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PREFACE

This book is an outgrowth of an earlier book, Chemical Reactor Design, John
Wiley & Sons, 1987. The title is different and reflects a new emphasis on optimi-
zation and particularly on scaleup, a topic rarely covered in undergraduate or
graduate education but of paramount importance to many practicing engineers.
The treatment of biochemical and polymer reaction engineering is also more
extensive than normal.

Practitioners are the primary audience for the new book. Here, in one spot,
you will find a reasonably comprehensive treatment of reactor design, optimiza-
tion and scaleup. Spend a few minutes becoming comfortable with the notation
(anyone bothering to read a preface obviously has the inclination), and you will
find practical answers to many design problems.

The book is also useful for undergraduate and graduate courses in chemical
engineering. Some faults of the old book have been eliminated. One fault was its
level of difficulty. It was too hard for undergraduates at most U.S. universities.
The new book is better. Known rough spots have been smoothed, and it is easier
to skip advanced material without loss of continuity. However, the new book
remains terse and somewhat more advanced in its level of treatment than is
the current U.S. standard. Its goal as a text is not to train students in the appli-
cation of existing solutions but to educate them for the solution of new pro-
blems. Thus, the reader should be prepared to work out the details of some
examples rather than expect a complete solution.

There is a continuing emphasis on numerical solutions. Numerical solutions
are needed for most practical problems in chemical reactor design, but sophisti-
cated numerical techniques are rarely necessary given the speed of modern com-
puters. The goal is to make the techniques understandable and easily accessible
and to allow continued focus on the chemistry and physics of the problem.
Computational elegance and efficiency are gladly sacrificed for simplicity.

Too many engineers are completely in the dark when faced with variable
physical properties, and tend to assume them away without full knowledge
of whether the effects are important. They are often unimportant, but a real
design problem—as opposed to an undergraduate exercise or preliminary pro-
cess synthesis—deserves careful assembly of data and a rigorous solution.
Thus, the book gives simple but general techniques for dealing with varying
physical properties in CSTRs and PFRs. Random searches are used for optimi-
zation and least-squares analysis. These are appallingly inefficient but mar-
velously robust and easy to implement. The method of lines is used for
solving the partial differential equations that govern real tubular reactors and
packed beds. This technique is adequate for most problems in reactor design.

xiii
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No CD ROM is supplied with the book. Many of the numerical problems can
be solved with canned ODE and PDE solvers, but most of the solutions are quite
simple to code. Creative engineers must occasionally write their own code to
solve engineering problems. Due to their varied nature, the solutions require
use of a general-purpose language rather than a specific program. Computa-
tional examples in the book are illustrated using Basic. This choice was made
because Basic is indeed basic enough that it can be sight-read by anyone already
familiar with another general-purpose language and because the ubiquitous
spreadsheet, Excel, uses Basic macros. Excel provides input/output, plotting,
and formatting routines as part of its structure so that coding efforts can be
concentrated on the actual calculations. This makes it particularly well suited
for students who have not yet become comfortable with another language.
Those who prefer another language such as C or Fortran or a mathematical
programming system such as Mathematica, Maple, Mathcad, or Matlab
should be able to translate quite easily.

I continue with a few eccentricities in notation, using a, b, c, . . . to denote
molar concentrations of components A, B, C, . . . . I have tried to avoid acro-
nyms and other abbreviations unless the usage is common and there is a true
economy of syllables. Equations are numbered when the results are referenced
or the equations are important enough to deserve some emphasis. The problems
at the back of each chapter are generally arranged to follow the flow of the text
rather than level of difficulty. Thus, some low-numbered problems can be fairly
difficult.

Bruce Nauman
Troy, New York
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NOTATION

Roman Characters

Symbol Description

Equation

where used

a Concentration of component A 1.6
a Vector of component concentrations (N� 1) 2.38
a(0�) Concentration just before the entrance of an open

reactor
Exam. 9.3

a(0þ) Concentration just after the entrance of an open
reactor

Exam. 9.3

a(L�) Concentration just before the exit of an open reactor Exam. 9.3
a(Lþ) Concentration just after the exit of an open reactor Exam. 9.3
a(t, z) Concentration of component A in an unsteady

tubular reactor
14.14

a0 Auxiliary variable, da/dz , used to convert second-
order ODEs to first order

Exam. 9.6

a* Dimensionless concentration Exam. 2.5
a* Concentration of component A at the interface 11.4
a0 Initial concentration of component A 1.23
ab Concentration of component A in the bubble phase 11.46
abatch(t) Concentration in a batch reactor at time t 8.9
ac Catalyst surface area per mass of catalyst 10.38
ae Gas-phase concentration of component A in the

emulsion phase
11.45

aequil Concentration of component A at equilibrium Prob. 1.13
afull Concentration of component A when reactor

becomes full during a startup
Exam. 14.3

ag Concentration of component A in the gas phase 11.1
aig Concentration of component A at the interface in the

gas phase
11.4

ain Inlet concentration of component A 1.6
ain(t) Time-dependent inlet concentration of component A Sec. 14.1
aj Amine concentration on jth tray Exam. 11.7
al Concentration of component A in the liquid phase 11.1
al(l) Concentration at position l within a pore that is

located at point (r, z)
Sec. 10.4.1

al (l, r, z) Concentration at location l in a pore, the mouth of
which is located at point (r, z)

Sec. 10.1

ail Concentration of component A at the interface in the
liquid phase

11.4

amix Concentration at mixing point 4.19

xv
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amix Mixing-cup average concentration 8.4
anew Concentration at new axial position 8.25
aout Outlet concentration of component A 1.48
aout(t) Time-dependent outlet concentration of

component A
Exam. 14.1

as Gas-phase concentration adjacent to surface Exam. 11.13
as(r, z) Concentration on surface of catalyst at location (r, z)

in the reactor
Sec. 10.1

atrans Concentration of transpired component 3.46
awall Concentration of component A at the wall Sec. 8.2

A Denotes an A-type endgroup in a condensation
polymerization

Sec. 13.1

A Denotes component A 1.12
A Amount of injected tracer Exam. 15.1
[A] Concentration of component A 1.8
A, B, C Constants in finite difference approximation 8.20
A, B, C Constants in quadratic equation App. 8.2
A, B, C, D Constants in enthalpy equation 7.19
Ab Cross-sectional area associated with the

bubble phase
11.46

Ac Cross-sectional area of tubular reactor Sec. 1.4.2
Ae Cross-sectional area of the emulsion phase 11.45
Aext External surface area 5.14
A0ext External surface per unit length of reactor 5.22
Ag Cross-sectional area of the gas phase 11.28
Ai Interfacial area 11.1
A0i Interfacial area per unit height of reactor 11.27
Ainlet Cross-sectional area at reactor inlet Prob. 3.6
Al Cross-sectional area of the liquid phase 11.27
As Cross-sectional area associated with the solid phase 11.44
As External surface area of the catalyst per unit volume

of gas phase
10.2

[AS] Concentration of A in the adsorbed state 10.5
Av Avogadro’s number 1.9

b Concentration of component B 1.8
b0 Initial concentration of component B 1.33
bin Inlet concentration of component B Exam. 1.6
bl Liquid-phase concentration of component B Exam. 11.6
bout Outlet concentration of component B 1.48

B Denotes component B 1.12
B Denotes a B-type endgroup in a condensation

polymerization
Sec. 13.1

Roman Characters—Continued

Symbol Description

Equation

where used
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[B] Concentration of component B 1.8
[BS] Concentration of B in the adsorbed state 10.5

c Concentration of component C 1.19
c(l ) Concentration of polymer chains of length l Sec. 13.2.1
cj Carbon dioxide concentration in the gas phase on the

jth tray
Exam. 11.7

cJ Outlet concentration of gaseous carbon dioxide Exam. 11.8
cl Concentration of polymer chains having length l 13.33
cpolymer Summed concentration of all polymer chains 13.7

C Denotes component C 1.19
C Constant in various equations 1.28
C Concentration of a nonreactive component Prob. 1.1
C Scaling exponent Prob. 4.18
C Concentration of inert tracer 15.1
C Concentration of inert tracer in main tank of the side

capacity model
Exam. 15.7

C(t, z) Concentration of inert tracer in an unsteady tubular
reactor

Exam. 15.4

C0 Initial value for tracer concentration 15.1
C0, C1 Constants Sec. 5.2.3
C1, C2 Constants of integration 9.18
C1, C2 Parameter groupings Exam. 11.2
CA Capacity of ion-exchange resin for component A 11.49
CAB Collision rate between A and B molecules per volume 1.10
Ch Constant in heat transfer correlation 5.34
Cin(t) Inlet concentration of inert tracer Exam. 15.4
Cout(t) Outlet concentration of inert tracer 15.1
CP Heat capacity 5.15
CR Specific heat of the agitator Exam. 14.9
CSTR Acronym for continuous-flow stirred tank reactor Sec. 1.4

d Concentration of component D 2.1
data Refers to set of experimental data Sec. 7.1.1
dj Concentration of dissolved carbon dioxide in the

liquid on the jth tray
Exam. 11.7

dp Diameter of a catalyst particle Exam. 10.8
dp Diameter of particle 3.17
dpore Diameter of a pore Sec. 10.4.1
dt Tube diameter 9.6
dw Incremental mass of polymer being formed Exam. 13.9

D Denotes component D 2.20
D Axial dispersion coefficient 9.14

Roman Characters—Continued

Symbol Description

Equation

where used
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DA Diffusion coefficient for component A 8.3
De Axial dispersion coefficient in the emulsion phase 11.45
Deff Effective diffusivity 10.27
Dg Axial dispersion coefficient for gas phase 11.34
DI Diameter of impeller 5.34
Din Axial dispersion coefficient in entrance region of an

open reactor
Fig. 9.9

DK Knudsen diffusivity 10.26
Dl Axial dispersion coefficient for liquid phase 11.33
Dout Axial dispersion coefficient in exit region of an open

reactor
Fig. 9.9

DP Diffusivity of product P 10.7
Dr Radial dispersion coefficient 9.1
Dz Axial dispersion coefficient for concentration in PDE

model
Sec. 9.1

e Concentration of component E Exam. 2.2
e Epoxy concentration Exam. 14.9

E Denotes component E 2.1
E Activation energy 5.1
E Axial dispersion coefficient for heat 9.24
E Enhancement factor 11.41
E0 Concentration of active sites 12.1
Ef Activation energy for forward reaction Sec. 5.1.2
Er Activation energy for reverse reaction Sec. 5.1.2
Er Radial dispersion coefficient for heat in a packed-bed 9.3
Ez Axial dispersion coefficient for temperature in PDE

model
Sec. 9.1

f Refers to forward reaction 1.14
f Arbitrary function App. 8.2
f Initiator efficiency factor 13.39
f (t) Differential distribution function for residence times 8.10
f (t) Differential distribution function for exposure times Sec. 11.1.5
f (l ) Number fraction of polymer chains having length l 13.8
f� Value of function at backward point App. 8.2
fþ Value of function at forward point App. 8.2
f0 Value of function at central point App. 8.2
f �A Fugacity of pure component A 7.29

f̂fA Fugacity of component A in the mixture 7.29
fcðtcÞ Differential distribution of contact times Sec. 15.4.2
fdead (l ) Number fraction of terminated polymer chains

having length l
Sec. 13.4.2

Roman Characters—Continued

Symbol Description

Equation

where used
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fT ðtT Þ Differential distribution function for thermal times 15.54
fin, fout Material balance adjustment factors 7.12
fR Reaction efficiency factor 1.9

F Arbitrary function App. 4
F Constant value for Fj Exam. 11.8
F(t) Cumulative distribution function 15.4
F(r ) Cumulative distribution function expressed in terms

of tube radius for a monotonic velocity profile
15.29

Fa Fanning friction factor 3.16
Fj Volumetric flow of gas from the jth tray Exam. 11.7

g Grass supply Sec. 2.5.4
g Acceleration due to gravity Exam. 4.7
g(l ) Weight fraction of polymer chains having length l 13.11
g(t) Impulse response function for an open system 15.41
g(t)rescaled Impulse response function for an open system after

rescaling so that the mean is �tt
15.41

G Arbitrary function App. 4
G1, G2 Growth limitation factors for substrates 1 and 2 12.10
G1, G2 Viscosity integrals Exam. 8.10
GA Discretization constant for concentration Exam. 9.1
GP Growth limitation factor for product 12.13
GS Growth limitation factor for substrate 12.13
GT Discretization constant for temperature equation Exam. 9.1
Gz Graetz number Sec. 5.3.3

h Concentration of component H 2.41
h Heat transfer coefficient on the jacket-side 5.34
h Hydrogen ion concentration Exam. 14.9
hi Interfacial heat transfer coefficient 11.18
hr Coefficient for heat transfer to the wall of a

packed-bed
9.4

H Denotes possibly hypothetical component with a
stoichiometric coefficient of þ1

2.41

H Enthalpy 5.14
H Enthalpy per mole of reaction mixture 7.42
H Distance between moving plates 8.51
HA, HB, HI Component enthalpies 7.20

i Concentration of component I 3.12
i Index variable in radial direction 8.21
i Concentration of adsorbable inerts in the gas phase 10.14

Roman Characters—Continued

Symbol Description

Equation

where used
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I Refers to inert component I 3.13
I System inventory 1.2
I Number of radial increments Sec. 8.3.1
I–IV Refers to reactions I–IV (Roman numerals) Sec. 2.1
I0 Initiator concentration at t ¼ 0 13.31
[I] Concentration of inactive sites Prob. 12.1
[IXn] Concentration of growing polymer chains of length n

that end with an X group
Sec. 13.4.4

[IYn] Concentration of growing polymer chains of length n
that end with a Y group

Sec. 13.4.4

j Index variable for axial direction Exam. 3.3
j Index variable for data 5.2

J Number of iterations Sec. A.4.1
J Number of experimental data 5.2
J Number of axial increments Sec. 8.3.1
J Number of trays Exam. 11.8
Jmin Minimum number of axial increments, L/�zmax Exam. 8.4
Jr Diffusive flux in radial direction Sec. 8.2
Jused Number of axial step actually used Exam. 8.4
Jz Diffusive flux in axial direction Sec. 8.2

k Reaction rate constant 1.8
k0 Pseudo-first-order rate constant Sec. 1.3
k0 Rate constant with units of reciprocal time Exam. 2.9
k00 Linear burn rate 11.51
k0 Pre-exponential rate constant 5.1
ka Adsorption rate constant 10.4
kþa Forward rate constant for reversible adsorption step Exam. 10.2
k�a Reverse rate constant for reversible adsorption step Exam. 10.2
kA Denominator rate constant for component A 10.12
kA, kB, kC Rate constants for consecutive reactions 2.20
kAB Denominator constant 12.5
kB Denominator rate constant for component B 7.5
kc Rate constant for termination by combination 13.39
kC Denominator rate constant for component C Exam. 4.5
kd Rate constant for cell death 12.17
kd Rate constant for termination by disproportionation 13.39
kd Desorption rate constant 10.6
kþd Forward rate constant for reversible desorption

step
Exam. 10.2

k�d Reverse rate constant for reversible desorption step Exam. 10.2
kD Rate constant for catalyst deactivation 10.35
kf Rate constant for forward reaction 1.14
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kg Mass transfer coefficient based on gas-phase
driving force

11.5

ki Rate constant for chemical initiation 13.39
kI Rate constant for reaction I 2.1
kI Denominator rate constant for inerts I 10.14
k�I, k�II Rate constants for reverse reactions I, II Prob. 4.6
kl Mass transfer coefficient based on liquid-phase

driving force
11.5

kP Denominator rate constant for product P 10.13
kp Propagation rate constant 13.31
kr Rate constant for reverse reaction 1.14
kR Reaction rate constant in denominator 7.5
kR Rate constant for surface reaction 10.5
kþR Forward rate constant for reversible surface reaction Exam. 10.2
k�R Reverse rate constant for reversible surface reaction Exam. 10.2
ks Mass transfer coefficient for a catalyst particle 10.2
kS Rate constant for catalyst deactivation Sec. 10.4.4
kS Reaction rate constant in denominator 7.5
kSI Denominator constant for noncompetitive inhibition 12.6
kXX Rate constant for monomer X reacting with a

polymer chain ending with an X unit
Sec. 13.4.4

kXY Rate constant for monomer Y reacting with a
polymer chain ending with an X unit

Sec. 13.4.4

kYX Rate constant for monomer X reacting with a
polymer chain ending with a Y unit

Sec. 13.4.4

kYY Rate constant for monomer Y reacting with a
polymer chain ending with a Y unit

Sec. 13.4.4

K Equilibrium constant 1.15
K* Dimensionless rate constant 1.29
K0, K1,
K2, K3

Factors for the thermodynamic equilibrium
constant

7.35

K1 Equilibrium constant Exam. 14.9
K2 Constant 12.3
K2 Equilibrium constant Exam. 14.9
Ka Kinetic equilibrium constant for adsorption Exam. 10.4
Kd Kinetic equilibrium constant for desorption Exam. 10.3
Kequil Kinetic equilibrium constant Prob. 3.7
Kg Mass transfer coefficient based on overall gas-phase

driving force
11.1

KH Henry’s law constant 11.1
K�H Liguid–gas equilibrium constant at the interface 11.4
Kkinetic Kinetic equilibrium constant 7.28
Kl Mass transfer coefficient based on overall liquid-

phase driving force
11.2
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Km Mass transfer coefficient between the emulsion and
bubble phases in a gas fluidized bed

11.45

KM Michaelis constant 12.2
KR Kinetic equilibrium constant for surface reaction Exam. 10.3
Kthermo Thermodynamic equilibrium constant 7.29

l Lynx population Sec. 2.5.4
l Position within a pore 10.3
l Chain length of polymer 13.1
l, m, p, q Chain lengths for termination by combination Sec. 13.4.2
�llN Number average chain length 13.4
�llW Weight average molecular weight 13.12

L Length of tubular reactor 1.38
L Length of a pore Sec. 10.4.1
L� Location just before reactor outlet Exam. 9.3
Lþ Location just after reactor outlet Exam. 9.3

m Reaction order exponent 1.20
m Monomer concentration Exam. 4.3
m Exponent in Arrhenius equation 5.1
m Exponent on product limitation factor 12.13
m Denotes chain length of polymer 13.2
m, n, r, s Parameters to be determined in regression analysis 7.48
mA Mass of an A molecule 1.10
mix Refers to a property of the mixture 7.44
mR Mass of agitator Exam. 14.9

M Denotes monomer 4.6
M Denotes any molecule that serves as an energy source Prob. 7.7
M Denotes a middle group in a condensation

polymerization
Sec. 13.1

M Number of simultaneous reactions 2.9
M0 Monomer charged to system prior to initiation 13.31
MA Molecular weight of component A Exam. 2.9
MO Maintenance coefficient for oxygen Table 12.1
MS Maintenance coefficient, mass of substrate per dry

cell mass per time
12.15

n Reaction order exponent 1.20
n Index variable for number of tanks 4.16
n Zone number Exam. 6.5
n Index variable for moments of the molecular weight

distribution
13.9

n Number of moment 15.11
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N Vector of component moles (N� 1) 2.39
N Denotes a middle group in a condensation

polymerization
Sec. 13.1

N Number of chemical components 2.9
N Number of tanks in series 4.18
NA Molar flow rate of component A 3.3
N0 Moles initially present Exam. 7.13
NA Moles of component A 2.30
Ndata Number of experimental data Exam. 7.4
NI Rotational velocity of impeller 1.60
Ntotal Total moles in the system Sec. 7.2.1
Nu Nusselt number 5.34
Nzones Number of zones used for temperature optimization Exam. 6.5

O Operator indicating order of magnitude Exam. 2.4

p Concentration of product P 10.8
p Parameter in analytical solution 9.19
p1, p2 Optimization parameters App. 6
pl Concentration of product P at location l within

a pore
10.7

pmax Growth-limiting value for product concentration 12.13
pold Old or current value for optimization parameter App. 6
ps Concentration of product P at the external surface of

the catalyst
10.8

ptrial Trial value for optimization parameter App. 6

P Denotes product P Exam. 2.5
P Pressure 3.12
P . Concentration of growing chains summed over all

lengths
13.39

P0 Standard pressure Sec. 7.2
Pe Peclet number, �uusdp=Dr, for PDE model Sec. 9.1
Pe Peclet number for axial dispersion model, �uuL=D 9.15
Pg Partial pressure of oxygen in the gas phase Exam. 11.9
Pl Partial pressure of oxygen that would be in

equilibrium with the oxygen dissolved in the
liquid phase

Exam. 11.9

Pl Denotes polymer of chain length l 13.1
Power Agitator power 1.61
Pr Prandlt number Sec. 5.3.3
PR Probability that a molecule will react Sec. 15.3.1
Products Denotes summation over all products 12.14
[PS] Concentration of P in the adsorbed state 10.6
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q Transpiration volumetric flow per unit length 3.46
q Recycle rate Sec. 4.5.3
q Energy input by agitator Exam. 14.9
q Volumetric flow rate into side tank of side capacity

model
Exam. 15.7

qgenerated Rate of heat generation 5.32
qremoved Rate of heat removal 5.33

Q Volumetric flow rate 1.3
Q0 Volumetric flow at initial steady state 14.9
Qfull Volumetric flow rate at steady state Exam. 14.4
Qg Gas volumetric flow rate 11.12
Qin Input volumetric flow rate 1.3
Ql Liquid volumetric flow rate 11.11
Qmass Mass flow rate 1.2
Qout Discharge volumetric flow rate 1.3

r Radial coordinate Sec. 1.4.2
r Rabbit population Sec. 2.5.4
r Dimensionless radius, r/R 8.5
r0 Dummy variable of integration 13.50
r1 Dummy variable of integration 8.64
rA Radius of an A molecule 1.10
rB Radius of a B molecule 1.10
rp Radial coordinate for a catalyst particle 10.32
rX, rY Copolymer reactivity ratio 13.41

R Refers to component R 1.12
R Radius of tubular reactor 3.14
R Vector of reaction rates (M� 1) 2.38
�RR Average radius of surviving particles 11.55
R0 Multicomponent, vector form of R 0A 3.9
R0 Initial particle radius 11.52
R 0 Initial reaction rate Prob. 7.9
R A Rate of formation of component A 1.6
ðR AÞ0 Reaction rate at of component A at the centerline 8.22
ðR AÞg Rate of formation of component A in the gas phase 11.12
ðR AÞl Rate of formation of component A in the liquid

phase
11.11

R data Experimental rate data Sec. 7.1.1
R 0 Effective reaction rate for a tubular reactor with

variable cross section
3.8

Re Reynolds number 3.16
(Re)impeller Reynolds number based on impeller diameter 4.11
(Re)p Reynolds number based on particle diameter 3.17
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Rg Gas constant 1.10
Rh Radius of central hole in a cylindrical catalyst

particle
Prob. 10.14

R I Rate of reaction I, I¼ 1 to M 2.8
Rmax Maximum growth rate 12.2
Rmodel Reaction rate as predicted by model Sec. 7.1.1
R P Rate of formation of product P 10.7
Rp Radius of a catalyst particle Exam. 10.6
R r Rate of reverse reaction Exam. 7.11
R S Reaction rate for solid Exam. 11.16
R S Reaction rate for substrate 12.15
R X Rate of formation of dry cell mass 12.10

s Substrate concentration 12.1
s Transform parameter Sec. 13.4.2
s Sulfate concentration Exam. 14.9
s Laplace transform parameter Exam. 15.2
s0 Initial substrate concentration Exam. 12.5

S Refers to component S 1.12
S Refers to the substrate in a biological system Sec. 12.1
S Scaling factor for throughput 1.57
S Concentration of inert tracer in the side tank of the

capacity model
Exam. 15.7

[S] Concentration of vacant sites 10.4
S2 Sum-of-squares errors 5.2
S0 Scaleup factor per tube, S=Stubes Sec. 3.2.1
S0 Total concentration of sites, both occupied and

vacant
Exam. 10.1

S1, S2 Roots of quadratic equation 2.24
SAB Stoichiometric ratio of A endgroups to B endgroups

at onset of polymerization
13.3

S2
A,S

2
B,S

2
C Sum-of-squares for individual components 7.16

Sc Schmidt number, �/(�DA) Sec. 9.1
SInventory Scaling factor based on inventory 1.58
SL Scaleup factor for tube length 3.31
SR Scaleup factor for tube radius 3.31
S2
residual Sum of squares after data fit Sec. 7.1.1
Stubes Scaleup factor for the number of tubes 3.31

t Time 1.2
t Residence time associated with a streamline, L=VzðrÞ Sec. 8.1.3
�tt Mean residence time 1.41
�ttloop Mean residence time for a single pass through

the loop
5.35
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�ttn Residence time in the nth zone Exam. 6.5
t0 Dummy variable of integration 11.49
t0 Time that molecules entered the reactor Sec. 14.2
t* Dimensionless time Exam. 2.5
t0 Initial time 12.9
t1/2 Reaction half-life 1.27
tb Residence time for a segregated group of molecules Sec. 15.3.2
tc Contact time in a heterogeneous reactor 15.52
tempty Refers to time when reactor becomes empty Exam. 14.10
tfirst First appearance time when W(t) first goes below 1 Sec. 15.2.1
tfull Time to fill reactor Exam. 14.3
thold Holding time following a fast fill 14.6
tmax Time required to burn a particle 11.54
tmix Mixing time Sec. 1.5
ts Time constant in a packed-bed, L= �uus 9.9
tT Thermal time 15.53

T Dimensionless temperature 8.61
Text External temperature 5.14
Tg Temperature in the gas phase Sec. 11.1.1
Tl Temperature in the liquid phase Sec. 11.1.1
Tmax Maximum temperature in the reactor Exam. 9.2
Tn Temperature in the nth zone Exam. 6.5
Tref Reference temperature for enthalpy calculations 5.15
Ts Temperature at external surface of a

catalyst particle
10.4.3

Tset Temperature setpoint Exam. 14.8

�uu Average axial velocity 1.35
ub Gas velocity in the bubble phase 11.46
ue Gas velocity in the emulsion phase 11.45
�uug Average velocity of the gas phase 11.28
�uul Average velocity of the liquid phase 11.27
umin Minimum fluidization velocity Sec. 11.3
�uus Superficial velocity in a packed-bed 3.17
ð �uusÞg Superficial gas velocity, Q/Ac Exam. 11.18

U Overall heat transfer coefficient 5.14
U0 Heat transfer group Exam. 7.6

v Velocity vector in turbulent flow 9.12

V Volume 1.3
V Time average velocity vector 9.13
V0 Velocity at centerline Prob. 8.2
VA Molar volume of component A 7.32
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Vfull Full volume of reactor Exam. 14.3
Vg Volume of the gas phase Sec. 11.1.1
Vl Volume of the liquid phase Sec. 11.1.1
Vm Volume of the main tank in the side

capacity model
Exam. 15.7

V r Dimensionless velocity component in the axial
direction, Vr= �uu

13.49

VS Volumetric consumption rate for solid 11.50
VS Volume of side tank in side capacity model Exam. 15.7
Vy Velocity in the y-direction Sec. 8.8
Vz Axial component of velocity 8.1
V z Dimensionless velocity profile, Vz/ �uu 8.34
Vz(r) Axial component of velocity as a function of radius 8.1
Vz( y) Axial velocity profile in slit flow 8.37
V� Tangential velocity component Sec. 8.7

w1, w2 Weight of polymer aliquots 13.14
wA, wB, wC Weighting factors for individual components 7.1.3

W Mass flow rate Exam. 6.1
W(t) Washout function 15.2
Wð�, tÞ Washout function for an unsteady system Sec. 15.4.1
W1, W2 Randomly selected values for the washout function Exam. 15.6

x Concentration of comonomer X 13.41
xi Mole fraction of component I Sec. 7.2
xp Concentration of X monomer units in the copolymer 13.41

X Denotes nonreactive or chain-stopping endgroup Sec. 13.1
X Denotes monomer X in a copolymerization Sec. 13.4.4
X Dry cell mass per unit volume 12.8
X0 Initial cell mass per unit volume 12.9
X1, X2, X3 Independent variables in regression analysis 7.49
XA Molar conversion of component A 1.26
XA Conversion of limiting endgroup A 13.16
XM Conversion of monomer 4.11

y Slit or flat-plate coordinate in cross-flow direction 8.37
y Dimensionless coordinate, y/Y 8.45
yA Mole fraction of component A 7.30
yp Concentration of Y monomer units in the copolymer 13.41

Y Denotes monomer Y in a copolymerization Sec. 13.4.4
Y Half-height of rectangular channel Sec. 8.4
Y 0 Fraction unreacted if the density did not change Exam. 2.10
YA Molar fraction of component A that has not reacted 1.25
YM Fraction unreacted for monomer 4.10
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YP/S Product mass produced per substrate mass 12.14
YX/S Dry cell mass produced per substrate mass 12.14
Y
_

X=S Theoretical yield of dry cell mass per mass of
substrate

12.16

z Axial coordinate 1.35
z Dimensionless axial coordinate, z/L 8.34
zR Location of reaction front 11.49

Z Denotes a middle group in a random condensation
polymerization

Sec. 13.1

Greek Characters

Symbol Description

Equation

where used

� Time constant for lag phase Prob. 12.7
�T Thermal diffusivity, �(�CP) 8.52
�12 Interaction parameter for dual substrate limitations 12.12
� Constant in pressure drop equation 3.22and3.23
� Volumetric coefficient of thermal expansion 7.18
� Heat generation number for nonisothermal

effectiveness model
Sec. 10.4.3

�A Activity coefficient of component A 7.32
� Thickness of stagnant film in the film model 11.36
� Fractional increment in flow rate 14.10
�(t) Delta function 15.9
� Change in result upon changing step time Exam. 2.15
�Aj Interfacial area per tray Exam. 11.7
�CP Specific heat difference for reaction 7.24
�H�F Standard free energy of formation Sec. 7.2.2
�GR Free energy of reaction Exam. 7.10
�G�R Standard free energy of reaction 7.29
�H�F Standard heat of formation Sec. 7.2.1
�HR Heat of reaction 5.17
�H�R Standard heat of reaction 7.35
(�HR)I Heat of reaction for reaction I 5.17
�HRR Implied summation of heats of reaction 5.17
�P Pressure drop 3.34
�p Range of random change App. 6
�Pi Difference in partial pressures across the interface Exam. 11.9
�r Radial step size, R/I Sec. 8.3.1
�Smix Entropy of mixing Sec. 7.2
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�max Maximum growth rate for cell mass 12.8
�n nth moment of the molecular weight distribution

when the 0th moment is cpolymer

13.9

�wall Viscosity at the reactor wall 5.34
l N�M matrix of stoichiometric coefficients 2.37
� Change in number of moles upon reaction 7.30
� Local rate of power dissipation per unit mass of fluid 15.51
�A Stoichiometric coefficient for component A 1.12
�A, I Stoichiometric coefficient for component A in

reaction I
2.8

�I Change in number of moles upon reaction for
reaction I

7.47

� Mass density 1.3
��� Density averaged with respect to flow rate 8.65
�c Catalyst mass per total reactor volume 10.38
�1 Mass density for complete reaction Exam. 2.10
�molar Molar density of reacting mixture 3.12
�2 Dimensionless variance of residence time distribution 15.17
�2
t Variance of residence time distribution 15.15

�A, �B, �T Standard deviations for individual variables Exam. 7.6
�residual Standard deviation after data fit Sec. 7.1.1
 Dimensionless reaction time Exam. 2.10
 Dimensionless time 5.30
 Mean exposure time 11.39
 Transformed time for an anionic polymerization 13.35
� Denotes a benzene ring in chemical formulas Prob. 2.5
�̂�A Fugacity coefficient of component A 7.30
�A Molar flux of component A 3.6
( Vector form of �A 3.9
) Fluctuating velocity vector in turbulent flow 9.12
! Proportionality factor relating concentrations of

consecutive chain lengths
Sec. 13.4.2

Special Characters
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0 Zero matrix 2.42
0� Location just before reactor entrance Exam. 9.3
0þ Location just after reactor entrance Exam. 9.3
0M Zero molecule 1.12
� Denotes an arbitrary segment of a polymer chain Sec. 13.1.1
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. Denotes free radical 13.39
£ Laplace transformation operator Exam. 15.8

Subscripts

Symbol Description

Equation

where used

A Refers to component A 1.6
act Refers to activation of a chemical reaction 5.1
actual Refers to actual operating conditions in the reactor 3.25
adiabatic Refers to adiabatic operation 5.20
azeotrope Refers to conditions where the monomers and

polymer have the same composition
13.43

b Refers to the bubble phase in a fluidized bed 11.46
B Refers to component B 1.12
batch Denotes final time or concentration in a batch

reactor
Exam. 2.5

C Refers to component C 1.19
catalyst mass Refers to reaction rate based on catalyst mass Exam. 10.9
data Refers to set of experimental of data 5.2
dead Refers to terminated polymer chains Sec. 13.4.2
e Refers to the emulsion phase in a gas fluidized bed 11.45
E Refers to component E Sec. 2.2
empty Refers to condition when reactor becomes empty 14.10
experiment Refers to experimental data 7.16
ext Refers to external conditions 5.14
first Refers to first appearance time Sec. 15.2.1
full Refers to conditions when reactor becomes full Exam. 14.3
full-scale Refers to production facility 1.57
hold Refers to holding time without flow during a startup 14.6
i Denotes discretized radial position 8.21
I–IV Refers to reactions I–IV (Roman numerals) Sec. 2.1
in Refers to condition at reactor inlet 1.2
inflect Refers to a value at the inflection point 11.24
inlet Denotes condition at reactor inlet 3.25
instant Refers to properties of polymer being made at a

particular time in a batch reactor or location in a
tubular reactor

Exam. 13.9

j Refers to jth data point 5.2
j Denotes discretized axial position 9.27
l Denotes chain length of polymer 13.1
L Refers to scaleup of the tube length 3.31
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large Refers to large vessel 1.60
live Refers to population of growing polymer chains 13.40
mass Refers to variables that have mass rather than

molar units
1.3

max Refers to maximum value Exam. 2.4
min Denotes minimum value App. 4
mix Denotes mixing-cup average Sec. 8.1.2
mix Refers to property of a mixture Sec. 7.2.1
monomer Denotes monomer property Exam. 4.3
new Refers to value at new time or point 2.12
old Refers to value at the old time or point 2.12
open Denotes characteristics of an open system 15.41
optimal Refers to optimal value 5.5
out Refers to condition at reactor outlet 1.2
pilot-scale Refers to pilot facility 1.57
polymer Denotes polymer property 4.7
r Refers to reverse reaction 1.14
r Refers to radial direction 8.1
R Refers to component R 1.12
R Refers to scaleup of the tube radius 3.31
Reactions Denotes summation over all reactions 2.8
ref Refers to reference or standard conditions 5.15
rescaled Denotes property of a system that has been

rescaled to have the correct value for �tt
15.42

S Refers to component S 1.12
set Refers to controller setpoint Exam. 14.8
small Refers to small vessel 1.60
spatial Refers to a spatial average Prob. 8.5
species Refers to the collection of chemical

components
7.20

surface area Refers to reaction rate based on catalyst
surface area

Exam. 10.9

trans Refers to transpired component 3.46
tubes Refers to number of tubes in parallel 3.31
wall Refers to conditions at the wall 8.55
z Refers to axial direction Sec. 8.2

1 Refers to complete conversion Exam. 2.10
1 Refers to a large ratio of tube to packing

diameter
9.6

0 Denotes an initial value 1.23
1, 2 Refers to reactors 1 and 2 in a composite system 4.14
1, 2 Refers to polymer aliquots being mixed 13.14
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Superscripts

Symbol Description

Equation

where used

m Reaction rate parameter 7.3
n Reaction rate parameter 7.3
order Reaction order 1.29
r Reaction rate parameter 7.3
s Reaction rate parameter 7.3
* Denotes dimensionless variable 1.29
* Denotes value at interface 11.4
^ Denotes average with respect to volume 1.3
0 Denotes external heating area per unit length of tube 5.22
0 Denotes interfacial contact area per unit length of

reactor
11.27

Abbreviations

CSTR Continuous-flow stirred tank reactor
CVD Chemical vapor deposition
MWD Molecular weight distribution
NEMS Nanoelectromechanical system
NPV Net present value
ODE Ordinary differential equation
PD Polydispersity
PDE Partial differential equation
PFR Piston flow reactor
RND Random number with range 0 to 1
RTD Residence time distribution

Basic Language Code

Program segments and occasional variables within the text are set in a fixed-width
font to indicate that they represent computer code.

The Basic language does not allow continuation statements. Instead, long state-
ments give long lines of code. Margin requirements for printing require continua-
tions. These are denoted by a plus sign, þ, in the first column of the code. To run
a program, delete the þ and move the code to the end of the previous line. See
Appendix 7 for examples.
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CHAPTER 1

ELEMENTARY REACTIONS IN
IDEAL REACTORS

Material and energy balances are the heart of chemical engineering. Combine
them with chemical kinetics and they are the heart of chemical reaction engineer-
ing. Add transport phenomena and you have the intellectual basis for chemical
reactor design. This chapter begins the study of chemical reactor design by com-
bining material balances with kinetic expressions for elementary chemical reac-
tions. The resulting equations are then solved for several simple but important
types of chemical reactors. More complicated reactions and more complicated
reactors are treated in subsequent chapters, but the real core of chemical reactor
design is here in Chapter 1. Master it, and the rest will be easy.

1.1 MATERIAL BALANCES

Consider any region of space that has a finite volume and prescribed boundaries
that unambiguously separate the region from the rest of the universe. Such
a region is called a control volume, and the laws of conservation of mass
and energy may be applied to it. We ignore nuclear processes so that there
are separate conservation laws for mass and energy. For mass,

Rate at which mass enters the volume

¼ Rate at which mass leaves the volume

þRate at which mass accumulates within the volume

ð1:1Þ

where ‘‘entering’’ and ‘‘leaving’’ apply to the flow of material across the bound-
aries. See Figure 1.1. Equation (1.1) is an overall mass balance that applies to the
total mass within the control volume, as measured in kilograms or pounds. It
can be written as

ðQmassÞin ¼ ðQmassÞout þ
dI

dt
ð1:2Þ

1
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where Qmass is the mass flow rate and I is the mass inventory in the system. We
often write this equation using volumetric flow rates and volumes rather than
mass flow rates and mass inventories:

Qin�in ¼ Qout�out þ dð�̂�VÞ
dt

ð1:3Þ

where Q is the volumetric flow rate (volume/time) and � is the mass density
(mass/volume). Note that �̂� is the average mass density in the control volume
so that �̂�V ¼ I .

Equations (1.1) to (1.3) are different ways of expressing the overall mass bal-
ance for a flow system with variable inventory. In steady-state flow, the deriva-
tives vanish, the total mass in the system is constant, and the overall mass
balance simply states that input equals output. In batch systems, the flow
terms are zero, the time derivative is zero, and the total mass in the system
remains constant. We will return to the general form of Equation (1.3) when
unsteady reactors are treated in Chapter 14. Until then, the overall mass balance
merely serves as a consistency check on more detailed component balances that
apply to individual substances.

In reactor design, we are interested in chemical reactions that transform one
kind of mass into another. A material balance can be written for each compo-
nent; however, since chemical reactions are possible, the rate of formation of
the component within the control volume must now be considered. The compo-
nent balance for some substance A is

Rate at which component A enters the volume

þ net rate at which component A is formed by reaction

¼ rate at which component A leaves the volume

þ rate at which component A accumulates within the volume ð1:4Þ

d (Vρ)
dt

Volume = V

Average density = ρ̂

ˆ
Accumulation =

Total mass
output = Qout ρout

Total mass
input = Qin ρin

FIGURE 1.1 Control volume for total mass balance.
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or, more briefly,

Inputþ formation ¼ outputþ accumulation ð1:5Þ
See Figure 1.2. A component balance can be expressed in mass units, and this is
done for materials such as polymers that have ill-defined molecular weights.
Usually, however, component A will be a distinct molecular species, and it is
more convenient to use molar units:

Qinain þ R̂R AV ¼ Qoutaout þ dðVâaÞ
dt

ð1:6Þ

where a is the concentration or molar density of component A in moles per
volume, and R̂R A is the net rate of formation of component A in moles per
volume per time. There may be several chemical reactions occurring simulta-
neously, some of which generate A while others consume it. R̂R A is the net
rate and will be positive if there is net production of component A and negative
if there is net consumption. Unless the system is very well mixed, concentrations
and reaction rates will vary from point to point within the control volume. The
component balance applies to the entire control volume so that âa and R̂R A denote
spatial averages.

A version of Equation (1.4) can be written for each component, A, B, C, . . . :
If these equations are written in terms of mass and then summed over all com-
ponents, the sum must equal Equation (1.1) since the net rate of mass formation
must be zero. When written in molar units as in Equation (1.6), the sum need not
be zero since chemical reactions can cause a net increase or decrease in the
number of moles.

To design a chemical reactor, the average concentrations, âa, b̂b, ĉc, . . . , or at
least the spatial distribution of concentrations, must be found. Doing this is
simple for a few special cases of elementary reactions and ideal reactors that

Average concentration = a
Inventory = Va
Average reaction rate = �A

Accumulation = 

ˆ

ˆ
ˆ

d (Va)
dt

ˆ

Total component
output = Qout aout

Total component
input = Qin ain

FIGURE 1.2 Control volume for component balance.
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are considered here in Chapter 1. We begin by discussing elementary reactions of
which there are just a few basic types.

1.2 ELEMENTARY REACTIONS

Consider the reaction of two chemical species according to the stoichiometric
equation

Aþ B ! P ð1:7Þ
This reaction is said to be homogeneous if it occurs within a single phase. For the
time being, we are concerned only with reactions that take place in the gas phase
or in a single liquid phase. These reactions are said to be elementary if they result
from a single interaction (i.e., a collision) between the molecules appearing on
the left-hand side of Equation (1.7). The rate at which collisions occur between
A and B molecules should be proportional to their concentrations, a and b. Not
all collisions cause a reaction, but at constant environmental conditions (e.g.,
temperature) some definite fraction should react. Thus, we expect

R ¼ k½A�½B� ¼ kab ð1:8Þ
where k is a constant of proportionality known as the rate constant.

Example 1.1: Use the kinetic theory of gases to rationalize the functional
form of Equation (1.8).

Solution: We suppose that a collision between an A and a B molecule is
necessary but not sufficient for reaction to occur. Thus, we expect

R ¼ CAB fR
Av

ð1:9Þ

where CAB is the collision rate (collisions per volume per time) and fR is the
reaction efficiency. Avogadro’s number, Av, has been included in Equation
(1.9) so that R will have normal units, mol/(m3Es), rather than units of mole-
cules/(m3Es). By hypothesis, 0< fR<1.

The molecules are treated as rigid spheres having radii rA and rB. They
collide if they approach each other within a distance rAþ rB. A result from
kinetic theory is

CAB ¼ 8�RgTðmA þmBÞ
AvmAmB

� �1=2
ðrA þ rBÞ2Av2ab ð1:10Þ

where Rg is the gas constant, T is the absolute temperature, and mA and mB
are the molecular masses in kilograms per molecule. The collision rate is
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proportional to the product of the concentrations as postulated in Equation
(1.8). The reaction rate constant is

k ¼ 8�RgTðmA þmBÞ
AvmAmB

� �1=2
ðrA þ rBÞ2Av fR ð1:11Þ

Collision theory is mute about the value of fR. Typically, fR� 1, so that the
number of molecules colliding is much greater than the number reacting.
See Problem 1.2. Not all collisions have enough energy to produce a reaction.
Steric effects may also be important. As will be discussed in Chapter 5, fR is
strongly dependent on temperature. This dependence usually overwhelms
the T1/2 dependence predicted for the collision rate.

Note that the rate constant k is positive so that R is positive. R is the rate of
the reaction, not the rate at which a particular component reacts. Components A
and B are consumed by the reaction of Equation (1.7) and thus are ‘‘formed’’ at
a negative rate:

R A ¼ R B ¼ � kab
while P is formed at a positive rate:

R P ¼ þ kab
The sign convention we have adopted is that the rate of a reaction is always posi-
tive. The rate of formation of a component is positive when the component is
formed by the reaction and is negative when the component is consumed.

A general expression for any single reaction is

0M ! �AAþ �BBþ � � � þ �RRþ �SSþ � � � ð1:12Þ

As an example, the reaction 2H2 þO2 ! 2H2O can be written as

0M !�2H2 �O2 þ 2H2O

This form is obtained by setting all participating species, whether products or
reactants, on the right-hand side of the stoichiometric equation. The remaining
term on the left is the zero molecule, which is denoted by 0M to avoid confusion
with atomic oxygen. The �A, �B, . . . terms are the stoichiometric coefficients for
the reaction. They are positive for products and negative for reactants. Using
them, the general relationship between the rate of the reaction and the rate of
formation of component A is given by

R A ¼ �AR ð1:13Þ
The stoichiometric coefficients can be fractions. However, for elementary reac-
tions, they must be small integers, of magnitude 2, 1, or 0. If the reaction of
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Equation (1.12) were reversible and elementary, its rate would be

R ¼ kf ½A���A ½B���B � � � � kr½R��R ½S��S ð1:14Þ

and it would have an equilibrium constant

K ¼ kf
kr
¼ ½A��A ½B��B . . . ½R��R ½S��S ¼ ½R��R ½S��S . . .

½A���A ½B���B . . . ð1:15Þ

where A, B, . . . are reactants; R, S, . . . are products; kf is the rate constant for the
forward reaction; and kr is the rate constant for the reverse reaction.

The functional form of the reaction rate in Equation (1.14) is dictated by the
reaction stoichiometry, Equation (1.12). Only the constants kf and kr can be
adjusted to fit the specific reaction. This is the hallmark of an elementary reac-
tion; its rate is consistent with the reaction stoichiometry. However, reactions
can have the form of Equation (1.14) without being elementary.

As a shorthand notation for indicating that a reaction is elementary, we shall
include the rate constants in the stoichiometric equation. Thus, the reaction

Aþ B ���! ���
kf

kr

2C

is elementary, reversible, and has the following rate expression:

R ¼ kf ab� krc2

We deal with many reactions that are not elementary. Most industrially
important reactions go through a complex kinetic mechanism before the final
products are reached. The mechanism may give a rate expression far different
than Equation (1.14), even though it involves only short-lived intermediates
that never appear in conventional chemical analyses. Elementary reactions are
generally limited to the following types.

1.2.1 First-Order, Unimolecular Reactions

A �!k Products R ¼ ka ð1:16Þ
Since R has units of moles per volume per time and a has units of moles per
volume, the rate constant for a first-order reaction has units of reciprocal
time: e.g., s�1. The best example of a truly first-order reaction is radioactive
decay; for example,

U238! Th234 þHe4

since it occurs spontaneously as a single-body event. Among strictly chemical
reactions, thermal decompositions such as

CH3OCH3! CH4 þ COþH2
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follow first-order kinetics at normal gas densities. The student of chemistry will
recognize that the complete decomposition of dimethyl ether into methane,
carbon monoxide, and hydrogen is unlikely to occur in a single step. Short-
lived intermediates will exist; however, since the reaction is irreversible, they
will not affect the rate of the forward reaction, which is first order and has
the form of Equation (1.16). The decomposition does require energy, and colli-
sions between the reactant and other molecules are the usual mechanism for
acquiring this energy. Thus, a second-order dependence may be observed for
the pure gas at very low densities since reactant molecules must collide with
themselves to acquire energy.

1.2.2 Second-Order Reactions, One Reactant

2A �!k Products R ¼ ka2 ð1:17Þ
where k has units of m3 mol�1 s�1. It is important to note that R A ¼ �2ka2
according to the convention of Equation (1.13).

A gas-phase reaction believed to be elementary and second order is

2HI! H2 þ I2

Here, collisions between two HI molecules supply energy and also supply the
reactants needed to satisfy the observed stoichiometry.

1.2.3 Second-Order Reactions, Two Reactants

Aþ B �!k Products R ¼ kab ð1:18Þ
Liquid-phase esterifications such as

C2H5OHþ CH3C
k
O

OH! C2H5OC
k
O

CH3 þH2O

typically follow second-order kinetics.

1.2.4 Third-Order Reactions

Elementary third-order reactions are vanishingly rare because they require a
statistically improbable three-way collision. In principle, there are three types
of third-order reactions:

3A �!k Products R ¼ ka3
2Aþ B �!k Products R ¼ ka2b
Aþ Bþ C �!k Products R ¼ kabc

ð1:19Þ
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Ahomogeneous gas-phase reaction that follows a third-order kinetic scheme is

2NOþO2! 2NO2 R ¼ k½NO�2½O2�
although the mechanism is believed to involve two steps1 and thus is not
elementary.

1.3 REACTION ORDER AND MECHANISM

As suggested by these examples, the order of a reaction is the sum of the expo-
nents m, n, . . . in

R ¼ kambn . . . Reaction order ¼ mþ nþ � � � ð1:20Þ
This definition for reaction order is directly meaningful only for irreversible or
forward reactions that have rate expressions in the form of Equation (1.20).
Components A, B, . . . are consumed by the reaction and have negative stoichio-
metric coefficients so that m ¼ ��A, n ¼ ��B, . . . are positive. For elementary
reactions, m and n must be integers of 2 or less and must sum to 2 or less.

Equation (1.20) is frequently used to correlate data from complex reactions.
Complex reactions can give rise to rate expressions that have the form of
Equation (1.20), but with fractional or even negative exponents. Complex reac-
tions with observed orders of 1/2 or 3/2 can be explained theoretically based on
mechanisms discussed in Chapter 2. Negative orders arise when a compound
retards a reaction—say, by competing for active sites in a heterogeneously cat-
alyzed reaction—or when the reaction is reversible. Observed reaction orders
above 3 are occasionally reported. An example is the reaction of styrene with
nitric acid, where an overall order of 4 has been observed.2 The likely explana-
tion is that the acid serves both as a catalyst and as a reactant. The reaction is far
from elementary.

Complex reactions can be broken into a number of series and parallel elemen-
tary steps, possibly involving short-lived intermediates such as free radicals.
These individual reactions collectively constitute the mechanism of the complex
reaction. The individual reactions are usually second order, and the number of
reactions needed to explain an observed, complex reaction can be surprisingly
large. For example, a good model for

CH4 þ 2O2 ! CO2 þ 2H2O

will involve 20 or more elementary reactions, even assuming that the indicated
products are the only ones formed in significant quantities. A detailed model
for the oxidation of toluene involves 141 chemical species in 743 elementary
reactions.3

As a simpler example of a complex reaction, consider (abstractly, not experi-
mentally) the nitration of toluene to give trinitrotoluene:

Tolueneþ 3HNO3! TNTþ 3H2O
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or, in shorthand,

Aþ 3B! Cþ 3D

This reaction cannot be elementary. We can hardly expect three nitric acid mole-
cules to react at all three toluene sites (these are the ortho and para sites; meta
substitution is not favored) in a glorious, four-body collision. Thus, the
fourth-order rate expression R ¼ kab3 is implausible. Instead, the mechanism
of the TNT reaction involves at least seven steps (two reactions leading to
ortho- or para-nitrotoluene, three reactions leading to 2,4- or 2,6-dinitrotoluene,
and two reactions leading to 2,4,6-trinitrotoluene). Each step would require only
a two-body collision, could be elementary, and could be governed by a second-
order rate equation. Chapter 2 shows how the component balance equations can
be solved for multiple reactions so that an assumed mechanism can be tested
experimentally. For the toluene nitration, even the set of seven series and parallel
reactions may not constitute an adequate mechanism since an experimental
study4 found the reaction to be 1.3 order in toluene and 1.2 order in nitric
acid for an overall order of 2.5 rather than the expected value of 2.

An irreversible, elementary reaction must have Equation (1.20) as its rate
expression. A complex reaction may have an empirical rate equation with the
form of Equation (1.20) and with integral values for n and m, without being ele-
mentary. The classic example of this statement is a second-order reaction where
one of the reactants is present in great excess. Consider the slow hydrolysis of
an organic compound in water. A rate expression of the form

R ¼ k½water�½organic�
is plausible, at least for the first step of a possibly complex mechanism. Suppose
[organic]� [water] so that the concentration of water does not change appreci-
ably during the course of the reaction. Then the water concentration can be com-
bined with k to give a composite rate constant that is approximately constant.
The rate expression appears to be first order in [organic]:

R ¼ k½water�½organic� ¼ k0½organic� ¼ k0a

where k0 ¼ k½water� is a pseudo-first-order rate constant. From an experimental
viewpoint, the reaction cannot be distinguished from first order even though
the actual mechanism is second order. Gas-phase reactions also appear first
order when one reactant is dilute. Kinetic theory still predicts the collision
rates of Equation (1.10), but the concentration of one species, call it B, remains
approximately constant. The observed rate constant is

k0 ¼ 8�RgTðmA þmBÞ
AvmAmB

� �1=2
ðrA þ rBÞ2Av fRb

which differs by a factor of b from Equation (1.11).
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The only reactions that are strictly first order are radioactive decay reactions.
Among chemical reactions, thermal decompositions may seem first order, but
an external energy source is generally required to excite the reaction. As noted
earlier, this energy is usually acquired by intermolecular collisions. Thus, the
reaction rate could be written as

R ¼ k½reactant molecules�½all molecules�
The concentration of all molecules is normally much higher than the concentra-
tion of reactant molecules, so that it remains essentially constant during the
course of the reaction. Thus, what is truly a second-order reaction appears to
be first order.

1.4 IDEAL, ISOTHERMAL REACTORS

There are four kinds of ideal reactors:

1. The batch reactor

2. The piston flow reactor (PFR)

3. The perfectly mixed, continuous-flow stirred tank reactor (CSTR)

4. The completely segregated, continuous-flow stirred tank reactor

This chapter discusses the first three types, which are overwhelmingly the most
important. The fourth type is interesting theoretically, but has limited practical
importance. It is discussed in Chapter 15.

1.4.1 The Ideal Batch Reactor

This is the classic reactor used by organic chemists. The typical volume in glass-
ware is a few hundred milliliters. Reactants are charged to the system, rapidly
mixed, and rapidly brought up to temperature so that reaction conditions are
well defined. Heating is carried out with an oil bath or an electric heating
mantle. Mixing is carried out with a magnetic stirrer or a small mechanical agi-
tator. Temperature is controlled by regulating the bath temperature or by allow-
ing a solvent to reflux.

Batch reactors are the most common type of industrial reactor and may have
volumes well in excess of 100,000 liters. They tend to be used for small-volume
specialty products (e.g., an organic dye) rather than large-volume commodity
chemicals (e.g., ethylene oxide) that are normally reacted in continuous-flow
equipment. Industrial-scale batch reactors can be heated or cooled by external
coils or a jacket, by internal coils, or by an external heat exchanger in a
pump-around loop. Reactants are often preheated by passing them through
heat exchangers as they are charged to the vessel. Heat generation due to the
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reaction can be significant in large vessels. Refluxing is one means for controlling
the exotherm. Mixing in large batch vessels is usually carried out with a mechan-
ical agitator, but is occasionally carried out with an external pump-around loop
where the momentum of the returning fluid causes the mixing.

Heat and mass transfer limitations are rarely important in the laboratory
but may emerge upon scaleup. Batch reactors with internal variations in tem-
perature or composition are difficult to analyze and remain a challenge to
the chemical reaction engineer. Tests for such problems are considered in
Section 1.5. For now, assume an ideal batch reactor with the following charac-
teristics:

1. Reactants are quickly charged, mixed, and brought to temperature at the
beginning of the reaction cycle.

2. Mixing and heat transfer are sufficient to assure that the batch remains com-
pletely uniform throughout the reaction cycle.

A batch reactor has no input or output of mass after the initial charging. The
amounts of individual components may change due to reaction but not due to
flow into or out of the system. The component balance for component A,
Equation (1.6), reduces to

dðVaÞ
dt
¼ R AV ð1:21Þ

Together with similar equations for the other reactive components, Equation
(1.21) constitutes the reactor design equation for an ideal batch reactor. Note
that âa and R̂R A have been replaced with a and R A because of the assumption
of good mixing. An ideal batch reactor has no temperature or concentration gra-
dients within the system volume. The concentration will change with time
because of the reaction, but at any time it is everywhere uniform. The tempera-
ture may also change with time, but this complication will be deferred until
Chapter 5. The reaction rate will vary with time but is always uniform through-
out the vessel. Here in Chapter 1, we make the additional assumption that the
volume is constant. In a liquid-phase reaction, this corresponds to assuming
constant fluid density, an assumption that is usually reasonable for preliminary
calculations. Industrial gas-phase reactions are normally conducted in flow sys-
tems rather than batch systems. When batch reactors are used, they are normally
constant-volume devices so that the system pressure can vary during the batch
cycle. Constant-pressure devices were used in early kinetic studies and are occa-
sionally found in industry. The constant pressure at which they operate is
usually atmospheric pressure.

The ideal, constant-volume batch reactor satisfies the following component
balance:

da

dt
¼ R A ð1:22Þ
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Equation (1.22) is an ordinary differential equation or ODE. Its solution
requires an initial condition:

a ¼ a0 at t ¼ 0 ð1:23Þ
WhenR A depends on a alone, the ODE is variable-separable and can usually be
solved analytically. If R A depends on the concentration of several components
(e.g., a second-order reaction of the two reactants variety,R A ¼ �kabÞ, versions
of Equations (1.22) and (1.23) are written for each component and the resulting
equations are solved simultaneously.

First-Order Batch Reactions. The reaction is

A �!k Products

The rate constant over the reaction arrow indicates that the reaction is elemen-
tary, so that

R ¼ ka
R A ¼ �AR ¼ �ka

which agrees with Equation (1.16). Substituting into Equation (1.22) gives

da

dt
þ ka ¼ 0

Solving this ordinary differential equation and applying the initial condition of
Equation (1.23) gives

a ¼ a0e�kt ð1:24Þ
Equation (1.24) is arguably the most important result in chemical reaction

engineering. It shows that the concentration of a reactant being consumed by
a first-order batch reaction decreases exponentially. Dividing through by a0
gives the fraction unreacted,

YA ¼ a

a0
¼ e�kt ð1:25Þ

and

XA ¼ 1� a
a0
¼ 1� e�kt ð1:26Þ

gives the conversion. The half-life of the reaction is defined as the time necessary
for a to fall to half its initial value:

t1=2 ¼ 0:693=k ð1:27Þ
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The half-life of a first-order reaction is independent of the initial concentration.
Thus, the time required for the reactant concentration to decrease from a0 to
a0/2 is the same as the time required to decrease from a0/2 to a0/4. This is not
true for reactions other than first order.

Second-Order Batch Reactions with One Reactant. We choose to write the
stoichiometric equation as

2A �!k=2 Products

Compare this with Equation (1.17) and note the difference in rate constants.
For the current formulation,

R ¼ ðk=2Þa2

R A ¼ �AR ¼ � 2R ¼ �ka2

Substituting into Equation (1.21) gives

da

dt
þ ka2 ¼ 0

Solution gives

�a�1 þ C ¼ �kt
where C is a constant. Applying the initial condition gives C ¼ ða0Þ�1 and

a

a0
¼ 1

1þ a0kt ð1:28Þ

Observe that a0k has units of reciprocal time so that a0kt is dimensionless. The
grouping a0kt is the dimensionless rate constant for a second-order reaction,
just as kt is the dimensionless rate constant for a first-order reaction.
Equivalently, they can be considered as dimensionless reaction times. For reac-
tion rates governed by Equation (1.20),

Dimensionless rate constant ¼ K� ¼ aorder�10 kt ð1:29Þ
With this notation, all first-order reactions behave as

a

a0
¼ e�K� ð1:30Þ

and all second-order reactions of the one-reactant type behave as

a

a0
¼ 1

1þ K� ð1:31Þ
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For the same value of K�, first-order reactions proceed much more rapidly than
second-order reactions. The reaction rate for a first-order reaction will decrease
to half its original value when the concentration has decreased to half the origi-
nal concentration. For a second-order reaction, the reaction rate will decrease
to a quarter the original rate when the concentration has decreased to half the
original concentration; compare Equations (1.16) and (1.17).

The initial half-life of a second-order reaction corresponds to a decrease from
a0 to a0/2 and is given by

t1=2 ¼ 1

a0k
ð1:32Þ

The second half-life, corresponding to a decrease from a0/2 to a0/4, is twice the
initial half-life.

Second-Order Batch Reactions with Two Reactants. The batch reaction is now

Aþ B �!k Products

R ¼ kab
R A ¼ �AR ¼ �R ¼ �kab

Substituting into Equation (1.22) gives

da

dt
þ kab ¼ 0

A similar equation can be written for component B:

db

dt
þ kab ¼ 0

The pair of equations can be solved simultaneously. A simple way to proceed is
to note that

da

dt
¼ db
dt

which is solved to give

a ¼ bþ C
where C is a constant of integration that can be determined from the initial
conditions for a and b. The result is

a� a0 ¼ b� b0 ð1:33Þ
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which states that A andB are consumed in equalmolar amounts as required by the
reaction stoichiometry. Applying this result to the ODE for component A gives

da

dt
þ kaða� a0 þ b0Þ ¼ 0

The equation is variable-separable. Integrating and applying the initial condition
gives

a

a0
¼ b0 � a0
b0 exp½ðb0 � a0Þkt� � a0 ð1:34Þ

This is the general result for a second-order batch reaction. The mathematical
form of the equation presents a problem when the initial stoichiometry is
perfect, a0 ¼ b0. Such problems are common with analytical solutions to
ODEs. Special formulas are needed for special cases.

One way of treating a special case is to carry out a separate derivation. For
the current problem, perfect initial stoichiometry means b ¼ a throughout the
reaction. Substituting this into the ODE for component A gives

da

dt
þ ka2 ¼ 0

which is the same as that for the one-reactant case of a second-order reaction,
and the solution is Equation (1.28).

An alternative way to find a special formula for a special case is to apply
L’Hospital’s rule to the general case. When b0! a0, Equation (1.34) has an
indeterminate form of the 0/0 type. Differentiating the numerator and denomi-
nator with respect to b0 and then taking the limit gives

a

a0
¼ lim
b0!a0

1

exp½ðb0 � a0Þkt� þ b0kt exp½ðb0 � a0Þkt�
� �

¼ 1

1þ a0kt
which is again identical to Equation (1.28).

Reactor Performance Measures. There are four common measures of reactor
performance: fraction unreacted, conversion, yield, and selectivity. The frac-
tion unreacted is the simplest and is usually found directly when solving the
component balance equations. It is aðtÞ=a0 for a batch reaction and aout=ain
for a flow reactor. The conversion is just 1 minus the fraction unreacted.
The terms conversion and fraction unreacted refer to a specific reactant. It
is usually the stoichiometrically limiting reactant. See Equation (1.26) for the
first-order case.

Batch reactors give the lowest possible fraction unreacted and the highest
possible conversion for most reactions. Batch reactors also give the best
yields and selectivities. These terms refer to the desired product. The molar
yield is the number of moles of a specified product that are made per mole
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of reactant charged. There is also a mass yield. Either of these yields can be
larger than 1. The theoretical yield is the amount of product that would be
formed if all of the reactant were converted to the desired product. This too
can be expressed on either a molar or mass basis and can be larger than 1.
Selectivity is defined as the fractional amount of the converted portion of a
reactant that is converted to the desired product. The selectivity will always
be 100% when there is only one reaction, even though the conversion may
be less than 100%. Selectivity is a trivial concept when there is only one reac-
tion, but becomes an important consideration when there are multiple reac-
tions. The following example illustrates a reaction with high conversion but
low selectivity.

Example 1.2: Suppose it is desired to make 1,4-dimethyl-2,3-dichloro-
benzene by the direct chlorination of para-xylene. The desired reaction is

p-xyleneþ Cl2! desired productþ 2HCl

A feed stream containing 40 mole percent p-xylene and 60 mole percent chlo-
rine was fed to the reactor. The results of one experiment in a batch reactor
gave the following results on a molar basis:

Component
Moles Output per
mole of mixed feed

p-xylene 0.001
Chlorine 0.210
Monochloroxylene 0.032
1,4-dimethyl-2,3-dichlorobenzene 0.131
Other dichloroxylenes 0.227
Trichloroxylene 0.009
Tetrachloroxylenes 0.001

Total 0.611

Compute various measures of reactor performance.

Solution: Some measures of performance based on xylene as the limiting
component are

Fraction unreacted¼ 0.001/0.4¼ 0.0025

Conversion¼ 1� 0.0025¼ 0.9975

Yield¼ 0.131/0.40¼ 0.3275 moles of product per mole of xylene charged

Percent of theoretical yield¼ 0.131/0.4 (100)¼ 32.8%

Selectivity¼ 0.131/[0.9975(0.40)] (100)¼ 32.83%
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This example expresses all the performance measures on a molar basis. The
mass yield of 1,4-dimethyl-2,3-dichlorobenzene sounds a bit better. It is
0.541 lb of the desired product per pound of xylene charged.

Note that the performance measures and definitions given here are the typical
ones, but other terms and other definitions are sometimes used. Be sure to ask
for the definition if there is any ambiguity.

1.4.2 Piston Flow Reactors

Continuous-flow reactors are usually preferred for long production runs of high-
volume chemicals. They tend to be easier to scaleup, they are easier to control,
the product is more uniform, materials handling problems are lessened, and the
capital cost for the same annual capacity is lower.

There are two important types of ideal, continuous-flow reactors: the piston
flow reactor or PFR, and the continuous-flow stirred tank reactor or CSTR.
They behave very differently with respect to conversion and selectivity. The
piston flow reactor behaves exactly like a batch reactor. It is usually visualized
as a long tube as illustrated in Figure 1.3. Suppose a small clump of material
enters the reactor at time t¼ 0 and flows from the inlet to the outlet. We suppose
that there is no mixing between this particular clump and other clumps that
entered at different times. The clump stays together and ages and reacts as it
flows down the tube. After it has been in the piston flow reactor for t seconds,
the clump will have the same composition as if it had been in a batch reactor for
t seconds. The composition of a batch reactor varies with time. The composition
of a small clump flowing through a piston flow reactor varies with time in the
same way. It also varies with position down the tube. The relationship between
time and position is

t ¼ z= �uu ð1:35Þ

where z denotes distance measured from the inlet of the tube and �uu is the velocity
of the fluid. Chapter 1 assumes steady-state operation so that the composition at
point z is always the same. It also assumes constant fluid density and constant
reactor cross section so that �uu is constant. The age of material at point z is t,
and the composition at this point is given by the constant-volume version of
the component balance for a batch reaction, Equation (1.22). All that has to
be done is to substitute t ¼ z= �uu: The result is

�uu
da

dz
¼ R A ð1:36Þ

Reactor
feed

Reactor
effluent

u

FIGURE 1.3 Piston flow reactor.
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The initial condition is that

a ¼ ain at z ¼ 0 ð1:37Þ

Only the notation is different from the initial condition used for batch reactors.
The subscripts in and out are used for flow reactors. The outlet concentration
is found by setting z¼L.

Example 1.3: Find the outlet concentration of component A from a piston
flow reactor assuming that A is consumed by a first-order reaction.

Solution: Equation (1.36) becomes

�uu
da

dz
¼ �ka

Integrating, applying the initial condition of Equation (1.37), and evaluating
the result at z¼L gives

aout ¼ ain expð�kL= �uuÞ ð1:38Þ
The quantity L= �uu has units of time and is the mean residence time, �tt: Thus, we
can write Equation (1.38) as

aout ¼ ain expð�k �tt Þ ð1:39Þ
where

�tt ¼ L= �uu ð1:40Þ
Equation (1.40) is a special case of a far more general result. The mean resi-

dence time is the average amount of time that material spends in a flow system.
For a system at steady state, it is equal to the mass inventory of fluid in the
system divided by the mass flow rate through the system:

�tt ¼ Mass inventory

Mass throughput
¼ �̂�V

�Q
ð1:41Þ

where �Q ¼ �outQout ¼ �inQin is a consequence of steady-state operation. For
the special case of a constant-density fluid,

�tt ¼ V=Q ð1:42Þ
where Q¼Qin¼Qout when the system is at steady-state and the mass density is
constant. This reduces to

�tt ¼ L= �uu ð1:43Þ
for a tubular reactor with constant fluid density and constant cross-sectional
area. Piston flow is a still more special case where all molecules have the same
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velocity and the same residence time. We could write �tt ¼ L=u for piston flow
since the velocity is uniform across the tube, but we prefer to use Equation
(1.43) for this case as well.

We now formalize the definition of piston flow. Denote position in the reac-
tor using a cylindrical coordinate system (r, �, z) so that the concentration at a
point is denoted as a(r, �, z) For the reactor to be a piston flow reactor (also called
plug flow reactor, slug flow reactor, or ideal tubular reactor), three conditions
must be satisfied:

1. The axial velocity is independent of r and � but may be a function of z,
Vzðr, �, zÞ ¼ �uuðzÞ.

2. There is complete mixing across the reactor so that concentration is a func-
tion of z alone; i.e., a(r, �, z)¼ a(z).

3. There is no mixing in the axial direction.

Here in Chapter 1 we make the additional assumptions that the fluid has con-
stant density, that the cross-sectional area of the tube is constant, and that
the walls of the tube are impenetrable (i.e., no transpiration through the
walls), but these assumptions are not required in the general definition of
piston flow. In the general case, it is possible for �uu, temperature, and pressure
to vary as a function of z. The axis of the tube need not be straight. Helically
coiled tubes sometimes approximate piston flow more closely than straight
tubes. Reactors with square or triangular cross sections are occasionally used.
However, in most of this book, we will assume that PFRs are circular tubes
of length L and constant radius R.

Application of the general component balance, Equation (1.6), to a steady-
state flow system gives

Qinain þ R̂R AV ¼ Qoutaout

While true, this result is not helpful. The derivation of Equation (1.6) used
the entire reactor as the control volume and produced a result containing the
average reaction rate, R̂R A. In piston flow, a varies with z so that the local reac-
tion rate also varies with z, and there is no simple way of calculating R̂R A.
Equation (1.6) is an overall balance applicable to the entire system. It is also
called an integral balance. It just states that if more of a component leaves the
reactor than entered it, then the difference had to have been formed inside the
reactor.

A differential balance written for a vanishingly small control volume, within
which R A is approximately constant, is needed to analyze a piston flow reactor.
See Figure 1.4. The differential volume element has volume �V, cross-sectional
area Ac, and length �z. The general component balance now gives

Moles inþmoles formed ¼ moles out
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or

QaðzÞ þR A�V ¼ Qaðzþ�zÞ

Note that Q ¼ �uuAc and �V ¼ Ac�z. Then

Q
aðzþ�zÞ � aðzÞ

�V
¼ �uu

aðzþ�zÞ � aðzÞ
�z

¼ R A

Recall the definition of a derivative and take the limit as �z! 0:

lim
�z!0

�uu
aðzþ�zÞ � aðzÞ

�z

� �
¼ �uu

da

dz
¼ R A ð1:44Þ

which agrees with Equation (1.36). Equation (1.36) was derived by applying a
variable transformation to an unsteady, batch reactor. Equation (1.44) was
derived by applying a steady-state component balance to a differential flow
system. Both methods work for this problem, but differential balances are the
more general approach and can be extended to multiple dimensions. However,
the strong correspondence between time in a batch reactor and position in a
piston flow reactor is very important. The composition at time t in a batch reac-
tor is identical to the composition at position z ¼ �uut in a piston flow reactor.
This correspondence—which extends beyond the isothermal, constant-density
case—is detailed in Table 1.1.

Example 1.4: Determine the reactor design equations for the various ele-
mentary reactions in a piston flow reactor. Assume constant temperature,
constant density, and constant reactor cross section. (Whether or not all
these assumptions are needed will be explored in subsequent chapters.)

Solution: This can be done by substituting the various rate equations into
Equation (1.36), integrating, and applying the initial condition of Equation
(1.37). Two versions of these equations can be used for a second-order reac-
tion with two reactants. Another way is to use the previous results for

aformed = �ADV

z z + Dz

Qa(z) Qa(z + Dz)

FIGURE 1.4 Differential element in a piston flow reactor.
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a batch reactor. Replace t with z/ �uu and a0 with ain. The result is a(z) for the
various reaction types.

For a first-order reaction,

aðzÞ
ain
¼ expð�kz= �uuÞ ð1:45Þ

For a second-order reaction with one reactant,

aðzÞ
ain
¼ 1

1þ ainkz= �uu ð1:46Þ

For a second-order reaction with two reactants,

aðzÞ
ain
¼ bin � ain
bin exp½ðbin � ainÞkz= �uu� � ain ð1:47Þ

The outlet concentration is found by setting z¼L.

Piston flow reactors and most other flow reactors have spatial variations
in concentration such as a¼ a(z). Such systems are called distributed. Their

TABLE 1.1 Relationships between Batch and Piston Flow Reactors

Batch reactors Piston flow reactors

Concentrations vary with time Concentrations vary with axial position

The composition is uniform at any time t The composition is uniform at any position z

Governing equation, (1.22) Governing equation, (1.44)

Initial condition, a0 Initial condition, ain

Final condition, a(t) Final condition, a(L)

Variable density, �(t) Variable density, �(z)

Time equivalent to position
in a piston flow reactor, t ¼ z= �uu

Position equivalent to time in a
batch reactor, z ¼ �uut

Variable temperature, T(t) Variable temperature, T(z)

Heat transfer to wall, Heat transfer to wall,

dqremoved ¼ hAwallðT � TwallÞdt dqremoved ¼ hð2�RÞðT � TwallÞdz
Variable wall temperature, TwallðtÞ Variable wall temperature, TwallðzÞ
Variable pressure, PðtÞ Pressure drop, PðzÞ
Variable volume (e.g., a
constant-pressure reactor), V(t)

Variable cross section, Ac(z)

Fed batch reactors, Qin 6¼ 0 Transpired wall reactors

Nonideal batch reactors may have
spatial variations in concentration

Nonideal tubular reactors may have
concentrations that vary in the r
and � directions
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behavior is governed by an ordinary differential equation when there is only one
spatial variable and by a partial differential equation (PDE) when there are two
or three spatial variables or when the system has a spatial variation and also
varies with time. We turn now to a special type of flow reactor where the
entire reactor volume is well mixed and has the same concentration, tempera-
ture, pressure, and so forth. There are no spatial variations in these parameters.
Such systems are called lumped and their behavior is governed by an algebraic
equation when the system is at steady state and by an ordinary differential equa-
tion when the system varies with time. The continuous-flow stirred tank reactor
or CSTR is the chemical engineer’s favorite example of a lumped system. It has
one lump, the entire reactor volume.

1.4.3 Continuous-Flow Stirred Tanks

Figure 1.5 illustrates a flow reactor in which the contents are mechanically agi-
tated. If mixing caused by the agitator is sufficiently fast, the entering feed will be
quickly dispersed throughout the vessel and the composition at any point will
approximate the average composition. Thus, the reaction rate at any point
will be approximately the same. Also, the outlet concentration will be identical
to the internal composition, aout ¼ âa:

There are only two possible values for concentration in a CSTR. The inlet
stream has concentration ain and everywhere else has concentration aout. The
reaction rate will be the same throughout the vessel and is evaluated at the
outlet concentration, R̂R A ¼ R Aðaout, bout, . . .Þ: For the single reactions consid-
ered in this chapter, R A continues to be related to R by the stoichiometric
coefficient and Equation (1.13). With R A known, the integral component
balance, Equation (1.6), now gives useful information. For component A,

Qain þR Aðaout, bout, . . .ÞV ¼ Qaout ð1:48Þ

����

���� ����

���	
���

����� �����

������ �

FIGURE 1.5 The classic CSTR: a continuous-flow stirred tank reactor with mechanical agitation.
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Note that we have assumed steady-state operation and set Q¼Qin¼Qout, which
assumes constant density. Dividing through by Q and setting �tt ¼ V=Q gives

ain þR Aðaout, bout, . . .Þ �tt ¼ aout ð1:49Þ
In the usual case, �tt and ain will be known. Equation (1.49) is an algebraic equa-
tion that can be solved for aout. If the reaction rate depends on the concentration
of more than one component, versions of Equation (1.49) are written for each
component and the resulting set of equations is solved simultaneously for the
various outlet concentrations. Concentrations of components that do not
affect the reaction rate can be found by writing versions of Equation (1.49)
for them. As for batch and piston flow reactors, stoichiometry is used to
relate the rate of formation of a component, say R C, to the rate of the reaction
R , using the stoichiometric coefficient �C, and Equation (1.13). After doing this,
the stoichiometry takes care of itself.

A reactor with performance governed by Equation (1.49) is a steady-state,
constant-density, perfectly mixed, continuous flow reactor. This mouthful
is usually shortened in the chemical engineering literature to CSTR (for
Continuous-flow Stirred Tank Reactor). In subsequent chapters, we will relax
the assumptions of steady state and constant density, but will still call it a
CSTR. It is also called an ideal mixer, a continuous-flow perfect mixer, or a
mixed flow reactor. This terminology is ambiguous in light of micromixing
theory, discussed in Chapter 15, but is well entrenched. Unless otherwise quali-
fied, we accept all these terms to mean that the reactor is perfectly mixed. Such a
reactor is sometimes called a perfect mixer. The term denotes instantaneous and
complete mixing on the molecular scale. Obviously, no real reactor can achieve
this ideal state, just as no tubular reactor can achieve true piston flow. However,
it is often possible to design reactors that very closely approach these limits.

Example 1.5: Determine the reactor design equations for elementary
reactions in a CSTR.

Solution: The various rate equations for the elementary reactions are sub-
stituted into Equation (1.49), which is then solved for aout.

For a first-order reaction, R A ¼ �ka: Set a¼ aout, substitute R A into
Equation (1.49), and solve for aout to obtain

aout
ain
¼ 1

1þ k�tt ð1:50Þ

For a second-order reaction with one reactant, R A ¼ �ka2: Equation (1.49)
becomes a quadratic in aout. The solution is

aout
ain
¼ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4aink�tt

p
2aink�tt

ð1:51Þ

The negative root was rejected since aout 	 0.
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For a second-order reaction with two reactants, R A ¼ R B ¼ �kab:
Write two versions of Equation (1.49), one for aout and one for bout. Solving
them simultaneously gives

aout
ain
¼ �1� ðbin � ainÞk

�ttþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbin � ainÞk �tt2 þ 4aink �tt

q
2aink�tt

ð1:52Þ

Again, a negative root was rejected. The simultaneous solution also produces
the stoichiometric relationship

bin � bout ¼ ain � aout ð1:53Þ

The above examples have assumed that ain and �tt are known. The solution then
gives aout. The case where ain is known and a desired value for aout is specified
can be easier to solve. The solution for �tt is

�tt ¼ aout � ain
R Aðaout, bout, . . .Þ ð1:54Þ

This result assumes constant density and is most useful when the reaction rate
depends on a single concentration, R A ¼ R AðaoutÞ:

Example 1.6: Apply Equation (1.54) to calculate the mean residence time
needed to achieve 90% conversion in a CSTR for (a) a first-order reaction,
(b) a second-order reaction of the type Aþ B! Products. The rate constant
for the first-order reaction is k¼ 0.1 s�1. For the second-order reaction,
kain¼ 0.1 s�1.

Solution: For the first-order reaction,R A ¼ �kaout ¼ �kð0:1ainÞ: Equation
(1.54) gives

�tt ¼ aout � ain�kaout ¼
0:1ain � ain
�kð0:1ainÞ ¼

9

k
¼ 90 s

For the second-order case,R A ¼ �kaoutbout: To use Equation (1.54), stoichio-
metry is needed to find the value for bout that corresponds to aout. Suppose for
example that B is in 50% excess so that bin¼ 1.5ain. Then bout¼ 0.6ain if
aout¼ 0.1ain. Equation (1.54) gives

�tt ¼ aout � ain
�kaoutbout ¼

0:1ain � ain
�kð0:1ainÞð0:6ainÞ ¼

15

kain
¼ 150 s
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1.5 MIXING TIMES AND SCALEUP

Suppose a homogeneous reaction is conducted in a pilot plant reactor that is
equipped with a variable speed agitator. Does changing the agitator speed
(say by 
 20%) change the outcome of the reaction? Does varying the addition
rate of reactants change the selectivity? If so, there is a potential scaleup prob-
lem. The reaction is sensitive to the mixing time, tmix.

The mixing time in a batch vessel is easily measured. To do this, add unmixed
ingredients and determine how long it takes for the contents of the vessel
to become uniform. For example, fill a vessel with plain water and start the
agitator. At time t¼ 0, add a small quantity of a salt solution. Measure the
concentration of salt at various points inside the vessel until it is constant
within measurement error or by some other standard of near equality. Record
the result as tmix. A popular alternative is to start with a weak acid solution
that contains an indicator so that the solution is initially colored. A small
excess of concentrated base is added quickly at one point in the system. The
mixing time, tmix, corresponds to the disappearance of the last bit of color.
The acid–base titration is very fast so that the color will disappear just as
soon as the base is distributed throughout the vessel. This is an example
where the reaction in the vessel is limited strictly by mixing. There is no kinetic
limitation. For very fast reactions such as combustion or acid–base neutraliza-
tion, no vessel will be perfectly mixed. The components must be transported
from point to point in the vessel by fluid flow and diffusion, and these transport
processes will be slower than the reaction. Whether a reactor can be considered
to be perfectly mixed depends on the speed of the reaction. What is effectively
perfect mixing is easy to achieve when the reaction is an esterification with a
half-life of several hours. It is impossible to achieve in an acid–base neutraliza-
tion with a half-life of microseconds. The requirement for perfect mixing in a
batch vessel is just that

tmix � t1=2 ð1:55Þ

When this relation is satisfied, the conversion will be limited by the reaction
kinetics, not by the mixing rate. As a practical matter, the assumption of perfect
mixing is probably reasonable when t1/2 is eight times larger than tmix.

Mixing times in mechanically agitated vessels typically range from a few
seconds in laboratory glassware to a few minutes in large industrial reactors.
The classic correlation by Norwood and Metzner5 for turbine impellers in
baffled vessels can be used for order of magnitude estimates of tmix.

In a batch vessel, the question of good mixing will arise at the start of the
batch and whenever an ingredient is added to the batch. The component bal-
ance, Equation (1.21), assumes that uniform mixing is achieved before any
appreciable reaction occurs. This will be true if Equation (1.55) is satisfied.
Consider the same vessel being used as a flow reactor. Now, the mixing time
must be short compared with the mean residence time, else newly charged
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material could flow out of the reactor before being thoroughly mixed with the
contents. A new condition to be satisfied is

tmix � �tt ð1:56Þ
In practice, Equation (1.56) will be satisfied if Equation (1.55) is satisfied since
a CSTR will normally operate with t1=2 � �tt:

The net flow though the reactor will be small compared with the circulating
flow caused by the agitator. The existence of the throughput has little influence
on the mixing time so that mixing time correlations for batch vessels can be used
for CSTRs as well.

In summary, we have considered three characteristic times associated with
a CSTR: tmix, t1/2, and �tt: Treating the CSTR as a perfect mixer is
reasonable provided that tmix is substantially shorter than the other charac-
teristic times.

Example 1.7: Suppose a pilot-scale reactor behaves as a perfectly mixed
CSTR so that Equation (1.49) governs the conversion. Will the assumption
of perfect mixing remain valid upon scaleup?

Solution: Define the throughput scaleup factor as

S ¼Mass flow through full-scale unit

Mass flow through pilot unit
¼ ð�QÞfull-scaleð�QÞpilot-scale

ð1:57Þ

Assume that the pilot-scale and full-scale vessels operate with the same inlet
density. Then � cancels in Equation (1.57) and

S ¼ Qfull-scale
Qpilot-scale

ðconstant densityÞ

Also assume that the pilot- and full-scale vessels will operate at the same
temperature. This means that R Aðaout, bout, . . .Þ and t1=2 will be the same for
the two vessels and that Equation (1.49) will have the same solution for aout
provided that �tt is held constant during scaleup. Scaling with a constant
value for the mean residence time is standard practice for reactors. If the
scaleup succeeds in maintaining the CSTR-like environment, the large and
small reactors will behave identically with respect to the reaction. Constant
residence time means that the system inventory, �̂�V, should also scale as S.
The inventory scaleup factor is defined as

SInventory ¼Mass inventory in the full-scale unit

Mass inventory in the pilot unit
¼ ð�̂�VÞfull-scaleð�̂�VÞpilot-scale

ð1:58Þ
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and

SInventory ¼ Vfull-scale
Vpilot-scale

ðconstant densityÞ

So, in the constant-density case, the inventory scaleup factor is the same as the
volumetric scaleup factor.

Unless explicitly stated otherwise, the throughput and inventory scaleup
factors will be identical since this means that the mean residence time will
be constant upon scaleup:

SInventory ¼ S ðconstant �tt Þ ð1:59Þ

These usually identical scaleup factors will be denoted as S.
It is common practice to use geometric similarity in the scaleup of stirred

tanks (but not tubular reactors). This means that the production-scale reactor
will have the same shape as the pilot-scale reactor. All linear dimensions such
as reactor diameter, impeller diameter, and liquid height will change by the
same factor, S1=3: Surface areas will scale as S2=3: Now, what happens to
tmix upon scaleup?

The correlation of Norwood and Metzner shows tmix to be a complex func-
tion of the Reynolds number, the Froude number, the ratio of tank-to-
impeller diameter, and the ratio of tank diameter to liquid level. However,
to a reasonable first approximation for geometrically similar vessels operating
at high Reynolds numbers,

ðNItmixÞLarge ¼ constant ¼ ðNItmixÞSmall ð1:60Þ

where NI is the rotational velocity of the impeller. This means that scaleup
with constant agitator speed will, to a reasonable approximation, give
constant tmix. The rub is that the power requirements for the agitator
will increase sharply in the larger vessel. Again, to a reasonable first
approximation for geometrically similar vessels operating at high Reynolds
numbers,

Power

�N3
I D

5
I

� �
Large

¼ Power

�N3
I D

5
I

� �
Small

ð1:61Þ

where DI is the impeller diameter and will scale as S1/3. If NI is held constant,
power will increase as D5

I ¼ S5=3: A factor of 10 increase in the linear dimen-
sions allows a factor of 1000 increase in throughput but requires a factor of
100,000 increase in agitator power! The horsepower per unit volume must
increase by a factor of 100 to maintain a constant tmix. Let us hope that
there is some latitude before the constraints of Equations (1.55) and (1.56)
are seriously violated. Most scaleups are carried out with approximately
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constant power per unit volume and this causes NI to decrease and tmix to
increase upon scaleup. See Problem 1.15.

The primary lesson from this example is that no process is infinitely scala-
ble. Sooner or later, additional scaleup becomes impossible, and further
increases in production cannot be single-train but must add units in parallel.
Fortunately for the economics of the chemical industry, the limit is seldom
reached.

1.6 BATCH VERSUS FLOW, AND TANK
VERSUS TUBE

Some questions that arise early in a design are: Should the reactor be batch or
continuous; and, if continuous, is the goal to approach piston flow or perfect
mixing?

For producing high-volume chemicals, flow reactors are usually preferred.
The ideal piston flow reactor exactly duplicates the kinetic behavior of the
ideal batch reactor, and the reasons for preferring one over the other involve
secondary considerations such as heat and mass transfer, ease of scaleup, and
the logistics of materials handling. For small-volume chemicals, the economics
usually favor batch reactors. This is particularly true when general-purpose
equipment can be shared between several products. Batch reactors are used
for the greater number of products, but flow reactors produce the overwhelm-
ingly larger volume as measured in tons.

Flow reactors are operated continuously; that is, at steady state with reac-
tants continuously entering the vessel and with products continuously leaving.
Batch reactors are operated discontinuously. A batch reaction cycle has periods
for charging, reaction, and discharging. The continuous nature of a flow reactor
lends itself to larger productivities and greater economies of scale than the cyclic
operation of a batch reactor. The volume productivity (moles of product per
unit volume of reactor) for batch systems is identical to that of piston flow reac-
tors and is higher than most real flow reactors. However, this volume productiv-
ity is achieved only when the reaction is actually occurring and not when the
reactor is being charged or discharged, being cleaned, and so on. Within the
class of flow reactors, piston flow is usually desired for reasons of productivity
and selectivity. However, there are instances where a close approach to piston
flow is infeasible or where a superior product results from the special reaction
environment possible in stirred tanks.

Although they are both flow reactors, there are large differences in the beha-
vior of PFRs and CSTRs. The reaction rate decreases as the reactants are con-
sumed. In piston flow, the reactant concentration gradually declines with
increasing axial position. The local rate is higher at the reactor inlet than at
the outlet, and the average rate for the entire reactor will correspond to some
average composition that is between ain and aout. In contrast, the entire
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volume of a CSTR is at concentration aout, and the reaction rate throughout the
reactor is lower than that at any point in a piston flow reactor going to the same
conversion.

Figures 1.6 and 1.7 display the conversion behavior for first-and second-order
reactions in a CSTR and contrast the behavior to that of a piston flow reactor. It
is apparent that piston flow is substantially better than the CSTR for obtaining
high conversions. The comparison is even more dramatic when made in terms of
the volume needed to achieve a given conversion; see Figure 1.8. The generaliza-
tion that

Conversion in a PFR>conversion in a CSTR

is true for most kinetic schemes. The important exceptions to this rule, autoca-
talytic reactions, are discussed in Chapter 2. A second generalization is

Selectivity in a PFR>selectivity in a CSTR

which also has exceptions.
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FIGURE 1.6 Relative performance of piston flow and continuous-flow stirred tank reactors for
first-order reactions.
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FIGURE 1.7 Relative performance of piston flow and continuous-flow stirred tank reactors for
second-order reactions.
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PROBLEMS

1.1. (a) Write the overall and component mass balances for an unsteady,
perfectly mixed, continuous flow reactor.

(b) Simplify for the case of constant reactor volume and for constant-
density, time-independent flow streams.

(c) Suppose there is no reaction but that the input concentration of some
key component varies with time according to Cin¼C0, t<0; Cin¼ 0,
t>0. Find Cout (t).

(d) Repeat (c) for the case where the key component is consumed by a
first-order reaction with rate constant k.

1.2. The homogeneous gas-phase reaction

NOþNO2Cl! NO2 þNOCl

is believed to be elementary with rate R ¼ k½NO�½NO2Cl�: Use the kinetic
theory of gases to estimate fR at 300 K. Assume rAþ rB¼ 3.5� 10�10m.
The experimentally observed rate constant at 300K is k¼ 8 m3/(molEs).

1.3. The data in Example 1.2 are in moles of the given component per mole of
mixed feed. These are obviously calculated values. Check their consis-
tency by using them to calculate the feed composition given that the
feed contained only para-xylene and chlorine. Is your result consistent
with the stated molar composition of 40% xylene and 60% chlorine?

1.4. Suppose that the following reactions are elementary. Write rate equations
for the reaction and for each of the components:

(a) 2A ���! ���
kf

kr

BþC

12

10

8

6

4

2

0
0 0.2 0.4 0.6 0.8 1

Conversion, X = 1 _ aout/ain

D
im

en
si

on
le

ss
 r

at
e 

co
ns

ta
nt

, k
V

/Q

CSTR

PFR

FIGURE 1.8 Comparison of reactor volume required for a given conversion for a first-order reac-
tion in a PFR and a CSTR.
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(b) 2A ���! ���
kf =2

kr

BþC

(c) BþC ���! ���
kf

kr

2A

(d) 2A �!kI BþC

BþC �!kII 2A

1.5. Determine a(t) for a first-order, reversible reaction, A >
kf

kr
B, in a batch

reactor.
1.6. Compare aðzÞ for first- and second-order reactions in a PFR. Plot the pro-

files on the same graph and arrange the rate constants so that the initial
and final concentrations are the same for the two reactions.

1.7. Equation (1.45) gives the spatial distribution of concentration, aðzÞ, in a
piston flow reactor for a component that is consumed by a first-order
reaction. The local concentration can be used to determine the local reac-
tion rate, R AðzÞ.
(a) Integrate the local reaction rate over the length of the reactor to

determine R̂R A.
(b) Show that this R̂R A is consistent with the general component balance,

Equation (1.6).
(c) To what value of a does R̂R A correspond?
(d) At what axial position does this average value occur?
(e) Now integrate a down the length of the tube. Is this spatial average

the same as the average found in part (c)?

1.8. Consider the reaction

AþB �!k P

with k¼ 1m3/(mol�s). Suppose bin¼ 10mol/m3. It is desired to achieve
bout¼ 0.01mol/m3.
(a) Find the mean residence time needed to achieve this value, assuming

piston flow and ain¼ bin.
(b) Repeat (a) assuming that the reaction occurs in a CSTR.
(c) Repeat (a) and (b) assuming ain¼ 10bin.

1.9. The esterification reaction

RCOOHþR0OH ���! ���
kf

kr

RCOOR0þH2O

can be driven to completion by removing the water of condensation. This
might be done continuously in a stirred tank reactor or in a horizontally
compartmented, progressive flow reactor. This type of reactor gives a rea-
sonable approximation to piston flow in the liquid phase while providing a
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vapor space for the removal of the by-product water. Suppose it is desired
to obtain an ester product containing not more than 1% (by mole) resi-
dual alcohol and 0.01% residual acid.
(a) What are the limits on initial stoichiometry if the product specifi-

cations are to be achieved?
(b) What value of aoutk �tt is needed in a CSTR?
(c) What value of aoutk �tt is needed in the progressive reactor?
(d) Discuss the suitability of a batch reactor for this situation.

1.10. Can an irreversible elementary reaction go to completion in a batch
reactor in finite time?

1.11. Write a plausible reaction mechanism, including appropriate rate
expressions, for the toluene nitration example in Section 1.3.

1.12. The reaction of trimethylamine with n-propyl bromide gives a
quaternary ammonium salt:

N(CH3)3þC3H7Br ! (CH3)3(C3H7)NBr

Suppose laboratory results at 110�C using toluene as a solvent show the
reaction to be second order with rate constant k¼ 5.6�10�7m3/(mol E s).
Suppose [N(CH3)3]0¼ [C3H7Br]0¼ 80mol/m3.
(a) Estimate the time required to achieve 99% conversion in a batch

reactor.
(b) Estimate the volume required in a CSTR to achieve 99% conversion

if a production rate of 100 kg/h of the salt is desired.
(c) Suggest means for increasing the productivity; that is, reducing the

batch reaction time or the volume of the CSTR.
1.13. Ethyl acetate can be formed from dilute solutions of ethanol and acetic

acid according to the reversible reaction

C2H5OHþ CH3COOH! C2H5OOCCH3 þH2O

Ethyl acetate is somewhat easier to separate from water than either etha-
nol or acetic acid. For example, the relatively large acetate molecule has
much lower permeability through a membrane ultrafilter. Thus, esterifi-
cation is sometimes proposed as an economical approach for recovering
dilute fermentation products. Suppose fermentation effluents are avail-
able as separate streams containing 3% by weight acetic acid and 5%
by weight ethanol. Devise a reaction scheme for generating ethyl acetate
using the reactants in stoichiometric ratio. After reaction, the ethyl acet-
ate concentration is increased first to 25% by weight using ultrafiltration
and then to 99% by weight using distillation. The reactants must ulti-
mately be heated for the distillation step. Thus, we can suppose both
the esterification and membrane separation to be conducted at 100�C.
At this temperature,

kf ¼ 8.0� 10�9m3/(mol E s)
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kr¼ 2.7� 10�9m3/(mol E s)

Determine �tt and aout for a CSTR that approaches equilibrium within 5%;
that is,

aout � aequil
ain � aequil ¼ 0:05

1.14. Rate expressions for gas-phase reactions are sometimes based on partial
pressures. A literature source5 gives k¼ 1.1�10�3mol/(cm3 E atm2 Eh) for
the reaction of gaseous sulfur with methane at 873K.

CH4 þ 2S2 ! CS2 þ 2H2S

where R ¼ kPCH4
PS2 mol=ðcm3 � hÞ. Determine k when the rate is based

on concentrations: R ¼ k½CH4�½S2�: Give k in SI units.

1.15. Example 1.7 predicted that power per unit volume would have to increase
by a factor of 100 in order to maintain the same mixing time for a 1000-
fold scaleup in volume. This can properly be called absurd. A more
reasonable scaleup rule is to maintain constant power per unit volume
so that a 1000-fold increase in reactor volume requires a 1000-
fold increase in power. Use the logic of Example 1.7 to determine the
increase in mixing time for a 1000-fold scaleup at constant power per
unit volume.
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SUGGESTIONS FOR FURTHER READING

There are many good texts on chemical engineering kinetics, and the reader may
wish to browse through several of them to see how they introduce the subject.
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A few recent books are

Levenspiel, O., Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1998.

Schmidt, L. D., The Engineering of Chemical Reactions, Oxford University Press, New York,
1998.

King, M. B. and Winterbottom, M. B., Reactor Design for Chemical Engineers, Chapman &
Hall, London, 1998.

A relatively advanced treatment is given in

Froment, F. and Bischoff, K. B., Chemical Reactor Analysis and Design, 2nd ed., Wiley,
New York, 1990.

An extended treatment of material balance equations, with substantial emphasis
on component balances in reacting systems, is given in

Reklaitis, G. V. and Schneider, D. R., Introduction to Material and Energy Balances, Wiley,
New York, 1983.

See also

Felder, R. M. and Rousseau, R. W., Elementary Principles of Chemical Processes, 3rd ed.,
Wiley, New York, 2000.
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CHAPTER 2

MULTIPLE REACTIONS IN
BATCH REACTORS

Chapter 1 treated single, elementary reactions in ideal reactors. Chapter 2
broadens the kinetics to include multiple and nonelementary reactions.
Attention is restricted to batch reactors, but the method for formulating the
kinetics of complex reactions will also be used for the flow reactors of
Chapters 3 and 4 and for the nonisothermal reactors of Chapter 5.

The most important characteristic of an ideal batch reactor is that the con-
tents are perfectly mixed. Corresponding to this assumption, the component bal-
ances are ordinary differential equations. The reactor operates at constant mass
between filling and discharge steps that are assumed to be fast compared with
reaction half-lives and the batch reaction times. Chapter 1 made the further
assumption of constant mass density, so that the working volume of the reactor
was constant, but Chapter 2 relaxes this assumption.

2.1 MULTIPLE AND NONELEMENTARY
REACTIONS

Multiple reactions involve two or more stoichiometric equations, each with its
own rate expression. They are often classified as consecutive as in

Aþ B �!kI C R I ¼ kIab
C þD �!kII E R II ¼ kII cd

ð2:1Þ

or competitive as in

Aþ B �!kI C R I ¼ kIab
AþD �!kII E R II ¼ kIIad

ð2:2Þ
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or completely independent as in

A �!kI B R I ¼ kIa
C þD �!kII E R II ¼ kIIcd

ð2:3Þ

Even reversible reactions can be regarded as multiple:

Aþ B �!kI C R I ¼ kIab
C �!kII Aþ B R II ¼ kII c

ð2:4Þ

Note that the Roman numeral subscripts refer to numbered reactions and
have nothing to do with iodine. All these examples have involved elementary
reactions. Multiple reactions and apparently single but nonelementary reactions
are called complex. Complex reactions, even when apparently single, consist of
a number of elementary steps. These steps, some of which may be quite fast,
constitute the mechanism of the observed, complex reaction. As an example,
suppose that

A �!kI Bþ C R I ¼ kIa
B �!kII D R II ¼ kIIb

ð2:5Þ

where kII � kI . Then the observed reaction will be

A ! C þD R ¼ ka ð2:6Þ

This reaction is complex even though it has a stoichiometric equation and
rate expression that could correspond to an elementary reaction. Recall the
convention used in this text: when a rate constant is written above the reaction
arrow, the reaction is assumed to be elementary with a rate that is consistent
with the stoichiometry according to Equation (1.14). The reactions in
Equations (2.5) are examples. When the rate constant is missing, the reaction
rate must be explicitly specified. The reaction in Equation (2.6) is an
example. This reaction is complex since the mechanism involves a short-lived
intermediate, B.

To solve a problem in reactor design, knowledge of the reaction mechanism
may not be critical to success but it is always desirable. Two reasons are:

1. Knowledge of the mechanism will allow fitting experimental data to a theo-
retical rate expression. This will presumably be more reliable on extrapolation
or scaleup than an empirical fit.

2. Knowing the mechanism may suggest chemical modifications and optimiza-
tion possibilities for the final design that would otherwise be missed.
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The best way to find a reaction mechanism is to find a good chemist. Chemical
insight can be used to hypothesize a mechanism, and the hypothesized mechan-
ism can then be tested against experimental data. If inconsistent, the mechanism
must be rejected. This is seldom the case. More typically, there are several
mechanisms that will fit the data equally well. A truly definitive study of reaction
mechanisms requires direct observation of all chemical species, including inter-
mediates that may have low concentrations and short lives. Such studies are
not always feasible. Working hypotheses for the reaction mechanisms must
then be selected based on general chemical principles and on analogous systems
that have been studied in detail. There is no substitute for understanding the
chemistry or at least for having faith in the chemist.

2.2 COMPONENT REACTION RATES FOR
MULTIPLE REACTIONS

The component balance for a batch reactor, Equation (1.21), still holds when
there are multiple reactions. However, the net rate of formation of the compo-
nent may be due to several different reactions. Thus,

R A ¼ �A, IR I þ �A, IIR II þ �A, IIIR III þ � � � ð2:7Þ
Here, we envision component A being formed by Reactions I, II, III, . . . , each of
which has a stoichiometric coefficient with respect to the component. Equivalent
to Equation (2.7) we can write

R A ¼
X

Reactions

�A, IR I ¼
X
I

�A,IR I ð2:8Þ

Obviously, �A, I ¼ 0 if component A does not participate in Reaction I.

Example 2.1: Determine the overall reaction rate for each component in
the following set of reactions:

Aþ B �!kI C
C �!kII 2E

2A �!kIII=2 D

Solution: We begin with the stoichiometric coefficients for each component
for each reaction:

�A, I ¼ �1 �A, II ¼ 0 �A, III ¼ �2
�B, I ¼ �1 �B, II ¼ 0 �B, III ¼ 0
�C, I ¼ þ1 �C, II ¼ �1 �C, III ¼ 0
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�D, I ¼ 0 �D, II ¼ 0 �D, III ¼ þ1
�E, I ¼ 0 �E, II ¼ þ2 �E, III ¼ 0

The various reactions are all elementary (witness the rate constants over the
arrows) so the rates are

R I ¼ kIab
R II ¼ kIIc
R III ¼ ðkIII=2Þa2

Now apply Equations (2.7) or (2.8) to obtain

R A ¼ �kIab� kIIIa2
R B ¼ �kIab
R C ¼ þkIab� kII c
R D ¼ ðkIII=2Þa2
R E ¼ þ2kII c

2.3 MULTIPLE REACTIONS IN
BATCH REACTORS

Suppose there are N components involved in a set of M reactions. Then
Equation (1.21) can be written for each component using the rate expressions
of Equations (2.7) or (2.8). The component balances for a batch reactor are

dðVaÞ
dt
¼ VR A ¼ Vð�A,I R I þ �A,IIR II þ �A,III R III þ � � � þM termsÞ

dðVbÞ
dt
¼ VR B ¼ Vð�B,I R I þ �B,IIR II þ �B,III R III þ � � �Þ

dðVcÞ
dt
¼ VR C ¼ Vð�C,IR I þ �C,IIR II þ �C,IIIR III þ � � �Þ

ð2:9Þ

This is a set of N ordinary differential equations, one for each component. The
component reaction rates will have M terms, one for each reaction, although
many of the terms may be zero. Equations (2.9) are subject to a set of N initial
conditions of the form

a ¼ a0 at t ¼ 0 ð2:10Þ

The number of simultaneous equations can usually be reduced to fewer than N
using the methodology of Section 2.8. However, this reduction is typically more
trouble than it is worth.
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Example 2.2: Derive the batch reactor design equations for the reaction set
in Example 2.1. Assume a liquid-phase system with constant density.

Solution: The real work has already been done in Example 2.1, where
R A,R B,R C, . . . were found. When density is constant, volume is constant,
and the V terms in Equations (2.9) cancel. Substituting the reaction rates from
Example 2.1 gives

da

dt
¼ �kIab� kIIIa2 a ¼ a0 at t ¼ 0

db

dt
¼ �kIab b ¼ b0 at t ¼ 0

dc

dt
¼ þkIab� kII c c ¼ c0 at t ¼ 0

dd

dt
¼ ðkIII=2Þa2 d ¼ d0 at t ¼ 0

de

dt
¼ þ2kIIc e ¼ e0 at t ¼ 0

This is a fairly simple set of first-order ODEs. The set is difficult to solve ana-
lytically, but numerical solutions are easy.

2.4 NUMERICAL SOLUTIONS TO SETS OF
FIRST-ORDER ODEs

The design equations for multiple reactions in batch reactors can sometimes
be solved analytically. Important examples are given in Section 2.5. However,
for realistic and industrially important kinetic schemes, the component balances
soon become intractable from the viewpoint of obtaining analytical solutions.
Fortunately, sets of first-order ODEs are easily solved numerically. Sophisti-
cated and computationally efficient methods have been developed for solving
such sets of equations. One popular method, called Runge-Kutta, is described
in Appendix 2. This or even more sophisticated techniques should be used if
the cost of computation becomes significant. However, computer costs will
usually be inconsequential compared with the costs of the engineer’s personal
time. In this usual case, the use of a simple technique can save time and
money by allowing the engineer to focus on the physics and chemistry of the
problem rather than on the numerical mathematics. Another possible way to
save engineering time is to use higher-order mathematical programming systems
such as Mathematica�, Matlab�, or Maple� rather than the more funda-
mental programming languages such as Fortran, Basic, or C. There is some
risk to this approach in that the engineer may not know when either he or the
system has made a mistake. This book adopts the conservative approach of
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illustrating numerical methods by showing programming fragments in the
general-purpose language known as Basic. Basic was chosen because it can be
sight-read by anyone familiar with computer programming, because it is
widely available on personal computers, and because it is used as the
programming component for the popular spreadsheet Excel�.

The simplest possible method for solving a set of first-order ODEs—subject
to given initial values—is called marching ahead. It is also known as Euler’s
method. We suppose that all concentrations are known at time t¼ 0. This
allows the initial reaction rates to be calculated, one for each component.
Choose some time increment, �t, that is so small that, given the calculated reac-
tion rates, the concentrations will change very little during the time increment.
Calculate these small changes in concentration, assuming that the reaction
rates are constant. Use the new concentrations to revise the reaction rates.
Pick another time increment and repeat the calculations. Continue until the
specified reaction time has been reached. This is the tentative solution. It is
tentative because you do not yet know whether the numerical solution has
converged to the true solution with sufficient accuracy. Test for convergence
by reducing �t and repeating the calculation. Do you get the same results to
say four decimal places? If so, you probably have an adequate solution. If not,
reduce �t again. Computers are so fast that this brute force method of solving
and testing for convergence will take only a few seconds for most of the
problems in this book.

Euler’s method can be illustrated by the simultaneous solution of

da

dt
¼ R Aða, bÞ

db

dt
¼ R Bða, bÞ

ð2:11Þ

subject to the usual initial conditions. The marching equations can be written as

anew ¼ aold þR Aðaold , bold Þ�t
bnew ¼ bold þR Bðaold , boldÞ�t
tnew ¼ told þ�t

ð2:12Þ

The computation is begun by setting aold ¼ a0, bold ¼ b0, and told ¼ 0: Rates are
computed using the old concentrations and the marching equations are used to
calculate the new concentrations. Old is then replaced by new and the march
takes another step.

The marching-ahead technique systematically overestimates R A when com-
ponent A is a reactant since the rate is evaluated at the old concentrations where
a and R A are higher. This creates a systematic error similar to the numerical
integration error shown in Figure 2.1. The error can be dramatically reduced
by the use of more sophisticated numerical techniques. It can also be reduced
by the simple expedient of reducing �t and repeating the calculation.
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Example 2.3: Solve the batch design equations for the reaction of
Example 2.2. Use kI ¼ 0.1mol/(m3Eh), kII¼ 1.2 h–1, kIII ¼ 0.6mol/(m3Eh).
The initial conditions are a0 ¼ b0 ¼ 20mol/m3. The reaction time is 1 h.

Solution: The following is a complete program for performing the calcula-
tions. It is written in Basic as an Excel macro. The rather arcane statements
needed to display the results on the Excel spreadsheet are shown at the end.
They need to be replaced with PRINT statements given a Basic compiler
that can write directly to the screen. The programming examples in this text
will normally show only the computational algorithm and will leave input
and output to the reader.

DefDbl A-Z
Sub Exp2_3()

k1¼0.1
k2¼1.2
k3¼0.06
tmax¼1

dt¼2

For N¼1 To 10

aold¼20
bold¼20
cold¼0
dold¼0
eold¼0

t¼0

= Error

R
at

e

Time

FIGURE 2.1 Systematic error of Euler integration.
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dt¼dt/4

Do

RA¼–k1 * aold * Bold – k3 * aold ^2
RB¼–k1 * aold * Bold
RC¼k1 * aold * Bold – k2 * cold
RD¼k3/2 * aold ^2
RE¼2 * k2 * cold
anew¼aold þ dt * RA
bnew¼bold þ dt * RB
cnew¼cold þ dt * RC
dnew¼dold þ dt * RD
enew¼eold þ dt * RE

t¼t þ dt

aold¼anew
bold¼bnew
cold¼cnew
dold¼dnew
eold¼enew

Loop While t<tmax

Sum¼aoldþboldþcoldþdoldþeold

‘The following statements output the results to the
‘Excel spreadsheet
Range("A"& CStr(N)).Select
ActiveCell.FormulaR1C1¼dt
Range("B"& CStr(N)).Select
ActiveCell.FormulaR1C1¼aold
Range("C"& CStr(N)).Select
ActiveCell.FormulaR1C1¼bold
Range("D"& CStr(N)).Select
ActiveCell.FormulaR1C1¼cold
Range("E"& CStr(N)).Select
ActiveCell.FormulaR1C1¼dold
Range("F"& CStr(N)).Select
ActiveCell.FormulaR1C1¼eold
Range("G"& CStr(N)).Select
ActiveCell.FormulaR1C1¼Sum

Next N

End Sub
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The results from this program (with added headers) are shown below:

�t a(tmax) b(tmax) c(tmax) d(tmax) e(tmax) Sum

0.5000000 �16.3200 0.0000 8.0000 8.1600 24.0000 23.8400
0.1250000 2.8245 8.3687 5.1177 2.7721 13.0271 32.1102
0.0312500 3.4367 8.6637 5.1313 2.6135 12.4101 32.2552
0.0078125 3.5766 8.7381 5.1208 2.5808 12.2821 32.2984
0.0019531 3.6110 8.7567 5.1176 2.5729 12.2513 32.3095
0.0004883 3.6195 8.7614 5.1168 2.5709 12.2437 32.3123
0.0001221 3.6217 8.7625 5.1166 2.5704 12.2418 32.3130
0.0000305 3.6222 8.7628 5.1165 2.5703 12.2413 32.3131
0.0000076 3.6223 8.7629 5.1165 2.5703 12.2412 32.3132
0.0000019 3.6224 8.7629 5.1165 2.5703 12.2411 32.3132

These results have converged to four decimal places. The output required
about 2 s on what will undoubtedly be a slow PC by the time you read this.

Example 2.4: Determine how the errors in the numerical solutions in
Example (2.3) depend on the size of the time increment, �t.

Solution: Consider the values of a(tmax) versus �t as shown below. The
indicated errors are relative to the fully converged answer of 3.6224.

�t a(tmax) Error

0.5000000 �16.3200 19.9424
0.1250000 2.8245 �0.7972
0.0312500 3.4367 �0.1853
0.0078125 3.5766 �0.0458
0.0019531 3.6110 �0.0114
0.0004883 3.6195 �0.0029
0.0001221 3.6217 �0.0007
0.0000305 3.6222 �0.0002

The first result, for�t¼ 0.5, shows a negative result for a(tmax) due to the very
large value for �t. For smaller values of �t, the calculated values for a(tmax)
are physically realistic and the errors decrease by roughly a factor of 4 as the
time step decreases by a factor of 4. Thus, the error is proportional to �t.
Euler’s method is said to converge order �t, denoted O(�t).

Convergence order�t for Euler’s method is based on more than the empirical
observation in Example 2.4. The order of convergence springs directly from the
way in which the derivatives in Equations (2.11) are calculated. The simplest
approximation of a first derivative is

da

dt
� anew � aold

�t
ð2:13Þ
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Substitution of this approximation into Equations (2.11) gives Equations (2.12).
The limit of Equation (2.13) as �t! 0 is the usual definition of a derivative.
It assumes that, locally, the function a(t) is a straight line. A straight line is a
first-order equation and convergence O(�t) follows from this fact. Knowledge
of the convergence order allows extrapolation and acceleration of convergence.
This and an improved integration technique, Runge-Kutta, are discussed in
Appendix 2. The Runge-Kutta technique converges O(�t5). Other things being
equal, it is better to use a numerical method with a high order of convergence.
However, such methods are usually harder to implement. Also, convergence
is an asymptotic property. This means that it becomes true only as�t approaches
zero. It may well be that the solution has already converged with adequate
accuracy by the time the theoretical convergence order is reached.

The convergence of Euler’s method to the true analytical solution is assured
for sets of linear ODEs. Just keep decreasing �t. Occasionally, the word length
of a computer becomes limiting. This text contains a few problems that cannot
be solved in single precision (e.g., about seven decimal digits), and it is good
practice to run double precision as a matter of course. This was done in
the Basic program in Example 2.3. Most of the complex kinetic schemes give
rise to nonlinear equations, and there is no absolute assurance of convergence.
Fortunately, the marching-ahead method behaves quite well for most nonlinear
systems of engineering importance. Practical problems do arise in stiff
sets of differential equations where some members of the set have characteristic
times much smaller than other members. This occurs in reaction kinetics when
some reactions have half-lives much shorter than others. In free-radical kinetics,
reaction rates may differ by 3 orders of magnitude. The allowable time step, �t,
must be set to accommodate the fastest reaction and may be too small to follow
the overall course of the reaction, even for modern computers. Special numerical
methods have been devised to deal with stiff sets of differential equations.
In free-radical processes, it is also possible to avoid stiff sets of equations through
use of the quasi-steady-state hypothesis, which is discussed in Section 2.5.3.

The need to use specific numerical values for the rate constants and initial
conditions is a weakness of numerical solutions. If they change, then the numer-
ical solution must be repeated. Analytical solutions usually apply to all values of
the input parameters, but special cases are sometimes needed. Recall the special
case needed for a0¼ b0 in Example 1.4. Numerical solution techniques do not
have this problem, and the problem of specificity with respect to numerical
values can be minimized or overcome through the judicious use of dimensionless
variables. Concentrations can be converted to dimensionless concentrations
by dividing by an initial value; e.g. a� ¼ a=a0, b� ¼ b=a0, and so on. The
normal choice is to normalize using the initial concentration of a stoichiometri-
cally limiting component. Time can be converted to a dimensionless variable by
dividing by some characteristic time for the system. The mean residence time is
often used as the characteristic time of a flow system. In a batch system, we
could use the batch reaction time, tbatch, so that t� ¼ t=tbatch is one possibility
for a dimensionless time. Another possibility, applicable to both flow and
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batch systems, is to base the characteristic time on the reciprocal of a rate con-
stant. The quantity k�11 has units of time when k1 is a first-order rate constant
and ða0k2Þ�1 has units of time when k2 is a second-order rate constant. More
generally, ðaorder�10 korderÞ�1 will have units of time when korder is the rate constant
for a reaction of arbitrary order.

Example 2.5: Consider the following competitive reactions in a constant-
density batch reactor:

Aþ B! P ðDesired productÞ R I ¼ kIab
2A! D ðUndesired dimerÞ R II ¼ kIIa2

The selectivity based on component A is

Selectivity ¼Moles P produced

Moles A reacted
¼ p

a0 � a ¼
p�

1� a�

which ranges from 1 when only the desired product is made to 0 when only the
undesired dimer is made. Components A and B have initial values a0 and b0
respectively. The other components have zero initial concentration. On how
many parameters does the selectivity depend?

Solution: On first inspection, the selectivity appears to depend on five para-
meters: a0, b0, kI, kII, and tbatch. However, the governing equations can be cast
into dimensionless form as

da

dt
¼ �kIab� 2kIIa

2 becomes
da�

dt�
¼ �a�b� � 2K�II ða�Þ2

db

dt
¼ �kIab becomes

db�

dt�
¼ �a�b�

dp

dt
¼ kIab becomes

dp�

dt�
¼ a�b�

dd

dt
¼ kIIa2 becomes

dd�

dt�
¼ K�II ða�Þ2

where the dimensionless time is t� ¼ kIIa0t: The initial conditions are
a� ¼ 1; b� ¼ b0=a0; p� ¼ 0; d� ¼ 0 at t� ¼ 0. The solution is evaluated at
t� ¼ kIIa0tbatch: Aside from the endpoint, the numerical solution depends on
just two dimensionless parameters. These are b0=a0 and K�II ¼ kII=kI : There
are still too many parameters to conveniently plot the whole solution on a
single graph, but partial results can easily be plotted: e.g. a plot for a
fixed value of K�II ¼ kII=kI of selectivity versus t� with b0=a0 as the parameter
identifying various curves.

MULTIPLE REACTIONS IN BATCH REACTORS 45



2.5 ANALYTICALLY TRACTABLE EXAMPLES

Relatively few kinetic schemes admit analytical solutions. This section is con-
cerned with those special cases that do, and also with some cases where prelimin-
ary analytical work will ease the subsequent numerical studies. We begin with
the nth-order reaction.

2.5.1 The nth-Order Reaction

A! Products R ¼ kan ð2:14Þ
This reaction can be elementary if n¼ 1 or 2. More generally, it is complex.
Noninteger values for n are often found when fitting rate data empirically,
sometimes for sound kinetic reasons, as will be seen in Section 2.5.3. For an
isothermal, constant-volume batch reactor,

da

dt
¼ �kan a ¼ a0 at t ¼ 0 ð2:15Þ

The first-order reaction is a special case mathematically. For n¼ 1, the solution
has the exponential form of Equation (1.24):

a

a0
¼ e�kt ð2:16Þ

For n 6¼ 1, the solution looks very different:

a

a0
¼ 1þ ðn� 1Þ an�10 kt
� �1=ð1�nÞ ð2:17Þ

but see Problem 2.7. If n>1, the term in square brackets is positive and the con-
centration gradually declines toward zero as the batch reaction time increases.
Reactions with an order of 1 or greater never quite go to completion. In con-
trast, reactions with an order less than 1 do go to completion, at least mathema-
tically. When n<1, Equation (2.17) predicts a¼ 0 when

t ¼ tmax ¼ a1�n0

ð1� nÞk ð2:18Þ

If the reaction order does not change, reactions with n< 1 will go to completion
in finite time. This is sometimes observed. Solid rocket propellants or fuses used
to detonate explosives can burn at an essentially constant rate (a zero-order
reaction) until all reactants are consumed. These are multiphase reactions lim-
ited by heat transfer and are discussed in Chapter 11. For single phase systems,
a zero-order reaction can be expected to slow and become first or second order
in the limit of low concentration.
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For n<1, the reaction rate of Equation (2.14) should be supplemented by
the condition that

R ¼ 0 if a  0 ð2:19Þ
Otherwise, both the mathematics and the physics become unrealistic.

2.5.2 Consecutive First-Order Reactions, A ! B ! C ! � � �
Consider the following reaction sequence

A �!kA B �!kB C �!kC D �!kD � � � ð2:20Þ
These reactions could be elementary, first order, and without by-products as
indicated. For example, they could represent a sequence of isomerizations.
More likely, there will be by-products that do not influence the subsequent
reaction steps and which were omitted in the shorthand notation of Equation
(2.20). Thus, the first member of the set could actually be

A �!kA Bþ P

Radioactive decay provides splendid examples of first-order sequences of this
type. The naturally occurring sequence beginning with 238U and ending with
206Pb has 14 consecutive reactions that generate � or � particles as by-products.
The half-lives in Table 2.1—and the corresponding first-order rate constants, see
Equation (1.27)—differ by 21 orders of magnitude.

Within the strictly chemical realm, sequences of pseudo-first-order reactions
are quite common. The usually cited examples are hydrations carried out
in water and slow oxidations carried out in air, where one of the reactants

TABLE 2.1 Radioactive Decay Series for 238U

Nuclear Species Half-Life

238U 4.5 billion years
234Th 24 days
234Pa 1.2 min
234U 250,000 years
230Th 80,000 years
226Ra 1600 years
222Rn 3.8 days
218Po 3 min
214Pb 27 min
214Bi 20 min
214Po 160�s
210Pb 22 years
210Bi 5 days
210Po 138 days
206Pb Stable
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(e.g., water or oxygen) is present in great excess and hence does not change appre-
ciably in concentration during the course of the reaction. These reactions behave
identically to those in Equation (2.20), although the rate constants over the
arrows should be removed as a formality since the reactions are not elementary.

Any sequence of first-order reactions can be solved analytically, although the
algebra can become tedious if the number of reactions is large. The ODEs that
correspond to Equation (2.20) are

da

dt
¼ �kAa

db

dt
¼ �kBbþ kAa

dc

dt
¼ �kCcþ kBb

dd

dt
¼ �kDd þ kCc

ð2:21Þ

Just as the reactions are consecutive, solutions to this set can be carried out con-
secutively. The equation for component A depends only on a and can be solved
directly. The result is substituted into the equation for component B, which then
depends only on b and t and can be solved. This procedure is repeated until the
last, stable component is reached. Assuming component D is stable, the solu-
tions to Equations (2.21) are

a ¼ a0e�kAt

b ¼ b0 � a0kA
kB � kA

� �
e�kBt þ a0kA

kB � kA

� �
e�kAt

c ¼ c0 � b0kB
kC � kB þ

a0kAkB
ðkC � kAÞðkC � kBÞ

� �
e�kCt

þ b0kB
kC � kB �

a0kAkB
ðkC � kBÞðkB � kAÞ

� �
e�kBt þ a0kAkB

ðkC � kAÞðkB � kAÞ
� �

e�kAt

d ¼ d0 þ ða0 � aÞ þ ðb0 � bÞ þ ðc0 � cÞ

ð2:22Þ

These results assume that all the rate constants are different. Special forms apply
when some of the k values are identical, but the qualitative behavior of the solu-
tion remains the same. Figure 2.2 illustrates this behavior for the case of
b0 ¼ c0 ¼ d0 ¼ 0. The concentrations of B and C start at zero, increase to max-
imums, and then decline back to zero. Typically, component B or C is the
desired product whereas the others are undesired. If, say, B is desired, the
batch reaction time can be picked to maximize its concentration. Setting
db/dt¼ 0 and b0 ¼ 0 gives

tmax ¼ lnðkB=kAÞ
kB � kA ð2:23Þ
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Selection of the optimal time for the production of C requires a numerical
solution but remains conceptually straightforward.

Equations (2.22) and (2.23) become indeterminate if kB¼ kA. Special forms
are needed for the analytical solution of a set of consecutive, first-order reactions
whenever a rate constant is repeated. The derivation of the solution can be
repeated for the special case or L’Hospital’s rule can be applied to the general
solution. As a practical matter, identical rate constants are rare, except for
multifunctional molecules where reactions at physically different but chemically
similar sites can have the same rate constant. Polymerizations are an important
example. Numerical solutions to the governing set of simultaneous ODEs have
no difficulty with repeated rate constants, but such solutions can become
computationally challenging when the rate constants differ greatly in magnitude.
Table 2.1 provides a dramatic example of reactions that lead to stiff equations.
A method for finding analytical approximations to stiff equations is described in
the next section.

2.5.3 The Quasi-Steady State Hypothesis

Many reactions involve short-lived intermediates that are so reactive that they
never accumulate in large quantities and are difficult to detect. Their presence
is important in the reaction mechanism and may dictate the functional form
of the rate equation. Consider the following reaction:

A ���! ���
kf

kr

B �!kB C
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FIGURE 2.2 Consecutive reaction sequence, A! B! C! D:
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This system contains only first-order steps. An exact but somewhat cumbersome
analytical solution is available.

The governing ODEs are

da

dt
¼ �kf aþ krb

db

dt
¼ þkf a� krb� kBb

Assuming b0¼ 0, the solution is

a ¼ kf a0

S1� S2 1� kB
S1

� �
e�S1t � 1� kB

S2

� �
e�S2t

� �

b ¼ kf a0

S1 � S2 e
�S2t � e�S1t� 	 ð2:24Þ

where

S1,S2 ¼ ð1=2Þ kf þ kr þ kB 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkf þ kr þ kBÞ2 � 4kf kB

q� �

Suppose that B is highly reactive. When formed, it rapidly reverts back to A or
transforms into C. This implies kr � kf and kB � kf . The quasi-steady hypo-
thesis assumes that B is consumed as fast as it is formed so that its time rate
of change is zero. More specifically, we assume that the concentration of B
rises quickly and achieves a dynamic equilibrium with A, which is consumed
at a much slower rate. To apply the quasi-steady hypothesis to component B,
we set db/dt¼ 0. The ODE for B then gives

b ¼ kf a

kr þ kB ð2:25Þ

Substituting this into the ODE for A gives

a ¼ a0 exp �kf kBt
kf þ kB

� �
ð2:26Þ

After an initial startup period, Equations (2.25) and (2.26) become reasonable
approximations of the true solutions. See Figure 2.3 for the case of kr ¼
kB ¼ 10kf : The approximation becomes better when there is a larger difference
between kf and the other two rate constants.

The quasi-steady hypothesis is used when short-lived intermediates are
formed as part of a relatively slow overall reaction. The short-lived molecules
are hypothesized to achieve an approximate steady state in which they are
created at nearly the same rate that they are consumed. Their concentration
in this quasi-steady state is necessarily small. A typical use of the quasi-steady
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hypothesis is in chain reactions propagated by free radicals. Free radicals are
molecules or atoms that have an unpaired electron. Many common organic reac-
tions, such as thermal cracking and vinyl polymerization, occur by free-radical
processes. The following mechanism has been postulated for the gas-phase
decomposition of acetaldehyde.

Initiation

CH3CHO �!kI CH3
. þ .CHO

This spontaneous or thermal initiation generates two free radicals by breaking a
covalent bond. The aldehyde radical is long-lived and does not markedly influ-
ence the subsequent chemistry. The methane radical is highly reactive; but rather
than disappearing, most reactions regenerate it.

Propagation

CH3
. þ CH3CHO �!kII CH4 þ CH3

.CO

CH3
.CO �!kIII CH3

. þ CO

These propagation reactions are circular. They consume a methane radical but
also generate one. There is no net consumption of free radicals, so a single initia-
tion reaction can cause an indefinite number of propagation reactions, each one
of which does consume an acetaldehyde molecule. Ignoring any accumulation
of methane radicals, the overall stoichiometry is given by the net sum of the
propagation steps:

CH3CHO! CH4 þ CO

The methane radicals do not accumulate because of termination reactions. The
concentration of radicals adjusts itself so that the initiation and termination
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FIGURE 2.3 True solution versus approximation using the quasi-steady hypothesis.
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rates are equal. The major termination reaction postulated for the acetaldehyde
decomposition is termination by combination.

Termination

2CH3
. �!kIV C2H6

The assumption of a quasi-steady state is applied to the CH3
. and CH3

.CO
radicals by setting their time derivatives to zero:

d½CH3. �
dt

¼ kI ½CH3CHO� � kII ½CH3CHO�½CH3
. �

þ kIII ½CH3
.CO� � 2kIV ½CH3

. �2 ¼ 0

and

d½CH3
.CO�

dt
¼ kII ½CH3CHO�½CH3

. � � kIII ½CH3
.CO� ¼ 0

Note that the quasi-steady hypothesis is applied to each free-radical species. This
will generate as many algebraic equations as there are types of free radicals. The
resulting set of equations is solved to express the free-radical concentrations
in terms of the (presumably measurable) concentrations of the long-lived species.
For the current example, the solutions for the free radicals are

½CH3
. � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kI ½CH3CHO�

2kIV

s

and

½CH3
.CO� ¼ ðkII=kIII Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kI ½CH3CHO�3

2kIV

s

The free-radical concentrations will be small—and the quasi-steady state
hypothesis will be justified—whenever the initiation reaction is slow compared
with the termination reaction, kI � kIV ½CH3CHO�.

Acetaldehyde is consumed by the initiation and propagation reactions.

�d½CH3CHO�
dt

¼ kI ½CH3CHO� þ kII ½CH3CHO�½CH3
. �

The quasi-steady hypothesis allows the difficult-to-measure free-radical concen-
trations to be replaced by the more easily measured concentrations of the long-
lived species. The result is

�d½CH3CHO�
dt

¼ kI ½CH3CHO� þ k2IIkI
2kIV

� �1=2

½CH3CHO�3=2
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The first term in this result is due to consumption by the initiation reaction
and is presumed to be small compared with consumption by the propagation
reactions. Thus, the second term dominates, and the overall reaction has
the form

A! Products R ¼ ka3=2

This agrees with experimental findings1 on the decomposition of acetaldehyde.
The appearance of the three-halves power is a wondrous result of the quasi-
steady hypothesis. Half-integer kinetics are typical of free-radical systems.
Example 2.6 describes a free-radical reaction with an apparent order of one-half,
one, or three-halves depending on the termination mechanism.

Example 2.6: Apply the quasi-steady hypothesis to the monochlorination
of a hydrocarbon. The initiation step is

Cl2 �!kI 2Cl.

The propagation reactions are

Cl. þRH �!kII R. þHCl

R. þ Cl2 �!kIII RClþ Cl.

There are three possibilities for termination:

ðaÞ 2Cl. �!kIV Cl2

ðbÞ Cl. þR. �!kIV RCl

ðcÞ 2R. �!kIV R2

Solution: The procedure is the same as in the acetaldehyde example. ODEs
are written for each of the free-radical species, and their time derivatives are
set to zero. The resulting algebraic equations are then solved for the free-
radical concentrations. These values are substituted into the ODE governing
RCl production. Depending on which termination mechanism is assumed, the
solutions are

ðaÞ R ¼ k½Cl2�1=2½RH�
ðbÞ R ¼ k½Cl2�½RH�1=2

ðcÞ R ¼ k½Cl2�3=2
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If two or three termination reactions are simultaneously important, an analy-
tical solution for R is possible but complex. Laboratory results in such
situations could probably be approximated as

R ¼ k½Cl2�m½RH�n

where 1/2 < m < 3/2 and 0 < n < 1.

Example 2.7: Apply the quasi-steady hypothesis to the consecutive
reactions in Equation (2.20), assuming kA � kB and kA � kC:

Solution: The assumption of a near steady state is applied to components B
and C. The ODEs become

da

dt
¼ �kAa

db

dt
¼ �kBbþ kAa ¼ 0

dc

dt
¼ �kCcþ kBb ¼ 0

The solutions are

a ¼ a0e�kAt

b ¼ kAa
kB

c ¼ kBb
kC

This scheme can obviously be extended to larger sets of consecutive reactions
provided that all the intermediate species are short-lived compared with the
parent species, A. See Problem 2.9

Our treatment of chain reactions has been confined to relatively simple situa-
tions where the number of participating species and their possible reactions
have been sharply bounded. Most free-radical reactions of industrial importance
involve many more species. The set of possible reactions is unbounded in poly-
merizations, and it is perhaps bounded but very large in processes such as
naptha cracking and combustion. Perhaps the elementary reactions can be
postulated, but the rate constants are generally unknown. The quasi-steady
hypothesis provides a functional form for the rate equations that can be used
to fit experimental data.

2.5.4 Autocatalytic Reactions

As suggested by the name, the products of an autocatalytic reaction accelerate
the rate of the reaction. For example, an acid-catalyzed reaction may produce
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acid. The rate of most reactions has an initial maximum and then decreases as
reaction proceeds. Autocatalytic reactions have an initially increasing rate,
although the rate must eventually decline as the reaction goes to completion.
A model reaction frequently used to represent autocatalytic behavior is

A! Bþ C

with an assumed mechanism of

Aþ B �!k 2Bþ C ð2:27Þ
For a batch system,

da

dt
¼ �kab ¼ �kaðb0 þ a0 � aÞ ð2:28Þ

This ODE has the solution

a

a0
¼ ½1þ ðb0=a0Þ� expf�½1þ ðb0=a0Þ�a0ktgðb0=a0Þ þ expf�½1þ ðb0=a0Þ�a0ktg ð2:29Þ

Figure 2.4 illustrates the course of the reaction for various values of b0=a0.
Inflection points and S-shaped curves are characteristic of autocatalytic beha-
vior. The reaction rate is initially low because the concentration of the catalyst,
B, is low. Indeed, no reaction ever occurs if b0 ¼ 0. As B is formed, the rate
accelerates and continues to increase so long as the term ab in Equation (2.28)
is growing. Eventually, however, this term must decrease as component A
is depleted, even though the concentration of B continues to increase. The inflec-
tion point is caused by depletion of component A.

Autocatalytic reactions often show higher conversions in a stirred tank than
in either a batch flow reactor or a piston flow reactor with the same holding
time, tbatch ¼ �tt: Since âa ¼ aout in a CSTR, the catalyst, B, is present at the
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FIGURE 2.4 Conversion versus dimensionless time, a0kt, for an autocatalytic batch reaction. The
parameter is b0=a0:
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same, high concentrations everywhere within the working volume of the reactor.
In contrast, B may be quite low in concentration at early times in a batch reactor
and only achieves its highest concentrations at the end of the reaction. Equiva-
lently, the concentration of B is low near the inlet of a piston flow reactor and
only achieves high values near the outlet. Thus, the average reaction rate in the
CSTR can be higher.

The qualitative behavior shown in Figure 2.4 is characteristic of many sys-
tems, particularly biological ones, even though the reaction mechanism may
not agree with Equation (2.27). An inflection point is observed in most batch fer-
mentations. Polymerizations of vinyl monomers such as methyl methacrylate
and styrene also show autocatalytic behavior when the undiluted monomers
react by free-radical mechanisms. A polymerization exotherm for a methyl
methacrylate casting system is shown in Figure 2.5. The reaction is approxi-
mately adiabatic so that the reaction exotherm provides a good measure of
the extent of polymerization. The autocatalytic behavior is caused partially by
concentration effects (the ‘‘gel effect’’ is discussed in Chapter 13) and partially
by the exothermic nature of the reaction (temperature effects are discussed in
Chapter 5). Indeed, heat can be considered a reaction product that accelerates
the reaction, and adiabatic reactors frequently exhibit inflection points with
respect to both temperature and composition. Autoacceleration also occurs in
branching chain reactions where a single chain-propagating species can generate
more than one new propagating species. Such reactions are obviously important
in nuclear fission. They also occur in combustion processes. For example, the
elementary reactions

H. þO2 ! HO. þO.

H2 þO. ! HO. þH.

are believed important in the burning of hydrogen.
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FIGURE 2.5 Reaction exotherm for a methyl methacrylate casting system.
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Autocatalysis can cause sustained oscillations in batch systems. This idea ori-
ginally met with skepticism. Some chemists believed that sustained oscillations
would violate the second law of thermodynamics, but this is not true.
Oscillating batch systems certainly exist, although they must have some external
energy source or else the oscillations will eventually subside. An important
example of an oscillating system is the circadian rhythm in animals. A simple
model of a chemical oscillator, called the Lotka-Volterra reaction, has the
assumed mechanism:

RþG �!kI 2R

LþR �!kII 2L

L �!kIII D

Rabbits (R) eat grass (G) to form more rabbits. Lynx (L) eat rabbits to form
more lynx. Also, lynx die of old age to form dead lynx (D). The grass is assumed
to be in large excess and provides the energy needed to drive the oscillation. The
corresponding set of ODEs is

dr

dt
¼ kIgr� kII lr

dl

dt
¼ kII lr� kIII l

These equations are nonlinear and cannot be solved analytically. They are
included in this section because they are autocatalytic and because this chapter
discusses the numerical tools needed for their solution. Figure 2.6 illustrates one
possible solution for the initial condition of 100 rabbits and 10 lynx. This model
should not be taken too seriously since it represents no known chemistry or
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FIGURE 2.6 Population dynamics predicted by the Lotka-Volterra model for an initial population
of 100 rabbits and 10 lynx.
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ecology. It does show that a relatively simple set of first-order ODEs can lead to
oscillations. These oscillations are strictly periodic if the grass supply is not
depleted. If the grass is consumed, albeit slowly, both the amplitude and the
frequency of the oscillations will decline toward an eventual steady state of no
grass and no lynx.

A conceptually similar reaction, known as the Prigogine-Lefver or
Brusselator reaction, consists of the following steps:

A �!kI X

BþX �!kII YþD

2XþY �!kIII 3X

X �!kIV E

This reaction can oscillate in a well-mixed system. In a quiescent system,
diffusion-limited spatial patterns can develop, but these violate the assumption
of perfect mixing that is made in this chapter. A well-known chemical oscillator
that also develops complex spatial patterns is the Belousov-Zhabotinsky or
BZ reaction. Flame fronts and detonations are other batch reactions that violate
the assumption of perfect mixing. Their analysis requires treatment of mass
or thermal diffusion or the propagation of shock waves. Such reactions are
briefly touched upon in Chapter 11 but, by and large, are beyond the scope of
this book.

2.6 VARIABLE VOLUME BATCH REACTORS

2.6.1 Systems with Constant Mass

The feed is charged all at once to a batch reactor, and the products are removed
together, with the mass in the system being held constant during the reaction
step. Such reactors usually operate at nearly constant volume. The reason for
this is that most batch reactors are liquid-phase reactors, and liquid densities
tend to be insensitive to composition. The ideal batch reactor considered so
far is perfectly mixed, isothermal, and operates at constant density. We now
relax the assumption of constant density but retain the other simplifying
assumptions of perfect mixing and isothermal operation.

The component balance for a variable-volume but otherwise ideal batch reac-
tor can be written using moles rather than concentrations:

dðVaÞ
dt
¼ dNA

dt
¼ VR A ð2:30Þ
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where NA is the number of moles of component A in the reactor. The initial con-
dition associated with Equation (2.30) is that NA ¼ ðNAÞ0 at t¼ 0. The case of
a first-order reaction is especially simple:

dNA
dt
¼ �Vka ¼ �kNA

so that the solution is

NA ¼ ðNAÞ0e�kt ð2:31Þ
This is a more general version of Equation (1.24). For a first-order reaction, the
number of molecules of the reactive component decreases exponentially with
time. This is true whether or not the density is constant. If the density happens
to be constant, the concentration of the reactive component also decreases expo-
nentially as in Equation (1.24).

Example 2.8: Most polymers have densities appreciably higher than their
monomers. Consider a polymer having a density of 1040 kg/m3 that is
formed from a monomer having a density of 900 kg/m3. Suppose isothermal
batch experiments require 2 h to reduce the monomer content to 20% by
weight. What is the pseudo-first-order rate constant and what monomer
content is predicted after 4 h?

Right Solution: Use a reactor charge of 900 kg as a basis and apply
Equation (2.31) to obtain

YA ¼ NA
ðNAÞ0

¼ 0:2ð900Þ=MA

ð900Þ=MA
¼ 0:2 ¼ expð�2kÞ

This gives k¼ 0.8047 h�1. The molecular weight of the monomer, MA, is not
actually used in the calculation. Extrapolation of the first-order kinetics to
a 4-h batch predicts that there will be 900 exp(–3.22)¼ 36 kg or 4% by
weight of monomer left unreacted. Note that the fraction unreacted, YA,
must be defined as a ratio of moles rather than concentrations because the
density varies during the reaction.

Wrong Solution: Assume that the concentration declines exponentially
according to Equation (1.24). To calculate the concentration, we need the
density. Assume it varies linearly with the weight fraction of monomer.
Then �¼ 1012 kg/m3 at the end of the reaction. To calculate the monomer
concentrations, use a basis of 1m3 of reacting mass. This gives

a

a0
¼ 0:2ð1012Þ=MA

900=MA
¼ 0:225 ¼ expð�2kÞ or k ¼ 0:746

This concentration ratio does not follow the simple exponential decay of
first-order kinetics and should not be used in fitting the rate constant. If
it were used erroneously, the predicted concentration would be 45.6/MA
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(kgEmol)/m3 at the end of the 4 h reaction. The predicted monomer content
after 4 h is 4.4% rather than 4.0% as more properly calculated. The difference
is small but could be significant for the design of the monomer recovery and
recycling system.

For reactions of order other than first, things are not so simple. For a second-
order reaction,

dðVaÞ
dt
¼ dNA

dt
¼ �Vka2 ¼ � kN

2
A

V
¼ � kN

2
A�

�0V0
ð2:32Þ

Clearly, we must determine V or � as a function of composition. The integration
will be easier if NA is treated as the composition variable rather than a since this
avoids expansion of the derivative as a product: dðVaÞ ¼ Vdaþ adV . The
numerical methods in subsequent chapters treat such products as composite
variables to avoid expansion into individual derivatives. Here in Chapter 2,
the composite variable, NA ¼ Va, has a natural interpretation as the number
of moles in the batch system. To integrate Equation (2.32), V or � must be deter-
mined as a function of NA. Both liquid- and gas-phase reactors are considered in
the next few examples.

Example 2.9: Repeat Example 2.8 assuming that the polymerization is
second order in monomer concentration. This assumption is appropriate for
a binary polycondensation with good initial stoichiometry, while the
pseudo-first-order assumption of Example 2.8 is typical of an addition
polymerization.

Solution: Equation (2.32) applies, and �must be found as a function of NA.
A simple relationship is

� ¼ 1040� 140NA=ðNAÞ0
The reader may confirm that this is identical to the linear relationship based
on weight fractions used in Example 2.8. Now set Y ¼ NA=ðNAÞ0: Equation
(2.32) becomes

dY

dt
¼ �k0Y2 1040� 140Y

900

� �

where k0 ¼ kðNAÞ0=V0 ¼ ka0: The initial condition is Y¼ 1 at t¼ 0. An analy-
tical solution to this ODE is possible but messy. A numerical solution
integrates the ODE for various values of k0 until one is found that gives
Y¼ 0.2 at t¼ 2. The result is k0 ¼ 1.83.

Example 2.10: Suppose 2A �!k=2 B in the liquid phase and that the density
changes from �0 to �1¼ �0þ�� upon complete conversion. Find an
analytical solution to the batch design equation and compare the results
with a hypothetical batch reactor in which the density is constant.
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Solution: For a constant mass system,

�V ¼ �0V0 ¼ constant

Assume, for lack of anything better, that the mass density varies linearly with
the number of moles of A. Specifically, assume

� ¼ �1 ���
NA
ðNAÞ0

� �

Substitution in Equation (2.32) gives

dNA
dt
¼ �kN2

A

�1 ���NA=ðNAÞ0
�0V0

� �

This messy result apparently requires knowledge of five parameters: k,
V0, (NA)0, �1, and �0. However, conversion to dimensionless variables
usually reduces the number of parameters. In this case, set Y ¼ NA=ðNAÞ0
(the fraction unreacted) and  ¼ t=tbatch (fractional batch time). Then algebra
gives

dY

d
¼ �K

�Y2 �1 ���Y

�0

This contains the dimensionless rate constant, K� ¼ a0ktbatch, plus the initial
and final densities. The comparable equation for reaction at constant density is

dY 0

d
¼ �K�Y 02

where Y 0 would be the fraction unreacted if no density change occurred.
Combining these results gives

dY 0

Y 02
¼ �K�d ¼ �0dY

�1 ���YY2

or

dY 0

dY
¼ �0Y

02

�1 ���YY2

and even K� drops out. There is a unique relationship between Y and Y 0

that depends only on �1 and �0. The boundary condition associated
with this ODE is Y¼ 1 at Y 0 ¼ 1. An analytical solution is possible, but
numerical integration of the ODE is easier. Euler’s method works, but note
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that the indepen-dent variable Y 0 starts at 1.0 and is decreased in small steps
until the desired final value is reached. A few results for the case of �1¼ 1000
and �0¼ 900 are

Y Y 0

1.000 1.000
0.500 0.526
0.200 0.217
0.100 0.110
0.050 0.055
0.020 0.022
0.010 0.011

The density change in this example increases the reaction rate since the
volume goes down and the concentration of the remaining A is higher than
it would be if there were no density change. The effect is not large and
would be negligible for many applications. When the real, variable-density
reactor has a conversion of 50%, the hypothetical, constant-density reactor
would have a conversion of 47.4% (Y 0 ¼ 0.526).

Example 2.11: Suppose initially pure A dimerizes, 2A �!k=2 B, isothermally
in the gas phase at a constant pressure of 1 atm. Find a solution to the batch
design equation and compare the results with a hypothetical batch reactor in
which the reaction is 2A! Bþ C so that there is no volume change upon
reaction.

Solution: Equation (2.32) is the starting point, as in the previous example,
but the ideal gas law is now used to determine V as a function of NA:

V ¼ ½NA þNB�RgT=P ¼ NA þ ðNAÞÞ0 �NA
2

� �
RgT=P

¼ Y þ 1

2

� �
ðNAÞ0RgT=P

¼ Y þ 1

2

� �
V0

where Y is the fraction unreacted. Substitution into Equation (2.32) gives

dNA
dt
¼ ðNAÞ0

dY

dt
¼ �2kN

2
A

V0½Y þ 1� ¼
�2a0kY2ðNAÞ0
½1þ Y �

Defining , K�, and Y 0 as in Example 2.10 gives

dY 0

Y 02
¼ �K�d ¼ ½Y þ 1�dY

2Y2
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An analytical solution is again possible but messy. A few results are

Y Y 0

1.000 1.000
0.500 0.542
0.200 0.263
0.100 0.150
0.050 0.083
0.020 0.036
0.010 0.019

The effect of the density change is larger than in the previous example, but
is still not major. Note that most gaseous systems will have substantial
amounts of inerts (e.g. nitrogen) that will mitigate volume changes at constant
pressure.

The general conclusion is that density changes are of minor importance in
liquid systems and of only moderate importance in gaseous systems at constant
pressure. When they are important, the necessary calculations for a batch
reactor are easier if compositions are expressed in terms of total moles rather
than molar concentrations.

We have considered volume changes resulting from density changes in liquid
and gaseous systems. These volume changes were thermodynamically determined
using an equation of state for the fluid that specifies volume or density as a
function of composition, pressure, temperature, and any other state variable
that may be important. This is the usual case in chemical engineering
problems. In Example 2.10, the density depended only on the composition.
In Example 2.11, the density depended on composition and pressure, but the
pressure was specified.

Volume changes also can be mechanically determined, as in the combustion
cycle of a piston engine. If V¼V(t) is an explicit function of time, Equations
like (2.32) are then variable-separable and are relatively easy to integrate,
either alone or simultaneously with other component balances. Note, however,
that reaction rates can become dependent on pressure under extreme conditions.
See Problem 5.4. Also, the results will not really apply to car engines since
mixing of air and fuel is relatively slow, flame propagation is important, and
the spatial distribution of the reaction must be considered. The cylinder head
is not perfectly mixed.

It is possible that the volume is determined by a combination of thermo-
dynamics and mechanics. An example is reaction in an elastic balloon. See
Problem 2.20.

The examples in this section have treated a single, second-order reaction,
although the approach can be generalized to multiple reactions with arbitrary
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kinetics. Equation (2.30) can be written for each component:

dðVaÞ
dt
¼ dNA

dt
¼ VR Aða, b, . . .Þ ¼ VR AðNA,NB, . . . ,VÞ

dðVbÞ
dt
¼ dNB
dt
¼ VR Bða, b, . . .Þ ¼ VR BðNA,NB, . . . ,VÞ

ð2:33Þ

and so on for components C, D, . . . . An auxiliary equation is used to determine
V. The auxiliary equation is normally an algebraic equation rather than an
ODE. In chemical engineering problems, it will usually be an equation of
state, such as the ideal gas law. In any case, the set of ODEs can be integrated
numerically starting with known initial conditions, and V can be calculated and
updated as necessary. Using Euler’s method, V is determined at each time step
using the ‘‘old’’ values for NA,NB, . . . . This method of integrating sets of ODEs
with various auxiliary equations is discussed more fully in Chapter 3.

2.6.2 Fed-Batch Reactors

Many industrial reactors operate in the fed-batch mode. It is also called the semi-
batch mode. In this mode of operation, reactants are charged to the system at
various times, and products are removed at various times. Occasionally, a heel
of material from a previous batch is retained to start the new batch.

There are a variety of reasons for operating in a semibatch mode. Some typi-
cal ones are as follows:

1. A starting material is subjected to several different reactions, one after the
other. Each reaction is essentially independent, but it is convenient to use
the same vessel.

2. Reaction starts as soon as the reactants come into contact during the charging
process. The initial reaction environment differs depending on whether the
reactants are charged sequentially or simultaneously.

3. One reactant is charged to the reactor in small increments to control the
composition distribution of the product. Vinyl copolymerizations discussed
in Chapter 13 are typical examples. Incremental addition may also be used
to control the reaction exotherm.

4. A by-product comes out of solution or is intentionally removed to avoid an
equilibrium limitation.

5. One reactant is sparingly soluble in the reaction phase and would be depleted
were it not added continuously. Oxygen used in an aerobic fermentation is
a typical example.

6. The heel contains a biocatalyst (e.g., yeast cells) needed for the next batch.
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All but the first of these has chemical reaction occurring simultaneously
with mixing or mass transfer. A general treatment requires the combination of
transport equations with the chemical kinetics, and it becomes necessary to
solve sets of partial differential equations rather than ordinary differential equa-
tions. Although this approach is becoming common in continuous flow systems,
it remains difficult in batch systems. The central difficulty is in developing good
equations for the mixing and mass transfer steps.

The difficulty disappears when the mixing and mass transfer steps are fast
compared with the reaction steps. The contents of the reactor remain perfectly
mixed even while new ingredients are being added. Compositions and reaction
rates will be spatially uniform, and a flow term is simply added to the mass
balance. Instead of Equation (2.30), we write

dNA
dt
¼ ðQaÞin þ VR AðNA,NB, . . . ,VÞ ð2:34Þ

where the term ðQaÞin represents the molar flow rate of A into the reactor. A fed-
batch reactor is an example of the unsteady, variable-volume CSTRs treated in
Chapter 14, and solutions to Equation (2.34) are considered there. However,
fed-batch reactors are amenable to the methods of this chapter if the charging
and discharging steps are fast compared with reaction times. In this special
case, the fed-batch reactor becomes a sequence of ideal batch reactors that are
reinitialized after each charging or discharging step.

Many semibatch reactions involve more than one phase and are thus classi-
fied as heterogeneous. Examples are aerobic fermentations, where oxygen is sup-
plied continuously to a liquid substrate, and chemical vapor deposition reactors,
where gaseous reactants are supplied continuously to a solid substrate.
Typically, the overall reaction rate will be limited by the rate of interphase
mass transfer. Such systems are treated using the methods of Chapters 10
and 11. Occasionally, the reaction will be kinetically limited so that the trans-
ferred component saturates the reaction phase. The system can then be treated
as a batch reaction, with the concentration of the transferred component being
dictated by its solubility. The early stages of a batch fermentation will behave in
this fashion, but will shift to a mass transfer limitation as the cell mass and thus
the oxygen demand increase.

2.7 SCALEUP OF BATCH REACTIONS

Section 1.5 described one basic problem of scaling batch reactors; namely, it
is impossible to maintain a constant mixing time if the scaleup ratio is large.
However, this is a problem for fed-batch reactors and does not pose a limitation
if the reactants are premixed. A single-phase, isothermal (or adiabatic) reaction
in batch can be scaled indefinitely if the reactants are premixed and preheated
before being charged. The restriction to single-phase systems avoids mass
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transfer limitations; the restriction to isothermal or, more realistically, adiabatic,
systems avoids heat transfer limitations; and the requirement for premixing elim-
inates concerns about mixing time. All the reactants are mixed initially, the reac-
tion treats all molecules equally, and the agitator may as well be turned off.
Thus, within the literal constraints of this chapter, scaleup is not a problem.
It is usually possible to preheat and premix the feed streams as they enter the
reactor and, indeed, to fill the reactor in a time substantially less than the reac-
tion half-life. Unfortunately, as we shall see in other chapters, real systems can
be more complicated. Heat and mass transfer limitations are common. If there is
an agitator, it probably has a purpose.

One purpose of the agitator may be to premix the contents after they are
charged rather than on the way in. When does this approach, which violates
the strict assumptions of an ideal batch reactor, lead to practical scaleup pro-
blems? The simple answer is whenever the mixing time, as described in
Section 1.5, becomes commensurate with the reaction half-life. If the mixing
time threatens to become limiting upon scaleup, try moving the mixing step to
the transfer piping.

Section 5.3 discusses a variety of techniques for avoiding scaleup problems.
The above paragraphs describe the simplest of these techniques. Mixing, mass
transfer, and heat transfer all become more difficult as size increases. To avoid
limitations, avoid these steps. Use premixed feed with enough inerts so that
the reaction stays single phase and the reactor can be operated adiabatically.
This simplistic approach is occasionally possible and even economical.

2.8 STOICHIOMETRY AND REACTION
COORDINATES

The numerical methods in this book can be applied to all components in the
system, even inerts. When the reaction rates are formulated using Equation
(2.8), the solutions automatically account for the stoichiometry of the reaction.
We have not always followed this approach. For example, several of the exam-
ples have ignored product concentrations when they do not affect reaction rates
and when they are easily found from the amount of reactants consumed. Also,
some of the analytical solutions have used stoichiometry directly to ease the
algebra. This section formalizes the use of stoichiometric constraints.

2.8.1 Stoichiometry of Single Reactions

The general stoichiometric relationships for a single reaction in a batch reactor
are

NA � ðNAÞ0
�A

¼ NB � ðNBÞ0
�B

¼ � � � ð2:35Þ
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where NA is the number of moles present in the system at any time. Divide
Equation (2.35) by the volume to obtain

âa� a0
�A
¼ b̂b� b0

�B
¼ � � � ð2:36Þ

The circumflex over a and b allows for spatial variations. It can be ignored when
the contents are perfectly mixed. Equation (2.36) is the form normally used for
batch reactors where âa ¼ aðtÞ. It can be applied to piston flow reactors by setting
a0 ¼ ain and âa ¼ aðzÞ, and to CSTRs by setting a0 ¼ ain and âa ¼ aout:

There are two uses for Equation (2.36). The first is to calculate the concentra-
tion of components at the end of a batch reaction cycle or at the outlet of a flow
reactor. These equations are used for components that do not affect the reaction
rate. They are valid for batch and flow systems of arbitrary complexity if the
circumflexes in Equation (2.36) are retained. Whether or not there are spatial
variations within the reactor makes no difference when âa and b̂b are averages
over the entire reactor or over the exiting flow stream. All reactors satisfy
global stoichiometry.

The second use of Equations (2.36) is to eliminate some of the composition
variables from rate expressions. For example, R Aða, bÞ can be converted to
R AðaÞ if Equation (2.36) can be applied to each and every point in the reactor.
Reactors for which this is possible are said to preserve local stoichiometry. This
does not apply to real reactors if there are internal mixing or separation processes,
such as molecular diffusion, that distinguish between types of molecules. Neither
does it apply to multiple reactions, although this restriction can be relaxed
through use of the reaction coordinate method described in the next section.

2.8.2 Stoichiometry of Multiple Reactions

Consider a system with N chemical components undergoing a set ofM reactions.
Obviously, N >M: Define the N �M matrix of stoichiometric coefficients as

l ¼
�A,I �A,II . . .
�B,I �B,II

..

. . .
.

0
BBB@

1
CCCA ð2:37Þ

Note that the matrix of stoichiometric coefficients devotes a row to each of the N
components and a column to each of theM reactions. We require the reactions
to be independent. A set of reactions is independent if no member of the set can
be obtained by adding or subtracting multiples of the other members. A set will
be independent if every reaction contains one species not present in the other
reactions. The student of linear algebra will understand that the rank of l
must equal M.
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Using l, we can write the design equations for a batch reactor in very com-
pact form:

dðaVÞ
dt
¼ lRV ð2:38Þ

where a is the vector (N � 1 matrix) of component concentrations and R is the
vector (M � 1 matrix) of reaction rates.

Example 2.12: Consider a constant-volume batch reaction with the
following set of reactions:

Aþ 2B! C R I ¼ kIa
Aþ C! D R II ¼ kIIac
Bþ C! E R III ¼ kIII c

These reaction rates would be plausible if B were present in great excess,
say as water in an aqueous reaction. Equation (2.38) can be written out as

d

dt

a
b
c
d
e

0
BBBB@

1
CCCCA ¼

�1 �1 0
�2 0 �1
þ1 �1 �1
0 þ1 0
0 0 þ1

0
BBBB@

1
CCCCA

kIa
kIIac
kIII c

0
@

1
A

Expanding this result gives the following set of ODEs:

da

dt
¼ � kIa� kIIac

db

dt
¼ � 2kIa � kIII c

dc

dt
¼ þ kIa� kIIac � kIII c

dd

dt
¼ kIIac

de

dt
¼ þ kIII c

There are five equations in five unknown concentrations. The set is easily
solved by numerical methods, and the stoichiometry has already been incor-
porated. However, it is not the smallest set of ODEs that can be solved to
determine the five concentrations. The first three equations contain only a,
b, and c as unknowns and can thus be solved independently of the other
two equations. The effective dimensionality of the set is only 3.

Example 2.12 illustrates a general result. If local stoichiometry is preserved,
no more than M reactor design equations need to be solved to determine all

68 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



N concentrations. Years ago, this fact was useful since numerical solutions to
ODEs required substantial computer time. They can now be solved in literally
the blink of an eye, and there is little incentive to reduce dimensionality in
sets of ODEs. However, the theory used to reduce dimensionality also gives
global stoichiometric equations that can be useful. We will therefore present it
briefly.

The extent of reaction or reaction coordinate, e is defined by

N̂N� N̂N0 ¼ le ð2:39Þ
where N̂N and N̂N0 are column vectors ðN � 1 matricesÞ giving the final and initial
numbers of moles of each component and e is the reaction coordinate vector
ðM � 1 matrixÞ. In more explicit form,

N̂NA
N̂NB
..
.

0
BBB@

1
CCCA�

N̂NA
N̂NB
..
.

0
BBB@

1
CCCA

0

¼
�A,I �A,II . . .
�B,I �B,II

..

. . .
.

0
BBB@

1
CCCA

"I
"II
..
.

0
BB@

1
CCA ð2:40Þ

Equation (2.39) is a generalization to M reactions of the stoichiometric
constraints of Equation (2.35). If the vector e is known, the amounts of all
N components that are consumed or formed by the reaction can be calculated.

What is needed now is some means for calculating e: To do this, it is useful to
consider some component, H, which is formed only by Reaction I, which does
not appear in the feed, and which has a stoichiometric coefficient of �II , I ¼ 1
for Reaction I and stoichiometric coefficients of zero for all other reactions. It
is always possible to write the chemical equation for Reaction I so that a real
product has a stoichiometric coefficient of þ1. For example, the decomposition
of ozone, 2O3! 3O2, can be rewritten as 2=3O3! O2: However, you may
prefer to maintain integer coefficients. Also, it is necessary that H not occur in
the feed, that there is a unique H for each reaction, and that H participates
only in the reaction that forms it. Think of H as a kind of chemical neutrino
formed by the particular reaction. Since H participates only in Reaction I and
does not occur in the feed, Equation (2.40) gives

NH ¼ "I

The batch reactor equation gives

dðVhÞ
dt
¼ dðNHÞ

dt
¼ d"I
dt
¼ VR I ðNA,NB, . . . ,VÞ ¼ VR I ð"I , "II , . . . ,VÞ ð2:41Þ

The conversion from R I ðNA,NB, . . . ,VÞ to R I ð"I , "II , . . . ,VÞ is carried out
using the algebraic equations obtained from Equation (2.40). The initial
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condition associated with Equation (2.41) is each "I¼ 0 at t¼ 0. We now con-
sider a different H for each of the M reactions, giving

de
dt
¼ V R where e ¼ 0 at t ¼ 0 ð2:42Þ

Equation (2.42) represents a set of M ODEs in M independent variables,
"I , "II , . . . . It, like the redundant set of ODEs in Equation (2.38), will normally
require numerical solution. Once solved, the values for the e can be used to
calculate the N composition variables using Equation (2.40).

Example 2.13: Apply the reaction coordinate method to the reactions in
Example 2.12.

Solution: Equation (2.42) for this set is

d

dt

"I
"II
"III

0
@

1
A ¼ V kIa

kIIac
kIII c

0
@

1
A ¼ kINA

kINANC=V
kIIINC

0
@

1
A ð2:43Þ

Equation (2.40) can be written out for this reaction set to give

NA � ðNAÞ0 ¼ �"I � "II

NB � ðNBÞ0 ¼ �2"I � "III

NC � ðNCÞ0 ¼ þ"I � "II � "III

ND � ðNDÞ0 ¼ þ"II
NE � ðNEÞ0 ¼ þ "III

ð2:44Þ

The first three of these equations are used to eliminate NA, NB, and NC from
Equation (2.43). The result is

d"I
dt
¼ kI ½ðNAÞ0 � "I � "II �

d"II
dt
¼ kII
V
½ðNAÞ0 � "I � "II �½ðNCÞ0 þ "I � "II � "III �

d"III
dt
¼ kIII ½ðNCÞ0 þ "I � "II � "III �

Integrate these out to time tbatch and then use Equations (2.44) to evaluate
NA, . . . ,NE . The corresponding concentrations can be found by dividing by
VðtbatchÞ:

70 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



In a formal sense, Equation (2.38) applies to all batch reactor problems.
So does Equation (2.42) combined with Equation (2.40). These equations are
perfectly general when the reactor volume is well mixed and the various compo-
nents are quickly charged. They do not require the assumption of constant
reactor volume. If the volume does vary, ancillary, algebraic equations are
needed as discussed in Section 2.6.1. The usual case is a thermodynamically
imposed volume change. Then, an equation of state is needed to calculate
the density.

PROBLEMS

2.1. The following reactions are occurring in a constant-volume, isothermal
batch reactor:

Aþ B �!kI C

Bþ C �!kII D

Parameters for the reactions are a0¼ b0¼ 10mol/m3, c0¼ d0¼ 0,
kI¼ kII¼ 0.01m3/(mol Eh), tbatch¼ 4 h.
(a) Find the concentration of C at the end of the batch cycle.
(b) Find a general relationship between the concentrations of A and C

when that of C is at a maximum.
2.2. The following kinetic scheme is postulated for a batch reaction:

Aþ B! C R I ¼ kIa1=2b
Bþ C! D R II ¼ kIIc1=2b

Determine a, b, c and d as functions of time. Continue your calculations
until the limiting reagent is 90% consumed given a0¼ 10mol/m3,
b0¼ 2mol/m3, c0¼ d0¼ 0, kI¼ kII¼ 0.02m3/2/(mol1/2 E s).

2.3. Refer to Example 2.5. Prepare the plot referred to in the last sentence of
that example. Assume kII=kI ¼ 0:1.

2.4. Dimethyl ether thermally decomposes at temperatures above 450�C. The
predominant reaction is

CH3OCH3! CH4 þH2 þ CO

Suppose a homogeneous, gas-phase reaction occurs in a constant-volume
batch reactor. Assume ideal gas behavior and suppose pure A is charged
to the reactor.
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(a) Show how the reaction rate can be determined from pressure mea-
surements. Specifically, relate R to dP/dt.

(b) Determine P(t), assuming that the decomposition is first order.
2.5. The first step in manufacturing polyethylene terephthalate is to react

terephthalic acid with a large excess of ethylene glycol to form diglycol
terephthalate:

HOOC�f�COOHþ 2HOCH2CH2OH!
HOCH2CH2OOC�f�COOCH2CH2OHþ 2H2O

Derive a plausible kinetic model for this reaction. Be sure your model
reflects the need for the large excess of glycol. This need is inherent in
the chemistry if you wish to avoid by-products.

2.6. Consider the liquid-phase reaction of a diacid with a diol, the first reac-
tion step being

HO�R�OHþHOOC�R0�COOH! HO�ROOCR0�COOHþH2O

Suppose the desired product is the single-step mixed acidol as shown
above. A large excess of the diol is used, and batch reactions are conducted
to determine experimentally the reaction time, tmax, which maximizes
the yield of acidol. Devise a kinetic model for the system and explain
how the parameters in this model can be fit to the experimental data.

2.7. The exponential function can be defined as a limit:

Lim
m!1 1þ z

m


 �m
¼ ez

Use this fact to show that Equation (2.17) becomes Equation (2.16) in the
limit as n !1.

2.8. Determine the maximum batch reactor yield of B for a reversible, first-
order reaction:

A ���! ���
kf

kr

B

Do not assume b0¼ 0. Instead, your answer will depend on the amount of
B initially present.

2.9. Start with 1 mol of 238U and let it age for 10 billion years or so. Refer to
Table 2.1. What is the maximum number of atoms of 214Po that will ever
exist? Warning! This problem is monstrously difficult to solve by brute
force methods. A long but straightforward analytical solution is possible.
See also Section 2.5.3 for a shortcut method.

2.10. Consider the consecutive reactions

A �!k B �!k C

where the two reactions have equal rates. Find bðtÞ.
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2.11. Find the batch reaction time that maximizes the concentration of compo-
nent B in Problem 2.10. You may begin with the solution of Problem 2.10
or with Equation (2.23).

2.12. Find c(t) for the consecutive, first-order reactions of Equation (2.20)
given that kB ¼ kC:

2.13. Determine the batch reaction time that maximizes the concentration of
component C in Equation (2.20) given that kA¼ 1 h�1, kB¼ 0.5 h�1,
kC¼ 0.25 h–1, kD¼ 0.125 h–1.

2.14. Consider the sequential reactions of Equation (2.20) and suppose
b0¼ c0¼ d0¼ 0, kI¼ 3 h�1, kII¼ 2 h�1, kIII¼ 4 h�1. Determine the ratios
a/a0, b/a0, c/a0, and d/a0, when the batch reaction time is chosen
such that
(a) The final concentration of A is maximized.
(b) The final concentration of B is maximized.
(c) The final concentration of C is maximized.
(d) The final concentration of D is maximized.

2.15. Find the value of the dimensionless batch reaction time, kf tbatch, that
maximizes the concentration of B for the following reactions:

A ���! ���
kf

kr

B �!kB C

Compare this maximum value for b with the value for b obtained using
the quasi-steady hypothesis. Try several cases: (a) kr ¼ kB ¼ 10kf , (b)
kr ¼ kB ¼ 20kf , (c) kr ¼ 2kB ¼ 10kf :

2.16. The bromine–hydrogen reaction

Br2 þH2 ! 2HBr

is believed to proceed by the following elementary reactions:

Br2 þM ���! ���
kI

k�I

2Br. þM ðIÞ

Br. þH2
���! ���
kII

k�II

HBrþH. ðIIÞ

H. þ Br2 �!kIII HBrþ Br . ðIIIÞ

The initiation step, Reaction (I), represents the thermal dissociation of
bromine, which is brought about by collision with any other molecule,
denoted by M.
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(a) The only termination reaction is the reverse of the initiation step and
is third order. Apply the quasi-steady hypothesis to ½Br. � and ½H. � to
obtain

R ¼ k½H2� ½Br2�3=2
½Br2� þ kA½HBr�

(b) What is the result if the reverse reaction (I) does not exist and termi-
nation is second order, 2Br. ! Br2?

2.17. A proposed mechanism for the thermal cracking of ethane is

C2H6 þM �!kI 2CH3
. þM

CH3
. þ C2H6 �!kII CH4 þ C2H5

.

C2H5
. �!kIII C2H4 þH.

H.þC2H6 �!kIV H2 þ C2H5
.

2C2H5
. �!kV C4H10

The overall reaction has variable stoichiometry:

C2H6 ! �BC2H4 þ �CC4H10 þ ð2 � 2�B � 4�CÞCH4

þ ð�1þ 2�B þ 3�CÞH2

The free-radical concentrations are small and are ignored in this equation
for the overall reaction.
(a) Apply the quasi-steady hypothesis to obtain an expression for the

disappearance of ethane.
(b) What does the quasi-steady hypothesis predict for �B and �C?
(c) Ethylene is the desired product. Which is better for this gas-phase

reaction, high or low pressure?
2.18. The Lotka-Volterra reaction described in Section 2.5.4 has three initial

conditions—one each for grass, rabbits, and lynx—all of which must
be positive. There are three rate constants assuming the supply of grass
is not depleted. Use dimensionless variables to reduce the number of
independent parameters to four. Pick values for these that lead to a sus-
tained oscillation. Then, vary the parameter governing the grass supply
and determine how this affects the period and amplitude of the solution.

2.19. It is proposed to study the hydrogenation of ethylene

C2H4 þH2! C2H6
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in a constant-pressure, gas-phase batch reactor. Derive an expression for
the reactor volume as a function of time, assuming second-order kinetics,
ideal gas behavior, perfect stoichiometry, and 50% inerts by volume at
t¼ 0.

2.20. Suppose a rubber balloon is filled with a gas mixture and that one of the
following reactions occurs:

2A �!k B

Aþ B �!k C

A �!k Bþ C

Determine V(t).
Hint 1: The pressure difference between the inside and the outside

of the balloon must be balanced by the stress in the fabric of the balloon
so that �R2 �P ¼ 2�Rh� where h is the thickness of the fabric and � is
the stress.
Hint 2: Assume that the density of the fabric is constant so that

4�R2h ¼ 4�R2
0h0:

Hint 3: Assume that the fabric is perfectly elastic so that stress is pro-
portional to strain (Hooke’s law).
Hint 4: The ideal gas law applies.

2.21. A numerical integration scheme has produced the following results:

�z Integral

1.0 0.23749
0.5 0.20108
0.25 0.19298
0.125 0.19104
0.0625 0.19056

(a) What is the apparent order of convergence?
(b) Extrapolate the results to �z¼ 0. (Note: Such extrapolation should

not be done unless the integration scheme has a theoretical order of
convergence that agrees with the apparent order. Assume that it
does.)

(c) What value for the integral would you expect at �z¼ 1/32?
2.22. See Example 2.14 in Appendix 2.

(a) Write chemical equations that will give the ODEs of that example.
(b) Rumor has it that there is an error in the Runge-Kutta calculations

for the case of �t¼ 0.5. Write or acquire the necessary computer
code and confirm or deny the rumor.
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2.23. The usual method of testing for convergence and of extrapolating to zero
step size assumes that the step size is halved in successive calculations.
Example 2.4 quarters the step size. Develop an extrapolation technique
for this procedure. Test it using the data in Example 2.15 in Appendix 2.
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SUGGESTIONS FOR FURTHER READING

Most undergraduate texts on physical chemistry give a survey of chemical
kinetics and reaction mechanisms. A comprehensive treatment is provided in

Benson, S. W., Foundations of Chemical Kinetics, McGraw-Hill, New York, 1960.

A briefer and more recent description is found in

Espenson, J. H., Ed., Chemical Kinetics and Reaction Mechanisms, McGraw-Hill, New York,
1995.

A recent, comprehensive treatment of chemical oscillators and assorted esoterica
is given in

Epstein, I. R. and Pojman, J. A., Eds., An Introduction to Nonlinear Chemical Dynamics:
Oscillations, Waves, Patterns, and Chaos, Oxford University Press, New York, 1998.

A classic, mathematically oriented work has been reprinted as a paperback:

Aris, R., Elementary Chemical Reactor Analysis, Dover, Mineola, NY, 2000.

An account of the reaction coordinate method as applied to chemical equili-
brium is given in Chapter 14 of

Smith, J. M., Van Ness, H. C., and Abbott, M. M., Introduction to Chemical Engineering
Thermodynamics, 6th ed., McGraw-Hill, New York, 2001.

The Internet has become a wonderful source of (sometimes free) software for
numerical analysis. Browse through it, and you will soon see that Fortran
remains the programming language for serious numerical computation. One
excellent book that is currently available without charge is

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in
Fortran 77: The Art of Scientific Computing, Vol. 1, 2nd ed., Cambridge University Press,
New York, 1992.

This book describes and gives Fortran subroutines for a wide variety of ODE
solvers. More to the point, it gives numerical recipes for practically anything
you will ever need to compute. Volume 2 is also available online. It discusses
Fortran 90 in the context of parallel computing. C, Pascal, and Basic versions
of Volume 1 can be purchased.
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APPENDIX 2: NUMERICAL SOLUTION OF
ORDINARY DIFFERENTIAL EQUATIONS

In this chapter we described Euler’s method for solving sets of ordinary differ-
ential equations. The method is extremely simple from a conceptual and pro-
gramming viewpoint. It is computationally inefficient in the sense that a great
many arithmetic operations are necessary to produce accurate solutions. More
efficient techniques should be used when the same set of equations is to be
solved many times, as in optimization studies. One such technique, fourth-
order Runge-Kutta, has proved very popular and can be generally recommended
for all but very stiff sets of first-order ordinary differential equations. The set of
equations to be solved is

da

dt
¼ R Aða, b, . . . , tÞ

db

dt
¼ R Bða, b, . . . , tÞ

ð2:45Þ

..

. ..
.

A value of �t is selected, and values for �a, �b, . . . are estimated by evaluating
the functions R A,R B . . . . In Euler’s method, this evaluation is done at the
initial point (a0, b0, . . . , t0) so that the estimate for �a is just �tR Aða0,
b0, . . . , t0Þ ¼ �tðR AÞ0: In fourth-order Runge-Kutta, the evaluation is done at
four points and the estimates for �a, �b, . . . are based on weighted averages
of the R A, R B, . . . at these four points:

�a ¼ �t
ðR AÞ0 þ 2ðR AÞ1 þ 2ðR AÞ2 þ ðR AÞ3

6

�b ¼ �t
ðR BÞ0 þ 2ðR BÞ1 þ 2ðR BÞ2 þ ðR BÞ3

6
ð2:46Þ

..

. ..
.

where the various R s are evaluated at the points

a1 ¼ a0 þ�tðR AÞ0=2
a2 ¼ a0 þ�tðR AÞ1=2
a3 ¼ a0 þ�tðR AÞ2

ð2:47Þ

with similar equations for b1, b2, b3, and so on. Time rarely appears explicitly in
the R , but, should it appear,

t1 ¼ t0 þ�t=2

t2 ¼ t1
t3 ¼ t0 þ�t

ð2:48Þ
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Example 2.14: Use fourth-order Runge-Kutta integration to solve the
following set of ODEs:

da

dt
¼ �k1a2

db

dt
¼ þk1a2 � k2bc

dc

dt
¼ �k2bc

Use a0¼ c0¼ 30, b0¼ 0, k1 ¼ 0:01, k2¼ 0.02. Find a, b, and c for t¼ 1.

Solution: The coding is left to the reader, but if you really need a worked
example of the Runge-Kutta integration, check out Example 6.4. The follow-
ing are detailed results for �t¼ 1.0, which means that only one step was taken
to reach the answer.

j ai bi ci (R A)j (R B)j (R C)j

0 30.000 0 30.000 �18.000 9.000 0
1 21.000 4.500 30.000 �8.820 1.710 �2.700
2 25.590 0.855 28.650 �13.097 6.059 �0.490
3 16.903 6.059 29.510 �5.714 �0.719 �3.576

Final : 18:742 3:970 28:341

For �t¼ 0.5, the results for a, b, and c are

Final : 18:750 4:069 28:445

Results accurate to three places after the decimal are obtained with �t¼ 0.25:

Final : 18:750 4:072 28:448

The fourth Runge-Kutta method converges O(�t5). Thus, halving the step
size decreases the error by a factor of 32. By comparison, Euler’s method con-
verges O(�t) so that halving the step size decreases the error by a factor of
only 2. These remarks apply only in the limit as �t ! 0, and either method
can give anomalous behavior if �t is large. If you can confirm that the data
are converging according to the theoretical order of convergence, the conver-
gence order can be used to extrapolate calculations to the limit as �t ! 0.

Example 2.15: Develop an extrapolation technique suitable for the first-
order convergence of Euler integration. Test it for the set of ODEs in
Example 2.3.
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Solution: Repeat the calculations in Example 2.3 but now reduce �t by
a factor of 2 for each successive calculation rather than by the factor of
4 used in the examples. Calculate the corresponding changes in a(tmax) and
denote these changes by �. Then � should decrease by a factor of 2 for
each calculation of a(tmax). (The reader interested in rigor will note that the
error is halved and will do some algebra to prove that the � are halved as
well.) If � was the change that just occurred, then we would expect the
next change to be �/2, the one after that to be �/4, and so on. The total
change yet to come is thus �/2þ�/4þ�/8þ � � �. This is a geometric series
that converges to �. Using Euler’s method, the cumulative change yet to
come is equal to the single change that just occurred. Thus, the extrapolated
value for a(tmax) is the value just calculated plus the � just calculated. The
extrapolation scheme is illustrated for the ODEs in Example 2.3 in the
following table:

Number
of steps a(tmax) �

Extrapolated
a(tmax)

2 �16.3200
4 1.5392 17.8591 19.3938
8 2.8245 1.2854 4.1099
16 3.2436 0.4191 3.6626
32 3.4367 0.1931 3.6298
64 3.5304 0.0937 3.6241
128 3.5766 0.0462 3.6228
256 3.5995 0.0229 3.6225
512 3.6110 0.0114 3.6224
1024 3.6167 0.0057 3.6224
2048 3.6195 0.0029 3.6224
4096 3.6210 0.0014 3.6224
8192 3.6217 0.0007 3.6224
16384 3.6220 0.0004 3.6224
32768 3.6222 0.0002 3.6224
65536 3.6223 0.0001 3.6224
131072 3.6223 0.0000 3.6224

Extrapolation can reduce computational effort by a large factor, but compu-
tation is cheap. The value of the computational reduction will be trivial for most
problems. Convergence acceleration can be useful for complex problems or for
the inside loops in optimization studies. For such cases, you should also consider
more sophisticated integration schemes such as Runge-Kutta. It too can be
extrapolated, although the extrapolation rule is different. The extrapolated
factor for Runge-Kutta integration is based on the series

1=32þ 1=322 þ 1=323 þ � � � ¼ 0:03226
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Thus, the total change yet to come is about 3% of the change that just occurred.
As a practical matter, your calculations will probably achieve the required accu-
racy by the time you confirm that successive changes in the integral really are
decreasing by a factor of 32 each time. With modern computers and Runge-
Kutta integration, extrapolation is seldom needed for the solution of ODEs.
It may still be useful in the solution of the second-order, partial differential equa-
tions treated in Chapters 8 and 9. Ordinary differential equation solvers are
often used as part of the solution technique for PDEs. Extrapolation is used
in some highly efficient ODE solvers. A variety of sophisticated integration tech-
niques are available both as freeware and as commercial packages. Their use
may be justified for design and optimization studies where the same set of equa-
tions must be solved repetitively or when the equations are exceptionally stiff.
The casual user need go no further than Runge-Kutta, possibly with adaptive
step sizes where �t is varied from step to step in the calculations based on
error estimates. See Numerical Recipes by Press et al., as cited in the
‘‘Suggestions for Further Reading’’ section for this chapter, for a usable example
of Runge-Kutta integration with adaptive step sizes.
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CHAPTER 3

ISOTHERMAL PISTON
FLOW REACTORS

Chapter 2 developed a methodology for treating multiple and complex reactions
in batch reactors. The methodology is now applied to piston flow reactors.
Chapter 3 also generalizes the design equations for piston flow beyond the
simple case of constant density and constant velocity. The key assumption of
piston flow remains intact: there must be complete mixing in the direction per-
pendicular to flow and no mixing in the direction of flow. The fluid density and
reactor cross section are allowed to vary. The pressure drop in the reactor is cal-
culated. Transpiration is briefly considered. Scaleup and scaledown techniques
for tubular reactors are developed in some detail.

Chapter 1 treated the simplest type of piston flow reactor, one with constant
density and constant reactor cross section. The reactor design equations for this
type of piston flow reactor are directly analogous to the design equations for a
constant-density batch reactor. What happens in time in the batch reactor
happens in space in the piston flow reactor, and the transformation t ¼ z= �uu
converts one design equation to the other. For component A,

�uu
da

dz
¼ R A where a ¼ ain at z ¼ 0 ð3:1Þ

All the results obtained for isothermal, constant-density batch reactors apply to
isothermal, constant-density (and constant cross-section) piston flow reactors.
Just replace t with z= �uu, and evaluate the outlet concentration at z ¼ L:
Equivalently, leave the result in the time domain and evaluate the outlet compo-
sition �tt ¼ L= �uu. For example, the solution for component B in the competitive
reaction sequence of

A �!kA B �!kB C �!kC D �!kD � � �
is given by Equation (2.22) for a batch reactor:

bbatchðtÞ ¼ b0 � a0kA
kB � kA

� �
e�kBt þ a0kA

kB � kA

� �
e�kAt
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The solution for the same reaction sequence run in a PFR is

bPFRðzÞ ¼ bin � ainkA
kB � kA

� �
e�kBz= �uu þ ainkA

kB � kA

� �
e�kAz= �uu

The extension to multiple reactions is done by writing Equation (3.1) (or the
more complicated versions of Equation (3.1) that will soon be developed)
for each of the N components. The component reaction rates are found from
Equation (2.7) in exactly the same ways as in a batch reactor. The result
is an initial value problem consisting of N simultaneous, first-order ODEs
that can be solved using your favorite ODE solver. The same kind of prob-
lem was solved in Chapter 2, but the independent variable is now z rather
than t.

The emphasis in this chapter is on the generalization of piston flow to situa-
tions other than constant velocity down the tube. Real reactors can closely
approximate piston flow reactors, yet they show many complications compared
with the constant-density and constant-cross-section case considered inChapter 1.
Gas-phase tubular reactors may have appreciable density differences between
the inlet and outlet. The mass density and thus the velocity down the tube can
vary at constant pressure if there is a change in the number of moles upon reac-
tion, but the pressure drop due to skin friction usually causes a larger change in
the density and velocity of the gas. Reactors are sometimes designed to have
variable cross sections, and this too will change the density and velocity.
Despite these complications, piston flow reactors remain closely akin to batch
reactors. There is a one-to-one correspondence between time in a batch and
position in a tube, but the relationship is no longer as simple as z ¼ �uut:

3.1 PISTON FLOW WITH CONSTANT
MASS FLOW

Most of this chapter assumes that the mass flow rate down the tube is constant;
i.e., the tube wall is impermeable. The reactor cross-sectional area Ac is allowed
to vary as a function of axial position, Ac ¼ AcðzÞ. Figure 3.1 shows the system
and indicates the nomenclature. An overall mass balance gives

Q� ¼ Qin�in ¼ Ac �uu� ¼ ðAcÞin �uuin�in ¼ constant ð3:2Þ
where � is the mass density that is assumed to be uniform in the cross section
of the reactor but that may change as a function of z. The counterpart for
Equation (3.2) in a batch system is just that �V be constant.

The component balance will be based on the molar flow rate:

_NNA ¼ Qa ð3:3Þ
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Unlike Q�, _NNA is not a conserved quantity and varies down the length of the
tube. Consider a differential element of length �z and volume �zAc. The
molar flow entering the element is _NNAðzÞ and that leaving the element is
_NNAðzþ�zÞ, the difference being due to reaction within the volume element.
A balance on component A gives

_NNAðzÞ þ Ac�zR A ¼ _NNAðzþ�zÞ
or

R A ¼
_NNAðzþ�zÞ � _NNAðzÞ

Ac�z

Taking the limit as �z! 0 gives

1

Ac

dð _NNAÞ
dz
¼ 1

Ac

dðQaÞ
dz
¼ 1

Ac

dðAc �uuaÞ
dz

¼ R A ð3:4Þ

This is the piston flow analog of the variable-volume batch reactor, Equation
(2.30).

The derivative in Equation (3.4) can be expanded into three separate terms:

1

Ac

dðAc �uuaÞ
dz

¼ �uu
da

dz
þ a d �uu

dz
þ �uua

Ac

dAc
dz
¼ R A ð3:5Þ

The first term must always be retained since A is a reactive component and thus
varies in the z-direction. The second term must be retained if either the mass
density or the reactor cross-sectional area varies with z. The last term is

Q(z + �z)

a(z + �z)

u(z + �z)
a(z + �z)

u(z)
a(z)

Q(z)

a(z)

�

�

�z

�z

�V = �z Ac(z)

�V = �z Ac

(a)

(b)

FIGURE 3.1 Differential volume elements in piston flow reactors: (a) variable cross section;
(b) constant cross section.
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needed for reactors with variable cross sections. Figure 3.2 illustrates an annular
flow reactor that is an industrially relevant reason for including this term.

Practical problems involving variable-density PFRs require numerical solu-
tions, and for these it is better to avoid expanding Equation (3.4) into separate
derivatives for a and �uu: We could continue to use the molar flow rate, _NNA, as
the dependent variable, but prefer to use the molar flux,

�A ¼ �uua ð3:6Þ
The units on �A are mol/(m2 E s). This is the convective flux. The student of mass
transfer will recognize that a diffusion term like �DAda=dz is usually included in
the flux. This term is the diffusive flux and is zero for piston flow. The design
equation for the variable-density, variable-cross-section PFR can be written as

d�A
dz
¼ R A ��A

Ac

dAc
dz

where �A ¼ ð�AÞin at z ¼ 0 ð3:7Þ

The dAc=dz term is usually zero since tubular reactors with constant diameter
are by far the most important application of Equation (3.7). For the exceptional
case, we suppose that Ac(z) is known, say from the design drawings of the reac-
tor. It must be a smooth (meaning differentiable) and slowly varying function
of z or else the assumption of piston flow will run into hydrodynamic as well
as mathematical difficulties. Abrupt changes in Ac will create secondary flows
that invalidate the assumptions of piston flow.

We can define a new rate expression R 0A that includes the dAc=dz term within
it. The design equation then becomes

d�A
dz
¼ R A ��A

Ac

dAc
dz
¼ R 0A ¼ R 0Aða, b, . . . , zÞ ð3:8Þ

where R 0A has an explicit dependence on z when the cross section is variable
and where R 0A ¼ R A for the usual case of constant cross section. The explicit
dependence on z causes no problem in numerical integration. Equation (2.48)
shows how an explicit dependence on the independent variable is treated in
Runge-Kutta integration.

Catalyst

Catalyst

Qin
cin

Qout
cout

FIGURE 3.2 Annular packed-bed reactor used for adiabatic reactions favored by low pressure.
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If there are M reactions involving N components,

d(
dz
¼ mR0 where ( ¼ (in at z ¼ 0 ð3:9Þ

where ( and (in are N � 1 column vectors of the component fluxes, m is an
N �M matrix of stoichiometric coefficients, and R0 is an M � 1 column
vector of reaction rates that includes the effects of varying the reactor cross sec-
tion. Equation (3.9) represents a set of first-order ODEs and is the flow analog
of Equation (2.38). The dimensionality of the set can be reduced to M < N
by the reaction coordinate method, but there is little purpose in doing so. The
reduction provides no significant help in a numerical solution, and even the
case of one reactant going to one product is difficult to solve analytically
when the density or cross section varies. A reason for this difficulty is
illustrated in Example 3.1.

Example 3.1: Find the fraction unreacted for a first-order reaction in a
variable density, variable-cross-section PFR.

Solution: It is easy to begin the solution. In piston flow, molecules that
enter together leave together and have the same residence time in the
reactor, �tt: When the kinetics are first order, the probability that a molecule
reacts depends only on its residence time. The probability that a particular
molecule will leave the system without reacting is expð�k �tt Þ. For the entire
collection of molecules, the probability converts into a deterministic
fraction. The fraction unreacted for a variable density flow system is

YA ¼ ð
_NNAÞout
ð _NNAÞin

¼ ðQaÞoutðQaÞin
¼ ðAc �uuaÞoutðAc �uuaÞin

¼ e�k�tt ð3:10Þ

The solution for YA is simple, even elegant, but what is the value of �tt ? It is
equal to the mass holdup divided by the mass throughput, Equation (1.41),
but there is no simple formula for the holdup when the density is variable.
The same gas-phase reactor will give different conversions for A when the
reactions are A! 2B and A! B, even though it is operated at the same
temperature and pressure and the first-order rate constants are identical.

Fortunately, it is possible to develop a general-purpose technique for the
numerical solution of Equation (3.9), even when the density varies down the
tube. It is first necessary to convert the component reaction rates from their
normal dependence on concentration to a dependence on the molar fluxes.
This is done simply by replacing a by �A= �uu, and so on for the various
components. This introduces �uu as a variable in the reaction rate:

d�A
dz
¼ R 0A ¼ R 0Aða, b, . . . , zÞ ¼ R 0Að�A,�B, . . . , �uu, zÞ ð3:11Þ
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To find �uu, it is necessary to use some ancillary equations. As usual in solving initial
value problems, we assume that all variables are known at the reactor inlet so that
ðAcÞin �uuin�in will be known. Equation (3.2) can be used to calculate �uu at a down-
stream location if � is known.An equation of state will give � but requires knowl-
edge of state variables such as composition, pressure, and temperature. To find
these, we will need still more equations, but a closed set can eventually be
achieved, and the calculations can proceed in a stepwise fashion down the tube.

3.1.1 Gas-Phase Reactions

For gas-phase reactions, the molar density is more useful than the mass density.
Determining the equation of state for a nonideal gas mixture can be a difficult
problem in thermodynamics. For illustrative purposes and for a great many
industrial problems, the ideal gas law is sufficient. Here it is given in a form
suitable for flow reactors:

P

RgT
¼ aþ bþ cþ � � � þ i ð3:12Þ

where i represents the concentration (molar density) of inerts. Note that
Equation (3.9) should include inerts as one of the components when the reaction
is gas phase. The stoichiometric coefficient is zero for an inert so that R I ¼ 0,
but if Ac varies with z, then R 0I 6¼ 0:

Multiply Equation (3.12) by �uu to obtain

P �uu

RgT
¼ �uuaþ �uubþ �uucþ � � � þ �uui ¼ �A þ�B þ�C þ � � � þ�I ð3:13Þ

If the reactor operates isothermally and if the pressure drop is sufficiently
low, we have achieved closure. Equations (3.11) and (3.13) together allow
a marching-ahead solution. The more common case requires additional equa-
tions to calculate pressure and temperature. An ODE is added to calculate
pressure PðzÞ, and Chapter 5 adds an ODE to calculate temperature TðzÞ:

For laminar flow in a circular tube of radius R, the pressure gradient is given
by a differential form of the Poiseuille equation:

dP

dz
¼ � 8� �uu

R2
ð3:14Þ

where � is the viscosity. In the general case, �uu,�, and R will all vary as a function
of z and Equation (3.14) must be integrated numerically. The reader may
wonder if piston flow is a reasonable assumption for a laminar flow system
since laminar flow has a pronounced velocity profile. The answer is not really,
but there are exceptions. See Chapter 8 for more suitable design methods and
to understand the exceptional—and generally unscalable case—where piston
flow is a reasonable approximation to laminar flow.
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For turbulent flow, the pressure drop is calculated from

dP

dz
¼ �Fa� �uu2

R
ð3:15Þ

where the Fanning friction factor Fa can be approximated as

Fa ¼ 0:079

Re1=4
ð3:16Þ

More accurate correlations, which take factors like wall roughness into account,
are readily available, but the form used here is adequate for most purposes. It
has a simple, analytical form that lends itself to conceptual thinking and scaleup
calculations, but see Problem 3.14 for an alternative.

For packed beds in either turbulent or laminar flow, the Ergun equation is
often satisfactory:

dP

dz
¼ � � �uu2s

dp

ð1� "Þ
"3

150ð1� "Þ�
dp� �uus

þ 1:75

� �

¼ � � �uu2s
dp

ð1� "Þ
"3

150ð1� "Þ
ðReÞp

þ 1:75

" #
ð3:17Þ

where " is the void fraction of the bed, ðReÞp is the particle Reynolds number,
and dp is the diameter of the packing. For nonspherical packing, use six times
the ratio of volume to surface area of the packing as an effective dp. Note
that �uus is the superficial velocity, this being the velocity the fluid would have if
the tube were empty.

The formulation is now complete. Including the inerts among the N compo-
nents, there are N ODEs that have the � as dependent variables. The general
case has two additional ODEs, one for pressure and one for temperature.
There are thus N þ 2 first-order ODEs in the general case. There is also an
equation of state such as Equation (3.13) and this relates P, T, and the �:
The marching-ahead technique assumes that all variables are known at the
reactor inlet. Pressure may be an exception since the discharge pressure is usually
specified and the inlet pressure has whatever value is needed to achieve
the requisite flow rate. This is handled by assuming a value for Pin and adjusting
it until the desired value for Pout is obtained.

An analytical solution to a variable-density problem is rarely possible. The
following example is an exception that illustrates the solution technique first
in analytical form and then in numerical form. It is followed by a description
of the general algorithm for solving Equation (3.11) numerically.

Example 3.2: Consider the reaction 2A �!k B. Derive an analytical
expression for the fraction unreacted in a gas-phase, isothermal, piston
flow reactor of length L. The pressure drop in the reactor is negligible.
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The reactor cross section is constant. There are no inerts. The feed is pure A
and the gases are ideal. Test your mathematics with a numerical solution.

Solution: The design equations for the two components are

dð �uuaÞ
dz
¼ d�A
dz
¼ �2ka2 ¼ �2k�

2
A

�uu2

dð �uubÞ
dz
¼ d�B
dz
¼ ka2 ¼ k�

2
A

�uu2

Applying the ideal gas law

P

RgT
¼ �molar ¼ aþ b

Multiplying by �uu gives

P �uu

RgT
¼ �uu ���molar ¼ �uuðaþ bÞ ¼ �A þ�B

Since the pressure drop is small, P ¼ Pin, and

�uu ¼ �A þ�B
ðaþ bÞ ¼

�A þ�B
ain

The ODEs governing the system are

d�A
dz
¼ �2k�

2
A

�uu2
¼ �2k a2in�

2
A

ð�A þ�BÞ2

d�B
dz
¼ k�

2
A

�uu2
¼ k a2in�

2
A

ð�A þ�BÞ2

These equations are the starting point for both the analytical and the
numerical solutions.

Analytical Solution: A stoichiometric relationship can be used to eliminate �B.
Combine the two ODEs to obtain

�d�A
2
¼ d�B

The initial condition is that �A ¼ �in when �B ¼ 0. Thus,

�B ¼ �in ��A
2
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Substituting this into the equation for �uu gives a single ODE:

d�A
dz
¼ �8ka

2
in�

2
A

ð�A þ�inÞ2

that is variable-separable. Thus,

Z�A
�in

ð�A þ�inÞ2
�2
A

d�A ¼ �
Zz
0

8ka2in dz

A table of integrals (and a variable substitution, s ¼ �A þ�in) gives

�A
�in
��in

�A
� 2 ln

�in
�A
¼ �8ka

2
inz

�in
¼ �8kainz

�uuin

The solution to the constant-density case is

�A
�in
¼ a

ain
¼ 1

1þ 2kainz= �uuin

The fraction unreacted is �A=�in. Set z ¼ L to obtain it at the reactor outlet.
Suppose �in ¼ 1 and that kain= �uuin ¼ 1 in some system of units. Then the
variable-density case gives z ¼ 0:3608 at �A ¼ 0:5. The velocity at this
point is 0.75 �uuin. The constant density case gives z¼ 0.5 at �A ¼ 0:5 and the
velocity at the outlet is unchanged from �uuin. The constant-density case fails
to account for the reduction in �uu as the reaction proceeds and thus
underestimates the residence time.

Numerical Solution: The following program gives z ¼ 0:3608 at �A ¼ 0:5.

a¼1
b¼0
u¼1
k¼1
dz¼.0001
z¼0
PAold¼u * a
PBold¼0
DO

PAnew¼PAold - 2 * k * PAold ^ 2 / u ^ 2 * dz
PBnew¼PBoldþk * PAold ^ 2 / u ^ 2 * dz
u¼PAnewþPBnew
PAold¼PAnew
PBold¼PBnew
z¼zþdz
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LOOP WHILE PAold > .5
PRINT USING "###.####"; z

Computational Scheme for Gas-Phase PFRs. A general procedure for solving
the reactor design equations for a piston flow reactor using the marching-
ahead technique (Euler’s method) has seven steps:

1. Pick a step size �z:

2. Calculate initial values for all variables including a guess for Pin. Initial values
are needed for a, b, c, . . . , i, �uu,�A,�B,�C, . . . ,�I ,P, and T plus physical
properties such as � that are used in the ancillary equations.

3. Take one step, calculating new values for �A,�B,�C, . . . , �I , P, and T at
the new axial location, zþ�z: The marching-ahead equations for the
molar fluxes have the form

ð�AÞnew ¼ ð�AÞold þ�zR 0A½ð�AÞold , ð�BÞold , � � � , ð�I Þold , z� ð3:18Þ
The right-hand sides of these equations are evaluated using the old values that
correspond to position z. A similar Euler-type solution is used for one of
Equations (3.14), (3.15), or (3.17) to calculate Pnew and an ODE from
Chapter 5 is solved in the same way to calculate Tnew.

4. Update �uu using

�uunew ¼ RgTnewð�A þ�B þ�C þ � � � þ�I Þnew=Pnew ð3:19Þ
Note that this step uses the ideal gas law. Other equations of state could be
substituted.

5. Update all physical property values to the new conditions. The component
concentrations are updated using

anew ¼ ð�AÞnew= �uunew, bnew ¼ ð�BÞnew= �uunew, . . . ð3:20Þ
6. If z < L, go to Step 3. If z 	 L, is Pout correct? If not, go to Step 2 and guess

another value for Pin:

7. Decrease �z by a factor of 2 and go to Step 1. Repeat until the results con-
verge to three or four significant figures.

The next example applies this general procedure to a packed-bed reactor.

Example 3.3: Fixed-bed reactors are used for the catalytic dehydrogenation
of ethylbenzene to form styrene:

C8H10�! �C8H8 þH2 ðA�! �Bþ CÞ

The reaction is endothermic, but large amounts of steam are used to minimize
the temperature drop and, by way of the water–gas shift reaction, to prevent
accumulation of coke on the catalyst. Ignore the reverse and competitive
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reactions and suppose a proprietary catalyst in the form of 3-mm spheres
gives a first-order rate constant of 15 s�1 at 625�C.

The molar ratio of steam to ethylbenzene at the inlet is 9:1. The bed is 1m
in length and the void fraction is 0.5. The inlet pressure is set at 1 atm and the
outlet pressure is adjusted to give a superficial velocity of 9m/s at the tube
inlet. (The real design problem would specify the downstream pressure and
the mass flow rate.) The particle Reynolds number is 100 based on the inlet
conditions (� � 4� 10�5 Pa � s). Find the conversion, pressure, and velocity
at the tube outlet, assuming isothermal operation.

Solution: This is a variable-velocity problem with �uu changing because of the
reaction stoichiometry and the pressure drop. The flux marching equations for
the various components are

�Ajþ1 ¼ �Aj � ka�z ¼ �Aj � k
�Aj
�uu

�z

�Bjþ1 ¼ �Bj þ ka�z ¼ �Bj þ k
�Aj
�uu

�z

�Cjþ1 ¼ �Cj þ ka�z ¼ �Cj þ k
�Aj
�uu

�z

�Djþ1 ¼ �Dj

where D represents the inerts. There is one equation for each component. It is
perfectly feasible to retain each of these equations and to solve them
simultaneously. Indeed, this is necessary if there is a complex reaction
network or if molecular diffusion destroys local stoichiometry. For the current
example, the stoichiometry is so simple it may as well be used. At any step j,

�C ¼ �B ¼ ð�AÞin ��A

Thus, we need retain only the flux marching equation for component A.
The pressure is also given by an ODE. The Ergun equation, Equation

(3.17), applies to a packed bed:

Pjþ1 ¼ Pj � � �uu2s
dp

ð1� "Þ
"3

150ð1� "Þ
Rep

þ 1:75

� �
�z

where Rep ¼ dp� �uus=� is the particle Reynolds number. The viscosity is
approximately constant since m is a function of temperature alone for low-
density gases. Also, � �uus is constant because the mass flow is constant in a
tube of constant cross section. These facts justify the assumption that Rep is
constant. Also, the � �uu2s term in the Ergun equation is equal to ð� �uusÞin �uus.

The marching equations for flux and pressure contain the superficial
velocity �uus. The ideal gas law in the form of Equation (3.13) is used to
relate it to the flux:

ð �uusÞj ¼
RgT

Pj
ð�A þ�B þ�C þ�DÞ ¼ RgT

Pj
½2ð�AÞin ��A þ�D�
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The computational scheme marches flux and pressure ahead one step and then
updates �uus.

The various inlet conditions are calculated using the ideal gas law. They are
ain ¼ 1:36 mol=m3, bin ¼ cin ¼ 0, din ¼ 12:2 mol=m3, ð� �uusÞin ¼ 1:23 kg=ðm2EsÞ,
ð�AÞin ¼ 12:2 mol=ðm2EsÞ, and �D ¼ 110 mol=ðm2EsÞ. Substituting known
values and being careful with the units gives

ð�AÞjþ1 ¼ ð�AÞj 1� 15�z

ð �uusÞj

" #

Pjþ1 ¼ Pj � 0:041ð �uusÞj �z
ð �uusÞjþ1 ¼

0:08

Pjþ1
½134��A�jþ1

These equations are solved, starting with the known initial conditions and
proceeding step-by-step down the reactor until the outlet is reached. The
solution is

X ¼ 1� ð�AÞoutð�AÞin
¼ 0:67 ð67% conversionÞ

with Pout ¼ 0:4 atm and ð �uuÞout ¼ 26m=s:
The selectivity is 100% in this simple example, but do not believe it. Many

things happen at 625�C, and the actual effluent contains substantial amounts
of carbon dioxide, benzene, toluene, methane, and ethylene in addition to
styrene, ethylbenzene, and hydrogen. It contains small but troublesome
amounts of diethyl benzene, divinyl benzene, and phenyl acetylene. The
actual selectivity is about 90%. A good kinetic model would account for all
the important by-products and would even reflect the age of the catalyst. A
good reactor model would, at a minimum, include the temperature change
due to reaction.

The Mean Residence Time in a Gas-Phase Tubular Reactor. Examples such as
3.3 show that numerical solutions to the design equations are conceptually
straightforward if a bit cumbersome. The problem with numerical solutions is
that they are difficult to generalize. Analytical solutions can provide much
greater insight. The next example addresses a very general problem. What is
the pressure profile and mean residence time, �tt, in a gas-phase tubular reactor?
If �tt is known, even approximately, Equations like (3.10) suddenly become useful.
The results derived in Example 3.4 apply to any tubular reactor, whether it
approximates piston flow or not, provided that the change in moles upon reac-
tion is negligible. This assumption is valid when the reaction stoichiometry gives
no change in volume, when inerts are present in large quantities, or when the
change in density due to the pressure drop is large compared with the change
caused by the reaction. Many gas-phase reactors satisfy at least one of these
conditions.
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Example 3.4: Find the mean residence time in an isothermal, gas-phase
tubular reactor. Assume that the reactor has a circular cross section of
constant radius. Assume ideal gas behavior and ignore any change in the
number of moles upon reaction.

Solution: Begin with laminar flow and Equation (3.14):

dP

dz
¼ � 8� �uu

R2

To integrate this, �uu is needed. When there is no change in the number of moles
upon reaction, Equation (3.2) applies to the total molar density as well as to
the mass density. Thus, for constant Ac,

�uu�molar ¼ �uuðaþ bþ � � �Þ ¼ constant ¼ �uuinð�molarÞin
and

�uuðzÞ
�uuin
¼ �in

�ðzÞ ¼
ð�molarÞin
�molar

¼ Pin
PðzÞ

These relationships result from assuming ideal gas behavior and no change
in the number of moles upon reaction. Substituting �uu into the ODE for
pressure gives

dP

dz
¼ ��

2P
ð3:21Þ

where � is a constant. The same result, but with a different value for �, is
obtained for turbulent flow when Equation (3.15) is used instead of
Equation (3.14). The values for � are

� ¼ 16�Pin �uuin
R2

¼ 16�Pout �uuout
R2

ðlaminar flowÞ ð3:22Þ

and

� ¼ 0:13�:25Pinð�in �uuinÞ1:75
�inR1:25

¼ 0:13�:25Poutð�out �uuoutÞ1:75
�outR1:25

ðturbulent flowÞ ð3:23Þ

Integrating Equation (3.21) and applying the inlet boundary condition gives

P2 � P2
out ¼ �ðL� zÞ

Observe that

�L ¼ P2
in � P2

out ð3:24Þ
is true for both laminar and turbulent flow.
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We are now ready to calculate the mean residence time. According to
Equation (1.41), �tt is the ratio of mass inventory to mass throughput. When
the number of moles does not change, �tt is also the ratio of molar inventory
to molar throughput. Denote the molar inventory (i.e., the total number of
moles in the tube) as Nactual . Then

Nactual ¼
ZL
0

Ac�molar dz ¼ Acð�molarÞin
Pin

ZL
0

Pdz

¼ Acð�molarÞin
Pin

ZL
0

½P2
out þ �ðL� zÞ�1=2 dz

Integration gives

Nactual
Ninlet

¼ 2½P3
in � P3

out�
3�LPin

¼ 2½P3
in � P3

out�
3ðP2

in � P2
outÞPin

ð3:25Þ

where Ninlet ¼ Acð�molarÞinL is the number of moles that the tube would
contain if its entire length were at pressure Pin. When the pressure drop is
low, Pin ! Pout and �! 0, and the inventory approaches Ninlet. When the
pressure drop is high, Pin !1 and �!1, and the inventory is two-
thirds of Ninlet.

The mean residence time is

�tt ¼ Nactual
Acð�molarÞin �uuin

¼ 2½P3
in � P3

out�
3�LPin

L= �uuin ¼ 2½P3
in � P3

out�
3ðP2

in � P2
outÞPin

L= �uuin ð3:26Þ

The term ½L= �uuin� is what the residence time would be if the entire reactor were at
the inlet pressure. The factor multiplying it ranges from 2/3 to 1 as the pressure
drop ranges from large to small and as � ranges from infinity to zero.

The terms space time and space velocity are antiques of petroleum refining,
but have some utility in this example. The space time is defined as V=Qin,
which is what �tt would be if the fluid remained at its inlet density. The space
time in a tubular reactor with constant cross section is ½L= �uuin�. The space velo-
city is the inverse of the space time. The mean residence time, �tt, is V �̂�=ðQ�Þ
where �̂� is the average density and �Q is a constant (because the mass flow
is constant) that can be evaluated at any point in the reactor. The mean
residence time ranges from the space time to two-thirds the space time in
a gas-phase tubular reactor when the gas obeys the ideal gas law.

Equation (3.26) evaluated the mean residence time in terms of the inlet
velocity of the gas. The outlet velocity can also be used:

�tt ¼ Nactual
Acð�molarÞout �uuout

¼ 2½P3
in � P3

out�
3�LPout

L= �uuout ¼ 2½P3
in � P3

out�
3ðP2

in � P2
outÞPout

L= �uuout ð3:27Þ
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The actual residence time for an ideal gas will always be higher than ½L= �uuout�
and it will always be lower than ½L= �uuin�.

Example 3.5: A 1-in i.d coiled tube, 57m long, is being used as a tubular
reactor. The operating temperature is 973K. The inlet pressure is 1.068 atm;
the outlet pressure is 1 atm. The outlet velocity has been measured to be
9.96m/s. The fluid is mainly steam, but it contains small amounts of an
organic compound that decomposes according to first-order kinetics with a
half-life of 2.1 s at 973K. Determine the mean residence time and the
fractional conversion of the organic.

Solution: The first-order rate constant is 0.693/2.1¼ 0.33 s�1 so that the
fractional conversion for a first-order reaction will be 1� expð�0:22�tt Þ
where �tt is in seconds. The inlet and outlet pressures are known so Equation
(3.27) can be used to find �tt given that ½L= �uuout� ¼ 57/9.96¼ 5.72 s. The result
is �tt ¼ 5:91 s, which is 3.4% higher than what would be expected if the entire
reaction was at Pout. The conversion of the organic compound is 86 percent.

The ideal gas law can be used to find ½L= �uuin� given ½L= �uuout�. The result is
½L= �uuin� ¼ 6:11 s. The pressure factor in Equation (3.26) is 0.967, again giving
�tt ¼ 5:91s.

Note that the answers do not depend on the tube diameter, the tempera-
ture, or the properties of the fluid other than that it is an ideal gas.

Although Example 3.5 shows only a modest effect, density changes can be
important for gas-phase reactions. Kinetic measurements made on a flow reac-
tor are likely to be confounded by the density change. In principle, a kinetic
model can still be fit to the data, but this is more difficult than when the measure-
ments are made on a batch system where the reaction times are directly mea-
sured. When kinetics measurements are made using a flow reactor, �tt will not
be known a priori if the density change upon reaction is appreciable. It can
be calculated as part of the data fitting process. The equation of state must be
known along with the inlet and outlet pressures. The calculations follow the gen-
eral scheme for gas-phase PFRs given above. Chapter 7 discusses methods for
determining kinetic constants using data from a reactor with complications
such as variable density. As stated there, it is better to avoid confounding effects.
Batch or CSTR experiments are far easier to analyze.

3.1.2 Liquid-Phase Reactions

Solution of the design equations for liquid-phase piston flow reactors is usually
easier than for gas-phase reactors because pressure typically has no effect on the
fluid density or the reaction kinetics. Extreme pressures are an exception that
theoretically can be handled by the same methods used for gas-phase systems.
The difficulty will be finding an equation of state. For ordinary pressures, the
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mass density can usually be estimated as a simple function of composition. This
leads to easy and direct use of Equation (3.2).

Computational Scheme for Liquid-Phase PFRs. The following is a procedure
for solving the reactor design equations for a moderate-pressure, liquid-phase,
piston flow reactor using the marching-ahead technique (Euler’s method):

1. Pick a step size �z:

2. Calculate initial values for all variables. Initial values are needed for
a, b, c, . . . , i, �, �uu, �A, �B, �C, . . . , �I , and T. The pressure can be included
if desired but it does not affect the reaction calculations. Also, Pin can be
set arbitrarily.

3. Take one step, calculating new values for �A, �B, �C, . . . , �I at the new
axial location, zþ�z: The current chapter considers only isothermal reac-
tors, but the general case includes an ODE for temperature. The marching-
ahead equations have the form

ð�AÞnew ¼ ð�AÞold þ�z R 0A½ð�AÞold , ð�BÞold , . . . , ð�I Þold , z� ð3:28Þ
The right-hand sides of these equations are evaluated using the old values,
which correspond to position z.

4. Update the component concentrations using

anew ¼ ð�AÞnew= �uuold , bnew ¼ ð�BÞnew= �uuold , . . . ð3:29Þ
5. Use these new concentrations to update the physical properties that appear in

ancillary equations. One property that must be updated is �.

6. Use the new value for � to update �uu :

�uunew ¼ �uuin�in
�new

ð3:30Þ

7. If z < L, go to Step 3. If z 	 L, decrease �z by a factor of 2 and go to Step 1.
Repeat until the results converge to three or four significant figures.

Note that Step 4 in this procedure uses the old value for �uu since the new value is
not yet known. The new value could be used in Equation (3.29) if �uunew is found
by simultaneous solution with Equation (3.30). However, complications of this
sort are not necessary. Taking the numerical limit as �z! 0 removes the
errors. As a general rule, the exact sequence of calculations is unimportant in
marching schemes. What is necessary is that each variable be updated once
during each �z step.

Example 3.6: The isothermal batch polymerization in Example 2.8
converted 80% of the monomer in 2 h. You want to do the same thing in
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a micro-pilot plant using a capillary tube. (If the tube diameter is small
enough, assumptions of piston flow and isothermal operation will be
reasonable even for laminar flow. Criteria are given in Chapters 8 and 9.)
The tube has an i.d. of 0.0015m and it is 1m long. The monomer density is
900 kg/m3 and the polymer density is 1040 kg/m3. The pseudo-first-order
rate constant is 0.8047 h�1 and the residence time needed to achieve 80%
conversion is �tt ¼ 2 h. What flow rate should be used?

Solution: The required flow rate is the mass inventory in the system divided
by the mean residence time:

Q� ¼ �R2L�̂�
�tt

where the composite quantity Q� is the mass flow rate and is constant. It is
what we want to find. Its value is easily bounded since �̂� must lie
somewhere between the inlet and outlet densities. Using the inlet density,

Q� ¼ �ð0:0015Þ2ð1Þð900Þ
2

¼ 0:00318 kg=h

The outlet density is calculated assuming the mass density varies linearly with
conversion to polymer as in Example 2.8: �out ¼1012 kg/m3. The estimate for
Q� based on the outlet density is

Q� ¼ �ð0:0015Þ2ð1Þð1012Þ
2

¼ 0:00358 kg=h

Thus, we can make a reasonably accurate initial guess for Q�. This guess is
used to calculate the conversion in a tubular reactor of the given
dimensions. When the right guess is made, the mean residence time will be
2 h and the fraction unreacted will be 20%. The following code follows the
general procedure for liquid-phase PFRs. The fraction unreacted is
calculated as the ratio of �A=ð�AÞin, which is denoted as Phi/PhiIn in
the program. A trial-and-error-search gives Q� ¼ 0.003426 kg/h for the
specified residence time of 2 h and a fraction unreacted of 80%. The
calculated outlet density is 1012 kg/m3.

dz¼.00001
1 INPUT Qp ’Replace as necessary depending on the

’computing platform
R¼.0015
L¼1
Pi¼3.14159
k¼.8047

rhoin¼900
Qin¼Qp / rhoin
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uin¼Qin / (Pi * R ^ 2)
ain¼1
PhiIn¼uin * ain

a¼ain
u¼uin
Phi¼PhiIn

t¼0
z¼0
DO

Phinew¼Phi - k * Phi / u * dz
anew¼Phinew / u
rho¼1040 - 140 * Phinew / PhiIn
unew¼uin * rhoin / rho
z¼z þ dz
t¼t þ dz / unew
Phi¼Phinew
u¼unew

LOOP WHILE z < L
PRINT USING "######.#####"; t, Phi/PhiIn, rho
’Replace as necessary
GOTO 1 ’Efficient code even if frowned upon by

’programming purists

Density changes tend to be of secondary importance for liquid-phase reac-
tions and are frequently ignored. They can be confounded in the kinetic
measurements (e.g., by using the space time rather than the mean residence
time when fitting the data to a kinetic model). If kinetic constants are fit to
data from a flow reactor, the density profile in the reactor should be calculated
as part of the data-fitting process. The equation of state must be known (i.e.,
density as a function of composition and temperature). The calculations follow
the general scheme for liquid-phase PFRs given above. Chapter 7 discusses
methods for fitting data that are confounded by effects such as density changes.
It is easier to use a batch reactor or a CSTR for the kinetic measurements even
though the final design will be a tubular reactor.

This chapter is restricted to homogeneous, single-phase reactions, but the
restriction can sometimes be relaxed. The formation of a second phase as a con-
sequence of an irreversible reaction will not affect the kinetics, except for a pos-
sible density change. If the second phase is solid or liquid, the density change will
be moderate. If the new phase is a gas, its formation can have a major effect.
Specialized models are needed. Two-phase flows of air–water and steam–water
have been extensively studied, but few data are available for chemically reactive
systems.
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3.2 SCALEUP OF TUBULAR REACTORS

There are three conceptually different ways of increasing the capacity of a
tubular reactor:

1. Add identical reactors in parallel. The shell-and-tube design used for heat
exchangers is a common and inexpensive way of increasing capacity.

2. Make the tube longer. Adding tube length is not a common means of increas-
ing capacity, but it is used. Single-tube reactors exist that are several miles
long.

3. Increase the tube diameter, either to maintain a constant pressure drop or to
scale with geometric similarity. Geometric similarity for a tube means keeping
the same length-to-diameter ratio L=dt upon scaleup. Scaling with a constant
pressure drop will lower the length-to-diameter ratio if the flow is turbulent.

The first two of these methods are preferred when heat transfer is important.
The third method is cheaper for adiabatic reactors.

The primary goal of scaleup is to maintain acceptable product quality.
Ideally, this will mean making exactly the same product in the large unit as
was made in the pilot unit. To this end, it may be necessary to alter the operating
conditions in the pilot plant so that product made there can be duplicated upon
scaleup. If the pilot plant closely approaches isothermal piston flow, the chal-
lenge of maintaining these ideal conditions upon scaleup may be too difficult.
The alternative is to make the pilot plant less ideal but more scaleable.

This chapter assumes isothermal operation. The scaleup methods presented
here treat relatively simple issues such as pressure drop and in-process inventory.
The methods of this chapter are usually adequate if the heat of reaction is neg-
ligible or if the pilot unit operates adiabatically. Although included in the exam-
ples that follow, laminar flow, even isothermal laminar flow, presents special
scaleup problems that are treated in more detail in Chapter 8. The problem of
controlling a reaction exotherm upon scaleup is discussed in Chapter 5

If the pilot reactor is turbulent and closely approximates piston flow, the
larger unit will as well. In isothermal piston flow, reactor performance is deter-
mined by the feed composition, feed temperature, and the mean residence time
in the reactor. Even when piston flow is a poor approximation, these parameters
are rarely, if ever, varied in the scaleup of a tubular reactor. The scaleup factor
for throughput is S. To keep �tt constant, the inventory of mass in the system
must also scale as S. When the fluid is incompressible, the volume scales with
S. The general case allows the number of tubes, the tube radius, and the tube
length to be changed upon scaleup:

S ¼ V2

V1
¼ ðNtubesÞ2R

2
2L2

ðNtubesÞ1R2
1L1

¼ StubesS2
RSL ðincompressibleÞ ð3:31Þ

ISOTHERMAL PISTON FLOW REACTORS 99



where Stubes ¼ ðNtubesÞ2=ðNtubesÞ1 is the scaleup factor for the number of tubes,
SR ¼ R2=R1 is the scaleup factor for radius, and SL ¼ L2=L1 is the scaleup
factor for length. For an ideal gas with a negligible change in the number of
moles due to reaction, constancy of �tt requires that the molar inventory scale
with S. The inventory calculations in Example 3.4 can be used to determine

S ¼ StubesS2
R

½P3
in � P3

out�2�1

½P3
in � P3

out�1�2

ðideal gasÞ ð3:32Þ

The scaleup strategies that follow have been devised to satisfy Equation (3.31)
for liquid systems and Equation (3.32) for gas systems.

3.2.1 Tubes in Parallel

Scaling in parallel gives an exact duplication of reaction conditions. The number
of tubes increases in direct proportion to the throughput:

S ¼ Stubes ¼ ðNtubesÞ2ðNtubesÞ1
ð3:33Þ

Equation (3.31) is satisfied with SR¼SL¼ 1. Equation (3.32) is satisfied the same
way, but with the added provision that the inlet and outlet pressures are the
same in the large and small units. Scaling in parallel automatically keeps the
same value for �tt. The scaleup should be an exact duplication of the pilot plant
results but at S times the flow rate.

There are three, somewhat similar, concerns about scaling in parallel. The
first concern applies mainly to viscous fluids in unpacked tubes. The second
applies mainly to packed tubes.

1. Will the feed distribute itself evenly between the tubes? This is a concern
when there is a large change in viscosity due to reaction. The resulting stabi-
lity problem is discussed in Chapter 13. Feed distribution can also be a concern
with very large tube bundles when the pressure drop down the tube is small.

2. Will a single tube in a pilot plant adequately represent the range of behaviors
in a multitubular design? This question arises in heterogeneous reactors using
large-diameter catalyst particles in small-diameter tubes. The concern is that
random variations in the void fraction will cause significant tube-to-tube var-
iations. One suggested solution is to pilot with a minimum of three tubes in
parallel. Replicate runs, repacking the tubes between runs, could also be used.

3. Will the distribution of flow on the shell side be uniform enough to give the
same heat transfer coefficient for all the tubes?

Subject to resolution of these concerns, scaling in parallel has no obvious
limit. Multitubular reactors with 10,000 tubes have been built, e.g., for phthalic
anhydride oxidation.
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A usual goal of scaleup is to maintain a single-train process. This means that
the process will consist of a single line of equipment, and will have a single con-
trol system and a single operating crew. Single-train processes give the greatest
economies of scale and are generally preferred for high-volume chemicals. Shell-
and-tube designs are not single-train in a strict sense, but they are cheap to
fabricate and operate if all the tubes are fed from a single source and discharge
into a common receiver. Thus, shell-and-tube designs are allowed in the usual
definition of a single-train process.

Heat transfer limits the maximum tube diameter. If large amounts of heat
must be removed, it is normal practice to run the pilot reactor with the same dia-
meter tube as intended for the full-scale reactor. The extreme choices are to scale
in complete parallel with Stubes ¼ S or to scale in complete series using a single
tube. Occasionally, the scaleup may be a compromise between parallel and
series, e.g., double the tube length and set Stubes ¼ S=2. Increases in tube dia-
meter are possible if the heat transfer requirements are low to moderate.
When adiabatic operation is acceptable, single-tube designs are preferred. The
treatment that follows will consider only a single tube, but the results can be
applied to multiple tubes just by reducing S so that it becomes the scaleup
factor for a single tube. Choose a value for Stubes and use the modified scaleup
factor, S0 ¼ S=Stubes, in the calculations that follow.

3.2.2 Tubes in Series

Scaling in series—meaning keeping the same tube diameter and increasing the
tube length—is somewhat unusual but is actually a conservative way of scaling
when the fluid is incompressible. It obviously maintains a single-train process. If
the length is doubled, the flow rate can be doubled while keeping the same resi-
dence time. As will be quantified in subsequent chapters, a liquid-phase tubular
reactor that works well in the pilot plant will probably work even better in a pro-
duction unit that is 100 times longer and has 100 times the output. This state-
ment is true even if the reaction is nonisothermal. The rub, of course, is the
pressure drop. Also, even a liquid will show some compressibility if the pressure
is high enough. However, single tubes that are several miles long do exist, and
a 25% capacity increase at a high-pressure polyethylene plant was achieved by
adding an extra mile to the length of the reactor!

The Reynolds number is constant when scaling in parallel, but it increases for
the other forms of scaleup. When the large and small reactors both consist of
a single tube,

Re2

Re1
¼ R2 �uu2
R1 �uu1

¼ R2

R1

� ��1
Q2

Q1

� �
¼ S�1R S

For a series scaleup, SR¼ 1, so that Re increases as S. This result ignores
possible changes in physical properties. The factor �/m will usually increase
with pressure, so Re will increase even faster than S.
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Series Scaleup of Turbulent Liquid Flows. For series scaleup of an incompres-
sible fluid, the tube length is increased in proportion to the desired increase in
throughput. Equation (3.31) is satisfied with SR ¼ Stubes ¼ 1 and SL ¼ S.

To determine the pressure drop, substitute Equation (3.16) into Equation
(3.15) to obtain

�P ¼ 0:066L�0:75�0:25 �uu1:75R�1:25

This integrated version of Equation (3.15) requires viscosity to be constant as
well as density, but this assumption is not strictly necessary. See Problem
3.15. Write separate equations for the pressure drop in the large and small reac-
tors and take their ratio. The physical properties cancel to give the following,
general relationship:

�P2

�P1
¼ �uu2

�uu1

� �1:75
L2

L1

� �
R2

R1

� ��1:25
¼ Q2

Q1

� �1:75
L2

L1

� �
R2

R1

� ��4:75
¼ S1:75SLS�4:75R ð3:34Þ

This section is concerned with the case of SR ¼ 1 and SL ¼ S so that

�P2

�P1
¼ S2:75 ð3:35Þ

A factor of 2 scaleup at constant �tt increases both �uu and L by a factor of 2, but
the pressure drop increases by a factor of 22:75 ¼ 6:73. A factor of 100 scaleup
increases the pressure drop by a factor of 316,000! The external area of the reac-
tor, 2�RL, increases as S, apace with the heat generated by the reaction. The
Reynolds number also increases as S and the inside heat transfer coefficient
increases by S0.8 (see Chapter 5). There should be no problem with heat transfer
if you can tolerate the pressure drop.

The power input to the fluid by the pump, Q�P, increases dramatically upon
scaleup, as S3:75. The power per unit volume of fluid increases by a factor of S2:75.

In turbulent flow, part of this extra energy buys something. It increases
turbulence and improves heat transfer and mixing.

Series Scaleup of Laminar Liquid Flows. The pressure drop is given by
Equation (3.14). Taking ratios gives

�P2

�P1
¼ �uu2

�uu1

� �
L2

L1

� �
R2

R1

� ��2
¼ Q2

Q1

� �
L2

L1

� �
R2

R1

� ��4
¼ SSLS�4R ð3:36Þ

Equation (3.36) is the laminar flow counterpart of Equation (3.34). For the
current case of SR ¼ 1,

�P2

�P1
¼ S2 ð3:37Þ

The increase in pumping energy is smaller than for turbulent flow but is still
large. The power input to a unit volume of fluid increases by a factor of S2.
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With viscous fluids, pumping energy on the small scale may already be important
and will increase upon scaleup. This form of energy input to a fluid is known as
viscous dissipation. Alas, the increase in energy only buys an increase in fluid
velocity unless the Reynolds number—which scales as S—increases enough to
cause turbulence. If the flow remains laminar, heat transfer and mixing will
remain similar to that observed in the pilot unit. Scaleup should give satisfactory
results if the pressure drop and consequent viscous heating can be tolerated.

Series Scaleup of Turbulent Gas Flows. The compressibility causes complica-
tions. The form of scaleup continues to set SR ¼ Stubes ¼ 1, but now SL < S.
If the reactor length is increased and the exhaust pressure is held constant, the
holdup within the reactor will increase more than proportionately because the
increased length will force a higher inlet pressure and thus higher densities.
When scaling with constant residence time, the throughput increases much
faster than length. The scaled-up reactors are remarkably short. They will be
highly turbulent since the small reactor is assumed to be turbulent, and the
Reynolds number increases by a factor of S upon scaleup.

The discharge pressure for the large reactor, ðPoutÞ2, may be set arbitrarily.
Normal practice is to use the same discharge pressure as for the small reactor,
but this is not an absolute requirement. The length of the large reactor, L2, is
chosen to satisfy the inventory constraint of Equation (3.32), and the inlet pres-
sure of the large reactor becomes a dependent variable. The computation proce-
dure actually calculates it first. Substitute Equation (3.23) for � (for turbulent
flow) into Equation (3.32) to give

ðP3
inÞ2 � ðP3

outÞ2
ðP3
inÞ1 � ðP3

outÞ1
¼ S2:75S�6:75R ð3:38Þ

Everything is known in this equation but ðPoutÞ2. Now substitute Equation (3.23)
(this uses the turbulent value for �) into Equation (3.24) to obtain

ðP2
inÞ2 � ðP2

outÞ2
ðP2
inÞ1 � ðP2

outÞ1
¼ S1:75S�4:75R SL ð3:39Þ

Everything is known in this equation but SL. Note that Equations (3.38) and
(3.39) contain SR as a parameter. When scaling in series, SR¼ 1, but the same
equations can be applied to other scaleup strategies.

Example 3.7: Determine the upstream pressure and the scaling factor for
length for gas-phase scaleups that are accomplished by increasing the
reactor length at constant diameter. Assume that the pilot reactor is fully
turbulent. Assume ideal gas behavior and ignore any change in the number
of moles due to reaction. Both the pilot-scale and large-scale reactors will
operate with a discharge pressure of 1 (arbitrary units). Consider a variety
of throughput scaling factors and observed inlet pressures for the pilot unit.
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Solution: For this scaleup, SR¼ 1. Substitute this, the desired value for S,
ðPoutÞ1 ¼ ðPoutÞ2 ¼ 1, and the experimental observation for ðPinÞ1 into
Equation (3.38). Solve for ðPinÞ2 and substitute into Equation (3.39) to
calculate SL. Some results are shown in Table 3.1.

At first glance, these results seem fantastic. Look at the case where
S ¼ 100. When the pressure drop across the pilot reactor is large, a mere
47% increase in length gives a 100-fold increase in inventory! The pressure
and the density increase by a factor of about 69. Multiply the pressure
increase by the length increase and the factor of 100 in inventory has been
found. The reactor volume increases by a factor of only 1.47. The inventory
and the throughput scale as S. The scaling factor for volume is much lower,
1.47 instead of 100 in this example.

Table 3.1 suggests that scaling in series could make sense for an adiabatic,
gas-phase reaction with no change in the number of moles upon reaction. It
would also make sense when the number of moles decreases upon reaction,
since the high pressures caused by this form of scaleup will favor the forward
reaction. Chapter 5 gives the design equations for nonisothermal reactions
and discusses the thermal aspects of scaleup.

Series Scaleup of Laminar Gas Flows. The scaling equations are similar to
those used for turbulent gas systems but the exponents are different. The
different exponents come from the use of Equation (3.22) for � rather than
Equation (3.23). General results, valid for any form of scaleup that uses a
single tube, are

ðP3
inÞ2 � ðP3

outÞ2
ðP3
inÞ1 � ðP3

outÞ1
¼ S2S�6R ð3:40Þ

ðP2
inÞ2 � ðP2

outÞ2
ðP2
inÞ1 � ðP2

outÞ1
¼ SS�4R SL ð3:41Þ

TABLE 3.1 Series Scaleup of Gas-Phase Reactors in Turbulent Flow

S (Pin/Pout)1 (Pin/Pout)2 L2/L1 �P2/�P1

2 100 189 1.06 1.90
2 10 18.9 1.07 1.99
2 2 3.6 1.21 2.64
2 1.1 1.48 1.68 4.78

100 100 8813 1.47 68.8
100 10 681 1.48 75.6
100 2 130 1.79 129
100 1.1 47.1 3.34 461
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Example 3.8: Repeat Example 3.7, now assuming that both the small and
large reactors are in laminar flow.

Solution: The approach is similar to that in Example 3.7. The unknowns
are SL and ðPinÞ2. Set ðPoutÞ2 ¼ ðPoutÞ1. Equation (3.40) is used to calculate
ðPinÞ2 and Equation (3.41) is used to calculate SL. Results are given in
Table 3.2. The results are qualitatively similar to those for the turbulent
flow of a gas, but the scaled reactors are longer and the pressure drops are
lower. In both cases, the reader should recall that the ideal gas law was
assumed. This may become unrealistic for higher pressures. In Table 3.2 we
make the additional assumption of laminar flow in both the large and small
reactors. This assumption will be violated if the scaleup factor is large.

Series Scaleup of Packed Beds. According to the Ergun equation, Equation
(3.17), the pressure drop in a packed bed depends on the packing diameter,
but is independent of the tube diameter. This is reasonable with small packing.
Here, we shall assume that the same packing is used in both large and small reac-
tors and that it is small compared with the tube diameter. Chapter 9 treats the
case where the packing is large compared with the tube diameter. This situation
is mainly encountered in heterogeneous catalysis with large reaction exotherms.
Such reactors are almost always scaled in parallel.

The pressure drop in a packed bed depends on the particle Reynolds number.
When (Re)p is small, Equation (3.17) becomes

dP

dz
¼ � 150� �uus

d2p

ð1� "Þ2
"

This equation has the same functional dependence on � (namely none) and �uu as
the Poiseuille equation that governs laminar flow in an empty tube. Thus, lami-
nar flow packed beds scale in series exactly like laminar flow in empty tubes. See
the previous sections on series scaleup of liquids and gases in laminar flow.

If Rep is large, Equation (3.17) becomes

dP

dz
¼ � 1:75� �uu2s

dp

ð1� "Þ
"

TABLE 3.2 Series Scaleup of Gas-Phase Reactors in Laminar Flow

S (Pin/Pout)1 (Pin/Pout)2 L2/L1 �P2/�P1

2 100 159 1.26 1.90
2 10 15.9 1.27 1.99
2 2 3.1 1.41 2.64
2 1.1 1.3 1.80 4.78

100 100 2154 4.64 21.8
100 10 215 4.69 23.6
100 2 41.2 5.66 40.2
100 1.1 14.9 10.5 139
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which has a similar functional dependence on � and �uu as Equation (3.15). The
dependence on Reynolds number via the friction factor Fa is missing, but this
quarter-power dependence is weak. To a first approximation, a turbulent
packed bed will scale like turbulent flow in an empty tube. See the previous sec-
tions on series scaleup of liquids and gases in turbulent flow. To a second approx-
imation, the pressure drop will increase somewhat faster upon scaleup. At high
values of (Re)p, the pressure drop shows a scaling exponent of 3 rather than 2.75:

�P2

�P1
! S3 as ðReÞp!1

At the other limiting value, Equation (3.17) becomes

�P2

�P1
! S2 as ðReÞp ! 0

Once a scaleup strategy has been determined, Equation (3.17)—rather than the
limiting cases for laminar and turbulent flow—should be used for the final cal-
culations.

3.2.3 Scaling with Geometric Similarity

Scaling in parallel keeps a constant �P upon scaleup, but multitubular designs
are not always the best choice. Scaling in series uses a single tube but increases
the total pressure drop to what can be excessive levels. One approach to keeping
a single-train process is to install booster pumps at intermediate points. This
approach is used in some polymer processes. We now consider a single-tube
design where the tube diameter is increased in order to limit the pressure in
the full-scale plant. This section considers a common but not necessarily good
means of scaleup wherein the large and small reactors are geometrically similar.
Geometric similarity means that SR¼SL, so the large and small tubes have the
same aspect ratio. For incompressible fluids, the volume scales with S, so that
SR¼SL¼S1/3. The Reynolds number scales as

Re2

Re1
¼ R2 �uu2
R1 �uu1

¼ R2

R1

� ��1
Q2

Q1

� �
¼ S�1R S ¼ S2=3

The case of a compressible fluid is more complicated since it is the inventory and
not the volume that scales with S. The case of laminar flow is the simplest and is
one where scaling with geometric similarity can make sense.

Geometrically Similar Scaleups for Laminar Flows in Tubes. The pressure drop
for this method of scaleup is found using the integrated form of the Poiseuille
equation:

�P ¼ 8� �uuL

R2
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Taking ratios,

�P2

�P1
¼ �uu2L2R

2
1

�uu1L1R
2
2

¼ R2
2 �uu2

R2
1 �uu1

� �
L2

L1

� �
R4

1

R4
2

� �
¼ SSLS�4R ð3:42Þ

Substituting SR ¼ SL ¼ S1=3 gives

�P2

�P1
¼ S0 ¼ 1

so that the pressure drop remains constant upon scaleup.
The same result is obtained when the fluid is compressible, as may be seen by

substituting SR ¼ SL ¼ S1=3 into Equations (3.40) and (3.41). Thus, using geo-
metric similarity to scale isothermal, laminar flows gives constant pressure
drop provided the flow remains laminar upon scaleup. The large and small
reactors will have the same inlet pressure if they are operated at the same
outlet pressure. The inventory and volume both scale as S.

The external area scales as S2=3, so that this design has the usual problem of
surface area rising more slowly than heat generation. There is another problem
associated with laminar flow in tubes. Although piston flow may be a reasonable
approximation for a small-diameter pilot reactor, it will cease to be a reasonable
assumption upon scaleup. As described in Chapter 8, radial diffusion of mass and
heat gives beneficial effects in small equipment that will decline upon scaleup.
Geometrically similar scaleups of laminar flow in tubes cannot be recommended
unless radial diffusion was negligible in the pilot-scale reactor. However, if it was
negligible at that scale, the reactor cannot be analyzed using the assumptions of
piston flow. Instead, there will be pronounced radial gradients in composition
and temperature that are analyzed using the methods of Chapter 8.

Geometrically Similar Scaleups for Turbulent Flows in Tubes. Integrating
Equation (3.15) for the case of constant density and viscosity gives

�P ¼ 0:066�0:25�0:75 �uu1:75L

R1:25

and

�P2

�P1
¼ S

1:75SL

S4:75
R

ð3:43Þ

Setting SL ¼ SR ¼ S1=3 gives a surprisingly simple result:

�P2

�P1
¼ S1=2 ð3:44Þ

In laminar flow, the pressure drop is constant when scaleup is carried out by geo-
metric similarity. In turbulent flow, it increases as the square root of throughput.
There is extra pumping energy per unit volume of throughput, which gives
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somewhat better mixing and heat transfer. The surface area and Reynolds
number both scale as S2/3. We shall see in Chapter 5 that the increase in heat
transfer coefficient is insufficient to overcome the relative loss in surface area.
The reaction will become adiabatic if the scaleup factor is large.

Turning to the case where the working fluid is an ideal gas, substituting
SR ¼ SL ¼ S1=3 into Equations (3.38) and (3.39) gives S1=2 as the scaling
factor for both pressure ratios. This looks neat, but there is no solution to the
scaling equations if both reactors have the same discharge pressure. What hap-
pens is that the larger reactor has too much inventory to satisfy the condition of
constant �tt: Scaleup using SR ¼ SL ¼ S1=3 requires that the discharge pressure be
lower in the large unit than in the small one. Even so, scaleup may not be pos-
sible because the discharge pressure of the large unit cannot be reduced below
zero. Geometrically similar scaleups of turbulent gas flows are possible, but
not with SR ¼ SL ¼ S1=3

Inventory.

Geometrically Similar Scaleups for Packed Beds. As was the case for scaling
packed beds in series, the way they scale with geometric similarity depends on
the particle Reynolds number. The results are somewhat different than those
for empty tubes because the bed radius does not appear in the Ergun equation.
The asymptotic behavior for the incompressible case is

�P2

�P1
! S2SLS

�4
R ¼ S as ðReÞp!1

Note that SR appears here even though it is missing from the Ergun equation. It
arises because throughput is proportional to R2 �uu.

The other limiting value is

�P2

�P1
! SSLS

�2
R ¼ S2=3 as ðReÞp ! 0

These asymptotic forms may be useful for conceptual studies, but the real design
calculations must be based on the full Ergun equation. Turning to the case
of compressible fluids, scaleup using geometric similarity with SR ¼ SL ¼ S1=3

is generally infeasible. Simply stated, the reactors are just too long and have
too much inventory.

3.2.4 Scaling with Constant Pressure Drop

This section considers how single tubes can be scaled up to achieve higher
capacity at the same residence time and pressure drop. In marked contrast to
the previous section, these scaleups are usually feasible, particularly for gas-
phase reactions, although they have the common failing of losing heat transfer
area relative to throughput.

Constant-Pressure Scaleups for Laminar Flows in Tubes. As shown in
the previous section, scaling with geometric similarity, SR ¼ SL ¼ S1=3, gives
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constant-pressure drop when the flow is laminar and remains laminar upon
scaleup. This is true for both liquids and gases. The Reynolds number and the
external area increase as S2/3. Piston flow is a poor assumption for laminar
flow in anything but small tubes. Thus, the conversion and selectivity of the reac-
tion is likely to worsen upon scaleup. Ways to avoid unpleasant surprises are
discussed in Chapter 8.

Constant-Pressure Scaleups for Turbulent Flows in Tubes. Equation (3.34) gives
the pressure drop ratio for large and small reactors when density is constant.
Set �P2 ¼ �P1 to obtain 1 ¼ S1:75SLS

�4:75
R . Equation (3.31) gives the inventory

relationship when density is constant. Set Stubes ¼ 1 to obtain S ¼ SLS2
R.

Simultaneous solution gives

SR ¼ S11=27 and SL ¼ S5=27 ð3:45Þ
The same results are obtained from Equations (3.38) and (3.39), which apply to
the turbulent flow of ideal gases. Thus, tube radius and length scale in the same
way for turbulent liquids and gases when the pressure drop is constant. For the
gas case, it is further supposed that the large and small reactors have the same
discharge pressure.

The reactor volume scales as S, and the aspect ratio of the tube decreases
upon scaleup. The external surface area scales as SRSL ¼ S16=27 compared
with S2=3 for the case with geometric similarity. The Reynolds number also
scales as S16=27. It increases upon scaleup in both cases, but less rapidly when
the pressure drop is held constant than for geometric similarity.

Constant-Pressure Scaleups for Packed Beds. A scaleup with constant pressure
drop can be achieved in a packed bed just by increasing the diameter to keep
a constant gas velocity �uus. This gives

SR ¼ S1=2 and SL ¼ 1

Obviously, the ability to transfer heat through the walls drops dramatically
when scaling in this fashion, but it is certainly a straightforward and normal
method for scaling adiabatic reactions in packed beds. A potential limit arises
when the bed diameter becomes so large that even distribution of the entering
fluid becomes a problem. Large packed beds are the preferred reactor for
heterogeneous catalysis if the reaction (and the catalyst) can tolerate the
adiabatic temperature rise. Packed beds are also commonly used for multiphase
reactions.

3.2.5 Scaling Down

Small versions of production facilities are sometimes used for product develop-
ment, particularly in the polymer industries. Single-train plants producing
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20–50 t/h are becoming common for the major-volume plastics such as polyethy-
lene, polypropylene, and polystyrene. These plastics are made in many grades,
and the optimization of product properties is a means of finding competitive
advantage in what would otherwise be a strictly commodity market. Important
property changes can result from subtle changes in raw materials, catalysts, and
operating conditions.

Multiply the production rate by the selling price and you will understand
management’s reluctance to conduct product development experiments in the
plant. Pilot plants, built and operated after the fact of the production line, are
fairly common. Some process licensors include the design of a pilot plant in
their technology package for a full-scale plant. The purpose of these pilot
plants is to duplicate the performance of the full-scale line at a fraction of the
rate. The scaledown factor between the two plants will typically be in the
range 100–1000. This would be considered highly ambitious for a scaleup.
There is less risk when scaling down, but it may be necessary to adjust the heat-
ing and mixing characteristics of the pilot plant to make them as bad as they are
in the full-scale facility.

A very different reason for scaling down arises in fields such as biotechnol-
ogy, microelectronics, and nanotechnology. We are interested in building, alter-
ing, or just plain understanding very small reactors, but find it difficult or
impossible to do the necessary experiments on the small scale. Measurements
made on the ‘‘pilot plant’’ will ultimately be scaled down to the ‘‘production
plant.’’ One generalization is that the small unit will probably be in laminar
flow and, if biological, will be isothermal.

The scaling methods in this chapter work about as well or as poorly when
S < 1 as when S > 1. Scaling down in parallel works until there is only a
single tube. Other forms of scaledown cause a decrease in Reynolds number
that may cause a transition to laminar flow. Scaling down in series may lead
to infeasible L=dt ratios. Scaling by geometric similarity tends to work better
going down than going up. The surface area and Reynolds number both
decrease, but they decrease only by S2/3 while throughput decreases by S.
Thus, heat and mass transfer tend to be better on the small scale. The inventory
in a gas system will tend to be too low when scaling down by geometric similar-
ity, but a backpressure valve on the small reactor can be used to adjust it.
Scaling at constant pressure drop increases the length-to-diameter ratio in the
smaller unit. Packed beds can be scaled down as long as the ratio of bed
diameter to packing diameter is reasonable, although values as low as 3 are
sometimes used. Scaling down will improve radial mixing and heat transfer.
The correlations in Section 9.1 include the effects of packing diameter, although
the range of the experimental data on which these correlations are based is small.

As a general rule, scaled-down reactors will more closely approach isothermal
operation but will less closely approach ideal piston flow when the large reactor
is turbulent. Large scaledowns will lead to laminar flow. If the large system is
laminar, the scaled-down version will be laminar as well and will more closely
approach piston flow due to greater radial diffusion.
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3.3 TRANSPIRED-WALL REACTORS

Tubular reactors sometimes have side entrance points for downstream injection.
Like the case of fed-batch reactors, this raises the question of how quickly the
new ingredients are mixed. Mixing in the radial direction is the dominant con-
cern. If radial mixing is fast, the assumption of piston flow may be reasonable
and the addition of new ingredients merely reinitializes the problem. The equiva-
lent phenomenon was discussed in Section 2.6.2 for fed-batch reactors.

This section considers the case where the tube has a porous wall so that reac-
tants or inerts can be fed gradually. Transpiration is used to cool the walls in
high-temperature combustions. In this application, there is usually a change
of phase, from liquid to gas, so that the cooling benefits from the heat of vapor-
ization. However, we use the term transpiration to include transfer through a
porous wall without a phase change. It can provide chemical protection of the
wall in extremely reactive systems such as direct fluorinations. There may be
selectivity advantages for complex reactions. This possibility is suggested by
Example 3.9.

Assume that the entering material is rapidly mixed so that the composition
is always uniform in the radial direction. The transpiration rate per unit length
of tube is q ¼ qðzÞ with units of m2/s. Component A has concentration
atrans ¼ atransðzÞ in the transpired stream. The component balance, Equation
(3.4), now becomes

1

Ac

dð _NNAÞ
dz
¼ 1

Ac

dðQaÞ
dz
¼ 1

Ac

dðAc �uuaÞ
dz

¼ atransq
Ac
þR A ð3:46Þ

We also need a total mass balance. The general form is

Q� ¼ Qin�in þ
Zz
0

q�trans dz ð3:47Þ

Analytical solutions are possible in special cases. It is apparent that transpira-
tion will lower the conversion of the injected component. It is less apparent,
but true, that transpired wall reactors can be made to approach the performance
of a CSTR with respect to a transpired component while providing an environ-
ment similar to piston flow for components that are present only in the initial
feed.

Example 3.9: Solve Equation (3.46) for the case of a first-order reaction
where �, q and atrans are constant. Then take limits as Qin ! 0 and see
what happens. Also take the limit as q! 0.

Solution: With constant density, Equation (3.47) becomes

Q ¼ Qin þ qz
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Substitute this into the Qa version of Equation (3.46) to obtain a variable-
separable ODE. Integrate it subject to the initial condition that a ¼ ain at
z ¼ 0: The result is

aðzÞ ¼ qatrans
Ackþ q�

qatrans
Ackþ q� ain
� �

1þ qz
Qin

� �ðAckþqÞ=q ð3:48Þ

Taking the limit as Qin ! 0 gives

a ¼ qatrans
Ackþ q ¼

atrans
AcLk

Qout
þ 1

The z dependence has disappeared! The reactor is well mixed and behaves like
a CSTR with respect to component A. Noting that Qout ¼ qL gives

aout ¼ atrans

1þ Vk

Qout

¼ atrans
1þ k�tt

which is exactly the behavior of a CSTR. When a transpired-wall reactor has
no initial feed, it behaves like a stirred tank. When Qin > 0 but ain ¼ 0, it will
still have a fairly uniform concentration of A inside the reactor while behaving
much like a piston flow reactor for component B, which has bin > 0 but
btrans ¼ 0. For this component B,

bðzÞ ¼ bin

1þ qz
Qin

� �ðAckþqÞ=q

Physical insight should tell you what this becomes in the limit as q! 0.
Problem 2.7 shows the mathematics of the limit.

This example shows an interesting possibility of achieving otherwise unob-
tainable products through the use of transpired-wall reactors. They have been
proposed for the manufacture of a catalyst used in ammonia synthesis.1

Transpiration might be useful in maintaining a required stoichiometry in
copolymerizations where the two monomers polymerize at different rates, but
a uniform product is desired. For the specific case of an anionic polymerization,
transpiration of the more reactive monomer could give a chemically
uniform copolymer while maintaining a narrow molecular weight distribution.
See Section 13.4 for the background to this statement.

Membrane reactors, whether batch or continuous, offer the possibility of
selective transpiration. They can be operated in the reverse mode so that some
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products are selectively removed from the reaction mix in order to avoid an
equilibrium limitation. Membrane reactors can be used to separate cell mass
from fermentation products. See Section 12.2.2.

PROBLEMS

3.1. The first-order sequence A �!kI B �!kII C is occurring in a constant-
density piston flow reactor. The residence time is �tt.
(a) Determine bout and cout given that bin ¼ cin ¼ 0 and that kI ¼ kII .
(b) Find a real chemical example, not radioactive decay, where the

assumption that kI ¼ kII is plausible. As a last resort, you may
consider reactions that are only pseudo-first-order.

3.2. Suppose

l ¼
�1 0
�1 �1
1 �1
0 0

2
664

3
775

gives the stoichiometric coefficients for a set of elementary reactions.

(a) Determine the elementary reactions and the vector of reaction rates
that corresponds to l.

(b) Write the component balances applicable to these reactions in a
PFR with an exponentially increasing reactor cross section, Ac ¼
Ainlet expðBzÞ:

3.3. Equation (3.10) can be applied to an incompressible fluid just by setting
�tt ¼ V=Q. Show that you get the same result by integrating Equation
(3.8) for a first-order reaction with arbitrary Ac ¼ AcðzÞ.

3.4. Consider the reaction B �!k 2A in the gas phase. Use a numerical solu-
tion to determine the length of an isothermal, piston flow reactor that
achieves 50% conversion of B. The pressure drop in the reactor is negli-
gible. The reactor cross section is constant. There are no inerts. The feed is
pure B and the gases are ideal. Assume bin ¼ 1, and ain ¼ 0, �uuin ¼ 1, and
k ¼ 1 in some system of units.

3.5. Solve Problem 3.4 analytically rather than numerically.
3.6. Repeat the numerical solution in Example 3.2 for a reactor with variable

cross section, Ac ¼ Ainlet expðBzÞ. Using the numerical values in that
example, plot the length needed to obtain 50% conversion versus B
for �1 < B < 1 (e.g. z ¼ 0:3608 for B ¼ 0). Also plot the reactor
volume V versus B assuming Ainlet ¼ 1.

3.7. Rework Example 3.3, now considering reversibility of the reaction.
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Assume

Kequil ¼ PSTYPH2

PEB
¼ 0:61 atm at 700�C

3.8. Annular flow reactors, such as that illustrated in Figure 3.2, are some-
times used for reversible, adiabatic, solid-catalyzed reactions where pres-
sure near the end of the reactor must be minimized to achieve a favorable
equilibrium. Ethylbenzene dehydrogenation fits this situation. Repeat
Problem 3.7 but substitute an annular reactor for the tube. The inside
(inlet) radius of the annulus is 0.1m and the outside (outlet) radius
is 1.1m.

3.9. Consider the gas-phase decomposition A! Bþ C in an isothermal
tubular reactor. The tube i.d. is 1 in. There is no packing. The pressure
drop is 1 psi with the outlet at atmospheric pressure. The gas flow rate
is 0.05 SCF/s. The molecular weights of B and C are 48 and 52, respec-
tively. The entering gas contains 50% A and 50% inerts by volume.
The operating temperature is 700�C. The cracking reaction is first
order with a rate constant of 0.93 s�1. How long is the tube and what
is the conversion? Use �¼ 5� 10�5 Pa�s. Answers: 57m and 98%.

3.10. Suppose B �!k 2A in the liquid phase and that the density changes from
1000 kg/m3 to 900 kg/m3 upon complete conversion. Find a solution to
the batch design equation and compare the results with a hypothetical
batch reactor in which the density is constant.

3.11. A pilot-scale, liquid-phase esterification with near-zero heat of reaction is
being conduced in a small tubular reactor. The chemist thinks the reac-
tion should be reversible, but the by-product water is sparingly soluble
in the reaction mixture and you are not removing it. The conversion is
85%. Your job is to design a 100� scaleup. The pilot reactor is a
31.8mm i.d. tube, 4m long, constructed from 12 BWG (2.769mm) 316
stainless steel. The feed is preheated to 80�C and the reactor is jacketed
with tempered water at 80�C. The material begins to discolor if higher
temperatures are used. The flow rate is 50 kg/h and the upstream gauge
pressure is 1.2 psi. The density of the mixture is around 860 kg/m3. The
viscosity of the material has not been measured under reaction conditions
but is believed to be substantially independent of conversion. The pilot
plant discharges at atmospheric pressure.
(a) Propose alternative designs based on scaling in parallel, in series, by

geometric similarity, and by constant pressure drop. Estimate the
Reynolds number and pressure drop for each case.

(b) Estimate the total weight of metal needed for the reactor in each of
the designs. Do not include the metal needed for the water jacket in
your weight estimates. Is the 12 BWG tube strong enough for all the
designs?

(c) Suppose the full-scale reactor is to discharge directly into a finishing
reactor that operates at 100 torr. Could this affect your design?
What precautions might you take?

114 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



(d) Suppose you learn that the viscosity of the fluid in the pilot reactor
is far from constant. The starting raw material has a viscosity of
0.0009 PaEs at 80�C. You still have no measurements of the viscos-
ity after reaction, but the fluid is obviously quite viscous. What
influence will this have on the various forms of scaleup?

3.12. A pilot-scale, turbulent, gas-phase reactor performs well when operated
with a inlet pressure of 1.02 bar and an outlet pressure of 0.99 bar. Is
it possible to do a geometrically similar scaleup by a factor of 10 in
throughput while maintaining the same mean residence time? Assume
ideal gas behavior and ignore any change in the number of moles due
to reaction. If necessary, the discharge pressure on the large reactor
can be something other than 0.99 bar.

3.13. Refer to the results in Example 3.7 for a scaling factor of 100. Suppose
that the pilot and large reactors are suddenly capped and the vessels
come to equilibrium. Determine the equilibrium pressure and the ratio
of equilibrium pressures in these vessels assuming
(a) Pin=Pout1 ¼ 100
(b) Pin=Pout1 ¼ 10
(c) Pin=Pout1 ¼ 2
(d) Pin=Pout1 ¼ 1:1

3.14. An alternative to Equation (3.16) is Fa ¼ 0:04Re�0:16. It is more conser-
vative in the sense that it predicts higher pressure drops at the same
Reynolds number. Use it to recalculate the scaling exponents in Section
3.2 for pressure drop. Specifically, determine the exponents for �P
when scaling in series and with geometric similarity for an incompressible
fluid in turbulent flow. Also, use it to calculate the scaling factors for SR
and SL when scaling at constant pressure.

3.15. An integral form of Equation (3.15) was used to derive the pressure ratio
for scaleup in series of a turbulent liquid-phase reactor, Equation (3.34).
The integration apparently requires � to be constant. Consider the case
where � varies down the length of the reactor. Define an average viscosity
as

�̂� ¼ 1

L

Z L

0

�ðzÞ dz

Show that the Equation (3.34) is valid if the large and small reactors have
the same value for �̂� and that this will be true for an isothermal or adia-
batic PFR being scaled up in series.

3.16. Suppose an inert material is transpired into a tubular reactor in an
attempt to achieve isothermal operation. Suppose the transpiration rate
q is independent of z and that qL¼Qtrans. Assume all fluid densities to
be constant and equal. Find the fraction unreacted for a first-order reac-
tion. Express your final answer as a function of the two dimensionless
parameters, Qtrans=Qin and kV=Qin where k is the rate constant and
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Qin is the volumetric flow rate at z ¼ 0 (i.e., Qout ¼ Qin þQtrans). Hint:
the correct formula gives aout=ain ¼ 0:25 when Qtrans=Qin ¼ 1 and
kV=Qin ¼ 1:

3.17. Repeat Problem (3.16) for a second-order reaction of the 2A �!k=2 B type.
The dimensionless parameters are now Qtrans=Qin and kainV=Qin.
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CHAPTER 4

STIRRED TANKS AND
REACTOR COMBINATIONS

Chapter 2 treated multiple and complex reactions in an ideal batch reactor. The
reactor was ideal in the sense that mixing was assumed to be instantaneous and
complete throughout the vessel. Real batch reactors will approximate ideal
behavior when the characteristic time for mixing is short compared with the
reaction half-life. Industrial batch reactors have inlet and outlet ports and an
agitation system. The same hardware can be converted to continuous operation.
To do this, just feed and discharge continuously. If the reactor is well mixed in
the batch mode, it is likely to remain so in the continuous mode, as least for the
same reaction. The assumption of instantaneous and perfect mixing remains a
reasonable approximation, but the batch reactor has become a continuous-
flow stirred tank.

This chapter develops the techniques needed to analyze multiple and complex
reactions in stirred tank reactors. Physical properties may be variable. Also trea-
ted is the common industrial practice of using reactor combinations, such as a
stirred tank in series with a tubular reactor, to accomplish the overall reaction.

4.1 CONTINUOUS-FLOW STIRRED
TANK REACTORS

Perfectly mixed stirred tank reactors have no spatial variations in composition
or physical properties within the reactor or in the exit from it. Everything
inside the system is uniform except at the very entrance. Molecules experience
a step change in environment immediately upon entering. A perfectly mixed
CSTR has only two environments: one at the inlet and one inside the reactor
and at the outlet. These environments are specified by a set of compositions
and operating conditions that have only two values: either ain, bin, . . . ,Pin, Tin
or aout, bout, . . . ,Pout,Tout: When the reactor is at a steady state, the inlet
and outlet properties are related by algebraic equations. The piston flow reactors
and real flow reactors show a more gradual change from inlet to outlet, and the
inlet and outlet properties are related by differential equations.
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The component material balances for an ideal CSTR are the following set of
algebraic equations:

Qinain þR Aðaout, bout, . . . ,Pout,ToutÞV ¼ Qoutaout
Qinbin þR Bðaout, bout, . . . ,Pout,ToutÞV ¼ Qoutbout
..
. ..

. ..
.

ð4:1Þ

The reaction terms are evaluated at the outlet conditions since the entire
reactor inventory is at these conditions. The set of component balances can be
summarized as

Qinain þ lRV ¼ Qoutaout ð4:2Þ

where l is the N �M matrix of stoichiometric coefficients (see Equation (2.37))
and ain and aout are column vectors of the component concentrations.

For now, we assume that all operating conditions are known. This specifically
includes Pout and Tout, which correspond to conditions within the vessel. There
may be a backpressure valve at the reactor exit, but it is ignored for the purposes
of the design equations. Suppose also that the inlet concentrations ain, bin, . . . ,
volumetric flow rate Qin, and working volume V are all known. Then
Equations (4.1) or (4.2) are a set of N simultaneous equations in Nþ 1
unknowns, the unknowns being the N outlet concentrations aout, bout, . . . , and
the one volumetric flow rate Qout. Note that Qout is evaluated at the conditions
within the reactor. If the mass density of the fluid is constant, as is approxi-
mately true for liquid systems, then Qout¼Qin. This allows Equations (4.1) to
be solved for the outlet compositions. If Qout is unknown, then the component
balances must be supplemented by an equation of state for the system. Perhaps
surprisingly, the algebraic equations governing the steady-state performance of
a CSTR are usually more difficult to solve than the sets of simultaneous, first-
order ODEs encountered in Chapters 2 and 3. We start with an example that
is easy but important.

Example 4.1: Suppose a liquid-phase CSTR is used for consecutive, first-
order reactions:

A �!kA B �!kB C �!kC D

Determine all outlet concentrations, assuming constant density.

Solution: When density is constant, Qout¼Qin¼Q and �tt¼V/Q. Equations
(4.1) become

ain � kA �ttaout ¼ aout
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bin þ kA �ttaout � kB �ttbout ¼ bout
cin þ kB �ttbout � kC �ttcout ¼ cout

din þ kC �ttcout ¼ cout
These equations can be solved sequentially to give

aout ¼ ain
1þ kA �tt

bout ¼ bin
ð1þ kB �tt Þ þ

kA �ttain
ð1þ kA �tt Þð1þ kB �tt Þ

cout ¼ cin
aþ kC �ttþ

kB �ttbin
ð1þ kB �tt Þð1þ kC �tt Þ þ

kAkB �tt
2ain

ð1þ kA �tt Þð1þ kB �tt Þð1þ kC �tt Þ
dout ¼ din þ ðain � aoutÞ þ ðbin � boutÞ þ ðcin � coutÞ

ð4:3Þ

Compare these results with those of Equation (2.22) for the same reactions in
a batch reactor. The CSTR solutions do not require special forms when some
of the rate constants are equal. A plot of outlet concentrations versus �tt is
qualitatively similar to the behavior shown in Figure 2.2, and �tt can be
chosen to maximize bout or cout. However, the best values for �tt are different
in a CSTR than in a PFR. For the normal case of bin¼ 0, the �tt that
maximizes bout is a root-mean, �ttmax ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
kAkB
p

, rather than the log-mean of
Equation (2.23). When operating at �ttmax, the CSTR gives a lower yield of B
and a lower selectivity than a PFR operating at its �ttmax:

Competitive first-order reactions and a few other simple cases can be solved
analytically, but any reasonably complex kinetic scheme will require a numerical
solution. Mathematics programs such as Mathematica, Mathcad, and MatLab
offer nearly automatic solvers for sets of algebraic equations. They usually
work. Those readers who wish to understand the inner workings of a solution
are referred to Appendix 4, where a multidimensional version of Newton’s
method is described. It converges quickly provided your initial guesses for the
unknowns are good, but it will take you to never-never land when your initial
guesses are poor. A more robust method of solving the design equations for
multiple reactions in a CSTR is given in the next section.

4.2 THE METHOD OF FALSE TRANSIENTS

The method of false transients converts a steady-state problem into a time-
dependent problem. Equations (4.1) govern the steady-state performance of a
CSTR. How does a reactor reach the steady state? There must be a startup
transient that eventually evolves into the steady state, and a simulation of
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that transient will also evolve to the steady state. The simulation need not be
physically exact. Any startup trajectory that is mathematically convenient can
be used, even if it does not duplicate the actual startup. It is in this sense that
the transient can be false. Suppose at time t ¼ 0 the reactor is instantaneously
filled to volume V with fluid of initial concentrations a0, b0, . . . : The initial
concentrations are usually set equal to the inlet concentrations, ain, bin, . . . ,
but other values can be used. The simulation begins with Qin set to its steady-
state value. For constant-density cases, Qout is set to the same value. The
variable-density case is treated in Section 4.3.

The ODEs governing the unsteady CSTR are obtained by adding accumula-
tion terms to Equations (4.1). The simulation holds the volume constant, and

V
dðaoutÞ
dt
¼ Qinain þR Aðaout, bout, . . . ,Pout,ToutÞV �Qoutaout

V
dðboutÞ
dt
¼ Qinbin þR Bðaout, bout, . . . ,Pout,ToutÞV �Qoutbout

..

. ..
. ..

. ..
.

ð4:4Þ

This set of first-order ODEs is easier to solve than the algebraic equations where
all the time derivatives are zero. The initial conditions are that aout ¼ a0,
bout ¼ b0, . . . at t ¼ 0: The long-time solution to these ODEs will satisfy
Equations (4.1) provided that a steady-state solution exists and is accessible
from the assumed initial conditions. There may be no steady state. Recall the
chemical oscillators of Chapter 2. Stirred tank reactors can also exhibit oscilla-
tions or more complex behavior known as chaos. It is also possible that the reac-
tor has multiple steady states, some of which are unstable. Multiple steady states
are fairly common in stirred tank reactors when the reaction exotherm is large.
The method of false transients will go to a steady state that is stable but may not
be desirable. Stirred tank reactors sometimes have one steady state where there
is no reaction and another steady state where the reaction runs away. Think of
the reaction A ! B ! C. The stable steady states may give all A or all C, and
a control system is needed to stabilize operation at a middle steady state that
gives reasonable amounts of B. This situation arises mainly in nonisothermal
systems and is discussed in Chapter 5.

Example 4.2: Suppose the competing, elementary reactions

A þ B �!kI C

A �!kII D

occur in a CSTR. Assume density is constant and use the method of false
transients to determine the steady-state outlet composition. Suppose
kIain �tt ¼ 4, kII �tt ¼ 1, bin ¼ 1:5ain, cin ¼ 0:1ain, and din ¼ 0:1ain:
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Solution: Write a version of Equation (4.4) for each component. Divide
through by Qin¼ Qout and substitute the appropriate reaction rates to obtain

�tt
daout
dt
¼ ain � aout � kI �ttaoutbout � kII �ttaout

�tt
dbout
dt
¼ bin � bout � kI �ttaoutbout

�tt
dcout
dt
¼ cin � cout þ kI �ttaoutbout

�tt
ddout
dt
¼ din � dout þ kII �ttaout

Then use a first-order difference approximation for the time derivatives, e.g.,

da

dt
� anew � aold

�t

The results are

a

ain

� �
new

¼ a

ain

� �
old

þ 1� ð1þ kII �tt Þ a

ain

� �
old

� kIain �tt a

ain

� �
old

b

ain

� �
old

� �
�

b

ain

� �
new

¼ b

ain

� �
old

þ bin
ain

� �
� b

ain

� �
old

� kIain �tt a

ain

� �
old

b

ain

� �
old

� �
�

c

ain

� �
new

¼ c

ain

� �
old

þ cin
ain

� �
� c

ain

� �
old

þ kIain �tt a

ain

� �
old

b

ain

� �
old

� �
�

d

ain

� �
new

¼ d

ain

� �
old

þ din
ain

� �
� d

ain

� �
old

þ kII �tt a

ain

� �
old

� �
�

where  ¼ t=�tt is dimensionless time. These equations are directly suitable
for solution by Euler’s method, although they can be written more
compactly as

a�new ¼ a�old þ ½1� 2a�old � 4a�oldb
�
old ��

b�new ¼ b�old þ ½1:5� b�old � 4a�oldb
�
old ��

c�new ¼ c�old þ ½0:1� c�old þ 4a�oldb
�
old ��

d�new ¼ d�old þ ½0:1� d�old þ a�old ��
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where the various concentrations have been normalized by ain and where
numerical values have been substituted. Suitable initial conditions are
a�0 ¼ 1, b�0 ¼ 1:5, c�0 ¼ 0:1, and d�0 ¼ 0:1: Figure 4.1 shows the transient
approach to steady state. Numerical values for the long-time, asymptotic
solutions are also shown in Figure 4.1. They require simulations out
to about  ¼ 10. They could have been found by solving the algebraic
equations

0 ¼ 1� 2a�out � 4a�outb
�
out

0 ¼ 1:5� b�out � 4a�outb
�
out

0 ¼ 0:1� c�out þ 4a�outb
�
out

0 ¼ 0:1� d�out þ a�out

These equations are obtained by setting the accumulation terms to zero.

Analytical solutions are desirable because they explicitly show the functional
dependence of the solution on the operating variables. Unfortunately, they are
difficult or impossible for complex kinetic schemes and for the nonisothermal
reactors considered in Chapter 5. All numerical solutions have the disadvantage
of being case-specific, although this disadvantage can be alleviated through the
judicious use of dimensionless variables. Direct algebraic solutions to Equations
(4.1) will, in principle, give all the steady states. On the other hand, when a solu-
tion is obtained using the method of false transients, the steady state is known to
be stable and achievable from the assumed initial conditions.
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FIGURE 4.1 Transient approach to a stable steady state in a CSTR.
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Example 4.2 used the method of false transients to solve a steady-state reac-
tor design problem. The method can also be used to find the equilibrium concen-
trations resulting from a set of batch chemical reactions. To do this, formulate
the ODEs for a batch reactor and integrate until the concentrations stop chang-
ing. This is illustrated in Problem 4.6(b). Section 11.1.1 shows how the method
of false transients can be used to determine physical or chemical equilibria in
multiphase systems.

4.3 CSTRs with Variable Density

The design equations for a CSTR do not require that the reacting mixture has
constant physical properties or that operating conditions such as temperature
and pressure be the same for the inlet and outlet environments. It is required,
however, that these variables be known. Pressure in a CSTR is usually deter-
mined or controlled independently of the extent of reaction. Temperatures can
also be set arbitrarily in small, laboratory equipment because of excellent heat
transfer at the small scale. It is sometimes possible to predetermine the tempera-
ture in industrial-scale reactors; for example, if the heat of reaction is small or if
the contents are boiling. This chapter considers the case where both Pout and Tout
are known. Density and Qout will not be known if they depend on composition.
A steady-state material balance gives

�inQin ¼ �outQout ð4:5Þ
An equation of state is needed to determine the mass density at the reactor
outlet, �out: Then, Qout can be calculated.

4.3.1 Liquid-Phase CSTRs

There is no essential difference between the treatment of liquid and gas phase
except for the equation of state. Density changes in liquid systems tend to be
small, and the density is usually assumed to be a linear function of concentra-
tion. This chapter treats single-phase reactors, although some simple multiphase
situations are allowed. A solid by-product of an irreversible, liquid-phase reac-
tion will change the density but not otherwise affect the extent of reaction.
Gaseous by-products are more of a problem since they cause foaming. The
foam density will be affected by the pressure due to liquid head. Also, the gas
may partially disengage. Accurate, a priori estimates of foam density are diffi-
cult. This is also true in boiling reactors.

A more general treatment of multiphase reactors is given in Chapter 11.

Example 4.3: Suppose a pure monomer polymerizes in a CSTR with
pseudo-first-order kinetics. The monomer and polymer have different
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densities. Assume a linear relationship based on the monomer concentration.
Then determine the exit concentration of monomer, assuming that the reac-
tion is first order.

Solution: The reaction is

M �! P R ¼ km
The reactor design equation for monomer is

0 ¼ minQin � Vkmout �moutQout ð4:6Þ
where the unknowns are mout and Qout: A relationship between density and
composition is needed. One that serves the purpose is

� ¼ �polymer ���
m

min

� �
ð4:7Þ

where �� ¼ �polymer � �monomer: The procedure from this point is
straightforward if algebraically messy. Set m ¼ mout in Equation (4.7) to
obtain �out: Substitute into Equation (4.5) to obtain Qout and then into
Equation (4.6) so that mout becomes the only unknown. The solution for
mout is

mout
min
¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4ð1� 
ÞY0ð1� Y0Þ
p
2ð1� 
Þð1� Y0Þ ð4:8Þ

where


 ¼ �monomer
�polymer

and Y0 is the fraction unreacted that would be calculated if the density change
were ignored. That is,

Y 0 ¼ Qin
Qin þ kV

This result can be simplified by dividing through by Qin to create the
dimensionless group kV=Qin: The quantity V=Qin is the space time, not the
mean residence time. See Example 3.4. The mean residence time is

�tt ¼ �̂�V

�outQout
¼ V

Qout
ð4:9Þ

The first of the relations in Equation (4.9) is valid for any flow system. The
second applies specifically to a CSTR since �̂� ¼ �out: It is not true for a
piston flow reactor. Recall Example 3.6 where determination of �tt in a gas-
phase tubular reactor required integrating the local density down the length
of the tube.
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As a numerical example, suppose Y0 ¼ 0.5 and 
¼ 0.9. Then Equation (4.8)
gives mout=min ¼ 0:513: This result may seem strange at first. The density
increases upon polymerization so that the reactor has a greater mass inventory
when filled with the polymerizing mass than when filled with monomer. More
material means a higher residence time, yet mout=min is higher, suggesting less
reaction. The answer, of course, is that mout=min is not the fraction unreacted
when there is a density change. Instead,

Fraction unreacted ¼ YM ¼ Qoutmout
Qinmin

ð4:10Þ

Equation (4.10) uses the general definition of fraction unreacted in a flow
system. It is moles out divided by moles in. The corresponding, general
definition of conversion is

XM ¼ 1�Qoutmout
Qinmin

ð4:11Þ

For the problem at hand,

Qout
Qin
¼ �in

�out
¼ 


1þ ð1� 
Þmout=min
For the numerical example, Qout=Qin ¼ 0:949 and the fraction unreacted is
0.487 compared with 0.5 if there were no change. Thus, the density change
causes a modest increase in conversion.

4.3.2 Computational Scheme for Variable-Density CSTRs

Example 4.3 represents the simplest possible example of a variable-density
CSTR. The reaction is isothermal, first-order, irreversible, and the density is
a linear function of reactant concentration. This simplest system is about
the most complicated one for which an analytical solution is possible.
Realistic variable-density problems, whether in liquid or gas systems, require
numerical solutions. These numerical solutions use the method of false transi-
ents and involve sets of first-order ODEs with various auxiliary functions.
The solution methodology is similar to but simpler than that used for piston
flow reactors in Chapter 3. Temperature is known and constant in the reactors
described in this chapter. An ODE for temperature will be added in Chapter 5.
Its addition does not change the basic methodology.

The method of false transients begins with the inlet stream set to its steady-
state values of Qin,Tin, �in, ain, bin, . . . : The reactor is full of material having
concentrations a0, b0, . . . and temperature T0.

0. Set the initial values a0, b0, . . . ,T0: Use the equation of state to calculate �0
and �in: Calculate Q0 ¼ �inQin=�0: Calculate V�0:
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1. Pick a step size, �t:

2. Set the initial values for aout, bout, . . . ,Tout, and Qout:

3. Take one step, calculating new values for aout, bout, . . . , and Tout at the new
time, tþ�t: The marching-ahead equations have the form

ðaoutÞnew ¼ ðaoutÞold þ ½Qinain þR Aðaout, bout, . . . ,Pout,ToutÞV �Qoutaout� �t=V
ð4:12Þ

4. Use the equation of state to calculate �out:

5. Use Equation (4.5) to calculate Qout ¼ �inQin=�out:

6. Check if ðaoutÞnew ffi ðaoutÞold : If not, go to Step 3.

7. Decrease �t by a factor of 2 and go to Step 1. Repeat until the results
converge to four or five significant figures.

8. Calculate the steady-state value for the reactor volume from V�0=�out: If this
is significantly different than the desired working volume in the reactor, go
back to Step 0, but now start the simulation with the tank at the concentra-
tions and temperature just calculated.

Note that an accurate solution is not required for the early portions of the
trajectory, and Euler’s method is the perfect integration routine. A large step
size can be used provided the solution remains stable. As steady state is
approached, the quantity in square brackets in Equation (4.12) goes to zero.
This allows an accurate solution at the end of the trajectory, even though the
step size is large. Convergence is achieved very easily, and Step 7 is included
mainly as a matter of good computing practice. Step 8 is needed if there is a sig-
nificant density change upon reaction and if the initial concentrations were far
from the steady-state values. The computational algorithm keeps constant
mass in the reactor, not constant volume, so you may wind up simulating a reac-
tor of somewhat different volume than you intended. This problem can be reme-
died just by rerunning the program. An actual startup transient—as opposed to
a false transient used to get steady-state values—can be computed using the
methodology of Chapter 14.

Example 4.4: Solve Example 4.3 numerically.

Solution: In a real problem, the individual values for k, V, and Qin would
be known. Their values are combined into the dimensionless group, kV/Qin.
This group determines the performance of a constant-density reactor and is
one of the two parameters needed for the variable-density case. The other
parameter is the density ratio, r ¼ �monomer=�polymer: Setting kV/Qin¼ 1 gives
Y 0 ¼ 0.5 as the fraction unreacted for the constant-density case. The
individual values for k, V, Qin, �monomer, and �polymer can be assigned as
convenient, provided the composite values are retained. The following
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program gives the same results as found in Example 4.3 but with less work:

DEFDBL A-Z

dt¼.1
Qin¼1
k¼1
V¼1
min¼1
rhom¼.9
rhop¼1
rhoin¼rhom
Qout¼Qin
mold¼min

DO
mnew¼moldþ(Qin*min�k * V * mold�Qout * mold) * dt/V
rhoout¼rhop�(rhop�rhom) * mnew/min
Qout¼Qin * rhoin / rhoout
mold¼mnew
PRINT USING ‘‘###.####’’; mnew, Qout, Qout * mnew
t¼tþdt

LOOP WHILE t < 10

The long-time results to three decimal places are mnew¼ 0.513¼mout,
Qout¼ 0.949¼Qout =Qin, and Qout * mnew¼ 0.467¼YM.

4.3.3 Gas-Phase CSTRs

Strictly gas-phase CSTRs are rare. Two-phase, gas–liquid CSTRs are common
and are treated in Chapter 11. Two-phase, gas–solid CSTRs are fairly
common. When the solid is a catalyst, the use of pseudohomogeneous kinetics
allows these two-phase systems to be treated as though only the fluid phase
were present. All concentration measurements are made in the gas phase, and
the rate expression is fitted to the gas-phase concentrations. This section outlines
the method for fitting pseudo-homogeneous kinetics using measurements made
in a CSTR. A more general treatment is given in Chapter 10.

A recycle loop reactor is often used for laboratory studies with gas-phase
reactants and a solid, heterogeneous catalyst. See Figure 4.2. Suppose the reac-
tor is a small bed of packed catalyst through which the gas is circulated at a high
rate. The high flow rate gives good heat transfer and eliminates gas-phase resis-
tance to mass transfer. The net throughput is relatively small since most of the
gas exiting from the catalyst bed is recycled. The per-pass conversion is low, but
the overall conversion is high enough that a chemical analysis can be reasonably
accurate. Recycle loops behave as CSTRs when the recycle ratio is high. This
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fact is intuitively reasonable since the external pump causes circulation similar to
that caused by the agitator in a conventional stirred tank reactor. A variant of
the loop reactor puts the catalyst in a basket and then rotates the basket at high
speed within the gas mixture. This more closely resembles the tank-plus-agitator
design of a conventional stirred tank, but the kinetic result is the same. Section
4.5.3 shows the mathematical justification for treating a loop reactor as a CSTR.

A gas-phase CSTR with prescribed values for Pout and Tout is particularly
simple when ideal gas behavior can be assumed. The molar density in the reactor
will be known and independent of composition.

Example 4.5: Suppose the recycle reactor in Figure 4.2 is used to evaluate
a catalyst for the manufacture of sulfuric acid. The catalytic step is the
gas-phase oxidation of sulfur dioxide:

SO2 þ 1
2 O2 ! SO3

Studies on similar catalysts have suggested a rate expression of the form

R ¼ k½SO2�½O2�
1þ kC½SO3� ¼

kab

1þ kCc
where a¼ [SO2], b¼ [O2], and c¼ [SO3]. The object is to determine k and kC
for this catalyst. At least two runs are needed. The following compositions
have been measured:

Concentrations in mole percent

Inlet Outlet

Run 1 Run 2 Run 1 Run 2

SO2 10 5 4.1 2.0
O2 10 10 7.1 8.6
SO3 0 5 6.3 8.1
Inerts 80 80 82.5 81.3

The operating conditions for these runs were Qin¼ 0.000268m3/s,
Pin¼ 2.04 atm, Pout¼ 1.0 atm, Tin¼ 40�C, Tout¼ 300�C, and V¼ 0.0005m3.

Reactor

q >> Qout,  a  = aout

a = amix

Qin + q
Qin
ain

Qout
aout

FIGURE 4.2 Reactor in a recycle loop.
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Solution: The analysis could be carried out using mole fractions as the
composition variable, but this would restrict applicability to the specific
conditions of the experiment. Greater generality is possible by converting to
concentration units. The results will then apply to somewhat different
pressures. The ‘‘somewhat’’ recognizes the fact that the reaction mechanism
and even the equation of state may change at extreme pressures. The results
will not apply at different temperatures since k and kC will be functions of
temperature. The temperature dependence of rate constants is considered in
Chapter 5.

Converting to standard concentration units, mol/m3, gives the following:

Molar concentrations

Inlet Outlet

Run 1 Run 2 Run 1 Run 2

SO2 7.94 3.97 0.87 0.43
O2 7.94 7.94 1.51 1.83
SO3 0 3.97 1.34 1.72
Inerts 63.51 63.51 17.54 17.28
�molar 79.38 79.39 21.26 21.26

The outlet flow rate Qout is required. The easiest way to obtain this is by a
molar balance on the inerts:

Qindin ¼ Qoutdout

which gives Qout¼ [(0.000268)(63.51)]/(17.54)¼ 0.000970m3/s for Run 1
and 0.000985 for Run 2. These results allow the molar flow rates to be
calculated:

Molar flow rates

Inlet Outlet

Run 1 Run 2 Run 1 Run 2

SO2 0.00213 0.00106 0.00085 0.00042
O2 0.00213 0.00213 0.00146 0.00180
SO3 0 0.00106 0.00130 0.00169
Inerts 0.01702 0.01704 0.01702 0.01702
Total moles 0.02128 0.02128 0.02063 0.02093
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The reader may wish to check these results against the reaction stoichiome-
try for internal consistency. The results are certainly as good as warranted by
the two-place precision of the analytical results.

The reactor design equation for SO3 is

0 ¼ cinQin þ Vkaoutbout
1þ kCcout � coutQout

Everything in this equation is known but the two rate constants. Substituting
the known quantities for each run gives a pair of simultaneous equations:

0.00130þ 0.00174kC ¼ 0.000658k

0.00063þ 0.00109kC ¼ 0.000389k

Solution gives k¼ 8.0mol/(m3�s) and kC ¼ 2.3m3 mol�1. Be warned that this
problem is ill-conditioned. Small differences in the input data or rounding
errors can lead to major differences in the calculated values for k and kC:
The numerical values in this problem were calculated using greater
precision than indicated in the above tables. Also, the values for k and kC
will depend on which component was picked for the component balance.
The example used component C, but A or B could have been chosen.
Despite this numerical sensitivity, predictions of performance using the
fitted values for the rate constants will closely agree within the range of the
experimental results. The estimates for k and kC are correlated so that a
high value for one will lead to a compensating high value for the other.

Example 4.6: Use the kinetic model of Example 4.5 to determine the outlet
concentration for the loop reactor if the operating conditions are the same as
in Run 1.

Solution: Example 4.5 was a reverse problem, where measured reactor
performance was used to determine constants in the rate equation. We now
treat the forward problem, where the kinetics are known and the reactor
performance is desired. Obviously, the results of Run 1 should be closely
duplicated. The solution uses the method of false transients for a variable-
density system. The ideal gas law is used as the equation of state. The
ODEs are

daout
dt
¼ ainQin

V
� kaoutbout
1þ kCcout �

aoutQout
V

dbout
dt
¼ binQin

V
� kaoutbout
2ð1þ kCcoutÞ �

boutQout
V
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dcout
dt
¼ cinQin

V
þ kaoutbout
1þ kCcout �

coutQout
V

ddout
dt
¼ dinQin

V
� doutQout

V

Then add all these together, noting that the sum of the component
concentrations is the molar density:

dð�molarÞout
dt

¼ ð�molarÞinQin
V

� kaoutbout
2ð1þ kCcoutÞ �

ð�molarÞoutQout
V

The ideal gas law says that the molar density is determined by pressure and
temperature and is thus known and constant in the reactor. Setting the time
derivative of molar density to zero gives an expression for Qout at steady
state. The result is

Qout ¼ ð�molarÞinQinð�molarÞout
� ð1=2Þ Vkaoutbout

ð�molarÞoutð1þ kCcoutÞ
For the numerical solution, the ODEs for the three reactive components are
solved in the usual manner and Qout is updated after each time step. If
desired, dout is found from

dout ¼ �molar � aout � bout � cout
The results for the conditions of Run 1 are aout¼ 0.87, bout¼ 1.55, cout¼ 1.37,
and dout¼ 17.47. The agreement with Example 4.5 is less than perfect because
the values for k and kC were rounded to two places. Better accuracy cannot
be expected.

4.4 SCALEUP OF ISOTHERMAL CSTRs

The word ‘‘isothermal’’ in the title of this section eliminates most of the diffi-
culty. The most common problem in scaling up a CSTR is maintaining the
desired operating temperature. This is discussed in Chapter 5, along with
energy balances in general. The current chapter ignores the energy balance,
and there is little to discuss here beyond the mixing time concepts of Section
1.5. Reference is made to that section and to Example 1.7.

A real continuous-flow stirred tank will approximate a perfectly mixed CSTR
provided that tmix � t1=2 and tmix � �tt: Mixing time correlations are developed
using batch vessels, but they can be applied to flow vessels provided the ratio
of throughput to circulatory flow is small. This idea is explored in Section
4.5.3 where a recycle loop reactor is used as a model of an internally agitated
vessel.
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The standard approach to scaling a conventionally agitated stirred tank is to
maintain geometric similarity. This means that all linear dimensions—e.g., the
impeller diameter, the distance that the impeller is off the bottom, the height
of the liquid, and the width of the baffles—scale as the tank diameter; that is,
as S1/3. As suggested in Section 1.5, the scaleup relations are simple when scaling
with geometric similarity and when the small-scale vessel is fully turbulent. The
Reynolds number scales as NID

2
I and will normally be higher in the large vessel.

The mixing time scales as N�1I , the pumping capacity of the impeller scales as
NID

3
I , and the power to the impeller scales as N3

I D
5
I . As shown in Example

1.7, it is impractical to maintain a constant mixing time upon scaleup since
the power requirements increase too dramatically.

Although experts in agitator design are loath to admit to using such a simplis-
tic rule, most scaleups of conventionally agitated vessels are done at or near
constant power per unit volume. The consequences of scaling in this fashion
are explored in Example 4.7

Example 4.7: A fully turbulent, baffled vessel is to be scaled up by a factor
of 512 in volume while maintaining constant power per unit volume.
Determine the effects of the scaleup on the impeller speed, the mixing time,
and the internal circulation rate.

Solution: If power scales as N3
I D

5
I , then power per unit volume scales as

N3
I D

2
I : To maintain constant power per unit volume, NI must decrease upon

scaleup. Specifically, NI must scale as D�2=3I : When impeller speed is scaled
in this manner, the mixing time scales as D2=3

I and the impeller pumping rate
scales as D7=3

I : To maintain a constant value for �tt, the throughput Q scales
as D3

I ¼S. Results for these and other design and operating variables are
shown in Table 4.1.

A volumetric scaleup by a factor of 512 is quite large, and the question
arises as to whether the large vessel will behave as a CSTR. The concern is
due to the factor of 4 increase in mixing time. Does it remain true that
tmix � t1=2 and tmix � �tt ? If so, the assumption that the large vessel will
behave as a CSTR is probably justified. The ratio of internal circulation to
net throughput—which is the internal recycle ratio—scales as the inverse of
the mixing time and will thus decrease by a factor of 4. The decrease may
appear worrisome, but if the increase in mixing time can be tolerated, then
it is likely that the decrease in internal recycle ratio is also acceptable.

The above analysis is restricted to high Reynolds numbers, although the
definition of high is different in a stirred tank than in a circular pipe. The
Reynolds number for a conventionally agitated vessel is defined as

ðReÞimpeller ¼
�NID

2
I

�
ð4:13Þ
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where DI is the diameter of the impeller, not of the tank. The velocity term in the
Reynolds number is the tip velocity of the impeller, NIDI : The transition from
laminar to transitional flow occurs when the impeller Reynolds number is less
than 100, and the vessel is highly turbulent by ðReÞimpeller ¼ 1000. These state-
ments are true for commercial examples of turbine and paddle agitators. Most
industrial stirred tanks operate in the fully turbulent regime. The exceptions
are usually polymerization reactors, which often use special types of agitators.

Table 4.1 includes the Froude number, N2
I DI =g where g is the acceleration

due to gravity. This dimensionless group governs the extent of swirling and
vortexing in an unbaffled stirred tank. Turbulent stirred tanks are normally
baffled so that the power from the agitator causes turbulence rather than mere
circular motion. Intentional vortexing is occasionally used as a means for
rapidly engulfing a feed stream. Table 4.1 shows that the extent of vortexing
will decrease for scaleups at constant power per unit volume. Unbaffled tanks
will draw somewhat less power than baffled tanks.

Table 4.1 includes scaleup factors for heat transfer. They are discussed in
Chapter 5.

4.5 COMBINATIONS OF REACTORS

We have considered two types of ideal flow reactor: the piston flow reactor and
the perfectly mixed CSTR. These two ideal types can be connected together in a
variety of series and parallel arrangements to give composite reactors that are

TABLE 4.1 Scaleup Factors for Geometrically Similar Stirred Tanks

General
scaling
factor

Scaling factor for
constant power
per unit volume

Numerical scaling
factor for
S¼ 512

Vessel diameter S 1/3 S 1/3 8
Impeller diameter S 1/3 S 1/3 8
Vessel volume S S 512
Throughput S S 512
Residence time 1 1 1
Reynolds number NI S

2/3 S 4/9 8
Froude number N2

I S
1=3 S �1/9 0.5

Agitator speed NI S �2/9 0.25
Power N3

I S
5=3 S 512

Power per volume N3
I S

2=3 1.0 1
Mixing time N�1I S 2/9 4
Circulation rate NIS S 7/9 128
Circulation rate/throughput NI S�2/9 0.25
Heat transfer area, Aext S2/3 S2/3 64
Inside coefficient, h N2=3

I S1=9 S�1/27 0.79

Coefficient times area, hAext N2=3
I S7=9 S17/27 50.8

Driving force, �T N�2=3I S2=9 S10/27 10.1
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generally intermediate in performance when compared with the ideal reactors.
Sometimes the composite reactor is only conceptual and it is used to model a
real reactor. Sometimes the composite reactor is actually built. There are
many good reasons for building reactor combinations. Temperature control is
a major motivation. The use of standard designs is sometimes a factor, as is
the ability to continue operating a plant while adding capacity. Series and par-
allel scaleups of tubular reactors were considered in Chapter 3. Parallel scaleups
of CSTRs are uncommon, but they are sometimes used to gain capacity. Series
installations are more common. The series combinations of a stirred tank fol-
lowed by a tube are also common. This section begins the analysis of composite
reactors while retaining the assumption of isothermal operation, at least within a
single reactor.

Different reactors in the composite system may operate at different tempera-
tures and thus may have different rate constants.

4.5.1 Series and Parallel Connections

When reactors are connected in series, the output from one serves as the input
for the other. For reactors in series,

ðainÞ2 ¼ ðaoutÞ1 ð4:14Þ
The design equations for reactor 1 are solved and used as the input to reactor 2.

Example 4.8: Find the yield for a first-order reaction in a composite reactor
that consists of a CSTR followed by a piston flow reactor. Assume that the
mean residence time is �tt1 in the CSTR and �tt2 in the piston flow reactor.

Solution: The exit concentration from the perfect mixer is

ðaoutÞ1 ¼
ain

1þ k�tt1

and that for the piston flow reactor is

aout ¼ ðainÞ2 expð�k �tt2Þ

Using Equation (4.14) to combine these results gives

aout ¼ ain expð�k
�tt2Þ

1þ k�tt1

Compare this result with that for a single, ideal reactor having the same input
concentration, throughput, and total volume. Specifically, compare the outlet
concentration of the composite reactor with that from a single CSTR having a
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mean residence time of

�tt ¼ V
Q
¼ V1 þ V2

Q
¼ �tt1 þ �tt2

and with that of a piston flow reactor having this same �tt: The following
inequality is true for physically realistic (meaning positive) values of k, �tt1,
and �tt2:

1

1þ kð �tt1 þ �tt2Þ 	
expð�k �tt2Þ
1þ k�tt1 	 exp½�kð �tt1 þ �tt2Þ�

Thus, the combination reactor gives intermediate performance. The fraction
unreacted from the composite reactor will be lower than that from a
single CSTR with �tt ¼ �tt1 þ �tt2 but higher than that from a single PFR with
�tt ¼ �tt1 þ �tt2:

For two reactors in parallel, the output streams are averaged based on the
flow rate:

aout ¼ Q1ðaoutÞ1 þQ2ðaoutÞ2
Q1 þQ2

ð4:15Þ

Example 4.9: Find the conversion for a first-order reaction in a composite
system that consists of a perfect mixer and a piston flow reactor in parallel.

Solution: Using Equation (4.15),

aout ¼ ain
Q1 þQ2

Q1

1þ k �tt1 þQ2 expð�k�tt2Þ
� �

A parallel reactor system has an extra degree of freedom compared with a
series system. The total volume and flow rate can be arbitrarily divided between
the parallel elements. For reactors in series, only the volume can be divided since
the two reactors must operate at the same flow rate. Despite this extra variable,
there are no performance advantages compared with a single reactor that has the
same total V and Q, provided the parallel reactors are at the same temperature.
When significant amounts of heat must be transferred to or from the reactants,
identical small reactors in parallel may be preferred because the desired operat-
ing temperature is easier to achieve.

The general rule is that combinations of isothermal reactors provide
intermediate levels of performance compared with single reactors that have
the same total volume and flow rate. The second general rule is that a single,
piston flow reactor will give higher conversion and better selectivity
than a CSTR. Autocatalytic reactions provide the exception to both these
statements.
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Example 4.10: Consider a reactor train consisting of a CSTR followed
by a piston flow reactor. The total volume and flow rate are fixed. Can
series combination offer a performance advantage compared with a single
reactor if the reaction is autocatalytic? The reaction is

Aþ B �!k 2B

Treat the semipathological case where bin¼ 0.

Solution: With bin¼ 0, a reaction will never start in a PFR, but a steady-
state reaction is possible in a CSTR if the reactor is initially spiked with
component B. An analytical solution can be found for this problem and is
requested in Problem 4.12, but a numerical solution is easier. The design
equations in a form suitable for the method of false transients are

dðaoutÞ1
dt

¼ ðainÞ1 � k �tt1ðaoutÞ1ðboutÞ1 � ðaoutÞ1

dðboutÞ1
dt

¼ ðbinÞ1 þ k �tt1ðaoutÞ1ðboutÞ1 � ðboutÞ1

The long-time solution to these ODEs gives ðaoutÞ1 and ðboutÞ1, which are the
inlet concentrations for the piston flow portion of the system. The design
equations for the PFR are

da2
dt
¼ �ka2b2

db2
dt
¼ ka2b2

A simple numerical example sets ain ¼ 1, bin ¼ 0, and k¼ 5. Suitable initial
conditions for the method of false transients are a0¼ 0 and b0¼ 1. Suppose
the residence time for the composite system is �tt1 þ �tt2 ¼ 1. The question is
how this total time should be divided. The following results were obtained:

�tt1 �tt2 ðaoutÞ1 ðboutÞ1 ðaoutÞ2 ðboutÞ2
1.0 0 0.2000 0.8000 0.2000 0.8000
0.9 0.1 0.2222 0.7778 0.1477 0.8523
0.8 0.2 0.2500 0.7500 0.1092 0.8908
0.7 0.3 0.2857 0.7143 0.0819 0.9181
0.6 0.4 0.3333 0.6667 0.0634 0.9366
0.5 0.5 0.4000 0.6000 0.0519 0.9481
0.4 0.6 0.5000 0.5000 0.0474 0.9526
0.3 0.7 0.6667 0.3333 0.0570 0.9430
0.2 0.8 1 0 1 0
0.1 0.9 1 0 1 0
0.0 1.0 1 0 1 0
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There is an interior optimum. For this particular numerical example, it
occurs when 40% of the reactor volume is in the initial CSTR and 60% is
in the downstream PFR. The model reaction is chemically unrealistic but illus-
trates behavior that can arise with real reactions. An excellent process for
the bulk polymerization of styrene consists of a CSTR followed by a tubular
post-reactor. The model reaction also demonstrates a phenomenon known as
washout which is important in continuous cell culture. If k�tt1 is too small,
a steady-state reaction cannot be sustained even with initial spiking of compo-
nent B. A continuous fermentation process will have a maximum flow rate
beyond which the initial inoculum of cells will be washed out of the system.
At lower flow rates, the cells reproduce fast enough to achieve and hold a
steady state.

4.5.2 Tanks in Series

For the great majority of reaction schemes, piston flow is optimal. Thus, the
reactor designer normally wants to build a tubular reactor and to operate it at
high Reynolds numbers so that piston flow is closely approximated. This may
not be possible. There are many situations where a tubular reactor is infeasible
and where continuous-flow stirred tank reactors must be used instead. Typical
examples are reactions involving suspended solids and autorefrigerated reactors
where the reaction mass is held at its boiling point. There will usually be a yield
advantage, but a cost disadvantage, from using several CSTRs in series.
Problems 4.19 and 4.20 show how the cost disadvantage can be estimated.

Example 4.11: Determine the fraction unreacted for a second-order reac-

tion, 2A �!k B, in a composite reactor consisting of two equal-volume
CSTRs in series. The rate constant is the same for each reactor and
k�tt1ain ¼ 0:5 where �tt1 ¼ V1 =Q is the mean residence time in a single vessel.
Compare your result with the fraction unreacted in a single CSTR that has
the same volume as the series combination, V ¼ 2V1. Assume constant
mass density.

Solution: Begin by considering the first CSTR. The rate of formation of A
is R A ¼ �2ka2: For constant �, Qin ¼ Qout¼Q, and the design equation for
component A is

0 ¼ ain � 2k �tt1ða2outÞ1 � ðaoutÞ1

The solution is

ðaoutÞ1
ain
¼ �1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8k �tt1ain

p
4k�tt1ain

ð4:16Þ
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Set ain¼ 1 for convenience. When k �tt1ain ¼ 0:5, Equation (4.16) gives

ðaoutÞ1 ¼ ðainÞ2 ¼ 0:618ain

The second CSTR has the same rate constant and residence time, but the
dimensionless rate constant is now based on ðainÞ2 ¼ 0:618ain rather than on
ain. Inserting k �tt2ðainÞ2 ¼ k�tt2ainðainÞ2 ¼ ð0:5Þð0:618Þ ¼ 0:309 into Equation
(4.16) gives

aout ¼ ðaoutÞ2 ¼ ð0:698ÞðainÞ2 ¼ 0:432ain

Thus, aout=ain ¼ 0:432 for the series combination. A single CSTR with twice
the volume has k �tt1ain ¼ 1: Equation (4.16) gives aout=ain ¼ 0:5 so that the
composite reactor with two tanks in series gives the higher conversion.

Numerical calculations are the easiest way to determine the performance of
CSTRs in series. Simply analyze them one at a time, beginning at the inlet.
However, there is a neat analytical solution for the special case of first-order
reactions. The outlet concentration from the nth reactor in the series of
CSTRs is

ðaoutÞn ¼
ðainÞn

1þ kn �ttn ð4:17Þ

where kn is the rate constant and �ttn is the mean residence time ðn ¼ 1, 2, . . . ,NÞ:
Applying Equation (4.14) repeatedly gives the outlet concentration for the entire
train of reactors:

aout ¼ ain
ð1þ k1 �tt1Þ ð1þ k2 �tt2Þ � � � ð1þ kN �ttNÞ ¼ ain

YN
n¼1
ð1þ kn �ttnÞ�1 ð4:18Þ

When all the kn are equal (i.e., the reactors are at the same temperature) and all
the tn are equal (i.e., the reactors are the same size),

aout ¼ ain

ð1þ k �tt=NÞN ð4:19Þ

where �tt is the mean residence time for the entire system. In the limit of many
tanks in series,

Lim
N!1

aout
ain
¼ e�k�tt ð4:20Þ

Thus, the limit gives the same result as a piston flow reactor with mean residence
time �tt: Putting tanks in series is one way to combine the advantages of CSTRs
with the better yield of a PFR. In practice, good improvements in yield are
possible for fairly small N.
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Example 4.12: Suppose the concentration of a toxic substance must be
reduced by a factor of 1000. Assuming the substance decomposes with first-
order kinetics, compare the total volume requirements when several stirred
tanks are placed in series with the volume needed in a PFR to achieve the
same factor of 1000 reduction.

Solution: The comparisons will be made at the same k and same
throughput (i.e., the same Q). Rearrange Equation (4.19) and take the Nth
root to obtain

k �tt ¼ N� 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ain =aout

N
p

¼ N� 1þ
ffiffiffiffiffiffiffiffiffiffi
1000

N
p

where k �tt is proportional to the volume of the system. Some results are
shown below:

Number of
tanks in
series, N

Value of k�tt to achieve a
1000-fold reduction
in concentration

Volume of the
composite reactor
relative to a PFR

1 999 144.6
2 61.2 8.8
3 27 3.9
4 18.5 2.7
..
. ..

. ..
.

1 6.9 1

Thus, a single CSTR requires 144.6 times the volume of a single PFR, and the
inefficiency of using a CSTR to achieve high conversions is dramatically
illustrated. The volume disadvantage drops fairly quickly when CSTRs
are put in series, but the economic disadvantage remains great. Cost
consequences are explored in Problems 4.19 and 4.20.

4.5.3 Recycle Loops

Recycling of partially reacted feed streams is usually carried out after the pro-
duct is separated and recovered. Unreacted feedstock can be separated and
recycled to (ultimate) extinction. Figure 4.2 shows a different situation. It is a
loop reactor where some of the reaction mass is returned to the inlet without
separation. Internal recycle exists in every stirred tank reactor. An external
recycle loop as shown in Figure 4.2 is less common, but is used, particularly
in large plants where a conventional stirred tank would have heat transfer
limitations. The net throughput for the system is Q ¼ Qin, but an amount q is
recycled back to the reactor inlet so that the flow through the reactor is
Qinþ q. Performance of this loop reactor system depends on the recycle ratio
q=Qin and on the type of reactor that is in the loop. Fast external recycle has
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no effect on the performance of a CSTR but will affect the performance of other
reactors. By fast recycle, we mean that no appreciable reaction occurs in the
recycle line. The CSTR already has enough internal recycle to justify the
assumption of perfect mixing so that fast external recycle does nothing more.
If the reactor in the loop is a PFR, the external recycle has a dramatic effect.
At high q=Qin, the loop reactor will approach the performance of a CSTR.

A material balance about the mixing point gives

amix ¼ Qinain þ qaout
Qin þ q ð4:21Þ

The feed to the reactor element within the loop is amix. The flow rate entering
the reactor element is Qinþ q and the exit concentration is aout. The relation-
ship between amix and aout can be calculated without direct consideration of
the external recycle. In the general case, this single-pass solution must be
obtained numerically. Then the overall solution is iterative. One guesses amix
and solves numerically for aout. Equation (4.21) is then used to calculate amix
for comparison with the original guess. Any good root finder will work. The
function to be zeroed is

amix �Qinain þ qaout
Qin þ q ¼ 0

where aout denotes the solution of the single-pass problem. When aout is known
analytically, an analytical solution to the recycle reactor problem is usually
possible.

Example 4.13: Determine the outlet concentration from a loop reactor as
a function of Qin and q for the case where the reactor element is a PFR and
the reaction is first order. Assume constant density and isothermal operation.

Solution: The single-pass solution is

aout ¼ amix exp �kV
Qin þ q
� �

Note that V=ðQin þ qÞ is the per-pass residence time and is far different from
the mean residence time for the system, �tt ¼ V=Qin. Equation (4.21) gives

amix ¼ ainQin
Qin þ q� q exp ½�kV=ðQin þ qÞ�

and the solution for aout is

aout ¼ ainQin
ðQin þ qÞ exp ½kV=ðQin þ qÞ� � q ð4:22Þ
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Figures 4.3 and 4.4 show how a loop reactor approaches the performance of
a CSTR as the recycle rate is increased. Two things happen as q!1 :
aout ! ainQin=ðQin þ kVÞ and amix ! aout: The specific results in Figures 4.3
and 4.4 apply to a first-order reaction with a piston flow reactor in the recycle
loop, but the general concept applies to almost any type of reaction and
reactor. High recycle rates mean that perfect mixing will be closely approached.
There are two provisos: the mixing point must do a good job of mixing the
recycle with the incoming feed and all the volume in the reactor must be
accessible to the increased throughput. A rule of thumb is that q=Q > 8 will
give performance equivalent to a conventionally agitated vessel. This may
seem to be belied by the figures since there is still appreciable difference between
the loop performance at q=Q ¼ 8 and a CSTR. However, the difference will be
smaller when a real reactor is put in a recycle loop since, unlike the idealization
of piston flow, the real reactor will already have some internal mixing.

The loop reactor is sometimes used to model conventionally agitated stirred
tanks. The ratio of internal circulation to net throughput in a large, internally
agitated vessel can be as low as 8. The mixing inside the vessel is far from perfect,
but assuming that the vessel behaves as a CSTR it may be still be adequate
for design purposes. Alternatively, the conventionally agitated vessel could be
modeled as a PFR or a composite reactor installed in a recycle loop in order
to explore the sensitivity of the system to the details of mixing.
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FIGURE 4.3 Effect of recycle rate on the performance of a loop reactor. The dimensionless rate
constant is based on the system residence time, �tt ¼ V=Q: The parameter is q=Q:
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PROBLEMS

4.1. Observed kinetics for the reaction

Aþ B �! 2C

are R ¼ 0:43ab0:8mol=ðm3 � hÞ. Suppose the reactor is run in a constant-
density CSTR with ain¼ 15mol/m3, bin¼ 20mol/m3, V¼ 3.5m3, and
Q¼ 125m3/h. Determine the exit concentration of C.

4.2. Find the analytical solution to the steady-state problem in Example 4.2.
4.3. Use Newton’s method to solve the algebraic equations in Example 4.2.

Note that the first two equations can be solved independently of the
second two, so that only a two-dimensional version of Newton’s
method is required.

4.4. Repeat the false transient solution in Example 4.2 using a variety of initial
conditions. Specifically include the case where the initial concentrations
are all zero and the cases where the reactor is initially full of pure A,
pure B, and so on. What do you conclude from these results?

4.5. Suppose the following reaction network is occurring in a constant-density
CSTR:

AAB R I ¼ kIa1=2 � k�Ib
B �! C R II ¼ kIIb2
BþD �! E R III ¼ kIIIbd

The rate constants are kI¼ 3.0� 10�2 mol1/2/(m3/2 � h), k�I ¼ 0.4 h�1,
kII¼ 5.0� 10�4mol/(m3 � h), kIII¼ 3.0� 10�4mol/(m3 � h).
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FIGURE 4.4 Extreme concentrations, amix and aout within a loop reactor. The case shown is for
k �tt ¼ 3:
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(a) Formulate a solution via the method of false transients. Use dimen-
sionless time,  ¼ t=�tt , and dimensionless rate constants, e.g.,
K�III ¼ kIIIain �tt:

(b) Solve the set of ODEs for sufficiently long times to closely approx-
imate steady state. Use a0¼ 3mol/m3, d0¼ 3mol/m3, b0¼ c0¼
e0¼ 0, �tt¼ 1 h. Do vary � to confirm that your solution has
converged.

4.6. A more complicated version of Problem 4.5 treats all the reactions as
being reversible:

AAB R I ¼ kIa1=2 � k�I b
BAC R II ¼ kIIb2 � k�II c
BþDA E R III ¼ kIIIbd � k�III e

Suppose k�II ¼ 0:08 h�1 and k�III ¼ 0:05 h�1.
(a) Work Problem 4.5(b) for this revised reaction network.
(b) Suppose the reactor is filled but the feed and discharge pumps are

never turned on. The reaction proceeds in batch and eventually
reaches an equilibrium composition. Simulate the batch reaction
to determine the equilibrium concentrations.

4.7. Equation (4.8) appears to be the solution to a quadratic equation. Why
was the negative root chosen?

4.8. Are the kinetic constants determined in Example 4.5 accurate? Address
this question by doing the following:
(a) Repeat Example 4.5 choosing component A (sulfur dioxide) as the

key component rather than component C (sulfur trioxide).
(b) Use these new values for k and kC to solve the forward problem in

Example 4.6.
(c) Suppose a revised compositional analysis for Run I gave
ðyCÞout¼ 0.062 rather than the original value of 0.063. The inerts
change to 0.826. Repeat the example calculation of k and kC using
these new values.

(d) Suppose a repeat of Run 2 gave the following analysis at the outlet:

SO2 2:2%

O2 8:7%

SO3 7:9%

Inerts 81:2%

Find k and kC.
4.9. The ODE for the inerts was used to calculate Qout in Example 4.6. How

would you work the problem if there were no inerts? Use your method to
predict reactor performance for the case where the feed contains 67% SO2

and 33% O2 by volume.
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4.10. The low-temperature oxidation of hydrogen as in the cap of a lead-acid
storage battery is an example of heterogeneous catalysis. It is proposed
to model this reaction as if it were homogeneous:

H2 þ 1
2O2! H2O R ¼ k½H2�½O2� ðnonelementaryÞ

and to treat the cap as if it were a perfect mixer. The following data have
been generated on a test rig:

Tin ¼ 22�C
Tout ¼ 25�C
Pin ¼ Pout ¼ 1 atm

H2 in ¼ 2 g=h

O2 in ¼ 32 g=h ð2=1 excessÞ
N2 in ¼ 160 g=h

H2O out ¼ 16 g=h

(a) Determine k given V¼ 25 cm3.
(b) Calculate the adiabatic temperature rise for the observed extent of

reaction. Is the measured rise reasonable? The test rig is exposed
to natural convection. The room air is at 22�C.

4.11. A 100-gal pilot-plant reactor is agitated with a six-blade pitched turbine
of 6 in diameter that consumes 0.35 kW at 300 rpm. Experiments with
acid–base titrations showed that the mixing time in the vessel is 2min.
Scaleup to a 1000-gal vessel with the same mixing time is desired.
(a) Estimate the impeller size, motor size, and rpm for the larger reactor.
(b) What would be the mixing time if the scaleup were done at constant

power per unit volume rather than constant mixing time?
4.12. Solve Example 4.10 algebraically and confirm the numerical example.

For bin¼ 0 you should find that the system has two steady states: one
with aout¼ ain that is always possible and one with

aout
ain
¼ 1

1þ ðkt1ain � 1Þ expðkt2ainÞ

that is possible only when kt1 > 1: You should also conclude that the
interior optimum occurs when t1 ¼ 2=kain:

4.13. Generalize the algebraic solution in Problem 4.12 to allow for bin>0.
4.14. Example 4.10 used the initial condition that a0¼ 0 and b0¼ 1. Will smal-

ler values for b0 work? How much smaller?
4.15. Suppose you have two identical CSTRs and you want to use these to

make as much product as possible. The reaction is pseudo-first-order
and the product recovery system requires a minimum conversion of
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93.75%. Do you install the reactors in series or parallel? Would it affect
your decision if the minimum conversion could be lowered?

4.16. Suppose you have two identical PFRs and you want to use them to make
as much product as possible. The reaction is pseudo-first-order and the
product recovery system requires a minimum conversion of 93.75%.
Assume constant density. Do you install the reactors in series or parallel?
Would it affect your decision if the minimum conversion could be
lowered?

4.17. Example 4.12 used N stirred tanks in series to achieve a 1000-fold reduc-
tion in the concentration of a reactant that decomposes by first-order
kinetics. Show how much worse the CSTRs would be if the 1000-fold
reduction had to be achieved by dimerization; i.e., by a second order of
the single reactant type. The reaction is irreversible and density is con-
stant.

4.18. Suppose you have two CSTRs, one with a volume of 2m2 and one with a
volume of 4m3. You have decided to install them in series and to operate
them at the same temperature. Which goes first if you want to maximize
production subject to a minimum conversion constraint? Consider the
following cases:
(a) The reaction is first order.
(b) The reaction is second order of the form 2A! P:
(c) The reaction is half-order.

4.19. Equipment costs are sometimes estimated using a scaling rule:

Cost of large unit

Cost of small unit
¼ SC

where C is the scaling exponent. If C¼ 1, twice the size (volume or
throughput) means twice the cost and there is no economy of scale.
The installed cost of chemical process equipment typically scales as
C¼ 0.6 to 0.75. Suppose the installed cost of stirred tank reactors
varies as V 0.75. Determine the optimum number of tanks in series for a
first-order reaction going to 99.9 % completion.

4.20. Repeat Problem 4.19 for C¼ 0.6 and 1.0. Note that more reactors will
affect more than just the capital costs. Additional equipment will lower
system reliability and increase operating costs. Which value of C is
the more conservative? Is this value of C also the more conservative
when estimating the installed cost of an entire plant based on the cost
of a smaller plant?

4.21. Example 4.13 treated the case of a piston flow reactor inside a recycle
loop. Replace the PFR with two equal-volume stirred tanks in series.
The reaction remains first order, irreversible, and at constant density.
(a) Derive algebraic equations for amix and aout for the composite

system.
(b) Reproduce Figures 4.3 and 4.4 for this case.
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4.22. Work Example 4.13 for the case where the reaction is second order of the
single reactant type. It is irreversible and density is constant. The reactor
element inside the loop is a PFR.

4.23. Find the limit of Equations (4.21) and (4.22) if q!1 with Qin fixed.
Why would you expect this result?

4.24. The material balance around the mixing point of a loop reactor is given
by Equation (4.21) for the case of constant fluid density. How would
you work a recycle problem with variable density? Specifically, write
the variable-density counterpart of Equation (4.21) and explain how
you would use it.

SUGGESTIONS FOR FURTHER READING

Reactor models consisting of series and parallel combinations of ideal reactors
are discussed at length in

Levenspiel, O., Chemical Reaction Engineering, 3rd ed., Wiley, New York, 1998.

The reaction coordinate, ", is also call the molar extent or degree of advancement.
It is applied to CSTRs in

Aris, R., Elementary Chemical Reactor Analysis, Dover, Mineola, NY, 2000.

APPENDIX 4: SOLUTION OF SIMULTANEOUS
ALGEBRAIC EQUATIONS

Consider a set of N algebraic equations of the form

Fða, b, . . .Þ ¼ 0

Gða, b, . . .Þ ¼ 0

..

. ..
.

where a, b, . . . represent the N unknowns. We suppose that none of these equa-
tions is easily solvable for any of the unknowns. If an original equation were
solvable for an unknown, then that unknown could be eliminated and the
dimensionality of the set reduced by 1. Such eliminations are usually worth
the algebra when they are possible.

A.4.1 Binary Searches

A binary search is a robust and easily implemented method for finding a root
of a single equation, FðaÞ ¼ 0. It is necessary to know bounds, amin  a 
amax, within which the root exists. If F(amin) and F(amax) differ in sign, there
will be an odd number of roots within the bounds and a binary search will
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find one of them to a specified level of accuracy. It does so by calculating F at the
midpoint of the interval; that is, at a ¼ ðamin þ amaxÞ=2: The sign of F will be the
same as at one of the endpoints. Discard that endpoint and replace it with the
midpoint. The sign of F at the two new endpoints will differ, so that the range
in which the solution must lie has been halved. This procedure can obviously
be repeated J times to reduce the range in which a solution must lie to 2�J of
the original range. The accuracy is set in advance by choosing J:

J ¼ ln
amax � amin

"

h i.
ln 2

where " is the uncertainty in the answer. The following code works for any
arbitrary function that is specified by the subroutine Func(a, f ).

DEFDBL A-H, P-Z
DEFLNG I-O

amax¼4 ’User supplied value
amin¼1 ’User supplied value

er¼.0000005# ‘User supplied value
X¼LOG((amax�amin)/er)/LOG(2)
J¼Xþ0.5 ’Rounds up

CALL Func(amax, Fmax) ‘User supplied subroutine
CALL Func(amin, Fmin)

IF Fmax * Fmin >¼ 0 THEN STOP ‘Error condition
FOR jj¼1 TO J

amid¼(amaxþamin)/2
CALL Func(amid, F)
IF F * Fmin > 0 THEN

Fmin¼F
amin¼amid

ELSE
Fmax¼F
amax¼amid

END IF
NEXT jj

PRINT amid

A.4.2 Multidimensional Newton’s Method

Consider some point ða0, b0, . . .Þ within the region of definition of the func-
tions F ,G, . . . and suppose that the functions can be represented by an
multidimensional Taylor series about this point. Truncating the series after
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the first-order derivatives gives

Fða, b, . . .Þ ¼ Fða0, b0, . . .Þ þ @F

@a

� �
0

ða� a0Þ þ @F

@b

� �
0

ðb� b0Þ þ � � �

Gða, b, . . .Þ ¼ Gða0, b0, . . .Þ þ @G

@a

� �
0

ða� a0Þ þ @G

@b

� �
0

ðb� b0Þ þ � � �

..

. ..
.

where there are as many equations as there are unknowns. In matrix form,

@F=@a½ �0 @F=@b½ �0 � � �
@G=@a½ �0 @G=@b½ �0 � � �

..

.

2
64

3
75

a� a0
b� b0

..

.

2
64

3
75 ¼

F � F0
G� G0

..

.

2
64

3
75

We seek values for a, b, . . . which give F ¼ G ¼ � � � ¼ 0: Setting F ¼ G ¼ � � � ¼ 0
and solving for a, b, . . . gives

a
b
..
.

2
4

3
5 ¼ a0

b0
..
.

2
64

3
75�

@F=@a½ �0 @F=@b½ �0 � � �
@G=@a½ �0 @G=@b½ �0 � � �

..

.

2
64

3
75
�1

F0
G0

..

.

2
64

3
75

For the special case of one unknown,

a ¼ a0 � F0
dF=da½ �0

which is Newton’s method for finding the roots of a single equation. For two
unknowns,

a ¼ a0 � F0 @G=@a½ �0�G0 @F=@a½ �0
@F=@a½ �0 @G=@b½ �0� @F=@b½ �0 @G=@a½ �0

b ¼ b0 � �F0 @G=@b½ �0þG0 @F=@b½ �0
@F=@a½ �0 @G=@b½ �0� @F=@b½ �0 @G=@a½ �0

which is a two-dimensional generalization of Newton’s method.
The above technique can be used to solve large sets of algebraic equations;

but, like the ordinary one-dimensional form of Newton’s method, the algorithm
may diverge unless the initial guess ða0, b0, . . .Þ is quite close to the final solution.
Thus, it might be considered as a method for rapidly improving a good initial
guess, with other techniques being necessary to obtain the initial guess.

For the one-dimensional case, dF/da can usually be estimated using values
of F determined at previous guesses. Thus,

a ¼ a0 � F0
ðF0 � F�1Þ=ða0 � a�1Þ½ �
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where F0 ¼ Fða0Þ is the value of F obtained one iteration ago when the guess
was a0, and F�1 ¼ Fða�1Þ is the value obtained two iterations ago when the
guess was a�1:

For two- and higher-dimensional solutions, it is probably best to estimate the
first partial derivatives by a formula such as

@F

@a

� �
0

� Fða0, b0, . . .Þ � Fð�a0, b0, . . .Þ
a0 � �a0

where � is a constant close to 1.0.
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CHAPTER 5

THERMAL EFFECTS AND
ENERGY BALANCES

This chapter treats the effects of temperature on the three types of ideal reactors:
batch, piston flow, and continuous-flow stirred tank. Three major questions in
reactor design are addressed. What is the optimal temperature for a reaction?
How can this temperature be achieved or at least approximated in practice?
How can results from the laboratory or pilot plant be scaled up?

5.1 TEMPERATURE DEPENDENCE OF
REACTION RATES

Most reaction rates are sensitive to temperature, and most laboratory studies
regard temperature as an important means of improving reaction yield or selec-
tivity. Our treatment has so far ignored this point. The reactors have been iso-
thermal, and the operating temperature, as reflected by the rate constant, has
been arbitrarily assigned. In reality, temperature effects should be considered,
even for isothermal reactors, since the operating temperature must be specified
as part of the design. For nonisothermal reactors, where the temperature
varies from point to point within the reactor, the temperature dependence
directly enters the design calculations.

5.1.1 Arrhenius Temperature Dependence

The rate constant for elementary reactions is almost always expressed as

k ¼ k0Tm exp
�E
RgT

� �
¼ k0Tm exp

�Tact
T

� �
ð5:1Þ

where m ¼ 0, 1/2, or 1 depending on the specific theoretical model being used.
The quantity E is activation energy, although the specific theories interpret
this energy term in different ways. The quantity Tact ¼ E/Rg has units of
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temperature (invariably K) and is called the activation temperature. The
activation temperature should not be interpreted as an actual temperature.
It is just a convenient way of expressing the composite quantity E/Rg.

The case of m ¼ 0 corresponds to classical Arrhenius theory; m ¼ 1/2
is derived from the collision theory of bimolecular gas-phase reactions; and
m ¼ 1 corresponds to activated complex or transition state theory. None of
these theories is sufficiently well developed to predict reaction rates from first
principles, and it is practically impossible to choose between them based on
experimental measurements. The relatively small variation in rate constant due
to the pre-exponential temperature dependence Tm is overwhelmed by the expo-
nential dependence expð�Tact =TÞ. For many reactions, a plot of lnðkÞ versus
T�1 will be approximately linear, and the slope of this line can be used to
calculate E. Plots of lnðk=TmÞ versus T�1 for the same reactions will also be
approximately linear as well, which shows the futility of determining m by
this approach.

Example 5.1: The bimolecular reaction

NOþ ClNO2 ! NO2þClNO

is thought to be elementary. The following rate data are available:1

T, K 300 311 323 334 344

k, m3/(mol � s) 0.79 1.25 1.64 2.56 3.40

Fit Equation (5.1) to these data for m¼ 0, 0.5, and 1.

Solution: The classic way of fitting these data is to plot lnðk=TmÞ versus
T�1 and to extract k0 and Tact from the slope and intercept of the resulting
(nearly) straight line. Special graph paper with a logarithmic y-axis and a
1/T x-axis was made for this purpose. The currently preferred method is to
use nonlinear regression to fit the data. The object is to find values for k0
and Tact that minimize the sum-of-squares:

S2 ¼
X
Data

½Experiment�model�2

¼
XJ
j¼1

kj � k0Tmj exp �Tact=Tj
h i2

ð5:2Þ

where J¼ 5 for the data at hand. The general topic of nonlinear regression
is discussed in Chapter 7 and methods for performing the minimization
are described in Appendix 6. However, with only two unknowns, even
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a manual search will produce the answers in reasonable time. The results of
this fitting procedure are:

k fitted

T k experimental m¼ 0 m¼ 0.5 m¼ 1

300 0.79 0.80 0.80 0.80
311 1.25 1.19 1.19 1.19
323 1.64 1.78 1.78 1.77
334 2.56 2.52 2.52 2.52
344 3.44 3.38 3.37 3.37

Standard Deviation 0.0808 0.0809 0.0807
k0, m

3/(molEs) 64400 2120 71.5
Tact, K 3390 3220 3060

The model predictions are essentially identical. The minimization proce-
dure automatically adjusts the values for k0 and Tact to account for the
different values of m. The predictions are imperfect for any value of m, but
this is presumably due to experimental scatter. For simplicity and to conform
to general practice, we will use m¼ 0 from this point on.

Figure 5.1 shows an Arrhenius plot for the reaction OþN2 ! NOþN; the
plot is linear over an experimental temperature range of 1500K. Note that the
rate constant is expressed per molecule rather than per mole. This method for
expressing k is favored by some chemical kineticists. It differs by a factor of
Avogadro’s number from the more usual k.

Few reactions have been studied over the enormous range indicated in
Figure 5.1. Even so, they will often show curvature in an Arrhenius plot of
ln(k) versus T�1. The usual reason for curvature is that the reaction is complex
with several elementary steps and with different values of E for each step. The
overall temperature behavior may be quite different from the simple
Arrhenius behavior expected for an elementary reaction. However, a linear
Arrhenius plot is neither necessary nor sufficient to prove that a reaction is ele-
mentary. It is not sufficient because complex reactions may have one dominant
activation energy or several steps with similar activation energies that lead to an
overall temperature dependence of the Arrhenius sort. It is not necessary since
some low-pressure, gas-phase, bimolecular reactions exhibit distinctly non-
Arrhenius behavior, even though the reactions are believed to be elementary.
Any experimental study should consider the possibility that k0 and Tact are func-
tions of temperature. A strong dependence on temperature usually signals a
change in reaction mechanism, for example, a shift from a kinetic limitation
to a mass transfer limitation.

You may recall the rule-of-thumb that reaction rates double for each 10�C
increase in temperature. Doubling when going from 20�C to 30�C means
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E¼ 51.2 kJ/mol or Tact¼ 6160K. Doubling when going from 100 �C to 110�C
means E¼ 82.4 kJ/mol or Tact¼ 9910K. Activation temperatures in the range
5000–15,000K are typical of homogeneous reactions, but activation tempera-
tures above 40,000K are known. The higher the activation energy, the more
the reaction rate is sensitive to temperature. Biological systems typically have
high activation energies. An activation temperature below about 2000K usually
indicates that the reaction is limited by a mass transfer step (diffusion) rather
than chemical reaction. Such limitations are common in heterogeneous systems.

5.1.2 Optimal Temperatures for Isothermal Reactors

Reaction rates almost always increase with temperature. Thus, the best tempera-
ture for a single, irreversible reaction, whether elementary or complex, is the
highest possible temperature. Practical reactor designs must consider limitations
of materials of construction and economic tradeoffs between heating costs and
yield, but there is no optimal temperature from a strictly kinetic viewpoint. Of
course, at sufficiently high temperatures, a competitive reaction or reversibility
will emerge.

Multiple reactions, and reversible reactions, since these are a special form of
multiple reactions, usually exhibit an optimal temperature with respect to the
yield of a desired product. The reaction energetics are not trivial, even if the

FIGURE 5.1 Arrhenius behavior over a large temperature range. (Data from Monat, J. P., Hanson,
R. K., and Kruger, C. H., ‘‘Shock tube determination of the rate coefficient for the reaction
N2 þO! NOþN,’’ Seventeenth Symposium (International) on Combustion, Gerard Faeth, Ed.,
The Combustion Institute, Pittsburgh, 1979, pp. 543–552.)

154 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



reactor is approximately isothermal. One must specify the isotherm at which to
operate. Consider the elementary, reversible reaction

A ���! ���
kf

kr

B ð5:3Þ

Suppose this reaction is occurring in a CSTR of fixed volume and throughput.
It is desired to find the reaction temperature that maximizes the yield of product
B. Suppose Ef > Er, as is normally the case when the forward reaction is
endothermic. Then the forward reaction is favored by increasing temperature.
The equilibrium shifts in the desirable direction, and the reaction rate increases.
The best temperature is the highest possible temperature and there is no interior
optimum.

For Ef < Er, increasing the temperature shifts the equilibrium in the wrong
direction, but the forward reaction rate still increases with increasing tempera-
ture. There is an optimum temperature for this case. A very low reaction tem-
perature gives a low yield of B because the forward rate is low. A very high
reaction temperature also gives a low yield of B because the equilibrium is
shifted toward the left.

The outlet concentration from the stirred tank, assuming constant physical
properties and bin¼ 0, is given by

bout ¼ kf ain �tt

1þ kf �ttþ kr �tt ð5:4Þ

We assume the forward and reverse reactions have Arrhenius temperature
dependences with Ef < Er . Setting dbout/dT ¼ 0 gives

Toptimal ¼ Er

Rg ln ðEr � Ef Þðk0Þr �tt=Ef
� � ð5:5Þ

as the kinetically determined optimum temperature.
The reader who duplicates the algebra needed for this analytical solution will

soon appreciate that a CSTR is the most complicated reactor and Equation (5.3)
is the most complicated reaction for which an analytical solution for Toptimal is
likely. The same reaction occurring in a PFR with bin¼ 0 leads to

bout ¼
ainkf 1� exp½�ðkf þ krÞ�tt �

� 	
kf þ kr ð5:6Þ

Differentiation and setting dbout =dT ¼ 0 gives a transcendental equation in
Toptimal that cannot be solved in closed form. The optimal temperature must
be found numerically.

Example 5.2: Suppose kf ¼ 108 expð�5000=TÞ and kr ¼ 1015 expð�10000=
TÞ, h�1. Find the temperature that maximizes the concentration of B for
the reaction of Equation (5.3). Consider two cases: One where the reaction
is carried out in an ideal CSTR with �tt ¼ 2 h and one where the reaction is
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carried out in an ideal PFR with the same 2-h residence time. Assume con-
stant density and a feed of pure A. Calculate the equilibrium concentration
at both values for Toptimal.

Solution: Equation (5.5) can be applied directly to the CSTR case. The
result is Toptimal¼ 283.8K for which bout =ain ¼ 0:691. The equilibrium
concentration is found from

K ¼ kf
kr
¼ bequil
aequil

¼ bequil

ain � bequil ð5:7Þ

which gives bequil =ain ¼ 0:817 at 283.8K.
A PFR reactor gives a better result at the same temperature. Equation (5.6)

gives bout =ain ¼ 0:814 for the PFR at 283.8K. However, this is not the opti-
mum. With only one optimization variable, a trial-and-error search is
probably the fastest way to determine that Toptimal¼ 277.5K and
b=ain ¼ 0:842 for the batch case. The equilibrium concentration at 277.5K
is bequil =ain ¼ 0:870:

The CSTR operates at a higher temperature in order to compensate for its
inherently lower conversion. The higher temperature shifts the equilibrium
concentration in an unfavorable direction, but the higher temperature is
still worthwhile for the CSTR because equilibrium is not closely approached.

The results of Example 5.2 apply to a reactor with a fixed reaction time,
�tt or tbatch: Equation (5.5) shows that the optimal temperature in a CSTR
decreases as the mean residence time increases. This is also true for a PFR or
a batch reactor. There is no interior optimum with respect to reaction time
for a single, reversible reaction. When Ef < Er, the best yield is obtained in a
large reactor operating at low temperature. Obviously, the kinetic model
ceases to apply when the reactants freeze. More realistically, capital and operat-
ing costs impose constraints on the design.

Note that maximizing a product concentration such as bout will not maximize
the total production rate of component B, boutQout. Total production can nor-
mally be increased by increasing the flow rate and thus decreasing the reaction
time. The reactor operates nearer to the feed composition so that average reac-
tion rate is higher. More product is made, but it is dilute. This imposes a larger
burden on the downstream separation and recovery facilities. Capital and oper-
ating costs again impose design constraints. Reactor optimization cannot be
achieved without considering the process as a whole. The one-variable-at-a-
time optimizations considered here in Chapter 5 are carried out as preludes to
the more comprehensive optimizations described in Chapter 6.

Example 5.3: Suppose

A �!kI B �!kII C ð5:8Þ
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with kI ¼ 108 expð�5000=TÞ and kII ¼ 1015 expð�10000=TÞ, h�1. Find the
temperature that maximizes bout for a CSTR with �tt ¼ 2 and for a PFR with
the same 2-h residence time. Assume constant density with bin ¼ cin ¼ 0:

Solution: Use Equation (4.3) with bin ¼ 0 for the CSTR to obtain

bout ¼ kIain �tt

1þ kI �ttð Þ 1þ kII �ttð Þ ð5:9Þ

A one-dimensional search gives Toptimal¼ 271.4K and bout¼ 0.556ain.
Convert Equation (2.22) to the PFR form and set bin ¼ 0 to obtain

bout ¼ kIain½expð�kI
�tt Þ � expð�kII �tt Þ�

kII � kI ð5:10Þ

Numerical optimization gives Toptimal¼ 271.7 and b¼ 0.760ain.

At a fixed temperature, a single, reversible reaction has no interior optimum
with respect to reaction time. If the inlet product concentration is less than the
equilibrium concentration, a very large flow reactor or a very long batch reac-
tion is best since it will give a close approach to equilibrium. If the inlet product
concentration is above the equilibrium concentration, no reaction is desired so
the optimal time is zero. In contrast, there will always be an interior optimum
with respect to reaction time at a fixed temperature when an intermediate
product in a set of consecutive reactions is desired. (Ignore the trivial exception
where the feed concentration of the desired product is already so high that any
reaction would lower it.) For the normal case of bin � ain, a very small reactor
forms no B and a very large reactor destroys whatever B is formed. Thus, there
will be an interior optimum with respect to reaction time.

Example 5.3 asked the question: If reaction time is fixed, what is the best tem-
perature? Example 5.4 asks a related but different question: If the temperature
is fixed, what is the best reaction time? Both examples address maximization
of product concentration, not total production rate.

Example 5.4: Determine the optimum reaction time for the consecutive
reactions of Example 5.3 for the case where the operating temperature is
specified. Consider both a CSTR and a PFR.

Solution: Analytical solutions are possible for this problem. For the CSTR,
differentiate Equation (5.9) with respect to �tt and set the result to zero. Solving
for �tt gives

�ttoptimal ¼
ffiffiffiffiffiffiffiffiffiffiffi
1

kIkII

r
ð5:11Þ

Suppose T¼ 271.4 as for the CSTR case in Example 5.3. Using Equation
(5.11) and the same rate constants as in Example 5.3 gives �ttoptimal ¼ 3:17 h.
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The corresponding value for bout is 0.578ain. Recall that Example 5.3 used
�tt ¼ 2 h and gave bout =ain ¼ 0:556. Thus, the temperature that is best for a
fixed volume and the volume that is best for a fixed temperature do not
correspond.

For a PFR, use Equation (5.10) and set dpout =d �tt ¼ 0 to obtain

�ttoptimal ¼ lnðkI =kII Þ
kI � kII ð5:12Þ

Suppose T¼ 271.7 as for the PFR (or batch) case in Example 5.3. Using
Equation (5.12) and the same rate constants as in Example 5.3 gives
�ttoptimal ¼ 2:50 h. The corresponding value for bout is 0.772ain. Recall that
Example 5.3 used �tt ¼ 2 h and gave bout =ain ¼ 0:760. Again, the temperature
that is best for a fixed volume does not correspond to the volume that is
best for a fixed temperature.

The competitive reactions

A �!kI B

A �!kII C

ð5:13Þ

will have an intermediate optimum for B only if EI < EII and will have an inter-
mediate optimum for C only if EI > EII : Otherwise, the yield of the desired
product is maximized at high temperatures. If EI > EII , high temperatures max-
imize the yield of B. If EI < EII , high temperatures maximize the yield of C.

The reader will appreciate that the rules for what maximizes what can be
quite complicated to deduce and even to express. The safe way is to write the
reactor design equations for the given set of reactions and then to numerically
determine the best values for reaction time and temperature. An interior opti-
mum may not exist. When one does exist, it provides a good starting point
for the more comprehensive optimization studies discussed in Chapter 6.

5.2 THE ENERGY BALANCE

A reasonably general energy balance for a flow reactor can bewritten in English as

Enthalpy of input streams� enthalpy of output streams

þ heat generated by reaction� heat transferred out

¼ accumulation of energy

and in mathematics as

Qin�inHin �Qout�outHout � V�HRR̂R � ÛUAextðT̂T � TextÞ ¼ dðV�̂�ĤHÞ
dt

ð5:14Þ
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This is an integral balance written for the whole system. The various terms
deserve discussion. The enthalpies are relative to some reference temperature,
Tref : Standard tabulations of thermodynamic data (see Chapter 7) make it
convenient to choose Tref ¼ 298K, but choices of Tref ¼ 0K or Tref ¼ 0�C are
also common. The enthalpy terms will normally be replaced by temperature
using

H ¼
ZT
Tref

CP dT ð5:15Þ

For many purposes, the heat capacity will be approximately constant over the
range of temperatures in the system. Then

H ¼ CPðT � Tref Þ ð5:16Þ

where CP is the average value for the entire reactant mixture, including any
inerts. It may be a function of composition as well as temperature. An additional
term—e.g, a heat of vaporization—must be added to Equations (5.15) and (5.16)
if any of the components undergo a phase change. Also, the equations must be
modified if there is a large pressure change during the course of the reaction. See
Section 7.2.1.

By thermodynamic convention, �HR<0 for exothermic reactions, so that a
negative sign is attached to the heat-generation term. When there are multiple
reactions, the heat-generation term refers to the net effect of all reactions.
Thus, the �HRR term is an implicit summation over all M reactions that
may be occurring:

�HRR ¼
X

Reactions

ð�HRÞIR I ¼
XM
I¼1
ð�HRÞIR I ð5:17Þ

The reaction rates in Equation (5.17) are positive and apply to ‘‘the reaction.’’
That is, they are the rates of production of (possibly hypothetical) components
having stoichiometric coefficients of þ1. Similarly, the heats of reaction are per
mole of the same component. Some care is needed in using literature values. See
Section 7.2.1.

Chapter 7 provides a review of chemical thermodynamics useful for estimating
specific heats, heats of reaction, and reaction equilibria. The examples here in
Chapter 5 assume constant physical properties. This allows simpler illustrations
of principles and techniques. Example 7.16 gives a detailed treatment of a rever-
sible, gas-phase reaction where there is a change in the number of moles upon
reaction and where the equilibrium composition, heat capacities, and reaction
rates all vary with temperature. Such rigorous treatments are complicated but
should be used for final design calculations. It is better engineering practice to
include phenomena than to argue on qualitative grounds that the phenomena
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are unimportant. Similarly, high numerical precision should be used in the
calculations, even though the accuracy of the data may be quite limited. The
object is to eliminate sources of error, either physical or numerical, that can be
eliminated with reasonable effort. A sensitivity analysis can then be confined to
the remaining sources of error that are difficult to eliminate. As a practical
matter, few reactor design calculations will have absolute accuracies better
than two decimal places. Relative accuracies between similar calculations can
be much better and can provide justification for citing values to four or more
decimal places, but citing values to full computational precision is a sign of
naiveté.

The heat transfer term envisions convection to an external surface, and U is
an overall heat transfer coefficient. The heat transfer area could be the reactor
jacket, coils inside the reactor, cooled baffles, or an external heat exchanger.
Other forms of heat transfer or heat generation can be added to this term;
e.g, mechanical power input from an agitator or radiative heat transfer. The
reactor is adiabatic when U¼ 0.

The accumulation term is zero for steady-state processes. The accumulation
term is needed for batch reactors and to solve steady-state problems by the
method of false transients.

In practice, the integral formulation of Equation (5.14) is directly useful only
when the reactor is a stirred tank with good internal mixing. When there are
temperature gradients inside the reactor, as there will be in the axial direction
in a nonisothermal PFR, the integral balance remains true but is not especially
useful. Instead, a differential energy balance is needed. The situation is exactly
analogous to the integral and differential component balances used for the
ideal reactors discussed in Chapter 1.

5.2.1 Nonisothermal Batch Reactors

The ideal batch reactor is internally uniform in both composition and tempera-
ture. The flow and mixing patterns that are assumed to eliminate concentration
gradients will eliminate temperature gradients as well. Homogeneity on a scale
approaching molecular dimensions requires diffusion. Both heat and mass
diffuse, but thermal diffusivities tend to be orders-of-magnitude higher than
molecular diffusivities. Thus, if one is willing to assume compositional
uniformity, it is reasonable to assume thermal uniformity as well.
For a perfectly mixed batch reactor, the energy balance is

dðV�HÞ
dt

¼ �V�HRR �UAextðT � TextÞ ð5:18Þ

For constant volume and physical properties,

dT

dt
¼ ��HRR

�CP
�UAextðT � TextÞ

V�CP
ð5:19Þ
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Suppose that there is only one reaction and that component A is the limiting
reactant. Then the quantity

�Tadiabatic ¼ ��HRain
�CP

ð5:20Þ

gives the adiabatic temperature change for the reaction. This is the temperature
that the batch would reach if the physical properties really were constant, if there
were no change in the reaction mechanism, and if there were no heat transfer
with the environment. Despite all these usually incorrect assumptions,
�Tadiabatic provides a rough measure of the difficulty in thermal management
of a reaction. If �Tadiabatic¼ 10K, the reaction is a pussycat. If �Tadiabatic¼
1000K, it is a tiger. When there are multiple reactions, �HRR is a sum accord-
ing to Equation (5.17), and the adiabatic temperature change is most easily
found by setting U¼ 0 and solving Equation (5.19) simultaneously with the
component balance equations. The long-time solution gives �Tadiabatic.

The N component balances are unchanged from those in Chapter 2, although
the reaction rates are now understood to be functions of temperature. In matrix
form,

dðaVÞ
dt
¼ mRV ð5:21Þ

The design equations for a nonisothermal batch reactor include Nþ1 ODEs,
one for each component and one for energy. These ODEs are coupled by the
temperature and compositional dependence of R. They may also be weakly
coupled through the temperature and compositional dependence of physical
properties such as density and heat capacity, but the strong coupling is through
the reaction rate.

Example 5.5: Ingredients are quickly charged to a jacketed batch reactor at
an initial temperature of 25�C. The jacket temperature is 80�C. A pseudo-first-
order reaction occurs. Determine the reaction temperature and the fraction
unreacted as a function of time. The following data are available:

V ¼ 1m3 Aext ¼ 4:68m2 U ¼ 1100 J= ðm2EsEKÞ � ¼ 820 kg=m3

Cp ¼ 3400 J=ðkgEKÞ k ¼ 3:7� 108 expð�6000=TÞ �HR ¼ �108,000 J=mol

ain ¼ 1900:0mol=m3

Physical properties may be assumed to be constant.

Solution: The component balance for A is

da

dt
¼ �ka
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and the energy balance is

dT

dt
¼ ��HRR

�CP
�UAextðT � TextÞ

V�CP
¼ �Tadiabatic

ka

ain

� �
�UAextðT � TextÞ

V�CP

where �Tadiabatic¼ 73.6K for the subject reaction. The initial conditions are
a ¼ 1900 and T ¼ 298 at t ¼ 0: The Arrhenius temperature dependence
prevents an analytical solution. All the dimensioned quantities are in
consistent units so they can be substituted directly into the ODEs. A
numerical solution gives the results shown in Figure 5.2.

The curves in Figure 5.2 are typical of exothermic reactions in batch or tub-
ular reactors. The temperature overshoots the wall temperature. This phenom-
enon is called an exotherm. The exotherm is moderate in Example 5.2 but
becomes larger and perhaps uncontrollable upon scaleup. Ways of managing
an exotherm during scaleup are discussed in Section 5.3.

Advice on Debugging and Verifying Computer Programs. The computer
programs needed so far have been relatively simple. Most of the problems can
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FIGURE 5.2 (a) Temperature and (b) fraction unreacted in a nonisothermal batch reactor with
jacket cooling.
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be solved using canned packages for ODEs, although learning how to use the
solvers may take more work than writing the code from scratch. Even if you
use canned packages, there are many opportunities for error. You have to spe-
cify the functional forms for the equations, supply the data, and supply any
ancillary functions such as equations of state and physical property relation-
ships. Few programs work correctly the first time. You will need to debug
them and confirm that the output is plausible. A key to doing this for physically
motivated problems like those in reactor design is simplification. You may wish
to write the code all at once, but do not try to debug it all at once. For the non-
isothermal problems encountered in this chapter, start by running an isothermal
and isobaric case. Set T and P to constant values and see if the reactant concen-
trations are calculated correctly. If the reaction network is complex, you may
need to simplify it, say by dropping some side reactions, until you find a case
that you know is giving the right results. When the calculated solution for an
isothermal and isobaric reaction makes sense, put an ODE for temperature or
pressure back into the program and see what happens. You may wish to test
the adiabatic case by setting U¼ 0 and to retest the isothermal case by setting
U to some large value. Complications like variable physical properties and vari-
able reactor cross sections are best postponed until you have a solid base case
that works. If something goes wrong when you add a complication, revert to
a simpler case to help pinpoint the source of the problem.

Debugging by simplifying before complicating is even more important for the
optimization problems in Chapter 6 and the nonideal reactor design problems in
Chapters 8 and 9. When the reactor design problem is embedded as a subroutine
inside an optimization routine, be sure that the subroutine will work for any
parameter values that the optimization routine is likely to give it. Having trouble
with axial dispersion? Throw out the axial dispersion terms for heat and mass
and confirm that you get the right results for a nonisothermal (or even isother-
mal) PFR. Having trouble with the velocity profile in a laminar flow reactor?
Get the reactor program to work with a parabolic or even a flat profile.
Separately test the subroutine for calculating the axial velocity profile by sending
it a known viscosity profile. Put it back into the main program only after it
works on its own. Additional complications like radial velocity components
are added still later.

Long programs will take hours and even days to write and test. A systematic
approach to debugging and verification will reduce this time to a minimum.
It will also give you confidence that the numbers are right when they finally
are produced.

5.2.2 Nonisothermal Piston Flow

Steady-state temperatures along the length of a piston flow reactor are governed
by an ordinary differential equation. Consider the differential reactor element
shown in Figure 5.3. The energy balance is the same as Equation (5.14) except
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that differential quantities are used. The �QH terms cancel and �z factors out
to give:

dð�QHÞ
dz

¼ �Q
dH

dz
¼ �Ac �uu

dH

dz
¼ ��HRRAc �UA0extðT � TextÞ ð5:22Þ

Unlike a molar flow rate—e.g, aQ—the mass flow rate, �Q, is constant
and can be brought outside the differential. Note that Q ¼ �uuAc and that A0ext
is the external surface area per unit length of tube. Equation (5.22) can be
written as

dH

dz
¼ ��HRR c

� �uu
�UA

0
ext

� �uuAc
ðT � TextÞ ð5:23Þ

This equation is coupled to the component balances in Equation (3.9) and with
an equation for the pressure; e.g., one of Equations (3.14), (3.15), (3.17). There
are Nþ2 equations and some auxiliary algebraic equations to be solved simulta-
neously. Numerical solution techniques are similar to those used in Section 3.1
for variable-density PFRs. The dependent variables are the component fluxes
�, the enthalpy H, and the pressure P. A necessary auxiliary equation is the
thermodynamic relationship that gives enthalpy as a function of temperature,
pressure, and composition. Equation (5.16) with Tref¼ 0 is the simplest example
of this relationship and is usually adequate for preliminary calculations.

With a constant, circular cross section, A0ext ¼ 2�R (although the concept of
piston flow is not restricted to circular tubes). If CP is constant,

dT

dz
¼ ��HRR

�uu�CP
� 2U

�uu�CPR
ðT � TextÞ ð5:24Þ

This is the form of the energy balance that is usually used for preliminary
calculations. Equation (5.24) does not require that �uu be constant. If it is con-
stant, we can set dz ¼ �uudt and 2/R¼Aext/Ac to make Equation (5.24) identical
to Equation (5.19). A constant-velocity, constant-properties PFR behaves
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FIGURE 5.3 Differential element in a nonisothermal piston flow reactor.
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identically to a constant-volume, constant-properties batch reactor. The curves
in Figure 5.2 could apply to a piston flow reactor as well as to the batch reactor
analyzed in Example 5.5. However, Equation (5.23) is the appropriate version
of the energy balance when the reactor cross section or physical properties
are variable.

The solution of Equations (5.23) or (5.24) is more straightforward when tem-
perature and the component concentrations can be used directly as the depen-
dent variables rather than enthalpy and the component fluxes. In any case,
however, the initial values, Tin, Pin, ain, bin, . . . must be known at z¼ 0.
Reaction rates and physical properties can then be calculated at z¼ 0 so that
the right-hand side of Equations (5.23) or (5.24) can be evaluated. This gives
�T , and thus Tðzþ�zÞ, directly in the case of Equation (5.24) and implicitly
via the enthalpy in the case of Equation (5.23). The component equations
are evaluated similarly to give aðzþ�zÞ, bðzþ�zÞ, . . . either directly or via
the concentration fluxes as described in Section 3.1. The pressure equation is
evaluated to give Pðzþ�zÞ: The various auxiliary equations are used as neces-
sary to determine quantities such as �uu and Ac at the new axial location. Thus,
T , a, b, . . . and other necessary variables are determined at the next axial
position along the tubular reactor. The axial position variable z can then be
incremented and the entire procedure repeated to give temperatures and compo-
sitions at yet the next point. Thus, we march down the tube.

Example 5.6: Hydrocarbon cracking reactions are endothermic, and many
different techniques are used to supply heat to the system. The maximum inlet
temperature is limited by problems of materials of construction or by undesir-
able side reactions such as coking. Consider an adiabatic reactor with inlet
temperature Tin. Then T(z)<Tin and the temperature will gradually decline
as the reaction proceeds. This decrease, with the consequent reduction in reac-
tion rate, can be minimized by using a high proportion of inerts in the feed
stream.

Consider a cracking reaction with rate

R ¼ 1014 expð�24,000=TÞ� �
a, g=ðm3EsÞ

where a is in g/m3. Suppose the reaction is conducted in an adiabatic tubular
reactor having a mean residence time of 1 s. The crackable component and
its products have a heat capacity of 0.4 cal/(gEK), and the inerts have a
heat capacity of 0.5 cal/(gEK); the entering concentration of crackable
component is 132 g/m3 and the concentration of inerts is 270 g/m3;
Tin¼ 525�C. Calculate the exit concentration of A given �HR¼ 203 cal/g.
Physical properties may be assumed to be constant. Repeat the calculation
in the absence of inerts.

Solution: Aside from the temperature calculations, this example illustrates
the systematic use of mass rather than molar concentrations for reactor
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calculations. This is common practice for mixtures having ill-defined
molecular weights. The energy balance for the adiabatic reactor gives

dT

dt
¼ ��HRR

�CP
¼ �Tadiabatic

ka

ain

� �

Note that � and CP are properties of the reaction mixture. Thus, �¼ 132þ
270¼ 402 g/m3 and CP¼ [0.4(132)þ 0.5(270)]/402¼ 0.467 cal/(gEK). This
gives �Tadiabatic ¼ �142:7K. If the inerts are removed, � 132 g/m3, CP¼
0.4 cal/(gEK), and �Tadiabatic ¼ �507:5K:

Figure 5.4 displays the solution. The results are aout¼ 57.9 g/m3 and
Tout¼ 464.3�C for the case with inerts and aout¼ 107.8 g/m3 and Tout¼
431.9�C for the case without inerts. It is apparent that inerts can have a
remarkably beneficial effect on the course of a reaction.

In the general case of a piston flow reactor, one must solve a fairly small set
of simultaneous, ordinary differential equations. The minimum set (of one)
arises for a single, isothermal reaction. In principle, one extra equation must
be added for each additional reaction. In practice, numerical solutions are some-
what easier to implement if a separate equation is written for each reactive
component. This ensures that the stoichiometry is correct and keeps the physics
and chemistry of the problem rather more transparent than when the reaction
coordinate method is used to obtain the smallest possible set of differential
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FIGURE 5.4 Concentration profiles for an endothermic reaction in an adiabatic reactor.

166 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



equations. Computational speed is rarely important in solving design problems
of this type. The work involved in understanding and assembling and data,
writing any necessary code, debugging the code, and verifying the results
takes much more time than the computation.

5.2.3 Nonisothermal CSTRs

Setting T̂T ¼ Tout, ĤH ¼ Hout, and so on, specializes the integral energy balance of
Equation (5.14) to a perfectly mixed, continuous-flow stirred tank:

dðV�outHoutÞ
dt

¼ Qin�inHin �Qout�outHout � V�HRR �UAextðTout � TextÞ
ð5:25Þ

where �HRR denotes the implied summation of Equation (5.17). The corre-
sponding component balance for component A is

dðVaÞ
dt
¼ Qinain �Qoutaout þ VR A ð5:26Þ

and also has an implied summation

R A ¼ �A,IR I þ �A,IIR II þ � � � ð5:27Þ
The simplest, nontrivial version of these equations is obtained when all physical
properties and process parameters (e.g., Qin, ain, and Tin) are constant. The
energy balance for this simplest but still reasonably general case is

�tt
dTout
dt
¼ Tin � Tout ��HRR �tt

�CP
�UAextðTout � TextÞ�tt

V�Cp
ð5:28Þ

The time derivative is zero at steady state, but it is included so that the
method of false transients can be used. The computational procedure in
Section 4.3.2 applies directly when the energy balance is given by Equation
(5.28). The same basic procedure can be used for Equation (5.25). The enthalpy
rather than the temperature is marched ahead as the dependent variable, and
then Tout is calculated from Hout after each time step.

The examples that follow assume constant physical properties and use
Equation (5.28). Their purpose is to explore nonisothermal reaction phenomena
rather than to present detailed design calculations.

Example 5.7: A CSTR is commonly used for the bulk polymerization of
styrene. Assume a mean residence time of 2 h, cold monomer feed (300K),
adiabatic operation (UAext¼ 0), and a pseudo-first-order reaction with rate
constant

k¼ 1010 exp(–10,000/T )
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where T is in kelvins. Assume constant density and heat capacity. The
adiabatic temperature rise for complete conversion of the feed is about
400K for undiluted styrene.

Solution: The component balance for component A (styrene) for a first-
order reaction in a constant-volume, constant-density CSTR is

�tt
daout
dt
¼ ain � aout � k �ttaout

The temperature balance for the adiabatic case is

�tt
dTout
dt
¼ Tin � Tout ��HRR �tt

�CP
¼ Tin � Tout þ�Tadiabatic

k�tta

ain

� �

Substituting the given values,

daout
d
¼ ain � aout � 2� 1010 expð�10,000=ToutÞaout ð5:29Þ

and

dTout
d
¼ Tin � Tout þ 8� 1012 expð�10,000=ToutÞaout =ain ð5:30Þ

where  ¼ t=�tt and Tin¼ 300K. The problem statement did not specify ain. It
happens to be about 8700mol/m3 for styrene; but, since the reaction is first
order, the problem can be worked by setting ain¼ 1 so that aout becomes
equal to the fraction unreacted. The initial conditions associated with
Equations (5.29) and (5.30) are aout¼ a0 and Tout¼T0 at ¼ 0. Solutions
for a0¼ 1 (pure styrene) and various values for T0 are shown in Figure 5.5.

The behavior shown in Figure 5.5 is typical of systems that have two stable
steady states. The realized steady state depends on the initial conditions. For
this example with a0¼ 1, the upper steady state is reached if T0 is greater than
about 398K, and the lower steady state is reached if T0 is less than about
398K. At the lower steady state, the CSTR acts as a styrene monomer storage
vessel with Tout � Tin and there is no significant reaction. The upper steady
state is a runaway where the reaction goes to near completion with
Tout � Tin þ�Tadiabatic: (In actuality, the styrene polymerization is reversible
at very high temperatures, with a ceiling temperature of about 625K.)

There is a middle steady state, but it is metastable. The reaction will tend
toward either the upper or lower steady states, and a control system is needed
to maintain operation around the metastable point. For the styrene polymer-
ization, a common industrial practice is to operate at the metastable point,
with temperature control through autorefrigeration (cooling by boiling). A
combination of feed preheating and jacket heating ensures that the uncon-
trolled reaction would tend toward the upper, runaway condition. However,
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the reactor pressure is set so that the styrene boils when the desired operating
temperature is exceeded. The latent heat of vaporization plus the return of
subcooled condensate maintains the temperature at the boiling point.

The method of false transients cannot be used to find a metastable steady
state. Instead, it is necessary to solve the algebraic equations that result from
setting the derivatives equal to zero in Equations (5.29) and (5.30). This is
easy in the current example since Equation (5.29) (with daout =d ¼ 0) can
be solved for aout. The result is substituted into Equation (5.30) (with
dTout =d ¼ 0) to obtain a single equation in a single unknown. The three
solutions are

Tout, K aout/ain

300.03 0.99993
403 0.738
699.97 0.00008

The existence of three steady states, two stable and one metastable, is
common for exothermic reactions in stirred tanks. Also common is the existence
of only one steady state. For the styrene polymerization example, three steady
states exist for a limited range of the process variables. For example, if Tin is
sufficiently low, no reaction occurs, and only the lower steady state is possible.
If Tin is sufficiently high, only the upper, runaway condition can be realized. The
external heat transfer term, UAextðTout � TextÞ, in Equation (5.28) can also be
used to vary the location and number of steady states.

���

���

���

���

�
� ��� ��� ��� ��� �

�	
��	���� �	
�

�
�
��
��

��


�
��
��
�
��
�
�

���

���

���

���

���

FIGURE 5.5 Method of false transients applied to a system having two stable steady states. The
parameter is the initial temperature T0.
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Example 5.8: Suppose that, to achieve a desired molecular weight, the styr-
ene polymerization must be conducted at 413K. Use external heat transfer to
achieve this temperature as the single steady state in a stirred tank.

Solution: Equation (5.29) is unchanged. The heat transfer term is added to
Equation (5.30) to give

dTout
d
¼ 300� Tout þ 8� 1012 expð�10,000=ToutÞaout =ain � UAext

�QCP
ðTout � TextÞ

ð5:31Þ
We consider Text to be an operating variable that can be manipulated to
achieve Tout¼ 413K.The dimensionless heat transfer group UAext=�QCP is
considered a design variable. It must be large enough that a single steady
state can be imposed on the system. In small equipment with good heat
transfer, one simply sets Text � Tout to achieve the desired steady state. In
larger vessels, UAext =�QCP is finite, and one must find set Text<Tout such
that the steady state is 413K.

Since a stable steady state is sought, the method of false transients could be
used for the simultaneous solution of Equations (5.29) and (5.31). However,
the ease of solving Equation (5.29) for aout makes the algebraic approach
simpler. Whichever method is used, a value for UAext =�QCP is assumed
and then a value for Text is found that gives 413K as the single steady
state. Some results are

UAext/�QCP

Text that gives
Tout=413K

100 412.6
50 412.3
20 411.1
10 409.1
5 405.3
4 No solution

Thus, the minimum value for UAext =�QCP is about 5. If the heat transfer
group is any smaller than this, stable operation at Tout¼ 413K by
manipulation of Text is no longer possible because the temperature driving
force, �T ¼ Tout � Text, becomes impossibly large. As will be seen in
Section 5.3.2, the quantity UAext =�QCP declines on a normal scaleup.

At a steady state, the amount of heat generated by the reaction must exactly
equal the amount of heat removed by flow plus heat transfer to the environment:
qgenerated ¼ qremoved . The heat generated by the reaction is

qgenerated ¼ �V�HRR ð5:32Þ
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This generation term will be an S-shaped curve when plotted against Tout. When
Tout is low, reaction rates are low, and little heat is generated. When Tout is
high, the reaction goes to completion, the entire exotherm is released, and Tout
reaches a maximum. A typical curve for the rate of heat generation is plotted
in Figure 5.6(a). The shape of the curve can be varied by changing the reaction
mechanism and rate constant.

The rate of heat removal is given by

qremoved ¼ �Qin�inHin þQout�outHout þUAextðTout � TextÞ ð5:33Þ
As shown in Figure 5.6(b), the rate of heat removal is a linear function of Tout

when physical properties are constant:

qremoved ¼ �QCPðTout � TinÞ þUAextðTout � TextÞ
¼ �ð�QCPTin þUAextTextÞ þ ð�QCP þUAextÞTout ¼ C0 þ C1Tout
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FIGURE 5.6 Heat balance in a CSTR: (a) heat generated by reaction; (b) heat removed by flow and
transfer to the environment; (c) superposition of generation and removal curves. The intersection
points are steady states. (d) Superposition of alternative heat removal curves that give only one
steady state.
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where C0 and C1 are the slope and intercept of the heat absorption line, respec-
tively. They can be manipulated by changing either the design or the operating
variables.

Setting Equation (5.32) equal to Equation (5.33) gives the general heat bal-
ance for a steady-state system. Figure 5.6(c) shows the superposition of the
heat generation and removal curves. The intersection points are steady states.
There are three in the illustrated case, but Figure 5.6(d) illustrates cases that
have only one steady state.

More than three steady states are sometimes possible. Consider the reaction
sequence

Aþ B! C ðIÞ
A! D ðIIÞ

where Reaction (I) occurs at a lower temperature than Reaction (II). It is pos-
sible that Reaction (I) will go to near-completion, consuming all the B, while
still at temperatures below the point where Reaction (II) becomes significant.
This situation can generate up to five steady states as illustrated in Figure 5.7.
A practical example is styrene polymerization using component B as an initiator
at low temperatures,<120�C, and with spontaneous (thermal) initiation at
higher temperatures. The lower S-shaped portion of the heat-generation curve
consumes all the initiator, B; but there is still unreacted styrene, A. The
higher S-shaped portion consumes the remaining styrene.

To learn whether a particular steady state is stable, it is necessary to consider
small deviations in operating conditions. Do they decline and damp out or do
they lead to larger deviations? Return to Figure 5.6(c) and suppose that the reac-
tor has somehow achieved a value for Tout that is higher than the upper steady
state. In this region, the heat-removal line is above the heat-generation line so
that the reactor will tend to cool, approaching the steady state from above.
Suppose, on the other hand, that the reactor becomes cooler than the upper
steady state but remains hotter than the central, metastable state. In this
region, the heat-removal line is below the heat-generation line so that the tem-
perature will increase, heading back to the upper steady state. Thus, the upper
steady state is stable when subject to small disturbances, either positive or nega-
tive. The same reasoning can be applied to the lower steady state. However, the
middle steady state is unstable. A small positive disturbance will send the system
toward the upper steady state and a small negative disturbance will send the
system toward the lower steady state. Applying this reasoning to the system in
Figure 5.7 with five steady states shows that three of them are stable. These
are the lower, middle, and upper ones that can be numbered 1, 3, and 5. The
two even-numbered steady states, 2 and 4, are metastable.

The dynamic behavior of nonisothermal CSTRs is extremely complex and
has received considerable academic study. Systems exist that have only a meta-
stable state and no stable steady states. Included in this class are some chemical
oscillators that operate in a reproducible limit cycle about their metastable
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state. Chaotic systems have discernible long-term patterns and average values
but have short-term temperature-composition trajectories that appear essen-
tially random. Occasionally, such dynamic behavior is of practical importance
for industrial reactor design. A classic situation of a sustained oscillation
occurs in emulsion polymerizations. These are complex reactions involving
both kinetic and mass transfer limitations, and a stable-steady-state conversion
is difficult or impossible to achieve in a single CSTR. It was reasoned that if
enough CSTRs were put in series, results would average out so that effectively
stable, high conversions could be achieved. For a synthetic rubber process
built during a wartime emergency, ‘‘enough’’ stirred tanks turned out to be
25–40. Full-scale production units were actually built in this configuration!
More elegant solutions to continuous emulsion polymerizations are now
available.

5.3 SCALEUP OF NONISOTHERMAL
REACTORS

Thermal effects can be the key concern in reactor scaleup. The generation of heat
is proportional to the volume of the reactor. Note the factor of V in Equation
(5.32). For a scaleup that maintains geometric similarity, the surface area
increases only as V2=3: Sooner or later, temperature can no longer be controlled,
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FIGURE 5.7 Consecutive reactions with five steady states.
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and the reactor will approach adiabatic operation. There are relatively few
reactions where the full adiabatic temperature change can be tolerated.
Endothermic reactions will have poor yields. Exothermic reactions will have
thermal runaways giving undesired by-products. It is the reactor designer’s
job to avoid limitations of scale or at least to understand them so that a desired
product will result. There are many options. The best process and the best equip-
ment at the laboratory scale are rarely the best for scaleup. Put another way,
a process that is less than perfect at a small scale may be the best for scaleup,
precisely because it is scalable.

5.3.1 Avoiding Scaleup Problems

Scaleup problems are sometimes avoidable. A few simple possibilities are:

1. Use enough diluents so that the adiabatic temperature change is acceptable.

2. Scale in parallel; e.g., shell-and-tube designs.

3. Depart from geometric similarity so that V and Aext both increase in direct
proportion to the throughput scaling factor S. Scaling a tubular reactor by
adding length is a possibility for an incompressible fluid.

4. Use temperature-control techniques that inherently scale as S; e.g., cold feed
to a CSTR, or autorefrigeration.

5. Intentionally degrade the performance of the small unit so that the same
performance and product quality can be achieved upon scaleup.

Use Diluents. In a gas system, inerts such as nitrogen, carbon dioxide, or steam
can be used to mitigate the reaction exotherm. In a liquid system, a solvent can
be used. Another possibility is to introduce a second liquid phase that has the
function of absorbing and transferring heat; i.e., water in an emulsion or suspen-
sion polymerization. Adding an extraneous material will increase cost, but the
increase may be acceptable if it allows scaleup. Solvents have a deservedly
bad name in open, unconfined applications; but these applications are largely
eliminated. In a closed environment, solvent losses are small and the cost of con-
fining the solvent is often borne by the necessary cost of confining the reactants.

Scale in Parallel. This common scaling technique was discussed in Section
3.2.1. Subject to possible tube-to-tube distribution problems, it is an inexpensive
way of gaining capacity in what is otherwise a single-train plant.

Depart from Geometric Similarity. Adding length to a tubular reactor while
keeping the diameter constant allows both volume and external area to scale
as S if the liquid is incompressible. Scaling in this manner gives poor results
for gas-phase reactions. The quantitative aspects of such scaleups are discussed
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in Section 5.3.3. Another possibility is to add stirred tanks, or, indeed, any type
of reactor in series. Two reactors in series give twice the volume, have twice the
external surface area, and give a closer approach to piston flow than a single,
geometrically similar reactor that has twice the volume but only 1.59 times
the surface area of the smaller reactor. Designs with several reactors in series
are quite common. Multiple pumps are sometimes used to avoid high pressures.
The apparent cost disadvantage of using many small reactors rather than
one large one can be partially offset by standardizing the design of the small
reactors.

If a single, large CSTR is desired, internal heating coils or an external, pump-
around loop can be added. This is another way of departing from geometric
similarity and is discussed in Section 5.3.2.

Use Scalable Heat Transfer. The feed flow rate scales as S and a cold feed
stream removes heat from the reaction in direct proportion to the flow rate. If
the energy needed to heat the feed from Tin to Tout can absorb the reaction
exotherm, the heat balance for the reactor can be scaled indefinitely. Cooling
costs may be an issue, but there are large-volume industrial processes that
have Tin � �408C and Tout � 2008C: Obviously, cold feed to a PFR will not
work since the reaction will not start at low temperatures. Injection of cold reac-
tants at intermediate points along the reactor is a possibility. In the limiting case
of many injections, this will degrade reactor performance toward that of a
CSTR. See Section 3.3 on transpired-wall reactors.

Autorefrigeration or boiling is another example of heat transfer that scales as
S. The chemist calls it refluxing and routinely uses it as a method of temperature
control. Laboratory glassware is usually operated at atmospheric pressure so the
temperature is set by the normal boiling point of the reactants. Chemists some-
times choose solvents that have a desired boiling point. Process equipment
can operate at a regulated pressure so the boiling point can be adjusted. On
the basis of boiling point, toluene at about 0.4 atm can replace benzene. The
elevation of boiling point with pressure does impose a scaleup limitation.
A tall reactor will have a temperature difference between top and bottom due
to the liquid head.

Use Diplomatic Scaleup. This possibility is called diplomatic scaleup because it
may require careful negotiations to implement. The idea is that thermal effects
are likely to change the distribution of by-products or the product properties
upon scaleup. The economics of the scaled process may be perfectly good and
the product may be completely satisfactory, but it will be different than what
the chemist could achieve in glassware. Setting appropriate and scalable expec-
tations for product properties can avoid surprises and the cost of requalifying
the good but somewhat different product that is made in the larger reactor.
Diplomacy may be needed to convince the chemist to change the glassware to
lower its performance with respect to heat transfer. A recycle loop reactor is
one way of doing this in a controlled fashion.
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5.3.2 Scaling Up Stirred Tanks

This section is concerned with the UAextðT � TextÞ term in the energy balance
for a stirred tank. The usual and simplest case is heat transfer from a jacket.
Then Aext refers to the inside surface area of the tank that is jacketed on the
outside and in contact with the fluid on the inside. The temperature difference,
T – Text, is between the bulk fluid in the tank and the heat transfer medium in
the jacket. The overall heat transfer coefficient includes the usual contributions
from wall resistance and jacket-side coefficient, but the inside coefficient is
normally limiting. A correlation applicable to turbine, paddle, and propeller
agitators is

Nu ¼ hDI
�
¼ Ch D

2
INI�

�

� �2=3
�

�wall

� �0:14

ð5:34Þ

where Nu is the Nusselt number and � is the thermal conductivity. The value for
Ch is needed for detailed design calculations but factors out in a scaling analysis;
Ch � 0:5 for turbines and propellers. For a scaleup that maintains constant fluid
properties,

ðhDI Þlarge
ðhDI Þsmall

¼ ðD2
INI Þlarge

ðD2
INI Þsmall

" #2=3

Assuming geometric similarity and recalling that DI scales as S
1/3 gives

hlarge
hsmall

¼ ðDIN2
I Þlarge

ðDIN2
I Þsmall

" #1=3

¼ S1=9N2=3

For a scaleup with constant power per unit volume, Example 4.7 showed that NI
must scale as D�2=3I : Thus,

hlarge
hsmall

¼ ðDI Þlarge
ðDI Þsmall

� ��1=9
¼ S�1=27

and h decreases slightly upon scaleup. Assuming h controls the overall
coefficient,

ðUAextÞlarge
ðUAextÞsmall

¼ S�1=27D2
I ¼ S17=27

If we want UAextðT � TextÞ to scale as S, the driving force for heat transfer must
be increased:

ðT � TextÞlarge
ðT � TextÞsmall

¼ S10=27
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These results are summarized in the last four rows of Table 4.1. Scaling the
volume by a factor of 512 causes a large loss in hAext per unit volume. An
increase in the temperature driving force (e.g., by reducing Text) by a factor of
10 could compensate, but such a large increase is unlikely to be possible.
Also, with cooling at the walls, the viscosity correction term in Equation
(5.34) will become important and will decrease hAext still more.

This analysis has been carried out for a batch reactor, but it applies equally
well to a CSTR. The heat transfer coefficient is the same because the agitator
dominates the flow inside the vessel, with little contribution from the net
throughput. The analysis also applies to heat transfer using internal coils or
baffles. The equations for the heat transfer coefficients are similar in form to
Equation (5.34). Experimental results for the exponent on the impeller
Reynolds number vary from 0.62 to 0.67 and are thus close to the semitheore-
tical value of 2/3 used in Equation (5.34). The results in Table 4.1 are generally
restricted to turbulent flow. The heat transfer coefficient in laminar flow systems
scales with impeller Reynolds number to the 0.5 power. This causes an even
greater loss in heat transfer capability upon scaleup than in a turbulent
system, although a transition to turbulence will occur if S is large enough.
Close-clearance impellers such as anchors and helical ribbons are frequently
used in laminar systems. So are pitched-blade turbines with large ratios of the
impeller to tank diameter. This improves the absolute values for h but has a
minor effect on the scaling relationships. Several correlations for Nu in laminar
flow show a dependence on Re to the 0.5 power rather than the 0.67 power.

It is sometimes proposed to increase Aext by adding internal coils or increas-
ing the number of coils upon scaleup. This is a departure from geometric simi-
larity that will alter flow within the vessel and reduce the heat transfer coefficient
for the jacket. It can be done within reason; but to be safe, the coil design should
be tested on the small scale using dummy coils or by keeping a low value for
T�Text. A better approach to maintaining good heat transfer upon scaleup is
to use a heat exchanger in an external loop as shown in Figure 5.8. The illu-
strated case is for a CSTR, but the concept can also be used for a batch reactor.
The per-pass residence time in the loop should be small compared to the resi-
dence time in the reactor as a whole. A rule-of-thumb for a CSTR is

�ttloop ¼ Volume of loop

Flow rate through loop
< �tt=10 ð5:35Þ

Reaction occurs in the loop as well as in the stirred tank, and it is possible to
eliminate the stirred tank so that the reactor volume consists of the heat exchan-
ger and piping. This approach is used for very large reactors. In the limiting case
where the loop becomes the CSTR without a separate agitated vessel, Equation
(5.35) becomes q=Q > 10. This is similar to the rule-of-thumb discussed in
Section 4.5.3 that a recycle loop reactor approximates a CSTR. The reader
may wonder why the rule-of-thumb proposed a minimum recycle ratio of 8 in
Chapter 4 but 10 here. Thumbs vary in size. More conservative designers have
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proposed a minimum recycle ratio of 16, and designs with recycle ratios above
100 are known. The real issue is how much conversion per pass can be tolerated
in the more-or-less piston flow environment of the heat exchanger. The same
issue arises in the stirred tank reactor itself since the internal pumping rate is
finite and intense mixing occurs only in the region of the impeller. In a loop reac-
tor, the recirculation pump acts as the impeller and provides a local zone of
intense mixing.

Example 5.9: This is a consultant’s war story. A company had a brand-
name product for which they purchased a polymer additive. They decided
to create their own proprietary additive, and assigned the task to a synthetic
chemist who soon created a fine polymer in a 300-ml flask. Scaleup was
assigned to engineers who translated the chemistry to a 10-gal steel reactor.
The resulting polymer was almost as good as what the chemist had made.
Enough polymer was made in the 10-gal reactor for expensive qualification
trials. The trials were a success. Management was happy and told the engi-
neers to design a 1000-gal vessel.

Now the story turns bad. The engineers were not rash enough to attempt
a direct scaleup with S¼ 100, but first went to a 100-gal vessel for a test
with S¼ 10. There they noted a significant exotherm and found that the poly-
mer had a broader molecular-weight distribution than achieved on the small
scale. The product was probably acceptable but was different from what had
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FIGURE 5.8 A CSTR with an external heat exchanger.
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been so carefully tested. Looking back at the data from the 10-gal runs, yes
there was a small exotherm but it had seemed insignificant. Looking ahead
to a 1000-gal reactor and (finally) doing the necessary calculations, the
exotherm would clearly become intolerable. A mixing problem had also
emerged. One ingredient in the fed-batch recipe was reacting with itself
rather than with the target molecule. Still, the engineers had designed a
2000-gal reactor that might have handled the heat load. The reactor volume
was 2000 gal rather than 1000 gal to accommodate the great mass of cooling
coils. Obviously, these coils would significantly change the flow in the vessel
so that the standard correlation for heat transfer to internal coils could not
be trusted. What to do?

Solution: There were several possibilities, but the easiest to design and
implement with confidence was a shell-and-tube heat exchanger in an
external loop. Switching the feed point for the troublesome ingredient to
the loop also allowed its rapid and controlled dilution even though the
overall mixing time in the vessel was not significantly changed by the loop.

There is one significant difference between batch and continuous-flow
stirred tanks. The heat balance for a CSTR depends on the inlet temperature,
and Tin can be adjusted to achieve a desired steady state. As discussed in
Section 5.3.1, this can eliminate scaleup problems.

5.3.3 Scaling Up Tubular Reactors

Convective heat transfer to fluid inside circular tubes depends on three dimen-
sionless groups: the Reynolds number, Re ¼ �dt �uu=�, the Prandtl number,
Pr ¼ CP�=� where � is the thermal conductivity, and the length-to-diameter
ratio, L=D. These groups can be combined into the Graetz number,
Gz ¼ RePrdt=L. The most commonly used correlations for the inside heat
transfer coefficient are

hdt=� ¼ 3:66þ 0:085Gz

1þ 0:047Gz2=3
�bulk
�wall

� �0:14

ðDeep laminarÞ ð5:36Þ

for laminar flow and Gz<75,

hdt=� ¼ 1:86Gz1=3
�bulk
�wall

� �0:14

ðLaminarÞ ð5:37Þ

for laminar flow and Gz>75 and

hdt=� ¼ 0:023Re0:8Pr1=3
�bulk
�wall

� �0:14

ðFully turbulentÞ ð5:38Þ
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for Re>10,000, 0.7<Pr<700 and L/dt>60. These equations apply to ordin-
ary fluids (not liquid metals) and ignore radiative transfer. Equation (5.36) is
rarely used. It applies to very low Re or very long tubes. No correlation is avail-
able for the transition region, but Equation (5.37) should provide a lower limit
on Nu in the transition region.

Approximate scaling behavior for incompressible fluids based on Equations
(5.36)–(5.38) is given in Table 5.1. Scaling in parallel is not shown since all
scaling factors would be 1. Scaleups with constant pressure drop give the
same results for gases as for liquids. Scaleups with geometric similarity also
give the same results if the flow is laminar. Other forms of gas-phase scaleup
are rarely possible if significant amounts of heat must be transferred to or
from the reactants. The reader is reminded of the usual caveat: detailed calcula-
tions are needed to confirm any design. The scaling exponents are used for

TABLE 5.1 Scaleup Factors for Liquid-Phase Tubular Reactors.

Flow regime

General
scaleup
factors

Series
scaleup

Geometric
similarity

Constant
pressure
scaleup

Deep laminar
Diameter scaling factor SR 1 S1=3 S1=3

Length scaling factor SL S S1=3 S1=3

Length-to-diameter ratio SLS
�1
R S 1 1

Pressure scaling factor, �P SS�4R SL S2 1 1

Heat transfer area, Aext SRSL S S2=3 S2=3

Inside coefficient, h S�1R 1 S�1=3 S�1=3

Coefficient times area, hAext SL S S1=3 S1=3

Driving force, �T SS�1L 1 S2=3 S2=3

Laminar
Diameter scaling factor SR 1 S1=3 S1=3

Length scaling factor SL S S1=3 S1=3

Length-to-diameter ratio SLS
�1
R S 1 1

Pressure scaling factor, �P SS�4R SL S2 1 1

Heat transfer area, Aext SRSL S S2=3 S2=3

Inside coefficient, h S1=3S�1R S
�1=2
L 1 S�1=9 S�1=9

Coefficient times area, hAext S1=3S2=3
L S S5=9 S5=9

Driving force, �T S2=3S�2=3L 1 S4=9 S4=9

Fully turbulent
Diameter scaling factor SR 1 S1=3 S11=27

Length scaling factor SL S S1=3 S5=27

Length-to-diameter ratio SLS
�1
R S 1 S�2=9

Pressure scaling factor, �P S1:75S�4:75R SL S2:75 S1=2 1

Heat transfer area, Aext SRSL S S2=3 S0:59

Inside coefficient, h S0:8S�1:8R S0:8 S0:2 S0:07

Coefficient times area, hAext S0:8S�0:8R SL S1:8 S0:87 S0:66

Driving force, �T S0:2S0:8
R S

�1
L S�0:8 S0:13 S0:34
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conceptual studies and to focus attention on the most promising options for
scaleup. Recall also that these scaleups maintain a constant value for Tout.
The scaleup factors for the driving force, �T , maintain a constant Tout and a
constant rate of heat transfer per unit volume of fluid.

Example 5.10: A liquid-phase, pilot-plant reactor uses a 12-ft tube with a
1.049-in i.d. The working fluid has a density of 860 kg/m3, the residence time
in the reactor is 10.2 s, and the Reynolds number is 8500. The pressure drop in
the pilot plant has not been accurately measured, but is known to be less than
1 psi. The entering feed is preheated and premixed. The inlet temperature is
60�C and the outlet temperature is 64�C. Tempered water at 55�C is used
for cooling. Management loves the product and wants you to design a plant
that is a factor of 128 scaleup over the pilot plant. Propose scaleup alterna-
tives and explore their thermal consequences.

Solution: Table 5.1 provides the scaling relationships. The desired
throughput and volume scaling factor is S ¼ 128:

Some alternatives for the large plant are as follows:

Parallel—put 128 identical tubes in parallel using a shell-and-tube design.
The total length of tubes will be 1536 ft, but they are compactly packaged.
All operating conditions are identical on a per-tube basis to those used in the
pilot plant.

Series—build a reactor that is 1536 ft long. Use U-bends or coiling to make a
reasonable package. The length-to-diameter ratio increases to 137S¼ 17,600. The
Reynolds number increases to 8500S ¼ 1:1� 106, and the pressure drop will be
S2:75 ¼ 623,000 times greater than it was in the pilot plant. The temperature driv-
ing force changes by a factor of S�0:8 ¼ 0:021 from 7�C to 0.14�C. The produc-
tion unit would have to restrict the water flow rate to hold this low a �T :
Note that we used Equation (5.38) to scale the heat transfer coefficient even
though the pilot plant was in the transitional region. Also, the driving force for
turbulent flow should be based on the log-mean �T . The difference is minor,
and approximations can be justified in a scaling study. When a reasonable scaleup
is found, more accurate estimates can be made. The current calculations are accu-
rate enough to show that a series scaleup is unreasonable.

Geometric similarity—build a reactor that is nominally 12S1=3 ¼ 61 ft long and
1:049S1=3 ¼ 5:3 inches in diameter. Use U-bends to give a reasonable footprint.
Correct to a standard pipe size in the detailed design phase. The length-to-dia-
meter ratio is unchanged in a geometrically similar scaleup. The Reynolds
number increases to 8500S2=3 ¼ 216,000 and the pressure drop increases by
factor of S1=2 ¼ 11:2: The temperature driving force will increase by a factor of
S0:13 ¼ 1:9 to about 13�C so that the jacket temperature would be about 49�C.
This design seems reasonable.

Constant pressure—build a reactor that is nominally 12S5=27 ¼ 29 ft long and
1:049S11=27 ¼ 7:6 in in diameter. The length-to-diameter ratio decreases by a
factor of S�2=9 to 47. The Reynolds number increases to 8500S16=27 ¼ 151,000:
The temperature driving force must increase by a factor of S0:34 ¼ 5:2 to about
36�C so that the jacket temperature would be about 26�C. This design is also
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reasonable, but the jacket temperature is a bit lower than is normally possible
without a chiller.

There is no unique solution to this or most other design problems.
Any design using a single tube with an i.d. of about 7.5 in or less and with
a volume scaled by S will probably function from a reaction engineering
viewpoint.

Example 5.11: The results of Table 5.1 suggest that scaling a tubular
reactor with constant heat transfer per unit volume is possible, even with the
further restriction that the temperature driving force be the same in
the large and small units. Find the various scaling factors for this form of
scaleup for turbulent liquids and apply them to the pilot reactor in
Example 5.10.

Solution: Table 5.1 gives the driving-force scaling factor as S0:2S0:8R S
�1
L :

This is set to 1. A constant residence time is imposed by setting S2
RSL ¼ S:

There are two equations and two unknowns, SR and SL: The solution is
SR ¼ S0:28 and SL ¼ S0:44: The length-to-diameter ratio scales as S0:16:
Equation (3.43) can be used to determine that the pressure scaling factor is
S0:86: The Reynolds number scales as S=SR ¼ S0:72:

Applying these factors to the S¼ 128 scaleup in Example 5.10 gives a tube
that is nominally 12S0:44 ¼ 101 ft long and 1:049S0:28 ¼ 4:1 inches in diameter.
The length-to-diameter ratio increases to 298. The Reynolds number increases
to 8500S0:72 ¼ 278,000: The pressure drop would increase by a factor of
S0:86 ¼ 65: The temperature driving force would remain constant at 7�C so
that the jacket temperature would remain 55�C.

Example 5.12: Repeat Examples 5.10 and 5.11 for Tin ¼ 160�C and Tout
¼ 164�C. The coolant temperature remains at 55�C.

Solution: Now, �T¼ 107�C. Scaling with geometric similarity would
force the temperature driving force to increase by S0:13 ¼ 1:9, as before, but
the scaled-up value is now 201�C. The coolant temperature would drop to
�39�C, which is technically feasible but undesirable. Scaling with constant
pressure forces an even lower coolant temperature. A scaleup with constant
heat transfer becomes attractive.

These examples show that the ease of scaling up of tubular reactors depends
on the heat load. With moderate heat loads, single-tube scaleups are possible.
Multitubular scaleups, Stubes > 1, become attractive when the heat load is
high, although it may not be necessary to go to full parallel scaling using S
tubes. The easiest way to apply the scaling relations in Table 5.1 to multitubular
reactors is to divide S by the number of tubes to obtain S0. Then S0 is the
volumetric and throughput scaling factor per tube.
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Example 5.13: An existing shell-and-tube heat exchanger is available for
the process in Example 5.10. It has 20 tubes, each 2 in i.d. and 18 ft long.
How will it perform?

Solution: The volume of the existing reactor is 7.85 ft3. The volume of
the pilot reactor is 0.072 ft3. Thus, at constant �tt, the scaleup is limited to a
factor of 109 rather than the desired 128. The per-tube scaling factor is
S0 ¼ 109/20¼ 5.45. SR ¼ 1.91 and SL¼ 1.5. The general scaling factor for
pressure drop in turbulent, incompressible flow is ðS0Þ1:75S�4:75R SL ¼ 1.35, so
that the upstream pressure increases modestly. The scaling factor for �T is
ðS0Þ 0:2S0:8

R S
�1
L ¼ 1.57, so �T¼ 11�C and the coolant temperature will be

51�C. What about the deficiency in capacity? Few marketing estimates are
that accurate. When the factor of 109 scaleup becomes inadequate, a
second or third shift can be used. If operation on a 24/7 basis is already
planned—as is common in the chemical industry—the operators may nudge
the temperatures a bit in an attempt to gain capacity. Presumably,
the operating temperature was already optimized in the pilot plant, but it is
a rare process that cannot be pushed a bit further.

This section has based scaleups on pressure drops and temperature driving
forces. Any consideration of mixing, and particularly the closeness of approach
to piston flow, has been ignored. Scaleup factors for the extent of mixing in a
tubular reactor are discussed in Chapters 8 and 9. If the flow is turbulent and
if the Reynolds number increases upon scaleup (as is normal), and if the
length-to-diameter ratio does not decrease upon scaleup, then the reactor will
approach piston flow more closely upon scaleup. Substantiation for this state-
ment can be found by applying the axial dispersion model discussed in
Section 9.3. All the scaleups discussed in Examples 5.10–5.13 should be reason-
able from a mixing viewpoint since the scaled-up reactors will approach piston
flow more closely.

PROBLEMS

5.1. A reaction takes 1 h to complete at 60�C and 50min at 65�C. Estimate the
activation energy. What assumptions were necessary for your estimate?

5.2. Dilute acetic acid is to be made by the hydrolysis of acetic anhydride
at 25�C. Pseudo-first-order rate constants are available at 10�C
and 40�C. They are k¼ 3.40 h�1 and 22.8 h�1, respectively. Estimate k
at 25�C.

5.3. Calculate bout =ain for the reversible reaction in Example 5.2 in a CSTR at
280K and 285K with �tt¼ 2 h. Suppose these results were actual measure-
ments and that you did not realize the reaction was reversible. Fit a first-
order model to the data to find the apparent activation energy. Discuss
your results.
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5.4. At extreme pressures, liquid-phase reactions exhibit pressure effects. A
suggested means for correlation is the activation volume, �Vact: Thus,

k ¼ k0 exp �E
RgT

� �
exp
��VactP
RgT

� �

Di-t-butyl peroxide is a commonly used free-radical initiator that decom-
poses according to first-order kinetics. Use the following data2 to estimate
�Vact for the decomposition in toluene at 120�C:

P, kg/cm2 k, s�1

1 13.4� 10�6

2040 9.5� 10�6

2900 8.0� 10�6

4480 6.6� 10�6

5270 5.7� 10�6

5.5. Consider the consecutive reactions, A �!kI B �!kII C, with rate constants of
kI ¼ 1015 expð�10,000=TÞ and kII ¼ 108 expð�5000=TÞ. Find the tem-
perature that maximizes bout for a CSTR with �tt ¼ 2 and for a batch reac-
tor with a reaction time of 2 h. Assume constant density with bin ¼ cin ¼ 0:

5.6. Find the temperature that maximizes bout for the competitive reactions of
Equation (5.13). Do this for a CSTR with �tt ¼ 2 and for a batch reactor
with a reaction time of 2 h. Assume constant density with bin ¼ cin ¼ 0:
The rate constants are kI ¼ 108 expð�5000=T Þ and kII ¼ 1015

expð�10000=TÞ:
5.7. The reaction A �!kI B �!kII C is occurring in an isothermal, piston flow

reactor that has a mean residence time of 2min. Assume constant cross
section and physical properties and

kI ¼ 1:2� 1015 expð�12,000=T Þ, min�1

kII ¼ 9:4� 1015 expð�14,700=T Þ, min�1

(a) Find the operating temperature that maximizes bout given bin¼ 0.
(b) The laboratory data were confused: kI was interchanged with kII

Revise your answer accordingly.
5.8. Repeat the analysis of hydrocarbon cracking in Example 5.6 with

ain¼ 100 g/m3.
5.9. Repeat the analysis of hydrocarbon cracking in Example 5.6 for the case

where there is external heat exchange. Suppose the reaction is conducted
in tubes that have an i.d. of 0.012m and are 3m long. The inside heat
transfer coefficient is 9.5 cal/(K Em2 E s) and the wall temperature is
525�C. The inerts are present.
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5.10. For the styrene polymerization in Example 5.7, determine that value
of Tin below which only the lower steady state is possible. Also
determine that value of Tin above which only the upper steady state is
possible.

5.11. For the styrene polymerization in Example 5.7, determine those values of
the mean residence time that give one, two, or three steady states.

5.12. The pressure drop was not measured in the pilot plant in Example 5.10,
but the viscosity must be known since the Reynolds number is given. Use
it to calculate the pressure drop. Does your answer change the feasibility
of any of the scaleups in Examples 5.10–5.13?

5.13. Determine the reactor length, diameter, Reynolds number, and scaling
factor for pressure drop for the scaleup with constant heat transfer in
Example 5.12.

5.14. Your company is developing a highly proprietary new product. The
chemistry is complicated, but the last reaction step is a dimerization:

2A �!k B

Laboratory kinetic studies gave a0k ¼ 1:7� 1013 expð�14000=TÞ, s�1:
The reaction was then translated to the pilot plant and reacted in a 10-
liter batch reactor according to the following schedule:

Time from Start
of Batch (min) Action

0 Begin charging raw materials
15 Seal vessel; turn on jacket heat (140�C steam)
90 Vessel reaches 100�C and reflux starts
180 Reaction terminated; vessel discharge begins
195 Vessel empty; washdown begins
210 Reactor clean, empty, and cool

Management likes the product and has begun to sell it enthusiastically.
The pilot-plant vessel is being operated around the clock and produces
two batches per shift for a total of 42 batches per week. It is desired to
increase production by a factor of 1000, and the engineer assigned to
the job orders a geometrically similar vessel that has a working capacity
of 10,000 liters.
(a) What production rate will actually be realized in the larger unit?

Assume the heat of reaction is negligible.
(b) You have replaced the original engineer and have been told to

achieve the forecast production rate of 1000 times the pilot rate.
What might you do to achieve this? (You might think that the ori-
ginal engineer was fired. More likely, he was promoted based on the
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commercial success of the pilot-plant work, is now your boss, and
will expect you to deliver planned capacity from the reactor that
he ordered.)

5.15. A liquid-phase, pilot-plant reactor uses a 0.1-m3 CSTR with cooling at
the walls. The working fluid has water-like physical properties. The resi-
dence time in the reactor is 3.2 h. The entering feed is preheated and pre-
mixed. The inlet temperature is 60�C and the outlet temperature is 64�C.
Tempered water at 55�C is used for cooling. The agitator speed is 600
rpm. Management loves the product and wants you to scaleup by a
modest factor of 20. However, for reasons obscure to you, they insist
that you maintain the same agitator tip speed. Thus, the scaleup will
use a geometrically similar vessel with NID held constant.
(a) Assuming highly turbulent flow, by what factor will the total power

to the agitator increase in the larger, 2-m3 reactor?
(b) What should be the temperature of the cooling water to keep the

same inlet and outlet temperatures for the reactants?
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SUGGESTIONS FOR FURTHER READING

The best single source for design equations remains

Perry’s Handbook, 7th ed., D. W. Green, Ed., McGraw-Hill, New York, 1997.

Use it or other detailed sources after preliminary scaling calculations have been
made.
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CHAPTER 6

DESIGN AND
OPTIMIZATION STUDIES

The goal of this chapter is to provide semirealistic design and optimization exer-
cises. Design is a creative endeavor that combines elements of art and science. It
is hoped that the examples presented here will provide some appreciation of the
creative process.

This chapter also introduces several optimization techniques. The emphasis is
on robustness and ease of use rather than computational efficiency.

6.1 A CONSECUTIVE REACTION SEQUENCE

The first consideration in any design and optimization problem is to decide the
boundaries of ‘‘the system.’’ A reactor can rarely be optimized without consider-
ing the upstream and downstream processes connected to it. Chapter 6 attempts
to integrate the reactor design concepts of Chapters 1–5 with process economics.
The goal is an optimized process design that includes the costs of product
recovery, in-process recycling, and by-product disposition. The reactions are

A �!kI B �!kII C ð6:1Þ

where A is the raw material, B is the desired product, and C is an undesired
by-product. The process flow diagram is given in Figure 6.1. For simplicity,
the recovery system is assumed to be able to make a clean separation of the
three components without material loss.

Note that the production of C is not stoichiometrically determined but that
the relative amounts of B and C can be changed by varying the reaction condi-
tions. Had C been stoichiometrically determined, as in the production of by-
product HCl when hydrocarbons are directly chlorinated, there is nothing
that can be done short of very fundamental changes to the chemistry, e.g.,
using ClO2 rather than Cl2. Philosophically, at least, this is a problem for a
chemist rather than a chemical engineer. In the present example, component
C is a secondary or side product such as a dichlorinated compound when
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monochlorination is desired, and the chemical reaction engineer has many
options for improving performance without changing the basic chemistry.

Few reactions are completely clean in the sense of giving only the desired pro-
duct. There are some cases where the side products have commensurate value
with the main products, but these cases are becoming increasingly rare, even
in the traditional chemical industry, and are essentially nonexistent in fields
like pharmaceuticals. Sometimes, C is a hazardous waste and has a large,
negative value.

The structure of the reactions in Equation (6.1) is typical of an immense class
of industrially important reactions. It makes little difference if the reactions are
all second order. Thus, the reaction set

A1 þA2! B1 þ B2 ! C1 þ C2 ð6:2Þ
has essentially the same structure. The As can be lumped as the raw material, the
Bs can be lumped as product, even though only one may be useful, and the Cs
can be lumped as undesired. The reaction mechanism and the kinetics are differ-
ent in detail, but the optimization methodology and economic analysis will be
very similar.

Example 6.1: Show by example that it is generally necessary to include the
cost of recovering the product and recycling unused reactants in the reactor
design optimization.

Reaction
system

Pure A

Pure B Pure C

Pure A

Recovery
system

ain

aout
bout
cout

FIGURE 6.1 Simplified process flow diagram for consecutive reaction process.
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Solution: Suppose component C in Equation (6.1) is less valuable than A.
Then, if the cost of the recovery step is ignored, the optimal design is a high-
throughput but low-conversion reactor. Presumably, this will be cheap to
build since it produces low concentrations of B and thus can be a simple
design such as an adiabatic tube. Since bout is low, cout will be lower yet,
and essentially all the incoming A will be converted to B or recycled. Thus,
the reaction end of the process will consist of a cheap reactor with nearly
100% raw-material efficiency after recycling. Of course, huge quantities of
reactor effluent must be separated, with the unreacted A being recycled, but
that is the problem of the separations engineer.

In fairness, processes do exist where the cost of the recovery step has little
influence on the reactor design, but these are the exceptions.

The rest of this chapter is a series of examples and problems built around
semirealistic scenarios of reaction characteristics, reactor costs, and recovery
costs. The object is not to reach general conclusions, but to demonstrate a
method of approaching such problems and to provide an introduction to opti-
mization techniques.

The following are some data applicable to a desired plant to manufacture
component B of Equation (6.1):

Required production rate¼ 50,000 t/yr (metric tons)¼ 6250 kg/h

Cost of raw material A¼ $1.50/kg

Value of side product C¼ $0.30/kg

Note that 8000 h is a commonly used standard ‘‘year’’ for continuous pro-
cesses. The remainder of the time is for scheduled and random maintenance.
In a good year when demand is high, production personnel have the opportunity
to exceed their plan.

You can expect the cost of A and the value of C to be fairly accurate. The
required production rate is a marketing guess. So is the selling price of B,
which is not shown above. For now, assume it is high enough to justify the
project. Your job is the conceptual design of a reactor to produce the required
product at minimum total cost.

The following are capital and operating cost estimates for the process:

Reactor capital costs¼ $500,000V 0.6

Reactor operating costs (excluding raw materials)
¼ $0.08 per kg of reactor throughput

Recovery system capital cost¼ $21,000W 0.6

Recovery system operating costs
¼ $0.20 per kg of recovery system throughput

where V is the reactor volume in cubic meters and W is the total mass
flow rate (virginþrecycle) in t/yr. Options in reactor design can include
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CSTRs, shell-and-tube reactors, and single-tube reactors, particularly a single
adiabatic tube. Realistically, these different reactors may all scale similarly
e.g., as V0.6, but the dollar premultipliers will be different, with CSTRs being
more expensive than shell-and-tube reactors, which are more expensive than
adiabatic single tubes. However, in what follows, the same capital cost will be
used for all reactor types in order to emphasize inherent kinetic differences.
This will bias the results toward CSTRs and toward shell-and-tube reactors
over most single-tube designs.

Why are the CSTRs worth considering at all? They are more expensive per
unit volume and less efficient as chemical reactors (except for autocatalysis).
In fact, CSTRs are useful for some multiphase reactions, but that is not
the situation here. Their potential justification in this example is temperature
control. Boiling (autorefrigerated) reactors can be kept precisely at the desired
temperature. The shell-and-tube reactors cost less but offer less effective
temperature control. Adiabatic reactors have no control at all, except that Tin
can be set.

As shown in Figure 6.1, the separation step has been assumed to give clean
splits, with pure A being recycled back to the reactor. As a practical matter,
the B and C streams must be clean enough to sell. Any C in the recycle
stream will act as an inert (or it may react to component D). Any B in the recycle
stream invites the production of undesired C. A realistic analysis would prob-
ably have the recovery system costs vary as a function of purity of the recycle
stream, but we will avoid this complication for now.

The operating costs are based on total throughput for the unit. Their main
components are utilities and maintenance costs, along with associated over-
heads. Many costs, like labor, will be more or less independent of throughput
in a typical chemical plant. There may be some differences in operating costs
for the various reactor types, but we will worry about them, like the difference
in capital costs, only if the choice is a close call. The total process may include
operations other than reaction and recovery and will usually have some shared
equipment such as the control system. These costs are ignored since the task at
hand is to design the best reaction and recovery process and not to justify the
overall project. That may come later. The dominant uncertainty in justifying
most capacity expansions or new-product introductions is marketing. How
much can be sold at what price?

Some of the costs are for capital and some are operating costs. How to con-
vert apples to oranges? The proper annualization of capital costs is a difficult
subject. Economists, accountants, and corporate managers may have very differ-
ent viewpoints. Your company may have a cast-in-stone rule. Engineers tend to
favor precision and have invented a complicated, time-dependent scheme (net
present value or NPV analysis) that has its place (on the Engineer-in-Training
exam among other places), but can impede understanding of cause and effect.
We will adopt the simple rule that the annual cost associated with a capital
investment is 25% of the investment. This accounts for depreciation plus a
return on fixed capital investment. Working capital items (cash, inventory,
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accounts receivable) will be ignored on the grounds that they will be similar for
all the options under consideration.

Assume for now that the reactions in Equation (6.1) are elementary first order
with rate constants

kI ¼ 4:5� 1011 expð�10000=TÞ h�1
kII ¼ 1:8� 1012 expð�12000=TÞ h�1

ð6:3Þ

Table 6.1 illustrates the behavior of the rate constants as a function of absolute
temperature. Low temperatures favor the desired, primary reaction, but the
rate is low. Raise the rate enough to give a reasonable reactor volume and the
undesired, secondary reaction becomes significant. There is clearly an interior
optimum with respect to temperature.

Both reactions are endothermic:

ð�HRÞI ain
�CP

¼ ð�HRÞII ain
�CP

¼ 30K ð6:4Þ

All three components, A, B, and C, have a molecular weight of 200Da.

Example 6.2: Cost-out a process that uses a single CSTR for the reaction.

Solution: The reactor design equations are very simple:

aout ¼ ain
1þ kI �tt

bout ¼ bin þ kI
�ttðain þ binÞ

ð1þ kI �tt Þð1þ kII �tt Þ
cout ¼ cin þ ain � aout þ bin � bout

ð6:5Þ

TABLE 6.1 Effect of Temperature on
Rate Constants

T, K kI, h
�1 kI/kII

300 0.002 196.4
320 0.012 129.5
340 0.076 89.7
360 0.389 64.7
380 1.677 48.3
400 6.250 37.1
420 20.553 29.2
440 60.657 23.6
460 162.940 19.3
480 403.098 16.1
500 927.519 13.6
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The total product demand is fixed. The unknowns are the reactor volume V
(by way of �tt ), and the temperature, Tin¼Tout (by way of kI and kII). These
are the variables that determine the production cost, but calculating the
cost is complicated because the output of B is specified and the necessary
input of A must be found. Assume that V and Tin are known. Then guess a
value for the total flow rate W, which is the sum of virgin A plus recycled
A. The amount of B is calculated and compared with the required value of
6250 kg/h. The guessed value for W is then adjusted. The following Basic
program uses a binary search to adjust the guess. See Appendix 6 for a
description of the method or reason your way through the following code.
The program uses three subroutines: Reactor, Cost, and Cprint.
Reactor is shown at the end of the main program, and can be replaced
with suitable, albeit more complicated, subroutine to treat CSTRs in series,
or PFRs. The subroutine Cost calculates the total cost and Cprint
displays the results.

DEFDBL A-H, P-Z
DEFLNG I-O
COMMON SHARED MwA, MwB, MwC, rho, ain, hr1, hr2

’Simple evaluation of a single CSTR using a binary
’search
MwA¼200’kg/kg moles
MwB¼200
MwC¼200
rho¼ 900’kg/m^3
ain¼ rho / MwA ’kg moles/m^3
bin¼0
cin¼0
V¼10
Tin¼400

’Binary search to find WAin
Wmin¼6250 ’lower bound, kg/hr
Wmax¼100000 ’upper bound
FOR I¼1 TO 24

WAin¼(WminþWmax)/2
Q¼WAin/rho
tbar¼V/Q
Call Reactor (tbar, Tin, ain, bin, cin, Tout, aout,

+ bout, cout)
Wbout¼bout * Q * MwB
IF WBout > 6250 THEN

Wmax¼WAin
ELSE
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Wmin¼WAin
END IF

NEXT I

CALL Cost(WAin, V, aout, bout, cout, total )
CALL Cprint(WAin, V, aout, bout, cout, Tin, Tout)
END

SUB Reactor (tbar, Tin, ain, bin, cin, Tout, aout,
þ bout, cout)
’Single CSTR version

xk1¼450000000000 * EXP(�10000/Tin)
xk2¼1800000000000 * EXP(�12000/Tin)
aout¼ain/(1þxk1 * tbar)
bout¼(binþxk1 * tbar * (ainþbin))/(1þxk1 *
tbar)/(1þxk2 * tbar)
cout¼cinþain�aoutþbin�bout

END SUB

The results for a single CSTR operating at Tout¼ 400K and V¼ 10m3 are
shown below:

Throughput 8478 kg/h
Product rate 6250 kg/h
Reactor �tt 1.06 h
Raw materials cost 88.41MM$/yr
By-product credit 2.68MM$/yr
Throughput cost 18.99MM$/yr
Annualized reactor capital 0.50MM$/yr (1.99MM$ capital)
Annualized recovery capital 2.62MM$/yr (10.50MM$ capital)
Total annual cost 107.84MM$/yr
Unit cost of product 2.157 $/kg

Note that MM$ or $MM are commonly used shorthand for millions of
dollars.

This example found the reactor throughput that would give the required
annual capacity. For prescribed values of the design variables T and V, there
is only one answer. The program uses a binary search to find that answer, but
another root-finder could have been used instead. Newton’s method (see
Appendix 4) will save about a factor of 4 in computation time.

The next phase of the problem is to find those values for T and V that will
give the lowest product cost. This is a problem in optimization rather than
root-finding. Numerical methods for optimization are described in Appendix
6. The present example of consecutive, mildly endothermic reactions provides
exercises for these optimization methods, but the example reaction sequence is
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not especially sensitive to operating conditions. Thus, the minimums tend to be
quite shallow.

Example 6.3: Find the values of Tin ¼ Tout and V that give the lowest
production cost for the consecutive reactions of Example 6.2.

Solution: The most straightforward way to optimize a function is by a
brute force search. Results from such a search are shown in Table 6.2.

The lowest cost corresponds to V¼ 58m3 and Tout¼ 364K, but the mini-
mum is very flat so that there is essentially no difference in cost over a wide
range of reactor volumes and operating temperatures. The good news is that
an error in determining the minimum will have little effect on plant economics
or the choice of operating conditions. The bad news is that perfectionists will
need to use very precise numerical methods to find the true minimum.

The data in Table 6.2 illustrate a problem when optimizing a function by
making one-at-a-time guesses. The cost at V¼ 50m3 and Tout¼ 366K is not
the minimum, but is lower than the entries above and below it, on either side
of it, or even diagonally above or below it. Great care must be taken to
avoid false optimums. This is tedious to do manually, even with only two vari-
ables, and quickly becomes unmanageable as the number of variables increases.

More or less automatic ways of finding an optimum are described in
Appendix 6. The simplest of these by far is the random search method. It can
be used for any number of optimization variables. It is extremely inefficient
from the viewpoint of the computer but is joyously simple to implement. The
following program fragment illustrates the method.

TABLE 6.2 Results of a Comprehensive Search for the Case of a Single CSTR

Temperature, K

Volume, m3 362 363 364 365 366 367

44 2.06531 2.05348 2.04465 2.03840 2.03440 2.03240
46 2.05817 2.04808 2.04074 2.03577 2.03292 2.03196

48 2.05232 2.04374 2.03771 2.03390 2.03208 2.03206
50 2.04752 2.04028 2.03542 2.03265 2.03178 2.03263
52 2.04361 2.03757 2.03376 2.03194 2.03193 2.03359
54 2.04044 2.03548 2.03263 2.03168 2.03247 2.03488
56 2.03790 2.03392 2.03195 2.03180 2.03334 2.03645
58 2.03590 2.03282 2.03166 2.03226 2.03450 2.03828
60 2.03437 2.03212 2.03172 2.03302 2.03591 2.04031
62 2.03325 2.03176 2.03206 2.03402 2.03753 2.04254
64 2.03248 2.03171 2.03267 2.03525 2.03935 2.04492
66 2.03202 2.03192 2.03350 2.03667 2.04134 2.04745
68 2.03183 2.03236 2.03454 2.03826 2.04347 2.05011

Values in bold indicate local minimums for fixed combinations of volume and temperature. They are
potentially false optimums.
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Maxtrials¼10000
BestTotal¼1000000000 ’an arbitrary high value

’for the total cost
T¼400 ‘Initial guess
V¼10 ‘Initial guess

DO
’The reactor design calculations of Example 6.2 go here.
’They produce the total annualized cost, Total, that is the
’objective function for this optimization

IF Total < BestTotal THEN
BestTotal¼Total
BestT¼Tin
BestV¼V

END IF
Tin ¼ BestTþ.5 * (.5�RND)
V ¼ BestVþ.1 * (.5�RND)
Ntrials¼Ntrialsþ1

Loop while Ntrials < Maxtrials

Applying the random search technique to the single CSTR case gives
V¼ 58.1m3, T¼ 364.1K, and a unit cost of 2.0316 $/kg. These results are
achieved very quickly because the design equations for the CSTR are simple
algebraic equations. More complicated reactions in a CSTR may need the
method of false transients, and any reaction in a nonisothermal PFR will require
the solution of simultaneous ODEs. Computing times may become annoyingly
long if crude numerical methods continue to be used. However, crude methods
are probably best when starting a complex program. Get them working, get a
feel for the system, and then upgrade them.

The general rule in speeding up a computation is to start by improving
the innermost loops. For the example problem, the subroutine Reactor
cannot be significantly improved for the case of a single CSTR, but Runge-
Kutta integration is far better than Euler integration when solving ODEs. The
next level of code is the overall materials balance used to calculate the reactor
throughput and residence time. Some form of Newton’s method can replace
the binary search when you have a feel for the system and know what are
reasonable initial guesses. Finally, tackle the outer loop that comprises the
optimization routine.

The next example treats isothermal and adiabatic PFRs. Newton’s method
is used to determine the throughput, and Runge-Kutta integration is used in
the Reactor subroutine. (The analytical solution could have been used for
the isothermal case as it was for the CSTR.) The optimization technique remains
the random one.

The temperature profile down the reactor is the issue. The CSTR is
isothermal but selectivity is inherently poor when the desired product is an
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intermediate in a consecutive reaction scheme. An isothermal PFR is often
better for selectivity and can be approximated in a shell-and-tube design by
using many small tubes. Before worrying about the details of the shell-and-
tube design, calculate the performance of a truly isothermal PFR and compare
it with that of a CSTR and an adiabatic reactor. If the isothermal design gives a
significant advantage, then tube size and number can be selected as a separate
optimization exercise.

Example 6.4: Find the best combination of reaction temperature and
volume for the example reaction using isothermal and adiabatic PFRs.

Solution: A program for evaluating the adiabatic reactor is given below.
Subroutine Reactor solves the simultaneous ODEs for the concentrations
and temperature. The equation for temperature includes contributions from
both reactions according to the methods of Section 5.2.

DEFDBL A-H, P-Z
DEFLNG I-O
COMMON SHARED MwA, MwB, MwC, rho, Ain, hr1, hr2

’Random optimization of an adiabatic PFR
’using a Newton’s search to close the material balance

MwA¼200
MwB¼200
MwC¼200
rho¼900
ain¼rho/MwA
hr1¼30/ain ’This is the adiabatic temperature change
’(a decrease is positive) per unit concentration of
’component A. Refer to Equation 6.4
hr2¼30/ain ’Same for the second reaction
Maxtrials¼10000
BestTotal¼1000000000
V¼30
Tin¼390

DO ’Main Loop
’Newton’s method to find WAin
WA¼6250 ’lower bound, kg/hr
Q¼WA/rho
tbar¼V/Q
CALL Reactor(tbar, Tin, ain, Tout, aout, bout, cout)
WB¼bout * Q * MwB
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WAin¼2 * 6250 ’lower bound, kg/hr
Q¼WAin/rho
tbar¼V/Q
CALL Reactor(tbar, Tin, ain, Tout, aout, bout, cout)
WBout¼bout * Q * MwB
DO

Del¼WAin�WA
IF ABS(WBout�6250)<.001 THEN EXIT DO

WA¼WAin
WAin¼WAin�(WBout�6250)/(WBout�WB) * Del
WB¼WBout
Q¼WAin/rho
tbar¼V/Q
CALL Reactor (tbar, Tin, ain, bin, cin, Tout,
aout, bout, cout)
WBout¼bout * Q * MwB

LOOP ‘End of Newton’s method
CALL Cost(WAin, V, aout, bout, cout, total)

IF total < BestTotal THEN
BestTotal¼total
BestT¼Tin
BestV¼V

END IF
Tin¼BestTþ.5 * (.5�RND)
V¼BestVþ.5 * (.5�RND)
Ntrials¼Ntrialsþ1

LOOP WHILE Ntrials < Maxtrials
’Output results here.

END

SUB Reactor (tbar, Tin, ain, bin, cin, Tout, aout, bout,
cout)

’Adiabatic version of PFR equations solved by Runge-Kutta
integration

N¼128
dtau¼tbar/N
a¼ain
T¼Tin
FOR i¼1 TO N

xk1¼450000000000# * EXP(�10000/T)
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xk2¼1800000000000# * EXP(�12000#/T)
RA0 ¼�xk1 * a
RB0¼xk1 * a �xk2 * b
RT0¼�xk1 * a * hr1�xk2 * b * hr2
a1¼aþdtau * RA0/2
b1¼bþdtau * RB0/2
T1¼Tþdtau * RT0/2
RA1¼ �xk1 * a1
RB1¼xk1 * a1�xk2 * b1
RT1¼xk1 * a1 * hr1�xk2 * b1 * hr2
a2¼aþdtau * RA1/2
b2¼bþdtau * RB1/2
T2¼Tþdtau * RT1/2
RA2¼�xk1 * a2
RB2¼xk1 * a2�xk2 * b2
RT2¼�xk1 * a2 * hr1�xk2 * b2 * hr2
a3¼aþdtau * RA2
b3¼bþdtau * RB2
T3¼Tþdtau * RT2/2
RA3¼�xk1 * a3
RB3¼xk1 * a3�xk2 * b3
RT3¼�xk1 * a3 * hr1�xk2 * b3 * hr2
a¼aþdtau * (RA0þ2 * RA1þ2 * RA2þRA3)/6
b¼bþdtau * (RB0þ2 * RB1þ2 * RB2þRB3)/6
T¼Tþdtau * (RT0þ2 * RT1þ2 * RT2þRT3)/6

NEXT
aout¼a
bout¼b
out¼ain�aout�bout
Tout¼T

END SUB

The above computation is quite fast. Results for the three ideal reactor
types are shown in Table 6.3. The CSTR is clearly out of the running, but
the difference between the isothermal and adiabatic PFR is quite small. Any
reasonable shell-and-tube design would work. A few large-diameter tubes in
parallel would be fine, and the limiting case of one tube would be the best.
The results show that a close approach to adiabatic operation would reduce
cost. The cost reduction is probably real since the comparison is nearly
‘‘apples-to-apples.’’

The results in Table 6.3 show that isothermal piston flow is not always
the best environment for consecutive reactions. The adiabatic temperature
profile gives better results, and there is no reason to suppose that it is the best
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possible profile. Finding the best temperature profile is a problem in
functional optimization.

Example 6.5: Find the optimal temperature profile, T(z), that maximizes
the concentration of component B in the competitive reaction sequence of
Equation (6.1) for a piston flow reactor subject to the constraint that �tt¼ 3 h.

Solution: This mouthful of a problem statement envisions a PFR operating
at a fixed flow rate. The wall temperature can be adjusted as an arbitrary
function of position z, and the heat transfer coefficient is so high that the
fluid temperature exactly equals the wall temperature. What temperature
profile maximizes bout? The problem is best solved in the time domain
t ¼ z= �uu, since the results are then independent of tube diameter and flow
rate. Divide the reactor into Nzones equal-length zones each with residence
time �tt=Nzones: Treat each zone as an isothermal reactor operating at
temperature Tn, where n ¼ 1, 2, . . . ,Nzones: The problem in functional
optimization has been converted to a problem in parameter optimization,
with the parameters being the various Tn. The computer program of
Example 6.4 can be converted to find these parameters. The heart of the
program is shown in the following segment. Given �ttn ¼ �tt=Nzones, Tn, and
the three inlet concentrations to each zone, it calculates the outlet
concentrations for that zone, assuming isothermal piston flow within the
zone. Table 6.4 shows the results.

TABLE 6.4 Optimal Zone Temperatures for Consecutive Reactions

Zone temperatures, K

Nzones bout 1 2 3 4 5 6

1 8.3165 376.2
2 8.3185 378.4 371.7
3 8.3196 380.0 374.4 373.4
4 8.3203 381.3 375.12 373.8 373.3
5 8.3207 382.4 375.8 374.2 373.6 373.2
6 8.3210 383.3 376.4 374.7 373.9 373.4 373.2

TABLE 6.3 Comparison of Ideal Reactors for Consecutive,
Endothermic Reactions

Single CSTR Isothermal PFR Adiabatic PFR

Tin, K 364 370 392
Tout, K 364 370 363
V, m3 58.1 24.6 24.1
W, kg/h 8621 6975 6974
Unit cost, $/kg 2.0316 1.9157 1.9150
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Maxtrials¼20000
Nzones¼6
BestBout¼0
FOR nz¼1 TO Nzones

Tin(nz)¼382
BestT(nz)¼Tin(nz)

NEXT nz
tbar¼3/Nzones

DO ’Main Loop
a¼ain
b¼0
c¼0
FOR nz¼1 TO Nzones

CALL ZoneReactor(tbar, Tin(nz), a, b, c, Tout,
+ aout, bout, cout)

a¼aout
b¼bout
c¼cout

NEXT nz

IF bout > BestBout THEN
BestBout¼bout
FOR nz¼1 TO Nzones

BestT(nz)¼Tin(nz)
NEXT nz
END IF
FOR nz¼1 TO Nzones

Tin(nz)¼BestT(nz)þ.01 * (.5�RND)
NEXT
Ntrials¼Ntrialsþ1

LOOP WHILE Ntrials < Maxtrials

‘output goes here

END

Figure 6.2 displays the temperature profile for a 10-zone case and for a
99-zone case. The 99-zone case is a tour de force for the optimization routine
that took a few hours of computing time. It is not a practical example since
such a multizone design would be very expensive to build. More practical
designs are suggested by Problems 6.11–6.13.

Example 6.6: Suppose the reactions in Equation (6.1) are exothermic rather
than endothermic. Specifically, reverse the sign on the heat of reaction terms
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so that the adiabatic temperature rise for complete conversion of A to B (but
no C) is þ30K rather than �30K. How does this change the results of
Examples 6.2 through 6.5?

Solution: The temperature dependence of the reaction rates is unchanged.
When temperatures can be imposed on the system, as for the CSTR and
isothermal reactor examples, the results are unchanged from the
endothermic case. The optimal profile results in Example 6.5 are identical
for the same reason. The only calculation that changes is that for an
adiabatic reactor. The program in Example 6.4 can be changed just by
setting hr1 and hr2 to �30 rather than þ30. The resulting temperature
profile is increasing rather than decreasing, and this hurts selectivity. The
production cost for an adiabatic reactor would be nearly 2 cents per
kilogram higher than that for an isothermal reactor. Thus, a shell-and-tube
design that approximates isothermal operation or even one that imposes a
decreasing temperature profile is the logical choice for the process. The
required volume for this reactor will be on the order of 24m3 as per
Example 2.4. The specific choice of number of tubes, tube length, and tube
diameter depends on the fluid properties, the economics of manufacturing
heat exchangers, and possibly even the prejudgment of plant management
regarding minimum tube diameters.
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FIGURE 6.2 Piecewise-constant approximations to an optimal temperature profile for consecutive
reactions: (a) 10-zone optimization; (b) 99-zone optimization.
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6.2 A COMPETITIVE REACTION SEQUENCE

Suppose the reactions are elementary, competitive, and of the form

A �!kI B

A �!kII C

ð6:6Þ

The rate constants are given by Equation (6.3), and both reactions are endother-
mic as per Equation (6.4). The flow diagram is identical to that in Figure 6.1,
and all cost factors are the same as for the consecutive reaction examples.
Table 6.1 also applies, and there is an interior optimum for any of the ideal reac-
tor types.

Example 6.7: Determine optimal reactor volumes and operating tempera-
tures for the three ideal reactors: a single CSTR, an isothermal PFR, and
an adiabatic PFR.

Solution: The computer programs used for the consecutive reaction
examples can be used. All that is needed is to modify the subroutine
Reactor. Results are shown in Table 6.5.

All other things being equal, as they are in this contrived example, the com-
petitive reaction sequence of Equation (6.6) is superior for the manufacture of
B than the consecutive sequence of Equation (6.1). The CSTR remains a
doubtful choice, but the isothermal PFR is now better than the adiabatic
PFR. The reason for this can be understood by repeating Example 6.5 for
the competitive reaction sequence.

Example 6.8: Find the optimal temperature profile, T(t), that maximizes
the concentration of component B in the competitive reaction sequence of
Equation (6.6) for a piston flow reactor subject to the constraint that �tt¼ 1.8 h.

Solution: The computer program used for Example 6.5 will work with
minor changes. It is a good idea to start with a small number of zones until
you get some feel for the shape of the profile. This allows you to input a

TABLE 6.5 Comparison of Ideal Reactors for Competitive,
Endothermic Reactions

Single CSTR Isothermal PFR Adiabatic PFR

Tin, K 411 388 412
Tout, K 411 388 382
V, m3 20.9 13.0 14.1
W, kg/h 6626 6420 6452
Unit cost, $/kg 1.8944 1.8716 1.8772
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reasonable starting estimate for the profile and greatly speeds convergence
when the number of zones is large. It also ensures that you converge to a
local optimum and miss a better, global optimum that, under quite rare
circumstances, may be lurking somewhere.

Results are shown in Figure 6.3.

The optimal profile for the competitive reaction pair is an increasing function
of t (or z). An adiabatic temperature profile is a decreasing function when the
reactions are endothermic, so it is obviously worse than the constant tempera-
ture, isothermal case. However, reverse the signs on the heats of reactions,
and the adiabatic profile is preferred although still suboptimal.

PROBLEMS

6.1. Repeat Example 6.2 but change all the molecular weights to 100. Explain
your results.

6.2. Determine the minimum operating cost for the process of Example 6.2
when the reactor consists of two equal-volume CSTRs in series. The capi-
tal cost per reactor is the same as for a single reactor.
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FIGURE 6.3 Piecewise-constant approximations to an optimal temperature profile for competitive
reactions: (a) 10-zone optimization; (b) 99-zone optimization.
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6.3. Add a parameter to Problem 6.2 and study the case where the CSTRs can
have different volumes.

6.4. The following sets of rate constants give nearly the same values for kI
and kII at 360K:

kI kII

4:2� 105 expð�5000=TÞ 1:04� 105 expð�6000=TÞ
4:5� 1011 expð�10000=TÞ 1:8� 1012 expð�12000=TÞ
5:2� 1023 expð�20000=TÞ 5:4� 1026 expð�24000=TÞ

There are nine possible combinations of rate constants. Pick (or be
assigned) a combination other than the base case of Equation (6.3) that
was used in the worked examples. For the new combination:
(a) Do a comprehensive search similar to that shown in Table 6.2 for

the case of a single CSTR. Find the volume and temperature that
minimizes the total cost. Compare the relative flatness or steepness
of the minimum to that of the base case.

(b) Repeat the comparison of reactor types as in Example 6.4.
(c) Determine the optimum set of temperatures for a six-

zone reactor as in Example 6.4. Discuss the shape of the profile
compared with that of the base case. Computer heroes may dupli-
cate the 99-zone case instead.

6.5. Repeat Example 6.5 for the three-parameter problem consisting of two
temperature zones, but with a variable zone length, and with �tt fixed at
3 h. Try a relatively short and hot first zone.

6.6. Work the five-parameter problem consisting of three variable-length zones.
6.7. Repeat Example 6.5 using 10 zones of equal length but impose the

constraint that no zone temperature can exceed 373K.
6.8. Determine the best value for Tin for an adiabatic reactor for the exother-

mic case of the competitive reactions in Equation (6.6).
6.9. Compare the (unconstrained) optimal temperature profiles of 10-zone

PFRs for the following cases where: (a) the reactions are consecutive
as per Equation (6.1) and endothermic; (b) the reactions are consecutive
and exothermic; (c) the reactions are competitive as per Equation (6.6)
and endothermic; and (d) the reactions are competitive and exothermic.

6.10. Determine the best two-zone PFR strategy for the competitive, endother-
mic reactions of Equation (6.6).

6.11. Design a shell-and-tube reactor that has a volume of 24m3 and evaluate
its performance as the reactor element in the process of Example 6.2. Use
tubes with an i.d. of 0.0254m and a length of 5m. Assume components
A, B, and C all have a specific heat of 1.9 kJ/(kgEK) and a thermal con-
ductivity of 0.15W/(mEK). Assume Tin¼ 70�C. Run the reaction on the
tube side and assume that the shell-side temperature is constant (e.g., use
condensing steam). Do the consecutive, endothermic case.
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6.12. Extend Problem 6.12 to a two-zone shell-and-tube reactor with different
shell-side temperatures in the zones.

6.13. Switch to oil heat in Problem 6.11 in order to better tailor the tempera-
ture profile down the tube. Choices include co- or countercurrent flow,
the oil flow rate, and the oil inlet temperature.

6.14. Can the calculus of variations be used to find the optimal temperature
profile in Example 6.5?

SUGGESTIONS FOR FURTHER READING

A good place to begin a more comprehensive study of chemical engineering
optimization is

Edgar, T. F. and Himmelblau, D. M., Optimization of Chemical Processes, 2nd ed.,
McGraw-Hill, New York, 2001.

Two books with a broader engineering focus that have also survived the test of
time are

Rao, S. S., Engineering Optimization: Theory and Practice, 3rd ed., John Wiley & Sons,
New York, 1996.

Fletcher, R., Practical Methods of Optimization, 2nd ed., John Wiley & Sons, New York, 2000.

The bible of numerical methods remains

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes in
Fortran 77: The Art of Scientific Computing, Vol. 1, 2nd ed., Cambridge University Press,
New York, 1992.

Versions of Volume I exist for C, Basic, and Pascal. Matlab enthusiasts will find
some coverage of optimization (and nonlinear regression) techniques in

Constantinides, A. and Mostoufi, N., Numerical Methods for Chemical Engineers with Matlab
Applications, Prentice Hall, New York, 1999.

Mathematica fans may consult

Bhatti, M. A., Practical Optimization Methods with Mathematica Applications, Springer-Verlag,
New York, 1999.

APPENDIX 6: NUMERICAL OPTIMIZATION
TECHNIQUES

Optimization is a complex and sometimes difficult topic. Many books and
countless research papers have been written about it. This appendix section
discusses parameter optimization. There is a function, Fðp1, p2, . . .Þ, called the
objective function that depends on the parameters p1, p2, . . . : The goal is to deter-
mine the best values for the parameters, best in the sense that these parameter
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values will maximize or minimize F. We normally assume that the parameters
can assume any values that are physically possible. For the single CSTR of
Example 6.2, the two parameters are T and �tt and the objective function is the
unit cost of production. The parameters must be positive, but there are no
other restrictions, and the optimization is unconstrained. Suppose that the
reactor has a limit on operating temperature, say 373K. The problem becomes
a constrained optimization, but the constraint has no effect on the result.
The constraint is not active. Lower the temperature limit to 360K, and it
becomes active. It then forces a slightly lower temperature (namely 360K)
and slightly higher volume than found for the unconstrained optimization in
Example 6.2. Multidimensional optimization problems usually have some
active constraints.

Numerical optimization techniques find local optima. They will find the top
of a hill or the bottom of a valley. In constrained optimizations, they may take
you to a boundary of the parameter space. The objective function will get worse
when moving a small amount in any direction. However, there may be a higher
hill or a deeper valley or even a better boundary. There can be no guarantee that
the global minimum will be found unless Fð p1, p2, . . .Þ belongs to a restricted
class of functions. If Fð p1, p2, . . .Þ is linear in its parameters, there are no interior
optima, and no hills or valleys, just slopes. Linear programming techniques will
then find the global optimum that will be at an intersection of constraints.
However, problems in reactor design can be aggressively nonlinear, and interior
optima are fairly common.

A.6.1 Random Searches

The random search technique can be applied to constrained or uncon-
strained optimization problems involving any number of parameters. The solu-
tion starts with an initial set of parameters that satisfies the constraints. A small
random change is made in each parameter to create a new set of parameters,
and the objective function is calculated. If the new set satisfies all the con-
straints and gives a better value for the objective function, it is accepted and
becomes the starting point for another set of random changes. Otherwise,
the old parameter set is retained as the starting point for the next attempt.
The key to the method is the step that sets the new, trial values for the
parameters:

ptrial ¼ pold þ�pð0:5�RNDÞ ð6:7Þ

where RND is a random number uniformly distributed over the range 0–1. It is
called RAND in C and RAN in Fortran. Equation (6.7) generates values of ptrial
in the range ptrial 
�p =2: Large values of �p are desirable early in the search
and small values are desirable toward the end, but the algorithm will eventually
converge to a local optimum for any �p. Repeated numerical experiments with
different initial values can be used to search for other local optima.
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A.6.2 Golden Section Search

The golden section search is the optimization analog of a binary search. It is
used for functions of a single variable, F(a). It is faster than a random search,
but the difference in computing time will be trivial unless the objective function
is extremely hard to evaluate.

To know that a minimum exists, we must find three points amin<aint<amax
such that F(aint) is less than either F(amin) or F(amax). Suppose this has been
done. Now choose another point amin<anew<amax and evaluate F(anew). If
F(anew)<F(aint), then anew becomes the new interior point. Otherwise anew will
become one of the new endpoints. Whichever the outcome, the result is a set
of three points with an interior minimum and with a smaller distance between
the endpoints than before. This procedure continues until the distance between
amin and amax has been narrowed to an acceptable extent. The way of choosing
anew is not of critical importance, but the range narrows fastest if anew is chosen
to be at 0.38197 of the distance between the interior point and the more distant
of the endpoints amin and amax.

A.6.3 Sophisticated Methods of Parameter Optimization

If the objective function is very complex or if the optimization must be repeated
a great many times, the random search method should be replaced with some-
thing more efficient computationally. For a minimization problem, all the meth-
ods search for a way downhill. One group of methods uses nothing but function
evaluations to find the way. Another group combines function evaluations with
derivative calculations—e.g., @F=@a—to speed the search. All these methods are
complicated. The easiest to implement is the simplex method of Nelder and
Mead. (It is different than the simplex algorithm used to solve linear program-
ming problems.) A subroutine is given in the book by Press et al.A1 Other
sources and codes for other languages are available on the web and in some
versions of commercial packages, e.g., Matlab. More efficient but more com-
plicated, gradient-based methods are available from the same sources.

A.6.4 Functional Optimization

A function f ðxÞ starts with a number, x, performs mathematical operations, and
produces another number, f. It transforms one number into another. A func-
tional starts with a function, performs mathematical operations, and produces
a number. It transforms an entire function into a single number. The simplest
and most common example of a functional is a definite integral. The goal in
Example 6.5 was to maximize the integral

bout � bin ¼
Z�tt
0

R Bða, b,TÞ dt ð6:8Þ
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Equation (6.8) is a functional. There are several functions, aðtÞ, bðtÞ, TðtÞ, that
contribute to the integral, but TðtÞ is the one function directly available to the
reactor designer as a manipulated variable. Functional optimization is used to
determine the best function TðtÞ. Specification of this function requires that
TðtÞ be known at every point within the interval 0<�tt<L.

Some problems in functional optimization can be solved analytically. A topic
known as the calculus of variations is included in most courses in advanced cal-
culus. It provides ground rules for optimizing integral functionals. The ground
rules are necessary conditions analogous to the derivative conditions (i.e.,
df =dx ¼ 0) used in the optimization of ordinary functions. In principle, they
allow an exact solution; but the solution may only be implicit or not in a
useful form. For problems involving Arrhenius temperature dependence, a
numerical solution will be needed sooner or later.

Example 6.5 converted the functional optimization problem to a parameter
optimization problem. The function TðtÞ was assumed to be piecewise-constant.
There were N pieces, the nth piece was at temperature Tn, and these N tempera-
tures became the optimization parameters. There are other techniques for
numerical functional optimization, including some gradient methods; but con-
version to parameter optimization is by far the easiest to implement and the
most reliable. In the limit as N grows large, the numerical solution will presum-
ably converge to the true solution. In Example 6.5, no constraints were imposed
on the temperature, and the parameter optimization appears to be converging to
a smooth function with a high-temperature spike at the inlet. In constrained
optimizations, the optimal solution may be at one of the constraints and then
suddenly shift to the opposite constraint. This is called bang-bang control and
is studied in courses in advanced process control. The best strategy for a con-
strained optimization may be to have a small number of different-length zones
with the temperature in each zone being at either one constraint or the other.
This possibility is easily explored using parameter optimization.

Reference

A1. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes
in Fortran 77: The Art of Scientific Computing, Vol. 1, 2nd ed., Cambridge University
Press, New York, 1992.
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CHAPTER 7

FITTING RATE DATA AND
USING THERMODYNAMICS

Chapter 7 has two goals. The first is to show how reaction rate expressions,
R (a, b, . . . ,T ), are obtained from experimental data. The second is to review
the thermodynamic underpinnings for calculating reaction equilibria, heats
of reactions and heat capacities needed for the rigorous design of chemical
reactors.

7.1 ANALYSIS OF RATE DATA

With two adjustable constants, you can fit a straight line. With five, you can fit
an elephant. With eight, you can fit a running elephant or a cosmological model
of the universe.1

Section 5.1 shows how nonlinear regression analysis is used to model the tem-
perature dependence of reaction rate constants. The functional form of the reac-
tion rate was assumed; e.g., R ¼ kab for an irreversible, second-order reaction.
The rate constant k was measured at several temperatures and was fit to an
Arrhenius form, k ¼ k0 expð�Tact=TÞ: This section expands the use of nonlinear
regression to fit the compositional and temperature dependence of reaction
rates. The general reaction is

�AAþ �BBþ � � �  ! �RRþ �SSþ � � � ð7:1Þ
and the rate expression can take several possible forms.

If the reaction is known to be elementary, then

R ¼ kf ½A���A ½B���B � � � � kr½R��R ½S��S � � � ð7:2Þ

where the stoichiometric coefficients are known small integers. Experimental
data will be used to determine the rate constants kf and kr. A more general
form for the rate expression is

R ¼ kf ½A�m½B�n � � � � kr½R�r½S�s � � � ð7:3Þ
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where m, n, . . . , r, s, . . . are empirical constants that may or may not be integers.
These constants, together with kf and kr, must be determined from the data.
An alternative form that may fit the data reasonably well is

R ¼ k½A�m½B�n½R�r½S�s � � � ð7:4Þ

where some of the exponents (e.g. r, s, . . . ) can be negative. The virtue of this
form is that it has one fewer empirical constants than Equation (7.3). Its fault
is that it lacks the mechanistic basis of Equation (7.3) and will not perform as
well near the equilibrium point of a reversible reaction.

For enzymatic and other heterogeneously catalyzed reactions, there may be
competition for active sites. This leads to rate expressions with forms such as

R ¼ k½A�m½B�n½R�r½S�s � � �
ð1þ kA½A� þ kB½B� þ kR½R� þ kS½S� þ :::Þ ð7:5Þ

All the rate constants should be positive so the denominator in this expression
will always retard the reaction. The same denominator can be used with
Equation (7.3) to model reversible heterogeneous reactions:

R ¼ kf ½A�m½B�n � � � � kr½R�r½S�s � � �
ð1þ kA½A� þ kB½B� þ kR½R� þ kS½S� þ :::Þ ð7:6Þ

More complicated rate expressions are possible. For example, the denominator
may be squared or square roots can be inserted here and there based on theore-
tical considerations. The denominator may include a term kI ½I� to account for
compounds that are nominally inert and do not appear in Equation (7.1) but
that occupy active sites on the catalyst and thus retard the rate. The forward
and reverse rate constants will be functions of temperature and are usually mod-
eled using an Arrhenius form. The more complex kinetic models have enough
adjustable parameters to fit a stampede of elephants. Careful analysis is
needed to avoid being crushed underfoot.

7.1.1 Least-Squares Analysis

The goal is to determine a functional form for R (a, b, . . . , T ) that can be used
to design reactors. The simplest case is to suppose that the reaction rate R has
been measured at various values a, b, . . . , T. A CSTR can be used for these mea-
surements as discussed in Section 7.1.2. Suppose J data points have been mea-
sured. The jth point in the data is denoted as R data(aj, bj, . . . , Tj ) where aj,
bj, . . . ,Tj are experimentally observed values. Corresponding to this measured
reaction rate will be a predicted rate, Rmodel(aj, bj, . . . ,Tj ). The predicted rate
depends on the parameters of the model e.g., on k,m, n, r, s, . . . in Equation
(7.4) and these parameters are chosen to obtain the best fit of the experimental
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data to the model. Specifically, we seek values for k, m, n, r, s, . . . that will mini-
mize the sum-of-squares:

S2 ¼
XJ
j¼1
½R dataðaj, bj, . . . ,TjÞ �R modelðaj , bj, . . . ,TjÞ�2

¼
XJ
j¼1
½ðR dataÞ;�R modelðk, m, n, r, s, . . . , k0,TactÞ�2

ð7:7Þ

The first equation shows that the data and model predictions are compared at
the same values of the (nominally) independent variables. The second equation
explicitly shows that the sum-of-squares depends on the parameters in the
model.

Any of Equations (7.2)–(7.6) may be used as the model. The parameters in
the model are adjusted to minimize the sum-of-squares using any of the optimi-
zation methods discussed in Chapter 6. An analytical solution to the minimiza-
tion problem is possible when the model has a linear form. The fitting process is
then known as linear regression analysis. This book emphasizes nonlinear regres-
sion because it is generally more suitable for fitting rate data. However, rate
expressions can often be transformed to a linear form, and there are many
canned computer programs for linear regression analysis. These programs can
be useful for obtaining preliminary estimates of the model parameters that
can subsequently be refined using nonlinear regression. Appendix 7 gives the
rudiments of linear regression analysis.

When kinetic measurements are made in batch or piston flow reactors, the
reaction rate is not determined directly. Instead, an integral of the rate is mea-
sured, and the rate itself must be inferred. The general approach is as follows:

1. Conduct kinetic experiments and measure some response of the system, such
as aout. Call this ‘‘data.’’

2. Pick a rate expression and assume values for its parameters. Solve the reactor
design equations to predict the response. Call this ‘‘prediction.’’

3. Adjust the parameters to minimize the sum-of-squares:

S2 ¼
XJ
j¼1
½data� prediction�2 ð7:8Þ

The sum of squares as defined by Equation 7.8 is the general form for the
objective function in nonlinear regression. Measurements are made. Models
are postulated. Optimization techniques are used to adjust the model parameters
so that the sum-of-squares is minimized. There is no requirement that the model
represent a simple reactor such as a CSTR or isothermal PFR. If necessary, the
model could represent a nonisothermal PFR with variable physical properties. It
could be one of the distributed parameter models in Chapters 8 or 9. The model
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parameters can include the kinetic parameters in Equations (7.2)–(7.6) together
with unknown transport properties such as a heat transfer coefficient. However,
the simpler the better.

To fit the parameters of a model, there must be at least as many data as there
are parameters. There should be many more data. The case where the number
of data equals the number of points can lead to exact but spurious fits. Even
a perfect model cannot be expected to fit all the data because of experimental
error. The residual sum-of-squares S2

residual is the value of S2 after the model
has been fit to the data. It is used to calculate the residual standard deviation:

�residual ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
residual

J � 1

s
ð7:9Þ

where J is the number of data points. When �residual equals what would be
expected from experimental error, the model has done all it should do. Values
of �residual less than expected experimental error mean that there are too few
data or that the model has too many adjustable parameters.

A good model is consistent with physical phenomena (i.e., R has a physically
plausible form) and reduces �residual to experimental error using as few adjustable
parameters as possible. There is a philosophical principle known as Occam’s
razor that is particularly appropriate to statistical data analysis: when two the-
ories can explain the data, the simpler theory is preferred. In complex reactions,
particularly heterogeneous reactions, several models may fit the data equally
well. As seen in Section 5.1 on the various forms of Arrhenius temperature
dependence, it is usually impossible to distinguish between mechanisms based
on goodness of fit. The choice of the simplest form of Arrhenius behavior
(m¼ 0) is based on Occam’s razor.

The experimental basis for the model should span a broader range of the
independent variables than will be encountered in the use of the model. To
develop a comprehensive model, it is often necessary to add components to
the feed in amounts that would not normally be present. For A ! B, the con-
centration of B is correlated to that of A: ain � a ¼ b� bin: Varying bin will
lessen the correlation and will help distinguish between rate expressions such
as R ¼ ka or R ¼ kf a� krb or R ¼ ka=ð1þ kBbÞ: Books and courses on
the design of experiments can provide guidance, although our need for forma-
lized techniques is less than that in the social and biological sciences, where
experiments are much more difficult to control and reproduce.

7.1.2 Stirred Tanks and Differential Reactors

A component balance for a steady-state CSTR gives

R Aðaout, bout, . . . ,ToutÞ ¼ Qinain �Qoutaout
V

¼ Qinain=Qout � aout
�tt

ð7:10Þ
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where �tt ¼ V=Qout. Equation (7.10) does not require constant density, but if it
varies significantly, Qout or �out will have to be measured or calculated from an
equation of state. In a normal experimental design, the inlet conditions Qin,
ain, bin, . . . are specified, and outlet concentrations aout, bout, . . . are measured.
The experimental plan will also specify approximate values for Tout. The reaction
rate for a key component is calculated using Equation (7.10), and the results are
regressed against measured values of aout, bout, . . . , and Tout.

Example 7.1: The following data have been measured in a CSTR for a
reaction having the form A!B.

Run
number ain bin aout bout

1 0.200 0 0.088 0.088
2 0.400 0 0.191 0.206
3 0.600 0 0.307 0.291
4 0.800 0 0.390 0.400
5 1.000 0 0.493 0.506

The density is constant and the mean residence time is 2 h, as determined
from the known volume of the reactor and the outlet flow rate. The tempera-
ture was the same for all runs.

Solution: An overall material balance gives ain þ bin¼ aout þ bout. The data
are obviously imperfect, but they will be accepted as is for this example. The
following program fragment uses the random search technique to fit the
general form R ¼ kamoutbnout:
DefDbl A-Z
Dim ain(100), aout(100), bout(100)

’Data
ain(1)¼0.2: aout(1)¼0.088: bout(1)¼0.088
ain(2)¼0.4: aout(2)¼0.191: bout(2)¼0.206
ain(3)¼0.6: aout(3)¼0.307: bout(3)¼0.291
ain(4)¼0.8: aout(4)¼0.390: bout(4)¼0.400
ain(5)¼1.0: aout(5)¼0.493: bout(5)¼0.506

tbar¼2
Jdata¼5

bestsd¼1
Ntrials¼10000
k¼1
m¼0
n¼0

For nr¼1 To Ntrials
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ss¼0
For j¼1 To Jdata

RA¼(aout(j) - ain(j))/tbar
ss¼ss þ (RA þ k * aout(j)^ m * bout(j)^ n)^ 2

Next
sd¼Sqr(ss/(Jdata - 1))
If sd < bestsd Then

bestk¼k
bestm¼m
bestn¼n
bestsd¼sd

End If
’m¼bestm þ 0.05 * (0.5 - Rnd) ’adjusts m randomly
’n¼bestn þ 0.05 * (0.5 - Rnd) ’adjusts n randomly
k¼bestk þ 0.05 * (0.5 - Rnd) ’adjusts k randomly

Next nr
’Output results

As given above, the statements that adjust the exponents m and n have
been ‘‘commented out’’ and the initial values for these exponents are zero.
This means that the program will fit the data to R ¼ k: This is the form
for a zero-order reaction, but the real purpose of running this case is to calcu-
late the standard deviation of the experimental rate data. The object of the
fitting procedure is to add functionality to the rate expression to reduce
the standard deviation in a manner that is consistent with physical insight.
Results for the zero-order fit are shown as Case 1 in the following data:

Case k m n �

1 0.153 0 0 0.07841
2 0.515 1 0 0.00871
3 0.490 0.947 0 0.00813
4 0.496 1 �0.040 0.00838
5 0.478 �0.086 1.024 0.00468
6 0.507 0 1 0.00602

Results for a first-order fit—corresponding to Equation (7.2) for an irrever-
sible first-order reaction—are shown as Case 2. This case is obtained by
setting m¼ 1 as an initial value in the program fragment. Case 2 reduces
the standard deviation of data versus model by nearly an order of magnitude
using a single, semitheoretical parameter. The residual standard deviation
is probably as low as can be expected given the probable errors in the
concentration measurements, but the remaining cases explore various embel-
lishments to the model. Case 3 allows m to vary by enabling the statement
m¼bestm þ 0.05 * (0.5 – Rnd). The results show a small reduction in
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the standard deviation. A statistician could attempt to see if the change from
m¼ 1 to m¼ 0.947 was statistically significant. A chemist or chemical engineer
would most likely prefer to keep m¼ 1. Case 4 sets m¼ 1 but now allows n to
vary. The small negative exponent might remind the experimenter that the
reaction could be reversible, but the effect is too small to be of much concern.
Cases 5 and 6 illustrate a weakness of statistic analysis. Case 5 is obtained by
minimizing the sum-of-squares when k,m, and n are all allowed to vary. The
reaction rate better correlates with the product concentration than the reac-
tant concentration! Case 6 carries this physical absurdity to an extreme by
showing that a first-order dependence on product concentration gives a
good fit to the data for an essentially irreversible reaction. The reason for
these spurious fits is that aout and bout are strongly correlated.

The conclusion, based on a mixture of physical insight and statistical
analysis, is that R ¼ 0:515a is close to the truth, but further experiments
can be run.

Example 7.2: The nagging concern that the reaction of Example 7.1 may
somehow depend on the product concentration prompted the following
additional runs. These runs add product to the feed in order to destroy the
correlation between aout and bout.

Run
number ain bin aout bout

6 0.500 0.200 0.248 0.430
7 0.500 0.400 0.246 0.669
8 0.500 0.600 0.239 0.854
9 0.500 0.800 0.248 1.052
10 0.500 1.000 0.247 1.233

Solution: The new data are combined with the old, and the various cases
are rerun. The results are:

Case k m n �

1 0.140 0.000 0.000 0.05406
2 0.516 1.000 0.000 0.00636
3 0.496 0.963 0.000 0.00607
4 0.514 1.000 �0.007 0.00636
5 0.403 0.963 �0.007 0.00605
6 0.180 0.000 1.000 0.09138

The retrograde behavior of Case 5 has vanished, and Case 6 has become worse
than the zero-order fit of Case 1. The recommended fit for the reaction rate at
this point in the analysis, R ¼ 0:516a, is very similar to the original recom-
mendation, but confidence in it has increased.
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We turn now to the issue of material balance closure. Material balances can be
perfect when one of the flow rates and one of the components is unmeasured. The
keen experimenter for Examples 7.1 and 7.2 measured the outlet concentration of
both reactive components and consequently obtained a less-than-perfect balance.
Should the measured concentrations be adjusted to achieve closure and, if so,
how should the adjustment be done? The general rule is that a material balance
should be closed if it is reasonably possible to do so. It is necessary to know the
number of inlet and outlet flow streams and the various components in these
streams. The present example has one inlet stream, one outlet stream, and
three components. The components are A, B, and I, where I represents all inerts.

Closure normally begins by satisfying the overall mass balance; i.e., by equat-
ing the input and outlet mass flow rates for a steady-state system. For the present
case, the outlet flow was measured. The inlet flow was unmeasured so it must be
assumed to be equal to the outlet flow. We suppose that A and B are the only
reactive components. Then, for a constant-density system, it must be that

ain þ bin ¼ aout þ bout ð7:11Þ
This balance is not quite satisfied by the experimental data, so an adjustment is
needed. Define material balance fudge factors by

fin fout ¼ ain þ bin
aout þ bout

� �
measured

ð7:12Þ

and then adjust the component concentrations using

½ain�adjusted ¼ ½ain�measured=fin
and

½aout�adjusted ¼ fout½aout�measured
ð7:13Þ

with similar adjustments for component B. When the adjustments are made,
Equation (7.11) will be satisfied. The apportionment of the total imbalance
between the inlet and outlet streams is based on judgment regarding the relative
accuracy of the measurements. If the inlet measurements are very accurate—i.e.,
when the concentrations are set by well-calibrated proportioning pumps—set
fin¼ 1 and let fout absorb the whole error. If the errors are similar, the two factors
are equal to the square root of the concentration ratio in Equation (7.12).

Example 7.3: Close the material balance and repeat Example 7.2.

Solution: Suppose fin¼ 1 so that fout is equal to the concentration ratio in
Equation (7.12). Equations (7.13) are applied to each experimental run
using the value of fout appropriate to that run. The added code is

For j¼1 To Jdata
fudgeout¼(ain(j) þ bin(j))/(aout(j) þ bout(j))
aout(j)¼fudgeout * aout(j)
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bout(j)¼fudgeout* bout(j)
Next j

The results show that closing the material balance improves the fit. The
recommended fit becomes R ¼ 0:509a: It is shown in Figure 7.1. As a safe-
guard against elephant stampedes and other hazards of statistical analysis,
a graphical view of a correlation is always recommended. However, graphical
techniques are not recommended for the fitting process.

Case k m n �

1 0.139 0.000 0.000 0.03770
2 0.509 1.000 0.000 0.00598
3 0.509 1.000 0.000 0.00598
4 0.515 1.000 0.018 0.00583
5 0.516 1.002 0.018 0.00583
6 0.178 0.000 1.000 0.09053

All these examples have treated kinetic data taken at a single temperature.
Most kinetic studies will include a variety of temperatures so that two parameters,
k0 and E/Rg¼Tact, are needed for each rate constant. The question now arises as
to whether all the data should be pooled in one glorious minimization, or if you
should conduct separate analyses at each temperature and then fit the resulting
rate constants to the Arrhenius form. The latter approach was used in Example
5.1 (although the preliminary work needed to find the rate constants was not
shown), and it has a major advantage over the combined approach. Suppose
Equation (7.4) is being fit to the data. Are the exponents m, n, . . . the same at
each temperature? If not, the reaction mechanism is changing and the possibility
of consecutive or competitive reactions should be explored. If the exponents are
the same within reasonable fitting accuracy, the data can be pooled or kept sepa-
rate as desired. Pooling will give the best overall fit, but a better fit in some
regions of the experimental space might be desirable for scaleup. Problem 7.3,
although for batch data, offers scope to try a variety of fitting strategies.

The CSTRs are wonderful for kinetic experiments since they allow a direct
determination of the reaction rate at known concentrations of the reactants.
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FIGURE 7.1 Final correlation for R (a).
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One other type of reactor allows this in principle. Differential reactors are so
short that concentrations and temperatures do not change appreciably from
their inlet values. However, the small change in concentration makes it very
hard to determine an accurate rate. The use of differential reactors is not recom-
mended. If a CSTR cannot be used, a batch or piston flow reactor is preferred
over a differential reactor even though the reaction rate is not measured directly
but must be inferred from measured outlet concentrations.

7.1.3 Batch and Piston Flow Reactors

Most kinetic experiments are run in batch reactors for the simple reason that
they are the easiest reactor to operate on a small, laboratory scale. Piston
flow reactors are essentially equivalent and are implicitly included in the present
treatment. This treatment is confined to constant-density, isothermal reactions,
with nonisothermal and other more complicated cases being treated in Section
7.1.4. The batch equation for component A is

da

dt
¼ R Aða, b, . . . ,TÞ ð7:14Þ

subject to the initial condition that a¼ a0 at t¼ 0.
Batch and piston flow reactors are called integral reactors because the rate

expression must be integrated to determine reactor performance. When an inte-
gral reactor is used for a kinetic study, the procedure for determining parameters
in the rate expression uses Equation (7.8) for the regression analysis. Do not
attempt to differentiate the experimental data to allow the use of Equation
(7.7). Instead, assume a functional form for R A together with initial guesses
for the parameters. Equation (7.14) is integrated to obtain predictions for a(t)
at the various experimental values of t. The predictions are compared with the
experimental data using Equation (7.8), and the assumed parameters are
adjusted until the sum-of-squares is a minimum. The various caveats regarding
overfitting of the data apply as usual.

Example 7.4: The following data have been obtained in a constant-volume,
isothermal reactor for a reaction with known stoichiometry: A! B þ C. The
initial concentration of component A was 2200 mol/m3. No B or C was
charged to the reactor.

Sample
number j

Time t,
min

Fraction unreacted
YA

1 0.4 0.683
2 0.6 0.590
3 0.8 0.513
4 1.0 0.445
5 1.2 0.381

218 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



Solution: A suitable rate expression is R A¼�kan. Equation (7.14) can be
integrated analytically or numerically. Equation (7.8) takes the following form
for n 6¼ 1:

S2 ¼
XJ
j¼1

YAð jÞ � 1

1þ ðn� 1Þan�10 ktj

� � 1
n�1

 !2

where ti is the time at which the ith sample was taken. The special form for
n¼ 1 is

S2 ¼
XJ
j¼1
YAð jÞ � expð�ktjÞ2

There are two adjustable parameters, n and k. Results for various kinetic
models are shown below and are plotted in Figure 7.2.

Reaction
order n

Rate
constant an�10 k

Standard
deviation �

0 0.572 0.06697
1 0.846 0.02024
1.53 1.024 0.00646
2 1.220 0.01561

The fit with n¼ 1.53 is quite good. The results for the fits with n¼ 1 and n¼ 2
show systematic deviations between the data and the fitted model. The reaction
order is approximately 1.5, and this value could be used instead of n¼ 1.53
with nearly the same goodness of fit, �¼ 0.00654 versus 0.00646. This result
should motivate a search for a mechanism that predicts an order of 1.5.
Absent such a mechanism, the best-fit value of 1.53 may as well be retained.

The curves in Figure 7.2 plot the natural variable a(t)/a0, versus time.
Although this accurately portrays the goodness of fit, there is a classical techni-
que for plotting batch data that is more sensitive to reaction order for irrever-
sible nth-order reactions. The reaction order is assumed and the experimental
data are transformed to one of the following forms:

aðtÞ
a0

� �1�n
�1 for n 6¼ 1 and � ln

aðtÞ
a0

� �
for n ¼ 1 ð7:15Þ

Plot the transformed variable versus time. A straight line is a visually appealing
demonstration that the correct value of n has been found. Figure 7.3 shows these
plots for the data of Example 7.4. The central line in Figure 7.3 is for n¼ 1.53.
The upper line shows the curvature in the data that results from assuming an
incorrect order of n¼ 2, and the lower line is for n¼ 1.
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The reaction of Example 7.4 is not elementary and could involve short-
lived intermediates, but it was treated as a single reaction. We turn now to
the problem of fitting kinetic data to multiple reactions. The multiple reac-
tions listed in Section 2.1 are consecutive, competitive, independent, and rever-
sible. Of these, the consecutive and competitive types, and combinations of
them, pose special problems with respect to kinetic studies. These will be
discussed in the context of integral reactors, although the concepts are directly
applicable to the CSTRs of Section 7.1.2 and to the complex reactors of
Section 7.1.4.
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FIGURE 7.2 Experiment versus fitted batch reaction data: (a) first-order fit; (b) second-order fit;
(c) 1.53-order fit.
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Consecutive Reactions. The prototypical reaction is A ! B ! C, although
reactions like Equation (6.2) can be treated in the same fashion. It may be
that the first reaction is independent of the second. This is the normal case
when the first reaction is irreversible and homogeneous (so that component B
does not occupy an active site). A kinetic study can then measure the starting
and final concentrations of component A (or of A1 and A2 as per Equation
(6.2)), and these data can be used to fit the rate expression. The kinetics of
the second reaction can be measured independently by reacting pure B. Thus,
it may be possible to perform completely separate kinetic studies of the reactions
in a consecutive sequence. The data are fit using two separate versions of
Equation (7.8), one for each reaction. The ‘‘data’’ will be the experimental
values of aout for one sum-of-squares and bout for another.

If the reactions cannot be separated, it is not immediately clear as to what
sum-of-squares should be minimized to fit the data. Define

S2
A ¼

X
Data

½aexperiment � amodel �2 ð7:16Þ

with similar equations for S2
B and S2

C: If only bout has been measured, there is
no choice but to use S2

B to fit both reactions. If both aout and bout have been
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FIGURE 7.3 Classical graphical test for reaction order.
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measured, S2A can be used to find R for the first reaction. The fitted rate expres-
sion becomes part of the model used to calculate bout. The other part of the
model is the assumed rate expression for the second reaction, the parameters
of which are found by minimizing S2

B:

Example 7.5: Suppose the consecutive reactions 2A!B!C are
elementary. Determine the rate constants from the following experimental
data obtained with an isothermal, constant-volume batch reactor:

Time, min a(t) b(t)

15 1.246 0.305
30 0.905 0.347
45 0.715 0.319
60 0.587 0.268
75 0.499 0.221
90 0.435 0.181

The concentrations shown are dimensionless. Actual concentrations have
been divided by a0/2 so that the initial conditions are a¼ 2, b¼ 0 at t¼ 0.
The long-time value for c(t) is 1.0.

Solution: The component balances for the batch reaction are

da

dt
¼ �2kIa2

db

dt
¼ kIa2 � kIIb

Values for kI and kII are assumed and the above equations are integrated
subject to the initial conditions that a¼ 2, b¼ 0 at t¼ 0. The integration
gives the model predictions amodel(j) and bmodel(j). The random
search technique is used to determine optimal values for the rate constants
based on minimization of S2

A and S2
B: The following program fragment

shows the method used to adjust kI and kII during the random search. The
specific version shown is used to adjust kI based on the minimization of S2

A,
and those instructions concerned with the minimization of S2

B appear as
comments.

ssa¼0
ssb¼0
For j¼1 To Jdata

ssa¼ssa þ (adata(j) - amodel(j))^2
’ssb¼ssb þ (bdata(j) - bmodel(j))^2

Next
If ssa < bestssa Then
’If ssb < bestssb Then
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bestxk1¼xk1
’bestxk2¼xk2
bestssa¼ssa
’bestssb¼ssb

End If
xka¼bestxka þ 0.005 * (0.5 - Rnd)
’xkb¼bestxkb þ 0.005 * (0.5 - Rnd)

The results are

Minimization
method kI kII �A �B

Minimize S2
B 1.028 2.543 0.01234 0.00543

Minimize S2
A

and then S2
B 1.016 2.536 0.01116 0.00554

There is little difference between the two methods in the current example
since the data are of high quality. However, the sequential approach of
first minimizing S2A and then minimizing S2

B is somewhat better for this exam-
ple and is preferred in general. Figure 7.4 shows the correlation. It is
theoretically possible to fit both kI and kII by minimizing S2C, but this is
prone to great error.
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FIGURE 7.4 Combined data fit for consecutive reactions.
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Competitive Reactions. The prototypical reactions are A! B and A! C. At
least two of the three component concentrations should be measured and the
material balance closed. Functional forms for the two reaction rates are
assumed, and the parameters contained within these functional forms are
estimated by minimizing an objective function of the form wAS

2
A þ wBS2Bþ

wCS
2
C where wA, wB, and wC are positive weights that sum to 1. Weighting the

three sums-of-squares equally has given good results when the rates for the
two reactions are similar in magnitude.

7.1.4 Confounded Reactors

There are many attempts to extract kinetic information from pilot-plant or plant
data. This may sound good to parsimonious management, but it is seldom a
good alternative to doing the kinetic measurements under controlled conditions
in the laboratory. Laboratory studies can usually approximate isothermal
operation of an ideal reactor, while measurements on larger equipment will be
confounded by heat transfer and mixing effects. The laboratory studies can
cover a broader range of the experimental variables than is possible on the
larger scale. An idealized process development sequence has the following steps:

1. Determine physical property and kinetic data from the literature or labora-
tory studies.

2. Combine these data with estimates of the transport parameters to model the
desired full-scale plant.

3. Scale down the model to design a pilot plant that is scalable upward and that
will address the most significant uncertainties in the model of the full-scale
facility.

4. Operate the pilot plant to determine the uncertain parameters. These will
usually involve mixing and heat transfer, not basic kinetics.

5. Revise the model and build the full-scale plant.

Ideally, measurements on a pilot- or full-scale plant can be based on known
reaction kinetics. If the kinetics are unknown, experimental limitations will
usually prevent their accurate determination. The following section describes
how to make the best of a less-than-ideal situation.

A relatively simple example of a confounded reactor is a nonisothermal
batch reactor where the assumption of perfect mixing is reasonable but the
temperature varies with time or axial position. The experimental data are fit
to a model using Equation (7.8), but the model now requires a heat balance
to be solved simultaneously with the component balances. For a batch
reactor,

dðV�HÞ
dt

¼ �V �HRR �UAextðT � TextÞ ð7:17Þ
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Equation (7.17) introduces a number of new parameters, although physical
properties such as �HR should be available. If all the parameters are all
known with good accuracy, then the introduction of a heat balance merely
requires that the two parameters k0 and E/Rg¼Tact be used in place of each
rate constant. Unfortunately, parameters such as UAext have 
20% error
when calculated from standard correlations, and such errors are large enough
to confound the kinetics experiments. As a practical matter, Tout should be mea-
sured as an experimental response that is used to help determine UAext. Even so,
fitting the data can be extremely difficult. The sum-of-squares may have such a
shallow minimum that essentially identical fits can be achieved over a broad
range of parameter values.

Example 7.6: Suppose a liquid–solid, heterogeneously catalyzed reaction
is conducted in a jacketed, batch vessel. The reaction is A!B. The
reactants are in the liquid phase, and the catalyst is present as a slurry. The
adiabatic temperature rise for complete conversion is 50K. The reactants
are charged to the vessel at 298K. The jacket temperature is held constant
at 343K throughout the reaction. The following data were measured:

t, h a(t) T(t), K

0.4 0.967 313
0.8 0.887 327
1.0 0.816 333
1.2 0.719 339
1.4 0.581 345
1.6 0.423 352
1.8 0.254 358
2.2 0.059 362

where a(t)¼ [A]/[A]0. Use these data to fit a rate expression of the form
R A¼ ka/(1 þ kAa).
Solution: The equations to be solved are

da

dt
¼ �R A

and

dT

dt
¼ 50R A �U 0ðT � TextÞ

whereR A ¼ k0 expð�Tact=TÞa=ð1þ kAaÞ: There are four adjustable constants.
A least-squares minimization based on S2A heads toward kA<0. Stopping
the optimizer at kA� 0 gives k0 ¼ 5:37� 109 h�1, Tact¼ 7618K, kA¼ 0.006,
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and U 0 ¼ 0:818 h–1. The standard deviations are �A¼ 0.0017 and �T ¼ 1.8K.
The results are given below:

Time
Experimental data Fitted results Error-free results

t, h a(t) T(t), K a(t) T(t), K a(t) T(t), K

0.4 0.967 313 0.968 312 0.970 314
0.8 0.887 327 0.887 324 0.889 327
1.0 0.816 333 0.816 330 0.817 333
1.2 0.719 339 0.717 337 0.716 340
1.4 0.581 345 0.585 344 0.584 346
1.6 0.423 352 0.422 351 0.422 353
1.8 0.254 358 0.254 358 0.256 359
2.2 0.059 362 0.060 362 0.061 361

The fit is excellent. The parameters have physically plausible values, and
the residual standard deviations are reasonable compared to likely experimen-
tal error. If the data were from a real reactor, the fitted values would be
perceived as close to the truth, and it would be concluded that the kA term
is negligible. In fact, the data are not from a real reactor but were contrived
by adding random noise to a simulated process. The true parameters are
k0 ¼ 4� 109 h�1, Tact¼ 7500K, kA¼ 0.5, and U 0 ¼ 1 h–1, and the kA term
has a significant effect on the reaction rate. When the error-free results are
compared with the ‘‘data,’’ the standard deviation is higher than that of the
fitted model for concentration, �A¼ 0.0024, but lower for temperature,
�T¼ 0.9K. A fit closer to the truth can be achieved by using a weighted
sum of �A and �T as the objective function, but it would be hard to anticipate
the proper weighting in advance.

Confounded reactors are likely to stay confounded. Data correlations can
produce excellent fits and can be useful for predicting the response of the parti-
cular system on which the measurements were made to modest changes in
operating conditions. They are unlikely to produce any fundamental informa-
tion regarding the reaction rate, and have very limited utility in scaleup
calculations.

7.2 THERMODYNAMICS OF CHEMICAL
REACTIONS

Thermodynamics is a fundamental engineering science that has many applica-
tions to chemical reactor design. Here we give a summary of two important
topics: determination of heat capacities and heats of reaction for inclusion
in energy balances, and determination of free energies of reaction to calculate
equilibrium compositions and to aid in the determination of reverse reaction
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rates. The treatment in this book is brief and is intended as a review. Details are
available in any standard textbook on chemical engineering thermodynamics,
e.g., Smith et al.2 Tables 7.1 and 7.2 provide selected thermodynamic data for
use in the examples and for general use in reaction engineering.

7.2.1 Terms in the Energy Balance

The design equations for a chemical reactor contain several parameters that
are functions of temperature. Equation (7.17) applies to a nonisothermal
batch reactor and is exemplary of the physical property variations that can be
important even for ideal reactors. Note that the word ‘‘ideal’’ has three uses
in this chapter. In connection with reactors, ideal refers to the quality of
mixing in the vessel. Ideal batch reactors and CSTRs have perfect internal
mixing. Ideal PFRs are perfectly mixed in the radial direction and have no
mixing in the axial direction. These ideal reactors may be nonisothermal
and may have physical properties that vary with temperature, pressure, and
composition.

Ideal gases obey the ideal gas law, PV¼NtotalRgT, and have internal energies
that are a function of temperature alone. Ideal solutions have no enthalpy
change upon mixing and have a special form for the entropy change upon
mixing, �Smix¼Rg�xA ln xA, where xA is the mole fraction of component A
in the mixture. Ideal gases form ideal solutions. Some liquid mixtures approxi-
mate ideal solutions, but this is relatively uncommon.

Enthalpy. Enthalpy is calculated relative to a standard state that is normally
chosen as T0¼ 298.15K¼ 25�C and P0¼ 1 bar pressure. The change in enthalpy
with pressure can usually be ignored. For extreme changes in pressure, use

@H

@P

� �
T

¼ V � T @V

@T

� �
P

¼ Vð1� �T Þ ð7:18Þ

where � is the volumetric coefficient of thermal expansion. � can be evaluated
from the equation of state for the material and is zero for an ideal gas. The stan-
dard state for gases is actually that for a hypothetical, ideal gas. Real gases are
not perfectly ideal at 1 bar. Thus, H for a real gas at 298.15 K and 1 bar will not
be exactly zero. The difference is usually negligible.

The change in enthalpy with respect to temperature is not negligible. It can be
calculated for a pure component using the specific heat correlations like those in
Table 7.1:

H ¼
ZT
T0

CP dt ¼ Rg AT þ BT2

2� 103
þ CT3

3� 106
� 105D

T

� �T
T0

ð7:19Þ
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TABLE 7.1 Heat Capacities at Low Pressures

Tmax Std. A B C D

Gaseous alkanes
Methane CH4 1500 4.217 1.702 9.081 �2.164
Ethane C2H6 1500 6.369 1.131 19.225 �5.561
Propane C3H8 1500 9.001 1.213 28.785 �8.824
n-Butane C4H10 1500 11.928 1.935 36.915 �11.402
iso-Butane C4H10 1500 11.901 1.677 37.853 �11.945
n-Pentane C5H12 1500 14.731 2.464 45.351 �14.111
n-Hexane C6H14 1500 17.550 3.025 53.722 �16.791
n-Heptane C7H16 1500 20.361 3.570 62.127 �19.486
n-Octane C8H18 1500 23.174 4.108 70.567 �22.208

Gaseous alkenes
Ethylene C2H4 1500 5.325 1.424 14.394 �4.392
Propylene C3H6 1500 7.792 1.637 22.706 �6.915
1-Butene C4H8 1500 10.520 1.967 31.630 �9.873
1-Pentene C5H10 1500 13.437 2.691 39.753 �12.447
1-Hexene C6H12 1500 16.240 3.220 48.189 �15.157
1-Heptene C7H14 1500 19.053 3.768 56.588 �17.847
1-Octene C8H16 1500 21.868 4.324 64.960 �20.521

Organic gases
Acetaldehyde C2H4O 1000 6.506 1.693 17.978 �6.158
Acetylene C2H2 1500 5.253 6.132 1.952 �1.299
Benzene C6H6 1500 10.259 �0.206 39.064 �13.301
1,3-Butadiene C4H6 1500 10.720 2.734 26.786 �8.882
Cyclohexane C6H12 1500 13.121 3.876 63.249 �20.928
Ethanol C2H6O 1500 8.948 3.518 20.001 �6.002
Ethylbenzene C8H10 1500 15.993 1.124 55.380 �18.476
Ethylene oxide C2H4O 1000 5.784 0.385 23.463 �9.296
Formaldehyde CH2O 1500 4.191 2.264 7.022 �1.877
Methanol CH4O 1500 5.547 2.211 12.216 �3.450
Styrene C8H8 1500 15.534 2.050 50.192 �16.662
Toluene C7H8 1500 12.922 0.290 47.052 �15.716

Inorganic gases
Air 2000 3.509 3.355 0.575 �0.016
Ammonia NH3 1800 4.269 3.578 3.020 �0.186
Bromine Br2 3000 4.337 4.493 0.056 �0.154
Carbon monoxide CO 2500 3.507 3.376 0.557 �0.031
Carbon dioxide CO2 2000 4.467 5.457 1.045 �1.157
Carbon disulfide CS2 1800 5.532 6.311 0.805 �0.906
Chlorine Cl2 3000 4.082 4.442 0.089 �0.344
Hydrogen H2 3000 3.468 3.249 0.422 0.083
Hydrogen sulfide H2S 2300 4.114 3.931 1.490 �0.232
Hydrogen chloride HCl 2000 3.512 3.156 0.623 �0.151
Hydrogen cyanide HCN 2500 4.326 4.736 1.359 �0.725
Nitrogen N2 2000 3.502 3.280 0.593 �0.040
Nitrous oxide N2O 2000 4.646 5.328 1.214 �0.928
Nitric oxide NO 2000 3.590 3.387 0.629 �0.014
Nitrogen dioxide NO2 2000 4.447 4.982 1.195 �0.792

continued
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where the constants are given in Table 7.1. Note that these are molar heat
capacities. For reactions involving a change of phase, Equation (7.19) must be
modified to include the heat associated with the phase transition (e.g., a heat
of vaporization). The enthalpy term in the heat balance applies to the entire
reacting mixture, and thus heats of mixing may warrant inclusion. However,
they are usually small compared with the heats of reaction and are
generally ignored in reaction engineering calculations. The normal assumption
is that

H ¼ aHA þ bHB þ � � � þ iHI ¼
X
Species

aHA ð7:20Þ

where the summation extends over all reactants and inerts.

TABLE 7.1 Continued

Tmax Std. A B C D

Dinitrogen tetroxide N2O4 2000 9.198 11.660 2.257 �2.787
Oxygen O2 2000 3.535 3.639 0.506 �0.227
Sulfur dioxide SO2 2000 4.796 5.699 0.801 �1.015
Sulfur trioxide SO3 2000 6.094 8.060 1.056 �2.028
Water H2O 2000 4.038 3.470 1.450 0.121

Liquids
Ammonia NH3 373 9.718 22.626 �100.75 192.71
Aniline C6H7N 373 23.070 15.819 29.03 �15.80
Benzene C6H6 373 16.157 �0.747 67.96 �37.78
1,3-Butadiene C4H6 373 14.779 22.711 �87.96 205.79
Carbon tetrachloride CCl4 373 15.751 21.155 �48.28 101.14
Chlorobenzene C6H5Cl 373 18.240 11.278 32.86 �31.90
Chloroform CHCl3 373 13.806 19.215 �42.89 83.01
Cyclohexane C6H12 373 18.737 �9.048 141.38 �161.62
Ethanol C2H6O 373 13.444 33.866 �172.60 349.17
Ethylene oxide C2H4O 373 10.590 21.039 �86.41 172.28
Methanol CH4O 373 9.798 13.431 �51.28 131.13
n-Propanol C3H8O 373 16.921 41.653 �210.32 427.20
Sulfur trioxide SO3 373 30.408 �2.930 137.08 �84.73
Toluene C7H8 373 18.611 15.133 6.79 16.35
Water H2O 373 9.069 8.712 1.25 �0.18

Solids
Carbon (graphite) C 2000 1.026 1.771 0.771 �0.867
Sulfur (rhombic) S 368 3.748 4.114 �1.728 �0.783

This table provides data for calculating molar heat capacities at low pressures according to the empirical
formula

CP
Rg
¼ Aþ BT

103
þ CT

2

106
þ 105D

T2

The column marked ‘‘Std.’’ shows the calculated value of CP=Rg at 298.15K.
Source: Data selected from Smith, J. M., Van Ness, H. C., and Abbott, M. M., Introduction to Chemical
Engineering Thermodynamics, 6th ed., McGraw-Hill, New York, 2001.
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TABLE 7.2 Standard Enthalpies and Gibbs Free Energies of Formation

(Values are joules per mole of the substance formed)

�Ho
F �Go

F

Gaseous alkanes
Methane CH4 �74,520 �50,460
Ethane C2H6 �83,820 �31,855
Propane C3H8 �104,680 �24,290
n-Butane C4H10 �125,790 �16,570
n-Pentane C5H12 �146,760 �8,650
n-Hexane C6H14 �166,920 150
n-Heptane C7H16 �187,780 8,260
n-Octane C8H18 �208,750 16,260

Gaseous alkenes
Ethylene C2H4 52,510 68,460
Propylene C3H6 19,710 62,205
1-Butene C4H8 �540 70,340
1-Pentene C5H10 �21,820 78,410
1-Hexene C6H12 �41,950 86,830

Other organic gases
Acetaldehyde C2H4O �166,190 �128,860
Acetylene C2H2 227,480 209,970
Benzene C6H6 82,930 129,665
1,3-Butadiene C4H6 109,240 149,795
Cyclohexane C6H12 �123,140 31,920
Ethanol C2H6O �235,100 �168,490
Ethylbenzene C8H10 29,920 130,890
Ethylene oxide C2H4O �52,630 �13,010
Formaldehyde CH2O �108,570 �102,530
Methanol CH4O �200,660 �161,960
Methylcyclohexane C7H14 �154,770 27,480
Styrene C8H8 147,360 213,900
Toluene C7H8 50,170 122,050

Inorganic gases
Ammonia NH3 �46,110 �16,450
Carbon dioxide CO2 �393,509 �394,359
Carbon monoxide CO �110,525 �137,169
Hydrogen chloride HCl �92,307 �95,299
Hydrogen cyanide HCN 135,100 124,700
Hydrogen sulfide H2S �20,630 �33,560
Nitrous oxide N2O 82,050 104,200
Nitric oxide NO 90,250 86,550
Nitrogen dioxide NO2 33,180 51,310
Dinitrogen tetroxide N2O4 9,160 97,540
Sulfur dioxide SO2 �296,830 �300,194
Sulfur trioxide SO3 �395,720 �371,060
Water H2O �241,818 �228,572

continued
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Heats of Reaction. Chemical reactions absorb or liberate energy, usually in the
form of heat. The heat of reaction, �HR, is defined as the amount of energy
absorbed or liberated if the reaction goes to completion at a fixed temperature
and pressure. When �HR>0, energy is absorbed and the reaction is said to
be endothermic. When �HR<0, energy is liberated and the reaction is said to
be exothermic. The magnitude of �HR depends on the temperature and pressure
of the reaction and on the phases (e.g., gas, liquid, solid) of the various com-
ponents. It also depends on an arbitrary constant multiplier in the stoichiometric
equation.

Example 7.7: The reaction of hydrogen and oxygen is highly exothermic.
At 298.15K and 1 bar,

H2ðgÞ þ 1
2O2ðgÞ ! H2OðgÞ �HR ¼ �241,818 J ðIÞ

Alternatively,

2H2ðgÞ þO2ðgÞ ! 2H2OðgÞ �HR ¼ �483,636 J ðIIÞ
The reverse reaction, the decomposition of water is highly endothermic:

H2OðgÞ ! H2ðgÞ þ 1
2O2ðgÞ �HR ¼ þ 241,818 J ðIIIÞ

H2OðgÞ ! 2H2ðgÞ þO2ðgÞ �HR ¼ þ 483,636 J ðIVÞ
These equations differ by constant factors, but all the heats of reaction

become equal when expressed in joules per mole of water formed, �241,818:
They are also equal when expressed in joules per mole of oxygen formed,
þ 483,636, or in joules per mole of hydrogen formed, þ241,818. Any of

TABLE 7.2 Continued

�Ho
F �Go

F

Organic liquids
Acetic acid C2H4O2 �484,500 �389,900
Benzene C6H6 49,080 124,520
Cyclohexane C6H12 �156,230 26,850
Ethanol C2H6O �277,690 �174,780
Ethylene glycol C2H6O2 �454,800 �323,080
Ethylene oxide C2H4O �52,630 �13,010
Methanol CH4O �238,660 �166,270
Methylcyclohexane C7H14 �190,160 20,560
Toluene C7H8 12,180 113,630

Other liquids
Nitric acid HNO3 �174,100 �80,710
Sulfuric acid H2SO4 �813,989 �690,003
Water H2O �285,830 �237,129

Source: Data selected from Smith, J. M., Van Ness, H. C., and Abbott, M. M., Introduction
to Chemical Engineering Thermodynamics, 6th ed., McGraw-Hill, New York, 2001.
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these values can be used provided R is the rate at which a reaction product
with a stoichiometric coefficient of þ1 is being produced. Thus, R I should
be the rate at which water is being formed; R III should be the rate at
which hydrogen is being produced; and R IV should be the rate at which
oxygen is being produced. Even R II can be made to fit the scheme, but it
must be the rate at which a hypothetical component is being formed.

Suppose �HR for Reaction (I) was measured in a calorimeter. Hydrogen
and oxygen were charged at 298.15K and 1 bar. The reaction occurred, the
system was restored to 298.15K and 1 bar, but the product water was not con-
densed. This gives the heat of reaction for Reaction (I). Had the water been
condensed, the measured exothermicity would have been larger:

H2ðgÞ þ 1
2O2ðgÞ ! H2OðlÞ �HR ¼ �285,830 J ðVÞ

Reactions (I) and (V) differ by the heat of vaporization:

H2OðgÞ ! H2OðlÞ �HR ¼ þ44,012 J ðVIÞ
Reactions (V) and (VI) can obviously be summed to give Reaction (I).

The heats of reaction associated with stoichiometric equations are additive
just as the equations themselves are additive. Some authors illustrate this fact
by treating the evolved heat as a product of the reaction. Thus, they write

H2ðgÞ þ 1
2O2ðgÞ ! H2OðgÞ þ 241,818 J

This is beautifully correct in terms of the physics, and is a very useful way to
include heats of reaction when summing chemical equations. It is confused by
the thermodynamic convention that heat is positive when absorbed by the
system. The convention may have been logical for mechanical engineers con-
cerned with heat engines, but chemists and chemical engineers would have
chosen the opposite convention. Once a convention is adopted, it is almost
impossible to change. Electrical engineers still pretend that current flows from
positive to negative.

The additive nature of stoichiometric equations and heats of reactions
allows the tabulation of �HR for a relatively few canonical reactions that
can be algebraically summed to give �HR for a reaction of interest. The cano-
nical reactions represent the formation of compounds directly from their
elements. The participating species in these reactions are the elements as
reactants and a single chemical compound as the product. The heats of reac-
tions for these mainly hypothetical reactions are called heats of formation.
Table 7.2 gives standard heats of formation �H�F for a variety of compounds.
The reacting elements and the product compound are all assumed to be at
standard conditions of T0¼ 298.15K and P0¼ 1 bar. In addition to directly
tabulated data, heats of formation can be calculated from heats of combustion
and can be estimated using group contribution theory.
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Example 7.8: Determine �HR for the dehydrogenation of ethylbenzene to
styrene at 298.15K and 1 bar.

Solution: Table 7.2 gives �H�F for styrene at 298.15K. The formation
reaction is

8CðgraphiteÞ þ 4H2ðgÞ ! StyreneðgÞ �HR ¼ 147,360 J ð7:21Þ
For ethylbenzene, �H�F ¼ 29,920 J, but we write the stoichiometric equation
using a multiplier of �1. Thus,
�8CðgraphiteÞ � 5H2ðgÞ ! �EthylbenzeneðgÞ �HR ¼ �29,920 J ð7:22Þ
The stoichiometry and heats of reaction in Equations (7.21) and (7.22) are
algebraically summed to give

EthylbenzeneðgÞ ! StyreneðgÞ þH2ðgÞ �HR ¼ 117,440 J ð7:23Þ
so that �HR¼ 117,440 J per mole of styrene produced. Note that the species
participating in Equation (7.23) are in their standard states since standard
heats of formation were used in Equations (7.21) and (7.22). Thus, we have
obtained the standard heat of reaction, �H�R, at T0¼ 298.15K and P0¼ 1 bar.

It does not matter that there is no known catalyst that can accomplish the
reaction in Equation (7.21) directly. Heats of reaction, including heats of forma-
tion, depend on conditions before and after the reaction but not on the specific
reaction path. Thus, one might imagine a very complicated chemistry that starts
at standard conditions, goes through an arbitrary trajectory of temperature and
pressure, returns to standard conditions, and has Equation (7.21) as its overall
effect. �H�F ¼þ147,360 J/mol of styrene formed is the net heat effect associated
with this overall reaction.

The reaction in Equation (7.23) is feasible as written but certainly not at tem-
peratures as low as 25�C, and it must be adjusted for more realistic conditions.
The adjustment for temperature uses

@�HR
@T

� �
P

¼
X
Species

�A
@H

@T

� �
P

� �
A

¼
X
Species

�AðCPÞA ¼ �CP ð7:24Þ

So that the corrected heat of reaction is

�HR ¼ �H�R þ
ZT
T0

�CP dT ¼ �H�R þ
X
Species

�AHA ð7:25Þ

The summations in these equations include only those chemical species
that directly participate in the reaction, and the weighting is by stoichiometric
coefficient. Compare this with Equation (7.20) where the summation includes
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everything in the reactor and the weighting is by concentration. Equation (7.25)
is used to determine the heat generated by the reaction. Equation (7.20) is used to
determine how the generated heat affects the entire reacting mass.

A pressure adjustment to the heat of reaction may be needed at high
pressures. The adjustment is based on

@�HR
@P

� �
T

¼
X
Species

�A
@H

@P

� �
T

� �
A

¼ �
@H

@P

� �
T

ð7:26Þ

See Equation (7.18) to evaluate this expression.

Example 7.9: Determine �HR for the ethylbenzene dehydrogenation
reaction at 973K and 0.5 atm.

Solution: From Example 7.8, �H�R¼ 117,440 J at T0¼ 298.15K. We need
to calculate �CP. Using Equation (7.24),

�CP ¼ ðCPÞstyrene þ ðCPÞhydrogen � ðCPÞethylbenzene
The data of Table 7.1 give

�CP
Rg
¼ 4:175� 4:766T

103
þ 1:814T2

106
þ 8300

T2

From this,

�HR ¼ �H�Rþ
ZT
T0

�CPdT ¼ 117,440þ 8:314

� 4:175T � 4:766T2

2� 103
þ 1:814T3

3� 106
� 8300

T

� �T
T0

ð7:27Þ

Setting T¼ 973 K gives�HR¼ 117,440 þ 11,090 ¼128,530 J. The temperature
is high and the pressure is low relative to critical conditions for all three
components. Thus, an ideal gas assumption is reasonable, and the pressure
change from 1 bar to 0.5 atm does not affect the heat of reaction.

7.2.2 Reaction Equilibria

Many reactions show appreciable reversibility. This section introduces ther-
modynamic methods for estimating equilibrium compositions from free
energies of reaction, and relates these methods to the kinetic approach where
the equilibrium composition is found by equating the forward and reverse
reaction rates.
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Equilibrium Constants. We begin with the kinetic approach. Refer to
Equations (1.14) and (1.15) and rewrite (1.15) as

Kkinetic ¼
Y
Species

½A��A ¼
Y
Species

a�A ð7:28Þ

This is the expected form of the kinetic equilibrium constant for elementary
reactions. Kkinetic is a function of the temperature and pressure at which the
reaction is conducted.

In principle, Equation (7.28) is determined by equating the rates of the for-
ward and reverse reactions. In practice, the usual method for determining
Kkinetic is to run batch reactions to completion. If different starting concentra-
tions give the same value for Kkinetic, the functional form for Equation (7.28)
is justified. Values for chemical equilibrium constants are routinely reported in
the literature for specific reactions but are seldom compiled because they are
hard to generalize.

The reactant mixture may be so nonideal that Equation (7.28) is inadequate.
The rigorous thermodynamic approach is to replace the concentrations in
Equation (7.28) with chemical activities. This leads to the thermodynamic equili-
brium constant:

Kthermo ¼
Y
Species

f̂fA
f �A

" #�A

¼ exp
��G�R
RgT

� �
ð7:29Þ

where f̂fA is the fugacity of component A in the mixture, f �A is the fugacity of
pure component A at the temperature and pressure of the mixture, and �G�R
is the standard free energy of reaction at the temperature of the mixture. The
thermodynamic equilibrium constant is a function of temperature but not of
pressure. A form of Equation (7.29) suitable for gases is

Kthermo ¼ P

P0

� �� Y
Species

½ yA�̂�A��A ¼ exp
��G�R
RgT

� �
ð7:30Þ

where �¼��A; yA is the mole fraction of component A, �̂�A is its fugacity
coefficient and P0 is the pressure used to determine the standard free energy of
formation �G�F . Values for �G�F are given in Table 7.2. They can be algebrai-
cally summed, just like heats of formation, to obtain �G�R for reactions of
interest.

Example 7.10: Determine �G�R for the dehydrogenation of ethylbenzene to
styrene at 298.15K.

Solution: Table 7.2 gives �G�F for styrene at 298.15K. The formation
reaction is

8CðgraphiteÞ þ 4H2ðgÞ ! StyreneðgÞ �GR ¼ 213; 900 J
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For ethylbenzene,

�8CðgraphiteÞ � 5H2ðgÞ ! �EthylbenzeneðgÞ �GR ¼ �130,890 J

These equations are summed to give

EthylbenzeneðgÞ ! StyreneðgÞ þH2ðgÞ �GR ¼ 83,010 J

so that �GR¼ 83,010 J per mole of styrene produced. Since the species are in
their standard states, we have obtained �G�R.

The fugacity coefficients in Equation (7.29) can be calculated from pressure-
volume-temperature data for the mixture or from generalized correlations. It is
frequently possible to assume ideal gas behavior so that �̂�A¼ 1 for each compo-
nent. Then Equation (7.29) becomes

Kthermo ¼ P

P0

� �� Y
Species

½ yA��A ¼ exp
��G�R
RgT

� �
ð7:31Þ

For incompressible liquids or solids, the counterpart to Equation (7.30) is

Kthermo ¼ exp
P� P0

RgT

X
Species

�AVA

" # Y
Species

½xA�A��A ¼ exp
��G�F
RgT

� �
ð7:32Þ

where xA is the mole fraction of component A, VA is its molar volume, and �A is
its activity coefficient in the mixture. Except for high pressures, the exponential
term containing P� P0 is near unity. If the mixture is an ideal solution,
�A¼ 1 and

Kthermo ¼
Y
Species

½xA��A ¼ exp
��G�F
RgT

� �
ð7:33Þ

As previously noted, the equilibrium constant is independent of pressure
as is �G�R. Equation (7.33) applies to ideal solutions of incompressible
materials and has no pressure dependence. Equation (7.31) applies to ideal
gas mixtures and has the explicit pressure dependence of the P/P0 term
when there is a change in the number of moles upon reaction, � 6¼ 0. The tem-
perature dependence of the thermodynamic equilibrium constant is given by

d lnKthermo
dT

¼ �HR
RgT2

ð7:34Þ
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This can be integrated to give

Kthermo¼K0K1K2K3¼

exp
��G�R
RgT0

� �
exp

�H�R
RgT0

1�T0

T

� �� �
exp � 1

T

ZT
T0

�CP
Rg

dT

2
64

3
75exp

ZT
T0

�CPdT

RgT

2
64

3
75

ð7:35Þ
Equation (7.35) is used to find Kthermo as a function of reaction temperature T.
Only the first two factors are important when �C�P � 0, as is frequently the case.
Then ln(Kthermo) will be a linear function of T�1. This fact justifies Figure 7.5,
which plots the equilibrium constant as a linear function of temperature for
some gas-phase reactions.

Reconciliation of Equilibrium Constants. The two approaches to determining
equilibrium constants are consistent for ideal gases and ideal solutions of incom-
pressible materials. For a reaction involving ideal gases, Equation (7.29)
becomes

Kthermo ¼ P

P0

� ��
���molar

Y
Species

½A��A ¼ P

P0

� ��
���molarKkinetic ¼

RgT

P0

� ��
Kkinetic ð7:36Þ

and the explicit pressure dependence vanishes. Since Kthermo is independent of
pressure, so is Kkinetic for an ideal gas mixture.

For ideal solutions of incompressible materials,

Kthermo ¼ ���molar
Y
Species

½A��A ¼ ���molarKkinetic ¼ exp
��G�F
RgT

� �
ð7:37Þ

which is also independent of pressure.
For nonideal solutions, the thermodynamic equilibrium constant, as given by

Equation (7.29), is fundamental and Kkinetic should be reconciled to it even
though the exponents in Equation (7.28) may be different than the stoichio-
metric coefficients. As a practical matter, the equilibrium composition of non-
ideal solutions is usually found by running reactions to completion rather
than by thermodynamic calculations, but they can also be predicted using
generalized correlations.

Reverse Reaction Rates. Suppose that the kinetic equilibrium constant is
known both in terms of its numerical value and the exponents in Equation
(7.28). If the solution is ideal and the reaction is elementary, then the exponents
in the reaction rate—i.e., the exponents in Equation (1.14)—should be the
stoichiometric coefficients for the reaction, and Kkinetic should be the ratio of
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forward-to-reverse rate constants as in Equation (1.15). If the reaction is com-
plex, the kinetic equilibrium constant may still have the ideal form of
Equation (7.28). The appropriateness of Equation (7.28) is based on the ideality
of the mixture at equilibrium and not on the kinetic path by which equilibrium
was reached. However, the forward and reverse reaction rates must still be equal
at equilibrium, and this fact dictates the functional form of the rate expression
near the equilibrium point.
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FIGURE 7.5 Thermodynamic equilibrium constant for gas-phase reactions. (From Smith, J. M. and
Van Ness, H. C., Introduction to Chemical Engineering Thermodynamics, 4th Ed., McGraw-Hill,
New York, 1986.)
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Example 7.11: Suppose A, B þ C at high temperatures and low pressures
in the gas phase. The reaction rate is assumed to have the form

R ¼ kf an �R r

where the various constants are to be determined experimentally. The kinetic
equilibrium constant as defined by Equation (7.28) is

Kkinetic ¼ bc
a

and has been measured to be 50mol/m3 at 1 atm pressure and 550K. Find the
appropriate functional form for the overall rate equation in the vicinity of the
equilibrium point as a function of temperature, pressure, and composition

Solution: Assume the reverse reaction has the form R r¼ kr am br cs. Setting
the overall reaction rate equal to zero at the equilibrium point gives a second
expression for Kkinetic:

Kkinetic ¼ kf
kr
¼ a

mbrcs

an

Equating the two expressions for Kkinetic gives m¼ n� 1 and r¼ s¼ 1. Also,
kr¼ kf Kkinetic. Thus,

R ¼ kf an � a
n�1bc
Kkinetic

� �

This is the required form with Kkinetic¼ 50mol/m3 at 1 atm and 550K.
According to Equation (7.36), Kkinetic is a function of temperature but not
of pressure. (This does not mean that the equilibrium composition is indepen-
dent of pressure. See Example 7.12.) To evaluate the temperature dependence,
it is useful to replace Kkinetic with Kthermo. For �¼ 1:

R ¼ kf an � RgT

PoKthermo
an�1bc

� �
ð7:38Þ

Equation (7.35) is used to find Kthermo as a function of temperature. Since
Kkinetic was given, and Kthermo can be calculated from it, Equation 7.38 con-
tains only n and kf as adjustable constants, although kf can be divided
between k0 and Tact if measurements are made at several temperatures.

Example 7.11 showed how reaction rates can be adjusted to account for
reversibility. The method uses a single constant, Kkinetic or Kthermo, and is rigor-
ous for both the forward and reverse rates when the reactions are elementary.
For complex reactions with fitted rate equations, the method should produce
good results provided the reaction always starts on the same side of equilibrium.
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A separate fitting exercise and a separate rate expression are needed for reactions
starting on the other side of equilibrium.

Equation (7.28) may not provide a good fit for the equilibrium data if the
equilibrium mixture is nonideal. Suppose that the proper form for Kkinetic is
determined through extensive experimentation or by using thermodynamic cor-
relations. It could be a version of Equation (7.28) with exponents different from
the stoichiometric coefficients, or it may be a different functional form.
Whatever the form, it is possible to force the reverse rate to be consistent with
the equilibrium constant, and this is recommended whenever the reaction shows
appreciable reversibility.

Equilibrium Compositions for Single Reactions. We turn now to the problem
of calculating the equilibrium composition for a single, homogeneous reaction.
The most direct way of estimating equilibrium compositions is by simulating
the reaction. Set the desired initial conditions and simulate an isothermal,
constant-pressure, batch reaction. If the simulation is accurate, a real reaction
could follow the same trajectory of composition versus time to approach equi-
librium, but an accurate simulation is unnecessary. The solution can use the
method of false transients. The rate equation must have a functional form con-
sistent with the functional form of Kthermo; e.g., Equation (7.38). The time scale
is unimportant and even the functional forms for the forward and reverse
reactions have some latitude, as will be illustrated in the following example.

Example 7.12: Use the method of false transients to determine equilibrium
concentrations for the reaction of Example 7.11. Specifically, determine the
equilibrium mole fraction of component A at T¼ 550K as a function of
pressure, given that the reaction begins with pure A.

Solution: The obvious way to solve this problem is to choose a pressure,
calculate a0 using the ideal gas law, and then conduct a batch reaction at con-
stant T and P. Equation (7.38) gives the reaction rate. Any reasonable values
for n and kf can be used. Since there is a change in the number of moles upon
reaction, a variable-volume reactor is needed. A straightforward but messy
approach uses the methodology of Section 2.6 and solves component balances
in terms of the number of moles, NA, NB, and NC.

A simpler method arbitrarily picks values for a0 and reacts this material
in a batch reactor at constant V and T. When the reaction is complete,
P is calculated from the molar density of the equilibrium mixture. As an
example, set a0¼ 22.2 (P¼ 1 atm) and react to completion. The long-time
results from integrating the constant-volume batch equations are a¼ 5.53,
b¼ c¼ 16.63, �molar¼ 38.79mol/m3, and yA¼ 0.143. The pressure at equili-
brium is 1.75 atm.

The curve shown in Figure 7.6 is produced, whichever method is used.
The curve is independent of n and kf in Equation (7.38).
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The reaction coordinate defined in Section 2.8 provides an algebraic method
for calculating equilibrium concentrations. For a single reaction,

NA ¼ ðNAÞ0 þ �A" ð7:39Þ
and mole fractions are given by

yA ¼ NA
N0 þ �"

¼ ðNAÞ0 þ �A"

N0 þ �"
ð7:40Þ

Suppose the numerical value of the thermodynamic equilibrium constant is
known, say from the free energy of formation. Then Equation (7.40) is substi-
tuted into Equation (7.31) and the result is solved for ".

Example 7.13: Use the reaction coordinate method to determine
equilibrium concentrations for the reaction of Example 7.11. Specifically,
determine the equilibrium mole fraction of component A at T¼ 550K as a
function of pressure, given that the reaction begins with pure A.

Solution: The kinetic equilibrium constant is 50mol/m3. It is converted to
mole fraction form using

Y
Species

½ yA��A ¼ ���molarKkinetic ¼

Q
Species

½a��A

P
RgT

h i� ð7:41Þ

���

���

���

���

���

�
� � � � 	 ��


������� ��������� ���

�
�
��

��
��
�
�
�
�
�
�
��

��
�
�
�
�
�
�

FIGURE 7.6 Equilibrium concentrations calculated by the method of false transients for a non-
elementary reaction.
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For the reaction at hand,

yByC
yA
¼ ½ðNBÞ0 þ "�½ðNCÞ0 þ "�
½ðNAÞ0 � "�½N0 þ "� ¼ 50� 8:205� 10�5 � 550=P ¼ 2:256=P

where P is in atmospheres. This equation is a quadratic in " that has only
one root in the physically realistic range of � 1 "  1. The root depends
on the pressure and the relative values for NA, NB, and NC. For a feed of
pure A, set NA¼ 1 and NB¼NC¼ 0. Solution gives

" ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:256

Pþ 2:256

r

Set P¼ 1.75 atm. Then "¼ 0.750 and yA¼ 0.143 in agreement with
Example 7.12.

Examples 7.12 and 7.13 treated the case where the kinetic equilibrium
constant had been determined experimentally. The next two examples illustrate
the case where the thermodynamic equilibrium constant is estimated from
tabulated data.

Example 7.14: Estimate the equilibrium composition of the ethylbenzene
dehydrogenation reaction at 298.15K and 0.5 atm. Consider two cases:

1. The initial composition is pure ethylbenzene.

2. The initial composition is 1mol each of ethylbenzene and styrene and
0.5mol of hydrogen.

Solution: Example 7.10 found �GR¼ 83,010 J. Equation (7.29) gives
Kthermo¼ 2.8 �10�15 so that equilibrium at 298.15 K overwhelmingly favors
ethylbenzene. Suppose the ideal gas assumption is not too bad, even at this
low temperature (Tc¼ 617K for ethylbenzene). The pressure is 0.5066 bar
and �¼ 1. The reaction has the form A! B þ C so the reaction coordinate
formulation is similar to that in Example 7.13. When the feed is pure ethylben-
zene, Equation (7.31) becomes

2:86� 10�15 ¼ 0:5066

1

� �
yH2
ystyrene

yethylbenzene
¼ 0:5066

"2

ð1� "Þ ð1þ "Þ

Solution gives "¼ 7.5 � 10�8 . The equilibrium mole fractions are yethylbenzene
� 1 and ystyrene¼ yhydrogen¼ 7.5 � 10�8.
The solution for Case 1 is obtained from

2:8� 10�15 ¼ 0:5066

1

� �
yH2
ystyrene

yethylbenzene
¼ 0:5066

ð1þ "Þð0:5þ "Þ
ð1� "Þð2:5þ "Þ
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Solution of the quadratic gives " � � 0.5 so that yethylbenzene � 0.75, ystyrene �
0.25, and yhydrogen � 0. The equilibrium is shifted so strongly toward ethyl-
benzene that essentially all the hydrogen is used to hydrogenate styrene.

Example 7.15: Estimate the equilibrium composition from the ethyl-
benzene dehydrogenation reaction at 973K and 0.5 atm. The starting
composition is pure ethylbenzene.

Solution: This problem illustrates the adjustment of Kthermo for tempera-
ture. Equation (7.35) expresses it as the product of four factors. The results
in Examples 7.10 and 7.11 are used to evaluate these factors.

K0 ¼ exp
��G�R
RgT0

� �
¼ exp

�83,010
8:314T0

� �
¼ 2:86� 10�15

K1 ¼ exp
�H�R
RgT0

1� T0

T

� �� �
¼ exp

117,440

8:314T0
1� T0

T

� �� �
¼ 1:87� 1014

K2 ¼ exp � 1

RgT

ZT
T0

�CP dt

2
64

3
75 ¼ exp

�H�R ��HR
8:314T

� �
¼ 0:264

K3 ¼ exp

ZT
T0

�CPdT

RgT

2
64

3
75¼ exp 4:175 lnT � 4:766T

103
þ 1:814T2

2� 106
� 8300

2T2

� �T
T0

¼12:7

and Kthermo¼K0K1K2K3¼ 1.72. Proceeding as in Example 7.14, Case 1,

1:72 ¼ 0:5066

1

� �
yH2
ystyrene

yethylbenzene
¼ 0:5066

"2

ð1� "Þð1þ"Þ

Solution gives "¼ 0.879. The equilibrium mole fractions are yethylbenzene¼
0.064 and ystyrene¼ yhydrogen¼ 0.468.

Example 7.16: Pure ethylbenzene is contacted at 973K with a 9:1 molar
ratio of steam and a small amount of a dehydrogenation catalyst. The
reaction rate has the form

A ���! ���
kf

kr

B þ C

where kf ¼ k0 expð�Tact=TÞ ¼ 160,000 expð�9000=TÞ s�1 and kr is deter-
mined from the equilibrium relationship according to Equation (7.38). The
mixture is charged at an initial pressure of 0.1 bar to an adiabatic,
constant-volume, batch reactor. The steam is inert and the thermal mass of
the catalyst can be neglected. Calculate the reaction trajectory. Do not
assume constant physical properties.
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Solution: A rigorous treatment of a reversible reaction with variable physi-
cal properties is fairly complicated. The present example involves just two
ODEs: one for composition and one for enthalpy. Pressure is a dependent
variable. If the rate constants are accurate, the solution will give the actual
reaction trajectory (temperature, pressure, and composition as a function
of time). If k0 and Tact are wrong, the long-time solution will still approach
equilibrium. The solution is then an application of the method of false
transients.

An Excel macro is given in Appendix 7.2, and some results are shown in
Figure 7.7. The macro is specific to the example reaction with �¼þ1 but
can be generalized to other reactions. Components of the macro illustrate
many of the previous examples. Specific heats and enthalpies are calculated
analytically using the functional form of Equation (7.19) and the data in
Tables 7.1 and 7.2. The main computational loop begins with the estimation
of Kthermo using the methodology of Example (7.15).

The equilibrium composition corresponding to instantaneous values of T
and P is estimated using the methodology of Example 7.13. These calculations
are included as a point of interest. They are not needed to find the reaction
trajectory. Results are reported as the mole fraction of styrene in the organic
mixture of styrene plus ethylbenzene. The initial value, corresponding to
T¼ 973K and P¼ 0.1 bar, is 0.995. This equilibrium value gradually declines,
primarily due to the change in temperature. The final value is 0.889, which is
closely approximated by the long-time solution to the batch reactor equations.
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FIGURE 7.7 Batch reaction trajectory for ethylbenzene dehydrogenation.
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The kinetic equilibrium constant is estimated from the thermodynamic
equilibrium constant using Equation (7.36). The reaction rate is calculated
and compositions are marched ahead by one time step. The energy balance
is then used to march enthalpy ahead by one step. The energy balance in
Chapter 5 used a mass basis for heat capacities and enthalpies. A molar
basis is more suitable for the current problem. The molar counterpart of
Equation (5.18) is

dðV�molarHÞ
dt

¼ �V�HRR �UAextðT � TextÞ ð7:42Þ

where U¼ 0 in the current example and H is the enthalpy per mole of the
reaction mixture:

H ¼
Z T

T0

ðCpÞmixdT 0 ð7:43Þ

The quantity V�molar is a not constant since there is a change in moles upon
reaction, �¼ 1. Expanding the derivative gives

dðV�molarHÞ
dt

¼ V�molar dH
dt
þH dðV�molarÞ

dt
¼ V�molar

dH

dT
þH dðV�molarÞ

dT

� �
dT

dt

The dH=dT term is evaluated by differentiating Equation (7.43) with respect
to the upper limit of the integral. This gives

�molarðCPÞmix þH
d�molar
dT

� �
dT

dt
¼ ��HRR �UAextðT � TextÞ

V
ð7:44Þ

This result is perfectly general for a constant-volume reactor. It continues to
apply when �, CP, and H are expressed in mass units, as is normally the case
for liquid systems. The current example has a high level of inerts so that the
molar density shows little variation. The approximate heat balance

dT

dt
¼ ��HRR

�molarðCPÞmix
�UAextðT � TextÞ
V�molarðCPÞmix

ð7:45Þ

gives a result that is essentially identical to using Equation (7.42) to march the
composite variable V�molarH:

Equilibrium Compositions for Multiple Reactions. When there are two or more
independent reactions, Equation (7.29) is written for each reaction:

ðKthermoÞI ¼ exp
ð�G�RÞI
RgT

� �
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ðKthermoÞII ¼ exp
ð�G�RÞII
RgT

� �
ð7:46Þ

..

...
.

so that there are M thermodynamic equilibrium constants associated with
M reactions involving N chemical components. The various equilibrium
constants can be expressed in terms of the component mole fractions, for
suitable ideal cases, using Equation (7.31) or Equation (7.33). There will be N
such mole fractions, but these can be expressed in terms of M reaction coordi-
nates by using the reaction coordinate method. For multiple reactions, there
is a separate reaction coordinate for each reaction, and Equation (7.40)
generalizes to

yA ¼
ðNAÞ0 þ

P
Reactions

�A,I"I

N0 þ
P

Reactions

�I"I
ð7:47Þ

Example 7.17: At high temperatures, atmospheric nitrogen can be
converted to various oxides. Consider only two: NO and NO2. What is
their equilibrium in air at 1500K and 1 bar pressure?

Solution: Two independent reactions are needed that involve all four com-
ponents. A systematic way of doing this begins with the formation reactions;
but, for the present, fairly simple case, Figure 7.5 includes two reactions that
can be used directly:

1
2N2 þ 1

2O2 ! NO ðIÞ

NOþ 1
2O2 ! NO2 ðIIÞ

The plots in Figure 7.5 give (Kthermo)I¼ 0.0033 and (Kthermo)II¼ 0.011.
The ideal gas law is an excellent approximation at the reaction conditions
so that Equation (7.31) applies. Since P¼P0, there is no correction for
pressure. Thus,

0:0033 ¼ yNO

y1=2N2
y1=2O2

0:011 ¼ yNO2

yNOy
1=2
O2

A solution using the reaction coordinate method will be illustrated. Equation
(2.40) is applied to a starting mixture of 0.21mol of oxygen and 0.79mol of
nitrogen. Nitrogen is not an inert in these reactions, so the lumping of
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atmospheric argon with nitrogen is not strictly justified, but the error will be
small. Equation (2.40) gives

NN2

NO2

NNO

NNO2

2
664

3
775 ¼

0:79
0:21
0
0

2
664

3
775þ

�0:5 0
�0:5 �0:5
1 �1
0 1

2
664

3
775 "I

"II

� �

or

NN2
¼ 0:79� 0:5"I

NO2
¼ 0:21� 0:5"I � 0:5"II

NNO ¼ "I � "II

NNO2
¼ �"I � "II

Ntotal ¼ 1� 0:5"II

where the last row was obtained by summing the other four. The various mole
fractions are

yN2
¼ 0:79� 0:5"I

1� 0:5"II

yO2
¼ 0:21� 0:5"I � 0:5"II

1� 0:5"II

yNO ¼ "I � "II
1� 0:5"II

yNO2
¼ "II

1� 0:5"II

Substitution into the equilibrium conditions gives

0:0033 ¼ "I � "II

ð0:79� 0:5"I Þ1=2ð0:21� 0:5"I � 0:5"II Þ1=2

0:011 ¼ "II ð1� 0:5"II Þ1=2
ð"I � "II Þð0:21� 0:5"I � 0:5"II Þ1=2

This pair of equations can be solved simultaneously to give "I¼ 0.0135 and
"II ¼ 6:7� 10�6: The mole fractions are yN2

¼ 0.7893, yO2
¼ 0.2093, yNO ¼

0:00135, and yNO2
¼ 7� 10�6:

Example 7.17 illustrates the utility of the reaction coordinate method for
solving equilibrium problems. There are no more equations than there are inde-
pendent chemical reactions. However, in practical problems such as atmospheric
chemistry and combustion, the number of reactions is very large. A relatively
complete description of high-temperature equilibria between oxygen and

FITTING RATE DATA AND USING THERMODYNAMICS 247



nitrogen might consider the concentrations of N2, O2, N2O, N2O4, NO, NO2, N,
O, N2O2, N2O3, N2O5, NO3, O3, and possibly others. The various reaction coor-
dinates will differ by many orders of magnitude; and the numerical solution
would be quite difficult even assuming that the various equilibrium constants
could be found. The method of false transients would ease the numerical
solution but would not help with the problem of estimating the equilibrium
constants.

Independent Reactions. In this section, we consider the number of independent
reactions that are necessary to develop equilibrium relationships between N
chemical species. A systematic approach is the following:

1. List all chemical species, both elements and compounds, that are believed
to exist at equilibrium. By ‘‘element’’ we mean the predominant species at
standard-state conditions, for example, O2 for oxygen at 1 bar and 298.15K.

2. Write the formation reactions from the elements for each compound. The
term ‘‘compound’’ includes elemental forms other than the standard one;
for example, we would consider monatomic oxygen as a compound and
write 1

2O2 ! O as one of the reactions.

3. The stoichiometric equations are combined to eliminate any elements that
are not believed to be present in significant amounts at equilibrium.

The result of the above procedures is M equations where M<N.

Example 7.18: Find a set of independent reactions to represent the
equilibrium of CO, CO2, H2, and H2O.

Solution: Assume that only the stated species are present at equilibrium.
Then there are three formation reactions:

H2 þ 1
2O2! H2O

Cþ 1
2O2! CO

CþO2! CO2

The third reaction is subtracted from the second to eliminate carbon, giving
the following set:

H2 þ 1
2O2! H2O

�1
2O2! CO� CO2

These are now added together to eliminate oxygen. The result can be
rearranged to give

H2 þ CO2 ! H2Oþ CO
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Thus N¼ 4 and M¼ 1. The final reaction is the water–gas shift reaction.

Example 7.19: Find a set of independent reactions to represent the
equilibrium products for a reaction between 1mol of methane and 0.5mol
of oxygen.

Solution: It is difficult to decide a priori what species will be present in
significant concentrations. Experimental observations are the best guide to
constructing an equilibrium model. Lacking this, exhaustive calculations or
chemical insight must be used. Except at very high temperatures, free-radical
concentrations will be quite low, but free radicals could provide the reaction
mechanisms by which equilibrium is approached. Reactions such as
2CH3

. ! C2H6 will yield higher hydrocarbons so that the number of theore-
tically possible species is unbounded. In a low-temperature oxidation, such
reactions may be impossible. However, the impossibility is based on kinetic
considerations, not thermodynamics.

Assume that oxygen and hydrogen will not be present as elements but
that carbon may be. Nonelemental compounds to be considered are CH4,
CO2, CO, H2O, CH3OH, and CH2O, each of which has a formation reaction:

Cþ 2H2 ! CH4

CþO2 ! CO2

Cþ 1
2O2 ! CO

H2 þ 1
2 O2 ! H2O

Cþ 2H2 þ 1
2O2! CH3OH

CþH2 þ 1
2O2! CH2O

If carbon, hydrogen, and oxygen were all present as elements, none of the
formation reactions could be eliminated. We would then have N¼ 9 and
M¼ 6. With elemental hydrogen and oxygen assumed absent, two species
and two equations can be eliminated, giving N¼ 7 and M¼ 4. Pick any
equation containing oxygen—there are five choices—and use it to eliminate
oxygen from the other equations. Discard the equation used for the elimina-
tion. This reduces M to 5. Now pick any equation containing hydrogen
and use it to eliminate hydrogen from the other equations. Discard the equa-
tion used for the elimination. This gives M¼ 4. One of the many possible
results is

3C þ 2H2O ! CH4 þ 2CO

2CO ! C þ CO2

2C þ 2H2O ! CH3OH þ CO

C þ H2O ! CH2O
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These four equations are perfectly adequate for equilibrium calculations
although they are nonsense with respect to mechanism. Table 7.2 has the
data needed to calculate the four equilibrium constants at the standard
state of 298.15 K and 1 bar. Table 7.1 has the necessary data to correct for
temperature. The composition at equilibrium can be found using the reaction
coordinate method or the method of false transients. The four chemical equa-
tions are not unique since various members of the set can be combined
algebraically without reducing the dimensionality, M¼ 4. Various equivalent
sets can be derived, but none can even approximate a plausible mechanism
since one of the starting materials, oxygen, has been assumed to be absent
at equilibrium. Thermodynamics provides the destination but not the route.

We have considered thermodynamic equilibrium in homogeneous systems.
When two or more phases exist, it is necessary that the requirements for reaction
equilibria (i.e., Equations (7.46)) be satisfied simultaneously with the require-
ments for phase equilibria (i.e., that the component fugacities be equal in each
phase). We leave the treatment of chemical equilibria in multiphase systems to
the specialized literature, but note that the method of false transients normally
works quite well for multiphase systems. The simulation includes reaction—typi-
cally confined to one phase—and mass transfer between the phases. The govern-
ing equations are given in Chapter 11.

PROBLEMS

7.1. Suppose the following data on the iodination of ethane have been
obtained at 603 K using a recirculating gas-phase reactor that closely
approximates a CSTR. The indicated concentrations are partial pressures
in atmospheres and the mean residence time is in seconds.

[I2]in [C2H6]in �tt [I2]out [C2H6]out [HI]out [C2H5I]out

0.1 0.9 260 0.0830 0.884 0.0176 0.0162
0.1 0.9 1300 0.0420 0.841 0.0615 0.0594
0.1 0.9 2300 0.0221 0.824 0.0797 0.0770

Use nonlinear regression to fit these data to a plausible functional form
for R : See Example 7.20 for linear regression results that can provide
good initial guesses.

7.2. The disproportionation of p-toluenesulfonic acid has the following
stoichiometry:

3(CH3C6H4SO2H)!CH3C6H4SO2 SC6H4CH3 þ CH3C6H4SO3H þ H2O
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Kice and Bowers3 obtained the following batch data at 70�C in a reaction
medium consisting of acetic acid plus 0.56-molar H2O plus 1.0-molar
H2SO4:

Time, h [CH3C6H4SO2H]�1

0 5
0.5 8
1.0 12
1.5 16
4.0 36
5.0 44
6.0 53

The units on [CH3C6H4SO2H]�1 are inverse molarity. Reciprocal concen-
trations are often cited in the chemical kinetics literature for second-order
reactions. Confirm that second-order kinetics provide a good fit and
determine the rate constant.

7.3. The decolorization of crystal violet dye by reaction with sodium hydro-
xide is a convenient means for studying mixing effects in continuous-
flow reactors. The reaction is

(C6H4N(CH3)2)3CCl þ NaOH ! (C6H4N(CH3)2)3COH þ NaCl

The first step is to obtain a good kinetic model for the reaction. To this end,
the following batch experiments were conducted in laboratory glassware:

Run no.: B1 B2 B3 B4

[NaOH]0: 0.02N 0.04N 0.04N 0.04N
Temp.: 30�C 30�C 38�C 45�C

t [dye] t [dye] t [dye] t [dye]

0 13.55 0 13.55 0 13.55 0 13.55
2.0 7.87 3.0 2.62 0.5 9.52 0.5 8.72
4.0 4.62 3.6 1.85 1.0 6.68 1.0 5.61
5.0 3.48 4.5 1.08 2.0 3.3 2.0 2.33
6.0 2.65 6.0 0.46 3.0 1.62 3.0 0.95

The times t are in minutes and the dye concentrations [dye] are in
milliliters of stock dye solution per 100 ml of the reactant mixture. The
stock dye solution was 7.72� 10�5molar. Use these data to fit a rate
expression of the form

R ¼ k0½expð�Tact=TÞ�½dye�n½NaOH�m
The unknown parameters are k0, Tact, n, and m. There are several ways
they could be found. Use at least two methods and compare the results.
Note that the NaOH is present in great excess.
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7.4. Use stoichiometry to calculate c(t) for the data of Example 7.5. Then fit kI
and kII by minimizing S2

C:
7.5. The following data were collected in an isothermal, constant-volume

batch reactor. The stoichiometry is known and the material balance has
been closed. The reactions are A! B and A! C. Assume they are ele-
mentary. Determine the rate constants kI and kII.

Time, h a(t) b(t) c(t)

0.1 0.738 0.173 0.089
0.2 0.549 0.299 0.152
0.3 0.408 0.394 0.198
0.4 0.299 0.462 0.239
0.5 0.222 0.516 0.262
0.6 0.167 0.557 0.276
0.7 0.120 0.582 0.298
0.8 0.088 0.603 0.309
0.9 0.069 0.622 0.309
1.0 0.047 0.633 0.320

7.6. The data on the iodination of ethane given in Problem 7.1 have been
supplemented by three additional runs done at total pressures of 2 atm:

[I2]in [C2H6]in �tt [I2]out [C2H6]out [HI]out [C2H5I]out

0.1 0.9 260 0.0830 0.884 0.0176 0.0162
0.1 0.9 1300 0.0420 0.841 0.0615 0.0594
0.1 0.9 2300 0.0221 0.824 0.0797 0.0770
0.1 1.9 150 0.0783 1.878 0.0222 0.0220
0.1 1.9 650 0.0358 1.839 0.0641 0.0609
0.1 1.9 1150 0.0200 1.821 0.0820 0.0803

Repeat Problem 7.1 using the entire set. First do a preliminary analysis
using linear regression and then make a final determination of the
model parameters using nonlinear regression.

7.7. The following mechanism has been reported for ethane iodination:

I2þM  ��! 2I. þM

I. þC2H6 �! C2H5
. þHI

C2H5
. þ I2 �! C2H5Iþ I.

Apply the pseudo-steady hypothesis to the free-radical concentrations
to determine a functional form for the reaction rate. Note that M
represents any molecule. Use the combined data in Problem 7.6 to fit
this mechanism.

252 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



7.8. Hinshelwood and Green4 studied the homogeneous, gas-phase reaction

2NO þ 2H2 ! N2 þ 2H2O

at 1099K in a constant-volume batch reactor. The reactor was charged
with known partial pressures of NO and H2, and the course of the reaction
was monitored by the total pressure. The following are the data from one
of their runs. Pressures are in millimeters of mercury (mm Hg). The initial
partial pressures were ðPNOÞ0 ¼ 406mm and ðPH2

Þ0 ¼ 289. Suppose R
¼ k[NO]m [H2]

n. Determine the constants in the rate expression.

T (s) �P¼P�P0

8 10
13 20
19 30
26 40
33 50
43 60
54 70
69 80
87 90
110 100
140 110
204 120
310 127
1 144.5

7.9. The kinetic study by Hinshelwood and Green cited in Problem 7.8 also
included initial rate measurements over a range of partial pressures.

ðPNOÞ0 ðPH2
Þ0 R 0;mm=s

359 400 1.50
300 400 1.03
152 400 0.25
400 300 1.74
310 300 0.92
232 300 0.45
400 289 1.60
400 205 1.10
400 147 0.79

Use these initial rate data to estimate the constants in the rate expression
R ¼ k[NO]m [H2]

n.

7.10. The ordinary burning of sulfur produces SO2. This is the first step in the
manufacture of sulfuric acid. The second step oxidizes SO2 to SO3 in a
gas–solid catalytic reactor. The catalyst increases the reaction rate but
does not change the equilibrium compositions in the gas phase.

FITTING RATE DATA AND USING THERMODYNAMICS 253



(a) Determine the heat of reaction for SO2 oxidation at 600K and 1 atm.
(b) Determine the mole fractions at equilibrium of N2, O2, SO2, and SO3

at 600K and 1 atm given an initial composition of 79mol% N2,
15mol% O2, and 6 mol% SO2. Assume that the nitrogen is inert.

7.11. Critique the enthalpy calculation in the alternative solution of Example
7.16 that is based on Equation (7.45) rather than Equation (7.42).

7.12. Rework Example 7.16 without inerts. Specifically, determine whether this
case shows any discernable difference between solutions based on
Equation (7.42) and Equation (7.45).

7.13. Determine the equilibrium distribution of the three pentane isomers given
the following data on free energies of formation at 600K. Assume ideal
gas behavior.

�G�F ¼ 40,000 J=mol of n-pentane

�G�F ¼ 34,000 J=mol of isopentane

�G�F ¼ 37,000 J=mol of neopentane

7.14. Example 7.17 treated the high-temperature equilibrium of four chemical
species: N2, O2, NO, and NO2. Extend the analysis to include N2O and
N2O4.

7.15. The following reaction has been used to eliminate NOx from the stack
gases of stationary power plants:

NOx þ NH3 þ 0.5(1.5 � x)O2 () N2 þ 1.5H2O

A zeolite catalyst operated at 1 atm and 325–500K is so active that
the reaction approaches equilibrium. Suppose that stack gas having the
equilibrium composition calculated in Example 7.17 is cooled to 500 K.
Ignore any reactions involving CO and CO2. Assume the power plant
burns methane to produce electric power with an overall efficiency of
70%. How much ammonia is required per kilowatt-hour (kWh) in
order to reduce NOx emissions by a factor of 10, and how much will
the purchased ammonia add to the cost of electricity. Obtain the cost
of tank car quantities of anhydrous ammonia from the Chemical
Market Reporter or from the web.
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SUGGESTIONS FOR FURTHER READING

A massive but readable classic on chemical kinetics and the extraction of rate
data from batch experiments is

Laidler, K. J., Reactor Kinetics (in two volumes), Pergamon, London, 1963.

This book, and many standard texts, emphasizes graphical techniques for fitting
data. These methods give valuable qualitative insights that may be missed with
too much reliance on least-squares analysis.

The classic text on chemical engineering thermodynamics is now in its sixth
edition:

Smith, J. M., Van Ness, H. C., and Abbott, M. M., Introduction to Chemical Engineering
Thermodynamics, 6th ed., McGraw-Hill, New York, 2001.

Chapters 4 and 13 of that book treat chemical reaction thermodynamics in much
greater detail than given here.

The Internet has become the best source for thermodynamic data. Run a search
on something like ‘‘chemical thermodynamic data’’ on any serious search
engine, and you will find multiple sources, most of which allow free downloads.
The data in the standard handbooks, e.g. Perry’s Handbook (see ‘‘Suggestions
for Further Reading’’ section of Chapter 5), are still correct but rather capri-
cious in scope and likely to be expressed in archaic units like those sprinkled
here and there in this book.

APPENDIX 7.1: LINEAR REGRESSION
ANALYSIS

Determination of the model parameters in Equation (7.7) usually requires
numerical minimization of the sum-of-squares, but an analytical solution is
possible when the model is a linear function of the independent variables.
Take the logarithm of Equation (7.4) to obtain

lnR ¼ ln kþm ln½A� þ n ln½B� þ r ln½R� þ s ln½S� þ � � � ð7:48Þ
Define Y¼ lnR , C¼ ln k, X1¼ ln[A], X2¼ ln[B], and so on. Then,

Y ¼ C þmX1 þ nX2 þ rX3 . . . ð7:49Þ
Thus, Y is a linear function of the new independent variables, X1, X2, . . . . Linear
regression analysis is used to fit linear models to experimental data. The case of
three independent variables will be used for illustrative purposes, although there
can be any number of independent variables provided the model remains linear.
The dependent variable Y can be directly measured or it can be a mathematical
transformation of a directly measured variable. If transformed variables are
used, the fitting procedure minimizes the sum-of-squares for the differences
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between the transformed data and the transformed model. Nonlinear regression
minimizes the sum-of-squares between the data as actually measured and
the model in untransformed form. The results may be substantially different.
In particular, a logarithmic transformation will weight small numbers more
heavily than large numbers.

The various independent variables can be the actual experimental variables
or transformations of them. Different transformations can be used for different
variables. The ‘‘independent’’ variables need not be actually independent. For
example, linear regression analysis can be used to fit a cubic equation by setting
X, X 2, and X 3 as the independent variables.

The sum-of-squares to be minimized is

S2 ¼
X
Data

ðY � C �mX1 � nX2 � rX3Þ2 ð7:50Þ

We now regard the experimental data as fixed and treat the model parameters
as the variables. The goal is to choose C, m, n, and r such that S2>0
achieves its minimum possible value. A necessary condition for S2 to be a mini-
mum is that

@S2

@C
¼ @S2

@m
¼ @S2

@n
¼ @S2

@r
¼ 0

For the assumed linear form of Equation (7.50),

@S2

@C
¼ 2

X
Data

ðY � C �mX1 � nX2 � rX3Þð�1Þ ¼ 0

@S2

@m
¼ �2

X
Data

ðY � C �mX1 � nX2 � rX3Þð�X1Þ ¼ 0

@S2

@n
¼ �2

X
Data

ðY � C �mX1 � nX2 � rX3Þð�X2Þ ¼ 0

@S2

@r
¼ �2

X
Data

ðY � C �mX1 � nX2 � rX3Þð�X3Þ ¼ 0

Rearrangement gives

JC þm
X

X1 þ n
X

X2 þ r
X

X3 ¼
X

Y

C
X

X1 þm
X

X2
1 þ n

X
X1X2 þ r

X
X1X3 ¼

X
X1Y

C
X

X2 þm
X

X1X2 þ n
X

X2
2 þ r

X
X2X3 ¼

X
X2Y

C
X

X3 þm
X

X1X3 þ n
X

X2X3 þ r
X

X3
3 ¼

X
X3Y

ð7:51Þ

where J is the number of data and the summations extend over the data. The
various sums can be calculated from the data, and Equations (7.51) can be
solved for C, m, n, and r. Equations (7.51) are linear in the unknown parameters
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and can be solved by matrix inversion. See any text on linear algebra. No solu-
tion will exist if there are fewer observations than model parameters, and the
model will fit the data exactly if there are as many parameters as observations.

Example 7.20: Use linear regression analysis to determine k, m, and n for
the data taken at 1 atm total pressure for the ethane iodination reaction in
Problem 7.1.

Solution: The assumed linear form is

lnR ¼ ln kþm ln½I2� þ n ln½C2H5�
The data are:

�tt (s) R (atm/s) Y¼ ln R X1¼ ln[I2] X2¼ ln[C2H6]

240 7.08�10�5 �9.56 �2.49 �0.123
1300 4.60�10�5 �9.99 �3.21 �0.173
2300 3.39�10�5 �10.29 �3.81 �0.194

Suppose we attempt to evaluate all three constants, k, m, and n. Then the first
three components of Equations (7.51) are needed. Evaluating the various
sums gives

3 ln k� 9:51m� 0:49n ¼ �29:84
�9:51 ln kþ 31:0203mþ 1:60074n ¼ 95:07720

�0:49 ln kþ 1:60074mþ 0:082694n ¼ 4:90041

The solution is ln k ¼ � 8.214, m¼ 0.401, and n¼ 2.82. This model uses as many
parameters as there are observations and thus fits the data exactly,S2¼ 0. One can
certainly doubt the significance of such a fit. It is clear that the data are not perfect,
since the material balance is not perfect. Additional data could cause large
changes in the parameter values. Problem 7.6 addresses this issue. Certainly,
the value for n seems high and is likely to be an artifact of the limited range
over which [C2H6] was varied. Suppose we pick n¼ 1 on semitheoretical
grounds. Then regression analysis can be used to find best values for the
remaining parameters. The dependent variable is now Y¼ lnR � ln[C2H6].
There is now only one independent variable, X1¼ ln[I2]. The data are

Y¼ lnR � ln[C2H6] X1¼ ln[I2]

�9.44 �2.49
�9.82 �3.21
�10.10 �3.81

Now only the first two components of Equations (7.51) are used. Evaluating
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the various sums gives

3 ln k� 9:51m ¼ �29:36
�9:51 ln kþ 31:0203m ¼ 93:5088

Solution gives ln k ¼ � 9.1988 and m¼ 0.5009. Since there are now only two
fitted parameters, the model does not fit the data exactly, S2>0, but the fit is
quite good:

(lnR )observed (lnR )predicted

�9.56 �9.57
�9.99 �9.98
�10.29 �10.30

The predictions with n¼ 1 are essentially as good as those with n¼ 2.82. An
excellent fit is also obtained with n¼ 2. Thus, the data do not allow n to be
determined with any confidence. However, a kineticist would probably pick
m¼ 0.5 and n¼ 1 based on the simple logic that these values replicate the
experimental measurements and are physically plausible.

Regression analysis is a powerful tool for fitting models but can obviously be
misused. In the above example, physical reasoning avoids a spurious result.
Statistical reasoning is also helpful. Confidence intervals and other statistical
measures of goodness of fit can be used to judge whether or not a given para-
meter is statistically significant and if it should be retained in the model. Also,
statistical analysis can help in the planning of experiments so that the new
data will remove a maximum amount of uncertainty in the model. See any stan-
dard text on the statistical design of experiments.

APPENDIX 7.2: CODE FOR EXAMPLE 7.16

DefDbl A-L, P-Z
DefLng M-O
Dim conc(4), yinit(4)
Public A(5), B(5), C(5), D(5), y(4)
Sub Exp7_16()

’Data from Table 7.1
’Ethylbenzene is 1, Styrene is 2, Hydrogen is 3,
’Water is 4.
A(1)¼1.124: B(1)¼55.38: C(1)¼-18.476: D(1)¼0
A(2)¼2.05: B(2)¼50.192: C(2)¼-16.662: D(2)¼0
A(3)¼3.249: B(3)¼0.422: C(3)¼0: D(3)¼0.083
A(4)¼3.47: B(4)¼1.45: C(4)¼0: D(4)¼0.121
’Calculate delta Cp for C1 reacting to C2 þ C3
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A(5)¼A(2) þ A(3) - A(1)
B(5)¼B(2) þ B(3) - B(1)
C(5)¼C(2) þ C(3) - C(1)
D(5)¼D(2) þ D(3) - D(1)
For n¼1 To 5

A(n)¼A(n)
B(n)¼B(n)/1000#
C(n)¼C(n)/1000000#
D(n)¼D(n) * 100000#

Next n
Rg¼8.314

’Results from Examples 7.8 and 7.10.
DeltaHR0¼117440
DeltaGR0¼83010

’Starting conditions
y(1)¼0.1
y(2)¼0
y(3)¼0
y(4)¼0.9
Tinit¼973
T¼Tinit
T0¼298.15
P0¼1
P¼0.1
’Calculate molar density using bar as the pressure unit
Rgg¼0.00008314
rhoinit¼P / Rgg / T
rho¼rhoinit
For n¼1 To 4

yinit(n)¼y(n)
conc(n)¼rho * y(n)

Next
’Initial condition used for enthalpy marching
’For n¼1 To 4
’Enthalpy¼Enthalpy þ y(n) * rho * Rg * (CpInt(n, T)
’þ - CpInt(n, T0))
’Next

’Time step and output control
dtime¼0.00001
ip¼2
Tp¼Tinit
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Do ’Main Loop

’Thermodynamic equilibrium constant calculated as in
’Example 7.15

K0¼Exp(-DeltaGR0/Rg/T0)
K1¼Exp(DeltaHR0/Rg/T0 * (1 - T0/T))
K2¼Exp(-(CpInt(5, T) - CpInt(5, T0))/T)
K3¼Exp(DCpRTInt(T) - DCpRTInt(T0))
Kthermo¼K0 * K1 * K2 * K3

’Equilibrium mole fractions calculated using method of
’Example 7.13. These results are calculated for
’interest only. They are not needed for the main
’calculation. The code is specific to initial conditions

G¼Kthermo * P0/P
eps¼(-0.9 * G þ Sqr(0.81 * G * G þ 0.4 * (1 þ G) * G))/2/

+ (1 þ G)
eyEB¼(0.1 - eps)/(1 þ eps)
eySty¼eps/(1 þ eps)

’Kinetic equilibrium constant from Equation 7.36
KK¼Kthermo * P0/Rgg/T

’Reaction
kf¼160000 * Exp(-9000/T)
RRate¼kf * (conc(1) - conc(2) * conc(3)/KK)
DeltaHR¼117440 þ (CpInt(5, T) - CpInt(5, T0)) * Rg

’Approximate solution based on marching ahead in
’temperature, Equation 7.45
T¼T - DeltaHR * RRate * dtime/rho/CpMix(T)/Rg

’A more rigorous solution based on marching ahead in
’enthalpy according to Equation 7.42 is given in the
’next 16 lines of code. The temperature is found from
’the enthalpy using a binary search. The code is specific
’to the initial conditions of this problem. Results are
’very similar to those for marching temperature
’directly.
’ Enthalpy¼Enthalpy- DeltaHR * RRate * dtime
’ Thigh¼T
’ Tlow¼T - 1
’ Txx¼Tlow
’ For m¼1 To 20
’ Tx¼(Thigh þ Tlow)/2#
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’ DeltaHR¼117440# þ (CpInt(5, Tx) - CpInt(5, T0)) *
’þ Rg
’ DHR¼DeltaHR * (rhoinit * 0.1 - rho * y(1))/rhoinit
’ DHS¼Rg * (0.1 * (CpInt(1, Tx) - CpInt(1, Tinit))
’þ þ0.9 * (CpInt(4, Tx) - CpInt(4, Tinit)))
’ If DHR þ DHS > Enthalpy Then
’ Thigh¼Tx
’ Else
’ Tlow¼Tx
’ End If
’ Next m
’ T¼Tx

conc(1)¼conc(1) - RRate * dtime
conc(2)¼conc(2) þ RRate * dtime
conc(3)¼conc(3) þ RRate * dtime
rho¼conc(1) þ conc(2) þ conc(3) þ conc(4)
y(1)¼conc(1)/rho
y(2)¼conc(2)/rho
y(3)¼conc(3)/rho
y(4)¼conc(4)/rho

’Pressure
P¼rho * Rgg * T

’Output trajectory results when temperature has
’decreased by 1 degree
If T <¼ Tp Then

GoSub Output
Tp¼Tp - 1

End If
Rtime¼Rtime þ dtime
Loop While Abs(y(1) - eyEB) > 0.0000001 ’End of main loop

GoSub Output ’Output final values

Exit Sub

Output:
ip¼ip þ 1
Range("A"& CStr(ip)).Select
ActiveCell.FormulaR1C1¼Rtime
Range("B"& CStr(ip)).Select

ActiveCell.FormulaR1C1¼y(2)/(y(1) þ y(2))
Range("C"& CStr(ip)).Select
ActiveCell.FormulaR1C1¼eySty/(eyEB þ eySty)
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Range("D"& CStr(ip)).Select
ActiveCell.FormulaR1C1¼T
Range("E"& CStr(ip)).Select
ActiveCell.FormulaR1C1¼P
Range("F"& CStr(ip)).Select
ActiveCell.FormulaR1C1¼y(1)

Return

End Sub
Function Cp(n, T)

Cp¼A(n) þ B(n) * T þ C(n) * T * T þ D(n)/T/T
End Function
Function CpInt(n, T)

CpInt¼A(n) * T þ B(n) * T * T/2 þ C(n) * T * T * T/3 -
þ D(n)/T
End Function
Function DCpRTInt(T)

DCpRTInt¼A(5) * Log(T) þ B(5) * T þ C(5) * T * T/2 -
þ D(5)/2/T^2
End Function
Function CpMix(T)

CpMix¼y(1) * Cp(1, T) þ y(2) * Cp(2, T) þ y(3) *
þ Cp(3, T) þ y(4) * Cp(4, T)
End Function
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CHAPTER 8

REAL TUBULAR REACTORS
IN LAMINAR FLOW

Piston flow is a convenient approximation of a real tubular reactor. The design
equations for piston flow are relatively simple and are identical in mathematical
form to the design equations governing batch reactors. The key to their mathe-
matical simplicity is the assumed absence of any radial or tangential variations
within the reactor. The dependent variables a, b, . . . ,T ,P, change in the axial,
down-tube direction but are completely uniform across the tube. This allows
the reactor design problem to be formulated as a set of ordinary differential
equations in a single independent variable, z. As shown in previous chapters,
such problems are readily solvable, given the initial values ain, bin, . . . ,Tin,Pin:

Piston flow is an accurate approximation for some practical situations. It is
usually possible to avoid tangential (�-direction) dependence in practical reactor
designs, at least for the case of premixed reactants, which we are considering
throughout most of this book. It is harder, but sometimes possible, to avoid
radial variations. A long, highly turbulent reactor is a typical case where
piston flow will be a good approximation for most purposes. Piston flow will
usually be a bad approximation for laminar flow reactors since radial variations
in composition and temperature can be large.

Chapters 8 and 9 discuss design techniques for real tubular reactors. By
‘‘real,’’ we mean reactors for which the convenient approximation of piston
flow is so inaccurate that a more realistic model must be developed. By ‘‘tubu-
lar,’’ we mean reactors in which there is a predominant direction of flow and a
reasonably high aspect ratio, characterized by a length-to-diameter ratio, L/dt,
of 8 or more, or its equivalent, an L/R ratio of 16 or more. Practical designs
include straight and coiled tubes, multitubular heat exchangers, and packed-
bed reactors. Chapter 8 starts with isothermal laminar flow in tubular reactors
that have negligible molecular diffusion. The complications of significant mole-
cular diffusion, nonisothermal reactions with consequent diffusion of heat, and
the effects of temperature and composition on the velocity profile are subse-
quently introduced. Chapter 9 treats turbulent reactors and packed-bed reactors
of both the laminar and turbulent varieties. The result of these two chapters is a
comprehensive design methodology that is applicable to many design problems
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in the traditional chemical industry and which forms a conceptual framework
for extension to nontraditional industries. The major limitation of the methodol-
ogy is its restriction to reactors that have a single mobile phase. Reactors with
two or three mobile phases, such as gas–liquid reactors, are considered in
Chapter 11, but the treatment is necessarily less comprehensive than for the
reactors of Chapters 8 and 9 that have only one mobile phase.

8.1 ISOTHERMAL LAMINAR FLOW WITH
NEGLIGIBLE DIFFUSION

Consider isothermal laminar flow of a Newtonian fluid in a circular tube of
radius R, length L, and average fluid velocity �uu: When the viscosity is constant,
the axial velocity profile is

VzðrÞ ¼ 2 �uu 1� r
2

R2

� �
ð8:1Þ

Most industrial reactors in laminar flow have pronounced temperature and com-
position variations that change the viscosity and alter the velocity profile from the
simple parabolic profile of Equation (8.1). These complications are addressed in
Section 8.7. However, even the profile of Equation (8.1) presents a serious com-
plication compared with piston flow. There is a velocity gradient across the tube,
with zero velocity at the wall and high velocities near the centerline. Molecules
near the center will follow high-velocity streamlines and will undergo relatively
little reaction. Those near the tube wall will be on low-velocity streamlines, will
remain in the reactor for long times, and will react to near-completion. Thus, a
gradient in composition develops across the radius of the tube. Molecular diffu-
sion acts to alleviate this gradient but will not completely eliminate it, particu-
larly in liquid-phase systems with typical diffusivities of 1.0�10�9 to
1.0�10�10 for small molecules and much lower for polymers.

When diffusion is negligible, the material moving along a streamline is
isolated from material moving along other streamlines. The streamline can be
treated as if it were a piston flow reactor, and the system as a whole can be
regarded as a large number of piston flow reactors in parallel. For the case of
straight streamlines and a velocity profile that depends on radial position alone,
concentrations along the streamlines at position r are given by

VzðrÞ @a
@z
¼ R A ð8:2Þ

This result is reminiscent of Equation (1.36). We have replaced the average velo-
city with the velocity corresponding to a particular streamline. Equation (8.2) is
written as a partial differential equation to emphasize the fact that the concentra-
tion a¼ a(r, z) is a function of both r and z. However, Equation (8.2) can be inte-
grated as though it were an ordinary differential equation. The inlet boundary
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condition associated with the streamline at position r is a(r, 0)¼ ain(r). Usually,
ain will be same for all values of r, but it is possible to treat the more general case.
The outlet concentration for a particular streamline is found by solving Equa-
tion (8.2) and setting z¼L. The outlet concentrations for the various streamlines
are averaged to get the outlet concentration from the reactor as a whole.

8.1.1 A Criterion for Neglecting Diffusion

The importance of diffusion in a tubular reactor is determined by a dimension-
less parameter, DA �tt=R

2 ¼ DAL=ð �uuR2 Þ, which is the molecular diffusivity of
component A scaled by the tube size and flow rate. If DA �tt=R

2 is small, then
the effects of diffusion will be small, although the definition of small will
depend on the specific reaction mechanism. Merrill and Hamrin1 studied the
effects of diffusion on first-order reactions and concluded that molecular diffu-
sion can be ignored in reactor design calculations if

DA �tt=R
2 < 0:003 ð8:3Þ

Equation (8.3) gives the criterion for neglecting diffusion. It is satisfied in many
industrial-scale, laminar flow reactors, but may not be satisfied in laboratory-
scale reactors since they operate with the same values for DA and �tt but generally
use smaller diameter tubes. Molecular diffusion becomes progressively more
important as the size of the reactor is decreased. The effects of molecular diffu-
sion are generally beneficial, so that a small reactor will give better results than a
large one, a fact that has proved distressing to engineers attempting a scaleup.
For the purposes of scaleup, it may be better to avoid diffusion and accept
the composition gradients on the small scale so that they do not cause unplea-
sant surprises on the large scale. One approach to avoiding diffusion in the
small reactor is to use a short, fat tube. If diffusion is negligible in the small reac-
tor, it will remain negligible upon scaleup. The other approach is to accept the
benefit of diffusion and to scaleup at constant tube diameter, either in parallel or
in series as discussed in Chapter 3. This will maintain a constant value for the
dimensionless diffusivity, DA �tt=R

2.
The Merrill and Hamrin criterion was derived for a first-order reaction. It

should apply reasonably well to other simple reactions, but reactions exist that
are quite sensitive to diffusion. Examples include the decomposition of free-radi-
cal initiators where a few initial events can cause a large number of propagation
reactions, and coupling or cross-linking reactions where a few events can have a
large effect on product properties.

8.1.2 Mixing-Cup Averages

Suppose Equation (8.2) is solved either analytically or numerically to give a(r, z).
It remains to find the average outlet concentration when the flows from all the
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streamlines are combined into a single stream. This average concentration is the
convected-mean or mixing-cup average concentration. It is the average concentra-
tion, amix(L), of material leaving the reactor. This material could be collected in
a bucket (a mixing cup) and is what a company is able to sell. It is not the spatial
average concentration inside the reactor, even at the reactor outlet. See Problem
8.5 for an explanation of this distinction.

The convected mean at position z is denoted by amix(z) and is found by
multiplying the concentration on a streamline, a(r, z), by the volumetric flow
rate associated with that streamline, dQ(r)¼Vz(r)dAc, and by summing
over all the streamlines. The result is the molar flow rate of component A.
Dividing by the total volumetric flow, Q ¼ �uuAc, gives the convected-mean
concentration:

amixðzÞ ¼ 1

�uuAc

Z Z
Ac

aVz dAc ¼ 1

�uuR2

ZR
0

aðr, zÞVzðrÞ2r dr ð8:4Þ

The second integral in Equation (8.4) applies to the usual case of a circular tube
with a velocity profile that is a function of r and not of �. When the velocity
profile is parabolic,

amixðzÞ ¼ 4

R2

ZR
0

aðr, zÞ 1� r
2

R2

� �
r dr ¼ 4

Z1
0

aðr, zÞ 1� r2� �
r dr ð8:5Þ

where r ¼ r=R is the dimensionless radius.
The mixing-cup average outlet concentration amix(L) is usually denoted

just as aout and the averaging is implied. The averaging is necessary whenever
there is a radial variation in concentration or temperature. Thus, Equation (8.4)
and its obvious generalizations to the concentration of other components
or to the mixing-cup average temperature is needed throughout this chapter
and much of Chapter 9. If in doubt, calculate the mixing-cup averages.
However, as the next example suggests, this calculation can seldom be done
analytically.

Example 8.1: Find the mixing-cup average outlet concentration for an iso-
thermal, first-order reaction with rate constant k that is occurring in a laminar
flow reactor with a parabolic velocity profile as given by Equation (8.1).

Solution: This is the simplest, nontrivial example of a laminar flow reactor.
The solution begins by integrating Equation (8.2) for a specific streamline that
corresponds to radial position r. The result is

aðr, zÞ ¼ ain exp �kz
VzðrÞ
� �

ð8:6Þ
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where k is the first-order rate constant. The mixing-cup average outlet
concentration is found using Equation (8.5) with z¼L:

aout ¼ amixðLÞ ¼ 4ain

Z1
0

exp
�kL

2 �uuð1� r2Þ
� �

1� r2� �
r dr

This integral can be solved analytically. Its solution is a good test for symbolic
manipulators such as Mathematica or Maple. We illustrate its solution using
classical methods. Differentiating Equation (8.1) gives

r dr ¼ � dVz
4 �uu

This substitution allows the integral to be expressed as a function of Vz:

aout ¼ ain
2 �uu2

Z2 �uu
0

exp½�kL=Vz�Vz dVz

A second substitution is now made,

t ¼ L=Vz ð8:7Þ
to obtain an integral with respect to t. Note that t ranges from �tt=2 to 1 as
Vz ranges from 2 �uu to 0 as r ranges from 0 to 1. Some algebra gives the
final result:

aout
ain
¼
Z1
�tt=2

expð�ktÞ �tt
2

2t3
dt ð8:8Þ

This integral is a special function related to the incomplete gamma function.
The solution can be considered to be analytical even though the function
may be unfamiliar. Figure 8.1 illustrates the behavior of Equation (8.8) as
compared with CSTRs, PFRs, and laminar flow reactors with diffusion.

Mixing-cup averages are readily calculated for any velocity profile that is axi-
symmetric—i.e., has no �-dependence. Simply use the appropriate functional
form for Vz in Equation (8.4). However, analytical integration as in Example
8.1 is rarely possible. Numerical integration is usually necessary, and the trape-
zoidal rule described in Section 8.3.4 is recommended because it converges
O(�r2), as do the other numerical methods used in Chapters 8 and 9.
Example 8.3 includes a sample computer code. Use of the rectangular rule
(see Figure 2.1) is not recommended because it converges O(�r) and would
limit the accuracy of other calculations. Simpson’s rule converges O(�r3) and
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will calculate �uu exactly when the velocity profile is parabolic, but ceases to be
exact for the more complex velocity profiles encountered in real laminar flow
reactors. The use of Simpson’s rule then does no harm but offers no real advan-
tage. The convergence order for a complex calculation is determined by the most
slowly converging of the computational components.

The double integral in Equation (8.4) is a fairly general definition of the
mixing-cup average. It is applicable to arbitrary velocity profiles and noncircular
cross sections but does assume straight streamlines of equal length. Treatment of
curved streamlines requires a precise and possibly artificial definition of the
system boundaries. See Nauman and Buffham.2

8.1.3 A Preview of Residence Time Theory

Example 8.1 derived a specific example of a powerful result of residence time
theory. The residence time associated with a streamline is t¼L/Vz. The outlet
concentration for this streamline is abatchðtÞ. This is a general result
applicable to diffusion-free laminar flow. Example 8.1 treated the case of a
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FIGURE 8.1 Fraction unreacted versus dimensionless rate constant for a first-order reaction in
various isothermal reactors. The case illustrated with diffusion is for DA �tt=R

2 ¼ 0:1.
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first-order reaction where abatchðtÞ ¼ exp(�kt). Repeating Example 8.1 for the
general case gives

aout ¼
Z1
�tt=2

abatchðtÞ
�tt 2

2t3
dt ð8:9Þ

Equation (8.9) can be applied to any reaction, even a complex reaction where
abatchðtÞ must be determined by the simultaneous solution of many ODEs. The
restrictions on Equation (8.9) are isothermal laminar flow in a circular tube
with a parabolic velocity profile and negligible diffusion.

The condition of negligible diffusion means that the reactor is completely
segregated. A further generalization of Equation (8.9) applies to any completely
segregated reactor:

aout ¼
Z1
0

abatchðtÞf ðtÞ dt ð8:10Þ

where f (t) is the differential distribution function of residence times. In principle,
f (t) is a characteristic of the reactor, not of the reaction. It can be used to predict
conversions for any type of reaction in the same reactor. Chapter 15 discusses
ways of measuring f (t). For a parabolic velocity profile in a diffusion-free tube,

f ðtÞ ¼ 0 t  �tt=2

f ðtÞ ¼ �tt 2

2t3
t > �tt=2

ð8:11Þ

8.2 CONVECTIVE DIFFUSION OF MASS

Molecules must come into contact for a reaction to occur, and the mechanism
for the contact is molecular motion. This is also the mechanism for diffusion.
Diffusion is inherently important whenever reactions occur, but there are some
reactor design problems where diffusion need not be explicitly considered, e.g.,
tubular reactors that satisfy the Merrill and Hamrin criterion, Equation (8.3).
For other reactors, a detailed accounting for molecular diffusion may be critical
to the design.

Diffusion is important in reactors with unmixed feed streams since the initial
mixing of reactants must occur inside the reactor under reacting conditions.
Diffusion can be a slow process, and the reaction rate will often be limited by
diffusion rather than by the intrinsic reaction rate that would prevail if the reac-
tants were premixed. Thus, diffusion can be expected to be important in tubular
reactors with unmixed feed streams. Its effects are difficult to calculate, and
normal design practice is to use premixed feeds whenever possible.
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With premixed reactants, molecular diffusion has already brought the react-
ing molecules into close proximity. In an initially mixed batch reactor, various
portions of the reacting mass will start at the same composition, will react at
the same rate, and will thus have the same composition at any time. No concen-
tration gradients develop, and molecular diffusion is unimportant during the
reaction step of the process even though it was important during the premixing
step. Similarly, mechanical mixing is unnecessary for an initially mixed batch
reactor, although mixing must be good enough to eliminate temperature gradi-
ents if there is heating or cooling at the wall. Like ideal batch reactors, CSTRs
lack internal concentration differences. The agitator in a CSTR brings fluid
elements into such close contact that mixing is complete and instantaneous.

Tubular reactors are different. They must have concentration gradients in the
axial direction since the average concentration changes from ain to aout along the
length of the reactor. The nonisothermal case will have an axial temperature
gradient as well. Piston flow reactors are a special case of tubular reactor
where radial mixing is assumed to be complete and instantaneous. They
continue to have axial gradients.

Laminar flow reactors have concentration and temperature gradients in both
the radial and axial directions. The radial gradient normally has a much greater
effect on reactor performance. The diffusive flux is a vector that depends on
concentration gradients. The flux in the axial direction is

Jz ¼ �DA
@a

@z

As a first approximation, the concentration gradient in the axial direction is

@a

@z
� aout � ain

L

and since L is large, the diffusive flux will be small and can be neglected in most
tubular reactors. Note that the piston flow model ignores axial diffusion even
though it predicts concentration gradients in the axial direction.

The flux in the radial direction is

Jr ¼ �DA
@a

@r

A first approximation to the radial concentration gradient is

@a

@r
� awall � ain

R
� �ain

R

where we have assumed component A to be consumed by the reaction and to
have a concentration near zero at the tube wall. The concentration differences
in the radial and axial directions are similar in magnitude, but the length
scales are very different. It is typical for tubular reactors to have L=R� 1:
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The relatively short distance in the radial direction leads to much higher
diffusion rates. In most of what follows, axial diffusion will be ignored.

To account for molecular diffusion, Equation (8.2), which governs reactant
concentrations along the streamlines, must be modified to allow diffusion
between the streamlines; i.e., in the radial direction. We ignore axial diffusion
but add a radial diffusion term to obtain

VzðrÞ @a
@z
¼ DA

1

r

@a

@r
þ @2a

@r2

� �
þR A ð8:12Þ

A derivation of this equation is given in Appendix 8.1.
Equation (8.12) is a form of the convective diffusion equation. More general

forms can be found in any good textbook on transport phenomena, but
Equation (8.12) is sufficient for many practical situations. It assumes constant
diffusivity and constant density. It is written in cylindrical coordinates since
we are primarily concerned with reactors that have circular cross sections, but
Section 8.4 gives a rectangular-coordinate version applicable to flow between
flat plates.

Equation (8.12) is a partial differential equation that includes a first derivative
in the axial direction and first and second derivatives in the radial direction.
Three boundary conditions are needed: one axial and two radial. The axial
boundary condition is

aðr, 0Þ ¼ ainðrÞ ð8:13Þ

As noted earlier, ain will usually be independent of r, but the numerical solution
techniques that follow can easily accommodate the more general case. The radial
boundary conditions are

@a

@r
¼ 0 at the wall, r ¼ R ð8:14Þ

@a

@r
¼ 0 at the centerline, r ¼ 0 ð8:15Þ

The wall boundary condition applies to a solid tube without transpiration.
The centerline boundary condition assumes symmetry in the radial direction.
It is consistent with the assumption of an axisymmetric velocity profile without
concentration or temperature gradients in the �-direction. This boundary con-
dition is by no means inevitable since gradients in the �-direction can arise
from natural convection. However, it is desirable to avoid �-dependency since
appropriate design methods are generally lacking.

A solution to Equation (8.12) together with its boundary conditions gives
a(r, z) at every point in the reactor. An analytical solution is possible for the spe-
cial case of a first-order reaction, but the resulting infinite series is cumbersome
to evaluate. In practice, numerical methods are necessary.
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If several reactive components are involved, a version of Equation (8.12)
should be written for each component. Thus, for complex reactions involving
N components, it is necessary to solve N simultaneous PDEs (partial differential
equations). For batch and piston flow reactors, the task is to solve N simulta-
neous ODEs. Stoichiometric relationships and the reaction coordinate method
can be used to eliminate one or more of the ODEs, but this elimination is not
generally possible for PDEs. Except for the special case where all the diffusion
coefficients are equal, DA ¼ DB ¼ � � �, stoichiometric relationships should not
be used to eliminate any of the PDEs governing reaction with diffusion. When
the diffusion coefficients are unequal, the various species may separate due to
diffusion. Overall stoichiometry, as measured by ain � aout, bin � bout, . . . is pre-
served and satisfies Equation (2.39). However, convective diffusion does not
preserve local stoichiometry. Thus, the reaction coordinate method does not
work locally; and if N components affect reaction rates, then all N simultaneous
equations should be solved. Even so, great care must be taken with multicompo-
nent systems when the diffusivities differ significantly in magnitude unless there
is some dominant component, the ‘‘solvent,’’ that can be assumed to distribute
itself to satisfy a material balance constraint such as constant density. The gen-
eral case of multicomponent diffusion remains an area of research where reliable
design methods are lacking.3

8.3 NUMERICAL SOLUTION TECHNIQUES

Many techniques have been developed for the numerical solution of partial dif-
ferential equations. The best method depends on the type of PDE being solved
and on the geometry of the system. Partial differential equations having the form
of Equation (8.12) are known as parabolic PDEs and are among the easiest to
solve. We give here the simplest possible method of solution, one that is directly
analogous to the marching-ahead technique used for ordinary differential equa-
tions. Other techniques should be considered (but may not be much better) if
the computing cost becomes significant. The method we shall use is based on
finite difference approximations for the partial derivatives. Finite element meth-
ods will occasionally give better performance, although typically not for
parabolic PDEs.

The technique used here is a variant of the method of lines in which a PDE is
converted into a set of simultaneous ODEs. The ODEs have z as the indepen-
dent variable and are solved by conventional means. We will solve them using
Euler’s method, which converges O(�z). Higher orders of convergence, e.g.,
Runge-Kutta, buy little for reasons explained in Section 8.3.3. The ODEs
obtained using the method of lines are very stiff, and computational efficiency
can be gained by using an ODE-solver designed for stiff equations. However,
for a solution done only once, programming ease is usually more important
than computational efficiency.
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8.3.1 The Method of Lines

Divide the tube length into a number of equally sized increments, �z ¼ L=J,
where J is an integer. A finite difference approximation for the partial derivative
of concentration in the axial direction is

@a

@z
� aðr, zþ�zÞ � aðr, zÞ

�z
ð8:16Þ

This approximation is called a forward difference since it involves the forward
point, zþ�z, as well as the central point, z. (See Appendix 8.2 for a discussion
of finite difference approximations.) Equation (8.16) is the simplest finite differ-
ence approximation for a first derivative.

The tube radius is divided into a number of equally sized increments,
�r ¼ R=I , where I is an integer. For reasons of convergence, we prefer to use
a second-order, central difference approximation for the first partial derivative:

@a

@r
� aðrþ�r, zÞ � aðr��r, zÞ

2�r
ð8:17Þ

which is seen to involve the rþ�r and r��r points. For the second radial deri-
vative we use

@2a

@r2
� aðrþ�r, zÞ � 2aðr, zÞ þ aðr��r, zÞ

�r2
ð8:18Þ

The approximations for the radial derivatives are substituted into the govern-
ing PDE, Equation (8.12), to give

@a

@z
¼ Aaðrþ�r, zÞ þ Baðr, zÞ þ Caðr��r, zÞ þR A=VzðrÞ ð8:19Þ

where

A ¼ DA½1=ð2r�rÞ þ 1=�r2�=VzðrÞ
B ¼ DA½�2=�r2�=VzðrÞ
C ¼ DA½�1=ð2r�rÞ þ 1=�r2�=VzðrÞ

ð8:20Þ

Equation (8.19) is identical to Equation (8.12) in the limit as �r! 0 and is a
reasonable approximation to it for small but finite �r. It can be rewritten in
terms of the index variable i. For i ¼ 1, . . . , I � 1,

daði, zÞ
dz

¼ AðiÞaði þ 1, zÞ þ BðiÞaði, zÞ þ CðiÞaði � 1, zÞ þR A=VzðiÞ ð8:21Þ

In this formulation, the concentrations have been discretized and are now given
by a set of ODEs—a typical member of the set being Equation (8.21), which
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applies for i¼ 1 to i¼ I� 1. As indicated by the notation in Equation (8.21), A,
B, and C depend on i since, as shown by Equation (8.20), they depend on
r¼ i�r. Special forms, developed below, apply at the centerline where i¼ 0
and at the wall where i¼ I.

Equation (8.12) becomes indeterminate at the centerline since both r and
@a=@r go to zero. Application of L’Hospital’s rule gives a special form for r¼ 0:

@a

@z
¼ DA

Vzð0Þ 2
@2a

@z2

� �
þ R A

Vzð0Þ at r ¼ 0

Applying the difference approximation of Equation (8.18) and noting that
a(1, z)¼ a(�1, z) due to the assumed symmetry at the centerline gives

da

dz
¼ Að0Þ að1, zÞ þ Bð0Þ að0, zÞ þ ðR AÞ0=Vzð0Þ at r ¼ 0 ð8:22Þ

where

Að0Þ ¼ DA½4=�r2�=Vzð0Þ
Bð0Þ ¼ DA½�4=�r2�=Vzð0Þ

ð8:23Þ

The concentration at the wall, aðIÞ, is found by applying the zero flux boundary
condition, Equation (8.14). A simple way is to set aðIÞ ¼ aðI � 1Þ since this gives
a zero first derivative. However, this approximation to a first derivative
converges only O(�r) while all the other approximations converge O(�r2). A
better way is to use

anewðIÞ ¼ 4anewðI � 1Þ � anewðI � 2Þ
3

ð8:24Þ

which converges O(�r2). This result comes from fitting a(i) as a quadratic in i in
the vicinity of the wall. The constants in the quadratic are found from the values
of a(I� 1) and a(I� 2) and by forcing @a=@r ¼ 0 at the wall. Alternatively,
Equation (8.24) is obtained by using a second-order, forward difference approx-
imation for the derivative at r¼R. See Appendix 8.2.

Equations (8.21) and (8.22) constitute a set of simultaneous ODEs in the
independent variable z. The dependent variables are the a(i) terms. Each ODE
is coupled to the adjacent ODEs; i.e., the equation for a(i) contains aði � 1Þ
and a(iþ 1). Equation (8.24) is a special, degenerate member of the set, and
Equation (8.22) for að0Þ is also special because, due to symmetry, there is only
one adjacent point, að1Þ. The overall set may be solved by any desired
method. Euler’s method is discussed below and is illustrated in Example 8.5.
There are a great variety of commercial and freeware packages available for sol-
ving simultaneous ODEs. Most of them even work. Packages designed for stiff
equations are best. The stiffness arises from the fact that Vz(i) becomes very
small near the tube wall. There are also software packages that will handle
the discretization automatically.
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8.3.2 Euler’s Method

Euler’s method for solving the above set of ODEs uses a first-order, forward
difference approximation in the z-direction, Equation (8.16). Substituting this
into Equation (8.21) and solving for the forward point gives

anewðiÞ ¼ AðiÞ�zaoldðiþ 1Þ þ ½1þ BðiÞ�zÞ�aold ðiÞ
þCðiÞ�zaold ði� 1Þ þ ðR AÞi�z=VzðiÞ for i ¼ 1 to I � 1

ð8:25Þ

where A, B, and C are given by Equation (8.20). The equation for the
centerline is

anewð0Þ ¼ Að0Þ�zaold ð1Þ þ ½1þ Bð0Þ�zÞ�aoldð0Þ
þ ðR AÞ0�z=Vzð0Þ

ð8:26Þ

where A and B are given by Equation (8.23). The wall equation finishes the set:

anewðIÞ ¼ 4anewðI � 1Þ � anewðI � 2Þ
3

ð8:27Þ

Equations (8.25) through (8.27) allow concentrations to be calculated at the
‘‘new’’ axial position, zþ�z, given values at the ‘‘old’’ position, z. If there is no
reaction, the new concentration is a weighted average of the old concentrations
at three different radial positions, rþ�r, r, and r��r. In the absence of reac-
tion, there is no change in the average composition, and any concentration fluc-
tuations will gradually smooth out. When the reaction term is present, it is
evaluated at the old ith point. Figure 8.2 shows a diagram of the computational
scheme. The three circled points at axial position z are used to calculate the new
value at the point zþ�z. The dotted lines in Figure 8.2 show how the radial
position r can be changed to determine concentrations for the various values
of i. The complete radial profile at zþ�z can be found from knowledge of
the profile at z. The profile at z¼ 0 is known from the inlet boundary condition,
Equation (8.13). The marching-ahead procedure can be used to find the profile
at z ¼ �z, and so on, repeating the procedure in a stepwise manner until the end
of the tube is reached. Colloquially, this solution technique can be called march-
ing ahead with a sideways shuffle. It is worth noting that the axial step size �z
can be changed as the calculation proceeds. This may be necessary if the velocity
profile changes during the course of the reaction, as discussed in Section 8.7.

Equations (8.25), (8.26), and (8.27) use the dimensioned independent vari-
ables, r and z, but use of the dimensionless variables, r and z , is often preferred.
See Equations (8.56), (8.57), and (8.58) for an example.

A marching-ahead solution to a parabolic partial differential equation is
conceptually straightforward and directly analogous to the marching-ahead
method we have used for solving ordinary differential equations. The difficulties
associated with the numerical solution are the familiar ones of accuracy and
stability.

REAL TUBULAR REACTORS IN LAMINAR FLOW 275



8.3.3 Accuracy and Stability

The number of radial increments can be picked arbitrarily. A good approach is
to begin with a small number, I¼ 4, for debugging purposes. When the program
is debugged, the value for I is successively doubled until a reasonable degree of
accuracy is achieved or until computational times become excessive. If the latter
occurs first, find a more sophisticated solution method or a faster computer.

Given a value for I and the corresponding value for �r, it remains to deter-
mine �z. The choice for �z is not arbitrary but is constrained by stability con-
siderations. One requirement is that the coefficients on the aold(i) and aold (0)
terms in Equations (8.25) and (8.26) cannot be negative. Thus, the numerical
(or discretization) stability criterion is

½1þ BðiÞ�z� 	 0 for i ¼ 0 to I � 1 ð8:28Þ
where B(i) is obtained from Equations (8.20) or (8.23). Since B(i) varies with
radial position—i.e., with i—the stability criterion should be checked at all
values of i. Normal velocity profiles will have Vz(R)¼ 0 due to the zero-slip con-
dition of hydrodynamics. For such profiles, the near-wall point, r ¼ R��r, will
generally give the most restrictive—i.e., smallest—value for �z.

�zmax ¼ �r2VzðR��rÞ
2DA

ð8:29Þ

This stability requirement is quite demanding. Superficially, it appears that
�zmax decreases as �r

2, but VzðR��rÞ is also decreasing, in approximate pro-
portion to�r. The net effect is that �zmax varies as�r

3. Doubling the number of

�  + D�

�

�
_ D�

z _ Dz z + Dzz

FIGURE 8.2 Computational template for marching-ahead solution.
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radial points will increase the number of axial points by a factor of 8 and will
increase the computation time by a factor of 16. The net effect is that �z quickly
becomes so small that the convergence order of the ODE-solver ceases to be
important.

Equation (8.29) provides no guarantee of stability. It is a necessary condition
for stability that is imposed by the discretization scheme. Practical experience
indicates that it is usually a sufficient condition as well, but exceptions exist
when reaction rates (or heat-generation rates) become very high, as in regions
near thermal runaway. There is a second, physical stability criterion that pre-
vents excessively large changes in concentration or temperature. For example,
�a, the calculated change in the concentration of a component that is consumed
by the reaction, must be smaller than a itself. Thus, there are two stability con-
ditions imposed on �z: numerical stability and physical stability. Violations of
either stability criterion are usually easy to detect. The calculation blows up.
Example 8.8 shows what happens when the numerical stability limit is violated.

Regarding accuracy, the finite difference approximations for the radial deri-
vatives converge O(�r2). The approximation for the axial derivative converges
O(�z), but the stability criterion forces �z to decrease at least as fast as �r2.
Thus, the entire computation should convergeO(�r2). The proof of convergence
requires that the computations be repeated for a series of successively smaller
grid sizes.

8.3.4 The Trapezoidal Rule

The final step in the design calculations for a laminar flow reactor is determina-
tion of mixing-cup averages based on Equation (8.4). The trapezoidal rule is
recommended for this numerical integration because it is easy to implement
and because it converges O(�r2) in keeping with the rest of the calculations.

For I equally sized increments in the radial direction, the general form for the
trapezoidal rule is

ZR
0

FðrÞdr � �r
Fð0Þ
2
þ FðIÞ

2
þ
XI�1
i¼1
FðiÞ

" #
ð8:30Þ

For the case at hand,

FðrÞ ¼ 2�raðrÞVzðrÞ ¼ 2�i�raðiÞVzðiÞ ð8:31Þ
Both F(0) and F(R) vanish for a velocity profile with zero slip at the wall. The

mixing-cup average is determined when the integral of FðrÞ is normalized by
Q ¼ �R2 �uu: There is merit in using the trapezoidal rule to calculate Q by integrat-
ing dQ ¼ 2�rVzdr: Errors tend to cancel when the ratio is taken.

The next few examples show the various numerical methods for a simple
laminar flow reactor, gradually adding complications.
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Example 8.2: An isothermal reactor with L¼ 2m, R¼ 0.01m is being used
for a first-order reaction. The rate constant is 0.005 s�1, and �uu ¼ 0:01m=s:
Estimate the outlet concentration, assuming piston flow.

Solution: For piston flow, aout ¼ ain expð�kL= �uuÞ and Y ¼ ain=aout ¼
expð�1Þ ¼ 0:3679:

Example 8.3: The reactor of Example 8.2 is actually in laminar flow with a
parabolic velocity profile. Estimate the outlet concentration ignoring molecu-
lar diffusion.

Solution: Example 8.1 laid the groundwork for this case of laminar flow
without diffusion. The mixing-cup average is

Y ¼ amixðLÞ
ain

¼

RR
0

2�rVzðrÞ exp½�kL=VzðrÞ� dr
Q

The following Excel macro illustrates the use of the trapezoidal rule for
evaluating both the numerator and denominator in this equation.

DefDbl A-H, K-L, P-Z
DefLng I-J, M-O
Sub Exp8_3()

L¼2
Ro¼0.01
U¼0.01
k¼0.005
Itotal¼2

For jj¼1 To 8 ’This outer loop varies the radial grid
’size to test convergence

Itotal¼2 * Itotal
dr¼Ro/Itotal
Range("A"& CStr(jj)).Select
ActiveCell.FormulaR1C1¼Itotal

Fsum¼0 ’Set to F(0)/2þF(R)/2 for the general
’trapezoidal rule

Qsum¼0 ’Set to Q(0)/2þQ(R)/2 for the general
’trapezoidal rule

For i¼1 To Itotal�1
r¼i * dr
Vz¼2 * U * (1�r ^ 2/Ro ^ 2)
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Q¼r * Vz ’Factor of 2*Pi omitted since it will
’cancel in the ratio

F¼Q * Exp(�k * L/Vz)
Fsum¼FsumþF * dr
Qsum¼QsumþQ * dr

Next i
aout¼Fsum/Qsum

Range("B"& CStr(jj)).Select
ActiveCell.FormulaR1C1¼aout

Next jj

End Sub

The results are

I aout/ain

4 0.46365
8 0.44737
16 0.44413
32 0.44344
64 0.44327
128 0.44322
256 0.44321
512 0.44321

The performance of the laminar flow reactor is appreciably worse than that
of a PFR, but remains better than that of a CSTR (which gives Y¼ 0.5 for
k�tt ¼ 1). The computed value of 0.4432 may be useful in validating more
complicated codes that include diffusion.

Example 8.4: Suppose that the reactive component in the laminar flow
reactor of Example 8.2 has a diffusivity of 5�10� 9 m2/s. Calculate the mini-
mum number of axial steps, J, needed for discretization stability when the
radial increments are sized using I¼ 4, 8, 16, 32, 64, and 128. Also, suggest
some actual step sizes that would be reasonable to use.

Solution: Begin with I¼ 4 so that �r¼R/I¼ 0.0025m. The near-wall
velocity occurs at r¼R��r¼ 0.0075m:

Vz ¼ 2 �uu½1� r2=R2� ¼ 0:02½1� 0:00752=ð0:01Þ2� ¼ 0:00875m=s

�zmax ¼ �r2VzðR��rÞ=½2DA� ¼ ð0:0025Þ2ð0:00875Þ=2=5� 10�9 ¼ 5:47m

Jmin ¼ L=�zmax ¼ 2=5:47 ¼ 0:3656, but this must be rounded up to an
integer. Thus, Jmin¼ 1 for I¼ 4. Repeating the calculations for the other
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values of I gives

I Jmin Jused

4 1 2
8 3 4
16 22 32
32 167 256
64 1322 2048
128 10527 16384

The third column represents choices for J that are used in the examples that
follow. For I¼ 8 and higher, they increase by a factor of 8 as I is doubled.

Example 8.5: Use the method of lines combined with Euler’s method to
determine the mixing-cup average outlet for the reactor of Example 8.4.

Solution: For a first-order reaction, we can arbitrarily set ain¼ 1 so that the
results can be interpreted as the fraction unreacted. The choices for I and J
determined in Example 8.4 will be used. The marching-ahead procedure
uses Equations (8.25), (8.26), and (8.27) to calculate concentrations. The
trapezoidal rule is used to calculate the mixing-cup average at the end of
the reactor. The results are

I J aout/ain

4 1 0.37363
8 4 0.39941
16 32 0.42914
32 256 0.43165
64 2048 0.43175
128 16384 0.43171

These results were calculated using the following Excel macro:

DefDbl A-H, K-L, P-Z
DefLng I-J, M-O
Sub Fig8_1()
Dim aold(256), anew(256), Vz(256)
Dim A(256), B(256), C(256), D(256)

ain¼1
Da¼0.000000005
L¼2
R¼0.01
U¼0.01
k¼0.005
Itotal¼2
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For jj¼1 To 7 ’This outer loop varies Itotal to check
’convergence

Itotal¼2 * Itotal
If Itotal¼4 Then JTotal¼2
If Itotal¼8 Then JTotal¼4
If Itotal > 8 Then JTotal¼8 * JTotal
dr¼R/Itotal
dz¼L/JTotal

’Set constants in Equation 8.26
A(0)¼4 * Da/dr ^ 2 * dz/2/U
B(0)¼ �4 * Da/dr ^ 2 * dz/2/U
D(0)¼ �k * dz/2/U
aold(0)¼1

’Set constants in Equation 8.25
For i¼1 To Itotal - 1

Vz(i)¼2 * U * (1�(i * dr) ^ 2/R ^ 2)
A(i)¼Da * (1/(2 * dr ^ 2 * i)þ1/dr ^ 2) * dz/Vz(i)
B(i)¼Da * (�2/dr ^ 2) * dz/Vz(i)
C(i)¼Da * (�1/(2 * dr ^ 2 * i)þ1/dr ^ 2) * dz/Vz(i)
D(i)¼ �k * dz/Vz(i)
aold(i)¼1

Next

’Set the initial conditions
For i¼0 To Itotal

aold(i)¼ain
Next

’March down the tube
For j¼1 To JTotal

anew(0)¼A(0) * aold(1) þ(1þB(0)) * aold(0)
þD(0) * aold(0)

’This is the sideways shuffle
For i¼1 To Itotal�1

x¼A(i) * aold(iþ1) þ(1þB(i)) * aold(i)
anew(i)¼xþC(i) * aold(i�1) þD(i) * aold(i)

Next j
Next i

’Apply the wall boundary condition, Equation 8.27
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anew(Itotal)¼4 * anew(Itotal�1)/3�anew(Itotal�2)/3
’March a step forward

For i¼0 To Itotal
aold(i)¼anew(i)

Next i
’Calculate the mixing cup average

F¼0
Q¼0

For i¼1 To Itotal�1
F¼Fþ2 * dr * i * Vz(i) * anew(i)
Q¼Qþ2 * dr * i * Vz(i)

Next i
Y¼F/Q

’Output results for this mesh size
Range("A"& CStr(jj)).Select
ActiveCell.FormulaR1C1¼Itotal
Range("B"& CStr(jj)).Select
ActiveCell.FormulaR1C1¼JTotal
Range("C"& CStr(jj)).Select
ActiveCell.FormulaR1C1¼Y

Next jj

End Sub

Example 8.5 has DA �tt=R
2 ¼ 0:01. Since this is larger than 0.003, diffusion

should have some effect according to Merrill and Hamrin. The diffusion-free
result for k�tt ¼ 1 was found to be Y¼ 0.4432 in Example 8.3. The Example 8.5
result of 0.4317 is closer to piston flow, as expected.

8.3.5 Use of Dimensionless Variables

Example 8.5 used the natural, physical variables and the natural dimensions of
the problem. A good case can be made for this practice. It is normal in engineer-
ing design since it tends to keep the physics of the design transparent and avoids
errors, particularly when using physical property correlations. However, it is
desirable to use dimensionless variables when results are being prepared for gen-
eral use, as in a literature publication or when the calculations are so lengthy
that rerunning them would be cumbersome. The usual approach in the chemical
engineering literature is to introduce scaled, dimensionless independent variables
quite early in the analysis of a problem.
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The use of dimensionless variables will be illustrated using Equation (8.12)
but with an added term for axial diffusion:

VzðrÞ @a
@z
¼ DA

@2a

@z2
þ 1

r

@a

@r
þ @2a

@r2

� �
þR A ð8:32Þ

There are two independent variables, z and r. Both are lengths. They can be
scaled separately using two different characteristic lengths or they can be
scaled using a single characteristic length. We use two different lengths and
define new variables z ¼ z=L and r ¼ r=R so that they both have a range
from 0 to 1. Substituting the new variables into Equation (8.32) and doing
some algebra gives

@a

@z ¼
DAL

R2Vz

� �
R2

L2

� �
@2a

@z 2
þ 1

r
@a

@r
þ @2a

@r2

" #
þR AL=Vz ð8:33Þ

When expressed in the scaled variables, the @2a=@z 2 and @2a=@r2 terms have the
same magnitude, but the @2a=@z 2 term is multiplied by a factor of R2/L2 that will
not be larger than 0.01. Thus, this term, which corresponds to axial diffusion,
may be neglected, consistent with the conclusion in Section 8.2.

The velocity profile is scaled by the mean velocity, �uu, giving the dimension-
less profile V zðrÞ ¼ VzðrÞ= �uu: To complete the conversion to dimensionless
variables, the dependent variable, a, is divided by its nonzero inlet concentra-
tion. The dimensionless version of Equation (8.12) is

V zðrÞ @a
�

@z ¼
DA �tt

R2

� �
1

r
@a�

@r
þ @2a�

@r2

� �
þR A �tt=ain ð8:34Þ

where �tt ¼ L= �uu: Equation (8.34) contains the dimensionless number DA �tt=R
2 that

appears in Merrill and Hamrin’s criterion, Equation (8.3), and a dimensionless
reaction rate, R A �tt=ain: Merrill and Hamrin assumed a first-order reaction,
R A ¼ �ka, and calculated aout¼ amix(L) for various values of DA �tt=R

2: They
concluded that diffusion had a negligible effect on aout when Equation (8.3)
was satisfied.

The stability criterion, Equation (8.29), can be converted to dimensionless
form. The result is

�z max ¼ I=Jmin ¼ �zmax
L
¼ �r2V zð1��rÞ

2½DA �tt=R2� ð8:35Þ

and for the special case of a parabolic profile,

�z max ¼ �r3½2��r�
2½DA �tt=R2� ð8:36Þ
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Example 8.6: Generalize Example 8.5 to determine the fraction unreacted
for a first-order reaction in a laminar flow reactor as a function of the dimen-
sionless groups DA �tt=R

2 and k�tt: Treat the case of a parabolic velocity profile.

Solution: The program of Example 8.5 can be used with minor
modifications. Set U, R, and L all equal to 1. Then DA �tt=R

2 will be equal to
the value assigned to Da and k �tt will be equal to the value assigned to k. It
is necessary to use the stability criterion to determine J. Example 8.5 had
DA �tt=R

2 ¼ 0:01, and larger values for DA �tt=R
2 require larger values for J.

Figure 8.1 includes a curve for laminar flow with DA �tt=R
2 ¼ 0:1. The per-

formance of a laminar flow reactor with diffusion is intermediate between
piston flow and laminar flow without diffusion, DA �tt=R

2 ¼ 0: Laminar flow
reactors give better conversion than CSTRs, but do not generalize this
result too far! It is restricted to a parabolic velocity profile. Laminar velocity
profiles exist that, in the absence of diffusion, give reactor performance far
worse than a CSTR.

Regardless of the shape of the velocity profile, radial diffusion will improve
performance, and the case DA �tt=R

2!1 corresponds to piston flow.
The thoughtful reader may wonder about a real reactor with a high level of

radial diffusion.Won’t there necessarily be a high level of axial diffusion as well
and won’t the limit of DA �tt=R

2!1 really correspond to a CSTR rather than
a PFR? The answer to this question is ‘‘yes, but . . . .’’ The ‘‘but’’ is based on
the restriction that L/R>16. For reasonably long reactors, the effects of
radial diffusion dominate those of axial diffusion until extremely high values
of DA �tt=R

2. If reactor performance is considered as a function of DA �tt=R
2

(with k �tt fixed), there will be an interior maximum in performance as
DA �tt=R

2 !1. This is the piston flow limit illustrated in Figure 8.3. There is
another limit, that of a perfectly mixed flow reactor, which occurs at much
higher values of DA �tt=R

2 than those shown in Figure 8.3. The tools needed
to quantify this idea are developed in Chapter 9. See Problem 9.11, but be
warned that the computations are difficult and of limited utility.

���

���

���

�
��
	

��

�

��
�	

�
�
�
�
�
�
��

��

������ ����� ���� ���

�����
�

� ��

����
 �� ���� ���������
�

����
 �� ���
� ����

FIGURE 8.3 First-order reaction with k�tt ¼ 1 in a tubular reactor with a parabolic velocity profile.
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8.4 SLIT FLOW AND RECTANGULAR
COORDINATES

Results to this point have been confined to tubular reactors with circular cross
sections. Tubes are an extremely practical geometry that is widely used for
chemical reactors. Less common is slit flow such as occurs between closely
spaced parallel plates, but practical heat exchangers and reactors do exist with
this geometry. They are used when especially good mixing is needed within
the cross section of the reactor. Using spiral-wound devices or stacked flat
plates, it is practical to achieve slit heights as small as 0.003m. This is far smaller
than is feasible using a conventional, multitubular design.

Figure 8.4 illustrates pressure-driven flow between flat plates. The down-
stream direction is z. The cross-flow direction is y, with y¼ 0 at the centerline
and y¼
Y at the walls so that the channel height is 2Y. Suppose the slit
width (x-direction) is very large so that sidewall effects are negligible. The velo-
city profile for a laminar, Newtonian fluid of constant viscosity is

Vzð yÞ ¼ 1:5 �uu 1� y
2

Y2

� �
ð8:37Þ

The analog of Equation (8.12) in rectangular coordinates is

Vzð yÞ @a
@z
¼ DA

@2a

@y2

� �
þR A ð8:38Þ

The boundary conditions are

a ¼ ainð yÞ at z ¼ 0

@a=@y ¼ 0 at y ¼ 0

@a=@y ¼ 0 at y ¼ 
Y
ð8:39Þ

The zero slope boundary condition at y¼ 0 assumes symmetry with respect to
the centerline. The mathematics are then entirely analogous to those for the
tubular geometries considered previously. Applying the method of lines gives

@að y, zÞ
@z

¼ Aað yþ�y, zÞ þ Bað y, zÞ þ Cð y��y, zÞ þ R A

Vzð yÞ ð8:40Þ

2Y

z →

Vz (y)
y = Y, � = 1

y = 0, � = 0

y = _Y, � = _1

FIGURE 8.4 Pressure driven flow between parallel plates with both plates stationary.
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A ¼ DA

Vz

1

�y2

� �

B ¼ DA

Vz

�2
�y2

� �

C ¼ DA

Vz

1

�y2

� �
¼ A

ð8:41Þ

With these revised definitions for A, B, and C, the marching-ahead equation for
the interior points is identical to that for cylindrical coordinates, Equation
(8.25). The centerline equation is no longer a special case except for the symme-
try boundary condition that forces a(� 1)¼ a(1). The centerline equation is thus

anewð0Þ ¼ 2Að0Þ�z aold ð1Þ þ ½1þ Bð0Þ�zÞ�aoldð0Þ þ ðR AÞ0�z=Vzð0Þ ð8:42Þ
The wall boundary condition is unchanged, Equation (8.27).
The near-wall stability condition is

�zmax ¼ �y2VzðY ��yÞ
2DA

ð8:43Þ

Mixing-cup averages are calculated using

Fði Þ ¼ aðiÞVzði Þ ð8:44Þ
instead of Equation (8.31), and Q can be obtained by integrating dQ¼Vz( y)dy.

Example 8.7: Determine the flat-plate equivalent to Merrill and Hamrin’s
criterion.

Solution: Transform Equation (8.38) using the dimensionless independent
variables z ¼ z=L and y ¼ y=Y :

V zðy Þ @a
@z ¼

DA �tt

Y2

� �
@2a

@y 2

� �
þR A �tt ð8:45Þ

Comparing this equation with Equation (8.34) shows that DA �tt=Y
2 is the flat-

plate counterpart of DA �tt=R
2. We thus seek a value for DA �tt=Y

2below which
diffusion has a negligible effect on the yield of a first-order reaction.

For comparison purposes, set k�tt ¼ 1 and compute aout/ain for the tubular
case with DA �tt=R

2 ¼ 0 and with DA �tt=R
2 ¼ 0:003: The results using the pro-

grams in Examples 8.3 and 8.5 with I¼ 128 are 0.44321 and 0.43849,
respectively. Thus, Merrill and Hamrin considered the difference between
0.44321 and 0.43849 to be negligible.

Turn now to the flat-plate geometry. The coefficients A, B, and C, and the
mixing-cup averaging technique must be revised. This programming exercise
is left to the reader. Run the modified program with k �tt ¼ 1 but without
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diffusion to give aout/ain¼ 0.41890 for I¼ 128 and J¼ 16382. The flat-plate
geometry gives better performance than the tube. Why?

To ensure an apples-to-apples comparison, reduce k�tt until aout/ain matches
the value of 0.44321 achieved in the tube. This is found to occur at
k�tt ¼ 0:9311. Diffusion is now added until aout/ain¼ 0.43849 as in the case of
a circular tube with DA �tt=R

2 ¼ 0:003. This is found to occur at about
DA �tt=Y

2 ¼ 0:008: Thus, the flat-plate counterpart to the Merrill and Hamrin
criterion is

DA �tt=Y
2 < 0:008 ð8:46Þ

8.5 SPECIAL VELOCITY PROFILES

This section considers three special cases. The first is a flat velocity profile that
can result from an extreme form of fluid rheology. The second is a linear profile
that results from relative motion between adjacent solid surfaces. The third spe-
cial case is for motionless mixers where the velocity profile is very complex, but its
net effects can sometimes be approximated for reaction engineering purposes.

8.5.1 Flat Velocity Profiles

Flow in a Tube. Laminar flow with a flat velocity profile and slip at the walls
can occur when a viscous fluid is strongly heated at the walls or is highly
non-Newtonian. It is sometimes called toothpaste flow. If you have ever used
Stripe� toothpaste, you will recognize that toothpaste flow is quite different
than piston flow. Although VzðrÞ ¼ �uu and V zðrÞ ¼ 1, there is little or no
mixing in the radial direction, and what mixing there is occurs by diffusion. In
this situation, the centerline is the critical location with respect to stability,
and the stability criterion is

�zmax ¼ �r2 �uu

4DA
ð8:47Þ

and �zmax varies as �r
2. The flat velocity profile and Equation (8.47) apply to

the packed-bed models treated in Chapter 9. The marching-ahead equations
are unchanged from those presented in Section 8.3.1, although the coefficients
must be evaluated using the flat profile.

Toothpaste flow is an extreme example of non-Newtonian flow. Problem 8.2
gives a more typical example. Molten polymers have velocity profiles that are flat-
tened compared with the parabolic distribution. Calculations that assume a para-
bolic profile will be conservative in the sense that they will predict a lower
conversion than would be predicted for the actual profile. The changes in velocity
profile due to variations in temperature and composition are normally much
more important than the fairly subtle effects due to non-Newtonian behavior.
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Flow in a Slit. Turning to a slit geometry, a flat velocity profile gives the
simplest possible solution using Euler’s method. The stability limit is inde-
pendent of y:

�zmax ¼ �y2 �uu

2DA
ð8:48Þ

�z max ¼ �y 2

2½DA �tt=Y2�

The marching-ahead equation is also independent of y:

anewðiÞ ¼ Aaoldði þ 1Þ þ ð1� 2AÞaold ðiÞ þ Aaold ði � 1Þ þ ðR AÞi �tt�z max ð8:49Þ

where
A ¼ 0:5�z =�z max ð8:50Þ

Note that Equation (8.49) applies for every point except for y¼Y where the
wall boundary condition is used, e.g., Equation (8.27). When i¼ 0, aold (� 1)¼
aold (þ 1).

Example 8.8: Explore conservation of mass, stability, and instability when
the convective diffusion equation is solved using the method of lines combined
with Euler’s method.

Solution: These aspects of the solution technique can be demonstrated
using Equation (8.49) as an algebraically simple example. Set R A ¼ 0 and
note that a uniform profile with aold (y)¼ ain will propagate downstream as
anew (y)¼ ain so that mass is conserved. In the more general cases, such as
Equation (8.25), AþBþC¼ 0 ensures that mass will be conserved.

According to Equation (8.50), the largest value for A that will give a stable
solution is 0.5. With A¼ 0.5, Equation (8.49) becomes

anewði Þ ¼ 0:5aold ði þ 1Þ þ 0:5aold ði � 1Þ
The use of this equation for a few axial steps within the interior region of

the slit is illustrated below:

0 0 0 0 0 0 0 0 0.5
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 2 0 2.5
0 0 0 0 0 4 0 4 0
0 0 0 0 8 0 6 0 5
0 0 0 16 0 8 0 6 0
0 0 0 0 8 0 6 0 5
0 0 0 0 0 4 0 4 0
0 0 0 0 0 0 2 0 2.5
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0.5
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In this example, an initial steady-state solution with a¼ 0 is propagated
downstream. At the fourth axial position, the concentration in one cell is
increased to 16. This can represent round-off error, a numerical blunder, or
the injection of a tracer. Whatever the cause, the magnitude of the upset
decreases at downstream points and gradually spreads out due to diffusion
in the y-direction. The total quantity of injected material (16 in this case)
remains constant. This is how a real system is expected to behave. The
solution technique conserves mass and is stable.

Now consider a case where A violates the stability criterion. Pick A¼ 1
to give

anewðiÞ ¼ aold ði þ 1Þ � aold ðiÞ þ aoldði � 1Þ
The solution now becomes

0 0 0 0 0 0 0 0 16
0 0 0 0 0 0 0 16 � 80
0 0 0 0 0 0 16 � 64 240
0 0 0 0 0 16 � 48 160 � 480
0 0 0 0 16 � 32 96 � 256 720
0 0 0 16 � 16 48 � 112 304 � 816
0 0 0 0 16 � 32 96 � 256 720
0 0 0 0 0 16 � 48 160 � 480
0 0 0 0 0 0 16 � 64 240
0 0 0 0 0 0 0 16 � 80
0 0 0 0 0 0 0 0 16

This equation continues to conserve mass but is no longer stable. The ori-
ginal upset grows exponentially in magnitude and oscillates in sign. This
marching-ahead scheme is clearly unstable in the presence of small blunders
or round-off errors.

8.5.2 Flow Between Moving Flat Plates

Figure 8.5 shows another flow geometry for which rectangular coordinates are
useful. The bottom plate is stationary but the top plate moves at velocity 2 �uu:

� �

�� ���

�

� � �

� � �

FIGURE 8.5 Drag flow between parallel plates with the upper plate in motion and no axial
pressure drop.
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The plates are separated by distance H, and the y-coordinate starts at the
bottom plate. The velocity profile is linear:

Vz ¼ 2 �uuy

H
ð8:51Þ

This velocity profile is commonly called drag flow. It is used to model the flow of
lubricant between sliding metal surfaces or the flow of polymer in extruders. A
pressure-driven flow—typically in the opposite direction—is sometimes superim-
posed on the drag flow, but we will avoid this complication. Equation (8.51)
also represents a limiting case of Couette flow (which is flow between coaxial
cylinders, one of which is rotating) when the gap width is small. Equation (8.38)
continues to govern convective diffusion in the flat-plate geometry, but the
boundary conditions are different. The zero-flux condition applies at both
walls, but there is no line of symmetry. Calculations must be made over the
entire channel width and not just the half-width.

8.5.3 Motionless Mixers

Most motionless or static mixers consist of tubes or ducts in which stationary
vanes (elements) have been installed to promote radial flow. There are many
commercial types, some of which are shown in Figure 8.6. Similar results can
be achieved in deep laminar flow by using a series of helically coiled tubes
where the axis of each successive coil is at a 90� angle to the previous coil
axis.4 With enough static mixing elements or helical coils in series, piston flow
can be approached. The flow geometry is complex and difficult to analyze.
Velocity profiles, streamlines, and pressure drops can be computed using pro-
grams for computational fluid dynamics (CFD), such as Fluent�, but these com-
putations have not yet become established and verified as design tools. The axial
dispersion model discussed in Chapter 9 is one approach to data correlation.
Another approach is to use Equation (8.12) for segments of the reactor but to
periodically reinitialize the concentration profile. An empirical study5 on
Kenics-type static mixers found that four of the Kenics elements correspond
to one zone of complete radial mixing. The computation is as follows:

1. Start with a uniform concentration profile, a(z)¼ ain at z¼ 0.

2. Solve Equation (8.12) using the methods described in this chapter and ignor-
ing the presence of the mixing elements.

3. When an axial position corresponding to four mixing elements is reached,
calculate the mixing-cup average composition amix.

4. Restart the solution of Equation (8.12) using a uniform concentration profile
equal to the mixing-cup average, a(z)¼ amix.

5. Repeat Steps 2 through 4 until the end of the reactor is reached.
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This technique should give reasonable results for isothermal, first-order reac-
tions. It and other modeling approaches are largely untested for complex and
nonisothermal reactions.

8.6 CONVECTIVE DIFFUSION OF HEAT

Heat diffuses much like mass and is governed by similar equations. The
temperature analog of Equation (8.12) is

VzðrÞ @T
@z
¼ �T

1

r

@T

@r
þ @2T

@r2

� �
��HRR

�CP
ð8:52Þ
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FIGURE 8.6 Commerical motionless mixers. (Drawing courtesy of Professor Pavel Ditl, Czech
Technical University.)
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where aT is the thermal diffusivity and �HRR follows the summation conven-
tion of Equation (5.17). The units on thermal diffusivity are the same as those on
molecular diffusivity, m2/s, but aT will be several orders of magnitude larger
than DA. The reason for this is that mass diffusion requires the actual displace-
ment of molecules but heat can be transferred by vibrations between more-or-
less stationary molecules or even between parts of a molecule as in a polymer
chain. Note that �T ¼ �=ð�CPÞ, where � is the thermal conductivity. Equation
(8.52) assumes constant aT and �. The assumption of constant density ignores
expansion effects that can be significant in gases that are undergoing large
pressure changes. Also ignored is viscous dissipation, which can be important
in very high-viscosity fluids such as polymer melts. Standard texts on transport
phenomena give the necessary embellishments of Equation (8.52).

The inlet and centerline boundary conditions associated with Equation (8.52)
are similar to those used for mass transfer:

T ¼ TinðrÞ at z ¼ 0 ð8:53Þ
@T=@r ¼ 0 at r ¼ 0 ð8:54Þ

The usual wall boundary condition is

T ¼ TwallðzÞ at r ¼ R ð8:55Þ
but the case of an insulated wall,

@T=@r ¼ 0 at r ¼ R
is occasionally used.

Equation (8.52) has the same form as Equation (8.12), and the solution tech-
niques are essentially identical. Replace a with T, DA with aT , and R A with
��HRR =ð�CPÞ, and proceed as in Section 8.3.

The equations governing the convective diffusion of heat and mass are
coupled through the temperature and composition dependence of the reaction
rates. In the general case, Equation (8.52) is solved simultaneously with as
many versions of Equation (8.12) as there are reactive components. The
method of lines treats a single PDE as I � 1 simultaneous ODEs. The general
case has Nþ 1 PDEs and thus is treated as (Nþ 1)(I� 1) ODEs. Coding is
easiest when the same axial step size is used for all the ODEs, but this step
size must satisfy the most restrictive of the stability criteria. These criteria are
given by Equation (8.29) for the various chemical species. The stability criterion
for temperature is identical except that aT replaces the molecular diffusivities
and aT is much larger, which leads to smaller step sizes. Thus, the step size
for the overall program will be imposed by the stability requirement for the tem-
perature equation. It may be that accurate results require very small axial steps
and excessive computer time. Appendix 8.3 describes alternative finite difference
approximations that eliminate the discretization stability condition. Algorithms
exist where �z ��r rather than �z � �r2 (flat profile) or �z � �r3 (parabolic

292 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



profile) so that the number of computations increases by a factor of only 4
(rather than 8 or 16) when �r is halved. The price for this is greater complexity
in the individual calculations.

The equations governing convective diffusion of heat in rectangular-
coordinate systems are directly analogous to those governing convective diffu-
sion of mass. See Sections 8.4 and 8.5. The wall boundary condition is usually
a specified temperature, and the stability criterion for the heat transfer equation
is usually more demanding (smaller �zmax) than that for mass transfer. Also, in
slit flow problems, there is no requirement that the two walls be at the same tem-
perature. When the wall temperatures are different, the marching-ahead equa-
tions must be applied to the entire slit width, and not just the half-width,
since the temperature profiles (and the corresponding composition profiles)
will not be symmetric about the centerline. There are no special equations for
the centerline. Instead, the ordinary equation for an interior point e.g.,
Equation (8.40), is used throughout the interior with að yÞ 6¼ að�yÞ and
Tð yÞ 6¼ Tð�yÞ.

8.6.1 Dimensionless Equations for Heat Transfer

Transformation of the independent variables to dimensionless form uses
r ¼ r=R and z ¼ z=L: In most reactor design calculations, it is preferable to
retain the dimensions on the dependent variable, temperature, to avoid confu-
sion when calculating the Arrhenius temperature dependence and other tem-
perature-dependent properties. The following set of marching-ahead equations
are functionally equivalent to Equations (8.25)–(8.27) but are written in dimen-
sionless form for a circular tube with temperature (still dimensioned) as the
dependent variable. For the centerline,

Tð0, z þ�z Þ ¼ 1� 4
�uu�T �tt

V zð0ÞR2

� �
�z
�r2

� �
Tð0, z Þ þ 4

�uu�T �tt

V zð0ÞR2

� �
�z
�r2

Tð�r, z Þ

� �HRR �tt �uu

�CPV zð0Þ�
z ð8:56Þ

For interior points,

Tðr, z þ�z Þ¼ 1�2 �uu�T �tt

V zðrÞR2

� �
�z
�r2

� �
Tðr, z Þ

þ �uu�T �tt

V zðrÞR2

� �
�z
�r2

1þ�r
2r

� �
Tðrþ�r, z Þ

þ �uu�T �tt

V zðrÞR2

� �
�z
�r2

1��r
2r

� �
Tðr��r, z Þ� �HRR �tt �uu

�CPV zðrÞ�
z

ð8:57Þ
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At the wall,

Twallð z þ�z Þ ¼ 4Tð1��r, z þ�z Þ � Tð1� 2�r, z þ�z Þ
3

ð8:58Þ

The more restrictive of the following stability criteria is used to calculate �z max:

�z
�r2
 V zðrÞR2

2 �uu�T �tt
�r  r  1��r ð8:59Þ

�z
�r2
 V zð0ÞR2

4 �uu�T �tt
r ¼ 0 ð8:60Þ

When the heat of reaction term is omitted, these equations govern laminar
heat transfer in a tube. The case where Tin and Twall are both constant and
where the velocity profile is parabolic is known as the Graetz problem. An ana-
lytical solution to this linear problem dates from the 19th century but is hard to
evaluate and is physically unrealistic. The smooth curve in Figure 8.7 corre-
sponds to the analytical solution and the individual points correspond to a
numerical solution found in Example 8.9. The numerical solution is easier to
obtain but, of course, is no better at predicting the performance of a real heat
exchanger. A major cause for the inaccuracy is the dependence of viscosity on
temperature that causes changes in the velocity profile. Heating at the
wall improves heat transfer while cooling hurts it. Empirical heat transfer

Numerical solution
D�  = 0.25, D�  = 0.0625

Analytical solution1.0
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FIGURE 8.7 Numerical versus analytical solutions to the Graetz problem with �T �tt=R
2 ¼ 0:4:
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correlations include a viscosity correction factor, e.g., the (�bulk/�wall)
0.14 term in

Equation (5.37). Section 8.7 takes a more fundamental approach by calculating
Vz(r) as it changes down the tube.

Example 8.9: Find the temperature distribution in a laminar flow, tubular
heat exchanger having a uniform inlet temperature Tin and constant wall
temperature Twall. Ignore the temperature dependence of viscosity so that
the velocity profile is parabolic everywhere in the reactor. Use �T �tt=R

2 ¼ 0:4
and report your results in terms of the dimensionless temperature

T ¼ ðT � TinÞ=ðTwall � TinÞ ð8:61Þ
Solution: A transformation to dimensionless temperatures can be useful to
generalize results when physical properties are constant, and particularly
when the reaction term is missing. The problem at hand is the classic
Graetz problem and lends itself perfectly to the use of a dimensionless
temperature. Equation (8.52) becomes

V zðrÞ @T
@z ¼

�T �tt

R2

� �
1

r
@T
@r
þ @2T

@r2

� �
þ �HRR AðT Þ�tt
ain�CpðTwall � TinÞ ð8:62Þ

but the heat of reaction term is dropped in the current problem. The
dimensionless temperature ranges from T ¼ 0 at the inlet to T ¼ 1 at the
walls. Since no heat is generated, 0  T  1 at every point in the heat
exchanger. The dimensionless solution, T ðr, z Þ, depends only on the value
of �T �tt=R

2 and is the same for all values of Tin and Twall. The solution is
easily calculated by the marching-ahead technique.

Use �r ¼ 0:25. The stability criterion at the near-wall position is obtained
from Equation (8.36) with aT replacing DA, or from Equation (8.59) evalu-
ated at r ¼ 1��r. The result is

�z max ¼ �r2ð2�r��r2Þ
ð�T �tt=R2Þ ¼ 0:0684

which gives Jmin¼ 15. Choose J¼ 16 so that �z ¼ 0:0625:
The marching-ahead equations are obtained from Equations (8.56)–(8.58).

At the centerline,

T ð0, z þ�z Þ ¼ 0:2000T ð0, z Þ þ 0:8000T ð0:25, z Þ

At the interior points,

T ð0:25, z þ�z Þ ¼ 0:5733T ð0:25, z Þ þ 0:3200T ð0:50, z Þ þ 0:1067T ð0, z Þ
T ð0:50, z þ�z Þ¼0:4667T ð0:50, z Þþ0:3333T ð0:75, z Þþ0:2000T ð0:25, z Þ
T ð0:75, z þ�z Þ ¼ 0:0857T ð0:75, z Þ þ 0:5333T ð1, z Þ þ 0:3810T ð0:5, z Þ
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At the wall,

T ð1, z þ�z Þ ¼ 1:0

Note that the coefficients on temperatures sum to 1.0 in each equation. This is
necessary because the asymptotic solution, z � 1, must give T ¼ 1 for all r.
Had there been a heat of reaction, the coefficients would be unchanged but a
generation term would be added to each equation.

The marching-ahead technique gives the following results for T :

z r ¼ 0 r ¼ 0:25 r ¼ 0:50 r ¼ 0:75 r ¼ 1:0

0 0 0 0 0 1.0000
0.0625 0 0 0 0.5333 1.0000
0.1250 0 0 0.1778 0.5790 1.0000
0.1875 0 0.0569 0.2760 0.6507 1.0000
0.2500 0.0455 0.1209 0.3571 0.6942 1.0000
0.3125 0.1058 0.1884 0.4222 0.7289 1.0000
0.3750 0.1719 0.2544 0.4377 0.7567 1.0000
0.4375 0.2379 0.3171 0.5260 0.7802 1.0000
0.5000 0.3013 0.3755 0.5690 0.8006 1.0000
0.5625 0.3607 0.4295 0.6075 0.8187 1.0000
0.6250 0.4157 0.4791 0.6423 0.8349 1.0000
0.6875 0.4664 0.5246 0.6739 0.8496 1.0000
0.7500 0.5129 0.5661 0.7206 0.8629 1.0000
0.8125 0.5555 0.6041 0.7287 0.8749 1.0000
0.8750 0.5944 0.6388 0.7525 0.8859 1.0000
0.9375 0.6299 0.6705 0.7743 0.8960 1.0000
1.0000 0.6624 0.6994 0.7941 0.8960 1.0000

Figure 8.7 shows these results for z ¼ 1 and compares them with the ana-
lytical solution. The numerical approximation is quite good, even for a coarse
grid with I¼ 4 and J¼ 16. This is the exception rather than the rule.
Convergence should be tested using a finer grid size.

The results for z ¼ 1 give the outlet temperature distribution for a heat
exchanger with �T �tt=R

2 ¼ 0:4. The results at z ¼ 0:5 give the outlet tempera-
ture distribution for a heat exchanger with �T �tt=R

2 ¼ 0:2. There is no reason
to stop at z ¼ 1:0. Continue marching until z ¼ 2 and you will obtain the
outlet temperature distribution for a heat exchanger with �T �tt=R

2 ¼ 0:8.

8.6.2 Optimal Wall Temperatures

The method of lines formulation for solving Equation (8.52) does not require
that Twall be constant, but allows Twall (z) to be an arbitrary function of axial
position. A new value of Twall may be used at each step in the calculations,
just as a new �z may be assigned at each step (subject to the stability criterion).
The design engineer is thus free to pick a Twall (z) that optimizes reactor
performance.
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Reactor performance is an issue of selectivity, not of conversion. Otherwise,
just push Twall to its maximum possible value. Good selectivity results from an
optimal trajectory of time versus temperature for all portions of the reacting
fluid, but uniform treatment is difficult in laminar flow due to the large
difference in residence time between the wall and centerline. No strategy for con-
trolling the wall temperature can completely eliminate the resultant nonunifor-
mity, but a good strategy for Twall (z) can mitigate the problem. With
preheated feed, initial cooling at the wall can help compensate for long residence
times. With cold feed, initial heating at the wall is needed to start the reaction,
but a switch to cooling can be made at some downstream point. A good general
approach to determining the optimal Twall (z) is to first find the best single wall
temperature, then find the best two-zone strategy, the best three-zone strategy,
and so on. The objective function for the optimization can be as simple as the
mixing-cup outlet concentration of a desired intermediate. It can also be
based on the concept of thermal time distributions introduced in Section 15.4.3.

Optimization requires that �T �tt=R
2 have some reasonably high value so that

the wall temperature has a significant influence on reactor performance. There
is no requirement that DA �tt=R

2 be large. Thus, the method can be used for poly-
mer systems that have thermal diffusivities typical of organic liquids but low
molecular diffusivities. The calculations needed to solve the optimization are
much longer than those needed to solve the ODEs of Chapter 6, but they are
still feasible on small computers.

8.7 RADIAL VARIATIONS IN VISCOSITY

Real fluids have viscosities that are functions of temperature and composition.
This means that the viscosity will vary across the radius of a tubular reactor
and that the velocity profile will be something other than parabolic. If the visc-
osity is lower near the wall, as in heating, the velocity profile will be flattened
compared with the parabolic distribution. If the viscosity is higher near the
wall, as in cooling, the velocity profile will be elongated. These phenomena
can be important in laminar flow reactors, affecting performance and even oper-
ability. Generally speaking, a flattened velocity profile will improve performance
by more closely approaching piston flow. Conversely, an elongated profile will
usually hurt performance. This section gives a method for including the effects
of variable viscosity in a reactor design problem. It is restricted to low
Reynolds numbers, Re<100, and is used mainly for reactions involving com-
pounds with high molecular weights, such as greases, waxes, heavy oils, and syn-
thetic polymers. It is usually possible to achieve turbulence with lower molecular
weight compounds, and turbulence eliminates most of the problems associated
with viscosity changes.

Variable viscosity in laminar tube flows is an example of the coupling of mass,
energy, and momentum transport in a reactor design problem of practical signif-
icance. Elaborate computer codes are being devised that recognize this
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coupling in complex flow geometries. These codes are being verified and are
becoming design tools for the reaction engineer. The present example is represen-
tative of a general class of single-phase, variable-viscosity, variable-density pro-
blems, yet it avoids undue complications in mathematical or numerical analysis.

Consider axisymmetric flow in a circular tube so that V� ¼ 0: Two additional
assumptions are needed to treat the variable-viscosity problem in its simplest
form:

1. The momentum of the fluid is negligible compared with viscous forces.

2. The radial velocity component Vr is negligible compared with the axial com-
ponent Vz.

The first of these assumptions drops the momentum terms from the equations
of motion, giving a situation known as creeping flow. This leaves Vr and Vz
coupled through a pair of simultaneous, partial differential equations. The
pair can be solved when circumstances warrant, but the second assumption
allows much greater simplification. It allows Vz to be given by a single, ordinary
differential equation:

0 ¼ � dP
dz
þ 1

r

d

dr
�r
dVz
dr

� �
ð8:63Þ

Note that pressure is treated as a function of z alone. This is consistent
with the assumption of negligible Vr. Equation (8.63) is subject to the boundary
conditions of radial symmetry, dVz/dr¼ 0 at r¼ 0, and zero slip at the wall,
Vz¼ 0 at r¼R.

The key physical requirements for Equation (8.63) to hold are that the fluid
be quite viscous, giving a low Reynolds number, and that the viscosity must
change slowly in the axial direction, although it may change rapidly in the
radial direction. In essence, Equation (8.63) postulates that the velocity profile
Vz(r) is in dynamic equilibrium with the radial viscosity profile �(r). If �(r)
changes as a function of z, then Vz(r) will change accordingly, always satisfying
Equation (8.63). Any change in Vz will cause a change in Vr; but if the changes
in �(r) are slow enough, the radial velocity components will be small, and
Equation (8.63) will remain a good approximation.

Solution of Equation (8.63) for the case of constant viscosity gives the para-
bolic velocity profile, Equation (8.1), and Poiseuille’s equation for pressure drop,
Equation (3.14). In the more general case of �¼�(r), the velocity profile and
pressure drop are determined numerically.

The first step in developing the numerical method is to find a ‘‘formal’’ solu-
tion to Equation (8.63). Observe that Equation (8.63) is variable-separable:

rðdP=dzÞdr ¼ d½�rðdVz=drÞ�

This equation can be integrated twice. Note that dP/dz is a constant when
integrating with respect to r. The constants of integration are found using the
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boundary conditions. The result is

VzðrÞ ¼ 1

2

�dP
dz

� � ZR
r

r1
�
dr1 ð8:64Þ

where r1 is a dummy variable of integration. Dummy variables are used to avoid
confusion between the variable being integrated and the limits of the integration.
In Equation (8.64), Vz is a function of the variable r that is the lower limit of the
integral; Vz is not a function of r1. The dummy variable is ‘‘integrated out’’ and
the value of the integral would be the same if r1 were replaced by any other
symbol.

Equation (8.64) allows the shape of the velocity profile to be calculated (e.g.,
substitute �¼ constant and see what happens), but the magnitude of the velocity
depends on the yet unknown value for dP/dz. As is often the case in hydrody-
namic calculations, pressure drops are determined through the use of a continu-
ity equation. Here, the continuity equation takes the form of a constant mass
flow rate down the tube:

W ¼ �R2 �uuin ���in ¼ �R2 �uu ��� ¼
ZR
0

2�r�Vz dr ð8:65Þ

Substituting Equation (8.64) into (8.65) allows (� dP/dz) to be determined.

� dP
dz
¼ W

�
RR
0

�r
RR
r

ðr1=�Þ dr1
¼ R2 �uuin ���inRR

0

�r
RR
r

ðr1=�Þ dr1
ð8:66Þ

This is the local pressure gradient. It is assumed to vary slowly in the
z-direction. The pressure at position z is

P ¼ Pin þ
Zz
0

dP

dz

� �
dz ð8:67Þ

Substituting Equation (8.66) into Equation (8.64) gives

VzðrÞ ¼ R
2 �uuin ���in
2

RR
r

ðr1=�Þ dr1
RR
0

�r
RR
r

ðr1=�Þ dr1 dr
ð8:68Þ

A systematic method for combining the velocity and pressure calculations with
the previous solutions techniques for composition and temperature starts with
known values for all variables and proceeds as follows:

1. Take one axial step and compute new values for a, b, . . . ,T :

2. Use physical property correlations to estimate new values for � and �.
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3. Update Vz(r) using Equation (8.68).

4. Calculate P at the new position using Equation (8.65).

5. Recalculate �zmax using Equation (8.29) and change the actual �z as
required.

6. Repeat Steps 1–5 until z¼L.
A numerical methodology for calculating VzðrÞ is developed in Example 8.10.

Example 8.10: Given tabulated data for �ðrÞ and �ðrÞ, develop a numerical
method for using Equation (8.68) to find the dimensionless velocity profile
V zðrÞ ¼ Vz= �uu:
Solution: The numerical integration techniques require some care. The inlet
to the reactor is usually assumed to have a flat viscosity profile and a parabolic
velocity distribution. We would like the numerical integration to reproduce
the parabolic distribution exactly when � is constant. Otherwise, there will
be an initial, fictitious change in V z at the first axial increment. Define

G1ðrÞ ¼
Z1
r

ðr1=�Þ dr1

and

G2 ¼
Z1
0

ð�= ���inÞrG1ðrÞ dr

When � is constant, the G1 integrand is linear in r and can be integrated
exactly using the trapezoidal rule. The result of the G1 integration is
quadratic in r, and this is increased to cubic in r in the G2 integrand. Thus,
G2 cannot be integrated exactly with the trapezoidal rule or even Simpson’s
rule. There are many possible remedies to this problem, including just living
with the error in G2 since it will decrease Oð�r2Þ: In the Basic program
segment that follows, a correction of �r3=8 is added to G2, so that the
parabolic profile is reproduced exactly when � is constant.

’Specify the number of radial increments, Itotal, and
’the values for visc(i) and rho(i) at each radial
’position. Also, the average density at the reactor
’inlet, rhoin, must be specified.

dr¼1/Itotal

’Use the trapezoidal rule to evaluate G1
G1(Itotal)¼0
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For i¼1 To Itotal
m¼Itotal�i
G1(m)¼G1(mþ1)þ dr^2/2*((mþ1)/visc(mþ1)

þ þm/visc(m))*dr
Next

’Now use it to evaluate G2
G2¼0
For i¼1 To Itotal�1

G2¼G2þi * dr * rho(i)/rhoin * G1(i) * dr
Next
G2¼G2þrho(Itotal)/rhoin * G1(Itotal) * dr/2

’Apply a correction term to G2
G2¼G2þdr ^ 3/8

’Calculate the velocity profile
For i¼0 To Itotal

Vz(i)¼G1(i)/G2/2
Next i

The following is an example calculation where the viscosity varies by a
factor of 50 across the tube, giving a significant elongation of the velocity pro-
file compared with the parabolic case. The density was held constant in the
calculations.

i �ðrÞ Calculated V zðrÞ Parabolic V zðrÞ

0 1.0 3.26 2.00
1 1.6 2.98 1.97
2 2.7 2.36 1.88
3 4.5 1.72 1.72
4 7.4 1.16 1.50
5 12.2 0.72 1.22
6 20.1 0.40 0.88
7 33.1 0.16 0.47
8 54.6 0.00 0.00

These results are plotted in Figure 8.8.

8.8 RADIAL VELOCITIES

The previous section gave a methodology for calculating Vz(r) given � ðrÞ and
� ðrÞ. It will also be true that both � and � will be functions of z. This
will cause no difficulty provided the changes in the axial direction are slow.
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The formulation of Equation (8.68) gives the fully developed velocity profile,
Vz(r), which corresponds to the local values of �ðrÞ and �ðrÞ without regard to
upstream or downstream conditions. Changes in Vz(r) must be gradual
enough that the adjustment from one axial velocity profile to another requires
only small velocities in the radial direction. We have assumed Vr to be small
enough that it does not affect the equation of motion for Vz. This does
not mean that Vr is zero. Instead, it can be calculated from the fluid continuity
equation,

@ ð�VzÞ=@zþ ð1=rÞ@ ðr�VrÞ=@r ¼ 0 ð8:69Þ
which is subject to the symmetry boundary condition that Vr(0)¼ 0. Equation
(8.69) can be integrated to give

Vr ¼ �1
�r

Zr
0

r1
@ ð�VzÞ

@z
dr1 ð8:70Þ

Radial motion of fluid can have a significant, cumulative effect on the convective
diffusion equations even when Vr has a negligible effect on the equation of
motion for Vz. Thus, Equation (8.68) can give an accurate approximation for
Vz even though Equations (8.12) and (8.52) need to be modified to account
for radial convection. The extended versions of these equations are

Vz
@a

@z
þ Vr @a

@r
¼ DA

1

r

@a

@r
þ @2a

@r2

� �
þR A ð8:71Þ
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FIGURE 8.8 Elongated velocity profile resulting from a factor of 50 increase in viscosity across the
tube radius.
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Vz
@T

@z
þ Vr @T

@r
¼ �T

1

r

@T

@r
þ @2T

@r2

� �
��HRR

�CP
ð8:72Þ

The boundary conditions are unchanged. The method of lines solution con-
tinues to use a second-order approximation for @a=@r and merely adds a Vr term
to the coefficients for the points at r
�r.

The equivalent of radial flow for flat-plate geometries is Vy. The governing
equations are similar to those for Vr. However, the various corrections for Vy
are seldom necessary. The reason for this is that the distance Y is usually so
small that diffusion in the y-direction tends to eliminate the composition and
temperature differences that cause Vy. That is precisely why flat-plate geometries
are used as chemical reactors and for laminar heat transfer.

It is sometimes interesting to calculate the paths followed by nondiffusive
fluid elements as they flow through the reactor. These paths are called stream-
lines and are straight lines when the Vz profile does not change in the axial
direction. The streamlines curve inward toward the center of the tube when
the velocity profile elongates, as in cooling or polymerization. They curve
outward when the velocity profile flattens, as in heating or depolymerization.
Example 13.10 treats a case where they initially curve inward as the viscosity
increases due to polymerization but later curve outward as the reaction
goes to completion and diffusion mitigates the radial gradient in polymer
concentration.

If desired, the streamlines can be calculated from

Z rin

0

�r1Vzðr1, 0Þ dr1 ¼
Z r

0

�r1Vzðr1, zÞ dr1 ð8:73Þ

This mass balance equation shows that material that is initially at radial posi-
tion rin will move to radial position r for some downstream location, z>0. A
worked example of radial velocities and curved streamlines is given in Chapter 13,
Example 13.10.

8.9 VARIABLE PHYSICAL PROPERTIES

The treatment of viscosity variations included the possibility of variable density.
Equations (8.12) and (8.52) assumed constant density, constant DA, and con-
stant aT. We state here the appropriate generalizations of these equations to
account for variable physical properties.

1

Ac

@ ðAcVzaÞ
@z

¼ @

@z
DA

@a

@z

� �
þ 1

r

@

@r
DAr

@a

@r

� �
þR A ð8:74Þ
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Vz�
@H

@z
¼ @

@z
�
@T

@z

� �
þ 1

r

@

@r
�r

@T

@r

� �
��HRR ð8:75Þ

For completeness, axial diffusion and variable cross-section terms were
included in Equations (8.74) and (8.75). They are usually dropped. Also, the
variations in DA and � are usually small enough that they can be brought
outside the derivatives. The primary utility of these equations, compared with
Equations (8.12) and (8.52), is for gas-phase reactions with a significant
pressure drop.

8.10 SCALEUP OF LAMINAR FLOW REACTORS

Chapter 3 introduced the basic concepts of scaleup for tubular reactors. The
theory developed in this chapter allows scaleup of laminar flow reactors on a
more substantive basis.Model-based scaleup supposes that the reactor is reason-
ably well understood at the pilot scale and that a model of the proposed plant-
scale reactor predicts performance that is acceptable, although possibly worse
than that achieved in the pilot reactor. So be it. If you trust the model, go for
it. The alternative is blind scaleup, where the pilot reactor produces good product
and where the scaleup is based on general principles and high hopes. There
are situations where blind scaleup is the best choice based on business
considerations; but given your druthers, go for model-based scaleup.

Consider the scaleup of a small, tubular reactor in which diffusion of both
mass and heat is important. As a practical matter, the same fluid, the same
inlet temperature, and the same mean residence time will be used in the small
and large reactors. Substitute fluids and cold-flow models are sometimes used
to study the fluid mechanics of a reactor, but not the kinetics of the reaction.

The goal of a scaleup is to achieve similar product quality at a higher rate.
The throughput scaleup factor is S. This determines the flow rate to the large
system; and the requirement of constant �tt fixes the volume of the large
system. For scaleup of flow in an open tube, the design engineer has two basic
variables, R and Twall. An exact scaleup requires that DA �tt=R

2 and �T �tt=R
2 be

held constant, and the only way to do this is to keep the same tube diameter.
Scaling in parallel is exact. Scaling in series may be exact and is generally con-
servative for incompressible fluids. See Section 3.2. Other forms of scaleup
will be satisfactory only under special circumstances. One of these circumstances
is isothermal laminar flow when DA �tt=R

2 is small in the pilot reactor.

8.10.1 Isothermal Laminar Flow

Reactors in isothermal laminar flow are exactly scaleable using geometric simi-
larity if diffusion is negligible in the pilot reactor. Converting Equation (8.2) to
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dimensionless form gives

V zðrÞ @a
@z ¼ R A �tt ð8:76Þ

The absolute reactor size as measured by R and L does not appear. Using the
same feed composition and the same �tt in a geometrically similar reactor will
give a geometrically similar composition distribution; i.e., the concentration at
the point ðr, z Þ will be the same in the large and small reactors. Similarly, the
viscosity profile will be the same when position is expressed in dimensionless
form, and this leads to the same velocity profile, pressure drop, and mixing-
cup average composition. These statements assume that diffusion really was neg-
ligible on the small scale and that the Reynolds number remains low in the large
reactor. Blind scaleup will then give the same product from the large reactor as
from the small. If diffusion was beneficial at the small scale, reactor performance
will worsen upon scaleup. The Reynolds number may become too high upon
scaleup for the creeping flow assumption of Section 8.7 to remain reasonable,
but the probable consequence of a higher Reynolds number is improved
performance at the cost of a somewhat higher pressure drop.

It may not be feasible to have an adequately low value for DA �tt=R
2 and still

scale using geometric similarity. Recall that reactor scaleups are done at con-
stant �tt: The problem is that the pilot reactor would require too high a flow
rate and consume too much material when DA �tt=R

2 is small enough (i.e., R is
large enough) and L/R is large enough for reasonable scaleup. The choice is
to devise a model-based scaleup. Model the pilot reactor using the actual
value for DA �tt=R

2. Confirm (and adjust) the model based on experimental mea-
surements. Then model the large reactor using the appropriately reduced value
for DA �tt=R

2. If the predicted results are satisfactory, go for it. If the predictions
are unsatisfactory, consider using motionless mixers in the large reactor. These
devices lower the effective value for DA �tt=R

2 by promoting radial mixing. The
usual approach to scaling reactors that contain motionless mixers is to start
with geometric similarity but to increase the number of mixing elements to
compensate for the larger tube diameter. For mixers of the Kenics type, an
extra element is needed each time the tube diameter is doubled.

8.10.2 Nonisothermal Laminar Flow

The temperature counterpart of DA �tt=R
2 is �T �tt=R

2; and if �T �tt=R
2 is low enough,

then the reactor will be adiabatic. Since �T � DA, the situation of an adiabatic,
laminar flow reactor is rare. Should it occur, then Tðr, z Þ will be the same in the
small and large reactors, and blind scaleup is possible. More commonly, �T �tt=R

2

will be so large that radial diffusion of heat will be significant in the small
reactor. The extent of radial diffusion will lessen upon scaleup, leading to the
possibility of thermal runaway. If model-based scaleup predicts a reasonable
outcome, go for it. Otherwise, consider scaling in series or parallel.
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PROBLEMS

8.1. Polymerizations often give such high viscosities that laminar flow is inevi-
table. A typical monomer diffusivity in a polymerizing mixture is
1.0� 10� 10 m/s (the diffusivity of the polymer will be much lower). A
pilot-scale reactor might have a radius of 1 cm. What is the maximum
value for the mean residence time before molecular diffusion becomes
important? What about a production-scale reactor with R¼ 10 cm?

8.2. The velocity profile for isothermal, laminar, non-Newtonian flow in a pipe
can sometimes be approximated as

Vz ¼ V0½1� ðr=RÞð	þ1Þ=	�

where 	 is called the flow index, or power law constant. The case 	¼ 1 cor-
responds to a Newtonian fluid and gives a parabolic velocity profile. Find
aout/ain for a first-order reaction given k �tt¼ 1.0 and 	¼ 0.5. Assume negli-
gible diffusion.

8.3. Repeat Example 8.1 and obtain an analytical solution for the case of
first-order reaction and pressure-driven flow between flat plates. Feel
free to use software for the symbolic manipulations, but do substantiate
your results.

8.4. Determine whether the sequence of aout/ain versus I in Example 8.5 is con-
verging as expected. What is your prediction for the calculated value that
would be obtained if the program is run with I¼ 256, and J¼ 131,072.
Run the program to test your prediction.

8.5. Equation (8.4) defines the average concentration, aout, of material flowing
from the reactor. Omit the Vz(r) term inside the integral and normalize by
the cross-sectional area, Ac¼�R2, rather than the volumetric flow rate, Q.
The result is the spatial average concentration aspatial, and is what
you would measure if the contents of the tube were frozen and a small
disk of the material was cut out and analyzed. In-line devices for measur-
ing concentration may measure aspatial rather than aout. Is the difference
important?
(a) Calculate both averages for the case of a parabolic velocity profile

and first-order reaction with k�tt¼ 1.0.
(b) Find the value of k�tt that maximizes the difference between these

averages.
8.6. Determine the equivalent of Merrill and Hamrin’s criterion for a tubular

reactor when the reaction is:
(a) Second order of the form 2A! P:
(b) Half-order: A! P, R A ¼ �ka1=2: Be sure to stop the reaction if the

concentration of A drops to zero. It will go to zero at some locations
in the reactor when DA �tt=R

2 ¼ 0. Does it still fall to zero when
DA �tt=R

2 is just large enough to affect aout?
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8.7. Consider an isothermal, laminar flow reactor with a parabolic velocity
profile. Suppose an elementary, second-order reaction of the form
Aþ B! P with rate R ¼ kab is occurring with kain �tt ¼ 2: Assume
ain¼ bin. Find aout/ain for the following cases:
(a) DA �tt=R

2 ¼ DB �tt=R
2 ¼ 0:01:

(b) DA �tt=R
2 ¼ 0:01, DB �tt=R

2 ¼ 0:001:
8.8. Which is better for isothermal chemical reactions, pressure driven flow or

drag flow between flat plates? Assume laminar flow with first-order che-
mical reaction and compare systems with the same values for the slit
width (2Y¼H ), length, mean velocity, and reaction rate constant.

8.9. Free-radical polymerizations tend to be highly exothermic. The following
data are representative of the thermal (i.e., spontaneous) polymerization
of styrene:

�¼ 0.13 J/(m � s �K)

DA ¼ 1:0� 10�9m2=s

�H¼ � 8� 104 J/g-mol

CP¼ 1.9� 103 J/(kg �K)

�¼ 950 kg/m3

ain¼ 9200 g-mol/m3

L¼ 7m

�tt ¼ 1h

k¼ 1.0� 1010 exp(� 10,000/T ) h� 1

Tin¼ 120�C

Twall¼ 120�C

Assume laminar flow and a parabolic velocity distribution. Calculate the
temperature and composition profiles in the reactor. Start with I¼ 4 and
double until your computer cries for mercy. Consider two cases: (a)
R¼ 0.01m; (b) R¼ 0.20m.

8.10. Suppose the consecutive reactions A �!kI B �!kII C are elementary with
rate constants kI¼ 4.5� 1011 exp(� 10,000/T), h� 1 and kII¼ 1.8� 1012

exp(� 12,000/T ), h� 1. The reactions are occurring in a tube in laminar
flow with ain¼ 1, bin¼ cin¼ 0. Both reactions are exothermic with
��HI ain/(�CP)¼ ��HII ain /(�CP)¼ 50K. The reactor is operated with
�tt ¼ 1h, Tin¼ 400K, and Twall¼ 400K. Assume �T �tt=R

2 ¼ 0:1. Determine
aout, bout, and cout given
(a) DA �tt=R

2 ¼ 0:01 DB �tt=R
2 ¼ 0:01

(b) DA �tt=R
2 ¼ 0:01 DB �tt=R

2 ¼ 0:001
8.11. Determine the opposite of the Merrill and Hamlin criterion. That is,

find the value of DA �tt=R
2 above which a laminar flow reactor closely
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approximates a piston flow reactor for a first-order reaction. Make the
comparison at k�tt ¼ 1:

8.12. An unreconstructed cgs’er messed up your viscosity correlation by
reporting his results in centipoise rather than pascal seconds. How does
this affect the sample velocity profile calculated in Example 8.10? What
does the term ‘‘unreconstructed cgs’er’’ mean?

8.13. Suppose you are marching down the infamous tube and at step j have
determined the temperature and composition at each radial point. A cor-
relation is available to calculate viscosity, and it gives the results tabu-
lated below. Assume constant density and Re¼ 0.1. Determine the
axial velocity profile. Plot your results and compare them with the para-
bolic distribution.

Isothermal Cooling Heating
r/R � � �

1.000 1.0 54.6 0.018
0.875 1.0 33.1 0.030
0.750 1.0 20.1 0.050
0.625 1.0 12.2 0.082
0.500 1.0 7.4 0.135
0.375 1.0 4.5 0.223
0.250 1.0 2.7 0.368
0.125 1.0 1.6 0.607
0 1.0 1.0 1.000

8.14. Derive the equations necessary to calculate Vz( y) given � ( y) for pres-
sure-driven flow between flat plates.

8.15. The stated boundary condition associated with Equation (8.69) is that
Vr(0)¼ 0. This is a symmetry condition consistent with the assumption
that V�¼ 0. There is also a zero-slip condition that Vr(R)¼ 0. Prove
that both boundary conditions are satisfied by Equation (8.70). Are
there boundary conditions on Vz? If so, what are they?

8.16. Stepwise condensation polymerizations can be modeled as a second-
order reaction of the functional groups. Let a be the concentration
of functional groups so that R A ¼ �ka2: The following viscosity
relationship

�=�0 ¼ 1þ 100½1� ða=ainÞ3�
is reasonable for a condensation polymer in a solvent. Determine aout=ain
for a laminar flow reactor with k �tt ¼ 2 and with negligible diffusion.
Neglect the radial velocity component Vr.

8.17. Rework Problem 8.16 including the Vr; i.e., solve Equation (8.70). Plot
the streamlines. See Example 13.10 for guidance.
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SUGGESTIONS FOR FURTHER READING

The convective diffusion equations for mass and energy are given detailed treat-
ments in most texts on transport phenomena. The classic reference is

Bird, R. B., Stewart, W. E., and Lightfoot, E. N., Transport Phenomena, Wiley, New York, 1960.

Practical applications to laminar flow reactors are still mainly in the research
literature. The first good treatment of a variable-viscosity reactor is

Lynn, S. and Huff, J. E., ‘‘Polymerization in a Tubular Reactor,’’ AIChE J., 17, 475–481 (1971).

A detailed model of an industrially important reaction, styrene polymerization,
is given in

Wyman, C. E. and Carter, L. F., ‘‘A Numerical Model for Tubular Polymerization Reactors,’’
AIChE Symp. Ser., 72, 1–16 (1976).

See also Chapter 13 of this book.

The appropriateness of neglecting radial flow in the axial momentum equation
yet of retaining it in the convective diffusion equation is discussed in

McLaughlin, H. S., Mallikarjun, R., and Nauman, E. B., ‘‘The Effect of Radial Velocities on
Laminar Flow, Tubular Reactor Models,’’ AIChE J., 32, 419–425 (1986).

Gas-phase reactors are often in laminar flow but have such high diffusivities that
radial concentration gradients tend to be unimportant. Combustion reactions
are fast enough to be exceptions. See

Roesler, J. F., ‘‘An Experimental and Two-Dimensional Modeling Investigation of Combustion
Chemistry in a Laminar Non-Plug-Flow Reactor,’’ Proc. 27th Symp. (Int.) Combust., 1,
287–293 (1998).

The usefulness of your training in solving PDEs need not be limited to classic
chemical engineering. For a potentially more remunerative application, see

Clewlow, L. and Strickland, C., Implementing Derivatives Models, Wiley, New York, 1998.

The derivatives are the financial type, e.g., option spreads. The methods used
are implicit finite difference techniques. See Appendix 8.3.
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APPENDIX 8.1: THE CONVECTIVE DIFFUSION
EQUATION

This section derives a simple version of the convective diffusion equation, applic-
able to tubular reactors with a one-dimensional velocity profile Vz(r). The start-
ing point is Equation (1.4) applied to the differential volume element shown in
Figure 8.9. The volume element is located at point (r, z) and is in the shape of a
ring. Note that �-dependence is ignored so that the results will not be applicable
to systems with significant natural convection. Also, convection due to Vr is
neglected. Component A is transported by radial and axial diffusion and by
axial convection. The diffusive flux is governed by Fick’s law.
The various terms needed for Equation (1.4) are

Radial diffusion in ¼ �DA
@a

@r

� �
r

½2�r�z�

Axial diffusion in ¼ �DA
@a

@z

� �
z

½2�r�r�

Axial convection in ¼ VzðzÞaðzÞ½2�r�r�

Radial diffusion out ¼ �DA
@a

@r

� �
rþ�r
½2�ðrþ�rÞ�z�

��������
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FIGURE 8.9 Differential volume element in cylindrical coordinates.

310 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



Axial diffusion out ¼ �DA
@a

@z

� �
zþ�z
½2�r�r�

Axial convection out ¼ VzðzÞaðzþ�zÞ½2�r�r�

Formation of A by reaction ¼ R A½2�r�r�z�

Accumulation ¼ @a

@t
½2�r�r�z�

Applying Equation (1.2), dividing everything by ½2�r�r�z�, and rearranging
gives

@a

@t
þVzðzþ�zÞaðzþ�zÞ � VzðzÞaðzÞ

�z
¼ DA @a=@zð Þzþ�z�DA= @a=@zð Þz

�z

þDA @a=@rð Þrþ�r�DA @a=@rð Þr
�r

þDA
@a

@r

1

r
þR A

The limit is now taken as �z! 0 and �r! 0: The result is

@a

@t
þ @ðVzaÞ

@z
¼ @ DAð@a=@zÞð Þ

@z
þ @ DAð@a=@rÞð Þ

@r
þDA

r

@a

@r
þR A ð8:77Þ

which is a more general version of Equation (8.12). Assume steady-state opera-
tion, Vz independent of z, and constant diffusivity to obtain Equation (8.12).

APPENDIX 8.2: FINITE DIFFERENCE
APPROXIMATIONS

This section describes a number of finite difference approximations useful for
solving second-order partial differential equations; that is, equations containing
terms such as @2f =@x2: The basic idea is to approximate f as a polynomial in x
and then to differentiate the polynomial to obtain estimates for derivatives
such as @f =@x and @2f =@x2: The polynomial approximation is a local one that
applies to some region of space centered about point x. When the point changes,
the polynomial approximation will change as well. We begin by fitting a quad-
ratic to the three points shown below.

f� f 0 f þ
. . .

�x �x
..
. ..

. ..
.

x ¼ ��x x ¼ 0 x ¼ þ�x
Backwards Central Forward

Point point point
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The quadratic has the form

f¼AþBxþCx2

Writing it for the three points gives

f� ¼ A� B�xþ C�x2

f0¼A
fþ ¼ Aþ B�xþ C�x2

These equations are solved for A, B, and C to give

f ¼ f0 þ fþ � f�
2�x

� �
xþ fþ � 2f0 þ f�

2�x2

� �
x2

This is a second-order approximation and can be used to obtain derivatives up to
the second. Differentiate to obtain

df

dx
¼ fþ � f�

2�x

� �
þ fþ � 2f0 þ f�

�x2

� �
x

and

d2f

dx2
¼ fþ � 2f0 þ f�

�x2

The value of the first derivative depends on the position at which it is evaluated.
Setting x ¼ þ�x gives a second-order, forward difference:

df

dx

� �
þ
� 3fþ � 4f0 þ f�

2�x

Setting x¼ 0 gives a second-order, central difference:

df

dx

� �
0

� fþ � f�
2�x

Setting x¼Ax gives a second-order, backward difference:

df

dx

� �
�
� �fþ þ 4f0 � 3f�

2�x

The second derivative is constant (independent of x) for this second-order
approximation. We consider it to be a central difference:

d2f

dx2

� �
0

� fþ � 2f0 þ f�
�x2
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All higher derivatives are zero. Obviously, to obtain a nontrivial approximation
to an nth derivative requires at least an nth-order polynomial. The various non-
trivial derivatives obtained from an nth order polynomial will converge O(�xn ).

Example 8.11: Apply the various second-order approximations to f¼
x exp(x).

Solution: fþ ¼ �x expð�xÞ, f0 ¼ 0, f� ¼ ��x expð��xÞ: The various
derivative approximations are

df

dx

� �
þ
¼ 3 expð�xÞ � expð��xÞ

�x

df

dx

� �
0

¼ expð�xÞ þ expð��xÞ
2�x

df

dx

� �
�
¼ � expð�xÞ þ 3 expð��xÞ

2

d2f

dx2

� �
0

¼ expð�xÞ � expð��xÞ
�x

Evaluating them as a function of �x gives

�x
df

dx

� �
þ

�
df

dx

� �
0

�
df

dx

� �
�

�
d2f

dx2

" #
�

1 3.893 1.543 � 0.807 2.350
1.723 0.415 � 0.892 0.266

1/2 2.170 1.128 0.805 2.084
0.633 0.096 � 0.441 0.063

1/4 1.537 1.031 0.526 2.021
0.279 0.024 � 0.231 0.016

1/8 1.258 1.008 0.757 2.005
0.131 0.006 � 0.120 0.004

1/16 1.127 1.002 0.877 2.001
0.0064 0.002 0.0061 0.002

1/32 1.063 1.000 0.938 2.000

1 1 1 1 2

It is apparent that the central difference approximations converge O(�x2).
The forward and backward approximations to the first derivative converge
O(�x). This is because they are really approximating the derivatives at the
points x¼
�x rather than at x¼ 0.
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For a first-order approximation, a straight line is fit between the points
x¼ 0 and x to get the first-order, forward difference approximation

df

dx

� �
þ�x=2

� fþ � f0
�x

and between the points x¼ ��x and x¼ 0 to get the first-order, backward
difference approximation:

df

dx

� �
��x=2

� f0 � f�
�x

These both converge O(�x).

APPENDIX 8.3: IMPLICIT DIFFERENCING
SCHEMES

The method of lines is called an explicit method because the ‘‘new’’ value
Tðr, zþ�zÞ is given as an explicit function of the ‘‘old’’ values
Tðr, zÞ,Tðr��r, zÞ, . . . : See, for example, Equation (8.57). This explicit
scheme is obtained by using a first-order, forward difference approximation
for the axial derivative. See, for example, Equation (8.16). Other approximations
for dT/dz are given in Appendix 8.2. These usually give rise to implicit methods
where Tðr, z
�zÞ is not found directly but is given as one member of a set of
simultaneous algebraic equations. The simplest implicit scheme is known as
backward differencing and is based on a first-order, backward difference approx-
imation for @T=@z: Instead of Equation (8.57), we obtain

1� 2
�uu�T �tt

VzðrÞR2

� �
�z
�r2

� �
Tðr, z Þ � �uu�T �tt

VzðrÞR2

� �
�z
�r2

1þ�r
2r

� �
Tðrþ�r, z Þ

� �uu�T �tt

VzðrÞR2

� �
�z
�r2

1��r
2r

� �
Tðr��r, z Þ

¼ Tðr, z ��z Þ � �HRR �tt �uu

�CPVzðrÞ
� �

z ��z
�z ð8:78Þ

Here, the temperatures on the left-hand side are the new, unknown values while
that on the right is the previous, known value. Note that the heat sink/source
term is evaluated at the previous location, z ��z : The computational template
is backwards from that shown in Figure 8.2, and Equation (8.78) cannot be
solved directly since there are three unknowns. However, if a version of
Equation (8.78) is written for every interior point and if appropriate special
forms are written for the centerline and wall, then as many equations are
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obtained as there are unknown temperatures. The resulting algebraic equations
are linear and can be solved by matrix inversion. The backward differencing
scheme is stable for all �r and �z so that I ¼ 1=�r and J ¼ 1=�z can be
picked independently. This avoids the need for extremely small �z values
that was encountered in Example 8.5. The method converges Oð�r2, �z Þ:

Example 8.12: Use the backward differencing method to solve the heat
transfer problem of Example 8.3. Select �r ¼ 0:25 and �z ¼ 0:0625.

T ð1, z Þ ¼ 1:0

� 0:5333T ð1, z Þ þ 1:9143T ð0:75, z Þ � 0:3810T ð0:5, z Þ ¼ T ð0:75, z ��z Þ
� 0:3333T ð0:75, z Þ þ 1:5333T ð0:50, z Þ � 0:2000T ð0:25, z Þ ¼ T ð0:50, z ��z Þ
� 0:3200T ð0:50, z Þ þ 1:4267T ð0:25, z Þ � 0:1067T ð0, z Þ ¼ T ð0:25, z ��z Þ
� 0:8000T ð0:25, z Þ � 1:800T ð0, z Þ ¼ ð0, z ��z Þ

In matrix form

1 0 0 0 0

�0:5333 1:9143 �0:3810 0 0

0 �0:3333 1:5333 �0:2000 0

0 0 �0:3200 1:4267 �0:1067
0 0 0 �0:8000 1:8000

2
6666664

3
7777775

T ð1, z Þ
T ð0:75, z Þ
T ð0:50, z Þ
T ð0:25, z Þ
T ð0, z Þ

2
6666664

3
7777775

¼

1

T ð0:75, z ��z Þ
T ð0:50, z ��z Þ
T ð0:25, z ��z Þ
T ð0, z ��z Þ

2
6666664

3
7777775

This system of equations is solved for each z , beginning with the inlet
boundary:

1
T ð0:75, z ��z Þ
T ð0:50, z ��z Þ
T ð0:25, z ��z Þ
T ð0, z ��z Þ

2
66664

3
77775 ¼

1
0
0
0
0

2
66664

3
77775
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Results are

z r ¼ 0 r ¼ 0:25 r ¼ 0:5 r ¼ 0:75 r ¼ 1

0 0 0 0 0 1.0000
0.0625 0.0067 0.0152 0.0654 0.2916 1.0000
0.1250 0.0241 0.0458 0.1487 0.4605 1.0000
0.1875 0.0525 0.0880 0.2313 0.5652 1.0000
0.2500 0.0901 0.1372 0.3068 0.6349 1.0000
0.3125 0.1345 0.1901 0.3737 0.6846 1.0000
0.3740 0.1832 0.2440 0.4326 0.7223 1.0000
0.4375 0.2338 0.2972 0.4844 0.7523 1.0000
0.5000 0.2848 0.3486 0.5303 0.7771 1.0000
0.5625 0.3349 0.3975 0.5712 0.7982 1.0000
0.6250 0.3832 0.4437 0.6079 0.8166 1.0000
0.6875 0.4293 0.4869 0.6410 0.8327 1.0000
0.7500 0.4728 0.5271 0.6710 0.9471 1.0000
0.8125 0.5135 0.5645 0.6982 0.8601 1.0000
0.8750 0.5515 0.5991 0.7230 0.8718 1.0000
0.9375 0.5869 0.6311 0.7456 0.8824 1.0000
1.0000 0.6196 0.6606 0.7664 0.8921 1.0000

The backward differencing method requires the solution of Iþ 1 simulta-
neous equations to find the radial temperature profile. It is semi-implicit since
the solution is still marched-ahead in the axial direction. Fully implicit schemes
exist where (Jþ 1)(Iþ 1) equations are solved simultaneously, one for each grid
point in the total system. Fully implicit schemes may be used for problems where
axial diffusion or conduction is important so that second derivatives in the axial
direction, @2a=@z2 or @2T=@z2, must be retained in the partial differential equa-
tion. An alternative approach for this case is the shooting method described
in Chapter 9. When applied to partial differential equations, shooting methods
are usually implemented using an implicit technique in the radial direction. This
gives rise to a tridiagonal matrix that must be inverted at each step in axial
marching. The Thomas algorithm is a simple and efficient way of performing
this inversion. Some finite difference approximations combine forward and
backward differencing. One of these, Crank-Nicholson, is widely used. It is
semi-implicit, unconditionally stable (at least for the linear case), and converges
Oð�r2, �z2Þ:
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CHAPTER 9

REAL TUBULAR REACTORS
IN TURBULENT FLOW

The essence of reactor design is the combination of chemical kinetics with trans-
port phenomena. The chemical kineticist, who can be a chemical engineer but by
tradition is a physical chemist, is concerned with the interactions between mole-
cules (and sometimes within molecules) in well-defined systems. By well-defined,
we mean that all variables that affect the reaction can be controlled at uniform
and measurable values. Chemical kinetic studies are usually conducted in small
equipment where mixing and heat transfer are excellent and where the goal of
having well-defined variables is realistic. Occasionally, the ideal conditions can
be retained upon scaleup. Slow reactions in batch reactors or CSTRs are exam-
ples. More likely, scaleup to industrial conditions will involve fast reactions in
large equipment where mixing and heat transfer limitations may emerge.
Transport equations must be combined with the kinetic equations, and this is
the realm of the chemical reaction engineer.

Chapter 8 combined transport with kinetics in the purest and most funda-
mental way. The flow fields were deterministic, time-invariant, and calculable.
The reactor design equations were applied to simple geometries, such as circular
tubes, and were based on intrinsic properties of the fluid, such as molecular dif-
fusivity and viscosity. Such reactors do exist, particularly in polymerizations as
discussed in Chapter 13, but they are less typical of industrial practice than the
more complex reactors considered in this chapter.

The models of Chapter 9 contain at least one empirical parameter. This
parameter is used to account for complex flow fields that are not deterministic,
time-invariant, and calculable. We are specifically concerned with packed-bed
reactors, turbulent-flow reactors, and static mixers (also known as motionless
mixers). We begin with packed-bed reactors because they are ubiquitous
within the petrochemical industry and because their mathematical treatment
closely parallels that of the laminar flow reactors in Chapter 8.
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9.1 PACKED-BED REACTORS

Packed-bed reactors are very widely used, particularly for solid-catalyzed het-
erogeneous reactions in which the packing serves as the catalyst. The velocity
profile is quite complex in a packed-bed. When measured at a small distance
from the surface of the packing, velocities are found to be approximately uni-
form except near the tube wall. Random packing gives more void space and
thus higher velocities near the wall. The velocity profile is almost invariably
modeled as being flat. This does not mean that the packed-bed is modeled as
a piston flow reactor with negligible radial gradients in composition and tem-
perature. Instead, radial mixing is limited in packed-bed reactors to the point
that quite large differences can develop across the tube. Radial concentration
and temperature profiles can be modeled using an effective radial diffusivity.
Instead of Equation (8.12), we write

�uus
@a

@z
¼ Dr 1

r

@a

@r
þ @2a

@r2

� �
þ "R A ð9:1Þ

where Dr is a radial dispersion coefficient and " is the void fraction. Dr has units
of diffusivity, m2/s. The major differences between this model and the convective
diffusion equation used in Chapter 8 is that the velocity profile is now assumed
to be flat and Dr is an empirically determined parameter instead of a molecular
diffusivity. The value of Dr depends on factors such as the ratio of tube-to-pack-
ing diameters, the Reynolds number, and (at least at low Reynolds numbers) the
physical properties of the fluid. Ordinarily, the same value for Dr is used for all
reactants, finessing the problems of multicomponent diffusion and allowing the
use of stoichiometry to eliminate Equation (9.1) for some of the components.
Note that �uus in Equation (9.1) is the superficial velocity, this being the average
velocity that would exist if the tube had no packing:

�uus ¼ Q
Ac
¼ Q

�R2
ð9:2Þ

Note also that R A is the reaction rate per fluid-phase volume and that "R A is
the rate per total volume consisting of fluid plus packing. Except for the appear-
ance of the void fraction ", there is no overt sign that the reactor is a packed-bed.
The reaction model is pseudohomogeneous and ignores the details of interactions
between the packing and the fluid. These interactions are lumped into Dr and
R A: The concentration a is the fluid-phase concentration, and the rate expres-
sion R Aða, bÞ is based on fluid-phase concentrations. This approach is satisfac-
tory when the reaction is truly homogeneous and the packing merely occupies
space without participating in the reaction. For heterogeneous, solid-catalyzed
reactions, the rate is presumably governed by surface concentrations, but the
use of pseudohomogeneous kinetic expressions is nearly universal for the
simple reason that the bulk concentrations can be measured while surface
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concentrations are not readily measurable. See Chapter 10 to understand the
relationship between surface and bulk concentrations. We use Equation (9.1)
for both homogeneous and heterogeneous reactions in packed-beds. The bound-
ary conditions associated with Equation (9.1) are the same as those for Equation
(8.12): a prescribed inlet concentration profile, ain( r), and zero gradients in con-
centration at the wall and centerline.

The temperature counterpart to Equation (9.1) is

�uus
@T

@z
¼ Er 1

r

@T

@r
þ @2T

@r2

� �
� "�HRR

�CP
ð9:3Þ

where Er is an effective radial dispersion coefficient for heat and where �HRR
has the usual interpretation as a sum. Two of the boundary conditions asso-
ciated with Equation (9.3) are the ordinary ones of a prescribed inlet profile
and a zero gradient at the centerline. The wall boundary condition has a form
not previously encountered:

hr½TðRÞ � Twall � ¼ ��r @T =@r at r ¼ R ð9:4Þ
It accounts for the especially high resistance to heat transfer that is observed
near the wall in packed-bed reactors. Most of the heat transfer within a
packed-bed is by fluid convection in the axial direction and by conduction
through the solid packing in the radial direction. The high void fraction near
the wall lowers the effective conductivity in that region. As in Section 8.6,
Twall is the inside temperature of the tube, but this may now be significantly dif-
ferent than the fluid temperature T(R) , just a short distance in from the wall. In
essence, the system is modeled as if there were a thin, thermal boundary layer
across which heat is transferred at a rate proportional to the temperature differ-
ence [T(R)�Twall]. The proportionality constant is an empirical heat transfer
coefficient, hr. The left-hand side of Equation (9.4) gives the rate of heat transfer
across the thermal boundary layer. At steady state, the heat transferred from the
tube wall must equal the heat conducted and convected into the bed. Heat trans-
fer within the bed is modeled using an effective thermal conductivity lr. The
right-hand side of Equation (9.4) represents the conduction, and lr is an empiri-
cal constant.

It appears that the complete model for both mass and heat transfer contains
four adjustable constants, Dr, Er, hr and lr, but Er and lr are constrained by the
usual relationship between thermal diffusivity and thermal conductivity

Er ¼ �r
�Cp

ð9:5Þ

Thus, there are only three independent parameters. We take these to be Dr, hr,
and lr. Imperfect but generally useful correlations for these parameters are
available. For a summary of published correlations and references to the origi-
nal literature see Froment and Bischoff,1 Dixon and Cresswell,2 and Dixon.3
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Figure 9.1 shows a correlation for Dr. The correlating variable is the particle
Reynolds number, �dp �uus =�, where dp is the diameter of the packing. The corre-
lated variable is a dimensionless group known as the Peclet number, ðPeÞ1 ¼
ð �uusdp =DrÞ1, where the1 subscript denotes a tube with a large ratio of tube dia-
meter to packing diameter, dt=dp � 10: Peclet numbers are commonly used in
reactor design, and this chapter contains several varieties. All are dimensionless
numbers formed by multiplying a velocity by a characteristic length and dividing
by diffusivity. The Peclet number used to correlate data for packed-beds here in
Section 9.1 has particle diameter, dp, as the characteristic length and uses Dr as
the diffusivity. The axial dispersion model discussed in Section 9.3 can also be
applied to packed-beds, but the diffusivity is an axial diffusivity.

Many practical designs use packing with a diameter that is an appreciable
fraction of the tube diameter. The following relationship is used to correct Dr
for large packing:

�uusdp =Dr ¼ ð �uusdp =DrÞ1
1þ 19:4ðdp =dtÞ2

ð9:6Þ

Shell-and-tube reactors may have dt/dp¼ 3 or even smaller. A value of 3 is seen
to decrease �uusdp =Dr by a factor of about 3. Reducing the tube diameter from
10dp to 3dp will increase Dr by a factor of about 10. Small tubes can thus
have much better radial mixing than large tubes for two reasons: R is lower
and Dr is higher.

The experimental results for ð �uudp =DrÞ1 in Figure 9.1 show a wide range of
values at low Reynolds numbers. The physical properties of the fluid, and spe-
cifically its Schmidt number, Sc ¼ �= ð�DAÞ, are important when the Reynolds
number is low. Liquids will lie near the top of the range for ð �uusdp =DrÞ1 and
gases near the bottom. At high Reynolds numbers, hydrodynamics dominate,
and the fluid properties become unimportant aside from their effect on
Reynolds number. This is a fairly general phenomenon and is discussed further
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FIGURE 9.1 Existing data for the radial Peclet number in large-diameter packed beds,
ðPeÞ1 ¼ ð �uusdp =DrÞ1 versus �dp �uus =�:
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in Section 9.2. Figure 9.2 shows existing data for the effective thermal conduc-
tivity of packed beds. These data include both ceramic and metallic packings.
More accurate results can be obtained from the semitheoretical predictions of
Dixon and Cresswell.2 Once lr is known, the wall heat transfer coefficient can
be calculated from

hrdp
�r
¼ 3

ð� �uusdp =�Þ0:25
ð9:7Þ

and Er can be calculated from Equation (9.5). Thus, all model parameters can be
estimated. The estimates require knowledge of only two system variables: the
packing Reynolds number and the ratio of packing-to-tube diameters.

We turn now to the numerical solution of Equations (9.1) and (9.3). The
solutions are necessarily simultaneous. Equation (9.1) is not needed for an
isothermal reactor since, with a flat velocity profile and in the absence of a tem-
perature profile, radial gradients in concentration do not arise and the model is
equivalent to piston flow. Unmixed feed streams are an exception to this
statement. By writing versions of Equation (9.1) for each component, we can
model reactors with unmixed feed provided radial symmetry is preserved.
Problem 9.1 describes a situation where this is possible.

The numerical techniques of Chapter 8 can be used for the simultaneous solu-
tion of Equation (9.3) and as many versions of Equation (9.1) as are necessary.
The methods are unchanged except for the discretization stability criterion and
the wall boundary condition. When the velocity profile is flat, the stability criter-
ion is most demanding when at the centerline:

�zmax ¼ �r2 �uus
4Er

ð9:8Þ
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FIGURE 9.2 Existing data for the effective radial conductivity, �r:
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or, in dimensionless form,

�z max ¼ �r2
R2

4Erts
ð9:9Þ

where ts ¼ L= �uus: We have used Er rather than Dr in the stability criterion
because Er will be larger.

Using a first-order approximation for the derivative in Equation (9.4), the
wall boundary condition becomes

TðR, zÞ ¼ hr�rTwall þ �rTðR��r, zÞ
hr�rþ �r

ð9:10Þ

A second-order approximation is preferred,

TðR, zÞ ¼ 2hr�rTwall þ 4�rTðR��r, zÞ � �rTðR� 2�r, zÞ
2hr�rþ 3�r

ð9:11Þ

since it converges O(�r2), as will the other derivative approximations. The com-
putational templates for solving Equations (9.1) and (9.3) are similar to those
used in Chapter 8. See Figure 8.2.

Example 9.1: The oxidation of o-xylene to phthalic anhydride is conducted
in a multitubular reactor using air at approximately atmospheric pressure as
the oxidant. Side reactions including complete oxidation are important but
will be ignored in this example. The o-xylene concentration is low,
ain¼ 44 g/m3, to stay under the explosive limit. Due to the large excess of
oxygen, the reaction is pseudo-first-order in o-xylene concentration with
ln("k)¼ 19.837�13.636/T, where k is in s�1. The tube is packed with 3-mm
pellets consisting of V2O5 on potassium-promoted silica. The tube has an i.d.
of 50mm, is 5m long, is operated with a superficial velocity of 1m/s, and
has a wall temperature of 640K. Use �¼ 1.29 kg/m3, � ¼ 3� 10�5 PaEs,
CP¼ 0.237 cal/(gEK), and �H¼�307 kcal/mol. Assume Tin¼ 640K. Use
the two-dimensional, radial dispersion model to estimate the maximum
temperature within the bed.

Solution: It is first necessary to estimate the parameters: Dr, Er, hr,
and lr. The particle Reynolds number, �dp �uus=�, is 130, and Figure 9.1
gives ð �uusdp=DrÞ1 � 10. A small correction for dp/dt using Equation (9.6)
gives �uusdp=Dr ¼ 8 so that Dr¼ 3.8�10�4m2/s. Figure 9.2 gives lr ¼
0.4 cal/(mEsEK) so that Er¼ lr/(�CP)¼ 1.3� 10�3m2/s. Equation 9.7 gives
hrdp/lr¼ 0.89 so that hr¼ 120 cal/(m2�s).

The discretization stability criterion, Equation (9.9), gives �z max ¼
0:024�r2: Pick I¼ 5, �r ¼ 0:2, and �r ¼ 0:005m: Then the stability
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criterion is satisfied by J¼ 1200; �z ¼ 8:33� 10�4, and �z ¼ 4:17� 10�3 m:
The marching-ahead equation for concentration at the centerline is

anewð0Þ ¼ ð1� 4GAÞað0Þ þ 4GAað1Þ � "ktsað0Þ�z

For the interior points,

anewðiÞ ¼ ð1� 2GAÞaðiÞ þ GA½1þ 0:5=I �aði þ 1Þ
þ GA½1� 0:5=I �aði � 1Þ � "ktsaðiÞ�z

At the wall,

anew (I )¼ (4/3) a(I�1)�(1/3) a(I�2)

where GA ¼ ð�z =�r2ÞðDr ts =R2Þ ¼ 0:0633:
The equations for temperature are similar. At the centerline,

Tnewð0Þ ¼ ð1� 4GT ÞTð0Þ þ 4GTTð1Þ � ��HRain
�CP

� �
"ktsað0Þ�z

For the interior points,

TnewðiÞ ¼ ð1� 2GT ÞTðiÞ þ GT ½1þ 0:5=I �Tði þ 1Þ þ GT ½1� 0:5=I �Tði � 1Þ

� ��HRain
�CP

� �
"ktsaðiÞ�z

At the wall,

TnewðIÞ ¼ 2hrR�rTwall þ 4�rTðI � 1Þ � �rTðI � 2Þ
2hrR�rþ 3�r

where GT ¼ ð�z =�r2ÞðEr ts =R2Þ ¼ 0:2167 and where ½��HRain = ð�CPÞ� ¼
417K is the adiabatic temperature rise for complete reaction. Solution of
these equations shows the maximum temperature to be located on the
centerline at an axial position of about 0.5m down the tube. The maximum
temperature is 661K. Figure 9.3 shows the radial temperature and
concentration profiles at the axial position of the maximum temperature.
The example uses a low value for Tin so that the exotherm is quite modest.
Under these conditions, the very crude grid, I¼ 5, gives a fairly accurate
solution. Industrial reactors tend to push the limits of catalyst degradation
or undesired by-product production. Often, they are operated near a
condition of thermal runaway where d 2T/d 2z>0. Numerically accurate
solutions will then require finer grids in the radial direction because of the
large radial temperature gradients. There will also be large axial gradients,
and physical stability of the computation may force the use of axial grids
smaller than predicted by Equation (9.9).
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Example 9.2: Determine the value for Tin that will cause a thermal runaway
in the packed tube of Example 9.1.

Solution: Table 9.1 shows the response of the system to a systematic
variation in Tin. The calculations were carried out using I¼ 64. The solution
with Tin � 702 represents a situation known as parametric sensitivity, where
a small change in a parameter can cause a large change in the system
response. Note that the 2K change from Tin¼ 690 to Tin¼ 692 causes Tmax
to change by 6K but the change from Tin¼ 700 to Tin¼ 702 causes Tmax to
change by 73K. The axial temperature profile at the centerline is shown in
Figure 9.4. There is a classic runaway with d 2T/d 2z>0 for the illustrated
case of Tin¼ 704K. Figure 9.5 shows the variation of centerline and
mixing-cup average concentrations with axial position. Note that the
o-xylene is almost completely consumed at the centerline near the hotspot,
but that the concentration subsequently increases due to radial mass
transfer from outlying regions of the reactor.

The simplified reaction in Example 9.2 has the form A! B, and the run-
away would be of no concern unless the temperature caused sintering or other
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FIGURE 9.3 Temperature and concentration profiles at the point of maximum temperature for the
packed-bed reactor of Example 9.1.
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degradation of the catalyst. The real reaction has the form A! B! C, and the
runaway would almost certainly provoke an undesired reaction B! C: See
Problem 9.3. To maximize output of product B, it is typically desired to operate
just below the value of Tin that would cause a runaway. As a practical matter,
models using published parameter estimates are rarely accurate enough to
allow a priori prediction of the best operating temperature. Instead, the

TABLE 9.1 Illustration of Parametric Sensitivity

Tin Tmax aout/ain

690 719 0.595
692 725 0.576
694 733 0.551
696 744 0.513
698 762 0.446
700 823 0.275
702 896 0.135
704 930 0.083
706 953 0.057
708 971 0.042
710 987 0.032
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FIGURE 9.4 Thermal runaway in the packed-bed reactor of Examples 9.1 and 9.2; Tin¼ 704K.
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models are used to guide experimentation and are tuned based on the experi-
mental results.

Whenever there is an appreciable exotherm, scaleup of heterogeneous reac-
tions is normally done in parallel using a multitubular reactor of the shell-
and-tube type. The pilot reactor may consist of a single tube with the same
packing, the same tube diameter, and the same tube length as intended for the
full-scale reactor. The scaled-up reactor consists of hundreds or even thousands
of these tubes in parallel. Such scaleup appears trivial, but there are occasional
problems. See Cybulski et al.4 One reason for the problems is that the packing is
randomly dumped into the tubes, and random variations can lead to substantial
differences in performance. This is a particular problem when dt/dp is small. One
approach to minimizing the problem has been to use pilot reactors with at least
three tubes in parallel. Thus, the scaleup is based on an average of three tubes
instead of the possibly atypical performance of a single tube.

There is a general trend toward structured packings and monoliths, particu-
larly in demanding applications such as automotive catalytic converters. In prin-
ciple, the steady-state performance of such reactors can be modeled using
Equations (9.1) and (9.3). However, the parameter estimates in Figures 9.1
and 9.2 and Equations (9.6)–(9.7) were developed for random packings, and
even the boundary condition of Equation (9.4) may be inappropriate for mono-
liths or structured packings. Also, at least for automotive catalytic converters,
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FIGURE 9.5 Reactant concentration profiles for a thermal runaway in the packed-bed reactor of
Examples 9.1 and 9.2; Tin¼ 704K.
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the transient rather than steady-state performance of the reactor is of para-
mount importance. The transient terms @a=@t and @T=@t are easily added to
Equations (9.1) and (9.3), but the results will mislead. These terms account
for inventory changes in the gas phase but not changes in the amount of material
absorbed on the solid surface. The surface inventory may be substantially larger
than the gas-phase inventory, and a model that explicitly considers both phases
is necessary for time-dependent calculations. This topic is briefly discussed in
Section 10.6 and in Chapter 11.

It is also easy to add axial dispersion terms, Dzð@2a=@z2Þ and Ezð@2T=@z2Þ.
They convert the initial value problem into a two-point boundary value problem
in the axial direction. Applying the method of lines gives a set of ODEs that can
be solved using the reverse shooting method developed in Section 9.5. See also
Appendix 8.3. However, axial dispersion is usually negligible compared with
radial dispersion in packed-bed reactors. Perhaps more to the point, uncertain-
ties in the value for Dr will usually overwhelm any possible contribution of Dz.

An important embellishment to the foregoing treatment of packed-bed reac-
tors is to allow for temperature and concentration gradients within the catalyst
pellets. The intrapellet diffusion of heat and mass is governed by differential
equations that are about as complex as those governing the bulk properties of
the bed. A set of simultaneous PDEs (ODEs if the pellets are spherical) must
be solved to estimate the extent of reaction and conversion occurring within a
single pellet. These local values are then substituted into Equations (9.1) and
(9.3) so that we need to solve a set of PDEs that are embedded within a set of
PDEs. The resulting system truly reflects the complexity of heterogeneous reac-
tors and is an example of multiscale modeling. Practical solutions rarely go to
this complexity. Most industrial reactors are designed on the basis of pseudoho-
mogeneous models as in Equations (9.1) and (9.3), and the detailed catalyst
behavior is described by the effectiveness factor defined in Chapter 10. In fact,
radial gradients are sometimes neglected, even in single-tube calculations for
multitubular designs. Such simplified models are anticonservative in the sense
that the maximum temperatures are underestimated. At least the radial gradi-
ents within the bed should be calculated. Reasonable correlations for radial
heat transfer now exist and should be used.

9.2 TURBULENT FLOW IN TUBES

Turbulent flow reactors are modeled quite differently from laminar flow reac-
tors. In a turbulent flow field, nonzero velocity components exist in all three
coordinate directions, and they fluctuate with time. Statistical methods must be
used to obtain time average values for the various components and to character-
ize the instantaneous fluctuations about these averages. We divide the velocity
into time average and fluctuating parts:

v ¼ tþ V ð9:12Þ

REAL TUBULAR REACTORS IN TURBULENT FLOW 327



where t represents the fluctuating velocity and V is the time average value:

V ¼ lim
t!1 1=t

Z t

0

v dt ð9:13Þ

For turbulent flow in long, empty pipes, the time average velocities in the radial
and tangential directions are zero since there is no net flow in these directions.
The axial velocity component will have a nonzero time average profile Vz(r).
This profile is considerably flatter than the parabolic profile of laminar flow,
but a profile nevertheless exists. The zero-slip boundary condition still applies
and forces Vz(R)¼ 0. The time average velocity changes very rapidly near the
tube wall. The region over which the change occurs is known as the hydrody-
namic boundary layer. Sufficiently near the wall, flow in the boundary layer
will be laminar, with attendant limitations on heat and mass transfer. Outside
the boundary layer—meaning closer to the center of the tube—the time average
velocity profile is approximately flat. Flow in this region is known as core turbu-
lence. Here, the fluctuating velocity components are high and give rapid rates of
heat and mass transfer in the radial direction. Thus, turbulent flow reactors are
often modeled as having no composition or temperature gradients in the radial
direction. This is not quite the same as assuming piston flow. At very high
Reynolds numbers, the boundary layer thickness becomes small and a situation
akin to piston flow is approached. At lower Reynolds numbers, a more sophis-
ticated model may be needed.

To understand the new model, some concepts of turbulent mixing need to be
considered. Suppose a small pulse of an ideal, nonreactive tracer is injected into
a tube at the center. An ideal tracer is identical to the bulk fluid in terms of flow
properties but is distinguishable in some nonflow aspect that is detectable with
suitable instrumentation. Typical tracers are dyes, radioisotopes, and salt solu-
tions. The first and most obvious thing that happens to the tracer is movement
downstream at a rate equal to the time average axial velocity �uu. If we are dealing
with a stationary coordinate system (called an Eulerian coordinate system), the
injected pulse just disappears downstream. Now, shift to a moving (Lagrangian)
coordinate system that translates down the tube with the same velocity as the
fluid. In this coordinate system, the center of the injected pulse remains station-
ary; but individual tracer particles spread out from the center due to the com-
bined effects of molecular diffusion and the fluctuating velocity components.
If the time average velocity profile were truly flat, the tracer concentration
would soon become uniform in the radial and tangential directions, but would
spread indefinitely in the axial direction. This kind of mixing has not been
encountered in our previous discussions. Axial mixing is disallowed in the
piston flow model and is usually neglected in laminar flow models. The
models of Chapter 8 neglected molecular diffusion in the axial direction because
axial concentration and temperature gradients are so much smaller than radial
gradients. In turbulent flow, eddy diffusion due to the fluctuating velocity com-
ponents dominates molecular diffusion, and the effective diffusivity is enhanced

328 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



to the point of virtually eliminating the radial gradients and of causing possibly
significant amounts of mixing in the axial direction. We seek a simple correction
to piston flow that will account for this axial mixing and other small departures
from ideality. A major use of this model is for isothermal reactions in turbulent,
pipeline flows. However, the model that emerges is surprisingly versatile. It can
be used for isothermal reactions in packed beds, whether laminar or turbulent,
and in motionless mixers. It can also be extended to nonisothermal reactions.

9.3 THE AXIAL DISPERSION MODEL

A simple correction to piston flow is to add an axial diffusion term. The resulting
equation remains an ODE and is known as the axial dispersion model:

�uu
da

dz
¼ Dd

2a

dz2
þR A ð9:14Þ

or in dimensionless form,

da

dz ¼
1

Pe

d2a

dz 2
þR A �tt ð9:15Þ

The parameter D is known as the axial dispersion coefficient, and the dimen-
sionless number, Pe ¼ �uuL=D, is the axial Peclet number. It is different than the
Peclet number used in Section 9.1. Also, recall that the tube diameter is denoted
by dt. At high Reynolds numbers, D depends solely on fluctuating velocities in
the axial direction. These fluctuating axial velocities cause mixing by a
random process that is conceptually similar to molecular diffusion, except that
the fluid elements being mixed are much larger than molecules. The same
value for D is used for each component in a multicomponent system.

At lower Reynolds numbers, the axial velocity profile will not be flat; and it
might seem that another correction must be added to Equation (9.14). It turns
out, however, that Equation (9.14) remains a good model for real turbulent reac-
tors (and even some laminar ones) given suitable values for D. The model lumps
the combined effects of fluctuating velocity components, nonflat velocity pro-
files, and molecular diffusion into the single parameter D.

At a close level of scrutiny, real systems behave differently than predicted by
the axial dispersion model; but the model is useful for many purposes. Values for
Pe can be determined experimentally using transient experiments with nonreac-
tive tracers. See Chapter 15. A correlation for D that combines experimental and
theoretical results is shown in Figure 9.6. The dimensionless number, �uudt =D,
depends on the Reynolds number and on molecular diffusivity as measured by
the Schmidt number, Sc ¼ �=ð�DAÞ, but the dependence on Sc is weak for
Re>5000. As indicated in Figure 9.6, data for gases will lie near the top of
the range and data for liquids will lie near the bottom. For high Re,
�uudt =D ¼ 5 is a reasonable choice.
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The model can also be applied to packed-beds. Figure 9.7 illustrates the range
of existing data.

9.3.1 The Danckwerts Boundary Conditions

The axial dispersion model has a long and honored history within chemical
engineering. It was first used by Langmuir,5 who also used the correct boundary
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FIGURE 9.6 Peclet number, Pe ¼ �uudt =D, versus Reynolds number, Re ¼ �dt �uu=�, for flow in an
open tube.
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FIGURE 9.7 Peclet number Pe ¼ �uusdp =D, versus Reynolds number, Re ¼ �dp �uus =� for packed beds.
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conditions. These boundary conditions are quite subtle. Langmuir’s work was
forgotten, and it was many years before the correct boundary conditions were
rediscovered by Danckwerts.6

The boundary conditions normally associated with Equation (9.14) are
known as the Danckwerts or closed boundary conditions. They are obtained
from mass balances across the inlet and outlet of the reactor. We suppose
that the piping to and from the reactor is small and has a high Re. Thus, if
we were to apply the axial dispersion model to the inlet and outlet streams,
we would find Din¼Dout¼ 0, which is the definition of a closed system. See
Figure 9.8. The flux in the inlet pipe is due solely to convection and has
magnitude Qinain. The flux just inside the reactor at location z¼ 0þ has two
components. One component, Qina(0þ), is due to convection. The other compo-
nent, �DAc½da=dz�0þ, is due to diffusion (albeit eddy diffusion) from the rela-
tively high concentrations at the inlet toward the lower concentrations within
the reactor. The inflow to the plane at z¼ 0 must be matched by material
leaving the plane at z¼ 0þ since no reaction occurs in a region that has no
volume. Thus,

Qinain ¼ Qinað0þÞ �DAc½da=dz�0þ
or

ain ¼ að0þÞ � 1

Pe

da

dz

� �
0þ

ð9:16Þ

is the inlet boundary condition for a closed system. The outlet boundary
condition is obtained by a mass balance across a plane at z¼L. We expect
concentration to be a continuous function of z across the outlet plane so
that a(Lþ)¼ a(L�). Since Dout¼ 0, the balance gives Qouta(L�)¼Qouta(Lþ)
and

da

dz

� �
L

¼ 0

or

da

dz

� �
1

¼ 0

ð9:17Þ

as the outlet boundary condition for a closed system.

� � �

� � �

�����	
� �
��

���
���

����
����

�  � �  	

FIGURE 9.8 The axial dispersion model applied to a closed system.
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These boundary conditions are really quite marvelous. Equation (9.16) pre-
dicts a discontinuity in concentration at the inlet to the reactor so that
ain 6¼ a(0þ) if D>0. This may seem counterintuitive until the behavior of a
CSTR is recalled. At the inlet to a CSTR, the concentration goes immediately
from ain to aout. The axial dispersion model behaves as a CSTR in the limit as
D!1: It behaves as a piston flow reactor, which has no inlet discontinuity,
when D¼ 0. For intermediate values of D, an inlet discontinuity in concentra-
tions exists but is intermediate in size. The concentration a(0þ) results from
backmixing between entering material and material downstream in the reactor.
For a reactant, a(0þ)<ain.

The concentration is continuous at the reactor exit for all values of D and this
forces the zero-slope condition of Equation (9.17). The zero-slope condition may
also seem counterintuitive, but recall that CSTRs behave in the same way. The
reaction stops so the concentration stops changing.

The marvelousness of the Danckwerts boundary conditions is further
explored in Example 9.3, which treats open systems.

9.3.2 First-Order Reactions

Equation (9.14) is a linear ODE with constant coefficients. An analytical solu-
tion is possible when the reactor is isothermal and the reaction is first order.
The general solution to Equation (9.14) with R A ¼ �ka is

aðzÞ ¼ C1 exp ð1þ pÞPe
2

z

L

� �
þ C2 exp ð1� pÞPe

2

z

L

� �
ð9:18Þ

where Pe ¼ �uuL=dt and

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k�tt

Pe

r
ð9:19Þ

The constants C1 and C2 are evaluated using the boundary conditions,
Equations (9.16) and (9.17). The outlet concentration is found by setting
z¼L. Algebra gives

aout
ain
¼

4p exp
Pe

2

� �

ð1þ pÞ2 exp pPe

2

� �
� ð1� pÞ2 exp �pPe

2

� � ð9:20Þ

Conversions predicted from Equation (9.20) depend only on the values of k �tt
and Pe. The predicted conversions are smaller than those for piston flow but
larger than those for perfect mixing. In fact,

Lim
Pe!1

aout
ain
¼ e�k�tt ð9:21Þ

332 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



so that the model approaches piston flow in the limit of high Peclet number
(low D). Also,

Lim
Pe!0

aout
ain
¼ 1

1þ k�tt ð9:22Þ

so that the axial dispersion model approaches perfect mixing in the limit of low
Peclet number (high D). The model is thus universal in the sense that it spans the
expected range of performance for well-designed real reactors. However, it
should not be used, or be used only with caution, for Pe below about 8.

Example 9.3: Equation (9.20) was derived for a closed system. Repeat the
derivation for an open system with Din>0 and Dout>0 shown in Figure 9.9.

Solution: An open system extends from �1 to þ1 as shown in Figure 9.9.
The key to solving this problem is to note that the general solution, Equation
(9.18), applies to each of the above regions; inlet, reaction zone, and outlet. If
k¼ 0 then p¼ 1. Each of the equations contains two constants of integration.
Thus, a total of six boundary conditions are required. They are

1. The far inlet boundary condition: a¼ ain at z ¼ �1
2. Continuity of concentration at z¼ 0: a(0�)¼ a(0þ)
3. Continuity of flux at z¼ 0:Qinað0�Þ�Ac½da=dz�0�¼Qinað0þÞ�Ac½da=dz�0þ
4. Continuity of concentration at z¼L: a(L�)¼ a(Lþ)
5. Continuity of flux at z¼L: QinaðL�Þ � Ac½da=dz�L� ¼ QinaðLþÞ�
Ac½da=dz�Lþ

6. The far outlet boundary condition: a¼ aout at z ¼ þ 1
A substantial investment in algebra is needed to evaluate the six constants, but
the result is remarkable. The exit concentration from an open system is
identical to that from a closed system, Equation (9.20), and is thus
independent of Din and Dout! The physical basis for this result depends on
the concentration profile, a(z), for z<0. When D¼ 0, the concentration is
constant at a value if ain until z¼ 0þ, when it suddenly plunges to a(0þ).
When D>0, the concentration begins at ain when z ¼ �1 and gradually
declines until it reaches exactly the same concentration, a(0þ), at exactly
the same location, z¼ 0þ. For z>0, the open and closed systems have the
same concentration profile and the same reactor performance.

                
               

Inlet Reaction zone Outlet

Din > 0
� = 0

D > 0
� > 0

Dout > 0
� = 0

ain
Qin

aout
Qout

z = _¥ z = 0 z = L z = +¥

FIGURE 9.9 The axial dispersion model applied to an open system.
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9.3.3 Utility of the Axial Dispersion Model

Chapters 8 and Section 9.1 gave preferred models for laminar flow and packed-
bed reactors. The axial dispersion model can also be used for these reactors but
is generally less accurate. Proper roles for the axial dispersion model are the
following.

Turbulent Pipeline Flow. Turbulent pipeline flow is the original application of
the axial dispersion model. For most kinetic schemes, piston flow predicts the
highest possible conversion and selectivity. The axial dispersion model provides
a less optimistic estimate, but the difference between the piston flow and axial
dispersion models is usually small. For an open tube in well-developed turbulent
flow, the assumption of piston flow is normally quite accurate unless the reaction
is driven to near-completion. Figure 9.10 provides a quick means for estimating
the effects of axial dispersion. The errors are percentages of the fraction
unreacted. For a liquid at Re¼ 20,000, Figure 9.6 gives ð �uudtÞ=D � 3 so that
Pe � 3L=dt: For a reactor with L/dt¼ 33, Pe � 100, and Figure 9.10
shows that 1% error corresponds to k �tt � 1: Thus, aout/ain¼ 0.368 for piston
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FIGURE 9.10 Relative error in the predicted conversion of a first-order reaction due to assuming
piston flow rather than axial dispersion, k �tt versus Pe.
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flow and 0.364 for axial dispersion. Problem 9.5 gives an example where the
correction for axial dispersion is much more significant. Such examples are
the exception.

Isothermal Packed Beds. A packed reactor has a velocity profile that is nearly
flat; and, for the usual case of uniform ain, no concentration gradients will arise
unless there is a radial temperature gradient. If there is no reaction exotherm
(and if Tin¼Twall), the model of Section 9.1 degenerates to piston flow. This
is overly optimistic for a real packed bed, and the axial dispersion model pro-
vides a correction. The correction will usually be small. Note that �uu should be
replaced by �uus and that the void fraction " should be inserted before the reaction
term; e.g., k �tt becomes "k�tt for reactions in a packed bed. Figure 9.7 gives
D"= ð �uusdpÞ � 2 for moderate values of the particle Reynolds number. This
gives Pe ¼ "L= ð2dpÞ or Pe � 300 for the packed tube of Example 9.1. Again,
the assumption of piston flow is quite reasonable unless the reaction goes to
near-completion. It should be emphasized that the assumption of an isothermal
reaction should be based on a small heat of reaction; e.g., as in a transesterifica-
tion where the energy of a bond broken is approximately equal to that of a bond
made or when inerts are present in large quantities. Calculate the adiabatic
temperature rise. Sooner or later it will emerge upon scaleup.

Adiabatic Reactors. Like isothermal reactors, adiabatic reactors with a flat
velocity profile will have no radial gradients in temperature or composition.
There are axial gradients, and the axial dispersion model, including its extension
to temperature in Section 9.4, can account for axial mixing. As a practical
matter, it is difficult to build a small adiabatic reactor. Wall temperatures
must be controlled to simulate the adiabatic temperature profile in the reactor,
and guard heaters may be needed at the inlet and outlet to avoid losses by
radiation. Even so, it is likely that uncertainties in the temperature profile will
mask the relatively small effects of axial dispersion.

Laminar Pipeline Flows. The axial dispersion model can be used for laminar
flow reactors if the reactor is so long that DA �tt=R2 > 0:125: With this high
value for DA �tt=R2, the initial radial position of a molecule becomes unimportant.
The molecule diffuses across the tube and samples many streamlines, some with
high velocity and some with low velocity, during its stay in the reactor. It will
travel with an average velocity near �uu and will emerge from the long reactor
with a residence time close to �tt: The axial dispersion model is a reasonable
approximation for overall dispersion in a long, laminar flow reactor. The appro-
priate value for D is known from theory:

D ¼ DA þ �uu2R2

48DA
ð9:23Þ
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As seen in Chapter 8, the stability criterion becomes quite demanding when
DA �tt=R2 is large. The axial dispersion model may then be a useful alternative
to solving Equation (8.12).

Motionless Mixers. These interesting devices consist of a tube or duct within
which static elements are installed to promote radial flow. They are quite effec-
tive in promoting mixing in laminar flow systems, but their geometry is too com-
plex to allow solution of the convective diffusion equation on a routine basis.
The axial dispersion model may be useful for data correlations and scaleup
when motionless mixers are used as reactors with premixed feed. A study on
their use for homogeneous reactions in deep laminar flow, Re<100, found
that Pe � 70L, where L is the length in meters.7 This dimensionally inconsistent
result applies to 40-mm diameter Sulzer mixers of the SMX and SMV types. It
obviously cannot be generalized. See also Fialova et al.8 The lack of published
data prevents a priori designs that utilize static mixers, but the axial dispersion
model is a reasonable way to correlate pilot-plant data. Chapter 15 shows how
Pe can be measured using inert tracers.

Static mixers are typically less effective in turbulent flow than an open tube
when the comparison is made on the basis of constant pressure drop or capital
cost. Whether laminar or turbulent, design correlations are generally lacking or
else are vendor-proprietary and are rarely been subject to peer review.

9.4 NONISOTHERMAL AXIAL DISPERSION

The axial dispersion model is readily extended to nonisothermal reactors.
The turbulent mixing that leads to flat concentration profiles will also give flat
temperature profiles. An expression for the axial dispersion of heat can be writ-
ten in direct analogy to Equation (9.14):

�uu
dT

dz
¼ E d

2T

dz2
� 2h

�CP

ðT � TwallÞ
R

��HRR

�CP
ð9:24Þ

where E is the axial dispersion coefficient for heat and where the usual summa-
tion conventions apply to �HRR : For well-developed turbulence, the thermal
Peclet number, (Pe)thermal¼ �uuL=E, should be identical to the mass Peclet
number, Pe¼ �uuL=D. At lower Reynolds numbers, one would expect �uuL=E to
depend on a thermal Schmidt number, ðScÞthermal ¼ �=��T ¼ �CP =�, which is
more commonly called the Prandtl number. The inside heat transfer coefficient,
h, can be estimated from standard correlations such as Equation (5.38).

The boundary conditions associated with Equation (9.24) are of the
Danckwerts type:

QinTin ¼ QinTð0þÞ � EAc½dT=dz�0þ ð9:25Þ
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½dT=dz�L ¼ 0 ð9:26Þ
Correlations for E are not widely available. The more accurate model given in

Section 9.1 is preferred for nonisothermal reactions in packed-beds. However, as
discussed previously, this model degenerates to piston flow for an adiabatic reac-
tion. The nonisothermal axial dispersion model is a conservative design metho-
dology available for adiabatic reactions in packed beds and for nonisothermal
reactions in turbulent pipeline flows. The fact that E>D provides some basis
for estimating E. Recognize that the axial dispersion model is a correction to
what would otherwise be treated as piston flow. Thus, even setting E¼D
should improve the accuracy of the predictions.

Only numerical solutions are possible when Equation (9.24) is solved simul-
taneously with Equation (9.14). This is true even for first-order reactions because
of the intractable nonlinearity of the Arrhenius temperature dependence.

9.5 NUMERICAL SOLUTIONS TO TWO-POINT
BOUNDARY VALUE PROBLEMS

The numerical solution of Equations (9.14) and (9.24) is more complicated
than the solution of the first-order ODEs that govern piston flow or of the
first-order ODEs that result from applying the method of lines to PDEs.
The reason for the complication is the second derivative in the axial
direction, d2a/dz2.

Apply finite difference approximations to Equation (9.15) using a backwards
difference for da=dz and a central difference for d 2a=dz 2: The result is

ajþ1 ¼ ð2þ Pe�z Þaj � ð1þ Pe�z Þaj�1 � PeR A �tt�z 2 ð9:27Þ

Thus, the value for the next, jþ 1, point requires knowledge of two previous
points, j and j� 1. To calculate a2, we need to know both a1 and a0. The bound-
ary conditions, Equations (9.16) and (9.17), give neither of these directly. In
finite difference form, the inlet boundary condition is

a1 ¼ ð1þ Pe�z Þa0 � Pe�z ain ð9:28Þ

where ain is known. Thus, if we guess a0, we can calculate a1 using Equation
(9.28) and we can then use Equation (9.27) to march down the tube. The
outlet boundary condition is

aJþ1 ¼ aJ ð9:29Þ

where J is the number of steps in the axial direction. If Equation (9.29) is satis-
fied, the correct value for a0 was guessed. Otherwise, guess a new a0. This
approach is known as forward shooting.

REAL TUBULAR REACTORS IN TURBULENT FLOW 337



The forward shooting method seems straightforward but is troublesome to
use. What we have done is to convert a two-point boundary value problem
into an easier-to-solve initial value problem. Unfortunately, the conversion
gives a numerical computation that is ill-conditioned. Extreme precision is
needed at the inlet of the tube to get reasonable accuracy at the outlet. The phe-
nomenon is akin to problems that arise in the numerical inversion of matrices
and Laplace transforms.

Example 9.4: Use forward shooting to solve Equation (9.15) for a first-
order reaction with Pe¼ 16 and k�tt¼ 2. Compare the result with the analytical
solution, Equation (9.20).

Solution: Set �z ¼ 1=32 so that Pe�z ¼ 0:5 and Pe k �tt�z 2 ¼ 0:03125:
Set ain¼ 1 so that dimensionless or normalized concentrations are
determined. Equation (9.27) becomes

ajþ1 ¼ 2:53125 aj � 1:5 aj�1

The computation is started using Equation (9.28):

a1 ¼ 1:5 a0 � 0:5

Results for a succession of guesses for a0 give

a0 a32 a33

0.90342 �20.8 �33.0
0.90343 0.93 1.37
0.903429 �1.24 �2.06
0.9034296 0.0630 0.0004
0.90342965 0.1715 0.1723
0.903429649 0.1693 0.1689
0.9034296493 0.1699 0.1699

The answer by the shooting method is aout¼ 0.17. The analytical result is
aout¼ 0.1640. Note that the shooting method requires extreme precision on
guesses for a0 to obtain an answer of limited accuracy for aout. Double
precision is needed on a 16-bit computer. Better accuracy with the
numerical approach can be achieved with a smaller step size or a more
sophisticated integration routine such as Runge-Kutta, but better
integration gives a more accurate value only after the right guess for a0 is
made. It does not eliminate the ill-conditioning inherent in forward shooting.

The best solution to such numerical difficulties is to change methods.
Integration in the reverse direction eliminates most of the difficulty. Go
back to Equation (9.15). Continue to use a second-order, central differ-
ence approximation for d2a=dz 2, but now use a first-order, forward
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difference approximation for da=dz : Solve the resulting finite difference
Equation for aj�1:

aj�1 ¼ ð2� Pe�z Þaj � ð1� Pe�z Þajþ1 � PeR A �tt�z 2 ð9:30Þ

The marching-ahead equation becomes a marching-backward equation. The
method is called reverse shooting. The procedure is to guess aJ¼ aout and then
to set aJ�1¼ aJ. The index j in Equation (9.30) begins at J� 2 and is decremen-
ted by 1 until j¼ 0 is reached. The reaction rate continues to be evaluated at the
central, jth point. The test condition is whether ain is correct when calculated
using the inlet boundary condition

ain ¼ a0 þ a0 � a1
Pe�z ð9:31Þ

Example 9.5: Repeat Example 9.4 using reverse shooting.

Solution: With J¼ 32, Pe¼ 16, and k�tt¼ 2, Equation (9.30) gives

aj�1 ¼ 1:53125aj � 0:5ajþ 1

Guess a32¼ aout and then set a31¼ a32. Calculate aj down to j¼ 0. Then
compare ain with the value calculated using Equation (9.31) which, for this
example, is just

ain ¼ 3a0 � 2a1

Some results are

a32 ain

0.16 1.0073
0.15 0.9444
0.159 1.0010
0.158 0.9947

Thus, we obtain aout¼ 0.159 for a step size of �z ¼ 0:03125: The ill-
conditioning problem has been solved, but the solution remains inaccurate
due to the simple integration scheme and the large step size.

The next example illustrates the use of reverse shooting in solving a problem
in nonisothermal axial dispersion and shows how Runge-Kutta integration can
be applied to second-order ODEs.

Example 9.6: Compare the nonisothermal axial dispersion model with
piston flow for a first-order reaction in turbulent pipeline flow with
Re¼ 10,000. Pick the reaction parameters so that the reactor is at or near a
region of thermal runaway.
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Solution: The axial dispersion model requires the simultaneous solution of
Equations (9.14) and (9.24). Piston flow is governed by the same equations
except that D¼E¼ 0. The following parameter values give rise to a near
runaway:

k0 �tt ¼ 2:0� 1011 ðdimensionlessÞ

Tact ¼ 10,000K

2h �tt

�CPR
¼ 10 ðdimensionlessÞ

��HRain
�CP

¼ 200K

Tin ¼ Twall ¼ 373K

These parameters are enough to run the piston flow case. The solution is
aout/ain¼ 0.209, Tout¼ 376K, and Tmax¼ 403K occurring at z ¼ 0:47:

Turn now to the axial dispersion model. Plausible values for the dispersion
coefficients at Re¼ 10,000 are

D

�uudt
¼ 0:45

D

�uuL
¼ 4:5

t
E

�uudt
¼ 0:60

E

�uuL
¼ 6:0

where we have assumed a low aspect ratio, L/dt¼ 10, to magnify the effects of
axial dispersion.

When the axial dispersion terms are present, D > 0 and E> 0, Equations
(9.14) and (9.24) are second order. We will use reverse shooting and Runge-
Kutta integration. The Runge-Kutta scheme (Appendix 2) applies only to
first-order ODEs. To use it here, Equations (9.14) and (9.24) must be
converted to an equivalent set of first-order ODEs. This can be done by
defining two auxiliary variables:

a0 ¼ da=dz and T 0 ¼ dT =dz

Then Equations (9.14) and (9.24) can be written as a set of four, first-order
ODEs with boundary conditions as indicated below:

da=dz ¼ a0 a ¼ aout at z ¼ 1

da0

dz ¼
a0 þ k0 �tt expð�Tact=T Þ a
� �

ðD= �uuLÞ a0 ¼ 0 at z ¼ 1
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dT =dz ¼T 0 T ¼ Tout at z ¼ 1

dT 0

dz ¼
T 0 þ 2h�tt

�CPR
ðT � TwallÞ � ��HRain

�CP

� �
k0 �tt expð�Tact=T Þa=ain

� �
E= �uuLð Þ

T 0 ¼ 0 at z ¼ 1

There are four equations in four dependent variables, a, a0, T, and T 0:
They can be integrated using the Runge-Kutta method as outlined in
Appendix 2. Note that they are integrated in the reverse direction; e.g.,
a1 ¼ a0 �R A�z =2, and similarly for a2 and a3 in Equations (2.47).

A double trial-and-error procedure is needed to determine a0 and T0. If
done only once, this is probably best done by hand. This is the approach
used in the sample program. Simultaneous satisfaction of the boundary
conditions for concentration and temperature was aided by using an output
response that combined the two errors. If repeated evaluations are necessary,
a two-dimensional Newton’s method can be used. Define

Fða0,T0Þ ¼ a0 � D

UL
a0ð0Þ � ain

Gða0,T0Þ ¼ T0 � E
�uuL
T 0ð0Þ � Tin

and use the methodology of Appendix 4 to find a0 and T0 such that F¼G¼ 0.
The following is a comparison of results with and without axial dispersions:

Piston flow Axial dispersion

D/ �uuL 0 0.045
E/ �uuL 0 0.060
aout/ain 0.209 0.340
Tout 376K 379K
Tmax 403K 392K
z ðTmaxÞ 0.47 0.37

A repetitious but straightforward Basic program for solving this axial
dispersion problem follows:

tmeank0¼200000000000#
Tact¼10000
h¼10
heat¼200
Tin¼373
Twall¼373
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D¼0.045
E¼0.06
ain¼1
JJ¼32
dz¼1 / JJ

1 Input a0, T0
ap0¼0
Tp0¼0

For j¼1 To JJ
Rp0¼RxRateP(a0, ap0, T0, Tp0)
Sp0¼SourceP(a0, ap0, T0, Tp0)
R0¼ap0
S0¼Tp0

a1¼a0�R0 * dz / 2
T1¼T0�S0 * dz / 2
ap1¼ap0�Rp0 * dz / 2
Tp1¼Tp0�Sp0 * dz / 2

Rp1¼RxRateP(a1, ap1, T1, Tp1)
Sp1¼SourceP(a1, ap1, T1, Tp1)
R1¼ap1
S1¼Tp1

a2¼a0�R1 * dz / 2
T2¼T0�S1 * dz / 2
ap2¼ap0�Rp1 * dz / 2
Tp2¼Tp0�Sp1 * dz / 2

Rp2¼RxRateP(a2, ap2, T2, Tp2)
Sp2¼SourceP(a2, ap2, T2, Tp2)
R2¼ap2
S2¼Tp2

a3¼a0�R2 * dz
T3¼T0�S2 * dz
ap3¼ap0�Rp2 * dz
Tp3¼Tp0�Sp2 * dz

Rp3¼RxRateP(a3, ap3, T3, Tp3)
Sp3¼SourceP(a3, ap3, T3, Tp3)
R3¼ap3
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S3¼Tp3

a0¼a0�(R0 þ2 * R1þ2 * R2 þR3) / 6 * dz
T0¼T0�(S0þ2 * S1þ2 * S2 þS3) / 6 * dz
ap0¼ap0�(Rp0þ2 * Rp1þ2 * Rp2 þRp3) / 6 * dz
Tp0¼Tp0�(Sp0þ2 * Sp1þ2 * Sp2 þSp3) / 6 * dz

Next j

Atest¼a0�D * ap0�ain
TTest¼T0�E * Tp0�Tin
Ctest¼Abs(Atest) þAbs(TTest) / 10
Print Ctest
GoTo 1 ’Highly efficient code for a manual search even

’though frowned upon by purists

Function RxRateP(a, ap, T, Tp)
RxRateP¼(apþtmeank0 * Exp(�Tact / T) * a) / D

End Function

Function SourceP(a, ap, T, Tp)
SourceP¼(Tpþh * (T�Twall)þheat * RxRate(a, T)) / E
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FIGURE 9.11 Comparison of piston flow and axial dispersion for the packed-bed reactor of
Example 9.6; Tin¼Twall¼ 373K.
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This example was chosen to be sensitive to axial dispersion but the effects
are fairly modest. As expected, conversions are lower and the hotspots are
colder when axial dispersion is considered. See Figure 9.11.

A more dramatic comparison of the piston flow and axial dispersion models
is shown in Figure 9.12. Input parameters are the same as for Figure 9.11 except
that Tin and Twall were increased by 1K. This is another example of parametric
sensitivity. Compare Example 9.2.

Observe that the axial dispersion model provides a lower and thus more con-
servative estimate of conversion than does the piston flow model given the same
values for the input parameters. There is a more subtle possibility. The model
may show that it is possible to operate with less conservative values for some
parameters—e.g., higher values for Tin and Twall—without provoking adverse
side reactions.

9.6 SCALEUP AND MODELING
CONSIDERATIONS

Previous chapters have discussed how isothermal or adiabatic reactors can be
scaled up. Nonisothermal reactors are more difficult. They can be scaled by
maintaining the same tube diameter or by the modeling approach. The challenge
is to increase tube diameter upon scaleup. This is rarely possible; and when it is
possible, scaleup must be based on the modeling approach. If the predictions are
satisfactory, and if you have confidence in the model, proceed with scaleup.

What models should be used, either for scaleup or to correlate pilot-plant
data? Section 9.1 gives the preferred models for nonisothermal reactions in
packed beds. These models have a reasonable experimental basis even though

���

���

���

���

���
� ��� ��� ���

�	
�� ��
�
��� ���
��� �

�
��


��
��
�
��
�
�

�
���� ����

�	
�� �
����
��

FIGURE 9.12 Comparison of piston flow and axial dispersion models at conditions near thermal
runaway; Tin¼Twall¼ 374K.
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they use empirical parameters, Dr, hr, and lr, to account for the packing and the
complexity of the flow field. For laminar flow in open tubes, use the methods in
Chapter 8. For highly turbulent flows in open tubes (with reasonable L/dt ratios)
use the axial dispersion model in both the isothermal and nonisothermal cases.
The assumption D¼E will usually be safe, but do calculate how a PFR would
perform. If there is a substantial difference between the PFR model and the axial
dispersion model, understand the reason. For transitional flows, it is usually
conservative to use the methods of Chapter 8 to calculate yields and selectivities
but to assume turbulence for pressure-drop calculations.

PROBLEMS

9.1. A gas phase reaction, Aþ B �!k Products, is performed in a packed-bed
reactor at essentially constant temperature and pressure. The following
data are available: dt¼ 0.3m, L¼ 8m, "¼ 0.5, Dr¼ 0.0005m2/s, �uus ¼
0:25m=s, ain¼ bin. The current operation using premixed feed gives
Y¼ aout/ain¼ 0.02. There is a safety concern about the premixing step.
One proposal is to feed A and B separately. Component A would be
fed into the base of the bed using a central tube with diameter 0.212m
and component B would be fed to the annulus between the central
tube and the reactor wall. The two streams would mix and react only
after they had entered the bed. The concentrations of the entering com-
ponents would be increased by a factor of 2, but the bed-average concen-
trations and �uus would be unchanged. Determine the fraction unreacted
that would result from the proposed modification.

9.2. Example 9.1 on the partial oxidation of o-xylene used a pseudo-first-
order kinetic scheme. For this to be justified, the oxygen concentration
must be approximately constant, which in turn requires low oxygen con-
sumption and a low pressure drop. Are these assumptions reasonable for
the reactor in Example 9.1? Specifically, estimate the total change in
oxygen concentration given atmospheric discharge pressure and
aout¼ 21 g/m3. Assume "¼ 0.4.

9.3. Phthalic anhydride will, in the presence of the V2O5 catalyst of Example
9.1, undergo complete oxidation with �HR¼�760 kcal/mol. Suppose
the complete oxidation is pseudo-first-order in phthalic anhydride con-
centration and that ln("kII)¼ 12.300�10,000/T.
(a) To establish an upper limit on the yield of phthalic anhydride,

pretend the reaction can be run isothermally. Determine yield as a
function of temperature.

(b) To gain insight into the potential for a thermal runaway, calculate
the adiabatic temperature rise if only the first oxidation goes to com-
pletion (i.e., A! B) and if both the oxidation steps go to comple-
tion (i.e., A! B! C).
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(c) Determine the value for Tin that will just cause a thermal runaway.
This gives an upper limit on Tin for practical operation of the non-
isothermal reactor. Take extra care to control error in your
calculations.

(d) Based on the constraint found in part (c), determine the maximum
value for the phthalic anhydride yield in the packed tube.

9.4. An alternative route to phthalic anhydride is the partial oxidation of
naphthalene. The heat of reaction is � 430 kcal/mol. This reaction can
be performed using a promoted V2O5 catalyst on silica, much like that
considered in Example 9.1. Suppose ln("k)¼ 31.6800�19,100/T for the
naphthalene oxidation reaction and that the subsequent, complete oxida-
tion of phthalic anhydride follows the kinetics of Problem 9.3. Suppose it
is desired to use the same reactor as in Example 9.1 but with ain¼ 53 g/
m3. Determine values for Tin and Twall that maximize the output of
phthalic anhydride from naphthalene.

9.5. Nerve gas is to be thermally decomposed by oxidation using a large
excess of air in a 5-cm i.d. tubular reactor that is approximately isother-
mal at 620�C. The entering concentration of nerve gas is 1% by volume.
The outlet concentration must be less than 1 part in 1012 by volume. The
observed half-life for the reaction is 0.2 s. How long should the tube be
for an inlet velocity of 2m/s? What will be the pressure drop given an
atmospheric discharge?

9.6. Determine the yield of a second-order reaction in an isothermal tubular
reactor governed by the axial dispersion model with Pe¼ 16 and ain k�tt¼ 2.

9.7. Water at room temperature is flowing through a 1.0-in i.d. tubular reac-
tor at Re¼ 1000. What is the minimum tube length needed for the axial
dispersion model to provide a reasonable estimate of reactor perfor-
mance? What is the Peclet number at this minimum tube length? Why
would anyone build such a reactor?

9.8. The marching equation for reverse shooting, Equation (9.24), was devel-
oped using a first-order, backward difference approximation for da/dz,
even though a second-order approximation was necessary for d2a/dz2.
Since the locations j� 1, j, and jþ 1 are involved anyway, would it
not be better to use a second-order, central difference approximation
for da/dz?
(a) Would this allow convergence O(�z2) for the reverse shooting

method?
(b) Notwithstanding the theory, run a few values of J, differing by

factors of 2, to experimentally confirm the orders of convergence
for the two methods.

9.9. The piston flow model in Example 9.6 showed a thermal runaway when
Tin¼Twall¼ 374. Will the axial dispersion model show a runaway
(defined as d2T/dz2 > 0)? If so, at what value of Tin¼Twall?

9.10. Examples 9.1 and 9.2 used a distributed parameter model (simultaneous
PDEs) for the phthalic anhydride reaction in a packed bed. Axial
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dispersion is a lumped parameter model (simultaneous ODEs) that can
also be used for a packed bed. Apply the axial dispersion model to the
phthalic reaction using D as determined from Figure 9.7 and E¼ 1.33
D. Compare your results with those obtained in Examples 9.1 and 9.2.

9.11. ExtendFigure 8.3 to the higher values ofDA �tt=R2 needed to showanasymp-
totic approach to the performance of a CSTR. Assume L/R¼ 16. A par-
tially implicit solution technique is suggested. See Appendix 8.3.
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SUGGESTIONS FOR FURTHER READING

The heat and mass transfer phenomena associated with packed-bed reactors are
described in

Froment, G. F. and Bischoff, K. B., Chemical Reaction Analysis and Design, 2nd ed., Wiley,
New York, 1990.

Correlations for heat transfer in packed-beds are still being developed. The cur-
rent state of the art is represented by

Logtenberg, S. A., Nijemeisland, M., and Dixon, A. G., ‘‘Computational fluid dynamics simu-
lations of fluid flow and heat transfer at the wall-particle contact points in a fixed-bed reactor,’’
Chem. Eng. Sci. 54, 2433–2439 (1999).

The more classic and time-tested work is

Dixon, A. G. and Cresswell, D. L., ‘‘Theoretical prediction of effective heat transfer parameters
in packed beds,’’ AIChE J., 25, 663–676 (1979).
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A review article describing the occasionally pathological behavior of packed bed
reactors is

Cybulski, A., Eigenberger, G., and Stankiewicz, A., ‘‘Operational and Structural Nonidealities
in Modeling and Design of Multitubular Catalytic Reactors,’’ Ind. Eng. Chem. Res., 36, 3140–
3148 (1997).

Chapter 15 provides additional discussion of the axial dispersion model and of
methods for measuring dispersion coefficients. A more advanced account is
given in

Nauman, E. B. and Buffham, B. A., Mixing in Continuous Flow Systems, Wiley, New York,
1983.

Run an Internet search on static and motionless mixers to learn more about the
utility of these devices, but be wary of the hype.
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CHAPTER 10

HETEROGENEOUS
CATALYSIS

The first eight chapters of this book treat homogeneous reactions. Chapter 9
provides models for packed-bed reactors, but the reaction kinetics are
pseudohomogeneous so that the rate expressions are based on fluid-phase con-
centrations. There is a good reason for this. Fluid-phase concentrations are what
can be measured. The fluid-phase concentrations at the outlet are what can
be sold.

Chapter 10 begins a more detailed treatment of heterogeneous reactors. This
chapter continues the use of pseudohomogeneous models for steady-state,
packed-bed reactors, but derives expressions for the reaction rate that reflect
the underlying kinetics of surface-catalyzed reactions. The kinetic models are
site-competition models that apply to a variety of catalytic systems, including
the enzymatic reactions treated in Chapter 12. Here in Chapter 10, the example
system is a solid-catalyzed gas reaction that is typical of the traditional chemical
industry. A few important examples are listed here:

. Ethylene is selectively oxidized to ethylene oxide using a silver-based catalyst
in a fixed-bed reactor. Ethylene and oxygen are supplied from the gas phase
and ethylene oxide is removed by it. The catalyst is stationary. Undesired,
kinetically determined by-products include carbon monoxide and water.
Ideally, a pure reactant is converted to one product with no by-products.

. Ethylbenzene is dehydrogenated in a fixed-bed reactor to give styrene.
Hydrogen is produced as a stoichiometrically determined by-product.
Undesired by-products including toluene, benzene, light hydrocarbons,
coke, and additional hydrogen are kinetically determined. Ideally, a pure reac-
tant is converted to one desired product and to hydrogen as the inevitable
by-product.

. The final step in the methanol-to-gasoline process can be carried out in an
adiabatic, fixed-bed reactor using a zeolite catalyst. A product mixture similar
to ordinary gasoline is obtained. As is typical of polymerizations, a pure
reactant is converted to a complex mixture of products.

. Catalytic reformers take linear alkanes, e.g., n-pentane, and produce branched
alkanes, e.g., i-pentane. The catalyst is finely divided platinum on Si2O3.
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Reforming is a common refinery reaction that begins with a complex mixture
of reactants and produces a complex mixture of products.

. The catalytic converter on a car uses a precious-metal-based, solid catalyst,
usually in the form of a monolith, to convert unburned hydrocarbons and
carbon monoxide to carbon dioxide. Many different reactants are converted
to two products: CO2 and water.

Many more examples could be given. They all involve interphase mass
transfer combined with chemical reaction. Gas-phase reactants are adsorbed
onto a solid surface, react, and the products are desorbed. Most solid catalysts
are supplied as cylindrical pellets with lengths and diameters in the range of
2–10mm. More complex shapes and monoliths can be used when it is important
to minimize pressure drop. The catalyst is microporous with pores ranging in
diameter from a few angstroms to a few microns. The pores may have a bimodal
distribution of sizes as illustrated in Figure 10.1. The internal surface area, acces-
sible through the pores, is enormous, up to 2000m2 per gram of catalyst. The
internal surface area dwarfs the nominal, external area and accounts for most
of the catalytic activity. The catalytic sites are atoms or molecules on the internal
surface. The structural material of the catalyst particle is often an oxide, such as
alumina (Al2O3) or (SiO2). The structural material may provide the catalytic
sites directly or it may support a more expensive substance, such as finely divided
platinum. When heat transfer is important, the catalyst pellets are randomly
packed in small-diameter (10–50mm) tubes that are often quite long (2–10m).
A fluidized bed of small (50 mm) catalyst particles can also be used. If the
adiabatic temperature change is small, the pellets are packed in large-diameter
vessels. Annular flow reactors (see Figure 3.2) are used when it is important

���������� �	��������

FIGURE 10.1 Diagram of bimodal catalyst pore structure.
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to minimize the gas-phase pressure drop. Another approach is to flow the gas
through the labyrinth of a monolithic catalyst, as in automobile exhaust systems.
Regardless of the specific geometry used to contact the gas and the solid, all
these schemes require a complex set of mass transfer and reaction steps, usually
accompanied by heat transfer.

10.1 OVERVIEW OF TRANSPORT AND
REACTION STEPS

Molecules enter the reactor with uniform concentrations ain and leave with
mixing-cup concentrations aout. In between, they undergo the following steps:

1. Bulk transport of the reactants to the vicinity of a catalyst particle.

2. Mass transfer across a film resistance from the bulk gas phase to the external
surface of the porous catalyst.

3. Transport of the reactants into the catalyst particle by diffusion through the
pores.

4. Adsorption of reactant molecules onto the internal surface of the catalyst.

5. Reaction between adsorbed components on the catalytic surface.

6. Desorption of product molecules from the surface to the pores.

7. Diffusion of product molecules out of the pores to the external surface of the
pellet.

8. Mass transfer of the products across a film resistance into the bulk gas phase.

9. Bulk transport of products to the reactor outlet.

All these steps can influence the overall reaction rate. The reactor models of
Chapter 9 are used to predict the bulk, gas-phase concentrations of reactants
and products at point (r, z) in the reactor. They directly model only Steps 1
and 9, and the effects of Steps 2 through 8 are lumped into the pseudohomoge-
neous rate expression, R ða, b, . . .Þ, where a, b, . . . are the bulk, gas-phase con-
centrations. The overall reaction mechanism is complex, and the rate expression
is necessarily empirical. Heterogeneous catalysis remains an experimental
science. The techniques of this chapter are useful to interpret experimental
results. Their predictive value is limited.

The goal at this point is to examine Steps 2 through 8 in more detail so that
the pseudohomogeneous reaction rate can reflect the mechanisms occurring
within or on the catalyst. We seek a quantitative understanding of Steps 2
through 8 with a view toward improving the design of the catalyst and the
catalytic reactor. The approach is to model the steps individually and then to
couple them together. The modeling assumes that the system is at steady
state. The coupling is based on the fact that each of Steps 2 through 8 must
occur at the same rate in a steady-state system and that this rate, when expressed
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as moles per volume of gas phase per time, must equal the reaction rates in
Steps 1 and 9.

10.2 GOVERNING EQUATIONS FOR
TRANSPORT AND REACTION

Consider an observed reaction of the form Aþ B! PþQ occurring in a
packed-bed reactor.
Step 1. Refer to Figure 10.2. The entering gas is transported to point (r, z)

in the reactor and reacts, with rate "R . Equation (9.1) governs the combination
of bulk transport and pseudohomogeneous reaction. We repeat it here:

�uus
@a

@z
¼ Dr 1

r

@a

@r
þ @2a

@r2

� �
þ "R A ð10:1Þ

The initial and boundary conditions are given in Chapter 9. The present
treatment does not change the results given in Chapter 9, but instead
provides a rational basis for using pseudohomogeneous kinetics for a solid-
catalyzed reaction. The axial dispersion model in Chapter 9, again with
pseudohomogeneous kinetics, is an alternative to Equation (10.1) that can be
used when the radial temperature gradients are small.
Step 2. Reactant A in the gas phase at position (r, z) has concentration

a(r, z). It is transported across a film resistance and has concentration as (r, z)

l = 0 al (l)
Pore

l = �

Boundary layer

ain

as

aout

δ

Position in
reactor = (r, z)

z = L

z = 0

Bulk gas
phase

a (r, z)

FIGURE 10.2 Illustration of pore and film resistances in a catalyst particle.
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at the external surface of the catalyst pellet located at point (r, z). The detailed
geometry of the gas and solid phases is ignored, so that both phases can exist
at the same spatial location. The bulk and surface concentrations at location
(r, z) are related through a mass transfer coefficient. The steady-state flux
across the interface must be equal to the reaction rate. Thus, for component A,

R A ¼ ksAsðas � aÞ ð10:2Þ

where ks is a mass transfer coefficient and As is the external surface area of
catalyst per unit volume of the gas phase. The units of ks are moles per time
per area per concentration driving force. These units simplify to length per
time. The units of As are area per volume so that the product, ksAs, has dimen-
sions of reciprocal time.
Step 3. Transport within a catalyst pore is usually modeled as a one-dimen-

sional diffusion process. The pore is assumed to be straight and to have length
L . The concentration inside the pore is al ¼ al (l, r, z) where l is the position
inside the pore measured from the external surface of the catalyst particle. See
Figure 10.2. There is no convection inside the pore, and the diameter of the
pore is assumed to be so small that there are no concentration gradients in
the radial direction. The governing equation is an ODE.

0 ¼ DA
d2al
dl2
þR A ð10:3Þ

The solution to this equation, which is detailed in Section 10.4.1, gives the
concentration at position l down a pore that has its mouth located at position
(r, z) in the reactor. The reaction rate in Equation (10.3) remains based on the
bulk gas-phase volume, not on the comparatively small volume inside the pore.
Step 4. A reactant molecule is adsorbed onto the internal surface of the cat-

alyst. The adsorption step is modeled as an elementary reaction, the simplest
version of which is

AðgasÞ þ SðsolidÞ �!ka ASðsolidÞ R ¼ kaal½S� ð10:4Þ
This kinetic relationship provides the necessary link between the gas-phase con-
centration al and the concentration of A in its adsorbed form, which is denoted
as [AS]. The units for surface concentration are moles per unit area of catalyst
surface. S denotes a catalytically active site on the surface, also with units of
moles per area of catalyst surface.
Step 5. A surface reaction occurs between adsorbed species. The prototypi-

cal reaction is

ASþ BS �!kR PSþQS R ¼ kR½AS�½BS� ð10:5Þ
where the product molecules, P and Q, are formed as adsorbed species. The sur-
face reaction provides the link between reactant concentrations and product
concentrations.
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Step 6. The products are desorbed to give the gas-phase concentrations pl
and ql. The desorption mechanism is written as

PSðsolidÞ �!kd PðgasÞ þ SðsolidÞ R ¼ kd ½PS� ð10:6Þ
The catalytic sites, S, consumed in Step 4 are released in Step 6.
Step 7. Product species diffuse outward through the pores, the governing

equations being similar to those used for the inward diffusion of reactants:

0 ¼ DP
d2pl
dl2
þR P ð10:7Þ

The product molecules emerge from the interior of the catalyst at the same
location (r, z) that the reactants entered.
Step 8. Product species diffuse across the fluid boundary layer at the

external surface of the catalyst:

R P ¼ ksAs ð ps � pÞ ð10:8Þ

Nominally, the value of ksAs might be different for the different species. In prac-
tice, the difference is ignored.
Step 9. Product species generated at location (r, z) are transported to the

reactor outlet. The governing equation is

�uus
@p

@z
¼ Dr 1

r

@p

@r
þ @2p

@r2

� �
þ "R P ð10:9Þ

Steps 1 through 9 constitute a model for heterogeneous catalysis in a fixed-bed
reactor. There are many variations, particularly for Steps 4 through 6. For
example, the Eley-Rideal mechanism described in Problem 10.4 envisions an
adsorbed molecule reacting directly with a molecule in the gas phase. Other
models contemplate a mixture of surface sites that can have different catalytic
activity. For example, the platinum and the alumina used for hydrocarbon refor-
ming may catalyze different reactions. Alternative models lead to rate expres-
sions that differ in the details, but the functional forms for the rate
expressions are usually similar.

10.3 INTRINSIC KINETICS

It is possible to eliminate the mass transfer resistances in Steps 2, 3, 7, and 8 by
grinding the catalyst to a fine powder and exposing it to a high-velocity gas
stream. The concentrations of reactants immediately adjacent to the catalytic
surface are then equal to the concentrations in the bulk gas phase. The resulting
kinetics are known as intrinsic kinetics since they are intrinsic to the catalyst
surface and not to the design of the pores, or the pellets, or the reactor.
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Most research in heterogeneous catalysis is concerned with the measurement,
understanding, and modification of intrinsic kinetics.

When the mass transfer resistances are eliminated, the various gas-phase con-
centrations become equal: alðl, r, zÞ ¼ asðr, zÞ ¼ aðr, zÞ. The very small particle
size means that heat transfer resistances are minimized so that the catalyst
particles are isothermal. The recycle reactor of Figure 4.2 is an excellent
means for measuring the intrinsic kinetics of a finely ground catalyst. At high
recycle rates, the system behaves as a CSTR. It is sometimes called a gradientless
reactor since there are no composition and temperature gradients in the catalyst
bed or in a catalyst particle.

10.3.1 Intrinsic Rate Expressions from Equality of Rates

Suppose a gradientless reactor is used to obtain intrinsic rate data for a catalytic
reaction. Gas-phase concentrations are measured, and the data are fit to a rate
expression using the methods of Chapter 7. The rate expression can be arbitrary:

R ¼ ka mb np rq s ð10:10Þ
As discussed in Chapter 7, this form can provide a good fit of the data if the
reaction is not too close to equilibrium. However, most reaction engineers
prefer a mechanistically based rate expression. This section describes how to
obtain plausible functional forms for R based on simple models of the surface
reactions and on the observation that all the rates in Steps 2 through 8 must be
equal at steady state. Thus, the rate of transfer across the film resistance equals
the rate of diffusion into a pore equals the rate of adsorption equals the rate of
reaction equals the rate of desorption, and so on. This rate is the pseudohomo-
geneous rate shown in Steps 1 and 9.

Example 10.1: Consider the heterogeneously catalyzed reaction A! P.
Derive a plausible form for the intrinsic kinetics. The goal is to determine a
form for the reaction rate R that depends only on gas-phase concentrations.

Solution: Under the assumption of intrinsic kinetics, all mass transfer steps
are eliminated, and the reaction rate is determined by Steps 4–6. The simplest
possible version of Steps 4–6 treats them all as elementary, irreversible
reactions:

AðgasÞ þ SðsolidÞ �!ka ASðsolidÞ R ¼ kaal½S�
ASðsolidÞ �!kR PSðsolidÞ R ¼ kR½AS�
PSðsolidÞ �!ka PðgasÞ þ SðsolidÞ R ¼ kd ½PS�

The reaction rates must be equal at steady state. Thus,

R ¼ kaal½S� ¼ kR½AS� ¼ kd ½PS�
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A site balance ties these equations together:

S0 ¼ ½S� þ ½AS� þ ½PS�
The site balance specifies that the number of empty plus occupied sites is a
constant, S0. Equality of the reaction rates plus the site balance gives four
independent equations. Combining them allows a solution for R while
eliminating the surface concentrations [S], [AS], and [PS]. Substitute the
various reaction rates into the site balance to obtain

S0 ¼ R

kaal
þR

kR
þR

kd

But al¼ a for intrinsic kinetics. Making this substitution and solving for R
gives

R ¼ S0a

1

ka
þ 1

kR
þ 1

kd

� �
a

¼ S0kaa

1þ ka
kR
þ ka
kd

� �
a

ð10:11Þ

Redefining constants gives

R ¼ ka

1þ kAa ð10:12Þ

Equation (10.12) is the simplest—and most generally useful—model that
reflects heterogeneous catalysis. The active sites S are fixed in number, and
the gas-phase molecules of component A compete for them. When the gas-
phase concentration of component A is low, the kAa term in Equation (10.12)
is small, and the reaction is first order in a. When a is large, all the active
sites are occupied, and the reaction rate reaches a saturation value of k=kA.
The constant in the denominator, kA, is formed from ratios of rate constants.
This makes it less sensitive to temperature than k, which is a normal rate con-
stant.

The form of Equation (10.12) is widely used for multiphase reactions. The
same model, with slightly different physical interpretations, is used for enzyme
catalysis and cell growth. See Chapter 12.

Example 10.2: Repeat Example 10.1 but now assume that each of Steps
4–6 is reversible.

Solution: The elementary reaction steps of adsorption, reaction, and
desorption are now reversible. From this point on, we will set al ¼ a, pl ¼ P,
and so on, since the intrinsic kinetics are desired. The relationships between
al, as, and a are addressed using an effectiveness factor in Section 10.4. The
various reaction steps are

AðgasÞ þ SðsolidÞ ���! ���
kþa

k�a

ASðsolidÞ R ¼ kþa a½S� � k�a ½AS�
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ASðsolidÞ ���! ���
kþ
R

k�
R

PSðsolidÞ R ¼ kþR ½AS� � k�R ½PS�

PSðsolidÞ ���! ���
kþ
d

k�
d

PðgasÞ þ SðsolidÞ R ¼ kþd ½PS� � k�d p½S�

As in Example 10.1, the rates must all be equal at steady state:

R ¼ kþa a½S� � k�a ½AS� ¼ kþR ½AS� � k�R ½PS� ¼ kþd ½PS� � k�d p½S�

The site balance is the same as in Example 10.1:

S0 ¼ ½S� þ ½AS� þ ½PS�
As in Example 10.1, equality of the reaction rates plus the site balance gives
four independent equations. Combining them allows a solution for R while
eliminating the surface concentrations [S], [AS], and [PS]. After much
algebra and a redefinition of constants,

R ¼ kf a� krp
1þ kAaþ kPp ð10:13Þ

Problem 10.1 gives the result before the redefinition of constants.

The numerator of Equation (10.13) is the expected form for a reversible, first-
order reaction. The denominator shows that the reaction rate is retarded by
all species that are adsorbed. This reflects competition for sites. Inerts can
also compete for sites. Thus, the version of Equation (10.13) that applies
when adsorbable inerts are present is

R ¼ kf a� krp
1þ kAaþ kPpþ kI i ð10:14Þ

where i is the gas-phase concentration of inerts. The inerts may be intentionally
added or they may be undesired contaminants. When they are contaminants,
their effect on the reaction rate represents a form of deactivation, in this
case reversible deactivation, that ceases when the contaminant is removed from
the feed.

Examples (10.1) and (10.2) used the fact that Steps 4, 5, and 6 must all
proceed at the same rate. This matching of rates must always be true, and, as
illustrated in the foregoing examples, can be used to derive expressions for the
intrinsic reaction kinetics. There is another concept with a time-honored
tradition in chemical engineering that should be recognized. It is the concept
of rate-determining step or rate-controlling step.
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10.3.2 Models Based on a Rate-Controlling Step

The idea is that a single step, say adsorption, may be so much slower than
the other steps (e.g., reaction and desorption) that it determines the overall
reaction rate. The concept of rate-determining step has been widely employed
in the literature, starting with Hougen and Watson.1 The advantage of this
approach is that it generates kinetic models with less algebra than the equal
rate approach. It has the disadvantage of giving less general models that
may also mislead the unwary experimentalist into thinking that surface
mechanisms can be unambiguously determined from steady-state experiments.
This is rarely possible.

Irreversible Unimolecular Reactions. Consider the irreversible catalytic reaction
A! P of Example 10.1. There are three kinetic steps: adsorption of A, the sur-
face reaction, and desorption of P. All three of these steps must occur at exactly
the same rate, but the relative magnitudes of the three rate constants, ka, kR,
and kd, determine the concentration of surface species. Suppose that ka is
much smaller than the other two rate constants. Then the surface sites will be
mostly unoccupied so that [S]�S0. Adsorption is the rate-controlling step. As
soon as a molecule of A is absorbed it reacts to P, which is then quickly des-
orbed. If, on the other hand, the reaction step is slow, the entire surface will
be saturated with A waiting to react, [AS]�S0, and the surface reaction is
rate-controlling. Finally, it may be that kd is small. Then the surface will be satu-
rated with P waiting to desorb, [PS]�S0, and desorption is rate-controlling. The
corresponding forms for the overall rate are:

Adsorption is rate-controlling, R ¼ kaS0a ðfirst order in AÞ
Surface reaction is rate-controlling, R ¼ kRS0 ðzero order in AÞ
Adsorption is rate-controlling, R ¼ kdS0 ðzero order in AÞ

These results can be confirmed by taking the appropriate limits on the rate
constants in Equation 10.11.

Reversible Unimolecular Reactions. The intrinsic reaction steps in hetero-
geneously catalyzed reactions are usually reversible. The various limiting cases
can be found by taking limits before redefining the constants, e.g., take limits
on Equation (10.11), not Equation (10.12). However, a more direct route is to
assume that the fast steps achieve equilibrium before deriving the counterpart
to Equation (10.11).

Example 10.3: Suppose that adsorption is much slower than surface reac-
tion or desorption for the heterogeneously catalyzed reaction A ���! ��� P.
Deduce the functional form for the pseudohomogeneous, intrinsic kinetics.
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Solution: The adsorption step is slow, reversible, and rate-controlling. Its
equation remains

AðgasÞ þ SðsolidÞ ���! ���
kþa

k�a

ASðsolidÞ R ¼ kþa a½S� � k�a ½AS�

The reaction and desorption steps are assumed to be so fast compared with
adsorption that they achieve equilibrium:

½PS�
½AS� ¼

kþR
k�R
¼ KR

p½S�
½PS� ¼

kþd
k�d
¼ Kd

The site balance is unchanged from Examples 10.1 and 10.2:

S0 ¼ ½S� þ ½AS� þ ½PS�
There are enough equations to eliminate the surface equations from the
reaction rate. After redefinition of constants,

R ¼ kf a� krp
1þ kPp ð10:15Þ

When the adsorption step determines the rate, component A no longer retards
the reaction. Any A that is adsorbed will quickly react, and the concentration
of [AS] sites will be low. Note that the desorption step is now treated as being
reversible. Thus, any P in the gas phase will retard the reaction even if the
surface reaction is irreversible, kr¼ 0.

Example 10.4: Repeat Example 10.3, assuming now that the surface reac-
tion controls the rate.

Solution: Appropriate equations for the adsorption, reaction, and
desorption steps are

½AS�
a½S� ¼

kþa
k�a
¼ Ka

R ¼ kþR ½AS� � k�R ½PS�

p½S�
½PS� ¼

kþd
k�d
¼ Kd

The site balance is unchanged. Elimination of [S], [AS], and [PS] gives

R ¼ S0½k
þ
RKaKda� k�Rp�

Kd þ KaKdaþ p ¼
kf a� krp

1þ kAaþ kPp ð10:16Þ
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This result is experimentally indistinguishable from the general form,
Equation (10.12), derived in Example 10.1 using the equality of rates method.
Thus, assuming a particular step to be rate-controlling may not lead to any sim-
plification of the intrinsic rate expression. Furthermore, when a simplified form
such as Equation (10.15) is experimentally determined, it does not necessarily
justify the assumptions used to derive the simplified form. Other models may
lead to the same form.

Bimolecular Reactions. Models of surface-catalyzed reactions involving two
gas-phase reactants can be derived using either the equal rates method or the
method of rate-controlling steps. The latter technique is algebraically simpler
and serves to illustrate general principles.

Example 10.5: Derive a model of the Hougen and Watson type for
the overall reaction 2A!P, assuming that the surface reaction is the rate-
determining step.

Solution: A plausible mechanism for the observed reaction is

Aþ S���! ���AS

2AS �! PS

PS���! ���Pþ S

The adsorption and desorption steps achieve equilibrium:

½AS�
a½S� ¼

kþa
k�a
¼ Ka

p½S�
½PS� ¼

kþd
k�d
¼ Kd

The rate for the reaction step is

R ¼ kR½AS�2

The site balance is identical to those in previous examples.

S0 ¼ ½S� þ ½AS� þ ½PS�
Elimination of the surface concentrations gives

R ¼ S2
0K

2
a kRa

2

ð1þ KAaþ p=Kd Þ2
¼ ka2

ð1þ kAaþ kPpÞ2
ð10:17Þ

The retardation due to adsorption appears as a square because two catalytic
sites are involved. It is likely that the reaction, a dimerization, requires that
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the reacting [AS] groups must be physically adjacent for reaction to occur.
The square in the denominator is intended to account for this.

Examples of Hougen-Watson kinetic models, which are also called
Langmuir-Hinshelwood models, can be derived for a great variety of assumed
surface mechanisms. See Butt2 and Perry’s Handbook (see ‘‘Suggestions for
Further reading’’ in Chapter 5) for collections of the many possible models.
The models usually have numerators that are the same as would be expected
for a homogeneous reaction. The denominators reveal the heterogeneous
nature of the reactions. They come in almost endless varieties, but all reflect
competition for the catalytic sites by the adsorbable species.

10.3.3 Recommended Models

Enthusiastic theoreticians have created far too many models of solid-catalyzed
gas reactions. As suggested earlier, it is difficult to distinguish between
them—given any reasonable experimental program—and essentially impossible
to distinguish between them if the experimental program is confined to steady–
state measurements. Recall the rampaging elephants of Section 7.1. Recall also
that Equation (10.10) provides a reasonable fit with no more than
Nþ 1 adjustable constants, where N is the number of components including
adsorbable inerts. For a solid-catalyzed reaction, the following form is
recommended:

R ¼ Rate expression for a homogeneous reaction

(Site competition term)n¼ 1 or 2
ð10:18Þ

where n¼ 1 if the reaction is unimolecular and n¼ 2 if it is bimolecular. The
numerator should contain only one rate constant plus an equilibrium constant
if the reaction is reversible. See Section 7.2.2.

For reactions of the form A ���! ��� P, the recommended rate expression is

R ¼ kða� p=K kineticÞ
1þ kAaþ kPpþ kI i ð10:19Þ

For reactions of the form A ���! ��� PþQ, the recommended rate expression is

R ¼ kða� pq=K kineticÞ
1þ kAaþ kPpþ kQqþ kI i ð10:20Þ

For reactions of the form Aþ B ���! ��� P, the recommended rate expression is

R ¼ kðab� p=K kineticÞ
ð1þ kAaþ kBbþ kPpþ kI iÞ2

ð10:21Þ
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For reactions of the form Aþ B ���! ��� PþQ, the recommended rate
expression is

R ¼ kðab� pq=K kineticÞ
ð1þ kAaþ kBbþ kPpþ kQqþ kI iÞ2

ð10:22Þ

Each of these expressions has a primary rate constant k and an equilibrium con-
stant that can be ignored if the reaction is essentially irreversible. The primary
rate constant is usually fit to an Arrhenius temperature dependence while the
temperature dependence of the equilibrium constant is determined using the
methods of Section 7.2. The recommended kinetic expressions also contain an
adsorption constant for each reactive component plus a lumped constant for
adsorbable inerts. These denominator constants can be fit to an Arrhenius tem-
perature dependence as well, but the activations energies are usually small since
the denominator constants are ratios of rate constants and the individual activa-
tion energies will tend to cancel. The usual range of temperature measurements is
small enough that the denominator constants can be regarded as independent of
temperature. The power of 2 in the denominator when the forward reaction is
bimolecular is somewhat arbitrary. The same quality fit can usually be achieved
using n¼ 1 with different values for the adsorption constants. Proper fitting of the
adsorption constants demands an extensive experimental program where the gas-
phase concentrations of reactants and products are varied over a wide range.

10.4 EFFECTIVENESS FACTORS

Few fixed-bed reactors operate in a region where the intrinsic kinetics are appli-
cable. The particles are usually large to minimize pressure drop, and this means
that diffusion within the pores, Steps 3 and 7, can limit the reaction rate. Also,
the superficial fluid velocity may be low enough that the external film resistances
of Steps 2 and 8 become important. A method is needed to estimate actual reac-
tion rates given the intrinsic kinetics and operating conditions within the reactor.
The usual approach is to define the effectiveness factor as

	 ¼ Actual reaction rate

Rate predicted from intrinsic kinetics
ð10:23Þ

and then to correlate 	 with the operating conditions in the reactor.
The global design equation used for Steps 1 and 9 is modified to include the

effectiveness factor:

�uus
@a

@z
¼ Dr 1

r

@a

@r
þ @2a

@r2

� �
þ "	R A ð10:24Þ

where R A now represents the intrinsic kinetics. Suppose the intrinsic kinetics
are known and that 	 has been determined as a function of local operating
conditions in the reactor. Then Steps 2 through 8 can be ignored. Their effects
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are built into the effectiveness factor and the intrinsic kinetics, and the
reactor design methods of Chapter 9 can be applied with no changes other
than using 	R A as the rate expression.

What is needed at this point is a correlation or other means for estimating
	 at every point in the reactor. This may be done empirically; for example, by
running a single tube of what ultimately will be a multitubular reactor.
However, some progress has been made in determining 	 from first principles.
We outline the salient results achieved to date.

10.4.1 Pore Diffusion

The most important mass transfer limitation is diffusion in the micropores of the
catalyst. A simplified model of pore diffusion treats the pores as long, narrow
cylinders of length L . The narrowness allows radial gradients to be neglected
so that concentrations depend only on the distance l from the mouth of the
pore. Equation (10.3) governs diffusion within the pore. The boundary condition
at the mouth of the pore is

al ¼ as at l ¼ 0

The other boundary condition is

dal
dl
¼ 0 at l ¼ L

An analytical solution is possible when the reaction is first order; e.g., a reaction
of the form A! P with adsorption as the rate-controlling step. Then Equation
(10.3) becomes

0 ¼ DA
d2al
dl2
� kal

Solution subject to the boundary conditions gives

al
as
¼ expð�2L ffiffiffiffiffiffiffiffiffiffiffiffi

k=DA
p Þ expðl ffiffiffiffiffiffiffiffiffiffiffiffi

k=DA
p Þ þ expð�l ffiffiffiffiffiffiffiffiffiffiffiffi

k=DA
p Þ

1þ expð�2L ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p Þ
This gives the concentration profile inside the pore, al(l). The total rate of reac-
tion within a pore can be found using the principle of equal rates. The reaction
rate within a pore must equal the rate at which reactant molecules enter the pore.
Molecules enter by diffusion. The flux of reactants molecules diffusing into
a pore of diameter dpore equals the reaction rate. Thus,

Actual rate ¼ R A ¼ ð�d2pore=4Þ �DA
dal
dl

� �
l¼ 0

¼ ð�d2pore=4ÞasDA
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p 1� expð�2L ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p Þ
1þ expð�2L ffiffiffiffiffiffiffiffiffiffiffiffi

k=DA
p Þ

" #
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is the actual rate as affected by pore diffusion. If there were no diffusion limita-
tion inside the pore, the entire volume of the pore would have concentration
as and the intrinsic rate would apply:

Intrinsic rate ¼ ð�d2pore=4ÞL kas
The ratio of actual rate to intrinsic rate is the effectiveness factor:

	 ¼ DA
kL

ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p 1� expð�2L ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p Þ
1þ expð�2L ffiffiffiffiffiffiffiffiffiffiffiffi

k=DA
p Þ

" #
¼ tanhðL ffiffiffiffiffiffiffiffiffiffiffiffi

k=DA
p Þ

L
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p ð10:25Þ

It depends only on L
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p
, which is a dimensionless group known as the

Thiele modulus. The Thiele modulus can be measured experimentally by compar-
ing actual rates to intrinsic rates. It can also be predicted from first principles
given an estimate of the pore length L . Note that the pore radius does not
enter the calculations (although the effective diffusivity will be affected by the
pore radius when dpore is less than about 100 nm).

Example 10.6: A commercial process for the dehydrogenation of ethyl-
benzene uses 3-mm spherical catalyst particles. The rate constant is 15 s�1,
and the diffusivity of ethylbenzene in steam is 4� 10�5 m2/s under reaction
conditions. Assume that the pore diameter is large enough that this bulk dif-
fusivity applies. Determine a likely lower bound for the isothermal
effectiveness factor.

Solution: The lowest 	 corresponds to the largest value for L : Suppose
L ¼ Rp ¼ 1:5mm: Then

L
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p
¼ 0:92

and

	 ¼ tanhð0:92Þ
0:92

¼ 0:79

Many theoretical embellishments have been made to the basic model of pore
diffusion as presented here. Effectiveness factors have been derived for reaction
orders other than first and for Hougen and Watson kinetics. These require
a numerical solution of Equation (10.3). Shape and tortuosity factors have
been introduced to treat pores that have geometries other than the idealized
cylinders considered here. The Knudsen diffusivity or a combination of
Knudsen and bulk diffusivities has been used for very small pores. While
these studies have theoretical importance and may help explain some observa-
tions, they are not yet developed well enough for predictive use. Our knowledge
of the internal structure of a porous catalyst is still rather rudimentary and
imposes a basic limitation on theoretical predictions. We will give a brief
account of Knudsen diffusion.
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In bulk diffusion, the predominant interaction of molecules is with other
molecules in the fluid phase. This is the ordinary kind of diffusion, and
the corresponding diffusivity is denoted as DA. At low gas densities in small-
diameter pores, the mean free path of molecules may become comparable to
the pore diameter. Then, the predominant interaction is with the walls of the
pore, and diffusion within a pore is governed by the Knudsen diffusivity, DK :
This diffusivity is predicted by the kinetic theory of gases to be

DK ¼ dpore
3

ffiffiffiffiffiffiffiffiffiffiffiffi
8RgT

�MA

r
ð10:26Þ

where MA is the molecular weight of the diffusing species.

Example 10.7: Repeat Example 10.6, assuming a pore diameter of
20 nm¼ 2� 10�8m. The reaction temperature is 625�C.

Solution:

DK ¼ 2� 10�8

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

�
� 8:314 J
molEK

� 898K

0:106 kg=mol

s
¼ 3� 10�6 m2=s

This is an order of magnitude less than the bulk diffusivity, and

L
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DK

p
¼ 3:5

	 ¼ tanhð3:5Þ
3:5

¼ 0:29

Example 10.8: How fine would you have to grind the ethylbenzene catalyst
for laboratory kinetic studies to give the intrinsic kinetics? Assume the small
pore diameter of Example 10.7.

Solution: Take 	¼ 0.98 as an adequate approach to the intrinsic kinetics.
Setting this value for 	 and solving Equation (10.25) for L

ffiffiffiffiffiffiffiffiffiffiffiffi
k=DK

p
gives

L
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DK

p ¼ 0:248. Suppose k¼ 15 s�1 and DK ¼ 3� 10�6 m2=s: Then
L ¼ 1:1� 10�4 m ¼ 110�m:

The value for L is conservatively interpreted as the particle diameter. This is a
perfectly feasible size for use in a laboratory reactor. Due to pressure-drop
limitations, it is too small for a full-scale packed bed. However, even
smaller catalyst particles, dp� 50�m, are used in fluidized-bed reactors. For
such small particles we can assume 	¼ 1, even for the 3-nm pore diameters
found in some cracking catalysts.

When the Knudsen and bulk diffusivities are significantly different, 	 is deter-
mined by the smaller of the two. The pore diameters for most commercial
catalysts are in the range 1–100 nm. At a typical operating temperature of
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about 700K, this gives Knudsen diffusivities in the range of 10�6 –10�8m2/s.
Bulk diffusivities at atmospheric pressure will usually be in the range of 10�4

–10�6m2/s. The Knudsen diffusivity is independent of pressure but the bulk
diffusivity varies approximately as P�1. Thus, Knudsen diffusion will determine
	 at low to moderate pressures, but the bulk diffusivity can be limiting at high
pressures. When the two diffusivities are commensurate, the combined effect is
actually worse than either acting alone. The following equation is adequate
for most purposes:

1

Deff
¼ 1

DK
þ 1

DA
ð10:27Þ

A more rigorous result together with theoretical justification, has been given by
Rothfield.3

10.4.2 Film Mass Transfer

The concentration of gas over the active catalyst surface at location l in a pore
is al(l). The pore diffusion model of Section 10.4.1 linked concentrations within
the pore to the concentration at the pore mouth, as. The film resistance between
the external surface of the catalyst (i.e., at the mouths of the pore) and the con-
centration in the bulk gas phase is frequently small. Thus, as � a, and the effec-
tiveness factor depends only on diffusion within the particle. However, situations
exist where the film resistance also makes a contribution to 	 so that Steps 2
and 8 must be considered. This contribution can be determined using the
principle of equal rates; i.e., the overall reaction rate equals the rate of mass
transfer across the stagnant film at the external surface of the particle.
Assume A is consumed by a first-order reaction. The results of the previous
section give the overall reaction rate as a function of the concentration at the
external surface, as.

R A ¼ Actual rate ¼ � tanhðL ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p Þ
L

ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p
" #

kas ð10:28Þ

The overall effectiveness factor for the first-order reaction is defined using the
bulk gas concentration a.

R A ¼ �	ka ð10:29Þ
The concentrations as and a are coupled by the rate of mass transfer across
the film:

R A ¼ ksAsðas � aÞ ð10:30Þ
Equations (10.28), (10.29), and (10.30) are combined to eliminate as and to
obtain an expression for R A based on the bulk, gas-phase concentration a.
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The result has the form of Equation (10.29) with

	 ¼ ksAs tanhðL
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p Þ
ksAsL

ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p þ k tanhðL ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p Þ ¼
ksAs	0

ksAs þ k	0 ð10:31Þ

where 	0 is the effectiveness factor ignoring film resistance; i.e., 	0 is given by
Equation (10.25).

Equation (10.29) is the appropriate reaction rate to use in global models such
as Equation (10.1). The reaction rate would be �ka if there were no mass trans-
fer resistance. The effectiveness factor 	 accounts for pore diffusion and film
resistance so that the effective rate is �	ka.

Typically, the film resistance is important only when the internal pore resis-
tance is also important. If the Thiele modulus is small, the film resistance will
usually be negligible. This idea is explored in Problems 10.11 and 10.12.

Reactions other than first order can be treated numerically, but a priori
predictions of effectiveness factors are rarely possible, even for the simple
cases considered here. The approach of Examples 10.6 through 10.8 can
sometimes be used to estimate whether mass transfer resistances are important.
When mass transfer is important, effectiveness factors are determined
experimentally.

10.4.3 Nonisothermal Effectiveness

Catalyst pellets often operate with internal temperatures that are substantially
different from the bulk gas temperature. Large heats of reaction and the low
thermal conductivities typical of catalyst supports make temperature gradients
likely in all but the finely ground powders used for intrinsic kinetic studies.
There may also be a film resistance to heat transfer at the external surface of
the catalyst.

The definition of the effectiveness factor, Equation (10.23), is unchanged, but
an exothermic reaction can have reaction rates inside the pellet that are higher
than would be predicted using the bulk gas temperature. Thus, 	>1 is expected
for exothermic reactions in the absence of mass diffusion limitations. (The
case 	>1 is also possible for some isothermal reactions with weird kinetics.)
With systems that have low thermal conductivities but high molecular diffusiv-
ities and high heats of reaction, the actual rate can be an order of magnitude
higher than the intrinsic rate. Thus, 	� 1 is theoretically possible for exothermic
reactions. When mass transfer limitations do emerge, concentrations will be
lower inside the pellet than outside. The decreased concentration may have a
larger effect on the rate than the increased temperature. Thus, 	<1 is certainly
possible for an exothermic reaction. For an endothermic reaction, 	<1 is
expected, except perhaps for some esoteric kinetic schemes.

The theory of nonisothermal effectiveness is sufficiently well advanced to
allow order-of-magnitude estimates for 	. The analysis requires simultaneous
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solutions for the concentration and temperature profiles within a pellet. The
solutions are necessarily numerical. Solutions are feasible for actual pellet
shapes (such as cylinders) but are significantly easier for spherical pellets since
this allows a one-dimensional form for the energy equation:

leff
d2T

dr2p
þ 2

rp

dT

drp

 !
¼ ��HRR ð10:32Þ

where rp is the radial coordinate within a pellet and leff is the effective thermal
conductivity for the pellet. The boundary conditions associated with Equation
(10.32) are T¼Ts at the external surface and dT/drp¼ 0 at the center of the
pellet. Equation (10.32) must be solved simultaneously with component balance
equations. The pore diffusion model of Section 10.4.1 is inappropriate for this
purpose. Instead, we use a model for effective diffusion that is directly compati-
ble with the heat transfer model. This model is

Deff
d2a

dr2p
þ 2

rp

da

drp

 !
¼ R A ð10:33Þ

subject to the boundary conditions that a¼ as at the external surface and that
da/drp¼ 0 at the center. Equation (10.33) is obviously consistent with
Equation (10.32). Numerical solutions to these simultaneous equations
have been given by Weisz and Hicks4 for the case of a first-order, irreversible
reaction. The solution for 	 depends on three dimensionless groups: an
Arrhenius number, E=ðRgTsÞ, which is the ratio of the activation temperature
to the temperature at the external surface of the particle; a heat generation
number,

� ¼ ��HRDeff as
�eff Ts

and a modified Thiele modulus,

dp

2

ffiffiffiffiffiffiffiffiffi
k

Deff

s

Figure 10.3 shows results for an Arrhenius number of 20. With plausible
estimates for leff and Deff , the magnitude of 	 can be calculated. For the special
case of �HR¼ 0 (i.e., �¼ 0), Equation (10.33) is an alternative to the pore
diffusion model for isothermal effectiveness. It predicts rather different
results. For example, suppose ðdp=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k=Deff

p ¼ L
ffiffiffiffiffiffiffiffiffiffiffiffi
k=DA

p ¼ 1: Then Equation
(10.25) gives 	¼ 0.76 while the solution of Equation (10.33) (see Figure 10.3
with �¼ 0) gives 	¼ 0.99. The lesson from this is that Deff and DA are funda-
mentally different quantities and have different values for the same physical
system.

368 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



10.4.4 Deactivation

The definition of effectiveness factor, Equation (10.23), can be expanded to
account for deactivation processes that decrease the activity of a catalyst as a
function of time. In this context, the intrinsic kinetics in Equation (10.23)
should be determined using a new, freshly prepared catalytic surface. The activ-
ity of the surface, and thus the actual rate of reaction, will change with time so
that 	¼ 	(�) where � is the time the catalyst has been on stream. It is necessary to
consider deactivation processes in reactor designs since they can have a marked
effect on process economics and even operability. Deactivation is usually classi-
fied as being either physical or chemical in nature, but this classification is
somewhat arbitrary. Physical deactivation includes blocking of pores by
entrained solids, loss of active sites due to agglomeration (site sintering), closure
of pores by internal collapse (support sintering), and the reversible loss of active
sites by physical adsorption of impurities. Chemical deactivation includes the
irreversible loss of active sites through chemisorption of impurities, loss of
sites due to coking, and pore blockage due to coking.

Some deactivation processes are reversible. Deactivation by physical adsorp-
tion occurs whenever there is a gas-phase impurity that is below its critical point.
It can be reversed by eliminating the impurity from the feed stream. This form of
deactivation is better modeled using a site-competition model that includes the
impurities—e.g., any of Equations (10.18)–(10.21)—rather than using the effec-
tiveness factor. Water may be included in the reaction mixture so that the water–
gas shift reaction will minimize the formation of coke. Off-line decoking can be
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FIGURE 10.3 Nonisothermal effectiveness factors for first-order reactions in spherical pellets.
(Adapted from Weisz, P. B. and Hicks, J. S., Chem. Eng. Sci., 17, 265 (1962).)
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done by high-temperature oxidation. Deactivation by chemisorption requires a
chemical treatment to remove the chemically bonded poison from the catalytic
surface and it can be modeled using a time-dependent effective factor. Except
for physical adsorption, catalytic activity can never be restored completely.
Even with continuous reactivation, the catalyst will gradually decline in activity
and have a finite life that must be considered in the overall process economics.
A change of catalyst for a large reactor can cost millions of dollars.

The catalyst used in fluidized-bed catalytic crackers is deactivated by the
coking that occurs during one pass through the reactor—a matter of seconds.
More stable catalysts can last for years, with the gradual decline in activity
being accommodated by a gradual increase in reaction temperature. The effec-
tiveness factor may decrease by a factor of 5 before the catalyst is changed.
The selectivity of the reaction will usually drop during the course of the run.
The decision to change the catalyst is usually based on this loss of selectivity,
but it can be based on a temperature limitation imposed by materials of
construction.

Some deactivation processes lower the number of active sites S0. Others add
mass transfer resistances. In either case, they cause a reduction in the reaction
rate that is reflected in a time-dependent effectiveness factor:

½Actual rate� ¼ 	ð�Þ ½Intrinsic rate of fresh catalyst� ð10:34Þ
Some progress has been made in developing theoretical expressions for 	(�) for
deactivation processes such as coking. Deactivation by loss of active sites can be
modeled as a chemical reaction proceeding in parallel with the main reaction. It
may be substantially independent of the main reaction. Site sintering, for exam-
ple, will depend mainly on the reaction temperature. It is normally modeled as a
second-order reaction:

dS0
d�
¼ � kSS2

0

The number of active sites is a multiplicative factor in the rate of the main
reaction. See for example Equations (10.11) and (10.16). Thus, the decline in
reaction rate can be modeled using a time-dependent effectiveness. A reasonable
functional form for the time-dependent effectiveness factor is

	ð�Þ ¼ 	fresh
1þ S0kS� ¼

	fresh
1þ kD� ð10:35Þ

which results from the second-order model of site sintering. An alternative
to Equation (10.35) is a first-order model:

	ð�Þ ¼ 	fresh expð�kD�Þ ð10:36Þ

It is necessary to determine 	(�) under reaction conditions, and a life test should
be included in any catalyst development effort. The data from this test will
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allow 	 to be fitted as a function of time on stream, �. Equations (10.35) and
(10.36) can obviously be used to model deactivation processes other than
site sintering, and kD can be regarded as an empirical constant with units of
reciprocal time.

Typically, ðkDÞ�1 � �tt, and the global design equation, e.g., Equation (10.1),
can be solved independently of the deactivation process. The packed-bed
reactor will operate at an approximate steady state that will track the slowly
changing catalyst activity. The rate at which this slow change occurs dictates
the process design. If the catalyst deactivates in minutes, continuous regenera-
tion is necessary and fixed-bed reactors are infeasible. Fluidized-bed and other
moving-solids reactors are used to continuously circulate the catalyst between
reaction and regeneration zones. If the catalyst degenerates in days, fixed-bed
reactors are usually regenerated in situ. Typically, several packed beds in parallel
are operated in a swing-cycle between reaction and regeneration modes.
If the catalyst degenerates in years, the spent catalyst is usually returned to
the vendor for regeneration or recovery of valuable components such as
precious metals.

Do not infer from the above discussion that all the catalyst in a fixed bed ages
at the same rate. This is not usually true. Instead, the time-dependent effective-
ness factor will vary from point to point in the reactor. The deactivation rate
constant kD will be a function of temperature. It is usually fit to an Arrhenius
temperature dependence. For chemical deactivation by chemisorption or
coking, deactivation will normally be much higher at the inlet to the bed. In
extreme cases, a sharp deactivation front will travel down the bed. Behind the
front, the catalyst is deactivated so that there is little or no conversion. At the
front, the conversion rises sharply and becomes nearly complete over a short dis-
tance. The catalyst ahead of the front does nothing, but remains active, until the
front advances to it. When the front reaches the end of the bed, the entire
catalyst charge is regenerated or replaced.

10.5 EXPERIMENTAL DETERMINATION OF
INTRINSIC KINETICS

A CSTR is the preferred method for measuring intrinsic kinetics. The finely
ground catalyst is packed into a short, fixed bed within a recycle reactor such
as that shown in Figure 4.2. Alternatively, the catalyst is put in a mesh cage
and rotated at high speed so that the catalyst and cage act as the agitator of a
CSTR. The reaction rate for component A is calculated as if the reaction
were homogeneous:

R A ¼ aout � ain�tt
¼ aout � ain

"V=Qout
ð10:37Þ

The mass of the catalyst does not appear. However, physical intuition or the
S0 terms in Equations (10.11) and (10.16) suggest that doubling the amount
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of catalyst should double the reaction rate. How are rate data taken on a CSTR
translated to a packed-bed reactor or even to another CSTR operating with a
different catalyst density?

Homogeneous reactions occur in the fluid phase, and the volume available
for reaction is "V. Solid-catalyzed reactions occur on the catalyst surface, and
area available for the reaction is V�c ac, where V is the total reactor volume
(i.e., gas plus catalyst), �c is the average density of catalyst in the reactor
(i.e., mass of catalyst per total reactor volume), and ac is the surface area
per mass of catalyst. The pseudohomogeneous reaction rate calculated
using Equation (10.37) is multiplied by "V to get the rate of formation of com-
ponent A in moles per time. The equivalent heterogeneous rate is based on the
catalyst surface area and is multiplied by V�c ac to obtain the rate of formation
of component A in moles per time. Setting the two rates equal gives

"VR homogeneous ¼ V�cacR heterogeneous

The void fraction should be the total void fraction including the pore volume. We
now distinguish "total from the superficial void fraction used in the Ergun equa-
tion and in the packed-bed correlations of Chapter 9. The pore volume is acces-
sible to gas molecules and can constitute a substantial fraction of the gas-phase
volume. It is included in reaction rate calculations through the use of the total
void fraction. The superficial void fraction ignores the pore volume. It is the
appropriate parameter for the hydrodynamic calculations because fluid veloci-
ties go to zero at the external surface of the catalyst particles. The pore
volume is accessible by diffusion, not bulk flow.

The homogeneous and heterogeneous rates are related by

R homogeneous ¼ �cac
"total

R heterogeneous ð10:38Þ

and Equation (10.1) should be written as

�uus
@a

@z
¼ Dr 1

r

@a

@r
þ @2a

@r2

� �
þ "total 	ð�Þ½R A�intrinsic pseudohomogeneous ð10:39Þ

However, the intrinsic pseudohomogeneous rate used in Equation (10.39) is not
identical to the rate determined from the CSTR measurements since the catalyst
density will be different. The correction procedure is

1. Calculate R A from the CSTR data using Equation (10.37).

2. Divide by the stoichiometric coefficient for component A, �A, to obtain
R homogeneous for the CSTR.

3. Use Equation (10.38) to calculate R heterogeneous using the CSTR values for �c,
ac, and "total.

4. Determine �c, ac, and "total for the packed bed.

5. Use Equation (10.38) again, now determiningR homogeneous for the packed bed.
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Alternatively, write the global design equation as

�uus
@a

@z
¼ Dr 1

r

@a

@r
þ @2a

@r2

� �
þ 	ð�Þ�cac½R A�heterogeneous ð10:40Þ

Note that ½R A�heterogeneous has units of mol/(m2Es) but remains a function of
gas-phase concentrations. The composite term of Chapter 9 and Equation
(10.1) is "totalR A ¼ �cac½R A�heterogeneous:

Example 10.9: A recycle reactor containing 101 g of catalyst is used in an
experimental study. The catalyst is packed into a segment of the reactor
having a volume of 125 cm3. The recycle lines and pump have an additional
volume of 150 cm3. The particle density of the catalyst is 1.12 g/cm3, its inter-
nal void fraction is 0.505, and its surface area is 400m2/g. A gas mixture is fed
to the system at 150 cm3/s. The inlet concentration of reactant A is 1.6mol/m3.
The outlet concentration of reactant A is 0.4mol/m3. Determine the intrinsic
pseudohomogeneous reaction rate, the rate per unit mass of catalyst, and the
rate per unit surface area of catalyst. The reaction is A! P so �A¼ 1.

Solution: The gas-phase volume, "totalV, is the entire reactor except for the
volume taken up by mechanical parts and by the skeleton of the catalyst
particle:

"totalV ¼ 125þ 150� 101

1:12
ð1� 0:505Þ ¼ 230 cm3

"total ¼ 230=275 ¼ 0:836

�tt ¼ 230 cm3

150 cm3=s
¼ 1:53 s

The intrinsic pseudohomogeneous rate as determined using the CSTR is

½R A�homogeneous ¼ R A
0:4� 1:6

1:53
¼ �0:783mol=ðm3Es1Þ

The average density of the catalyst is

�c ¼ 101

275
¼ 0:367 g=cm3¼ 367 kg=m3

and

½R A�catalyst mass
"totalR A

�c
¼ �1:78� 10�3mol=ðkgEsÞ

½R A�heterogeneous ¼ ½R A�surface area
"totalR A

�cac

¼ �4:45� 10�9mol=ðm2EsÞ
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Example 10.9 used two different definitions of the catalyst density and at
least two more definitions are in common usage. The value �c¼ 367 refers to
the reactor average density. It is quite low in the example because so much of
the reactor volume is empty. Normally, the reactor would be packed almost
completely, and the reactor average density would approach the bulk density.
The bulk density is what would be measured if the catalyst were dumped into
a large container and gently shaken. The bulk density is not stated in the exam-
ple, but it would be about 800 kg/m3 for the catalyst pellets prior to grinding.
The catalyst will pack to something less than the bulk density in a small-dia-
meter tube. The pellet density in the example is 1120 kg/m3. It is the mass of a
catalyst pellet divided by the external volume of the pellet. The final density is
the skeletal density of the pellet. It is the density of the solid support and
equals 1120/(1� 0.505)¼ 2260 kg/m3 for the example catalyst. The various den-
sities fall in the order

�c < �bulk < �pellet < �skeletal

Example 10.10: Suppose the reaction in Example 10.9 is first order.
Determine the pseudohomogeneous rate constant, the rate constant based
on catalyst mass, and the rate constant based on catalyst surface area.

Solution: SinceR A ¼ �kaout for a CSTR, the rates in the previous example
are just divided by the appropriate exit concentrations to obtain k. The
ordinary, gas-phase concentration is used for the pseudohomogeneous rate:

khomogeneous ¼ 0:783=0:4 ¼ 1:96 s�1

The reactant concentration per unit mass is used for the rate based on catalyst
mass:

½aout�catalyst mass ¼
"totalaout

�c
¼ 9:11� 10�4 mol=kg

kcatalyst mass ¼
½R A�catalyst mass
½aout�catalyst mass

¼ 1:96 s�1

Similarly,

ksurface area ¼
½R A�surface area
½aout�surface area

¼ ½R A�surface area
"total aout
�cac

¼ 4:45� 10�9

2:28� 10�9
¼ 1:96 s�1

Example 10.11: The piping in the recycle reactor of Example 10.9 has been
revised to lower the recycle line and pump volume to 100 cm3. What effect will
this have on the exit concentration of component A if all other conditions are
held constant?
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Solution: The catalyst charge is unchanged. If the reaction is truly
heterogeneous and there are no mass transfer resistances, the rate of reaction
of component A should be unchanged. More specifically, the pseudo-
homogeneous rate for the CSTR will change since the gas-phase volume and
residence time changes, but the heterogeneous rate should be the same.

"totalV ¼ 125þ 100� 101

1:12
ð1� 0:505Þ ¼ 180 cm3

"total ¼ 180=225 ¼ 0:800

�c ¼ 101

225
¼ 0:449 g=cm3¼ 449 kg=m3

�tt ¼ 180 cm3

150 cm3=s
¼ 1:20 s

Assume

½R A�catalyst mass ¼
"totalR A

�c
¼ �1:78� 10�3 mol=ðkgEsÞ

as in Example 10.9, and convert to a pseudohomogeneous rate for the CSTR:

½R A�homogeneous ¼
�c½R A�catalyst mass

"total
¼ �0:999mol=ðm3EsÞ

Now assume ain¼ 1.6mol/m3 and use Equation (10.38) to find aout. The
result is

aout ¼ ain þ �tt ½R A�homogeneous ¼ 0:401mol=m3

This is identical within rounding error to the exit concentration in
Example 10.9.

It is a good idea to run the laboratory reactor without catalyst to check for
homogeneous reactions. However, this method does not work when the homo-
geneous reaction involves reactants that do not occur in the feed but are created
by a heterogeneous reaction. It then becomes important to maintain the same
ratio of free volume to catalyst volume in the laboratory reactor used for intrin-
sic kinetic studies as in the pilot or production reactors.

10.6 UNSTEADY OPERATION AND SURFACE
INVENTORIES

The global design equations for packed beds—e.g., Equations (10.1), (10.9),
(10.39), and (10.40)—all have a similar limitation to that of the axial dispersion
model treated in Chapter 9. They all assume steady-state operation. Adding an
accumulation term, @a=@t accounts for the change in the gas-phase inventory of
component A but not for the surface inventory of A in the adsorbed form. The
adsorbed inventory can be a large multiple of the gas-phase inventory.
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Example 10.12: Estimate the surface inventory of component A for the cat-
alytic CSTR in Example 10.9. Assume that the surface reaction is rate-
controlling and that A is the only adsorbed species. Suppose A is a moderately
large molecule that occupies a site that is 1 nm by 1 nm.

Solution: If the surface reaction controls the overall rate, all the active sites
will be occupied. Assume that the entire surface is active so that it will be
covered with a monolayer of A molecules. The surface area is
101(400)¼ 40,400m2 (4 ha or 10 U.S. acres!).

Adsorbed A ¼ 40,400

10�18
¼ 4� 1022 molecules ¼ 0:067mol

Gas phase A ¼ ð0:4 mol=m3Þð230� 10�6 m3Þ ¼ 9:2� 10�5 mol

Thus, the surface contains 700 times more A than the gas phase.

Example 10.13: How long will it take the reactor in Example 10.9 to
achieve steady state?

Solution: The surface is estimated to contain 0.067mol of A in adsorbed
form. The inlet gas contains 1.6mol of A per cubic meter and is flowing at
150 cm3/s so that A is entering the reactor at a rate of 0.00024mol/s. Five
minutes are needed to supply the surface if all the incoming gas were
adsorbed. Fifteen to thirty minutes would be a reasonable startup time.
Recall that the reactor has a gas-phase residence time V/Qout of only 1.5 s!
The residence time of the adsorbed species is 700 times larger than the
average (nonadsorbed) molecule.

Anyone wishing to model the startup transient of a packed-bed reactor or to
explore the possible benefits of periodic operation on selectivity should consider
whether surface inventories are significant. The above examples show that they
certainly can be. The unsteady versions of, say, Equation (10.1) should be sup-
plemented with separate component balances for the adsorbed species. It may
also be necessary to write separate energy balances for the gas and solid
phases. Chapter 11 gives the general methodology for treating the component
and energy balances in multiphase reactors, but implementation requires consid-
erable sophistication.

PROBLEMS

10.1. The precursor result from which Equation (10.13) was obtained is

R ¼ S0½ðkþa kþRkþd Þa� ðk�a k�Rk�d Þp
ðk�a k�R þ k�a kþd þ kþRkþd Þ þ kþa ðkþR þ k�R þ kþd Þaþ k�d ðk�a þ kþR þ k�RÞp
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Take the limit as kþa and k�a both approach zero with a fixed ratio
between them, kþa =k

�
a ¼ Ka: The magnitude of R decreases and the

functional form changes. Explain the physical basis for these changes.
10.2. What happens toR in Problem 10.1 when desorption is rate controlling?
10.3. Repeat Examples 10.3 and 10.4 for the case where desorption is rate

controlling.
10.4. The Eley-Rideal mechanism for gas–solid heterogeneous catalysis envi-

sions reaction between a molecule adsorbed on the solid surface and one
that is still in the gas phase. Consider a reaction of the form

Aþ B! P

There are two logical possibilities for the reaction mechanism:
(a) A(gas) þ BS(solid)!PS(solid)
(b) A(gas) þ BS(solid)!P(gas) þ S(solid)
Determine the form of the pseudohomogeneous, intrinsic kinetics for
each of these cases. Assume that the surface reaction step, as shown
above, is rate limiting.

10.5. The ethylbenzene dehydrogenation catalyst of Example 3.1 has a first-
order rate constant of 3.752 s�1 at 700�C. How does this compare
with the catalyst used by Wenner and Dybdal.5 They reported

k ¼ 12,600 expð�19,800=TÞ
where R ¼ kPEB with k in pound-moles per hour per atmosphere per
pound of catalyst and T in degrees Rankine. PEB is the partial pressure
of ethylbenzene in atmospheres. The bulk density of the catalyst is 90 lb/
ft3 and the void fraction is 0.4.

10.6. An observed, gas–solid-catalyzed reaction is A þ B!P. Suppose the
surface mechanism is

Aþ S ���! ��� AS
½AS�
a½S� ¼ KI

Bþ S ���! ��� BS
½BS�
b½S� ¼ KII

ASþ BS ���! ���
k

PSþ S R ¼ k½AS�½BS�

PS ���! ��� Pþ S
p½S�
½PS� ¼ KIV

Determine the functional form of the rate equation.
10.7. The following surface mechanism has been evoked to explain an

observed reaction:

A2 þ 2S ���! ��� 2AS ðIÞ
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Bþ S ���! ��� BS ðIIÞ
ASþ BS ���! ��� CSþDS ðIIIÞ

CS ���! ��� Cþ S ðIVÞ
DS ���! ��� Dþ S ðVÞ

(a) What is the observed reaction?
(b) Develop a Hougen and Watson kinetic model, assuming Reaction

(III) is rate controlling.
10.8. Repeat Problem 10.7, assuming that Reaction (I) is rate controlling.
10.9. The catalytic hydrogenation of butyraldehyde to butanol:

H2 þ C3H7C
k
O

H���! ���C3H7CH2OH

has a reported6 rate equation of the form

R ¼ kðPH2
PB � PBOH=KeqÞ

ð1þ K1PH2
þ K2PBAL þ K3PBOHÞ2

where PH2
, PBAL, and PBOH are the partial pressures of hydrogen,

butyraldehyde, and butanol, respectively.
(a) Develop a surface reaction model to rationalize the observed form

of the kinetics.
(b) Is Keq the thermodynamic or kinetic equilibrium constant? Is it a

function of pressure?
10.10. Bimolecular reactions are sometimes catalyzed using two different

metals dispersed on a common support. A mechanism might be

A þ S1 ���! ��� AS1

B þ S2 ���! ��� BS2

AS1 þ BS2 ���! ��� PS1 þ QS2

PS2 ���! ��� P þ S2

QS2 ���! ��� Q þ S2

Derive a Hougen and Watson kinetic model, assuming that the surface
reaction is rate-controlling.

10.11. Refer to Equation (10.31) and consider a catalyst pellet (not finely
ground) for which 	0� 1. What will be the value of 	 when film
resistance is included? The obvious answer to this question is also the
solution to Problem 10.12, but go one step beyond the obvious and
ask what is likely to be the magnitude of k when 	0 � 1. What does
this imply for 	?
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10.12. Consider a nonporous catalyst particle where the active surface is all
external. There is obviously no pore resistance, but a film resistance to
mass transfer can still exist. Determine the isothermal effectiveness
factor for first-order kinetics.
Hint: The actual reaction rate is R A ¼ �kas:

10.13. A platinum catalyst supported on Al2O3 is used for the oxidation of
sulfur dioxide:

SO2 þ 1=2O2! SO3 �HR ¼ �95 kJ=mol

The catalyst consists of 3-mm pellets that pack to a bulk density of 1350
kg/m3 and "¼ 0.5. Mercury porosimetry has found Rpore¼ 5 nm. The
feed mixture to a differential reactor consisted of 5mol% SO2 and
95mol% air. The following initial rate data were obtained at atmo-
spheric pressure:

T, K
R , mol/h

(per g, catalyst)

653 0.031
673 0.053
693 0.078
713 0.107

Do an order-of-magnitude calculation for the nonisothermal effective-
ness factor.
Hint: Use the pore model to estimate an isothermal effectiveness factor
and obtain Deff from that. Assume leff¼ 0.15 J/(mEsEK).

10.14. Suppose that catalyst pellets in the shape of right-circular cylinders have
a measured effectiveness factor of 	 when used in a packed-bed reactor
for a first-order reaction. In an effort to increase catalyst activity, it is
proposed to use a pellet with a central hole of radius Rh<Rp.
Determine the best value for Rh/Rp based on an effective diffusivity
model similar to Equation (10.33). Assume isothermal operation;
ignore any diffusion limitations in the central hole, and assume that
the ends of the cylinder are sealed to diffusion. You may assume that
k, Rp, and Deff are known.
Hints: First convince yourself that there is an optimal solution by con-
sidering the limiting cases of 	 near zero, where a large hole can almost
double the catalyst activity, and of 	 near 1, where any hole hurts
because it removes catalyst mass. Then convert Equation (10.33) to
the form appropriate to an infinitely long cylinder. Brush up on your
Bessel functions or trust your symbolic manipulator if you go for an
analytical solution. Figuring out how to best display the results is part
of the problem.
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10.15. Work Problem 10.14 using the pore diffusion model rather than the
effective diffusivity model.

10.16. Charge the reactor with the optimized pellets from Problem 10.14 or
10.15. What does it do to the value for 	ð�Þ�cac½R A�heterogeneous ¼
	ð�Þ"total ½R A�homogeneous used to model the reactor? If you have not
worked Problem 10.14 or 10.15, assume the new pellet increases the
reaction rate per pellet by a factor of 1.5 when Rh/Rp¼ 0.5.
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CHAPTER 11

MULTIPHASE REACTORS

The packed-bed reactors discussed in Chapters 9 and 10 are multiphase reactors,
but the solid phase is stationary, and convective flow occurs only through
the fluid phase. The reaction kinetics are pseudohomogeneous, and components
balances are written only for the fluid phase.

Chapter 11 treats reactors where mass and component balances are needed for
at least two phases and where there is interphase mass transfer. Most examples
have two fluid phases, typically gas–liquid. Reaction is usually confined to one
phase, although the general formulation allows reaction in any phase. A third
phase, when present, is usually solid and usually catalytic. The solid phase may
be either mobile or stationary. Some example systems are shown in Table 11.1.

When two or more phases are present, it is rarely possible to design a reactor
on a strictly first-principles basis. Rather than starting with the mass, energy,
and momentum transport equations, as was done for the laminar flow systems
in Chapter 8, we tend to use simplified flow models with empirical correlations
for mass transfer coefficients and interfacial areas. The approach is conceptually
similar to that used for friction factors and heat transfer coefficients in turbulent
flow systems. It usually provides an adequate basis for design and scaleup,
although extra care must be taken that the correlations are appropriate.

Multiphase reactors can be batch, fed-batch, or continuous. Most of the
design equations derived in this chapter are general and apply to any of the
operating modes. Unsteady operation of nominally continuous processes is
treated in Chapter 14.

11.1 GAS–LIQUID AND LIQUID–LIQUID
REACTORS

After specifying the phases involved in the reaction, it is necessary to specify the
contacting regimes. The ideal contacting regimes for reactors with two fluid
phases are:

1. Both phases are perfectly mixed.

2. One phase is perfectly mixed and the other phase is in piston flow.
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3. The phases are in countercurrent piston flow.

4. The phases are in cocurrent piston flow.

These simple situations can be embellished. For example, the axial dispersion
model can be applied to the piston flow elements. However, uncertainties in
reaction rates and mass transfer coefficients are likely to mask secondary effects
such as axial dispersion.

11.1.1 Two-Phase Stirred Tank Reactors

Stirred tanks are often used for gas–liquid reactions. The usual geometry is for
the liquid to enter at the top of the reactor and to leave at the bottom. The gas
enters through a sparge ring underneath the impeller and leaves through the
vapor space at the top of the reactor. A simple but effective way of modeling
this and many similar situations is to assume perfect mixing within each phase.

Figure 11.1 gives a conceptual view of a two-phase, continuous-flow stirred
tank reactor, i.e., a two-phase CSTR. For convenience, we refer to one phase
as being liquid and to the other as being gas, but the mixing and contacting
scheme shown in Figure 11.1 can also apply to liquid–liquid systems. It can
even apply to two gas phases separated by a membrane. Both phases are
assumed to be internally homogeneous. They contact each other through an
interface that has area Ai, with units of area per unit volume. The total interfa-
cial area is AiV, where V¼VlþVg is the working volume in the reactor as mea-
sured under operating conditions. The working volume ends at the top of the
liquid level and is measured while gas is being added (i.e., the gassed condition).
The working volume excludes the vapor space at the top of the reactor. The gas-
phase holdup is the ratio Vg /V and the liquid-phase holdup is the ratio Vl/V.

TABLE 11.1 Examples of Multiphase Reactors

Reaction First phase Second phase Third phase

Phenol alkylation Phenol Gaseous alkenes None

Refinery alkylation Liquid alkanes
(e.g., isobutane)

Gaseous alkenes
(e.g., 1-butene)

HF or H2SO4

Aerobic fermentation Waterþorganic
carbon source

Air Bacteria

Anaerobic fermentation Waterþsugar Carbon dioxide Yeast

Fluidized
catalytic cracking (FCC)

Heavy oils, C18þ Fluidized catalyst
particles

None

Trickle-bed
hydrocracking

Refinery residues,
C30þ

Hydrogen Stationary catalyst
particles
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The interfacial area AiV usually excludes the contact area between the vapor
space and the liquid at the top of the reactor. The justification for this is that
most gas–liquid reactors have gas bubbles as a dispersed phase. This gives a
much larger interfacial area than the nominal contact area at the top of the reac-
tor. There are exceptions—e.g., polyester reactors where by-product water is
removed only through the nominal interface at the top of the reactor—but
these are old and inefficient designs. This nominal area scales as S2/3 while the
contact area with a dispersed phase can scale as S.

Mass Transfer Rates. Mass transfer occurs across the interface. The rate of
mass transfer is proportional to the interfacial area and the concentration driv-
ing force. Suppose component A is being transferred from the gas to the liquid.
The concentration of A in the gas phase is ag and the concentration of A in the
liquid phase is al. Both concentrations have units of moles per cubic meter; how-
ever they are not directly comparable because they are in different phases. This
fact makes mass transfer more difficult than heat transfer since the temperature
is the temperature regardless of what phase it is measured in, and the driving
force for heat transfer across an interface is just the temperature difference
Tg�Tl. For mass transfer, the driving force is not ag�al. Instead, one of the con-
centrations must be converted to its equivalent value in the other phase.

The conversion is carried out using the equilibrium relationship between the
gas- and liquid-phase concentrations. Usual practice is to assume Henry’s law.
Thus, the gas-phase concentration that is equivalent to al is KH al, where KH is
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FIGURE 11.1 A two-phase, continuous-flow stirred tank reactor.
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Henry’s law constant. The overall driving force for mass transfer is ag�KH al,
and the rate of mass transfer across the interface is

Mass transfer rate ¼ KgAiVðag � KHalÞ ð11:1Þ

whereKg is the overall mass transfer coefficient based on the equivalent gas-phase
driving force, ag�KHal;Ai is the interfacial area per unit volume of the reactor; and
V is the reactor volume. Experimental measurements and literature correlations
usually give the composite quantity KgAi rather than the individual variables.

Equation (11.1) bases the driving force on concentrations that have SI
units of mol/m3. Corresponding units for the composite quantity KgAi are s�1,
and Kg by itself has units of velocity, m/s. These units are appropriate
when the focus is on reactor design since the reaction rate also depends on
concentration. However, the mass transfer literature frequently bases the
liquid-phase driving force on mole fractions and the gas-phase driving force
on mole fractions or partial pressures. This leads to units for KgAi such
as molm�3 s�1 (gas-phase mole fraction)�1 or mol/(m3EsEPa). Example 11.9
includes a conversion of such units into SI units. The SI units are m/s
for Kg, m

�1 for Ai, s
�1 for KgAi, and mol/s for KgAiV(ag � kHal). The quantity

Kg(ag � kHal) has units of flux, mol/(mEs). Quantities involving Ki have
identical units to those involving Kg.

Equation (11.1) replaces the liquid-phase concentration with an equivalent
gas-phase concentration. It is obviously possible to do it the other way, replacing
the gas-phase concentration with an equivalent liquid-phase concentration. Then

Mass transfer rate ¼ KlAiVðag =KH � alÞ ð11:2Þ
Equations (11.1) and (11.2) must predict the same rate. This gives

Kl ¼ KHKg ð11:3Þ
Henry’s law constant is dimensionless when ag and al are in mol/m3, but

conventional units for KH are atmospheres or torr per mole fraction. Thus,
the gas-phase concentration is expressed in terms of its partial pressure and
the liquid-phase concentration is expressed as a mole fraction.

The mass transfer coefficients, Kg and Kl, are overall coefficients analogous to
an overall heat transfer coefficient, but the analogy between heat and mass trans-
fer breaks down for mass transfer across a phase boundary. Temperature has a
common measure, so that thermal equilibrium is reached when the two phases
have the same temperature. Compositional equilibrium is achieved at different
values for the phase compositions. The equilibrium concentrations are related,
not by equality, as for temperature, but by proportionality through an equili-
brium relationship. This proportionality constant can be the Henry’s law con-
stant KH, but there is no guarantee that Henry’s law will apply over the
necessary concentration range. More generally, KH is a function of composition
and temperature that serves as a (local) proportionality constant between the
gas- and liquid-phase concentrations.
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When KH is a function of composition, the concept of overall mass transfer
coefficient stops being useful. Instead, the overall resistance to mass transfer is
divided between two film resistances, one for each phase. This is done by assum-
ing that equilibrium is achieved at the interface. The equilibrium values are
related by a function having the form of Henry’s law:

a�g ¼ KHa�l ð11:4Þ

but it is possible that KH¼KH(al) varies with composition. The driving forces
for mass transfer can now be expressed using concentrations within a single
phase. The rate of mass transfer across the interface is

Mass transfer rate ¼kgAiVðag � a�gÞ ¼ klAiVða�l � alÞ ð11:5Þ

Here, kg and kl are the gas-side and liquid-side mass transfer coefficients. Their
units are identical to those for Kg and Kl, m/s. Like the overall coefficients, they
are usually measured and reported as the composite quantities kgAi and klAi
with SI units of s�1.

Equations (11.4) and (11.5) can be combined to find the interfacial
concentrations:

a�l ¼
a�g
K�H
¼ kgag þ klal
kgK

�
H þ kl

ð11:6Þ

where K�H denotes the local value for the Henry’s law constant at the interface.
The usual case for a gas–liquid system is kgK

�
H � kl so that the liquid-side resist-

ance is controlling. Then a�g � ag and
a�l �

ag
K�H

ð11:7Þ

If Henry’s law holds throughout the composition range, then KH will have the
same value in all of these equations. Furthermore, all the mass transfer rates
in these equations are equal. Algebra gives

Kl ¼ KHKg ¼ 1

1=kl þ 1=ðKHkgÞ ð11:8Þ

which is reminiscent of the equation for the overall heat transfer coefficient
between a tube and a jacket, except that there is no wall resistance. A membrane
reactor has the mass transfer equivalent to a wall resistance.

Example 11.1: Suppose an aerobic fermentation is being conducted in an
agitated vessel at 38�C and that klAi¼ 0.1 s�1 and kgAi¼ 20 s�1 have been
measured for the mass transfer of oxygen from air at atmospheric pressure.
Determine KlAi and KgAi.
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Solution: A standard reference gives KH¼ 4.04�107mm of mercury per
mole fraction for oxygen in water at 38�C (standard references are
notoriously reluctant to change units). Thus, an oxygen partial pressure of
160 torr will be in equilibrium with water containing 3.95�10�6mole
fraction oxygen. The corresponding oxygen concentrations work out to be
10.7mol/m3 for the gas phase and 0.219mol/m3 for the liquid phase. Thus,
the dimensionless value for Henry’s law constant is 48.9. Substitute this and
the given values for klAi and kgAi into Equation (11.6) to obtain KlAi¼ 0.1 s�1

and KgAi¼ 0.002 s�1. The calculation also shows that the gas-side resistance is
negligible compared with the liquid-side resistance. This is typical, except
when the gas being transferred reacts very rapidly in the liquid. See
‘‘Enhancement Factors’’ in Section 11.1.5.

Example 11.2: What happens if the air in Example 11.1 is replaced with
pure oxygen?

Solution: With pure oxygen, the composition is uniform in the gas phase
so that a�g ¼ ag: There is no resistance to mass transfer in a phase consisting
of a pure component. However, the gas-side resistance is already negligible
in Example 11.1. Thus, the conversion to pure oxygen has no effect on
KlAi and KgAi as calculated in that example. Going to pure oxygen will
increase a�g and a�l each by a factor of about 5. What this does to the mass
transfer rate depends on the response of the organism to the increased
oxygen supply. If the organism’s growth was strictly limited by oxygen—as it
is in some wastewater treatment processes—the oxygen transfer rate could
increase by a factor of 5, and the dissolved oxygen concentration al would
remain low. If the fermentation was limited by something else, there might
be no effect except that the dissolved oxygen content would increase by a
factor of 5.

Membrane Reactors. Consider the two-phase stirred tank shown in Figure 11.1
but suppose there is a membrane separating the phases. The equilibrium rela-
tionship of Equation (11.4) no longer holds. Instead, the mass transfer rate
across the interface is given by

Mass transfer rate ¼ DA
a�g=KH � a�l

�x
ð11:9Þ

where a�g=KH is the liquid-equivalent concentration on the gas side of the mem-
brane, a�l is the concentration on the liquid side, and DA is the effective diffusiv-
ity in the membrane based on the liquid-phase driving force. With these revised
definitions for a�g and a

�
l , Equation (11.5) continues to hold and gives the same

mass transfer rate as Equation (11.9). The value for DA is very dependent on the
species since membranes can be quite selective.

Equation (11.9) does not require KH to be constant throughout the range
of compositions in the reactor; but if it is constant, the overall mass transfer
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coefficient is

Kl ¼ 1

1

kl
þ �x

DA

� �
þ 1

KHkg

� � ð11:10Þ

Recall that the designations ‘‘liquid’’ and ‘‘gas’’ are arbitrary. The same equa-
tions can be used for liquid–liquid and gas–gas membrane reactors. Values for
the effective diffusivity DA depend on which driving force is used in the calcula-
tions. Equation (11.9) uses the liquid-phase driving force. Multiply by KH to find
the equivalent value for DA based on a gas-phase driving force. Experimental
values for DA depend strongly on the species being transported and on which
phase is present inside the membrane. Many membranes are strongly asym-
metric so that the phase inside the membrane is the phase in contact with the
side of the membrane that has the larger pores.

Phase Balances for Components. Material balances can be written for
each phase. For the general case of unsteady operation and variable physical
properties, the liquid-phase balance is

dðVlalÞ
dt

¼ ðQlalÞin þ klAiVða�l � alÞ þ VlðR AÞl � ðQlalÞout ð11:11Þ

Note that the accumulation and reaction terms are based on the volume of the
liquid phase but that the mass transfer term is based on the working volume,
V¼VlþVg. The gas-phase balance is

dðVgagÞ
dt

¼ ðQgagÞin � kgAiVða�g � agÞ þ VgðR AÞg � ðQgagÞout ð11:12Þ

These component balances are conceptually identical to a component balance
written for a homogeneous system, Equation (1.6), but there is now a source
term due to mass transfer across the interface. There are two equations
(ODEs) and two primary unknowns, ag and al. The concentrations at the inter-
face, a�l and a

�
g, are also unknown but can be found using the equilibrium rela-

tionship, Equation (11.4), and the equality of transfer rates, Equation (11.5).
For membrane reactors, Equation (11.9) replaces Equation (11.4). Solution is
possible whether or not KH is constant, but the case where it is constant
allows a�l and a

�
g to be eliminated directly

dðVlalÞ
dt

¼ ðQlalÞin þ KlAiVðag=KH � alÞ þ VlðR AÞl � ðQlalÞout ð11:13Þ
dðVgagÞ
dt

¼ ðQgagÞin � KlAiVðag=KH � alÞ þ VgðR AÞg � ðQgagÞout ð11:14Þ

We have elected to use the overall mass transfer coefficient Kl, which is based
on the equivalent liquid-phase driving force ag=KH � al , but this choice was
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arbitrary so that Kg and ag � KHal could have been used instead. Equations
(11.13) and (11.14) can be used for membrane reactors when Kl is given by
Equation (11.10).

Operating Modes. The component and mass balances are quite general and
apply to any operating mode; e.g., batch, semibatch, or steady state.
Table 11.2 gives examples for the various modes.

The flow terms are dropped for batch reactors, but mass transfer between the
phases can still occur. The long-time solutions to Equations (11.11) and (11.12)
give the equilibrium concentrations and volumes for the two phases. This can be
considered an application of the method of false transients wherein an equili-
brium problem is solved using simultaneous ODEs rather than simultaneous
algebraic equations. Long-time solutions should be computed even for batch
reactions that do not go to completion since this provides a test of the reactor
model. Does the equilibrium solution make sense? The general design problem
for a batch reactor allows V, Vg, Vl, and Ai to vary during the course of the
reaction. Like the variable-volume batch reactions considered in Section 2.6,
solutions can be quite complex. In two-phase systems, two equations of state
may be needed, one for each phase.

Fed-batch operation with the liquid charged initially followed by continuous
gas sparging is quite common for gas–liquid reactions. Set (Qin)l¼ (Qout)l¼ 0
and dðVgagÞ=dt ¼ 0. Typically, ðR AÞg ¼ 0 as well. Do not set (Qout)g¼ 0 as it
is usually necessary to remove inerts (e.g., nitrogen in an aerobic fermentation
or saturates for an alkylation). This form of semibatch reaction is useful when
the gas has a low solubility in the liquid. The equipment can be a conventional
stirred tank with a sparge ring as shown in Figure 11.2. When heat transfer is
important, much of the reactor volume can be provided by a heat exchanger in
a recycle loop. Figure 11.3 illustrates a semibatch reactor used for phenol
alkylation. The tank in that process acts as a collection vessel and has no
agitator. Gas–liquid mixing is provided by a proprietary mixing nozzle, and
the pump provides general circulation.

TABLE 11.2 Two-Phase Reactions in a Stirred Tank Reactor

Mode Example

Batch A condensation reaction where a product precipitates as a solid

Semibatch, reactant
addition

A batch alkylation where a gaseous alkene is continuously charged

Semibatch, product
removal

An aerobic fermentation where by-product CO2 is allowed to escape

Continuous Bleaching of paper pulp with Cl2 or ClO2
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Semibatch or fully continuous operation with continuous removal of a
by-product gas is also common. It is an important technique for relieving an
equilibrium limitation, e.g., by-product water in an esterification. The pressure
in the vapor space can be reduced or a dry, inert gas can be sparged to increase
Ai and lower a�g, thereby increasing mass transfer and lowering al so that the
forward reaction can proceed.
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FIGURE 11.2 Mechanically agitated vessel with gas sparging.
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FIGURE 11.3 Semibatch alkylation reactor.
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The time derivatives are dropped for steady-state, continuous flow, although
the method of false transients may still be convenient for solving Equations
(11.11) and (11.12) (or, for variable KH, Equations (11.9) and (11.10) together
with the appropriate auxiliary equations). The general case is somewhat less
complicated than for two-phase batch reactions since system parameters such
as V, Vg, Vl, and Ai will have steady-state values. Still, a realistic solution can
be quite complicated.

In the relatively simple examples that follow, the system parameters
are assumed to be known. Finding them may require a sophisticated effort
in modeling and measurement. Measurement techniques are discussed in
Section 11.1.2.

Example 11.3: The gas supply for the stirred tank in Examples 11.1 and
11.2 is suddenly changed from air to pure oxygen. How long does it take
for the dissolved oxygen concentration to reach its new value? Assume
the tank is operated in a batch mode with respect to water. Ignore any
evaporation of water and any reaction involving oxygen. Ignore any
changes in volumetric flow rate of the gas and assume that Vl and Vg
remain constant.

Solution: The initial liquid-phase concentration of oxygen is 0.219mol/m3

as in Example 11.1. The final oxygen concentration will be 1.05mol/m3. The
phase balances, Equations (11.11) and (11.12), govern the dynamic response.
The flow and reaction terms are dropped from the liquid phase balance to give

dal
dt
¼ klAi
½Vl=V � ða

�
l � alÞ

As a first approximation, suppose that the concentration of oxygen in the
gas phase changes instantly from 20.9% oxygen to 100% oxygen. Then a�l will
change instantly from 0.219 to 1.05mol/m3, and the gas-phase balance is not
required. The parameter klAi¼ 0.1 s�1 was specified in Example 11.1 so the
only unknown parameter is the liquid holdup, Vl/V. A typical value for a
mechanically agitated tank is 0.9. The liquid-phase balance becomes

dal
dt
¼ 0:1

½0:9� ða
�
l � alÞ

subject to the initial condition that al¼ 0.219 at t¼ 0. Solution gives

al ¼ 1:05� 0:83 expð�0:111tÞ

The 95% response time is 27 s.

Example 11.4: The assumption in Example 11.3 that the gas composition
changes instantly is suspicious. Remedy this defect in the analysis.
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Solution: The liquid-phase balance is unchanged except that a�l now varies
with time, al¼ al(t). The gas-phase balance comes from Equation (11.12).
When simplified for the present case it becomes

dag
dt
¼ Qg
Vg
ðagÞin �

kgAi
½Vg=V � ða

�
g � agÞ �

Qg
Vg
ag

This introduces the gas-phase residence time Vg/Qg as a new parameter. It also
introduces an ambiguity regarding the term kgAiða�g � agÞ: There is no
resistance to mass transfer within a pure component so kgAi!1 and
a�g � ag ! 0. Thus, kgAiða�g � agÞ is an indeterminate form of the 1� 0
variety. Its value must continue to equal the rate at which oxygen is
transferred into the liquid phase. Equation (11.5) remains true and the pair
of simultaneous ODEs become

dal
dt
¼ klAi
½Vl=V � ða

�
l � alÞ ¼

klAi
½Vl=V � ðag=KH � alÞ

dag
dt
¼ Qg
Vg
ðagÞin �

klAi
½Vg=V � ðag=KH � alÞ �

Qg
Vg
ag

The initial conditions are al¼ 0.219 and ag¼ 10.7 mol/m3 at t¼ 0. An
analytical solution is possible but messy. The solution depends on the
values of klAi and Vl /V (as in Example 11.3) and on the value of Vg/Qg. In
essence, Example 11.3 assumed Vg/Qg� 0 so that the gas-phase
concentration quickly responded to the change in inlet concentration.

Example 11.5: Suppose that the liquid phase in a gas–liquid CSTR
contains a catalyst for the first-order reaction of a compound supplied from
the gas phase. The reaction is

A ! Products R ¼ kal
The reactor is operated in the semibatch mode with component A being
sparged into the stirred tank. Unreacted A and the reaction products leave
through the gas phase so that the mass of liquid remains constant. To the
extent that these assumptions are true and the catalyst does not deactivate,
a pseudo-steady-state can be achieved. Find (ag)out. Assume that Henry’s
law is valid throughout the composition range and ignore any changes in
the gas density.

Solution: Both phases are assumed to be perfectly mixed so that (ag)out
is just ag. Equation (11.13) provides the material balance for component
A in the liquid phase:

0 ¼ KlAiVðag=KH � alÞ � Vlkal
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The gas-phase balance comes from Equation (11.14):

0 ¼ ðQgagÞin � KlAiVðag=KH � alÞ � ðQgagÞout
There are two equations and two unknowns. Eliminating al gives

ðagÞout ¼ ag ¼
ðagÞin

1þ VlkðKlAiVÞ
QKHðKlAiV þ VlkÞ
� �

where Q denotes the inlet and outlet gas flow rates since the gas density is
constant.

Complete conversion of component A requires a high mass transfer rate,
KlAi ! 1, combined with a high reaction rate, k ! 1: If k ! 1 while
KlAi remains finite, the reaction is mass transfer limited. Some of the entering
gas will not be absorbed and thus will not react. This situation is sometimes
called bypassing.

Example 11.6: Suppose the liquid-phase reaction is

Aþ B ! Products R ¼ kalbl
where A is a sparingly soluble gas that is sparged continuously and where the
minor component B is charged to the vessel initially. Assume that component
B is nonvolatile and that the gas-side film resistance is negligible. Determine
al (t) and bl (t).

Solution: Example 11.5 treats a system that could operate indefinitely since
the liquid phase serves only as a catalyst. The present example is more realistic
since the liquid phase is depleted and the reaction eventually ends. The
assumption that the gas-side resistance is negligible is equivalent to assuming
that a�g ¼ ag throughout the course of the reaction. Equilibrium at the interface
then fixes a�l ¼ ag=KH at all times. Dropping the flow and accumulation
terms in the balance for the liquid phase, i.e., Equation (11.11), gives

0 ¼ klAiVðag=KH � alÞ � Vlkalbl
Solving for al,

al ¼ klAiVag=KH
klAiV þ Vlkb

Note that al will gradually increase during the course of the reaction and will
reach its saturation value, ag/KH, when B is depleted. Dropping the
accumulation term for al(t) represents a form of the pseudo-steady
hypothesis. Since component B is not transferred between phases, its
material balance has the usual form for a batch reactor:

dbl
dt
¼ �kalbl ¼ �k klAiVag=KH

klAiV þ Vlkb
� �

bl ¼ �k0bl
1þ kBbl
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The appearance of this ‘‘heterogeneous’’ form for the rate expression reflects
the presence of a mass transfer step in series with the reaction step. If the para-
meter values are known, this ODE for bl(t) can be integrated subject to the
initial condition that bl¼ (bl)0 at t¼ 0. The result can then be used to find al(t).

The question arises as to how V, Vg, Vl, and Ai might vary during the
course of the reaction. The problem statement does not give the necessary
information to determine this. The reader is encouraged to create and solve
some plausible scenarios, one of which allows V, Vg, Vl, and Ai to remain
approximately constant.

Example 11.7: Carbon dioxide is sometimes removed from natural gas
by reactive absorption in a tray column. The absorbent, typically an amine,
is fed to the top of the column and gas is fed at the bottom. Liquid and gas
flow patterns are similar to those in a distillation column with gas rising,
liquid falling, and gas–liquid contacting occurring on the trays. Develop a
model for a multitray CO2 scrubber assuming that individual trays behave
as two-phase, stirred tank reactors.

Solution: The liquid-phase reaction has the form CþA ! P, which we
assume to be elementary with rate constant k. Suppose there are J trays
in the column and that they are numbered starting from the bottom.
Figure 11.4 shows a typical tray and indicates the notation. Since the

Interfacial
area = ∆Aj

Liquid
holdup = ∆Vj

Volumetric flow = Fj
CO2 concentration = cj

Exiting gas

Volumetric flow = Qj+1
CO2 concentration = dj+1
Amine concentration = aj+1

Entering liquid

Volumetric flow = Qj
CO2 concentration = dj
Amine concentration = aj

Exiting liquid

Volumetric flow = Fj_1
CO2 concentration = cj_1

Entering gas

FIGURE 11.4 Typical tray in a tray column reactor used for acid-gas scrubbing.
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column has many trays (typically 20 or more), composition changes on each
tray are small, and it is reasonable to assume perfect mixing within each phase
on an individual tray. The system is at steady state, and there is no reaction in
the gas phase. The gas-phase balance for CO2 is given by Equation (11.12),
which simplifies to

0 ¼ Fj�1cj�1 � kg�Aiðcj � c�j Þ � Fjcj
where�Ai is the interfacial area per tray. For the dissolved but unreacted CO2

in the liquid phase, Equation (11.11) becomes

0 ¼ Qjþ1djþ1 þ kl �Aiðd�j � djÞ ��Vkajdj �Qjdj
The liquid-phase balance for the amine is

0 ¼ Qjþ1ajþ1 ��Vkajdj �Qjaj
In the current notation, Equations (11.6) and (11.7) give

d�j ¼
kgcj þ kldj
kgK

�
H þ kl

c�j ¼
kgcj þ kldj
kg þ kl=K�H

so that the interfacial calculations can be made (although by an iterative
process when KH is not constant). The inputs to the jth tray are cj�1, djþ1,
ajþ1, Fj�1, and Qjþ1. Suppose these are known. Then there are three equations
and three compositional unknowns: cj, dj, and aj. There are also two unknown
flow rates, Fj and Qj, which may change significantly from the top to the
bottom of the column. Stagewise values for these can be calculated from
equations of state and overall mass balances for the two phases. Most gas
scrubbing systems are designed to remove acid gases such as H2S and SO2

in addition to CO2. Additionally, the heats of absorption can be significant
so that energy balances may be needed as well. The overall computation can
be quite complex, involving upwards of three nonlinear equations per tray
so that hundreds of simultaneous equations must be solved simultaneously.
This can be done using the multidimensional Newton’s method described
in Appendix 4. An alternative approach is to guess the composition of,
say, the exiting liquid stream at the bottom of the column. With this initial
guess, a sequential, tray-by-tray calculation is possible that involves
simultaneous solution of only the basic set of five to ten equations per
tray. This approach is conceptually similar to the shooting method
described in Section 9.5. It presents similar difficulties due to numerical
ill-conditioning for which there is no easy remedy. The implicit scheme is
usually preferred.
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Example 11.7 hints at the complications that are possible in reactive gas
absorption. Gas absorption is an important unit operation that has been the
subject of extensive research and development. Large, proprietary computer
codes are available for purchase, and process simulation tools such as Aspen
can do the job. However, as shown in Example 11.8, simple but useful approx-
imations are sometimes possible.

Example 11.8: With highly reactive absorbents, the mass transfer resistance
in the gas phase can be controlling. Determine the number of trays needed
to reduce the CO2 concentration in a methane stream from 5% to 100 ppm
(by volume), assuming the liquid mass transfer and reaction steps are fast.
A 0.9-m diameter column is to be operated at 8 atm and 50�C with a gas
feed rate of 0.2m3/s. The trays are bubble caps operated with a 0.1-m
liquid level. Literature correlations suggest kg¼ 0.002m/s and �Ai¼ 20m2

per square meter of tray area.

Solution: Ideal gas behavior is a reasonable approximation for the feed
stream. The inlet concentrations are 287mol/m3 of methane and 15mol/m3

of carbon dioxide. The column pressure drop is mainly due to the liquid
head on the trays and will be negligible compared with 8 atm unless there
are an enormous number of trays. Thus, the gas flow rate F will be
approximately constant for the column as a whole. With fast reaction and
a controlling gas-side resistance, c�j ¼ 0. The gas-phase balance gives
everything that is necessary to solve the problem:

0 ¼ Fcjþ1 � Fcj � kg�Aicj
and

cj�1
cj
¼ 1þ kg�Ai

F
¼ 1:13

For the column at a whole,

c0
cJ
¼ ð1:13ÞJ ¼ 0:05

0:0001

Solution gives J¼ 51 trays. The indicated separation appears feasible in a
bubble-cap column although the design engineer should not be content with
the glib assumption of negligible liquid-side resistance.

Overall and Phase Balances for Mass. The examples so far in Chapter 11 were
designed to be simple yet show some essential features of gas–liquid reactors.
Only component balances for the phases, Equations (11.11) and (11.12), have
been used. They are reasonably rigorous, but they do not provide guidance
regarding how the various operating parameters can be determined. This
is done in Section 11.1.2. Also, total mass balances must supplement the
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component balances in order to handle the general case of semibatch operation
where parameters such as V, Vg, Vl, and Ai can all vary with time.

An overall mass balance is written for the system as a whole. Interphase mass
transfer does not appear in the system mass balance since gains in one phase
exactly equal losses in the other. The net result is conceptually identical to
Equation (1.3), but there are now two inlets and two outlets and the total inven-
tory is summed over both phases. The result is

dðVg�g þ Vl�lÞ
dt

¼ ðQin�inÞl þ ðQin�inÞg � ðQout�outÞl � ðQout�outÞg ð11:15Þ

The phase mass balances are more complicated since the mass in a phase can
grow or wane due to interphase mass transfer. The phase balances are

dðVl�lÞ
dt

¼ ðQin�inÞl � ðQout�outÞl þ
X

Components

MAklAiVða�l � alÞ ð11:16Þ

dðVg�gÞ
dt

¼ ðQin�inÞg � ðQout�outÞg �
X

Components

MAkgAiVðag � a�gÞ ð11:17Þ

where MA is the mass per mole (kg/mol) for component A. Equation (11.15)
holds for each component so that Equations (11.16) and (11.17) sum to
Equation (11.15). The film coefficients should depend on eddy diffusion more
than molecular diffusion and, like the axial dispersion coefficient in Chapter 9,
should be approximately the same for all chemical species. An exception to
this statement occurs when a component is rapidly consumed by chemical reac-
tion. Another exception is membrane reactors, where the membrane may be
quite selective; i.e., DA can vary greatly between species.

Energy Balances. When the reaction temperatures are unknown, two heat
balances are also needed:

dðVl�lHlÞ
dt

¼ ðQl�lHlÞin þUAextðText � TlÞ
þ hiAiVðTg � TlÞ � Vlð�HRR Þl � ðQl�lHlÞout

ð11:18Þ

and

dðVg�gHgÞ
dt

¼ ðQg�gHgÞin � hiAiVðTg � TlÞ
� Vgð�HRR Þg � ðQg�gHgÞout

ð11:19Þ

These equations allow for interphase heat transfer with hi as the heat transfer
coefficient. As written, they envision heat transfer to the environment to occur
only through the liquid phase since it is normally the continuous phase.
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The component, mass, and energy balances constitute the complete set of
design equations for a two-phase reactor with perfect mixing in each phase,
although they must be supplemented by physical property relationships and
parameter correlations. Solutions for the single-phase versions of these equa-
tions occupied most of Chapters 2, 4, and 5, The reader will appreciate that
these equations are rarely used in their full form, even for single-phase systems.
A full solution for the two-phase case may require an extensive modeling effort,
but an approximate solution can provide substantial insight and can motivate
a more substantial study.

11.1.2 Measurement of Mass Transfer Coefficients

Fundamental theory is insufficient to predict mass transfer coefficients and
liquid-phase holdup. This section describes experimental methods for determin-
ing them and gives typical values. A great many correlations are available in the
literature, but stirred tanks have many design variations. Liquid-phase proper-
ties can have a large effect on the results. Rheology (e.g., non-Newtonian beha-
vior) is important for fermentations and polymerizations. Correlations may
be based on small-scale experiments using well-defined conditions, but
clean and dirty fluids behave differently due to the effects of interfacial agents
on bubble coalescence. Most industrial processes, and fermentations in parti-
cular, are dirty almost by definition. Suspended solids retard mass
transfer. An additive intended to solve one problem can cause another; e.g.,
antifoaming agents can reduce mass transfer. Because of this complexity,
great care must be taken in using any literature correlation. To understand
the complexity, browse through the appropriate sections of Perry’s Handbook
(see ‘‘Suggestions for Further Reading,’’ Chapter 5), but rejoice that mea-
surement techniques for klAi and phase holdup are relatively simple if the
liquid-phase reaction is not too fast. See also the typical values in Table 11.3.

Transient Techniques for Nonreactive Systems. This technique is used to mea-
sure oxygen transfer rates in a stirred tank that is batched with respect to the
liquid phase. The results can usually be used for CSTRs since a moderate liquid
throughput will have little effect on klAi or holdup. The composition of the
liquid phase should approximate that intended for actual operation, but the reac-
tion or oxygen must be suppressed. Holdup is determined from the height of the
liquid with and without gas flow. The mass transfer coefficient is determined by
a sudden step change in gas composition similar to that in Example 11.3. The
usual approach is to sparge air into the system until the liquid phase saturates
with respect to oxygen. The air supply is suddenly replaced with nitrogen at the
same volumetric flow rate, and a dissolved oxygen meter is used to monitor the
oxygen content in the liquid phase. The analysis is similar to that in Example
11.4, but slightly simpler because ðagÞin ¼ 0: The phase balances are

dal
dt
¼ klAi
½Vl=V� ðag=KH � alÞ ð11:20Þ
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dag
dt
¼ � klAi
½Vg=V� ðag=KH � alÞ �

Qg
Vg
ag ð11:21Þ

These equations contain only one unknown parameter, klAi. Assume values
for it and solve Equations (11.20) and (11.21) simultaneously. Compare the
calculated results with the experimental measurements using nonlinear least-
squares analysis as in Equation (7.8). This is the preferred, modern approach,
but the precomputer literature relied on computationally simpler methods
for fitting klAi.

Equations (11.20) and (11.21) are linear, first-order ODEs with coefficients
that are assumed constant. The equations can be combined to give a second-
order ODE in al:

d2al
dt2
þ klAiV

Vl
þ klAiKH

Vg
þQg
Vg

� �
dal
dt
þ klAiVQg

VlVg
al ¼ 0 ð11:22Þ

This equation can be used to estimate klAi from an experimental al (t) curve in at
least three ways. They are:

1. Initial second-derivative method: At t¼ 0, dal=dt¼ 0. Therefore,

1

al

d2al
dt2

� �
0

¼ � klAiVQg
VlVg

ð11:23Þ

so that klAi can be calculated assuming that the other parameters are known.
This method suffers the obvious difficulty of measuring a second derivative.

2. The inflection point method: At the inflection point, d2al=dt
2 ¼ 0 and

1

al

dal
dt

� �
inflect

¼ d ln al
dt

� �
inflect

¼ �klAiVQg
klAiVVg þ klAiVVlKH þ VlQg ð11:24Þ

This method is reasonable in terms of accuracy and allows short experiments.

3. The asymptotic method: For most systems, Vl = ðklAiÞ � Vg =Qg: Then at
long times,

alðtÞ ¼ exp
�klAiVt
Vl

� �
ð11:25Þ

When applicable, this method is the least demanding in terms of experimental
accuracy. It is merely necessary to estimate the slope of what should be a
straight line when ln al is plotted versus t. By comparison, the inflection
point method requires estimating the slope at an earlier time before it is
constant.
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Measurements Using Liquid-Phase Reactions. Liquid-phase reactions, and the
oxidation of sodium sulfite to sodium sulfate in particular, are sometimes used
to determine klAi. As for the transient method, the system is batch with respect
to the liquid phase. Pure oxygen is sparged into the vessel. A pseudo-steady-state
results. There is no gas outlet, and the inlet flow rate is adjusted so that the vessel
pressure remains constant. Under these circumstances, the inlet flow rate equals
the mass transfer rate. Equations (11.5) and (11.12) are combined to give a
particularly simple result:

Qgag ¼ klAiVða�l � 0Þ ¼ klAiVa�l ¼ klAiVag=KH
or

klAi ¼ QgKH=V ð11:26Þ

Example 11.9: An article in the literature reports the absorption rate of
pure oxygen into a sodium sulfite solution at 20�C using an agitated
stirred tank having a liquid depth of 3 ft. A large excess of oxygen was
continuously injected into the tank through a sparge ring located just under
the agitator. The liquid reaction (sulfite oxidation) was semibatch, but
there was sufficient sodium sulfite present so that the dissolved oxygen
concentration was approximately zero throughout the experiment. The
oxygen consumption was measured using gas flow rates. For a
particular set of operating conditions, the result was reported as KgAi¼ 0.04
lbEmol/(hEft3Eatm). What was actually measured and what is its value in
SI units?

Solution: The experimental conditions are consistent with Equation (11.26)
so that klAi was measured. The experimental result was reported as KgAi
because the overall mass transfer coefficient was based on the equivalent
gas-phase driving force expressed in partial pressure units rather than
concentration units. Because a pure gas was sparged, kg ! 1 and Kl ¼ kl.
Equation (11.3) relates Kg and Kl through Henry’s law constant.

The overall driving force for mass transfer is �P¼Pg�Pl, where Pl is the
concentration of oxygen in the liquid phase expressed as an equivalent par-
tial pressure. For the experimental conditions, Pl � 0 due to the fast, liquid-
phase reaction. The oxygen pressure on the gas side varies due to the liquid
head. Assume that the pressure at the top of the tank was 1 atm. Then
Pg¼ 0.975 atm since the vapor pressure of water at 20�C should be sub-
tracted. At the bottom of the tank, Pg¼ 1.0635 atm. The logarithmic mean
is appropriate: �P¼ 1.018 atm. Thus, the transfer rate was

KgAi�P ¼ 0:04� 1:018 ¼ 0:0407 lbEmol=ðft3EhÞ ¼ 0:181mol=ðm3EsÞ
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The same rate must be found when the rate is expressed as klAia
�
l , where

a�l is the solubility of oxygen in water at 20�C and 1.018 atm. Henry’s law
gives a�l ¼ 1.46 mol/m3. Thus,

klAi ¼ 0:181

1:46
¼ 0:124 s�1

Typical Values. Table 11.3 shows typical parameter values for mechanically
agitated tanks and other gas–liquid contacting devices. Not shown are values
for kgAi since these are usually so large that they have no influence on the
mass transfer rate.

Actual Flow Patterns. The assumption of a well-mixed liquid phase is reason-
able by the criteria used for single-phase stirred tanks. The same assumption is
normally made for the gas phase, but with far less justification. Since the gas
phase is dispersed and coalescence is retarded in dirty systems, one might
prefer a segregated flow model in which gas bubbles circulate as discrete entities.
There is a conceptual difference between segregated flow and perfect mixing
when the gas contains inerts, as when air is used as an oxygen source, since
depletion of the reactive component can be appreciable for bubbles that have
remained in the system for a long time. It makes less difference when the reactive
gas is pure, although old bubbles will shrink and eventually disappear. There is
no practical effect in steady-state operation as long as the liquid phase is well
mixed and reaction is confined to the liquid phase. The liquid will be continually
contacting the entire population of bubbles, and the measured mass transfer
coefficients reflect the average contents of the bubbles with respect to size and
gas concentration. Similarly, the fact that the pressure varies as a function of
position in the reactor makes no real difference provided that the mass transfer
measurements are made on the full-scale vessel. The subtleties of bubble circula-
tion and coalescence would be important if, for example, a second order
reaction occurred in the gas phase.Population balance methodsmust be used when
the fate of individual bubbles is important. These are briefly discussed in Section
11.5 and are applied to the distribution of residence times in Chapter 15.

TABLE 11.3 Typical Operating Ranges for Gas–Liquid Contacting Devices

Device Liquid holdup, Vl/V klAi, s
�1

Mechanically agitated tanks 0.9 0.02–0.2
Tray columns 0.15 0.01–0.05
Packed columns 0.05 0.005–0.02
Bubble columns 0.95 0.005–0.0

Source: Data from Harnby, N., Edward, M. R., and Nienow, A. W., Mixing in the Process Industries,
Butterworths, London, 1985.
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11.1.3 Fluid–Fluid Contacting in Piston Flow

Table 11.4 lists reactors used for systems with two fluid phases. The gas–liquid
case is typical, but most of these reactors can be used for liquid–liquid systems as
well. Stirred tanks and packed columns are also used for three-phase systems
where the third phase is a catalytic solid. The equipment listed in Table 11.4
is also used for separation processes, but our interest is on reactions and on
steady-state, continuous flow.

Stirred tanks are modeled assuming that both phases are well mixed. Tray
columns are usually modeled as well mixed on each tray so that the overall
column is modeled as a series of two-phase, stirred tanks. (Distillation trays
with tray efficiencies greater than 100% have some progressive flow within a
tray.) When reaction is confined to a single, well-mixed phase, the flow regime
for the other phase makes little difference; but when the reacting phase approx-
imates piston flow, the flow regime in the other phase must be considered.
The important cases are where both phases approximate piston flow, either
countercurrent or cocurrent.

For simplicity of discussion and notation, we will refer to one phase as being
liquid and the other phase as being gas. The gas phase flows upward in the
þz-direction. The liquid phase may flow upward (cocurrent) or downward.
A steady-state but otherwise general component balance gives


 dðAl �uulalÞ
dz

¼ AlðR AÞl þ klA0iða�l � alÞ ð11:27Þ

where Al is the cross-sectional area of the liquid phase, �uul is its velocity, and A
0
i is

the interfacial area per unit height of the column. The plus sign on the derivative

TABLE 11.4 Typical Flow and Mixing Regimes for Gas–Liquid Reactors

Type of reactor Liquid phase Gas phase

Stirred tank with sparger Continuous, well mixed Discontinuous, but usually
assumed well mixed

Rotating-disk and pulsed columns Continuous, piston flow Dispersed, piston flow

Bubble columns Continuous, piston flow Dispersed, piston flow

Packed columns Continuous or trickle,
piston flow

Continuous, trickle, or
dispersed; piston flow

Tray columns Continuous and well mixed
on an individual tray

Discontinuous but often
assumed well mixed on
an individual tray

Spray towers Discontinuous, piston flow Continuous, typically
well mixed

MULTIPHASE REACTORS 401



in Equation (11.27) is used for cocurrent flow; the minus sign is used for counter-
current flow. Many gas–liquid contactors operate in countercurrent flow.
An example is the rotating-disk column shown in Figure 11.5. The deep-shaft
fermentor shown in Figure 11.6 is an exception, as is the trickle-bed reactor
discussed in Section 11.2. The gas-phase material balance is

dðAg �uugagÞ
dz

¼ AgðR AÞg � kgA0iða�g � agÞ ð11:28Þ

The mass transfer equations, Equations (11.1)–(11.10), remain valid when A0i
replaces Ai. Equations (11.27) and (11.28) contain one independent variable, z,
and two dependent variables, al and ag. There are also two auxiliary variables,
the interfacial compositions a�l and a

�
g: They can be determined using Equations

(11.5) and (11.6) (with A0i replacing A). The general case regards KH in Equation
(11.4) as a function of composition. When Henry’s law applies throughout the
composition range, overall coefficients can be used instead of the individual
film coefficients. This allows immediate elimination of the interface compositions:


 dðAl �uulalÞ
dz

¼ AlðR AÞl þ KlA0iðag=KH � alÞ ð11:29Þ

dðAg �uugagÞ
dz

¼ AgðR AÞg � KlA0iðag=KH � alÞ ð11:30Þ
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FIGURE 11.5 Rotating-disk column with countercurrent downward flow of a liquid and upward
flow of a gas or lower-density liquid.
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All the parameters in these equations will be functions of z. Bubbles will grow
as they rise in the column because of the lower hydrostatic head, and ag will
decrease even for a pure gas. Bubble coalescence and breakup may be important.
Depletion or enrichment of the gas phase because of reaction and mass transfer
may be important. The air-lift provided to the upward liquid flow may augment
or even replace a conventional pump for the liquid phase. These effects are
important in a device such as a deep-shaft fermentor. Bubbles breaking the
surface will be large due to the pressure change and may be depleted in
oxygen so that little or no mass transfer occurs in the upper part of the
column. In the lower part, oxygen partial pressures of 2 atm (total pressure of
10 atm) will give a very high driving force for mass transfer. A rigorous analysis
of a deep-shaft fermentor or for any two-phase, tubular reactor is a difficult pro-
blem in fluid mechanics. Most literature studies have made simplifying assump-
tions such as constant Al and Ai. Table 11.5 lists a number of possible
simplifications. To some extent, this table should be read in the negative as
the assumptions are unlikely to be satisfied in real gas–liquid systems. They
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FIGURE 11.6 A deep-shaft fermentor for wastewater treatment.

MULTIPHASE REACTORS 403



are more likely to be satisfied in a liquid–liquid system. Examples 11.10 and
11.11 avoid the complications by assuming that all operating parameters are
independent of position.

Example 11.10: Determine phase concentrations for a liquid–liquid reac-
tion in a packed-bed reactor. The reactive component is dilute in both
phases. It enters the reactor in one phase but undergoes a pseudo-first-order
reaction in the other phase. All parameters are constant.

Solution: The phase in which reaction occurs will be denoted by the
subscript l, and the other phase will be denoted by the subscript g. Henry’s
law constant will be replaced by a liquid–liquid partition coefficient, but will
still be denoted by KH. Then the system is governed by Equations (11.29)
and (11.30) with ðR AÞl ¼ �kal and ðR AÞg ¼ 0: The initial conditions are
ðalÞin ¼ 0 and ðagÞin ¼ ain:

The governing equations are


 dal
dz
¼ �kal

�uul
þ KlA

0
i

Al �uul
ðag=KH � alÞ

dag
dz
¼ �KlA

0
i

Ag �uug
ðag=KH � alÞ

The initial conditions are ag¼ ain at z¼ 0, al¼ 0 at z¼ 0 for cocurrent flow,
and al¼ 0 at z¼L for countercurrent flow.

TABLE 11.5 Simplifying Assumptions for Gas–Liquid Reactors

Assumption Possible rationale

P is constant Short column or column operated at high pressure or with
the liquid phase discontinuous

ag and a
�
g are constant P is constant and the reactant gas is pure or is fed at a high

rate

Al �uul�l and Ag �uug�g are
constant

Constant mass flow in each phase; i.e., negligible net mass
transfer

Al and Ag are constant Consistent with constant pressure and negligible net mass
transfer

klAi is constant Redispersion of gas compensates for coalescence and pres-
sure effects; negligible depletion of the reactive component
or else a high level of inerts are present in the gas phase

dP

dz

����
���� ¼ �lg Gas-lift is negligible so that the liquid exerts its normal

static head
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The ODEs are linear with constant coefficients. They can be converted to a
single, second order ODE, much like Equation (11.22), if an analytical solu-
tion is desired. A numerical solution is easier and better illustrates what is
necessary for anything but the simplest problem. Convert the independent
variable to dimensionless form, z ¼ z=L: Then


 dal
dz ¼ �

kLal
�uul
þ KlA

0
iL

Al �uul
ðag=KH � alÞ

dag
dz ¼ �

KlA
0
iL

Ag �uug
ðag=KH � alÞ

Solutions for the cocurrent and countercurrent cases are displayed in
Figure 11.7. The countercurrent case requires calculations of the shooting
type where values for ðalÞout ¼ al ðz ¼ 0Þ are guessed until the initial condition
that ðalÞin ¼ 0 is satisfied. Normalized concentrations with ain¼ 1 can be used.
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FIGURE 11.7 A pseudo-first-order reaction in one phase with reactant supplied from the other
phase. See Example 11.10.
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The solution is governed by four dimensionless constants. The values used for
Figure 11.7 are

kL

�uul
¼ 2

KlA
0
iL

Al �uul
¼ 1

KlA
0
iL

Ag �uug
¼ 1 KH ¼ 0:5

Example 11.11: Assume the pseudo-first-order reaction in Example 11.10
was Aþ B ! C with component B present in great excess. Now suppose
that B is confined to the l phase and is present in limited supply, (bl)in¼
bin. Determine the phase concentrations in the reactor of Example 11.11.

Solution: There are now three ODEs to be solved. They are


 dal
dz ¼ �

kLalbl
�uul
þ KlA

0Li
Al �uul

ðag=KH � alÞ

dag
dz ¼ �

KlA
0
iL

Ag �uug
ðag=KH � alÞ


 dbl
dz ¼ �

kLalbl
�uul

Numerical solutions using the parameter values of Example 11.10 and
bin¼ 1 are shown in Figure 11.8. The countercurrent case now requires guesses
for both for ðalÞout ¼ al ðz ¼ 0Þ and ðblÞout ¼ bl ðz ¼ 0Þ to satisfy the initial con-
ditions that ðalÞin ¼ 0 and ðblÞin ¼ bin are satisfied.

11.1.4 Other Mixing Combinations

Piston Flow in Contact with a CSTR. A liquid-phase reaction in a spray tower
is conceptually similar to the transpired-wall reactors in Section 3.3. The liquid
drops are in piston flow but absorb components from a well-mixed gas phase.
The rate of absorption is a function of z as it can be in a transpired-wall reactor.
The component balance for the piston flow phase is

dðAl �uulalÞ
dz

¼ AlðR AÞl þ klA0iða�l � alÞ ð11:31Þ

The component balance for the CSTR phase is

0 ¼ ðQgagÞin �
ZL
0

kgA
0
iða�g � agÞ dzþ VgðR AÞg � ðQgÞoutag ð11:32Þ
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There are four unknowns: ag¼ (ag)out which is independent of z; and a�g, a
�
l , and

al, which will generally vary in the z-direction. Equations (11.6) and (11.7) can
be used to calculate the interfacial concentrations, a�g and a�l , if ag and al are
known. A numerical solution for the general case begins with a guess for ag.
This allows Equation(11.31) to be integrated so that a�g, a

�
l , and al are all calcu-

lated as functions of z. The results for a�g are substituted into Equation (11.32)
to check the assumed value for ag. Analytical solutions are possible for a
few special cases.

Example 11.12: Solve Equations (11.31) and (11.32) for the simple case
of constant parameters and a pseudo-first-order reaction occurring in the
liquid phase of a component supplied from the gas phase. The gas-
phase film resistance is negligible. The inlet concentration of the reactive
component is ain.

Solution: Note that Kl¼ kl when the gas-side resistance is negligible. Then
Equation (11.31) simplifies to

dal
dz
¼ � kal

�uul
þ klA

0
i

Al �uul
ðag=KH � alÞ ¼ klA

0
i

Al �uulKH

� �
ag � k

�uul
þ klA

0
i

Al �uul

� �
al
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FIGURE 11.8 Aþ B ! C in a two-phase reactor with A fed from the nonreacting phase and B
from the reacting phase. See Example 11.11.
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Integrate this ODE, subject to the initial condition that al¼ 0 at z¼ 0. The
result is

al ¼ agklA
0
i

KH ½kAl þ klA0i�
1� exp � ½kAl þ klA

0
i�

Al �uul
z

� �� �
¼ agC1½1� expð�C2zÞ�

where C1 and C2 are constants. This result gives the concentration profile
in the liquid phase, but the gas phase concentration is still unknown. The
component balance for the gas phase is necessary. Equation (11.32)
simplifies to

0 ¼ Qgain �
ZL
0

kgA
0
iða�g � agÞ dz�Qgag

The mass transfer term in this equation is indeterminate since kl !1 and
a�g � ag! 0. The indeterminacy is overcome by using Equation (11.5). Thus,

0 ¼ Qgain �
ZL
0

klA
0
iðag=KH � alÞ dz

or

ag ¼ ain �
ZL
0

klA
0
i

Qg
ðag=KH � alÞ dz

¼ ain � ag klA
0
i

�uugAg

ZL
0

1=KH � C1½1� expð�C2zÞ�
 �

dz

Integrating and solving for ag gives

ag ¼ ain

1þ klA
0
i

�uugAg
L=KH � C1Lþ ðC1=C2Þ½1� expð�C2LÞ�
 �

ag ¼ ain
1þ klA

0
iL

�uugAg
1=KH � klA

0
i

KH ½kAl þ klA0i�
þ Al �uuklA

0
i

KH ½kAl þ klA0i�2L

(

� 1� exp � ½kAl þ klA
0
i�

Al �uul
L

� �� ��
8>>>><
>>>>:

9>>>>=
>>>>;

,

With some algebra, the parameters used in this expression can all be related to
four dimensionless groups used in Example 11.10:

kL

�uul
,

KlA
0
iL

Al �uul
,

KlA
0
iL

Ag �uug
, KH
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Using the same numerical values as in Example 11.10 gives C1¼ 2/3, C2L¼ 3,
ag¼ 0.393ain, and al¼ 0.262[1�exp(�3z/L)].

Axial Dispersion. Enthusiastic modelers sometimes add axial dispersion terms
to their two-phase, piston flow models. The component balances are


 dðAl �uulalÞ
dz

¼ AlDl d
2al
dz2
þ AlðR AÞl þ klA0iða�l � alÞ ð11:33Þ

dðAg �uugagÞ
dz

¼ AgDg d
2ag
dz2
þ AgðR AÞg � kgA0iða�g � agÞ ð11:34Þ

where Dl and Dg are the axial dispersion coefficients for the two phases. In prin-
ciple, Equations (11.33) and (11.34) can include the entire range of flow in a
phase, from perfect mixing (e.g., Dl !1Þ to piston flow (e.g., Dl ! 0Þ: In prac-
tice, the axial dispersion model is best suited to model small deviations from
piston flow. Values for the dispersion coefficients can be measured using the
tracer techniques described in Chapter 15. It is usually possible to find tracers
that remain in one phase (e.g., nonvolatile liquids or sparingly soluble gases).

11.1.5 Prediction of Mass Transfer Coefficients

As mentioned in Section 11.1.2, fundamental theory is insufficient to predict
mass transfer coefficients from first principles. However, existing results do pro-
vide a framework for interpreting and sometimes extrapolating experimental
results.

Surface Renewal Theory. The film model for interphase mass transfer envisions
a stagnant film of liquid adjacent to the interface. A similar film may also exist
on the gas side. These hypothetical films act like membranes and cause diffu-
sional resistances to mass transfer. The concentration on the gas side of the
liquid film is a�l ; that on the bulk liquid side is al; and concentrations within
the film are governed by one-dimensional, steady-state diffusion:

DA
d2a

dx2
¼ 0

This ODE is subject to the boundary conditions that al¼ a�l at x¼ 0 and a¼ al at
x¼ d. The solution is

aðxÞ ¼ a�i þ ðal � a�l Þ
x

�

The flux through the film is given by

Flux, mol=ðm2EsÞ ¼ �DA da
dx
¼ DA

�
ða�l � alÞ ¼ klða�l � alÞ ð11:35Þ
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or

kl ¼ DA
�

ð11:36Þ

Equation (11.36) gives the central result of film theory; and, as is discussed in
any good text on mass transfer, happens to be wrong. Experimental measure-
ments show that k, is proportional to

ffiffiffiffiffiffiffi
DA
p

rather than to DA, at least when
the liquid phase is turbulent.

Two rather similar models have been devised to remedy the problems of
simple film theory. Both the penetration theory of Higbie and the surface renewal
theory of Danckwerts replace the idea of steady-state diffusion across a film with
transient diffusion into a semi-infinite medium. We give here a brief account of
surface renewal theory.

Surface renewal theory envisions a continuous exchange of material between
the bulk fluid and the interface. Eddy diffusion brings material of uniform com-
position al to the interface and exposes it to the gas phase for a period of time t.
The exposed fluid is then replaced with fresh fluid. Diffusion during the exposure
period is governed by

@a

@t
¼ DA

@2a

@x2
ð11:37Þ

This PDE is subject to the initial condition that a¼ al at t¼ 0 and boundary con-
ditions that a¼ a�l at x¼ 0 and a¼ al at x ¼ 1: The solution is differentiated to
calculate the flux as in Equation (11.35). Unlike that result, however, the flux into
the surface varies with the exposure time t, being high at first but gradually
declining as the concentration gradient at x¼ 0 decreases. For short exposure
times,

Flux ¼� DA
@a

@x

� �
x¼0
¼ ða�i � alÞ

ffiffiffiffiffiffiffi
DA
�t

r

This result gives the flux for a small portion of the surface that has been
exposed for exactly t seconds. Other portions of the surface will have been
exposed for different times and thus will have different instantaneous fluxes.
To find the average flux, we need the differential distribution of exposure
times, f (t). Danckwerts assumed an exponential distribution:

f ðtÞ ¼ 1


exp � t




 �

where f (t) dt is the fraction of the interfacial area that has been exposed from
t to tþ dt seconds and  is the mean exposure time. The average flux is

Z1
0

1


exp � t




 �� �
ða�l � alÞ

ffiffiffiffiffiffiffi
DA


r
dt ¼ ða�i � alÞ

ffiffiffiffiffiffiffi
DA


r
ð11:38Þ
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so that

kl ¼
ffiffiffiffiffiffiffi
DA


r
ð11:39Þ

in agreement with experimental observations for turbulent systems.

Enhancement Factors. This section considers gas absorption with fast, liquid-
phase reaction of the component being absorbed. Even a slow reaction in the
bulk liquid can give al ! 0 since the volume of the bulk liquid can be quite
large. Thus, the existence of any reaction will increase mass transfer by increas-
ing the overall driving force, but a slow reaction does not change kl as predicted
by Equation (11.39). With a much faster reaction, however, component A will be
significantly consumed as it diffuses into the turbulent eddy. The concentration
gradient at the interface remains high, increasing the flux, and increasing the
value of kl. The magnitude of the effect can be predicted by adding a reaction
term to Equation (11.37):

@a

@t
¼ DA

@2a

@x2
þR A ð11:40Þ

The initial and boundary conditions are identical to those for Equation (11.37):
a¼ a�l at x¼ 0 and a¼ al at x ¼ 1: For a first-order reaction, R A ¼ �ka, and
Equation (11.40) has an analytical solution. Using this solution to find the
average flux gives

kl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkÞ2� �

DA


s
¼ ðklÞ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðkÞ2� �q

¼ ðklÞ0E ð11:41Þ

where E is the enhancement factor and (kl)0 denotes what the mass transfer coef-
ficient would be if there were no reaction; i.e., as given by Equation (11.39).
Paired measurements of kl and (kl)0 have been used to estimate . It is typically
on the order of 10�2 or 10�3 s so that a very fast reaction with rate constant
k>10 s�1 is needed to measurably enhance the mass transfer coefficient.

Any fast reaction can enhance mass transfer. Consider a very fast, second-
order reaction between the gas-phase component A and a liquid component B.
The concentration of B will quickly fall to zero in the vicinity of the freshly
exposed surface; and a reaction plane, within which b¼ 0, will gradually
move away from the surface. If components A and B have similar liquid-
phase diffusivities, the enhancement factor is

E ¼ 1þ bl
a�l

Since a�l is small for sparingly soluble gases, the enhancement factor can be
quite large.

MULTIPHASE REACTORS 411



11.2 THREE-PHASE REACTORS

Some reactors involve three or even more phases. This section discusses the
fairly specific situation of a gas phase, a liquid phase, and a solid phase.

11.2.1 Trickle-Bed Reactors

The solid is stationary, catalytic, and usually microporous. The liquid flows
in a trickling regime where it wets the external surface of the catalyst but leaves
substantial voidage available for the flow of gas. The usual industrial design is
for concurrent, downward flow of both liquid and gas. Such reactors find wide
use in the hydrogenation and hydrodesulfurization of heavy petroleum fractions.
The goal is to simultaneous contact gas (e.g., hydrogen) and liquid (e.g., a heavy
hydrocarbon) on a catalytic surface. The liquid phase supplies one of the reactants
and also acts as a transfer medium between the gas phase and the solid phase.
The design intent is for the liquid to wet the solid completely since any direct
exposure of the solid to the gas phase would not contribute to the reaction.

Piston flow is a reasonable approximation for the liquid and gas phases. The
design equations of Section 11.1.3 can be applied by adding an effective,
pseudohomogeneous reaction rate for the liquid phase:


 dðAl �uulalÞ
dz

¼ Al½ðR AÞl þ "	ðR AÞs� þ klA0iða�l � alÞ ð11:42Þ

dðAg �uugagÞ
dz

¼ AgðR AÞg � kgA0iða�g � agÞ ð11:43Þ

Compare Equation (11.42) with Equation (9.1). The standard model for a
two-phase, packed-bed reactor is a PDE that allows for radial dispersion.
Most trickle-bed reactors have large diameters and operate adiabatically so
that radial gradients do not arise. They are thus governed by ODEs. If a
mixing term is required, the axial dispersion model can be used for one or
both of the phases. See Equations (11.33) and (11.34).

The pseudohomogeneous reaction term in Equation (11.42) is analogous to
that in Equation (9.1). We have explicitly included the effectiveness factor 	 to
emphasis the heterogeneous nature of the catalytic reaction. The discussion in
Section 10.5 on the measurement of intrinsic kinetics remains applicable, but
it is now necessary to ensure that the liquid phase is saturated with the gas
when the measurements are made. The void fraction " is based on relative
areas occupied by the liquid and solid phases. Thus,

" ¼ Al
Al þ As where Ag þ Al þ As ¼ Ac ð11:44Þ

The effectiveness factor accounts for the diffusional resistances in the liquid-
filled catalyst pores. It does not account for the mass transfer resistance between
the liquid and gas phases. This is the job of the kl and kg terms.
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Homogeneous, liquid-phase reactions may also be important in trickle beds,
and a strictly homogeneous term has been included in Equation (11.42) to note
this fact. There is usually no reaction in the gas phase. Normally, the gas phase
merely supplies or removes the gaseous reactants (e.g., H2 and H2S in hydro-
desulfurization).

The central difficulty in applying Equations (11.42) and (11.43) is the usual
one of estimating parameters. Order-of-magnitude values for the liquid
holdup and klA

0
i are given for packed beds in Table 11.3. Empirical correlations

are unusually difficult for trickle beds. Vaporization of the liquid phase is
common. From a formal viewpoint, this effect can be accounted for through
the mass transfer term in Equation (11.42) and (11.43). In practice, results are
specific to a particular chemical system and operating mode. Most models are
proprietary.

11.2.2 Gas-Fed Slurry Reactors

These reactors contain suspended solid particles. A discontinuous gas phase is
sparged into the reactor. Coal liquefaction is an example where the solid is con-
sumed by the reaction. The three phases are hydrogen, a hydrocarbon-solvent/
product mixture, and solid coal. Microbial cells immobilized on a particulate
substrate are an example of a three-phase system where the slurried phase is
catalytic. The liquid phase is water that contains the organic substrate. The
gas phase supplies oxygen and removes carbon dioxide. The solid phase consists
of microbial cells grown on the surface of a nonconsumable solid such as
activated carbon.

A general model for a gas–liquid–solid reactor would have to consider homo-
geneous reactions occurring within the various phases and up to three sets of
heterogeneous reactions: gas–liquid, gas–solid, and liquid–solid. Such a general
treatment adds notational complexity without providing additional insight.
When the solid acts only as a catalyst, pseudohomogeneous models can usually
be used as in the trickle-bed case. Biochemical reactions are often treated in this
manner using rate expressions similar in form to those for gas–solid heteroge-
neous catalysis. Noncatalytic fluid–solid reactions are more difficult since the
age of individual particles may be important. This may require the use of popu-
lation balance models. See Example 11.17 and Chapter 15. A slurry reactor with
consumable solids can be self-classifying. Particles will stay in the reactor when
they are large but will be entrained in the liquid stream as they decrease in size.
Careful hydrodynamic design can lead to complete conversion of the solid phase.

11.3 MOVING SOLIDS REACTORS

Fixed-bed reactors are ideal for many solid-catalyzed gas reactions. The con-
tacting of the solid by the gas tends to be quite uniform, and long contact
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times are possible. However, packed beds have severe heat transfer limitations,
and scaleup must often be done using many small-diameter tubes in parallel
rather than a single, large-diameter bed. Also, the large particle sizes needed
to minimize pressure drop lead to diffusional resistances within the catalyst
particles. If catalyst deactivation is rapid, the fixed-bed geometry may cause
problems in regeneration. For gas–solid noncatalytic reactions, the solid
particles may shrink or grow as the reaction proceeds. This too is not easily
accommodated in a fixed bed.

Many types of gas–solid reactors have been designed to allow motion of the
solid relative to the fixed walls of the reactors. This motion is desired for one of
the following reasons:

1. To enhance heat transfer between the particle and the environment

2. To enable use of small particles

3. To enable continuous regeneration of catalyst particles

4. To facilitate continuous removal of ash and slag

5. To accommodate size changes of the particles concurrent with reaction

The particle motion can be accomplished by purely mechanical means—per-
haps aided by gravity—as in rotary cement kilns and fireplace grates. Chemical
engineers usually prefer designs where the particle motion is brought about
through hydrodynamic forces that are generated by a fluid phase that also
participates in the reaction. Such designs tend to be more controllable and
scalable, although scalability can be a problem. Sophisticated pilot-plant and
modeling efforts are usually necessary for any form of fluidized-bed reactor.

Fluidized-bed reactors have received attention from researchers that is dis-
proportionate to their use in industry. The hydrodynamics of fluidization are
interesting, and many aspects of fluidization can be studied in small equipment
at room temperature and atmospheric pressure. This makes it well suited to
academic research. A large number of fluidization regimes have been elucidated,
and Figure 11.9 illustrates the more common regimes applicable to the catalyst
particles typical of gas-fluidized beds. The particles are spherical with an average
diameter of about 50 mm. The size distribution is fairly broad with 95wt% in the
range of 30–100mm. The particles are microporous with a particle density just
over 1 g/cm3, but with a skeletal density of about 2.5 g/cm3. They rest on a
microporous distributor plate and, at low flow rates, form a packed bed. The
pressure drop across the bed increases with increasing flow rate, and the drag
on the particles becomes significant. When the pressure drop just equals the
weight of the bed, the particles become suspended and mobile enough to be
stirred mechanically; but relatively little solids motion is caused by just the
gas flow. This is the state of incipient fluidization illustrated in Figure 11.9(b).
The gas velocity at this point is called the minimum fluidization velocity, umin.

As the gas flow is increased beyond umin, the behavior of the bed depends
on the density difference between the particles and the suspending fluid. If the
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density difference is small, as in a liquid-fluidized bed, the bed continues
to expand and enters a region known as particulate fluidization. Similar behavior
is less commonly observed in gas-fluidized beds, where it is known as delayed
bubbling. More common is a sharp transition to the bubbling regime where pock-
ets of gas form at the distributor plate and move upward through the bed. These
voids are essentially free of solid particles and behave much like bubbles in a gas–
liquid system. The voids grow as they rise in the bed due to pressure reduction,
they can coalescence, and they provide a stirring mechanism for the suspended
particles. Figure 11.9(c) illustrates the bubbling regime of fluidization that lasts
until the superficial gas velocity is many times higher than umin. At this point,
the bubbles are so large that they span the reactor and cause slugging. Solids
at the center of the bed are conveyed upward but rain down near the walls.
Figure 11.9(d) depicts the slugging regime. Still higher gas velocities are used
in industrial reactors, and the bed behaves in a smoother fashion. A regime
called turbulent fluidization applies when the upper boundary of the bed is
still reasonably well defined. Beyond this are fast fluidization and finally
the pneumatic transport regime where the gas velocity exceeds the terminal
velocity for even the larger particles. A batch fluidized bed operating even in
the bubbling or faster regimes will elute some of the smaller particles, and it
is normal practice to use a cyclone to return these particles to the bed.
Internal baffles are sometimes used to promote more uniform contacting of
the gas and solid.

Gas, very
low flow

rate

Gas,
low flow

rate

Gas,
moderate
flow rate

Gas,
high flow

rate

Gas, very
high flow

rate

Packed
bed
(a)

Incipient
fluidization

(b)

Bubbling
fluidization

(c)

Slugging
fluidization

(d)

Pneumatic
transport

(e)

FIGURE 11.9 Fluidization regimes in a batch fluidized bed at low multiples of the minimum
fluidization velocity.
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11.3.1 Bubbling Fluidization

The dynamics of bubble formation and growth and of solids movement within
the bubbling fluidized beds have been analyzed in great detail, and elaborate
computer simulations have been developed for all regimes of fluidization.
The reader must be referred to the specialized (and sometimes proprietary)
literature for details on such models. Here we describe a fairly simple model
that is applicable to the bubbling regime and that treats a catalytic fluidized
bed much like a gas–liquid reactor. Pseudohomogeneous axial dispersion
models are used for higher gas flow rates.

The bubbles play the role of the gas phase. The role of the liquid is played by
an emulsion phase that consists of solid particles and suspending gas in a con-
figuration similar to that at incipient fluidization. The quasi-phases are in cocur-
rent flow, with mass transfer between the phases and with a solid-catalyzed
reaction occurring only in the emulsion phase. The downward flow of solids
that occurs near the walls is not explicitly considered in this simplified model.

For the emulsion phase,

Aeue
dae
dz
¼ AeDe d

2ae
dz2
þ AeR A þ KmA0iðab � aeÞ ð11:45Þ

where De is an axial dispersion coefficient, the kinetics are pseudohomogeneous
with rate equal to that at incipient fluidization, and Km is an overall mass trans-
fer coefficient. Henry’s law constant does not appear since, at equilibrium, the
concentrations would be the same in each phase. Axial dispersion in the
bubble phase is ignored. Thus,

Abub
dab
dz
¼ �KmA0iðab � aeÞ ð11:46Þ

These equations are seen to be special cases of Equations (11.33) and (11.34).
The exit concentration is averaged over both phases:

aout ¼ AeueðaeÞout þ AbubðabÞout
Aeue þ Abub ð11:47Þ

Values for the various parameters in these equations can be estimated from
published correlations. See ‘‘Suggestions for Further Reading.’’ It turns out,
however, that bubbling fluidized beds do not perform particularly well as chemi-
cal reactors. At or near incipient fluidization, the reactor approximates piston
flow. The small catalyst particles give effectiveness factors near 1, and the pres-
sure drop—equal to the weight of the catalyst—is moderate. However, the
catalyst particles are essentially quiescent so that heat transfer to the vessel
walls is poor. At higher flow rates, the bubbles promote mixing in the emulsion
phase and enhance heat transfer, but at the cost of increased axial dispersion.
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The emulsion phase approaches the performance of a CSTR with its inherent
lower yield for most reactions. To make matters worse, mass transfer between
the emulsion and bubble phases becomes limiting to the point that some of
the entering gas completely bypasses the catalytic emulsion phase. The system
behaves like the reactor in Example 11.5.

11.3.2 Fast Fluidization

There are relatively few processes that use a fluidized catalyst. Those that do
typically operate with gas velocities high enough to completely entrain the
particles. The operating regime is called fast fluidization or transport-line fluidi-
zation and is illustrated in Figure 11.9(e). Elutriated particles are continuously
collected in a cyclone and recycled back to the inlet of the reactor. The FCC
process (fluidized catalytic cracking) used in many oil refineries is the most
important example of this type of fluidized reactor. The catalyst deactivates so
rapidly by coking that it survives one quick trip through a riser reactor. It is
then collected, regenerated, and recycled back to the inlet of the cracking
reactor. The regeneration step uses air to burn off the coke.

A well-defined bed of particles does not exist in the fast-fluidization regime.
Instead, the particles are distributed more or less uniformly throughout the reac-
tor. The two-phase model does not apply. Typically, the cracking reactor is
described with a pseudohomogeneous, axial dispersion model. The maximum
contact time in such a reactor is quite limited because of the low catalyst densi-
ties and high gas velocities that prevail in a fast-fluidized or transport-line
reactor. Thus, the reaction must be fast, or low conversions must be acceptable.
Also, the catalyst must be quite robust to minimize particle attrition.

11.3.3 Spouted Beds

A very different regime of fluidization is called spouting. Spouting can occur—
and is usually undesirable—in a normal fluidized bed if the gas is introduced
at localized points rather than being distributed evenly over the reactor cross
section. See Figure 11.10(a). The velocity in the spout is high enough to entrain
all particles, but they disengage in the low-velocity regions above the bed. This
causes circulation of particles with upward movement in the spout but with
motion that is generally downward in the bed. Contact times within the spout
are quite short, and little reaction occurs there. Thus, the freely spouted bed
in Figure 11.10(a) would show relatively low yields for a catalytic reaction.
In Figure 11.10(b), however, the gas is forced to turn around and flow cocur-
rently with the downward-moving particles. The reaction environment in this
region is close to that in a fixed-bed reactor, but the overall reactor is substan-
tially better than a fixed-bed reactor in terms of fluid–particle heat transfer and
heat transfer to the reactor walls. To a reasonable approximation, the reactor in
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Figure 11.10(b) can be modeled as a piston flow reactor with recycle. The fluid
mechanics of spouting have been examined in detail so that model variables such
as pressure drop, gas recycle rate, and solids circulation rate can be estimated.
Spouted-bed reactors use relatively large particles. Particles of 1mm (1000mm)
are typical, compared with 40–100mm for most fluidizable catalysts.

The spouting regime of fluidization is used for the fluid–solid noncatalytic
reactions, especially drying and combustion.

11.4 NONCATALYTIC FLUID–SOLID
REACTIONS

Cases where a solid directly participates in an overall reaction include the burn-
ing of solid fuels, the decoking of cracking catalyst, the reduction of iron ore
with hydrogen, and the purification of water in an ion-exchange bed. A unifying
aspect of all these examples is that the solid participates directly, appears in the
reaction stoichiometry, and will ultimately be consumed or exhausted. Often the
size and shape of the fluid–solid interface will change as the reaction proceeds.
Mass transfer resistances are frequently important, and the magnitude of
these resistances may also change with the extent of reaction. The diversity of
possible chemistries and physical phenomena is too great to allow comprehen-
sive treatment. We necessarily take a limited view and refer the reader to the
research literature on specific processes.

A glib generalization is that the design equations for noncatalytic fluid–solid
reactors can be obtained by combining the intrinsic kinetics with the appropriate
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FIGURE 11.10 Spouted-bed reactor with (a) normal gas outlet; (b) side outlet.
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transport equations. The experienced reader knows that this is not always pos-
sible, even for the solid-catalyzed reactions considered in Chapter 10, and is
much more difficult when the solid participates in the reaction. The solid surface
is undergoing change. See Table 11.6. Measurements usually require transient
experiments. As a practical matter, the measurements will normally include
mass transfer effects and are often made in pilot-scale equipment intended to
simulate a full-scale reactor.

Consider a gas–solid reaction of the general form

vAAþ vSS ! Products

Any of the following mass transfer resistances can be important:

Film diffusion: With a fast surface reaction on a nonporous particle, mass transfer
limitations can arise in the fluid phase.

Pore diffusion: With porous particles, pore diffusion is likely to limit reaction rates
at the internal surface.

Product layer diffusion: Many fluid-solid reactions generate ash or oxide layers
that impede further reaction.

Sublimation: Some solids sublime before they react in the gas phase. Heat transfer
can be the rate-limiting step.

Finally, of course, the surface reaction itself can be rate limiting.
A useful, semiempirical approach to noncatalytic surface reactions is to pos-

tulate a rate equation of the form

R A ¼ �Aka
nAi ð11:48Þ

where n¼ 1 or n¼ 0 are typical choices. Equation (11.48) does not address the
mechanism of the surface reaction but supposes that the rate will be propor-
tional to the exposed area and perhaps to the concentration of A in the gas
phase. The rate is specific to a given solid. The constant k and perhaps even n
change if the composition of the solid changes.

The case of n¼ 1 is a reasonable approximation for a great variety of cases,
while n¼ 0 covers another common situation where the reaction rate is limited
by the disengagement of molecules from the surface. R A has its usual interpre-
tation as moles formed per unit volume of reactor per unit time when Ai is the

TABLE 11.6 Examples of Fluid–Solid Noncatalytic Reactions

Particle geometry largely
unaffected by reaction

Particle geometry strongly
affected by reaction

Decoking of catalyst pellets Combustion of coal
Ion-exchange reactions Reduction of ore
Hydrogen storage in a metal lattice Production of acetylene from CaC2

Semiconductor doping Semiconductor etching
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surface area of the fluid–solid interface per unit volume of reactor. For single-
particle experiments, Ai will be the surface area and R Awill be in moles reacted
per unit time.

Example 11.13: Explore the suitability of Equation (11.48) for reflecting
various forms of mass transfer and kinetic limitations.

Solution: We consider, in turn, each possibility as being rate limiting. Most
of the cases use n¼ 1. For film diffusion control,

R A ¼ kgAiðas � aÞ
where as is the gas-phase concentration of component A just above the
reacting solid. When the film resistance is limiting, as � 0; and, with a
redefinition of constants, the reaction rate has the form of Equation (11.48).

If pore diffusion is controlling, we repeat the effectiveness factor calcula-
tions in Chapter 10. Equation (10.29) has the form of Equation (11.48), and
it includes both film resistance and pore diffusion.

Diffusion through a product layer can be treated like a film resistance. The
surface concentration as is measured inside the ash layer at the unburned sur-
face of the particle. If the ash thickness is constant and as � 0, then the rate
has the form of Equation (11.48). The ash thickness will probably increase
with time, and this will cause the rate constant applicable to a single particle
to gradually decline with time.

Sublimation, dissolution, and ablative processes in general can be fit using
n¼ 0 in Equation (11.48). The actual reaction, if there is one, occurs in the
fluid phase with kinetics independent of Equation (11.48).

A strict kinetic limitation based on the gas-phase reactant can be modeled
using a variable value for n although experience shows that a first order rate
expressions with n¼ 1 often provides an excellent fit to experimental data
regardless of the underlying reaction mechanism. A site-competition model
such as Equation (10.12) can also be used.

The analysis of fluid–solid reactions is easier when the particle geometry is
independent of the extent of reaction. Table 11.6 lists some situations where
this assumption is reasonable. However, even when the reaction geometry is
fixed, moving boundary problems and sharp reaction fronts are the general
rule for fluid–solid reactions. The next few examples explore this point.

Example 11.14: Model the movement of the reaction front in an ion-
exchange column.

Solution: We suppose that the mass transfer and diffusion steps are fast
compared with bulk transport by convection. This is the design intent for
ion-exchange columns. The reaction front moves through the bed at a speed
dependent only on the supply of fluid-phase reactants. Assuming piston
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flow in a constant-diameter column, the location of the reaction front is
given by

zRðtÞ ¼ 1

CA

Z�
0

ainðtÞ �uuðtÞ dt ð11:49Þ

Here, CA is the capacity of the ion-exchange resin measured in moles of A per
unit volume. The integral in Equation (11.49) measures the amount of
material supplied to the reactor since startup. Breakthrough occurs no later
than zR¼L, when all the active sites in the ion-exchange resin are occupied.
Breakthrough will occur earlier in a real bed due to axial dispersion in the
bed or due to mass transfer or reaction rate limitations.

Example 11.15: Coke formation is a major cause of catalyst deactivation.
Decoking is accomplished by periodic oxidations in air. Consider a micro-
porous catalyst that has its internal surface covered with a uniform layer of
coke. Suppose that the decoking reaction is stopped short of completion.
What is the distribution of residual coke under the following circumstances:

(a) The oxidation is reaction rate limited?

(b) The oxidation is pore diffusion limited?

Solution: For part (a), oxygen has access to the entire internal surface. We
expect uniform combustion and a gradual reduction in coke thickness
throughout the catalyst pellet. If a completely clean surface is required for
catalytic activity, partial decoking will achieve very little.

For part (b), the reaction is fast, and oxygen is consumed as soon as it con-
tacts carbon. Thus, there are two zones in the pellet. The outer zone contains
oxygen and no carbon. The inner zone contains carbon at its original thick-
ness and no oxygen. The reaction is confined to a narrow front between the
zones. The rate at which the front advances is determined by the rate of diffu-
sion of oxygen and the extent of carbon loading in the pores. It can be
modeled using an effective diffusivity model such as Equation (10.33). The dif-
fusional resistance occurs in the carbon-free spherical shell that starts at the
external surface and ends at the reaction front. The size of this shell increases
with time so that the diffusional resistance increases and the reaction rate
decreases. The interior temperature of the catalyst particle may substantially
exceed the bulk temperature, but this does not increase the reaction rate
because of the diffusion limitation. The high temperature does increase the
risk of catalyst deactivation through sintering. Partial oxidations in the diffu-
sion-controlled regime give partial restoration of catalyst activity since some
of the surface is completely cleaned. Decoking has been studied extensively
because of its importance to the chemical industry. The two cases considered
in this example are known as the uniform and shell progressive models, respec-
tively. For further details see Lee.1
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Example 11.16: Model the consumption of a solid when the gas-phase
reactant is available at constant concentration and the reaction products are
gaseous.

Solution: With a constant, Equation (11.48) written for the solid component
becomes

R S ¼ �Ska
nAi ¼ �Sk

0Ai

Take the single particle viewpoint so that Ai is the surface area of the
particle and R S is in moles per hour. The volumetric consumption rate of
solid is

dVS
dt
¼ �Sk

0Ai
ð�molarÞS

ð11:50Þ

The ratio VS/Ai is the linear burn rate. We suppose it to be constant. Thus,

dzS
dt
¼ �Sk

0

ð�molarÞS
¼ k00 ð11:51Þ

The direction of the burn is normal to the surface at every point that is in
contact with the gas. Thus, zS is measured perpendicularly to the reaction
front. It is best measured using a planar solid so that Ai is constant, but it
can be inferred from short-term experiments on spherical particles or even
from careful multiparticle experiments.

The concept of linear burning rate is not confined to the reaction of a gas with
a solid. The fuses on fireworks are designed to burn at a constant linear rate. The
flame front on solid rocket fuel progresses at a constant linear rate. Both exam-
ples have two reactants (a fuel and an oxidizer) premixed in the solid. Heat
transfer limits the burning rate. These materials are merely fast burning.
Unlike explosives, they not do propagate a sonic shockwave that initiates further
reaction.

When solid particles are subject to noncatalytic reactions, the effects of the
reaction on individual particles are derived and then the results are averaged
to determine overall properties. The general techniques for this averaging are
called population balance methods. They are important in mass transfer opera-
tions such as crystallization, drop coagulation, and drop breakup. Chapter 15
uses these methods to analyze the distribution of residence times in flow systems.
The following example shows how the methods can be applied to a collection of
solid particles undergoing a consumptive surface reaction.

Example 11.17: Uniformly sized spheres are fed to a CSTR where they
undergo a reaction that consumes the surface at a constant rate of k00, in
meters per second. What fraction of the initial population will survive the
reactor and what will be the average size upon exiting the reactor?
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Solution: The radius of a single particle decreases with time according to
the equation

RðtÞ ¼ R0 � k00t ð11:52Þ

provided that t < R0=k
00: There is no unique answer for the average size

and survival probability since the population statistics depend on the
distribution of time spent in the reactor by the various particles. We
consider two cases here.

The piston flow case assumes that the particles spend the same time in the
reactor, �tt, even though the fluid phase is well mixed. This case resembles the
mass transfer situation of piston flow in contact with a CSTR as considered
in Section 11.1.4. The particles leave the reactor with size R0 � k00 �tt: None
will survive if �tt > R0=k

00: Note that �tt is the mean residence time of the solid
particles, not that of the fluid phase.

The other case assumes that the fluid particles are well mixed. Speci-
fically, assume that they have an exponential distribution of residence times
so that

f ðtÞ ¼ 1

�tt
exp � t

�tt


 �
ð11:53Þ

where f(t)dt is the fraction of the particles remaining in the reactor for a
time between t to tþ dt seconds. The reasonableness of this assumption
for a phase within a CSTR will become apparent in Chapter 15. Again, �tt is
the mean residence time for the particles. The fraction of particles that
survive the reactor is equal to the fraction that has a residence time less
tmax ¼ R0=k

00:

Fraction surviving ¼
Ztmax
0

f ðtÞ dt ð11:54Þ

The average size of the surviving particles is obtained by weighting RðtÞ by
the differential distribution function and integrating over the range of
possible times:

�RR ¼
Ztmax
0

RðtÞf ðtÞ dt ð11:55Þ

Equations (11.54) and (11.55) apply to any distribution of particle
residence times provided the linear consumption rate is constant. They do not
require that the fluid phase is perfectly mixed, only that the consumption
rate is strictly controlled by the surface reaction. For the special case of
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an exponential distribution of residence times per Equation (11.53), some
calculus gives

Fraction surviving ¼ 1� expð�tmax=�tt Þ
And the mean size of these surviving particles is

�RR ¼ ðR0 � k00 �tt Þ½1� expð�tmax=�tt Þ� þ k00tmax expð�tmax= �tt Þ

If tmax ¼ R0=k
00 ¼ �tt, then 63% of the particles survive their sojourn through

the reactor, compared with none for the piston flow case. The average size of
the surviving particles is 0.37R0.

11.5 REACTION ENGINEERING FOR
NANOTECHNOLOGY

Nanotechnology refers to electrical, optical, and mechanical devices, sometimes
with biological components, with sizes that range from a few hundred
nanometers down to the size of individual molecules. It is a burgeoning field
of diverse methodologies. This section highlights a few uses of chemical reac-
tions to fabricate such devices.

11.5.1 Microelectronics

If reinvented today, microelectronics would be called nanoelectronics since sizes
have been pushed well below 1 mm. The fabrication of modern electronic devices,
such as large-scale integrated circuits, involves an elaborate sequence of chemi-
cal operations. A typical process starts with a wafer of high-purity silicon that
has been cut from a single crystal. Electronic functionality is achieved by
creating a multilayer structure in and on the surface of the wafer in a precise
geometric pattern. The pattern is laid down by a process known as photolitho-
graphy using the following sequence of steps:

1. The surface is coated with a polymer, typically by spin coating.

2. An image is formed on the surface using hard-UV or soft x-rays. If the
polymer is a photoresist, it cross-links in those areas exposed to radiation.
If the polymer is a negative photoresist, it degrades in those areas exposed
to radiation.

3. A solvent removes the polymer that is not cross-linked (or that has been
degraded) and thus exposes the underlying surface.

4. The freshly exposed surface is treated with a chemical agent, or dopant, to
modify its electrical properties (e.g., to create transistors).
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5. The remaining polymer is removed using a more aggressive solvent.

This procedure, with minor variations, is repeated dozens of times in the man-
ufacture of a semiconductor chip. The chemical treatment can be carried out
using reagents in a liquid phase, but gas-phase treatment by a process known
as chemical vapor deposition (CVD) has become more important as individual
features in the integrated circuit become smaller.

Electrical connections are required between the various layers that are
deposited on a wafer. One method for providing these connections is to pattern
the surface using photolithography. Channels are then cut into the silicon
substrate using chemical etching. A conductor such as copper will subsequently
be deposited in the channels. Straight-sided channels that have a width equal
to the opening in the photoresist are desired, but experience shows that the chan-
nel will undercut the photoresist by an appreciable distance. See Figure 11.11.
The reason for this is found in Equation (11.51). The etchant is an aggressive
chemical that reacts with the solid. The reaction proceeds in a direction
everywhere normal to the existing surface so that the walls of the channel
will be attacked at the same rate as the base. Since there are two walls
being attacked simultaneously, the width-to-depth ratio for a deep channel
is 2. This limitation and the smaller sizes of modern devices is leading to the
replacement of chemical etching by more direct techniques such as ion beam
etching.

From a reaction engineering viewpoint, semiconductor device fabrication is a
sequence of semibatch reactions interspersed with mass transfer steps such as
polymer dissolution and physical vapor deposition (e.g., vacuum metallizing
and sputtering). Similar sequences are used to manufacture still experimental
devices known as NEMS (for nanoelectromechanical systems).

�����������
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FIGURE 11.11 Etching of silicon wafer to create interconnections: (a) desired profile achievable by
ion bombardment; (b) profile obtained by chemical etching.
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11.5.2 Chemical Vapor Deposition

Chemical vapor deposition is distinguished from physical vapor deposition pro-
cesses by the use of a chemical reaction, usually a decomposition, to create the
chemical species that is deposited. An example important to the microelectronics
industry is the formation of polycrystalline silicon by the decomposition of
silane:

SiH4 ! Siþ 2H2

The decomposition occurs on the surface and has an observed2 rate of
the form

R ¼ k½SiH4�
1þ kA½SiH4� þ kB½H2�1=2

This form suggests a Hougen and Watson mechanism in which silane and hydro-
gen atoms occupy sites that must also be used by the silicon being deposited. The
primary disposition reaction can be complemented by dopant reactions invol-
ving compounds such as AsH3, PH3, and B2H6, which deposit trace amounts
of the dopant metals in the silicon lattice.

A similar reaction,

CH4 ! Cþ 2H2

is used in the diamond CVD process. The decomposition is accomplished using
electrically heated filaments, microwave plasma discharge, or direct current arc
discharge. Polycrystalline diamond is deposited as a thin, hard film.

Organic coatings are also possible. The classic example is the paralene process
where a cyclic dimer of p-xylene is thermally decomposed at about 850�C to
form p-xylene free radicals that polymerize into a conformal film when deposited
on a solid surface. Other examples of polymerization from a deposited vapor
have been developed, and advocates believe that this technology will replace
spin coating of silicon wafers.

Manufacturing economics require that many devices be fabricated simulta-
neously in large reactors. Uniformity of treatment from point to point is extre-
mely important, and the possibility of concentration gradients in the gas phase
must be considered. For some reactor designs, standard models such as axial dis-
persion may be suitable for describing mixing in the gas phase. More typically,
many vapor deposition reactors have such low L/R ratios that two-dimensional
dispersion must be considered. A pseudo-steady model is

�uu
@a

@z
¼ Dz @

2a

@z2
þDr 1

r

@a

@r
þ @2a

@r2

� �
þR A ð11:56Þ

This model has been applied to vacuum coaters where the material being vapor
deposited is evaporated from one or more point sources. Note that Dz and Dr
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are empirical parameters that account for both convection and diffusion. Rotary
vacuum coaters avoid any dependence in the �-direction by rotating the sub-
strate as it is coated. Solution techniques for Equation (11.56) were outlined
in Section 9.5.

11.5.3 Self-Assembly

The creation of chemical systems that arrange molecules in a specified form is
touted as the area of chemical synthesis and reaction engineering that will pro-
vide the greatest advances in materials science and engineering. The touts are
likely correct. This area is still too young to be treated in a systematic fashion.
A general observation is that the continuum mechanical models used in this
book and as the basis for essentially all engineering designs do not hold at the
molecular scale. Statistical mechanical methods such as molecular dynamics,
dissipative particle dynamics, and Ising-type models are being used as research
tools. The conversion of these research tools into reliable design methodologies
is a remaining challenge for the chemical reaction engineer.

11.6 SCALEUP OF MULTIPHASE REACTORS

The design equations presented in this chapter are independent of scale. The var-
ious parameters embedded in them are highly scale-dependent. The parameter
estimates are almost entirely empirical, and this means that the reactor designer
must depend on literature correlations if anything approaching a priori design is
attempted. With few exceptions, the a priori design of a multiphase system is
highly uncertain and rarely attempted. We turn instead to the problem of scaling
up a multiphase pilot reactor. How can experiments on a small unit generate
confidence in a proposed design?

11.6.1 Gas–Liquid Reactors

Small multiphase reactors are needed to estimate the reaction kinetics. The
concept of intrinsic kinetics applies to gas–liquid reactors, but the elimination
of all mass transfer resistances may not be possible, even at the small scale.
Thus, the reaction kinetics may be confounded with mass transfer limitations.
These confounded results need to be obtained using a reactor large enough
that literature correlations for klAi can be applied. Direct measurement of klAi
using one of the methods in Section 11.1.2 is highly desirable as well. There
are numerous literature correlations for mass transfer coefficients and gas
phase holdups in gas–liquid reactors. For stirred tanks, there are also correla-
tions for agitator power in both the gassed and ungassed states. Compare the
pilot-plant results with the values predicted from these correlations. If they
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agree and if the literature correlations have an experimental base that includes
large equipment, a scaleup using the correlations is likely to succeed.

If klAi is known with good accuracy, it may be possible to back out the intrin-
sic kinetics using the methods of Section 7.1. Knowing the intrinsic kinetics may
enable a scaleup where klAi(a

�
l � al) is different in the large and small units.

However, it is better to adjust conditions in the pilot reactor so that they are
identical to those expected in the larger reactor. Good pilot plants have this ver-
satility. The new conditions may give suboptimal performance in the pilot unit
but achievable performance in the full-scale reactor.

Mass transfer is generally improved in deep vessels because of the higher par-
tial pressure of the gaseous component being transferred. The price for the
improvement is the greater pumping energy needed to sparge the gas at the
greater depth. Experiments run in the pilot unit at various liquid levels can be
used to test this concept. The agitator speed should be varied over a wide
range. If performance improves with increasing depth, scaleup to a large
vessel should be reasonable. Another possible test method is to pressurize the
vessel to increase the partial pressure of the component being transferred or
to enrich the entering gas (e.g., by using, say, 30% oxygen rather than atmo-
spheric oxygen). If performance improves, scaleup is likely to succeed.
Alternatively, the tricks just mentioned may be designed into the larger unit
as a means of overcoming any scaleup problems.

Does increased agitator speed improve performance in the pilot plant? If so,
there is a potential scaleup problem. Installing a variable-speed drive with a
somewhat over-sized motor can provide some scaleup insurance, the cost of
which is apt to be minor compared with the cost of failure.

Example 11.18: Consider a gas-sparged CSTR with reaction occurring
only in the liquid phase. Suppose a pilot-scale reactor gives a satisfactory
product. Propose a scaleup to a larger vessel.

Solution: Ideally, the scaleup will maintain the same inlet concentrations
for the two phases, the same relative flow rates and holdups for the two
phases, and the same ratio of gas transferred to liquid throughput. It is also
necessary to maintain a constant residence time in the liquid phase. It is
simple to set the flow rates:

S ¼ Q2

Q1

� �
l

¼ Q2

Q1

� �
g

ð11:57Þ

We would also like the following to be true, but their achievement is less direct
than for the flow rates.

S ¼ V2

V1

� �
l

¼ V2

V1

� �
g

¼ V2

V1
ð11:58Þ
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VklAiða�l � alÞ
Ql

� �
2

¼ VklAiða�l � alÞ
Ql

� �
1

ð11:59Þ

We can operate at the required liquid volume—say, by putting the reactor on
load cells—but the gas-phase volume and thus the total volume may change
upon scaleup. Correlations are needed for the gas-phase holdup and for
klAi. A typical correlation for klAi is that by Middleton:3

klAi ¼ CðPg=VlÞ0:7ð �uusÞ0:6g
where C is a constant, Pg is the agitator power in the gassed condition, and
ð �uusÞg is the superficial gas velocity. It was obtained by experiments on only
one agitator in one tank, but it is a place to start. Suppose the pilot-scale
vessel is scaled using geometric symmetry. Then Ac scales as S2/3 and
ð �uusÞg¼Q/Ac scales as S1/3. This fact imposes a limit on scaleup since scaling
by too large a factor could blow the water out of the vessel. Consider
S¼ 64 so that ð �uusÞg increases by a factor of 4 upon scaleup. Can the pilot
vessel accept a factor of 4 increase in the sparging rate and what does that
do to the holdup? Alternatively, can the gas rate in the small vessel be
lowered without too much impact on product quality? Suppose for the
moment that experiments at the increased rate indicate no problem and
that it causes only a minor increase in holdup. Then a geometrically similar
scaleup will satisfy Equation (11.58), and Equation (11.59) will be satisfied
if klAi can be held constant upon scaleup. (Actually, a�g will increase upon
scaleup due to the greater liquid head so klAi can decrease, but this will
usually be a small effect.) The Middleton correlation says that klAi will be
constant if

ðPg=VlÞ2
ðPg=VlÞ1

� �0:7 ½ð �uusÞg�2
½ð �uusÞg�1

" #0:6

¼ 1

The factor of 4 increase in ð �uusÞg allows ðPg=VlÞ2 to decrease to 0:3ðPg=VlÞ1.
This suggests that the installed horsepower for the full-scale plant would be
about a third of that calculated for a conservative scaleup with constant
power per volume. This will have a major impact on cost and is too large
to ignore. The engineer can do any of the following:

1. Search the literature for correlations for klAi and holdup to see if they pre-
dict a similar scaleup.

2. Operate the pilot plant over a wide range of agitator speeds and gas rates to
confirm operability and to develop correlations for klAi and holdup applic-
able to the particular geometry of the pilot reactor.

3. Contact mixing equipment vendors for a recommended scaleup. They have
proprietary correlations and extensive experience on similar scaleups. They
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will also guarantee success, although their liability will be limited to the
value of the equipment and not for consequential damages.

Probably all three things should be done.

11.6.2 Gas–Moving-Solids Reactors

As mentioned in Section 11.3, fluidized-bed reactors are difficult to scale. One
approach is to build a cold-flow model of the process. This is a unit in which
the solids are fluidized to simulate the proposed plant, but at ambient tempera-
ture and with plain air as the fluidizing gas. The objective is to determine the gas
and solid flow patterns. Experiments using both adsorbed and nonadsorbed
tracers can be used in this determination. The nonadsorbed tracer determines
the gas-phase residence time using the methods of Chapter 15. The adsorbed
tracer also measures time spent on the solid surface, from which the contact
time distribution can be estimated. See Section 15.4.2.

PROBLEMS

11.1. Henry’s law constant, KH, for carbon dioxide in water at 30�C is 11.1
107mm of Hg per mole fraction. What is the dimensionless value for
KH so that al and ag have the same units?

11.2. Complete Example 11.4 for the case where Vg/Qg¼ 20 s. Solve the
governing ODEs analytically or numerically as you prefer. How does
this more rigorous approach change the 95% response time calculated
in Example 11.3?

11.3. A reactive gas is slowly bubbled into a column of liquid. The bubbles are
small, approximately spherical, and are well separated from each other.
Assume Stokes’ law and ignore the change in gas density due to eleva-
tion. The gas is pure and reacts in the liquid phase with first-order
kinetics. Derive an expression for the size of the bubbles as a function
of height in the column. Carefully specify any additional assumptions
you need to make.

11.4. Example 11.5 treats a reaction that is catalyzed by a stagnant liquid
phase. Find the outlet concentration of component A for the limiting
case of high catalytic activity, k!1: Repeat for the limiting case of
high mass transfer, klAi !1:

11.5. Example 11.6 ignored the accumulation term for al(t) in Equation
(11.11). How does the result for al change if this term is retained?
Consider only the asymptotic result as t!1:

11.6. Confirm that the solutions in Examples 11.10 and 11.11 satisfy an overall
material balance.

11.7. Find an analytical solution for the pair of ODEs in Example 11.10 for
(a) the (easy) cocurrent case; (b) the countercurrent case.
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11.8. The low-pressure chemical vapor deposition of silicon nitride on silicon
involves two gaseous reactants: dichlorosilane and ammonia. The fol-
lowing reactions are believed to be important under typical conditions
of P¼ 1 torr and T¼ 1000–1200K:

SiH2Cl2þ 4
3NH3 �! 1

3Si3N4 þ 2HClþ 2H2 ðIÞ

SiH2Cl2
���! ��� SiCl2 þH2 ðIIÞ

SiCl2 þ 4
3NH3 �! 1

3Si3N4 þ 2HClþH2 ðIIIÞ
2NH3 �! N2 þ 3H2 ðIVÞ

Suppose the reactant gases are supplied continuously in large excess and
flow past a single wafer of silicon. By performing multiple experiments,
the growth of the nitride layer can be determined as a function of
time and reactant concentrations. Develop an experimental program
to determine rate expressions for Reactions (I) through (IV). Note
that Reactions (I), (III), and (IV) are heterogeneous while Reaction
(II) occurs in the gas phase. It is possible to include N2, H2, and HCl
in the feed if this is useful. Exiting gas concentrations cannot be
measured.

11.9. The shell progressive model in Example 11.15, part (b) envisions a mass
transfer limitation. Is the limitation more likely to be based on oxygen
diffusing in or on the combustion products diffusing out?

11.10. Determine the position of the reaction front in the diffusion-limited
decoking of a spherical cracking catalyst.
Hint: Use a version of Equation (11.49) but correct for the spherical
geometry and replace the convective flux with a diffusive flux.

11.11. Example 11.14 assumed piston flow when treating the moving-front phe-
nomenon in an ion-exchange column. Expand the solution to include an
axial dispersion term. How should breakthrough be defined in this case?

11.12. The transition from Equation (11.50) to Equation (11.51) seems to
require the step that dVS=Ai ¼ d½VS=Ai� ¼ dzS: This is not correct in
general. Is the validity of Equation (11.51) limited to situations where
Ai is actually constant?

11.13. An overly simplified model of fluidized-bed combustion treats the solid
fuel as spherical particles freely suspended in upward-flowing gas.
Suppose the particles react with zero-order kinetics and that there is
no ash or oxide formation. It is desired that the particles be completely
consumed by position z¼L. This can be done in a column of constant
diameter or in a column where the diameter increases or decreases with
increasing height. Which approach is better with respect to minimizing
the reactor volume? Develop a model that predicts the position of
the particle as a function of time spent in the reactor. Ignore
particle-to-particle interactions.
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11.14. Suppose the pilot-scale stirred tank of Example 11.18 is at the ragged
edge of acceptable operation so that ð �uusÞg cannot be increased upon
scaleup. Neither can Qg=Ql be decreased. What can be done to avoid
a scaleup limitation? Your proposed solution should utilize the existing
pilot reactor for experimental confirmation.
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CHAPTER 12

BIOCHEMICAL REACTION
ENGINEERING

Biochemical engineering is a vibrant branch of chemical engineering with a
significant current presence and even greater promise for the future. In terms
of development, it can be compared with the petrochemical industry in the
1920 s. Despite its major potential, biochemical engineering has not yet been
integrated into the standard undergraduate curriculum for chemical engineers.
This means that most graduates lack an adequate background in biochemistry
and molecular biology. This brief chapter will not remedy the deficiency.
Instead, it introduces those aspects of biochemical reactor design that can be
understood without detailed knowledge of the underlying science. A chemical
engineer can make contributions to the field without becoming a biochemist
or molecular biologist, just as chemical engineers with sometimes only rudimen-
tary knowledge of organic chemistry made contributions to the petrochemical
industry.

Proteins are key ingredients to life and to biochemistry. They are linear poly-
mers of amino acids. The general formula for an amino acid is

H2N�C
j
COOH

j
R

�H

where R represents one of twenty different radicals found in nature. The amino
and carboxy groups condense and eliminate water to form proteins. When pro-
teins are formed by a living cell, the sequence of amino acids is dictated by the
DNA within the cell. The term genetic engineering refers to manipulation of
DNA to alter the recipe. Despite the name, genetic engineering is not an engi-
neering discipline, but is a branch of molecular biology similar in spirit to
organic synthesis. This chapter is not concerned with genetic engineering as
such. Biochemical engineering (or sometimes agricultural engineering) comes
later when genetically engineered organisms are to be grown in mass. Many cur-
rent applications of biochemical engineering are based on naturally occurring
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organisms and biocatalysts. The products range from small, simple molecules
such as methane and ethanol, to moderately complex compounds such as peni-
cillin, to therapeutic proteins such as human growth factor, to whole cells such
as yeast, and potentially to multicell aggregates such as skin. Some of these com-
pounds—e.g., ethanol and penicillin—can be produced by traditional organic
synthesis. Thus, a working distinction between biochemical reaction engineering
and ‘‘ordinary’’ reaction engineering is the involvement of biocatalysts, specifi-
cally proteins having catalytic activity and known as enzymes.

12.1 ENZYME CATALYSIS

Enzymes are proteins that catalyze reactions. Thousands of enzymes have been
classified and there is no clear limit as to the number that exists in nature or that
can be created artificially. Enzymes have one or more catalytic sites that are
similar in principle to the active sites on a solid catalyst that are discussed in
Chapter 10, but there are major differences in the nature of the sites and in
the nature of the reactions they catalyze. Mass transport to the active site of
an enzyme is usually done in the liquid phase. Reaction rates in moles per
volume per time are several orders of magnitude lower than rates typical of
solid-catalyzed gas reactions. Optimal temperatures for enzymatic reactions
span the range typical of living organisms, from about 4�C for cold-water
fish, to about 40�C for birds and mammals, to over 100�C for thermophilic bac-
teria. Enzymatic reactions require very specific molecular orientations before
they can proceed. As compensation for the lower reaction rates, enzymatic reac-
tions are highly selective. They often require specific stereoisomers as the reac-
tant (termed the substrate in the jargon of biochemistry) and can generate
stereospecific products. Enzymes are subject to inhibition and deactivation
like other forms of catalysis.

12.1.1 Michaelis-Menten and Similar Kinetics

Suppose the reaction S!P occurs using an enzyme as a catalyst. The following
reaction mechanism is postulated:

Sþ E ���! ��� SE
½SE�
s½E� ¼ K

SE���!Pþ E R ¼ k½SE�

where s denotes the substrate concentration, E denotes the active site, and SE
denotes the adsorbed complex. This mechanism is somewhat different than
that used for gas–solid catalysis since there is no explicit desorption step. In
essence, product desorption is assumed to be instantaneous. The site balance is

[SE] þ [E]¼E0
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Substituting for [SE] and [E] gives

R

k
þ R

ksK
¼ E0

and

R ¼ E0ks

1=K þ s ¼
k0s

1þ kSs ð12:1Þ

which is the functional form expected when there is competition for active
sites. Just as for gas–solid reactions, the reaction rate for a first-order reaction
depends linearly on the amount of catalyst and hyperbolically on the reactant
concentration. See Figure 12.1(a). Biochemists usually express Equation (12.1) as

R ¼ E0ks

KM þ s ¼
Rmaxs

KM þ s ð12:2Þ

��������� 	
�	�������
� �

��������� 	
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FIGURE 12.1 Effects of substrate (reactant) concentration on the rate of enzymatic reactions: (a)
simple Michaelis-Menten kinetics; (b) substrate inhibition; (c) substrate activation.
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where KM is called the Michaelis constant. Either of Equations (12.1) and (12.2)
contain two adjustable constants that must be found by fitting experimental
data. Their form is equivalent to Hougen and Watson (or Langmuir-
Hinshelwood) kinetics for the gas–solid reaction S! P with negligible adsorp-
tion, but the Michaelis-Menten equation was derived first.

Simple Michaelis-Menten kinetics exhibit the saturation behavior
shown in Figure 12.1(a). Enzyme systems can also exhibit the more complex
behavior shown in Figure 12.1(b) and 12.1(c). Figure 12.1(b) illustrates substrate
inhibition, where high reactant concentrations lead to a decrease in reaction
rate. The sigmoidal rate curve shown in Figure 12.1(c) illustrates substrate
activation. These phenomena can be modeled with variants of Michaelis-
Menten kinetics that involve two or more substrate molecules being
adsorbed at a single site or enzyme molecules that have two or more interacting
sites.

Example 12.1: Suppose an enzymatic reaction has the following
mechanism:

Sþ E ���! ��� SE
½SE�
s½E� ¼ K

Sþ SE ���! ��� S2E
½S2E�
s½SE� ¼ K2

SE ���! Pþ E R ¼ k½SE�

Determine the functional form of the rate equation.

Solution: The total concentration of active sites is

½S2E� þ ½SE� þ ½E� ¼ E0

The two equilibrium relations and the rate expression allow the unknown
surface concentrations [S2E], [SE], and [E] to be eliminated. The result is

R ¼ E0ks

1=K þ sþ K2s2
ð12:3Þ

This equation gives R ð0Þ ¼ 0, a maximum at s ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KM=K2

p
, and R ð1Þ ¼ 0:

The assumed mechanism involves a first-order surface reaction with
inhibition of the reaction if a second substrate molecule is adsorbed.
A similar functional form for R ðsÞ can be obtained by assuming a second-
order, dual-site model. As in the case of gas–solid heterogeneous catalysis,
it is not possible to verify reaction mechanisms simply by steady-state rate
measurements.
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Example 12.2: Suppose the reaction mechanism is

Sþ E ���! ��� SE
½SE�
s½E� ¼ K

Sþ E ���! ��� S2E
½S2E�
s½E� ¼ K2

SE ���! Pþ E R I ¼ k½SE�
S2E ���! SEþ Pþ E R II ¼ k2½S2E�

Determine the functional form for R ðsÞ:
Solution: This case is different than any previously considered site models
since product can be formed by two distinct reactions.

The overall rate is

R P ¼ R I þR II ¼ k½SE� þ k2½S2E�

The site balance is the same as in Example 12.1. Eliminating the unknown
surface concentrations gives

R P ¼ E0ðksþ k2K2s
2Þ

1=K þ sþ K2s2
ð12:4Þ

As written, this rate equation exhibits neither inhibition nor activation.
However, the substrate inhibition of Example 12.1 occurs if k2¼ 0, and
substrate activation occurs if k¼ 0.

Second-order enzymatic reactions require two adsorption events at the same
site. For the reaction A þ B! P, there may be a compulsory order of adsorp-
tion (e.g., first A, then B) or the two reactants may adsorb in a random order.
Different assumptions lead to slightly different kinetic expressions, but a general
form with theoretical underpinnings is

R ¼ k0ab
1þ kAaþ kB þ kABab ð12:5Þ

In summary, the simple Michaelis-Menten form of Equation (12.1) is usually
sufficient for first-order reactions. It has two adjustable constants. Equation
(12.4) is available for special cases where the reaction rate has an interior max-
imum or an inflection point. It has three adjustable constants after setting either
k2¼ 0 (inhibition) or k¼ 0 (activation). These forms are consistent with two
adsorptions of the reactant species. They each require three constants. The gen-
eral form of Equation (12.4) has four constants, which is a little excessive for a
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first-order reaction. The general form for a reaction of the A þ B ! P type,
Equation (12.5), also requires four constants, although it is possible that one
or two of them will be zero.

The temperature dependence of enzymatic reactions is modeled with an
Arrhenius form for the main rate constant k0: The practical range of operating
temperatures is usually small, but the activation energies can be quite large.
Temperature dependence of the inhibition constants can usually be ignored.

12.1.2 Inhibition, Activation, and Deactivation

Reactant molecules cause the substrate inhibition and activation discussed in
Section 12.1.1. These effects and deactivation can also be caused by other mole-
cules and by changes in environmental conditions.
Reversible inhibition ceases when the inhibiting molecule is removed from the

system. The molecules can be eliminated from the feed in a flow system or from
a batch reaction by a separation process such as dialysis. Two kinds of reversible
inhibition are distinguished. Competitive inhibition occurs when an inhibitor
molecule occupies a site before it is occupied by a substrate molecule. The
assumed mechanism is

I þ E ���! ��� IE

Noncompetitive inhibition occurs when the inhibiting molecule is adsorbed after
the substrate molecule has been absorbed. The assumed mechanism is

I þ SE ���! ��� ISE

The two forms of inhibition can occur together. Their combined effects are
modeled by changing the denominator of the rate equation. For an irreversible,
first-order reaction, a suitable rate equation is

R ¼ k0s
1þ kSsþ kI i þ kSI si ð12:6Þ

where kSI¼ 0 for purely competitive inhibition and kI¼ 0 for purely non-
competitive inhibition.

Some enzymes require cofactors to activate catalysis. Typical cofactors are
metal atoms, ammonia, and small organic molecules that associate with the
enzyme and help to structure the catalytic site. To conduct an enzymatic reac-
tion, the necessary cofactors must be supplied along with the substrate and
the enzyme. In cell metabolism, a variety of these cofactors act in conjunction
with inhibitors to control the metabolic rate.
Deactivation generally refers to a change in the physical structure of the

enzyme, often caused by an increase in temperature. Some of the amino acids
in a protein chain are hydrophobic. Others are hydrophilic. Proteins in solution
fold into elaborate but characteristic shapes to increase like-to-like interactions
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within the polymer and between the polymer and the solvent. The folded state is
the native or natural state, and it is the state in which enzymes have their catalytic
activity. At high temperatures, random thermal forces disrupt the folded chain
and destroy the catalytic sites. Very high temperatures will cause coagulation or
other structural and chemical changes. This leads to irreversible deactivation, and
the proteins are denatured.Mammalian enzymes typically deactivate at tempera-
tures above 45�C, but some enzymes continue to function at 100�C. Lower tem-
peratures can cause unfolding without permanent damage to the enzyme.
Reversible deactivation caused by relatively low temperatures or by short times
at high temperatures can be reversed just by lowering the temperature.

Deactivation of both the reversible and irreversible varieties can have chemi-
cal causes such as pH changes. If the pH change is small, it can sometimes be
modeled using an inhibition term in the Michaelis-Menten equation. Larger
changes in pH can reversibly alter the configuration of the enzyme, and still
larger changes may destroy it. Enzymes can be deactivated by other enzymes
or by chemical agents such as ozone and chlorine.

12.1.3 Immobilized Enzymes

Some enzymes are cheap enough to be used in one-time applications such as
washing clothes or removing blood stains from leather. Others are so expensive
that they must be recycled or otherwise reused. One method to achieve this is put
an ultrafilter, operating in the cross-flow mode, on the discharge stream of a con-
tinuous process. See Figure 12.2. Small molecules pass through the filter, but
large molecules such as the enzyme are retained and recycled. The enzymes
can also be entrapped within a porous solid, e.g., within the large-pore side of
an asymmetric membrane. These are examples of immobilization by physical
entrapment.
Immobilization by adsorption onto a surface such as activated carbon or to an

ion-exchange resin gives a reversible and relatively weak bond, but this can be
sufficient to increase the retention time in a flow system to acceptable levels.
Recall Section 10.6 where it is shown that the residence time of an adsorbed
species can be much larger than that of the mobile phase, in essence giving
more time for catalysis.
Immobilization by chemical bonding gives strong, irreversible attachments to

a solid support. The bonds are normally covalent but they can be electrostatic.
Typical supports are functionalized glass and ceramic beads and fibers. Enzymes
are sometimes cross-linked to form a gel. Occasionally, enzymes can be floccu-
lated while retaining catalytic activity.

All these immobilization techniques run the risk of altering activity compared
with the native enzyme. Improved activity is occasionally reported, but this is
the exception. The immobilization techniques listed above are in approximate
order of loss in activity. Physical entrapment normally causes no change.
Adsorption will distort the shape of the molecule compared with the native
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state. The effect of covalent bonding depends on the location of the bond relative
to an active site. If remote from the site, it may have no effect. The chemical
nature of the support can affect activity. Cross-linking requires two covalent
attachments per enzyme molecule, and is thus likely to distort the shape of
the enzyme to the point that catalytic activity is lost. Such distortions are
even more likely, but not inevitable, for coagulated or flocculated enzymes. On
the positive side, immobilization tends to stabilize enzymes against deactivation.

Immobilization can give rise to mass transfer limitations that do not occur for
freely suspended enzymes in their native state. As a formality, these limitations
can be incorporated into an effectiveness factor:

	 ¼ Observed reaction rate

Rate when enzyme is in its native state
ð12:7Þ

This definition recognizes that immobilization—e.g., at cellular membranes—
is the native state for some enzymes. Although interesting mathematics are
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FIGURE 12.2 Membrane reactor system.
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possible, effectiveness factors are measured experimentally, as is the case for the
solid-catalyzed gas-phase reactions discussed in Chapter 10. Effectiveness factors
greater than 1 are possible. For gas–solid reactions, these were caused by tem-
perature gradients in the catalyst particle. This is rarely the case for an
enzyme-catalyzed reaction since the rate of heat release is low. Occasionally,
however, the spatial or chemical configuration of the site is enhanced by the
artificial environment of the support.

12.1.4 Reactor Design for Enzyme Catalysis

When the product from a biochemical reactor is intended for use as a food or
drug, the design process is subject to a set of government-mandated checks
and balances to assure safe and effective finished products. The process must
conform to a methodology known as Current Good Manufacturing Practice
or CGMP (usually shortened to GMP). Subject to this requirement for special
care and documentation, the design of a biochemical reactor is conceptually
similar to that for ordinary chemical reactors.

Confined Enzymes in Steady-State Flow Reactors. The confinement can be
accomplished using a membrane reactor as shown in Figure 12.2 or by a
packed-bed reactor in which the enzymes are immobilized within the packing
or by using a solid–liquid fluidized bed in which the enzymes are immobilized
within the fluidized particles. All these geometries have a common feature that
makes the reactor analysis relatively simple: no enzymes enter or leave the
system during steady-state operation. Due to the high cost of enzymes, such
reactors are a desirable way of performing enzyme catalysis.

The easiest reactor to analyze is a steady-state CSTR. Biochemists call it
a chemostat because the chemistry within a CSTR is maintained in a static con-
dition. Biochemists use the dilution rate to characterize the flow through a
CSTR. The dilution rate is the reciprocal of the mean residence time.

Example 12.3: Suppose S! P according to first-order, Michaelis-Menten
kinetics. Find sout for a CSTR.

Solution: Most enzyme reactors use such high concentrations of water that
the fluid density is constant. Applying Michaelis-Menten kinetics to the
component balance for a steady-state CSTR gives

sin �
�ttE0ksout
KM þ sout ¼ sout

Solving for sout gives

sout ¼ 1=2 sin � Km � E0k�tt�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin � KM � E0k �tt Þ2 þ 4sinKM

q� �
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The reverse solution, finding the value of �tt needed to achieve a desired value
for sout, is easier. Equation (1.54) gives the reverse solution for the general case
where the reaction rate depends on sout alone and density is constant.
Applying Equation (1.54) to the present case gives

�tt ¼ ðsin � soutÞðKM þ soutÞ
E0ksout

Most biochemical reactors operate with dilute reactants so that they are
nearly isothermal. This means that the packed-bed model of Section 9.1
is equivalent to piston flow. The axial dispersion model of Section 9.3 can
be applied, but the correction to piston flow is usually small and requires
a numerical solution if Michaelis-Menten kinetics are assumed.

Example 12.4: Suppose S! P according to first-order, Michaelis-Menten
kinetics. Find sout for a PFR.

Solution: The design equation for a PFR gives

�uu
ds

dz
¼ �E0ks

KM þ s
subject to the initial condition that s¼ sin at z¼ 0. The solution is implicit
in sout:

sout exp
sout � sin
KM

� �
¼ sin exp �E0k�tt

KM

� �

The corresponding solution for �tt is explicit:

�tt ¼ sin � sout þ KM lnðsin=soutÞ
E0k

Enzyme-Catalyzed Batch Reactions. Michaelis-Menten theory assumes equili-
brium between occupied and unoccupied sites:

Sþ E ���! ���
kf

kr

SE
½SE�
s½E� ¼

kf

kr
¼ K

If the enzyme charged to a batch reactor is pristine, some time will be
required before equilibrium is reached. This time is usually short compared
with the batch reaction time and can be ignored. Furthermore, s0 � E0 is
usually true so that the depletion of substrate to establish the equilibrium is neg-
ligible. This means that Michaelis-Menten kinetics can be applied throughout
the reaction cycle, and that the kinetic behavior of a batch reactor will be
similar to that of a packed-bed PFR, as illustrated in Example 12.4. Simply
replace �tt with tbatch to obtain the approximate result for a batch reactor.
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This approximation is an example of the quasi-steady hypothesis discussed
in Section 2.5.3.

Example 12.5: Formulate the governing equations for an enzyme-catalyzed
batch reaction of the form S! P. The enzyme is pristine when charged to the
reactor. Do not invoke the quasi-steady hypothesis.

Solution: The reactions are

Sþ E! SE R I ¼ kf s½E� � ½SE�
K

� �
SE! Eþ P R II ¼ k½SE�

The corresponding ODEs for a constant-volume batch reaction are

ds

dt
¼ �kf s½E� � ½SE�

K

� �
s ¼ s0 at t ¼ 0

d½E�
dt
¼ �kf s½E� � ½SE�

K

� �
þ k½SE� ½E� ¼ E0 at t ¼ 0

d½SE�
dt
¼ kf s½E� � ½SE�

K

� �
� k½SE� ½SE� ¼ 0 at t ¼ 0

dp

dt
¼ k½SE� p ¼ 0 at t ¼ 0

The initial condition for [SE] assumes that the enzyme was charged to the
reactor in pristine condition. It makes no difference whether the enzyme is
free or immobilized provided the reaction follows Michaelis-Menten kinetics.

Free Enzymes in Flow Reactors. Substitute t ¼ z= �uu into the ODEs of Example
12.5. They then apply to a steady-state PFR that is fed with freely suspended,
pristine enzyme. There is an initial distance down the reactor before the quasi-
steady equilibrium is achieved between S in solution and S that is adsorbed
on the enzyme. Under normal operating conditions, this distance will be
short. Except for the loss of catalyst at the end of the reactor, the PFR will
behave identically to the confined-enzyme case of Example 12.4. Unusual beha-
vior will occur if kf is small or if the substrate is very dilute so sin � Ein. Then, the
full equations in Example 12.5 should be (numerically) integrated.

The case for a CSTR is similar. Under normal operating conditions, the solu-
tion in Example 12.3 will apply to free enzymes as well as to confined enzymes.
Like the PFR case, unusual behavior will occur if kf is small or if the substrate is
very dilute so sin � Ein.

Example 12.6: Formulate the governing equations for an enzyme-catalyzed
reaction of the form S! P in a CSTR. The enzyme is pristine when it enters
the reactor. Do not invoke the quasi-steady hypothesis.
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Solution: The reactions are the same as in Example 12.5. The steady-state
performance of a CSTR is governed by algebraic equations, but time
derivatives can be useful for finding the steady-state solution by the method
of false transients. The governing equations are

V
ds

dt
¼ Qsin � kf s½E� � ½SE�

K

� �
V �Qs

V
d½E�
dt
¼ QE0 � Vkf s½E� � ½SE�

K

� �
þ Vk½SE� �Q½E�

V
d½SE�
dt
¼ Vkf s½E� � ½SE�

K

� �
� Vk½SE� �Q½SE�

V
dp

dt
¼ k½SE� �Qp

It was assumed that [SE]in¼ pin¼ 0.

12.2 CELL CULTURE

Whole cells are grown for a variety of reasons. The cells may perform a desired
transformation of the substrate, e.g., wastewater treatment; the cells themselves
may be the desired produce, e.g., yeast production; or the cells may produce a
desired product, e.g., penicillin. In the later case, the desired product may be
excreted, as for the penicillin example, and recovered in relatively simple fash-
ion. If the desired product is retained within the cell walls, it is necessary to
lyse (rupture) the cells and recover the product from a complex mixture of cel-
lular proteins. This approach is often needed for therapeutic proteins that are
created by recombinant DNA technology. The resulting separation problem is
one of the more challenging aspects of biochemical engineering. However, cul-
ture of the cells can be quite difficult experimentally and is even more demanding
theoretically.

The easiest cells to grow are microbes that live independently in their natural
environment. These include bacteria, yeasts, and molds. The hardest are the cells
extracted from higher order plants and animals since they normally rely on com-
plex interactions with other cells in the parent organism. Bacteria and yeasts are
single-celled. Molds are multicelled but have relatively simple structures and
nutritional requirements.

Microbial culture is also called fermentation and is most commonly a batch
process (although oxygen may be supplied continuously). The chemistry of
cell growth is extremely complex and, even in the simplest living cells, is only
partially understood. The common gut bacterium, Escherichia coli, utilizes
approximately 1000 enzymes. The nutrient mixture for cell growth must include
a carbon source, which is typically a sugar such as glucose, and sources for
nitrogen, phosphorus, and potassium; and a large variety of trace elements.
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Oxygen may be required directly (aerobic fermentations) it or may be obtained
from a carbohydrate, which also serves as the carbon source (anaerobic fermen-
tations). Some bacteria, called facultative anaerobes, utilize molecular oxygen
when available but can survive and grow without it. For others, called strict
anaerobes, oxygen is a poison. Some microbes can be grown using defined
media. This is a nutrient source consisting of simple sugars and salts in which
all chemical components are identified as to composition and quantity.
Complex media contain uncharacterized substances, typically proteins from
natural sources.

Batch fermentation begins with an initial charge of cells called an inoculum.
Growth of the desired cell mass usually occupies a substantial portion of
the batch cycle and, conceptually at least, follows the curve illustrated in
Figure 12.3. During the initial lag phase, cells are adjusting themselves to the new
environment. Most microbes, and particularly bacteria, are extremely adapt-
able and can utilize a variety of carbon sources. However, one or more
unique enzymes are generally required for each source. These are called induced
enzymes and are manufactured by the cell in response to the new environment.
The induction period is called the lag phase and will be short if the fermentation
medium is similar to that used in culturing the inoculum. If the chemistry is
dramatically different, appreciable cell death may occur before the surviving
cells have retooled for the new environment.

Exponential growth occurs after cell metabolisms have adjusted and before
a key nutrient becomes limiting or toxic products accumulate. In the exponential
growth phase, the total cell mass will increase by a fixed percentage during each
time interval, typically doubling every few hours. Ultimately, however, the
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FIGURE 12.3 Idealized growth phases for a batch fermentation.
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growth rate must slow and stop. A linear growth phase can occur in semibatch
fermentations when some key reactant is supplied at a fixed rate. The oxygen
supply may limit cell growth or the carbon source (substrate) may be fed to
the system at a fixed rate. Ultimately, cell mass achieves a maximum and the cul-
ture enters a stationary or maintenance phase. A stationary population can be
sustained using continuous culture techniques as described in Section 12.2.2,
but the stationary phase is typically rather brief in batch fermentations. It is fol-
lowed by a death phase where cells die or sporulate. The number of viable cells
usually follows an exponential decay curve during this period. The cells can
reduce their nutritional requirements in times of stress, and surviving cells will
cannibalize the bodies of cells that lyse.

Models for batch culture can be constructed by assuming mechanisms
for each phase of the cycle. These mechanisms must be reasonably compli-
cated to account for a lag phase and for a prolonged stationary phase.
Unstructured models treat the cells as a chemical entity that reacts with its
environment. Structured models include some representation of the internal
cell chemistry. Metabolic models focus on the energy-producing mechanisms
within the cells.

12.2.1 Growth Dynamics

This section gives models for the rates of birth, growth, and death of cell popu-
lations. We seek models for (1) the rate at which biomass is created, (2) the rates
at which substrates are consumed, (3) the rates at which products are generated,
(4) the maintenance requirements for a static population, and (5) the death rate
of cells. The emphasis is on unstructured models.

Biomass Production. Biomass is usually measured by dry weight of viable cells
per unit volume X. We bypass the sometimes tricky problems associated with
this measurement except to say that it is the province of the microbiologist
and usually involves plate cultures and filtration followed by drying. Suppose
there is one limiting nutrient S, and that all other nutrients are available in
excess. Then the Monod model for growth is

R X ¼ �X ¼ �maxX
S

KS þ S
� �

ð12:8Þ

where � is the specific growth rate for cell mass. Typical units are grams per liter
per hour for R X , reciprocal hours for � and �max, and grams per liter for S,X,
and KS. A typical value for �max under optimal conditions of temperature and
pH is 1 h�1. It the primary substrate is abundant, Equation 12.8 gives exponen-
tial growth;

X ¼ X0e
�maxðt�t0Þ ð12:9Þ
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where X0 is the inoculum size and t0 is the time when the induction phase ends.
Equation (12.9) models induction as a pure time delay. The exponential growth
phase ends when a substrate concentration becomes limiting.

It is possible for two or more substrates to become simultaneously limiting.
Define a growth limitation factor, Gi < 1, for substrate i such that

R X ¼ �X ¼ �maxXG1

when growth is limited by substrate 1. The factor G1 is determined by growth
experiments that manipulate the single variable S1. Dual limitations can be
modeled using a multiplicative form:

R X ¼ �maxXG1G2 ð12:10Þ
but this usually underestimates the growth rate. Another possibility is

R X ¼ �maxXMIN½G1,G2� ð12:11Þ
but this usually overestimates the growth rate. Define the substrates so that
G1  G2. A compromise model is

R X ¼ �maxXG1G
�12
2 ð12:12Þ

where a12 is an empirical interaction parameter that is fit to data having at least
one experiment with dual limitations.

Any substance present in great excess can inhibit growth or even cause death.
Metabolic products are often toxic to the organism that produces them.
Thus, a batch fermentation can be limited by accumulation of products as
well as by depletion of the substrate. A simple model for growth in the presence
of an inhibitor is

R X ¼ �maxX
S

KS þ S
� �

1� p

pmax

� �m
¼ �XGSGP ð12:13Þ

where p is the concentration of the inhibiting material, pmax is the value for p at
which growth stops, and m is an empirical constant. Note that Equation (12.13)
uses a multiplicative combination of the growth-limiting factors GS and GP. This
may be overly pessimistic if GS is appreciably less than 1. Equation (12.12) can
be used if data are available to fit a12.

Cell cultures can be inhibited by an excessive concentration of the substrate.
One way to model substrate inhibition is to include an S2 term in the denomi-
nator of the rate equation. See Equation (12.4).

Substrate Consumption. Consumption of substrates and generation of products
can be described using empirical yield coefficients. Yields are usually based on
the amount of limiting substrate that has been consumed. Thus, YP/S denotes
the mass of product produced per mass of substrate consumed, and YX/S denotes
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the dry mass of cells produced per mass of substrate consumed. The value for
YP/S is not stoichiometrically determined and will vary within a growth cycle.
When glucose is anaerobically fermented by a yeast, part of the carbon will
appear as ethanol and coproduct CO2, part will be incorporated into the cell
mass, and minor amounts will appear as excreted by-products. A typical cell
composition on a dry weight basis is about 50% carbon, 7% hydrogen, 12%
nitrogen, 30% oxygen, and 1% other. The empirical formula C5H7O2N can
be useful for back-of-the-envelope calculations. An upper limit on YX/S of
about 2 g of dry cell mass per gram of carbon in the substrate is predicted
using this average composition. The actual value for YX/S will be about half
the upper limit, the balance of the carbon being used to generate energy. This
missing half is accounted for by the YP/S terms summed over all excreted
products. An internally consistent model for cell growth closes the mass
balance for carbon and other nutrients. The mass balance has the form

YX=S þ
X

Products

YP=S ¼ 1 ð12:14Þ

Equation (12.14) applies to all the elements that constitute a cell, but it is
normally applied in the form of a carbon balance. The dominant terms in
the balance are carbon in the cells, measured through YX/S, and carbon in the
primary metabolites—e.g., ethanol and CO2—measured through the YP/S
terms for these metabolites.

A convenient way to model the consumption of substrate is to divide it
between consumption that is associated with the growth of new cells and
consumption that is required to maintain existing cells:

R S ¼ � R X

YX=S
�MSX ð12:15Þ

Here, MS is the maintenance coefficient for substrate S. Typical units of MS

are grams of substrate per gram of dry cell mass per hour. Table 12.1 gives main-
tenance coefficients for various organisms and substrates. The maintenance

TABLE 12.1 Maintenance Coefficients for Various Organisms and Substrates

Organism Substrate MS, h
�1 MO, h

�1

Acetobacterium woodii Lactate 0.07 Anaerobic
Aerobacter aerogenes Citrate 0.06 0.05
Aerobacter aerogenes Glucose 0.05 0.05
Aerobacter aerogenes Glycerol 0.08 0.11
Saccharomyces cerevisiae Glucose 0.02 0.02
Escherichia coli Glucose 0.05 0.02
Penicillium chrysogenum Glucose 0.02 0.02

Source: Data for A. woodii from Peters, V., Janssen, P. H., and Conrad, R. FEMS Microbiol. Ecol., 26, 317
(1998). Other data are from Roels, J. A. and N. W. F .Kossen, Prog. Ind. Microbiology, 14, 95 (1978).
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coefficient for oxygen is denotedMO. It is seen to depend on both the organism
and the carbon source.

Maintenance requirements exist for nitrogen and other elements (e.g., phos-
phorous). They are relatively small, but must be supplied to maintain a station-
ary cell population.

Excreted Products Balances. Most of the carbon going into a cell is converted
to cell mass or to primary metabolic products. An aerobic fermentation may
give CO2 and water as the only products. The anaerobic fermentation of glucose
by yeast normally gives 2mol of ethanol and 1mol of CO2 for each mole of glu-
cose. A lactic acid fermentation gives 2mol of lactic acid per mole of glucose.
Some bacteria have several metabolic pathways and can utilize a variety of
five- and six-carbon sugars to produce ethanol, formic acid, acetic acid, lactic
acid, succinic acid, CO2, and H2, depending on their environment. The specific
mix of products, even for a fixed substrate and organism, depends on factors
such as the phase of growth in the batch cycle, the pH of the medium, and
whether or not molecular oxygen is available. For example, the fermentation
of glucose by Bacillus polymxya gives a mixture of ethanol, acetic acid, lactic
acid, and butanediol; but butanediol can be obtained in almost stoichiometric
yield:

C6H6(OH)6 þ 1
2O2 ! C4H8(OH)2 þ 2CO2 þ H2O

late in a batch cycle with an acidic medium and aeration. Occasionally, optimal
growing conditions are suggested just by the overall stoichiometry and ener-
getics of the metabolic reactions. For example, ethanol can be produced anaero-
bically: this reaction has a negative change in free energy so it can support
microbial growth. An anaerobic fermentation for butanediol releases free hydro-
gen and has less favorable energetics. Thus, one might expect more alcohol than
butanediol under strictly anaerobic conditions. With oxygen available, the buta-
nediol route produces more energy and is favored, although, with enough
oxygen, the reaction may go all the way to CO2 and water. More detailed
predictions require kinetic models of the actual metabolic pathways in a cell.
The energy-producing pathways are now known to a large extent, and so
structured, metabolic models are becoming possible.

Assume the product distribution is known and fixed. Then all products can be
lumped into a single, equivalent product, P, which is stoichiometrically linked to
the substrate. On a mass basis, carbon from the substrate must match the carbon
that appears as product plus the carbon utilized in making biomass. When there
is no change in the cell mass,

R P ¼ �R S

The experimental quantity YX/S includes both uses of the substrate. Define Y
_

X=S

as the theoretical yield of cell mass per mass of substrate if energy requirements
are ignored, i.e., Y

_

X=S � 2 for carbon. Then product formation can be expressed
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in terms of cell mass and growth of cell mass:

R P ¼ �R S � R X

Y
_

X=S

¼ R X

YX=S
� R X

Y
_

X=S

þMSX ð12:16Þ

The microbiology literature distinguishes between products that are formed
during the growth of cell mass (growth-associated products) and those that are
made during the stationary phase (non-growth-associated products). Growth-
associated products have a production rate proportional to R X , while the pro-
duction rate for non-growth-associated products is proportional to the cell mass
X. The primary metabolites are proportional to both R X and X since they are
generated during cell growth and during maintenance. This fact is reflected in
Equation (12.16). Excreted enzymes (extracellular enzymes) and antibiotics are
usually nongrowth-associated. They are sometimes called secondary metabolites.

Cell Death. Spontaneous death or sporulation of cells is commonly modeled
as a first-order process. Equation (12.8) (or 12.12)) is modified to include a
disappearance term:

R X ¼ �X � kdX ¼ �maxX
S

KS þ S
� �

� kdX ð12:17Þ

This model does not predict a stationary phase in a batch fermentation if kd is
constant. A nearly stationary phase can be modeled if kd is made to depend on
the accumulation of a toxic product.

If there is insufficient substrate for maintenance, the lysing of some cells to
supply the maintenance requirements of others can be modeled as

R X ¼ �kd � YX=SMXX for S ¼ 0 ð12:18Þ
Here, the factor of YX/S is merely a rough estimate of the amount of carbon that
can be reutilized. The theoretical upper limit is Y

_

X=S:
Death kinetics are obviously important in chemical or thermal sterilization.

The spores formed by some bacteria are the hardest to kill. Problem 12.3
gives data for a representative case.

12.2.2 Reactors for Freely Suspended Cells

The typical bioreactor is a two-phase stirred tank. It is a three-phase stirred
tank if the cells are counted as a separate phase, but they are usually lumped
with the aqueous phase that contains the microbes, dissolved nutrients, and
soluble products. The gas phase supplies oxygen and removes by-product
CO2. The most common operating mode is batch with respect to biomass,
batch or fed-batch with respect to nutrients, and fed-batch with respect to
oxygen. Reactor aeration is discussed in Chapter 11. This present section con-
centrates on reaction models for the liquid phase.
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Batch Reactors. The reaction rates presented in Section 12.2.1 can be com-
bined to give a fairly comprehensive model for cell growth, substrate consump-
tion, and product generation in a batch bioreactor. The model is necessarily of
the unstructured variety and contains many empirical constants. Concentrations
are measured on a weight basis with typical units of grams per liter or milligrams
per liter. Such measures are sometimes denoted as w/v. A dimensionless weight
per weight measure, denoted as w/w, is also common and is preferred for
mathematical modeling.

Example 12.7: Develop a model for the anaerobic batch fermentation of
glucose to ethanol and coproduct CO2 using Saccharomyces cerevisiae. The
starting mixture contains 10% glucose. The inoculum is 0.0005w/w.
Product inhibition stops cell growth at 14% ethanol. Assume kd¼ 0 but
include the cannibalization of cellular material beginning when the substrate
is completely consumed.

Solution: The initial conditions for a batch reactor are S¼S0 and X¼X0

at t¼ 0. Equation (12.13) gives the cell growth when there is inhibition by
the product:

dX

dt
¼ R X ¼ �maxX

S

KS þ S
� �

1� p

pmax

� �m
at t ¼ 0

Cannibalization according to Equation (12.18) begins when S¼ 0:

dX

dt
¼ R X ¼ �YX=SMXX

Equation (12.15) governs substrate consumption. For a batch reactor with all
the substrate charged initially,

dS

dt
¼ � R X

YX=S
�MSX

Excreted products are governed by Equation (12.16):

dp

dt
¼ R X

YX=S
� R X

Y
_

X=S

þMSX p ¼ 0 at t ¼ 0

As with most modeling efforts, the mathematical formulation is the easy part.
Picking the right values from the literature or experiments is more work. An
immediate task is to decide how to characterize the substrate and product
concentrations. The balance equations for substrate and product apply to
the carbon content. The glucose molecule contains 40% carbon by weight
so S will be 0.4 times the glucose concentration, and S0¼ 0.04. Similarly,
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p measures the carbon content of the excreted products. Two-thirds of the
excreted carbon appears as ethanol, and ethanol is 52% carbon by weight.
Thus, p will be 0.52/0.67¼ 0.78 times the ethanol concentration, and the
value of pmax that corresponds to 14% ethanol is 0.109.

A typical value for �max is 0.5 h
�1. Use KS¼ 0.001 on a carbon-equivalent,

weight-per-weight basis (but see Problem 12.4). Assume m¼ 1.
Turning to the substrate balance, yeast cells contain about 50% carbon.

The cell mass is measured as total dry weight, not just carbon. This gives
Y
_

X=S ¼ 2 when S is measured as the carbon equivalent of glucose. A reason-
able value for YX/S is 1 so that half the carbon goes into biomass and half
meets the associated energy requirements. The maintenance coefficient in
carbon-equivalent units is 0.008 h�1. Using these parameter estimates, the
three simultaneous ODEs for S > 0, become

dX

dt
¼ R X ¼ 0:5X

h S

0:001þ S
ih
1� p

0:109

i
X ¼ 0:0005 at t ¼ 0

dS

dt
¼ �R X � 0:008X S0 ¼ 0:04 at t ¼ 0

dp

dt
¼ R X

2
þ 0:008X p ¼ 0 at t ¼ 0

For S¼ 0,

dX

dt
¼ �0:008X

dS

dt
¼ dp
dt
¼ 0

The solution is shown in Figure 12.4.

Most high-value fermentation products are made in batch. Vinification and
brewing are examples where the desired products are excreted, and cell mass
is undesired. High-end, nonexcreted products such as interferon and human
insulin are produced in batch fermentations that typically use a genetically
altered variety of Escherichia coli. The cells are harvested and lysed to obtain
the desired product as part of a complex mixture. Viable whole cells are
the desired product in the commercial, batch culture of baker’s yeast
(Saccharomyces cerevisiae) and in the mixed-strain culture (of a yeast,
Saccharomyces exiguus with a bacterium, Lactobacillus sanfrancisco) used to
make sourdough bread. These are all expensive, low-volume products for
which batch fermentation is satisfactory. Continuous fermentation is attractive
for high-volume, bulk chemicals such as fuel-grade ethanol.

Continuous Stirred Tanks Without Biomass Recycle. The chemostat without
biomass recycle is a classic CSTR. The reactor is started in the batch mode.
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Inlet and outlet flows are begun during the exponential growth phase. The input
stream contains all necessary nutrients (except oxygen which is sparged continu-
ously) but no cells. The outlet stream contains cells, unreacted nutrients, and fer-
mentation products. If the flow rate is low enough, a steady state will be reached
with the continuous production of cells being matched by their outflow. If the
flow rate is too high, washout occurs, and the cell population is lost. This fact
leads to a marvelous method for selecting the fastest-growing species from a
mixed culture. Inoculate a batch reactor using wild microbes from dirt or
other natural sources. Convert to continuous operation at a low flow rate, but
gradually increase the flow rate. The last surviving species is the fastest growing
(for the given substrate, pH, temperature, etc.).

Since Xin¼ 0, the steady-state cell balance for a CSTR is

�ttR X ¼ Xout
The growth rate in a CSTR has the general form R X ¼ �Xout: Thus,

�tt�Xout ¼ Xout
This equation can always be satisfied with Xout¼ 0 so that the washout condition
is always possible as a steady state. This steady state is achieved when there is no
inoculum or when the flow rate is too high. A nontrivial solution with Xout > 0
requires that �tt� ¼ 1 or

� ¼ 1=�tt ð12:19Þ
Microbiologists would say that the growth rate equals the dilution rate at
steady state.
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FIGURE 12.4 Simulation of a batch Saccharomyces cerevisiae fermentation.
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The substrate balance is

Sin � �tt
R X

YX=S
þMSXout

� �
¼ Sout

Substituting R X ¼ �Xout and solving for Xout gives

Xout ¼ Sin � Sout
�tt�

YX=S
þ �ttMS

¼ ½Sin � Sout�YX=S
1þ �ttYX=SMS

ð12:20Þ

A mass balance for product gives

pout ¼ pin þ �tt
�Xout
YX=S

� �Xout

Y
_

X=S

þMSXout

" #

¼ pin þ Xout
YX=S

� Xout
Y
_

X=S

þ �ttMSXout ð12:21Þ

Equations (12.20) and (12.21) apply to any functional form for the growth
rate, �. There are three unknowns in these equations: Xout, Sout, and pout. A
third equation is needed. It comes from substituting some specific functional
form for � into Equation (12.19). For example, if � is given by Equation
(12.13), the third equation is

�max
Sout

KS þ Sout

� �
1� pout

pmax

� �m
¼ 1=�tt ð12:22Þ

Equations (12.20), (12.21), and (12.22) are solved simultaneously for Xout, Sout,
and pout.

Example 12.8: The batch reactor in Example 12.7 has been converted to
a CSTR. Determine its steady-state performance at a mean residence time
of 4 h. Ignore product inhibition.

Solution: Set m¼ 0 to ignore production inhibition. Then Equation (12.22)
can be solved for Sout:

Sout ¼ KS
�tt�max � 1

ð12:23Þ

The parameters used in Example 12.7 were KS¼ 0.001, �max¼ 0.5, and �tt ¼ 4.
This gives Sout¼ 0.001 and �¼�max/2¼ 0.25. These values and MS are
substituted into Equation (12.20) to give Xout¼ 0.0378. Equation (12.21) is
then used to calculate pout¼ 0.0201. A carbon balance confirms the results.
Carbon enters as Sin and leaves as SoutþXout/2þ pout¼ 0.001þ 0.0378/2 þ
0.0201¼ 0.040.
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It is clear from Equation (12.19) that �tt�max > 1 is necessary to avoid wash-
out. However, it is not sufficient. The sufficient condition is found from the
requirement that Sout<Sin at steady state. This gives

�tt�max > 1þ KS
Sin

ð12:24Þ

Operating near the washout point maximizes the production rate of cells. A
feedback control system is needed to ensure that the limit is not exceeded.
The easiest approach is to measure cell mass—e.g., by measuring turbidity—
and to use the signal to control the flow rate. Figure 12.5 shows how cell
mass varies as a function of �tt for the system of Examples 12.7 and 12.8. The
minimum value for �tt is 2.05 h. Cell production is maximized at �tt¼ 2.37 h.

Microbial kinetics can be quite complex. Multiple steady states are always
possible, and oscillatory behavior is common, particularly when there are two
or more microbial species in competition. The term chemostat can be quite
misleading for a system that oscillates in the absence of a control system.

Continuous Stirred Tanks with Biomass Recycle. When the desired product is
excreted, closing the system with respect to biomass offers a substantial reduc-
tion in the cost of nutrients. The idea is to force the cells into a sustained station-
ary or maintenance period where there is relatively little substrate used to grow
biomass and where production of the desired product is maximized. One
approach is to withhold some key nutrient so that cell growth is restricted, but
to supply a carbon source and other components needed for the desired
product. It is sometimes possible to maintain this state for weeks or months
and to achieve high-volumetric productivities. There will be spontaneous cell
loss (i.e., kd > 0), and true steady-state operation requires continuous purging
and makeup. The purge can be achieved by incomplete separation and recycle
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FIGURE 12.5 Production of Saccharomyces cerevisiae in a CSTR.
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of the cells or by an explicit purge stream as shown in Figure 12.6. Cell makeup
can be achieved by allowing some cell growth in the reactor. An alternative that is
better in terms of raw material efficiency is to grow the makeup cells in a separate
reactor that has nutrient levels optimized for growth rather than maintenance.

The activated sludge process for wastewater treatment uses recycle of live
cells. The goal is to oxidize organics without generating too much sludge (i.e.,
biomass).

Piston Flow Bioreactors. There are several commercial examples of continuous-
flow bioreactors that approximate piston flow. The deep-shaft fermentors
described in Chapter 11 have been used for wastewater treatment when land
is very expensive. Beer is sometimes brewed in an unstirred tower using a floc-
culating variety of yeast that settles to the bottom of the tower. Most plants
for fuel-grade ethanol and lactic acid are continuous, and some designs approx-
imate piston flow. Monod kinetics give low outlet concentrations of substrate
even in a single CSTR because KS is usually small. See Equation (12.23).
However, batch kinetics give still lower values for Sout, and this can be important
in cases like wastewater treatment. Wastewater-treatment lagoons are designed
to have progressive flow from inlet to outlet. Sterilization by chlorine or ozone
is best done in a piston flow reactor. Continuous bioreactors often use a tubular
reactor or a flat-plate heat exchanger for continuous thermal sterilization of the
substrate. The need to reduce viable organisms by many orders of magnitude

Gaseous products

Optional makeup of
live cells

Other nutrients

Water and substrate

(Air)

(Heat)

Live
cells

Purge

Fermentation
broth

Cell filter

Cell-free effluent to
product separation

FIGURE 12.6 Continuous fermentor with recycle of live cells.
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justifies use of the axial dispersion model. See Section 9.3. Note however that
FDA requirements for the highest grade of biological purity (water for injection
or WFI) requires sterilization by distillation or reverse osmosis.

12.2.3 Immobilized Cells

Like enzymes, whole cells are sometime immobilized by attachment to a surface
or by entrapment within a carrier material. One motivation for this is similar
to the motivation for using biomass recycle in a continuous process. The cells
are grown under optimal conditions for cell growth but are used at conditions
optimized for transformation of substrate. A great variety of reactor types
have been proposed including packed beds, fluidized and spouted beds, and
air-lift reactors. A semicommercial process for beer used an air-lift reactor to
achieve reaction times of 1 day compared with 5–7 days for the normal batch
process. Unfortunately, the beer suffered from a ‘‘mismatched flavour profile’’
that was attributed to mass transfer limitations.

There are few advantages to immobilizing cells that can be grown in free sus-
pensions. However, some cells from multicelled plants and animals can be grown
only when anchored to a surface and when interacting with adjacent cells. When
the synthetic structure used for growth resembles the naturally occurring struc-
ture, the reaction is called tissue culture (as opposed to cell culture). The easier
forms of tissue culture involve plants. The most common form, meristem culture,
reproduces whole, genetically identical plants from tiny cuttings of a parent
plant. This technique has been widely adopted by the nursery industry to
mass-produce named varieties of ornamental plants. The more challenging
forms of tissue culture involve cells of two or more types or animal cells
grown simultaneously. Growth of complex structures like liver tissue or skin
remains in the future.

PROBLEMS

12.1. It has been proposed that some enzymes exist in active and inactive
forms that are in equilibrium. The active form binds substrate molecules
for subsequent reaction while the inactive form does not. The overall
reaction mechanism might be

E ���! ��� I
½I�
½E� ¼ KI

Sþ E ���! ��� SE
½SE�
s½E� ¼ K

SE ���! Pþ E R ¼ k½SE�

Derive a kinetic model for this situation.
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12.2. Set the time derivatives in Example 12.6 to zero to find the steady-state
design equations for a CSTR with a Michaelis-Menten reaction. An ana-
lytical solution is possible. Find the solution and compare it with the
solution in Example 12.3. Under what conditions does the quasi-
steady solution in Example 12.3 become identical to the general solution
in Example 12.6?

12.3. Wang et al.1 report the death kinetics of Bacillus stearothermophilus
spores using wet, thermal sterilization. Twenty minutes at 110�C
reduces the viable count by a factor of 104. The activation temperature,
E/Rg, is 34,200K. How long will it take to deactivate by a factor of 107

at 120�C?
12.4. A literature value for the Monod constant for a Saccharomyces cerevisiae

fermentation is KS¼ 25mg/liter.2 How does this affect the simulation in
Example 12.7?

12.5. A limiting case of Monod kinetics has KS¼ 0 so that cell growth is zero
order with respect to substrate concentration. Rework Example 12.7 for
this situation, but do remember to stop cell growth when S¼ 0. Compare
your results for X and p with those of Example 12.7. Make the compar-
ison at the end of the exponential phase.

12.6. A simple way to model the lag phase is to suppose that the maximum
growth rate �max evolves to its final value by a first-order rate process:
�max ¼ �1½1� expð��tÞ�. Repeat Example 12.7 using a¼ 1 h�1.
Compare your results for X, S, and p with those of Example 12.7.
Make the comparison at the end of the exponential phase.

12.7. Equation (12.17) postulates that spontaneous deaths occur throughout
the batch cycle. This means that dX/dt is initially negative. Is it possible
to lose the inoculum completely if the induction period is too long?
Long induction periods correspond to small values of a in the lag
phase model of Problem 12.6. Find the critical value for a at which
the inoculum is lost.

12.8. Consider the CSTR with biomass recycle shown in Figure 12.6.
(a) Determine a criterion for achieving a nontrivial steady state in

a reactor that is closed with respect to biomass. Does it have
anything to do with the residence time for cells? Does the
criterion include the limiting case of no cell makeup, birth, death,
or purge.

(b) The purge stream means that the cells have a finite residence time in
the reactor, although it will be much longer than for the liquid
phase (i.e., water, excreted products, unreacted substrate). What
is the mean residence time for cells? Does it depend on whether
the makeup cells are fed to the reactor or whether they are born
in the reactor?

(c) How long does it take for the reactor to approximate the steady
state found in part (a)?
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CHAPTER 13

POLYMER REACTION
ENGINEERING

Polymer reaction engineering is a specialized but important branch of chemical
reaction engineering. The odds strongly favor the involvement of chemical engi-
neers with polymers at some point in their career. The kinetics of polymerization
reactions can be treated using the basic concepts of Chapters 1–5, but the chem-
istry and mathematics are more complicated than in the examples given there.
The number of chemical species participating in a polymerization is potentially
infinite, and the mathematical description of a batch polymerization requires an
infinite set of differential equations. Analytical and numerical solutions are more
difficult than for the small sets of equations dealt with thus far. Polymerizations
also present some interesting mechanical problems in reactor design. Viscosity
increases dramatically with molecular weight, and a polymer solution is typically
102–106 times more viscous than an ordinary liquid. Molecular diffusivities
in polymer solutions are lowered by similar factors. Laminar flow is the rule,
pressure drops are high, agitation is difficult, and heat and mass transfer limita-
tions can be very severe. The polymer reaction engineer sometimes confronts
these problems head on, but most often seeks to avoid them through clever
reactor design.

13.1 POLYMERIZATION REACTIONS

Polymerization reactions are classified as being either chain growth or step
growth. In chain-growth polymerization, a small molecule reacts with a growing
polymer chain to form an incrementally longer chain:

Mþ Pl ! Plþ1 l ¼ 1, 2, . . . ð13:1Þ
where M represents the small molecule that is called the monomer and Pl
denotes a polymer chain consisting of l monomer units that are chemically
bonded. The chain may also contain a residual fragment of an initiator molecule
that started the growth. A synonym for chain-growth polymerization is addition
polymerization, so named because the monomer adds to the chain one unit at a
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time. The most important chain-growth polymers are vinyl addition polymers
formed by the opening of a double bond. There is no by-product other than
energy. Important examples are ethylene polymerization to form polyethylene
and propylene polymerization to form polypropylene.

A quite different polymerization mechanism has two polymer molecules
reacting together to form a larger new molecule:

Pl þ Pm ! Plþm l, m ¼ 1, 2, . . . ð13:2Þ
The length increases in steps of size l and m that can be quite large, particu-

larly near the end of the polymerization. This is called step-growth polymeriza-
tion because the polymerization can occur in fairly large steps. A synonym is
condensation polymerization because the reactants are condensed together and
usually give a condensation by-product. The condensation reaction involves
the breaking and making of covalent bonds of rather similar energy so that
the heat of reaction is moderate. Important examples of condensation polymer-
izations are the reaction of phenol with formaldehyde to form phenolic resins
and the reaction of terephthalic acid with ethylene glycol to form polyethylene
terephthalate (PET). The condensation by-product is water in both these
examples.

13.1.1 Step-Growth Polymerizations

Condensation polymers are often formed from two distinct monomers, each of
which is difunctional. The monomers have the forms AMA and BNB where A
and B are functional groups that react to couple the M and N units and form a
condensation by-product, AB. M and N are the mer units that form the polymer
chain. The first step in the polymerization forms dimer:

AMAþ BNB! AMNBþAB

Trimer can be formed in two ways, giving two different structures:

AMNBþAMA! AMNMAþAB

AMNBþ BNB! BNMNBþAB

Tetramer can be formed in three ways, but the structures are identical:

AMNMAþ BNB! AMNMNBþAB

BNMNBþAMA! AMNMNBþAB

2AMNB! AMNMNBþAB

This example of step-growth polymerization has two monomers that can react
with each other but not with themselves. It has only one dimer that can be
self-reactive. This pattern continues indefinitely with two trimers, one self-
reactive tetramer, and so on. Molecules with an odd number of mer units will
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come in two forms; A�A and B�B. Molecules with an even number have the
form A�B.

Stoichiometry. Reactions of the form AMAþBNB! Polymer are known as
binary polycondensations. The original concentrations of the A and B endgroups
must be closely matched for the reaction to generate polymer that has a high
molecular weight. Denote the concentrations of (unreacted) endgroups as [A]
and [B], and suppose that A is the limiting endgroup. Then the stoichiometric
ratio is defined as

SAB ¼ ½A�0½B�0
 1 ð13:3Þ

If the reaction goes to completion, the polymer molecules will have the form
B�B, and the final concentration of B endgroups will be [B]0 – [A]0. The
number average chain length is

�llN ¼ Monomers present initially

Molecules present after polymerization
¼ ð½B�0 þ ½A�0Þ=2ð½B�0 � ½A�0Þ=2

¼ 1þSAB
1�SAB ð13:4Þ

The factor of 2 appears in this equation because each polymer molecule has two
endgroups. A pesky factor of 2 haunts many polymer equations. It factors out in
this example, but we are not always so lucky.

Example 13.1: Determine the stoichiometric requirements for achieving
various degrees of polymerization for a binary polycondensation.

Solution: Table 13.1 shows results calculated using Equation (13.4). The
stoichiometric requirement for a binary polycondensation is very
demanding. High-molecular-weight polymer, say �llN >100, requires a
weighing accuracy that is difficult to achieve in a flow system.

Example 13.1 shows one reason that binary polycondensations are usually
performed in batch vessels with batch-weighing systems. Another reason is

TABLE 13 1 Number Average Chain Lengths for Binary
Polycondensations Going to Completion

SAB
�llN

0.2 1.5
0.333 2
0.5 3
0.8 9
0.9 19
0.98 99
0.99 199
0.998 999
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that some polycondensation reactions involve polyfunctional molecules that will
cross-link and plug a continuous-flow reactor. An example is phenol, which is
trifunctional when condensed with formaldehyde. It can react at two ortho loca-
tions and one para location to build an infinite, three-dimensional network. This
may occur even when the stoichiometry is less than perfect. See Problem 13.3 for
a specific example. In a batch polymerization, any cross-linked polymer is
removed after each batch, while it can slowly accumulate and eventually plug
a flow reactor.
Self-condensing monomers of the form AMB avoid a stoichiometry restric-

tion. The idea is to synthesize the monomer using conditions where the A and
B endgroups are not reactive but to polymerize the monomer under conditions
where the endgroups do react. An important example is the polymerization of
PET. A large excess of ethylene glycol is reacted with terephthalic acid to
form a nominal trimer, diglycol terephthalate:

2HOCH2CH2OHþHOC
k
O

�C
k
O

OOH! HOCH2CH2OC
k
O

�C
k
O

OCH2CH2OH

This new ‘‘monomer’’ is separated from the excess glycol and polymerized. The
monomer has two hydroxy endgroups; but with catalysis and temperature, it will
self-condense to give ethylene glycol as the by-product. The overall result is a
one-to-one reaction of terephthalic acid with ethylene glycol, but a substantial
amount of glycol is internally recycled.

Equilibrium Limitations. Self-condensing monomers have SAB¼ 1 and can
therefore react to infinite molecular weight. Unfortunately, free lunches are
rare. The cost of this lunch is that most self-condensations are reversible, so the
condensation product must be removed for the reaction to proceed. The conden-
sation of diglycol terephthalate gives high molecular polymer only if by-product
ethylene glycol is removed. The condensation of lactic acid to poly(lactic acid)
proceeds only if by-product water is removed. The normal technique for
removal is to raise the temperature and lower the pressure so that the condensa-
tion product evaporates. The polymer industry calls this devolatilization. It can
occur spontaneously if the condensation product is a gas like HCl, but requires
substantial effort for high-boiling by-products such as water and ethylene glycol.
Equilibrium limitations are avoided when the condensation product has negli-
gible solubility in the reaction medium. An example is the formation of salt when
the sodium salt of bisphenol A reacts with epichlorohydrin to form epoxy resins.

The reversibility of polycondensation reactions sometimes provides a method
for polymer recycling. Reacting the polymer with the condensation product AB
can quickly reduce the degree of polymerization to a self-condensing trimer. The
trimer can be purified by distillation and repolymerized to give virgin polymer
that is once again suitable for food-contact applications. Reacting PET with
ethylene glycol is the glycolysis route to PET recycling.
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Other Complications in Condensation Polymerizations. Cyclization occurs natu-
rally in many condensation polymerizations. A polymer molecule of the form
A�B reacts with itself to form a cyclic compound. For binary polycondensa-
tions, the number of mers in the ring will be even since only the even numbered
chains are self-condensing. High solvent concentrations increase ring formation.
Small molecules cannot form rings due to steric hindrance, and the reactive ends
on large molecules are unlikely to meet due to statistics. Thus, a plot of cyclic
oligomer concentration versus mer number will have a sharp lower limit, a
maximum, and a gradually declining tail.
Solubility limits may arise when oligomers beyond a certain length precipitate

from the reaction medium. Solubility generally decreases with increasing mole-
cular weight so this phenomenon is fairly common. Precipitation generally stops
the reaction for condensation polymers, and solubility limits can be used advan-
tageously to prepare oligomers of a fixed molecular weight. Solubility limits
can usually be avoided by adding a good solvent to the reaction medium.
Chain stoppers are unifunctional molecules of the form AX or BX, where the

X moiety is nonreactive. They are used to stop the polymerization at a desired
point or to stabilize the polymer chains by endcapping.
Random condensation copolymers can be formed by adding a third monomer

to the reaction mix. For example, some 1,4-butanediol might replace some
of the ethylene glycol in a PET polymerization. Suppose the three monomers
are AMA, BNB, and BZB. The resulting polymer will have a structure such as

MNMNMNMZMNMNMZMNMZMNMNMNMN . . .

It makes no difference in this example which endgroup is stoichiometrically lim-
iting. The polymer is sometimes called a terpolymer because three monomers are
involved, but the term copolymer is used inclusively for any polymer formed
from more than one monomer. In the absence of BZB, AMA and BNB will
polymerize to form a strictly alternating copolymer . When BZB is added, the
polymer still alternates with respect to the M mers but is random with respect
to the N and Z mers. Of course, the enthusiastic chemist might add some
AYA or even some AWB to the mix. They will all happily copolymerize,
albeit at different rates.

13.1.2 Chain-Growth Polymerizations

The most important example of an addition polymerization is the homopoly-
merization of a vinyl monomer. The general formula for a vinyl monomer is

R1 R3

j j
C¼¼C
j j
R2 R4

ð13:5Þ
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The most important vinyl monomers have a simpler form:

CH2¼¼CH
j
R

ð13:6Þ

This monomer is ethylene when R is hydrogen, propylene when R is a methyl
group, styrene when R is a benzene ring, and vinyl chloride when R is chlorine.
The polymers formed from these four monomers account for the majority of all
commercial plastics. The polymers come in great variety and are made by many
different processes. All of the polymerizations share a characteristic that is extre-
mely important from the viewpoint of reactor design. They are so energetic that
control of the reaction exotherm is a key factor in all designs.

Thermal Effects in Addition Polymerizations. Table 13.2 shows the heats of
reaction (per mole of monomer reacted) and nominal values of the adiabatic
temperature rise for complete polymerization. The point made by Table 13.2
is clear even though the calculated values for �Tadia should not be taken literally
for the vinyl addition polymers. All of these polymers have ceiling temperatures
where polymerization stops. Some, like polyvinyl chloride, will dramatically
decompose, but most will approach equilibrium between monomer and
low-molecular-weight polymer. A controlled polymerization yielding high-
molecular-weight polymer requires substantial removal of heat or operation at
low conversions. Both approaches are used industrially.

The other entries in Table 13.2 show that heat removal is not a problem for
most ring-opening and condensation polymerizations. Polycaprolactam (also
called Nylon 6) is an addition polymer, but with rather similar bond energies
for the monomer and the polymer. The reaction exotherm is small enough
that large parts are made by essentially adiabatic reaction in a mold. An equili-
brium between monomer and polymer does exist for polycaprolactam, but it
occurs at commercially acceptable molecular weights.

TABLE 13.2 Typical Heats of Polymerization

Polymer Polymerization type �H (kJ/mol) �Tadia (
�C)

Polyethylene Vinyl addition 95.0. 1610
Polyvinyl chloride Vinyl addition 95.8 730
Polystyrene Vinyl addition 69.9 320
Polymethyl methycralate Vinyl addition 56.5 270
Polycaprolactam Ring opening 15.9 68
Polysulfone Condensation 25.1 24
Polycarbonate Condensation 0 0
Polyethylene terephthalate Condensation 0 0
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Equilibrium between Monomer and Polymer. A monomer-with-polymer equili-
brium is quite different from the polymer-with-condensation-product equili-
brium discussed in Section 13.1.1. If the condensation product is removed
from the reaction mixture, a condensation polymer increases in molecular
weight. If the monomer is removed when it is in equilibrium with the polymer,
the polymer depolymerizes to re-form the monomer. At temperatures suitable
for long-term use, the equilibrium will be shifted toward stable polymer.
However, at fabrication temperatures and at the high temperatures common
in devolatilization, the production of monomer and low-molecular-weight
oligomers can be significant.

Polymer Structure. The simple vinyl monomer of Equation (13.6) can be
arranged in several ways along the polymer chain to give distinct materials
with markedly different physical properties. The first consideration is whether
the polymerization proceeds head-to-head or head-to-tail. The head-to-head
arrangement has the pendant R groups on adjacent carbon atoms. It is quite
uncommon. Most polymers are of the head-to-tail variety with the pendant
groups separated by a carbon atom in the polymer backbone. The next struc-
tural distinction is tacticity. It is a stereochemical property that depends on
the tetrahedral nature of carbon bonds. If the pendant R groups are all on the
same side relative to the carbon–carbon bonds along the backbone, the
polymer is isotactic. If they strictly alternate, the polymer is syndiotactic. If
they alternate at random, the polymer is atactic. Polyethylene has no tacticity
since the pendant group is hydrogen. Commercial polypropylene is isotactic.
Commercial polystyrene is atactic although a syndiotactic variety has been
introduced.

Diene-based polymers such as polybutadiene have other structural distinc-
tions. The linear versions of these polymers have one residual double bond
for each mer. When the double bonds are in the polymer chain, the cis and
trans stereoisomers are possible. The double bonds can appear as pendant
vinyl groups, which can then exhibit tacticity.

Most commercial polymers are substantially linear. They have a single chain
of mers that forms the backbone of the molecule. Side-chains can occur and can
have a major affect on physical properties. An elemental analysis of any poly-
olefin, (e.g., polyethylene, polypropylene, poly(1-butene), etc.) gives the same
empirical formula, CH2, and it is only the nature of the side-chains that distin-
guishes between the polyolefins. Polypropylene has methyl side-chains on every
other carbon atom along the backbone. Side-chains at random locations are
called branches. Branching and other polymer structures can be deduced using
analytical techniques such as 13C NMR.

Copolymerization e.g., of 1-butene or 1-hexene with ethylene, gives short-
chain branching; e.g., the branches contain three or five carbon atoms.
The random location of the side-chains lowers the crystallinity and density.
Long-chain branching refers to branches that are similar in length to the polymer
backbone and this type occurs in polyethylene manufactured using the
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high-pressure process. These branches also lower the crystallinity and density.
Star polymers have three or more long chains originating from a common
point. They are formed when the polymerization is initiated with a polyfunc-
tional molecule.

The logical extension of branching is cross-linking, where the polymer
becomes an immense, three-dimensional molecule. Originally distinct polymer
chains are connected by chemical bonds or ionic attractions to two or more
other chains. Lightly cross-linked materials swell in a solvent to form a gel
but do not dissolve. Heavily cross-linked polymers can be as hard as a bowling
ball. Intentional cross-linking is done after thermosetting polymers (e.g., pheno-
lic and epoxy resins) and rubbers are molded into their final shapes.
Unintentional cross-linking shows up as defects in polymer films (known as
gels or fish eyes) or can shut down reactors.

Vinyl copolymers contain mers from two or more vinyl monomers. Most
common are random copolymers that are formed when the monomers polymer-
ize simultaneously. They can be made by most polymerization mechanisms.
Block copolymers are formed by reacting one monomer to completion and
then replacing it with a different monomer that continues to add to the same
polymer chain. The polymerization of a diblock copolymer stops at this point.
Triblock and multiblock polymers continue the polymerization with additional
monomer depletion and replenishment steps. The polymer chain must retain
its ability to grow throughout the process. This is possible for a few polymeriza-
tion mechanisms that give living polymers.

13.2 MOLECULAR WEIGHT DISTRIBUTIONS

The molecular weight distribution (MWD) is of vital importance for polymers of
all types. It determines the ease of manufacture, the ease of fabrication, and the
end-use properties of the polymer. A proper kinetic description of a polymeriza-
tion requires determination of the molecular weight distribution of the polymer
in addition to the usual concepts of conversion and selectivity.

13.2.1 Distribution Functions and Moments

Theoretical molecular weight distributions are usually based on the chain length
rather than the molecular weight. A multiplicative factor, molecular weight per
mer, can be applied at the end of any calculation. The subtle differences due to
endgroups are usually ignored. Let cðl Þ, where l ¼ 1, 2, . . . , be the concentra-
tion of polymer chains having length l. The discrete valued function cðl Þ is some-
times called the molecular weight distribution, but it does not obey the rules of
a probability distribution since it does not sum to 1. Instead,X1

l¼1
cðl Þ ¼ cpolymer ð13:7Þ
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where cpolymer is the total polymer concentration. A proper probability function is

f ðl Þ ¼ cðl Þ
cpolymer

so that
X1
l¼1
f ðl Þ ¼ 1 ð13:8Þ

where f ðl Þ is the fraction of the total number of polymer molecules that has
length l. Both c(l ) and f ðl Þ are defined only for integer values of l, where
l ¼ 1, 2, . . . , but when c(l ) is measured experimentally, it is difficult to resolve
individual oligomers beyond the first few, and c(l ) appears to be a continuous
function of l. Integrals then replace the sums in Equations (13.7) and (13.8).
When f(l ) is a continuous function of l, f ðl Þdl gives the fraction of the molecules
that have lengths in the range from l to l þ dl. See Chapter 15 for a similar defi-
nition of a differential distribution function applicable to residence times. Here
in Chapter 13, summations will be used rather than integrals.

The moments of the molecular weight distribution are defined as either

�n ¼
X1
l¼1
lncðl Þ or 	n ¼

X1
l¼1
lnf ðl Þ n ¼ 0, 1, 2, . . . ð13:9Þ

where �0 ¼ cpolymer when cðl Þ is used to define the moments and 	0 ¼ 1when f ðl Þ
is used. Note that � and 	 are not equivalent but differ by a factor of cpolymer.
Statisticians use the 	 definition but denote them as �. The polymer literature
tends to use moments based on cðl Þ and they will be used here in Chapter 13.
The number average chain length (which is proportional to the number average
molecular weight) is obtained from the first moment:

�llN ¼ �1

�0
¼
P1
l¼1
lcðl Þ

cpolymer
¼
X1
l¼1
lf ðl Þ ð13:10Þ

An experimental determination of the molecular weight distribution concep-
tually sorts the polymer molecules into bins, with one bin for each degree of
polymerization, l ¼ 1, 2, . . . . The contents of the bin are counted, and f ðl Þ is
the fraction (by number) found in bin l. The bins could also be weighed to
give a weight fraction in each bin. This defines the function gðl Þ. Since weight
is proportional to chain length, the distribution by weight is

gðl Þ ¼ lf ðl Þ
�llN

and
X1
l¼1
gðl Þ ¼ 1 ð13:11Þ

where the factor of �llN is included so that the probabilities sum to 1. The weight
average chain length is

�llW ¼
X1
l¼1
lgðl Þ ¼ 1

�llN

X1
l¼1
l2f ðl Þ ¼ �2

�1
ð13:12Þ
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The ratio of weight-to-number average chain lengths is the polydispersity,

PD ¼
�llW
�llN
	 1 ð13:13Þ

This dimensionless number measures the breadth of the molecular weight
distribution. It is 1 for a monodisperse population (e.g., for monomers before
reaction) and is 2 for several common polymerization mechanisms.

13.2.2 Addition Rules for Molecular Weight

Suppose w1 kilograms of a polymer with chain lengths ð �llNÞ1 and ð �llW Þ1 are mixed
with w2 kilograms of a polymer with chain lengths ð �llNÞ2 and ð �llW Þ2. Then the
mixture has the following properties:

ð �llNÞmix ¼
w1 þ w2

w1

ð �llNÞ1
þ w2

ð �llNÞ2
ð13:14Þ

ð �llW Þmix ¼
w1ð �llW Þ1 þ w2ð �llW Þ2

w1 þ w2
ð13:15Þ

These rules can be used in reactor design calculations when newly formed
polymer is added to existing polymer.

13.2.3 Molecular Weight Measurements

When the full distribution is needed, it is measured by size-exclusion chromato-
graphy (also called gel permeation chromatography). This is a solution techni-
que that requires dissolution of the polymer in a reasonable solvent such
as tetrahydrofuran or tetrachlorlobenzene. For polymers that require exotic
solvents or solution temperatures above about 150�C, a simple measurement
of solution viscosity can be a useful surrogate for the actual molecular weight.
The viscosity of the pure polymer (i.e., a polymer melt viscosity) can also be
used. Such simplified techniques are often satisfactory for routine quality
control, particularly for condensation polymers such as PET that vary in aver-
age molecular weight but usually have a polydispersity of 2.

Size-exclusion chromatography is primarily a research tool. The instrument
is calibrated using polystyrene standards, and results are normally reported
as polystyrene-equivalent molecular weights, not the actual molecular weights
of the polymer being tested, which may or may not be known. Furthermore,
a low molecular weight cut-off of 2000–3000 is usually employed. Thus, the
measurements are more comparative than absolute. For theoretical calculations
involving condensation polymers, everything is included, even the monomers.
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For addition polymers, it is normal practice to exclude monomer from the
calculations. Low-molecular-weight oligomers are usually excluded as well.

The detector installed on a size-exclusion chromatograph determines whether
the measured molecular weight distribution is by number, by weight, or even by
viscosity. Modern instruments include software to convert from one distribution
to another. They also compute number average, weight average, and Z-average
molecular weights, the last one being related to the third moment of the
distribution. All these numbers are relative to the polystyrene standards.

13.3 KINETICS OF CONDENSATION
POLYMERIZATIONS

The generic condensation polymerization begins with monomers AMA and
BMB and produces molecules of the forms A�A, B�B, and A�B. Each step
of the reaction generates a longer polymer by the step-growth mechanism of
Equation (13.2) and produces 1 mol of condensation product AB.

13.3.1 Conversion

Suppose that the reactivity of the A and B endgroups is independent of the
chains to which they are attached. This is a form of the equal reactivity assump-
tion that is needed for almost all analytical solutions to polymer kinetic
problems. If it is satisfied, we can ignore the details of the polymerization and
just concentrate on the disappearance of the endgroups. For a batch system,

d½A�
dt
¼ �k ½A� ½B� ¼ d½B�

dt

The initial condition for this ODE is based on Equation (13.3), ½A�0 ¼ SAB½B�0.
The solution is

XA ¼ 1� ð1� SABÞ
exp ð1� SABÞ½B�0 kt

� �� SAB ð13:16Þ

where XA is the conversion of the limiting endgroup, A. The conversion depends
on SAB and on the dimensionless reaction time, [B]0kt. Perfect initial stoichio-
metry, as for a self-condensing monomer, gives an indeterminant form, to
which L’Hospital’s rule may be applied:

XA ¼ 1� 1

1þ ½B�0 kt
for SAB ¼ 1 ð13:17Þ

We see from Equations (13.16) and (13.17) that the conversion of endgroups
obeys the kinetics of a simple, second-order reaction; the second-order reaction
having perfect initial stoichiometry in the case of Equation (13.17).

POLYMER REACTION ENGINEERING 473



13.3.2 Number and Weight Average Chain Lengths

Solutions for the general case are

�llN ¼ 1þ SAB
1þ SAB � 2XASAB

ð13:18Þ

�llW ¼ ð1þ SABÞð1þ X
2
ASABÞ þ 4XASAB

ð1þ SABÞð1� X2
ASABÞ

ð13:19Þ

For zero conversion, �llN ¼ �llW ¼ 1 since only monomers are present initially.
At high conversion, Equation (13.18) approaches Equation (13.4). The poly-
dispersity for the complete conversion case is

PD ¼
�llW
�llN
¼ ð1þ 6SAB þ S2

ABÞ
ð1þ SABÞ2

ð13:20Þ

The polydispersity is 2 for perfect stoichiometry or self-condensing monomers,
but Equation (13.4) shows that �llN !1 for this case. PD¼ 2 is an asymptotic
value that applies exactly only in the limit of high molecular weight. However,
PD closely approaches 2 at quite low chain lengths.

Example 13.2: Determine PD as a function of chain length for binary poly-
condensations that go to completion.

Solution: Equation (13.4) is used to relate �llN and SAB at complete
conversion. The polydispersity is then calculated using Equation (13.20).
Some results are shown in Table 13.3. The polydispersity becomes
experimentally indistinguishable from 2 at a chain length of about 10.

Example 13.3: The conversion of a self-condensing reaction can be limited
to give polymers with finite lengths. How does the polydispersity of these
polymers compare with those in Example 13.2 where the reaction went to
completion with imperfect stoichiometry? Make the comparison at the same
average chain length.

TABLE 13.3 Polydispersities for Binary Polycondensations

XA SAB �llN PD

1 0 1 1
1 0.2 1.5 1.5556
1 0.3333 2 1.7500
1 0.6667 5 1.9600
1 0.8182 10 1.9900
1 0.9048 20 1.9975
1 0.9608 50 1.9996
1 0.9802 100 1.9999
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Solution: The number and weight average chain lengths for a self-
condensing polymerization are obtained from Equation (13.18) and (13.19)
by setting SAB¼ 1:

�llN ¼ 1

1� XA ð13:21Þ

�llW ¼ 1þ XA
1� XA ð13:22Þ

so that

PD ¼ 1þXA ð13:23Þ
Table 13.4 tabulates results at the same value of �llN as in Table 13.3.

The polydispersities are lower than when the same average chain length
is prepared by a binary polycondensation going to completion. The
stoichiometry-limited binary polycondensations have a higher polydispersity
because the monomer in stoichiometric excess (the B monomer) is included
in the calculations. This broadens the molecular weight distribution.

13.3.3 Molecular Weight Distribution Functions

The probability distribution for chain lengths in a binary polycondensation is

f ðlÞ ¼ 2 1� XASABð Þ 1� XAð Þ
1þ SAB � 2XASAB

Xl�1A Sl=2AB if l is even

¼ 1� XASABð Þ2þSAB 1� XAð Þ2
1þ SAB � 2XASAB

Xl�1A Sðl�1Þ=2AB if l is odd

ð13:24Þ

Figures 13.1 and 13.2 illustrate these distributions by number and weight,
respectively. The most abundant species by number is always the monomer,
even for the case of perfect stoichiometry. The distribution by weight usually
shows an interior maximum. Note that the even-numbered mers are missing
because the A-type endgroups are reacted to completion.

If SAB¼ 1, Equation (13.24) reduces to a simple form:

f ðl Þ ¼ ð1� XAÞXl�1A for all l ð13:25Þ

This is the famous Flory distribution . Here, it is expressed in terms of the
conversion, but Equation (13.21) can be used to replace XA with �llN . The
result is

f ðl Þ ¼ 1
�llN

1� 1
�llN

� �l�1
ð13:26Þ
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FIGURE 13.1 Molecular weight distribution by number fraction for a binary polycondensation
going to completion with �llN ¼ 5 and �llW ¼ 9:8:
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FIGURE 13.2 Molecular weight distribution by weight fraction for a binary polycondensation going
to completion with �llN ¼ 5 and �llW ¼ 9:8:

TABLE 13.4 Polydispersities for Self-Condensing
Polymerizations

XA SAB �llN PD

0 1 1 1
0.33 1 1.5 1.33
0.50 1 2 1.50
0.80 1 5 1.80
0.90 1 10 1.90
0.95 1 20 1.95
0.98 1 50 1.98
0.99 1 100 1.99
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The mean of this most probable distribution is (obviously) �llN , and the polydisper-
sity (PD) is

PD ¼ 1þ XA ¼ 2� 1

�llN
ð13:27Þ

The equal reactivity assumption is sometimes wrong. Suppose the reaction
in Equation (13.2) is elementary but that the rate constant, kl,m, depends on l
and m. The usual case is for the reactions involving the monomers and smaller
oligomers to be relatively fast, but for the rate dependence to vanish for reason-
ably long chains. Then calculations based on equal reactivity are usually ade-
quate if the desire is to make polymer of high molecular weight. If a detailed
accounting is needed, brute force numerical calculations can be used.
Numerical solutions for �llN of a few hundred were feasible in the early 1960s,
and any reasonable kinetic scheme is now solvable in detail.

Example 13.4: Calculate the molecular weight distribution for a self-
condensing polymerization with kl,m ¼ k0=ðl þmÞ: Stop the calculations
when �llN ¼ 5: Compare the results with those of the Flory distribution.

Solution: Polymer of length l is formed by the reaction of any two
molecules whose lengths sum to l. It is consumed when it reacts with any
molecule. The batch rate equation governing the formation of polymer of
length l is

dcl
dt
¼ k0
l

Xl�1
m¼1

cmcl�m � k0cl
X1
m¼1

cm
l þm

The following program segment illustrates the solution. The time scale is
arbitrary. The code is computationally inefficient but straightforward.
Execution times are trivial because �llN is small. Results are �llW ¼ 7:04 and
PD¼ 1.41 compared with �llW ¼ 9 and PD ¼ 1.8 for the equal-reactivity
case. See Figure 13.3. Convergence was tested by comparing the equal-
reactivity case—as calculated using the program—with the analytical result,
Equation (13.27).

Dim c(100)
c(1)¼1
xk¼1
dt¼0.001

Do
u0 ¼ 0
u1 ¼ 0
u2 ¼ 0
For j ¼ 1 To 99
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Sum ¼ 0
For m ¼ 1 To j - 1

Sum ¼ Sum þ c(m) * c(j - m)
Next m
tot ¼ 0
For m ¼ 1 To 99
’tot ¼ tot þ xk * c(m) ’Equal reactivity case
tot ¼ tot þ xk / (j þ m) * c(m)
Next m
’c(j) ¼ c(j) þ (xk * Sum - c(j) * tot) * dt
’Equal reactivity case
c(j) ¼ c(j) þ (xk / j * Sum - c(j) * tot) * dt
u0 ¼ u0 þ c(j)
u1 ¼ u1 þ j * c(j)
u2 ¼ u2 þ j * j * c(j)
Next j
xlength ¼ u1 / u0

Loop While xlength < 5

13.4 KINETICS OF ADDITION
POLYMERIZATIONS

Most addition polymerizations involve vinyl or diene monomers. The opening of
a double bond can be catalyzed in several ways. Free-radical polymerization is
the most common method for styrenic monomers, whereas coordination metal
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FIGURE 13.3 Molecular weight distributions by number for the equal-reactivity case and the
variable-reactivity case of Example 13.4.
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catalysis (Zigler-Natta and metallocene catalysis) is important for olefin poly-
merizations. The specific reaction mechanism may generate some catalyst
residues, but there are no true coproducts. There are no stoichiometry require-
ments, and equilibrium limitations are usually unimportant so that quite long
chains are formed; �llN > 500 is typical of addition polymers.

The first step in an addition polymerization is initiation to form a polymer
chain of length 1:

Mþ I! IP1 ð13:28Þ
The moiety denoted as I is the initiator group. It can be as simple as a free radi-
cal or as complicated as a transition metal atom bonded to organic ligands and
located on a catalytic support. The next step in the polymerization is propaga-
tion, i.e., the repeated insertion of monomer units into the chain to create an
incrementally longer chain

Mþ IPl ! IPlþ1 l ¼ 1, 2, . . . ð13:29Þ
The propagation reaction is a more mechanistic version of Equation (13.1) and
accounts for most of the monomer consumption. The growth of the chain can be
stopped by chain transfer, the simplest form of which is chain transfer to mono-
mer:

Mþ IPl ! IP1 þ Pl l ¼ 1, 2, . . . ð13:30Þ
Here, Pl is a finished polymer molecule, and IP1 starts a new chain. The final step
in the polymerization is termination. It deactivates the initiator group and gives a
finished polymer molecule.

13.4.1 Living Polymers

A batch, anionic polymerization—e.g., of styrene catalyzed by butyl lithium—is
among the simplest addition polymerizations to analyze. Butyl lithium is added
to a solution of styrene monomer to form LiþBu�P1 as the first propagating spe-
cies. The initiation step is fast and consumes I0 molecules each of the initiator
and of the monomer to give I0 growing polymer chains. If the reaction is main-
tained at moderate temperatures, say < 50�C, and if there are no contaminants
such as water, CO2, or oxygen, then there are no chain transfer or termination
reactions. The I0 chains constitute living polymer molecules that continue to
grow until all the monomer is consumed. The average chain length will be

�llNðt!1Þ ¼M0

I0

The chains share the same chemical environment and grow at the same average
rate. If the final chain length is large, all the molecules will have more or less the
same size and the resulting polymer will be approximately monodisperse.
Furthermore, if a second monomer is added to the system after the first has
been depleted, a block copolymer can be formed.
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The present section analyzes the above concepts in detail. There are many
different mathematical methods for analyzing molecular weight distributions.
The method of moments is particularly easy when applied to a living polymer
polymerization. Equation (13.30) shows the propagation reaction, each step
of which consumes one monomer molecule. Assume equal reactivity. Then for
a batch polymerization,

dM

dt
¼ �kpM

X1
l¼1
cl ¼ �kpM�0 ¼ �kpMI0 ð13:31Þ

where �0 ¼ I0 is the total concentration of polymer molecules and is constant
for living polymer. Equation (13.31) is subject to the initial condition that
M ¼M0 � I0 at t ¼ 0, zero time being just after the fast initiation step that
consumes I0 monomer molecules. The solution is

M ¼MðtÞ ¼ ðM0 � I0Þ expð�kpI0tÞ ð13:32Þ

Polymer of length l is formed when polymer of length l � 1 reacts with monomer
and is consumed when it itself reacts with monomer:

dcl
dt
¼ kpMcl�1 � kpMcl ¼ kpMðcl�1 � clÞ ð13:33Þ

The time variable is transformed to incorporate M:

dcl
d
¼ dcl
kpM dt

¼ cl�1 � cl ð13:34Þ

where c0 ¼ 0 and d ¼ kpM dt. Integrating Equation (13.32) gives

 ¼M0 � I0
I0

1� expð�kpI0tÞ
� � ¼M0 � I0 �M

I0
ð13:35Þ

Equation (13.34) is one member of an infinite set of ODEs. Add them all up to
obtain

X1
l¼1

dcl
d
¼
d
P1
l¼1
cl

d
¼ d�0

d
¼ �c1 þ ðc1 � c2Þ þ ðc2 � c3Þ þ � � � ¼ 0

which is an ODE for �0: To obtain ODEs for �1 and �2, multiply Equation
(13.34) by l and l 2 and then sum:

X1
l¼1
l
dcl
d
¼
d
P1
l¼1
lcl

d
¼ d�1

d

¼ �c1 þ 2ðc1 � c2Þ þ 3ðc2 � c3Þ þ � � � ¼ c1 þ c2 þ c3 þ � � � ¼ �0
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X1
l¼1
l2
dcl
d
¼
d
P1
l¼1
l2cl

d
¼ d�2

d

¼ �c1 þ 4ðc1 � c2Þ þ 9ðc2 � c3Þ þ � � � ¼ 3c1 þ 5c2 þ 7c3 þ � � �
¼ �0 þ 2�1

The infinite set of simultaneous ODEs has been transformed to a set of
moment equations that can be solved sequentially. The first three members of
the set are:

d�0

d
¼ 0 �0 ¼ I0 at  ¼ 0

d�1

d
¼ �0 �1 ¼ I0 at  ¼ 0

d�2

d
¼ �0 þ 2�1 �2 ¼ I0 at  ¼ 0

An infinite set of moments is theoretically necessary to describe a molecular
weight distribution; but as a practical matter, knowing moments 0, 1, and 2
is usually adequate. The initial condition for all the moments is �n ¼ I0 at
 ¼ 0. Solution gives

�0 ¼ I0
�1 ¼ I0ð þ 1Þ
�2 ¼ I0ð2 þ 3 þ 1Þ

From these, we find

�llN ¼ �1

�0
¼  þ 1 ð13:36Þ

�llW ¼ �2

�1
¼ 2 þ 3 þ 1

 þ 1
ð13:37Þ

PD ¼
�llW
�llN
¼ �0�2

�2
1

¼ 2 þ 3 þ 1

ð þ 1Þ2 ð13:38Þ

The predicted polydispersities are quite low, with a maximum value of 1.25 at
�llN ¼ 2:

Anionic polymerizations make the molecular weight standards that are used
to calibrate size-exclusion chromatographs. Equation (13.38) predicts PD¼
1.001 at �llN ¼ 1000. Actual measurements give about 1.05. The difference
is attributed to impurities in the feed that cause terminations and thus
short chains. Also, the chromatograph has internal dispersion so that a truly
monodisperse sample would show some spread. Even so, a PD of 1.05 is extre-
mely narrow by polymer standards. This does not mean it is narrow in an
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absolute sense. Figure 13.4 shows the molecular weight distribution by number
for a polymer that has a polydispersity of 1.05. The spread in molecular weights
relative to the mean is appreciable.

13.4.2 Free-Radical Polymerizations

A typical free-radical polymerization involves all of the steps in addition poly-
merization: initiation, propagation, chain transfer, and termination. In contrast
to anionic and cationic polymerization that can give living polymers, the lifetime
of growing polymer chains is short under free-radical catalysis, typically on the
order of milliseconds. The quasi-steady hypothesis discussed in Section 2.5.3 is
usually applied in theoretical analyses because growing chains are terminated
at approximately the same rate at which they are initiated. Although some
monomers will initiate spontaneously upon heating (thermal initiation), a chemi-
cal initiator is usually used as the original source of free radicals. A typical initia-
tor decomposes according to first-order kinetics to yield two free radicals:

I2 �!ki 2f I. R ¼ ki½I2�

The factor of f reflects the fact that some of the free radicals immediately recom-
bine into stable molecules that do not initiate polymerization. A primary radical
formed by the chemical initiator reacts with monomer to form a propagating
radical that contains one monomer unit:

I.þM! IP1
.
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FIGURE 13.4 Molecular weight distribution for a polymer that has a polydispersity of 1.05.

482 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



This is the starting chain and is identical to the IP1 species in Equation (13.28),
The . notation explicitly shows the free-radical nature of the polymerization,
and the moiety denoted by I represents a fragment from the chemical initiator;
e.g. a butyl group when t-butyl peroxide is the initiator. The propagation
reaction is

Mþ IPl . ! IPlþ1 . l ¼ 1, 2, . . . R p ¼ kpM
X1
l¼1
½IPl . � ¼ kpMP .

where P . denotes the total concentration of growing chains. The constant value
for kp assumes equal reactivity.

Various forms of chain transfer are common. Chain transfer to monomer
stops chain growth but initiates a new chain of length l ¼ 1. It acts to limit
the polymer molecular weight without reducing conversion. Chain transfer to
polymer causes long-chain branching. Chain transfer to solvent limits molecular
weight and may reduce conversion depending on the fate of the transferred free-
radical. Chain transfer to a free radical scavenger such as t-butylcatechol inhibits
polymerization.

In contrast to chain transfer, termination reactions destroy free radicals.
Two mechanisms are considered. Termination by combination produces a
single molecule of dead polymer:

IPl . þ IPm . ! IPlþmI R ¼ kc½P . �2

The free radicals combine to form a carbon-to-carbon bond and give a saturated
polymer molecule with initiator fragments on both ends. Termination by dispro-
portionation produces two polymer molecules, one of which will contain a
double bond:

IPl . þ IPm . ! IPp þ IPq R ¼ kd ½P . �2

where l þ m ¼ p þ q.
Chain lifetimes are small and the concentration of free radicals is low. To a

reasonable approximation, the system consists of unreacted monomer,
unreacted initiator, and dead polymer. The quasi-steady hypothesis gives

dP .

dt
¼ fki½I2� � ðkc þ kd Þ½P . �2 � 0

where it was assumed that the termination rate constants kc and kd are indepen-
dent of chain length. Solving for ½P . � and substituting into the propagation rate
gives

R p ¼ kpMP . ¼ kpM
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fki½I2�
kc þ kd

s
ð13:39Þ
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The propagation reaction accounts for nearly all the consumption of monomer.
Thus, Equation (13.39) predicts that the polymerization rate will be first order in
monomer concentration and half-order in initiator concentration. This is con-
firmed by experiments at low polymer concentrations, but can be violated at
high polymer concentrations. The termination mechanisms require pairwise
interactions between large molecules, and these become increasingly difficult
at high polymer concentrations due to chain entanglements. The propagation
reaction is less affected, and the net rate of polymerization can actually increase.
The phenomenon of the rate increasing asM decreases is a form of autoaccelera-
tion known as the gel effect. It is particularly noticeable in the polymerization of
methyl methacrylate. See Section 2.5.4 and Figure 2.5.

The ratio of propagation rate to termination rate gives the dynamic chain
length of the growing polymer. Ignoring chain transfer,

ð �llNÞlive ¼
kpMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2f ðkc þ kdÞki½I2�
p ð13:40Þ

The dynamic chain length is the number average length of the growing chains
before termination. The dead polymer will have the same average length as
live polymer if termination is by disproportionation and will have twice this
length if termination is by combination.

The growing polymer chains have the most probable distribution defined by
Equation (13.26). Typically, �llN is large enough that PD � 2 for the growing
chains. It remains 2 when termination occurs by disproportionation. Example
13.5 shows that the polydispersity drops to 1.5 for termination by pure combi-
nation. The addition rules of Section 13.2.2 can be applied to determine 1.5 <
PD<2 for mixed-mode terminations, but disproportionation is the predomi-
nant form for commercial polymers.

Example 13.5: Determine the instantaneous distributions of chain lengths
by number and weight before and after termination by combination. Apply
the quasi-steady and equal reactivity assumptions to a batch polymerization
with free-radical kinetics and chemical initiation.

Solution: The equal reactivity assumption says that kp and kc are
independent of chain length. The quasi-steady hypothesis gives d½R . �=dt ¼ 0.
Applying these to a material balance for growing chains of length l gives

kpM½Pl�1. � � kpM½Pl . � � kc½Pl . �½P. � ¼ 0

where ½P. � denotes the entire population of growing chains. Solving for ½Pl . �
gives

½Pl . � ¼
kpM½Pl�1. �
kpM þ kc½P. � ¼ !½Pl�1. �
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where ! is a proportionality factor that is constant at any instant of time.
Initiation creates species ½P1

. �, and propagation takes it from there. The
relative concentrations of chain lengths are distributed according to

Chain length, l
Relative concentration,

½Pl . �=½P1
. �

1 1
2 !
3 !2

. . . . . .

This is a geometric progression that sums to ð �llNÞlive ¼ 1/(1�!). The fraction of
the growing chains with length l is

f ðlÞ ¼ ð1� !Þ!l�1

which is identical in form to Equation (13.25). Thus, the growing polymer
chains have a Flory distribution. The dead polymer has a different and
narrower distribution. It is narrower due to the averaging process that
results when termination is by combination. An unusually long chain will
usually combine with a shorter chain, giving a sum that is not too different
from the average sum. We assume that termination occurs between pairs of
growing chains chosen completely at random. Applying a theorem in
probability theory shows that

X1
l¼1
fdeadðlÞesl ¼

X1
l¼1
f ðlÞesl

" #2

where fdead ðlÞ and f ðlÞ are the probability distributions of the dead and living
polymer, respectively. The exponentially weighted sums are known as
moment-generating functions. They have the property that

lim
s!1

dn

dsn

X1
l¼1
fdeadðlÞesl ¼ �n

�0

Note that n¼ 1 gives �1=�0 ¼ �llN , and n¼ 2 gives �2/�0¼ �llN �llW for the dead
polymer. For the case at hand,

ð �llNÞdead ¼
2

1� !
, ð �llW Þdead ¼

2þ !

1� !
, and ðPDÞdead ¼

2þ!

2

In the limit of long chain lengths, !! 1, ð �llNÞdead ! 2ð �llNÞlive, and
ð �llW Þdead ! 3ð �llNÞlive. Thus, the polydispersity has a limiting value of 1.5 for
the assumed kinetic scheme.
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Unlike the convention for condensation polymers, calculations of �llN for free-
radical polymers exclude unreacted monomer. High-molecular weight polymer
is formed at the beginning of a polymerization, and the molecular
weight remains approximately constant as the reaction proceeds. Conversion
in a free-radical polymerization means the conversion of monomer to high-mole-
cular-weight polymer. A reaction mixture at 50% conversion may consist of
50% monomer and 50% polymer with a number average molecular weight of
100,000 ( �llN � 1000). The viscosity of the polymerizing mixture at 50%
conversion might be 10,000 times higher than that of the pure monomer. In con-
trast, molecular weight increases gradually in a polycondensation, and really
high molecular weights are not achieved until near the end of a batch reaction.
Conversion in a polycondensation refers to consumption of the stoichiometri-
cally limiting endgroup, and 50% conversion with SAB¼ 1 gives dimer.
See Table 13.4. The viscosity of the reaction mixture at 50% conversion
is perhaps twice that of the pure monomer(s). Figure 13.5 compares vis-
cosity versus conversion curves for the two types of polymerizations. Living
polymer systems behave more like condensation polymerizations since the
molecular weight builds slowly. Transition metal catalyses behave like
free-radical polymerizations with high-molecular-weight polymer created at
the onset.

The above discussion has been based on conventional free-radical catalysis.
There has been substantial research on long-lived free radicals that can give
a living polymer without the severe cleanliness requirements of anionic
polymerizations. Unfortunately, it has not yet had commercial success.

Condensation polymerization

Free-radical polymerization
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FIGURE 13.5 Representative profiles of viscosity versus conversion for free-radical and condensa-
tion polymerizations. The endpoint is 99.9% conversion with a number average chain length of 1000.
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13.4.3 Transition Metal Catalysis

Ziegler-Natta catalysis enabled the polymerization of propylene and has sub-
sequently come into wide use for the polymerization of olefins and dienes.
The classic Ziegler-Natta catalyst is TiCl3 plus Al(C2H3)3, but there are variants
that use other transition metals such as chromium and nickel. Polymerization is
believed to occur by the repeated insertion of a double bond from the monomer
into a previously formed metal-to-carbon bond. The homogeneous forms, where
the polymerization occurs in a solvent for the polymer, give linear high density
polyethylene (HDPE) of low polydispersity, PD � 2. Heterogeneous forms are
used for gas-phase polymerization in a fluidized-bed reactor. The catalyst is typi-
cally supported on MgCl2 and is introduced into the bed as a fine powder. These
supported catalysts give high yields, high activities, and high stereospecificity for
polypropylene, but they give polymer of undesirably high polydispersity,
PD>10. It is believed that the catalyst remains active and that chain transfer
to monomer or to hydrogen controls the molecular weight. The polydispersity
is attributed to large site-to-site variations in activity.

More recent inventions are the metallocene catalysts based on zirconium.
They offer more uniform catalyst activity and can give a relatively narrow
molecular weight distribution. More importantly, they offer better control
over structure and copolymer composition distributions.

The chemical mechanisms of transition metal catalyses are complex. The
dominant kinetic steps are propagation and chain transfer. There is no termina-
tion step for the polymer chains, but the catalytic sites can be activated and
deactivated. The expected form for the propagation rate is

R p ¼ kpIM

where I is the concentration of active sites. All the catalytic sites are presumed
active for homogeneous catalysis. However, cocatalysts such as Al(C2H3)3 or
methylaluminoxane (MAO) are required for the reaction to proceed, and their
presence or absence will affect the value of I. Mass transfer limitations can
arise in supported systems because the catalytic sites become buried under a
deposited film of polymer. Monomer solubility and diffusion in the polymer
are included in some models of the polymerization kinetics. A segregated
model that follows the course of individual active sites is needed for gas-to-
solid heterogeneous polymerizations.

13.4.4 Vinyl Copolymerizations

Vinyl monomers are often copolymerized, usually with free-radical or coordina-
tion metal catalysis, but occasionally by other mechanisms. Random copolymers
are important items of commerce. The two monomers are present together in the
reaction mixture and copolymerize to give more-or-less random arrangements of
the monomers along the polymer chain.
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Consider the polymerization of two vinyl monomers denoted by X and Y.
Each propagation reaction can add either an X or a Y to the growing polymer
chain, and it is unrealistic to assume that the monomers have equal reactivities.
Furthermore, reaction probabilities can depend on the composition of the poly-
mer chain already formed. We suppose that they depend only on the last
member added to the chain. The growing chain to which an X-mer was last
added is denoted as IXn, and I denotes the catalytic site. There are four propa-
gation reactions to consider:

IXn þX �!kXX IXnþ1 R ¼ kXX ½IXn�x

IXn þY �!kXY IYnþ1 R ¼ kXY ½IXn� y

IYn þX �!kYX IXnþ1 R ¼ kYX ½IYn�x

IYn þY �!kYY IYnþ1 R ¼ kYY ½IYn� y

The initiation and termination steps may also come in several varieties, but
they will have little effect on overall chain composition provided the chains
are long. The monomer consumption rates are

R X ¼ �kXX ½IXn�x� kYX ½IXn�x
R Y ¼ �kXY ½IXn�y� kYY ½IYn� y

The ratio of these propagation rates is the ratio in which the two monomers are
incorporated into the polymer:

xp

yp
¼ kXX ½IXn�xþ kYX ½IYn�x
kXY ½IXn�yþ kYY ½IYn�y ¼

x

y

kXX ½IXn� þ kYX ½IYn�
kXY ½IXn� þ kYY ½IYn�
� �

This result can be simplified considerably by observing that, except for end
effects, the number of transitions from X to Y along the polymer chain (i.e.,
structures like �XY�) must equal the number of transitions from Y to X
(i.e., structures like �YX�). This requires that

kXY ½IXn�y ¼ kYX ½IYn�x
Substitution gives the promised simplification:

xp
yp
¼ x
y

rXxþ y
xþ rYy
� �

ð13:41Þ

where rX ¼ kXX=kXY and rY ¼ kYY=kYX are known as copolymer reactivity
ratios . The quantity xp=yp is the instantaneous ratio at which the two monomers
are being incorporated into the polymer. It is usually different than the ratio of
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the monomers themselves, x=y. If rX > 1, monomer X tends to homopolymerize
so that sequences like �XX� will be favored. If rX < 1, copolymerization is
preferred, and sequences like �XY� will be common. Copolymer reactivity
ratios are found by measuring the polymer compositions that result from poly-
merizations run at low conversion. Extensive compilations are available in
the literature. Reactivity ratios are largely independent of temperature since
they are ratios of rate constants that have similar activation energies. They
are heavily dependent on the polymerization mechanism. Finding new catalysts
that give desired values for rX and rY is an active area of industrial research.

Example 13.6: The following data were obtained using low-conversion
batch experiments on the bulk (solvent-free), free-radical copolymerization
of styrene (X) and acrylonitrile (Y). Determine the copolymer reactivity
ratios for this polymerization.

Mol% styrene in
the monomer mixture x/y xp=yp

Mol% styrene in the
instantaneous polymer

50 1.00 1.36 0.576
60 1.50 1.58 0.613
70 2.33 1.93 0.659
80 4.00 2.61 0.723
90 9.00 4.66 0.823

Solution: The conversion is low so that the polymer composition is given
by Equation 13.41 with the monomer concentrations at the initial values.
There are five data and only two unknowns, so that nonlinear regression is
appropriate. The sum-of-squares to be minimized is

SS ¼
X5
j¼1

Xp
Yp

� �
j

� xj
yj

rXxj þ yj
xj þ rYyj

� � !2

Quantities with the subscript j are experimental data. Values for rX and rY are
determined using any convenient minimization technique. See Appendix 6.
The results are rX ¼ 0.41 and rY¼0.04.

In a batch reactor, the relative monomer concentrations will change with time
because the two monomers react at different rates. For polymerizations with a
short chain life, the change in monomer concentration results in a copolymer
composition distribution where polymer molecules formed early in the batch
will have a different composition from molecules formed late in the batch.
For living polymers, the drift in monomer composition causes a corresponding
change down the growing chain. This phenomenon can be used advantageously
to produce tapered block copolymers.
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When uniform copolymers are desired, semibatch polymerization with
continuous addition of the more reactive monomer is required. There is also a
special, happenchance case where the monomer and polymer compositions are
equal:

xp

yp
¼ x
y

if
rXxþ y
xþ rYy
� �

¼ 1 ð13:42Þ

Equation (13.42) gives the condition that a copolymer azeotrope exists. The azeo-
tropic composition is

x

y

� �
azeotrope

¼ 1� rY
1� rX

� �
ð13:43Þ

which implies that either both rX and rY>1 or both rX and rY<1. The situation
with rX and rY<1 is the more common. The styrene/acrylonitrile system with
rX ¼ 0.41 and rY ¼ 0.04 has an azeotrope at 62 mol% (76 wt%) styrene.
Commercial polymer is manufactured with this composition. The narrow com-
position distribution gives superior color and clarity.

Example 13.7: A 50/50 (molar) mixture of styrene and acrylonitrile is batch
polymerized by free-radical kinetics until 80% molar conversion of the mono-
mers is achieved. Determine the copolymer composition distribution.

Solution: The solution to this problem does not require knowledge of
the polymerization rate but only that polymerization somehow occurs to
the specified extent. Suppose a small amount, dx, of monomer X is poly-
merized. The corresponding amount, dy, of monomer Y that copolymerizes
is given by Equation (13.41). For a batch reaction,

dx

dy
¼ x
y

rXxþ y
xþ rYy
� �

ð13:44Þ

This equation can be integrated analytically, but a numerical solution is
simpler. Set x0 ¼ y0 ¼ 0:5. Take small steps �y and calculate the
corresponding values for �x until xþ y¼ 0.2. Some results are given below.

Moles of
monomer
remaining

Mole fraction
of styrene in
the monomer

Instantaneous
mole fraction
of styrene in
the polymer

Cumulative mole
fraction of styrene
in the polymer

1.0000 0.5000 0.5755 0.5755
0.8 0.4818 0.5698 0.5728
0.6 0.4538 0.5612 0.5693
0.4 0.4033 0.5467 0.5644
0.2 0.2743 0.5109 0.5564
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This is a free-radical polymerization with short chain lives. The first molecules
formed contain nearly 58 mol% styrene when there is only 50% styrene in the
monomer mixture. The relative enrichment of styrene in the polymer depletes
the concentration in the monomer mixture, and both the polymer and
monomer concentrations drift lower as polymerization proceeds. If the
reaction went to completion, the last 5% or so of the polymer would be
substantially pure polyacrylonitrile.

The change in polymer composition as a result of monomer drift gives a
macroscopic composition distribution. It can be eliminated by polymerizing at
the azeotrope, by polymerizing to low conversion, by continuously adding the
more reactive monomer to a semibatch reactor, or by polymerizing in a
CSTR. The last method is usually preferred for polymers with short chain
lives. There is also a microscopic composition distribution due to statistical fluc-
tuations at the molecular level. Two molecules formed from the same monomer
mixture will not have the same sequence down the chain nor exactly the same
overall composition. The microscopic distribution follows binomial (coin tos-
sing) statistics and will exist even if the polymer is manufactured at an azeotrope.
Simulations using random numbers can determine the microscopic composition.
For simulation of a single molecule in a macroscopically uniform sample that
contains 60 mol% X and 40 mol% Y on average, flip a coin with a 60/40 bias
�llN times. Do this for enough molecules that the statistics become clear. Figure
13.6 shows the combined macroscopic and microscopic distributions for the
batch polymerization of Example 13.7.
Sequence length distributions are occasionally important. They measure the

occurrences of structures like �YXY�, �YXXY�, and �YXXXY� in a
random copolymer. These can be calculated from the reactivity ratios and the
polymer composition. See, for example, Ham.1

The copolymerization theory presented here assumes that the reactivity of a
growing chain depends on the last mer added to the chain. Chemical theorists
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FIGURE 13.6 Copolymer composition distribution resulting from the batch polymerization of
styrene and acrylonitrile.
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point out that there can be penultimate effects where reactivity depends on the
next-to-last (penultimate) mer as well as the last (ultimate) mer. Thus, �XX
would behave differently than �YX. This is undoubtedly true, but the extra
complexity seldom seems justified from a reaction engineering viewpoint.

13.5 POLYMERIZATION REACTORS

The properties of a polymer depend not only on its gross chemical composition
but also on its molecular weight distribution, copolymer composition distribu-
tion, branch length distribution, and so on. The same monomer(s) can be con-
verted to widely differing polymers depending on the polymerization mechanism
and reactor type. This is an example of product by process, and no single product
is best for all applications. Thus, there are several commercial varieties each
of polyethylene, polystyrene, and polyvinyl chloride that are made by distinctly
different processes.

Table 13.5 classifies polymerization reactors by the number and type of
phases involved in the reaction. The most important consideration is whether
the continuous phase contains a significant concentration of high-molecular-
weight polymer. When it does, the reactor design must accommodate the high
viscosities and low diffusivities typical of concentrated polymer solutions. It
is the design of reactors for operation with a continuous polymer phase that
most distinguishes polymer reaction engineering from chemical reaction engi-
neering. When the polymer-rich phase is dispersed, the chemical kinetics and
mass transfer steps may be very complex, but the qualitative aspects of
the design resemble those of the heterogeneous reactors treated in Chapter 11.

A polymerization reactor will be heterogeneous whenever the polymer is
insoluble in the mixture from which it was formed. This is a fairly common
situation and gives rise to the precipitation, slurry, and gas-phase polymeriza-
tions listed in Table 13.5. If the polymer is soluble in its own monomers, a dis-
persed-phase polymerization requires the addition of a nonsolvent (typically
water) together with appropriate interfacial agents. These extraneous materials
require additional downstream purification and separation and may compro-
mise product quality. Bulk polymerizations from pure, undiluted monomer are
nominally preferred, although the use of a solvent to ease processing problems
is quite common. For high-volume polymers, like high-volume chemicals, con-
tinuous operation is generally preferred over batch.

13.5.1 Stirred Tanks with a Continuous Polymer Phase

Continuous-flow stirred tank reactors are widely used for free-radical polymer-
izations. They have two main advantages: the solvent or monomer can be boiled
to remove the heat of polymerization, and fairly narrow molecular weight
and copolymer composition distributions can be achieved. Stirred tanks or
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functionally equivalent loop reactors are also used for the transition metal poly-
merization of olefins and dienes when the catalyst is homogeneous. CSTRs
are used for the low-molecular-weight portions of condensation polymerizations
when the stoichiometry requirements are not severe. Their principal disadvan-
tage is that high conversions are difficult to achieve. They suffer from the usual
problem of low average reaction rate. A second problem at high conversion is
that the viscosity can be several orders of magnitude higher than the design
limit for stirred tanks. Some practical designs use stirred tanks up to about
75% conversion, with further polymerization carried out in a tubular reactor.

Molecular Weight Distributions. The CSTRs produce the narrowest possible
molecular weight distributions for fast chain growth, short chain lifetime

TABLE 13.5 Classification of Polymerization Reactors

Continuous
phase

Dispersed
phase

Type of
polymerization Example systems

Polymer dissolved
in monomer

None Homogeneous
bulk
polymerization

Poly(methyl methacrylate)
in methyl methacrylate
monomer

Polymer dissolved
in solvent

None Homogeneous
solution
polymerization

Polymerization of
high-density
polyethylene
in hexane

Polymer in
solution

Any (e.g., a
condensation
product or
another
polymer phase)

Heterogeneous
bulk or solution
polymerization

Salt precipitating
from a condensation
reaction.
Prepolymerized
rubber
precipitating
from a solution
of polystyrene in
styrene monomer

Water or other
nonsolvent

Polymer or
polymer
in solution

Suspension,
dispersion, or
emulsion
polymerization

Emulsion
polymerization
of a rubber
latex.
Suspension
polymerization
of expandable
polystyrene

Liquid
monomer

Polymer
swollen with
monomer

Precipitation
or slurry
polymerization

Polypropylene
in a pool of
liquid propylene

Gaseous
monomer

Polymer Gas-Phase
polymerization

Fluidized-bed process
for high-density
polyethylene
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polymerizations like free-radical and coordination metal catalysis. The mean
residence time in the CSTR will be minutes to hours, and the chain lifetimes
are fractions of a second. Any chain that initiates in the CSTR will finish its
growth there. All the polymer molecules are formed under identical, well-
mixed conditions and will have as narrow a molecular weight distribution (typi-
cally PD � 2) as is possible for the given kinetic scheme.

Condensation polymers and living addition polymers continue to grow
throughout their stay in the reactor. All the chains in a CSTR grow in the
same reaction environment and, subject to the equal reactivity assumption,
grow at the same rate. The chain lengths at the reactor outlet will be propor-
tional to the time spent in the reactor since initiation. As discussed in Chapter
15, the reaction times in a CSTR have an exponential distribution. This gives
an exponential distribution of chain lengths. The most probable distribution
approximates an exponential distribution whenever �llN is reasonably long. The
polydispersity of a condensation polymer made in a CSTR will be approxi-
mately 2, as it is in a batch reactor. The same argument applies to a living poly-
mer. It will also emerge from a CSTR with a polydispersity of 2, but this is
dramatically different from the narrow molecular weight distribution possible
in a batch reactor. CSTRs cannot be used to produce block copolymers or
homopolymers with narrow molecular weight distributions. They can be used
for most other polymers of commercial utility. For heterogeneous polymeriza-
tions with a suspended catalyst, they will not eliminate the problem in site-to-
site variations in activity, but they will produce as narrow an MWD as is
possible for the catalyst.

Example 13.8: Apply the method of moments to an anionic polymerization
in a CSTR.

Solution: Assume that initiation occurs instantly as fresh monomer enters
the reactor. A monomer balance for the CSTR gives

M0 � I0 � k �ttMI0
X1
i¼1
ci ¼M

or

M ¼ M0 � I0
1þ kp �tt I0 ð13:45Þ

A balance on polymer of length l gives an infinite set of algebraic equations:

kp �tt cl�1M � kp �tt clM ¼ cl
Sum these equations from l ¼ 1 to 1 to obtain

�0 ¼ I0
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Multiply them by l and l2 and use the methods of Section 13.3.2 to obtain

�llN ¼ K� þ 1 ð13:46Þ

�llW ¼ 2ðK�Þ2 þ 3K� þ 1

K� þ 1
ð13:47Þ

where K� ¼ kpM �tt: Divide �llW by �llN and take the limit as K� ! 1 to show
that PD ! 2 in the limit of high molecular weight.

An isothermal batch reactor produces a fairly narrow MWD, except possibly
at high conversions. Conditions will vary from the start to the end of a batch
reaction, and the molecular weight distribution will be somewhat broader
than for a CSTR. The dynamic chain length of a free-radical polymer will
drift because of changes in monomer concentration and initiation rate, although
usually not by much when measured by the cumulative �llN and �llW of the finished
polymer. When the catalyst is heterogeneous, an isothermal batch reactor will
produce approximately the same result as for a CSTR, except possibly at high
conversions. Of course, maintaining isothermal operation may not be easy.

Heat Transfer. Heat removal is the major issue for vinyl addition polymeriza-
tions, and CSTRs are well suited for this application. The homogeneous nuclea-
tion possible with boiling heat transfer allows easy scaleup at nearly isothermal
conditions. In very large vessels, a temperature difference between the top and
the bottom will arise due to the static head, but this has not been found to
cause operational difficulties. The actual removal of heat occurs in the overhead
condenser. There is sometimes a concern about fouling the condenser with poly-
mer, but this problem can usually be overcome by good design and is not a
problem when the polymer is soluble in the condensing liquid. Boiling heat
transfer is routinely used for addition polymerizations. Temperature control
by precooling the feed is occasionally used. A CSTR is obviously suited for pre-
cooled feeds while a PFR is not. Sensible heat transfer through the vessel walls
or internal coils can be used in small reactors. Loop reactors, where most of the
reactor volume is in the heat exchangers, are preferred for large reactors.

Most condensation polymers have negligible heats of reaction. See Table 13.2.
Heat must be supplied to evaporate by-products such as water or ethylene
glycol. An external heat exchanger is the best method for heating large reactors.
Flashing the recycle stream as it enters the vessel also aids in devolatilization.

Copolymerizations. The uniform chemical environment of a CSTR makes it
ideally suited for the production of copolymers. If the assumption of perfect
mixing is justified, there will be no macroscopic composition distribution due
to monomer drift, but the mixing time must remain short upon scaleup. See
Sections 1.5 and 4.4. A real stirred tank or loop reactor will more closely
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approach perfect mixing when the circulation rate is high. The narrowing of the
macroscopic composition distribution as a function of circulation rate can be
modeled. When the macroscopic distribution becomes commensurate in breadth
to the microscopic distribution, further inputs of power are unwarranted.

Laminar flow is almost inevitable in a polymer reactor when the polymer is
soluble in the continuous phase. Molecular diffusivities are also low. This com-
bination suggests that segregation is a possibility in a stirred tank reactor. See
Chapter 15. A segregated stirred tank gives broader molecular weight distribu-
tions, higher conversions, and broader copolymer composition distributions
than a CSTR that has good internal mixing. Given the appropriate rate expres-
sions, calculations are quite feasible for the limiting cases of complete segrega-
tion and perfect mixing. These tend to be alarming since the copolymer
composition distribution in a completely segregated CSTR will be even broader
than that for a batch reactor. Fortunately, there is limited evidence of segrega-
tion in industrial reactors. It seems that segregation is an academic concept with
little practical relevance.

13.5.2 Tubular Reactors with a Continuous Polymer Phase

Web-coating polymerizations (e.g., as used for photographic film and coated
abrasives) literally achieve a piston flow reaction environment. Mechanically
driven screw devices used as finishing reactors for PET closely approximate
piston flow. Motionless mixers can do this as well. However, polymer reactors
that closely approximate piston flow are the exception.

Tubular reactors are occasionally used for bulk, continuous polymerizations.
A monomer or monomer mixture is introduced at one end of the tube and, if all
goes well, a high-molecular-weight polymer emerges at the other. The classic
example is the high-pressure polymerization of ethylene in a single tube approxi-
mately 1.75 inches in diameter and several miles long. Scaleup is done by adding
another mile to the tube length. Some polystyrene plants use single-tube or shell-
and-tube reactors as finishing reactors after the bulk of the polymer has been
made. These commercial examples skirt three types of instability that can
arise in tubular polymerizers:

Velocity profile elongation: Low fluid velocities near the tube wall give rise to high
extents of polymerization, high viscosities, and yet lower velocities. The velocity pro-
file elongates, possibly to the point of hydrodynamic instability.

Thermal runaway: Temperature control in a tubular polymerizer depends
on convective diffusion of heat. This becomes difficult in a large-diameter tube,
and temperatures may rise to a point where a thermal runaway becomes inevitable.

Tube-to-tube interactions: The problems of velocity profile elongation and thermal
runaway can be eliminated by using a multitubular reactor with many small-dia-
meter tubes in parallel. Unfortunately, this introduces another form of instability.
Tubes may plug with polymer that cannot be displaced using the low-viscosity
inlet fluid. Imagine a 1000-tube reactor with 999 plugged tubes!
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Reacting to low conversions avoids most problems. The polyethylene
example uses a single, small-diameter tube. This avoids thermal runaway and
mitigates the velocity elongation problem. The polystyrene reactor avoids
the multitubular stability problem by using a substantially polymerized, high-
viscosity feed.

Figure 13.7 illustrates stability regimes for the thermally initiated polymeriza-
tion of styrene for laminar flow in a single tube. Design and operating variables
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FIGURE 13.7 Performance of a laminar flow, tubular reactor for the bulk polymerization of styr-
ene; Tin ¼ 35�C and �tt ¼ 1 h: (a) Stability regions. (b) Monomer-conversion within the stable region.
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are the physical dimensions of the tube, the operating temperatures and pres-
sures, and the flow rate. The aspect ratio L/R is unimportant provided it is
reasonably large, and the operating pressure is unimportant unless it is so
high that liquid compressibility becomes significant. Steady-state operation
can be described by four variables: Tin, Twall, R, and �tt: Figure 13.7 shows the
influence of two of these with the other two held constant at plausible values.
Stable operation is easy to achieve in a capillary tube because mass and thermal
diffusion remove gradients in the radial direction. Thus, the viscosity is uniform
across the tube, and no hotspots develop. As the tube diameter is increased,
mass and heat transfer become progressively more difficult. The mass diffusivity
is several orders of magnitude lower than the thermal diffusivity, concentration
gradients develop before thermal gradients, and velocity profile elongation
emerges as the first limit on conversion. In still larger tubes, operation is limited
by thermal stability. For the polystyrene example of Figure 13.7, a thermal run-
away is predicted if the tube radius exceeds 1.25 in. This is true even if the tube
wall were held at 0 K (pretending the model remains valid).

The polystyrene example in Figure 13.7 incorporates a detailed kinetic model
of the polymerization. The model uses a reasonably sophisticated description of
viscosity as a function of temperature, polymer concentration, and molecular
weight. The convective diffusion equations for mass and heat are solved together
with the effects of viscosity on the velocity profile. Assembling such a model
requires weeks of effort. The following examples are simpler but illustrate
design methodology for tubular polymerizers. We begin with a lumped para-
meter model for the polymerization of styrene

Example 13.9: Illustrate temperature and molecular weight changes in a
tubular reactor by constructing a simple model of styrene polymerization in
a tube.

Solution: The simplest model supposes piston flow in a tube of constant
cross section and ignores the aðd �uu=dzÞ term in Equation (3.5), even though
�uu will be allowed to vary. Thus,

�uuðzÞ dM
dz
¼ �R p

Equation (5.24) gives the energy balance:

dT

dz
¼ ��HRR p

�uu�CP
� 2U

�uu�CPR
ðT � TextÞ

The inside heat transfer coefficient is given by Equation (5.37):

hdt=� ¼ 1:86Gz1=3
�bulk
�wall

� �0:14
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Assume that this is the controlling resistance so that U¼ h. A kinetic model
is needed for Rp and for the instantaneous values of �llN and �llW : The
computer program in Appendix 13 includes values for physical properties
and an expression for the polymerization kinetics. Cumulative values for
the chain lengths are calculated as a function of position down the tube using

ð �llNÞnew ¼
wþ dw

w

ð �llNÞold
þ dw

ð �llNÞinstant

ð13:48Þ

ð �llW Þnew ¼
wð �llW Þold þ dwð �llW Þinstant

wþ dw ð13:49Þ

where w is the weight of polymer.
Predictions of this simplified tubular reactor model are in good agreement

with experimental results for the shell-and-tube post-reactor used in some
polystyrene processes. The code and sample results are given in Appendix 13.
Predictions of thermal runaway for polymerization starting with pure styrene
are in good agreement with those of rigorous models provided that hydrody-
namic stability is not a factor. See Figure 13.8. The predicted runaway at a
tube diameter of 0.061m is in good agreement with the results shown in
Figure 13.7.

The lumped parameter model of Example 13.9 takes no account of hydro-
dynamics and predicts stable operation in regions where the velocity profile
is elongated to the point of instability. It also overestimates conversion in the
stable regions. The next example illustrates the computations that are needed
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FIGURE 13.8 Temperature profiles using a simplified model of a tubular reactor with pure styrene
feed; Tin ¼ 135�C and Twall ¼ 20�C: The parameter is the tube diameter in meters.
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to include hydrodynamics in a tubular reactor calculation. The methodology
follows that in Sections 8.7 and 8.8.

Example 13.10: Model the performance of a laminar flow, tubular reactor
for the polymerization of a self-condensing monomer. Assume second-order
kinetics based on endgroup concentrations with aink �tt ¼ 1 and a negligible
heat of reaction. Ignore any condensation product. Assume that density is
constant and viscosity varies with conversion as � ¼ �0ð100� 99a=ainÞ
where a is the concentration of remaining endgroups. Assume that an
average value for the diffusion group, DA �tt=R2 ¼ 0:1, applies to all endgroups.
Include the radial velocity term in the convective diffusion equation and
plot streamlines in the reactor.

Solution: The problem requires solution of the convective diffusion
equation for mass but not for energy. Rewriting Equation (8.71) in
dimensionless form gives

V z
@a

@z þ
L

R

� �
V r

@a

@r
¼ DA �tt

R2

1

r
@a

@r
þ @2a

@r2

� �
þ �ttR p ð13:50Þ

The propagation rate is assumed to be second order with respect to the end-
group concentration, R p ¼ ka2: The boundary conditions are a specified inlet
concentration, zero flux at the wall, and symmetry at the centerline.

The dimensionless velocity component in the axial direction, V z¼Vz= �uu, is
calculated using the method of Example 8.8. The component in the radial direc-
tion, ðL=RÞV r, is calculated using a dimensionless version of Equation (8.70):

L

R

� �
V r ¼ �1

�r

Zr
0

r0
@ð�V zÞ
@z dr0 ð13:51Þ

A first-order difference approximation for the axial derivative, @ð�V zÞ=@z , is
consistent with the first-order convergence of Euler’s method. The convected-
mean concentration is calculated from the dimensionless version of
Equation (8.4):

amixðz Þ ¼ 2

Z1
0

aðr, z ÞV zðr, z Þr dr ð13:52Þ

The streamlines are calculated using a dimensionless version of Equation
(8.73):

Zrin
0

�rV zðr, 0Þdr ¼
Zr
0

�r0V zðr0, z Þdr0 ð13:53Þ
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Values for rin are selected and the integral on the left-hand side of Equation
(13.52) is evaluated. Downstream, evaluation of the right-hand side proceeds
from r¼ 0 up to some value r0 ¼ r where the value of the integral exactly
matches the original value on the left-hand side. The streamline has moved
from rin to r. The density terms will cancel out here and elsewhere in this
example.

The overall solution is based on the method of lines discussed in Chapter 8.
The resulting ODEs can then be solved by any convenient method. Appendix
13.2 gives an Excel macro that solves the ODEs using Euler’s method.
Figure 13.9 shows the behavior of the streamlines.

Example 13.10 treats an isothermal polymerization, but adding Equation
(8.53) to include temperature dependence causes no special problems. Modern
computers can easily solve small sets of simultaneous PDEs. Very large
sets, say the 10,000 or so that are needed to describe individual species in a poly-
merization going to high molecular weight, are still expensive to solve. A key
to easy computability in polymer reactor design is lumping, where various mole-
cular species are combined and treated as a single entity. Example 13.10 uses
the endgroup concentration to form a single lump containing all the molecules.
Some models of polycondensations treat the first 20 or so oligomers exactly and
then use one or more lumps to characterize the rest of the population. Models
for chain-growth polymers are mainly of the single-lump variety. A more sophis-
ticated treatment is needed to account for the dependence of molecular diffusiv-
ity on chain length, but a satisfactory design methodology has not yet emerged.
Lumping is not confined to polymerizations. Comprehensive models of oil
refineries use lumping to reduce the number of tracked species from about
5000 to about 1000.

13.5.3 Suspending-Phase Polymerizations

Many polymerizations use a low viscosity nonsolvent to suspend the polymer
phase. Water is the most common suspending phase. Table 13.6 characterizes a
variety of reaction mechanisms in which water is the continuous phase.
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FIGURE 13.9 Curved streamlines resulting from a polycondensation in the laminar flow reactor of
Example 13.10.
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The reaction engineering aspects of these polymerizations are similar.
Excellent heat transfer makes them suitable for vinyl addition polymerizations.
Free radical catalysis is mostly used, but cationic catalysis is used for non-
aqueous dispersion polymerization (e.g., of isobutene). High conversions are
generally possible, and the resulting polymer, either as a latex or as beads, is
directly suitable for some applications (e.g., paints, gel-permeation chromato-
graphy beads, expanded polystyrene). Most of these polymerizations are run
in the batch mode, but continuous emulsion polymerization is common.

Emulsion Polymerization. Emulsion polymerization uses soaps and anionic
surfactants to create two-phase systems that have having long-term stability.
The key steps in a batch emulsion polymerization are the following:

. Water and emulsifier are charged to the reactor, and the emulsifier forms
aggregates known as micelles.

. One or more sparingly soluble monomers are charged to the reactor to form
suspended drops. The monomer quickly saturates the aqueous phase.

. A water-soluble, free-radical initiator is charged to the reactor and initiates
polymerization in the water phase.

. A chain growing in water soon becomes insoluble. It separates from the
aqueous phase and penetrates a micelle, forming a seed. It may also add to
an existing polymer particle.

. Mass transfer of monomer from the suspended drops through the aqueous
phase to the seeded particles continues throughout the polymerization.

. The suspended drops of monomer are eventually depleted and polymer-
ization stops.

There are many variations on this theme. Fed-batch and continuous emulsion
polymerizations are common. Continuous polymerization in a CSTR is dynami-
cally unstable when free emulsifier is present. Oscillations with periods of several
hours will result, but these can be avoided by feeding the CSTR with seed
particles made in a batch or tubular reactor.

TABLE 13.6 Classification of Polymerization Mechanisms that
Use Water as the Continuous, Suspending Phase

Process parameter

Polymerization type
Emulsion! Dispersion
! Suspension

Stabilizer type Soaps! inorganic salts
Agitation requirements Low ! high
Stability of dispersion High! Low
Particle size 0.2–200 mm
Purity of polymer Low ! high
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Dispersion Polymerization. The suspending phase plays a more passive role in
this form of polymerization. Dispersion polymerizations are typically batch pro-
cesses with little or no mass transfer through the suspending phase. The mono-
mer and initiator are charged to the reactor and react in a batch mode.
Nonaqueous solvents are frequently used as the suspending phase. A great vari-
ety of surfactants are used, including polymers and block copolymers. The par-
ticle size of the polymer beads is generally a few microns, intermediate between
those of emulsion and suspension polymerization. Agitation requirements are
also intermediate. Through control of the surfactant type and concentration,
monodispersed particles and core-shell structures can be made.

Suspension Polymerization. Water is the suspending phase. Inorganic salts and
vigorous agitation prevent coalescence and agglomeration. The reaction mode is
batch. The largest use of suspension polymerization is for the manufacture of
expandable polystyrene beads.

Gas-Phase Polymerization. The fluidized-bed processes for polyolefins use
gaseous monomers as the suspending phase. Finely ground catalyst particles
containing a transition metal catalyst on a support such as MgCl2 are fed
continuously to the reactor. Polymerization occurs on the surface of the catalyst
particle and ultimately encapsulates it. A cyclone separates the solid particles
from unreacted monomer. The monomer is cooled and recycled. Temperature
control is achieved by using cold monomer feed, by cooling the recycled mono-
mer, and by heat transfer to the vessel walls. Fluidized-bed reactors are
often modeled as being well mixed with respect to both phases. A typical resi-
dence time for the gas phase will be 20 s. That for the polymer will be a few
hours.

Precipitation and Slurry Polymerization. Many polymers are insoluble in the
reaction mixture from which they are formed. Upon significant polymerization,
they precipitate to form a separate phase. The chemistry and reaction cycle must
be managed to avoid agglomeration. Assuming this is possible, heat transfer is
the major issue. Boiling of the suspending phase is used (e.g., when liquid pro-
pylene suspends polypropylene) and so is sensible heat transfer. Loop reactors
may have most of their volume in the form of shell-and-tube heat exchangers.
Reactor models normally assume CSTR behavior, although more detailed
models are possible for loop reactors.

13.6 SCALEUP CONSIDERATIONS

The basic issues of scaleup are the same for polymer reactors as for ordinary
chemical reactors. The primary problem is that the capacity for heat and mass
transfer increases less rapidly than the reactor volume and throughput. The
remedies are also similar, but the high viscosities characteristic of polymers
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cause special problems. These problems are most acute when the polymer phase
is continuous.

13.6.1 Binary Polycondensations

Endpoint control is needed for binary polycondensations going to high molecular
weight. The reaction must be stopped at the desired point and the polymer
chains endcapped to prevent further polymerization. An example is the use
of methyl chloride to endcap sodium-terminated chains. Classic mixing time
problems arise in large tanks. Similar problems of stopping the reaction exist
for batch vinyl polymerizations. Using multiple injection points for the chain
stopper is a possibility. Stopping the polymerization with a quench and dilution
with cold solvent is another.

Tubular reactors are used for some polycondensations. Para-blocked phenols
can be reacted with formalin to form linear oligomers. When the same reactor
is used with ordinary phenol, plugging will occur if the tube diameter is above
a critical size, even though the reaction stoichiometry is outside the region
that causes gelation in a batch reactor. Polymer chains at the wall continue
to receive formaldehyde by diffusion from the center of the tube and can cross-
link. Local stoichiometry is not preserved when the reactants have different
diffusion coefficients. See Section 2.8.

13.6.2 Self-Condensing Polycondensations

The removal of condensation by-products becomes increasingly difficult upon
scaleup. Some commercial PET processes use CSTRs for the early stages of
the reaction where most of the by-product ethylene glycol is removed. They
use only the top, visible surface of the liquid for mass transfer and rely on
jacket heating to supply the latent heat of vaporization. The surface area
scales as S2/3 and limits the production rate in some processes because the pre-
vious limit, a downstream finishing reactor, has been improved. A pump-around
loop containing a heat exchanger with a flash into the top of the vessel is one
possibility for increasing capacity.

The finishing reactors used for PET and other equilibrium-limited polymer-
izations pose a classic scaleup problem. Small amounts of the condensation pro-
duct are removed using devolatilizers (rotating-disk reactors) that create surface
area mechanically. They scale as S2/3.

13.6.3 Living Addition Polymerizations

The main problem with a living polymer is maintaining the strict cleanliness
that is demanded by the chemistry. This is a particularly severe problem for
large-scale, batch polymerizations, but it is a problem more of economics than
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technology. Living polymerizations are usually run to near completion, so that
end point control is not a problem. Most living polymerizations operate at low
temperatures, �40�C to þ40�C, to avoid chain transfer reactions. Thus, tem-
perature control is a significant scaleup problem. The usual approach is to use
85–95 w% solvent and to rely on sensible heat transfer to the vessel walls.

The sanitation requirements are easier to meet in continuous operation, but
polymerizations in a tubular geometry raise a stability issue. Living polymer
formed near the wall will continue to grow due to the outward diffusion
of monomer. The fear is that this very-high-molecular-weight polymer will
eventually plug the reactor, or at least cause a severe form of velocity profile
elongation. Possibly, there is a maximum tube diameter for stable operation.
Tubular reactors have apparently not been used for living polymerizations,
even though the low polydispersities would be an advantage in some applica-
tions. CSTRs have been used, but the polydispersity advantage of living
polymerizations is lost.

13.6.4 Vinyl Addition Polymerizations

Heat removal is the key problem in scaling up a vinyl polymerization. Section
5.3 discusses the general problem and ways of avoiding it. Processes where
the polymer phase is suspended in a nonsolvent are relatively easy to scale up.
If the pilot-plant reactor is sensitive to modest changes in agitator speed or
reactant addition rates, there are likely to be mixing time or dispersion quality
problems upon scaleup. In batch processes, endpoint control can also be a
problem, but it is usually managed by reacting to near-completion and con-
trolling the temperature and initiator concentrations to give the desired
molecular weight. Tubular geometries often have a diameter limit beyond
which scaleup must proceed in parallel or series. The mechanically stirred,
tube-cooled reactors (also called stirred tube reactors) that are commonly used
for styrenic polymerizations have such a limit as well. Modern designs use
three or more reactors in series to increase single-train capacity. This is analo-
gous to adding extra length to a high-pressure polyethylene reactor and is a
form of scaling in series.

PROBLEMS

13.1. A binary polycondensation of AMA and BNB is to be performed in a
batch reactor. A number average chain length of at least 100 is required.
What minimum accuracy is required for weighing the two components?

13.2. Find some real chemistry where a binary polycondensation will give a
homopolymer; i.e., AMA reacts with BMB to form poly-M.

13.3. The phenol–formaldehyde polycondensation readily forms gels.
The generally accepted limits for avoiding them are [Phenol]0
<0.75[Formaldehyde]0 when the catalyst is a strong acid or
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[Formaldehyde]0>1.5[Phenol]0 when the catalyst is a strong base. Are
these limits universal for a trifunctional monomer condensing with a
difunctional monomer or are they specific to the phenol–formaldehyde
reaction? Assume the three sites are equally reactive. [Practical experi-
ence shows the gelation point to be at SAB>0.8. This is presumably
due to lower reactivity of the para position compared with the ortho
positions.] A good answer to this question may require recourse to
the literature. Becoming acquainted with percolation theory might be
helpful in understanding the phenomenon.

13.4. Refer to Equations (13.24) governing the MWD for a binary poly-
condensation. Derive and explain each of the limiting cases: SAB¼ 0,
SAB¼ 1, XA¼ 0, and XA¼ 1.

13.5. Use Equation (13.26) to find the moments �0 through �2 for the Flory
distribution. Use your results to validate Equation (13.27).

13.6. Find the standard deviation of the Flory distribution as given by
Equation (13.26) and relate it to the polydispersity. Extend the calcula-
tions in Problem 13.5 to �3: Find the kurtosis of the distribution in the
limit of high conversion.

13.7. The Flory distribution gives a polydispersity of 2 in the limit of high
conversion. Yet, a thought experiment suggests that a small batch of
self-condensing molecules would eventually condense to form a single,
cyclic molecule. Reconcile this apparent inconsistency.

13.8. Determine the copolymer composition for a styrene–acrylonitrile copo-
lymer made at the azeotrope (62 mol% styrene). Assume �llN ¼ 1000. One
approach is to use the Gaussian approximation to the binomial distribu-
tion. Another is to ‘‘synthesize’’ 100,000 or so molecules using a random
number generator and to sort them by composition.

13.9. Find the analytical integral of Equation (13.43).
13.10. A continuous polymerization train consisting of two stirred tanks in

series is used to copolymerize styrene, rX ¼ 0.41, and acrylonitrile, rY
¼ 0.04. The flow rate to the first reactor is 3000 kg/h and a conversion
of 40% is expected. Makeup styrene is fed to the second reactor and a
conversion of 30% (based on the 3000 kg/h initial feed) is expected
there. What should be the feed composition and how much styrene
should be fed to the second reactor if a copolymer containing 58 wt%
styrene is desired?

13.11. Derive the equivalent of Equation (13.41) when penultimate effects are
considered.

13.12. Consider a laminar flow tubular polymerizer with cooling at the tube
wall. At what radial position will a hotspot develop: at the tube wall,
at the centerline, or at an intermediate radius? Justify your answer.
Will the situation change with heating at the wall?

13.13. Use the computer program in Appendix 13.1 to explore thermal
runaway. Feed pure styrene at 135�C and maintain a wall temperature
of 300 K. At what tube diameter does the reactor run away? Repeat
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this varying Twall. Is the case of Twall ¼ 400 K with a tube radius of
0.4 in predicted to be stable? Compare your results with those for
the detailed model shown in Figure 13.7. Rationalize any differences.

13.14. Use the kinetic model in Appendix 13.1 to design a CSTR for the pro-
duction of polystyrene. The entering feed is pure styrene. It is desired to
produce 50% by weight of polystyrene with a number average molecu-
lar weight of 85,000. The feed flow rate is 25,000 kg/h. Determine the
required operating temperature and reactor capacity (in mass units).

13.15. The reactor in Problem 13.14 is to be cooled by autorefrigeration.
Determine the boilup rate in the reactor assuming that the condensate
is returned to the reactor without subcooling.

13.16. Suppose the reactor sized in Problem 13.14 is converted to manufacture
a styrene–acrylonitrile copolymer containing 36% acrylonitrile by
weight. Assume 50% conversion as before. What is the required feed
composition to the reactor and what is the composition of the unreacted
monomer mixture?
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An example of a design and optimization study using a fairly sophisticated
model for styrene polymerization is given in

Mallikarjun, R. and Nauman, E. B., ‘‘A staged multitubular process for crystal polystyrene,’’
Polym. Process Eng., 4, 31–51 (1986).

A modern polystyrene process consists of a CSTR followed by several stirred
tube reactors in series. A description of this typical process is given in

Chen, C.-C., ‘‘Continuous production of solid polystyrene in back-mixed and linear-flow reac-
tors,’’ Polym. Eng. Sci., 40, 441–464 (2000).

An overview of the various dispersed-phase polymerizations is given in

Arshady, R., ‘‘Suspension, emulsion, and dispersion polymerization: a methodological survey,’’
Colloid. Polym. Sci., 270, 717–732 (1992).

APPENDIX 13.1: LUMPED PARAMETER MODEL
OF A TUBULAR POLYMERIZER

The following is a complete program for solving the lumped parameter model of
styrene polymerization in a tube. Example 13.8 describes the governing equa-
tions. The propagation rate and instantaneous chain lengths are calculated
using the model of Hui and Hamielec.A1 The viscosity correlation is due to
Kim and Nauman.A2 The program is structured as an Excel macro. Sample
output is given at the end. It reasonably represents the performance of a multi-
tubular finishing reactor used in some polystyrene processes.

DefDbl A-Z
Sub Append13_1()
’Physical Properties of Entering Fluid in SI Units
MWSty¼104.15
Cp¼1880#
HeatReact¼670000#
ThermCond¼0.126
CummLn¼960
PD¼2.1
CummLw¼PD * CummLn
WPoly¼0.7
Wdil¼0.06
WSty¼1 - WPoly - Wdil

’Design and Operating Variables in SI Units
’but Temperature in C
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TubeDia¼0.027
TubeLength¼3.6
Qmass¼5/3600
TcIn¼170
TcWall¼240
Twall¼TcWallþ273.15
T¼TcInþ273.15

’Initializarion
dtime¼0.25
z¼0
GoSub Caption ’Prints Excel Column Headers

’Main Loop
Do

RhoSty¼924�0.918 * Tc
RhoPoly¼1084�0.605 * Tc
RhoMix¼WPoly * RhoPolyþ(1 - WPoly) * RhoSty
Sty¼RhoMix * WSty
GoSub Kinetics

dWSty¼(-RP - RD - RTþRU) * dtime/RhoMix
dWPoly¼RP * dtime/RhoMix
NumMoles¼WPoly/CummLnþdWPoly/Ln
CummLn¼(WPolyþdWPoly)/NumMoles
CummLw¼(WPoly * CummLwþdWPoly * Lw)/(WPolyþdWPoly)

WPoly¼WPolyþdWPoly
WSty¼WStyþdWSty
Tv¼Twall
GoSub Viscosity
ViscWall¼Visc
Tv¼T
GoSub Viscosity
Velocity¼Qmass/RhoMix/(3.14159 * TubeDia * TubeDia/4)
Re¼RhoMix * TubeDia * Velocity/Visc
Pr¼Cp * Visc/ThermCond
U¼(Re * Pr * TubeDia/TubeLength) ^ (1/3)

þ * (Visc/ViscWall) ^ 0.14
U¼ThermCond/TubeDia * 1.86 * U
dT¼(HeatReact * RPþ4/TubeDia * (Twall - T) * U)/RhoMix

þ /Cp * dtime
T¼TþdT
Tc¼T - 273.15
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Time¼Timeþdtime
z¼zþVelocity * dtime

If Int(z/0.3)>¼IntPrint Then ’Controls output interval
IntPrint¼IntPrintþ1
GoSub Output

End If

Loop While z < TubeLength
GoSub Output

Exit Sub

Kinetics: ’Kinetics subroutine: all variables are
’shared with the main program

Kp¼100900# * Exp(-3557/T)
A1¼2.57�0.00505 * T
A2¼9.56�0.0176 * T
A3¼-3.03þ0.00785 * T
Ft¼Exp(-2 * (A1 * WPolyþA2 * WPoly ^ 2þA3 * WPoly ^ 3))
Kt¼12050000# * Exp(-844/T) * Ft
KFM¼22180# * Exp(-6377/T)
KI¼20.19 * Exp(-13810/T)
B1¼-0.0985þ0.000777 * T

þ - 0.00000204 * T * Tþ0.00000000179 * T ^ 3
CM¼KFM/KpþB1 * WPoly
RP¼Kp * (2 * KI * Sty ^ 3/Kt) ^ 0.5 * Sty
Beta¼Kt * RP/Kp/Kp/Sty ^ 2
Ln¼(CMþBetaþ1)/(CMþBeta/2)
Lw¼(2 * CMþ3 * Beta)/(CMþBeta) ^ 2

Return

Viscosity: ’Viscosity Subroutine: All variables
’are shared with main program.

V¼(3.915 * WPolyt - 5.437 * WPoly * 2
þ þ(0.623þ1387/Tv) * WPoly ^ 3)

V¼(CummLw * MWSty) ^ 0.18 * V
Visc¼Exp(-13.04þ2013/TvþV)

Return

Output: ’Outputs Results to Excel Cells
Range("B"& CStr(IntPrintþ1)).Select
ActiveCell.FormulaR1C1¼z
Range("C"& CStr(IntPrintþ1)).Select
ActiveCell.FormulaR1C1¼WSty
Range("D"& CStr(IntPrintþ1)).Select

510 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



ActiveCell.FormulaR1C1¼WPoly
Range("E"& CStr(IntPrintþ1)).Select
ActiveCell.FormulaR1C1¼CummLn
Range("F"& CStr(IntPrintþ1)).Select
ActiveCell.FormulaR1C1¼CummLw
Range("G"& CStr(IntPrintþ1)).Select
ActiveCell.FormulaR1C1¼CummLw/CummLn
Range("H"& CStr(IntPrintþ1)).Select
ActiveCell.FormulaR1C1¼Tc

Return

Caption: ’Prints Column Headers
Range("B"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"Length"
Range("C"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"WSty"
Range("D"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"WPoly"
Range("E"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"CummLn"
Range("F"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"CummLw"
Range("G"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"PD"
Range("H"& CStr(1)).Select
ActiveCell.FormulaR1C1¼"Temp"

Return

End Sub

The following is the output from the preceding Excel macro:

Length WSty WPoly CummLn CummLw PD Temp

0.00 0.240 0.700 960 2016 2.10 170.0
0.30 0.229 0.711 954 2006 2.10 186.9
0.60 0.211 0.729 933 1981 2.12 202.2
0.90 0.186 0.754 888 1941 2.19 216.5
1.20 0.158 0.782 821 1891 2.30 229.5
1.50 0.131 0.809 750 1841 2.46 240.0
1.80 0.108 0.832 689 1800 2.61 247.6
2.10 0.090 0.850 643 1769 2.75 252.4
2.40 0.077 0.863 611 1746 2.86 255.0
2.70 0.067 0.873 589 1729 2.94 256.2
3.00 0.059 0.881 573 1717 3.00 256.4
3.30 0.053 0.887 562 1707 3.04 256.1
3.60 0.049 0.891 553 1700 3.07 255.3
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APPENDIX 13.2: VARIABLE-VISCOSITY MODEL
FOR A POLYCONDENSATION IN A TUBULAR
REACTOR

The following is a program, complete except for output, for solving Example
13.10. Sample output is given at the end and in Figure 13.9.

DefDbl A-H, P-Z
DefLng I-O
Public aold(256)
Sub Append13_2()
Dim Vz(256)
Dim Vr(256)
Dim FlowInt(256) ’Right-hand side of Equation 13.52
Dim FlowInt0(256) ’Left-hand side of Equation 13.52
Dim Stream(256) ’Radial position of streamline

’with initial position i*dr
Dim G1(256) ’Used to calculate Vz per Example 8.10

Dim anew(256)

Itotal¼64
dr¼1/Itotal
DA¼0.1
RateConst¼1
Order¼2 ’Reaction order

For i¼0 To Itotal ’Initial conditions
aold(i)¼1
Vz(i)¼2 * (1 - (i * dr) ^ 2)

Next

’Calculate the the left-hand side of Equation 13.52
Sum¼0
For i¼1 To Itotal

Sum¼Sumþi * dr * Vz(i) * dr
FlowInt0(i)¼Sum

Next

Do ’Start of main loop

dz¼dr * dr * Vz(Itotal - 1)/DA/2 ’Stability criterion,
’refer to Equation 8.29

If dz > 0.001 Then dz¼0.001 ’Reduce dz if needed for
’accuracy or physical
’stability
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If zþdz > 1 Then dz¼1 - z ’The last step goes exactly to
’the end of the reactor

’Centerline concentration, refer to Equation 8.26
A¼DA * 4/dr/dr/Vz(0)
B¼-A
anew(0)¼A * dz * aold(1)þ(1þB * dz) * aold(0)
anew(0)¼anew(0) - RateConst * aold(0) ^ Order

þ * dz/Vz(0)

’Interior concentrations, refer to Equation 8.25
For i¼1 To Itotal - 1
C1¼DA * 0.5/i/dr/dr/Vz(i)
C2¼DA/dr/dr/Vz(i)
A¼C1þC2
C¼-C1þC2
B¼-A - C
anew(i)¼A * dz * aold(iþ1)þ(1þB * dz) * aold(i)

þ þC * dz * aold(i -1)
anew(i)¼anew(i) - RateConst * aold(i) ^ Order

þ * dz/Vz(i)
’Radial convection terms, refer to Equation 13.50
anew(i)¼anew(i) - Vr(i)/Vz(i) * (aold(iþ1)

þ - aold(i - 1))/2/dr * dz
Next

’Wall concentration, refer to Equation 8.24
anew(Itotal)¼(4 * anew(Itotal - 1) - anew(Itotal - 2))/3

For i¼0 To Itotal
aold(i)¼anew(i)

Next

’Calculate mixing cup average
avgC¼0
avgV¼0
For i¼0 To Itotal

avgC¼avgCþanew(i) * Vz(i) * i * dr * dr
avgV¼avgVþVz(i) * i * dr * dr

Next
avgC¼avgC/avgV

’Calculate axial velocity component using
’the code of Example 8.8
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G1(Itotal)¼0
For ii¼1 To Itotal
i¼Itotal - ii
G1(i)¼G1(iþ1)þdr ^ 2/2 * ((iþ1)/visc(iþ1)

þ þi/visc(i))
Next
G2¼0
For i¼1 To Itotal - 1

G2¼G2þi * dr * G1(i) * dr
Next
G2¼G2þItotal * dr * G1(Itotal) * dr/2
G2¼G2þdr * dr/8

’The new value for Vz is G1(i)/G2 /2 but calculate the
’radial component prior to updating Vz

G3¼0
For i¼1 To Itotal

G3¼G3þi * dr * (G1(i)/G2/2 - Vz(i))/dz * dr
’G3 is the integral in Equation 13.50
Vr(i)¼-G3/i/dr

Next i

’Update Vz
Vz(0)¼G1(0)/G2/2
For i¼1 To Itotal

Vz(i)¼G1(i)/G2/2
Next i

’Calculate right-hand side of Equation 13.52
Sum¼0
For i¼1 To Itotal

Sum¼Sumþi * dr * Vz(i) * dr
FlowInt(i)¼Sum

Next

’Locate radial position of streamlines. Use linear
’interpolation to smooth the results for display.
For iii¼1 To 3

ii¼iii * Itotal/4
For i¼1 To Itotal - 2
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If FlowInt0(ii) > FlowInt(i) Then
del¼(FlowInt(iþ1) - FlowInt(i))
del¼(FlowInt0(ii) - FlowInt(i))/del
Stream(ii)¼(iþdel) * dr

End If
Next i

Next iii

’Output results as a function of z here
z¼zþdz

Loop While z < 1

’Output end-of-reactor results here

End Sub

Function visc(ii)
visc¼100 - 99 * aold(ii)

End Function

Systematic verification is needed for a program as complex as this. The fol-
lowing tests were made using Itotal¼ 32. A sequence like this helps in debug-
ging and lends confidence to the final results, although they do not prove
accuracy.

1. Turn off the reaction by setting RateConst¼ 0. The resulting final value for
the mixing-cup average, avgC, is 1, confirming the material balance.

2. Set the initial Vz(i) to 1 and turn off the updating. This gives piston flow.
The calculated result for avgC for a first-order reaction is 0.3677 versus
0.3679 in theory. The result for a second-order reaction is 0.4998 versus 0.5
in theory.

3. Set the viscosity to a constant. Then the downstream velocity profile keeps the
initial parabolic form.

4. Set the viscosity to a constant, set DA¼ 0.00001 so that diffusion is negligible
and set Order¼ 1. Then the final value for avgC is 0.4433 versus 0.4432 cal-
culated in Example 8.3.

5. Delete the radial convection term but otherwise run the full simulation. This
gives avgC¼ 0.5197. Now add the radial term to get 0.5347. The change is in
the correct direction since velocity profile elongation hurts conversion.
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6. Run the full simulation at various values for Itotal:

Itotal avgC �

32 0.534663
64 0.538913 0.004250
128 0.539984 0.001071

The results are converging almost exactly O(�r2). The extrapolation to
�r!1 gives a correction of (1=4 þ 1=16 þ 1=64 þ � � � ¼ 0:33333)
�last¼ 0.000357. Thus, aout/ain¼ 0.5403.
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CHAPTER 14

UNSTEADY REACTORS

The general material balance of Section 1.1 contains an accumulation term that
enables its use for unsteady-state reactors. This term is used to solve steady-state
design problems by the method of false transients. We turn now to solving real
transients. The great majority of chemical reactors are designed for steady-state
operation. However, even steady-state reactors must occasionally start up and
shut down. Also, an understanding of process dynamics is necessary to design
the control systems needed to handle upsets and to enable operation at steady
states that would otherwise be unstable.

Unsteady mass and energy balances consider three kinds of accumulation:

Total mass
dð�̂�VÞ
dt

Component moles
dðâaVÞ
dt

Enthalpy
dðĤH�̂�VÞ
dt

These accumulation terms are added to the appropriate steady-state balances to
convert them to unsteady balances. The circumflexes indicate averages over the
volume of the system, e.g.,

�̂� ¼
ZZZ

V

� dV

The three accumulation terms represent the change in the total mass inventory,
the molar inventory of component A, and the heat content of the system. The
circumflexes can be dropped for a stirred tank, and this is the most useful appli-
cation of the theory.

14.1 UNSTEADY STIRRED TANKS

The steady-state balance for total mass is

0 ¼ Qin�in �Qout�out
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A well-mixed stirred tank (which we will continue to call a CSTR despite possi-
bly discontinuous flow) has �̂� ¼ �out: The unsteady-state balance for total mass
is obtained just by including the accumulation term:

dð�outVÞ
dt

¼ Qin�in �Qout�out ð14:1Þ

Liquid-phase systems with approximately constant density are common. Thus,
the usual simplification of Equation (14.1) is

dV

dt
¼ Qin �Qout

The component balance for the general case is

dðaoutVÞ
dt

¼ Qinain �Qoutaout þ VR A ð14:2Þ

The general case treats time-dependent volumes, flow rates, and inlet concen-
trations. The general case must be used to for most startup and shutdown
transients, but some dynamic behavior can be effectively analyzed with the
constant-volume, constant-flow rate version of Equation (14.2):

�tt
daout
dt
¼ ain � aout þ �ttR A

The case of ain ¼ ainðtÞ will force unsteady output as will sufficiently complex
kinetics.

The enthalpy balance for a reasonably general situation is

dðHout�outVÞ
dt

¼ QinHin�in �QoutHout�out
� V �HRR A þUAextðText � ToutÞ ð14:3Þ

A still more general case is discussed in Problem 14.15. Typical simplifications
are constant volume and flow rate, constant density, and replacement of
enthalpy with CPðT � Tref Þ: This gives

�tt
dTout
dt
¼ Tin � Tout �

�tt�HRR A

�CP
þ UAext
V�CP

ðText � ToutÞ

Equations (14.1)–(14.3) are a set of simultaneous ODEs that govern the
performance of an unsteady CSTR. The minimum set is just Equation (14.2),
which governs the reaction of a single component with time-varying inlet con-
centration. The maximum set has separate ODEs for each of the variables
V ,Hout, aout, bout, . . .. These are the state variables. The ODEs must be
supplemented by a set of initial conditions and by any thermodynamic relations
needed to determine dependent properties such as density and temperature.
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The maximum set will consist of Equations (14.1) and (14.3) and N versions of
Equation (14.2), where N is the number of components in the system. The max-
imum dimensionality is thus 2þN. It can always be reduced to 2 plus the
number of independent reactions by using the reaction coordinate method of
Section 2.8. However, such reductions are unnecessary from a computational
viewpoint and they disguise the physics of the problem.

14.1.1 Transients in Isothermal CSTRs

If the system is isothermal with Tout¼Tin, Equation (14.3) is unnecessary.
Unsteady behavior in an isothermal perfect mixer is governed by a maximum
of N þ 1 ordinary differential equations. Except for highly complicated reactions
such as polymerizations (where N is theoretically infinite), solutions are usually
straightforward. Numerical methods for unsteady CSTRs are similar to those
used for steady-state PFRs, and analytical solutions are usually possible when
the reaction is first order.

Example 14.1: Consider a first-order reaction occurring in a CSTR
where the inlet concentration of reactant has been held constant at a0
for t<0. At time t¼ 0, the inlet concentration is changed to a1. Find the
outlet response for t>0 assuming isothermal, constant-volume, constant-
density operation.

Solution: The solution uses a simplified version of Equation (14.2).

�tt
daout
dt
¼ a1 � aout þ �ttR A for t > 0

A general solution for constant a1 and R A ¼ �kaout is

aout ¼ a1
1þ k �ttþ C exp½�ð1þ k �tt Þt=�tt �

as may be verified by differentiation. The constant C is found from the value
of aout at t ¼ 0. For the current problem, this initial condition is the
steady-state output from the reactor given an input of a0:

aout ¼ a0
1þ k�tt at t ¼ 0

Applying the initial condition gives

aout ¼ a1 þ ða0 � a1Þ exp½�ð1þ k
�tt Þt=�tt �

1þ k �tt
as the desired solution. Figure 14.1 illustrates the solution and also shows the
effect of restoring ain to its original value at some time t>0.
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Stability. The first consideration is stability. Is there a stable steady state? The
answer is usually yes for isothermal systems.

Example 14.1 shows how an isothermal CSTR with first-order reaction
responds to an abrupt change in inlet concentration. The outlet concentration
moves from an initial steady state to a final steady state in a gradual fashion.
If the inlet concentration is returned to its original value, the outlet concentra-
tion returns to its original value. If the time period for an input disturbance is
small, the outlet response is small. The magnitude of the outlet disturbance
will never be larger than the magnitude of the inlet disturbance. The system is
stable. Indeed, it is open-loop stable, which means that steady-state operation
can be achieved without resort to a feedback control system. This is the usual
but not inevitable case for isothermal reactors.

The steady-state design equations (i.e., Equations (14.1)–(14.3) with the accu-
mulation terms zero) can be solved to find one or more steady states. However,
the solution provides no direct information about stability. On the other hand, if
a transient solution reaches a steady state, then that steady state is stable and
physically achievable from the initial composition used in the calculations. If
the same steady state is found for all possible initial compositions, then that
steady state is unique and globally stable. This is the usual case for isothermal
reactions in a CSTR. Example 14.2 and Problem 14.6 show that isothermal sys-
tems can have multiple steady states or may never achieve a steady state, but the
chemistry of these examples is contrived. Multiple steady states are more
common in nonisothermal reactors, although at least one steady state is usually
stable. Systems with stable steady states may oscillate or be chaotic for some
initial conditions. Example 14.9 gives an experimentally verified example.

Example 14.2: Suppose the rabbits and lynx of Section 2.5.4 become
migratory. Model their behavior given a steady stream of rabbits and lynx
entering a grassy plain. Ignore the depletion of grass.
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FIGURE 14.1 Dynamic response of a CSTR to changes in inlet concentration of a component
reacting with first-order kinetics.
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Solution: The ODEs governing the population of rabbits and lynx are

�tt
drout
dt
¼ rin � rout þ �ttðkIgrout � kII loutroutÞ

�tt
dlout
dt
¼ lin � lout þ �ttðkII loutrout � kIII loutÞ

Figure 14.2 shows the numerical solution. Except for a continuous input of
ten rabbits and one lynx per unit time, the parameter values and initial
conditions are the same as used for Figure 2.6. The batch reactor has been
converted to a CSTR. The oscillations in the CSTR are smaller and have a
higher frequency than those in the batch reactor, but a steady state is not
achieved.

Example 14.2 demonstrates that sustained oscillations are possible even in an
isothermal flow system. This is hardly surprising since they are possible in a
batch system provided there is an energy supply.

The rabbit and lynx problem does have stable steady states. A stable steady
state is insensitive to small perturbations in the system parameters.
Specifically, small changes in the initial conditions, inlet concentrations, flow
rates, and rate constants lead to small changes in the observed response. It is
usually possible to stabilize a reactor by using a control system. Controlling
the input rate of lynx can stabilize the rabbit population. Section 14.1.2 consid-
ers the more realistic control problem of stabilizing a nonisothermal CSTR at an
unstable steady state.

Startup and Shutdown Strategies. In addition to safe operation, the usual goal
of a reactor startup is to minimize production of off-specification material. This
can sometimes be accomplished perfectly.

Example 14.3: The initial portion of a reactor startup is usually fed-batch.
Determine the fed-batch startup transient for an isothermal, constant-density
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FIGURE 14.2 Population dynamics on a well-mixed grassy plain with constant migration of rabbits
and lynx. Compare to the nonmigratory case in Figure 2.6.
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stirred tank reactor. Suppose the tank is initially empty and is filled at a
constant rate Q0 with fluid having concentration ain. A first-order reaction
begins immediately. Find the concentration within the tank, a, as a function
of time, t<tfull.

Solution: Equation (14.1) simplifies to

dV

dt
¼ Qin

so that V ¼ Qint throughout the filling period. Equation (14.2) becomes

V
da

dt
þ a dV

dt
¼ Qinain � Vka

Note that Qout¼ 0 during the filling period. Substituting V ¼ Qint and some
algebra gives

t
da

dt
þ ð1þ ktÞa ¼ ain

The initial condition is a¼ ain at t¼ 0. The solution is

a ¼ ain½1� expð�ktÞ�
kt

ð14:4Þ

This result applies until the tank is full at time tfull ¼ Vfull=Qin. If the tank fills
rapidly, tfull ! 0 and afull ! ain. If the tank fills slowly, tfull !1 and
afull ! 0. By regulating Qin, we regulate tfull and can achieve any desired
concentration in the range from 0 to ain.

The fed-batch scheme of Example 14.3 is one of many possible ways to start
a CSTR. It is generally desired to begin continuous operation only when the
vessel is full and when the concentration within the vessel has reached its
steady-state value. This gives a bumpless startup. The results of Example 14.3
show that a bumpless startup is possible for an isothermal, first-order reaction.
Some reasoning will convince you that it is possible for any single, isothermal
reaction. It is not generally possible for multiple reactions.

A simpler (and faster) way to achieve a bumpless startup is to fast fill and
hold. In the limiting case, the fill is instantaneous; and the reactor acts in a
batch mode until the steady-state concentration is reached.

Example 14.4: Compare the fed-batch and fast-fill-and-hold methods for
achieving a bumpless startup.

Solution: Steady-state operation will use the values Vfull and Qfull and will
give a steady-state outlet concentration of

aout ¼ ain
1þ k�tt ¼

ainQfull

Qfull þ kVfull ð14:5Þ
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We want this concentration to be achieved at the end of the fed-batch interval
when t ¼ tfull ¼ Vfull=Qin. Equate the concentrations in Equations (14.4)
and (14.5) and solve for Qin. The solution is numerical.

Suppose Vfull¼ 5m3, Qfull¼ 2m3/h, k¼ 3.5 h�1, and ain¼ 15mol/m3. Then
aout¼ 1.54mol/m3. Now assume values for Qin, calculate tfull, and substitute
into Equation (14.4) until this concentration is obtained. The result is
Qin¼ 1.8m3/h and tfull¼ 2.78 h.

The fast-fill-and-hold method instantaneously achieves a full reactor, the
concentration in which follows batch, first-order kinetics until the desired
aout is reached. Equation (14.5) is equated to ain expð�kthold Þ. An analytical
solution is possible for this case:

thold ¼ lnð1þ k�tt Þ
k

ð14:6Þ

The steady-state conversion is achieved at 0.65 h compared with 2.78 h for the
fed-batch startup.

Obviously, the fast-fill-and-hold method is preferred from the viewpoint of
elapsed time. More importantly, the fed-batch method requires an accurate pro-
cess model that may not be available. The fast-fill-and-hold method can use a
process model or it can use a real-time measurement of concentration.

Neither method will achieve a bumpless startup for complex kinetic
schemes such as fermentations. There is a general method, known as constant
RTD control, that can minimize the amount of off-specification material
produced during the startup of a complex reaction (e.g., a fermentation or poly-
merization) in a CSTR. It does not require a process model or even a real-
time analyzer. We first analyze shutdown strategies, to which it is also
applicable.

Example 14.5: A CSTR is operating at steady state with a first-order reac-
tion. It is desired to shut it down. Suppose this is done by setting Qin¼ 0 while
maintaining Qout¼Q until the reactor is empty. Assume isothermal, constant-
density operation with first-order reaction.

Solution: Stopping the input flow will cause the system to behave as a batch
reactor even though the outlet flow continues. The initial concentration of the
batch is the steady-state value ain=ð1þ k�tt Þ, and the concentration decreases
exponentially as the vessel discharges:

aout ¼ ain expð�ktÞ
1þ k �tt ð14:7Þ

where we have assumed the shutdown transient to start at time t¼ 0. The
transient lasts until the vessel is empty, tempty ¼ �tt, assuming the discharge
rate is held constant at its initial value.
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Turning off the feed and letting the reactor empty itself passively is the most
common method of shutting down a CSTR. The conversion increases during the
discharge period, but this may not be a problem. Perhaps the reactor was
already operating at such high conversion that the increase is of no consequence.
For complex reactions, however, the increase in conversion may mean that the
product is off-specification. So, we consider the following problem. The reactor
is operating and full of good material. It is desired to shut it down while produ-
cing no material that is off-specification. One approach is to dump the entire
contents quickly, but this is likely to cause downstream processing problems.
Another approach allows a gradual discharge while maintaining constant
product quality.

Example 14.6: Explore the consequences of the following shutdown
strategy for an isothermal, constant-density CSTR that has been operating
at steady state. At time zero, the discharge flow rate is increased by a factor
of 1þ d. Simultaneously, the inlet flow rate is made proportional to the fluid
volume in the vessel. When does the vessel empty and what happens to the
composition of the discharge stream during the shutdown interval?

Solution: The control strategy is to set the inlet flow rate proportional to
the active volume in the vessel:

Qin ¼ VðtÞ�tt ð14:8Þ

where 1=�tt is the proportionality constant. This is the same proportionality
constant that related flow rate to volume during the initial period of steady-
state operation. The inlet flow rate gradually declines from its steady-state
value of Q0, and Equation (14.1) becomes

dV

dt
¼ V

�tt
� ð1þ �ÞQ0 ð14:9Þ

The initial condition is V ¼ V0 at t ¼ 0. Solving this ODE and setting V¼ 0
gives

tempty ¼ �tt ln
1þ �

�

� �
ð14:10Þ

These shutdown times are moderate: 2:4 �tt for � ¼ 0:1 and 3�tt for � ¼ 0:05:
Equation (14.2) governs the outlet concentration during the shutdown interval.
For this shutdown strategy, it becomes

aout
dV

dt
þ V daout

dt
¼ ainV

�tt
� ð1þ �ÞaoutQ0 þ VR A
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Substituting Equation (14.9) and simplifying gives

�tt
daout
dt
¼ ain � aout þ �ttR A

This equation applies for t 	 0; and when t is exactly zero, aout has its steady-
state value, which is determined from the steady-state design equation:

0 ¼ ain � aout þ �ttR A

Compare these results to see that daout=dt ¼ 0 so that the outlet concentration
does not change during the shutdown transient.

Example 14.6 derives a rather remarkable result. Here is a way of gradually
shutting down a CSTR while keeping a constant outlet composition. The
derivation applies to an arbitrary R A and can be extended to include multiple
reactions and adiabatic reactions. It is been experimentally verified for a
polymerization.1 It can be generalized to shut down a train of CSTRs in
series. The reason it works is that the material in the tank always experiences
the same mean residence time and residence time distribution as existed
during the original steady state. Hence, it is called constant RTD control.
It will cease to work in a real vessel when the liquid level drops below the
agitator.

Constant RTD control can be applied in reverse to startup a vessel while
minimizing off-specification materials. For this form of startup, a near steady
state is first achieved with a minimum level of material and thus with minimum
throughput. When the product is satisfactory, the operating level is gradually
increased by lowering the discharge flow while applying Equation (14.8) to the
inlet flow. The vessel fills, the flow rate increases, but the residence time distribu-
tion is constant.

Product Transitions. A common practice in the manufacture of polymers and
specialty chemicals is to use the same basic process for multiple products.
Batch reactions obviously lend themselves to this practice, but continuous pro-
duction lines are also switched from one product to another as dictated by
market demand. This is routinely done at production rates of 50 t/h. There is
strong economic incentive to minimize downtime and to minimize the produc-
tion of off-specification product. A complete shutdown and restart might mini-
mize the amount of off-specification product but may cause appreciable
downtime. A running transition will maintain productivity but may generate a
large amount of off-specification material. Combination strategies such as
partially empting a reactor before making a chemical change are sometimes
used. When the reactor can be modeled as one or more CSTRs in series,
Equations (14.1) through (14.3) provide the general framework for studying
product transitions.
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Example 14.7: A polymer manufacturer makes two products in a CSTR.
Product I is made by the reaction

A �!kI P

Product II is a C-modified version of Product I in which a second reaction
occurs:

P þ C �!kII Q

The reactor operates at constant volume, constant density, constant flow
rate, and isothermally. The only difference between the two products is the
addition of component C to the feed when Product II is made.

Explore methods for making a running transition from Product I to
Product II. There is no P or Q in the reactor feed.

Solution: One version of Equation (14.2) is written for each reactant:

�tt
daout
dt
¼ ain � aout � �ttkaout

�tt
dpout
dt
¼ �pout þ �ttðkIaout � kIIpoutcoutÞ

�tt
dqout
dt
¼ �qout þ �ttIkIIpoutcout

�tt
dcout
dt
¼ cin � cout � �ttkIIpoutcout

The analysis from this point will be numerical. Suppose ain¼ 20mol/m3 for
both products, cin¼ 9mol/m3 when Product II is being made at steady
state, �tt ¼1 h, kI¼ 4 h�1, and kII ¼ 1 h=ðm3EmolÞ. This kinetic system allows
only one steady state. It is stable and can be found by solving the
governing ODEs starting from any initial condition. The steady-state
response when making Product I is aout¼ 4mol/m3 and pout¼ 16mol/m3.
When Product II is made, aout¼ 4mol/m3, pout¼ 8mol/m3, qout¼ 8mol/m3,
and cout¼ 1mol/m3.

Consider a transition from Product I to Product II. The simplest case is just
to add component C to the feed at the required steady-state concentration of
cin¼ 9mol/m3. The governing ODEs are solved subject to the initial condition
that the reactor initially contains the steady-state composition corre-sponding
to Product I. Figure 14.3 shows the leisurely response toward the new steady
state. The dotted lines represent the specification limits for Product II. They
allow any Q concentration between 7 and 9mol/m3. The outlet composition
enters the limits after 2.3 h. The specification for Product I allows 1mol/m3

of Q to be present, but the rapid initial increase in the concentration of
Q means that the limit is quickly exceeded. The total transition time is
about 2 h, during which some 100 t of off-specification material would be
produced.

A far better control strategy is available. Figure 14.3 shows the response
to a form of bang-bang control where C is charged as rapidly as possible to
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quickly change the reactor concentration to 11mol/m3. This is the first bang
and it is assumed to be instantaneous. The second bang completely stops the
feed of C for 12min. This prevents the outlet concentration of Q from over-
shooting its steady-state value. After the 12min duration of the second bang,
the inlet concentration of Q is set to its steady-state value. The transition time
is reduced to about 7min and the amount of off-specification material to
about 6 t. This is not yet the optimal response, which probably shows some
overshoot in the outlet concentration of Q, but it is a reasonable start.
Problems 14.9 and 14.10 pursue this problem.

14.1.2 Nonisothermal Stirred Tank Reactors

Nonisothermal stirred tanks are governed by an enthalpy balance that
contains the heat of reaction as a significant term. If the heat of reaction is unim-
portant, so that a desired Tout can be imposed on the system regardless of the
extent of reaction, then the reactor dynamics can be analyzed by the methods
of the previous section.

This section focuses on situations where Equation (14.3) must be considered
as part of the design. Even for these situations, it is usually possible to control a
CSTR at a desired temperature. If temperature control can be achieved
rapidly, the isothermal design techniques again become applicable. Rapid
means on a time scale that is fast compared with reaction times and composition
changes.

20

18

16

14

12

10

6

4

8

2

0

C
on

ce
nt

ra
tio

n

0 2 4
Transition time, h

6 8

Feed composition set to
new steady-state value

Bang-bang control of
feed composition

FIGURE 14.3 Transitions from Product I to Product II in Example 14.7.
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Example 14.8: The styrene polymerization example of Example 5.7 shows
three steady states. The middle steady state with aout¼ 0.738 and Tout¼ 403K
is unstable. Devise a control system that stabilizes operation near it.

Solution: There are several theoretical ways of stabilizing the reactor, but
temperature control is the normal choice. The reactor in Example 5.7 was
adiabatic. Some form of heat exchange must be added. Possibilities are to
control the inlet temperature, to control the pressure in the vapor space
thereby allowing reflux of styrene monomer at the desired temperature, or
to control the jacket or external heat exchanger temperature. The following
example regulates the jacket temperature. Refer to Example 5.7. The
component balance on styrene is unchanged from Equation (5.29):

daout
d
¼ ain � aout � 2� 1010 expð�10,000=ToutÞ aout

A heat exchange term is added to the energy balance, Equation (5.30), to give

dTout
d
¼ Tin � Tout þ 8� 1012 expð�10,000=ToutÞ aout=ain þUAext

�tt

V�Cp
ðText � T Þ

The heat transfer group, UAext �tt=V�Cp, is dimensionless. Assume its value is
0.02. A controller is needed to regulate Text. The industrial choice would be
a two-term controller, proportional plus reset. We skirt the formal control
issues and use a simple controller of the form

Text ¼ 375þ 20ðTset � T Þ
Suppose the reactor has been started using the fast-fill-and-hold method

and has reached a¼ 0.65 at T¼ 420K. Continuous flow is started with
ain¼ 1, Tin¼ 375K, and Tset¼ 404K. Figure 14.4 shows the response. The
temperature response is very rapid, but the conversion increases slightly
during the first seconds of operation. Without temperature control, the reac-
tion would have run away. The concentration is slowly evolving to its eventual
steady-state value of about 0.26. There is a small offset in the temperature
because the controller has no reset term.

Example 14.9: This example cites a real study of a laboratory CSTR that
exhibits complex dynamics and limit cycles in the absence of a feedback con-
troller. We cite the work of Vermeulen, and Fortuin,2 who studied the acid-
catalyzed hydration of 2,3-epoxy-1-propanol to glycerol:

H H H

H C C C H

OH O

þH2O ����!H2SO4

H H H

H C C C H

OH OH OH
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The reactor has separate feed streams for an aqueous solution of the epoxy
and for an aqueous solution of the acid. Startup begins with the vessel initially
full of acid.

The chemistry seems fairly simple. The water concentration is high and
approximately constant so that the reaction is pseudo-first-order with respect
to the epoxy. The rate is also proportional to the hydrogen ion concentration
h. Thus,

R ¼ k0 exp �E
RgT

� �
eh

where e is the epoxy concentration. The sulfuric acid dissociates in two
equilibrium steps:

H2SO4AHþ þHSO�4 K1 ¼ ½H
þ�½HSO�4 �
½H2SO4�

HSO�4AHþ þ SO2�
4 K2 ¼ ½H

þ�½SO2�
4 �

½HSO�4 �
The hydrogen ion concentration can be found from

h3out
K1
þ h2þout þ ðK2 � soutÞhout � 2K2sout ¼ 0

where s is the total sulfate concentration.
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FIGURE 14.4 Stabilization of a nonisothermal CSTR near a metastable steady state.
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There are three ODEs that govern the system. For sulfate, which is not
consumed,

�tt
dsout
dt
¼ sin � sout sout ¼ s0 at t ¼ 0

For the epoxy,

�tt
deout
dt
¼ ein � eout � k0 �tt exp �E

RgT

� �
eouthout eout ¼ 0 at t ¼ 0

For temperature,

ð�VCPþmRCRÞdTout
dt
¼ �QðCPÞinTin��QCPToutþUAextðText�ToutÞ

þ q��HR�Vk0 exp
�E
RgT

� �
eouthout Tout ¼T0 at t¼ 0

This heat balance contains two terms not seen before: mRCR represents the mass
times specific heat of the agitator and vessel walls and q represents the energy
input by the agitator. Although the model is nominally for constant physical
properties, Vermeulen and Fortuin found a better fit to the experimental data
when they used a slightly different specific heat for the inlet stream (CP)in.

Figure 14.5 shows a comparison between experimental results and the model.
The startup transient has an initial overshoot followed by an apparent approach
to steady state. Oscillations begin after a phenomenally long delay, t > 10�tt, and
the system goes into a limit cycle. The long delay before the occurrence of the
oscillations is remarkable. So is the good agreement between model and experi-
ment. Two facts are apparent: quite complex behavior is possible with a simple
model, and one should wait a long time before reaching firm conclusions regard-
ing stability. The conventional wisdom is that steady state is closely approached
after 3–5 mean residence times.
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FIGURE 14.5 Experimental and model results on the acid-catalyzed hydration of 2,3-epoxy-
propanol to glycerol.
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14.2 UNSTEADY PISTON FLOW

Dynamic analysis of piston flow reactors is fairly straightforward and rather
unexciting for incompressible fluids. Piston flow causes the dynamic response
of the system to be especially simple. The form of response is a limiting case
of that found in real systems. We have seen that piston flow is usually a desirable
regime from the viewpoint of reaction yields and selectivities. It turns out to be
somewhat undesirable from a control viewpoint since there is no natural dam-
pening of disturbances.

Unlike stirred tanks, piston flow reactors are distributed systems with
one-dimensional gradients in composition and physical properties. Steady-
state performance is governed by ordinary differential equations, and dynamic
performance is governed by partial differential equations, albeit simple, first-
order PDEs. Figure 14.6 illustrates a component balance for a differential
volume element.

R A�V þ aQ� aQþ @ðaQÞ
@z

�z

� �
¼ @a

@t
�V

Input�Output ¼ Accumulation

or

@a

dt
þ 1

Ac

@ðaQÞ
@z
¼ @a

dt
þ 1

Ac

@ðAc �uuaÞ
@z

¼ R A ð14:11Þ

where Ac¼�V/�z is the cross-sectional area of the tube. The tube has
rigid walls and a fixed length so @V=@t ¼ 0. Compare Equation (14.11) to
Equation (3.5). All we have done is add an accumulation term. An overall
mass balance gives

@�

dt
þ 1

Ac

@ð�QÞ
@z
¼ 0 ð14:12Þ
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FIGURE 14.6 Differential volume element in an unsteady piston flow reactor.

UNSTEADY REACTORS 531



If � is constant, Equation (14.12) shows Q to be constant as well. Then the
component balance simplifies to

@a

dt
þ �uu

@a

@z
¼ R A ð14:13Þ

This result is valid for variable Ac but not for variable �. It governs a PFR with a
time-dependent inlet concentration but with other properties constant. The final
simplification supposes that Ac is constant so that �uu is constant. Then Equation
(14.13) has a simple analytical solution:

z

�uu
¼ t ¼

Zaðt,zÞ
ainðt�z= �uuÞ

da0

R A
ð14:14Þ

Formal verification that this result actually satisfies Equation (14.13) is an exer-
cise in partial differentiation, but a physical interpretation will confirm its vali-
dity. Consider a small group of molecules that are in the reactor at position z at
time t. They entered the reactor at time t0 ¼ t� ðz= �uuÞ and had initial composition
aðt0, zÞ ¼ ainðt0Þ ¼ ainðt� z= �uuÞ. Their composition has subsequently evolved
according to batch reaction kinetics as indicated by the right-hand side of
Equation (14.14). Molecules leaving the reactor at time t entered it at time
t� �tt: Thus,

L

�uu
¼ �tt ¼

ZaoutðtÞ
ainðt��tt Þ

da0

R A
ð14:15Þ

When ain is constant, Equation (14.14) is a solution of Equation (3.1) evaluated
at position z, and Equation (14.15) is a solution evaluated at the reactor outlet.

The temperature counterpart of Equation (14.11) is

@ð�H Þ
@t
þ �Q

@H

@z
¼ @ð�H Þ

@t
þ � �uuAc

@H

@z
¼ ��HRRAc þUA0extðText � TÞ ð14:16Þ

With constant physical properties and Ac this becomes

@T

@t
þ �uu

@T

@z
¼ ��HR

�Cp
þ 2U

R�CP
ðText � TÞ ð14:17Þ

If the reactor is adiabatic, U¼ 0 and Equation (14.17) has the following formal
solution:

z

�uu
¼ t ¼

ZTðt,zÞ
Tinðt�z= �uuÞ

�CP
��HRR dT

0 ð14:18Þ
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This formal solution is not useful for finding T(t, z) since the reaction rate will
depend on composition. It does, however, show that the temperature at time t
and position z is determined by inlet conditions at time t� z= �uu. Temperature,
like composition, progresses in a batch-like trajectory from its entering value
to its exit value without regard for what is happening elsewhere in the tube.
Including heat exchange to the environment, U>0, does not change this fact
provided Text is uncoupled to T. A solution for aoutðtÞ and ToutðtÞ can be
found by solving the ordinary differential equations that govern steady-state
piston flow:

�uu
da

dz
¼ R A

�uu
dT

dz
¼ ��HR

�Cp
þ 2U

R�CP
ðText � TÞ

Solve these ODEs subject to the initial conditions that a ¼ ainðt� �tt Þ and
T ¼ Tinðt� �tt Þ at z¼ 0. Evaluate the solution at z¼L to obtain aoutðtÞ and
ToutðtÞ.

The most important fact about piston flow is that disturbances at the inlet are
propagated down the tube with no dissipation due to mixing. They arrive at the
outlet �tt seconds later. This pure time delay is known as dead time. Systems with
substantial amounts of dead time oscillate when feedback control is attempted.
This is caused by the controller responding to an output signal that may be com-
pletely different than that corresponding to the current input. Feedforward con-
trol represents a theoretically sound approach to controlling systems with
appreciable dead time. Sensors are installed at the inlet to the reactor to measure
fluctuating inputs. The appropriate responses to these inputs are calculated
using a model. The model used for the calculations may be imperfect but it
can be improved using feedback of actual responses. In adaptive control, this
feedback of results is done automatically using a special error signal to correct
the model.

Piston flow reactors lack any internal mechanisms for memory. There is no
axial dispersion of heat or mass. What has happened previously has no effect
on what is happening now. Given a set of inlet conditions ðain, Tin, TextÞ,
only one output ðaout, ToutÞ is possible. A PFR cannot exhibit steady-state mul-
tiplicity unless there is some form of external feedback. External recycle of mass
or heat can provide this feedback and may destabilize the system. Figure 14.7
shows an example of external feedback of heat that can lead to the same
multiple steady states that are possible with a CSTR. Another example is
when the vessel walls or packing have significant thermal capacity. Equation
(14.16) no longer applies. Instead, the reactor must be treated as two phase
with respect to temperature, even though it is single phase with respect to
concentration.
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14.3 UNSTEADY CONVECTIVE DIFFUSION

The unsteady version of the convective diffusion equation is obtained just by
adding a time derivative to the steady version. Equation (8.32) for the convective
diffusion of mass becomes

@a

@t
þ VzðrÞ @a

@z
¼ DA

@2a

@z2
þ 1

r

@a

@r
þ @2a

@r2

� �
þR A ð14:19Þ

The analogous equation for the convective flow of heat is

@T

@t
þ VzðrÞ @T

@z
¼ �T

1

r

@T

@r
þ @2T

@r2
þ @2T

@z2

� �
��HRR

�CP
ð14:20Þ

These equations assume that the reactor is single phase and that the surround-
ings have negligible heat capacity. In principle, Equations (14.19) and (14.20)
can be solved numerically using the simple methods of Chapters 8 and 9.
The two-dimensional problem in r and z is solved for a fixed value of t. A step
forward in t is taken, the two-dimensional problem is resolved at the new t,
and so on.

The axial dispersion model discussed in Section 9.3 is a simplified version of
Equation (14.19). Analytical solutions for unsteady axial dispersion are given in
Chapter 15.

PROBLEMS

14.1. Determine the fractional filling rate Qfill=Q that will fill an isothermal,
constant-density, stirred tank reactor while simultaneously achieving the
steady-state conversion corresponding to flow rate Q. Assume a second-
order reaction with aink�tt ¼ 1 and �tt ¼ 5 h at the intended steady state.

Outlet

Inlet

FIGURE 14.7 Piston flow reactor with feedback of heat.

534 CHEMICAL REACTOR DESIGN, OPTIMIZATION, AND SCALEUP



14.2. Devise a fast-fill-and-hold startup strategy for the reaction of Problem
14.1.

14.3. Suppose the consecutive elementary reactions

2A �!kI B �!kII C

occur in an isothermal CSTR. Suppose ainkI �tt=2, and kII¼ 1 with
bin¼ cin¼ 0. Determine the steady-state outlet composition and explore
system stability by using a variety of initial conditions ain and bin.

14.4. Find a nontrivial (meaning rout>0 and lout>0) steady state for the
rabbit and lynx problem in Example 14.2. Test its stability by making
small changes in the system parameters.

14.5. Suppose the following reactions are occurring in an isothermal perfect
mixer:

Aþ B! 2B R I ¼ kIab
Suppose there is no B in the feed but that some B is charged to the reac-
tor at startup. Can this form of startup lead to stable operation with
bin¼ 0 but bout>0?

14.6. Suppose the following reactions are occurring in an isothermal CSTR:

Aþ 2B! 3B R I ¼ kIab2
B! C R II ¼ kIIb

Since the autocatalytic reaction is third order, a steady-state material bal-
ance gives a cubic in bout. This means there are one or three steady states.
Suppose bin=ain ¼ 1=15 and explore the stability of the single or middle
steady state for each of the following cases:
(a) a2inkI �tt ¼ 190, kII �tt ¼ 4:750 (a small disturbance from the steady state

gives damped oscillations)
(b) a2inkI �tt ¼ 225, kII �tt ¼ 5:625 (a small disturbance from the steady state

gives sustained oscillations)
(c) a2inkI �tt ¼ 315, kII �tt ¼ 7:875 (a small disturbance from the steady

state gives undamped oscillations and divergence to a new steady
state)

See Gray and Scott3 for a detailed analysis of this (hypothetical) reaction
system.

14.7. Determine tfull for the fed-batch method of Examples 14.3 and 14.4 in the
limiting cases as k!1 and k! 0.
Hint: the range is �tt < tfull < 2 �tt. Determining one of these limits is an
easy exercise using L’Hospital’s rule.

14.8. Suppose there are two parallel, first-order reactions in a steady-state
CSTR. Show that neither the fed-batch nor fast-fill-and-hold strategies
can achieve a bumpless startup if the reactions have different rate
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constants. Is it possible to use a combination strategy to achieve a
bumpless startup? A numerical example will be sufficient.

14.9. Improve the control strategy for the product transition in Example 14.7.
Ignore mixing time constraints, flow rate limitations on the addition of
component C, and any constraints on the allowable value for cout. The
concentration of Q can exceed its steady-state value of 8mol/m3 but
must not be allowed to go outside the upper specification limit of
9mol/m3.

14.10. The transition control strategy in Example 14.7 quickly increases the
concentration of C in the vessel from 0 to 11mol/m3. This means that
cout¼ 11mol/m3, at least temporarily. Suppose the downstream recovery
system is unable to handle more than 2mol/m3 of unreacted C. The
obvious start to the transition is to quickly charge enough C to the reac-
tor to get cout¼ 2mol/m3, but then what?

14.11. Use the inlet temperature rather than the jacket temperature to control
the reactor in Example 14.8.

14.12. Suppose the reactor in Example 14.8 remains in batch mode after the
fast-fill-and-hold startup. Will the temperature control system still
work? A preliminary answer based on the approximate kinetics of
Example 14.7 is sufficient, but see the next problem.

14.13. Use the more rigorous kinetic model of Appendix 13.1 to repeat the pre-
vious problem. Also consider how the viscosity increase might affect the
heat transfer group. Use the viscosity correlation in Appendix 13.1.

14.14. Control systems can fail in many ways, and highly energetic reactions
like the styrene polymerization in Examples 5.7 and 14.8 raise major
safety concerns. The contents of the vessel are similar to napalm.
Discuss ways of preventing accidents or of mitigating the effects of
accidents. Is there one best method for avoiding a disastrous runaway?

14.15. Standard thermodynamic texts give a more general version of Equation
(14.3). See Smith et al.4 This more general version is

d

dt
½�ðH � PVÞV � ¼ ½Hin þ �uu2in=2þ Zingin�Qin�in

� ½Hout þ �uu2out=2þ Zoutgout�Qout�out
� V�HRR þUAextðText � ToutÞ

Identify the added terms. When could they be important? When might
other terms be important? Remember, this is a CSTR, not a spaceship,
but note the extra terms included in Example 14.9.

14.16. Referring to Example 14.9, Vermeulen and Fortuin estimated all
the parameters in their model from physical data. They then com-
pared model predictions with experimental results and from this they
made improved estimates using nonlinear regression. Their results
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were as follows:

Parameter
Estimate from
physical data

Estimate from
regression analysis Units

�Q 0.0019 0.001881615 kg/s
�V 0.30 0.2998885 kg
mrCR 392 405.5976 J/K
ein 8.55 8.532488 mol/kg
ðCPÞin 2650 2785.279 J=ðkgEKÞ
CP 2650 2517017 J=ðkgEKÞ
sin 0.15 0.1530875 mol/kg
k0 8.5� 1010 8.534612� 1010 kg=ðmolEsÞ
UAext 30 32.93344 J=ðsEKÞ
��HR 88200 87927.31 J/mol
q 30 32.62476 J/s
Tin 273.91 273.9100 K
Text 298.34 298.3410 K
E=Rg 8827 8815.440 K
K1 1000 1000 mol/kg
K2 0.012023 0.012023 mol/kg
T0 300.605 300.605 K
e0 0 0 mol/kg
s0 0.894 0.894 mol/kg

(a) Show that, to a good approximation,

hout ¼ 0:5 sout � K2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2out þ 6soutK2 þ K2

2

q� �

(b) Using the parameter estimates obtained by regression analysis,
confirm the qualitative behavior shown in Figure 14.5. A sophisti-
cated integration routine may be necessary, but it is not necessary
to match Vermeulen and Fortuin exactly.

(c) The parameter-fitting procedure used experimental data from a
single run. Determine the sensitivity of the model by replacing
the regression estimates with the physical estimates. What does
this suggest about the reproducibility of the experiment?

(d) Devise a means for achieving steady operation at high conversion
to glycerol. Undesirable side reactions may become significant at
423K. At atmospheric pressure and complete conversion, the
mixture boils at 378K.

14.17. Upon entering engineering, freshmen tend to choose their curriculum
based on job demand for the current graduating class. It is easy to
change curriculum in the freshman year but it becomes difficult in sub-
sequent years. Thus, we might model the engineering education process
as a stirred tank with �tts ¼ 1 year followed by a piston flow reactor with
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�ttp ¼ 3 years. Does this model predict a good balance of supply and
demand? What strategy would you suggest to a freshman whose sole
concern was being in high demand upon graduation?

14.18. Blood vessels have elastic walls that expand or contract due to changes
in pressure or the passage of corpuscles. How should Equations (14.11)
and (14.12) be modified to reflect this behavior?
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SUGGESTIONS FOR FURTHER READING

This chapter has presented time-domain solutions of unsteady material and
energy balances. The more usual undergraduate treatment of dynamic systems
is given in a course on control and relies heavily on Laplace transform techni-
ques. One suitable reference is

Stephanopoulos, G., Chemical Process Control: An Introduction to Theory and Practice,
Prentice-Hall, Englewood Cliffs, NJ, 1984.

A more recent book that stresses numerical solutions using Matlab� is

Bequette, B. W., Process Dynamics: Modeling, Analysis and Simulation, Prentice-Hall,
Englewood Cliffs, NJ, 1998.

Unsteady reaction data are often an excellent means for estimating physical
parameters that would be difficult or impossible to elucidate from steady-state
measurements. However, the associated problems in nonlinear optimization
can be formidable. A recent review and comparison of methods is given by

Biegler, L. T., Damiano, J. J., and Blau, G. E., ‘‘Nonlinear parameter estimation: a case study
comparison,’’ AIChE J., 32, 29–45 (1986).
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CHAPTER 15

RESIDENCE TIME
DISTRIBUTIONS

Reactor design usually begins in the laboratory with a kinetic study. Data are
taken in small-scale, specially designed equipment that hopefully (but not inevi-
tably) approximates an ideal, isothermal reactor: batch, perfectly mixed stirred
tank, or piston flow. The laboratory data are fit to a kinetic model using the
methods of Chapter 7. The kinetic model is then combined with a transport
model to give the overall design.

Suppose now that a pilot-plant or full-scale reactor has been built and oper-
ated. How can its performance be used to confirm the kinetic and transport
models and to improve future designs? Reactor analysis begins with an operating
reactor and seeks to understand several interrelated aspects of actual perfor-
mance: kinetics, flow patterns, mixing, mass transfer, and heat transfer. This
chapter is concerned with the analysis of flow and mixing processes and their
interactions with kinetics. It uses residence time theory as the major tool for
the analysis.

In a batch reactor, all molecules enter and leave together. If the system is iso-
thermal, reaction yields depend only on the elapsed time and on the initial com-
position. The situation in flow systems is more complicated but not impossibly
so. The counterpart of the batch reaction time is the age of a molecule. Aging
begins when a molecule enters the reactor and ceases when it leaves. The total
time spent within the boundaries of the reactor is known as the exit age, or resi-
dence time, t. Except in batch and piston flow reactors, molecules leaving the
system will have a variety of residence times. The distribution of residence
times provides considerable information about homogeneous, isothermal reac-
tions. For single, first-order reactions, knowledge of the residence time distribu-
tion allows the yield to be calculated exactly, even in flow systems of arbitrary
complexity. For other reaction orders, it is usually possible to calculate tight
limits, within which the yield must lie. Even if the system is nonisothermal
and heterogeneous, knowledge of the residence time distribution provides
substantial insight regarding the flow processes occurring within it.
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15.1 RESIDENCE TIME THEORY

The time that a molecule spends in a reactive system will affect its probability of
reacting; and the measurement, interpretation, and modeling of residence time
distributions are important aspects of chemical reaction engineering. Part of
the inspiration for residence time theory came from the black box analysis tech-
niques used by electrical engineers to study circuits. These are stimulus–response
or input–output methods where a system is disturbed and its response to the dis-
turbance is measured. The measured response, when properly interpreted, is
used to predict the response of the system to other inputs. For residence time
measurements, an inert tracer is injected at the inlet to the reactor, and the
tracer concentration is measured at the outlet. The injection is carried out in a
standardized way to allow easy interpretation of the results, which can then
be used to make predictions. Predictions include the dynamic response of the
system to arbitrary tracer inputs. More important, however, are the predictions
of the steady-state yield of reactions in continuous-flow systems. All this can be
done without opening the black box.

15.1.1 Inert Tracer Experiments

Transient experiments with inert tracers are used to determine residence time
distributions. In real systems, they will be actual experiments. In theoretical
studies, the experiments are mathematical and are applied to a dynamic model
of the system.

Negative Step Changes and the Washout Function. Suppose that an inert
tracer has been fed to a CSTR for an extended period of time, giving Cin ¼
Cout ¼ C0 for t<0. At time t¼ 0, the tracer supply is suddenly stopped so
that Cin ¼ 0 for t>0. Equation (14.2) governs the transient response of the
system. For t>0,

V
dCout
dt
¼ �QoutCout

where constant-volume operation with R C ¼ 0 has been assumed. The
solution is

CoutðtÞ
C0

¼ exp �Qoutt
V

� �
¼ exp

�
� t

�tt

�
ð15:1Þ

Tracer molecules originally in the system at time t¼ 0 gradually wash out. The
exponential form of Equation (15.1) is specific to a CSTR, but the concept of
washout applies to any flow system. Consider some time t>0 when the fraction
of molecules remaining in the system isW(t)¼Cout(t)/C0. These molecules must
necessarily have entered the reactor before time t¼ 0 since no tracer was fed
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after that time. Thus, these molecules have residence times of t or longer. The
residence time washout function is defined as

WðtÞ ¼ Fraction of molecules leaving the system that

experienced a residence time greater than t
ð15:2Þ

It is apparent that W(0)¼ 1 since all molecules must have a residence time of
zero or longer and that W(1)¼ 0 since all molecules will eventually leave the
system. Also, the function W(t) will be nonincreasing.

Washout experiments can be used to measure the residence time distribution
in continuous-flow systems. A good step change must be made at the reactor
inlet. The concentration of tracer molecules leaving the system must be
accurately measured at the outlet. If the tracer has a background concentration,
it is subtracted from the experimental measurements. The flow properties of
the tracer molecules must be similar to those of the reactant molecules. It is
usually possible to meet these requirements in practice. The major theoretical
requirement is that the inlet and outlet streams have unidirectional flows so
that molecules that once enter the system stay in until they exit, never to
return. Systems with unidirectional inlet and outlet streams are closed in the
sense of the axial dispersion model; i.e., Din¼Dout¼ 0. See Sections 9.3.1 and
15.2.2. Most systems of chemical engineering importance are closed to a
reasonable approximation.

The use of inert tracer experiments to measure residence time distributions
can be extended to systems with multiple inlets and outlets, multiple phases
within the reactor, and species-dependent residence times. This discussion
ignores these complications, but see ‘‘Suggestions for Further Reading.’’

Positive Step Changes and the Cumulative Distribution. Residence time distri-
butions can also be measured by applying a positive step change to the inlet
of the reactor: Cin ¼ Cout ¼ 0 for t<0 and Cin ¼ C0 for t>0. Then the outlet
response, F(t)¼Cout(t)/C0, gives the cumulative distribution function:

FðtÞ ¼ Fraction of molecules leaving the system that

experienced a residence time less than t
ð15:3Þ

Properties of the cumulative distribution function are F(0)¼ 0, Fð1Þ ¼ 1, and
F(t) is nondecreasing. It is related to the washout function by

FðtÞ ¼ 1�WðtÞ ð15:4Þ
Thus, measurement of one readily gives the other. The washout experiment is
generally preferred since Wð1Þ ¼ 0 will be known a priori but Fð1Þ ¼ C0

must usually be measured. The positive step change will also be subject to pos-
sible changes in C0 during the course of the experiment. However, the positive
step change experiment requires a smaller amount of tracer since the experiment
will be terminated before the outlet concentration fully reaches C0.

RESIDENCE TIME DISTRIBUTIONS 541



Impulse Response and the Differential Distribution. Suppose a small amount of
tracer is instantaneously injected at time t¼ 0 into the inlet of a reactor. All the
tracer molecules enter together but leave at varying times. The tracer concentra-
tion at the outlet is measured and integrated with respect to time. The integral
will be finite and proportional to the total quantity of tracer that was injected.
The concentration measurement at the reactor outlet is normalized by this
integral to obtain the impulse response function:

f ðtÞ ¼ CoutðtÞR1
0 CoutðtÞdt

ð15:5Þ

This function has the physical interpretation as

f ðtÞdt ¼ Fraction of molecules leaving the system that

experienced a residence time between t and tþ dt ð15:6Þ

It is normally called the differential distribution function (of residence times). It is
also known as the density function or frequency function. It is the analog for a
continuous variable (e.g., residence time t) of the probability distribution for a
discrete variable (e.g., chain length l ). The ‘‘fraction’’ that appears in
Equations (15.2), (15.3), and (15.6) can be interpreted as a probability, but
now it is the probability that t will fall within a specified range rather than
the probability that t will have some specific value. Compare Equations (13.8)
and (15.5).

The differential distribution is related to the cumulative distribution and to
the washout function by

f ðtÞ ¼ dF
dt
¼ � dW

dt

FðtÞ ¼
Z t

0

f ðt0Þdt0

WðtÞ ¼
Z 1
t

f ðt0Þdt0

ð15:7Þ

Its properties are that f ðtÞ 	 0 and that

Z 1
0

f ðtÞdt ¼ 1 ð15:8Þ

Experimental determination of the density function requires rapid injection of
tracer molecules at the inlet to the system. Ideally, a finite number of molecules
will be injected in an infinitesimal period of time. Think of quick injection using
a syringe.
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Mathematically, f(t) can be determined from FðtÞ or WðtÞ by differentiation
according to Equation (15.7). This is the easiest method when working in the
time domain. It can also be determined as the response of a dynamic model
to a unit impulse or Dirac delta function. The delta function is a convenient
mathematical artifact that is usually defined as

�ðtÞ ¼ 0, t 6¼ 1

Z 1
�1

�ðtÞdt ¼ 1

ð15:9Þ

The delta function is everywhere zero except at the origin, where it has an infinite
discontinuity, a discontinuity so large that the integral under it is unity. The
limits of integration need only include the origin itself; Equation (15.9) can
equally well be written as

Z 0þ

0�
�ðtÞdt ¼ 1

The delta function has another integral of substantial useZ 1
�1

�ðtÞ�ðt� t0Þdt ¼ �ðt0Þ ð15:10Þ

where �ðtÞ is any ‘‘ordinary’’ function. This suggests that �ðtÞ itself is not an
ordinary function. Instead, it can be considered as the limit of an ordinary func-
tion. This is illustrated in Example 15.1 (see also Example 15.2, which shows
how delta functions are used in connection with Laplace transforms).

15.1.2 Means and Moments

Residence time distributions can be described by any of the functionsW(t), F(t),
or f(t). They can also be described using an infinite set of parameters known as
moments:

�n ¼
Z 1
0

tnf ðtÞdt ð15:11Þ

where n ¼ 0, 1, 2, . . . : Compare Equation (13.9). These moments are also
called moments about the origin. The zeroth moment is 1. A useful result for
n>0 is

�n ¼ n
Z 1
0

tn�1WðtÞdt ð15:12Þ

Equation (15.12) is preferred for the experimental determination of moments.
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The first moment is the mean of the distribution or the mean residence time.

�tt ¼
Z 1
0

tf ðtÞdt ¼
Z 1
0

WðtÞdt ð15:13Þ

Thus, �tt can be found from inert tracer experiments. It can also be found from
measurements of the system inventory and throughput since

�tt ¼ �̂�V

�outQout

Agreement of the �tt values calculated by these two methods provides a good
check on experimental accuracy. Occasionally, Equation (15.13) is used to deter-
mine an unknown volume or an unknown density from inert tracer data.

Roughly speaking, the first moment, �tt, measures the size of a residence time
distribution, while higher moments measure its shape. The ability to characterize
shape is enhanced by using moments about the mean:

�0n ¼
Z 1
0

ðt� �tt Þnf ðtÞdt ð15:14Þ

Of these, the second is the most interesting and has a special name, the variance:

�2
t ¼ �02 ¼

Z 1
0

ðt� �tt Þ2f ðtÞdt ð15:15Þ

Expanding the parenthetical term and integrating term-by-term gives

�2
t ¼ �02 ¼

Z 1
0

ðt� �tt Þ2f ðtÞdt ¼
Z 1
0

ðt2 � 2t�ttþ �tt 2 Þ2f ðtÞ dt

¼ �2 � 2�tt�1 � �tt 2�0 ¼ �2 � �tt 2
ð15:16Þ

This equation is normally used to calculate the variance from experimental data,
�2 being calculated from Equations (15.11) or (15.12) using n¼ 2 and �1 ¼ �tt
being calculated using n¼ 1. Note that eitherW(t) or f(t) can be used to calculate
the moments. Use the one that was obtained directly from an experiment.
If moments of the highest possible accuracy are desired, the experiment
should be a negative step change to getW(t) directly. Even so, accurate moments
beyond the second are difficult to obtain under the best of circumstances.
The weightings of tn or tn�1 in Equations (15.11) or (15.12) place too
much emphasis on the tail of the residence time distribution to allow accurate
numerical results.

The subscript t on �2
t denotes that this variance has units of time squared.

The dimensionless variance measures the breadth of a distribution in a way
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that is independent of the magnitude of �tt:

�2 ¼ �2
t

�tt 2
¼ �2

�tt 2
� 1 ð15:17Þ

The dimensionless variance has been used extensively, perhaps excessively,
to characterize mixing. For piston flow, �2 ¼ 0; and for a CSTR, �2 ¼ 1.
Most turbulent flow systems have dimensionless variances that lie between
zero and 1, and �2 can then be used to fit a variety of residence time models
as will be discussed in Section 15.2. The dimensionless variance is generally
unsatisfactory for characterizing laminar flows where �2 > 1 is normal in
liquid systems.

The entire residence time distribution can be made dimensionless. A normal-
ized distribution has the residence time replaced by the dimensionless residence
time,  ¼ t=�tt. The first moment of a normalized distribution is 1, and all the
moments are dimensionless. Normalized distributions allow flow systems to be
compared in a manner that is independent of their volume and throughput.
For example, all CSTRs have the same normalized residence time distribution,
WðÞ ¼ expð�Þ. Similarly, all PFRs have f ðÞ ¼ �ð � 1Þ.

15.2 RESIDENCE TIME MODELS

This section opens the black box in order to derive residence time models for
common flow systems. The box is closed again in Section 15.3, where the predic-
tions can be based on either models or measurements.

15.2.1 Ideal Reactors and Reactor Combinations

The ideal flow reactors are the CSTR and the PFR. (This chapter later intro-
duces a third kind of ideal reactor, the segregated CSTR, but it has the same
distribution of residence times as the regular, perfectly mixed CSTR.) Real
reactors sometimes resemble these ideal types or they can be assembled from
combinations of the ideal types.

The Single CSTR. The washout function for a CSTR is found from its
response to a negative step change in tracer concentration; from Equation (15.1):

WðtÞ ¼ e�t= �tt ð15:18Þ
A CSTR has an exponential distribution of residence times. The corresponding
differential distribution can be found from Equation (15.7):

f ðtÞ ¼ ð1=�tt Þe�t= �tt ð15:19Þ
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Example 15.1 shows how it can be determined in the time domain as the
response to a delta function input.

Example 15.1: Apply a delta function input to a CSTR to determine f ðtÞ:
Solution: This solution illustrates a possible definition of the delta function
as the limit of an ordinary function. Disturb the reactor with a rectangular
tracer pulse of duration �t and height A=t so that A units of tracer
are injected. The input signal is Cin ¼ 0, t < 0; Cin ¼ A=�t, 0 < t < �t;
Cin ¼ 0, and t > �t: The outlet response is found from the dynamic model
of a CSTR, Equation (14.2). The result is

Cout ¼ 0 t < 0

Cout ¼ ðA=�tÞ½1� e�t= �tt � 0 < t < �t

Cout ¼ ðA=�t Þ½1� e��t=�tt �e�t= �tt t > �t

Now consider the limit as  approaches zero. L’Hospital’s rule shows that

lim
�t!0

A=�t½1� e��t= �tt � ¼ A=�tt

The transient response to a pulse of infinitesimal duration is

Cout ¼ 0 t < 0

Cout ¼ A=�tt t ¼ 0

Cout ¼ ðA=�tt Þe�t= �tt t > 0

The differential distribution is the response to a unit impulse. Setting A¼ 1
gives the expected result, Equation (15.19).

Pulse shapes other than rectangular can be used to obtain the same result.
Triangular or Gaussian pulses could be used, for example. The limit must be
taken as the pulse duration becomes infinitesimally short while the amount of
injected tracer remains finite. Any of these limits will correspond to a delta
function input.

The above example shows why it is mathematically more convenient to apply
step changes rather than delta functions to a system model. This remark applies
when working with dynamic models in their normal form; i.e., in the time
domain. Transformation to the Laplace domain allows easy use of delta functions
as system inputs.

Example 15.2: Use Laplace transform techniques to apply a delta function
input to a CSTR to determine f ðtÞ:
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Solution: Define the Laplace transform of CðtÞ with respect to the
transform parameter s as

� s½CðtÞ� ¼
Z 1
0

CðtÞe�stdt

The governing ODE,

V
dCout
dt
¼ QCin �QCout

transforms to

Vs� s½CoutðtÞ� � VCoutð0Þ ¼ Q� s½CinðtÞ� �Q� s½CoutðtÞ�Þ
The Coutð0Þ term is the initial condition for the concentration within the tank.
It is zero when the input is a delta function. Such a system is said to be initially
relaxed. The term � s½CinðtÞ� is the Laplace transform of the input signal, a
delta function in this case. The Laplace transform of �ðtÞ is 1. Substituting
and solving for aoutðsÞ gives

� s½CoutðtÞ� ¼ � s½CinðtÞ�
1þ �tts

¼ 1

1þ �tts
¼ ð1=�tt Þ
ð1= �tt Þ þ s ð15:20Þ

Equation (15.20) is inverted to give the time-domain concentration,
f ðtÞ ¼ CoutðtÞ. The result is Equation (15.19).

Example 15.3: Determine the first three moments about the origin and
about the mean for the residence time distribution of a CSTR.

Solution: Use Equation (15.11) and FðtÞ ¼ ð1=�tt Þe�t= �tt to obtain the
moments about the origin:

�n ¼
Z 1
0

t nf ðt Þdt ¼ ð1=�tt Þ
Z 1
0

t ne�t= �ttdt

¼ �tt n
Z 1
0

 ne�d ¼ �tt n�ðnþ 1Þ ¼ n! �tt n

where �ðnþ 1Þ ¼ n! is the gamma function. Thus, for a CSTR, �1 ¼ �tt,
�2 ¼ 2 �tt 2, and �3 ¼ 6 �tt 3: To find the moments about the mean, the
parenthetical term in Equation (15.14) is expanded and the resulting terms
are evaluated as moments about the origin. Equation (15.16) gives the
result for n¼ 2. Proceeding in the same way for n¼ 3 gives

�03 ¼
Z 1
0

ðt� �tt Þ3f ðtÞdt ¼ �3 � 3�tt�2 þ 2�tt 3 ð15:21Þ

RESIDENCE TIME DISTRIBUTIONS 547



Equations (15.17) and (15.21) apply to any residence time distribution. For
the exponential distribution of a CSTR, �02 ¼ �2

t ¼ �tt 2 (so that �2 ¼ 1) and
�03 ¼ 2�tt 3: The general result for a CSTR is �0n ¼ ðn� 1Þ �ttn:

The Piston Flow Reactor. Any input signal of an inert tracer is transmitted
through a PFR without distortion but with a time delay of �tt seconds. When
the input is a negative step change, the output will be a delayed negative step
change. Thus, for a PFR,

WðtÞ ¼ 1 t < �tt
WðtÞ ¼ 0 t > �tt

ð15:22Þ

The same logic can be used for a delta function input.

Example 15.4: The differential distribution can be defined as the outlet
response of a system to a delta function input.

Solution: The dynamic model governing the flow of an inert tracer through
an unsteady PFR is Equation (14.13) with R C ¼ 0 :

@C

@t
þ �uu

@C

@z
¼ 0 ð15:23Þ

The solution has any input signal being transmitted without distortion:

Cðt, zÞ ¼ Cinðt� z= �uu Þ
Evaluating this solution at the reactor outlet gives

CoutðtÞ ¼ Cðt,LÞ ¼ Cinðt� �tt Þ
The input to the reactor is a delta function, �ðtÞ, so the output is as well,
�ðt� �tt Þ: Thus,

f ðtÞ ¼ �ðt� �tt Þ ð15:24Þ
for a piston flow reactor. In light of this result, the residence time distribution
for piston flow is called a delta distribution.

Example 15.5: Determine the moments about the origin and about the
mean for a PFR.

Solution: Equation (15.11) becomes

�n ¼
Z 1
0

tnf ðtÞdt ¼
Z 1
0

tn�ðt� �tt Þ dt

Applying the integral property of the delta function, Equation (15.10), gives
�n ¼ �tt n: The moments about the mean are all zero.
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The Fractional Tubularity Model. Piston flow has �2 ¼ 0: A CSTR has �2 ¼ 1:
Real reactors can have 0 < �2 < 1, and a model that reflects this possibility
consists of a stirred tank in series with a piston flow reactor as indicated in
Figure 15.1(a). Other than the mean residence time itself, the model contains
only one adjustable parameter. This parameter is called the fractional tubularity,
p, and is the fraction of the system volume that is occupied by the piston flow
element. Figure 15.1(b) shows the washout function for the fractional tubularity
model. Its equation is

WðtÞ ¼ 1 t < p �tt

WðtÞ ¼ exp � ðt� p �tt Þ
�ttð1� pÞ

� �
t > p �tt

ð15:25Þ

This equation can be fit to experimental data in several ways. The model exhibits
a sharp first appearance time, tfirst ¼ p �tt, which corresponds to the fastest mate-
rial moving through the system. The mean residence time is found using
Equation (15.13), and p ¼ tfirst=�tt is found by observing the time when the
experimental washout function first drops below 1.0. It can also be fit from
the slope of a plot of lnW versus t. This should give a straight line (for
t > tfirst) with slope ¼ 1=ð �tt� tfirstÞ. Another approach is to calculate the dimen-
sionless variance and then to obtain p from

p ¼ 1� � ð15:26Þ

All these approaches have been used. However, the best method for the
great majority of circumstances is nonlinear least squares as described in
Section 7.1.1.
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FIGURE 15.1 The fractional tubularity model: (a) physical representation; (b) washout function.
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The fractional tubularity model has been used to fit residence time data in flui-
dized-bed reactors. It is also appropriate for modeling real stirred tank reactors
that have small amounts of dead time, as would perhaps be caused by the inlet
and outlet piping. It is not well suited to modeling systems that are nearly in
piston flow since such systems rarely have sharp first appearance times.

The Tanks-in-Series Model. A simple model having fuzzy first appearance
times is the tanks-in-series model illustrated in Figure 15.2. The washout func-
tion is

WðtÞ ¼ e�Nt=�tt
XN�1
i¼0

Niti

i! �tti
ð15:27Þ

The corresponding differential distribution is

f ðtÞ ¼ N
NtN�1e�Nt= �tt

ðN � 1Þ! �ttN�1 ð15:28Þ

where N (an integer) is the number of tanks in series. Each tank, individually,
has volume V/N and mean residence time �tt=N: This model reduces to the expo-
nential distribution of a single stirred tank for N¼ 1. It approaches the delta dis-
tribution of piston flow as N !1: The model is well suited to modeling small
deviations from piston flow. Physical systems that consist of N tanks (or com-
partments, or cells) in series are fairly common, and the model has obvious uti-
lity for these situations. The model is poorly suited for characterizing small
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FIGURE 15.2 The tanks-in-series model: (a) physical representation; (b) washout function.
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deviations from the exponential distribution of a single stirred tank because N
takes only integer values. However, extensions to the basic tanks-in-series
model allow N to take noninteger values and even N<1. The fractional tank
extension has a physical interpretation as N equal-sized tanks followed by one
smaller tank. See Stokes and Nauman1 or the references in ‘‘Suggestions for
Further Reading.’’ Another extension to the basic model extends the fact that

�2 ¼ 1=N ð15:29Þ
when N is an integer. Using Equation (15.29) for noninteger N is possible but
this destroys the physical basis for the model. The factorial in the denominator
of Equation (15.28) must be interpreted as a gamma function. Thus, the model is
called the gamma function extension to the tanks-in-series model.

Recycle Reactors. High rates of external recycle have the same effect on the
residence time distribution as high rates of internal recycle in a stirred tank.
The recycle reactor in Figure 4.2 can represent a physical design or it can be a
model for a stirred tank. The model requires the once-through residence time
distribution. In principle, this distribution can be measured by applying a step
change or delta function at the reactor inlet, measuring the outlet response,
and then destroying the tracer before it has a chance to recycle. In practice,
theoretical models for the once-through distribution are used. The easiest way
of generating the composite distribution is by simulation.

Example 15.6: Determine the washout function if a diffusion-free, laminar
flow reactor is put in a recycle loop. Assume that 75% of the reactor effluent is
recycled per pass.

Solution: Refer to Figure 4.2 and set Q ¼ Qin ¼ Qout ¼ 0:25m3/s,
q ¼ 0:75m3/s, and V¼ 1 m3. Then �tt ¼ 4 s for the overall system and 1 s for
the once-through distribution. The differential distribution corresponding to
laminar flow in a tube was found in Section 8.1.3. The corresponding washout
function can be found using Equation (15.7). See also Section 15.2.2. The
once-through washout function is

WðtÞ ¼ 1

4t2
t >

1

2

Now select a few hundred thousand molecules. Twenty-five percent will leave
after one pass through the reactor. For each of them, pick a random number,
0 < Rnd < 1, and use the washout function to find a corresponding value for
their residence time in the system, t. This requires a numerical solution when
WðtÞ is a complicated function, but for the case at hand

t ¼ t1 ¼
ffiffiffiffiffiffiffiffiffiffi
1

4W1

r
where W1¼Rnd
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Of the 75% that survive the first pass, 25% will leave after the second pass.
Their residence time will be

t ¼ t1 þ t2 ¼
ffiffiffiffiffiffiffiffiffiffi
1

4W1

r
þ

ffiffiffiffiffiffiffiffiffiffi
1

4W2

r

where W1 and W2 are determined from independently selected random
numbers. This procedure is repeated until nearly all the molecules have left.
The various residence times are then sorted by duration, starting from the
lowest value for t. The sorted results are counted as a function of t and the
counts are divided by the original number of molecules. The result is the
washout function for the system with recycle. Equation (15.13) provides a
test for whether the original number of molecules was large enough. The
integral of the tabulated washout function should exceed 0.999�tt for
reasonable accuracy. Results are shown in Figure 15.3.

The methodology of Example 15.6 works for any once-through residence
time distribution. The calculations will require a very large number of original
molecules if the recycle ratio is large. The data in Figure 15.3 came from a start-
ing population of 218¼ 262,144 molecules, and the recycle ratio Q=q was only
3 : 1. The first appearance time for a reactor in a recycle loop is the first appear-
ance time for the once-through distribution divided by Q=qþ 1. It is thus 0.125
in Figure 15.3, and declines rather slowly as the recycle ratio is increased.
However, even at Q=q ¼ 3, the washout function is remarkably close to that
for the exponential distribution.

Pathological Behavior. An important use of residence time measurements is to
diagnose flow problems. As indicated previously, the first test is whether or not �tt
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FIGURE 15.3 Effect of recycle on a laminar flow reactor.
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has its expected value. A low value suggests fouling or stagnancy. A high value is
more likely caused by experimental error.

The second test supposes that �tt is reasonable and compares the experimental
washout curve with what would be expected for the physical design.
The comparison is made with an ideal washout curve with the same value for
�tt. Suppose that the experimental curve is initially lower than the ideal curve.
Then the system exhibits bypassing. On the other hand, suppose the tail of the
distribution is higher than expected. Then the system exhibits stagnancy.
Bypassing and stagnancy are easy to distinguish when the reactor is close
to piston flow so that the experimental data can be compared with a
step change. See Figure 15.4. They are harder to distinguish in stirred tanks
because the comparison is made to an exponential curve. Figure 15.5(a) shows
a design with poorly placed inlet and outlet connections that would
cause bypassing. Figure 15.5(b) shows the two washout functions. Bypassing
causes the washout curve initially to decline faster than the exponential
distribution. However, the integral under the two curves must be the
same since they have the same �tt. See Equation (15.13). If the experimental
washout function initially declines faster than expected, it must later decline
more slowly.

When a stirred tank exhibits either bypassing or stagnancy, �2 > 1, so that
the tanks-in-series model predicts N<1. It is more common to model bypassing
or stagnancy using vessels in parallel. A stirred tank might be modeled using
large and small tanks in parallel. To model bypassing, the small tank would
have a residence time lower than that of the large tank. To model stagnancy,
the small tank would have the longer residence time. The side capacity model
shown in Figure 15.6 can also be used and is physically more realistic than a
parallel connection of two isolated tanks.

Example 15.7: Determine the washout function for the side capacity model
given Q ¼ 8m3/h, q ¼ 0:125m3/h, Vm¼ 7m3, and Vs¼ 1.
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FIGURE 15.4 Bypassing and stagnancy in a system near piston flow.
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Solution: Material balances for the two tanks are

Vm
dCout
dt
¼ QCin þ qSout �QCout � qCout

Vs
dSout
dt
¼ qCout � qSout

These can be solved by classical methods (i.e., eliminate Sout to obtain a
second-order ODE in Cout), by Laplace transformation techniques, or by
numerical integration. The initial conditions for the washout experiment are
that the entire system is full of tracer at unit concentration, Cout¼Sout¼ 1.
Figure 15.7 shows the result of a numerical simulation. The difference
between the model curve and that for a normal CSTR is subtle, and would
not normally be detected by a washout experiment. The semilog plot in
Figure 15.8 clearly shows the two time constants for the system, but the
second one emerges at such low values of WðtÞ that it would be missed
using experiments of ordinary accuracy.

The stagnant region can be detected if the mean residence time is known
independently, i.e., from Equation (1.41). Suppose we know that �tt¼ 1 h for
this reactor and that we truncate the integration of Equation (15.13) after
5 h. If the tank were well mixed (i.e., ifWðtÞ had an exponential distribution),
the integration of Equation (15.13) out to 5�tt would give an observed �tt of
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FIGURE 15.5 Pathological residence time behavior in a poorly designed stirred tank: (a) physical
representation; (b) washout function.
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0.993 h. Integration of the stagnancy model out to 5�tt gives only 0.913 h. This
difference is large enough to be detected and to initiate a search for the missing
reactor volume.

15.2.2 Hydrodynamic Models

This section describes residence time models that are based on a hydrodynamic
description of the process. The theory is simplified but the resulting models still
have substantial utility as conceptual tools and for describing some real flow
systems.

Laminar Flow without Diffusion. Section 8.1.3 anticipated the use of residence
time distributions to predict the yield of isothermal, homogeneous reactions, and

Side CSTR
Volume = Vs

Main CSTR
Volume = Vm

qin
Cout

qout
Sout

Qout
Cout

Qin
Cin

FIGURE 15.6 Side capacity model of stagnancy in a CSTR.
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FIGURE 15.7 Effect of a stagnant zone in a stirred tank reactor according to the side capacity
model.
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Equation (8.11) gave the differential distribution function that corresponds to a
parabolic velocity profile in a tube. This specific result is now derived in a more
general way.

The velocity profile in a tube of length L is VzðrÞ. The normal case is for VzðrÞ
to have its maximum value at the centerline and to decline monotonically
toward VzðrÞ ¼ 0 at r¼R. The volumetric flow rate is Q. The fraction of that
flow rate associated with the region from the centerline to radial position r is
found from the following integral:

FðrÞ ¼ 1

Q

Zr
0

2�r0VZðr0Þdr0 ð15:30Þ

Perform this integration to obtain a function of r that goes from 0 to 1 as r
ranges from 0 to R. FðrÞ gives the fraction of material leaving the reactor that
flowed through it at a location of r or less. The residence time of material travel-
ing along the streamlines at position r is

t ¼ L=VzðrÞ ð15:31Þ
Material flowing at a position less than r has a residence time less than t because
the velocity will be higher closer to the centerline. Thus, FðrÞ ¼ FðtÞ gives the
fraction of material leaving the reactor with a residence time less that t where
Equation (15.31) relates to r to t. FðtÞ satisfies the definition, Equation (15.3),
of a cumulative distribution function. Integrate Equation (15.30) to get FðrÞ.
Then solve Equation (15.31) for r and substitute the result to replace r with t.
When the velocity profile is parabolic, the equations become

FðtÞ ¼ FðrÞ ¼ 2r2R2 � r4
R4
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FIGURE 15.8 Semilog plot of washout function showing two slopes that correspond to the two time
constants in the side capacity model.
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t ¼ �tt

2½1� r2=R2�
Elimination of r gives

FðtÞ ¼ 1� �tt 2

4t2
t >

�tt

2
ð15:32Þ

Differentiating this result gives the differential distribution found in Equation
(8.11). The washout function is

WðtÞ ¼ 1 t <
�tt

2

WðtÞ ¼ �tt 2

4t2
t >

�tt

2

ð15:33Þ

This function is shown in Figure 15.9. It has a sharp first appearance time at
tfirst ¼ �tt=2 and a slowly decreasing tail. When t > 4:3�tt, the washout function
for parabolic flow decreases more slowly than that for an exponential distribu-
tion. Long residence times are associated with material near the tube wall;
r=R ¼ 0:94 for t ¼ 4:3 �tt. This material is relatively stagnant and causes a very
broad distribution of residence times. In fact, the second moment and thus
the variance of the residence time distribution would be infinite in the complete
absence of diffusion.

The above derivation assumes straight streamlines and a monotonic velocity
profile that depends on only one spatial variable, r. These assumptions sub-
stantially ease the derivation but are not necessary. Analytical expressions
for the residence time distributions have been derived for noncircular ducts,
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FIGURE 15.9 Residence time distribution for laminar flow in a circular tube: (a) physical represen-
tation; b) washout function.
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non-Newtonian fluids, and helically coiled tubes. Computational fluid dynamics
has been used for really complicated geometries such as motionless mixers.

In the absence of diffusion, all hydrodynamic models show infinite variances.
This is a consequence of the zero-slip condition of hydrodynamics that forces
Vz ¼ 0 at the walls of a vessel. In real systems, molecular diffusion will ulti-
mately remove molecules from the stagnant regions near walls. For real systems,
WðtÞ will asymptotically approach an exponential distribution and will have
finite moments of all orders. However, molecular diffusivities are low for liquids,
and �2 may be large indeed. This fact suggests the general inappropriateness
of using �2 to characterize the residence time distribution in a laminar flow
system. Turbulent flow is less of a problem due to eddy diffusion that typically
results in an exponentially decreasing tail at fairly low multiples of the mean
residence time.

Axial Dispersion. Rigorous models for residence time distributions require use
of the convective diffusion equation, Equation (14.19). Such solutions, either
analytical or numerical, are rather difficult. Example 15.4 solved the simplest
possible version of the convective diffusion equation to determine the residence
time distribution of a piston flow reactor. The derivation of W(t) for parabolic
flow was actually equivalent to solving

@C

@t
þ 2 �uu

�
1� r2=R2

�
@C

@z
¼ 0

subject to a negative step change of inert tracer. We go now to the simplest
version of the convective diffusion equation that actually involves diffusion or
a diffusion-like term. It is the axial dispersion model, written here in time-depen-
dent form:

@C

@t
þ �uu

@C

@z
¼ D @2C

@z2
ð15:34Þ

The appropriate boundary conditions are the closed variety discussed in Section
9.3.1. The initial condition is a negative step change at the inlet. A full analytical
solution is available but complex. For Pe ¼ �uuL=D > 16, the following result is
an excellent approximation:

WðÞ ¼ 1�
Z 

0

Pe

4��3
exp
�Peð1� �Þ2

4�

� �
d� ð15:35Þ

where  ¼ t=�tt is the dimensionless residence time. Figure 15.10 shows the wash-
out function for the axial dispersion model, including the exact solution for
Pe¼ 1. The model is defined for 0 < Pe <1, and the extreme values correspond
to perfect mixing and piston flow, respectively. The axial dispersion model shows
a fuzzy first appearance time. It is competitive with and generally preferable
to the tanks-in-series model for modeling small deviations from piston flow.
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It should be used with caution for large deviations. As discussed in Chapter 9,
predictions of the model at small Pe are likely to fail under close scrutiny.

Example 15.8: Find the relationship between Pe and �2.

Solution: The first step in the solution is to find a residence time function
for the axial dispersion model. Either WðtÞ or f ðtÞ would do. The function
has Pe as a parameter. The methods of Section 15.1.2 could then be used to
determine �2, which will give the desired relationship between Pe and �2:

We will begin by attempting to determine f ðtÞ for a closed system governed
by the axial dispersion model.

Equation (15.34) is the system model. It is a linear PDE with constant
coefficients and can be converted to an ODE by Laplace transformation.
Define

� k½Cðt, zÞ� ¼
Z 1
0

Cðt, zÞe�ktdt

Note that the transform parameter is now being denoted as k. Equation
(15.34) can be transformed term-by-term much like the transformation of
an ODE. The result is

k � k½Cðt, zÞ� � Cð0, zÞ þ �uu
d� k½Cðt, zÞ�

dz
¼ Dd

2� k½Cðt, zÞ�
dz2

ð15:36Þ

This is a second-order ODE with independent variable z and dependent
variable � k½Cðt, zÞ�, which is a function of z and of the transform parameter
k. The term Cðt, 0Þ is the initial condition and is zero for an initially relaxed
system. There are two spatial boundary conditions. These are the
Danckwerts conditions of Section 9.3.1. The form appropriate to the inlet
of an unsteady system is a generalization of Equation (9.16) to include time
dependency:

�uuCinðtÞ ¼ �uuCðt, 0þÞ �D ½@Cðt, zÞ=@z�z¼ 0þ
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FIGURE 15.10 Transient response measurements for systems governed by the axial dispersion
model: (a) closed system; (b) open system.
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The outlet boundary condition for this unsteady but closed system is a
generalization of Equation (9.17):

½@Cðt, zÞ=@z�z¼L ¼ 0

To use these boundary conditions with Equation (15.36), they must be
transformed. The result for the inlet is

�uu� k½CinðtÞ� ¼ �uu� k½Cðt, 0þÞ� �D ½d� k½Cðt, zÞ�=dz�z¼ 0þ

The inlet disturbance is applied through the inlet boundary condition with
CinðtÞ ¼ �ðtÞ so that � k½CinðtÞ� ¼ 1: The outlet boundary condition is just
@� k½@Cðt, zÞ=@z�z¼L ¼ 0.

The cumbersome notation of the Laplace transform can be simplified.
L s½Cðt, zÞ� is a function of k and z. Denote it as a ¼ aðk, zÞ and set
Cð0, zÞ ¼ 0. Also shift to a dimensionless length coordinate z ¼ z=L. Then
Equation (15.36) and its associated (transformed) boundary conditions
become

da

dz ¼
1

Pe

d2a

dz 2
� k�tta

ain ¼ að0þÞ � 1

Pe

da

dz

� �
oþ

ð15:37Þ

da

dz

� �
1

¼ 0

These equations are identical to Equations (9.15), (9.16), and (9.17) when we
set R A equal to �ka. The solution is necessarily identical as well. We evaluate
that solution at z ¼ 1 to obtain

aoutðkÞ ¼
4p exp

Pe

2

� �

ð1þ p2Þ exp pPe

2

� �
� ð1� p2Þ exp �pPe

2

� � ð15:38Þ

where

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4k�tt

Pe

r

Equation (15.38) gives the Laplace transform of the outlet response to an inlet
delta function; i.e., aoutðkÞ ¼ � k½ f ðtÞ�: In principle, Equation (15.38) could be
inverted to obtain f ðtÞ in the time domain. This daunting task is avoided by
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using properties of the Laplace transform to obtain

�n ¼ ð�1Þn lim
k!0

dnaðkÞ
dkn

ð15:39Þ

Equation (15.39) allows moments of a distribution to be calculated from the
Laplace transform of the differential distribution function without need for
finding f ðtÞ. It works for any f ðtÞ. The necessary algebra for the present
case is formidable, but finally gives the desired relationship:

�2 ¼ 2

Pe
� 2

Pe2
1� expð�PeÞ½ � ð15:40Þ

To find Pe for a real system, perform a residence time experiment; calculate
�2, and then use Equation (15.40) to calculate Pe.

The use of Equation (15.40) is limited to closed systems like that illustrated in
Figure 15.10(a). Measurement problems arise whenever Din > 0 or Dout > 0. See
Figure 15.10(b) and suppose that an impulse is injected into the system at z¼ 0.
If Din > 0, some of the tracer may enter the reactor, then diffuse backward up
the inlet stream, and ultimately reenter. If Dout > 0, some material leaving
the reactor will diffuse back into the reactor to exit a second time. These mole-
cules will be counted more than once by the tracer detection probes. The
measured response function is not f ðtÞ but another function, gðtÞ, which
has a larger mean:

�open ¼ 1þDin þDout
�uuL

� �
�tt ¼ 1þ 1

Pein
þ 1

Peout

� �
�tt ð15:41Þ

If �open is erroneously interpreted as �tt, results from an open system give signifi-
cant errors when the inlet and outlet Peclet numbers are less than about 100. If
the openness of the system cannot be avoided, the recommended approach is to
rescale gðtÞ so that it has the correct mean:

½gðtÞ�rescaled ¼
�ttgðtÞR1

0 tgðtÞdt ¼
�ttgðtÞ
�open

ð15:42Þ

The rescaled function is still not f ðtÞ, but should be a reasonable approxima-
tion to it.

15.3 REACTION YIELDS

The black box is closed again. This section assumes that the system is isothermal
and homogeneous and that its residence time distribution is known. Reaction
yields can be predicted exactly for first-order reactions. For other reactions,
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an exact prediction requires additional information about the state of mixing
in the system, but knowledge of just the residence time distribution is usually
sufficient to calculate close bounds on the reaction yield.

15.3.1 First-Order Reactions

For an isothermal, first-order reaction, the probability that a particular molecule
reacts depends only on the time it has spent in the system:

PR ¼ 1� e�kt

To find the conversion for the reactor, we need the average reaction probability
for a great many molecules that have flowed through the system. The averaging
is done with respect to residence time since residence time is what determines the
individual reaction probabilities:

XA ¼ �PPR ¼
Z 1
0

ð1� e�ktÞf ðtÞdt ¼ 1�
Z 1
0

e�ktf ðtÞdt

Expressing this result in terms of the fraction unreacted gives a simpler form:

YA ¼ aout
ain
¼
Z 1
0

e�ktf ðtÞdt ¼ 1� k
Z 1
0

e�ktWðtÞdt ð15:43Þ

For numerical integration, use whichever of f ðtÞ orWðtÞ was determined experi-
mentally. If a positive step change was used to determine FðtÞ, convert to WðtÞ
using Equation (15.4).

Example 15.9: Use residence time theory to predict the fraction unreacted
for an isothermal, homogeneous, first-order reaction occurring in a CSTR and
a PFR.

Solution: For the stirred tank, WðtÞ ¼ expð�t= �tt Þ. Substitution into
Equation (15.43) gives

aout
ain
¼ 1� k

Z 1
0

e�kte�t= �ttdt ¼ 1

1þ k�tt
For the PFR, use f ðtÞ ¼ �ðtÞ and recall Equation (15.10) to obtain

aout
ain
¼
Z 1
0

e�kt�ðt� �tt Þdt ¼ e�k�tt

Example 15.10: Use residence time theory to predict the fraction unreacted
for a closed reactor governed by the axial dispersion model.
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Solution: Equation (15.43) gives

aout
ain
¼
Z 1
0

e�ktf ðtÞdt ¼ � k½ f ðtÞ� ð15:44Þ

Thus, the fraction unreacted is the Laplace transform with respect to the
transform parameter k of the differential distribution function.

Example 15.8 used a delta function input in the Laplace domain to
find � k½ f ðtÞ�: The result was Equation (15.38). Comparison with
Equation (15.44) shows that aoutðkÞ has already been normalized by ain and
is thus equal to the fraction unreacted, YA.

Given � k½ f ðtÞ� for any reactor, you automatically have an expression for the
fraction unreacted for a first-order reaction with rate constant k. Alternatively,
given aoutðkÞ, you also know the Laplace transform of the differential distribu-
tion of residence time (e.g., � k½ f ðtÞ� ¼ expð�t=�tt Þ for a PFR). This fact resolves
what was long a mystery in chemical engineering science. What is f ðtÞ for an
open system governed by the axial dispersion model? Chapter 9 shows that
the conversion in an open system is identical to that of a closed system. Thus,
the residence time distributions must be the same. It cannot be directly measured
in an open system because time spent outside the system boundaries does not
count as residence but does affect the tracer measurements.

Equation (15.44) can be generalized to include operation with unsteady inlet
concentrations where ain ¼ ainðtÞ. The result is an unsteady output given by

aoutðtÞ ¼
Z 1
0

ainðt� t0Þe�kt0 f ðt0Þdt0 ¼
Z t

�1
ainðtÞe�kðt�t0Þf ðt� t0Þdt0 ð15:45Þ

This result allows the unsteady output to be calculated when component A
reacts with first-order kinetics. The case k¼ 0, corresponding to an inert
tracer, is also of interest:

CoutðtÞ ¼
Z 1
0

Cinðt� t0Þf ðt0Þdt0 ¼
Z t

�1
Cinðt0Þf ðt� t0Þdt0 ð15:46Þ

Equation (15.46) is applicable to nonisothermal systems since there is no
chemical reaction.

Example 15.11: Suppose the input of an inert tracer to a CSTR varies
sinusoidally:

CinðtÞ ¼ C0ð1þ � sin!tÞ �  1

Find the outlet response. What is the maximum deviation in Cout from its
midpoint C0?
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Solution: For a stirred tank, f ðtÞ ¼ ð1= �tt Þ expð�t=�tt Þ. The second integral in
Equation (15.46) can be used to calculate the outlet response:

CoutðtÞ ¼
Z t

�1
Cinðt0Þf ðt� t0Þdt0 ¼

Z t

�1
C0ð1þ � sin!t0Þð1=�tt Þ exp � ðt� t

0Þ
�tt

� �
dt0

¼ C0
1þ �ðsin!t� ! �tt cos!tÞ

1þ !2 �tt 2

The output tracer signal is attenuated and shows a phase shift, but there is no
change in frequency. All solutions to Equations (15.45) and (15.46) have these
characteristics. Differentiate sin!t� ! �tt cos!t to show that the maximum
deviation occurs when cot!t ¼ �! �tt: Some trigonometry then shows that
the maximum deviation is

Cout � C0j jmax¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ !2 �tt 2
p ð15:47Þ

This result is useful in designing stirred tanks to damp out concentration
fluctuations (e.g., as caused by a piston pump feeding the catalyst to a
reactor). High-frequency noise is most easily dampened, and a single stirred
tank is the most efficient means for such dampening. A PFR gives no
dampening. Of course, if the reactor is a stirred tank, a preliminary
dampening step may not be necessary.

Chapter 14 and Section 15.2 used a unsteady-state model of a system to cal-
culate the output response to an inlet disturbance. Equations (15.45) and (15.46)
show that a dynamic model is unnecessary if the entering compound is inert or
disappears according to first-order kinetics. The only needed information is the
residence time distribution, and it can be determined experimentally.

15.3.2 Other Reactions

For reaction other than first order, the reaction probability depends on the time
that a molecule has been in the reactor and on the concentration of other mole-
cules encountered during that time. The residence time distribution does not
allow a unique estimate of the extent of reaction, but some limits can be found.

Complete Segregation. A perfect mixer has an exponential distribution of resi-
dence times:WðtÞ ¼ expð�t=�tt Þ. Can any other continuous flow system have this
distribution? Perhaps surprisingly, the answer to this question is a definite yes.
To construct an example, suppose the feed to a reactor is encapsulated. The
size of the capsules is not critical. They must be large enough to contain
many molecules but must remain small compared with the dimensions of
the reactor. Imagine them as small ping-pong balls as in Figure 15.11(a).
The balls are agitated, gently enough not to break them but well enough to
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randomize them within the vessel. In the limit of high agitation, the vessel can
approach perfect mixing with respect to the ping-pong balls. A sample of
balls collected from the outlet stream will have an exponential distribution of
residence times:

WðtbÞ ¼ e�tb= �tt

The molecules in the system are carried along by the balls and will also have an
exponential distribution of residence time, but they are far from perfectly mixed.
Molecules that entered together stay together, and the only time they mix with
other molecules is at the reactor outlet. The composition within each ball evolves
with time spent in the system as though the ball was a small batch reactor. The
exit concentration within a ball is the same as that in a batch reactor after reac-
tion time tb.

We have just described a completely segregated stirred tank reactor. It is one
of the ideal flow reactors discussed in Section 1.4. It has an exponential distribu-
tion of residence times but a reaction environment that is very different from
that within a perfectly mixed stirred tank.

The completely segregated stirred tank can be modeled as a set of piston flow
reactors in parallel, with the lengths of the individual piston flow elements being
distributed exponentially. Any residence time distribution can be modeled as
piston flow elements in parallel. Simply divide the flow evenly between the
elements and then cut the tubes so that they match the shape of the washout
function. See Figure 15.12. A reactor modeled in this way is said to be
completely segregated. Its outlet concentration is found by averaging the concen-
trations of the individual PFRs:

aout ¼
Z 1
0

abatchðtÞ f ðtÞdt ð15:48Þ

���

���

FIGURE 15.11 Extremes of micromixing in a stirred tank
reactor: (a) ping-pong balls circulating in an agitated vessel—the
completely segregated stirred tank reactor; (b) molecular homoge-
neity—the perfectly mixed CSTR.

RESIDENCE TIME DISTRIBUTIONS 565



where abatchðtÞ is the concentration of a batch or piston flow reactor after
reaction time t. The inlet concentration is the same for each batch and provides
the initial condition for finding abatchðtÞ.

Example 15.12: Find the outlet concentration from a completely segre-
gated stirred tank for a first-order reaction. Repeat for a second-order
reaction with R A ¼ �ka2:
Solution: The residence time distribution is exponential, f ðtÞ ¼ ð1=�tt Þ
expð�t=�tt Þ. For first-order kinetics, abatchðtÞ ¼ expð�ktÞ, and Equation
(15.48) gives

aout ¼ ð1=�tt Þ
Z 1
0

aine
�kte�t= �ttdt ¼ 1

1þ k �tt
which is the same as the outlet concentration of a normal CSTR. The con-
version of a first-order reaction is uniquely determined by the residence time
distribution.

For a second-order reaction, abatchðtÞ ¼ ain=ð1þ ainktÞ, and Equation
(15.48) gives

aout
ain
¼
Z 1
0

e�t= �ttdt
ð1þ ainktÞ �tt ¼

exp½ðaink�tt Þ�1�
aink�tt

Z 1
ðaink�ttÞ�1

e�x

x
dx

The integral can be evaluated using a tabulated function known as
the exponential integral function, but numerical integration is easier.
Figure 15.13 shows the performance of a segregated stirred tank and
compares it with that of a normal, perfectly mixed CSTR (see Equation
(1.51)). Segregation gives better performance, but a PFR will be still better.
The hatched region in Figure 15.13 represents the conversion limits in
normally designed reactors for a second-order reaction of the 2A! P type

���

�
� �

����

FIGURE 15.12 An arbitrary residence time distribution modeled as PFRs in parallel.
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with dimensionless rate constant aink�tt, and for reactions of the type
Aþ B! P with perfect initial stoichiometry. The region marked ‘‘prohibited’’
has better performance than a PFR and is impossible. The region marked
‘‘bypassing’’ has worse performance. It is possible to operate in this region,
but it can be avoided through good engineering.

The largest difference in conversion between complete segregation and per-
fect mixing in a stirred tank reactor is 0.07, which occurs at aink�tt¼ 16,
complete segregation giving the higher conversions. The largest difference
between piston flow and a normal CSTR is 0.192, which occurs at
aink �tt¼ 4.9. The differences shown in Figure 15.13 are not very large in abso-
lute terms, but can have a profound effect on the reactor volume needed to
achieve high conversion. In practice, single-phase, continuous-flow stirred
tanks are similar to normal CSTRs with perfect internal mixing. In suspended
phase systems, such as a continuous suspension polymerization, the system is
physically segregated and Equation (15.48) applies.

Maximum Mixedness. For reactions other than first order, the conversion
depends not only on the residence time distribution but also on mixing between
molecules that have different ages. The age of a molecule is the time it has been
in the reactor, and mixing between molecules with different ages is called micro-
mixing. Completely segregated reactors have no mixing between molecules of
different ages, and this zero level of micromixing is possible with any residence
time distribution. At the opposite extreme, normal CSTRs have perfect mixing
between molecules, but perfect mixing in a flow system implies an exponential
distribution of residence times. Perfect micromixing is impossible except with
the exponential distribution. Other residence time distributions have some max-
imum possible level of micromixing, which is known as maximum mixedness.
Less micromixing than this is always possible. More would force a change in
the residence time distribution.
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FIGURE 15.13 Conversion of a second-order reaction in the three ideal flow reactors.
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A qualitative picture of micromixing is given in Figure 15.14. The x-axis,
labeled ‘‘macromixing’’ measures the breadth of the residence time distribu-
tion. It is zero for piston flow, fairly broad for the exponential distribution
of a stirred tank, and broader yet for situations involving bypassing or stag-
nancy. The y-axis is micromixing, which varies from none to complete. The y-
axis also measures how important micromixing effects can be. They are unim-
portant for piston flow and have maximum importance for stirred tank
reactors. Well-designed reactors will usually fall in the normal region bounded
by the three apexes, which correspond to piston flow, a perfectly mixed CSTR,
and a completely segregated CSTR. The line connecting the normal and seg-
regated stirred tanks is vertical since these reactors have the same residence
time distribution. Without even measuring the residence time distribution,
we can determine limits on the performance of most real reactors just by
calculating the performance at the three apexes of the normal region. The
calculations require knowledge only of the rate constants and the mean
residence time.

When the residence time distribution is known, the uncertainty about reac-
tor performance is greatly reduced. A real system must lie somewhere along a
vertical line in Figure 15.14. The upper point on this line corresponds to max-
imum mixedness and usually provides one bound limit on reactor per-
formance. Whether it is an upper or lower bound depends on the reaction
mechanism. The lower point on the line corresponds to complete segregation
and provides the opposite bound on reactor performance. The complete seg-
regation limit can be calculated from Equation (15.48). The maximum
mixedness limit is found by solving Zwietering’s differential equation:

da

dl
þ f ðlÞ
WðlÞ ½ain � aðlÞ� þR A ¼ 0 ð15:49Þ

The solution does not use an initial value of a as a boundary condition. Instead,
the usual boundary condition associated with Equation (15.50) is

lim
l!1

da

dl
¼ 0 ð15:50Þ
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FIGURE 15.14 Macromixing versus micromixing—a schematic representation of mixing space.
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which is another way of saying that a must have a finite value in the limit of
large l. The outlet concentration from a maximum mixedness reactor is found
by evaluating the solution to Equation (15.49) at l¼ 0 since aout ¼ að0Þ.

Example 15.13: Solve Zwietering’s differential equation for arbitrary
reaction kinetics and an exponential residence time distribution.

Solution: The exponential distribution has f ðlÞ=WðlÞ ¼ 1=�tt so Equation
(15.49) becomes

da

dl
þ ½ain � aðlÞ�

�tt
þR A ¼ 0

Observe that the boundary condition will be satisfied if

½ain � aðlÞ�
�tt

þR A ¼ 0

for all l since this gives da=dl ¼ 0 for all l. Set l¼ 0 to obtain

aout ¼ aðl ¼ 0Þ ¼ ain þ �ttR A

Although this is an unusual solution to an ODE, it is the expected result since
a stirred tank at maximum mixedness is a normal CSTR.

An analytical solution to Equation (15.49) can also be obtained for a first-
order reaction. The solution is Equation (15.35). Beyond these cases, analytical
solutions are difficult since theR A is usually nonlinear. For numerical solutions,
Equation (15.49) can be treated as though it were an initial value problem.
Guess a value for aout ¼ að0Þ. Integrate Equation (15.49). If aðlÞ remains finite
at large l, the correct a(0) has been guessed. For any other a(0), aðlÞ will tend
toward 
1 as l ! 1: This numerical approach is similar to the shooting
methods of Section 9.5 even though the current ODE is only first order. The
computed results are very sensitive to the guessed values for a(0), and small
changes will cause aðlÞ to range from �1 to þ1. This sensitivity is beneficial
since it allows a(0) to be calculated with high precision.

Example 15.14: Solve Zwietering’s differential equation for the residence
time distribution corresponding to two stirred tanks in series. Use second-
order kinetics with aink �tt ¼ 5:

Solution: Equations (15.27) and (15.28) give the residence time functions
for the tanks-in-series model. For N¼ 2,

f ðlÞ
WðlÞ ¼

4l
�ttþ l

RESIDENCE TIME DISTRIBUTIONS 569



Set ain ¼ 1 so that aout is the fraction unreacted. Then Zwietering’s differential
equation becomes

da

d
þ 4

1þ 2
ð1� aÞ � 5a2 ¼ 0

where  ¼ l= �tt: An Euler’s method solution with � ¼ 0:0625 gives the
following results:

að0Þ að1Þ

0 �1
0.1 �1
0.2 �1
0.3 þ1
0.25 �1
..
. ..

.

0.276 �1
0.277 þ1

Obviously, aout ¼ að0Þ can be calculated with high precision. It happens
that the precise estimate is not very accurate because of the large step size, but
this can be overcome using a smaller � or a more sophisticated integration
technique. An accurate value is aout ¼ 0:287:

Example 15.15: Calculate limits on the fraction unreacted for a second-
order reaction with aink�tt ¼ 5. Consider the following states of knowledge:

(a) You know the batch kinetics, the reactor volume and throughput, and
the reactor operating temperature. It is from these values that you cal-
culated aink�tt ¼ 5.

(b) You have measured the residence time distribution and know that it
closely matches that for two stirred tanks in series.

(c) You know that the reactor physically consists of two stirred tanks in
series.

Solution: The limits you can calculate under part (a) correspond to the
three apexes in Figure 15.14. The limits are 0.167 for a PFR (Equation
(1.47)), 0.358 for a CSTR (Equation (1.52)), and 0.299 for a completely
segregated stirred tank. The last limit was obtained by integrating Equation
(15.48) in the form

aout
ain
¼
Z1
0

e�

1þ 5
d

Thus, from part (a) we know that the fraction unreacted lies somewhere
between 0.167 and 0.358.
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The limits for part (b) are at the endpoints of a vertical line in Figure 15.14
that corresponds to the residence time distribution for two tanks in series. The
maximum mixedness point on this line is 0.287 as calculated in Example 15.14.
The complete segregation limit is 0.233 as calculated from Equation (15.48)
using f ðtÞ for the tanks-in-series model with N¼ 2:

aout
ain
¼
Z1
0

4e�2

1þ 5
d

Thus, knowledge of the residence time distribution has narrowed the
possible range on the fraction unreacted. It is now known to be between
0.233 and 0.287.

Part (c) considers the mixing extremes possible with the physical arrange-
ment of two tanks in series. The two reactors could be completely segregated
so one limit remains 0.233 as calculated in part (b). The other limit corre-
sponds to two CSTRs in series. The first reactor has half the total volume
so that aink �tt1 ¼ 2:5: Its output is 0.463. The second reactor has
ðainÞ2k�tt2 ¼ 1:16, and its output is 0.275. This is a tighter bound than calculated
in part (b). The fraction unreacted must lie between 0.233 and 0.275.

Part (c) in Example 15.15 illustrates an interesting point. It may not be pos-
sible to achieve maximum mixedness in a particular physical system. Two
tanks in series—even though they are perfectly mixed individually—cannot
achieve the maximum mixedness limit that is possible with the residence
time distribution of two tanks in series. There exists a reactor (albeit semi-
hypothetical) that has the same residence time distribution but that gives
lower conversion for a second-order reaction than two perfectly mixed
CSTRs in series. The next section describes such a reactor. When the physical
configuration is known, as in part (c) above, it may provide a closer bound on
conversion than provided by the maximum mixed reactor described in the next
section.

The Bounding Theorem. The states of complete segregation and maximum
mixedness represent limits on the extent of micromixing that is possible with a
given residence time distribution. In complete segregation, molecules that
enter together stay together. They are surrounded by molecules that have the
same age, and they mix with molecules that have different ages only when
they leave the reactor. This mixing situation can be represented by a parallel col-
lection of piston flow elements as shown in Figure 15.12. It can also be repre-
sented as a single piston flow reactor with a large number of side exits. See
Figure 15.15(a). The size and spacing of the side exits can be varied to duplicate
any residence time distribution. Thus, piston flow with side exits is capable of
modeling any residence time distribution. It is a completely segregated model
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since molecules in the reactor mix only with other molecules that have exactly
the same age.

Another way of modeling an arbitrary residence time distribution is to use a
single piston flow reactor with a large number of side entrances. See Figure
15.15(b). The size and spacing of the entrances can be adjusted to achieve a
given residence time distribution. Thus, Figure 15.15 shows two ways of repre-
senting the same residence time distribution. The second way is quite different
than the first. Molecules flow in through the side entrances and immediately
mix with molecules that are already in the system. This is a maximum mixedness
reactor, and there is substantial mixing between molecules that have different
ages. Since there is only one exit, molecules that are mixed together will leave
together, but they may have entered at different times. By way of contrast,
there is only one entrance to the completely segregated reactor. Molecules
that are mixed together in a completely segregated reactor must necessarily
have entered together but they may leave separately.

Equation (15.48) governs the performance of the completely segregated reac-
tor, and Equation (15.49) governs the maximum mixedness reactor. These reac-
tors represent extremes in the kind of mixing that can occur between molecules
that have different ages. Do they also represent extremes of performance as
measured by conversion or selectivity? The bounding theorem provides a partial
answer:

Suppose R A is a function of a alone and that neither dR A=da nor d
2R A=da

2

change sign over the range of concentrations encountered in the reactor. Then,
for a system having a fixed residence time distribution, Equations (15.48) and
(15.49) provide absolute bounds on the conversion of component A, the conver-
sion in a real system necessarily falling within the bounds. If d2R A=da

2 > 0,
conversion is maximized by maximum mixedness and minimized by complete
segregation. If d2R A=da

2 < 0, the converse is true. If d2R A=da
2 ¼ 0, micro-

mixing has no effect on conversion.

�

�

�

�

�

�

� ���

���

���

FIGURE 15.15 Extreme mixing models for an arbitrary residence time distribution: (a) complete
segregation; (b) maximum mixedness.
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Example 15.16: Apply the bounding theory to an nth-order reaction,
R ¼ �kan:
Solution:

dR A=da ¼ �nkan�1
and

d2R A=da
2 ¼ �nðn� 1Þkan�2

The first derivative is always negative. The second derivative is negative if n>
1, is zero if n¼ 1, and is positive if n<1. Since it does not change sign for a
fixed n, the bounding theorm applies. For n>1 (e.g., second-order reactions),
d2R A=da

2 < 0 and conversion is highest in a completely segregated reactor.
For n¼ 1, the reaction is first order, and micromixing does not affect
conversion. For n<1 (e.g., half-order), d2R A=da

2 > 0 and maximum
mixedness gives the highest possible conversion.

The bounding theory gives sufficient conditions for reactor performance to be
bounded by complete segregation and maximum mixedness. These conditions
are not necessary. In particular, the requirement that d2R A=da

2 keep the
same sign for 0 < a < ain is not necessary. Some reactions show maximum
rates so that the first derivative changes, yet the bounding theory still applies
provided that d2R A=da

2 does not change sign. If the second derivative does
change sign, examples have been found that give a maximum conversion at an
intermediate level of micromixing.

Micromixing Models. Hydrodynamic models have intrinsic levels of micro-
mixing. Examples include laminar flow with or without diffusion and the axial
dispersion model. Predictions from such models are used directly without
explicit concern for micromixing. The residence time distribution corresponding
to the models could be associated with a range of micromixing, but this would
be inconsistent with the physical model.

Empirical models like fractional tubularity and tanks-in-series have a range
of micromixing corresponding to their residence time distributions and some-
times a smaller range consistent with their physical configuration. For such
models, it would seem desirable to have a micromixing model that, by varying
some parameter, spans the possible range from maximum mixedness to complete
segregation. It happens, however, that segregation is rarely observed in single-
phase reactors.

The difference between complete segregation and maximum mixedness is
largest when the reactor is a stirred tank and is zero when the reactor is a
PFR. Even for the stirred tank case, it has been difficult to find experimental evi-
dence of segregation for single-phase reactions. Real CSTRs approximate per-
fect mixing when observed on the time and distance scales appropriate to
industrial reactions, provided that the feed is premixed. Even with unmixed
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feed, the experimental observation of segregation requires very fast reactions.
The standard assumption of perfect mixing in a CSTR is usually justified.
Worry when a highly reactive component is separately fed.

It is common to refer to the gross flow patterns in the reactor as macromixing
and to molecular level mixing as micromixing. In this simplified view, the resi-
dence time distribution is determined by the macromixing, and micromixing
is then imposed without substantially altering the residence time distribution.
Some thought about laminar flow with diffusion will convince you that this
idea is not rigorous in general, but it does work for the exponential distribution
of a stirred tank. The packet-diffusion model supposes that the entering fluid is
rapidly dispersed in small packets that are approximately the same size as the
Kolmogorov scale of turbulence:

	 ¼ �3

�3�

� �1=4

ð15:51Þ

where � is the power dissipation per unit mass of fluid. Following this
rapid initial dispersion, the packets continue to evolve in size and shape but
at a relatively slow rate. Molecular-level mixing occurs by diffusion between
packets, and the rates of diffusion and of the consequent chemical reaction can
be calculated. Early versions of the model assumed spherical packets of
constant and uniform size. Variants now exist that allow the packet size and
shape to evolve with time. Regardless of the details, these packets are so small
that they typically equilibrate with their environment in less than a second.
This is so fast compared with the usual reaction half-lives and with the mean
residence time in the reactor that the vessel behaves as if it were perfectly mixed.

In laminar flow stirred tanks, the packet diffusion model is replaced by
a slab-diffusion model. The diffusion and reaction calculations are similar to
those for the turbulent flow case. Again, the conclusion is that perfect mixing
is almost always a good approximation.

15.4 EXTENSIONS OF RESIDENCE
TIME THEORY

The results in this chapter are restricted in large part to steady-state, homoge-
neous, isothermal systems. More general theories can be developed. The next
few sections briefly outline some extensions of residence time theory.

15.4.1 Unsteady Flow Systems

The residence time distribution is normally considered a steady-state property
of a flow system, but material leaving a reactor at some time � will have a
distribution of residence times regardless of whether the reactor is at steady
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state. The washout function for an unsteady reactor is defined as

Wð�, tÞ ¼Fraction of material leaving the reactor at time � that remained in the
system for a duration greater than t; i.e., that entered before time �� t.

A simple equation applies to a variable-volume CSTR:

Wð�, tÞ ¼ exp �
Z �

��t

Qin
V
d�0

� �
ð15:52Þ

where dV=d� ¼ Qin �Qout: The washout function can be used in the usual way
to compute instantaneous values for the moments and reaction yields, including
limits of complete segregation and maximum mixedness. The unsteady stirred
tank is a maximum mixedness reactor when the tank is perfectly mixed. This
is the usual case, and the reaction yield is more easily calculated using
Equation (14.2) than by applying Zwietering’s differential equation to the
unsteady residence time distribution. Equation (15.48) applies to the complete
segregation case appropriate to dispersed-phase reaction systems.

15.4.2 Contact Time Distributions

The yield of a gas–solid heterogeneous reaction depends not on the total time
that molecules spend in the reactor but on the time that they spend on the
catalyst surface. The contact time distribution provides a standardized measure
of times spent in the absorbed state. A functional definition is provided
by the following equation applicable to a first-order, heterogeneous reaction
in an isothermal reactor:

aout
ain
¼
Z 1
0

e�ktc fcðtcÞdtc ð15:53Þ

where fcðtcÞ is the differential distribution function for contact time. Equation
(15.53) is directly analogous to Equation (15.44), and even provides a way of
measuring fcðtcÞ. Vary the reaction temperature, and thus the rate constant k,
over a wide range to measure aoutðkÞ and then obtain fcðtcÞ by inverse Laplace
transformation. This approach has been used for a gas-fluidized bed, for
which the assumption of isothermal operation is reasonable. The experiments
detected bypassing as discussed in Section 11.3.1. Contact time distributions
can also be measured using a combination of absorbable tracers. See Pustelnik
and Nauman.2

15.4.3 Thermal Times

The analog of the residence time for a nonisothermal reaction is the thermal time:

tT ¼
Z t

0

expð�Tact=TÞdt0 ð15:54Þ
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This is an integral along a molecule’s path that weighs time and temperature in
the manner appropriate to homogeneous but nonisothermal reactions. For
a first-order reaction,

aout
ain
¼
Z1
0

e�k0 fT ðtT ÞdtT ð15:55Þ

where fT ðtT Þ is the differential distribution of thermal times and k0 is the
pre-exponential factor, the Arrhenius temperature dependence of the reaction
having been incorporated in tT . No measurement of fT ðtT Þ has been reported,
but model-based calculations have been made for moving-wall devices such as
extruders. The results show that a surprisingly uniform reaction environment
is possible despite diffusion-free laminar flow and large point-to-point variations
in temperatures. What happens is that the hot regions are associated with
high velocities and low residence times. The integral in Equation (15.55) gives
a similar value for tT in the hot regions as in the cold regions that have long
residence times.

15.5 SCALEUP CONSIDERATIONS

There are three situations where a residence time distribution can be scaled up
with confidence.

1. The pilot reactor is turbulent and approximates piston flow. The larger reac-
tor will have the same value of �tt and an aspect ratio, L=R, at least as great as
that of the pilot reactor. These possibilities include the normal ways of scaling
up a tubular reactor: in parallel, in series, by geometric similarity, and by
constant pressure drop. The aspect ratio increases upon scaleup except
when scaling in parallel or with geometric similarity, and the Reynolds
number increases except when scaling in parallel. See Section 3.2 for the
details. The worst case is scaling in parallel. The larger reactor will have
the same residence time distribution as the small one. For the other forms
of scaleup, the residence time distribution will more closely approach the
delta distribution.

2. The pilot reactor is a tube in isothermal, laminar flow, and molecular diffu-
sion is negligible. The larger reactor will have the same value for �tt and will
remain in laminar flow. The residence time distribution will be unchanged
by the scaleup. If diffusion in the small reactor did have an influence, it
will lessen upon scaleup, and the residence time distribution will approach
that for the diffusion-free case. This will hurt yield and selectivity.

3. The pilot reactor is a CSTR. The large reactor will be geometrically similar to
the small one, and the scaleup will be done at constant power per unit
volume. This form of scaleup exploits the fact that small vessels typically
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use impeller speeds that are faster than necessary to achieve a close approach
to the exponential distribution. Scaleup will eventually cause problems
because of the ratio of circulation to throughput scales with the impeller
speed, and this will decrease when scaling at constant power per unit
volume. Correlations exist for the pumping capacity of the common impel-
lers, so that the ratio of circulation to throughput can be calculated. If it
is maintained at a reasonable value, say 8 : 1, the residence time distribution
will remain close to exponential. Better, the impeller speed can be decreased
in the small unit to test the water. Decrease it by a factor of S2/9 where S is
the intended scaleup factor for throughput. See Table 4.1. Scaling with
constant power per unit volume will maintain the same Kolmogorov eddy
size, so that micromixing should not become a problem.

PROBLEMS

15.1. A step change experiment of the turnoff variety gave the following
results:

t CoutðtÞ=Coutð0Þ

0 1.00
5 1.00
10 0.98
15 0.94
20 0.80
30 0.59
45 0.39
60 0.23
90 0.08
120 0.04

where t is in seconds. Estimate �tt.
15.2. Determine the dimensionless variance of the residence time distribution

in Problem 15.1. Then use Equation (15.40) to fit the axial dispersion
model to this system. Is axial dispersion a reasonable model for this
situation?

15.3. What, if anything can be said about the residence time distribution
in a nonisothermal (i.e., Tin 6¼ Tout) CSTR with variable density (i.e.,
�in 6¼ �out and Qin 6¼ QoutÞ:

15.4. A washout experiment is performed on a CSTR to measure its mean
residence time. What is the effect of starting the experiment before the
outlet concentration has fully reached C0? Assume that the normalized
output response is based on the outlet concentration measured at t¼ 0
so that the experimental washout function starts at 1.0.
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15.5. A positive step change experiment is performed on a CSTR to determine
F(t) and, from it, the mean residence time. What is the effect of a varia-
tion in the inlet concentration C0 during the course of the experiment?
Consider a change from C0 to C0 þ�C0 occurring at various times.

15.6. Compare Equation (15.11) to Equation (13.9). It is clear that f ðl Þ is the
discrete analog of f ðtÞ and that summation over all possible chain
lengths is equivalent to integration over the 0 to 1 range on t. What
is the analog of W(t) for the chain length distribution?

15.7. What are the numerical values for the two time constants in the stag-
nancy model of Example 15.7? See Figure 15.8, but do not use a graphi-
cal method to determine them.

15.8. Apply the side capacity model of Figure 15.11 to bypassing. Calculate
and plot WðtÞ for the case where Q¼ 8m3/h, q¼ 7m3/h, Vm¼ 1m3,
and Vs¼ 8.

15.9. Suppose that the tracer fed to the reactor in Example 15.11 is not inert
but decomposes according to first-order kinetics. Show that

aout � a0j jmax¼
�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ k�tt Þ2 þ !2 �tt2
q

15.10. Suppose a piston pump operating at 100 strokes per minute is used to
meter one component into a reactant stream. The concentration of
this component should not vary by more than 0.1%. Devise a method
for achieving this.

15.11. Experimental conditions prevented the application of a good step
change at the inlet to the reactor, but it was possible to monitor both
Cin and Cout as functions of time:

Time, s Cin Cout

0 0 0
3 0.072 0
6 0.078 0
9 0.081 0.008
15 0.080 0.017
20 0.075 0.020
30 0.065 0.027
40 0.057 0.035
60 0.062 0.043
80 0.068 0.051

100 0.068 0.057
120 0.068 0.062

The reactor is a gas-fluidized bed for which the fractional tubularity model
is usually appropriate.
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(a) Write the model as f ðtÞ ¼ � exp½��ðt� Þ� and estimate the para-
meters a and .

(b) Use this estimate and the Equation (15.46) to predict CoutðtÞ given
the experimental values for CinðtÞ. Can your estimates for a and 
be improved by this approach? A reasonable approximation to the
input signal might be

t Cin

0–20 0.078
20–40 0.066
40–60 0.060
60–80 0.065
80–100 0.068

15.12. Use the data in Problem 15.1 to estimate the conversion for an isother-
mal, first-order reaction with k¼ 0.093 s�1.

15.13. Apply the bounding theorem to the reversible, second-order reaction

Aþ B ���! ���
kf

kr

CþD

Assume A, B, C, and D have similar diffusivities so that local stoichio-
metry is preserved. Under what circumstances will conversion be maxi-
mized by (a) complete segregation (b) by maximum mixedness?

15.14. Heterogeneous reactions are often modeled as if they were homoge-
neous. A frequently encountered rate expression is

R A ¼ ka

1þ KAa
Suppose k¼ 2 s�1 and KA¼ 0.8m3/mol. Determine bounds on the yield
for a reactor having �tt ¼ 3 s and an inlet feed concentration of 2mol/m3.

15.15. Suppose the reactor in Problem 15.14 obeys the fractional tubularity
model with p ¼ 0:5: Use this information to calculate narrower
bounds on the yield.

15.16. A typical power input for vigorous agitation is 10 hp per 1000 gal in
systems with water-like physical properties.
(a) Calculate the Kolmogorov scale of turbulence.
(b) Assume that a spherical droplet with a diameter equal to the

Kolmogorov size is placed in a large, homogeneous mass of fluid.
How long will it take for concentrations inside the drop to
closely approach those in the homogeneous fluid? Use D ¼ 2�
10�9 m2=s and require a 95% response to the homogeneous phase
concentration.
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(c) Suppose a second-order reaction with unmixed feed streams is
occurring in the agitated vessel. How large can the rate constant
aink be if mixing and diffusion times are to remain an order of
magnitude smaller than reaction times?
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Absorption, 393–395

Activation, 438, 440

energy, 151, 440

temperature, 152

volume, 184

Activity coefficient, 236

Addition polymers, 463, 467–470

equilibrium, 469

free-radical polymers, 482

living polymers, 479

polymerization kinetics, 479–492

scaleup considerations, 504–505

structure, 469

thermal effects, 468

transition metal catalysis, 487

vinyl copolymerizations, 487

(see also Chain-growth polymers)

Adiabatic reactors, 160, 174, 335

Adiabatic temperature change, 161

Adjustable constants

in cosmological models, 209

in kinetic equations, 209–210, 361, 439

in nonisothermal axial dispersion, 319

in residence time model, 549

Adsorption, 351–369, 437–441

Aerobic fermentation (see Fermentation)

Agitator power (see also Power in a stirred

tank), 27

Air-lift, 403

Anaerobic fermentation (see Fermentation)

Arrhenius temperature dependence 151–154,

209, 440

biochemical reactions, 154, 440

sequence of fitting data, 217

Asymptotic property, 44

Autocatalytic, 54–58, 136

Autorefrigerated reactors, 137, 168, 174–175,

190

Avoiding scaleup problems, 174

Axial diffusion (see Diffusion, axial)

Axial dispersion coefficient, 329–330,

335

Axial dispersion model, 329–337, 339–341,

344–345

multicomponent, 329

nonisothermal, 336

two-phase, 409

use for scaleup calculations, 344–345

utility of, 334–336

Backward difference, 311–316, 337

Batch reactor, 21, 35

Bimolecular reactions, 152–153, 360–362

Biochemical reactions, 435–459

Bounding theorem, 571–572

Breakthrough, 421

Bubbling fluidization, 416

Bypassing, 392, 553, 567–568

Cell culture, 446–459

batch reactors, 447, 453–454, 455

CSTRs with biomass recycle, 457

CSTRs without biomass recycle, 454

growth dynamics, 448–452

growth limitations, 449

immobilized cells, 459

PFRs, 458

Central differencing, 273, 312–313, 337

Chain-growth polymers (see also Addition

polymers), 463–464, 467–470, 478–492,

504–505

Chain length

dynamic, 484, 495

number and weight averages, 471, 474–475,

481, 484–485

Chain reaction, 51, 56

Chain transfer, 479, 481, 487, 505

Chaos, 76, 120, 173, 520

Chemical etching, 425

Chemical vapor deposition, 426

Chemostat (see also CSTRs), 443

Closed system, 331, 559–561, 563

Cold-flow models, 304, 430

Collision theory, 4, 5, 7, 152–153

Combustion

branching chain reactions in, 56

elementary reactions in, 8, 54, 247

as a fast reaction, 25, 309
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Combustion (Cont.)

heats of, 232

reactors for, 111, 418, 419

Competitive reactions, 35, 224

Complete segregation, 10, 269, 564–575

Complex reactions (see also Multiple

reactions), 36, 153

Component balances

axial dispersion, 329, 409

batch, 11, 38, 58, 161

catalyst pellet, 352–353, 368

CSTR, 22, 118, 120, 167, 518

differential, 19, 20, 83

fed-batch, 65

flow system, 19

integral, 1, 3, 19, 22

laminar flow reactors, 271

laminar flow reactors with radial flow,

302

laminar flow reactors with variable physical

properties, 303

matrix form for batch reactors, 68, 161

matrix form for CSTRs, 118

matrix form for PFRs, 85

multiphase, 387, 401, 409

packed-bed, 318

piston flow, 17, 83–85

transpired wall reactor, 111

two-phase CSTRs, 387

two-phase PFRs, 401

unsteady CSTRs, 518

unsteady laminar flow reactors, 534

unsteady PFRs, 531

Computation scheme

for axial velocity profiles, 299–301

for gas-phase PFRs, 90

for liquid-phase CSTRs, 125–126

for liquid-phase PFRs, 96

Condensation polymers, 464

average chain lengths, 474

binary, 465–466, 504

conversion, 473

cyclization, 467

equilibrium, 466

kinetics, 473–478

molecular weight distribution, 475

random copolymers, 467

self-condensing, 466, 504

stoichiometry, 465

(see also Step growth polymerization)

Confounded reactors, 224–226

Consecutive reactions, 35, 221–223

batch, 47

piston flow, 81–82

Contact time, 417, 430, 433, 575

Continuous-flow stirred tank reactors

(see CSTRs)

Control volume, 1, 19

Convected-mean (see also Mixing-cup

average), 266

Convective diffusion of heat (see also Energy

balances), 291–295, 496

Convective diffusion of mass (see also

Component balances), 269–271, 310–311

Convective diffusion, unsteady, 534, 558

Convergence

of ODE solvers, 78–80

of optimization techniques, 203, 206, 208

of PDE solvers, 272–277

Convergence order

Euler’s method, 43–44

finite difference approximations, 313–316

radial velocity calculations, 500

trapezoidal rule, 267–268, 277

Convergence testing

Euler’s method, 40–44, 90, 96

explicit PDE solver, 296

false transients, 126

molecular weight distribution, 477

Conversion, 12, 29, 125

Copolymers

azeotrope, 490

composition distribution, 489–492

condensation polymerization, 467

effects on structure, 469–470

living polymer polymerizations, 479

vinyl addition, 487–492

Core turbulence, 328

Crank-Nicholson (see also Numerical

methods), 316

Creeping flow, 298, 305

CSTRs, 22, 29, 117–133

gas-phase, 127–131

liquid-phase, 123–125

scaleup, 131, 176–179

two-phase, 382–397

two-phase, operating modes, 388–395

Cumulative distribution of residence times,

541, 543, 556

Danckwerts boundary conditions, 330–332

Deactivation in enzyme catalysis, 440–442
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Deactivation in gas–solid catalysis, 357,

369–371, 414, 417, 421

Dead polymer, 483–485

Dead time, 533, 550

Debugging computer programs, 162, 515

Decoking, 369, 418–421

Decomposition reactions, 6, 10, 51–53

Delta distribution, 548, 550, 567, 576

Delta function, 543, 546, 548

Denominator terms in rate expressions, 210,

357, 361–362, 440, 449

Density function (see also Differential

distribution), 542

Design equation (see Component balances)

Design variable, 132, 170–172, 497

Desorption, 351–360, 436

Differential distribution

of chain lengths, 471

of contact times, 575–576

of exposure times, 410

moments from Laplace transform, 561

relation to Laplace transform, 561, 563,

575–576

of residence time models, 545–546

of residence times, 542

of residence times in a CSTR, 423

residence times for a parabolic velocity, 269

residence times for tanks-in-series, 550–551

as response to a delta input, 548

Differential reactor, 163, 212, 218

Diffusion

axial, 270–271, 283–284, 303–304, 310–311

in catalyst particles, 367–368

in catalyst pores, 350, 363–366, 419

changes in effects with reactor size, 107,

110, 576

convective, 269–271, 310–311, 534, 558

eddy, 328, 410

Knudsen, 364–366

molecular, 67, 160, 263–271, 328

multicomponent, 272, 318

when negligible, 264

product layer, 419

radial, 271, 284, 305, 310

thermal or heat, 160, 263, 291–296

Diluents (see also Inerts), 174

Dilution rate, 443

Dimensionless rate constant, 13, 61

Dimensionless reaction time, 13

Dimensionless variables, 44–45, 61, 121–122,

282–284, 293–296

Dispersion polymerization, 502, 503

Dispersion, radial, 318

Distributed parameter system, 21

Economy of scale, 28, 145

Effective thermal conductivity, 319, 321

Effectiveness factor

in enzyme reactions, 442–443

general definition, 362

isothermal model, 363–367

nonisothermal model, 367–368

Elementary reactions, 4, 23, 35, 153, 209

in gas–solid catalysis, 353

Elephants, 209, 217, 361

Eley-Rideal mechanism, 354, 377

Emulsion phase in bubbling fluidization,

416, 417

Emulsion polymerization, 173–174, 502–503

Endgroups, 465, 467, 473

Endothermic reactions, 155, 165, 174, 231

Energy balances, 151–186, 227–234, 518, 532

for a batch reactor, 160

for a batch reactor on a molar basis, 245

for a CSTR 167

enhancement factors, 411

enthalpy, 158–159, 164, 227, 229, 244–245

for a flow reactor, 158, 164

for a laminar flow reactor, 291

for a laminar flow reactor with radial

velocities, 303

for a laminar flow reactor with variable

properties, 304

for a packed bed, 319

for two-phase CSTRs, 396

for an unsteady CSTR, 518

for an unsteady PFR, 532

Enzyme catalysis, 436–446

reactor design, 443–446

Equal reactivity assumption, 473, 477–484,

494

Equilibrium compositions

multiple reactions, 245–248

single reactions, 240–245

Equilibrium constant

kinetic, 235, 237–239

multiple reactions, 245–246

reconciliation of types, 237

in reverse reaction rates, 237–239

thermodynamic, 235–240

Ergun equation, 87, 372

Eulerian coordinates, 328
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Euler’s method (see Numerical methods)

Exotherm, 56, 162

Exothermic reactions, 174, 231

Explicit differencing methods, 314

Exponential distribution, 545, 567–569

of chain lengths, 494

of exposure times, 410

moments of, 547–548

of residence times, 423–424

scaleup of, 576–577

Extent of reaction (see Reaction

coordinate)

False transients, 119–123, 240

Fast fluidization, 417

Fast-fill-and-hold, 522

Fed-batch, 21, 64–65

biochemical reactors, 452

polymerizers, 502

startups, 521–523

Fermentation (see also Cell Culture), 64–65,

446–455

aerobic, 447

anaerobic, 447

biomass production, 448

cell death, 452

growth phases in batch, 447

maintenance coefficients, 450

substrate consumption, 449

Fick’s law, 310

Film mass transfer (see Mass transfer, across

film resistance)

Finite difference approximations, 311–314

First appearance time, 549–557

First-order reactions, 6, 12, 46, 47, 85

axial dispersion, 332

batch, 59

heterogeneous, 356–357

Flat-plate geometry, 285, 289–290

Flory distribution, 475, 477, 485

Fluidized-bed reactors, 414–418, 550, 575

for heterogeneous catalysis, 350, 365,

370–371

for polymers, 487, 493, 503

Flux

convective, 84–85, 90, 96, 164

diffusive, 84, 270, 310, 363

zero flux boundary condition, 274, 290

Forward difference, 273–275, 312–314

Forward shooting, 337–338

Fraction unreacted, 12, 59, 85, 125

Fractional tank extension, 551

Fractional tubularity, 549–550

Free energy of reaction, 230–231, 235

Free-radical polymers

copolymers, 487–492

kinetics, 482–486

(see also Addition polymers)

Free-radical reactions, 8, 51–54, 249, 426

Friction factor (Fanning), 87

Froude number, 133

Fugacity, 235–236

Gamma function extension, 551

Gas-fed slurry reactors, 413

Gas–liquid reactors, 381–411

Gas scrubbing, 393

Gel effect, 56, 484

Geometric similarity (see also Scaleup), 27

Gibbs free energy (see Free energy)

Graetz number, 179

Graetz problem, 294–296

Graphical or plotting methods, 152, 217, 219

Grass, 57, 74, 520

Half-integer kinetics, 53

Half-life, 12, 14, 25

Heat balance (see Energy balances)

Heat capacity, 159, 228–229

Heat-generation curve, 171–173

Heat of reaction, 231–234

standard, 233

summation convention for multiple

reactions, 159

Heat-removal curve, 171–173

Heat transfer coefficient

interfacial in two-phase reactors, 396

tanks, 133, 176–177

tubes, 179–180, 336

packed-bed, 319–321

Heats of formation, 203–231, 232

Henry’s law, 383–386, 402, 416

Heterogeneous rate expressions, 210,

361–362

Heterogeneous reactions, 65, 210, 318

Heterogeneous catalysis

in biochemical systems, 435–459

gas–solid, 349–376

in polymerizations, 438, 487, 492–494

Holdup, 382

Homogeneous reaction, 4

Homopolymerization, 467
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Hotspot, 324, 344

Hougen and Watson kinetics, 358, 438

Ideal gas law, 86

Ideal reactors, 10

batch, 10, 35–116

combinations of ideal reactors, 133–146

CSTRs, 10, 117–133

piston flow, 10, 81–116

segregated CSTRs, 10, 565

(see also individual reactor types)

Ill-conditioned computations, 338

Immobilized cells, 459

Immobilized enzymes, 441

Implicit numerical methods, 314–316, 394

Impulse, 542–543, 546, 561

Independent reactions, 36, 67–68, 248

Inerts, 165

Inhibition in enzyme catalysis, 440–441

Initial value problem, 82

Initiation, 51, 479–495

Integral reactor, 218

Interfacial area, 384

Interfacial mass transfer, 383–386

Intrinsic kinetics, 354–362, 362–371

experimental measurement, 371–375

recommended models, 361–362

Inventory

mass, 2, 18, 26, 94, 125

mass in an unsteady system, 517

molar, 94

scaleup factor (see also Scaleup factor), 26

surface, 375–376

Kolomogorov scale of turbulence, 574, 577

Lagrangian coordinates, 328

Laminar flow reactors, 86, 177, 263–316

axial dispersion approximation, 335–336

scaleup at constant pressure drop, 108

scaleup in series, 102, 104

scaleup when nonisothermal, 305

scaleup with geometric similarity, 106,

304–305

Langmuir 330–331

Langmuir and Hinshelwood, 361, 438

Laplace transforms, 546–547, 559–561,

563, 575

Least squares, 210–212, 255

L’Hospital’s rule, 49, 274

Limit cycle, 172, 528, 530

Linear burn rate, 422

Liquid–liquid reactors, 381

Loop reactors (see Recycle reactors), 127

Lumped parameter systems, 22, 508

Lumping of chemical species, 501

Lynx, 57, 520

Macromixing, 568, 574

Maintenance coefficients for cell culture, 450

Marching (see also Numerical methods), 40

Marching backwards, 339

Mass balances, 1, 2

overall or integral, 1, 82, 123

(see also Material balances)

Mass transfer

across a membrane, 386

across film resistance, 351, 352, 366–367, 409

limitation on reaction, 391

Mass transfer coefficients

gas-side, 385

liquid-side, 385

nonreactive measurement, 397–398

overall, 384

overall for two-phase CSTRs, 395–396

reactive measurement, 399–400

typical values, 400

Material balances, 1

closure, 216

integral, 159–160

recycle loop reactor, 150

(see also Mass balances)

Maximum mixedness, 567–575

Mean residence time

apparent in an open system, 561

as a characteristic time in a flow system,

26, 44

constant density system, 18

in a CSTR, 124

in a gas-phase tubular reactor, 92–95

general expression, 18

held constant upon scaleup, 27,

99, 304

from inert tracer experiments, 544

multiple of to achieve steady state, 530

required to achieve desired reaction, 24

in variable-density reactors, 124

Mechanism, 8, 36, 153

of enzyme catalysis, 436–446

of free-radical reactions, 51–54

of heterogeneous catalysis, 351–354,

358, 361
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Mechanism (Cont.)

of heterogeneous catalysis, dual-site or

bimolecular models, 361, 378, 438

of polymerizations, 463

of polymerizations, addition or chain

growth, 467–470, 478–479, 482–484

of polymerizations, condensation or step-

growth, 464–467

of polymerizations, suspended-phase,

501–503

of polymerizations, transition metal

catalysis, 487

of polymerizations, vinyl

copolymerizations, 487–492

Membrane reactors, 112–113, 386–387,

441–443

Metastable steady states, 168–173, 529

Method of moments, 480, 494

Michaelis constant, 438

Michaelis-Menten kinetics, 436–439, 444

Microelectronics, 110, 424–426

Micromixing, 565, 567–568, 571–574

Micromixing models, 573–574

Mixing-cup average, 265–268, 277

Mixing time, 25, 65–66, 133

Molecular weight distributions, 470–472,

475–478, 493

Moments

from Laplace transforms, 561

of molecular weight distribution,

470–471

of residence time distribution, 543–545

Monod kinetics, 448

Monoliths, 326

Motionless mixers, 290–291, 336

Moving solids reactors, 413–418

Multiphase reactors, 381–430

Multiple reactions, 35–38, 154, 220, 245

summation of heats of reaction, 159, 161

batch reaction stoichiometry, 67–71

CSTRs, 118–120

piston flow, 82

Multiple steady states, 120, 169–173,

457, 520

Multitubular reactors (see also Shell-and-tube

reactors), 100, 182, 326–327, 496–497

Nanotechnology, 424

Noncatalytic fluid–solid reactions, 418–423

Nonelementary reactions (see also Multiple

reactions), 35

Nonisothermal effectiveness, 367

Nonisothermal reactors

axial dispersion, 336

batch, 160–163

CSTRs, 167–173

laminar, 291–306

packed-bed, 318

piston flow, 163–167

scaleup, 173–183, 305

Non-Newtonian fluids, 287, 306, 397

nth-order reactions, 46

Numerical methods, 39, 49, 77–80, 205–208,

272–303

binary search, 146

Crank-Nicholson, 316

Euler’s method applied to ODEs, 40–43,

90, 96, 126

Euler’s method applied to PDEs, 275–277

extrapolation of Euler’s method, 78–79

extrapolation of Runge-Kutta method,

79–80

false transients, 119–123, 240

implicit for PDEs, 314–316

linear regression, 255

method of lines, 272–275

Newton’s method, 119, 147–149

optimization, 205–208

Runge-Kutta integration, 44, 77

shooting techniques, 337–344

trapezoidal rule, 277

Objective function, 205

Occam’s razor, 212

Open system, 333, 559, 561, 563

Operating variable, 122, 132, 170–172, 497

Optimization, 187

constrained and unconstrained, 206

functional, 207, 199

by golden section, 207

by gradient methods, 207

parameter, 205, 208

by a random search, 194, 206

of reaction systems, 156, 187–209

regression analysis, 210

of temperature, 154–158, 296–297

Oscillations, 76

in batch systems, 57–58

in biological systems, 57, 457

in isothermal CSTRs, 120, 520–522

in nonisothermal CSTRs, 172–173, 530

in polymerizations, 173, 502
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Packed-bed reactors

component balance, 318

isothermal axial dispersion, 330, 335

scaleup at constant pressure drop, 109

scaleup in series, 105

scaleup with geometric similarity, 108

Parametric sensitivity, 325, 344

Pathological behavior, 136, 552–555

Peclet number

for the axial dispersion model, 329, 330

for the radial dispersion model, 320

Penetration theory, 410

Perfect mixer (see also CSTRs), 23

PFR (see Piston flow reactor)

Pipeline reactors, 334–335

Piston flow reactor, 17, 19, 21, 29, 81–116

gas-phase, 86–95

liquid-phase, 95–98

two-phase, 401–406

two-phase combination with a CSTR, 406

Polydispersity, 472

Polymerization, 59–62, 64, 463–505

Population balance methods, 400, 413,

422–423, 448

Pore diffusion, 353–354, 363–368, 419–421

Power in a stirred tank, 27, 133

Prandtl number, 179, 336

Pressure

dependence of reaction rate, 63, 184

dependence of thermodynamic properties,

227–235

gradient in laminar flow, 86

gradient in packed beds, 87

gradient in turbulent flow, 87

Product transitions, 525

Propagation, 51, 479–488

Pseudo-first order, 9, 47

Pseudohomogeneous kinetics, 127, 318, 349,

352–356

vs. heterogeneous kinetics, 374–375

Quasi-steady state hypothesis, 44, 49–54, 445

Rabbits, 57, 520

Radial dispersion coefficient, 318

Radial velocities, 301–303

Radioactive decay, 6, 47

Rate constant, 4, 6

first-order, 48

fitting to data, 152–153, 209–226

identical or repeated, 48–49, 119

pseudo-first-order, 9

rate constant, temperature dependence,

151–154

ratios of, 356–357, 361–362, 489

second-order, 45

Rate-determining step, 357–361

Rate of formation (see also Reaction rate), 5

Reaction

coordinate for batch reactors, 69, 76

coordinate for CSTRs, 146

equilibria, 234–250

front, 420

order, 8

rate 5, 37, 237

Reactors in series and parallel, 134

Rectangular coordinates, 285–287, 289–290

Recycle reactors, 139, 175, 177

for kinetic studies, 127, 355, 371

as a model for a stirred tank, 131, 141, 177

residence time distribution, 551

Regression analysis, 152

linear, 211, 255

nonlinear 152, 210–212

Residence time distributions, 268, 539–577

models, 545–561

Residual standard deviation, 212

Residual sum-of-squares, 212

Reverse reaction rates, 237–240

Reverse shooting, 339

Reversible reactions, 6, 36, 210, 237, 358

Reynolds number

impeller, 132, 133

particle, 87

Runaway reactions, 168, 174, 277, 323–325,

496–499

Runge-Kutta (see alsoNumericalmethods), 77

Scaleable heat transfer, 175

Scaleup

avoiding problems during, 174–175

of batch reactors, 65–66

blind, 304

with constant heat transfer, 182

of CSTRs, 131–133, 176–179

diplomatic, 175

of exothermic packed beds, 326

of gas–liquid reactors, 427

of laminar flow reactors, 304–305

of mixing times, 25

model-based, 304–305

of nonisothermal reactors, 173–183
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Scaleup (Cont.)

in parallel, 100–101, 174, 326

in series, 101–106

of tubular reactors, 99–109, 179–183

Scaleup factor

for inventory, 26

for number of tubes, 99–100

for pressure, 180

for stirred tanks, 133

for throughput, 26

for tubular reactors, 99–109, 180

for volume, 27

Scaling down, 109–110

Schmidt number, 320

Second-order reactions, 7, 13, 14

Segregation (see also Complete segregation),

400, 487, 496, 565

Selectivity, 16, 29, 45

Self-assembly, 427, 433

Semibatch (see also Fed-batch), 64

Shell-and-tube heat exchangers, use in loop

reactors, 179, 388, 503

Shell-and-tube reactors

feed distribution, 100, 174, 496

use in scaleup, 99–101, 174, 190, 196, 326

(see also Multitubular reactors)

Shooting method, 337–344, 394

Shutdown strategies, 521–525

Side capacity model, 553–556

Single-train process, 28

Site balance, 356

Site competition models, 349, 369

Slit flow, 285–287, 293

Slurry reactors, 413, 493, 503

Space time, 94

Spatial average, 3, 266, 306

Spouted-bed reactors, 417–418

Stability

of isothermal CSTRs, 520

by method of false transients, 120, 520

of tubular reactors, 496, 504

Stability, numerical or discretization

dimensionless form for laminar flow in a

tube, 283–284

for a flat profile in a slit, 288–289

for a flat profile in a tube, 287

for laminar flow in a tube, 276–277

for packed-bed model, 321

for slit flow, 286

on thermal diffusivity, 292–294

Stability, physical, 277, 323, 496

Stagnancy, 553–555, 557

Standard deviation, 214

Startup strategies, 521–525

Static mixers (see Motionless mixers)

Step changes

to measure mass transfer coefficient, 397

to measure residence time distribution,

540–541

Step-growth polymerization, 463, 464–467,

473–478

(see also Condensation polymers)

Stiff equations, 44, 49, 80, 272–274

Stirred tank reactors (see CSTRs)

Stoichiometric coefficients, 5, 37, 69, 159, 209

matrix of, 67

Stoichiometry

global, 67

local, 67–68, 272, 504

of multiple reactions, 67–71

of single reactions, 66–67

Streamlines, 264–268, 303, 500–501,

556–557

Structured packing, 326

Substrate

activation, 437–440

in biochemical reactions, 436

inhibition, 437–440

Sum-of-squares, 152, 211–225, 255–256, 489

Surface concentrations

of adsorbed molecules, 318, 353

in gas phase at external surface of

particle, 352–353

Surface reaction, 353, 358

Surface renewal, 409

Suspended cells, 452

Suspending-phase polymerizations, 501–503

Tanks in series, 137–139, 173, 550–551

Termination reactions, 52, 479–488

Thermal conductivity in packed beds,

319, 321

Thermal Peclet number for the axial

dispersion model, 336–337

Thermal time, 297, 575–576

Thermodynamics of chemical reactions,

226–250, 255

Thiele modulus

isothermal, 364, 367

nonisothermal, 368

Third-order reactions, 7–8

Three-phase reactors, 412–413, 452
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Throughput scaleup factor (see also Scaleup

factor), 26

Time to approach steady state, 530

Transpired wall reactors, 21, 111–113

Tray columns, 393–395

Trickle-bed reactors, 412

Tubular reactors

isothermal, 92–95

laminar flow, 263–306

scaleup, 99–110

stability problems, 496–501

turbulent flow, 317–345

Turbulence, 328, 410, 574

Turbulent flow reactors

isothermal axial dispersion, 334

scaleup at constant pressure drop, 109

scaleup in series, 102, 103

scaleup of CSTRs, 133

scaleup with geometric similarity, 107

Unimolecular, 6, 358–361

Unmixed feed streams, 321, 345

Unsteady reactors, 119–123, 517–534

Velocity profile, turbulent, 327–328

Variable cross-section, 21, 82–86, 303–304

Variable density, 21, 59, 123–131, 164,

303–304

Variable physical properties

in nonisothermal reactors, 161–164

in laminar flow reactors, 303–304

rigorous example, 243–245

two-phase systems, 387

Variable pressures, 21

Variable viscosity, 115, 297–301, 500, 512

Variable volume, 21, 58–65, 240

mechanically determined, 63

thermodynamically determined, 63

in two-phase systems, 388

unsteady systems, 518, 575

Variance, 544–545, 549, 557–558, 577

Velocity profile

axial, flat, 287–289, 328–329, 321, 335

axial, for turbulent flow in tubes, 328–329

in laminar flow, 263–305, 496–499

in a packed bed, 318

radial, 301–303

residence time distribution, 268–269,

555–557

Velocity, superficial, 87, 318

Void fraction, 87, 318–319, 335

random variations, 100

superficial vs. total, 372

Volumetric scaleup factor (see alsoScaleup), 27

Washout, 137, 455, 457

Washout function, 540–542

for unsteady stirred tank, 575

Working volume, 382

Yield

mass, 16

molar, 15

theoretical, 16

Zero molecule, 5

Zero-order reactions, 46–47, 214, 358

Zwietering’s differential equation, 568–570
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