0)]

Tij

(2.10.2)

For single spin 1/2 systems, Tij is related to the relaxation times by:

Tij = T1δij + T2(1 − δij ) (2.10.3)

However, in a more general situation, T1 and T2 can assume different values for the
relaxation of each population and coherence.
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Using a more general formalism to describe the relaxation for any spin system [4,8,12,
25], the time evolution of the density matrix under the influence of the relaxation Hamil-
tonian can be determined by:

dρ(t)

dt
= i

h̄

[
ρ(t),HT (t)

]
(2.10.4)

where

HT (t) = H0 +HR(t) (2.10.5)

and HR(t) is a perturbative time-dependent Hamiltonian. This last term contains all the
interactions providing the pathways which allow the nuclear spin non-equilibrium density
matrix going back to the equilibrium.

To simplify the solution of Equation (2.10.4), let’s use the interaction representation [9]
to remove time-independent terms of HT (t) and write the effective relaxation Hamiltonian
H∗

R(t) as:

H∗
R(t) = e(i/h̄)H0tHR(t)e−(i/h̄)H0t (2.10.6)

and the new density matrix as relaxation density matrix ρR(t), defined by:

ρR(t) = e(i/h̄)H0t ρ(t)e−(i/h̄)H0t (2.10.7)

Using the interaction representation, ρR(t) will evolve under the new Liouville equation:

dρR(t)

dt
= i

h̄

[
ρR(t),H∗

R(t)
]

(2.10.8)

While the diagonal elements ρR
ii (t) account for the time dependence of the populations

of the eigenstates associated with the longitudinal relaxation, the off-diagonal elements
ρR

ij (t) describe the time dependence of the coherences between the different eigenstates
associated with the transverse relaxation [26].

The derivative of the diagonal components,
dρR

ii (t)

dt
, gives the rate at which the population

of one eigenstate changes. Considering that the total population of the spin system is con-
stant, the following constraint should be respected: d

dt

∑
i ρ

R
ii (t) = 0. The derivative of the

off-diagonal components,
dρR

ij (t)

dt
, with i �= j , accounts for the rate at which each coherence

decays.
Normally, the experimentally observed longitudinal and transverse relaxations involve

zero- and single-quantum processes (�m = i − j = 0 or ±1). The other time-dependent
density matrix elements ρR

ij (t) with |�m| > 1 are classified as multiple-quantum coher-
ences. Although these coherences are not directly observable, it is possible to measure
every element of the relaxation density matrix by employing specially designed NMR
methods. These coherences are very important for multiple-quantum experiments [13] and
quantum computation NMR applications, as it will be described later.

The random molecular motional processes, which make the nuclear spin Hamil-
tonian H∗

R(t) time dependent, are responsible for the nuclear spin relaxation. In order to
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understand the effects of the relaxation Hamiltonian H∗
R(t), which represents a weak and

statistically random time-dependent perturbation on the spin system, it is necessary to use
the density matrix treatment known as the Redfield theory [27,28]. The Redfield theory is a
semi-classical treatment in which the spin system and the lattice are considered as quantum
and classical entities, respectively.

The Redfield theory results in the master equation [26]:

dρR
mn(t)

dt
=
∑

k,l

ei(ωmn−ωkl)tRmnklρ
R
kl(t) (2.10.9)

where ωmn = (Em −En)/h̄ is the resonance frequency connecting the m and n states asso-
ciated with the dominant static Hamiltonian H0. The elements Rmnkl are the components
of the relaxation matrix defined by:

Rmnkl = Jmknl(ωmk) + Jmknl(ωnl) − δmk

∑

p

Jpnpl(ωpl) − δnl

∑

p

Jpmpk(ωpk)

(2.10.10)

where the components Jmnkl(ω) are the spectral density functions:

Jmnkl(ω) =
∫ ∞

0
〈m|H∗

R(0)|n〉〈k|H∗
R(τ)|l〉e−iωτ dτ =

∫ ∞

0
Pmnkl(τ )e−iωτ dτ

(2.10.11)

where Pmnkl(τ ) is the correlation function and τ is the correlation time.
In order to implement the relaxation calculations some additional definitions should

be provided: i) the nuclear spin interactions acting as relaxation mechanisms and ii) a
molecular model motion, including iii) the distribution of correlation times at which the
motion is occurring. These features will depend on aspects such as the temperature, the
physical state of the sample, and the magnitude of the external applied magnetic field,
among others. A more detailed analysis of such relaxation mechanisms can be found in
References [4,8,25,26].

2.11 SOLID-STATE NMR

In liquid isotropic samples the molecules typically execute fast and random motions so
that the anisotropic components of the spin interactions are averaged out. Then, the only
remaining contribution for the NMR spectra comes from the isotropic terms in the chem-
ical shift and J -coupling interactions, resulting in spectra composed of very well defined
resonance lines. Given that these motions are restricted in solid samples, the anisotropic
components are not averaged or are only partially averaged. Since the resonance of each
nucleus depends on the local field at its site, and the intensity of these local fields depends
on the orientation of the neighboring nuclei, of the electron clouds, and/or of the electric
gradient fields, there will be a considerable spread in the resonance frequencies resulting
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in broad spectra, where it is difficult to distinguish the different isotropic terms (usually
the isotropic chemical shift terms). Another problem for obtaining spectra from solid sam-
ples for rare nuclei (low natural abundance) with small gyromagnetic ratio, such as 13C,
is associated with the low sensitivity related to two problems: small NMR signal and long
spin-lattice relaxation times [29]. In order to circumvent these problems three methods are
routinely applied in solid-state NMR experiments: Dipolar (Homo and Heteronuclear) De-
coupling and Magic-Angle Spinning (MAS) for improving the resolution of the spectra,
and Cross-Polarization (CP) for increasing the sensitivity.

2.11.1 Dipolar decoupling

The dipolar decoupling technique is used to suppress the magnetic dipolar interaction be-
tween nuclear spins. When observing rare 13C nuclei, for example, the homonuclear dipo-
lar interaction (13C–13C) is negligible due to their small natural abundance and the only
important dipolar interaction comes from the abundant 1H nuclei. As mentioned above,
this interaction gives rise to large broadening in solid samples, due to its anisotropic char-
acter. To suppress the 13C–1H dipolar interaction, the method used is called heteronuclear
decoupling and was proposed by Sarles and Cotts in 1958 [30]. It consists in the contin-
uous wave (CW) irradiation with RF at the 1H resonance frequency while observing the
13C signal, being therefore an example of a double-resonance experiment. In order to ef-
fectively suppress the 13C–1H dipolar interaction, it is necessary to apply RF B1 fields
satisfying the condition γHB1 > �νdip, where γH is the gyromagnetic ratio of the abun-
dant nuclei (1H in this case) and �νdip is the linewidth due to the heteronuclear dipolar
interaction. In the cases of residual linewidths arising from insufficient proton decoupling
power, a simple two-pulse phase modulation (TPPM) scheme greatly improves the quality
of the spectra [31]. In the case of homonuclear dipolar interaction, normally 1H–1H dipo-
lar interaction, the method employed is denominated homonuclear decoupling. There are
several ways to suppress this interaction and the most common ones are those based on
multiple pulse sequences, such as WaHuHa [32], MREV-8 [33,34], and BR-24 [35], or on
the Lee–Goldburg method [36].

2.11.2 Magic-angle spinning (MAS)

In 1959 Andrew et al. [37] and Lowe [38] proposed, independently, this method to sup-
press the magnetic dipolar interaction in solids. In 1962, Andrew and Eades [39] showed
that MAS could also be applied to eliminate other anisotropic interactions (to first order).
To introduce this method, let us take as example again the magnetic dipolar interaction
between the nuclei 13C and 1H. The z-component of the dipolar magnetic field produced
by the 1H nucleus on the 13C site is given by:

Bdip = μ0

4π

μH

r3
CH

(3 cos2 θ − 1) (2.11.1)

where μH is the magnetic dipole moment of the 1H nucleus, rCH is the modulus of the
distance vector connecting both nuclei, and θ is the angle between rCH and B0. The
term (3 cos2 θ − 1) describes the anisotropy of the dipolar interaction. If this term were
equal to zero, the dipolar interaction would be eliminated. One way to do that is choosing
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θ = θm
∼= 54.74◦, where θm is called the magic-angle. Of course, it is impossible to put

all the spin pairs aligned along this specific orientation, except in very special cases of
oriented monocrystalline samples.

The method proposed to reach this condition consists in fast spinning the whole sample
around an axis making and angle equal to θm with the external magnetic field B0, with a
spinning speed νr > �νdip. In this situation, all the internuclear vectors rCH will be, on
average, along the magic-angle orientation, resulting in an average dipolar field:

〈Bdip〉 = μ0

4π

μH

r3
CH

〈3 cos2 θ − 1〉 = 0 (2.11.2)

A similar reasoning can be applied to the other nuclear spin interactions, as all these
interactions have a common tensorial structure and the correspondent tensors behave in
an analogous way under rotations (see Section 2.7). The relevant angle θ in each case
will be the angle between one of the axes (usually a symmetry axis) of the principal axis
system (PAS) of the interaction tensor and the external magnetic field B0. As a general
rule, the MAS procedure will be effective in removing the anisotropic line broadening if
the spinning speed is larger than the correspondent linewidth introduced by the specific
interaction when the sample is static [40].

In the case of 13C–1H dipolar interaction, �νdip is in the range 1–100 kHz. For 13C
chemical shift anisotropy (CSA) with B0 ∼ 10 T (as the magnitude of this interaction
depends on the magnetic field strength), it is typically found that �νCSA is in the range
1–10 kHz. For usual MAS systems, the maximum spinning speed is around 25 kHz. In
this situation, it would be relatively easy to suppress the broadening due to chemical shift
anisotropy from the 13C spectra, but it would be difficult to suppress 13C–1H dipolar in-
teraction. For suppressing the 13C−1H dipolar interaction, it is necessary to apply both
heteronuclear decoupling and MAS. In cases where it is impossible to spin the sample
with νr > �ν, spinning sidebands will be observed in the spectrum [40].

For nuclei experiencing strong quadrupolar interactions, the broadening can be much
larger, reaching the range of MHz. Therefore, MAS is not capable of removing completely
the broadening in such cases. Moreover, as second-order effects involve other angular de-
pendences different from the simple (3 cos2 θ −1) term, MAS is not effective for removing
these effects either. Therefore, other techniques are necessary for high-resolution NMR of
quadrupolar nuclei in solid samples, such as double rotation (DOR) or two dimensional ex-
periments such as dynamic angle spinning (DAS), multiple-quantum magic-angle spinning
(MQ-MAS), and others [10].

2.11.3 Cross-polarization (CP)

As already discussed, it is experimentally difficult to obtain spectra from solid samples for
rare nuclei (low natural abundance) or with small gyromagnetic ratios, such as 13C. The
low sensitivity is associated with two problems: small NMR signal and long spin-lattice
relaxation times [29]. In 1973, Pines at al. proposed the method called Cross-Polarization
in order to circumvent these problems [41]. This method involved once more a double-
resonance experiment, based on the transference of polarization from the abundant 1H
spins, with short spin-lattice relaxation times T1, to the rare 13C nuclei. After this polar-
ization transfer, the rare nucleus signal intensity is increased by a factor equal to the ratio
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between the gyromagnetic ratios of both nuclei (γabundant/γrare), when compared with the
excitation with a single π/2 pulse. In the case of 13C and 1H this factor is about 4. De-
spite the fact that the NMR experiment is performed for the 13C nuclei, the repetition rate
for signal averaging is determined by the short relaxation time T1 of 1H, because the 13C
magnetization is now determined by the 1H nuclei. In order to establish an efficient con-
tact between 1H and 13C nuclei for the polarization transfer, it is necessary to satisfy the
Hartmann–Hahn condition: γH B1H = γCB1C , where γn and B1 represent respectively the
gyromagnetic ratio and RF amplitude corresponding to each nucleus. This means that the
RF fields have to be applied simultaneously in such a way that the nutation frequencies of
both nuclei around the respective resonant RF fields are the same. As a result, a resonance
exchange of energy between 13C and 1H nuclei can readily occur through a mutual spin
flip mechanism [29].

2.11.4 The CP-MAS experiment

The combination of Heteronuclear Decoupling, MAS, and CP techniques in only one ex-
periment was proposed in 1976 by Schaefer and Stejskal [42] and marked the birth of
high-resolution solid-state NMR spectroscopy for rare nuclei. Figure 2.10 shows schemat-
ically the procedure to perform this clever experiment, using once more 1H and 13C nuclei
as examples of abundant and rare nuclei, respectively.

To summarize the experiment, one applies a π/2 pulse to 1H, which is followed by a
change of 90◦ in the phase of the RF field of 1H relative to the first pulse. This leads to
the spin-locking of the abundant spin system. Still under the spin-locking condition, which
was used to lower the 1H spin temperature [4] much below the lattice temperature, the
Hartmann–Hahn condition is established, and this situation is kept until the polarization
transfer from 1H to 13C spins is complete. After that, the observation of the 13C FID is
performed under heteronuclear decoupling. In order to increase the signal-to-noise ratio
of 13C FID, the CP-MAS experiment is repeated as many times as necessary, just waiting
the time necessary for the total 1H spin-lattice relaxation between acquisitions. MAS is
continuously applied during the experiment.

Based on methods which rely on the manipulation of the anisotropic terms of the nuclear
spin interactions and on the combination of different basic NMR techniques, such as MAS
and decoupling, an enormous number of solid-state NMR pulse sequences were proposed
in the last 20 years. Solid-state NMR provides powerful techniques for elucidating details
of segmental dynamics and local conformation in solid materials. NMR methods allow
the study of dynamics occurring in a wide frequency range (from the order of 1 Hz to

Figure 2.10 CP-MAS pulse sequence for 13C–1H pairs. The sample is under MAS during all the experiment.
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100 MHz). Besides, NMR also provides a series of methods capable of obtaining reliable
measurements of torsion angles between localized sites, short and intermediate range struc-
ture, as well as interatomic distances. A remarkable characteristic of new NMR methods
is the possibility of getting important information about molecular structure and dynamics
of materials in an almost model free fashion, making NMR a unique tool for the charac-
terization of complex materials. Besides, despite its 50 years of history, the development
of new NMR methods is still and opened area, being one of the main challenges for NMR
researchers.

2.12 THE EXPERIMENTAL SETUP

To perform NMR experiments involving spectroscopy, relaxation studies, or quantum com-
puting, it is necessary to have an equipment (generally named NMR spectrometer) com-
posed basically of: (i) A magnet, to generate the B0 field. This is not necessary only in the
case of zero-field NMR performed with magnetically ordered samples or with materials
that give pure nuclear quadrupole resonance (NQR) signals [1]. (ii) A probe, containing
the coil where the sample to be analyzed is placed. And (iii) an RF system, composed of a
transmitter and a receiver, which allows manipulating the RF phase, frequency, and ampli-
tude for exciting the nuclei and detecting the induced signals. In modern spectrometers, the
whole experiment is controlled and monitored by computer interfaces that allow automatic
recording and processing of the NMR signal.

A basic electronic block diagram of the transmitter and receiver sections of a NMR
spectrometer is shown in Figure 2.11. For transmission (Figure 2.11a), the synthesizer
generates the RF and enables the control, with high precision and fast switching of both,
of the frequency (0.1 Hz resolution) and phase (in steps 0.1◦) by the use of remote control
interfaces. The high-quality RF is generated with these features at the frequency Ω , which
is used to excite the nuclei and also as reference for the receiver. After the synthesizer,
the signal reaches the RF modulator. The RF is amplitude modulated with rectangular or
special functions, in order to produce RF pulses. At this same point of the circuit, the
RF can also be phase modulated only in 4 steps of 0◦, 90◦, 180◦ and 270◦. This phase
modulation is extensively used for the phase cycling necessary for removing artifacts or
implementing many special pulse sequences. Afterward, the RF pulses are amplified and
sent to the probe. Depending on the function used for the amplitude modulation, the time
length and amplification level, the pulses can be hard (non-selective) or soft (selective).

To avoid sending high power RF pulses to the high sensitivity pre-amplifiers of the re-
ceiver, duplexers are used to direct the intense RF pulses to the probes and the weak NMR
signal to the receiver. In order to have the maximum power transfer from the transmitter
to the probe, the former should be tuned at the Larmor frequency (ωL) and its impedance
should match the output impedance of the high power amplifier (50�). It is desirable that
the RF circuit used to tune the probe (tank circuit) have a band pass wide enough to permit
the homogeneous RF excitation of all the NMR frequencies of interest in a given experi-
ment (that is, to have not a too high quality factor Q) [44].

As the NMR experiment can be performed with a single or several nuclei of differ-
ent species simultaneously, the probes should be simultaneously tunable at several dif-
ferent frequencies. Usually, the experiments are performed in single-, double-, or triple-
resonance, but typically only one species of nucleus is observed at the corresponding Lar-
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Figure 2.11 Block diagram of a NMR spectrometer.

mor frequency. For some experiments, two nuclei have to be excited and observed and,
consequently, two receivers should be used to detect the signals induced at two different
Larmor frequencies. This is exemplified in Figure 2.11, with the indications of two trans-
mitter channels and two receivers.

The receivers have some special purposes. Their pre-amplifiers should be able to provide
a high NMR signal amplification without introducing too much noise. The remaining RF
circuit is used to generate the phase and quadrature signals, Figure 2.11b. The power-
splitter in the receiver divides the NMR signal detected by the probe with the frequency ωL

into two components with the same phases and amplitudes (0◦): cos(ωLt) and cos(ωLt).
These are mixed with the reference RF signals coming from the output of a second power-
splitter (shown in Figure 2.11a) directly connected to the synthesizer, which separates the
RF into two equal amplitude components in quadrature (0◦, 90◦), i.e, cos(Ωt) and sin(Ωt),
respectively. The main aim of this mixing stage is to bring the observed NMR signal down
to the audio range (Hz–kHz) and to allow phase-sensitive detection. These signals are
mixed in the points 1 and 2 of the RF receiver, Figure 2.11b, and at the points indicated by
∗P and ∗Q, the following most significant RF signals are present:

At point ∗P , in phase signals:

cos
[
(ωL − Ω)t

]+ cos
[
(ωL + Ω)t

]+ high order harmonics (2.12.1)

At point ∗Q, in quadrature signals:

sin
[
(ωL − Ω)t

]+ sin
[
(ωL + Ω)t

]+ high order harmonics (2.12.2)
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To avoid the high frequency signals (i.e., the signals originated from the term involving
the sum ωL + Ω as well as other high order harmonics), an audio filter/amplifier is used
to detect only the difference frequency signals in phase and quadrature, cos[(ωL − Ω)t] =
cos�ωt and sin[(ωL − Ω)t] = sin�ωt , respectively. These signals in quadrature are sent
to the analog-to-digital converter (ADC) and digital signal processor (DSP), which could
be a computer or a dedicated digital system, in the form of a complex function:

S(t) = A cos�ωt + iB sin�ωt (2.12.3)

where A and B are constants.
The real and imaginary components of the signal S(t) can be interchanged and their

signs inverted in the memory locations to allow phase cycling of the received NMR signal,
a procedure called signal routing. In this way, the phase of the complex NMR signal can be
changed in steps of 90◦, covering the main values 0◦, 90◦, 180◦ and 270◦. Together with
the phase cycling of the RF pulses, the complete phase cycling for implementing the pulse
sequences is now possible.

The reason for implementing the quadrature detection is related to the Fourier transfor-
mation of the NMR signal. If the NMR signal were detected in the single mode (only with
S(t) = A cos�ωt), the Fourier transform would lead to two peaks at ±�ω, thus duplicat-
ing the number of lines in the spectrum [45]. To avoid the superposition or proximity of this
pair of peaks, which could make impossible to interpret a spectrum composed by several
lines, one should make the detection far from the resonance condition (�ω = 0), making
necessary a detection with a bandwidth of, at least, two times the maximum frequency ob-
served, 2�ωmax. Given that the random noise affecting the NMR signal is proportional to√

2�ωmax, the signal-to-noise ratio would decrease by a factor
√

2. This is an important
issue from the point of view of optimizing sensitivity, considering that the NMR signal is
normally very weak and it would be necessary to double the number of scans to increase
the signal-to-noise by this same factor [44]. A simple way to solve this problem is to make
quadrature detection (S(t) = A cos�ωt + iB sin�ωt , with A = B), because in this case
the Fourier transform of the complex signal would generate only one peak for each NMR
line. This allows then the detection to be effected close to resonance, with a two-fold re-
duction in the bandwidth to just �ωmax.

Normally, the audio filter/amplifier gains are slightly different, the receiver electronics
introduces offsets to each channel, and the quadrature detection is not perfect, making the
NMR signal in the practice looks like:

S(t) = [A cos(�ωt) + a
]+ i

[
B sin(�ωt + δ) + b

]
(2.12.4)

where a and b are the offsets observed for each channel, and δ is the quadrature mismatch.
These technical problems produce the following artifacts in the NMR spectrum:

– A �= B or δ �= 0: the lines show up in duplicate, like in the single mode detection, but
one of them is much smaller than the other one;

– a and/or b �= 0: an intense sharp feature appears at the centre of the spectrum (i.e., at
zero frequency with respect to the carrier frequency Ω).

These artifacts can be eliminated by a phase cycling scheme called CYCLOPS [46]. To
make the discussion of this phase cycling easier, let’s consider that δ is usually sufficiently
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Exp. Transm. Received signal Signal routing True signal, including offsets
number phase phase quad. (a and b), and amplitude

mismatching (A �= B)
Mx My C1 C2

1 x A sinωt + a B cosωt − B Mx My [A sinωt − a] + i[B cosωt + b]
2 y −A cosωt + a B sinωt + B My −Mx [B sinωt + b] + i[A cosωt − a]
3 −x −A sinωt − a −B cosωt − B −Mx −My [A sinωt − a] + i[B cosωt − b]
4 −y A cosωt + a −B sinωt + B −My Mx [B sinωt − b] + i[A cosωt + a]
Adding the four signals: 2[(A + B) sinωt] + i2[(A + B) cosωt]

Figure 2.12 Acquisition steps for performing phase cycling with CYCLOPS.

small (when operating the spectrometer within the correct RF frequency ranges) and disre-
gard it. CYCLOPS involves the consecutive acquisition of the four signals summarized in
Figure 2.12, where, additionally to the RF phase cycling, the detected phase and quadrature
signals can be addressed or routed selectively to the memory locations C1 and C2 (signal
routing), according to the designed full phase cycling (RF phase and memory locations).

Since the NMR acquisition always involves signal averaging, the phase cycling normally
does not extend the experiment time excessively, only imposing the restriction that the total
number of acquired transients must be an entire multiple of the number of steps in the phase
cycle. In the case of CYCLOPS, after every four scans along the averaging process, one
gets the perfect quadrature detection.

Phase cycling is a fundamental procedure in most NMR experiments and is used not only
for removing instrument artifacts, but also for selecting or suppressing signals, specially
for achievement of specific coherence transfer pathways [5,13]. In NMR experiments, one
must be aware of the importance of phase cycling, which sometimes is more difficult to
understand than the basic aspects of the pulse sequences.

Nowadays, in modern NMR spectrometers, the analog quadrature detection is being
discontinued. Instead, a digital detection of the NMR signals is being implemented, as
shown schematically in Figure 2.13. For that, the NMR signal is pre-amplified, and its
frequency is shifted, by the use of a mixer, to an intermediate fixed RF frequency ωIF . Next,
the signal is directly sent to the ADC and DSP. The digital signal processor performs all the
computational processing, including, if necessary, the digital quadrature transformation. In
this case, the quadrature artifacts do not exist and there are various ways to perform the
digital filtering and processing of the NMR signal.

Figure 2.13 Schematic structure of a RF receiver designed for digital detection at the intermediate fre-
quency ωIF .
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2.13 APPLICATIONS OF NMR IN SCIENCE AND TECHNOLOGY

The NMR phenomenon not only took significant part of the development of the modern
physics from the beginning to the middle of the 20th century, when the Stern–Gerlach
(≈ 1922), Rabi–Cohen (≈ 1934), Bloch (≈ 1945) and Purcell (≈ 1945) experiments were
performed, but also is giving fundamental contributions nowadays in several fundamen-
tal scientific areas (physics, chemistry, biology, medicine, etc.). By the use of complex
multiple pulse sequences involving or not several nuclei at the same time, which include
cross-talks among the nuclei through dipolar interactions, selective suppression of spin
interactions (e.g. homo- or hetero-nuclear decoupling, magic angle spinning, spin echo
techniques, etc.), and signal acquisition in a multidimensional way, dynamical, structural
and morphological information can be obtained in several time (from ns to s) and distance
(from Å to mm) scales for samples in the solid, liquid, or gaseous phase. Due to these
reasons, there are several last generation spectrometers in the market, which permit the use
of NMR, not only in Quantum Computing, but also in:

1. Materials science (polymers and derivatives, proteins, molecular sieves, etc.);
2. Soil science;
3. Petroleum science (including well-logging);
4. Analytical Chemistry;
5. Medicine (imaging, functional imaging, in vivo spectroscopy);
6. Microscopy and Atomic-Force-Like microscopy;
7. And several other applications, making NMR one of the most important methods for

fundamental and applied research.

PROBLEMS WITH SOLUTIONS

P2.1 - Obtain the result (2.2.1), starting from the equation of motion of a rigid body sub-
mitted to an external torque.

Solution
Consider a body with angular momentum L and magnetic dipole moment μ = γ L in the presence of a mag-

netic field B0. The torque on the magnetic dipole moment is:

τ = μ × B0 = γ L × B0

The dynamics is governed by the equation of motion τ = dL
dt

. Therefore we have:

dL
dt

= γ L × B0

Taking B0 = B0k and writing the equations for the vector components of L:

dLx

dt
= γLyB0

dLy

dt
= −γLxB0

dLz

dt
= 0
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The last equation above shows that Lz is time independent, i.e., it is a constant of motion. The first two equations
are coupled, and are similar in form to the differential equation of a two-dimensional harmonic oscillator. Taking
another derivative of these similar equations and substituting the results, we obtain:

d2Lx

dt2
= γ

dLy

dt
B0 = −(γB0)2Lx

d2Ly

dt2
= −γ

dLx

dt
B0 = −(γB0)2Ly

Now we have two uncoupled differential equations identical to the differential equation of an one-dimensional
harmonic oscillator. Therefore, the solutions are:

Lx(t) = A sin(ωLt + δ)

Ly(t) = A cos(ωLt + δ)

with the parameter ωL given by ωL = γB0 (assuming γ > 0). The phases were chosen so as to satisfy the
equations involving the first-derivatives of Lx and Ly and, for the same reason, the constants A and δ need to be
the same in both equations above.

Choosing an appropriate time origin and changing the names of the constants, we arrive at:

Lx(t) = L⊥ sin(ωLt)

Ly(t) = L⊥ cos(ωLt)

Lz(t) = L‖

where L‖ and L⊥ indicate the parallel and transverse components of the angular momentum with respect to

the field. The vector L thus precesses around the z axis, keeping constant its magnitude (=
√

L2‖ + L2⊥ ) and

z component (L‖). The sense of precession is negative, i.e., left-handed with respect to the z axis. To see this,
observe that at t = 0, Lx = 0 and Ly = L⊥ is at its maximum value. After some time, Ly decreases and Lx

increases, indicating the sense of precession. Therefore, we can write the vector equation for the precession
frequency:

ωL = −γ B0,

which is the Larmor equation we wanted to obtain.

P2.2 - Starting from the evolution operator associated with the Zeeman Hamiltonian
(2.2.2), obtain the time evolution of the expectation values 〈Ix〉, 〈Iy〉, and 〈Iz〉. Interpret
the result to show the Larmor precession.

Solution
The Schrödinger equation allows the assessment of the time evolution of the vector state of the system:

|ψt 〉 = U(t,0)|ψ0〉

where the subscripts indicate the time instants corresponding to each state. The evolution operator associated with
the Zeeman Hamiltonian is:

U(t,0) = e−i(H/h̄)t = eiωLtIz

Therefore:

|ψt 〉 = eiωLtIz |ψ0〉
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The time evolution of the expectation value of any operator can be calculated by:

〈A〉t = 〈ψt |A|ψt 〉 = 〈ψ0|e−iωLtIzAeiωLtIz |ψ0〉

For the Iz operator, we have:

〈Iz〉t = 〈ψt |Iz|ψt 〉 = 〈ψ0|e−iωLtIz Ize
iωLtIz |ψ0〉 = 〈ψ0|Iz|ψ0〉 = 〈Iz〉0

This means therefore that the expectation value of the operator Iz remains unaltered. As for the Ix component,
we have:

〈Ix 〉t = 〈ψt |Ix |ψt 〉 = 〈ψ0|e−iωLtIz IxeiωLtIz |ψ0〉

The term e−iωLtIz IxeiωLtIz can be calculated from the “sandwich theorem”, Equation (2.6.13):

e−iωLtIz IxeiωLtIz = Ix cosωLt + Iy sinωLt

Therefore:

〈Ix 〉t = 〈ψ0|Ix cosωLt + Iy sinωLt |ψ0〉 = 〈ψ0|Ix |ψ0〉 cosωLt + 〈ψ0|Iy |ψ0〉 sinωLt

Or:

〈Ix 〉t = 〈Ix 〉0 cosωLt + 〈Iy 〉0 sinωLt

A similar calculation leads to:

〈Iy 〉t = −〈Ix 〉0 sinωLt + 〈Iy 〉0 cosωLt

If we take, for example, 〈Iy 〉0 = 0 as an initial condition, then we arrive at:

〈Ix 〉t = 〈Ix 〉0 cosωLt

〈Iy 〉t = −〈Ix 〉0 sinωLt

〈Iz〉t = 〈Iz〉0

These equations clearly show a precession motion of the vector 〈I〉 (i.e., of the expectation value of the nuclear

spin) about the z axis in the left-hand direction with angular frequency of magnitude ωL , which is in accordance

with the classic Larmor precession previously derived.

P2.3 - Verify the numeric value of the Boltzmann factor (Equation (2.2.4)) for protons
in a 5 T magnetic field at room temperature. (The gyromagnetic ratio for the proton is
26.7522 × 107 rad s−1 T−1.)

Solution
The calculation is straightforward and we will assume that the temperature and magnetic field values are

known with infinite accuracy (to avoid rounding problems):

ωL = γB0 = (26.7522 × 107 rad s−1 T−1) × 5T = 1.33761 × 109 rad s−1

This corresponds to a frequency of about 213 MHz. Therefore, at room temperature (300 K), we have:

e−h̄ωL/kT = e−(1.05457×10−34)(1.33761×109)/(1.38065×10−23×300) = 0.99997

This result very close to the unity shows how small is the difference in populations between the Zeeman levels at

usual conditions of temperature and magnetic field.
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P2.4 - Obtain Equation (2.2.5), starting from the result (2.2.4).

Solution
Let us take the populations n− and n+ related by the expressions below:

n−
n+

= e−h̄ωL/kBT

n− + n+ = n0

The solutions to these equations are:

n− = n0

1 + eh̄ωL/kBT
∼= n0

2 + h̄ωL
kBT

= n0

2

1

1 + h̄ωL
2kBT

∼= n0

2

(
1 − h̄ωL

2kBT

)

n+ = n0

1 + e−h̄ωL/kBT
∼= n0

2 − h̄ωL
kBT

= n0

2

1

1 − h̄ωL
2kBT

∼= n0

2

(
1 + h̄ωL

2kBT

)

The approximations above are valid in the high-temperature limit.
The magnetization can be calculated by adding the contributions from each sub-ensemble of nuclei corre-

sponding to the m = −1/2 and m = +1/2 levels. The nuclei with m = +1/2 contribute with the magnetic dipole

moment component μ
(+)
z = +γ h̄/2, whereas those with m = −1/2 contribute with μ

(−)
z = −γ h̄/2:

M0 = n+μ
(+)
z + n−μ

(−)
z = (n+ − n−)

γ h̄

2
∼= n0

2

γ h̄

2

h̄ωL

kBT
= n0γ 2h̄2B0

4kBT

This is the Curie expression for the magnetization of an ensemble of spin 1/2 nuclei.

P2.5 - Evaluate from (2.2.5) the numerical value of the magnetic susceptibility (defined
as χ = μ0M0/B0, where μ0 = 4π × 10−7 T.m.A−1 is the permeability of free space) of
protons in water at room temperature. Compare with the corresponding value for free un-
paired electrons with the same concentration and under the same conditions. Compare also
with typical values of magnetic susceptibility in diamagnetic materials (see, for example,
[1,7]).

Solution
The expression for χ is:

χ = μ0n0γ 2h̄2

4kBT

The volume concentration of protons (n0) is obtained from the density of pure water and its molecular weight,
which gives:

n0 = (1.0 g/cm3)(18 g/mol)−1(6.02 × 1023 mol−1)(2) = 6.7 × 1028 m−3

The factor of 2 is to take into account the existence of two hydrogen atoms in each molecule. Therefore, we have
in SI units:

χ = 4.0 × 10−9 (for protons in water)

For comparison, the magnetic susceptibility absolute values of typical diamagnetic substances fall into the range
10−5–10−6, which means a value much larger than the static nuclear magnetic susceptibility.

For free electrons, the magnitude of the magnetic dipole moment is obtained from the Bohr magneton
(μB = eh̄

2me
= 9.2740 × 10−24 J T−1) and the g factor (2.0023). The proton gyromagnetic ratio γ should then
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be replaced by gμB
h̄

in the expression for χ . A similar calculation of χ for free electrons using the same concen-
tration n0 above then leads to:

χ = 1.7 × 10−3 (for free electrons)

P2.6 - Verify the numeric values of the Larmor frequencies for protons and electrons, both
in a 5 T static magnetic field.

Solution
For protons, using the γ value given in Problem 2.3, we have:

ω
(p)
L

= γB0 = (26.7522 × 107 rad s−1 T−1) × 5T = 1.34 × 109 rad s−1

Therefore, the frequency is about 213 MHz (radiofrequency).
For free electrons, the magnitude of the magnetic dipole moment is obtained from the Bohr magneton (μB =

eh̄
2me

= 9.2740 × 10−24 J T−1) and the g factor (2.0023). Therefore:

ω
(e)
L

= gμB

h̄
B0 = (17.608 × 1010 rad s−1 T−1) × 5T = 8.80 × 1011 rad s−1

Therefore, the frequency is about 140 GHz (microwave).

P2.7 - Do again Problem P2.2 now employing the density matrix formalism. That is, use
Equation (2.5.1) to obtain again the equations for the time evolution of the expectation
values 〈Ix〉, 〈Iy〉, and 〈Iz〉 and interpret the result to show the Larmor precession.

Solution
As described in the text, the time evolution of any ensemble operator can be determined using the deviation

density matrix. Under action of the Zeeman Hamiltonian, the deviation density operator evolves in time as:

�ρt = e−(i/h̄)Ht�ρ0e(i/h̄)Ht = eiωLtIz�ρ0e−iωLtIz

In thermal equilibrium, for example, we have �ρ0 = αIz (Equation (2.5.14)) and thus

�ρt = eiωLtIz (αIz)e
−iωLtIz = αIz.

The deviation density matrix in this case is therefore time-independent, as expected since we are dealing with
thermal equilibrium.

Let us consider a more general situation with arbitrary initial deviation density matrix �ρ0 evolving in time
under the Zeeman Hamiltonian. The calculation of the ensemble averages of the expectation values of the spin
operator Iz is given below:

〈Iz〉t = Tr{�ρt Iz} = Tr{eiωLtIz�ρ0e−iωLtIz Iz}
= Tr{e−iωLtIz Ize

iωLtIz�ρ0} = Tr{e−iωLtIz eiωLtIz Iz�ρ0}
= Tr{Iz�ρ0} = Tr{�ρ0Iz} = 〈Iz〉0

We used here the general property of the trace operation: Tr{AB} = Tr{BA}. The result above shows once more
that 〈Iz〉 is time independent, whatever the initial state of the ensemble.

The calculation of 〈Ix 〉 is similar:

〈Ix 〉t = Tr{�ρt Ix } = Tr{eiωLtIz�ρ0e−iωLtIz Ix } = Tr{e−iωLtIz IxeiωLtIz�ρ0}
The term e−iωLtIz IxeiωLtIz can be calculated from the “sandwich theorem”, Equation (2.6.13):

e−iωLtIz IxeiωLtIz = Ix cosωLt + Iy sinωLt
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Therefore:

〈Ix 〉t = Tr{(Ix cosωLt + Iy sinωLt)�ρ0} = Tr{Ix�ρ0} cosωLt + Tr{Iy�ρ0} sinωLt

= 〈Ix 〉0 cosωLt + 〈Iy 〉0 sinωLt

The result for 〈Iy 〉t is similar:

〈Iy 〉t = −〈Ix 〉0 sinωLt + 〈Iy 〉0 cosωLt

As in Problem P2.2, if we take 〈Iy 〉0 = 0 as an initial condition, then we arrive at:

〈Ix 〉t = 〈Ix 〉0 cosωLt

〈Iy 〉t = −〈Ix 〉0 sinωLt

〈Iz〉t = 〈Iz〉0

These are finally the equations of the precession motion of the vector 〈I〉 (i.e., of the ensemble average of the

expectation value of the nuclear spin) about the z axis in the left-hand direction with angular frequency of mag-

nitude ωL.

P2.8 - Show that in an isotropic liquid the term 3 cos2 θ12 − 1 in Equation (2.7.12) is aver-
aged out due to random molecular motions and interpret the consequences of this result.

Solution
The average can be calculated by integrating over the surface of a sphere centered on one nucleus and consid-

ering that the internuclear vector can point to any direction on the surface of this sphere with equal chance. Let
us use θ,φ, and Ω as the polar, azimuthal, and solid angles associated with the internuclear vector. Therefore:

〈3 cos2 θ − 1〉 =
∫

dΩ(3 cos2 θ − 1)∫
dΩ

= 1

4π

∫ 2π

0
dφ

∫ π

0
dθ sin θ(3 cos2 θ − 1)

= 1

2

∫ 1

−1
(3u2 − 1) du = 0

The usual substitution u = − cos θ was used in the last step. This result shows then that the isotropic molecular

motion leads to a complete vanishing of the dipolar interaction. The same is true for all other interactions with

similar angular dependencies (anisotropic part of the chemical shift, anisotropic part of the J -coupling, first-

order quadrupolar interaction), as long as the motion is fast and isotropic as it occurs in liquids. If the motion is

restricted, then the averaging process can be only partial (as in liquid crystals) or inexistent (as in rigid solids).

P2.9 - Obtain the electrostatic interaction energy for the charge distribution in Figure 2.5
and discuss its orientational dependence.

Solution
The electrostatic interaction energy between the charge distribution and the electric point charges of magni-

tude q0 is calculated by the expression W = ∫ ρV dΛ, where ρ is the charge density of the distribution, V is the
electric potential generated by the point charges, and the integral in dΛ is over the volume of the distribution.
The power series expansion of the electric potential about the origin leads to:

W =
∫

ρV dΛ =
(∫

ρ dΛ

)
V (0) +

∑

α

(∫
ρxα dΛ

)(
∂V

∂xα

)

0

+ 1

2

∑

α,β

(∫
ρxαxβ dΛ

)(
∂2V

∂xα∂xβ

)

0
+ · · ·
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The subscript indicates that the derivatives are all calculated at the centre of symmetry of the charge distribution,
taken as the origin. The first term, involving the total charge of the distribution, is a constant, not related to the
orientation of the distribution and it can be taken as zero with no loss of generality, as this is just a matter of
choice of the reference for the electric potential. The second term involves the electric dipole moment of the
distribution (first-order in xα , which gives the length scale of the distribution). Due to symmetry requirements,
all atomic nuclei have no electric dipole moments. Even if the charge distribution possesses a non-zero electric
dipole moment, the first-order term gives no contribution because the first-derivatives of the potential

(
∂V
∂xα

)
0 are

equal (with a sign change) to the electric field components. But the resultant electric field is zero at the origin,
as can be easily seen by adding the contributions from charges of opposite sign located on the Cartesian axes.
Therefore, the first non-zero term in the expression of W is the second-order term, which is associated with the
electric quadrupole moment of the distribution and the EFG produced by the point charges. By using the classic
expression for the Coulomb electric potential V generated by point charges, it is easy to calculate the second-

derivatives of V and to arrange them as components of a second-rank matrix Vαβ = ( ∂2V
∂xα∂xβ

)
0. The result is:

V = 1

4πε0

4q0

d3

⎡

⎣
−1 0 0
0 −1 0
0 0 2

⎤

⎦

The system of Cartesian axes chosen is therefore the principal axis system (PAS) of the tensor V. Using the
definitions given in the text, we have therefore:

eq = 1

4πε0

8q0

d3
and η = 0

The Laplace equation satisfied by the electric potential leads to
∑

α Vαα = 0, which shows the traceless char-
acter of the tensor V. It is then usual to write the second-order term of W in the form:

W(2) = 1

2

∑

α,β

(∫
ρxαxβ dΛ

)
Vαβ = 1

6

∑

α,β

QαβVαβ

The components of the electric quadrupole moment of the distribution are defined by:

Qαβ =
∫ (

3xαxβ − r2δαβ

)
ρ dΛ

where r2 =∑αx2
α and δαβ is the Kronecker delta. It is easy then to see that the tensor Q is also traceless, i.e.,∑

α Qαα = 0.
Using the expression given above for Vαβ , we arrive at:

W(2) = 1

6

∑

α,β

QαβVαβ = 1

6
eq

(−Qxx − Qyy

2
+ Qzz

)
= 1

4
eqQzz

The term Qzz is a component of the electric quadrupole tensor written in the PAS of the tensor V. The PAS of
the tensor Q is characterized by the symmetry axis of the distribution (axis z′), which makes an angle θ with z.
In this system, we have:

Qz′z′ =
∫ (

3z′2 − r ′2)ρ dΛ = eQ

The parameter Q is characteristic of the distribution. The relation between Qzz and Qz′z′ can be obtained
using the Wigner rotation matrices that describe the change from one coordinate system to another [4,10]. The
result is:

Qzz = 3 cos2 θ − 1

2
Qz′z′

Finally we get:

W(2) = e2qQ

8

(
3 cos2 θ − 1

)
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This expression clearly shows the angular dependency of the electrostatic energy of interaction between the

charge distribution and the EFG. If the charge distribution rotates fast as a rigid body about its symmetry axis z′,
then this angular dependency refers to the orientation of the angular momentum itself, which is in close analogy

with the electric quadrupolar nuclear spin interaction described in the text. Assuming eQ > 0, which means a

distribution of positive charge density (ρ > 0) elongated along the z′ axis, then the most stable situation (minimum

of W ) corresponds to cos θ = 0, i.e., when the distribution is as close as possible to the negative point charges in

the xy plane.
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– 3 –

Fundamentals of Quantum Computation
and Quantum Information

The fact that a body can act on to another, completely separated from each other, through the
vacuum, with no intermediate interaction, sounds for me a great absurd, so that no man, with the
philosophical capability of thinking can accept. – Isaac Newton

Those who do not get shocked with Quantum Mechanics did not understand it. – Niels Bohr

Whoever claims to have understood Quantum Mechanics is lying. – Richard Feynman

Quantum Mechanics: Calculus with black magic – Albert Einstein

In this chapter, a revision of some basic principles of quantum mechanics is presented, em-
phasizing those which are particularly interesting for Quantum Computation and Quantum
Information. These concepts and results will be developed in the context of NMR QIP in
the next chapters. The quantum logic gates of one and two qubits, along with their cir-
cuit notation are introduced. Two important applications of entanglement are discussed:
superdense coding and teleport. The basic principles of the main quantum algorithms are
presented, through their circuit notation. The realization of quantum computation in phase
space is also discussed, and the use of the scattering circuit in order to obtain the discrete
Wigner function of quantum systems, as well as the principles of quantum simulation. In
the last section, a quantum algorithm for determining eigenvalues and eigenvectors is dis-
cussed. Most of this chapter is based in the excellent book of Michael Nielsen and Isaac
Chuang [1], which must be consulted for those interested in a more detailed discussion.
We keep the notation used in that book, which has become current in the literature. Other
recommended textbooks about the subject can be found in References [2,3] and [4].

3.1 HISTORICAL DEVELOPMENT

Quantum Mechanics is a set of mathematical rules upon which physical theories are con-
structed. Applying the rules of quantum mechanics, it is possible to calculate the ob-
servables of an isolated physical system, at any instant in time, once the Hamiltonian is
known [5]. However, there is no precise prescription for finding a Hamiltonian of a spe-
cific system.

It is correct to state that Quantum Mechanics is the most well succeeded theory in
physics. Since its creation up to nowadays it has been applied to various branches, varying
from particle physics to condensed matter, passing through nuclear and atomic physics, as-
trophysics, etc. The success of quantum mechanics in condensed matter physics has been
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particularly astonishing: it goes from material structures, transport properties of metals, in-
sulators and semiconductors, magnetic ordering, superconductivity and optical properties
of matter.

However, until the beginning of the seventies, the experiments performed in order to test
the models and theories built using quantum mechanics dealt with systems that contained
a large number of constituents. Therefore, these tests were always made in an indirect
form. For instance, the phenomena of magnetism and superconductivity are explained by
quantum mechanics, but the experiments carried out on magnetic samples and supercon-
ductors always involve a large number of particles: spins in the case of magnetic systems
and Cooper pairs in the case of superconductors. This means that predictions of the ob-
servables in theses systems – magnetization, specific heat, electrical current, etc. – must
be done using statistical averages, missing the information about the fundamental quantum
correlations between the individual particles. However, since the seventies, developments
in several areas allowed the experiments to be performed only with a few particles, making
visible important quantum effects.

Quantum Computing (QC) may possibly be the most remarkable proposal of a practical
application of quantum mechanics. For didactic purposes, we consider Quantum Informa-
tion as the area of investigation in which the identification and the study of the quantum
resources that can be used for information processing, whereas Quantum Computation as
the application of such resources for building logical gates and algorithms. The elements
of quantum information and quantum computation will be discussed in this chapter. The
historical development of the QC and QI is summarized in Table 3.1, since its beginning

Table 3.1.

Year Fact

1973 – The possibility of reversible classical computation was demonstrated by Charles Bennett.
1982 – First proposal of quantum computer presented by Paul Benioff based on

Charles Bennett’s work (1973).
1984 – Charles Bennett and Gilles Brassard create the quantum cryptography protocol BB84.
1985 – David Deutsch creates the first quantum algorithm.
1993 – Peter Shor creates the factorizing algorithm.

In this same year quantum teleportation is created by Charles Bennett and collaborators.
1994 – Lov Grover discovers the quantum search algorithm.
1996 – A group of scientists working for IBM implements experimentally the protocol BB84 using

photons in optical fibres, used in telecommunications.
1997 – Neil Gershenfeld and Isaac Chuang propose a way to prepare pseudo-pure states breaking out

the path for CQ through Nuclear Magnetic Resonance (NMR).
1998 – This was an important year for NMR Quantum Computation.

Several logical gates were successfully implemented using NMR.
The quantum search algorithm and teleportation were also experimentally tested.

2001 – Shor factorizing algorithm is implemented using NMR.
2003 – Demonstration of entanglement between the spins of a nucleus and the electron, in the same molecule,

combing the techniques of NMR and Electron Paramagnetic Resonance (EPR).
2004 – Single spin detection by magnetic resonance force microscopy.

First step towards the quantum states determination of single qubits.
2005 – NMR on a chip. Multiple coherences of nuclear spin states created and detected electrically

on a nanoscale gallium arsenide structure.
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to nowadays, emphasizing the contributions of NMR to this area, due to the convenience
of this particular technique for QIP [6].

3.2 THE POSTULATES OF QUANTUM MECHANICS

The theory of quantum mechanics is based upon four postulates, which are stated be-
low [5]:

• Postulate I – All physical systems are associated with a complex vector space. This is
known as Hilbert space, and its elements are complex vectors, |ψ〉, called kets, which
represent the quantum state of the system. The conjugate of a ket is represented by a
another vector called a bra, 〈ψ |.

• Postulate II – The time evolution of a quantum system, which does not interact with
its neighborhood, is processed through unitary transformations as described in Equation
(3.2.1), where U†U = 1, being 1 the identity matrix.

|ψ(t − t0)〉 = U(t − t0)|ψ(t0)〉 (3.2.1)

In the case that the Hamiltonian does not depend on t , the unitary evolution, U , is given
by:

U(t − t0) = exp

[
− i

h̄
H(t − t0)

]
(3.2.2)

Physically, unitary transformations represent processes that are reversible in time. In
fact, the application of the conjugate operator U† on both sides of Equation (3.2.1) will
make the system return to its original quantum state:

|ψ(t0)〉 = U(t − t0)
†|ψ(t − t0)〉 (3.2.3)

Another important property of the unitary transformations is the conservation of the
scalar product:

〈ψ(t0)|U†U |ψ(t0)〉 = 〈ψ(t0)|ψ(t0)〉 = 〈ψ(t − t0)|ψ(t − t0)〉 (3.2.4)

• Postulate III – Measurements, in quantum mechanics, are represented by sets of op-
erators, called measurement operators {Mm}, where the index m reefers to one of the
possible results. The probability, p(m), for a particular value to be found in a measure-
ment is the expected value of the corresponding measurement operator, which can be
calculated using the systems ket, |ψ〉:

p(m) = 〈ψ |M†
mMm|ψ〉 (3.2.5)

After the measurement, the quantum state of the system becomes:

|ψm〉 = Mm√
p(m)

|ψ〉 (3.2.6)
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The normalization of the probabilities,
∑

m p(m) = 1, plus the hypothesis 〈ψ |ψ〉 = 1
and Equation (3.2.5) imply to the completeness relation:

∑

m

M†
mMm = 1 (3.2.7)

• Postulate IV – The Hilbert space elements of a quantum system composed of two subsys-
tems A − B is formed by the tensor product between the kets of the individual systems:

|ψA−B〉 = |ψA〉 ⊗ |ψB〉 (3.2.8)

This rule can be extended for a systems with N subsystems:

|ψA−B−···−N 〉 = |ψA〉 ⊗ |ψB〉 ⊗ · · · ⊗ |ψN 〉 (3.2.9)

In this book we will deal only with discrete and finite Hilbert spaces.

3.3 QUANTUM BITS

The classical information unit is the binary digit, or bit. One bit can assume the logical
values “0” or “1”. In the computers, bits are physically represented by the presence or ab-
sence of electrical currents, travelling through the electronic components inside the chips.
The presence of the current indicates that the bit is in the logical state “1” and its absence
indicates that the bit is the logical state “0”. Obviously, a bit cannot be at two logical states
at the same time [7].

Analogously, the unit of information in Quantum Information and Quantum Computa-
tion is the quantum bit, or qubit, for short. A qubit can assume the logical values 0 or 1.
However, it can also be in a logical state containing any linear combination of them, thanks
to laws of quantum mechanics [8]. Physically, qubits can be represented by any quantum
object with two well defined and distinct eigenstates. Examples of qubits are the photon
polarization states, electrons in two-level atoms (as an approximation) and nuclear spins
under the influence of a magnetic field.

The eigenstates of a qubit are represented by |0〉 and |1〉, defined by the two vectors:

|0〉 =
[

1
0

]
; |1〉 =

[
0
1

]
(3.3.1)

The set {|0〉, |1〉} forms a two dimensional basis in Hilbert’s space of one qubit, and is called
computational basis. For the case of spin 1/2 particle, the logical state 0 can be represented
by the spin up state (|0〉 ≡ | ↑〉), whereas the logical state 1 can be represented by the spin
down state (|1〉 ≡ | ↓〉). Other orthonormal basis can be built from the computational basis,
such as |+〉 and |−〉:

|+〉 = 1√
2

[
1
1

]
; |−〉 = 1√

2

[
1

−1

]
(3.3.2)
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The generic state of a qubit is represented by a linear combination of the two eigenkets:

|ψ〉 = α|0〉 + β|1〉 (3.3.3)

where the coefficients are complex numbers related to each other by, |α|2 + |β|2 = 1. This
state can be parametrized by angles θ and φ, such as α ≡ cos θ/2 and β ≡ exp(iφ) sin θ/2:

|ψ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉 (3.3.4)

This representation allows a geometric visualization of the qubit quantum state as a point
on the surface of a unit radius sphere, called Bloch sphere. The most important points on
Bloch sphere are shown on the table below, adapted from Ref. [1].

θ φ |ψ〉 Observation

0 − |0〉 North pole of the Bloch’s sphere
π − |1〉 South pole of the Bloch’s sphere
π/2 0 or π (|0〉 ± |1〉)/√2 Equator line right on the x axis
π/2 π/2 or −π/2 (|0〉 ± i|1〉)/√2 Equator line right on the y axis

The power of quantum computation comes from the existence of superposition of states
of qubits, particularly entanglement, and the ability to manipulate them through unitary
transformations, as will be seen in the next sections.

3.4 QUANTUM LOGIC GATES

The Hilbert space for one qubit has only two dimensions. Quantum information process-
ing requires unitary transformations operating on states of one and two qubits, called logic
gates. Some important examples of unitary transformations of one qubit are the Pauli ma-
trices:1

X =
[

0 1
1 0

]
; Y =

[
0 −i

i 0

]
; Z =

[
1 0
0 −1

]
(3.4.1)

These matrices, plus the 2 × 2 identity matrix, form a basis in the 2 × 2 matrix space, so
that any operation of one qubit can be decomposed as a linear combination of the four
matrices. Notice that X = X†, Y = Y † and Z = Z†, and also that XX† = 1, YY † = 1 and
ZZ† = 1. The action of each one of these operations on a generic quantum state are written
below:

X|ψ〉 = β|0〉 + α|1〉
Y |ψ〉 = −iβ|0〉 + iα|1〉 (3.4.2)

Z|ψ〉 = α|0〉 − β|1〉
1Here, as in the book of Michael Nielsen and Isaac Chuang, we will use two notations for the Pauli matrices:

X,Y and Z whenever they represent quantum logic gates, and the usual σx,σy and σz in a more physical context.
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There are also other three important one-qubit gates, which are the phase gate (S), the
π/8 (T) gate and the Hadamard gate. The operators S and T are defined by the matrices:

S=
[

1 0
0 i

]
; T=

[
1 0
0 eiπ/4

]
= eiπ/8

[
e−iπ/8 0

0 eiπ/8

]
(3.4.3)

and their actions on a qubit state are:

S|ψ〉 = α|0〉 + iβ|1〉
T|ψ〉 = α|0〉 + eiπ/4β|1〉 (3.4.4)

The Hadamard gate can be decomposed into a linear combination of the X and Z

operators:

H= 1√
2

[
1 1
1 −1

]
= X + Z√

2
(3.4.5)

The application of Hadamard in one of the states of the computational basis creates a
superposition state:

H|0〉 = |0〉 + |1〉√
2

H|1〉 = |0〉 − |1〉√
2

(3.4.6)

One important property of H is its self-reversibility: H2 = 1.

3.4.1 Some examples of application of the postulates

A set of measurement operators for one qubit state is:

M0 ≡ |0〉〈0|; M1 ≡ |1〉〈1| (3.4.7)

These operators are projectors: they project a quantum state onto the computational basis.
Notice that they are Hermitians, but not unitary. Therefore, they represent measurement
processes which are not reversible. Using the postulate III, it is possible to calculate the
probability of finding a qubit, initially in a superposition of states, in either state |0〉 and
|1〉, as shown on Equations (3.4.8).

p(0) = 〈ψ |M†
0M0|ψ〉 = |α|2; p(1) = 〈ψ |M†

1M1|ψ〉 = |β|2 (3.4.8)

After the measurement, the quantum state of the system will collapse to one of the
following states:

|ψ0〉 = α

|α| |0〉 or |ψ1〉 = β

|β| |1〉 (3.4.9)

The coefficients α/|α| and β/|β| are global phases and can be neglected.



3.4. Quantum logic gates 99

Using the postulate IV, it is possible to construct the Hilbert space for systems con-
taining two or more qubits. For a two-qubit system, the dimension of the Hilbert space
is 4 × 4, since it is composed by vectors (kets) and matrices (operators), calculated us-
ing the tensor product of each vector and matrix for the individual qubit, as may be
seen on Equations (3.4.10) and (3.4.11), where both representations, kets and vectors, are
shown:

{|0〉, |1〉}⊗ {|0〉, |1〉}= {|00〉, |01〉, |10〉, |11〉} (3.4.10)

|00〉 ≡
⎡

⎢⎣

1
0
0
0

⎤

⎥⎦ ; |01〉 ≡
⎡

⎢⎣

0
1
0
0

⎤

⎥⎦ ; |10〉 ≡
⎡

⎢⎣

0
0
1
0

⎤

⎥⎦ ; |11〉 ≡
⎡

⎢⎣

0
0
0
1

⎤

⎥⎦

(3.4.11)

The matrix representation for operators that act in only one qubit of a system contain-
ing two qubits can be constructed by calculating the tensorial product between one qubit
operator and the 2 × 2 identity matrix:

Oa = O ⊗ 1; Ob = 1 ⊗ O (3.4.12)

where O represents any qubit unitary operator (O = X,Y,Z, etc.). Here, the convention
|ab〉 for the quantum state of composite system was used, so that Oa indicates that the
operator acts on the first (a) qubit, while Ob acts on the second (b) one. These expressions
can be easily generalized for an arbitrary number of qubits.

3.4.2 The controlled NOT – CNOT – gate

The controlled-not (CNOT) logic gate is essential for performing QIP. In fact, it can be
proved that all quantum operations necessary for quantum computing can be achieved
using only the CNOT and a set of one-qubit gates [1]. CNOT acts on a qubit of the sys-
tem (called target), and changes its state, if the other qubit (called control) is in the state
|1〉. If the control is in |0〉, nothing happens to the target. The matrix that represents the
CNOT gates for a system containing two qubits are shown in Equations (3.4.13). For ex-
ample, the CNOTa will change the state of the second (b) qubit if the first one is in the
state |1〉.

CNOTa =
⎡

⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎦ and CNOTb =
⎡

⎢⎣

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎤

⎥⎦ (3.4.13)

CNOT can be viewed also as the binary addition of two qubits, i.e., CNOTa|a, b〉 =
|a, a ⊕ b〉 and CNOTb|a, b〉 = |a ⊕ b, b〉, where the symbol ⊕ represents the addition mod-
ulo 2, for which 0 ⊕ 0 = 0, 0 ⊕ 1 = 1 and 1 ⊕ 1 = 0.

CNOTa|00〉 = |00〉; CNOTb|00〉 = |00〉
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CNOTa|01〉 = |01〉; CNOTb|01〉 = |11〉
CNOTa|10〉 = |11〉; CNOTb|10〉 = |10〉 (3.4.14)

CNOTa|11〉 = |10〉; CNOTb|11〉 = |01〉

3.5 GRAPHICAL REPRESENTATION OF GATES AND QUANTUM
CIRCUITS

Quantum circuits are diagrams that illustrate the operations necessary to implement a pro-
tocol, their time sequence and also the number of qubits present in the system [9]. They
are composed of lines, one for each qubit, and symbols, which represent the quantum logic
gates actions in one or more qubits. On Figure 3.1 it is shown the symbols used for one
and two-qubit gates.

An example of a quantum circuit is illustrated in Figure 3.2. The upper line represents
the qubit |a〉 and lower one the qubit |b〉. The operations appearing in the figure mean that
the S gate is applied to the first qubit, whereas the gate T is applied to the second one.
These operations are followed by the application of a two qubit operation U , and finally
by the application of a Hadamard gate to the first qubit only. The whole process can be
translated in mathematical language as [H⊗ 1] · U · [S⊗ T]|ab〉.

Figure 3.1 Quantum logic gates symbols for one and two-qubit operations. Adapted with permission from [1].

Figure 3.2 Generic graphical representation of a quantum circuit. Adapted with permission from [1].
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Figure 3.3 SWAP gate built from three CNOT gates. Adapted with permission from [1].

Figure 3.4 Various controlled operations applied to a target qubit. Adapted with permission from [1].

3.5.1 The SWAP logic gate

The logic gate called SWAP is built from a circuit containing only CNOT gates, as shown
on Figure 3.3. The first CNOT is the controlled by the first qubit (CNOTa), and second one
is controlled by the second qubit (CNOTb).

The action of a SWAP logic gate is defined by:

SWAP|ab〉 = |ba〉 (3.5.1)

Having in mind that a ⊕ a ⊕ b = b and a ⊕ b ⊕ b = a, one can demonstrate the action
of the SWAP circuit:

CNOTa|a, b〉 = |a, a ⊕ b〉
CNOTb|a, a ⊕ b〉 = |a ⊕ a ⊕ b, a ⊕ b〉 = |b, a ⊕ b〉 (3.5.2)

CNOTa|b, a ⊕ b〉 = |b, a ⊕ b ⊕ b〉 = |b, a〉
In general, many different kinds of controlled logic operations can be constructed, where

the number of control qubits can vary, as well as the number of controlled (or target) qubits,
as shown on Figure 3.4.

The operation illustrated on Figure 3.4 can be described as the application of the operator
U on the target qubits, depending on the value of the product of the control qubits. This is
mathematically represented by:

Cxy |x1 . . . xn, y1 . . . ym〉 = |x1 . . . xn〉Ux1...xn |y1 . . . ym〉 (3.5.3)
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Figure 3.5 Controlled-NOT gate subject to the control qubit to be in the state |0〉. Adapted with permission
from [1].

It is possible to construct controlled gates conditionally to the control qubit to be in the
state |0〉. This is done simply by inverting the control qubit, using a X gate before and after
the controlled operation, as shown in Figure 3.5.

There is an important relation between the two CNOT gates, of a two-qubit system, which
is: CNOTa = H ⊗ H · CNOTb · H ⊗ H (see [1]).

In classical computation, any logical operation can be done from combinations of the
logic gate NAND (NOT-AND). The similar is true in quantum computing: any quantum
operation can be implemented using a set of universal logic gates. Such a set is composed
of the Hadamard (H), controlled NOT (CNOT), phase (S) and π/8 (T).

3.5.2 The Quantum Fourier Transform – QFT

The Fourier Transform operation is very useful, with a wide range of applications in
physics, engineering, mathematics, etc. The discrete Fourier transform takes a vector of
complex numbers to another vector, whose components are associated to the input vector,
through the definition:

yj ≡ 1√
N

N−1∑

k=0

xke
2πijk/N (3.5.4)

In Quantum Computing, the Quantum Fourier Transform (QFT) is behind the exponen-
tial gain in the speed of algorithms [10] such as Shor’s factoring algorithm [11,12]. The
operator QFT can be implemented using only O(n2) operations, whereas its classical ana-
logue, the Fast Fourier Transform (FFT) requires about O(n2n) operations. Therefore, QFT
is implemented exponentially faster than the FFT.

The QFT is an unitary transformation (see problems), which takes each eigenstate of
the system to a superposition, as described by Equation (3.5.5), where n is the number of
qubits in the system:

QFT|j 〉 = 1√
2n

2n−1∑

k=0

e2πijk/2n |k〉 (3.5.5)

An alternative definition of the QFT illustrates better the quantum operations needed for its
implementation:

QFT|j1j2 · · · jn〉 = 1√
2n

(|0〉 + e2πi0.jn |1〉)(|0〉 + e2πi0.jn−1jn |1〉)

· · · (|0〉 + e2πi0.j1j2···jn |1〉) (3.5.6)
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where 0.jljl+1 · · · jm represents the binary fraction jl

2 + jl+1
4 + · · · + jm

2m−l+1 . This comes
from the fact that it is always possible to describe a state |j 〉 through its binary representa-
tion |j1j2 · · · jn〉, reminding that j = j12n−1 + j22n−2 + · · · + jn20. This demonstration is
left as an exercise.

The relation above, Equation (3.5.6), is very useful, because it indicates the necessary
operations to be performed on each qubit for the implementation of the QFT. For instance,
starting from the first qubit, the first step is to apply a Hadamard gate, followed by a
relative phase change, controlled by the other qubits, of the system. One can see from
Equation (3.5.6) why a relative phase change is needed. This operation can be performed
by some applications of the logic gate Rk :

Rk ≡
[

1 0
0 e2πi/2k

]
(3.5.7)

However, this operation must be controlled, i.e. the Rk gate is applied if the k-th qubit is in
the |1〉 state (if the k-th qubit is in the state |0〉, no operation is applied). The sequence of
operations for the k-th qubit is:

Rn−k+1 · · ·R3R2Hk|j1 · · · jn〉
= 1√

2
|j1 · · · jk−1〉

[|0〉 + e2πi0.jkjk+1···jn |1〉]|jk+1 · · · jn〉 (3.5.8)

Let us exemplify the application of this sequence on the first qubit. First we apply a
Hadamard, and consequently the state of the system becomes:

H1|j1j2 · · · jn〉 = 1√
2

[|0〉 + e2πi0.j1 |1〉]|j2 · · · jn〉 (3.5.9)

since e2πi0.j1 = 1 if j1 = 0 and e2πi0.j1 = −1 if j1 = 1. Next, we apply the controlled gates
Rk to the same qubit, starting from R2, i.e. controlled by the second qubit, and finishing
with Rn, controlled to the last one:

R2H1|j1j2 · · · jn〉 = 1√
2

[|0〉 + e2πi0.j1j2 |1〉]|j2 · · · jn|〉

Rn · · ·R2H1|j1j2 · · · jn〉 = 1√
2

[|0|〉 + e2πi0.j1j2···jn |1〉]|j2 · · · jn|〉 (3.5.10)

After the application of these sequences the system will be in the state described by
Equation (3.5.11). Therefore, a SWAP logic gate must be applied, in order to exchange
the sates of individual qubits, accomplishing the QFT. The quantum circuit describing the
QFT, may be seen on Figure 3.6.

|ψ〉 = 1√
2n

(|0〉 + e2πi0.j1j2···jn |1〉)

· · · (|0〉 + e2πi0.jn−1jn |1〉)(|0〉 + e2πi0.jn |1〉) (3.5.11)
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Figure 3.6 Quantum circuit to implement the QFT (the SWAP operation at the end is not shown). Adapted with
permission from [1].

Figure 3.7 Quantum circuit to implement the QFT for 3 qubits. Adapted with permission from [1].

For a three-qubit system the QFT operator can be easily implemented using the basic
known logic gates H, S and T , apart from the SWAP. The quantum circuit which illustrates
this implementation is shown on Figure 3.7.

The most important quantum algorithm, the Shor algorithm [11], uses the QFT for find-
ing the order of a number, which increases the speed of the factorization process. These
are basically implemented by the same quantum circuit and are the main reasons for the
exponential gain of speed in comparison with the classical factorizing algorithm.

3.6 QUANTUM STATE TOMOGRAPHY

Quantum state tomography is a technique which allows the determination of all the ma-
trix elements of the density operator of a system. Such a procedure is very important for
QIP, since at the end of an algorithm or protocol, one is usually interested in knowing the
quantum state of the system. In Chapter 2, density matrix was introduced in the context of
NMR, and in Chapter 4 the quantum state tomography will also be discussed in the context
of NMR QIP. In this chapter, these concepts are presented within the QIP formalism.

3.6.1 The density matrix

In QIP one frequently has to deal with situations where the state vector of the system is
not known, but only a set of possible states {|ψi〉}, each of which with a probability {pi} to
occur. The set {pi, |ψi〉} is said to be a statistical ensemble. The appropriate mathematical
tool to deal with such cases is the density matrix, ρ, defined as:

ρ ≡
∑

i

pi |ψi〉〈ψi | (3.6.1)

where pi > 0 and
∑

i pi = 1. This operator has some important properties:
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1. The density matrix is a positive operator, that is, its eigenvalues are real and non-
negative. Indeed, for any state |ϕ〉,

〈ϕ|ρ|ϕ〉 =
∑

i

pi〈ϕ|ψi〉〈ψi |ϕ〉 =
∑

i

pi

∣∣〈ϕ|ψi〉
∣∣2 � 0 (3.6.2)

2. Because of the conservation of probabilities, the trace of ρ is equal to 1:

Tr(ρ) =
∑

i

pi Tr
(|ψi〉〈ψi |

)=
∑

i

pi = 1 (3.6.3)

3. A quantum state is said to be pure if and only if Tr(ρ2) = 1. This can be proved using
directly the definition of ρ:

ρ2 =
∑

i

∑

j

pipj |ψi〉〈ψi |ψj 〉〈ψj | = · · ·

=
∑

i

∑

j

pipj δi,j |ψi〉〈ψj | =
∑

i

p2
i |ψi〉〈ψi | (3.6.4)

Therefore,

Tr
(
ρ2)=

∑

i

p2
i Tr
(|ψi〉〈ψi |

)=
∑

i

p2
i � 1 (3.6.5)

The equality in (3.6.5) is only satisfied if pi = 0 to every i, except for a particular state
j such as pj = 1. Only an operator with the properties listed above can be considered a
density matrix.

When dealing with composite systems, the density operator of the subsystems can be
obtained through the partial trace operation over the density operator of the whole system.
The partial trace operation is a sum over all the possible states of one subsystem. For
instance, if ρab is the density operator of a composite system |ab〉, the density operator of
each subsystem is given by:

ρa ≡ Trb(ρ
ab); ρb ≡ Tra(ρ

ab) (3.6.6)

where Tra and Trb means the trace operation made only over the states of a or b, respec-
tively.

3.6.2 Determining ρ

In order to experimentally determine all the elements of a density operator, it is necessary
to perform several measurements. Therefore, if the quantum system has only one copy, it
turns out to be impossible to measure ρ. For a simple quantum system, containing only
one qubit, the set 1, σx , σy and σz form a orthonormal set of matrices upon which any
operator ρ can be expanded as:

ρ = tr(ρ)1 + tr(ρσx)σx + tr(ρσy)σy + tr(ρσz)σz

2
(3.6.7)
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Remembering that Tr(ρσz) = 〈σz〉 is the expected value of the operator σz, it can be seen
that many measurements are necessary for obtaining the expected value, since one single
measurement will always result in +1 or −1. For a large sampling, the average over all the
measured results will be equal to tr(ρZ), with a standard deviation less than 1/

√
m, where

m is the number of measurements. Consequently, the value of 〈Z〉 can be measured with
an arbitrarily good precision. Obviously, this is also true for any other observable of the
system.

This procedure can be generalized for an arbitrary number of qubits, and the density
matrix can be written as:

ρ =
∑

−→v
tr(σv1 ⊗ σv2 ⊗ · · · ⊗ σvn·ρ)σv1 ⊗ σv2 ⊗ · · · ⊗ σvn

2n
(3.6.8)

where the sum runs over the vectors (−→v = v1, . . . , vn), whose components are chosen from
the set {1, σx, σy, σz}, formed by the Pauli matrices plus the identity. The set {σv1 ⊗ σv2 ⊗
· · · ⊗ σvn} forms a basis in which any square matrix can be expanded upon.

Therefore, performing measurements of observables which are the products of the Pauli
matrices, it is possible to determine all the elements of the density matrix operator ρ, with
an arbitrary precision. This process is referred to as Quantum State Tomography, and is a
procedure for measuring the quantum state of a system.

3.7 ENTANGLEMENT

The fourth postulate and the superposition principle allows the consideration of quantum
states with form described in Equation (3.7.1). These states have interesting properties, and
constitute an entirely new computational resource, of exclusively quantum nature [13].

|ψ+〉 = |00〉 + |11〉√
2

(3.7.1)

First, one can notice that there are no individual sates, of a two-qubit system, |a〉 and |b〉
such as |ψ+〉 = |a〉 ⊗ |b〉. Indeed, if there were such states, one could expand them in the
computational basis {|0〉, |1〉}:

|a〉 = α|0〉 + β|1〉
|b〉 = α′|0〉 + β ′|1〉

Therefore,

|ab〉 = αα′|00〉 + ββ ′|11〉 + αβ ′|01〉 + βα′|10〉

that implies

αα′ = ββ ′ = 1√
2

and αβ ′ = βα′ = 0

which is an inconsistency.
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States like those of Equation (3.7.1) can not be factorized; they are called entangled
states. As an example, let us calculate its density matrix:

|ψ+〉〈ψ+| = |00〉〈00| + |00〉〈11| + |11〉〈00| + |11〉〈11|
2

= 1

2

⎛

⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎠ (3.7.2)

and calculate the Von Neumann’s entropy of each qubit. This entropy is defined as:

S(ρ) = −Tr(ρ logρ) = −
∑

j

λj logλj (3.7.3)

Like any other entropy, S(ρ) is a measurement of the knowledge we have about the system.
The base of the logarithm on Equation (3.7.3) is 2, and λj are the eigenvalues of ρ. Since
the state of Equation (3.7.2) is pure, S(ρ) = 0. However, if we calculate the entropy of
each qubit using the partial trace concept, one finds that:

ρa = ρb = 1
2

= 1

2
|0〉〈0| + 1

2
|1〉〈1| (3.7.4)

from which we obtain: S(ρa) = S(ρb) = 1. In other words, an entangled state is such that
we have the maximum knowledge about the composite state, but no knowledge at all about
its constituents!

There are other possible entangled states of a two qubit system:

|ψ−〉 = |00〉 − |11〉√
2

|ϕ+〉 = |01〉 + |10〉√
2

(3.7.5)

|ϕ−〉 = |01〉 − |10〉√
2

The set of quantum states {|ψ±〉, |ϕ±〉} forms a basis for a two-qubit system, called
Bell’s basis [14].

Entangled states such as the cat state have a perfect correlation between the observables
of the individual qubits of the system. For instance, the expected values of Xa and Xb for
the cat state, |ψ+〉, are zero (〈Xa〉 = 0 and 〈Xb〉 = 0):

〈Xa〉 = 〈ψ+|Xa|ψ+〉 = 〈00| + 〈11|√
2

· |10〉 + |01〉√
2

= 0 (3.7.6)

However, 〈XaXb〉 = 1:

〈XaXb〉 = 〈ψ+|XaXb|ψ+〉 = 〈00| + 〈11|√
2

· |11〉 + |00〉√
2

= 1 (3.7.7)
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This tells us that, in spite of the uncertainty about the sates of the individual qubits, they are
perfectly correlated! This correlation is responsible for the non-local action of entangled
states. For instance, suppose a measurement is made on the first qubit, a, represented by
the operators Ma

0 = |0〉〈0| ⊗ 1 and Ma
1 = |1〉〈1| ⊗ 1. The probability of finding 0 is the

same of finding 1:

p(0) = 〈ψ+|MA†
0 MA

0 |ψ+〉 = 1

2
= 〈ψ+|MA†

1 MA
1 |ψ+〉 = p(1) (3.7.8)

After the measurement, supposing that the result 0 was found, the system state becomes:

|ψ0〉 = MA
0 |ψ+〉√

1/2
= |00〉 (3.7.9)

Therefore, a measurement of a qubit in an entangled state, defines the state of the other,
upon which no measurement was performed! If the measurement is made in a different
basis, for instance, Ma+ ≡ |+〉〈+| and Mb− ≡ |−〉〈−|, and the state |+〉 was found for qubit
a, after the measurement, the quantum state of the system would be |++〉, implying that
the qubit b is also in the same |+〉 state. For non-correlated systems, for instance

(|00〉 + |01〉)/√2 = |0〉 ⊗ (|0〉 + |1〉)/√2,

one can easily verify that the measurement of a does not affect b.
It is important to notice that the definition of entanglement for mixed states is more

complicated than for pure states. Whereas product states are always non-entangled pure
states, the same is not true for mixed states [15]. For a two-partite system, an non-entangled
mixed state ρ is characterized by the existence of a set of probabilities {pi} and one-qubit
density matrices {ρi

1, ρ
i
2} such that one can write:

ρ =
∑

i

piρ
i
1 ⊗ ρi

2 (3.7.10)

In opposite, an entangled mixed state is a state for which no such a decomposition exists.

Non-locality and Bell’s inequality

The influence of the measurement result of a qubit affecting the state of another, as happens
in an entangled state, is called non-locality. This strange property was pointed out for the
first time in a very influential paper, published in 1935, by Albert Einstein, Boris Podolsky
and Nathan Rose [13]. The paper aimed to demonstrate that Quantum Mechanics was an
incomplete theory. According to the authors, a theory to be considered complete should
contain what they defined reality elements. A reality element would be, still according
to the authors, any physical quantity whose value could be predicted before performing
a measurement on the system. For example, when a measurement of the observable σy

is performed on a qubit, in an entangled cat state, the result determines the state of the
other qubit, which could then be predicted before a measurement. Hence the observable
σy is a reality element. However, before the measurement is performed on the first qubit,
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no prediction can be made at all on either qubit, but only the probabilities of possible
outcomes.

In the year of 1964 John Bell discovered a remarkable result [14], which sets the rules
for deciding experimentally if the non-locality is indeed a fact of entangled systems. The
result is expressed in the form of an inequality, which establishes an upper limit for the
local correlations in a two-partite system. Since then, it is known as the Bell’s inequality.
For two qubits, Bell’s inequality says that a determined quantity S, essentially a correla-
tion function between observables, should not overcome the value 2. However, quantum
mechanics is non-local, and predicts the value S = 2

√
2 ≈ 2.83, for an entangled state,

therefore violating the Bell’s inequality.
In the year of 1982 the Bell’s inequality was tested in a famous experiment [16].

A French group led by Alain Aspect used entangled photons, produced by the decay of
electrons from a excited state of 40Ca, and demonstrated the non-local quantum correla-
tions between the polarization of the two photons. They determined the value of the quan-
tity S experimentally, and found S = 2.70 ± 0.05, which is very close to the ideal result
predicted by quantum mechanics.

3.7.1 Some applications of entanglement

Entangled states constitute a powerful natural resource for QIP. In this section, two of the
most interesting applications are illustrated: superdense coding and the teleport.

Superdense coding

The superdense coding is a process, in which two bits of classical information are trans-
mitted using only one quantum bit. Here the example of exchange of information between
two parties Alice and Bob, is described. Suppose that initially Alice and Bob share qubits
in an entangled cat state:

|ψ+〉 = |00〉 + |11〉√
2

(3.7.11)

On the other hand, two classical bits have four possible sequences: 00, 01, 10 or 11, each
of them representing a possible “message”, which can be sent through a communication
channel. Suppose that Alice wishes to send Bob the sequence 01. All she has to do is to
apply the operator X on her qubit, of the entangled pair (say, the qubit a of the state |ab〉),
transforming the state to:

|ϕ+〉 = |10〉 + |01〉√
2

(3.7.12)

After the operation, she sends her qubit to Bob, who applies the operations CNOTa (note
that the control is in the first qubit) to the pair, and then Ha also on the first qubit:

Ha · CNOTa|ϕ+〉 = Ha · |11〉 + |01〉√
2

= |01〉 (3.7.13)
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Figure 3.8 Quantum circuit to implement teleport. The double line represent classical bits, after the measure-
ment is performed. Adapted with permission from [1].

After this, he performs a measurement in the computational basis, obtaining the se-
quence 01. In this way, Alice has sent two bits of classical information sending only one
qubit. Any other sequence can be sent by just varying the first operation, i.e. the application
of the X gate.

Teleport

Teleport is a process through which the state of a qubit is transferred to another, using the
non-local properties of entangled states [17]. Differently from superdense coding, no qubit
is transferred in teleport, but only a quantum state.

In the simplest case of teleport, three qubits are involved, two with Alice (let’s label
them |ψa〉) and one with Bob (labelled |b〉). As in the superdense coding process, initially
Alice and Bob qubits, |a〉 and |b〉, are in a cat state. Alice wishes to transmit to Bob the
unknown state of a third qubit, |ψ〉 = α|0〉 + β|1〉. Of course, she cannot measure |ψ〉, for
she would only get 0 or 1, with the probabilities |α|2 and |β|2, respectively. The quantum
circuit that describes the teleport process is illustrated in Figure 3.8, where the top line
represents the qubit Alice wants to teleport to Bob (|ψ〉), and the second and third lines,
represent the entangled qubit pair, the second one with Alice and the third one with Bob.

At the beginning of the process, the quantum state of the three-qubit system is then given
by:

|Φ0〉 = |ψ〉|ab〉 = |ψ〉
[ |00〉 + |11〉√

2

]

= 1√
2

[
α|0〉(|00〉 + |11〉)+ β|1〉(|00〉 + |11〉)] (3.7.14)

The first operation that Alice performs is the application of a CNOTψa gate, which inverts
the state of the second qubit, |a〉, one of the entangled qubits, if the first one, |ψ〉, is in the
state |ψ〉 = |1〉. Therefore, the system evolves to the state described by:

|Φ1〉 = CNOTψa|Φ0〉

= 1√
2

[
α|0〉(|00〉 + |11〉)+ β|1〉(|10〉 + |01〉)] (3.7.15)

The second operation is the application of the Hadamard gate to the first qubit, |ψ〉,
leaving the system on state described by:
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|Φ2〉 = Hψ |Φ1〉

= 1

2

[
α
(|0〉 + |1〉)(|00〉 + |11〉)+ β

(|0〉 − |1〉)(|10〉 + |01〉)]

= 1

2

[
α
(|000〉 + |100〉 + |011〉 + |111〉)

+ β
(|010〉 − |110〉 + |001〉 − |101〉)] (3.7.16)

At this point, the quantum feature of the teleport has already occurred, as can be seen after
rewriting |Φ2〉:

|Φ2〉 = 1

2

[|00〉(α|0〉 + β|1〉)+ |01〉(α|1〉 + β|0〉)

+ |10〉(α|0〉 − β|1〉)+ |11〉(α|1〉 − β|0〉)] (3.7.17)

Clearly, Bob’s qubit |b〉, is now in a superposition, which involves four different possible
combinations, containing the coefficients α and β of the qubit state, that Alice wished to
transmit at the beginning of the process. A measurement performed on her qubits will
project the Bob’s qubit to one of the possible combinations.

Therefore, the next step is a measurement, performed by Alice, in the qubits which are
with her, |ψa〉. After this measurement, Alice sends Bob a message by classical means,
telling him the result that she found. Then Bob has to perform some operations, on his
qubit, depending on the information sent by Alice. The operations, which are conditional
to Alice’s results, can be written as XMa and ZMψ , being Ma and Mψ the results found by
Alice after the measurements on her qubit. For instance, if Alice’s results were Ma = 0 and
Mψ = 0 (that is, |00〉 was the state measured), Bob does not have to do anything, since the
state of his qubit is already the one Alice wished to transmit. On the other hand, if Alice
finds Ma = 1 and Mψ = 1 (which means that the state |11〉 was the measured one) Bob
has to apply the operations X and Z, on his qubit. Hence, the final wave function depends
on the result found by Alice:

|00〉 −→ |Φ3〉 = |Φ2〉 = α|0〉 + β|1〉
|01〉 −→ |Φ3〉 = X|Φ2〉 = X

[
α|1〉 + β|0〉]= α|0〉 + β|1〉

|10〉 −→ |Φ3〉 = Z|Φ2〉 = Z
[
α|0〉 − β|1〉]= α|0〉 + β|1〉

|11〉 −→ |Φ3〉 = ZX|Φ2〉 = ZX
[
α|1〉 − β|0〉]= α|0〉 + β|1〉 (3.7.18)

It is important to notice that for the teleport to be successfully implemented, a classical
communication channel must be used, to send Alice’s measurement results. Without that
information Bob will never know that the state of his qubit has been changed.

3.8 QUANTUM ALGORITHMS

Perhaps, the most striking aspect of quantum computation are the quantum algorithms,
which can compute states of bit sequences that are impossible for classical computers,
such as superposition and entangled states. Here lies the power of the quantum algorithms.
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Figure 3.9 Quantum circuit to implement the Deutsch algorithm. Adapted with permission from [1].

Quantum algorithms can be divided into two classes, called A and B, the exponentially fast
and the polynomially fast, respectively.

The first quantum algorithm, which demonstrated the power of quantum computation
over the classical one, was discovered by David Deutsch [18]. There is no classical analo-
gous to this algorithm. It uses the Hadamard logic gates to create superpositions, which
is impossible for classical computers. The quantum search algorithm was created by Lov
K. Grover [19], and it is polynomially faster than their classical versions, so it belongs
to class B. The factorization algorithm, on another hand, created by Peter Shor [11,12]
is exponentially faster than its classical version and it is therefore classified as an A-type
algorithm.

In this section, a non-exhaustive discussion of these three algorithms, is made, showing
the basic operations necessary for their implementation.

3.8.1 The Deutsch’s algorithm

The Deutsch algorithm is used to test whether a binary function of one qubit is constant
(f (0) = f (1)) or balanced (f (0) �= f (1)), without the need of computing the two possible
values f (0) and f (1), separately, and then comparing their results, as it would be made in
a classical computer [18].

The quantum circuit that describes the Deutsch algorithm is illustrated in Figure 3.9,
from which we can see that at the input the qubits are in a quantum state described by:

|Φ0〉 = |0〉 ⊗ |1〉 = |01〉 (3.8.1)

The first operation of the algorithm is a Hadamard logic gate applied to both qubits,
yielding:

|Φ1〉 = HbHa|Φ0〉 = Ha|0〉Hb|1〉
= 1

2

(|0〉 + |1〉)(|0〉 − |1〉)

= 1

2

[|0〉(|0〉 − |1〉)+ |1〉(|0〉 − |1〉)] (3.8.2)

The next step is to perform an unitary operation Uf , which takes the two-qubit system from
a generic state, |x, y〉 to the state |x, y ⊕f (x)〉. This transformation |x, y〉 → |x, y ⊕f (x)〉
is nothing but the sum of the second qubit, the bottom line of the circuit, with f (x), that
is the computed function of the first qubit. The binary function, f (x), is the one to be
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verified. One can notice that any binary function, when applied to the system whose state
is |x, y〉 = 1√

2
|x〉[|0〉 − |1〉], yield the result (−1)f (x) 1√

2
|x〉[|0〉 − |1〉]:

Uf

1√
2
|x〉[|0〉 − |1〉] = 1√

2
|x〉[∣∣0 ⊕ f (x)

〉− ∣∣1 ⊕ f (x)
〉]= · · ·

= (−1)f (x) 1√
2
|x〉[|0〉 − |1〉]= · · · (3.8.3)

It is important to point that: |0 ⊕ f (x)〉 = |0〉 and |1 ⊕ f (x)〉 = |1〉 if f (x) = 0 or
|0 ⊕ f (x)〉 = |1〉 and |1 ⊕ f (x)〉 = |0〉 if f (x) = 1. Therefore, after the operation Uf the
state of the system is:

|Φ2〉 = Uf |Φ1〉

= 1

2

[
(−1)f (0)|0〉(|0〉 − |1〉)+ (−1)f (1)|1〉(|0〉 − |1〉)] (3.8.4)

from which one can see that, although both qubits are still in a superposition of states, the
relative phase of the first one now depends on the result of the operations f (0) and f (1).

The state |Φ2〉 can be rewritten as:

|Φ2〉 =
{± 1

2 [(|0〉 + |1〉)(|0〉 − |1〉)] if f (0) = f (1)

± 1
2 [(|0〉 − |1〉)(|0〉 − |1〉)] if f (0) �= f (1)

}
(3.8.5)

from which it is clear that the relative phase of the first qubit determines if the function is
balanced or constant.

Next, a Hadarmad gate is applied to the first qubit, reminding that H(|0〉 + |1〉) = |0〉
and H(|0〉 − |1〉) = |1〉. Therefore, performing a measurement in the computational basis
after the Hadamard operation, the system will be found in the state |0〉 if the function
f is constant or balanced if the state is |1〉, as shown on Equation (3.8.6). Note that the
measurement is performed on the first qubit only.

|Φ3〉 =
{± 1√

2
[|0〉(|0〉 − |1〉)] if f (0) = f (1)

± 1√
2
[|1〉(|0〉 − |1〉)] if f (0) �= f (1)

}
(3.8.6)

There exists a variation of this algorithm for systems containing more than two qubits,
which was derived by Deutsch and Jozsa, and it will not be discussed here. It uses the same
principles as above, and is referred as the Deutsch–Jozsa algorithm [20].

3.8.2 The quantum search algorithm

A classical search algorithm needs about O(N) operations in order to find a specified item
in a disordered list containing N elements. The quantum search algorithm, created by
Grover is quadratically faster than its classical analogous, since only O(

√
N) operations are

needed [19]. In a quantum computer, the number of elements to be searched is the number
of possible states of the system N = 2n, where n is the number of qubit system. Grover’s
algorithm is then considered to be of B-type. For a two-qubit system, with N = 22 = 4



114 3. Fundamentals of Quantum Computation and Quantum Information

elements, the algorithm finds the solution with only one iteration. Searching algorithms
play an important role in quantum computation, because they can also be used for searching
solutions of an specified problem, which would take too long to calculate, or has too many
operations to be performed.

The Grover’s algorithm performs a search on the elements index, instead of searching
the elements themselves. It uses two sets of distinct qubits, one containing the elements
being searched (|x〉), and the other containing auxiliary qubits (|q〉). At the first stage of
the algorithm the qubits in the state |x〉 are prepared in an uniform superposition. In such a
state, any item has the same probability to be found after a measurement is performed. Such
superposition can be achieved by applying a Hadamard gate to each qubit of the system,
after preparing them on the state |0〉. This operation is represented as H⊗n, meaning H ⊗
H ⊗ · · · ⊗ H , n-times:

H⊗n|00..0〉 = 1√
2n

2n−1∑

x=0

|x〉 (3.8.7)

At the second stage, an operator, called Grover operator – G, is applied iteratively to
the system, approximately

√
2n times, and after that the searched state will have a high

probability of being found, when a measurement is performed. This operator is composed
of four others, represented by: G = H⊗n ·[2|0〉 〈0|−1]·H⊗n ·O , and they will be discussed
below.

The first operator of G is an unitary controlled operation, represented by O . It inverts
the phase of the state, which is being searched. This controlled operation is constructed by
applying the transformation indicated on Equation (3.8.8), such as f (x) = 1 when x is the
searched item and f (x) = 0 otherwise. Notice that the operation O only acts on the second
set of qubits, leaving the first one intact.

O|x〉|q〉 = |x〉|q ⊕ f (x)〉 (3.8.8)

The operation O is considered to be a “black box” called an Oracle, whose construction
has to be built individually for each item to be searched.

Reminding that the Oracle acts only on the second set of qubits, in order to in-
vert the phase of the searched state, it is necessary to prepare the system in the state
|x〉[|0〉 − |1〉]/√2. In this case, when the Oracle is applied, the system will evolve as de-
scribed on Equation (3.8.9), similarly to what happens in the Deutsch algorithm. As it can
be seen, the solution gets marked after the Oracle operation, inverting the phase of the
desired state, i.e. |x〉 → −|x〉, if |x〉 is the desired item.

O|x〉[|0〉 − |1〉]/√2 = (−1)f (x)|x〉[|0〉 − |1〉]/√2 (3.8.9)

Since the state of the second set of qubits does not change, it can be omitted from the
notation:

O|x〉 = (−1)f (x)|x〉 (3.8.10)

After the application of the Oracle, three operations are necessary, a Hadamard on the
|x〉 qubits, a phase shift |x〉 → −(−1)δx0 |x〉 of all states, except for |0〉 (δx0 = 1 for x = 0,
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and δx0 = 0 for x �= 0), and the Hadamard on the |x〉 qubits again. It is possible to demon-
strate (see problems) that the operator which applies the conditional phase shift is:

[
2|0〉〈0| − 1

]|x〉 = −(−1)δx0 |x〉 (3.8.11)

The set of operations [H⊗n · (2|0〉〈0| − 1) · H⊗n] is called inversion about the mean, or
inversion about the average. In order to illustrate this point let’s consider the state:

|ψ〉 = H⊗n|0〉 = 1√
2n

2n−1∑

x=0

|x〉 (3.8.12)

An inversion about the mean is then given by:

H⊗n · (2|0〉〈0| − I
) · H⊗n = [2|ψ〉〈ψ | − 1

]
(3.8.13)

Its action on a generic state |ϕ〉 =∑αk|k〉 is:

[
2|ψ〉〈ψ | − 1

]∑

k

αk|k〉 =
∑

k

[−αk + 2〈α〉]|k〉 (3.8.14)

where 〈α〉 ≡∑k αk/N , i.e. the mean value of αk , hence the operator’s name.
In summary, the Grover operator is given by the product of the Oracle, and the inversion

about the mean:

G = [2|ψ〉〈ψ | − 1
] · O (3.8.15)

In Figure 3.10, it is illustrated the action of the whole Grover operator in a generic state.
The action of the Oracle inverts the phase of the searched state, selecting it, then a inversion
about the mean is applied and the amplitude of the selected state is increased.

It can be shown that the number of times that the operator G has to be applied before the
item is found is ≈ [π√

N/M/4], where N = 2n is the number of states in the system, and
M is the number of searched solutions [1]. For N = 4 and M = 1, which means looking
for one item in 4, it is necessary to apply G only once. The inversion about the mean and
oracle operators can also be described through their matrix representations. If, for instance,

Figure 3.10 Quantum scheme to implement Grover operator. Adapted with permission from [1].
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the searched state is |11〉:

[
2|ψ〉〈ψ | − 1

]= 1

2

⎡

⎢⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤

⎥⎦

O =
⎡

⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎦ (3.8.16)

G = [2|ψ〉〈ψ | − 1
]
O = 1

2

⎡

⎢⎣

−1 1 1 −1
1 −1 1 −1
1 1 −1 −1
1 1 1 1

⎤

⎥⎦

As an example, let us consider the case of two qubits. The input state is |ψ0〉 = |00〉,
from which an uniform superposition must be created, applying Hadamard gates on each
qubit of the system. Therefore the following stage will be:

|ψ1〉 = 1

2

[|00〉 + |01〉 + |10〉 + |11〉].

If the searched state is |11〉, the oracle must invert the phase of this particular state, hence
selecting it, which takes the system to:

|ψ2〉 = O|ψ1〉 = 1

2

[|00〉 + |01〉 + |10〉 − |11〉] (3.8.17)

The next stage is the inversion about the mean operation, resulting in |ψ3〉:

|ψ3〉 = [2|ψ〉〈ψ | − 1
]|ψ2〉 = |11〉 (3.8.18)

In Figure 3.11 the application of the Grover algorithm is illustrated, for (a) a two-qubit
system and (b) a ten-qubit system (N = 210 = 1024). Notice that the amplitude of the
searched state oscillates with the number of times the G operator is applied. Thus, one
must know in advance how many solutions exist and also the number of elements in the
space where the search is being carried on, for there is a optimum number of runs of the
algorithm. These numbers are approximately 1 and 25, for n = 2 and n = 10, respectively.

3.8.3 The quantum factorizing algorithm

The quantum factorizing algorithm was created by P. Shor [11], and is the most important
application of quantum computing up to date. The main interest in this particular algorithm
is because it can be used for breaking codes of cryptographic systems. The reason for this
is that the best classical algorithm for factorizing a given number will run in a time pro-
portional to exp((logN)1/3(log(logN))2/3), i.e. it runs in time, which grows exponentially
with the number of digits of N (logN ≈ the number of digits required to store N ). Instead,
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Figure 3.11 Action of Grover algorithm calculated for: (a) 2 qubits, (b) 10 qubits.

Shor’s algorithm runs in time which grows only polynomially with logN . For instance, in
order to factorize a number of 1024 bits, for instance, 100 thousand years are necessary,
using present day classical computers. The same task could be made in less than 5 minutes,
using a quantum computer running the Shor factorization algorithm.

One of the main features of the Shor algorithm is that it uses the QFT operation, which
needs only O(n2) operations while its classical analogous, the FFT (Fast Fourier Trans-
form) needs O(n2n) operations.

The factorization algorithm has 4 stages, but only the last one is quantum in nature. In
fact, it turns out that the factorization problem can be reduced to an order finding problem,
which can be implemented using basically the same quantum routine for phase estimation.
Thus, phase estimation and order finding are “subroutines” to Shor algorithm, and they
will be discussed in the next subsections.

Phase estimation

Let us first review an application of QFT: a quantum circuit to estimate the phase of a
state, ϕ, which is eigenket of an operator U : U |u〉 = e2πiϕ |u〉. The procedure requires two
sets of qubits, called registers. The first register must have a number of qubits, sufficiently
large to store the value of ϕ, with some precision; the larger this number, the better the
precision. The second register must have enough qubits to represent the eigenstate |u〉. The
initial state is prepared with the first register in the |0〉 state, whereas the second register
must contain the eigenket |u〉. Thus the input state is:

|ψin〉 = |0〉t |u〉 (3.8.19)

where t is the number of qubits in the first register. At the first stage, a Hadamard gate is
applied to each qubit in the first register, H⊗t , in order to create an uniform superposition
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Figure 3.12 Quantum circuit to implement the routine of phase estimation. Adapted with permission from [1].

of states:

|ψ1〉 = H⊗t |ψini〉 = [H⊗t |0〉t
]|u〉 = 1√

2t

[
2t−1∑

k=0

|k〉
]
|u〉 = · · ·

= 1√
2t

[(|0〉 + |1〉)(|0〉 + |1〉) . . . (|0〉 + |1〉)]|u〉 (3.8.20)

Then a series of logic gates are applied to the second register, controlled by the qubits of
the first register, as can be seen from Figure 3.12.

These controlled operations apply the operator U on the second register, 2t−1−k

times, where k is the label of the qubit which is controlling the operation, noticing that
k = 0,1, . . . , t − 1. The U -controlled operation performs the transformation
|n〉|u〉 → |n〉Un|u〉 = e2πiϕn|n〉|u〉, taking the system to the state described by Equa-
tion (3.8.21). Notice that, although U is applied to the second register, it does not change
it at all, since this register is storing |u〉, which is an eigenvector of U . Instead, the con-
trolled U operation changes just the relative phase of every qubit in the first register. This
operation takes the system to the state described on Equation (3.8.21).

|ψ2〉 = Ut−k|ψ1〉
= 1√

2t

[(|0〉 + e2πiϕ2t−1 |1〉)(|0〉 + e2πiϕ2t−2 |1〉)

· · · (|0〉 + e2πiϕ20 |1〉)]|u〉 = · · · = 1√
2t

[
2t−1∑

k=0

e2πiϕk|k〉
]
|u〉 (3.8.21)

Therefore, the t qubits of the first register have become the QFT of the state |ϕ〉, i.e.
QFT |ϕ〉. At the last stage, the inverse Quantum Fourier Transform QFT†, which can be
obtained by reversing the operations required to implement the QFT, is applied to the first
register. This last operation stores the value of the phase, ϕ, on the t qubits of the first
register, leaving the system in the final state: |̃ϕ〉t |u〉 = |ϕ1ϕ2 · · ·ϕt 〉|u〉. At this point, a
measurement of the first register will yield an estimative of the phase ϕ. This value is only
an estimative, because its precision depends on the number of qubits of the first register.
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Figure 3.13 Quantum circuit to implement the order-finding protocol. Adapted with permission from [1].

Quantum order-finding

There is another quantum routine to be discussed before moving to Shor’s factorization
algorithm. The order of a number is a concept from Number Theory, which is beyond the
scope of this book. However, some of its features, necessary to understand Shor’s algo-
rithm, will be discussed on this section.

The order of a number is the least integer r such as xr = 1 (mod N). This notation comes
from modular arithmetic meaning that xr leaves a remain 1, when divided by N . In this
sense, 1 = 5 = 9 = 13 = 1 (mod 4), since they all leave the same remain, 1, when divided
by 4. In modular arithmetic, which has some interesting features for understanding the
properties of numbers, one is interested only in the remains, and this part of mathematics
deals exclusively with integer numbers.

Finding the order of a number is a difficult task to classical computers, particularly if
the number is large. Further below, it will be shown why this routine can be used to find
the non-trivial factors of a number. Here we will be focused on the necessary quantum
procedures for implementing this routine, that is illustrated on Figure 3.13. As one can see,
this is just the phase estimation routine, with a different input, at the second register.

Again, the two registers have to be prepared in a specific quantum state, and the
controlled-U operator, which performs the transformation, displayed on Equation (3.8.22),
has to be applied, as may be seen from Figure 3.13.

U |y〉 ≡ |xy (mod N)〉 (3.8.22)

This function is periodic for 0 � y � N − 1, so that xy (mod N) = x(y + N) (mod N).
Since the phase estimation routine will be used, it its necessary to construct the eigen-

state of the operator U . As it can be observed, the ket described on Equation (3.8.23) is an
eigenstate of the operator U , with eigenvalue e2πis/r :

|us〉 ≡ 1√
r

r−1∑

k=0

exp

(−2πisk

r

)
|xk (mod N)〉 (3.8.23)

U |us〉 = 1√
r

r−1∑

k=0

exp

(−2πisk

r

)
|xk+1 (mod N)〉 = exp

(
2πis

r

)
|us〉 (3.8.24)

The preparation of |us〉 could be a problem, since the order r must be known beforehand,
but that is exactly what one wishes to calculate. Fortunately, there is a way around it. By
using an uniform superposition of the sates |us〉, with s running from 0 to r − 1, given
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by Equation (3.8.25), being log(r) the number of qubits necessary for storing this set, it is
possible to obtain a set of eigenkets of the operator U , that can be used in the order-finding
routine:

1√
r

r−1∑

s=0

|us〉 = |1〉 (3.8.25)

With the eigenket of the operator U at hand, we can use the phase estimation routine
for finding the order, r , such as xr = 1 (mod N). For that, the system must be prepared in
the initial state |ψini〉 = |0〉t |1〉, and a Hadamard gate applied on every t qubit of the first
register, in order to create a uniform superposition. The quantum state of the system is then
given by:

|ψ1〉 = H⊗t |ψini〉 = 1√
2t

(
2t−1∑

k=0

|k〉
)

|1〉 (3.8.26)

Next, the controlled operation U , described by Equation (3.8.22), is applied to the sec-
ond register. However in this case, this operation is controlled by the qubits on the first
register such as |k〉U |y〉 = |k〉|yxk mod N〉, and the sate of the system will evolve to:

|ψ2〉 = U |ψ1〉 = 1√
2t

2t−1∑

k=0

|k〉|xk mod N〉 (3.8.27)

Using the relation given by the Equation (3.8.24), this last expression can be rewritten
as:

|ψ2〉 = 1√
r2t

r−1∑

s=0

2t−1∑

k=0

e2πisk/r |k〉|us〉 (3.8.28)

It can be noticed that the first register is now the Fourier expansion of the ˜|s/r〉 state. It is
important to point out that the value of s/r depends on the number of qubits of the first
register.

At this stage, the QFT† operator has to be applied, in order to transfer the approximate
value of the phase s̃/r to the state of the first register:

QFT†|ψ2〉 = 1√
r

r−1∑

s=0

˜|s/r〉|us〉 (3.8.29)

Therefore, after a measurement is performed on the first register, the value of s̃/r is de-
termined. From the sequence of operations discussed above, it is clear that the problem of
order finding was reduced to phase estimation. The value of s/r can then be efficiently de-
termined, within an arbitrary precision, which depends on the number of qubits of the first
register. Unfortunately, the first register is on a superposition of states, so that any value of s
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can be measured. However, it is also known that s/r is a ratio between two integers, and if
one could obtain the closest fraction of s/r the value of r will be determined. Fortunately,
there is a classical algorithm, known as continued fraction algorithm, which was idealized
for describing rational numbers in terms of integers, and that allows the determination of r

(see Ref. [1] for more details).
The order finding routine do have some problems, which will be discussed as follows.

As it was pointed out before, after the application of the inverse Quantum Fourier Trans-
form (QFT†), the first register is in an uniform superposition of states. Therefore, several
eigenkets with any value of s can be obtained after a measurement is performed on the
first register. The continued fraction algorithm will only return the correct value if s is co-
prime of r . This is a problem, because if s is a factor of r , only a factor of r , and not the
proper order, will be obtained after running the continued fraction algorithm. The easiest
way around this is to verify if the found value of r satisfies the condition xr mod N . If this
condition is not satisfied, the order-finding routine should be run again, in order to obtain
a different state ˜|s/r〉, and therefore another value of s̃/r . Repeating the routine several
times until the a value of s/r , that can be properly used, seems a waste of time and that
may compromise the efficiency and speed of the algorithm. However, there is a high prob-
ability of finding a value of s that is not a factor of r , by picking up a value of this quantity
randomly, and that is exactly what is done when an uniform superposition is measured,
allowing the determination of the correct value of r . There are other ways to avoid many
repetitions [1], which will not be discussed here. The other case in which this routine fails
is if a bad estimate of s/r is obtained. In this case, it will be impossible to determine r .
This problem can be avoided by increasing the number of qubits in the first register.

Shor’s factoring algorithm

The factoring problem can be reduced to order-finding, and that is what is actually done in
Shor’s factorizing algorithm, which is discussed in this section. We begin this discussion
by showing why the factorization problem can be reduced to order-finding, followed by
the stages of the factoring a given number. We illustrate that with a simple example.

Let N , a positive integer, be the number we want to factorize. We start by selecting
randomly a number x, such as 0 < x < N and gcd(x,N) = 1 (where gcd(x,N) stands for
Great Common Divisor between x and N ). If gcd(x,N) > 1 we are lucky, because x is
already a factor of N . However, if gcd(x,N) = 1, then there is a smallest positive integer
r � N , such that xr = 1 (mod N). This number is also called the period of x in respect
to N . In order this procedure to work, i.e. to determine the prime factors of N , the period
must be even, so that:

xr − 1 = 0 (mod N) leading to (xr/2 + 1)(xr/2 − 1) = 0 (mod N), which means that
(xr/2 + 1)(xr/2 − 1) = jN , for a nonzero integer j . This, does not mean that (xr/2 + 1)

or (xr/2 − 1) divide N , separately, but they ((xr/2 + 1) and (xr/2 − 1)) must have some
common factors in respect to N . Therefore, the gcd(xr/2 + 1,N) and gcd(xr/2 − 1,N)

might give some nontrivial factors of N . Even if only one prime factor of N is returned,
this procedure can be used to find the others. However, if N is a power of a single prime
number, this procedure fails. Fortunately, there is an efficient classical algorithm to test that
possibility [1].

In order to illustrate the procedure described above, let’s factorize 15, which is the small-
est nontrivial odd integer. Let’s pick the attempts 7, 9 and 13, for didactical purposes. Let
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us now calculate the order (period in respect to 15), which can done by testing one by one:

r 1 2 3 4 5 6 7 8 9 10

7r mod N 7 4 13 1 7 4 13 1 7 4
9r mod N 9 6 9 6 9 6 9 6 9 6
13r mod N 13 4 7 1 13 4 7 1 13 4

For the first choice, x = 7, one can see clearly that the period is 4, which is even, and then
calculate the gcd(74/2 +1,15) = gcd(50,15) = 5 and gcd(74/2 −1,15) = gcd(48,15) = 3,
which will yield the trivial answer 3 × 5 = 15. For the second choice, x = 9, the period is
2, and gcd(92/2 + 1,15) = gcd(10,15) = 5, but gcd(92/2 − 1,15) = gcd(8,15) = 1. Here
we a have case where the choice did not give all the prime factors of 15, but left us with at
least one good answer, from which the other can be derived. For the third and final choice,
x = 13, the period is also 4, giving gcd(134/2 + 1,15) = 5 and gcd(134/2 − 1,15) = 3.

It is clear that for large integers, this procedure is not efficient, since finding the order
is a non-trivial procedure. The power of Shor’s factorization algorithm lies in the fact that
a quantum routine, which is extremely efficient, can be used to determine the order of a
number.

At this point, we are finally ready to describe the quantum factoring algorithm, which
has several tasks to be followed. However, some are simple and can run on a classical
computer, with no harm to the performance of the algorithm.

The first task, which is simple, is to verify whether N is even, returning the value 2, for a
positive result, and then restarting the algorithm. The second task is to determine if N = ab

for b � 2, i.e. if it is a power of some single prime number, and return a, for a positive
answer. The third task is to pick randomly a number x, such that 1 � x � N , returning
gcd(x,N) if gcd(x,N) > 1, since a prime factor of N has already been found. The fourth
task, if all of the previous ones have failed, is to find the order, r , of x (xr = 1 (mod N)).
If r has been found to be even, and xr/2 �= −1 (mod N), calculate gcd(xr/2 − 1,N) and
gcd(xr/2 +1,N), determining which are the non-trivial solutions, that could be the answer,
i.e. the prime factors of N . If the answer has not been found, the third and fourth tasks have
to be repeated, using a different x, also randomly picked.

For illustration purposes, we will show how to factorize the number 15, using the Shor’s
algorithm. This is also the number used in the first, and only, experimental implementation
of this algorithm, utilizing the Nuclear Magnetic Resonance technique [21] (see Chapter 5).
Since 15 is the product of two prime numbers, 3 and 5, the two first tasks will fail. The
third task is to pick randomly a number x, let’s choose x = 7, and check if gcd(7,15) > 1.
This task is also going to fail, because 7 is not a factor of 15. Therefore, the next step is to
find the order, r .

As explained above, at the first stage of the order-finding routine, the system is the state
described by Equation (3.8.30), i.e. the first register, that contains t qubits, is in a uniform
superposition, whereas the second register stores the state |1〉:

|ψ1〉 = 1√
2t

[|0〉 + |1〉 + |2〉 + · · · + |t − 1〉]|1〉 (3.8.30)
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At the second stage, the operation U , such as |j 〉U |y〉 = |j 〉|y7j mod 15〉, is applied to
the second register, conditionally to the states of each individual qubit in the first register.
The system is then lead to the following state |ψ2〉:

|ψ2〉 = 1√
2t

[|0〉|1〉 + |1〉|7〉 + |2〉|4〉 + |3〉|13〉 + · · ·

+ |4〉|1〉 + |5〉|7〉 + |6〉|4〉 + |7〉|13〉 + · · ·] (3.8.31)

The next step is to apply the inverse Quantum Fourier Transform (QFT†) to the first reg-
ister and measure it in order to obtain the value of s/r . This task can be performed by
calculating the density matrix of the first register, through the partial trace operation, as-
suming that the density matrix of the whole system has been measured, and then applying
the QFT†. However, there is a periodicity in the second register of |ψ2〉, as can be seen on
Equation (3.8.31), and an alternative can be used from this point. This alternative requires
the use of the implicit measurement principle, which states that at the end of a quantum
circuit, it can be assumed that all the qubits have been measured, even though they were not
[1]. Since the qubits of the second register can only be in one of those states: |1〉, |7〉, |4〉 or
|13〉, a projective measurement will make the wave-function collapse to one of these states.
Supposing that such a measurement was performed and the second register was found to
be on the state |4〉 (anyone will do), the system would now be on the state described by:

|ψ3〉 =
√

4

2t

[|2〉 + |6〉 + |10〉 + |14〉 + · · ·]|4〉 (3.8.32)

Now, the QFT† must be applied. Assuming that t = 11 qubits were used on the first reg-
ister, the value of s/r will be determined with a precision of 1/4. This means that there
are 211 = 2048 allowed states, and after the application of the inverse Quantum Fourier
Transform the system will be in superposition of the following states: |0〉, |512〉, |1024〉
and |1536〉:

|ψ4〉 = QFT†|ψ3〉 =
[

2t−1∑

k=0

αk|k〉
]
|4〉

= 1

2

[|0〉 + |512〉 + |1024〉 + |1536〉]|4〉 (3.8.33)

This last procedure, the application of the inverse Quantum Fourier Transform, is not
straightforward, but can be easily calculated numerically, and the outcome of this result
depends on the number of qubits in the first register.

The next step is to perform a measurement. Assuming that the system has been found on
the state |1536〉, it is possible to determine the order of x = 7, using the continued fractions
algorithm, to find r = 4, since 1536/2048 = 3/4. Because 4 is even, it is then possible to
calculate gcd(xr/2 ±1,N) and test if any of the answers are solutions of the problem. Since
gcd(74/2 − 1,15) = gcd(48,15) = 3 and gcd(74/2 + 1,15) = gcd(50,5) = 3, we have that
15 = 3×5. The same result is obtained if the state |512〉 is measured instead. If the state |0〉
is the measured one, it will be impossible to determine the order of 7 (mod 15), and if the
outcome is |1024〉, the order-finding routine has failed, since it provided the value r = 2.
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This is due to 1024/2048 = 2/4 = 1/2, which means that value of s = 2 is a factor of r = 4,
and the continued fraction algorithm fails, as discussed earlier. For further discussion, see
[22] and [23].

3.9 QUANTUM SIMULATIONS

There are various important applications of simulations, in physics, chemistry and many
others areas. Simulations help in the construction of better cars, planes, buildings, etc. In
this section, we discuss how quantum computers can be used to simulate quantum systems,
a hard task for the classical computers. Examples of quantum simulations implemented by
NMR are shown in Chapter 5.

One of the most remarkable applications of quantum computing is the ability to simulate
others quantum systems. In fact, classical computers cannot be used to simulate a quantum
system efficiently [24,25]. The basic problem is the dimension of the Hilbert’s space, that
is 2n for a simple system containing n particles with only two degrees of freedom. It is
obvious that as the number of particles increases, this problem becomes intractable, since
it scales exponentially.

The second postulate of quantum mechanics dictates the rules for the time evolution of
quantum systems:

|ψ(t)〉 = exp(−iHt/h̄)|ψ(0)〉 (3.9.1)

where H represents the system Hamiltonian. The trick of using a quantum system for
simulating another one is to perform a set of unitary operations, Uk(�tk), which altogether
accomplish the operation exp(−iHs�t/h̄), where Hs is the Hamiltonian of the system one
wishes to simulate:

exp(−iHs�t/h̄) =
∏

k

Uk(�tk) (3.9.2)

where �t is the total time for the duration of the simulation, noting that
∑

k �tk = �t .
There are cases in which the exponentiation of Hs is difficult, for instance when the

number of particles is large. Sometimes first order approximations can be made:

exp(−iHs�t/h̄) ≈ 1−iHs�t/h̄ (3.9.3)

but usually this will lead to an unsatisfactory result, and others procedures become neces-
sary.

Some quantum systems have Hamiltonians that can be divided into two parts H0 and H′,
where the first one contains the main interactions and a second one that acts like a pertur-
bation on the system and is controlled by an external agent. Examples of such systems
are electrons bound by an atomic potential that can be induced to “jump” from an orbital
to another by laser beams, and the orientation of the nuclear magnetic moment, along a
strong magnetic field that can be manipulated by the weak radio-frequency pulses. These
two parts should act on the system in which the simulation is to be run. The procedure only
works if Hs can be efficiently described by H0 and H′, i.e. the simulation also depends on
the system in which it is to be run.
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Many particles systems are usually described by a class of Hamiltonians that are com-
posed of local interactions, i.e. between a small number of particles, like the Ising and
Heisenberg models:

H =
∑

k

Hk (3.9.4)

where Hk acts only on a small part of the system. Therefore, if Hk can be exponenti-
ated, H will be efficiently simulated. However, in general [Hk,Hl] �= 0, which means that
exp(−iHt/h̄) �=∏k exp(−iHkt/h̄). The solution to this problem lies in the so-called Trot-
ter formula, also called the asymptotic approximation theorem, for Hermitian operators:

lim
n→∞

(
exp(iAt/n) exp(iBt/n)

)n = exp
(
i[A + B]t) (3.9.5)

This formula is valid even if A and B do not commute. In chapter 5 some implementations
of quantum simulations through Nuclear Magnetic Resonance are discussed.

3.10 QUANTUM INFORMATION IN PHASE SPACE

Quantum mechanics, and consequently quantum computation and quantum information,
can be formulated and analyzed in phase space. As it will be exemplified in Chapter 5, some
quantum processes and algorithms can be represented in phase space and interpreted as
quantum maps [26,27]. The bridge that connects the two distinct approaches is the Wigner
function [28], which is a distribution function that enables the quantum states, and their
time evolution to be represented in the classical phase-space scenario. In this section, the
Wigner function representation of quantum mechanics is discussed for finite systems, with
2n-dimensional Hilbert space, being n the number of qubits. We start by describing the
definition of the Wigner function, discussing some of its basic properties, and exemplifying
with some simple coherent quantum states. A discussion about the application of a quantum
circuit, known as the scattering circuit, for determining directly the phase space map of
quantum system is presented.

3.10.1 The Wigner function

The Wigner function, for a continuous system, is defined as [26]:

W(q,p) = 1

πh̄

∫ +∞

−∞
exp(2ipy/h̄)〈q − y|ρ|q + y〉dy (3.10.1)

Therefore, the Wigner function is directly related to the density matrix operator, ρ, which
characterizes the quantum system [28] in Hilbert space.

The Wigner function is a distribution for the position (q) and momentum (p) of a sys-
tem. From the knowledge of the Wigner function of a system, its density matrix can be
determined in a kind of quantum state tomography.

The Wigner function defined above describes continuous systems. Until a few yeas ago,
the definition of Wigner functions for discrete systems, like spin systems, was an open
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question. The first attempt to describe a formalism in this direction was made by Woot-
ers [29], for a system with prime dimensions. Later, Cohendet et al. [30] established the
formalism for system of odd dimensions, and Leonhardt [31] generalized the problem for
discrete systems, with an arbitrary dimension. Discrete systems have finite phase spaces,
and their Wigner function possess some peculiarities, which have to be taken into account.
For discrete systems, with eigenkets labeled by integers |m〉, such as |m+ d〉 = |m〉, where
d is the system dimension, the Wigner function can be described by:

W(q,p) = 1

D

∑

n

exp

(
4πi

d
pn

)
〈q − n|ρ|q + n〉 (3.10.2)

where D = d for odd-dimensional systems (bosons) and D = 2d for even-dimensional
ones (fermions). Furthermore, the discrete Wigner function is real and normalized, and
also periodic in phase space, with the period equal to the dimension [31], i.e.

W(q,p) = W(q + D,p) = W(q,p + D).

For bosons, n should run from −(d − 1)/2 to (d − 1)/2, taking integers values between
them, and from −d/2 to (d −1)/2, taking half odds and integers values for fermions. How-
ever, in the fermionic systems, a convention establishes that the density matrix elements of
half odd should be taken as zero.

For spin systems, the position eigenkets and eigenvalues play the role of the spin com-
ponent along the z direction whereas the equivalent for momentum play the role of the
quantum phases. They are connected through the discrete Fourier Transform:

|p〉 = 1√
d

d−1∑

p=0

exp

(
2πi

d
pq

)
|q〉 (3.10.3)

The systems dimension in this case is given by d = 2j + 1, where d is odd for bosons,
and even for fermions. Because the arguments of the kets and bras have to be inte-
gers, in order to evaluate the Wigner function for spin systems, the following notation
is used: Jz|m〉 = m|m〉 being (m = −j, . . . , j) for bosons, and Jz|m〉 = (m − 1

2 )|m〉 being
(m = −j + 1

2 , . . . , j + 1
2 ) for fermions [32]. In quantum computation, the Hilbert space has

always an even dimension, equal to 2n where n is the number of qubits. As a consequence,
the Wigner function has a periodicity of 2d .

An alternative way for describing the discrete Wigner function is the one given in terms
of the discrete phase-point operator, given by [26]:

A(q,p) = 1

2N
UqRV −p exp

(
2πiqp

2n

)
(3.10.4)

where U and V are the “translation” operators, in position (U |q〉 = |q+1〉) and momentum
(V |p〉 = |p + 1〉), being R the reflection operator (R|n〉 = |N − n〉), with N = 2n.

The discrete Wigner function can be summarized as:

W(q,p) = Tr
[
A(q,p)ρ

]
(3.10.5)

This procedure is particularly useful, as will be discussed below.
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Figure 3.14 The scattering circuit. By measuring the output state of the fist qubit, one obtains information about
either the input matrix ρ, or about the transformation U . Adapted with permission from [26].

3.10.2 Measuring the Wigner function

There is a generic quantum circuit that has been used in many algorithms and has various
applications [1,23]. It is known as the “scattering circuit”, because it resembles a scattering
process, as illustrated on Figure 3.14. It uses an ancilla qubit which plays the role of the
probe particle. By measuring the expectation values 〈σz〉 and 〈σy〉 of the probe, we obtain
information about either the interaction (U ), or the input state (ρ).

〈σz〉 = Re
[
Tr(ρU)

]
and 〈σy〉 = Im

[
Tr(ρU)

]
(3.10.6)

The scattering circuit can be used to measure the Wigner function of a quantum sys-
tem, by setting the controlled operator to be U = A(q,p), since W(q,p) = Tr[A(q,p)ρ].
Such a implementation has been performed by NMR [33], and will be discussed in Chap-
ter 5.

3.10.3 Quantum states in phase space

Since the Wigner function is connected to the density matrix, it can be calculated from the
knowledge of ρ, upon some repetitive applications of the operators U and V for each point
of the phase space. Here the phase space of some interesting coherent quantum states is
calculated numerically, for illustration purposes.

On Figure 3.15 the phase space relative to the four possible states of the computational
basis – (a) |00〉, (b) |01〉, (c) |10〉 and (d) |11〉 is shown. The position q is plotted on
the horizontal axis, and the momentum p along the vertical axis. As it can be seen from
the figure, the “position” states are well defined, but the uncertainty on the momentum
is maximum. We can also observe that the Wigner functions of the second state of the
computational basis is equal to the first one, dislocated of two positions in the phase space,
and so on.

By applying the QFT on the following combination states of the computational basis:
(a) 1

2 [|00〉 + |01〉 + |10〉 + |11〉], (b) 1
2 [|00〉 + i|01〉 − |10〉 − i|11〉], (c) 1

2 [|00〉 − i|01〉 −
|10〉+ i|11〉] and (d) 1

2 [|00〉− |01〉+ |10〉− |11〉] – we obtain states which are well defined
in momentum, but undefined in position, as shown in Figure 3.16.

Other interesting Wigner functions for the following superpositions of states: (a)
1√
2
[|00〉 + |01〉], (b) 1√

2
[|00〉 + |10〉], (c) 1√

2
[|01〉 + |11〉] and (d) 1√

2
[|10〉 + |11〉], are
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Figure 3.15 Phase space representation of the states of the computational basis of two qubits: (a) |00〉, (b) |01〉,
(c) |10〉 and (d) |11〉. The states are well defined in position (horizontal axis) and undefined in momentum (vertical
axis). Amplitudes vary from −0.125 (white) to +0.125 (black). Due to the periodic boundary conditions, an
interference pattern appears as the black and white stripes.

Figure 3.16 Phase space representation of the states with well defined momentum: (a)
1
2 [|00〉 + |01〉 + |10〉 + |11〉], (b) 1

2 [|00〉 + i|01〉 − |10〉 − i|11〉], (c) 1
2 [|00〉 − i|01〉 − |10〉 + i|11〉] and

(d) 1
2 [|00〉 − |01〉 + |10〉 − |11〉]. Amplitudes vary from −0.125 (white) to +0.125 (black).
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Figure 3.17 Wigner functions for some uniform superposition states: (a) 1√
2
[|00〉+ |01〉], (b) 1√

2
[|00〉+ |10〉],

(c) 1√
2
[|01〉 + |11〉] and (d) 1√

2
[|10〉 + |11〉]. Amplitudes vary from −0.125 (white) to +0.125 (black).

Figure 3.18 Wigner functions for four Bell states: (a) 1√
2
[|00〉+|11〉], (b) 1√

2
[|00〉−|11〉], (c) 1√

2
[|01〉+|10〉]

and (d) 1√
2
[|01〉 − |10〉]. Amplitudes vary from −0.125 (white) to +0.125 (black).

displayed in Figure 3.17. In these cases, interference patterns between the quantum states
can be observed, which is characteristic superposition of states.

Finally, Figure 3.18 exhibits the Wigner function of the Bell’s basis: (a) 1√
2
[|00〉+ |11〉],

(b) 1√
2
[|00〉 − |11〉], (c) 1√

2
[|01〉 + |10〉] and (d) 1√

2
[|01〉 − |10〉].
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3.11 DETERMINING EIGENVALUES AND EIGENVECTORS

In quantum physics, one of the most relevant problem is to determine the eigenvalues
and their respective eigenvectors for a certain Hamiltonian. This kind of problem requires
an amount of time to be solved, which scales exponentially with the number of particles
present in the system. This kind of problem is usually hard to be computed, even more com-
plicated if ab initio calculations are involved. In this section, a description of an efficient
algorithm that finds eigenvectors and eigenvalues for a local Hamiltonian in polynomial
rather then exponential time is presented [34]. This algorithm makes the use of the Quan-
tum Fourier Transform (QFT), and uses three sets of qubits, being m for the application of
the QFT, l for the storing the Hilbert space of the Hamiltonian to be diagonalized and w

extra working qubits, that may be necessary. The total number of qubits required by the
implementation of the algorithm is then m + l + w.

In order to solve the problem it is necessary to apply the operator U = e−iHt/h̄, which
describes the evolution of the system represented by the Hamiltonian H, whose eigenvalues
and eigenvectors are to be obtained. Therefore, a simulation of the system represented by
H is necessary. The algorithm requires that an approximate eigenvector |Va〉 of U , and
therefore of H, to be generated in polynomial time, i.e. the system can be put in this state
using a polynomial number of quantum operations. Defining |φk〉 as the real eigenvector
of H, with λk eigenvalue, we have that: If |〈φk | Va〉|2 is not exponentially small, which
means that the approximate eigenvector Va has at least a small component of |φk〉, then it
is possible to find the λv with accuracy ε in time proportional to 1/|〈φk | Va〉|2 and 1/ε.
However, if the state is degenerated then the problem of determining its eigenvectors is
more complicated.

The calculation starts by preparing the system in the initial state:

|Ψ1〉 = |0〉|Va〉 (3.11.1)

where the first m qubits are in the state |0〉 and l qubits are used to store |Va〉.
The next step is to put the first m qubits in an uniform superposition:

|Ψ2〉 = 1√
2m

2m−1∑

j=0

|j 〉|Va〉 (3.11.2)

This can be achieved by applying a Hadamard gate to each qubit of the first set, as dis-
cussed earlier.

Then, a set of applications of the operator U = e−iHt/h̄ is done to the approximate
eigenvector |Va〉, controlled by the m qubits of the first register:

|Ψ3〉 = 1√
2m

2m−1∑

j=0

|j 〉Uj |Va〉 (3.11.3)

It is worth pointing that U is applied j times, where j is the label of a qubit of the first reg-
ister. Similar procedure is also used in the phase estimation and finding order subroutines.
Here, the difference is the application of Uj , where j varies 0 to 2m − 1, whereas in the
others subroutines required the application of even powers of U .
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Rewriting the approximate eigenvector in terms of the real ones, the Equation (3.11.3)
transforms to:

|Ψ3〉 = 1√
2m

2m−1∑

j=0

|j 〉Uj
∑

k

ck|φk〉 (3.11.4)

And after the application of U , the state |Ψ3〉 is then described by:

|Ψ3〉 = 1√
2m

2m−1∑

j=0

|j 〉
∑

k

λ
j
kck|φk〉 (3.11.5)

Writing the eigenvalues λk as eiωk , and exchanging the order of the two registers, the
systems state can be rewritten as:

|Ψ3〉 = 1√
2m

∑

k

ck|φk〉
2m−1∑

j=0

eiωkj |j 〉 (3.11.6)

It is clear that the application of the QFT on the m register followed by a measurement will
yield the values of the phases ωk , which are the desired eigenvalues.

Furthermore, once a measurement is made and the eigenvalue λk is determined, the
remaining l qubits will be projected onto the corresponding eigenvector. Therefore, others
properties of the quantum system under study can be obtained by simply continuing the
calculation, and many important physical information can then be extracted.

For the degenerate case, or situations in which the accuracy does not allows distinguish-
ing among some eigenstates, this procedure can also be applied and the system will be
projected onto the corresponding subspace. However, many measurements may be neces-
sary in order to determine all the eigenvectors [34]. In summary, eigenvalues and eigenvec-
tors can be obtained using the procedures discussed above, but the accuracy of the answer
depends upon a number of variables of the system, that have to be precisely controlled.

PROBLEMS WITH SOLUTIONS

P3.1 - Prove the relation (3.2.7)
∑

m M
†
mMm = 1.

Solution
We have pm = 〈ψ |M†

mMm|ψ〉 and that:

∑

m

pm =
∑

m

〈ψ |M†
mMm|ψ〉 = 〈ψ |

∑

m

M
†
mMm|ψ〉 = 1 (3.11.7)

But 〈ψ ||ψ〉 = 1, so that:

〈ψ ||ψ〉 = 〈ψ |
∑

m

M
†
mMm|ψ〉 ⇒

∑

m

M
†
mMm = 1 (3.11.8)
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P3.2 - Verify the relation given by Equation (3.6.7).

ρ =
[

a b + ic

b − ic 1 − a

]
(3.11.9)

Solution
Evaluating the expected values we have: Tr(ρσx) = 2b, Tr(ρσy) = −2c and Tr(ρσz) = 2a − 1. We also have

that: Tr(ρ) = 1. Therefore:

Tr(ρ) + Tr(ρσx)σx + Tr(ρσy)σy + Tr(ρσz)σz

2
= · · · (3.11.10)

1 + 2aσx − 2cσy + (2a − 1)σz

2
=
[

a b + ic

b − ic 1 − a

]
= ρ (3.11.11)

P3.3 - Show that the QFT, given by Equation (3.5.5), is an unitary transformation.

Solution
We have that:

QFT|j〉 = 1√
2n

2n−1∑

k=0

e2iπjk/2n |k〉 = 1√
2n

(|0〉 + · · · + eiπj (2n−1)|2n − 1〉) (3.11.12)

Hence:

〈j |QFT† = 1√
2n

2n−1∑

k=0

e−i2πjk/2n 〈k| = 1√
2n

(〈0| + · · · + e−iπj (2n−1)〈2n − 1|) (3.11.13)

〈j |QFT†QFT|j〉 = 1

2n

(〈0|(|0〉 + · · · + eiπj |2n − 1〉)+ · · · + e−iπj (2n−1)〈2n − 1|)(|0〉 + · · ·

+ eiπj (2n−1)|2n − 1〉) (3.11.14)

〈j |QFT†QFT|j〉 = 1

2n

(〈0||0〉 + 〈1||1〉 + · · · + 〈2n − 1||2n − 1〉)= 1 (3.11.15)

then: QFT†QFT= 1 (3.11.16)

Where we have used the fact 〈k||k′〉 = δkk′ , since the set of kets |k〉 forms an orthonormal basis.

P3.4 - Demonstrate that the operator which applies the conditional phase shift can be de-
scribed as shown on Equation (3.8.11), [2|0〉〈0| − 1]|x〉 = −(−1)δx0 |x〉, and give the gen-
eral form of H · [2|0〉〈0| − 1] · H, where H represents the Hadamard.

Solution
As may be seen:

|0〉〈0| =

⎡

⎢⎢⎢⎣

1 0 . . . 0
0 0 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . 0

⎤

⎥⎥⎥⎦ and 2|0〉〈0| − 1 =

⎡

⎢⎢⎢⎣

1 0 . . . 0
0 −1 . . . 0
.
.
.

.

.

.
. . .

.

.

.

0 0 . . . −1

⎤

⎥⎥⎥⎦

which is equal to −(−1)δx0 .
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The Hadamard applied to both sides will result in:

[
2H|0〉〈0|H− 1

]= 1

2

⎡

⎢⎢⎢⎣

−1 1 . . . 1
1 −1 . . . 1
.
.
.

.

.

.
. . .

.

.

.

1 1 . . . −1

⎤

⎥⎥⎥⎦

P3.5 - Show that the QFT can be described by Equation (3.5.6).

Solution

1√
2n

2n−1∑

k=0

e2πijk/2n |k〉 = · · ·

= 1√
2n

1∑

k1=0

· · ·
1∑

kn=0

exp

(
2πij

n∑

l=1

kl/2l

)
|k1k2 . . . kn〉 = · · ·

= 1√
2n

1∑

k1=0

· · ·
1∑

kn=0

n⊗

l=1

exp(2πijkl/2l )|kl〉 = · · ·

= 1√
2n

n⊗

l=1

1∑

kl=0

exp(2πijkl/2l )|kl〉 = 1√
2n

n⊗

l=1

[|0〉 + e2πij/2l |1〉]= · · ·

= 1√
2n

(|0〉 + e2πi0.jn |1〉)(|0〉 + e2πi0.jn−1jn |1〉) · · · (|0〉 + e2πi0.j1j2···jn |1〉) (3.11.17)

P3.6 - Show that [2|ψ〉〈ψ | − 1]∑k αk|k〉 =∑k[2〈α〉 − αk]|k〉.
Solution

|ψ〉 = 1√
N

2n−1∑

x=0

|x〉 and 〈ψ | = 1√
N

2n−1∑

y=0

〈y|

[
2|ψ〉〈ψ | − 1

] 2n−1∑

k=0

αk |k〉

=
∑

k

[
2

N

2n−1∑

x=0

2n−1∑

y=0

|x〉〈y||k〉αk − αk |k〉
]

= · · ·

=
2n−1∑

k

[
2

N

2n−1∑

x=0

2n−1∑

y=0

|x〉αkδky − αk |k〉
]

=
2n−1∑

k

[
2

N

2n−1∑

x=0

|x〉αk − αk |k〉
]

= · · ·

=
2n−1∑

x=0

|x〉 2

N

2n−1∑

k=0

αk − 2

N

2n−1∑

k=0

αk |k〉 =
2n−1∑

x=0

|x〉〈α〉 −
2n−1∑

k=0

αk |k〉 = · · · =
2n−1∑

k

[
2〈α〉 − αk

]|k〉

P3.7 - Show that the controlled operations of the phase estimation algorithm implicates in
the following transformation: |k〉|u〉 → |k〉Uk|u〉.
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Solution
In the binary basis, an arbitrary number k is written as k0k1k2 . . . kn−1, using n digits to represent the number,

so that k = k0 ×2n−1 +k1 ×2n−2 +· · ·+kn−1 ×20. Following the operations shown on the Figure 3.12, one can
see that the last qubit of the first register, kn−1, controls the application of the operator U to the second register,

i.e. U is applied only if kn−1 = 1. Another way of representing this is U20kn−1 , which is equal to 1 only when
kn−1 = 1.

Therefore, the sequence of controlled operations can be written as:

U2n−1k0 . . .U22kn−3U21kn−2U20kn−1 = U2n−1×k0+···+22×kn−3+21×kn−2+20×kn−1 = Uk

Which gives |k〉|u〉 → |k〉Uk |u〉.

P3.8 - Show that 1√
r

∑r−1
s=0 |us〉 = |1〉.

Solution
Using the fact:

∑r−1
s=0 exp(−2πisk/r) = rδk0, which can be easily demonstrated, we have:

1√
r

r−1∑

s=0

|us 〉 = |1〉 = 1√
r

r−1∑

s=0

1√
r

r−1∑

k=0

exp(−2πisk/r)|xk mod N〉 = · · ·

= 1

r

r−1∑

k=0

|xk mod N〉
r−1∑

s=0

exp(−2πisk/r) = · · ·

= 1

r

r−1∑

k=0

|xk mod N〉rδk0 = · · ·

= |x0 mod N〉 = |1〉

P3.9 - Show that the components 〈σz〉 = Re[tr(Uρ)] and 〈σy〉 = Im[tr(Uρ)], of the mea-
sured qubit of the scattering circuit.

Solution
At the beginning of the quantum circuit, the system is the state |ψ〉 = |0〉|φ〉, i.e. the first qubit is in the others

qubits of the system are in the state |φ〉, with ρ being given by ρ = |φ〉〈φ|. The operation is to apply the Hadamard
gate to the first qubit creating an uniform superposition. The system sate is the given by:

|ψ1〉 = (H |0〉)|φ〉 = 1√
2

(|0〉 + |1〉)|φ〉 = 1√
2

(|0〉|φ〉 + |1〉|φ〉)

The next operation is controlled one, which applies U to |φ〉, if the first qubit is in the sate |1〉. The system
will then be in the state:

|ψ2〉 = 1√
2

(|0〉|φ〉 + |1〉U |φ〉)

The last operation is to apply the Hadamard again to the first qubit, leaving the system at the state:

|ψ3〉 = 1

2

[(|0〉 + |1〉)|φ〉 + (|0〉 − |1〉)U |φ〉]= 1

2

[|0〉(1 + U)|φ〉 + |1〉(1 − U)|φ〉]

As 〈σz〉 = 〈ψ3|σz|ψ3〉, we have:

〈σz〉 = 1

4

{[〈φ|(1 + U†)〈0| + 〈φ|(1 − U†)〈1|]σz

[|0〉(1 + U)|φ〉 + |1〉(1 − U)|φ〉]}

〈σz〉 = 1

4

{[〈φ|(1 + U†)〈0| + 〈φ|(1 − U†)〈1|] · [|0〉(1 + U)|φ〉 − |1〉(1 − U)|φ〉]}
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〈σz〉 = 1

4

{〈φ|(1 + U + U† + 1)|φ〉 − 〈φ|(1 − U − U† + 1)|φ〉}

〈σz〉 = 1

4

{〈φ|(U + U†)|φ〉 + 〈φ|(U + U†)|φ〉}

We then have:

〈σz〉 = 1

2
〈φ|(U + U†)|φ〉 = 〈φ|ReU |φ〉 = Re

[
tr(Uρ)

]
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– 4 –

Introduction to NMR Quantum Computing

. . . Such a computer would look nothing like the machine that sits on your desk; surprisingly, it
might resemble the cup of coffee at its side. – N. Gershenfeld and I.L. Chuang [Scientific American,
June, 1998]

4.1 THE NMR QUBITS

We have seen that qubits can be accomplished by different quantum properties of a system.
The basic requirement is that they must be well characterized and susceptible to manipu-
lation by an external perturbation, so that the input states can be adequately prepared and
controlled to produce the desired calculation. Besides, the physical representation of the
qubit in quantum information processing must be unequivocal. This is certainly a require-
ment that NMR systems fulfill. In fact, a natural implementation of a qubit is an isolated
spin 1/2 in a magnetic field [1]. In the Iz operator basis, the general state of this spin can
be represented by |ψ〉 = α|+1/2〉 + β|−1/2〉 (Figure 4.1). Labeling the states |+1/2〉 as
|0〉 and |−1/2〉 as |1〉, each state of the system can be represented by a single label, |0〉
or |1〉, which means one-qubit of information.

The association of the spin states with logical labeling can be done in real systems. For
example, let us consider a solution of 13C enriched chloroform, 13CHCl3. This system can
be well approximated by two coupled spins I1, I2 with spin I1 being the 13C and spin I2 the
1H. The relevant NMR interactions are the Zeeman, chemical shifts and the J -coupling,
which are represented by the following secular Hamiltonian (see Chapter 2) [2]:

H = −h̄ω01I1z − h̄ω02I2z + h̄2πI1zI2z (4.1.1)

where ω01 and ω02 are the resonance frequencies of each nucleus, including the chemical
shift contribution. Considering the weak coupling limit, |ω01 − ω02| � 2πJ12, the energy
eigenvalues can be straightforwardly calculated, yielding the energy levels shown in Fig-
ure 4.2.1 Using the same logical labeling as for single spin 1/2 states, we represent the
eigenstates as |0〉 ⊗ |0〉 ≡ |00〉, |0〉 ⊗ |1〉 ≡ |01〉, |1〉 ⊗ |0〉 ≡ |10〉, |1〉 ⊗ |1〉 ≡ |11〉, which
represents the computational basis of a two-qubit system. Because for spin 1/2 systems
each qubit is associated to a spin, a n-qubit system can be implemented by a system of
n spins.

Another aspect of NMR for quantum information processing concerns the coupling be-
tween the spins. Many quantum operations involve conditioning the states of two different

1See corresponding energy calculation in Section 2.8.
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Figure 4.1 Representation of the possible configurations of one spin 1/2 in a magnetic field.

qubits (controlled gates). Since this can be easily achieved by evolution under coupling,
the J -coupling between the spins is also essential. Thus, a system of n qubits can be im-
plemented by a system on n coupled spins 1/2, with the following Hamiltonian:

H = −
n∑

i

h̄ωiI
i
z + h̄2π

n∑

i �=j

Jij IizIjz (4.1.2)

In practical situations, many qubits NMR liquid-state systems are not easy to be achieved.
This is because they require a sample with n NMR distinguishable spins in a single mole-
cule, which can be very difficult to obtain for large values of n. Besides, such an approach
is not scalable (see Chapter 6). To implement the 7-qubit NMR system used to demon-
strate the Shor’s algorithm, Vandersypen et al. [3] designed a special molecule where 13C
and 19F nuclei were used as qubits (see Chapter 5). However, since a NMR system is not
constituted by a single molecule, but by an ensemble of identical molecules, neglecting
the intermolecular interactions, we can think of a NMR liquid sample as constituted by
a huge number (≈ 1023) of molecular quantum processors executing a kind of parallel
processing.2

Another NMR system that has been used for QIP implementations is constituted of
quadrupolar spins (I > 1/2) in oriented media. In this case, the quadrupolar nuclei are part
of the structure of a solid or liquid crystal. An oriented media is always required in this
case, otherwise, as described previously, the random orientation of the electric field gra-
dient tensors along the sample would lead to a distribution of quadrupolar couplings and
consequently to broadening of the NMR spectrum. In a crystalline system all the quadrupo-
lar nuclei experience basically the same electric field gradient and can be characterized by
a single quadrupolar coupling constant (which, actually, corresponds to a valve average in
the case of liquid crystalline media). Besides, in typical systems used for NMR QIP the
quadrupolar coupling is the dominant internal NMR interaction, allowing to describe the
NMR system with the following Hamiltonian:

H = −h̄ω0Iz + h̄ωQ

(
3I 2

z − I2) (4.1.3)

where ωQ is the quadrupolar frequency, defined in Chapter 2. The energy levels obtained
for a spin 3/2 system are shown in Figure 4.2b. This Hamiltonian gives rise to four un-

2However, this parallelism does not increase the power of the computer, since it represents only redundancy.
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Figure 4.2 Energy levels in a two-qubit NMR system: (a) two J -coupled spin 1/2 system. Direct dipolar cou-
pled systems in the weak coupling limit have similar energy configuration replacing the J coupling by the dipolar
coupling constant. (b) Quadrupolar spin 3/2 system. The three allowed transitions labeled 01, 12, and 23 are
indicated.

equally spaced energy states, originating an NMR spectrum containing three lines, corre-
sponding to transitions between adjacent levels. The states,

|+3/2〉 or 0, |+1/2〉 or 1, |−1/2〉 or 2, |−3/2〉 or 3

can be labelled as

|00〉, |01〉, |10〉, |11〉

so they can represent a two-qubit system. This “rule” can be extended to other quadrupolar
spin systems: generally, an ensemble of I spin nuclei experiencing quadrupolar interaction
can be used to represent an n-qubit system provided that 2n = 2I + 1.

The physical implementation of the qubit in quadrupolar systems is not so obvious as
in spin 1/2 systems, since one single quadrupolar spin carries more than one bit of in-
formation. Despite that, many experiments have shown that logic gates and even quantum
algorithms can be performed in such systems [4,5]. There are also reports on the use of
spin 7/2 (three-qubits system) to implement logic gates [6]. The main disadvantage of us-
ing quadrupolar systems for NMR QIP concerns relaxation effects. As mentioned before,
quadrupolar coupling are usually much stronger than the other NMR interactions. Then,
the relaxation times are also much faster. For example, while a typical T2 of spin 1/2 in
a isotropic solution is usually of order of a few seconds, for quadrupolar nuclei in liquid
crystalline matrices it is typically of order of a few milliseconds [7].

In order to conclude this brief discussion on the NMR implementations of qubits, let
us mention the direct dipolar coupled spins. This spin system is becoming quite important
in NMR QIP, since many of the candidate approaches to produce scalable NMR quantum
computers (see Chapter 7), are based on spin 1/2 systems in solid-state materials, where
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the dominant internal NMR interaction is the direct dipolar coupling [9]. Actually, the
secular part of the dipolar coupling Hamiltonian has, in the weak coupling limit, similar
form as the J -coupling, which allows an easy adaptation of most of the pulse schemes
already developed for solution NMR. Other typical solid-state NMR methods, such as CP,
spin-locking, decoupling, multiple pulse techniques, etc., can also be used for QIP imple-
mentations [9].

4.2 QUANTUM LOGIC GATES GENERATED BY RADIOFREQUENCY
PULSES

In Chapter 3 we stated that a quantum computer is based on a set of universal logic gates,
just like its classical counterpart. Thus, any technique capable of executing such logic gates
would be a natural candidate to be used for quantum information processing. It was also
discussed that quantum logic gates are nothing but unitary operations whose precise con-
trol is of fundamental importance for quantum processing. This requirement is found in
NMR, which has a long tradition in manipulating spin states through unitary transforma-
tions using RF pulses or evolutions under internal nuclear spin interactions. From this point
of view, NMR has the appropriate tools for implementing quantum logic gates. In this sec-
tion we will present some of the NMR implementations of Hadamard, π/8, phase shift,
CNOT, SWAP gates for coupled spin 1/2 system, as well as quadrupolar spin 3/2 systems.

4.2.1 Elementary single-qubit gates and their implementations using RF pulses

Single-qubit unitary operations play an important role in QIP. Using the nuclear spins as
qubits, the most elementary single-qubit operations are those that perform a rotation of a
single spin and can be represented by the following rotation operator:

Rn̂(θ) = exp(−iθn · I) (4.2.1)

where n is the unitary vector that defines the rotation axis, I = Ix i+ Iyj+ Izk is the nuclear
spin operator, and θ is the rotation angle. In Chapter 2 we saw that RF pulses are direct
experimental implementations of unitary rotations. To illustrate that, let us consider an
isolated spin 1/2 in a magnetic field as an idealization of a NMR system with a single-
qubit. The action of an on-resonance RF pulse with arbitrary phase φ and duration tp is
described by the following pulse propagator:

(θ)Iφ = exp(−iω1tpIφ) = exp(−iθIφ) (4.2.2)

where Iφ = Ix cos(φ) + Iy sin(φ), and θ = ω1tp . The equivalence between this propaga-
tor and the rotation operator of Equation (4.2.1) is readily recognized, showing that any
spin rotation in the xy plane can be generated by a single RF pulse with proper phase,
amplitude and duration. A consequence of this statement is that gates such X (equivalent
to the NOT gate) and Y are obtained directly from the corresponding RF pulse, as shown
in Equation (3.4.1) i.e.,

(π)Ix = e−i π
2

(
0 1
1 0

)
; (π)Iy =

(
0 −1
1 0

)
(4.2.3)
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It is obvious that rotations around the z-axis cannot be implemented by single RF pulses.
A way of achieving that is introducing a resonance offset to shift the reference frame by an
angle θ . Thus, all subsequent pulses and also the receiver will be seen in the new reference
frame, which is equivalent to a rotation of θ around the z-axis. Another way of implement-
ing z-rotations is to make use of the property that allows us to write a rotation around z as
rotations about the x or y axes. For example, a rotation of an angle θ around the z-axis can
be written as:

Rz(θ) = Rx

(
π

2

)
Ry(θ)R−x

(
π

2

)
(4.2.4)

Thus, because rotations around the axis x and y can be trivially implemented using RF
pulses, rotations around z can be generated using (4.2.4). Actually, the pulse sequence(

π
2

)
−x

− (θ)y − (π
2

)
x

is well known in NMR, being usually named as composite z-pulse
[2]. From the QIP point of view, one spin rotations can be seen as single-qubit gates, which
means that we might produce a whole set of single-qubit operations. The question is which
RF pulses, or set of them, generate gates necessary for QIP, such as NOT, Hadamard (H),
Phase Shift (S), π/8 or T, Z, etc. [15].

The answer is simple if we compare the matrix representation for the RF pulse (θ)Iφ and
the gate operator. For example, consider π -pulses around the x and y axis, respectively.
The matrix representation of the corresponding pulse operators are:

(π)Ix = exp(−iπIx) =
(

0 −i

−i 0

)
= e−i π

2

(
0 1
1 0

)
= e−i π

2 × NOT

(4.2.5)

(π)Iy = exp(−iπIy) =
(

0 −1
1 0

)

We can see that a π -pulse along the x axis has the same matrix as the NOT gate, times a
global phase factor. Since global phase factors do not affect unitary rotations, we can say
that (π)Ix is equivalent to a NOT gate. If the pulse is applied along the y-axis it no longer
represents a NOT gate, which shows that a good control of the pulse phase is essential

Figure 4.3 Representation of operators corresponding to some single qubit logic gates. The result of the gates
application to some selected states is also shown.
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in NMR QIP. Fortunately in conventional NMR spectrometers such control is excellent,
achieving an accuracy of less than 0.1 degrees.

Other single-qubit gates that can be directly implemented by RF pulses are the phase
gate, S, the π/8 or T gate, and the Z gate. These gates can be obtained from a z-rotation of
arbitrary flip angle, which is implemented by the pulse sequence equivalent to the following
propagator [10],

R(θ) =
(

π

2

)I

x

(θ)Iy

(
π

2

)I

−x

= e−i θ
2

(
1 0
0 eiθ

)
(4.2.6)

Therefore, setting θ = π
4 , θ = π

2 , and, θ = π in Equation (4.2.6) we obtain T, S, and
Z gates, respectively.

Another fundamental single-qubit gate is the Hadamard gate. As it can be observed
from Equation (4.2.7), a

(
π
2

)
pulse along the y-axis closely resembles a Hadamard ma-

trix H.

(
π

2

)I

y

= exp

(
−i

π

2
Iy

)
= 1√

2

(
1 −1
1 1

)

(4.2.7)

H= 1√
2

(
1 1
1 −1

)

Despite the similarity between the two matrices, a
(

π
2

)
y

pulse can only be classified as

pseudo-Hadamard gate. This is so, because a single
(

π
2

)
y

pulse is not self-reversible (that
is, when applied twice to a given quantum state it does not recover the original state), which
is a fundamental property of a true Hadamard gate. However, for applications where self
reversibility is not required, it is common to use a

(
π
2

)
y

pulse in place of a Hadamard
gate. To produce a true Hadamard operation in NMR it is necessary to introduce an extra
pulse to perform the necessary phase correction in the pulse matrix. This can be achieved
by adding a π -pulse around the z- or x-axis after the

(
π
2

)
y

pulse, i.e.,

H = 1√
2

(
1 1
1 −1

)
≡ (π)Iz

(
π

2

)I

−y

=
(

π

2

)I

x

(π)Iy

(
π

2

)I

−x

(
π

2

)I

−y

= (π)Ix

(
π

2

)I

y

(4.2.8)

Since RF pulses are capable of producing general spin rotations, it looks obvious that
any single-qubit gate can be implemented by RF pulses [11].

Until now we have considered that the NMR system is composed by isolated spins,
which might look quite unrealistic. However, if each qubit is represented by a distinct
kind of nucleus this can be a reasonable approximation. For example, let us consider two
J -coupled heteronuclear spins, like the 13C, 1H spin pair in 13C labeled chloroform. Be-
cause they have distinct NMR frequencies, we can apply a resonant pulse to one of them
without affecting the other. If the pulse amplitude is much higher than the magnitude of the
J -coupling, we can also neglect the effect of the coupling during the pulse. In other words,
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Figure 4.4 A scheme for the 3-qubit molecule of trichloroethylene. The qubits are represented by the two 13C
nuclei and the 1H nucleus.

we can apply a pulse that acts as a rotation to each individual nuclear spin. These RF pulses
act as a selective pulse to each spin and from now on we will call them as a spin selective
pulse, regardless that in the heteronuclear system they are actually hard pulses. This is
valid for both spins, which means that single-qubit gates can be performed independently
for each one of them.

The situation is considerably more complicated when we consider coupled homonu-
clear spins, such as the case of the two 13C nuclei in the molecule of trichloroethylene,
shown in Figure 4.4.3 In these cases, the resonance frequencies are close and to perform a
single-qubit rotation to one of the spins it is necessary to use RF pulses capable of acting
selectively only in a narrow range of frequency. This is achieved by narrow band selec-
tive pulses, which have been widely exploited in NMR spectroscopy and imaging [12].
To provide narrow excitation profiles their durations are much longer than in non selec-
tive pulses, and they are usually amplitude and/or phase modulated by different functions.
Typical amplitude modulation functions for selective pulses are sinc (sinc(x) ≡ sin(x)/x),
Gaussian, Hermite, sine bell, a class of numerically optimized pulses known as BURP
(Band-selective, Uniform Response, Pure-phase), etc. [12] (see Figure 4.5). Each of these
pulses have particular advantages such narrow band excitation, phase accuracy, uniform
response, good refocusing of J -coupling, etc. Because the maximum RF power used in
selective pulses is low, they are also know as soft pulses.

Besides the excitation profiles, there are other features that can compromise the abil-
ity of selective pulses to implement single-qubit rotations. For example, selective pulses
are usually long and it is not possible to neglect the evolution under the J -coupling dur-
ing them. This might be critical because the simultaneous evolution under RF pulses and
J -couplings makes the rotation induced by the pulse dependent on the coupling constant,
which is certainly not a desirable feature. The solution for that is the use of self-refocusing
pulses, which are able to refocus the evolution under the J -coupling at the end of the
pulse [2,12], or setting the pulse duration to a multiple of the J -coupling evolution period.
Thus, only the effective rotation around the xy plane is performed [12]. Another important
feature of narrow band selective pulses concerns the central frequency of the excitation

3This molecule actually has three coupled spin 1/2 nuclei (the two 13C nuclei plus the 1H nucleus). The chlo-
rine nuclei have effectively negligible couplings with all other nuclei. Such molecule can be used to implement
3-qubit operations, as it has been done in a lot of NMR QIP experiments.
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Figure 4.5 Time (right) and frequency (left) profiles of some soft π pulses used for narrow band excitation in
NMR spectroscopy. (a) Gaussian pulse; Hermite pulse; and RE-BURP pulse. It is supposed that before the pulse
the magnetization was in the z direction. (b) Typical magnetization trajectories for a inversion RE-BURP pulse
with distinct frequency offsets. Adapted with permission from References [12,15] (Copyright 2007 American
Physical Society and Elsevier).
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profile. It can be controlled by shifting the pulse carrier frequency, but in some situations it
is advantageous to keep the carrier frequency constant and set the central frequency using
linearly phase modulated pulses [12]. To produce a frequency shift by linear phase modu-
lation we need to increase the pulse phase at a constant rate �φ

�t
during the RF pulse. The

Hamiltonian of the RF pulse with initial phase φ, carrier frequency ωRF , and amplitude
modulation described by ω1(t), can be written as:

HRF(t) = h̄ω1(t)

{
cos

[
ωRFt +

(
φ + �φ

�t
t

)]
Ix

+ sin

[
ωRFt +

(
φ + �φ

�t
t

)]
Iy

}

(4.2.9)

HRF(t) = h̄ω1(t)

{
cos

[(
ωRF + �φ

�t

)
t + φ

]
Ix

+ sin

[(
ωRF + �φ

�t

)
t + φ

]
Iy

}

It is clear from the bottom equation in (4.2.9) that a linear phase modulation at rate �φ
�t

is equivalent to a frequency shift of �ω = �φ
�t

.
Another class of selective pulses that deserves a comment refers to the so called multi-

frequency pulses. These are amplitude or phase modulated pulses capable of acting simul-
taneously at different frequencies. To illustrate how this can be done, let us consider the
pulse described by (4.2.9) without phase modulation, and add an extra amplitude modula-
tion of cos(�ωt),

HRF(t) = cos(�ωt)
{
h̄ω1(t)

[
cos(ωRFt + φ)Ix + sin(ωRFt + φ)Iy

]}
(4.2.10)

In the framework of the Fourier transform we see that the frequency profile of the pulse
described by (4.2.10) will be given by the convolution between the Fourier transform of
the cos(�ωt) modulation and the frequency profile of the pulse. Since the Fourier trans-
form of cos(�ωt) corresponds to two delta functions at frequencies −�ω and +�ω, we
conclude that with the cos(�ωt) modulation the selective pulse can be seen as two identi-
cal pulses acting simultaneously at −�ω and +�ω. With this technique, multi-frequency
selective pulses can be obtained just by modulating the pulse by a sum of cosine func-
tions, i.e.,

∑n
i=1 ai cos(�ωit), which produces 2n selective pulses acting simultaneously

at [�ωi,−�ωi]. Notice that by using distinct weighting factors, ai , it is possible to vary
the amplitude of the pulses at each pair of frequencies. Other approach to produce multi-
frequency excitation is replacing the cosine amplitude modulation by a phase modula-
tion [12]. This can provide a shaped pulse that is equivalent to an odd number of selective
pulses acting simultaneously at different frequencies.

Selective pulses can also be used to excite a single transition between two energy lev-
els of a spin system, as shown in Figure 4.2. Because J -couplings are usually small, long
selective pulses (ultra-soft pulses) are need to achieve a single transition excitation (or
equivalently a single line excitation in the NMR spectrum). Transition selective pulses
have been used in some spin 1/2 NMR QIP applications [13,14], but, depending on the
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coupling constants, the pulse length can be too long, and pulse imperfections and relax-
ation effects limit their use. However, for quadrupolar spins transition selective pulses are
fundamental for implementing logic gates. In typical oriented media used for NMR QIP,
the quadrupolar interaction is at least two orders of magnitude stronger that J -couplings in
typical isotropic solutions. Because of that, transition selective pulses can be made much
shorter in quadrupolar systems, making advantageous to use them, even in the presence of
fast relaxation.

To provide some examples of single-qubit gates implemented in quadrupolar systems,
let us consider the spin 3/2 system described in Section 4.1. Because this system has two-
qubits, single-qubit gates will act only in one of the them, keeping the other untouched.
The single transition selective pulses operators corresponding to the pulse sequences that
implement NOTA, NOTB , HA, HB single-qubit gates, are shown in (4.2.11). Using the pulse
operators for transition selective pulses mentioned in Chapter 2, the matrix form of the
corresponding gates operators can be obtained (Problem P4.1):

a) NOTA = (π)23
x (π)01

x (π)x

b) NOTB = (π)23
x (π)01

x

c) H|00〉,|10〉
A = (2π)01−x(π)01

y

(
π

2

)12

y

(π)01−y

(4.2.11)

d) H|01〉,|11〉
A = (2π)01−x(π)12

y

(
π

2

)23

y

(π)12−y

e) H|00〉,|01〉
B = (π)01

x

(
π

2

)01

−y

f) H|10〉,|11〉
B = (π)23

x

(
π

2

)23

−y

The upper indexes, |00〉, |01〉, |10〉, |11〉, are to emphasize that the corresponding opera-
tors only execute a true Hadamard gate when they act on the indicated states. The indexes
01, 12, and 23 indicate the pulse transition as indicated in Figure 4.2. However, the opera-
tors c), d) and e), g) can be implemented by a single pulse sequence if we use two-frequency
pulses to excite simultaneously two transitions. For example, UHB

= (π)01-23
x

(
π
2

)01-23
−y

,
where 01-23 indicates a two-frequency selective pulse that act simultaneously on the tran-
sitions 01 and 23 see Figure 4.2, will implement a HB operation independently of the initial
state. All the Hadamard transformations indicated in (4.2.11) are self-reversible.

4.2.2 Elementary two-qubit gates and their implementation in NMR

As discussed in Chapter 3, two-qubit gates such as CNOT and Hadamard are fundamental4

for quantum information processing; any experimental method that aims to be used as

4Many algorithms start with an uniform superposition of states, produced by a multi-qubit Hadamard gate.
Although such an operation can be formally written as a tensor product of one-qubit Hadamard gate, sometimes
we have to regard it as a multi-qubit gate. This is the case, for instance, of quadrupole nuclei.
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Figure 4.6 Vector representation of the evolution of two coupled spins. The figure shows the evolution of one
of the spins during the refocusing pulse sequence.

a quantum hardware must be able to implement such operations. In NMR this can be
achieved either for coupled spins 1/2 systems or for quadrupolar systems. In this section
we discuss both cases, starting from coupled spins 1/2 and then discussing the case of
quadrupolar spins.

Before discussing the pulse sequence used for implementing 2-qubit gates in J -coupled
spin 1/2 systems, let us present a particularly useful method in NMR QIP implementations.
The method consists of a pulse sequence that can momentarily “turn off” the J -coupling
between two selected spins. It is named refocusing and has been used since the early days
of multidimensional NMR [2]. To illustrate the idea of refocusing, let us first consider a
system of two J -coupled spins (I1 and I2) in the weak coupling regime. We consider that
spin I1 is initially rotated to point along the x-axis after a

(
π
2

)I1
y

pulse. Then, it evolves

under the J -coupling during a time interval of duration t/2 and after that a (π)
I2
y inverts

the state of the I2 spin. This operation inverts the local field at the spin I1 position and,
as a consequence, the J -coupling evolution of spin I1 is reversed. Then, after another t/2
evolution period under J -coupling it returns to its initial position. After that, the spin I2

is also taken to its initial state by another (π)
I2
y pulse. This second (π)

I2
y pulse ensures

that both spins return to their initial situation regardless the initial state. Thus, after the
refocusing pulse sequence both spins are in the same situation as they were before the
evolution, which is equivalent to no overall evolution under the J -coupling during this
period. The same effect can be produced by applying the refocusing pulses to the spin I1.
A pictorial view of the spin evolution in the Bloch sphere during the refocusing pulse
sequence is shown in Figure 4.6. A formal treatment of the refocusing can be done using the
corresponding pulse matrices and the evolution operator under J -coupling UJ described
in Chapter 2 (see Problem P4.2). The unitary operation corresponding to the refocusing
sequence can be written as:

Urefocusing = UJ

(
t

2

)
(π)I2

y UJ

(
t

2

)
(π)

I2−y = UJ

(
t

2

)
UJ

(
− t

2

)
= 1 (4.2.12)

where the matrix representations of the operator were described in the Section 2.8. Hence,
the unitary operation that represents the whole pulse sequence is the identity operator,
meaning that there is no overall evolution under the J -coupling at the end of the pulse se-
quence. The sequence can be applied at different instants during the evolution. This scheme
can be used either for heteronuclear or homonuclear spins using the appropriated selective
pulses. In multispin systems the refocusing techniques can be applied to turn off the J -
coupling between any two specific pair of spins. This is an important feature that is used in
many controlled gates to keep only the interaction between some selected spins [15]. An-
other usual application of refocusing pulse sequence is to make the coupling of a certain
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spin with different spins effectively equal. For example, the pulse sequence corresponding
to the operation bellow can be applied to a four spin system (lets say spins 1, 2, 3 and 4) to
make the effective coupling between all spins equal after a period of 1

4J13
[18],

U

(
1

8J13
− 1

8J12

)
πI2

y U

(
1

8J12
− 1

8J14

)
π

I4−yU

(
1

8J13
+ 1

8J14

)
(4.2.13)

Now, let us return to the implementation of two-qubit gates. In Chapter 3 we saw that the
action of the CNOT gate is: “invert one of the qubits (the target qubit) provided the other
(the control qubit) is in the state |1〉”. In a two-qubit |AB〉 system this is accomplished by
following operators:

CNOTA =
⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎠

(4.2.14)

CNOTB =
⎛

⎜⎝

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎠

where the indexes A and B indicate the control qubit. The pulse sequence corresponding to
the NMR implementation of a CNOT gate in a 2-spin system, with I1 and I2 as the control
or target qubits has the following time ordered sequence of events: (i) a π/2 pulse with y

phase applied to the spin representing the target qubit; (ii) an evolution period of t = 1/2J

under the J -coupling; (iii) a π/2 pulse with x phase applied to the target qubit I2; (iv) two
π/2 composite z-pulses applied at both spins. This can be represented by the following
operators:

CNOTA =
(

π

2

)I1

z

(
−π

2

)I2

z

(
π

2

)I2

x

UJ

(
1

2J

)(
π

2

)I2

y

=
(

1 − i√
2

)
⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎠

(4.2.15)

CNOTB =
(

π

2

)I2

z

(
−π

2

)I1

z

(
π

2

)I1

x

UJ

(
1

2J

)(
π

2

)I1

y

=
(

1 − i√
2

)
⎛

⎜⎝

1 0 0 0
0 1 0 1
0 0 1 0
0 1 0 0

⎞

⎟⎠

where the subscript indicates the control qubit. Observe that these sequences of events are
closely related to the experiment leading to conditional inversion of one spin described in
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the Section 2.8. The resulting matrix corresponds exactly to the operator CNOT with the
control in the first qubit, times an irrelevant global phase. For systems of higher number
of qubits the same pulse sequences can be used for implementing the CNOT gates just
by pulsing in the spins involved in the operation and considering the J -coupling between
them. Notice that for in this case it might be necessary keeping only the interaction between
two spins, which can be done by using refocusing schemes.

Although transition selective pulses have been used in spin 1/2 systems [13,14], they
are much more frequent in applications involving quadrupolar nuclei. For example, the
CNOT gate can be performed by a single transition selective π -pulse applied to an allowed
transition of the 2-spin system. The CNOT gate has also been implemented in two-qubit
spin 3/2 quadrupolar systems using transition selective pulses [5]. The resulting matri-
ces correspond to the pulse sequence that executes a CNOT gate with control in the first
(CNOTA) and second (CNOTB ) qubits are:

CNOTA = (π)23
x =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 0 i

0 0 i 0

⎞

⎟⎠

(4.2.16)

CNOTB = (π)12
x (π)23

x (π)12
x =

⎛

⎜⎝

1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

⎞

⎟⎠

Note that these operators are not exactly equal to CNOT operators, but they act as CNOT
gates for most of two qubit states.

A two qubit-gate very used in quantum algorithms is the SWAP gate. It can be directly
implemented by the pulses corresponding to three successive CNOT gates,

SWAP= CNOTACNOTBCNOTA = −1 + i√
2

⎛

⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎠ (4.2.17)

As a last example of two-qubit gates let us consider and important case where cascaded
gates are used to produce the four states of the Bell basis. As discussed in Chapter 3,
such states can be created from the computational basis states |00〉, |01〉, |10〉, |11〉 by the
application of the so called EPR generator operator (see Problems 4.3 and 4.4), which is
implemented by the pulses corresponding to a Hadamard followed by a CNOT gate:

EPR= CNOTAHA = −1 + i

2

⎛

⎜⎝

1 0 1 0
0 1 0 1
0 1 0 −1
1 0 −1 0

⎞

⎟⎠ (4.2.18)

In the derivation of (4.2.18) and (4.2.17) the operators corresponding to the full pulse se-
quences for the CNOT and Hadamard gates in two J -coupled spins 1/2 (Equations (4.2.15)
and (4.2.8)) were used.



150 4. Introduction to NMR Quantum Computing

In the case of long sequences of logical operations, such as quantum algorithms, it is
usual to suppress some of the pulses that implement the gates in order to decrease the size
of the pulse sequence and minimize decoherence effects. For example, in the CNOT gate
of (4.2.15) the two z-rotations are only to perform a relative phase correction. If such cor-
rection is not really necessary, they can be omitted, decreasing the number of pulses in the
sequence. In fact, this kind of pulse simplification has been used in experimental imple-
mentations of complex algorithms and some strategies have been developed for avoiding
introducing errors or loosing information when this procedure is used [15].

4.2.3 Multi-qubit gates

In the last sections we restricted our discussion to NMR implementations of one- and two-
qubit gates. This relies on the idea that a universal set of logical gates can be constructed
only using one and two-qubit gates. [15,17]. It means that one can, in principle, use only
individual pair of qubits to implement all necessary logic gates for QIP. This is very conve-
nient, because the absence of three body interactions in nature prohibits the implementation
of true multi-qubit gates (logic gates that act in many qubits simultaneously). Despite that,
Deustch [16] has demonstrated the existence of a set of universal three-qubit gates and it
would be interesting at least to simulate such multi-qubit gates. This can be achieved if we
have a many particle system coupled by means of two-body interactions acting simultane-
ously. This is the case of NMR multi-spin system, where there are many spins interacting
in pairs through J or direct dipolar couplings. The presence of such simultaneous two-
body interactions can be further exploited to construct simulations of multi-qubit gates
that are more efficient than sets of one and two-qubit gates [17]. One example of such
gates is the NMR implementation of the Toffoli gate, which uses much less pulses than
the same operation constructed by combination of two-qubit operations [1]. To illustrate
that, let us consider a Toffoli gate where the target qubit is the first qubit. Lets also assume
that the coupling constant J between spins 1 and 2 is equal to that between 1 and 3. If
they are not, they can be done effectively equal by using partial refocusing similar to se-
quence of (4.2.13). With this assumptions the Toffoli gate can be implemented by the pulse
sequence corresponding to the following operator [17–19],

UToffoli-I1 =
(

π

2

)I1

−x

UJ

(
1

4J

)(
π

2

)I1

−x

UJ

(
1

4J

)(
π

2

)I1

y

UJ

(
1

4J

)(
π

2

)I1

y

UToffoli-I1 = ei 3π
8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.2.19)

which is the same as the Toffoli operator, multiplied by an irrelevant global factor. It acts
on the state basis as a Toffoli gate (Problem P4.5). Besides Toffoli gates, there are many
NMR implementations of effective multi-qubit gates, such as Hadamard and generalized
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controlled CNOT, and even Quantum Fourier Transform, using the same idea of multi-
qubit simplifications [17]. Furthermore, there are many other methods to implement such
effective multi-qubit operations, including the use of selective pulses [18]. An interesting
approach is producing specially shape designed, phase and frequency modulated pulses
that simultaneously use all the convenience of RF pulses and NMR interactions. Such
pulses are called Strongly Modulated Pulses (SMP) and will be the topic of the next section.

4.2.4 Use of strongly modulated RF pulses for quantum gate implementation in
NMR QIP

In the above discussion we treated a logic gate as a set of independent RF pulses and evolu-
tions. This approach is convenient because we can regard a logic gate as a set of individual
rotations. However, the excellent control of amplitude and phases provided by RF pulses
and the exact knowledge of the internal NMR interactions are features that can be fur-
ther exploited in NMR QIP. An example of that is the method named Strongly Modulated
Pulses (SMP) [21]. To illustrate the method, let us consider the Hamiltonian of a nuclear
spin system in a strong magnetic filed, under the action of the an internal spin interac-
tion, and a RF field. In the rotating frame defined by ωRF , this Hamiltonian can be written
as:

H = h̄�ωIz +Hint + h̄ω1Iφ (4.2.20)

were �ω = (ωRF − ω0) is the resonance offset, Hint is an internal spin interaction (usu-
ally J -coupling, dipolar, or quadrupolar interaction), and h̄ω1Iφ represents a constant
RF field with amplitude ω1 and phase φ. The evolution of a spin system under the
Hamiltonian (4.2.20) during a time interval t can be described by the unitary opera-
tor,

U(�ω,ω1, φ, t) = exp

[
−i

(
�ωIz + Hint

h̄
+ ω1Iφ

)
t

]
(4.2.21)

Notice that the externally controllable parameters in this unitary operator are �ω, ω1,
and φ. Now, let us consider another unitary operator composed by a product of M operators
of the same kind, i.e.,

U =
M∏

i=1

Ui(�ωi,ω1i , φi, ti) (4.2.22)

With this, we have a set of 4M controllable parameters to define U . The idea behind the
SMP method is to find the right set of parameters that make the operator U correspond to
a desired logic gate. This is done using an optimization procedure. The first optimization
step is to establish an objective operator Uobj that represents the logic gate. During the
optimization, the operator U is compared with Uobj through a measure of fidelity, F , define
as:

F = Tr(U−1
obj U)

N
(4.2.23)
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where N is the dimension of the corresponding Hilbert space. Thus, the fidelity parame-
ter tends to 1 as U and U−1

obj become close to each other. Besides Uobj and F , a penalty
parameter ξ is also introduced in order to keep the pulse parameter within meaningfully
values or introduce any experimental restriction. This is done by making ξ very large if
any pulse parameter reaches not accessible experimental values. An optimization routine
is used to minimize the function f (P ) = 1 − √

F(P ) + ξ(P ), where P represent the hy-
perspace composed by the parameters �ωi,ω1i , φi, ti . The optimization procedure stops
when F(P ) � 1, which mens U � Uobj. Therefore, the RF pulse that generates Uobj will
be composed by M consecutive square shaped pulses each one defined by �ωi,ω1i , φi, ti ,
i.e., it is a pulse modulated in amplitude, frequency and phase (see Figure 4.7a). Notice
that there is no restriction about the duration of each block, which means that much shorter
pulses compared with usual selective pulses can be obtained. Strongly Modulated Pulses
are an efficient way of generating logic gates in NMR, mainly for systems where selec-

Figure 4.7 (a) Schematic representation of an strongly modulated pulses (SMP), with the respective table of
amplitudes and phases. (b) Table of fidelity parameter obtained for several logical operation implemented using
SMP pulses. Adapted with permission from References [15,22] (Copyright 2007 American Physical Society and
American Institute of Physics).
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tive pulses are needed. Figure 4.7b shows a set of operations designed by Kampermann
and Veeman [22] using SMP pulses and tested experimentally in a system of Na nuclei
(spin 3/2 – two-qubit system) in a solid crystal. The accuracy of the implementation was
checked by reconstructing the operator U from the experimental data using the method
called quantum process tomography and calculating the fidelity with respect to the theo-
retically expected operator. This fidelity is referred as gate fidelity in Figure 4.7.

4.3 PRODUCTION OF PSEUDO-PURE STATES

Conventional NMR deals with a large ensemble of spins. It means that the state of the
system is in a statistical mixture, which is obviously inadequate for QIP. However, the
NMR ability for manipulating spins states worked out by Cory et al. [24] and Chuang
et al. [23] resulted in elegant methods for creating the so called effectively pure or pseudo-
pure states. Behind the idea of the pseudo-pure states is the fact that NMR experiments
are only sensitive to the traceless deviation density matrix. Thus, we might search for
transformations that, applied to the thermal equilibrium density matrix, produce a deviation
density matrix with the same form as a pure state density matrix. Once such state is created,
all remaining unitary transformations will act only on such a deviation density matrix,
which will transform as a true pure state.

Let us start with a short discussion about the kind of transformation we are seeking
for. As described in the Chapter 2, the density matrix corresponding to a pure state is a
projector, which satisfies the following properties (Chapter 3): ρ = ρn and Tr(ρ2) = 1. On
the other hand, for a statistically mixed state, ρ �= ρn and Tr(ρ2) < 1. Now, let us look at a
density operator that is obtained from a mixed state operator ρ by a unitary transformation,
ρ′ = UρU†. The question is whether this operator can or cannot be a pure state operator.
The trace and idempotency properties for the transformed operator become:

Tr
(
ρ′2) = Tr

([UρUt ]2)= Tr
(
UρU†UρU†)

= Tr
(
Uρ2U†)= Tr

(
ρ2)< 1 (4.3.1)

ρ′n = (UρU†)n =
n∏(

UρU†)

= UρnU† �= UρU†. Therefore ρ′n �= ρ (4.3.2)

Equations (4.3.1) and (4.3.2) show that if ρ is a mixed state operator so is ρ′. In other
words, it is not possible to obtain a pure state from a mixed state only using unitary trans-
formations. Therefore the creation of pseudo-pure states must involve not only a set of
unitary transformations, but also non-unitary rotations or some kind of averaging over dif-
ferent mixed states. There are some different ways of creating such pseudo-pure states in
NMR, but the most common methods are based on temporal or spacial averaging and
logical labeling, which will be discussed in the next section. In the following discus-
sion we will restrict to the production of pseudo-pure states for the computational basis
|00〉, |01〉, |10〉, |11〉, but from these states the Bell basis pseudo-pure states can be directly
obtained by applying the EPR generator operator of (4.2.18) (see Problem P4.4).
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4.3.1 Temporal averaging

In the temporal averaging method a set of states, prepared by applying unitary transforma-
tions to a common initial state (usually the thermal equilibrium), are combined to produce
an average state that behaves like a pure state in NMR experiments. If fact, this method
do not really create a pure logical state, but allows to simulate the execution of a logical
operation by analyzing the average result obtained after applying the operation to each
preparation step individually.

To illustrate the general idea, let us consider a diagonal two-qubit density matrix with
real diagonal elements a, b, c and, d, corresponding to the populations of the states
|00〉, |01〉, |10〉, |11〉 (note that such matrix can be seen as a general representation of an
equilibrium density matrix).

ρini =
⎛

⎜⎝

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎞

⎟⎠ (4.3.3)

Lets then apply the unitary transformation U0, U1, and U2 given by (4.3.4) to ρini:

U0 =
⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠ U1 =
⎛

⎜⎝

1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

⎞

⎟⎠

U2 =
⎛

⎜⎝

1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 0

⎞

⎟⎠ (4.3.4)

where one can identify U0 as the identity matrix, U1 can be constructed by two successive
CNOT gates (U1 = CNOTBCNOTA) and U2 = U

†
1 . The resulting density matrices ρ0, ρ1

and ρ2 are:

ρ10 = U0ρiniU
†
0 =

⎛

⎜⎝

a 0 0 0
0 b 0 0
0 0 c 0
0 0 0 d

⎞

⎟⎠ (4.3.5)

ρ1 = U1ρiniU
†
1 =

⎛

⎜⎝

a 0 0 0
0 c 0 0
0 0 d 0
0 0 0 b

⎞

⎟⎠ (4.3.6)

ρ2 = U2ρiniU
†
2 =

⎛

⎜⎝

a 0 0 0
0 d 0 0
0 0 b 0
0 0 0 c

⎞

⎟⎠ (4.3.7)
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Taking the average over ρ0, ρ1 and ρ2 we obtain the effective state,

ρ00 = ρ0 + ρ1 + ρ2 =
⎛

⎜⎝

3a 0 0 0
0 b + c + d 0 0
0 0 b + c + d 0
0 0 0 b + c + d

⎞

⎟⎠ (4.3.8)

But, since b + c + d = 1 − a, we have:

ρ00 =
⎛

⎜⎝

1 − a 0 0 0
0 1 − a 0 0
0 0 1 − a 0
0 0 0 1 − a

⎞

⎟⎠+
⎛

⎜⎝

4a − 1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎠ (4.3.9)

Or,

ρ00 = (1 − a)1 + (4a − 1)|00〉〈00| (4.3.10)

The first term on the right side of the above expression of ρ00 is proportional to the iden-
tity and is not detected in a NMR experiment (neither is affected by RF pulses). However,
the second part, which has exactly the same form as the density matrix corresponding to
the pure state |00〉, does transform under the action of RF pulses and also contribute to de-
tected signal. Therefore, once the average state ρ00 is created it behaves under any unitary
transformation just like a pure state. Note that if we wish to test the implementation of a
given logical operation, three full experiments must be done and combined to obtain the
averaged answer, which will be the output to that logical operation. The other pseudo-pure
states corresponding to the sates |01〉, |10〉, |11〉 can be created from |00〉 just by applying
NOT gates implemented by π pulses i.e.,

ρ01 = NOTB

(
(1 − a)1 + 4a − 1|00〉〈00|)NOT†

B = (1 − a)1 + 4a − 1|01〉〈01|
ρ10 = NOTA

(
(1 − a)1 + 4a − 1|00〉〈00|)NOT†

A = (1 − a)1 + 4a − 1|10〉〈10|
(4.3.11)

ρ11 = NOTBNOTA

(
(1 − a)1 + 4a − 1|00〉〈00|)NOT†

ANOT
†
B

= (1 − a)1 + 4a − 1|11〉〈11|

As a specific example of generating pseudo-pure states in NMR spin systems, lets con-
sider a case of two J -coupled spin 1/2 (see Section 4.1). The equilibrium density matrix
of this system can be written as (4.3.3). Remember that the pulse sequence for the CNOT
gate, the operations U0, U1, and U2 can be written as,

U0 = 1

U1 =
(

π

2

)I1

x

UJ

(
1

2J

)(
π

2

)I1

y

(
π

2

)I2

x

UJ

(
1

2J

)(
π

2

)I2

y

(4.3.12)

U2 =
(

π

2

)I2

y

UJ

(
1

2J

)(
π

2

)I2

x

(
π

2

)I1

y

UJ

(
1

2J

)(
π

2

)I1

x
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Figure 4.8 Experimental deviation density matrices: (a), (b) and (c) were obtained after the application of the
operations U0, U1, and U2 to the equilibrium density matrix. (d) Represents the average deviation density matrix.
Adapted with permission from Reference [27] (Copyright 2007 American Chemical Society).

Notice that the z rotations in the CNOT gates are not necessary for producing U1, and U2.
This is a typical example of the pulse simplification discussed in the last section.

Figure 4.8 shows experimental results for the deviation density matrix obtained after
applying each operation for a 2-qubit system U0, U1, and U2 as well as the average state
(see also Problems P4.3 and P4.4). The deviation density matrices were obtained using
the quantum state tomography process, which will be described in the next section. As it
can be seen, the final averaged deviation density matrix is very similar to that of the pure
state |00〉.

For coupled spins 1/2, the temporal averaging method described above can be gener-
alized to systems with larger number of spins. In these cases, it is necessary to combine
2n − 1 prepared states to create a pseudo-pure state in a system of n spins. The operations
for preparing the individual states can be obtained based on CNOT and SWAP gates. For
example, for three spins systems the quantum circuits of these operations are shown in
Figure 4.9.

The pseudo-pure state preparation by temporal averaging in quadrupolar nuclei can be
done in a similar way. To illustrate the procedure lets take a two-qubit system imple-
mented by spin 3/2 nuclei. The corresponding thermal equilibrium density matrix is given
by:

ρeq = 1

4

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠+ h̄ω0

4kBT

⎛

⎜⎝

3/2 0 0 0
0 1/2 0 0
0 0 −1/2 0
0 0 0 −3/2

⎞

⎟⎠ (4.3.13)
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Figure 4.9 Quantum circuit used to create pseudo-pure states in a three qubit system by temporal averaging
using two-qubit CNOT and SWAP gates. The pseudo-pure state |000〉 is obtained after combining the results of the
seven (add the identity operator) Ui operations. Adapted with permission from Reference [27] (Copyright 2007
American Physical Society).

Here only two unitary operations are necessary to create the pseudo-pure states. Such
operations are implemented by the following single-transition selective pulses [5]:

U1 =
(

π

2

)23

x

(π)12
x = 1√

2

⎛

⎜⎝

√
2 0 0 0

0 0 i
√

2 0
0 i 0 i

0 −1 0 1

⎞

⎟⎠

(4.3.14)

U2 =
(

π

2

)23

−x

(π)12
x = 1√

2

⎛

⎜⎝

√
2 0 0 0

0 0 i
√

2 0
0 i 0 −i

0 1 0 1

⎞

⎟⎠

The density matrices after each pulse sequence as well as their addition become:

ρ1 = 1

4

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠+ h̄ω0

4kBT

⎛

⎜⎝

3/2 0 0 0
0 −1/2 0 0
0 0 −1/2 −i

0 0 i −1/2

⎞

⎟⎠

ρ2 = 1

4

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠+ h̄ω0

4kBT

⎛

⎜⎝

3/2 0 0 0
0 −1/2 0 0
0 0 −1/2 i

0 0 −i −1/2

⎞

⎟⎠ (4.3.15)
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Figure 4.10 Experimental deviation density matrices and NMR spectra corresponding to the pseudo-pure states
of a spin 3/2 system: (a): |00〉, (b): |01〉, (c): |10〉, (d): |11〉. The negative sign indicates that the corresponding
level has a population deficit in respect to the other levels.

ρ00 = 1

4
(1 − ε)

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠+ ε

⎛

⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎠

where ε = h̄ω0
2kBT

. The matrix ρ00 has the same form as (4.3.10). The other pseudo-pure
states representing the other elements of the two qubits computational basis can be created
in a similar manner:

ρ01 =
[
(π)01

x

(
π

2

)23

±x

(π)12
x

]
ρeq

[
(π)01

x

(
π

2

)23

±x

(π)12
x

]†

= α1 + ε|01〉〈01|

ρ10 =
[(

π

2

)01

±x

(π)23
x (π)12

x

]
ρeq

[(
π

2

)01

±x

(π)23
x (π)12

x

]†

(4.3.16)

= α1 + ε|10〉〈10|

ρ01 =
[(

π

2

)01

±x

(π)12
x

]
ρeq

[(
π

2

)01

±x

(π)12
x

]†

= α1 − ε|11〉〈11|

Figure 4.10 shows the deviation density matrices and corresponding NMR spectra ob-
tained for each of the above pseudo-pure states. As it can be observed, the NMR spectra
of the different pseudo-pure states are clearly distinguishable. Thus, if the output state of a
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give logical operation corresponds to a pseudo-pure state of the computational basis, it can
be identified just by looking at the NMR spectrum.

The main advantage of the temporal averaging procedure is the facility of implementa-
tion and interpretation. The main disadvantage is the exponential increase in the number
of states that must be combined upon increasing the number of qubits.

4.3.2 Spatial averaging

The use of spatial averaging for producing pseudo-pure states was first introduced by Cory
et al. [24] and is based on dividing the system in spatially separated sub-ensembles. These
sub-ensembles can be accessed independently in NMR by using a combination of RF
pulses and pulsed magnetic gradients, which is equivalent to applying different unitary op-
erations to each sub-ensemble. The pseudo-pure state is the average over all sub-ensembles.
The main advantage of this method is that the pseudo-pure state is obtained after a single
application of the pulse sequence, i.e., it is not necessary to combine different outputs to
get the result of the computation.

A simple spatial averaging scheme can be used for creating pseudo-pure states in a sys-
tem of quadrupolar nuclei. It can be illustrated using the above example of spins 3/2.
Applying the operation U1 of Equation (4.3.14) to the thermal equilibrium density matrix
of Equation (4.3.13), the density matrix ρ1 in Equation (4.3.15) is obtained. That matrix
already has the same population distribution as the pseudo-pure state |00〉, but it does not
correspond to a pseudo-pure state due to the presence of off-diagonal elements (coher-
ences). The effect of a pulsed magnetic field gradient is to introduce a dephasing for the
coherences associated with different spatial locations along the sample. Because this de-
phasing is proportional to the gradient strength, a high gradient strength pulse makes the
coherences vary from 0 to 2π along the sample. In other words, one can consider the
macroscopic sample as being constituted by a set of sub-ensembles each one represented
by a density matrix with the same distribution of populations, but with off-diagonal ele-
ments out of phase. Therefore, the average density matrix over a reasonable number of
sub-ensemble looks exactly like ρ00 in Equation (4.3.15), i.e., it is a pseudo-pure state den-
sity matrix. An example of creating a pseudo-pure state by spatial averaging in coupled
spin 1/2 system is the pulse sequence corresponding to the operation (4.3.17) (see also
Problem P4.6). The transformation that takes the equilibrium density matrix to the one
corresponding to the pseudo-pure state |00〉, ρ00, is:

ρ00 =
[
Gz(τ)

(
π

4

)I1

−y

UJ

(
1

2J

)(
π

4

)I1

x

Gz(τ)

(
π

3

)I2

x

]
ρeq

×
[
Gz(τ)

(
π

4

)I1

−y

UJ

(
1

2J

)(
π

4

)I1

x

Gz(τ)

(
π

3

)I2

x

]†

(4.3.17)

where Gz(τ) represents a gradient pulse of duration τ . The pseudo-pure state correspond-
ing to the other eigenstates can be obtained from |00〉, as described in (4.3.11).

For many-qubit systems this method is very useful for obtaining pseudo-pure states.
This is so, because temporal averaging would require too many repetitions for phase can-
cellation, which can be done at once by gradient pulses. The application of gradient pulses
intercalated with RF pulses, as shown in (4.3.17), can also decrease the number of pulses.
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Figure 4.11 NMR spectra and schematic representation of the level populations in different states of a spin 7/2
system. Adapted with permission from Reference [25] (Copyright 2007 American Physical Society).

Gradient pulses can also be used together with multi-frequency pulses to create pseudo-
pure states in systems with large number of qubits. An example of that is the case of
a 133Cs nuclei (spin 7/2 system) in a liquid crystal of cesium pentadecafluorooctanoate
in D2O [25]. This system has 8 different levels with linearly increasing populations, re-
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sulting in 7 single-quantum transitions with different frequencies and transition rates,
7:12:15:16:15:12:7. Using multi-frequency selective pulses it is possible to simultaneously
saturate all transitions except one, which is related to the desired pseudo-pure state. For
example, to prepare the pseudo-pure state |000〉 we can simultaneously saturate six of the
seven single-quantum transitions, i.e., irradiate them all with frequencies ωi,i+1, except
the transition ω0,1. This can be achieved by a six-frequency pulse with central frequency
at (ω3,4 +ω4,5)/2. This pulse produces the equalization of the populations of levels 1 to 7,
keeping unchanged the population of the level 0. Thus, we obtain a state where all level
populations are equal, except the population of the level 0. However, the application of
multi-frequency pulses also creates undesired coherences in the deviation density matrix,
making necessary to use a gradient pulse to remove those coherences. Figure 4.11 shows
the NMR spectra and the schematic representation of the levels populations in different
three-qubits pseudo-pure states created in a spin 7/2 system. Spatial averaging has also
been performed in quadrupolar nuclei in solid crystals [8]. However, in these cases the T2
relaxation times are in the order of microseconds, which allowed the use of single delays
instead of gradient pulses to dephase the off-diagonal coherences.

4.3.3 State labeling

Another usual technique for creating pseudo-pure states is called logical or state labeling.
This method was first introduced by Gershenfeld and Chuang [23] and does not make used
of sub-ensembles of spins neither of averaging procedures. Considering a n-qubit system,
in the state labeling method one of the qubits is used to label the state, while the others
n − 1 qubits are put in a pseudo-pure configuration. To illustrate how this is done, let us
take a three qubits system formed by three homonuclear weakly J -coupled spins 1/2. The
corresponding thermal equilibrium deviation density matrix and the relative populations
(normalized by the factor h̄ωL/16KBT and measured relative to the population of the sate
|11〉) of the eigenstates |αβγ 〉 are:

State: |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
Relative population: 6 4 4 2 4 2 2 0

(4.3.18)

�ρeq = h̄ω0

16kBT

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.3.19)

Now, let us look at this three qubit system as being composed by two independent
subspaces, labeled by the first qubit. In other words, the first four states are seen as a
two-qubit system with labeling qubit equal to 0, while the other remaining states form
another two-qubit system with the labeling qubit equal to 1. Imagine now that we apply
two consecutive CNOT gates, one with target in the first qubit, and control in the third,
followed by another CNOT with the first qubit as the target and the second as the control,
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i.e., CNOT1−2CNOT1−3. The first CNOT operation simultaneously swaps the populations
of the states |001〉 with |101〉 and |011〉 with |111〉 and the second CNOT gate swaps the
populations of the states |010〉 with |110〉 and |011〉 with |111〉. Thus, after applying both
gates, the following state is obtained (see Problem P4.7):

State: |000〉 |001〉 |010〉 |011〉 |100〉 |101〉 |110〉 |111〉
Population: 6 2 2 2 4 4 4 0

(4.3.20)

�ρpps = h̄ω0

16kBT

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.3.21)

Starting from the equilibrium state, the CNOT gates do not introduce any off-diagonal
elements into the deviation density matrix, so we can regard (4.3.21) as two subsets of
pseudo-pure states, the state |00〉0 with label state |0〉 and the state |11〉1 with state label
|1〉, i.e,

|ψ〉 ∝ |0〉 ⊗ |00〉0 + |1〉 ⊗ |11〉1 (4.3.22)

Here the first qubit plays an important role because it defines the working subspace
during the execution of a logical operation. This means that the label state must index
the output in such a way that, after executing a logical operation, the output associated to
the working subspace can be identified. For example, if we apply a two-qubit gate to the
pseudo-pure state |11〉, the state label qubit |1〉 can be used to search for (or isolate) the
output signal from the corresponding subspace.

The logical labeling scheme was also generalized for a n-qubit [26] system with the
advantage of using a smaller number of operations than the temporal or spatial averaging
approaches. The disadvantage of this method is that the label spin cannot be used for the
computation.

There are other less usual methods for creating pseudo-pure states, for example using
flip and swap logic gates, randomization of group of spins, or using entanglement [27].
However, the most important are the ones described above.

4.4 RECONSTRUCTION OF DENSITY MATRICES IN NMR QIP:
QUANTUM STATE TOMOGRAPHY

The ability of an experimental technique for preparing initial states and implementing an
universal set of logic gates are two important features for its use in quantum information
processing. Another equally important requirement is the characterization of the output
state. In many cases we wish more than a simple readout, but a full characterization of the
system state. This can achieved by determining all elements of the density matrix of the
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system. In quantum information processing, the reconstruction of the density matrix allows
many interesting applications. For example: (a) testing the preparation of quantum states;
(b) estimating the experimental errors and calculating the fidelity of the implementation of
a quantum gate; (c) monitoring the implementation of quantum gates in intermediate steps;
(d) characterizing decoherence and dissipation effects in quantum systems, etc.

The reconstruction of the density matrix of a system usually involves performing a se-
ries of measurements (readouts) and combining the results to obtain the density matrix
elements. As stated before, the density matrix of a n qubits system has (2n − 1)(2n−1 + 1)

elements, but not all element are accessible by a single measurement. To see that, let us
consider a quantum system represented by a density matrix ρ in a |u〉 basis. A set of mea-
surements in the system via the measurement operator A = |u〉〈u| provides the probability
distribution of finding the system in a given state |u〉. Thus, applying such procedure for
all basis states its possible to obtain the full set of probabilities, which indeed represent the
diagonal elements of the density matrix. To obtain the other elements of ρ it is necessary
to perform a set of measurements in the same state at different bases until all elements of ρ

are fully determined. This procedure is known as density matrix tomography or quantum
state tomography (QST). Next section address how to achieve that in NMR systems.

4.4.1 NMR Quantum State Tomography

In standard NMR experiments the readout is made in the basis of the Zeeman interaction,
i.e, the Iz basis. Then, the basic ingredient for NMR QST would be to know how to execute
the readout at different bases. However, this is completely equivalent to rotate the qubits
and execute the measurements in a fixed base. Indeed:

Tr
[
ρU |m〉〈m|U†]≡ Tr

[
U†ρU |m〉〈m|] (4.4.1)

Using this property, it is possible to design a procedure for NMR QST based on a rotation
of the qubits via RF pulses, followed by measurements in the Iz base, although there are
peculiarities of each method according to the spin system of interest. In general, NMR QST
methods rely on the same idea, i.e., to execute specially designed unitary rotation through
RF pulses and reconstructing the density matrix from the intensities of the resulting NMR
spectra. In the following section we will describe some of these methods for J -coupled
spins 1/2 in diluted solution and quadrupolar spins in oriented media or solid-state. For
direct dipolar coupled spins 1/2 the same method as for J -coupled spins can be used.

4.4.2 NMR Quantum State Tomography in coupled spin 1/2 systems

The first NMR QST method was developed by Chuang et al. [26] for systems of coupled
spins 1/2. It consists of preparing the state to be tomographed and applying RF pulses (to-
mography pulses) to execute selective unitary rotations in the qubits. Then, the NMR spec-
trum (readout) is acquired and the line intensities are recorded. This procedure is repeated
varying the phases of the tomography pulses and, after a certain numbers of readouts, it is
possible to construct a set of equations involving the line intensities and the elements of the
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original density matrix. To illustrate it in more details, let us consider a general deviation
density matrix of two coupled spins:

�ρ =

⎛

⎜⎜⎜⎝

x11 x12 + iy12 x13 + iy13 x14 + iy14

x12 − iy12 x22 x23 + iy23 x24 + iy24

x13 − iy13 x23 − iy23 x33 x34 + iy34

x14 − iy14 x24 − iy24 x34 − iy34 x44

⎞

⎟⎟⎟⎠ (4.4.2)

where �ρ is Hermitian and traceless, that is, x11 +x22 +x33 +x44 = 0. It is straightforward
to show that the spectrum corresponding to spin I1 depends only on the elements x12 + iy12
and x34 + iy34, while the spectrum corresponding to spin I2 depends only on the elements
x13 + iy13 and x24 + iy24 (see Problem P4.8). Since the NMR spectrum of this system has
four lines (two for each nucleus), taking the real and imaginary parts of these lines (Re(Si),
Im(Si)) one can obtain a system of eight equations relating the spectral line intensities with
these eight elements. From the solution of such system of equations the unknown elements
can be determined. Therefore, preparing the state to be tomographed and recording the
NMR spectra corresponding to both spins allow us to determine the elements correspond-
ing to the 12, 34, 13 and, 24 entries of the corresponding deviation density matrix (we will
call these entries as “reading positions”). To obtain the other elements it is necessary to
execute a rotation in the spin system that brings the desired element to one of these read-
ing positions. A general set of RF pulses that perform such task (i.e., the complete density
matrix tomography) is,
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(4.4.3)
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where �ρread indicates the deviation density matrix that originates the NMR spectra. Since
the pulse matrices are known, the reading positions of �ρread can be calculated as a func-
tion the elements of �ρ. Consequently, the elements of �ρ can be directed associated to
the line intensities in the corresponding NMR spectra. The net result of this procedure is
a system of 72 equations (each line in (4.4.3) give rise to eight equations – four complex
spectral intensities) that can be solved to determine the 16 elements of �ρ. The equation
set (4.4.3) is redundant and can be simplified to decrease the number of readouts [28]. Such
feature is important for systems with many qubits, where the application of the method
will require much more readouts. This procedure for QST can also be adapted to coupled
homonuclear spins just by using the appropriate selective pulses to perform the desired
rotations.

Another useful QST method was developed using the two-dimensional Fourier trans-
form technique [29]. In this method the diagonal elements of the density matrix are ob-
tained in a 1D experiment where a short pulse, similar to that discussed above, is applied
to retrieve the populations. The quantum coherences, including those not directly observ-
able, are codified in a 2D spectrum S(ω1,ω2) so that the 2D intensities depend on these
coherences. This allows to extract the quantum coherences by fitting the 2D spectrum. The
main advantage of such method is its scalability, as the 2D acquisition provides an efficient
way of extracting the coherences even for a large number of qubits (>5).

4.4.3 NMR Quantum State Tomography of quadrupole nuclei

The first QST procedure dedicated to quadrupolar systems was developed by Kampermann
and Veeman for spin 3/2 nuclei [8]. It is a direct adaptation from the method used for
spin 1/2, but uses transition selective pulses instead of spin selective pulses. Similar to
the spin 1/2 method, the transition selective pulses are used to bring an specific set of
populations and coherences to the reading position of the deviation density matrix (single
quantum coherences) and after that the NMR spectrum is acquired. The transformations
(transition selective pulses) that are applied to the deviation density matrix �ρ in order to
bring the unknown elements to the reading positions are,

�ρread = 1�ρ1
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(4.4.4)

�ρread =
[(

π

2

)23

x

]
�ρ

[(
π

2

)23

x

]†

�ρread = [(π)23
x (π)01

x

]
�ρ
[
(π)01
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]†

where �ρread indicates the deviation density matrix that originates the NMR signal. Since
�ρread can be calculated from �ρ using the single transition pulse operators described
in Chapter 2, the NMR signal as a function of the elements of �ρ can be determined.
This allows to relate the spectra line intensities with the desired elements of �ρ. Then,
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the normalized real and imaginary integrals of the spectra line intensities are used to build
a set of linear equations that has the elements of �ρ as unknowns. This set of equations
is also solved by standard methods in order to obtain the tomographed deviation density
matrix.

Another method for performing quantum state tomography of a quadrupolar spin
3/2 NMR system is based in the combination of transition selective and hard readout
pulses [30]. Basically, the method consists in determining the diagonal elements of the
deviation density matrix, after performing operations on the system, which selectively
drag the off-diagonal elements into the main diagonal. The following steps are exe-
cuted:

(1) The diagonal elements of the deviation density matrix, x11, x22, x33, and x44, are de-
termined from the intensities of the three lines measured in an averaged spectrum obtained
after the application of a hard π/20 readout pulse under the CYCLOPS phase cycling
scheme (see Chapter 2). Using the pulse operators and the CYCLOPS readout scheme to
calculate the average spectrum, it is possible to obtain a set of three equations relating the
matrix elements of the π/20 pulse, eij , the elements x11, x22, x33, x44 of the deviation
density matrix, and the three line intensities, A1, A2, and A3. A fourth equation is obtained
from the trace relation for the deviation density matrix. Thus, the following set of equations
is found,

A1 = √
3(e11e12x11 − e12e22x22 − e23e13x33 − e13e14x44)

A2 = 2(e13e12x11 + e22e23x22 − e23e22x33 − e13e12x44)
(4.4.5)

A3 = √
3(e13e14x11 + e13e23x22 + e12e22x33 − e11e12x44)

x11 + x22 + x33 + x44 = 0

Since the pulse matrix elements eij are known and the line intensities, A1, A2, and A3 can
be measured, x11, x22, x33, x44 can be determined from the solution of (4.4.5).

(2) To obtain the off-diagonal elements of the deviation density matrix, π/2 transition
selective pulses with proper phases are applied to the system prior to the readout pulse.
The effect of the application of such pulses is to bring the off-diagonal elements of the
density matrix to the main diagonal, as illustrated in (4.4.6), where only the main diagonal
elements are displayed for simplicity,
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(4.4.6)
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Then, the same procedure of item 1 is applied to determine the new diagonal elements of
the transformed matrix and, since the elements x11, x22, x33, x44 of original matrix were
already determined, each element dragged to the diagonal is obtained. Using transition se-
lective pulses with distinct frequency and phases, either the real or imaginary part of each
element are determined. The elements in the first diagonal (single quantum coherences)
are obtained using a single selective pulse, while for elements in the second (double quan-
tum coherences) and third (triple quantum coherences) diagonal two and three pulses are
used, respectively. A complete set of equations that allows the determination of all off-
diagonal elements is shown in (4.4.7). In this cases ωQtp (tp is the pulse length) is chosen
to be a multiple of 2π in order to avoid the effect of the quadrupolar evolution during the
pulse [31].
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2 (4.4.7)
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Figure 4.12 Deviation density matrix truth table for CNOT gates implemented in a quadrupolar spin 3/2 system.
Adapted with permission from Reference [31] (Copyright 2007 Elsevier).
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The expression ρkk
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An illustration of the use of the density matrix tomography process is shown in Fig-
ure 4.12. It is the measured truth table for a CNOT gate with control on qubits A and B ,
obtained from experimentally determined density matrices.

The methods for QST of spin 3/2 systems as well as for coupled homonuclear spin 1/2
describe above can, in principle, be adapted for higher spin systems. However, this will
certainly imply in the use of more selective pulses.

4.5 EVOLUTION OF BLOCH VECTORS AND OTHER QUANTITIES
OBTAINED FROM TOMOGRAPHED DENSITY MATRICES

An appropriate and useful approach to follow the evolution of a quantum state is the Bloch
sphere representation, introduced in Chapter 3. This is a geometrical scheme in which the
quantum state and its evolution is represented by the trajectory of a vector over the so-called
Bloch sphere (Figure 4.13). In the Bloch sphere, the poles represent the two eigenstates of
the system, whereas the equatorial plane corresponds to an uniform superposition of these
two eigenstates.



4.5. Evolution of Bloch vectors and other quantities obtained from tomographed density matrices 169

Figure 4.13 Schematic representation of a state vector in the Bloch sphere.

To illustrate the Bloch sphere representation of an NMR system, let us consider the den-
sity matrix of an ensemble of spins 1/2 nuclei. Because the high temperature deviation
density matrix is proportional to Iz, the effect of an RF pulse is to induce rotations that
transform the initial density matrix into a linear combination of the spin operator compo-
nents,

�ρ = ξx(t)Ix + ξy(t)Iy + ξz(t)Iz (4.5.1)

Thus, the evolution of such density matrix is contained in the coefficients ξi(t), which
represent the component of the vector I(t) = iξx(t)Ix + jξy(t)Iy + kξz(t)Iz. Notice that
the thermal average of I(t) is proportional to the macroscopic magnetization, which means
that for one-qubit systems both vectors have the same dynamics. Considering a spherical
representation with σ = iIx + jIy + kIz and

r = iξ1 sin
[
θ(t)

]
cos
[
φ(t)

]+ jξ2 sin
[
θ(t)

]
sin
[
φ(t)

]+ k sin
[
θ(t)

]

we can write �ρ = r · σ , and the full density matrix of the system becomes,

ρ(t) = 1 + r · σ
2

(4.5.2)

Using this equation it is possible to obtain the components of the Bloch vector r from
the density matrix ρ(t) as ξx(t) = Re[2ρ21(t) − 1], ξy(t) = Im[2ρ21(t) − 1], ξz(t) =
Re[2ρ11(t) − 1]. As a result, the evolution of the Bloch vector can be accompanied if
the experimental density matrix, or the deviation density matrix, is determined. One ex-
ample of such procedure is shown in Figure 4.14. Figure 4.14a shows the evolution of the
Bloch vector in a Bloch sphere during a Hadamard operation implemented by the pulses
(π)Ix

(
π
2

)I
y
. The initial pseudo-pure state |0〉, corresponding to the top of the sphere, it trans-

formed into the state (|0〉 + |1〉)/√2, the equatorial plane of the sphere, by a Hadamard
transformation. The Bloch vector starts its evolution at z and it is transferred to the x di-
rection by the pulse

(
π
2

)I
y

where it remains during the application of the pulse (π)Ix , which
is applied only to provide the phase correction. For many qubit systems a similar approach
allows the determination of the Bloch vectors corresponding to both qubits. The method
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Figure 4.14 Representation in the Bloch Sphere of one qubit evolution during the execution of some logic
gates. (a) One qubit Hadamard Operation; (b) CNOTA|10〉 operation; (c) Experimental and simulated evolution
of both qubits during the double application of a Hadamard Gate. Adapted with permission from Reference [30]
(Copyright 2007 Elsevier).

consists in calculating the partial trace of the density matrix over the subspace correspond-
ing to each qubit, and relating it to the Bloch vector by the following expression,

TrA
[
ρ(t)

]= 1 + rA · σ
2

TrB
[
ρ(t)

]= 1 + rB · σ
2

(4.5.3)

Figure 4.14b shows the simulated evolution of the Bloch vectors in a system of two
coupled spins 1/2, during the execution of a CNOTA|10〉 operation. As a result of the

(
π
2

)I1
z

rotation, the qubit A, initially at the south pole of the sphere (state |1〉), it is transferred
to the equatorial plane, but returns to the south pole at the end of the gate. Meanwhile,
due to all the pulses applied to the I2 spin, the qubit B, initially at the state |0〉, execute
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a complex trajectory in the Bloch sphere before going to the state |1〉 at the end of the
gate. An example of an experimental monitoring of the Bloch vector during the double
application of an HB logic gate is shown in Figure 4.14c. This was achieved for a spin 3/2
quadrupolar system and the experimental Bloch vector trajectories were determined from
a set of tomographed density matrices, obtained at each step of the evolution [30]. The
qubit A remains almost unchanged during all the operation, while the qubit B initially at
the state |0〉, is changed to the state (|0〉 + |1〉)/√2 at the end of a single application of
the HB gate, and returns to the state |0〉 after applying the gate twice. The full line is a
calculation of the qubits evolution performed using the RF and quadrupolar Hamiltonians
according to the selective Gaussian shaped RF pulses used to implement the HB gate.

Important information can also be extracted from the entire system density matrix. For
example, the distance D(t) = Tr[ρ(0) − ρ(t)] and the fidelity

F(t) = Tr
{√

ρ(t)1/2 · ρ(0)1/2 · ρ(t)1/2
}

between any two quantum states can be calculated [32]. These parameters were obtained
after the application of the double-Hadamard gate of Figure 4.14c. Comparing the initial
and final states, one finds D(ρ1, ρ4) = 0.3 ± 0.2 and F(ρ1, ρ4) = 0.9 ± 0.2, confirming
the self reversibility of the implemented HB logic gate.

PROBLEMS WITH SOLUTIONS

P4.1 – Using the pulse matrix for the transition selective pulses in quadrupolar systems,
find the pulse operators for the single-qubit gates NOTA, NOTB , HA, HB . Apply such pulse
operators to the state |00〉 and show the they execute the expected actions. Then, show that
the two Hadamard gates are self-reversible.

Solution
The relevant pulse operator matrices obtained from the general equation of Chapter 2 are:

(
π

2

)01

y

=
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⎜⎜⎜⎜⎝

1√
2

1√
2

0 0

− 1√
2

1√
2

0 0

0 0 1 0

0 0 0 1

⎞

⎟⎟⎟⎟⎠
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(π)01

x =
⎛
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0 i 0 0
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0 0 1 0
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⎞

⎟⎠
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⎜⎝

0 0 0 1
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⎞
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Performing the multiplication of the operators corresponding to the pulse sequence that implement the NOT
gates we find:

NOTA = (π)23
x (π)01

x (π)x =
⎛

⎜⎝

0 0 −1 0
0 0 0 −1

−1 0 0 0
0 −1 0 0

⎞

⎟⎠

NOTB = (π)23
x (π)01

x =
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0 i 0 0
i 0 0 0
0 0 0 i

0 0 i 0

⎞

⎟⎠

To obtain the matrix representation of the pulse operators of the Hadamard gates we can use that:

(
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2

)12

−y

=
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2

)12

y

]†
and (2π)01

x = (π)01
x (π)01

x

thus the Hadamard pulse operator becomes:
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In order to see the action of these pulse operators, let us consider the state |00〉 of the computational basis:

|00〉 =
⎛
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1
0
0
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Hence,
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0
0

⎞
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0
0
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Where, regardless a global phase, we see that the operators act as expected. To exemplify the reversibility of
the Hadamard gates let us apply them twice to the state |00〉:

H
|00〉,|01〉
A

H
|00〉,|01〉
A

|00〉 = H
|00〉,|01〉
A

(
−|00〉 + |10〉√

2

)

= − 1√
2

⎛

⎜⎜⎜⎜⎝

− 1√
2

0 − 1√
2

0

0 −1 0 0

− 1√
2

0 1√
2

0

0 0 0 1

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎝

1
0
1
0

⎞

⎟⎠=
⎛

⎜⎝

1
0
0
0

⎞

⎟⎠= |00〉

H
|00〉,|01〉
B

H
|00〉,|01〉
B

|00〉 = H
|00〉,|01〉
B

(
−i

|00〉 + |01〉√
2

)

= − i√
2

⎛

⎜⎜⎜⎜⎝

1 0 0 0
0 1 0 0

0 0 1√
2

1√
2

0 0 1√
2

− 1√
2

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎝

1
1
0
0

⎞

⎟⎠= −
⎛

⎜⎝

1
0
0
0

⎞

⎟⎠= −|00〉

In both case the initial state |00〉 is recovered, regardless a global phase.

P4.2 – Use the proper pulse and evolution operators to show (4.2.12).

Solution
The relevant pulse operators matrices are:

(π)
I2
y =

⎛

⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎠ (π)
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⎛

⎜⎝

0 0 1 0
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−1 0 0 0
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UJ (t) =
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0 e+iπJ t/2 0 0
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⎞
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where we drop the chemical shift part that is obviously refocused. Using these matrices we first calculate the
result of the following operation:

(π)
I2
y UJ (t)(π)

I2−x =
⎛

⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎠
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e−iπJ t/2 0 0 0
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⎞

⎟⎟⎟⎠

×
⎛
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⎞
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=

⎛

⎜⎜⎜⎝

e+iπJ t/2 0 0 0

0 e−iπJ t/2 0 0

0 0 e−iπJ t/2 0

0 0 0 e+iπJ t/2

⎞

⎟⎟⎟⎠= UJ (−t)

Then, the operator corresponding to the refocusing pulse sequence becomes:

UJ (t)(π)
I2
y UJ (t)(π)

I2−y = UJ (t)UJ (−t) =
⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠= 1

which shows that there is no J -coupling evolution after the application of the refocusing pulse sequence.

P4.3 – Derive the operator matrix for the SWAP and EPR generator gates for quadrupolar
spins 3/2.

Solution
The matrices for the CNOT gates for quadrupolar spin 3/2 system describe in the text are:

CNOTA = (π)23
x =

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 0 i

0 0 i 0

⎞

⎟⎠

CNOTB = (π)12
x (π)13

x (π)12
x =

⎛

⎜⎝

1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0

⎞

⎟⎠

Using these matrix and the corresponding Hadamard matrices of Exercise P4.1.

SWAP = CNOTACNOTBCNOTA = − 1 + i√
2
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1 0 0 0
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⎞
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A
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2
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⎜⎝
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0 0 0 1
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A

= − 1 − i√
2

⎛

⎜⎝

1 0 0 0
0 1 0 1
0 1 0 1
0 0 1 0

⎞

⎟⎠
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P4.4 – Show that the operator (4.2.18) for a EPR generator in systems of two coupled spins
1/2 produces the Bell basis states from the computational basis states.

Solution
The EPR generator operator given is Section 4.2.2 is:

EPR = − 1 + i√
2

⎛

⎜⎝

1 0 1 0
0 1 1 0
0 1 0 1
1 0 1 0

⎞

⎟⎠

The result of the application of this operation to the computation basis states becomes:

EPR|00〉 = − 1 + i√
2
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0
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0
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2

⎛

⎜⎝

0
1

−1
0

⎞

⎟⎠= − 1 + i√
2

(|01〉 − |10〉)

P4.5 – Exemplify the action of the three-qubit Toffoli gate of 4.2.19 in some selected
computational basis states.

Solution
Taking the operator that represents the Toffoli gate with the first qubit as the target:

Toffoli = ei3π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and applying to the three qubit states:

|001〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; |010〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; |011〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; |111〉 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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we obtain:

Toffoli|001〉 = ei3π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei7π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei3π/8|001〉

Toffoli|010〉 = ei3π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei7π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei3π/8|010〉

Toffoli|011〉 = ei3π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei7π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei3π/8|111〉

Toffoli|111〉 = ei3π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 i 0 0 0 0 0 0
0 0 i 0 0 0 0 0
0 0 0 0 0 0 0 −1
0 0 0 0 i 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 i 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei11π/8

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0
0
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= ei11π/8|011〉

where we see that unless for a global phase the gate invert the first qubit only with the other two are in the state 1.

P4.6 – Show that the operation described in (4.3.17) applied to the equilibrium density
matrix produces the density matrix corresponding to the state |00〉.

Solution
The full operation we want to show is:
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�ρ00 =
[
Gz(τ)

(
π

4

)I1

−y

UJ

(
1

2J

)(
π

4

)I1

x

Gz(τ)

(
π

3

)I2

x

]
�ρeq

×
[
Gz(τ)

(
π

4

)I1

−y

UJ

(
1

2J

)(
π

4

)I1

x

Gz(τ)

(
π

3

)I2

x

]†

To show that we will need to use the pulse matrices corresponding to the pulses. For a two spin system this
can be obtained from:

(θ)
I1
Φ = exp(−iθI1Φ); (θ)

I2
Φ = exp(−iθI2Φ)

where I1Φ = IΦ ⊗ 1 ⊗ 1; I2Φ = 1 ⊗ IΦ ⊗ 1; I3Φ = 1 ⊗ 1 ⊗ IΦ with Φ = x, y, z,−x,−y,−z and IΦ is a single
spin operator. The high temperature equilibrium deviation density matrix becomes:

�ρeq = h̄ω0

4kBT

(
Iz ⊗ 1︸ ︷︷ ︸

I1
z

+1 ⊗ Iz︸ ︷︷ ︸
I2
z

)= h̄ω0

4kT

⎛

⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1

⎞

⎟⎠

After the application of the first
(
π
3

)I2
x

operation:

�ρ1 = h̄ω0

4kBT

[(
π

3

)I2

x

]
�ρeq

[(
π

3

)I2

x

]†
=
⎛

⎜⎝

0.75 i0.433 0 0
−i0.433 0.25 0 0

0 0 −0.25 i0.433
0 0 −i0.433 −0.75

⎞

⎟⎠

The application of the Gz(τ) gradient pulse kills all the off-diagonal coherences taking the deviation density
matrix to:

�ρ2 = h̄ω0

4kT

⎛

⎜⎝

0.75 0 0 0
0 0.25 0 0
0 0 −0.25 0
0 0 0 −0.75

⎞

⎟⎠

After the application of the first
(
π
4

)I1
x

operation:

�ρ3 = h̄ω0

4kBT

[(
π

4

)I4

x

]
�ρ2

[(
π

4

)I4

x

]†
= h̄ω0

4kT

⎛

⎜⎝

0.6036 0 i0.3536 0
0 0.1036 0 i0.3536
0 −i0.3536 −0.1036 0
0 0 −i0.3536 −0.6036

⎞

⎟⎠

After the application of the UJ

( 1
2J

)
evolution:

�ρ4 = h̄ω0

4kBT

[
UJ

(
1

2J

)]
�ρ3

[
UJ

(
1

2J

)]†
= h̄ω0

4kT

⎛

⎜⎝

0.6036 0 0.3536 0
0 0.1036 0 i − 0.3536
0 0.3536 −0.1036 0
0 0 −0.3536 −0.6036

⎞

⎟⎠

After the application of the second
(
π
4

)I1
x

operation:

�ρ5 = h̄ω0

4kBT

[(
π

4

)I4

x

]
�ρ4

[(
π

4

)I4

x

]†
= h̄ω0

4kT

⎛

⎜⎝

0.75 0 0 0
0 −0.25 0 −0.5
0 0 −0.25 0
0 −0.5 0 −0.25

⎞

⎟⎠
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Then, after the application of the second Gz(τ) gradient pulse we obtain the deviation density matrix corre-
sponding to the state |00〉:

�ρ00 = h̄ω0

4kT

⎛

⎜⎝

0.75 0 0 0
0 −0.25 0 0
0 0 −0.25 0
0 0 0 −0.25

⎞

⎟⎠

P4.7 – Using the CNOT operations described in Section 4.3.3, derive the expression for the
pseudo-pure deviation density matrix (4.3.21) starting from (4.3.19).

Solution
Let us take the high temperature deviation density matrix for this three spin system as follow:

�ρeq = h̄ω0

8kBT

(
Iz ⊗ 1 ⊗ 1︸ ︷︷ ︸

I1
z

+1 ⊗ Iz ⊗ 1︸ ︷︷ ︸
I3
z

+1 ⊗ 1 ⊗ Iz︸ ︷︷ ︸
I2
z

)

= h̄ω0

16kBT

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 −3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where Iz is a single spin operator and 1 is a two by two identity matrix. As discussed in the text the labeled
pseudo-pure state is obtained by applying two successive CNOT gates both having the first qubit as target and
control in the second and third qubits, respectively. To construct the matrix representation of such CNOT gates
from the pulse operator we may find the expression for the pulse matrix for the three qubit system. For a general
rotation angle this can be written as:

(θ)
I1
Φ = exp(−iθI1Φ); (θ)

I2
Φ = exp(−iθI2Φ); (θ)

I3
Φ = exp(−iθI3Φ)

where I1Φ = IΦ ⊗ 1 ⊗ 1; I2Φ = 1 ⊗ IΦ ⊗ 1; I3Φ = 1 ⊗ 1 ⊗ IΦ with Φ = x, y,−x,−y and IΦ is a single spin
operator. With these definitions the operator that represent these two CNOT gates can be written in terms of the
sequence of pulse operator that implement two qubit CNOT gates as:

CNOT1−2 =
(

π

2

)I2

z

(
−π

2

)I1

z

(
π

2

)I1

x

UJ12

(
1

2J12

)(
π

2

)I1

y

= 1 − i√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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CNOT1−3 =
(

π

2

)I3

z

(
−π

2

)I1

z

(
π

2

)I1

x

UJ13

(
1

2J13

)(
π

2

)I1

y

= 1 − i√
2

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that the implementation of UJ12

( 1
2J12

)
involves the application of a refocusing pulse sequence that

refocus the J -coupling between the nuclei 1 and 3 and 2 and 3, but keep the coupling between 1 and 2. A similar
scheme must be applied to produce UJ13

( 1
2J13

)
. Thus,

Ul-pps = CNOT1−2CNOT1−3 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−i 0 0 0 0 0 0 0
0 0 0 0 0 −i 0 0
0 0 0 0 0 0 −i 0
0 0 0 −i 0 0 0 0
0 0 0 0 −i 0 0 0
0 −i 0 0 0 0 0 0
0 0 −i 0 0 0 1 0
0 0 0 0 0 0 0 −i

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using such matrix we can obtain the labeled pseudo-pure state from above equilibrium density matrix as:

�ρl-pps = Ul-pps�ρeqU
†
l-pps = h̄ω0

16kBT

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −3

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P4.8 – Considering the general density matrix shown in Equation (4.4.2) show that the
elements x12 + iy12 and x34 + iy34 can be obtained from the NMR spectrum of the I1
nucleus while the elements x13 + iy13 and x24 + iy24 can be obtained from the spectrum
of the I2 nucleus.

Solution
Let us first consider that the density matrix during the acquisition periods can be represented by the general

deviation density matrix of Equation (4.4.2):

�ρ =

⎛

⎜⎜⎜⎝

x11 x12 + iy12 x13 + iy13 x14 + iy14

x12 − iy12 x22 x23 + iy23 x24 + iy24

x13 − iy13 x23 − iy23 x33 x34 + iy34

x14 − iy14 x24 − iy24 x34 − iy34 x44

⎞

⎟⎟⎟⎠

The corresponding NMR magnetization can be written as:

M(t) = Tr
[
U(t)�ρU†(t)I+

]

where U(t) is the evolution operator during the signal detection and I+ is the total raising operator of the two
spins system. These operators are giving by:
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U(t) = exp
[−i
(
ω0I1

z + 2πJI1
z I2

z

)]

I+ = (I1
x + iI1

y

)+ (I2
x + iI2

y

)=
⎛

⎜⎝

0 1 1 0
0 0 0 1
0 0 0 1
0 0 0 0

⎞

⎟⎠

The operators I i
x , I i

y , I i
z are those defined in Problem 4.6. The expression can be explicitly written as:

M(t) =
∑

pq

(
e−iωpq t [I+]pq [�ρpq ]†)

where ωpq is the transition frequency defined by the system Hamiltonian (see operator U(t)). From the above

sum we see that only the �ρ entries corresponding to the non-vanish entries of I+ contributes to the NMR signal,

i.e. the 12, 13 24 and 34 positions. Comparing to the general expression of �ρ we see that at these position we

find the elements x12 + iy12, x13 + iy13, x24 + iy24, x34 + iy34. Since the transition 12 and 24 are associated to

spin I1 while the transition 13 and 34 are associated to the spin I2 we can conclude that the elements x12 + iy12

and x34 + iy34 can be obtained from the NMR spectrum of the I1 nucleus while the elements x13 + iy13 and

x24 + iy24 can be obtained from the spectrum of the I2 nucleus.

REFERENCES

[1] M.A. Nielsen, I.L. Chuang, Quantum Computing and Quantum Information (Cambridge University Press,
Cambridge, 2000).

[2] R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two
Dimensions (Clarendon Press, Oxford, 1987).

[3] L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, Experimental
realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance, Nature 414 (2001)
883–887.

[4] A.K. Khitrin, B.M. Fung, Nuclear magnetic resonance quantum logic gates using quadrupolar nuclei,
J. Chem. Phys. 22 (2000) 6963–6965.

[5] N. Sinha, T.S. Mahesh, K.V. Ramanathan, A. Kumar, Toward quantum information processing by nuclear
magnetic resonance: Pseudopure states and logical operations using selective pulses on an oriented spin 3/2
nucleus, J. Chem. Phys. 14 (2001) 4415–4420.

[6] A.K. Khitrin, H. Sun, B.M. Fung, Method of multi-frequency excitation for creating pseudopure states for
NMR quantum computing, Phys. Rev. A 63 (2) (2001) Art. No. 020301.

[7] R.S. Sarthour, E.R. de Azevedo, F.A. Bonk, E.L.G. Vidoto, T.J. Bonagamba, A.P. Gumarães, J.C.C. Freitas,
I.S. Oliveira, Relaxation of coherent states in a two-qubit NMR quadrupole system, Phys. Rev. A 68 (2003)
022311.

[8] H. Kampermann, W.S. Veeman, Quantum computing using quadrupolar spins in solid state NMR, Quantum
Inform. Process. 1 (5) (2002) 327–344.

[9] J. Baugh, O. Moussa, C.A. Ryan, A. Nayak, R. Laflamme, Experimental implementation of heat-bath algo-
rithmic cooling using solid-state nuclear magnetic resonance, Nature 438 (2005) 470–473.

[10] R. Das, T.S. Mahesh, A. Kumar, Implementation of conditional phase-shift gate for quantum information
processing by NMR, using transition-selective pulses, J. Magn. Reson. 159 (1) (2002) 46–54.

[11] J. Stolze, D. Suter, Quantum Computing (WILEY-VCH GmbH, Germany, 2004).
[12] R. Freeman, Shaped radiofrequency pulses in high resolution NMR, Prog. Nucl. Magn. Reson. Spectrosc.

32 (1998) 59–106.
[13] T.S. Mahesh, N. Sinha, K.V. Ramanathan, A. Kumar, Ensemble quantum-information processing by NMR:

Implementation of gates and the creation of pseudopure states using dipolar coupled spins as qubits, Phys.
Rev. A 65 (2002) Art. No. 022312.

[14] K. Doray, A. Kumar, Cascate selective pulses on connected single quantum transitions leading to selective
excitation of multiple quantum coherences, J. Magn. Reson. Ser. A 114 (1995) 155–162.



References 181

[15] L.M.K. Vandersypen, I.L. Chuang, NMR techniques for quantum control and computation, Rev. Mod. Phys.
76 (4) (2004) 1037–1069.

[16] D. Deustch, Quantum computational networks, Proc. R. Soc. Lond. A 425 (1989) 73–80.
[17] M.D. Price, T.F. Havel, D.G. Cory, Multi-qubit logic gates in NMR quantum computing, New Journal of

Physics 2 (2000) 101–109.
[18] M.D. Price, S.S. Somaroo, A.E. Dunlop, T.F. Havel, D.G. Cory, Generalized methods for the development

of quantum logical gates for an NMR quantum information processor, Phys. Rev. A 60 (1999) 2777–2780.
[19] D.G. Cory, M.D. Price, T.F. Havel, Nuclear magnetic resonance spectroscopy: An experimentally accessible

paradigm for quantum computing, Physica D 120 (1988) 82–101.
[20] L.M.K. Vandersypen, M. Steffen, G. Breyta, C.S. Yannoni, M.H. Sherwood, I.L. Chuang, NMR techniques

for quantum control and computation, Rev. Mod. Phys. 76 (4) (2004) 1037–1069.
[21] E.M. Fortunato, M.A. Pravia, N. Boulant, et al., Design of strongly modulating pulses to implement precise

effective Hamiltonians for quantum information processing, J. Chem. Phys. 116 (17) (2002) 7599–7606.
[22] H. Kampermann, W.S. Veeman, Characterization of quantum algorithms by quantum process tomography

using quadrupolar spins in solid-state nuclear magnetic resonance, J. Chem. Phys. 122 (21) (2005) Art.
No. 214108.

[23] N.A. Gershenfeld, I.L. Chuang, Bulk spin-resonance quantum computation, Science 275 (1997) 350–356.
[24] D.G. Cory, A.F. Fahmy, T.F. Havel, Ensemble quantum computing by NMR spectroscopy, Proc. Nat. Acad.

Sci. USA 94 (5) (1997) 1634–1639.
[25] A. Khitrin, H. Sun, B.M. Fung, Method of multi-frequency excitation for creating pseudopure states for

NMR quantum computing, Phys. Rev. A 63 (2) (2001) Art. No. 020301.
[26] I.L. Chuang, N. Gershenfeld, M.G. Kubinec, D.W. Leung, Bulk quantum computation with nuclear mag-

netic resonance: theory and experiment, Proc. R. Soc. Lond. A 457 (1998) 447–467.
[27] E. Knill, I.L. Chuang, R. Laflamme, Effective pure states for bulk quantum computation, Phys. Rev. A 57

(5) (1998) 3348–3363.
[28] G.L. Long, H.Y. Yan, Y. Sun, Analysis of density matrix reconstruction in NMR quantum computing, J. Opt.

B: Quantum Semiclass. Opt. 3 (2001) 376–381.
[29] R. Das, T.S. Mahesh, A. Kumar, Efficient quantum-state tomography for quantum-information processing

using a two-dimensional Fourier-transform technique, Phys. Rev. A 67 (6) (2003) Art. No. 62304-1.
[30] F.A. Bonk, R.S. Sarthour, E.R. de Azevedo, J.D. Bulnes, G.L. Mantovani, J.C.C. Freitas, T.J. Bonagamba,

A.P. Guimaraes, I.S. Oliveira, Quantum-state tomography for quadrupole nuclei and its application on a
two-qubit system, Phys. Rev. A 69 (4) (2004) Art. No. 042322.

[31] F.A. Bonk, E.R. de Azevedo, R.S. Sarthour, J.D. Bulnes, J.C.C. Freitas, A.P. Guimaraes, I.S. Oliveira,
T.J. Bonagamba, Quantum logical operations for spin 3/2 quadrupolar nuclei monitored by quantum state
tomography, J. Magn. Reson. 175 (2) (2005) 226–234.

[32] J.D. Bulnes, F.A. Bonk, R.S. Sarthour, E.R. de Azevedo, J.C.C. Freitas, T.J. Bonagamba, I.S. Oliveira,
Quantum information processing through nuclear magnetic resonance, Braz. J. Phys. 35 (3A) (2005) 617–
625.



This page intentionally left blank



– 5 –

Implementation of Quantum Algorithms
by NMR

It has been proved surprisingly simple to build small NMR quantum computers, and while such
computers are themselves too small for any practical use, their mere existence has brought great
excitement to a field largely deprived of experimental achievements. – J.A. Jones [Progr. in Nucl.
Mag. Res. 38 (2001) 325]

Since the discovery of pseudo-pure states by Gershenfeld and Chuang [1] and Cory et al.
[2] in 1997, an amazing number of papers appeared in the literature reporting the practical
implementation of quantum algorithms by NMR. These include: Deutsch, Deutsch–Jozsa,
Grover search and Shor factorization algorithms, besides various examples of protocols to
simulate quantum systems. There are also those experiments which implemented protocols
to test quantum correlations, such as entanglement. The issue of entanglement in liquid-
state NMR will be discussed in separate in the next chapter. In the present chapter we will
discuss various other implementations of quantum algorithms by NMR. For its importance
in NMR Quantum Information Processing (QIP), we also included in this chapter some de-
scriptions of experiments of quantum simulation experiments and discrete Wigner function
measurements.

5.1 NUMERICAL SIMULATION OF NMR SPECTRA AND DENSITY
MATRIX CALCULATION ALONG AN ALGORITHM IMPLEMENTATION

In the previous chapter we saw how the matrix elements of a NMR density matrix re-
late to spectral lines. In the context of NMR QIP, an algorithm is nothing but a ra-
diofrequency pulse sequence which encodes quantum logic gates. Each radiofrequency
pulse implements an unitary transformation, which is used to prepare the initial state,
and process the information and the computation. Under a sequence of unitary operators
U(τ1),U(τ2), . . . ,U(τn), the initial equilibrium density matrix transforms according to:

ρfinal = U(τn)U(τn−1) · · ·U(τ1)ρeqU
†(τ1) · · ·U†(τn−1)U

†(τn) (5.1.1)

Usually, in an NMR experiment, quantum state tomography is performed either on the final
matrix ρfinal, or at each step τk . In the second case, it usually aims to study the information
processing during the execution of the quantum algorithm. In any case, it is a good practice
to follow the evolution of the experiment by calculating the resulting NMR spectrum at
each step. As an example, let us calculate the density matrices along the Deutsch algorithm.
The way a density matrix relates to the NMR spectrum is explained in Chapter 2.
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At the initial state the qubits are in a quantum state |Φ0〉 = |0〉 ⊗ |1〉 = |01〉, and the
system density matrix is then:

ρ0 = |Φ0〉〈Φ0| =
⎡

⎢⎣

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎦ (5.1.2)

As a next step of the algorithm, a Hadamard logic gate is applied to both qubits leaving the
system in the state |Φ1〉 = 1

2 (|0〉+ |1〉)(|0〉− |1〉), which corresponds to the density matrix:

ρ1 = |Φ1〉〈Φ1| = 1

4

⎡

⎢⎣

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎤

⎥⎦ (5.1.3)

One can notice that at this stage the system is in a complete superposition of states, and the
next step is to perform an unitary operation Uf , which takes the two qubit system from a
generic state, |x, y〉 to the state |x, y ⊕ f (x)〉. This transformation |x, y〉 → |x, y ⊕ f (x)〉
is nothing but the sum of the second qubit, with f (x), that is, the computed function of
the first qubit. This function, f , is the one to be verified, in order to determine if it is
balanced or constant. As it can be easily verified, any binary function, when applied to the
particular system state |x, y〉 = 1√

2
|x〉[|0〉 − |1〉] yield the result (−1)f (x) 1√

2
|x〉[|0〉 − |1〉].

It is worth to noticing that |0 ⊕ f (x)〉 = |0〉 and |1 ⊕ f (x)〉 = |1〉 if f (x) = 0, or |0 ⊕
f (x)〉 = |1〉 and |1 ⊕ f (x)〉 = |0〉 if f (x) = 1. Therefore, the system will be in the state
|Φ2〉 = ± 1

2 [(|0〉 + |1〉)(|0〉 − |1〉)] if f (0) = f (1), or |Φ2〉 = ± 1
2 [(|0〉 − |1〉)(|0〉 − |1〉)] if

f (0) �= f (1), and this will lead to one of the two possible density matrices:

ρ2 = 1

4

⎡

⎢⎣

1 −1 1 −1
−1 1 −1 1
1 −1 1 −1

−1 1 −1 1

⎤

⎥⎦ for f (0) = f (1) (5.1.4)

ρ2 = 1

4

⎡

⎢⎣

1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1

⎤

⎥⎦ for f (0) �= f (1) (5.1.5)

Although both qubits are still in a superposition of states, the relative phase of the first now
depends on the result of the operations f (0) and f (1), and will determine if the function is
balanced or constant. Thus if the Hadamard gate is applied to the first qubit, the system will
evolve to state described as: |Φ3〉 = ± 1√

2
[|0〉(|0〉− |1〉)] or |Φ3〉 = ± 1√

2
[|1〉(|0〉− |1〉)], in

case f (0) = f (1) or f (0) �= f (1), respectively. The density matrix for each state is:

ρ3 = 1

2

⎡

⎢⎣

1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎦ for f (0) = f (1) (5.1.6)
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ρ3 = 1

2

⎡

⎢⎣

0 0 0 0
0 0 0 0
0 0 1 −1
0 0 −1 1

⎤

⎥⎦ for f (0) �= f (1) (5.1.7)

Using the partial trace operation, which sums over all the state of the others qubits of the
system, one may find the respective density matrices for each qubit in the system:

ρ1
3 =

[
1 0
0 0

]
and ρ2

3 = 1

2

[
1 −1

−1 1

]
for f (0) = f (1) (5.1.8)

ρ1
3 =

[
0 0
0 1

]
and ρ2

3 = 1

2

[
1 −1

−1 1

]
for f (0) �= f (1) (5.1.9)

As one can see, a measurement on the first qubit is enough to find out whether the
function is balanced or constant, the second qubit acting as an auxiliary bit.

5.2 NMR IMPLEMENTATION OF DEUTSCH AND DEUTSCH–JOZSA
ALGORITHMS

The first experimental implementation of a quantum algorithm by NMR was reported by
J.A. Jones and M. Mosca [3]. They demonstrated the Deutsch algorithm using as qubits the
spins of two protons in a sample of partially deuterated cytosine. The observed J -coupling
in this system is only 7.2 Hz, and the doublets were separated by 763 Hz.

The theoretical description of Deutsch algorithm was made in the Chapter 3, and the
evolution of a pure-state density matrix along the algorithm calculated in the previous sec-
tion. Let us only remind here that the algorithm uses quantum superposition to test a binary
function, which can be of two kinds: constant or balanced. There are two possible constant
binary functions: fC1(0) = 0 and fC1(1) = 0 or fC2(0) = 1 and fC2(1) = 1. There are also
two balanced binary functions: fB1(0) = 0 and fB1(1) = 1 or fB2(0) = 1 and fB2(1) = 0.
Therefore, the classical knowledge of whether a binary function is constant of balanced
involves two bits of information, which are obtained when the given function is tested
twice.1 The Deutsch algorithm can decide whether the function is constant or balanced, by
testing it only once.

The input state to the algorithm is the pseudo-pure state:

ρε = 1 − ε

4
I + ε|01〉〈01| (5.2.1)

which can be created by applying one of the techniques described in the previous chapter.
The first qubit corresponds to the input qubit to the function, whereas the second one
corresponds to the returning result. The states of the two qubits can be read directly on
the NMR spectra: a doublet line pointing upwards means ‘0’, and pointing downwards
means ‘1’.

The algorithm involves two pairs of one-qubit Hadamard operators. The authors used
instead single (π/2)±y pulses, which are not self-inverse as a true Hadamard, but can

1This situation is frequently compared to the testing whether a coin is fair or fake.
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Figure 5.1 Testing binary functions in a classical algorithm. The line on the left represents the input qubit and
the line on the right the output qubit. In the upper set, the input is ‘0’, and in the lower set, it is ‘1’. (a) and (d) are
constant, and (b) and (c) are balanced. Adapted with permission from [3].

replace it in this case, using a positive phase for the first application, +y, and a negative
phase, −y, for the second one.

The four possible binary functions are implemented by four unitary operators which cor-
respond2 to: 1 and CNOT1 for the constant functions,3 and CNOT2 and NOT2 (i.e. applied on
the second qubit) for the balanced ones. For instance, setting the first qubit to ‘0’, the cor-
responding NMR lines will always point upwards. Under one of the four transformations
above, the second line can point either upwards, or downwards, depending on whether the
second qubit has been flipped or not by the operation. The action of these operators was
tested by Jones and Mosca in the original paper [3], for the case the first spin is in either
‘0’ or ‘1’ state. The result is shown in Figure 5.1. Notice that this test corresponds to a
classical test of binary functions.

The result of the application of the full Deutsch algorithm is shown in Figure 5.2. The
lines on the right of the spectra represent the input state |1〉, which remains in |1〉 at the
output. The line on the left represents the output of the calculation: the corresponding
qubit always start at |0〉, but it is inverted in cases (b) and (c). These represent the balanced
functions. In cases (a) and (d) it remains in |0〉 and the function is constant.

A variation of the Deutsch algorithm is the so called Deutsch–Jozsa algorithm, which
uses more than one qubit binary functions [4]. A number of experimental demonstrations

2Pulse sequences to create these operators have been described in the previous chapter.
3CNOT1 flips the second qubit when the first one is in state ‘1’, and CNOT2 flips the state of the second qubit

when the first one is in ‘0’.
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Figure 5.2 NMR implementation of the full Deutsch algorithm. The line on the right represents the eigen-
state |1〉, and does not change at the output. The line on the left is inverted in cases (b) and (c) and represents
balanced functions. Spectra (a) and (d) represent constant functions. Adapted with permission from [3].

of this algorithm has appeared in the literature. For instance, Mangold et al. implemented
an optimized version of this algorithm in a three-qubit system [5]. They tomographed the
density matrix at different stages of the implementation. Das and Kumar [6] implemented
this algorithm in a quadrupole I = 3/2 system (see below). One interesting peculiarity
of this later work is the implementation of a CNOT gate using the quadrupolar evolution,
instead of the more usual selective radiofrequency pulses. Finally, an interesting implemen-
tation of the Deutsch–Jozsa algorithm using NMR pseudo-entangled states (see Chapter 6)
is reported by Dorai, Arvind and Kumar [7].

5.3 GROVER SEARCH TESTED BY NMR

As discussed in the Chapter 3, the quantum search algorithm is one of the most important
for quantum computation. It is used to search for one or more specific quantum states
in an uniform superposition. It is often compared to a search of a name (or number) in
a disordered list. The main feature of this algorithm is the operation, performed by the
“oracle”, which labels the state (or states) to be searched, by inverting its (their) phase.
The second operation is the inversion about the mean value, i.e. the amplitude of each state
in the system. These two operations must be applied to the system a certain number of
times, which depends on the number of items one is looking for and the total number of
elements on the system. For a two qubit system, the number of searches is only 1. Another
important application is the ability to use this algorithm for searching the solution of a
specific problem, which can be done by preparing the action of the “oracle” operator.

The first full implementation of Grover search algorithm by NMR was reported by
Chuang, Gershenfeld and Kubinec, in 1998 [8]. The authors used hydrogen and carbon
nuclear spins in chloroform as qubits. One important aspect of this work is the recon-
struction of the density matrix, and its comparison with the theoretical prediction. They
constructed four optimized sequences of radiofrequency pulses, one for each element la-
beled by the “oracle” of the quantum search algorithm (see Chapter 3). The result is shown
in Figure 5.3. One observes that the deviation from the theoretical prediction increases with
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Figure 5.3 NMR implementation of the Grover search algorithm (adapted with permission from Ref. [8]). Each
matrix represents a step in the algorithm implementation, and the deviation from the ideal theoretical prediction
is shown as percentages.

the number of steps. This is attributed primary to inhomogeneities of the magnetic field,
relaxation and imperfections of rotations.

Almost simultaneously to the publication of Chuang, Gershenfeld and Kubinec, Jones,
Mosca and Hansen [9] also reported4 an implementation of Grover search algorithm. They
used the two hydrogen nuclei in partially deuterated cytosine as a quantum computer of
two qubits. However, their analysis did not included tomographed density matrices.

A number of implementations of Grover search algorithm have appeared since these two
original works, among them we cite the work of Xiao and Jones [10] who implemented
Grover algorithm to search one or two items in a list. They used 1H and 13C in Na+HCO−

2
as qubits. Another interesting work was reported by Anwar et al. [11], in which Grover
search algorithm was implemented in a highly pure state, using a pair of 1H from a chem-
ical reaction of para-hydrogen. This technique allows to achieve very high, nearly pure,
states.

4The publication of Chuang et al. appeared in April 1998, and that of Jones et al. in May 1998.
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5.4 QUANTUM FOURIER TRANSFORM NMR IMPLEMENTATION

Quantum Fourier Transform (QFT), as explained in Chapter 3, is a key step for quantum
algorithms which exhibit exponential speed up. Its main application is in the Shor’s fac-
torization algorithm, which uses order finding and period finding [12]. These are in turn
variations of the general procedure known as phase estimation [13].

An application of QFT to order finding was reported in the year 2000 by Vandersypen et
al. [14]. They applied the technique to determine the order of a representative subset of 24
permutations of 4 elements. In order to implement this algorithm, they custom synthesized
a molecule containing five 19F spins, which served as qubits. The scheme of the molecule,
as well as the chemical shifts are shown in Figure 5.4. On Figure 5.5 the NMR spectra of
the equilibrium and the pseudo-pure state, used as the input of the experiment, is shown.

Another interesting implementation of the QFT in a three-qubit system (the three 1C of
alanine) was reported by Weinstein et al. [15]. With the technique, the authors measured
the periodicity of an input state, which was followed by quantum state tomography. Their
result is shown in Figure 5.6. Other interesting NMR implementation of QFT can be found
in Lee et al. [16] and Weinstein et al. [17]. The first applied QFT to phase estimation and
quantum counting, and the second performed the quantum process tomography of QFT.

Figure 5.4 Scheme of the molecule used in Ref. [14] for the NMR implementation of a QFT protocol. The five
19F nuclei form a 5-qubit system. Also shown are the respective chemical shifts (in Hz) in a field of 11.7 T, and
the coupling constants (also in Hz). Adapted with permission from [14].

Figure 5.5 (a) Equilibrium and (b) |00000〉〈00000| pseudo-pure spectra for one of the spins in Ref. [14]. The
equilibrium spectrum is composed by two multiplets, each with 8 lines, corresponding to the state 0 or 1. The
splitting within each multiplet is due to the different configurations of the other spins, as indicated above each
line. The equilibrium positions are indicated as bars in the pseudo-pure state. Adapted with permission from [14].
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Figure 5.6 NMR implementation of QFT made by Weinstein et al. [15]. On the left the input density matrix,
and on the right, the output of the QFT protocol, exhibiting the periodicity of the state. Adapted with permission
from [15].

Figure 5.7 (a) General scheme of the quantum circuit implemented by Vandersypen et al. [18] to test Shor’s
factoring algorithm in a system containing 7 qubits. The working principles of the algorithm are explained in
Chapter 3. In (b) it is shown the specific construction for N = 15 and a = 7 (see text). Numbered boxes represent
rotations about the z-axis. Adapted with permission from [18].

5.5 SHOR FACTORIZATION ALGORITHM TESTED IN A 7-QUBIT
MOLECULE

The discovery in 1993 by Peter Shor [12] of an efficient quantum factorization algorithm
is a main breakthrough in quantum computation. Although such a discovery has dragged
many people to the area of quantum information and quantum computation, due to its po-
tential practical applications, so far only one report has appeared in the literature describing
a practical implementation of the algorithm using NMR. This has been done by Vander-
sypen and co-workers in 2001 [18]. They used a “custom made” molecule similar to that
of Figure 5.4, but with the two inner carbon nuclei 13C labeled. This yields another pair of
qubits, summing a total of 7 (five 19F and two 13C), enough to test the non-classical part
of the algorithm. The generic quantum circuit and the NMR parameters for this system are
shown, respectively, in Figures 5.7 and 5.8.
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Figure 5.8 Scheme of the 7-qubit “custom made” molecule used in Ref. [18]. The difference to that shown in
Figure 5.4 are the two 13C labeled, C6 and C7, which adds two extra qubits to the system. Also shown are the
chemical shifts and J -coupling, in Hz. Adapted with permission from [18].

The circuit was designed to test the prime factors of the integer 15 (that is, 3 and 5),
and sequences of 300 pulses separated by different free evolution implemented, in which
the qubits in the system interact only with each other. As explained in Chapter 3, in one
of the steps of Shor algorithm it is necessary to evaluate the function f (x) = ax mod N ,
where N is the number to be factorized (N = 15 in the present case), and a is an integer,
co-prime of N , which for N = 15 can be 2,4,7,8,11,13 and 14. This procedure allows
the determination of the period of the function f (x) = ax mod N , or the order, r , which
is the least integer such that ar = 1 mod 15. From the order or period it is then possible
to determine at least one prime factor of N , using classical number theory techniques. If
the value for a, which is randomly picked, is chosen to be a = 2, 7, 8, or 13, we will have
a4 = 1 mod 15, whereas a = 4, 11 or 14, one will have a2 = 1 mod 15. The cases a = 7
and a = 11 were tested in the experiment.

The authors have separated the seven available qubits into two quantum registers, the
first one containing 3 qubits, and the second 4. The first set is used to determine the period,
and the second one is used to store the results of the controlled function f (x) = ax mod N ,
conditionally to the states, |x〉, of the qubits in the first register.5 The implementation of
the algorithm starts with the system in the state |000〉 ⊗ |0001〉 = |0000001〉, i.e., the first
three qubits of the first register are in the state |0〉, and the second register is at the state |1〉.
The first step of the algorithm is to put the three qubits of the first register in an uniform
superposition of states. As discussed in previous chapter, this can be done by applying the
Hadamard quantum gate at each qubit. In the next stage, the function f (x) is computed,
and the last step of the algorithm, before a measurement is done, is the application of
a inverse QFT (see Figure 5.7). Figure 5.9 shows the NMR spectra of the first 3-qubits
register in three different stages: thermal equilibrium, time-averaged pseudo-pure state and
just after the inverse QFT and measurement. Upon measuring the state of the first 3-qubits
register, from the spectra analysis, the period of f (x) was determined. At the end of the
order finding routine, the first three qubits of the first register will be in a mixed state

5Since the period of the function f (x) is either 2 or 4, at least two qubits are necessary in the first register, to
store the value of r .
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Figure 5.9 NMR spectra of the first register (3 qubits) in the implementation of the Shor’ factoring algo-
rithm [18]. (a) Equilibrium spectra; (b) Initial pseudo-pure state; (c) Output spectra for a = 11 (see text), and
(d) Output spectra for a = 7 (see text).

in which the only relevant amplitudes are the ones of |c2n/r〉, being c an integer and n

the number of qubits in the first register. When using an NMR computer, it is possible to
determine all the states of the computational basis that appear at the end of the computation,
instead of only sampling a particular one. This feature of NMR is very useful in the Shor’s
algorithm, because it allows the determination of the period directly. The authors have
tested two values of a: a = 11 and a = 7. For a = 11, one can see that the first and second
qubits are in the state |0〉 while the third is in an uniform superposition of |0〉 and |1〉, as
deduced directly from their NMR spectra (the lines point upwards for the state |0〉, whereas
for a superposition of |0〉 and |1〉, half of them point upwards and half downwards, as may
be seen on Figure 5.9(c)). It is important to notice that the information about the relative
phase of each qubit was lost, since no state tomography was performed. Because the SWAP
gate is not implemented at the end, the most significant qubit after the application of the
inverse QFT, is the third one, and so on. Therefore, the first register is also in a uniform
superposition of |000〉 and |100〉, i.e. |0〉 and |4〉 in decimal notation, which indicates that
the period is r = 23/4 = 2. Replacing in the expression (see Chapter 3) gcd(112/2 ± 1,15)

yields the correct factors, 3 and 5. For the second case, a = 7, one can see that the first
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qubit is in the state |0〉 while the second and third are in an uniform superposition of |0〉
and |1〉, being this deduced directly from their NMR spectra (Figure 5.9(d)). Therefore, the
first register is in an uniform superposition of |000〉, |010〉, |100〉 and |110〉, i.e. |0〉, |2〉,
|4〉 and |6〉 in decimal notation, which indicates that the period is r = 23/2 = 4. Replacing
in the expression gcd(74/2 ± 1,15), this also yields the correct factors.

5.6 ALGORITHM IMPLEMENTATION IN QUADRUPOLE SYSTEMS

Quadrupole nuclei have been much less used for quantum algorithm implementations. This
is partially due to the more complicated handling of quantum phases with selective pulses
used in those type of experiments, and partially due to the much shorter relaxation times of
quadrupole nuclei, compared to their spin 1/2 counterpart. Although various studies have
been published in NMR quantum simulation, there are not many full implementations of
the known quantum algorithms in nuclei with I > 1/2. Das and Kumar [6] report the
implementation of the Deutsch–Jozsa algorithm in a I = 3/2 system (23Na in a liquid
crystal). The circuit they implemented, as well as the resulting NMR spectra, are shown
in Figure 5.10. In the spectra, the same sign of the central and outer transitions indicates a
constant function, whereas opposite signs indicates balanced functions.

Ermakov and Fung [19] reported an implementation of a continuous version of the
Grover search algorithm in a system of I = 3/2 nuclei.

One interesting work is reported by Murali et al. [20], in which a half-adder and sub-
tracter operations are implemented in a quadrupole I = 7/2 spin system. They used the nu-
clei of 133Cs in a liquid crystal, for testing the half-adder and subtractor quantum circuits,
that are illustrated on Figure 5.11. The operations were implemented using sequences of
selective π -pulses, which invert the populations. The algorithms were tested with the sys-

Figure 5.10 Quantum circuit and NMR spectra corresponding to the implementation of the Deutsch–Jozsa
algorithm in a quadrupole I = 3/2 nucleus by Das and Kumar [6]. The two qubits are represented by the central
and outer transitions. Transitions pointing to the same direction represent constant functions, and to opposite
directions balanced ones. Adapted with permission from Ref. [6].
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Figure 5.11 Quantum circuits that implement the half-adder and subtractor operations. Adapted with permis-
sion from Ref. [20].

tem at the thermal equilibrium state. The conclusion were drawn directly from the NMR
spectra, as can be seen on Figure 5.13, which were acquired after a reading pulse followed
by a gradient along the z-direction, applied to erase unwanted off-diagonal coherences.

5.7 QUANTUM SIMULATIONS

Quantum simulation is one of the most promising and interesting area of quantum in-
formation. The proposal is to map the Hamiltonian of the system to be simulated onto
the Hamiltonian of the system where the simulation will take place. There has been a
number of reports on quantum simulations by NMR. The idea is to apply a sequence of
radiofrequency pulses which transform the natural NMR Hamiltonian to simulate a differ-
ent dynamics. In this section some implementations of simulations of interesting physical
systems performed using NMR quantum computers are discussed.

In 1999 Somaroo et al. [21] reported the first NMR implementation of a quantum simu-
lation experiment: a truncated harmonic oscillator. This is a classical problem, with many
applications in physics. The quantum harmonic oscillator Hamiltonian is described by:

HQHO =
∑

n

h̄Ω

(
n + 1

2

)
|n〉〈n| (5.7.1)

The authors used as qubits the two protons of 2,3-dibromothiophene. The first four levels
of the harmonic oscillator are mapped to the spin energy levels as:

|n = 0〉 �⇒ | ↑↑〉 = |00〉
|n = 1〉 �⇒ | ↑↓〉 = |01〉
|n = 2〉 �⇒ | ↓↓〉 = |11〉
|n = 3〉 �⇒ | ↓↑〉 = |10〉 (5.7.2)
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Figure 5.12 133Cs NMR spectra showing the testing, of the quantum half-adder and subtractor, at the thermal
equilibrium state. (a) Equilibrium spectrum; (b) output spectrum of the half-adder circuit; (c) output spectrum of
the subtractor circuit and (d) Toffoli gate. Adapted with permission from Ref. [20].

After a pulse sequence which transforms the NMR Hamiltonian into the harmonic oscil-
lator Hamiltonian, the evolution of various coherent states was determined, as shown in
Figure 5.11, where the solid lines are theoretical predictions and the points are the spectra
amplitudes.

Tseng et al. [22] reported the NMR quantum simulation of the non-physical three-body
interaction problem. This involves a Hamiltonian of the type J123σ

z
1 σz

2 σz
3 , which can be

simulated with a pulse sequence described in [22]. The effects on the NMR spectra (they
used 13C labeled alanine) are extra splittings caused by the triple coupling. In a subsequent
work, Tseng et al. [23] analyzed the effects of decoherence on NMR quantum simulation.
They also simulated a truncated quantum harmonic oscillator, using 2,3-dibromothiophene
and observed the evolution of different coherent states.
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Figure 5.13 Quantum evolution of various initial coherent states of a truncated harmonic oscillator, simulated
by NMR: (a) |0〉; (b) |0〉 + |2〉; (c) and (d) different oscillations of |0〉 + |1〉 + |2〉 + |3〉. Adapted with permission
from [21].

A very interesting NMR simulation study of a eight-state quantum system was reported
by Khitrin and Fung [24]. For that, they used the nucleus of 133Cs (I = 7/2) in a liquid-
crystal. The Hamiltonian they simulated is:

Hhop = λ

n=6∑

n=0

(
a†
nan+1 + ana

†
n+1

)
(5.7.3)

This Hamiltonian describes a linear chain with eight sites, through which a particle jumps
from one site to another. The probability to find a particle in a site is given by the
population of that site. The experiments follow the time evolution of the populations,
through the analysis of the spectra lines, and the results were compared with the the-
oretical predictions. A pseudo-pure state was created by irradiating simultaneously the
sample with radiofrequency whose spectrum contained the six upper single quantum tran-
sitions, which were responsible for the exchange of the populations between the levels:
|001〉 ⇐⇒ |010〉, |010〉 ⇐⇒ |011〉, |011〉 ⇐⇒ |100〉, |100〉 ⇐⇒ |101〉, |101〉 ⇐⇒ |110〉
and |110〉 ⇐⇒ |111〉. After that, a field gradient pulse was applied, in order to eliminate the
non-diagonal coherences of the density matrix, leaving the system in a pseudo-pure state.
Then, the time evolution of some coherent states, of the computational basis, were fol-
lowed by applying a multi-frequency RF pulse, which simulated the Hamiltonian (5.7.3).
The experimental results are in good agreement with the theoretical predictions.

There is a particular class of problems that quantum computers have difficult for simu-
lating. Those are ones which deal with interactions of Fermionic systems. Negrevergne et
al. [25] describe a NMR quantum simulation of a many-body problem, the so-called Fano–
Anderson model. It consists of an n-sites ring containing an impurity atom at the center.
In this system, an electron can hop either between the nearest neighbor sites, at the ring
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border, or through the middle, through the impurity site. The Hamiltonian which describes
this dynamics is given by:

HF–A =
n−1∑

l=0

εkl
c

†
kl
ckl

+ εb†b + V
(
c

†
k0

b + b†ck0

)
(5.7.4)

where c
†
kl

and ckl
are, respectively, the creation and annihilation operators for electrons

in the ring, and b† and b the equivalent operators for the impurity site. In this work, an
efficient simulation of a resonant impurity scattering process in a metal is presented. The
efficiency of the method was tested experimentally, through an NMR simulation experi-
ment, implemented in a 7-qubit transcrotonic acid molecule, where the spectrum of the
Fano–Anderson Hamiltonian was determined. They achieved this through a slightly differ-
ent version of the scattering circuit, which uses an auxiliary qubit, in order to determine
the average value of an arbitrary operator, 〈σa+〉 = 〈U(t)〉/2, being σa+ = σa

x + iσ a
y (the

Pauli matrices of the ancilla qubit). From this, it is possible to measure 〈e−iHt/h̄〉, if the
operator is built to simulate U(t) = e−iHt/h̄. The problem is therefore to rewrite the Fano–
Anderson Hamiltonian (5.7.4) in terms of the Pauli matrices. This can be achieved using
the Jordan–Wigner transformations [26]:

b = σ 1− b† = σ 1+
ck0 = −σ 1

z σ 2− c
†
k0

= −σ 1
z σ 2−

...
...

ckn−1 =
(

n∏

j−1

−σ
j
z

)
σn+1− c

†
kn−1

=
(

n∏

j−1

−σ
j
z

)
σn+1+

(5.7.5)

The transformed Hamiltonian, for a two spin system, is then described as on Equa-
tion (5.7.6), where the third term represents an interaction between the two spins through
their x and y moment components. This in turn can be rewritten in terms of the usual NMR
interaction σ 1

z σ 2
z , which appears in the NMR Hamiltonians for 1/2 spins systems, and sin-

gle spins rotations [27]. The authors used three qubits to implement this Hamiltonian: one
the ancilla, one the impurity and other the k0 mode [25]. The simulation was performed
for different values of ε, εk0 and V , for an arbitrary time, t , also a parameter of the sim-
ulation. They determined the spectrum of the Hamiltonian, by using a similar version of
the scattering circuit (see Chapter 3) for calculating the function S(t) = 〈φ|e−iHt |φ〉, at
different time intervals, and then applying the discrete Fourier Transform, hence obtaining
the eigenvalues of HF–A.

HF–A = ε

2
σ 1

z + εk0

2
σ 2

z + εk0

2

(
σ 1

x σ 2
x + σ 1

y σ 2
y

)
(5.7.6)

Another interesting study is that of Yang et al. [28]. They used a NMR quantum com-
puter to simulate the BCS superconductivity Hamiltonian. In the experiment, performed in
the two-qubit chloroform dissolved in acetone-d6, they observed the energy gap between
the superconductor and normal states, directly from the NMR spectrum.
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Figure 5.14 Two-qubit quantum circuit used to simulate the superconductors BCS Hamiltonian. Boxed letters
indicate directions that π/2 pulses are applied. We kept the author’s representation for the free-evolution period
(dark circles). Adapted with permission from [28].

The reduced Hamiltonian of the BCS model is described on Equation (5.7.7), where
εm stands for the energy required for removing an electron form the Fermi surface, n±m

represent the electron number operators and c
†
±m denotes the creation (c±m – annihilation)

operators. The electrons are labelled by the quantum numbers m and −m, since they move
in pairs, called Cooper pairs, according to the BCS theory, with moment and spins in
opposite directions, i.e., m = (k,↑) and −m = (−k,↓). The coupling coefficient, V , was
taken as a constant throughout the simulation.

HBCS = h̄

[
N∑

m=1

εm

2
(nm + n−m) + V

N∑

m,l=1

c†
mc

†
−mc−lcl

]
(5.7.7)

This Hamiltonian was mapped onto the a system of qubits [28], in terms of the Pauli
matrices:

HBCS = h̄

[
N∑

m=1

εm

2
σm

z + V

2

N∑

l>m=1

(
σm

x σ l
x + σm

y σ l
y

)
]

(5.7.8)

After mapping the reduced Hamiltonian of the BCS model, one can easily see the simi-
larity with the NMR Hamiltonian for spin 1/2 nuclei.

The quantum circuit used for this operation is shown in Figure 5.14. The NMR imple-
mentation of such circuit presents no particular difficulty, since it involves only simple
gates.

The initial state, |ψini〉 = |00〉 + |01〉, prepared using spatial averaging (Chapter 4), un-
dergoes a Hadamard transformation on the second qubit. After the evolution under the
simulated Hamiltonian, the state evolves to

|ψfin〉 = exp(−iετ )|00〉 + cos(V τ)|01〉 − i sin(V τ)|10〉,

according to theoretical calculations. The Fourier Transform is applied to the FID and the
amplitudes of the two transitions that appear in the NMR spectrum were recorded as a
function of τ . Then, a second Fourier Transform was applied to the set of amplitudes and
the frequency separation between the lines yielded the difference of the energy between
the two eigenstates (|01〉 and |10〉), which is the information required.
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Figure 5.15 Generic scattering circuit implemented in Ref. [29] to measure the discrete Wigner function.
Adapted with permission from [29].

5.8 MEASURING THE DISCRETE WIGNER FUNCTION

As a last topic in this chapter, we review the work of Miquel et al. [29] who implemented
a quantum circuit to measure the discrete Wigner function of a two-qubit system through
NMR. In Chapter 3 it was made a brief introduction to Wigner functions and the quantum
processing of information in phase space.

The generic “scattering” circuit is shown in Figure 5.15. A probe qubit enters the upper
line of the circuit and a generic multi-qubit state ρ enters the lower line. By measuring
the output state of the probe, we obtain 〈σz〉, which connects to the input state ρ and
the conditional transformation U through the expression: 〈σz〉 = Re[Tr(ρU)]. Therefore,
if ρ is a known state, the measurement of 〈σz〉 brings information about the operator U

(spectroscopy). On the opposite, the knowledge of U brings information about ρ (tomog-
raphy). The authors tailored U such as the measurement of 〈σz〉 yields the Wigner function
W(q,p) = 〈σz〉/2N , where N is the dimension of the Hilbert space. The experimental
result is shown in Figure 5.16, for each state of the computational basis of two qubits.
They used the two carbons and the hydrogen nuclei of trichloroethylene as qubits. Each
point (p, q) in phase space must be determined by a specific pulse sequence. The results
are in excellent agreement with the theory, as can be seen from the calculations shown on
Chapter 3.

It is interesting to discuss a little bit further the definition of the discrete Wigner function
given in terms of the discrete phase-point operator, as shown on the following equation
[26]:

A(q,p) = 1

2N
UqRV −p exp

(
2πiqp

2n

)
(5.8.1)

where U and V are, respectively, the translation operators, in position (U |q〉 = |q + 1〉)
and momentum (V |p〉 = |p + 1〉), and R, the reflection operator (R|n〉 = |N − n〉), with
N = 2n, i.e. the Hilbert’s space dimension. These operators can be constructed from con-
trolled logic gates and 1-qubit transformations.

The discrete Wigner function can be written as:

W(q,p) = Tr
[
A(q,p)ρ

]
(5.8.2)
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Figure 5.16 NMR measurement of the discrete Wigner function, made by Miquel et al. [29]. Colors indicate
intensity (for colors see the web version of this book). Adapted with permission from [29].

which is a particularly useful expression, since it can be directly associated to the scattering
circuit. The experiments were carried out using the three qubit of the trichloroethylene
molecule, dissolved in chloroform. One of the carbon nuclei was used as the ancilla qubit,
whereas the other carbon nucleus and hydrogen were in the quantum state, whose Wigner
function was measured.

From the examples presented in this chapter, one can see the extraordinary achievement
of NMR QIP. The power of the technique lies in the precise control over the radiofre-
quency pulses that implement the quantum logic gates, allowing the manipulation of the
coherences and energy level populations. Unwanted effects, usually due to small hardware
imperfections, can be corrected during and after the a protocol implementation.

Yet, there is a number of other interesting NMR QIP implementations, which have not
been discussed here!6 Some of them are: Experimental quantum error correction [30],
Geometric quantum computation using nuclear magnetic resonance [31], Experimental re-
alization of quantum games on a quantum computer [34], Experimental implementation
of an adiabatic quantum optimization algorithm [35], Experimental implementation of the
quantum Baker’s map [36], Quantum phase transition of ground-state entanglement in a
Heisenberg spin chain simulated in an NMR quantum computer [37], Simulated quan-
tum computation of molecular energies [38], Experimental implementation of heat-bath

6Experiments reporting entanglement are discussed in the next chapter.
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algorithmic cooling using solid-state nuclear magnetic resonance [39], Characterization
of quantum algorithms by quantum process tomography using quadrupolar spins in solid-
state nuclear magnetic resonance [40] and Quantum metrology [41], Nuclear magnetic
resonance implementation of a quantum clock synchronization algorithm [42].

PROBLEMS WITH SOLUTIONS

P5.1 - Consider a two-qubit quadrupole nuclear system (I = 3/2), with the four levels
labeled according to:

| + 3/2〉 ≡ |00〉
| + 1/2〉 ≡ |01〉
| − 1/2〉 ≡ |10〉
| − 3/2〉 ≡ |11〉

(a) Using ideal selective pulses, show that a Hadamard operation on the first qubit,
|00〉 → |00〉 + |10〉 can be achieved with the following sequence:

UH = (π)x1(π/2)
−y

1

where the subindex ‘1’ means the transition +3/2 ↔ +1/2.
(b) Show that a CNOT operation with the control on the first qubit is generated by:

UC = (π)x2(π)x3(π)x2

where the subindex ‘2’ means the transition −1/2 ↔ −3/2.
Combine the results of (a) and (b) to create a Bell-state generator circuit for quadrupole

nuclei.

Solution
(a) First, let us write the selective pulse matrices:

(π/2)
−y
1 =

⎛

⎜⎜⎜⎝

1/
√

2 −1/
√

2 0 0

1/
√

2 1/
√

2 0 0

0 0 1 0

0 0 0 1

⎞

⎟⎟⎟⎠ (π)x1 =
⎛

⎜⎝

0 i 0 0
i 0 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎠

(π)x2 =
⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 0 i

0 0 i 0

⎞

⎟⎠ (π)x3 =
⎛

⎜⎝

1 0 0 0
0 0 i 0
0 i 0 0
0 0 0 1

⎞

⎟⎠

From this, it is easy to see that

(π)x1 (π/2)
−y
1 |00〉 = i√

2

⎛

⎜⎝

1
1
0
0

⎞

⎟⎠= i

[ |00〉 + |01〉√
2

]
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(b) In a similar way:

(π)x2 (π)x3 (π)x2 |00〉 = |00〉
(π)x2 (π)x3 (π)x2 |01〉 = −|11〉
(π)x2 (π)x3 (π)x2 |10〉 = −|10〉
(π)x2 (π)x3 (π)x2 |11〉 = −|01〉

Therefore, the sequence of selective pulses (π)x2 (π)x3 (π)x2 implements a CNOT operator, with the control in the
second qubit.

Combining the Hadamard and CNOT into the sequence:

EPR ≡ (π)x2 (π)x3 (π)x2︸ ︷︷ ︸
CNOT

(π)x1 (π/2)
−y
1︸ ︷︷ ︸

Hadamard

we see that:

EPR|00〉 = i

[ |00〉 − |11〉√
2

]

and

EPR|01〉 = i

[ |00〉 + |11〉√
2

]

P5.2 - Grover search algorithm can be implemented for any “item” in a two-qubit system
using the corresponding optimized pulse sequences [8]:

U0 = X̄AȲAX̄BȲBτX̄AȲAX̄BȲBτ

U1 = X̄AȲAX̄BȲBτX̄AȲAXBȲBτ

U2 = X̄AȲAX̄BȲBτXAȲAX̄BȲBτ

U3 = X̄AȲAX̄BȲBτXAȲAXBȲBτ

where X,Y means π/2 pulses applied along the x or y-axes, respectively (barred operators
represent negative direction), and τ is two-qubit free-evolution operator. Apply each of
these operators to a two-qubit Hadamard state, and show that the result are the four states
of the computational basis.

Solution
We start by calculating the matrices which represent the operators Ui :

U0 = i

2

⎛

⎜⎝

1 −1 1 −1
1 −1 −1 1
1 1 1 1

−1 −1 1 1

⎞

⎟⎠ U1 = 1

2

⎛

⎜⎝

−1 −1 −1 −1
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1

⎞

⎟⎠

U2 = 1

2

⎛

⎜⎝

−1 1 1 −1
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1

⎞

⎟⎠ U3 = i

2

⎛

⎜⎝

−1 −1 1 1
−1 −1 −1 −1
−1 1 1 −1
1 −1 1 −1

⎞

⎟⎠
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Applying each of these operators to the two-qubit Hadamard input state:

|ψ0〉 = |00〉|01〉 + |10〉 + |11〉
2

= 1

2

⎛

⎜⎝

1
1
1
1

⎞

⎟⎠

results in:

U0|ψ0〉 = i|10〉
U1|ψ0〉 = −|00〉
U2|ψ0〉 = |11〉
U3|ψ0〉 = i|01〉

P5.3 - A reversible half-adder circuit can be implemented in a three-qubit system, accord-
ing to the quantum circuit shown in Figure 5.11 [20]: That circuit can be implemented by
NMR in a quadrupole I = 7/2 nucleus system. Let πi−j represent ideal selective π pulses
applied to the transition i − j . Show that the sequence

U = π6π7π5π6π7

implements the half-adder for any input ABC. The transitions are labeled as follows:
7 ≡ −7/2 ↔ −5/2, 6 ≡ −5/2 ↔ −3/2 and 5 ≡ −3/2 ↔ −1/2.

Solution
Let us first calculate the truth-table of the reversible half-adder (Figure 5.11):

A B C A′ B ′ C′

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

Now, the I = 7/2 states are labeled according to:

| + 7/2〉 = |000〉
| + 5/2〉 = |001〉
| + 3/2〉 = |010〉
| + 1/2〉 = |011〉
| − 1/2〉 = |100〉
| − 3/2〉 = |101〉
| − 5/2〉 = |110〉
| − 7/2〉 = |111〉
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Now, let us calculate the application of the sequence π6π7π5π6π7 over these states, noticing that each pulse in
the sequence simply inverts the population of the respective transition, and that the states |000〉, |001〉, |010〉 and
|011〉 remain unaffected:

|111〉 π7−→ |110〉 π6−→ |101〉 π5−→ |100〉 π7−→ |100〉 π6−→ |100〉
|110〉 π7−→ |111〉 π6−→ |111〉 π5−→ |111〉 π7−→ |110〉 π6−→ |101〉
|101〉 π7−→ |101〉 π6−→ |110〉 π5−→ |110〉 π7−→ |111〉 π6−→ |111〉
|100〉 π7−→ |100〉 π6−→ |100〉 π5−→ |101〉 π7−→ |101〉 π6−→ |110〉

which reproduces correctly the last four lines of the truth-table.
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– 6 –

Entanglement in Liquid-State NMR

In a beautiful example of how technology can stimulate fundamental physics, the proposals for
implementing quantum computing via liquid-state NMR have sparked a debate recently on the very
nature of quantum computing. – N. Linden and S. Popescu [Phys. Rev. Lett. 87 (2001) 047901-1]

The quantum circuit which implements entanglement between two qubits is quite simple,
as we saw in Chapter 3: it is built only from a Hadamard gate, applied to the control
qubit, followed by a CNOT gate. We also know that sequences of NMR radiofrequency
pulses can implement those logic gates very easily. Now, if we have the correct tools to
generate entangled states, can it be actually done in a liquid sample? How could we know
that entanglement has (or has not) been produced? What are the experimental evidences
for this? These matters will be addressed in this chapter.

6.1 THE PROBLEM OF LIQUID-STATE NMR ENTANGLEMENT

To address the problem of entanglement at room temperature NMR liquid-state experi-
ments, let us start from our generic density matrix:

ρε = (1 − ε)

2n
1 + ερ1 (6.1.1)

Remember that this form is motivated from a high temperature approximation for the NMR
equilibrium density matrix, for which ε ∼= h̄ωL/2nkBT . But, whatever the situation, one
must have Tr(1) = 2n and Tr(ρ1) = 1. Consequently, Tr(ρε) = 1, as it must be for density
matrices. The matrix ρ1 can represent an equilibrium mixed state, or a pseudopure state. In
particular, it can represent an entangled state. For instance, for two-qubits it could be the
cat-state:

ρ1 = 1

2

⎛

⎜⎝

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

⎞

⎟⎠ (6.1.2)

In this case, we will refer to ρε as a pseudo-cat state. Generally, if ρ1 represents an en-
tangled state, we say that ρε is pseudo-entangled. Now, if ρ1 is a cat-state, the question
is whether ρε is entangled or not. We have to keep in mind that the density matrix of the
whole spin system is ρε , and not ρ1, but remember that NMR signals are proportional
to ρ1, and not ρε .
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So, let us assume that ρ1 is an entangled state. It turns out that the answer whether ρε is
entangled or not, depends on the value of ε. It is easy to see this in the simple limit case:
ε = 1, for which ρε = ρ1, and therefore is entangled. However, it turns out that the value
of ε for a two-qubit room temperature NMR system is less than 1, typically of order 10−5.
For this value of ε, it has been proved that there can be no entanglement for two qubits [1].

It is not a simple matter to determine the values or, more generally, the regions of values
of ε for which there will be (or there will be not) entanglement in the system. However, it
is a simple matter to show that for ε = 10−5, ρε cannot be entangled, even if ρ1 is a pure
cat-state. This is shown in the next section, but before we will briefly discuss the problem
of quantification of entanglement.

Suppose that in a NMR experiment we produce an initial pseudopure state, and apply
the quantum circuit that generates a cat state (see Chapter 3). Suppose also that we per-
form quantum state tomography on this state. We will find a matrix which will be similar
to Equation (6.1.2), upon which one has to add the “background” to build the complete
matrix:

ρε = 1 − ε

4
1 + ε

( |00〉 + |11〉√
2

)( 〈00| + 〈11|√
2

)
(6.1.3)

This way of writing ρε suggests a straightforward interpretation: a maximally mixed state
added to a fraction ε of entangled state. However, a fraction x of entanglement can be
“extracted” from the maximally mixed state itself:

1 = (1 − x)1 + x

{( |00〉 + |11〉√
2

)( 〈00| + 〈11|√
2

)

+
( |01〉 + |10〉√

2

)( 〈01| + 〈10|√
2

)

+
( |00〉 − |11〉√

2

)( 〈00| − 〈11|√
2

)

+
( |01〉 − |10〉√

2

)( 〈01| − 〈10|√
2

)}
(6.1.4)

In this way of writing, a fraction (1 − x) of qubits is in the maximally mixed state 1,
whereas a fraction x is equally distributed in the four Bell states!

So, how to quantify entanglement? For two qubits, the elements of the Bell basis repre-
sent maximally entangled states, but as the number of qubits increases, the quantification
of entanglement becomes difficult. For an arbitrary number of qubits, nobody knows how
to quantify entanglement. Notice that these difficulties are present to any physical system
where noise is present or not, and by no means is exclusive to NMR. Indeed, any quantum
system in the presence of “white noise” can be written in the form (6.1.3). The difference is
that in experiments of liquid-state NMR made at room temperature, that form is intrinsic.
For discussions about general aspects, characterization and quantification of entanglement,
see [2,3].
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6.2 THE PERES CRITERIUM AND BOUNDS FOR NMR
ENTANGLEMENT

There is more than one criterium to determine whether a quantum state is entangled or not.
One of those was proposed by Peres, in 1996 [4]. In order to explain Peres criterium, we
need to define the operation of partial transposing a density matrix. Let us write a density
matrix ρ in the following way:

ρ =
∑

i,k,j,l

ρik,j l |i, k〉〈j, l| (6.2.1)

In the computational basis of two qubits, the kets which span ρ are {|i, j 〉 = |00〉, |01〉,
|10〉, |11〉}. Usual matrix transposition would mean swapping the column labels (i, k) by
line labels, (j, l). For instance, the element 〈01|ρ|10〉 becomes 〈10|ρ|01〉. In partial trans-
position, we swap only one of the indexes: 〈01|ρ|10〉 becomes 〈00|ρ|11〉. In general:

ρPT =
∑

i,k,j,l

ρik,j l |i, l〉〈j, k| (6.2.2)

This means the matrix element ρik,j l becomes ρil,jk . For instance, partial transposing the
matrix representing the cat state, Equation (6.1.2) results in:

ρPT = 1

2

⎛

⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞

⎟⎠ (6.2.3)

Now, Peres criterium for entanglement states that if a partially transposed density ma-
trix exhibits negative eigenvalues, then the sate represented by the original matrix will
be entangled. For instance, the partially transposed density matrix for the cat state, Equa-
tion (6.2.3), has one negative eigenvalue, −0.5, and therefore the cat-state is entangled.

The idea behind Peres separability criterium is the fact that the transposed of a density
matrix is another density matrix; that is, a positive operator with trace equal to one. Under
partial transposition, this property is preserved for product states, but it fails for entangled
states.

We can now apply Peres criterium to our pseudo-cat state:

ρε =

⎛

⎜⎜⎝

(1 + ε)/4 0 0 ε/2

0 (1 − ε)/4 0 0

0 0 (1 − ε)/4 0

ε/2 0 0 (1 + ε)/4

⎞

⎟⎟⎠ (6.2.4)

The partial transposing operation of this matrix can be easily calculated:

ρPT
ε =

⎛

⎜⎜⎝

(1 + ε)/4 0 0 0

0 (1 − ε)/4 ε/2 0

0 ε/2 (1 − ε)/4 0

0 0 0 (1 + ε)/4

⎞

⎟⎟⎠ (6.2.5)
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The eigenvalues of this matrix are: (1 + ε)/4, (1 + ε)/4, (1 + ε)/4 and (1 − 3ε)/4. Thus,
the smallest value of ε for which all the eigenvalues will be non-negative is ε = 1/3. Below
this value, according to Peres criterium, the pseudo-cat state is unentangled.

The Peres criterium is a necessary and sufficient condition for entanglement in the case
of two qubits, but for larger Hilbert spaces the partial transposition operation of entangled
states can take the density matrix to other positive operators, that is, with no negative
eigenvalues, and the criterium fails.

The problem of determining bounds of ε for n qubits, is rather complicated. A general
Peres criterium can be obtained for n qubits, but since its applicability is restricted to a
small number of qubits, it cannot be used to analyze NMR entanglement and the scaling
problem. An alternative and more general analysis was made by Braunstein and co-workers
in 1999 [1]. They found that a n-qubit pseudo-entangled state will be separable for

ε � 1

1 + 22n−1
(6.2.6)

and that the non-separability region lies at

ε >
1

1 + 2n/2
(6.2.7)

According to this criterium, for n = 2, for instance, the separable region occurs for ε � 1/9,
and the entanglement region for ε > 1/5. Nothing can be said about entanglement of states
in the region: 1/9 � ε < 1/5. Notice that Peres criterium yields ε � 1/3 for the separability
region of two qubits, and therefore slightly above the entangled region of Braunstein. Of
course, for liquid-state room temperature NMR, ε ∼= 10−5 is inside the separable region. By
increasing n (but keeping the ratio B0/T constant), one could expect to be able to produce
entanglement in liquid-state samples at room temperature. For sufficiently large n, we can
approximate Equation (6.2.6) by ε ∼= 4−n and Equation (6.2.7) by ε ∼= 2−n/2. However, at
room temperature liquid-state NMR experiments, ε scales as n2−n [5]. Therefore, if we
take n = 12, for instance, we would have an experimental ε ≈ 0.003, a separability upper
bound ε ∼= 6 × 10−8 and an entanglement lower bound ε ≈ 0.0156. Therefore, for this
number of qubits, it is possible for a NMR liquid-state sample at room temperature to leave
the separability region, but it will not enter the entanglement region. Recent experimental
results by Negrevergne and co-workers [6] have successfully produced pseudo-cat states
in a system containing 12 qubits.

The discussion about entanglement in NMR quantum computation is important not only
for its conceptual and intrinsic academical interest, but also because entanglement is such
an important feature of quantum mechanics and quantum information processing. How-
ever, whereas entanglement is essential in applications such as superdense coding, quantum
cryptography and quantum teleportation, the situation is not so clear for quantum compu-
tation. For instance, Grover search algorithm does not use entangled states [7]. Deutsch
algorithm neither. A thorough discussion on the role of entanglement and the apparent
power of quantum computers was made by Laflamme and co-workers in 2001 [8]. The
discussion goes about the following two questions:

1. Is it possible to have quantum information without entanglement?
2. Is entanglement responsible for the apparent power of quantum computation?
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The general conclusion of the authors is that there is more to quantum information process-
ing than entanglement and that, keeping in mind the limitations of room temperature liquid-
state experiments, the NMR of these systems is an excellent test bed for the principles of
quantum information and quantum computation.

The role of entanglement for quantum computation was also the subject of a report
by Linden and Popescu, in 2001 [9]. Their results partially answer the second question
stated above, and are obviously important to NMR quantum information processing. They
analyzed quantum protocols which aim to solve exponential classical problems with poly-
nomial resources, such as Shor factorization algorithm. They concluded that entanglement
is indeed necessary to the exponential speed up of such protocols, but that it is not a suffi-
cient condition. That is, only the existence of entanglement does not guarantee exponential
efficiency, as long as the system is sufficiently noisy (such as NMR liquid-state samples
with a small ε). In this last case, the number of necessary repetitions grows exponentially,
and a polynomial efficiency is never achieved.

6.3 SOME NMR EXPERIMENTS REPORTING
PSEUDO-ENTANGLEMENT

The debate about NMR liquid-state entanglement is a beautiful example of interaction be-
tween technological aspects and theoretical and experimental physics. More than 50 years
of development in NMR technology, allowed the discovery of pseudopure states, and the
implementation of full quantum computing protocols, including those involving entan-
glement, the very motivation of this chapter. We learnt from these experiments that, al-
though current liquid-state NMR experiments present no provable quantum entanglement,
the NMR implementation of quantum protocols requiring or not entanglement has been
an extremely important source of results and new ideas in the field of quantum computa-
tion and quantum information. These ideas, proposals and results can lead to solutions of
real obstacles for the practical implementation of quantum computers, as well as, to novel
insights in fundamental quantum mechanics.1 Since the first experiment reporting NMR
entanglement, back in 1998, many others have appeared in the literature. The evidences
are that, even in the absence of provable entanglement, quantum correlations persist in
NMR experiments, even for liquid-state at room temperature! We finish this chapter with
a brief description of some selected NMR experiments where non-separability and quan-
tum correlations are reported. This selection is intended to be only a small sample of the
activity in this area, and it does not exhaust the total number of papers.

• NMR Greenberger–Horne–Zeillinger states – This is a historical paper for NMR quan-
tum information processing [10]. It was published in 1998 by Laflamme, Knill, Zurek,
Catasti and Mariappan and was the first report about the implementation of a quantum
circuit to entangle more than two qubits. The authors used the two 13C and the 1H nu-
clei of trichloroethylene as qubits. They describe the initial state preparation, entangling
quantum circuit and quantum state tomography of the resulting density matrix. After ob-
taining the GHZ density matrix, a measure of fidelity 〈ΨGHZ |ρGHZ

ε |ΨGHZ〉 = 0.95 was
obtained.

1See next chapter.
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Figure 6.1 Scheme of the quantum circuit implemented by Nielsen, Knill and Laflamme for a teleportation
experiment using the three qubits of trichloroethylene. The circuit in (b) is a control experiment. Adapted with
permission from [11].

• Complete quantum teleportation using nuclear magnetic resonance – The most extra-
ordinary application of entanglement is perhaps teleportation. In 1998 Nielsen, Knill
and Laflamme reported the implementation of a complete teleportation experiment us-
ing NMR [11]. They also used the two 13C and 1H nuclei in trichloroethylene as qubits.
The experiment aimed to teleport the state of one of the carbon nuclei to the hydrogen
nucleus. A teleportation protocol based on the proposal of Brassard (Figure 6.1) and
co-workers was implemented [12]. However, the original protocol requires a projective
measurement of the state of ancilla and data qubits in the computational basis. To adapt
the protocol to a NMR experiment, the authors replaced this step applying an idea based
on the proposal made by Zurek [13] using the much faster decoherence (T2 relaxation)
of carbon nuclei, compared to hydrogen relaxation, to achieve an equivalent effect (see,
however, [14] for a discussion about projective measurement in NMR experiments).
The idea is that, just leaving the carbon nuclei to relax, is equivalent to a “measurement”
made by the environment in the computational basis. The process was followed through
the measure of entanglement fidelity, obtained from the experiment (Figure 6.2). The
results showed a maximum value of 0.9 for this function, well above the value of 0.5,
for perfect classical transmission.

• Experimental demonstration of fully coherent quantum feedback – This paper of 1999
by Nelson and co-workers describes a quantum circuit which implements a coherent
quantum feedback by NMR [15]. The idea is to transmit a quantum state with its corre-
lations from a quantum register to a target. A classical feedback can be used to control
quantum states, but it involves a measurement step, which destroys quantum correla-
tions. On the contrary, quantum feedback control is able to transmit full quantum states
with correlations altogether. The experiment involves three spins (qubits) A, B , and C.
The proposal is to use the quantum feedback control circuit to transmit the quantum cor-
relations, initially between B and C, to A and C. Starting from the equilibrium state, a
sequence of pulses applied over qubits B and C creates a density matrix proportional to
the spin operators −IA

z + 2IB
z IC

z − 2IB
y IC

y . Such a density matrix describes a thermal
equilibrium for the spin A and a correlated state between B and C. Since it cannot be
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Figure 6.2 Entanglement fidelity obtained from the teleportation experiment of Nielsen, Knill and Laflamme.
The top curve represents the full teleportation experiment, and the bottom one the control experiment. Adapted
with permission from [11].

factorized as a product of single spin density matrices, it is a pseudo-entangled state.
This state, although not provably entangled, for the reasons described in this chapter,
contains quantum correlations which cannot be transmitted by classical feedback con-
trol. At the end of the process, the density matrix of A and C is found to be proportional
to −IB

z +2IA
z IC

z −2IA
y IC

y , which demonstrates the success of transmission (Figure 6.3).
The efficacy of the process was evaluated by a measure of fidelity, which reached 91.5%.

• Experimental implementation of dense coding using NMR – This nicely simple experi-
ment demonstrates a quantum circuit which implements quantum dense coding [16]. It
was reported by Fang and co-workers in 2000. It uses the two qubits available in chloro-
form molecule (13C and 1H nuclei). An initial pseudo-entangled state (|00〉 − |11〉)/√2
is created and then transformed to each other state of the Bell basis by the application
of a one qubit operation. The resulting two-qubit state passes through a Bell analyzer
and is converted back to one of the states of the computational basis. Control is made
directly through the tomography of quantum state.

• Experimental demonstration of GHZ correlations using NMR – This experiment is a
report of 2000, by Nelson and co-workers [17]. It aims to demonstrate, using NMR, the
existence of quantum correlations present in the GHZ state:

|ψ〉 = |000〉 − |111〉√
2

The authors emphasize that, due to the local intrinsic nature of NMR experiments, the
results cannot rule out completely the possibility of interpretation in terms of hidden
variables, but it demonstrates unambiguously the quantum correlations of the state. The
argument is based on the following set of expectation values for the product of spin
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Figure 6.3 Quantum correlation feedback transfer demonstrated by Nelson and co-workers in 2000. The
system of three spins starts at the equilibrium thermal state, with the deviation density matrix propor-
tional to IA

z + IB
z + IC

z . A sequence of pulses creates a correlated (pseudo-entangled) between B and C:

−IA
z + 2IB

z IC
z − 2IB

y IC
y . After the transfer protocol is implemented, the final state is −IB

z + 2IA
z IC

z − 2IA
y IC

y .
Adapted with permission from [15].

operators along the x and y directions:2

〈ψ |σ 1
x σ 2

y σ 3
y |ψ〉 = +1

〈ψ |σ 1
y σ 2

x σ 3
y |ψ〉 = +1

〈ψ |σ 1
y σ 2

y σ 3
x |ψ〉 = +1

〈ψ |σ 1
x σ 2

x σ 3
x |ψ〉 = −1

Notice that only the last value is negative. Therefore, the product of the four measure-
ments is negative, according to the quantum mechanical prediction. This behavior can-
not be explained by classical hidden variables, since each spin is measured exactly twice
along the x and y directions!

The authors used the three 13C nuclei in alanine as qubits for the experiment. After
a sequence of pulses which prepares the ρGHZ density matrix, a measurement is per-
formed. The GHZ correlations are displayed in the NMR spectra of spin 2, from whose
lines the result for the above expectation values can be deduced (Figure 6.4). Four NMR
spectra are shown, three of them corresponding to 〈σ 1

i σ 2
j σ 3

i or j 〉 = +1, and one corre-
sponding to the result −1, confirming the prediction of quantum mechanics.

2Remember that σx |0〉 = |1〉, σx |1〉 = |0〉, σy |0〉 = i|1〉 and σy |1〉 = −i|0〉.
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Figure 6.4 NMR report of GHZ correlations by Nelson and co-workers in 2000. Quantum mechanics predicts
the expectation value of the product of spin components of three spins in a GHZ state is always positive, except for
〈ψGHZ |σ 1

x σ 2
x σ 3

x |ψGHZ〉, which is negative and equal to −1. This correlation, which is shown in the experiment,
cannot be explained by classical means. Adapted with permission from [17].

• Entanglement transfer experiment in NMR quantum information processing – This pa-
per of 2002 by Boulant and co-workers [18] describes an experiment of entanglement
transfer by NMR. The aim is to transfer an entangled state of a pair of qubits to another
pair of qubits, a process which was first demonstrated using photons in 1998, by Pan
and collaborators. The authors used the four 13C nuclei of crotonic acid as qubits. The
process was followed by quantum state tomography and the efficacy of the experiment
was quantified by a measured called attenuated correlation. A value of 0.65 for this
measure at the end of the protocol, indicated that the pseudo-entangled state was indeed
transferred from one pair of qubits to the other.

• Entanglement between an electron and a nuclear spin 1/2 – This interesting experi-
ment of 2003 by Mehring, Mende and Scherer [19] describes the entanglement between
the spins of a proton and an electron in the same radical •CH, produced from the ir-
radiation of CH2. Two important innovative aspects of this work are the facts that this
is a solid-state experiment, performed in a single-crystal of malonic acid, and that it
uses two magnetic resonance techniques combined, NMR and ESR (Electron Spin Res-
onance) simultaneously. In this type of experiment, entanglement is manifested through
an interference pattern in the strength of the detected signal, caused by the superposi-
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Figure 6.5 Entanglement between electron and nuclear spins, demonstrated by Mehring and co-workers in
2003. The time dependent signal is an interferogram which exhibit two patterns of oscillations, one with phase
φ1 +φ2 and the other φ1 −φ2, where φ1,2 are rotation angles about the z-axis. On the right the Fourier transform
of the signals showing the two beating frequencies. Adapted with permission from [19].

tion of the phases of the nuclear and electronic states, upon rotation about the z-axis.
The pattern changes, depending on the Bell state which was created. If φ1 and φ2 are
the phases of electronic and nuclear states, respectively, the Ψ ± Bell state will have a
phase-modulated strength given by

S ∝ 1 ± cos(φ1 − φ2)

whereas the state Φ± will show

S ∝ 1 ± cos(φ1 + φ2)

Besides directly observing the correct phase interference in the detected signals (Fig-
ure 6.5), the authors perform quantum state tomography, from which a fidelity of 0.99
was obtained for Ψ −.

• Practical implementations of twirl operations – This paper, reported in 2005 by Anwar
and co-workers [20], deals with a practical implementation of a proposal made by Ben-
nett and co-workers in 1996 for the purification of entanglement from a mixed state.
The typical situation would be that in which the qubits of an initially pure entangled
state |ψ−〉 = (|01〉 − |10〉)√2 are sent through a noisy channel. The twirl operation is a
step for the purification. This operation converts an arbitrary mixed state of two qubits
into a pseudo-entangled state:

ρε = 1 − ε

4
I + ε|ψ−〉〈ψ−|

The way it works is as follow: since |ψ−〉 is invariant under the application of the
same local unitary transformation (an operation called bilateral unitary transformation),
whereas all other states get affected under such an operation, a random bilateral opera-
tion would average all other states converting them into a maximally mixed state, leaving
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|ψ−〉 unaffected, therefore resulting in the above state ρε . Anwar and co-workers argue
that in the case of a NMR experiment, a magnetic field gradient applied along the z-axis
can serve as a random bilateral rotation. The authors use the two 1H nuclei of cyto-
sine dissolved in D2O as qubits. The twirl operation is split in three stages, comprising
different pulse sequences. Results are followed directly on NMR spectra, which, at the
end of the twirl sequence, show the expected antiphase doublets, characteristic of |ψ−〉
pseudopure state.

• Benchmarking quantum control methods on a 12-qubit system – This paper was reported
in 2006 by Negrevergne and co-workers [6]. It describes a benchmark experiment in
which a 12 qubit pseudo-cat state was successfully produced. It is the largest NMR
quantum processing experiment to date. Besides, it reaches the minimum number of
qubits required to leave the separability region established by Braunstein and co-workers
[1] for room-temperature liquid-state NMR.

PROBLEMS WITH SOLUTIONS

P6.1 - Estimate the value of ε for a two-qubit C-H system in a field of 10 Tesla at room
temperature. Notice that this value actually depends on the ratio B0/T between the static
magnetic field and the temperature. Repeat your estimate for T = 100 mK and T = 1 mK,
in the same field. What should be the ratio B0/T to reach ε = 0.95?

Solution
Take

ε ∼= h̄ωL

2NkBT
= 2π

4

h

kB

γ

2π

B0

T

Let us consider 13C resonance as our reference, since it will give lower values for ε. Replacing γ /2π ≈ 10.7
MHz/T for 13C and the values for h and kB in the above expression, we arrive at

ε ≈ 0.75 × 10−4 B

T

Now, for B = 10 T and T = 300 K, one obtains ε ≈ 0.25 × 10−5. For T = 100 mK, ε ≈ 0.0075 and for

T = 1 mK, ε ≈ 0.75. In order to reach ε ≈ 0.95, we need B/T = 0.95/0.75 × 104 = 1.25 × 104.

P6.2 - Consider two qubits in a pseudopure cat-state. Calculate the resulting density matrix
after a pulse of π/2 is applied over the first qubit, along the x-axis. From the density
matrix, sketch the resulting NMR spectrum and calculate the transverse magnetization
M+ = Tr(ρε[σx + iσy]) for both qubits.

Solution
The spin components in the computational basis of two qubits are:

σ+
1 = σ 1

x + iσ 1
y = 2

⎛

⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟⎠ σ+
2 = σ 2

x + iσ 2
y = 2

⎛

⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞

⎟⎠
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Now, a π/2 pulse along x, over the first qubit is represented by

R1
x(π/2) = 1

2

⎛

⎜⎝

1 0 −i 0
0 1 0 −1
−i 0 1 0
0 −i 0 1

⎞

⎟⎠

Applying this matrix over the pseudo-cat state results (ignoring the identity background):

ρ′
ε = R1

x(π/2)ρεR
1†
x (π/2) = ε

4

⎛

⎜⎝

1 i i 1
−i 1 1 −i

−i 1 1 −i

1 i i 1

⎞

⎟⎠

From this, we see that:

M+
1 = Tr(ρ′

εσ
+
1 ) = M+

2 = Tr(ρ′
εσ

+
2 ) = 0

The NMR spectrum of the second qubit (lower energy) is given by the elements (1,2) and (3,4), whereas for the

first qubit (higher energy) the elements are (1,3) and (2,4). We see that spectrum will be purely imaginary with

one line pointing upward and another downward, for each qubit.

P6.3 - Consider the Hamiltonian of a N coupled homonuclear spins 1/2 in the presence of
a static magnetic field B0 pointing along the z-axis:

H = −h̄ωL

∑

k

I k
z + πh̄J

∑

j,k

I
j
z I k

z

Show that the NMR amplitude signal scales as N2−N for this system.

Solution
In the high temperature approximation,

ρ ≈ 1

2N
− H

2NkBT

Since h̄J  h̄ωL , one can approximate

ρ ≈ 1

2N
+ h̄ωL

kBT
2−N

N∑

k=1

Ik
z

A population element of ρ is:

〈m1,m2, . . . ,mN |ρ|m1,m2, . . . ,mN 〉 = I

2N
+ h̄ωL

kBT
2−N

N∑

k=1

mk

where mk = ±1/2. Since the NMR signal strength is proportional to populations difference, the sum on the right

side will be proportional to N , and the signal amplitude proportional to N2−N .

P6.4 - Apply the Peres criterium to the following two-qubit density matrices and deter-
mine the value of ε for which the eigenvalues of the partially transposed matrices will be
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negative:

ρε =

⎛

⎜⎜⎝

(1 + ε)/4 ε/2 0 0

ε/2 (1 + ε)/4 0 0

0 0 (1 − ε)/4 0

0 0 0 (1 − ε)/4

⎞

⎟⎟⎠

ρε =

⎛

⎜⎜⎝

(1 − ε)/4 0 0 0

0 (1 + ε)/4 −ε/2 0

0 −ε/2 (1 + ε)/4 0

0 0 0 (1 − ε)/4

⎞

⎟⎟⎠

Solution
The first matrix can be written as:

ρε = 1 + ε

4
|00〉〈00| + ε

2
|00〉〈01| + ε

2
|01〉〈00| + 1 + ε

4
|01〉〈01| + 1 − ε

4
|10〉〈10| + 1 − ε

4
|11〉〈11|

Swapping the labels of the second qubit, the second and third terms are swapped but this does not change the
matrix, which can be easily verified to be a product-state |0〉 ⊗ (|0〉 + |1〉)/√2. Its eigenvalues are: (1 + 3ε)/4
and (3×) (1 − ε)/4. For negative eigenvalues, this gives either negative ε or ε > 1. Since ε must be between 0
and 1, neither solution is valid. Therefore, the state is unentangled.

On the other hand, under partial transposing, the second matrix becomes:

ρε =

⎛

⎜⎜⎜⎝

(1 − ε)/4 0 0 −ε/2

0 (1 + ε)/4 0 0

0 0 (1 + ε)/4 0

−ε/2 0 0 (1 − ε)/4

⎞

⎟⎟⎟⎠

Its eigenvalues are: (1 − 3ε)/4 and (3×) (1 + ε)/4. Therefore, the system will be entangled for ε > 1/3.

P6.5 - Consider a pure cat-state. Suppose a selective RF pulse is applied on the first qubit,
with a rotating angle θ , followed by another pulse on the second qubit with an angle φ. Both
pulses are applied along the x direction. Show that maximum entanglement is maintained
for θ + φ = 2nπ or θ + φ = (2n + 1)π . Show that the amplitudes of the four lines of the
corresponding NMR spectra are modulated with the same angular factor.

Solution
Take the rotating operator of qubit 1 applied on the cat-state:

e−iθ/2σ1
x |ψ+〉 =

[
cos

(
θ

2

)
I − i sin

(
θ

2

)
σ 1
x

] |00〉 + |11〉√
2

= cos

(
θ

2

) |00〉 + |11〉√
2

− i sin

(
θ

2

) |10〉 + |01〉√
2

Now, apply over this state a rotation of φ, along x on the second qubit to obtain:

|ψ ′〉 = cos

(
θ + φ

2

) |00〉 + |11〉√
2

− i sin

(
θ + φ

2

) |10〉 + |01〉√
2

Therefore, for either θ + φ = 2nπ or θ + φ = (2n + 1)π , the state will be one of the Bell eigenstates, and thus
maximally entangled.
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To analyze the NMR spectra of the rotated state, we have to build the deviation density matrix:

ε|ψ ′〉〈ψ ′| = ε

2

⎛

⎜⎜⎜⎜⎝

cos2( θ+φ
2

) +i/2 sin(θ + φ) +i/2 sin(θ + φ) cos2( θ+φ
2

)

−i/2 sin(θ + φ) + sin2( θ+φ
2

) + sin2( θ+φ
2

) −i/2 sin(θ + φ)

−i/2 sin(θ + φ) + sin2( θ+φ
2

) + sin2( θ+φ
2

) −i/2 sin(θ + φ)

cos2( θ+φ
2

) +i/2 sin(θ + φ) +i/2 sin(θ + φ) cos2( θ+φ
2

)

⎞

⎟⎟⎟⎟⎠

From this wee see that the elements (1,2) and (3,4), which give rise to one qubit NMR spectrum, and the

elements (1,3) and (2,4), which form the other qubit spectrum, are all the same, purely imaginary, equal to

−i/2 sin(θ + φ). However, other elements have different angular dependence. Notice that this matrix reduces

correctly to the matrices representing the elements of the Bell basis, for θ + φ = 2nπ or θ + φ = (2n + 1)π .
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Perspectives for NMR Quantum
Computation and Quantum Information

We propose a nuclear spin quantum computer based on magnetic resonance force microscopy
(MRFM). It is shown that a MRFM single-electron spin measurement provides three essential
requirements for quantum computation in solids: (a) preparation of the ground-state, (b) one- and
two-qubit quantum logic gates, and (c) a measurement of the final state. – G.P. Berman, G.D.
Doolen, P.C. Hammel, V.I. Tsifrinovich [Phys. Rev. B 61 (2000) 14694]

In conclusion, we have presented evidence that MRFM is now capable of detecting individual
electron spin – D. Rugar, R. Budaklan, H.J. Mamin, B.W. Chui [Nature 430 (2004) 329]

Quantum information processing based on room-temperature liquid-state NMR has been
extremely successful in testing quantum logic gates, algorithms, quantum system simula-
tions, quantum correlation phenomena, etc., in small scale systems, up to a few qubits. This
is basically due to the following aspects:

1. Good qubit representation;
2. Good qubit isolation;
3. Good dynamics.

However, the exponential loss of sensitivity of the NMR signal upon increasing the
number of qubits, severely limits the practical applications of such systems for quantum
computation, and cannot be considered for a large scale real quantum processor. Besides, as
discussed in the previous chapter, it has been shown that entanglement phenomenon cannot
be implemented at room-temperature liquids, in spite of the fact that NMR possesses the
ideal tools for that. Just to remind the problem, suppose that a n-qubit system is in the
pseudo-pure state |00 . . .0〉:

ρε = (1 − ε)

2n
1 + ε|00 . . .0〉〈0 . . .00| (7.0.1)

Such a state is usually considered the initial state before any computation process takes
place. The signal strength coming from the k-th qubit is proportional to the nuclear mag-
netization:

γnh̄Tr(I k
z ρε) = γnh̄

ε

2
∝ 1

2n
(7.0.2)

which means that each qubit added to the system, cuts the signal strength to half. This, in
turn, means that adding new qubits to the system, say 10 qubits, would require an improve-
ment of a factor 210 = 1024 in the sensitivity of the equipment!
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So, we are faced with the following dilemma: we have an experimental technique capa-
ble of implementing a full set of universal quantum gates to perform quantum computation,
we have a good representation of the qubit, but we don’t have an adequate physical system
to operate! This situation motivated the very meaning of the title of Linden and Popescu’s
paper, “Good dynamics and bad kinematics”, referred in the previous chapter.

But, what would be an adequate system for a NMR large-scale quantum information
processor? Basically a system containing a large number of isolated qubits, perhaps thou-
sands, in which the interaction between any pair of them could be controlled, and the state
of each single qubit could be accessed by measurement. The need of such a system may
sound hopeless, since conventional NMR sensitivity is limited to about 1015 spins! But
that only means we have to look for something unconventional, perhaps combining the
best aspects and capabilities of different techniques.

Actually, along the last few years a number of innovative proposals have appeared in the
literature and, against the odds, some experimental results point to a direction which may
lead to a true large scale NMR-based quantum chip. These proposals will be discussed in
this final chapter.

7.1 SILICON-BASED PROPOSALS: SOLUTION FOR THE SCALING
PROBLEM

The first concrete proposal for a NMR large scale quantum chip was presented by
B.E. Kane, and appeared in 1998 [1]. The idea was inspired in the existing semiconductor
technology for conventional computers, and has various innovative ingredients.

Suppose we start with a purified silicon lattice containing only the isotope 28Si. This
nucleus has I = 0 and therefore is invisible to NMR radiofrequency pulses. Now, we insert
into such a lattice a regular array of phosphorous atoms. Phosphorous acts as an electron
donor to Si, and therefore acquires a charge +e. Besides, the nucleus 31P has spin I = 1/2
and is 100% abundant, and so it is a good NMR qubit. The fact that the Silicon nuclei
in our hypothetical lattice have spin equal to zero, means that there will be no magnetic
interaction between P and Si nuclei, maximizing the relaxation time of the qubits which,
at mK temperatures, can be as large as 1018 seconds! The scheme is shown in Figure 7.1.

Now, in order to this Si-based quantum computer work, it is necessary to control the
NMR frequencies of individual 31P nuclei, as well as the interaction between qubit pairs.
This is done by controlling the electron density in the host lattice, through electrical gates
of two types: the A-type and the J -type (Figure 7.1). To understand this idea, it is necessary
to remind that nucleus–nucleus interaction can be mediated by electrons, according to:

Hi,j = 2πJ Ii · Ij (7.1.1)

where, J , is the constant of indirect (i.e., electron-mediated) coupling. In a semiconductor,
the electronic wave-function can extend for hundreds of lattice parameters, covering the
distance between 31P nuclei. Therefore, if we can find a mean to control the electronic
density in the host Si lattice, both, the 31P hyperfine field and the 31P–31P interaction can
be controlled. This is the purpose of the electrical gates.

Suppose that right above each 31P nucleus position an electric gate of type A is de-
posited. The electronic density around each nucleus can be modified by a positive bias
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Figure 7.1 Kane’s scheme for a quantum computer based in NMR of a solid-state sample. An array of 31P is
inserted in a silicon lattice. Electrical gates of type A control the value of the local hyperfine field, whereas gates
of type J control two-qubit interactions. On the right is the estimated NMR resonance shift due to biasing of
A-type gates. Adapted with permission from [1].

applied the corresponding gate. This will in turn modify the local hyperfine field, which is
proportional to the local density of electrons. In the presence of a static magnetic field B

pointing to the z direction, the electron–nucleus Hamiltonian is

He–n = γeh̄BSz − γnh̄BIz + 8π

3
γeγnh̄

2
∣∣ψ(0)

∣∣2S · I (7.1.2)

where the contact field created by the electron at the nucleus site (supposed to be at r = 0) is
γeh̄|ψ(0)|2S. Upon biasing an A-type gate, |ψ(0)|2 is modified and so is the local hyperfine
field. With this mechanism, the NMR frequency can be controlled. This is how individual
qubits are accessed and one-qubit operation is implemented in Kane’s scheme. Figure 7.1
shows the variation of 31P NMR frequency upon biasing of an A-type gate.

The interaction between qubits is controlled using the same idea. But now, instead of
A-type gates, J -type gates are used, positioned between the nuclei. The coupling constant
between two donors separated by a distance r is estimated to be:

4J (r) ≈ 1.6
e2

εaB

(
r

aB

)5/2

exp

(−2r

aB

)
(7.1.3)

where ε is the dielectric constant of the host material, and aB is the semiconductor Bohr
radius. This expression is obtained from a hydrogen-like model and therefore is of limited
validity. This point is very important and will be discussed below. For the moment let us
just accept it as a good approximation. Upon biasing a J -type gate, this coupling energy
is varied, modifying the NMR frequency. In this way, two-qubit quantum operations can
be implemented, in a similar fashion to what is done in conventional liquid-state NMR.
Figure 7.2 shows an estimate for the variation of the NMR frequency upon biasing a J -type
gate.

There are obviously many technical difficulties associated to Kane’s proposal. Perhaps
the most difficult one is the incorporation of the regular array of P atoms into the host
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Figure 7.2 Calculated NMR frequency shift due to biasing J -type gates on Kane’s proposal. Adapted with
permission from [1].

lattice. Another extraordinary challenge would be depositing the gates right on the top of
the atoms laying beneath the surface of the material.

But a rather more fundamental obstacle to Kane’s design was raised by Koiller and co-
workers in 2002 [2]. The trouble is in Equation (7.1.3) for the coupling constant. That
formula is based on a hydrogenic model, a limiting approximation which was pointed out
by Kane himself in the original paper. Koiller et al. investigated the detailed behavior of
the donor exchange energy in Si and Ge, and found a strong oscillatory behavior for J .
Depending on the crystal direction, the exchange energy can be zero at qubit sites, as
shown in Figure 7.3. Since two-qubit operation must be controlled by adjusting J -type
gates to modify the exchange coupling, the results of Koiller and co-workers imply that
the positions of donor atoms and gates must be controlled with atomic precision, a fact
which adds an enormous challenge to the practical realization of the original proposal.
Nevertheless, significative experimental advances in this direction had been achieved by
O’Brien and co-workers in 2001, even before the work of Koiller et al. [3]. This last work
reports the use of STM (Scanning Tunneling Microscopy) lithography to fabricate an array
of phosphorus atoms in a silicon lattice. Later on, in 2003, Schofield and co-workers [4]
used STM H lithography to demonstrate the positioning of single P atoms in Si with an
accuracy of only 1 nm! Still in the year of 2003 Skinner, Davenport, and Kane modified
the original Kane’s proposal to a digital approach of quantum computing in Si [5]. The
new idea was to encode qubit states in the spins states of an electron and its donor nucleus.
A-type gates right above the donors can switch on and off the hyperfine interaction, which
is then controlled by “bit” trains of voltage pulses applied over the gates. The S-type gates
positioned in the region between the atoms control two-qubit interactions. Entanglement
between qubits is achieved by switching on the hyperfine interaction between the electron
of one donor and the nucleus of another one. In conclusion, since the first proposal by
Kane in 1998, a great deal of theoretical and experimental advances have been reported,
and the problem is now much better understood. The rapid development of nanofabrication
structures technology points to an optimistic future for the NMR quantum computation in
silicon, based on the original idea of Kane.
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Figure 7.3 Calculated P–P exchange coupling energy in Si (solid) and Ge (dashed). Depending on crystal
direction, J can be zero at qubit sites. Adapted with permission from [2].

Still concerning NMR quantum computers in silicon, Ladd and co-workers proposed in
2002 a rather different approach from that of Kane [6]. Now, instead of P donors embedded
in a Si lattice, we have an “all-silicon quantum computer”. The idea is based on the fact
that 95.33% of natural silicon is composed by the zero nuclear spin isotopes 28,30Si. On
the other hand, 4.67% is made of 29Si, which has I = 1/2 and therefore is a good qubit. In
Ladd’s proposal, there are no gates or impurity atoms, as in Kanes’s. The starting point is
a 28Si(111) wafer which is cut in such a way that very regular surface steps are produced.
The width of such steps is approximately 15 nm, and their length up to 2×104 lattice sites.
Being the wafer made primary from 28Si, it produces no NMR signal. Over this structure,
29Si atoms are deposited. The process is such that the deposited atoms lay on the edges
of the steps, forming atomic chains along each step edge. The authors argue that, in Si,
nuclei can be polarized by cross relaxation with optically excited spin-polarized conduction
electrons, which decay in a very short time and do not cause nuclear relaxation. This fact
is pointed as an important advantage of the architecture, which is shown in Figure 7.4.

Now, if a static homogeneous magnetic field is applied in the direction of the 29Si chains,
the NMR frequency will be the same for all nuclei in the structure. In order to differentiate
nuclei by NMR frequency, over the homogeneous field is superimposed a field gradient
∂B/∂z. With this, all nuclei in a given plane perpendicular to the static field will have the
same NMR frequency, but nuclei in different planes will be distinguishable by frequency.
Each atomic chain along the steps is equivalent to a molecule in the liquid-state NMR, and
the number of chains corresponds to the redundancy in the conventional NMR QIP.

Ladd and co-workers estimated the dimensions for the setup they proposed, including a
Dy micromagnet to generate the field gradient. A dysprosium micromagnet with length of
400 μm, width 4 μm and height 10 μm generates a field gradient of ∂B/∂z = 1.4 Tμm−1.
The distance between two neighbor 29Si nuclei along the chain is a = 1.9 Å. Therefore,
the frequency NMR resolution is �ω = aγ ∂B/∂z = 2π × 2 kHz. Overall applied RF
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Figure 7.4 Scheme for the “all-silicon” quantum computer proposal of Ladd and co-workers. 29Si isotopes
(I = 1/2) are deposited on the steps of a heterostructure made of pure 28Si (I = 0). A micromagnet of Dy creates
a magnetic field gradient along the steps which allows differentiating the qubits by their NMR resonance fre-
quency. The scheme is scalable and can reach thousands of qubits, depending on the initial polarization. Adapted
with permission from [6].

pulses will select only a plane of nuclei, allowing single-qubit operation. For two-qubit
operations, it is suggested to make use of the dipolar coupling, using specific decoupling
pulse sequences to select a given pair of qubits.

In Ladd scheme, final readout of qubits is accomplished by magnetic resonance force
microscopy (MRFM). This technique will be discussed in more detail in the next section,
since it has become an attractive option for NMR QIP in very diluted systems. For now we
just state that the observable in MRFM is the magnetic force excerpted by a field gradi-
ent on a magnetization: Fz = Mz∂B/∂z. So, the use of strong field gradients is favorable
to MRFM. The force produced by the magnetization of a n-qubit pseudopure state with
polarization p is

Fz = h̄�ω

2a
N

[(
1 + p

2

)n

−
(

1 − p

2

)n]
(7.1.4)

Here, N is the number of qubit copies. To the scheme to work, this force must be com-
parable to the minimum force detectable by MRFM. For small polarization, the number
of detectable qubits depends exponentially on p, just like in the liquid-state approach.
However, for p ≈ 0.6 and above, there is a crossover from exponential to polynomial de-
pendence of n on p: n ≈ (1 + p)/(1 − p) (Figure 7.5). This is the main result of Ladd and
co-workers proposal, for it means the system is scalable. Therefore, the usefulness of the
scheme relies on the possibility to produce a large enough initial polarization, but there is
no need of single spin detection and other difficulties present in the previous model.

7.2 NMR QUANTUM INFORMATION PROCESSING BASED ON
MAGNETIC RESONANCE FORCE MICROSCOPY (MRFM)

Magnetic Resonance Force Microscopy (MRFM) appeared in the last few years as an im-
portant technique to implement quantum logical operations and readout of qubits states in a
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Figure 7.5 Scalability in the proposal of Ladd and co-workers. The number of available qubits depends on the
initial polarization. Above p ≈ 60%, scaling becomes polynomial. Adapted with permission from [6].

solid state sample. The working principle of MRFM technique is quite simple: suppose we
have a magnetized object with net magnetization Mz. In the presence of a magnetic field
gradient ∂B/∂z, the object experiences a force Fz = ±Mz∂B/∂z. Of course, the larger is
the field gradient, the larger will be the force, and the easier will be the signal detection.
This is the basic idea behind some traditional magnetometry techniques [7]. Notice that if
Mz points to the direction of the field gradient, the force will be positive, but if it points to
the opposite direction, it will be negative. Imagine now an arrangement in which the mag-
netic field gradient is generated by a permanent magnet mounted as a tip on a cantilever,
which is fixed at the basis and free to oscillate on the tip. If we make the magnetized object
oscillate, the cantilever will experience a time-varying force, which will make it to oscillate
with the sample. Now, the mechanical system made of the cantilever and the sample has
– just like any other mechanical system – a resonance frequency. If the magnetized object
oscillates in that frequency, then the energy absorption of the cantilever will be maximum,
and so its oscillation amplitude. Now, replace the magnetized sample by a single atomic
or nuclear magnetic moment, and we have the basic ingredients of an atomic-sensitive
MRFM! Since the proposal of the technique is to detect the resonance of individual elec-
tron or nuclear magnetic moments, the oscillations of the cantilever can be expected to be
small in the same proportion, in the range of a few angstroms above the thermal noise. To
detect such a small oscillations, optical interferometry methods are used. The scheme is
shown in Figure 7.6.

MRFM technique was proposed back in 1991/1992 by Sidles, Garbini and Drobny in
the context of biological and molecular imaging [8,9]. The first successful experiment was
performed by Rugar, Yannoni and Sidles in 1992. Electron spin resonance was detected in
a sample of DPPH (diphenylpicrylhydrazil) weighting only 30 nanograms! The EPR signal
appears as the enhanced amplitude of the microscope cantilever, less than 3 Å above the
noise (Figure 7.7). MRFM developed to a point where the magnetic signal coming from
single atomic magnetic moments can nowadays be detected. This amazing enhancement of
sensitivity detection obviously opens a path towards a NMR quantum processor based on
MRFM. It represents a passage from the small scale liquid-state experiments to large scale
solid-sate NMR quantum processors.
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Figure 7.6 Scheme of a MRFM setup. A magnetic particle in the tip of a cantilever generates a field gradient
which selects a slice below the sample surface. The NMR frequency is applied in the same frequency of the
cantilever, whose oscillations are detected by optical means. Adapted with permission from [19].

Figure 7.7 First experimental detection of a MRFM experiment, made by Rugar, Yannoni and Sidles in 1992.
Electron spin resonance was detected in a sample of DPPH. Notice the maximum amplitude of vibration of the
cantilever, less than 3 Å! Adapted with permission from [10].

One important parameter is the minimum force detectable in a MRFM setup. For NMR
QIP applications, this will establish the effective number of qubits detectable in an exper-
iment. So, let meff be the effective oscillating mass of the cantilever, τ its damping time-
constant and B the detection bandwidth. The minimum force detectable at temperature T

is [10]:

Fmin = (4kBT B)1/2

√
meff

τ
(7.2.1)
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Typical values for Fmin are about 10−17 N. In the first experiment reported by Rugar and co-
workers in 1992, the force on the cantilever was 10−14 N. It is clearly desirable to increase
the sensitivity of MRFM to detect the smallest possible magnetic movement of a sample.
From the above expression we see that lowering the temperature is an obvious procedure.
The square root factor on the right contains parameters of the cantilever. Diminishing its
effective moving mass and increasing the damping time-constant also contribute to enhance
the sensitivity.

In the year of 2000, Berman and co-workers proposed a NMR quantum computer en-
tirely based on MRFM [11]. In this approach, all three steps of a quantum computation,
(a) preparation of the initial state, (b) implementation of quantum logic gates and (c) final
readout, can be implemented. The idea is to use the electron–nucleus hyperfine coupling
to read nuclear states through electronic states. Taking advantage of the much higher sen-
sitivity to detect the electron magnetic moment.

To understand the idea, consider a coupled electron–nucleus system. There will be four
eigenstates1:

| ↑ 0〉, | ↑ 1〉, | ↓ 0〉 and | ↓ 1〉
The electronic transitions are

| ↑ 0〉 −→ | ↓ 0〉
and

| ↑ 1〉 −→ | ↓ 1〉
These two electronic transitions depend on the nuclear state and therefore have different
resonance frequencies. Let ωe0 and ωe1 be the two electronic resonances, corresponding
to the nuclear states |0〉 and |1〉, respectively. If a π -pulse is applied to the electron spin
in the frequency ωe0, the spin will rotate only if the nucleus is in the state |0〉. Now, if
the cantilever resonance frequency is ωc, applying π -pulses at frequency ωe0 with period
τc/2 = π/ωc, will make the cantilever oscillate only if the nucleus is in the state |0〉. In this
way the nuclear state can be detected.

In order to make some numerical estimates, Berman et al. considered an array of para-
magnetic moments in a non-magnetic host material, with the impurity atoms separated by
a = 50 Å, arranged at a distance d = 100 Å beneath the surface of the material. This is
also the distance from the cantilever tip, which possesses a ferromagnetic particle with ra-
dius R = 50 Å. In these conditions, the normal component of the magnetic field acting on
the electronic moment is Bz = 5.4 × 10−2 T, which corresponds to an electronic resonance
shift of 1.5 GHz, approximately (see Problems with solutions). Under resonance condition,
the force on the cantilever, estimated as ≈ ±10−16 N, produces a vibration with amplitude
of approximately 1.2 Å, much above the estimate of 0.3 Å due to the thermal noise, at a
temperature of 1 K.

In order to operate a NMR QIP processor, besides detecting the nuclei states, it is nec-
essary to accomplish other tasks: preparing initial state, implementing single-qubit oper-
ations and implementing the CNOT quantum gate. Initial preparation is made in the fol-
lowing way. Suppose the system operates at a temperature of 1 K, under a static magnetic

1The first label represents electron states, and the second label, nuclear states.
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Figure 7.8 CNOT implementation in Berman MRFM scheme. The short arrows represents the nuclear spin, and
the long ones the electronic spin. (a) The magnetic tip is set on the first (control) qubit. An electronic π -pulse is
applied at a frequency corresponding to the nuclear spin on the ground state. This means the electronic magnetic
moment will rotate only if the nuclear state is |0〉. If the nuclear state is |1〉, nothing happens. (b) The tip moves
to the target qubit, and a nuclear π -pulse is applied at a frequency corresponding to the neighbor electronic spin
did not rotate. But, if it did not rotate, that means the control qubit was in |1〉, and the target will be rotated.
Otherwise, if it did rotate, that means the control was in |0〉 and the target will not rotate. (c) The tip moves back
to control and restore the initial electronic state, accomplishing CNOT. Adapted with permission from [11].

field of B0 = 10 T. In these conditions, basically all the electronic spins are in the | ↑〉
ground-state. Now, suppose the ferromagnetic particle is fixed (that is, not allowed to vi-
brate) and is displaced along the chain. If, at some position r , a nucleus is in the excited
state it will be target by the ferromagnetic particle, which will create a magnetic field on
that site, additional to B0. Therefore, the resonance frequency of this particular nucleus
will be ω0n(r) = γn(B0 + BM), where BM is the field produced by the ferromagnetic par-
ticle. Applying a π -pulse on this frequency will drive the nucleus back to its ground-state.
By moving the ferromagnetic particle from site to site along the chain, 100% nuclear spin
polarization can be achieved, provided the relaxation time is long enough. By the same
means one-qubit quantum operation can be implemented. So, it remains to describe how
to implement the two-qubit CNOT operation in this scheme.

To implement CNOT in Berman and co-workers scheme, the electronic transitions come
to help. Suppose one wants to implement the CNOT operation between a nucleus at r and
its neighbor at r + a. The nucleus at r is the target qubit and the one at r + a the control.
First the ferromagnetic sample is set at the control qubit position, and an electron π pulse is
applied, at a frequency ωe0. This pulse will take the electronic spin from the initial | ↑〉 state
to | ↓〉 state only if the control qubit is in |0〉. If the control qubit is in |1〉, the electronic
moment will not change upon the pulse action.
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Now, the ferromagnetic particle moves to the target qubit. The field this qubit senses,
depends on the direction of its neighbor electronic moments. Therefore, in the case the
control electronic moment was inverted in the first step (corresponding to the nuclear mo-
ment in ‘0’), the target nucleus will have a NMR frequency different from that in the
opposite case (that is, the nuclear moment was in ‘1’). So, irradiating the target qubit with
a NMR frequency corresponding to the second case, the target will be inverted only if the
control was initially in the state ‘1’. This accomplishes the CNOT operation! To operate
between any pair of qubits in the chain, it is important to notice that the electronic dipolar
field each qubit senses depends on its position in the chain, relative to the control qubit.
The value corresponding to each nucleus can be calculated or obtained experimentally. The
CNOT operation is finished by moving the ferromagnetic particle back to the control qubit
position, and driving the electronic moment back to its ground-state.

In conclusion, the scheme proposed by Berman and co-workers for a MRFM-based
NMR quantum processor is capable of preparing the initial state, implementing one and
two-qubit quantum operations and implementing final readout of qubit states. Of course, its
realization is based on the possibility of experimentally detecting single electron magnetic
moments by MRFM. Such an experiment has been successfully implemented by Rugar
and co-workers, as described in the next section.

7.3 SINGLE SPIN DETECTION TECHNIQUES: SOLUTION FOR THE
SENSITIVITY PROBLEM

In the previous section we have described some very ingenious proposals which, if im-
plemented in practice, could lead to a large scale quantum information processor through
NMR. It is important to emphasize that those proposals circumvent the scaling problem
present in liquid-state NMR QIP experiments. However, whatever the sample architecture
may be, it seems unavoidable the need to detect the NMR signal of very small spin concen-
trations. Ideally, single spin detection should be possible. Less than two decades ago, such
a strict demand could sound hopeless; conventional ESR needs a concentration of some
1010 spins, whereas this number increases to about 1015 in conventional NMR. So, we are
talking of an improvement of at least 10 orders of magnitude in sensitivity!

The first indications that this could indeed be done can be traced back to the work of
Manassen, Hamers, Demuth and Castellano Jr., of 1989 [12]. That work reports the obser-
vation of individual paramagnetic spins using the scanning tunneling microscopy (STM)
technique. This is not a resonance technique; its observable is the quantum tunneling cur-
rent between a sample surface and the tip of a STM microscope. The idea is that such
a current is affected by the presence of local magnetic moments in the material surface.
Therefore, under an applied static magnetic field, the Larmor precession of a local para-
magnetic moment would modify the tunneling probability and modulate the current with
the same frequency. The experiment was performed in surfaces of Si(111) partially oxi-
dized. For a field of 172 G, the electronic spin precesses at 481.6 MHz, assuming an elec-
tronic g-factor equal to 2. Measurement revealed a RF component in the tunneling current
exhibiting a peak around 483 MHz, in excellent agreement with the prediction. Various
scans were made sweeping the surface in distance of only a few angstroms.

In 2002, Durkan and Welland also combined the techniques of STM and ESR to demon-
strate the detection of single paramagnetic moments [13]. They used the organic molecule
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Figure 7.9 STM-ESR spectra obtained by Durkan and Welland in 2002. Peaks correspond to different regions
of the sample separated by a few nanometers. Adapted with permission from [13].

known as BDPA [α,γ -bisdiphenylene β-phenylallyl], which contains free radicals which
originate the magnetic signal. The substrate used was highly oriented pyrolytic graphite
(HOPG). The static field was generated by permanent magnets of Sm/Co, with different
sizes, in the range 190–300 G, corresponding to Larmor frequencies of 535–840 MHz,
assuming an electronic g-factor equal 2. The STM-EPR signal was successfully detected
from the analysis of the RF modulation on the tunneling STM current. Different spectra
were obtained within an area with resolution of a few nm. The authors varied the sta-
tic field and demonstrated the linear dependence of the ESR frequency upon the field,
ωL = gμBB0/h̄. From the experiment they obtain g = 2.0 ± 0.1.

Different approaches to detect single electron spin states in semiconductor structures
have been used with great success. Two of such experiments were reported in 2004 by Elz-
erman and collaborators [14] and Xiao and collaborators [15]. Such experiments can lead
to a breakthrough in detection techniques for NMR QIP. In the first of these experiments,
the state of a single electron spin in a quantum dot is detected. It is interesting to notice
that, whereas the detection of single electron charge in quantum dots is relatively simple,
the same is not true for single spin detection. One important point to note is that the detec-
tion involves a spin-to-charge conversion procedure. The dot is created in a GaAs/AlGaAs
heterostructure. A magnetic field is applied to separate the up and down states of an elec-
tron. The presence or not of an electron in the dot can be controlled through gate potentials
which rise or lower the energy in the dot with respect to the Fermi level of the electron
bath in the heterostructure. The dependence of the energy with the magnetic field allows
the tuning of the dot potential such that if the electron is in the up state it remains in the dot,
but if it is in the down state, it will jump off. This jump causes a change in the electrostatic
potential around the dot which is electrically detected. The detection or not of an electron
is then associated to the spin state before the jump.

In the work of Xiao et al. the resonance of a single electronic spin is observed di-
rectly in a field-effect transistor (FET). After creating a paramagnetic trap, they observe
the source/drain current in the FET, as a function of the ESR frequency. Under a mag-
netic field, the Fermi level of the channel electrons is adjusted to lye between the two
electronic states of the paramagnetic trap. The idea is that, if only the lower spin state is
occupied, then no electron can jump from the channel to the trap. But if only the upper spin
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state is occupied, an electron can jump to the lower state, changing the charge in the trap,
which can be sensed by the FET. Starting at low temperatures (0.4 K in the experiment)
and high magnetic fields (around 16 kG), only the lower trap spin state will be occupied.
The authors applied a fixed ESR frequency of 45.1 GHz and varied the magnetic field be-
tween 15,900 G and 16,200 G. The charge occupancy in the trap was observed through the
source/drain current (in the range of 0.1 μA) as a function of the field. A pronounced peak
was clearly observed at a field of about 16,025 G, corresponding to the electronic spin res-
onance with g = 2.01. By varying the ESR frequency, the resonance appeared at different
fields, and the linear relationship between field and resonance frequency can be observed.
This is done for two traps, and from the linear plot they obtain g = 2.020 ± 0.015.

So far, we have described not only one, but a number of reported different experiments
where techniques to detect single spin states are described, a fundamental requirement for
spin-based QIP. It is also worth mentioning that various optical methods have been devel-
oped and used since 1993 to detect the magnetic resonance of single molecular spins (see
Kohler et al. [16], Wrachtrup et al. [17], and, more recently, Jelezko et al. [18]). Optics is a
fast developing area, and optical methods are extremely promising in the context of quan-
tum information and quantum computation. However, the experiment that best approaches
the original proposal of Berman and co-workers for a NMR QIP processor described in the
previous section, was implemented in 2004 by Rugar, Budaklan, Mamin and Chui [19].
The main motivation of the authors was the improvement of resolution of magnetic reso-
nance imaging below 1 μm. They used MRFM to detect a single electronic spin ESR signal
in vitreous silica. The paramagnetic centers were produced irradiating the sample with a
2-Gy dose of 60Co γ -rays. An estimative for the spin concentration in the sample after irra-

Figure 7.10 Single spin detection by MRFM. The result is from Rugar et al. (2004). The two plots correspond
to different values of the external field. Changing the external field modifies the resonant slice, which in turn
causes a shift in the peak. The average distance between spins in the sample is 300 Å. Adapted with permission
from [19].
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diation showed to be about 1013/cm3. The field gradient was produced by a 150 nm-wide
SmCo particle and the experiment done at 1.6 K. These conditions sets up a resonant slice
in the sample of approximately 250 nm below the cantilever tip, according to the authors.
The ESR frequency was set at 2.96 GHz. Scanning the sample surface, resonance peaks
were detected for different values of the external field (34 and 30 mT), with peak centers
19 nm apart, and peak widths of about 23 nm, as shown in Figure 7.10. This shift in peak
centers is not caused by different spins in the sample, since that, from the estimated spin
concentration, the average distance between spins is of about 300 Å. The shift is due to the
reduction of the external field, which causes a reduction in the radius of the resonant slice,
moving the region of detection. In fact, the much larger distance between spins guarantees
that the detected signal is due to a single spin!

7.4 NMR ON A CHIP: TOWARDS THE NMR QUANTUM CHIP
INTEGRATION

In the previous sections we revised different proposals for a large scale NMR quantum
processor and various ways to detect single spin states in different structures, including the
use of magnetic resonance force microscopy (MRFM), a technique capable of not only to
detecting single spin states, but also to prepare initial states and implement one and two-
qubits quantum operation. Such a high sensitivity is obtained through the combination of
resonant, optical, mechanical, and electrical methods. In the same way of classical comput-
ing technology, in which discrete electronic elements of circuits were replaced by millions
of components integrated into single chips, it would be desirable to have some of the NMR
quantum computing hardware integrated into a single quantum chip. It appears that the
first step towards this direction has already been given by Yusa and co-workers [20] and
co-workers in the year of 2005. They described the observation of multiple quantum co-
herences of nuclear spins in a semiconductor structure which had part of a NMR hardware
integrated to it. So, the work of Yusa et al. is neither about NMR QIP scalability, nor about
single spin detection techniques; it is about two other important aspects of NMR QIP: chip
integration and direct observation of NMR multiple quantum coherences . We saw that the
complete characterization of NMR qubits must be done by measuring all the density matrix
elements through quantum state tomography (see Chapter 4). However, conventional NMR
detects the signal coming only from first order coherences, directly linked to the transverse
magnetization, Mx ± iMy . Therefore, to observe higher order coherences, long sequences
of RF pulses must be used. The approach of Yusa et al. is totally different, and allows the
direct measurement of higher order coherences through electric methods.

The architecture of their device, shown in Figure 7.11 is based on GaAs/AlGaAs het-
erostructure which contains a RF antenna gate and a micrometer point contact region
through which electrical resistance is measured. In this tiny region, the electronic system
is a two-dimensional gas. Under some conditions, the hyperfine interaction between the
electrons and local nuclei, leads to nuclear spins polarization. The idea is that the electrical
resistivity of the current through the contact depends on the nuclear spin state. Therefore,
changes in the spin directions caused by NMR leads to a change in the resistivity, �R.
So, it is basically an electrical method to detect NMR. The experiment was performed
with three different NMR isotopes: 69Ga, 71Ga, and 75As. All three have I = 3/2 and
therefore present an unequally spaced manifold of energy levels, due to the quadrupole
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Figure 7.11 NMR on a chip: the scheme shows the architecture of the heterojunction built by Yusa and
co-workers in 2005, containing part of a NMR hardware integrated to it. In a conventional NMR experiment
only first-order coherences are observed. In Yusa et al. experiment, higher order coherences are directly measured
through the resistance variation measured across the split gate. The resistance depends on the nuclear magnetic
state. Adapted with permission from [20].

interaction (Chapter 2). Conventional NMR is capable to detect the transitions only of
those pair of levels satisfying the selection rule �m = 1. However, such a restriction does
not exist for the proposed electrical detection method. Single- (| + 3/2〉 ←→ | + 1/2〉,
(| + 1/2〉 ←→ |− 1/2〉 and (| − 1/2〉 ←→ |− 3/2〉, double- (| + 3/2〉 ←→ |±−1/2〉 and
(| + 1/2〉 ←→ | − 3/2〉), and triple-quantum transitions (| + 3/2〉 ←→ | − 3/2〉) are ob-
served by adjusting the intensity of the RF field. Such transitions appear as fast oscillating
signals in the resistivity �R.

Finally, we would like to mention that during the writing of the book we could hardly
keep track of new results coming out everyday in the literature. To finish, we mention
the papers of Kitchen et al. [21] describing an Mn atom-by-atom substitution in GaAs us-
ing STM, and the work of Savukov, Lee and Romalis, Optical detection of liquid-state
NMR [22]. Although not directly related to quantum computation, these works represent
new development techniques towards large-scale NMR QIP: the former to a direction
of quantum chip manufacturing, and the later to the increase in resolution and sensitiv-
ity.

In conclusion, this chapter reviewed a number of ideas and experiments which, com-
bined together, may lead to the construction of a large scale NMR quantum processor. It
is interesting to notice that all these proposals have in common the dependence on the
precise manipulation of matter at molecular and atomic scale. Therefore, we can con-
clude that nanofabrication is the promising technology for NMR quantum computing sci-
ence.
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Figure 7.12 Direct detection of multiple quantum coherences in Yusa et al. experiment. Varying the intensity
of the radiofrequency field induces multiple quantum transitions which appear as the oscillations observed in the
resistance measured across the split gate. Adapted with permission from [20].

PROBLEMS WITH SOLUTIONS

P7.1 - Consider the Hamiltonian of a I = 1/2 nucleus coupled to an electron, in the pres-
ence of a static field B in the z-direction:

He–n = γeh̄BSz − γnh̄BIz + AS · I (7.4.1)

Write explicitly the matrix He–n in the basis |Iz, Sz〉, and find its eigenvalues and the NMR
frequencies for the case A  h̄γeB .

Solution
Let us write the basis as |0 ↑〉, |0 ↓〉, |1 ↑〉, |1 ↓〉. In this basis, the nucleus and electron spin matrices are:

Ix = 1

2

⎛

⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞

⎟⎠ ; Sx = 1

2

⎛

⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎠

Iy = i

2

⎛

⎜⎝

0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

⎞

⎟⎠ ; Sy = i

2

⎛

⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞

⎟⎠

Iz = 1

2

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎠ ; Sz = 1

2

⎛

⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞

⎟⎠
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Performing the matrices products and replacing in the Hamiltonian, we obtain:

He–n =

⎛

⎜⎜⎜⎝

γeh̄B − γnh̄B + A/4 0

0 −γeh̄B − γnh̄B − A/4

0 A/2

0 0

0 0

A/2 0

γeh̄B + γnh̄B − A/4 0

0 −γeh̄B + γnh̄B + A/4

⎞

⎟⎟⎟⎠

The eigenvalues of this Hamiltonian are:

E1 = h̄B(γe − γn) + A

4

E2 = h̄B(−γe + γn) + A

4

E3 = −A

4
+ 1

2

√
A2 + 4h̄2B2(γe + γn)2

E4 = −A

4
− 1

2

√
A2 + 4h̄2B2(γe + γn)2

Considering A  h̄γeB , the energies E3,4 can be written as

E3,4 ≈ −A

4
± 1

2
2(γe + γn)h̄B

[
1 + A2

4h̄2B2(γe + γn)2

]1/2

E3,4 ≈ −A

4
± h̄(γe + γn)B ± A2

8(γe + γn)h̄B

For the electron up-state, the NMR frequency will be:

E3 − E1

h̄
= ωn↑ = 2γnB − A

2h̄
+ A2

8(γe + γn)B

And for the electron down-state:

E4 − E2

h̄
= ωn↓ = 2γnB − A

2h̄
− A2

8(γe + γn)B

P7.2 - Calculate the NMR frequency shift for 31P nuclei in an array where neighbors nuclei
are separated by a distance of a = 1.9 Å, under a static field of 7 T and a field gradient
applied along the chain of 1.4 T/μm. Repeat the calculation for 29Si.

Solution

Take γ /2π ≈ 17.2 MHz/T for 31P. Under a field of 7 T, the NMR frequency will be 17.2 × 7 = 120.4 MHz.

Now, the field shift in the array, along the gradient direction and neighboring sites, is 1.4 T/μm ×1.9×10−4/μm

= 2.66 × 10−4 T. Therefore, the NMR frequency shift will be 45.7 × 10−4 MHz or 4.57 kHz. For silicon, we

have γ /2π ≈ 8.4 MHz/T and �ν = 8.4 × 2.66 × 10−4 MHz = 2.2 kHz.

P7.3 - Estimate the probabilities p(↑) and p(↓), of an electronic spin to be in the up or
down state in a field of 10 T at the temperature of 1 K. Repeat the calculation for a I = 1/2
nuclear spin.
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Solution
First, let us calculate the factor

μBB

kBT
= 5.8 × 10−5 eV/T × 10 T

8.6 × 10−5 eV/K × 1 K
≈ 6

Now, the canonical partition function is

Z = eμBB/2kBT + e−μBB/2kBT = e3 + e−3 = 20.15

The probability p(↑) will be:

p(↑) = eμBB/2kBT

Z = e3

20.15
= 99.75%

Obviously, p(↓) = 0.25%. Notice that this produces a net magnetic moment of (0.9975−0.0025)μB = 0.995μB .

In the nuclear case, we know that μn ≈ 0.001μB . For the same field and temperature, we have μnB/kBT ≈
0.006, Z ≈ 1.99 and p(↑) ≈ 50.25% and p(↓) ≈ 49.75. This produces a net magnetic moment (in units of Bohr

magneton) of 5 × 10−4μB .

P7.4 - Consider a two-level system composed by N non-interacting spin 1/2 nuclei. Cal-
culate the force excerpted over this system when exposed to a magnetic field gradient
∂B/∂z = B0/a, where a is the distance between the spins, and show that it is given by
μNB0Np/a.

Solution
The magnetic force is F = M∂B/∂z = MB0/a. To calculate M , let n↑ = p↑N and n↓ = p↓N be the number

of up and down spins, respectively. Here, p↑ and p↓ are the probabilities of occupancy of the two levels. The
population difference between the levels is therefore n↑ −n↓ = N(p↑ −p↓) = Np, where p = (p↑ −p↓) is the
polarization. But, on the other hand, n↑ + n↓ = N is the total number of spins. Thus,

n↑ = N
1 + p

2
and n↓ = N

1 − p

2

The magnetization will be:

M = μN(n↑ − n↓) = μNN

[(
1 + p

2

)
−
(

1 − p

2

)]

and the magnetic force:

F = μNB0

a
N

[
1 + p

2
− 1 − p

2

]
= μNB0

a
Np

P7.5 - The minimum detectable force on a cantilever of a MRFM apparatus can be written
as

Fmin =
√

4kkBT B

ω0Q

where k is the spring constant of the cantilever, ω0 its resonance frequency, B the
bandwidth and Q the quality factor. Estimate this force taking k = 0.0042 N/m,
ω0 = 2π × 23 rd/s, Q = 104 and B = 0.6 kHz. Make the calculation at 4.2 K and at
room temperature.
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Solution

Fmin =
√

4 × 0.0042 × 1.38 × 10−23 × 0.6 × 103

2 × π × 23 × 104
× T 1/2

Fmin = 9.8 × 10−10T 1/2

Therefore, for T = 4.2 K, Fmin = 2.0 × 10−9 N. For 300 K, Fmin = 1.6 × 10−7 N.

P7.6 - The force on the cantilever of a MRFM device, excerpted by n qubits with initial
polarization p is,

Fz = h̄�ω

2a
N

[(
1 + p

2

)n

−
(

1 − p

2

)n]

Setting Fz = Fmin = 6.2×10−16 N, a = 1.9 Å, N = 105 and �ω = 2π ×2 kHz, calculate n

for p = 1, 5, 10, 20, 50, 80 and 90%. Make a numerical calculation to obtain the necessary
initial polarization for 2, 3, 6, 8, 10, 20, 50, 100 and 200 qubits. Make a plot of n vs. p and
notice how the number of qubits quickly increases as p → 100%.

Solution
Replacing the given numerical values we find

h̄�ω

2a
N = 2.2 × 10−15

Therefore,
[(

1 + p

2

)n

−
(

1 − p

2

)n]
= 0.28

A numerical solution for this equation yields the following set of values:

Number of qubits Initial polarization

2 0.28
3 0.36
6 0.62
8 0.71

10 0.76
20 0.88
50 0.95

100 0.97
200 0.99

Figure 7.13 shows a plot of n vs. 100 × p. The number of available qubits increases very fast as p → 100%.

P7.7 - Estimate the magnetic field in the z-direction of a magnetized sphere of radius
R = 50 Å right over an electronic moment at a distance of d = 150 Å from the center of
the sphere. For that, consider the field of a dipole with magnetic moment given by

m = 4

3
πR3Mk
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Figure 7.13 Problem (P7.6): increase in the number of available qubits in the “all-silicon” quantum computer
proposal of Ladd and co-workers, as a function of the initial polarization. The calculation is made for T = 4 K.

where M is the saturation magnetization of the sphere. Use μ0M = 2.2 T, and calculate
the ESR frequency in this field.

Solution
The starting point is to write the field produced by a magnetic dipole m at a position r:

B = μ0

4π

3(m · er )er − m

r3

where er is the unit vector pointing to the direction of r. Replacing the expression for m, one obtains

B = μ0

4π

1

d3

[
3

4

3
πR3M − 4

3
πR3M

]
= 2

3
μ0M

(
R

d

)3

Replacing numerical values:

B = 2

3
× 2.2 × 1

33
= 0.054 T

Using γe/2π = 28 GHz/T for the electronic gyromagnetic ratio, one obtains �ωe = 28 × 0.054 = 1.5 GHz for

the resonance shift.

P7.8 - From the results of the previous exercise, obtain the field gradient and the magnetic
force over an electronic magnetic moment of 1 μB .

Solution
To calculate the force over a magnetic moment, one must obtain the field gradient. In the case of the field

calculated in the previous exercise, we simply calculate the derivative of B with respect to the moment position, d :

∂B

∂d
= − 3

d
× 2

3
μ0M

(
R

d

)3

The magnetic force will be

F = ∓μB
3

d
× 2

3
μ0M

(
R

d

)3
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Replacing numbers,

F = ∓9.3 × 10−24 3

150 × 10−10
× 0.054 = ∓0.01 × 10−14 = ∓10−16 N
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