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Preface

ἀ ere is no doubt that in the design and use of materials, the studies 
and the understanding of the factors that enhance, or hinder, the stabil-
ity of phases play a crucial and time-tested role. In the present book, I 
have focused on one particular aspect of such studies, the Hume-Rothery 
rules for metals and alloys. Over a span of some 90 years Hume-Rothery 
rules have been used to focus attention on three particularly important 
aspects of alloying, the electrochemical effects, the size factor effects, and 
the change of electron concentration. Each of these concepts has been the 
subject of detailed examination and elucidation. It is my hope and belief 
that an additional attempt to enhance further the understanding of the 
fundamental bases of the Hume-Rothery rules is likely to help disentangle 
at least some of the remaining puzzles evident in the stability mechanisms 
of the increasingly complex alloys, particularly with respect to the most 
prominent of the Hume-Rothery parameters used in alloy design, the 
electron concentration.

I have been involved during the past 40 years in research on topics 
related to the Hume-Rothery rules, starting from the work on the noble 
metal alloys in the 1970s, and amorphous alloys in the 1980s, initiated from 
the collaboration with Professor T.B. Massalski, in whose research group 
I worked during an extended visit to Pittsburgh, USA, during the early 
1970s. A growing interest in the Hume-Rothery rules has been revived 
and became intensified soon after the discovery of the quasicrystals in 
1984. Such structures are characterized by the symmetry of an icosahe-
dron, but lacking the translational symmetry, and they can be regarded as 
structurally complex aperiodic, but ordered, electron compounds.

During the last decade or two, much research interest has occurred in 
this new field. In connection with the needed understanding of the more 
basic physics behind the stabilizing effects related to the electron concen-
tration, my colleagues and I embarked on theoretical studies to gain a 
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deeper insight into the origins of the Hume-Rothery electron concentra-
tion rule, especially by exploring the opportunities provided by the use of 
the first-principles band calculations. ἀ e results of these efforts are the 
basis of the present monograph. My aim here is to review in a ‘teaching 
format’ the most recent developments in the interpretation of the Hume-
Rothery electron concentration rule with a particular emphasis on the sta-
bility of structurally complex metallic alloys (CMAs).

ἀ e present book starts in Chapter 1 with a review of the historical 
developments on the Hume-Rothery electron concentration rule, followed 
by the chemical bonding and phase diagram approaches to alloy phase 
stability in Chapter 2, a brief description of early theories advanced by 
Mott and Jones in Chapter 3, and the introduction of the two first-princi-
ples band calculation methods in Chapter 4: LMTO-ASA (Linear Muffin-
Tin Orbital-Atomic Sphere Approximation) and FLAPW (Full-potential 
Linearized Augmented Plane Wave) methods, on which the present work 
is based. Chapter 5 is devoted to the interpretation of the α/β-phase trans-
formation in the Cu-Zn alloy system, which has been known as one of 
the Hume-Rothery electron concentration rules. Since a series of gamma-
brasses and several 1/1-1/1-1/1 approximants were chosen as working 
substances in this volume, the atomic structure of these CMAs is briefly 
described in Chapter 6. ἀ e first six chapters constitute an introductory 
part of the present volume. Chapters 7 to 10 focus on the main subjects 
to interpret the Hume-Rothery electron concentration rule for the CMAs 
and the e/a determination for alloys containing transition metal elements. 
ἀ e gist of the Hume-Rothery stabilization mechanism is discussed as 
clearly as possible.

I hope that the present book provides a fundamental knowledge on 
phase stability aspects in general, and also provides useful ideas and 
data in the development of new functional metals and alloys. I hope that 
researchers and engineers in universities and industries may benefit from 
this book. I trust that the writing style and approach that I adopted also 
makes it suitable as an advanced textbook to those who are now gradu-
ate students in the Departments of Materials Science, Metallurgy, Physics 
and Chemistry and will enable them to make early contact with original 
research papers in this field. A number of these are listed in the Reference 
section at the end of each Chapter and suitable review articles and more 
advanced textbooks are also included.
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1C h a p t e r  

Introduction

1.1  What Is the DefInItIon of the 
hume-RotheRy Rules?

As a set of basic rules describing the conditions under which an element 
could dissolve in a metal to form a solid solution, the Hume-Rothery rules 
have earned a great reputation in the field of materials science as simple but 
powerful guides to be considered when designing a new alloy. ἀ e rules 
were established in the 1920s and 1930s by the efforts of Hume-Rothery 
(1899–1968) and his associates, as well as other crystallographers and 
physicists, as will be described in the following sections. Hume-Rothery, 
a British metallurgist, was definitely a leading contributor in developing 
and exploiting such concepts.

What is the definition of the Hume-Rothery rules? At the Hume-
Rothery Symposium held in St. Louis, in 2000, Massalski [1] summarized 
the existing confusion in the definition of the Hume-Rothery rules. He 
noted that many authors in different books and publications have pre-
sented the number and description of the Hume-Rothery rules (or effects), 
and their significance, in different ways. For example, Hume-Rothery 
himself listed five factors affecting the stability of alloy phases, without 
explicitly referring to them as the “Hume-Rothery rules” [2]. ἀ ese are

 1. ἀ e difference between the electronegativities, ∆χ, of the elements 
involved. ἀ e larger the ∆χ, the higher is the tendency for the atoms 
to unite in either liquid or solid phases. ἀ is is often called the elec-
trochemical eἀects.
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 2. A tendency for atoms of elements near the ends of the short periods 
and B subgroups to complete their octets of electrons.

 3. Size factor effects, that is, effects related to the difference in the 
atomic diameters of the elements.

 4. A tendency for definite crystal structures to occur at characteristic 
numbers of electrons per unit cell, which, if all atomic sites are occu-
pied, is equivalent to saying that similar structures occur at charac-
teristic electrons per atom ratio e/a or the electron concentration.*

 5. Orbital-type restrictions.

On the other hand, Kittel in his textbook on solid-state physics [3] dis-
cussed only the factor (4) mentioned above as the Hume-Rothery rule. 
ἀ us, there seems to exist no consensus on how many rules there are and 
what is their more precise significance.

Among factors listed by Hume-Rothery, the size factor, the electro-
negativity difference ∆χ, and the electron concentration effects appear to be 
the most pertinent three factors that affect the stability of metallic phases. 
Consider first the size factor effect. During alloying, if a solute differs in its 
atomic size by more than about 15% from the host atomic size, then it is 
likely to have a low solubility in that host. Here, the size factor is said to be 
unfavorable. Alternatively, in terms of the ratio of the Goldschmidt radii of 
two constituent atoms, a favorable alloy formation may be expected when 
the ratio is between 0.8 and 1.2. ἀ is effect is often referred to as the Hume-
Rothery size factor rule. Among the three rules, the size factor rule seems to 
be the least controversial, since its quantitative evaluation had been made 
by evaluating the elastic energy of a solid solution [4–6] (see Appendix 1). 
ἀ e size factor rule is important in the sense that the formation of a wide 
primary solid solution is prohibited when the size factor is unfavorable.

ἀ e situation for the latter two rules is more complex. We consider the 
difficulties to originate largely from the fact that they may be related in a 
complex way to the electronic interactions among the constituent elements 
in a solid. Electrochemical effects serve a key feature in the description 

* Valence electrons are important in determining how an element reacts chemically with other 
elements in an alloy. So is the parameter e/a in an alloy, which is defined as the average num-
ber of valence electrons of constituent elements per atom, in which the number of valence 
electrons in an element is determined by the group (vertical column) in the periodic table. 
However, it is less clear in transition metal (TM) elements. We will discuss a new clear-cut 
determination for the e/a value of elements including TM elements in Chapters 7 to 10.
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of the electronic interactions pictured in terms of covalent bonding. Its 
degree in a binary alloy system has been quantitatively evaluated by tak-
ing a difference in the Pauling electronegativity χ between the two con-
stituent elements [7]. If a solute has a large difference in electronegativity 
relative to the host, then the resulting charge transfer is more likely to 
favor compound formation. Its solubility in the host would therefore be 
limited. ἀ us, we may say that the formation of a wide primary solid solu-
tion range is again prohibited when the electrochemical effect is large.

ἀ e electron concentration effects are clearly evident when the size fac-
tor and the ∆χ are of minor importance. It can be singled out by analyzing 
the electronic structure from the viewpoint of itinerant-electron pic-
ture and is the central issue in this monograph. Let us consider what the 
Hume-Rothery electron concentration rule means. Figure 1.1 shows the 
equilibrium phase diagrams for the Cu-Zn, Cu-Ga, and Cu-Ge alloy sys-
tems [8]. As is clear from Figure 1.1, different phases appear successively 
with increasing concentration of the partner elements Zn, Ga, and Ge. ἀ e 
face-centered cubic (fcc) phase extending from Cu forms a primary solid 
solution and is called the α-phase. Its maximum solubility limit is found 
to be 38.3 at.%Zn, 19.9 at.%Ga, and 11.8 at.%Ge in the respective alloy sys-
tems. Obviously, the maximum solubility limit decreases with increasing 
valency of the partner element: two for Zn, three for Ga, and four for Ge.

ἀ e β- and β′-phases appear next to the α-phase in the neighborhood of 
50 at.%Zn in the Cu-Zn system. ἀ e β-phase is disordered bcc and stable 
at high temperatures but transforms into the β′-phase at low temperatures. 
ἀ e β′-phase has the CsCl-type ordered structure or the B2-structure. 
Similarly, the β-phase exists at around 25 at.%Ga at high temperatures in 
the Cu-Ga system. We see again that the concentration range over which 
the β- and β′-phases are stable moves to lower concentrations with increas-
ing valency of the solute elements. Further increase in the solute concen-
tration leads to the formation of the γ-phase in both Cu-Zn and Cu-Ga 
systems. As will be described in more details in Chapter 6, the structure 
of the γ-phase is constructed by stacking three bcc cells in x-, y-, and 
z-directions and subsequently removing the center and corner atoms with 
slight displacements of the remaining atoms. Its unit cell contains a total 
of 52 atoms. ἀ e γ-phase is often referred to as the gamma-brass phase and 
will be treated in this volume as the representative of structural ly complex 
metallic alloy (CMA) phases.

It is evident from the previous description that the concentration range 
of different phases, appearing successively and systematically with an 



4    ◾    hume-Rothery Rules for structurally complex alloy phases

increasing amount of a solute element added to the noble metal Cu, is 
shifted to lower concentrations with an increase in the valency of the sol-
ute element. ἀ ese features are quite regularly observed not only in the 
Cu-based alloys but also in Ag- and Au-based alloys, as long as the partner 
element is chosen from polyvalent elements in the periodic table. Figure 1.2 
schematically represents a composite phase diagram of the noble metals 
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fIguRe 1.1 Phase diagram of (a) Cu-Zn, (b) Cu-Ga, and (c) Cu-Ge alloy sys-
tems. [From H. Okamoto, Phase Diagrams for Binary Alloys (ASM International, 
OH, 2000).]
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alloyed with polyvalent metal elements, represented in terms of e/a. As 
is clear, the α-, β-, γ-, ε-, and η-phases successively appear at particular 
e/a ranges, regardless of the solute element added to the noble metal [9]. 
ἀ is is the Hume-Rothery electron concentration rule. How can we explain 
this unique e/a-dependent phase stability? What happens if the transition 
metal (TM) element is involved as a partner element? What about the e/a 
value for the TM element? All these searching questions are addressed as 
the major topics in this monograph.

ZnII

CdII

AlIII
Ga III

Sn IV

1
CuI

AgI

AuI

3/21.4 21/13 7/4

fcc
alpha-brass

bcc
beta-brass gamma-brass

fIguRe 1.2 Schematic phase diagram as a function of electron concentration e/a 
in noble metal alloys showing the Hume-Rothery electron concentration rule.
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As will be discussed in later chapters, in order to consider the Hume-
Rothery electron concentration rule as rigorously as possible, we exclu-
sively rely on the electronic structure derived by performing first-principles 
electronic structure calculations. Here it should be kept in mind that there 
are two different parameters that may be used to define the electron con-
centration: one is an average number of itinerant electrons per atom, e/a, 
and the other the number of total electrons, including d-electrons accom-
modated in the valence band, which is hereafter referred to as VEC in 
the present chapter.* For example, the e/a and VEC for pure Cu is unity 
and eleven, respectively. It should be noted that the parameter e/a must 
be employed to describe the Hume-Rothery electron concentration rule, 
but that the VEC is a crucial parameter in first-principles band calcula-
tions and is obtained by integrating the density of states (DOS) of the 
valence band from its bottom up to a given energy. It is also recalled that 
the electron concentration rule concerning the solid solubility limit of the 
α-phase should hold in systems, in which the size factor and electrochem-
ical effects are unimportant in the sense that the atomic size ratio is close 
to unity and ∆χ is small.

We have so far outlined what the Hume-Rothery rules are. Let us now 
survey in the following sections how these three empirical rules have been 
historically established in the perspective of time, and how the theoretical 
interpretations have been developed. ἀ e details below relate the present 
author’s impressions of an interesting story of intense research commit-
ments by different individuals, their interactions, their successes and dis-
appointments, and the progress over the years of an important field in 
materials science.

1.2  hIstoRIcal suRvey of chemIstRy 
anD metalluRgy

From 1922 to 1925, Hume-Rothery worked at the Royal School of Mines 
(RSM), Imperial College, London, under the supervision of Professor 
Carpenter, the RSM Chair of metallurgy, and became interested in the 
metallic state of compounds [10]. ἀ is field was then in a confused state 
because of the deviation of stoichiometric compositions from those 
expected from the valency rule of inorganic chemistry. People knew 

* ἀ e e/a deduced from the Hume-Rothery plot (see Chapter 7, Section 7.4) refers to an aver-
age number of itinerant electrons per atom dominant outside the muffin-tin (MT) sphere in 
an alloy.
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that inorganic compounds do not conduct electricity because they use 
up all the electrons to form stable orbits. However, there exists another 
class of compounds that are composed of definite proportions of two or 
more elemental metals and conduct electricity. ἀ ey have been referred 
to as intermetallic compounds and received great attention at that time, as 
they apparently involve loosely bound electrons. In 1925, x-ray studies by 
Westgren and Phragmén [11] revealed the structure analogies of succes-
sively appearing phases, including α-, β-, γ-, ε-, and η-phases in Cu-Zn, 
Ag-Zn, and Au-Zn systems, all of which were indeed typical of intermetal-
lic compounds. ἀ e collapse of the ordinary valency rules was mentioned. 
Nevertheless, no one in the mid-1920s could think of the style of metallic 
bonding, since it was before the birth of Schrödinger’s equation in 1926 
[12] and was certainly much earlier than the establishment of metallic 
cohesion by Wigner and Seitz [13] based on quantum mechanics in 1933.

In 1926, Hume-Rothery published the historic paper reporting the 
synthesis of various intermetallic compounds of Sn with reactive alkali 
and alkaline earth metals and pointed out that there was regularity in the 
occurrence of the structure in these alloys, though valency rules were not 
obeyed [14]. He noted with his own words in its PART III: “At first sight, 
there appears to be little connection between the formulae Cu5Sn, Cu3Al 
and CuZn, but examination showed them to possess one characteristic.” 
His finding can be now restated that, in spite of different stoichiometric 
ratios involved, these three compounds crystallize into a common struc-
ture of the body-centered cubic (bcc) with the possession of the same num-
ber of electrons per atom ratio e/a of 3/2. We know that this has become 
the basis for the later establishment of the Hume-Rothery electron con-
centration rule. ἀ e preceding work led him to receive his Ph.D. degree 
from the University of London in 1925.

Structure information was of course of vital importance in his conclu-
sions above. However, Hume-Rothery simply noted in [14] that the x-ray 
investigations had shown the Cu-Zn β-phase to possess the bcc structure. 
Regarding Cu-Al and Cu-Sn β-phases, he speculated them to be also 
bcc from indirect evidence on the relevant phase diagrams. Westgren 
and Phragmén were much stimulated by Hume-Rothery’s proposal and 
extended their x-ray studies in 1926–1928 to examine structure analo-
gies in Cu-Zn, Cu-Al, and Cu-Sn systems [15,16]. Moreover, they were 
the first to point out that the three gamma-brasses Cu5Zn8, Cu9Al4, and 
Cu31Sn8 appear to be stabilized at the common electron concentration e/a 
= 21/13, though the solute concentration, expressed in atomic percent, is 
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quite different among them [16–18]. ἀ is is one of the most significant 
contributions to the establishment of the Hume-Rothery electron concen-
tration rule over 1925 to 1929. More details about structural studies will 
be reviewed in the next section.

Hume-Rothery published another seminal paper in 1934 in collabo-
ration with his two research students, Mabbott and Channel-Evans [19]. 
ἀ ey revealed that the solid solution is limited, if the atomic diameter 
of the solute metal differs from that of the solvent metal by more than 
~15%. When a difference in atomic diameter is less than this, a wide solid 
solution formation is possible and subject to the influence of factors of an 
electronic origin. It is also shown that the maximum solid solubilities of 
B-subgroup elements in copper and silver alloys, when the size relation-
ship is favorable, are limited not by the solute concentration but by the e/a 
ratio of 1.4. ἀ is work demonstrated for the first time that details of alloy 
formation in certain solvents can be rationalized in terms of both atomic 
diameters and valencies. Both the size factor and electron concentration 
rules are summarized by him as the Hume-Rothery rules in the mono-
graph The Structure of Metals and Alloy originally published in 1936 [20], 
which covers not only the maximum solubility limit of α-phase at e/a = 
1.4 but also stability of β-, γ-, and ε-phases in the e/a range centered at 3/2, 
21/13, and 7/4, respectively, in noble metals alloyed with B-subgroup ele-
ments in the periodic table. Its schematic illustration was already shown 
in Figure 1.2.

ἀ e preceding work attracted considerable attention not only among 
metallurgists but also among physicists in the field of solid-state physics. 
Here, at this stage, we must mention the initiation of theoretical works on 
solid-state physics in England, which dates back to 1930, when Jones was 
employed to conduct the national project initiated at Bristol [21,22]. Jones 
in collaboration with Mott [23] could successfully interpret the empirical 
Hume-Rothery electron concentration rule on the basis of the free-elec-
tron model in the presence of the Brillouin zone.* ἀ e application of the 
Brillouin zone concept, being often cited as the Fermi surface–Brillouin 
zone (FsBz) interaction throughout the present volume, and the free-elec-
tron model appeared for a long time to account for empirical relationships 
discovered by Hume-Rothery very satisfactorily. More details about the 
theoretical developments will be described in Section 1.4.

* ἀ e concept of the Brillouin zone was established in 1930 by a French physicist L. Brillouin.
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Hume-Rothery continued to study the intermediate phases in great 
detail in different alloy systems, which occur at approximate e/a value of 
1.5. He revealed that the bcc structure is not the only one to occur at this 
electron concentration but close-packed hexagonal phases, referred to as 
the ζ-phase, frequently occur, and phases with β-manganese structure or 
the µ-phase are also found. Some alloy systems based on the noble metals 
contain two of these phases, whereas the Ag-Al system contains all three 
types. In 1940, Hume-Rothery and his collaborators [24] showed how 
the electronic factor was modified by the atomic size difference between 
the constituent elements and also the difference in electronegativity, ∆χ. 
Raynor, who followed Hume-Rothery ideas, could reveal the existence of 
many e/a-dependent phases in both binary and ternary alloy systems in 
1940s [25].

ἀ e theoretical basis of the experimental relationships has become 
somewhat clouded in late 1950s, when Pippard demonstrated in 1957 [26] 
that the Fermi surface of copper at e/a = 1.0 already makes a contact with 
the {111} zone planes of the Brillouin zone of the face-centered cubic lat-
tice. ἀ is was because Jones [27] assumed the Fermi surface of copper to 
be fully contained within the first Brillouin zone. So, the basis of the Jones 
interpretation was rendered doubtful. More details about the model of 
Jones will be described in Chapter 3. Hume-Rothery thought deeply about 
this and, in his papers in the 1960s, sought to reconcile the new knowl-
edge with the experimental relationships [28–31]. He noted [28] that “this 
later experimental work by Pippard could be regarded as a striking con-
firmation of Jones’s calculations but the price paid was a very heavy one, 
because the solubility limit of α-phase could no longer be associated with 
the region immediately after a peak on an N(E) curve. Further, the occur-
rence of the β-phase at an electron concentration of 1.5 could no longer be 
correlated with the peak on the body-centered cubic curve at e/a = 1.22. 
ἀ e whole position was one of great confusion.”

ἀ roughout his academic career, Hume-Rothery had always tried to 
interpret experimental data concerning the features of phase diagrams in 
terms of the basic properties such as the atomic size and the electron con-
centration. Hume-Rothery died on September 27, 1968, at the age of 69, 
and the problem his earlier work confronted and the difficulty of a proper 
interpretation of the electron concentration rule remained unsettled.

In 1960s–1980s, various physical properties, including the lattice 
constant [32], electronic specific heat coefficient [9], and positron anni-
hilation angular correlation curves [33,34] of noble metal alloys, were 
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systematically studied as a function of e/a. For example, the electronic spe-
cific heat coefficient, which is proportional to the density of states (DOS) 
at the Fermi level, was found to fall on universal curves for given phases 
only when plotted against e/a. Encouraged by this finding, Massalski and 
Mizutani [9] attempted to construct the Fermi surface of highly concen-
trated noble metal alloys on the basis of the FsBz interaction consistent 
with the observed e/a-dependent electronic specific heat coefficients. ἀ eir 
proposed Fermi surface was later confirmed by the positron annihilation 
angular correlation curves.

Concerning developments after 1980s till the present in relation to the 
Hume-Rothery electron concentration rule, we must point to works accu-
mulated in the field of quasicrystals. Following the discovery of a quasi-
crystal in Al-Mn alloy system by Shechtman et al. [35] in 1984, Tsai and 
his collaborators discovered a series of thermally stable quasicrystals in 
Al–Cu–TM (TM = Fe, Ru, Os) and Al–Pd–TM (TM = Mn and Re) systems 
over 1988 to 1991 by using the empirical Hume-Rothery electron concen-
tration rule as a guide [36,37]. ἀ ey assigned negative valencies to the TM 
constituent elements, as proposed earlier by Raynor [25] and pointed out 
that new quasicrystals could be synthesized by searching for alloys, whose 
average valency falls into e/a values in the vicinity of 1.8. ἀ eir works cer-
tainly stimulated both metallurgists and physicists not only to search fur-
ther for new quasicrystals along this line but also to reexamine the physics 
behind the Hume-Rothery electron concentration rule.

At this stage, we need to use up one paragraph to define briefly what 
quasicrystals and their approximants mean. A quasicrystal is defined as a 
solid satisfying the following conditions [38–40]: (1) the diffraction inten-
sities consist of an infinite number of the δ-functions, (2) the number of 
basic vectors is larger than that of its dimension, and (3) rotational sym-
metry forbidden in crystals is manifest in quasicrystals. To realize the 
preceding conditions, the introduction of the concept of a quasi-lattice 
has been successful, which is constructed on the basis of the so-called 
cut-and-projection method from a higher-dimensional space to three- or 
two-dimensional real space [38–40]. ἀ is method can generate not only 
its basic structure but also a crystalline structure having nearly the same 
local structure as that of a quasicrystal. ἀ e latter is specifically called an 
approximant to the quasicrystal. Approximants are, therefore, crystals 
containing generally many atoms over 100 to 1000 atoms in the giant unit 
cell and characterized by the possession of the local rotational symmetry 
similar to that in quasicrystals. Many intermetallic compounds having 
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been regarded as a CMA phase before the discovery of the quasicrystal 
have been newly identified as approximants described by the cut-and-
projection method from a higher-dimensional space. Readers are asked 
to consult excellent textbooks on the introduction to quasicrystals [39,40]. 
More details about approximants found in various alloy systems will be 
described in Chapter 6.

In 1988, Belin-Ferré and her associates [41] pointed out for the first time 
from the soft x-ray emission spectra for the Al-Mn quasicrystal that the 
DOS at the Fermi level is substantially depressed relative to not only pure 
Al but also both the Al-Mn crystalline and amorphous alloys and sug-
gested that this is a possible reason for a large enhancement in its resistiv-
ity. Independently, Fujiwara [42] theoretically revealed the presence of a 
depression in the DOS across the Fermi level by performing the linearized 
muffin-tin orbital (LMTO) band calculations for the Al-Mn approximant 
containing 138 atoms in its unit cell and suggested it to contribute to the 
stabilization of a quasicrystal. A depression in the DOS at the Fermi level 
has been called a pseudogap (see more details in Chapter 2, Section 2.3; 
Chapter 4, Section 4.2; Chapter 7, Section 7.2; etc.).* First-principles band 
calculations are not feasible for quasicrystals, in which the size of the unit 
cell is infinitely large and, hence, the presence of a pseudogap in quasi-
crystals has only been conjectured on the basis of experimentally observed 
data. However, first-principles band calculations have been performed for 
approximants, where the lattice periodicity is assured. It has now been 
generally established that the family of the CMA phases, including quasi-
crystals, is characterized in most cases by the existence of a pseudogap at 
the Fermi level in the corresponding electronic band structure.

Recent developments on various topics directly or indirectly related to 
the Hume-Rothery rules were well reviewed by outstanding researchers 
in physics and materials science and compiled in the two volumes pub-
lished from TMS (ἀ e Minerals, Metals & Materials Society) in 2000 [1] 
and 2005 [43].

1.3 hIstoRIcal suRvey of cRystallogRaphy
In 1912, Friedrich, Knipping, and Laue showed the first diffraction effect 
by a copper sulfate single crystal. Shortly after this, key papers on the 
explanation of the zinc-blende diffraction pattern and the formulation of 

* ἀ e concept of the “pseudogap” was first introduced by Mott [see N.F.Mott, Phil.Mag. 19 
(1969) 835] to discuss metal–insulator transition of expanded liquid mercury.
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the diffraction condition known as the Bragg law were published by W. L. 
Bragg (son) and William Henry Bragg (father) in 1913. Both W. H. Bragg 
and W.L.Bragg were jointly awarded the Nobel Prize in Physics in 1915 for 
their invention of the x-ray spectrometer and substantial contributions to 
the foundation of a new science of x-ray analysis of a crystal structure [44].

ἀ e powder diffraction method developed by Debye and Scherrer in 
Switzerland in 1916 and Hull in America in 1917 had been proved to be 
valuable in studies of elements and other materials. ἀ is approach had been 
taken up by Westgren in Sweden, whose laboratory had become one of the 
centers for the study of metals and alloys. In 1921, Westgren succeeded in 
obtaining funds for expanding the x-ray diffraction equipment with cam-
eras for powders in collaboration with Phragmén. Since then, they could 
substantially contribute to the establishment of the Hume-Rothery elec-
tron concentration rule, as described in detail in the following text.

In 1924, Jette, Phragmén, and Westgren [45] studied the Cu-Al alloys, 
in which a phase with the gamma-brass structure was revealed for the 
first time. In 1925, Westgren and Phragmén published the paper entitled 
“X-ray Analysis of Copper-Zinc, Silver-Zinc and Gold-Zinc Alloys” [11], 
in which three important conclusions were drawn: first, structure analo-
gies are revealed such that, with increasing Zn concentration, the face-
centered cubic α-phase is followed by β-, γ-, and ε-phases before ending 
with the Zn primary solid solution called the η-phase; second, owing to a 
significant difference in diffractive powers between constituent elements, 
the β-phase in Ag-Zn and Au-Zn was safely proved to crystallize in the 
CsCl-type structure; and, third, all the gamma-phases contain 52 atoms 
in the cubic unit cell. ἀ e CsCl-type structure was also suggested for the 
Cu-Zn β-phase, though its identification was difficult because of a negligi-
bly small difference in diffractive power between Cu and Zn.

At the Annual General Meeting in the Institute of Metals in London on 
March 11, 1926, Hume-Rothery [14] had called attention to the similarities 
between the β-phases of Cu-Zn, Cu-Al, and Cu-Sn systems, and had sug-
gested that these similarities were connected to the fact that the ratio of 
the number of valency electrons to the number of atoms in all three phases 
is 3:2. In the paper received by the Journal of the Institute of Metals on 
November 1925, Hume-Rothery [14] mentioned that the Cu-Zn beta-brass 
is body-centered cubic without any reference to the work by Westgren and 
Phragmén published on February 1925 [11]. We see that Hume-Rothery 
was apparently unaware of the x-ray diffraction studies by Westgren and 
Phragmén at that time.
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ἀ e gamma-brass, which is known as being typical of a CMA phase 
subjected to the Hume-Rothery electron concentration rule, has played 
a considerable role in the development of modern solid-state physics. As 
already mentioned in Section 1.2, Westgren and Phragmén pointed for 
the first time in 1926 to structural analogies among the Cu-Zn, Cu-Al, 
and Cu-Sn gamma-brasses [15]. In particular, they revealed that the 
Cu4Sn gamma-brass forms a super-lattice constructed by doubly stack-
ing the unit cell of the Cu-Zn or Cu-Al gamma-brass along the x-, y-, and 
z-directions and contains 416 atoms per unit cell with the lattice constant 
of 1.791 nm.

It was in 1926 that Bradley and ἀ ewlis [46] were able to determine 
all 52 atom positions of the gamma-brass in the Cu-Zn system, using the 
x-ray diffraction data taken by Westgren and Phragmén [11]. ἀ e chemi-
cal formulae Cu5Zn8, Ag5Zn8, and Au5Zn8 were established by their work 
(see Appendix 2, Section A2.2). ἀ ey also succeeded in determining 58 
atom positions in its unit cell of the α-manganese possessing a similarly 
complex structure even as an element [47]. In 1929, Bradley [48] further 
determined all 52 atom positions of the Cu-Al gamma-brass and described 
its atomic structure in terms of two different 26-atom clusters forming 
the CsCl-type structure with the chemical formula Cu9Al4. However, as 
already noted in Section 1.2, the first proposal on the e/a=21/13 rule for 
Cu5Zn8, Cu9Al4, and Cu31Sn8 gamma-brasses was made by Westgren and 
Phragmén one year earlier in 1928 [16–18].* Bernal in 1928 also analyzed 
the diffraction data of Cu-Sn gamma-brass single crystals and led to the 
chemical formula Cu41Sn11 by dividing 416 atoms in the unit cell into 328 
Cu and 88 Sn atoms to fit with the measured density [49]. ἀ is corresponds 
to 21.15 at.%Sn alloy, which is slightly richer in Sn than 20.5 at.%Sn for 
Cu31Sn8 suggested by Westgren and Phragmén [16,17].

It was in the 1926–1940 period that Bradley and his associates made 
significant contributions to studies of alloys and alloy phase diagrams in 
a series of papers [46–48,50,51]. Bragg saw the importance of his work 
and discussed it with a series of lecturers and visitors in the department 

* At that time, Bradley was apparently one of the very few researchers, who were able to refine 
the atomic structure of such CMAs with the accuracy that has hardly been surpassed even in 
present times. Westgren and Phragmén simply speculated the chemical formula Cu9Al4 from 
the composition they studied when they proposed the e/a = 21/13 rule for the gamma-brasses 
in 1928. A further confusion seems to exist regarding the e/a=21/13 rule. ἀ is is because 
Mott and Jones stated on page 170 in their book [23] as if Hume-Rothery were the first to 
claim the e/a = 21/13 rule for the gamma-brass in 1931.
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at Manchester [21]. Many physicists, including H. Jones, N. F. Mott, H. A. 
Bethe, and R. E. Peierls as well as the metallurgist W. Hume-Rothery, were 
among such visitors. ἀ e knowledge so gained enabled the empirical elec-
tron concentration rule to receive an explanation by Jones by introducing 
the concept of the Brillouin zones into the free-electron model. ἀ e mod-
els of Jones will be described as a main topic in Chapter 3.

It seems unwarranted to review here numerous numbers of crystallo-
graphic works on metals and alloys from 1940s up to present. Since the 
present monograph focuses on the stability mechanism of structurally 
complex metallic alloys, and primarily deals with the gamma-brasses 
and approximants as representatives, we shall only briefly mention in this 
section how crystallographic works on these CMAs have been making 
progress. From late 1960s to 1970s, Westman in Stockholm was guided by 
Westgren to the field of alloy chemistry and published with his cowork-
ers a large number of detailed structural data on many kinds of gamma-
brasses. Independently, Pearson and his group in Waterloo, Ontario, 
Canada, also carried out atomic structure determination of various 
gamma-brasses over 1970s. ἀ anks to great efforts by these two research 
groups, we can reliably use the atomic structure data for a large number 
of gamma-brasses. ἀ e details in individual systems will be surveyed in 
Chapter 6 and Appendix 2.

Similarly, the atomic structure of various approximants has been exper-
imentally determined for the last two decades. ἀ e data are again of vital 
importance to study the stabilization mechanism of such highly complex 
compounds in relation to the Hume-Rothery electron concentration rule 
and will be discussed in Chapter 6.

1.4 hIstoRIcal suRvey of physIcs
In the late 1920s, Carpenter at the Royal School of Mines in London, one 
of the foremost metallurgists and also known as a supervisor of Hume-
Rothery, strongly supported the view that theoretical work on the nature 
of metals and alloys should be encouraged in England. In February 1930, 
Lindemann, as head of the Clarendon Laboratory, Oxford, proposed that 
the theoretical research on metals and alloys should be undertaken as an 
alternative to the empirical metallurgical studies and that such pioneering 
works had already been attempted by Lennard-Jones in Bristol. ἀ e fund 
was finally awarded in 1930 to Lennard-Jones, who decided to employ 
Harry Jones as a research assistant to carry out a theoretical investigation 
of metals and alloys [21,22].
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Jones obtained a Ph.D. degree in experimental physics from Leeds but 
was also a former student of Professor Fowler, a theoretician working on 
statistical physics at the Cavendish Laboratory, Cambridge. Jones was 
selected as the best young physicist for the project, since he was famil-
iar with both experimental techniques and the knowledge of mathemati-
cal theory. In the autumn of 1930, he became an assistant to Professor 
Lennard-Jones at the University of Bristol and immediately began to study 
various papers on the electron theory of metals published by Bloch, Peierls, 
Brillouin, and Wilson. He was attracted by the concept of energy zones 
in the reciprocal space and considered the relation between the planes of 
energy discontinuity and the Bragg law to provide an opportunity of relat-
ing the theory to the properties of actual metals and alloys.

However, Jones encountered serious difficulty in the summer of 
1932, when Lennard-Jones left Bristol to accept the Chair of ἀ eoretical 
Chemistry at Cambridge. In spite of this development, he remained at 
Bristol. In 1933, Jones happened to attend a talk given by W. L. Bragg, a 
director of the physics laboratory at Manchester, on the structure of alloys. 
Bragg had been giving lectures to many visitors, emphasizing the pos-
sibilities opened up for the study of metals and alloys by x-ray structural 
crystallography. Jones was greatly impressed by his talk, in particular, 
about the structure of the gamma-brass and the empirical Hume-Rothery 
rules and began to think on whether any connection could be made with 
his approach based on the new quantum mechanics and electron theory 
of metals developed by Sommerfeld in 1928.

Jones realized that the most intense line in the x-ray powder diffraction 
spectrum of the gamma-brass should correspond to zone planes in the 
reciprocal space all at the same distance from the origin. By this, Jones 
had hinted that the zone formed by these planes might be related to the 
stability of the phase and its physical properties. In 1934, he successfully 
explained the observed large diamagnetic susceptibility in the Cu-Zn and 
Cu-Sn gamma-brasses by assuming that the Fermi surface must lie very 
close to the surface of discontinuity in the energies, and relying on the 
theory by Peierls, which was constructed on the basis of the Landau dia-
magnetism in metals [52]. Jones already noted in this paper that the num-
ber of electrons as given by Hume-Rothery’s e/a ratio of 21/13 occupies a 
volume somewhere between the volume of the inscribed sphere and the 
total volume of the Brillouin zone.

In the autumn of 1933, Mott joined the Department of ἀ eoretical 
Physics at Bristol as a successor of Lennard-Jones [22,53]. In his first month, 



16    ◾    hume-Rothery Rules for structurally complex alloy phases

Mott understood all that Jones told him about metals and mentioned to 
Bragg: “I think that metals are exciting and lots are to be done from the 
theoretical point of view.” Mott further recalled that “I need hardly say that 
my interest became even greater when, soon afterwards, I discussed these 
problems with Hume-Rothery himself, filled up with ideas” and admit-
ted to say that “it was Jones who, by providing a quantum mechanical 
explanation of the Hume-Rothery rules, essentially vindicated the appli-
cation of the new ideas to metallurgical problems, thereby convincing oth-
ers including Hume-Rothery of their superiority over classical models” 
[21]. It may be also noted that Mott and Jones were deeply influenced by 
the comprehensive report in the Handbuch der Physik by Sommerfeld and 
Bethe on the electron theory of metals published in 1933 [54].

In 1934, Jones used his ideas to account for the semimetal properties 
of bismuth. At the same time, he continued to work closely with Mott, 
who was stimulated by practical rather than purely theoretical consider-
ations. For example, a query by Bragg about the high reflecting power of 
alloys in the gamma-brass led Mott and Jones to study the whole subject of 
the energy distribution of conduction electrons in metals. Indeed, Jones, 
Mott, and Skinner [55] interpreted the soft x-ray emission spectra from the 
light metals Li, Be, Na, Mg, and Al measured by Skinner during his stay 
in the United States. ἀ is paper not only demonstrated the possibility of 
wave-functions changing type from s-like to p-like within a single valence 
band but also confirmed implicitly the physical reality of the Fermi distri-
bution of conduction electrons. 

ἀ e collaboration between Mott and Jones culminated in the publica-
tion of their highly influential textbook The Theory of the Properties of 
Metals and Alloys in 1936 [23], in which the stabilization mechanism of 
the gamma-brass was elegantly described in terms of the FsBz interaction. 
ἀ e publication of this book also marked the end of the first phase in the 
formation of the Bristol solid-state theory group. Jones took a major role in 
the first initiatives at Bristol in metal physics. However, he completed his 
last work at Bristol in 1937 on the electron theory of phase formation by 
calculating the electronic energies of the α- and β-phase Cu-Zn alloy sys-
tem [27], the details of which will be described in Chapter 3, and following 
a brief appointment at Cambridge, he accepted a readership in mathemat-
ics at Imperial College, London.

ἀ e development in electron theory of metals and alloys from 1940s 
up to now cannot be summarized only by a few paragraphs. Readers may 
be encouraged to consult the textbook published by the present author 
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in 2001 in case they encounter here unfamiliar terms and concepts while 
reading this monograph [38]. Before ending this section, a few words may 
be added. We consider a true understanding of the Hume-Rothery electron 
concentration rule to owe its origin to the development of self-consistent 
first-principles band calculations, the efficiency and reliability of which 
have been dramatically improved by the progress in computer science. 
In the present monograph, we have employed two first-principles band 
calculation methods: the LMTO-ASA (linear-muffin-tin orbital-atomic 
sphere approximation) and the FLAPW (full-potential linearized aug-
mented plane wave). ἀ e outline of these two methods will be described 
in Chapter 4, since they are definitely an indispensable tool to analyze the 
Hume-Rothery electron concentration rule in realistic metals and alloys.
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2C h a p t e r  

Chemical Bonding and 
Phase Diagrams in 
Alloy Phase Stability

2.1 cohesIve eneRgy of a solID
ἀ e cohesive energy of a solid refers to the energy required to separate 
constituent atoms from each other and bring them to an assembly of neu-
tral free atoms. Cohesive energies for elements in the periodic table are 
listed in Table 2.1 [1].* Among the elements, tungsten is known to possess 
the highest melting point as well as the highest cohesive energy, of 837 
kJ/mol. Alkali metals generally possess rather low cohesive energies, for 
instance, that of Na is 108 kJ/mol. ἀ e cohesive energy of solid Ar is merely 
7.7 kJ/mol.

Elements with metallic and covalent bonding are important to us. We 
see from Table 2.1 that their cohesive energies are distributed over the 
range 150–400 kJ/mol (Mg = 148, Al = 322, Si = 448, Ti = 469, Fe = 414, 
Cu = 338, Ag = 286, Au = 365, and Bi = 208 kJ/mol). ἀ ere are typically 
three bonding types for a solid: ionic, covalent, and metallic bondings. 
In an ideally ionic crystal, its cohesive energy can be calculated by sum-
ming up the electrostatic energy for an assembly consisting of ions with 
unlike charges. ἀ is is known as the calculation of the Madelung constant 

* ἀ e cohesive energy, total-energy, free energy of formation, and enthalpy of formation are 
expressed in units of kJ/mol, cal/mol, or eV/atom. We use units of either eV/atom or kJ/mol 
(1 eV/atom = 96.44 kJ/mol) in the present book.
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[1]. Since ionic bonding originates from electrostatic interaction, cohe-
sive energy can arise even without overlap of wave functions between the 
neighboring atoms and, hence, in the absence of formation of the valence 
band. However, any realistic ionic crystals are certainly not in such an 
ideal state but form the valence band through overlap of wave functions 
of the outermost electrons on neighboring atoms. For example, Gellat et 
al. (1983) [2] discussed the characteristic features of ionic crystals by per-
forming LMTO band calculations for PdF, PdB, and PdLi as compounds 
exhibiting both strong ionicity and covalency.

Degenerate orbital levels in the assembly of neutral atoms are lifted and 
split into the valence band through the orbital hybridization among neigh-
boring atoms upon the formation of a solid. ἀ e cohesive energy in both 
metallic and covalent bonding types is gained by lowering the total-energy 
relative to that of the assembly of free atoms. In these cases, it is mean-
ingless to evaluate potential energies classically in the same manner as in 
ionic crystals discussed earlier. We need to calculate the total-energy of a 
system in the presence of periodically arranged ionic potentials of a solid. 
First-principles band calculations are indispensable to evaluate the cohe-
sive energy in a solid, where metallic and covalent bondings are essential.

We will review metallic bonding briefly at this stage [3]. We take as a 
starting point that the free electron gas with negative charges is uniformly 
distributed in an array of potentials due to periodically arranged positive 
ions and that the total charge of the electrons is just large enough to can-
cel that of the ions. ἀ e electrostatic energy per atom, when the array of 
potentials forms a bcc lattice, reduces to

 ε0
2348

0

= − ( )r as /
kJ/mol  (2.1)

where rs  represents the average radius of the sphere that each free elec-
tron occupies in the space and a0  is the Bohr radius, which equals 0.0529 
nm [4]. In the case of Na, for example, the electrostatic energy amounts 
to ε0 600= − kJ/mol  by inserting its appropriate ratio r as o/ .= 3 91 into 
Equation 2.1.*

* ἀ e value of rs turns out to be 0.207 nm for Na by inserting its lattice constant a (= 0.422 nm) 
into the relation

 4
3 2

3
3π r a

s =



24    ◾    hume-Rothery Rules for structurally complex alloy phases

ἀ ere is another well-known method, due to Wigner–Seitz [5], to extract 
the potential energy contribution to the cohesive energy. ἀ e wave func-
tion of an electron propagating in a periodic lattice must be of the form 
ψ k

k r
kr r( ) ( )= ⋅e ui  as a Bloch wave [3]. Here, the wave vector k  specifies a 

quantized Bloch state, and uk r( )  is a periodic function satisfying the rela-
tion u uk kr r l( ) ( )= + , where l is the lattice vector. ἀ e electronic state with 
k = 0  refers to the energy state having a vanishing kinetic energy. Wigner 
and Seitz assumed the lowest energy state of the valence band to repre-
sent the contribution solely from the potential energy. ἀ e wave function 
obviously becomes ψ0 0( ) ( )r r=u , possessing the same symmetry as the 
lattice. A normal derivative of u0( )r  on the surface of the Wigner–Seitz 
cell of the bcc lattice must be zero, since u uk kr r l( ) ( )= +  holds. ἀ e 
Wigner–Seitz cell was approximated by a sphere of an equal volume, and 
the Schrödinger equation was solved under the condition

 d r
dr
ψ0 0( ) =

on its surface. Instead, the condition above for a free atom is satisfied only 
at an infinitely large distance. In this way, the difference in the energy 
eigenvalue between an electron at the bottom of the valence band in a 
metal and that in the free atom was calculated as a function of distance r. 
ἀ e result is shown as εo r( )  in Figure 2.1.

Let us suppose 1 mole of Na metal contains the Avogadro number 
of valence electrons. No more than two electrons can occupy the same 
quantum state due to the Pauli exclusion principle. As a result, the Fermi 
sphere is formed in the reciprocal space, and the kinetic energy is inevi-
tably increased. According to the free electron model, an average kinetic 
energy per electron is given by

 εkin F

s

E
r a

= =
( )

3
5

2903

0
2

/
kJ/mol  (2.2)

where EF  is the Fermi energy [3,4].* It amounts to εkin =190 kJ/mol  for 
Na metal. ἀ e kinetic energy is a quantity with a positive sign. Hence, 

* ἀe  Fermi energy refers to the energy of the highest-occupied electronic states at absolute 
zero. ἀ e Fermi level or chemical potential at absolute zero coincides with the Fermi energy.
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we see that the smaller the rs, the more unfavorable the metallic bond-
ing. ἀ e minimum appears at a particular distance ro in the total-energy 
given by the sum of Equations 2.1 and 2.2. ἀ e system is stabilized when 
the total-energy is lower than that of the assembly of free atoms. ἀ is 
is the mechanism of metallic bonding. ἀ e difference between the two 
energies is called the cohesive energy. ἀ e value ro  at the minimum cor-
responds to an equilibrium interatomic distance.* A variety of metallic 
phases are stabilized in nature by a mechanism unique to an individual 
system to lower the kinetic energy of electrons as much as possible (it 

* Rigorously speaking, one needs to take into account the electron–electron interaction prop-
erly in the evaluation of cohesive energy (see Chapters 4 and 5, and Reference 4).

E

kinetic energy per electron
εkin(r)

εI

ε0(r) + εkin(r)

lowest binding
energy ε0(r)

εc: cohesive energy

rminr0 r r

E

00

Na free atomNa metal

3 s
εI

fIguRe 2.1 Cohesive energy in metallic bonding. Na metal is used as an exam-
ple. ἀ e curve εo(r) represents the lowest energy of electrons of the wave vec-
tor k = 0, while the curve εkin represents an average kinetic energy per electron. 
εI represents the ionization energy needed to remove the outermost 3s electron 
in a free Na metal to infinity, and εc is the cohesive energy. ἀ e position of the 
minimum in the cohesive energy gives an equilibrium interatomic distance ro. 
[From U. Mizutani, Introduction to the Electron Theory of Metals (Cambridge 
Univ. Press, 2001).]
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is called the valence-band structure energy; more details are given in 
Chapter 5).

ἀ e cohesive energy in a solid with covalent bonding is also acquired 
in the same way as that with metallic bonding and arises from orbital 
hybridizations of wave functions among constituent atoms. For instance, 
Si crystallizes in a diamond structure in its solid state, and is known to 
be typical of a covalently bonded semiconductor with an energy gap of 
about 1 eV, but it becomes metallic upon melting. Its heat of fusion is 50 
kJ/mol and amounts to only 11% of the cohesive energy. ἀ is means that 
the difference in the cohesive energy between metallic and covalent bond-
ings is small, indicating that no essential difference exists between these 
two bonding mechanisms and that the energy involved in determining an 
ultimate structure is most likely at most several tens of kJ/mol, or about 
10% of the cohesive energy.

More details about the fundamental knowledge on bondings will be 
found in literature [1,3,4]. Let us now discuss the stability of an alloy phase 
from the viewpoint of thermodynamic considerations in terms of the free 
energy of formation, enthalpy of formation, and entropy of formation.

2.2  fRee eneRgy of foRmatIon anD 
enthalpy of foRmatIon

Suppose we prepare a solid solution (xA, xB) at absolute temperature T 
under a constant pressure P by mixing xA of component A and xB (= 1 – 
xA) of component B in an A-B alloy system. ἀ e free energy of formation 
or free energy of mixing ∆Gm  is given by the relation

 ∆ ∆ ∆G H T Sm m m= −  (2.3)

where ∆Hm  is the enthalpy of formation or heat of mixing and ∆Sm  is 
the entropy of formation or entropy of mixing [6]. Instead of the cohesive 
energy, we discuss now the energy and entropy relative to those of pure 
metals A or B. In other words, thermodynamic quantities obtained by a 
composition-weighted average of relevant values of constituent pure ele-
ments are taken as a reference state in Equation 2.3. An equilibrium phase 
diagram can be understood by studying both temperature and compo-
sition dependences of these thermodynamic quantities. An alloy will be 
formed by mixing the atomic species A and B in proportion to respective 
concentrations xA and xB, provided that ∆Gm  is negative under given tem-
perature and composition.
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Figures 2.2 and 2.3 show the composition dependence of thermody-
namic quantities at 1173 K in Au-Ni and at 1625 K in Ni-Pt alloy systems, 
respectively [7,8]. All thermodynamic quantities ∆Gm , ∆Hm , and ∆Sm  
become zero at both ends of the composition axis. ἀ e enthalpy of for-
mation ∆Hm  is positive in the Au-Ni system. At low temperatures, the 
entropy term in Equation 2.3 is so small that ∆Gm  becomes positive. 
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Binary Alloys (ASM International, OH, 2000)] and (b) heat of mixing ∆Hm  and 
free energy of mixing ∆Gm  at 1173 K. [From B.L. Averbach, A. Flinn and M. 
Cohen, Acta Met. 2 (1954) 92].
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[From R.W. Swalin, Thermodynamics of Solids (Second edition, John Wiley & 
Sons, New York, 1972).]
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Hence, as can be seen in Figure 2.2a, the decomposition into two phases 
takes place at low temperatures. But a solid solution is formed when ∆Gm< 
0 at high temperatures as a result of an increase in the second term T Sm∆  
in Equation 2.3. ἀ e value of ∆Hm  at x = 0.5 in Figure 2.2b takes its maxi-
mum of 11.7 kJ/mol, being merely 3% of the cohesive energy of pure ele-
ments such as Au. In contrast, as shown in Figure 2.3, a complete solid 
solution is formed over a whole temperature range in the Ni-Pt alloy sys-
tem, since ∆Hm < 0 .

As far as stability at absolute zero is concerned, we can discuss it in 
terms of ∆Hm , since no entropy term exists.* ἀ e value of ∆Hm  has been 
evaluated by a large number of theoretical and experimental methods and 
distributed over a wide range covering from only ± a few up to ±100 kJ/
mol, depending on the alloy system chosen. In the pair potential approach, 
∆Hm  of an A-B alloy is given by

 ∆H P H H Hm AB AB AA BB= − +( )





( )

1
2

 (2.4)

where HAA , HAB , and HBB  represent mean potentials associated with 
three types of atom pairs A-A, A-B, B-B, respectively, and P AB( )  is the 
number of the atom pair A-B [6]. If HAB  is smaller than the average of 
HAA  and HBB , ∆Hm < 0  and, hence, a solid solution will be formed.

Miedema and his collaborators constructed the macroscopic atom 
(MA) model and evaluated the heat of mixing ∆Hm  for hypothetical 
intermetallic compounds AX5, AX4, AX2, A3X5, A2X3, AX, A3X2, A5X3, 
A2X, A3X, and A5X in an A-X binary alloy system containing the 3d-, 4d-, 
and 5d-transition metal element [9]. In the MA model, the value of ∆Hm 
is calculated by using two parameters: one associated with the difference 
in electronegativities between elements A and X and the other with the 
difference in the charge density on the boundary of the Wigner–Seitz cell. 
ἀ e Miedema model is known to provide fairly accurate data for ∆Hm  not 
only in sign but also in absolute value. However, it is not based on first-
principles electronic structure calculations, so one cannot pursue band 
structure effects, such as the effect of a pseudogap on its stability.

* In principle, the formation of an alloy is possible at absolute zero when ΔHm < 0. According 
to the third law of thermodynamics, however, entropy, including the configuration entropy, 
should vanish at absolute zero. Hence, any alloy with chemical disorder or structural disor-
der remains metastable at T = 0.
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Miedema and his coworkers examined binary phase diagrams consist-
ing of two transition metal (TM) elements and pointed out that the num-
ber of intermetallic compounds existing in the resulting phase diagram 
increases from zero to five when the heat of mixing of a 1:1 stoichiomet-
ric compound is increased in a negative direction. As is clearly shown in 
Figure 2.4, we see that the more negative the enthalpy of formation of the 
1:1 compound, the more intermediate phases can exist [9]. Figure 2.5 is 
another demonstration, showing that the number of intermediate phases 
increases from one to three and to five, with increasing heat of mixing in 
a negative direction as ∆Hm = 0 , −37, and −75 kJ/mol at xB = 0.5. ἀ e most 
important message in this argument is that the difference in the heat of 
mixing amounts to only 5–20 kJ/mol when several intermediate phases 
compete with one another in a given alloy system, indicating that the 
energy difference involved in the competition between the two neighbor-
ing phases is fairly small.

2.3  KInetIc eneRgy of electRons anD 
the Role of the pseuDogap

ἀ e average kinetic energy per electron for pure Cu becomes εkin =
405 kJ/mol , if its Fermi energy of 7.0 eV is inserted into Equation 2.2. 
Instead, a rough estimate of the potential energy using Equation 2.1 
amounts to −880 kJ/mol  for pure Cu. Hence, we see that the kinetic 

+5 > ∆Hm > 0 

0 > ∆Hm > –4 

–4 > ∆Hm ≥ –10 

–10 ≥ ∆Hm > –20 

–20 ≥ ∆Hm > –40 

–40 ≥ ∆Hm > –75 

–75 > ∆Hm

0 1 432 5

fIguRe 2.4 ἀ e number of intermetallic compounds existing in the phase dia-
gram increases with increasing the heat of mixing ∆Hm  to form an AB inter-
metallic compound in an A-B intertransition metal alloy system. [From F.R. de 
Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and A.K. Niessen, Cohesion in 
Metals (North-Holland, 1988).]
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energy of electrons should play a critical role in cohesive energy. Since 
the kinetic energy, positive in sign, acts against cohesive energy increase, 
nature often devises a mechanism to lower the kinetic energy of a given 
system as much as possible (see Section 5.2).

We have so far compared various energies relevant to phase stability 
and are ready to discuss the mechanism that lowers the kinetic energy of 
electrons by forming a pseudogap across the Fermi level. We consider it 
most important to learn how much energy can be lowered through the for-
mation of a pseudogap at the Fermi level. To grasp its essence, we assume 
the valence band to be approximated by a density of states (DOS) of a rect-
angle, as shown in Figure 2.6a [10]. ἀ e Fermi level EF and the DOS at the 
Fermi level, N(EF), are set to 7.0 eV and N(EF) = 0.21 states/eV.atom appro-
priate to pure Cu in the free electron model, respectively. First-principles 
band calculations performed for various approximants have revealed that 
the depth of a pseudogap at the Fermi level is generally about 20–60% that 
of the free electron DOS and that the width of the pseudogap is extended 
over the range ∆E  = 500–1500 meV (see Section 7.2). Let us assume that a 
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fIguRe 2.5 ἀ e number of intermediate phases increases from unity up to five 
as the heat of mixing ∆Hm  increases in a negative direction from zero, −37 to −75 
kJ/mol in an A-B binary system. ἀ e abscissa represents the concentration of the 
element B. [From F.R. de Boer, R. Boom, W.C.M. Mattens, A.R. Miedema, and 
A.K. Niessen, Cohesion in Metals (North-Holland, 1988).]
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pseudogap with the height H is formed at the Fermi level on the rectangu-
lar DOS with the height H0, as illustrated in Figure 2.6b. In order to create 
a pseudogap, we have to deplete electrons equal to 0 21 1 0. ( / )× − ⋅H H E∆  
states/atom from the area (A). For the sake of simplicity, the depleted elec-
trons are uniformly redistributed into the DOS below the pseudogap, as 
marked by the symbol (B). ἀ e resulting gain in the kinetic energy is cal-
culated by using the relation shown in the footnote.*

As shown in Figure 2.7, the electronic energy is lowered by 30–60 kJ/mol 
if a pseudogap 500–1000 meV wide is formed across the Fermi level. ἀ is is 
large enough to stabilize one phase relative to competing phases. However, 
if a pseudogap is formed near the bottom of the valence band, the reduc-
tion in the electronic energy would be limited to only a few kJ/mol. As is 
clear from the above argument, electronic energy is most effectively low-
ered when a pseudogap is formed at the Fermi level.

Before ending this section, several examples of a system being stabi-
lized by forming either a true or a pseudogap across the Fermi level are 
given. Different mechanisms act to generate a pseudogap below.

 1. ἀ e presence of four outermost electrons in the free atom of Si and 
Ge facilitates formation of covalent bonding upon solidification into 
a diamond structure. ἀ at is, half-filled outermost electrons around a 
given atom tend to share the orbital with those of neighboring atoms. 
ἀ e resulting orbital hybridizations split the band into bonding and 
antibonding states and allow electrons to fill only the bonding states, 
resulting in an energy gap of about 1 eV across the Fermi level in Si. 
ἀ e formation of a true gap contributes to lowering the heat of mix-
ing and stabilizing the diamond structure. As mentioned above, a 
gain in the cohesive energy relative to that of liquid Si in the metallic 
state is about 50 kJ/mol.

 2. Some metals such as Al, V, Pb, etc., in the periodic table undergo 
the superconducting state at low temperatures by opening an energy 

* A reduction in the electronic energy ΔU is calculated by using the relation:

 ∆ ∆
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∆
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∫
 where N0(E) = H0 = 0.21 states/eV.atom, ΔN(E) is an increment in DOS due to transfer of 

depleted electrons (marked with (B)) and Npg(E) = 0.21(H/H0) states/eV.atom. A simple 
manipulation leads to the relation ΔU [kJ/mol] = 70.88 ΔE [eV] × (1 – (H/H0)).
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gap of 0.5–1 meV at the Fermi level. ἀ is is brought about by forma-
tion of the Cooper pair electrons. ἀ e superconducting energy gap 
is much smaller than the gap shown in Figure 2.6. According to the 
BCS theory, a gain in the cohesive energy for Al upon superconduct-
ing transition amounts to

 
k T

E
B c

F

( )
= × −

2

92 4 10. eV/electron

  or 7 7 10 8. × − kJ/mol  [3]. A small energy involved in the transforma-
tion explains why the superconducting transition is generally very 
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fIguRe 2.6 (a) DOS of Cu approximated by a rectangle with a height H0. Free 
electron values are assigned to the Fermi level and the height of DOS at the Fermi 
level [from U. Mizutani, MATERIA (in Japanese), 45 No. 8 (2006) 605–610]. As 
a result, 1.4 electrons per atom are accommodated below the Fermi level. (b) 
A pseudogap with ΔE in width and H in height is created at the Fermi level. 
Depleted electrons in (A) are assumed to be uniformly redistributed over a whole 
valence band, as marked with (B).
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low, like that of 1.19 K for pure Al. See more basic information on 
superconductivity in Reference 3.

 3. A highly anisotropic organic molecular metal characterized as 
a pseudo-one-dimensional conductor is known to be stabilized 
through the so-called Peierls transition [11]. Charge-density waves 
or spin-density waves are excited by formation of a periodic modula-
tion through lattice deformation. As a result, a pseudogap is formed 
across the Fermi level and contributes to lowering the electronic 
energy. For example, K2Pt(CN)4Br0.3 ・3.2H2O, an inorganic com-
pound known as KCP, opens a gap of 100 meV at the transition tem-
perature of 189 K [11].
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3C h a p t e r  

Early Theories of 
Alloy-Phase Stability

3.1  mott-Jones moDel foR alpha-, 
Beta-, anD gamma-BRasses

In the book published by Mott and Jones in 1936, they discussed how to 
approach the Hume-Rothery electron concentration rule by referring to 
the gamma-brass phase, which occurs at the ratio of 21 valence electrons 
to 13 atoms: the value of e/a is obviously equal to 21/13 for both Cu5Zn8 
and Cu9Al4 gamma-brasses [1]. ἀ ey assumed that the free energy against 
solute concentration would suddenly increase, as the concentration passes 
across the boundary of the phase and that it would be most likely caused by 
an increase in the electronic energy at absolute zero. ἀ ough they admit-
ted that no precise calculation had yet been carried out, they proposed its 
critical concentration to be estimated from the FsBz interaction for a given 
phase. ἀ ey tried to explain its mechanism by using a schematic DOS 
curve, as reproduced from [1] in Figure 3.1. A round maximum “A” with 
a subsequent rapid declining slope in the DOS was attributed to the FsBz 
interaction. When the Fermi surface approaches and touches the Brillouin 
zone planes, they could naturally assume a grad E in the energy dispersion 
to become very small and, hence, the DOS to be sharply enhanced. ἀ ey 
considered the electronic energy of a system to rise rapidly, once electrons 
fill up the band to just beyond the point A, as shown by the shaded area. 
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Note that Figure 3.1 was schematically drawn without specifying any par-
ticular FsBz interaction.*

ἀ e critical number of electrons per atom, ( / )e a c , was simply calcu-
lated in the free electron model under the assumption that it is given by 
the number of electrons filling a sphere inscribed to the Brillouin zone. 
ἀ e values of ( / )e a c  for the alpha-, beta-, and gamma-brasses are 1.362, 
1.480, and 1.538, respectively, as illustrated in Figure 3.2. ἀ ese values are 
indeed not too far from values of 1.4, 3/2, and 21/13 (=1.615) in the empiri-
cal Hume-Rothery electron concentration rule. ἀ is is one of the most 
important conclusions advanced by Mott and Jones in 1936. Obviously, 
these numbers were simply calculated in the free electron model in the 
presence of the Brillouin zone having a vanishing energy gap for the three 
crystal structures. ἀ is is a very simple model but did grasp in essence the 
physics involved. Its importance will be emphasized in Chapter 11.

3.2 the moDel of Jones (I)
In 1937, Jones attempted to interpret the phase competition between the 
α- and β-phases in the Cu-Zn system within the framework of the two-
wave approximation in the nearly free electron (NFE) model [2]. He essen-
tially made a comparison of the valence-band structure energies between 
the face-centered cubic (fcc) and body-centered cubic (bcc) Cu as a func-
tion of electron concentration e/a in the context of the rigid-band model, 
which assumes that the addition of Zn to increase e/a does not change 
the DOS of the parent Cu with the fcc and bcc structures. ἀ e DOSs of 

* Mott and Jones [1] did not explicitly mention how the round maximum “A” in the DOS was 
derived. As will be discussed in Chapter 3, Section 3.2 (see Figures 3.3 and 3.4), Jones later 
replaced it by a sharp cusp derived from the nearly-free electron (NFE) model, which was 
formulated by Bethe in 1928. See Figure 5.10 (a), where more realistic DOSs calculated from 
first-principles band calculations are shown.

E

A

N
(E

)

fIguRe 3.1 DOS in the Mott-Jones model [from N.F. Mott and H. Jones, The 
Theory of the Properties of Metals and Alloys (Oxford University Press, England, 
1936)]. A symbol “A” indicates the peak in the DOS.
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the valence band for the fcc- and bcc-Cu calculated by Jones are repro-
duced in Figure 3.3a, along with the e/a dependence of the valence-band 
structure energy difference in Figure 3.3b, which will be described later. A 
large cusp found in the respective DOSs represents the so-called van Hove 
singularity, which Jones believed to be responsible for the interpretation of 
the Hume-Rothery electron concentration rule.* Note that the parameter 
e/a but not VEC can be directly obtained by integrating the DOS shown 
in Figure 3.3 in the model of Jones (I).

By applying the NFE model, Jones could express the energy of the 
valence electron in the neighborhood of the center of the zone boundary 
by equations:
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* ἀ e anomaly in the DOS caused by the FsBz interaction is referred to as the van Hove 
singularity.
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fIguRe 3.2 ἀ e FsBz interaction in the Mott and Jones theory. A critical value 
of ( / )e a c  is obtained when the spherical Fermi surface touches the zone plane 
of the respective Brillouin zones: (a) the principal symmetry points L in the fcc 
Brillouin zone, (b) the principal symmetry points N in the bcc Brillouin zone, and 
(c) the symmetry points N330 and N411 in the Brillouin zone for the gamma-brass 
structure. Note that the distance from the origin to the points N330 and N411 is the 
same and equal to 18 2/  in units of 2π / a, where a is the lattice constant.
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and

 α = −1 4E Eo /∆  (3.2)

where m is the mass of the free electron and   is the Planck constant 
divided by 2π , kz-axis is chosen perpendicular to the Brillouin zone plane 
in the reciprocal space and passes through its center ( , , )0 0 ko , Eo is the 
free electron energy at the point ( , , )0 0 ko , ∆E  is the energy gap across 
the zone plane, and x, y, and z are normalized variables with respect to ko. 
ἀ e point ( , , )0 0 ko  refers to the principal symmetry points L and N at the 
center of the {111} and {110} zone planes in the Brillouin zone of the fcc 
and bcc lattices, respectively. Equation 3.1 indicates that the free electron 
behavior is maintained, as far as the electronic states (x, y, z) are away from 
( , , )0 0 1 , but, as z approaches unity, the effect of the zone boundary is pro-
gressively increased through the term α connected to the energy gap. ἀ is 
is a well-known feature in the NFE model [3].

In the case of the fcc alpha-phase, Jones took into account only the effect 
of the {111} zone in Equation 3.1. Hence, one can immediately understand 
the cusp at about 6.6 eV in Figure 3.3a to be caused by the contact of the 
Fermi surface with the {111} zone planes of the fcc Brillouin zone. Jones 

(a) (b) 

EF  

fcc-Cu 

bcc-Cu 

fIguRe 3.3 (a) DOS derived from the model of Jones (I) for the fcc- and bcc-
Cu. (b) e/a-dependence of the valence-band structure energy difference between 
these two phases in the Cu-Zn alloy system. [From H. Jones, Proc. Phys. Soc. 49 
(1937) 250.]
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adopted the energy gap across the {111} zone planes to be 4.1 eV for pure 
Cu and assumed it to remain unchanged throughout the α-phase. It hap-
pened that the Fermi level is located just at the {111} peak for pure Cu by 
filling one electron per atom into the DOS thus calculated.

ἀ e determination of the DOS for the hypothetical bcc-Cu is inevita-
bly uncertain. As can be seen in Figure 3.3a, the two DOSs are identi-
cal to each other in the parabolic region, indicating the validity of the 
free-electron model. ἀ e DOS in the free-electron model is expressed in 
the form [3]:

 D E V m Ea( )
/

=









2

2
2 2

3 2

π 
 (3.3)

where D E( )  represents the DOS and Va  is the volume per atom. A perfect 
coincidence of two parabola over the energy range below about 5 eV for 
the fcc- and bcc-Cu shown in Figure 3.3a indicates that Jones implicitly 
assumed V Va

fcc
a
bcc=  in Equation 3.3.

ἀ e volumes per atom Va  in fcc and bcc lattices are obviously given by 
a fcc

3 4/  and abcc
3 2/ , respectively, where a is the lattice constant. ἀ e pre-

ceding condition immediately leads to the relation:

 a afcc bcc= 21 3/  (3.4)

However, there is no guarantee in validating relation 3.4, though its 
assumption is critically important to allow Jones to attribute the valence-
band structure energy difference solely to the difference in the van Hove 
singularities. As discussed in Chapter 5, first-principles band calculations 
generally do not assume relation 3.4 and, instead, the lattice constant is 
determined so as to minimize the total-energy. Indeed, the FLAPW band 
calculations for fcc- and bcc-Cu reveal that the relation (3.4) is fairly well 
satisfied but is not absolutely obeyed (see Chapter 5, Section 5.2).

ἀ e van Hove singularity in the bcc-Cu is caused by the contact of the 
Fermi surface with the {110} zone planes. As can be seen in Figure 3.3a, the 
{110} peak in the DOS of the bcc-Cu is located about 1 eV at higher energy 
than the {111} peak in the fcc-Cu. ἀ is is essential in the model of Jones to 
account for the e/a-dependent stability of the α- and β-phases. ἀ e reason 
why the {110} peak of the β-phase appears at higher energy relative to the 
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{111} peak of the α-phase can be easily understood by using Equation 3.4. 
First of all, Jones assumed the energy gap across {110} zone planes in bcc-
Cu to be the same as that across the {111} zone planes in fcc-Cu, though 
this is merely an assumption. Now, the distances from the origin to the 
center of {111} and {110} zone planes are given by π 3 5 441/ ( . / )a afcc fcc=  
and π 2 4 442/ ( . / )a abcc bcc= , respectively, [3]. Since we have the relation 
(3.4), the latter in the bcc-Cu is rewritten as 5 596. / a fcc . ἀ is is obviously 
longer than that in the fcc-Cu. We see that the relative position of the 
van Hove singularities for the fcc- and bcc-Cu shown in Figure 3.3a was 
derived under such crude assumptions.

Jones tried to explain the α/β phase transformation by calculating the 
valence-band structure energy U of the respective phases. ἀ e value of U is 
calculated by integrating the DOS shown in Figure 3.3a times energy E up 
to the energy corresponding to the highest occupied states. ἀ e valence-
band structure energy difference between these two phases, ∆U , is given 
as a function of e/a by

 ∆U ED E dE ED E dEfcc

E

bcc

Efcc bcc

( / ) ( ) ( )e a = −∫ ∫
0 0

 (3.5)

where the upper limit of the integral E fcc  or Ebcc  is the energy for fcc or 
bcc phases when the same number of electrons is filled into the respective 
DOSs shown in Figure 3.3a. Hence, E fcc or bcc  is directly linked with the 
variable e/a through the relation:

 e a/ ( )= ∫ D E dEfcc

E fcc

0

 (3.6a)

and

 e a/ ( )= ∫ D E dEbcc

Ebcc

0

 (3.6b)

ἀ e resulting e/a dependence of the valence-band structure energy differ-
ence ∆U U U= −α β  is plotted in Figure 3.3b. ἀ e difference is negative up 
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to about e/a = 1.45 as a result of a rapid increase in the fcc-DOS due to the 
{111} peak. However, when e/a is increased above about 1.2, the bcc-DOS 
can accommodate more electrons than the fcc-DOS, since the fcc-DOS 
begins to sharply drop, whereas the bcc-DOS is still increasing due to the 
approach to the {110} peak. As can be seen in Figure 3.3b, the valence-band 
structure energy of the β-phase becomes lower than that of the α-phase 
above about e/a = 1.45. ἀ is beautifully explained the Hume-Rothery 
electron concentration rule concerning the α/β phase transformation. We 
see from Figure 3.3b that the magnitude of ∆U  involved is merely of the 
order of ± × −1 10 2 eV/atom  or ±1 kJ/mol .

As mentioned in Chapter 1, the difficulty in the model of Jones was 
seriously recognized only after Pippard discovered the neck in the Fermi 
surface of pure Cu in 1957 [4]. As described earlier, there exist many unjus-
tified assumptions in the model of Jones, which were made to conveniently 
account for the Hume-Rothery rule. Among them, we must note here only 
the most fundamental difficulties in the model of Jones:

 1. ἀ e model is not consistent with the possession of the neck in the 
Fermi surface contour of pure Cu. ἀ e drawback originated from the 
choice of e/a as the electron concentration parameter. In first-princi-
ples band calculations discussed after Chapter 4, the integration of the 
DOS naturally results in VEC, which includes not only s- and p-elec-
trons but also d-electrons forming the valence band. ἀ e parameter 
VEC instead of e/a should be employed in realistic electronic struc-
ture calculations to take into account the d-electron contribution.

 2. ἀ e application of the rigid-band model for alpha- and beta-phase 
Cu-Zn alloys is too naïve to be justified. As we discussed in Chapter 
2, we have to discuss a very subtle energy difference of only a few to 
a few tens kJ/mol or a few hundreds meV/atom between two compet-
ing phases. At present, we can say that the accuracy in first-princi-
ples band calculations for a perfectly periodic system has reached the 
level of satisfaction. In the case of disordered alloys, the coherent-
potential approximation (CPA) and average t-matrix approximation 
(ATA) have been developed as a tool available to describe their elec-
tronic structures. Indeed, the composition dependence of the Fermi 
surface properties, optical properties and angle-resolved photoemis-
sion spectra in noble metal alloys has been successfully explained 
[5–8]. However, to the best of knowledge, the application of the CPA 
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technique to the discussion on the phase stability like that between 
the alpha- and beta-phase Cu-Zn alloys with the accuracy of detect-
ing ∆U  of only a few kJ/mol has not been successfully made. ἀ is is 
partly because an imaginary part of the Bloch wave vector cannot be 
ignored in a disordered alloy, which certainly gives rise to the smear-
ing of fine structures in the DOS and masks the van Hove singulari-
ties. At present, a practical compromise to work on a concentrated 
alloy would be a choice of a rigid-band model or the virtual crystal 
approximation (VCA) or the super-cell approximation.*

3.3 the moDel of Jones (II)
It may be worthwhile mentioning at this stage another model of Jones 
for the competition of the two relevant phases. As shown in Figure 3.4, 
Jones (1962) discussed the phase competition in terms of the DOS curve 
characterized by the van Hove singularity near the Fermi level relative to 
the free-electron-like monotonic DOS [9]. He again assumed the range of 
stability to be determined solely by the difference between the respective 
valence-band structure energies of two phases 1 and 2 in the same way as 
given by Equations 3.5, 3.6a, and 3.6b:

 ∆U U U D E EdE D E EdE
E E

= − = −∫ ∫1 2 1

0

2

0

1 2

( ) ( )  (3.7)

where E1  and E2  are linked with a given e/a value through the relation:

 e a e a/ ( ) ; / ( )= =∫ ∫D E dE D E dE
E E

1

0

2

0

1 2

 (3.8)

* ἀ e VCA assumes a perfectly periodic array of ionic potentials given by Valloy = cAVA + 
(1 – cA)VB for an A-B alloy, where cA and VA are the concentration of the atom A and its 
potential, respectively. ἀ e VCA model is claimed to be reasonable when the elements A and 
B are close to each other in the periodic table. ἀ e super-cell approximation for an A-B alloy 
distributes cA% of the atom A and cB% of the atom B randomly in a super-cell, say, containing 
100 atoms per unit cell. Now a system having the super unit cell is perfectly periodic and, 
hence, first-principles band calculations based on the Bloch theorem in the reciprocal space 
can be performed.
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ἀ e first derivative of Equation 3.7 with respect to e/a is given by
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which shows that, at any given e/a, ∆U  between the two competing phases 
changes at a rate equal to the difference in their respective maximum 

P Q T

S

N(E)

R

Phase 2

Phase 1

∆U

U

U free   (e
/a)5/3

0 S

S

Se/a

d(∆U)/d(e/a)

d2(∆U)/d(e/a)2

curvature of ∆U

P Q R

0– +

+0–

P

P

Q

Q

R

R

e/a

E

e/a

Inflection
point

fIguRe 3.4 Schematic illustration of the model of Jones (II) for the competition 
between phases 1 and 2 [from T.B. Massalski and U. Mizutani, Prog. Mat. Sci. 22 
(1978) 151]. ἀ e van Hove singularity in Figure 3.3a derived from the NFE model 
for the fcc or bcc phase is assumed for phase 1, whereas the free electron-like 
monotonic DOS is assumed for phase 2.



46    ◾    hume-Rothery Rules for structurally complex alloy phases

energies E1  and E2  appearing as an upper limit of Equations 3.7 and 3.8. 
Similarly, the second derivative becomes
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= ( ) − ( ) = ( ) −e a e a e a/ / / DD E2 2( )  (3.10)

It follows that the relative stability of an alloy phase will be enhanced if 
the DOS curve involves a large peak and a subsequent rapidly declining 
slope like in Figure 3.3a, while that of the competing phase is fairly mono-
tonic in a given e/a range. ἀ is is illustrated in Figure 3.4 [10]. ἀ e DOS 
in phase 1 increases above the free-electron-like parabolic DOS, when the 
Fermi surface approaches the Brillouin zone (portion SP in Figure 3.4), 
and then decreases following the contact at point P (portion PR). At point 
R, areas SPQ and QRT are equal and hence E E1 2= . ἀ e difference ∆U 
reaches its largest value and the ∆U versus e/a curve shows a minimum 
at R, which is to the right of P on the energy scale. It is important to real-
ize that the minimum in the energy difference curve is reached not at the 
contact point P but at the point R on the decreasing slope of the DOS past 
the peak. ἀ is means that Jones implicitly proposed to shift the position 
of the Fermi level a bit further to the right of the peak “A,” namely, near 
the minimum of the DOS in Figure 3.1. In our current terminology, this 
is nothing but the location of the Fermi level on a declining slope toward 
the bottom of a pseudogap.

A monotonic DOS was used as a competing phase in Figure 3.4 just 
to simplify the situation. ἀ ough the e/a was employed as an electron 
concentration parameter in the model of Jones (II), we can equally apply 
Equations 3.7 to 3.10 by using the VEC as an electron concentration param-
eter for any two realistic phases involving a d-band. In Chapter 5, we will 
try to interpret the α/β-phase transformation in the Cu-Zn alloy system 
by making full use of the electronic structure derived from the FLAPW 
band calculations for fcc- and bcc-Cu and the model of Jones (II).
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4C h a p t e r  

First-Principles Band 
Calculations Using the 
Muffin-Tin Potential

4.1  fIRst-pRIncIples BanD calculatIons veRsus the 
hume-RotheRy electRon concentRatIon Rule

As discussed in Chapter 3, the pioneering theory put forward by Mott and 
Jones in 1936 [1] certainly served as a milestone in establishing a basic idea 
for interpreting the Hume-Rothery electron concentration rule, which 
relates phase stability to the Fermi surface. However, since the discovery of 
the neck in the Fermi surface contours of pure Cu by Pippard in 1957, one 
could not help but recognize that the free-electron model Mott and Jones 
relied on is far from being satisfactory. Needless to say, the presence of 
the neck in pure Cu cannot be reproduced from the free-electron model.* 
Moreover, recent research after the 1990s on the stability of quasicrystals 
and their approximants, discovered by using the Hume-Rothery electron 
concentration rule as a guide, has gradually built up a general consensus 
such that the stability of such structurally complex metallic alloys (CMAs) 
is also most likely a consequence of lowering the electronic energy brought 

* ἀ is does not mean that the free-electron model is of no use. Instead, we will emphasize at 
the very end of conclusions in Chapter 11 that the Mott and Jones theory based on the free 
electron model did grasp the essence behind the Hume-Rothery electron concentration rule 
in many CMAs.
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about by the development of a deep pseudogap at the Fermi level. Since a 
pseudogap cannot be generated from the free-electron model, first-princi-
ples band calculations must be employed as a key tool to evaluate quantita-
tively the valence band structure and to show why a pseudogap is formed 
near the Fermi level in CMAs.

ἀ ere are two possible mechanisms for the formation of a pseudogap at 
the Fermi level: orbital hybridizations and Fermi surface-Brillouin zone 
(FsBz) interactions. We will explain in this Chapter 4 why the LMTO-
ASA (Linear Muffin-Tin Orbital-Atomic Sphere Approximation) method 
is best suited for extracting orbital hybridizations, while the FLAPW 
(Full-Potential Linearized Augmented Plane Wave) method is best suited 
to elucidate the FsBz interactions. ἀ ese approaches involve many math-
ematical formulations to explain how these two first-principles band cal-
culation methods can be utilized for our purpose. Readers who are not 
acquainted with advanced treatments of quantum mechanics may wish to 
skip Sections 4.4 to 4.12. It may also be helpful to start with textbooks on 
electron theory of metals [2,3], whenever needed.

4.2  oRIgIn of the pseuDogap: oRBItal 
hyBRIDIzatIons veRsus fsBz InteRactIons

ἀ e origin of the pseudogap at the Fermi level can be discussed from 
two different approaches: one from covalent bonding and the other from 
metallic bonding. Let us consider the former approach by considering an 
Al-Mn alloy. Here, we assume a situation such that both Al and Mn atoms 
are placed a few one-tenth of a nanometer apart, corresponding to an 
average atomic distance in the alloy. If the Al-3p and Mn-3d energy levels 
are close to each other, the two atomic wave functions will overlap with 
one another. ἀ is is called the orbital hybridization and results in bond-
ing and antibonding levels, as illustrated in Figure 4.1a. ἀ is also holds 
true upon forming a solid (i.e., an Al-Mn alloy phase). ἀ e bonding and 
antibonding levels will naturally be broadened into the respective bands, 
leaving a pseudogap in between bonding and antibonding subbands 
formed by Mn-3d states mixed with Al-3p states. Figure 4.1b shows the 
DOS for the Al-Mn approximant containing 138 atoms in its cubic unit 
cell, which was calculated by Fujiwara in 1989 [4]. Gaussian curves are 
roughly drawn in Figure 4.1b as eye guide to represent the resulting Al-3p/
Mn-3d bonding and antibonding subbands. ἀ e Fermi level is found to 
fall inside the pseudogap created between the bonding and antibonding 
Mn-3d subbands.
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ἀ e Al-Mn approximant mentioned above is favorably stabilized, since 
the bonding band is almost fully filled by electrons, whereas the anti-
bonding band remains almost empty. ἀ is is the stabilization mechanism 
due to orbital hybridizations. Here it is kept in mind that it has little to do 
with the interference phenomenon described below and, hence, does not 
involve a parameter directly pertaining to the electron concentration e/a 
(see Chapter 10, Section 10.7). Instead, a parameter determining the Fermi 
level must be a dominant factor. ἀ is is the total number of electrons per 
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fIguRe 4.1 (a) Formation of bonding and antibonding levels due to orbital 
hybridization between neighboring Al-3p and Mn-3d atomic wave functions. 
(b) Formation of a pseudogap between bonding and antibonding subbands due 
to orbital hybridizations between Al and Mn atoms in an Al-Mn approximant 
[from T. Fujiwara, Phys.Rev. B 40 (1989) 942]. Gaussian curves are roughly fitted 
to the subband profiles as eye guide.
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atom, VEC, in the valence band (see the difference between e/a and VEC 
in Section 1.1 and more details in Chapter 10.).

We have an alternative mechanism to generate a pseudogap at the Fermi 
level. ἀ is is due to the FsBz interaction, which is approached from the 
metallic bonding picture. Let us consider itinerant electrons propagating 
throughout a periodically arranged ionic potential field. Stationary waves 
will be formed when the wavelength of the electron wave matches the 
period of the ionic potential. ἀ e situation in real space is illustrated in 
Figure 4.2a. ἀ is is called the interference phenomenon and is equivalent 
to the fulfillment of the Bragg law. For the sake of simplicity, consider an 
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fIguRe 4.2 (a) Formation of stationary electron waves as a result of interference 
with periodically arranged ionic potentials. (b) Formation of either cosine- or 
sine-type stationary waves in one-dimensional periodic ion potential field. [From 
C. Kittel, Introduction to Solid State Physics (ἀ ird edition, John Wiley & Sons, 
New York, 1967).]
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electron propagating through a one-dimensional periodic potential field. 
Either a sine- or cosine-type stationary wave is formed, when the wave 
number of electron reaches k a= ±π / , as shown in Figure 4.2b [2,3].* 
A closer look into Figure 4.2b indicates that the electronic energy of the 
cosine-type stationary wave must be lowered relative to the free electron 
value, since its charge density is the highest at the center of the ion, where 
the potential is the lowest. ἀ e opposite is true for the sine-type station-
ary wave. ἀ is is the mechanism for the formation of an energy gap at the 
wave number k a= ±π /  in the energy dispersion relation.

Figure 4.3a illustrates the opening of an energy gap at the wave 
vector obtained by bisecting the reciprocal lattice vector G100 
(i.e., k a= ± = ±G100 2/ /π  in a simple cubic lattice). A polyhedron is con-
structed in the reciprocal space by perpendicularly bisecting six equivalent 

* ἀ e Bloch wave function in one-dimensional periodic array of ionic potentials is given by a 
linear combination of the unperturbed plane wave A0eikx and the wave A1ei[k–(2π/a)]x perturbed 
by the set of lattice planes: ψ(x) = exp(ikx)[A0 + A1 exp{–i(2π/a)x}]. At k = π/a, the relation A0 
= ±A1 holds and the wave function is reduced to either sin(πx/a) or cos(πx/a). ἀ e wave of k 
= π/a is reflected to the wave of k′ = –π/a by receiving a crystal momentum G = –2π/a from 
the lattice planes and the reflected wave of k = –π/a is again reflected to the wave of k′ = π/a 
by receiving a crystal momentum G = 2π/a from the lattice planes. ἀ is process is infinitely 
repeated, resulting in a cosine- or sine-type stationary wave [2]. 
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fIguRe 4.3 (a) Formation of an energy gap at the wave number k = ± a/π 
obtained by bisecting the reciprocal lattice vector G100 in a simple cubic lattice. 
ἀ e Fermi level is located well below the energy gap. (b) ἀ e Brillouin zone for a 
simple cubic lattice. ἀ e Fermi surface with the Fermi radius kF corresponding to 
the electronic structure in (a) is schematically drawn.
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reciprocal lattice vectors. A cube with edge length of 2π / a  is formed for 
the simple cubic lattice, as depicted in Figure 4.3b. ἀ is is the Brillouin 
zone of a simple cubic lattice, across which an energy gap appears [2,3]. 
ἀ e respective Brillouin zones for fcc and bcc lattices have been already 
introduced in Figures 3.2a,b.

In the case of a simple cubic lattice, the distance from the origin Γ to 
the center X of six square zone planes of its Brillouin zone is the same 
(Figure 4.3b). In contrast, the distance from the origin to the center L of 
the eight hexagonal faces is shorter than that to the center X of the six 
square faces in the fcc-Brillouin zone (Figure 3.2a). Certainly, the FsBz 
interaction can yield an anomaly such as a cusp, with a subsequently 
declining slope in the DOS, which is referred to as the van Hove singu-
larity (Figure 3.3a in Chapter 3, Section 3.2). However, the opening of an 
energy gap across different sets of zone planes would not necessarily result 
in an energy gap in the DOS.* Only a small cusp followed by a rather shal-
low dip is generally created in the DOS in structurally simple fcc, bcc, or 
hcp metals and alloys. In CMAs, however, the number of zone planes of 
the Brillouin zone increases, as exemplified, for example, for gamma-brass 
in Figure 3.2c. Now we often encounter a rather unique situation in which 
a deep valley is formed in the DOS, but the electronic states remain finite 
along this minimum. ἀ is has been already referred to as a pseudogap 
(see Chapter 1, Section 1.2 and Chapter 2, Section 2.3). As emphasized 
in Chapter 2, Section 2.3, its contribution to the stability of a solid would 
become the most effective, when it is formed across the Fermi level. A 
FsBz-induced pseudogap plays a key role in stabilizing a complex metallic 
structure, in which the diffraction spectrum consists of a series of Bragg 
peaks. Included are not only crystalline metals and alloys but also quasi-
crystals, which exhibit a more marked pseudogap the better ordered they 
are [2].

Another key issue must be addressed in relation to a FsBz-induced 
pseudogap. An interference phenomenon of electrons with a given set 
of lattice planes discussed above does not necessarily occur at the Fermi 
level. In other words, it is possible to have a pseudogap off from the Fermi 
level (see Chapter 8, Section 8.4). But we are most interested in a system, 
where a pseudogap is formed just across the Fermi level. ἀ is is what we 
call a FsBz-induced pseudogap system.

* See more detailed discussion in Section 5.10 in [2].
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Let us suppose the interference phenomenon above to occur at the 
Fermi level and to be strong enough to cause a sizable pseudogap. Now the 
situation is envisaged such that the effective Fermi sphere with the diam-
eter 2kF  is in contact with the relevant Brillouin zone plane characterized 
by the reciprocal lattice vector G . Figure 3.2 illustrates this situation in 
the free electron model. ἀ is immediately leads to the condition:

 2kF = G  (4.1)

Equation 4.1 has been often referred to as the Hume-Rothery matching 
condition. It is important to keep in mind that Equation 4.1 is no longer 
based on the free electron model. In Chapters 7 to 10, we will introduce 
an elegant technique on the basis of first-principles FLAPW band calcula-
tions to determine the effective Fermi diameter 2kF  and the critical recip-
rocal lattice vector G  involved in Equation 4.1 in alloys, regardless of 
whether the transition metal (TM) element is involved or not. A rigorous 
test of the matching condition given by Equation 4.1 for alloys, including 
many CMAs, will be discussed in Chapter 10.

In the past two decades, expressions such as the “Hume-Rothery sta-
bilization mechanism” and/or “Hume-Rothery-type stabilization” have 
been frequently employed, particularly upon discussing the stability of 
quasicrystals [5–7]. However, many people have used these phrases, when-
ever a pseudogap is experimentally found, or theoretically predicted, in a 
CMA without differentiating between the two origins: the FsBz and the 
orbital-hybridizations. A very careful discussion is needed to extract the 
role of the FsBz interactions on the formation of a pseudogap in systems, 
in which orbital hybridizations are predominant. Detailed discussions 
will be made on this critical issue in Chapters 8 to 10.

4.3 What aRe fIRst-pRIncIples BanD calculatIons?
As discussed in Chapter 2, Section 2.1, degenerate 3s-levels in an assembly 
of molar Na free atoms are “lifted” or are split into slightly different ener-
gies upon formation of solid Na. ἀ is is the formation of the valence band 
in metallic bonding. Itinerant electrons in the valence band move in a lat-
tice while interacting with each other via the Coulomb force. Rigorously 
speaking, we must treat the electron-electron interaction in the context 
of the “many-body problem,” which cannot be analytically solved. ἀ e 
motion of an electron in a metal has been treated in the so-called one-
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electron approximation, under which each electron independently propa-
gates in an effective averaged potential.

Both Hartree and Hartree–Fock approximations had been employed to 
construct an effective one-electron potential until 1964, when the density 
functional theory (DFT) has been established [8–10]. ἀ is brought us a 
substantial progress in the reliability of one-electron band calculations. 
According to the DFT, the total-energy of an electron running in an effec-
tive potential field is given as the functional of electron density. Indeed, 
Kohn and Sham [9] provided the method of calculating the total-energy 
of a system by treating the exchange-correlation energy of the electron in 
the local density approximation (LDA). Since details about the DFT-LDA 
theory will be found in the literature [8–10], we simply note that the total-
energy of a system at absolute zero [9] is expressed as
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where εi  is the solution of an effective one-electron Schrödinger equation 
given by

 − ∇ +
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ἀ e first term in Equation 4.2 represents the one-electron band struc-
ture energy due to both valence and core electrons, whereas the second 
term is often referred to as the Hartree term, representing the Coulomb 
potential energy due to the nucleus-electron interaction plus an aver-
age electron-electron interaction energy, and the third term represents 
the exchange-correlation energy derived in the LDA. More recently, the 
exchange-correlation energy functional of electrons has been calculated 
within the generalized gradient approximation coupled with the Perdew–
Burke–Ernzerhof hybrid scheme (GGA-PBE) [11]. Obviously, the first 
term due to the contribution from valence electrons in Equation 4.2 is 
essentially equivalent to the electronic energy of valence electrons given 
by the first or second term in Equation 3.5.
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ἀ e expression “first-principles” in first-principles band calculations 
refers to the method of calculating the electronic structure by solving a one-
electron Schrödinger equation without relying on any experimental results 
under the assumption that an electron experiences an effective potential 
within the framework of the DFT-LDA theory. It is also called ab initio band 
calculations, since the Latin term ab initio means “from the beginning” in 
English. ἀ ere are two different approaches in first-principles band calcu-
lations: one is the pseudopotential method, which allows us to employ the 
set of plane waves as basis functions, and the other an all-electron method, 
which treats all electrons, including core states, explicitly. In the pseudo-
potential approach, the potential becomes very smooth so that plane waves 
can be safely used as basis functions. But ignorance of the core states poses 
difficulties not only in discussing issues related to core states, such as core 
excitations and core level shifts, but also in accurately treating d-electrons 
having a higher tendency of localization in the valence band.

ἀ e all-electron method employs a one-electron effective poten-
tial determined by both nuclei and all electrons and, hence, s-, p-, and 
d-electrons are treated on the same ground. ἀ ere are several all-electron 
first-principles band calculation methods, all of which basically employ a 
spherically symmetric muffin-tin (MT) potential within a sphere centered 
at a given nucleus with radius a, and a constant potential outside it to 
approximate an ionic potential in a given system. ἀ e sphere is called the 
muffin-tin (MT) sphere. ἀ e wave function inside the MT sphere can be 
rigorously solved as the product of the radial wave function and spherical 
harmonics. As will be described below, Augmented Plane Wave (APW), 
Korringa-Kohn-Rostoker (KKR), and muffin-tin orbital (MTO) meth-
ods are typical of all-electron first-principles band calculation methods. 
In particular, we shall focus on LMTO-ASA and FLAPW methods with 
an emphasis on what information can be extracted from them to analyze 
the Hume-Rothery electron concentration rule. Both methods employ an 
effective potential constructed within either the DFT-LDA or DFT-GGA-
PBE theory to treat the electron-electron interaction.

4.4  all-electRon BanD calculatIons WIthIn 
the muffIn-tIn appRoxImatIon

Wigner and Seitz [12] divided a bcc crystal into the smallest volume 
enclosed by planes bisecting the interatomic distances. ἀ eir operation is 
illustrated in Figure 4.4a, using atoms in the plane. A resulting polyhe-
dron is called the truncated octahedron and can fill the space without any 
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overlap or void (see also Chapter 6, Section 6.3). Obviously, it contains a 
single atom at its center. ἀ is is called the Wigner–Seitz cell of a bcc lattice. 
Its structure is shown in Figure 4.4b. ἀ ey assumed spherical symmetry of 
an ionic potential in a crystal to hold up to the boundary of the Wigner–
Seitz cell and expressed the wave function of an electron as

 ψ θ( , ) ( ) ( ) ,k r r R r R r Rk R

R

k= − − −⋅∑e b i Y R Ei
m
j

m

 
 (( )∑

m

 (4.4)

where r and R are coordinates of an electron and a nucleus, respectively, k 
is the wave vector of the Bloch electron,   and m are azimuthal and mag-
netic quantum numbers of partial waves,* R E( , )r R−  is the radial wave 
function of the electron having an energy E, Y m

( )r R−  is a spherical har-
monic, and the function θ  takes unity inside the Wigner–Seitz cell and 
otherwise zero.† In the Wigner–Seitz method, the coefficient blm

jk  is deter-
mined in such a way that Equation 4.4 is continuous and differentiable 

* A spherical coordinate representation is best suited to describe the motion of an electron in a 
spherically symmetric potential field. Its quantized motion can be described in terms of four 
quantum numbers: principal quantum number n, azimuthal quantum number ℓ, magnetic 
quantum number m, and spin quantum number s. A spherical wave specified by azimuthal 
quantum number ℓ and magnetic quantum number m is called the partial wave.

† A symbol   over r–R represents an angular variable (θ,φ) of the vector r–R.
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fIguRe 4.4 (a) Construction of the Wigner–Seitz cell and the MT sphere 
inscribed in the cell. Solid circle symbolizes the atom on the lattice. (b) ἀ e 
Wigner–Seitz cell for a bcc lattice.
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across the cell boundary. However, it is almost impossible to apply these 
boundary conditions rigorously. To avoid this difficulty, Slater [13] intro-
duced the concept of the MT potential and developed the Augmented 
Plane Wave (APW) method in 1937.

For example, an ionic potential is assumed to be spherically symmet-
ric within a sphere with radius ains  inscribed in the Wigner–Seitz cell, as 
illustrated in Figure 4.4a. ἀ e potential outside the sphere is assumed to be 
constant. However, the choice of a radius of the MT sphere is rather arbi-
trary. Its radius in the Atomic Sphere Approximation (ASA) discussed in 
Section 4.7 will be given by that of an atomic sphere whose volume is equal 
to that of the Wigner-Seitz cell. A much smaller radius is employed in 
APW and FLAPW methods. For this reason, the radius of the MT sphere 
is hereafter simply denoted as a, unless otherwise stated.

To begin with, we consider a single ionic potential located at a lattice 
site R R= , as illustrated in Figure 4.5 [14]. Now a spherically symmetric 
potential at the position r may be explicitly expressed as

 v
v

( )r
r R r R

r R
=

−( ) − ≤

− >







a

V aMTZ

 (4.5)

where VMTZ is a constant called the muffin-tin zero outside the MT 
sphere. An electron moving in the potential field v(r) centered at R = 0 
obeys the Schrödinger equation given by

a

fIguRe 4.5 A single MT potential located at R=R. A spherically symmetric 
potential is assumed inside the MT sphere with radius a and a constant potential 
outside it. [From U. Mizutani, MATERIA (in Japanese), 45, No. 9 (2006) 677.]
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 −∇ +  =2 v( ) ( ) ( )r r rψ ψE  (4.6)

in atomic units. ἀ e electron can propagate freely between spheres with 
a constant kinetic energy κ2 = −E VMTZ . ἀ e solution of Equation 4.6 is 
expressed as the product of a spherical harmonic Y m (ˆ)r  with angular 
variable ˆ ( , )r = θ φ  and the radial wave function given by

 − − + + + −
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where the radial wave function R E r( , )  is normalized inside the MT 
sphere to satisfy the relation:

 R E r r dr
a


2 2

0

1( , ) =∫  (4.8)

ἀ e spherical harmonic Y m (ˆ)r  satisfies the relation

 Y Y dm m mm  
∗

′ ′ ′ ′∫ =(ˆ) (ˆ) ˆr r r δ δ  (4.9)

and, hence, Y m′ ′ (ˆ)r  and Y m (ˆ)r  are orthonormal to each other, unless 
 = ′  and m m= ′ . If we introduce a new radial wave function defined as 
P E r rR E r ( , ) ( , )= , Equation 4.7 is simplified as

 − + + + −
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and the orthogonality condition becomes

 P E r dr
a
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4.5  Wave functIons InsIDe anD 
outsIDe the mt spheRe

By displacing the depth of the potential v( )r  by VMTZ , the MT potential 
at the position R = 0  is rewritten as

 V r
r V r a

r aMT
MTZ( )

( )
=

− ≤
>





v
0

 (4.11)

Now, the Schrödinger Equation 4.6 can be rewritten as
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where E VMTZ= +κ2  is used [15]. Equation 4.12 describes the motion of an 
electron with the kinetic energy κ2  in a space, where an isolated spheri-
cally symmetric potential is located at the origin in the range r a≤  and an 
otherwise constant potential equal to zero.* ἀ e wave function inside the 
MT sphere is expressed as

 ψ 

 m mE i Y R E r( , ) (ˆ) ( , )r r=  (4.13)

whereas the electron propagating outside it should be treated as a free elec-
tron so that the Schrödinger equation in the Cartesian coordinate system 
is reduced to the form

 −∇ −  =2 2 0κ ψ( , )E r  (4.14)

and its solution is obviously given by

* κ represents the wave number of an electron moving in a space, where only a single MT 
potential is embedded. ἀ is is different from the wave vector k in Equation 4.4. Note that the 
latter is derived from the Bloch theorem. In the free electron model, the relation k G+ =

2 2κ  
holds, where G is the reciprocal lattice vector [2].
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 ψ( , ) exp/E ir r= ⋅ 
−Ω 1 2 κκ  (4.15)

where Ω  is the volume of the system. In the spherical coordinate system, 
the Schrödinger equation in the range r > a is reduced to

 − + + −
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ἀ e solution of Equation 4.16 representing a spherical wave of the wave 
number κ  is given by a linear combination of spherical Bessel function 
j r( )κ  and spherical Neumann function n r( )κ . When κr <<1 , asymp-
totic relations hold
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where !!= ⋅ ⋅1 3 5…  and − =1 1!! . Both ( )κr   and ( )κr − − 1  will appear fre-
quently in the following sections. When κr  is large, both functions take 
the following asymptotic forms:
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ἀ e solution of Equation 4.12, in which an ionic potential V rMT ( )  is 
embedded, is now expressed as [15]:

 ψ κ
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where the constant term cot ηℓ is determined from the condition that the 
wave function is continuous and differentiable across the MT sphere and 
is given by

 cot , ( )
( )

( ) ( )/η κ κ
κ

κ κ
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where D E( )  is defined as
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and represents the nondimensional logarithmic derivative of the radial 
wave function at the MT sphere.* In the region far away from the origin, 
the wave function is described by a spherical wave in the free space but 
with a finite phase shift η  as a result of the presence of the MT potential 
at R = 0 :

 ψ κ κ η π
η




( ; , ) sin( / )
sin

E r r
r

→− + − 2  (4.22)

where E = κ2  is its kinetic energy.

4.6  oRthogonalIty conDItIon WIth 
coRe electRon states

We show below that the wave function inside the MT sphere is orthogonal 
to any electronic states of core electrons. Since Equation 4.9 holds, we need 
to consider only the case, where the radial wave function P E rn

c
( , )  of a core 

electron has the same azimuthal quantum number   as that in Equation 
4.10. ἀ e Schrödinger equation for the core electron is written as

* Since κ κ κrj r j r
r a

′ =
=  ( ) / ( )  and κ κ κrn r n r

r a
′ = − −

=  ( ) / ( ) 1  hold, Equation 4.18 involves 
the term { ( ) }{ ( ) }D E D E  + + − −1 1 , which will appear as the potential function in Equation 
4.27.
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where En
c
  is its energy eigenvalue. P E rn

c
n
c

 ( , )  is multiplied from the 
left-hand side of Equation 4.10 and P E r ( , )  from the left-hand side of 
Equation 4.23, and both are subsequently integrated over the range from 
0 to a. A subtraction of the resulting two equations leads to
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 (4.24)

ἀ e first term in Equation 4.24 is easily integrated to [ ]P P P Pn
c

n
c a

   ′− ′ 0 , which 
vanishes, because P E r rR E r ( , ) ( , )=  and P E rn

c
n
c

 ( , )  are zero at r = 0  
and Pn

c
  and ′Pn

c
  are zero at r a= . Since E En

c≠   holds true, we have the 
relation:

 P E r P E r drn
c

n
c

a

  ( , ) ( , ) =∫ 0
0

 (4.25)

ἀ is proves that the wave function inside the MT sphere is orthogonal to 
the core electron wave function.* ἀ us, any electronic state in the valence 
band obtained in the MT sphere approximation is always orthogonal to 
the electronic state of the core electron. ἀ is is important in first-princi-
ples band calculations.

* We say that any two vectors x and y in a vector space are orthogonal to each other, provided 
that the relation x y y x, ,= = 0  holds. ἀ ey have no common components. Hence, any 
electron in the valence band and a core electron have no hybridization terms and are inde-
pendent of each other. Note that two vectors are said to be orthonormal if they are orthogo-
nal and both are of unit length.



first-principles Band calculations using the muffin-tin potential    ◾    65

4.7 KKR-asa equatIon
We are now ready to deal with Bloch electrons in a crystal. For the sake 
of simplicity, only a monatomic crystal is considered, unless other-
wise stated. As shown in Figure 4.6, MT potentials are now periodically 
arranged around each ion [14]. As noted in Section 4.4, the ASA method 
approximates the Wigner–Seitz cell as given by a sphere having the same 
volume as that of the cell. It is clear from Figure 4.7 that they partly over-
lap with each other but also leave some void spaces. ἀ e radius aASA  of the 
Wigner–Seitz sphere or an atomic sphere is obviously larger than that of 
an inscribed sphere ains . As will be described later, the void and overlap-
ping regions will be ignored in the LMTO-ASA.

ἀ e “KKR” in the title of this section indicates the abbreviation of 
Korringa, Kohn, and Rostoker, who developed the band calculation 

fIguRe 4.6 Periodically arranged MT potentials of pure Cu on the (100) plane. 
A thick square refers to the cross section of the Wigner–Seitz cell and a solid 
circle the inscribed MT sphere with radius ains. [From U. Mizutani, MATERIA 
(in Japanese), 45, No. 9 (2006) 677.]
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method by ingeniously taking into account multiple-scattering of an 
electron propagating through the periodic MT potential field [16,17]. ἀ e 
boundary condition can be expressed as the condition for self-consistent 
multiple scattering between the MT spheres [18] or alternatively as the 
condition for destructive interference of tails of these waves in the core 
region [15,19]. We focus on the MT potential at the origin arbitrarily cho-
sen from an array of identical atomic spheres in a monatomic crystal and 
consider the following trial wave function χm E r( , )  defined outside and 
inside the atomic sphere with radius a:

 χ



 


m mE r i Y r
R E r p E r a r a
a

( , ) (ˆ)
( , ) ( )( / )

( /
=

+ ≤
rr r a)+ >






1

 (4.26)

fIguRe 4.7 Construction of the Wigner–Seitz sphere or the atomic sphere. In 
the ASA, the radius of the MT sphere is set equal to that of the atomic sphere. ἀ e 
void and overlap of neighboring atomic spheres are inevitably present. [From H.L. 
Skriver, The LMTO Method, Springer series in Solid-State Sciences 41, Springer-
Verlag, Berlin, 1984.]
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where Rℓ(E,r) is the solution of the Schrödinger equation 4.7 inside the 
atomic sphere, χm E r( , )  is continuous and differentiable in all space, and 
p E( )  is called the potential function defined as

 p E D E
D E







( ) ( )
( )

= + +
−

1  (4.27)

where D E( )  represents the logarithmic derivative of R E r( , )  at r a= , 
as already defined in Equation 4.21.* Equation 4.26 is essentially what is 
called the muffin-tin orbital or MTO [15,19].†

ἀ e term ( / )a r +1  representing a tail of the MTO in Equation 4.26 has 
already appeared in Equation 4.17 as an asymptotic form of the spherical 
Neumann function. ἀ e sum of the MTO tails over all lattice sites in a 
crystal is expanded into series around the origin R = 0 :
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 (4.28)

where S m m′ ′ ,
k  is called the structure factor‡ and is explicitly written as

* As noted in footnote on page 63, pℓ(E) is deeply related to a phase shift ηℓ caused by the MT 
potential. A possible phase shift occurring outside the atomic sphere (r > a) is taken into 
account in Equation 4.19, whereas pℓ(E) is deliberately placed inside the atomic sphere in 
Equation 4.26.

† A symbol ψℓm(E, κ, r) is used in Equation 4.19, since it represents the eigenfunction in 
Equation 4.12. A different symbol χℓm is intentionally used in (4.26) to emphasize a trial 
function.

‡ It represents the structure-dependent term in KKR and LMTO methods. Generally speak-
ing, a quantity

 S i i
i

( ) exp( )G G r= − ⋅∑
 obtained by Fourier transforming the charge density is called the structure factor or crystal 

structure factor, where ri is the atom position in a unit cell and G is the reciprocal lattice vec-
tor in the system.



68    ◾    hume-Rothery Rules for structurally complex alloy phases

 S g e a i Ym m m m
i

′ ′ ′ ′
⋅

′′+

′′=








   




, ,

k k R

R

1

4π ′′′ ′′
≠





∑  m ( ˆ )
*

R
R 0

 (4.29)

where ′′ = + ′    and ′′ = ′ −m m m  hold, and the coefficient g m m′ ′ ,  is a 
constant given by [15]:
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ἀ e solution of the Schrödinger equation for an electron propagating 
throughout a crystal will be given by the superposition of MTOs given by 
Equation 4.26. To satisfy the Bloch theorem, we must take the sum over 
all lattice sites:

 a e Em
j i

m
m

 



k k R

R

r R⋅ −∑∑ χ ( , )  (4.31)

where k is the wave vector of the Bloch electron, and the superscript j of 
the coefficient a m

j


k  stands for a band index. ἀ e first term i Y R E rm

 (ˆ) ( , )r  

in the range r a≤  is already a solution of the Schrödinger equation inside 
the atomic sphere at origin. ἀ erefore, the following wave function must 
be also a solution inside any atomic spheres in a crystal:

 a i Y R E rm
j

m
m



 



k r(ˆ) ( , )∑  (4.32)

However, there exists an additional contribution arising from the second 
term in Equation 4.26. For example, it is explicitly given at R = 0  in the 
following form:

 a i Y p E r am
j

m
m



 





k r(ˆ) ( )( / )∑  (4.33)
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ἀ is extra term must vanish as a result of destructive interference with the 
contribution at R = 0  arising from all tails in Equation 4.28. ἀ is leads to 
the so-called cancellation theorem:

 P k k
     



( ) ,E S am m m m m
j

m

δ δ′ ′ ′ ′−  =∑ 0  (4.34)

Equation 4.34 is called a secular equation. We will learn later that Equation 
4.34 is quite similar to the LMTO-ASA equation. ἀ e function P( )E  
appearing in (4.34) differs from that in Equation 4.27 by a numerical fac-
tor and is explicitly given as

 P 







( ) ( ) ( )
( )

E D E
D E

= + + +
−

2 2 1 1  (4.35)

Equation 4.35 is again called the potential function and plays a key role in 
LMTO-ASA band calculations.*

In order to make an eigenvector a m
j


k  in secular equation 4.34 to be 
physically meaningful, the determinant of the coefficient must vanish:

 det ( ) ,P k
    E Sm m m mδ δ′ ′ ′ ′−  = 0  (4.36)

Equation 4.36 is known as the KKR-ASA secular determinant [15,19], 
the solution of which provides E − k  relations for an electron moving in 
a crystal. ἀ is is indeed the process of calculating the electronic struc-
ture. ἀ e characteristic feature of Equation 4.36 is found to consist of two 
separate terms: one the potential function P( )E  dependent only on the 
MT potential inside the atomic sphere and the other the structure factor 
S m m′ ′ ,

k  dependent only on the crystal structure. Both LMTO and LAPW 
methods are first-principles band calculations put forward by Andersen 
[20], who ingeniously developed the linearization method of solving the 
nonlinear determinantal equation 4.36, and applied to MTO and APW 
methods, respectively, to allow its fast-computation without seriously sac-
rificing the accuracy.

* Note that the potential function Pℓ(E) is a quantity entirely different from P E r rR E r ( , ) ( , )=  
defined in Equation 4.10. A bold character P is used to differentiate them.
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4.8 lIneaRIzatIon methoD
ἀ e KKR, MTO, and APW methods, all of which rely on the use of the MT 
potential and, hence, the partial-wave expansion, are devised to solve the 
simultaneous, linear (unknowns an

jk  appear to first order), and homoge-
neous (right-hand side = 0) equation below:

 H E O a mmn j mn n
j

n

−( ) = = ± ±∑ k k 0 0 1 2, , ,…  (4.37)

To allow the matrix a of eigenfunctions to be physically meaningful, 
the secular equation 4.37 is reduced to solve the secular determinant 
det H E− = 0 .* For example, if energy-dependent MTOs like Equation 
4.26 are used as basis functions, we cannot solve it by ordinary diagonal-
ization because of the presence of energy-dependent off-matrix element 
Hmn. Andersen developed the linearization method, in which the energy 
involved in the MTO function is fixed [15,20]. ἀ e reason why the linear-
ization is made without serious loss of accuracy will be described below.

Any radial wave function φ( ( ), )D E r  with energy E may be approxi-
mated as a linear combination of R E r( , )ν  and its derivative R E r( , )ν  
with a fixed energy Eν  in the following form:

 φ ων ν   
D E r R E r D E R E r( ), ( , ) ( ) ( , )( ) = + ( )  (4.38)

where D E( )  is defined as

 D E a d
dr

D E r
r a

( ) ln ( ),= ( )
=

φ  (4.39)

and represents the logarithmic derivative on the MT sphere, as already 
appeared in Equation 4.21.† Our aim is to determine ω( ( ))D E  to make 
φ( ( ), )D E r  involving energy E implicitly through the logarithmic deriva-
tive D as close to a true value R E r( , )  as possible. As we will learn later, 

* O m m , ′ ′  defined by χ χ′ ′ ′ ′≡   m m m mO ,  is called the overlap integral.
† X dX dE≡ /  indicates the derivative with respect to energy, whereas ′ ≡X dX dr( ( ))/ , appear-

ing in Equation 4.20, indicates the derivative with respect to position of an electron in real 
space.
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the assumption that energy enters only through the term ωℓ(D(E)) in the 
right-hand side of Equation 4.38 is crucial.

ἀ e energy derivative R E r( , )ν  in Equation 4.38 can be derived by dif-
ferentiating Equation 4.7 with respect to energy:

 − − + + + −










d
dr r

d
dr r

r E R E r
2

2 2
2 1  


( ) ( ) ( ,v ν ν )) ( , )− =R E r ν 0  (4.40)

One can also confirm the orthogonality condition between R E r( , )  and 

R E r( , )  by differentiating Equation 4.8 with respect to energy:*

 R E r R E r r dr
a

 
( , ) ( , ) 2

0

0=∫  (4.41)

An insertion of Equation 4.38 into Equation 4.39 leads to

 ω ν
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ν







D E R E a
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D E D E
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( ) ( , )
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( ) ( )
( )( ) = − ⋅ −

−−  D E( )ν
 (4.42)

where D E( )ν  and  D E( )ν  are defined as

 D E a d
dr

R E r
r a

 ( ) ln ( , )ν ν=
=

 (4.43a)

and

  
 D E a d

dr
R E r

r a

( ) ln ( , )ν ν=
=

 (4.43b)

* In both LMTO and LAPW methods, Equation 4.38 derived from a linear combination of the 
radial wave function and its derivative inside the MT sphere is used as basis functions. ἀ e 
wave function φ( , )E r  thus constructed is confirmed from Equations 4.25 and 4.41 to be 
orthogonal to core electron wave function.
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respectively*.
Now we evaluate the expectation value of energy when φ( ( ), )D E r  is 

employed as a trial function. By expanding it into series with the use of 
Equation 4.8 under the assumption that ω( ( ))D E  is small, we obtain

 

E D
D H D

D D
E N E E

a

a

( )
( ) ( )

( ) ( )
= =

+ + ( )φ φ

φ φ
ων ν ν 

 

  ωω
ω

ω ω

ν

ν ν ν



 

   

2

2

2

1

1

+ ( )
= + + ( ) + ⋅⋅⋅( ) −

N E

E N E E N EE

E N E O

ν

ν ν

ω

ω ω ω

( ) + ⋅⋅⋅( )
= + − ( ) + ( )



   

2

3 4

 (4.44)

where

 N E R E r r dr
a

 


ν ν( ) =  ∫ ( , )
2 2

0

is called the norm. Moreover, insertion of Equations 4.39 and 4.43a,b into 
Equation 4.42 leads to
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ἀ e two terms R E( )  and ′R E( )  in Equation 4.45 are now expanded into 
series around a fixed energy Eν :

* A symbol ~ is placed over D E( )ν  to emphasize the logarithmic derivative of R E r( , )ν , that 
is, the energy derivative of R E r( , )ν .
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where ∆ = −E Eν . Insertion of Equation 4.46a,b into Equation 4.45 
results in*

ω
    

( )E
RR R R RR R R R

=
′− ′( ) + ′ − ′( ) +∆ ∆1

2
1
6

2 ′′ − ′( ) + ( )
′ − ′( )+ ′ −

R R R

RR R R RR



    

∆ Ο ∆3 4

1
2

′′( ) + ( )

=
−






+






R R

a
N
a





∆ Ο ∆

∆ ∆

2 3

2 2
31 1

6
3 ++ ( )

−





+






+ ( )

= −

Ο ∆

∆ Ο ∆

∆

4

2 2
3 31 1

2
3

1

a
N
a


11
2

1 3
2

2 3 2 3
1

N N ∆ Ο ∆ ∆ Ο ∆

∆

+ ( )





 − + ( )







=

−

++ + ( )∆ Ο ∆3 4N E( )ν

 (4.47)

Hence, Equation 4.38 is reduced to
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*

* 

Relations R R R R
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 3
2

were used [21].
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It is important to realize that the term Δ2 disappears in Equation 4.48 
and, thus, the wave function can be calculated within the accuracy of 
Δ2, provided that the radial wave function R E r ( , )  is expanded into 
series around a fixed energy Eν  and is approximated only up to the first-
order. ἀ e energy eigenvalue is calculated by inserting Equation 4.47 into 
Equation 4.44:
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indicating that the energy error ∆E E D Eν = −( )  is proportional to ( )E E− ν
4 .

In summary, if we use a trial radial wave function φ( , )E r  composed of 
a linear combination of the radial wave function R E r( , )ν  and its deriva-
tive R E r( , )ν  inside the MT sphere, we can derive the energy eigenvalue 
and wave function with the accuracy of ∆4  and ∆2 , respectively. ἀ e lin-
earization method described above allows us to perform a fast-compu-
tation of the electronic structure without much sacrifice in accuracy. In 
reality, the error bar in determining the energy eigenvalue amounts to at 
most 1%, when the linearization method is applied for a typical metal hav-
ing a valence band width of about 10 eV.

4.9 lmto-asa methoD
ἀ e Linearized Muffin-Tin Orbital (LMTO) method refers to first-princi-
ples band calculation using the linearized MTO as basis functions [15,20]. 
ἀ e ASA (Atomic Sphere approximation) is combined with it to further 
enhance its computational efficiency. As discussed in Section 4.7, the MT 
sphere in the ASA is given by the atomic sphere with radius a having the 
same volume as that of the Wigner–Seitz cell. ἀ e resulting void and over-
lap regions are fairly small (see Figure 4.7). ἀ is allows us to choose an 
arbitrary value of κ  or even κ = 0 . ἀ is would not give rise to a serious 
error upon connecting the wave functions across the MT sphere, since the 
wavelength of the partial wave 2π κ/  is much longer than the width of the 
intermediate region outside the MT sphere. Hence, the kinetic energy κ2 
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in Equation 4.12 is forced to be zero.* ἀ e assumption κ2 = 0 is tantamount 
to the disregard of the relation E VMTZ− =κ2  and simplifies the LMTO 
method for solving the Schrödinger equation without seriously amplify-
ing associated errors. Moreover, only s-, p-, and d-partial waves plus, in 
case of need, f-partial waves are retained and remaining higher-order par-
tial waves are ignored.

ἀ e KKR-ASA equation 4.36 can be regarded as the κ2 0=  analog derived 
from the energy-dependent MTO. ἀ e LMTO-ASA equation is now derived 
by using the augmented, energy-independent MTO under the assumption 
of linearization [15]. First, the potential function in Equation 4.35 is linear-
ized. An insertion of Equation 4.42 into Equation 4.38 leads to
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Now we assume two ω( )D s at two different values of D1  and D2  and 
take their difference, into which Equation 4.50 is inserted:
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 (4.51)

where the relation ( )D D aR R   
 − =1  is used [15]. In Equation 4.51, we set 

D D E1 = ( ) , replace D2  by D1  in one case, retain D2  in the other case, 
and take the ratio of the resulting two relations:

* Note that the wave number κ refers to that in the free electron model but not to that of the 
Bloch electron.
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ἀ e replacement of D1 1= − −  and D2 =   immediately leads to*
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ἀ e potential function P( )E  given by Equation 4.35 is now rewritten by 
inserting Equation 4.53:
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According to Equation 4.47, ω ν ( ( ))D E E E= −  holds in the accuracy of 
∆2 . ἀ us, the potential function can be linearized in the accuracy of ∆2  
in the following form:
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where φ ( )− −1  and ω ( )  are independent of energy, since energy enters 
only through D E( ) , which is fixed as D1 1= − −  and D2 =  . ἀ is is the 
linearization of the potential function in the LMTO-ASA method.

ἀ e matrix element in Equation 4.36 representing the KKR-ASA equa-
tion may be rewritten as

 P k
      ( ) , ,E Sm m m m m mδ δ′ ′ ′ ′ ′ ′− ≡ Λ  (4.56)

and the following relation is newly defined in relation to Equation 4.55:

* See footnote 7 on page 63 for the reason why we choose D D1 21= − − = and .
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 ∆ ′ ′ ′ ′= − −
− − − 
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Now the product of Equations 4.56 and 4.57 is calculated to be

 ∆Λ Ω  = − − ∏
′ ′ ′ ′ ′ ′     m m m m

k
m m

kE E
, , ,( )ν  (4.58)

where the coefficients Ω m m, ′ ′
k

 and Π m m, ′ ′
k  are explicitly given as
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and
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 (4.60)

where ω ω φ φ( ) ( ) ( ) ( ) ( )− − − = + − −    1 2 1 1a  is used. Note that 
ω( ) , ω( )− − 1  and φ( )− − 1  in Equations 4.59 and 4.60 are all energy 
independent.

ἀ e matrix element χ χ′ ′ − m mH E  arising from Equation 4.37 in the 
LMTO-ASA method is simplified by using Equations 4.59 and 4.60:

 H EO E E
m m m m m m m−( ) = ∏ − − ∏

′ ′ ′ ′
+

′ ′ ′      , , , ,( )Ω ν  ′{ }m  (4.61)

Since the quantity in the curly brackets in the right-hand side is nothing 
but Equation 4.58, we find that the LMTO-ASA equation is similar to the 
KKR-ASA equation 4.36 involving the term Λ ′ ′ m m,  and is explicitly writ-
ten as:
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 det ( ), , ,∏ − − ∏( )  =′ ′
+

′ ′ ′ ′     m m m m m mE EΩ ν 0  (4.62)

Note that the structure factor S m m , ′ ′
k  involved in Equations (4.59) and 

(4.60) is independent of energy. It is often called canonical in the sense 
that it depends neither on energy, on the MT-sphere radius, nor on the 
scale of the structure. Indeed, energy enters only in a linearized form in 
the second term of the matrix element in the secular determinant (4.62). 
ἀ is is called the LMTO-ASA equation. ἀ e characteristic feature of the 
ionic potential of a given element is found to enter through φ ( )  and 
ω( )  involved in the potential function (4.55), which are solely deter-
mined from the radial wave function R E( )ν  and its derivative R E( )ν  
inside the MT sphere.

ἀ e canonical structure factor for a monatomic system is calculated 
from Equation 4.29 for a set of matrices distributed on a suitable grid 
specifying the wave vector k in the irreducible wedge of the Brillouin 
zone.* ἀe  canonical structure factor for a simple cubic lattice, for exam-
ple, is alternatively expressed in the two-center notation of Slater and 
Koster [15,19]:
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 (4.63)

where R a/  represents the atomic distance normalized with respect to the 
radius of an atomic sphere a and x/R, y/R and z/R are directional cosine. In 
the case where s-, p-, and d-partial waves are sufficient, we end up with the 
9 × 9 matrix arising from a combination of nine different orbitals, that is, 
( ) 2 1 + -partial  waves composed of a single s-, three p-, and five d-waves. 
It is explicitly written as follows:

* See the definition of the “irreducible wedge” for the fcc and bcc Brillouin zones in Section 5.5 
and Figure 5.3.
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ἀ e structure factor S m m , ′ ′
k  defined by Equation 4.29 can be extended to a 

system containing more than two atoms in the unit cell:
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where R is the lattice vector, rs  is the coordinate of s-th atom in the unit 
cell, at  is the radius of the atomic sphere of type t, a is an average radius 
of atomic spheres, ′′ = ′ +   , ′′ = ′ −m m m  and the coefficient g m m′ ′ ,  is 
defined in Equation 4.30 [15].

In the case of the CsCl-type binary alloy AB, we have four different 
atomic pairs A-A, A-B, B-A, and B-B, and the structure factor (4.65) is 
reduced to the form:

 
A A A B
B A B B
− −
− −







 (4.66)

Let us consider, for example, the CuAu B2-compound. Now a matrix given 
by Equation 4.66 consists of 18 rows and 18 columns, since each atomic 
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pair of Cu-Cu, Cu-Au, Au-Cu, and Au-Au forms a matrix of nine rows 
and nine columns. ἀ e electronic states Cu s− 4 , Cu p− 4 , Cu d−3 , Au s−6 , 
Au p−6  and Au d−5  are assigned to m n( )=1, m n( ) ~= 2 4, m n( ) ~= 5 9, 
m n( )=10, m n( ) ~=11 13  and m n( ) ~=14 18  for the m-th row and n-th 
column in the matrix element S m n( , ), respectively. ἀ us, S( , )1 10  repre-
sents the matrix element between Cu s− 4  and Au s−6 , whereas S( , )2 11  
that between Cu p− 4  and Au p−6  states.

ἀ e LMTO-wave function for the CuAu B2-compound is explicitly 
given by
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R  (4.67)

where

 χCu lm
lm

−∑

is the sum of MTOs associated with one Cu-4s, three Cu-4p, and five 
Cu-3d states and

 χAu lm
lm

−∑

that of MTOs associated with one Au-6s, three Au-6p, and five Au-5d 
states. ἀ erefore, we have totally 18 different coefficients to be determined 
in Equation 4.67.

According to the variational principle, one varies ψ  to make the 
energy functional stationary such that δ ψ ψH E− = 0, which has solu-
tions whenever

 det χ χ′ ′ ′ ′
−{ }=t l m tlms s

H Er
k

r
k 0  (4.68)
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where t stands for type t atom and rs atom position in the unit cell. Equation 
4.68 needs to be evaluated only over atoms in the unit cell [15].

4.10  extRactIon of spd-d oRBItal hyBRIDIzatIons 
In the lmto-asa methoD

In Chapter 1, an emphasis was laid on the historical importance of the 
gamma-brass as a material, which inspired Jones’ curiosity in 1933 after he 
attended a lecture given by W. L. Bragg. It is also emphasized that gamma-
brasses have played a special role in the interpretation for the Hume-
Rothery electron concentration rule since the theory advanced by Mott 
and Jones in 1936. In the remaining chapters, we will systematically work 
on a series of gamma-brasses containing 52 atoms per unit cell and having 
space group of either I m43  or P m43 .

To proceed with LMTO-ASA band calculations for Cu5Zn8 gamma-
brass with space group I m43 , we need to replace Equation 4.64 repre-
senting the matrix of the structure factor for a monatomic system by that 
given by Equation 4.65. As will be discussed in Chapter 6, Section 6.2, 
the atomic structure of Cu5Zn8 gamma-brass is described by arranging 
a 26-atom cluster to form a bcc lattice. Now the matrix of the structure 
factor S

s sm mr r
k
 , ′ ′ ′  with rs  and ′rs  specifying Cu or Zn atom positions in the 

unit cell is composed of 26 9 234× =  rows and 234 columns, since we have 
26 atoms in the cluster and each Cu or Zn atom in it has nine electronic 
states consisting of one 4s, three 4p and five 3d states.* ἀ e LMTO-wave 
function for Cu5Zn8 gamma-brass will be constructed in a way similar 
to Equation 4.67 for the CuAu B2-compound. Among 26 9 234× =  coef-
ficients, we have 90 aCu lm

j
−

k  and 144 aZn lm
j
−

k  coefficients to be determined at 
a given energy and given state k for this gamma-brass.

Figure 4.8 shows energy dispersion relations along <411> direction 
calculated for Cu5Zn8 gamma-brass in the LMTO-ASA method [22]. ἀ e 
electronic states are bunched in the binding energies over −2 ≤ E ≤ −4 eV 
and −7 ≤ E ≤ −8 eV. ἀ ey are identified as the Cu-3d and Zn-3d band, 
respectively. In contrast, electronic states are sparse in the neighborhood 
of the Fermi level. ἀ is leads to what we call a pseudogap. Its presence 
may be more clearly seen in the DOS shown in Figure 4.9 [6]. We see that 
the Fermi level is situated at an energy, where the Cu-3d band is almost 
terminated and its diminishing tail extends toward the bottom of the 

* Spin states are assumed to be degenerate.
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pseudogap. From this, we perceive that the spd-d orbital hybridization can 
significantly affect the form of a pseudogap.

To realize the advantage of the LMTO-ASA method in exploring the 
role of orbital hybridizations in the formation of a pseudogap, we show 
in Figure 4.10 the total DOS of Cu5Zn8 gamma-brass calculated after 
intentionally eliminating product terms like a aCu d

j
Zn p
j

− −⋅3 4
k k  associated 

with all spd-orbitals hybridized with Cu-3d and Zn-3d orbitals. ἀ ese 
terms appear upon explicit calculations of Equation 4.68, into which the 
LMTO-wave function like (4.67) is inserted [6]. ἀ ough both Cu-3d and 
Zn-3d bands are reduced to discrete levels, the pseudogap remains exis-
tent across the Fermi level. ἀ is strongly indicates that the pseudogap in 
this system is not caused by orbital hybridizations. However, the deletion 
of spd-d orbital hybridizations apparently shifts the pseudogap to the 
left relative to the Fermi level, or to higher binding energies. Indeed, the 
Fermi level in Figure 4.10 is now found at a rising slope of the pseudogap 
after passing its bottom [6]. Hence, we may conclude that, in the case of 
Cu5Zn8 gamma-brass, spd-d orbital hybridizations play a role in shifting 
the pseudogap structure relative to the Fermi level.
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TMS (ἀ e Minerals, Metals & Materials Society, 2005) pp. 1–42.]
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Judging from the argument above, we can safely say that both the Cu-3d 
and Zn-3d bands have little to do with the formation of the pseudogap 
itself. Hence, it may well be justifiable to check the presence of a pseudogap 
by calculating the DOS in the Nearly Free Electron (NFE) model by ignor-
ing the Cu-3d and Zn-3d states [6]. As shown in Figure 4.11, a pseudogap 
in this case is observed immediately below the Fermi level. However, it 
completely disappears, when the form factor (i.e., the Fourier component 
of the ionic potential associated with the {330} and {411} zone planes) is set 
to be zero (see black line in Figure 4.11).* ἀ is means that a pseudogap in 

* ἀ e form factor in the NFE model is defined as

 V
N

V ii i i
i

N

G r G r= − ⋅
=
∑1

1
( )( )exp( )α

 where Vi(α)(ri) is the ionic potential due to an atomic species α at the position ri in the unit 
cell. ἀ e sum is taken over N atoms in the unit cell. ἀ e energy gaps across the {411} and {330} 
zone planes are intentionally set to zero in the present case.
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intentionally zeroing form factors associated with the set of {411} and {330} lat-
tice planes. A dotted line represents the free electron parabolic band. [From U. 
Mizutani, The Science of Complex Alloy Phases (edited by T.B. Massalski and 
P.E.A. Turchi), TMS (ἀ e Minerals, Metals & Materials Society, 2005) pp. 1–42.]
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Cu5Zn8 gamma-brass originates from the FsBz interaction [6]. However, 
we do realize that the NFE model is still far removed from being realistic 
beyond the Mott and Jones free electron approach, because this model 
ignores spd-d orbital hybridizations associated with Cu-3d and Zn-3d 
states. Instead, we will show in the following sections that the FLAPW 
method is the most powerful in extracting the FsBz interaction, no matter 
how strong are spd-d orbital hybridizations. Nevertheless, NFE band cal-
culations will be proved to be powerful in extracting the FsBz interactions 
for RT-type 1/1-1/1-1/1 approximants in place of FLAPW band calcula-
tions, since the latter needs much more computation time and memories, 
as will be described below (see also Chapter 9, Sections 9.2.3 and 9.3.3.).

In summary, the LMTO-ASA method has the following advantages: (1) 
it uses a minimal basis, which leads to high efficiency and makes calcula-
tions possible for crystals having large unit cells; (2) it is best suited for 
studying orbital hybridization effects, since atom-centered basis functions 
of well-defined angular momentum are used.*

4.11 apW methoD
ἀ e principle of the augmented plane wave (APW) method prior to the 
introduction of its linearization needs to be discussed first [2,20]. We con-
sider the two regions separated by the MT sphere in the Wigner–Seitz cell. 
As listed in Table 4.1, the radius aAPW  of the MT sphere is the smallest 
among others, indicating that a wider intermediate region is assumed in 
the APW method. It should be noted that, in the APW method, the Bloch 
plane wave ψ( ) exp[ ( ) ]/r k G r= + ⋅−Ω 1 2 i  is superimposed over allowed 
reciprocal lattice vectors G to describe the motion of an electron outside 
the MT sphere, in sharp contrast with MTOs given by equation like (4.26) 
in the LMTO method.

We consider again a crystal consisting of a single atomic species. A MT 
sphere with radius a is placed at each atomic site. In the region r ≤ a, a trial 
function is expressed as

 χ
k G

r r rk G+
= +∑n n

MT lm
l lm

lm

E A R E Y( , ) ( , ) (ˆ)  (4.69)

* “A minimal basis sets” represent a basis set that describes only the most basic aspects of the 
orbitals.
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where k is the wave vector of the Bloch electron and Gn is an arbitrary 
reciprocal lattice vector in the present system. In the interstitial region 
r > a, a trial function is expressed in the form of a plane wave with the 
wave vector k G+ n :

 χ
k G

r k G r
+

= + ⋅ 
−

n

inter
ni( ) exp ( )/Ω 1 2  (4.70)

Now Equation 4.70 is expanded into the spherical harmonics:

 

χ

π

k G
r k G r

+
= + ⋅ 

=

−

−

n

inter
ni( ) exp ( )/

/

Ω

Ω

1 2

1 24 ii j r Y Yn m n m
m


  







( ) ( ) (ˆ)*k G k G r+ +
=−=

∞

∑∑
0

 (4.71)

By imposing the continuity condition of Equations 4.69 and 4.71 at 
the surface of the MT sphere, we can determine the coefficient A

n

m
k G+
 in 

Equation 4.69 as follows:

 A i Y
j a

R E an

m
m n

n
k G k G

k G
+

−= +
+( ) 






4 1 2π Ω / * ( )
( , ))

 (4.72)

In this way, we can construct the APW basis function, which is continu-
ous across the MT sphere [2,20]. Note that the derivative is not continuous 
at the surface of the MT sphere.

ἀ e function having the coefficient given by Equation 4.72 is simply 
denoted as χk G r+ n

E( , ) . ἀ is is called the APW orbital. In order to guar-
antee χk G r+ n

E( , )  to be the Bloch wave propagating throughout a crystal, 
we need to impose the Bloch condition:

 χ χk G
k G R

k Gr R r+
+ ⋅

++ =
n

n
n

E e Ei( , ) ( , )( )  (4.73)

where R is the lattice vector satisfying the relation ei nG R⋅ =1 . ἀ e wave 
function to describe the motion of an electron in a crystal is now expressed 
by summing APW orbitals as basis functions over the allowed reciprocal 
lattice vectors Gn :
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 ψ χk G k G
G

r k G r+ += +∑n n

n

E C En( , ) ( ) ( , )  (4.74)

ἀ e coefficient C n( )k G+  in Equation 4.74 is determined as the solution 
of a set of linear equations by using the variational principle. Its secular 
determinantal equation is expressed as

 det k G+ −( ) +




=n mn mnE F

2
0δ  (4.75)

where the coefficient Fmn [2,20] is explicitly given as
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 (4.76)

ἀ e coefficient Fmn is similar to the Fourier component of the ionic poten-
tial V Vmn m n≡ −( )G G , that is, the form factor in NFE band calculations 
(see Footnote * on page 84 in Section 4.10.). ἀ e secular determinantal 
equation 4.75 is derived from the condition so as to have the coefficient 
C n( )k G+  in the secular equation physically meaningful. In contrast to 
NFE band calculations, the energy to be solved is involved in Fmn through 
the terms R E a( , )  and ′R E a( , ) . ἀ is is again the reason for the need of 
linearization in order to perform a fast, but efficient computation.

4.12 lapW methoD
In this section, we study the principle of LAPW method [2,20,21,23,24], 
which allows a fast computation by linearizing the APW method 
described in the preceding section. ἀ e determinant can be diagonalized, 
if energy-dependent logarithmic derivative of the radial wave function

 ′R E a
R E a




( , )
( , )
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in Fmn is made energy independent. For this purpose, we assume the trial 
radial wave function in the same way as in Equation 4.38 [20]:

 φ ων ν   
E r R E r E R E r, ( , ) ( , )( ) = + ( )  (4.77)

where Eν  is a fixed energy for each partial wave ℓ. In the region r a≤  in 
the Wigner–Seitz cell located at origin, the wave function is written as

 χ ν νk G k G k Gr+ + += +n n n
A R E r B R E rm m( ) ( , ) ( , )





 ∑ Y m

m




(ˆ)r  (4.78)

instead of Equation 4.69 [21]. It must be noted that the ratio

 
B
A

n

n

m

m
k G

k G

+

+





corresponds to ω( )E  in Equation 4.77 but is no longer energy depen-
dent. ἀ e energy Eν  in Equation 4.78 is taken as energy at the center 
of gravity in the band for the partial wave ℓ. In the same way as in 
the APW method, the wave function of an electron with the wave vec-
tor k G+ n  outside the MT sphere is given by Equations 4.70 or 4.71 
and is expanded into spherical harmonics as shown in Equation 4.71. 
However, there are two parameters A

n

m
k G+
  and B

n

m
k G+
  to be determined 

in Equation 4.78. Hence, we can make not only the wave functions 
(4.71) and (4.78) but also their derivatives to be continuous at the sur-
face of the MT sphere. As a result, both coefficients A

n

m
k G+
  and B

n

m
k G+
  are 

explicitly determined as

 A a i Y a
n

m
m nk G k G+

−= + 
 
4 2 1 2π Ω / * ( )  (4.79a)

 a j a R E a j a R En n    
 = ′ + − + ′(| | ) ( , ) (| | ) (k G k Gν ν ,, )a  (4.79b)

 B a i Y b
n

m
m nk G k G+

−= + 
 
4 2 1 2π Ω / * ( )  (4.80a)

and
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 b j a R E a j a R E an n    = + ′ − ′ +(| | ) ( , ) (| | ) ( ,k G k Gν ν ))  (4.80b)

We have finally obtained the energy independent LAPW basis function, 
which is smoothly connected across the MT sphere. ἀ is is called the 
LAPW orbital.

ἀ e following relation is imposed on the LAPW orbital to satisfy the 
Bloch condition:

 χ χk G
k G R

k Gr R r+
+ ⋅

++ =
n

n
n

ei( ) ( )( )  (4.81)

where R is the lattice vector and satisfies the relation ei nG R⋅ =1  with the 
corresponding reciprocal lattice vector Gn. In contrast to Equation 4.73, 
Equation 4.81 is independent of energy. Now the wave function of an elec-
tron moving through a crystal can be described by superimposing LAPW 
basis functions:

 ψ χk G k G
G

r k G r+ += +∑n n

n

C n( ) ( ) ( )  (4.82)

where the coefficient C n( )k G+  is determined as a solution of a set of 
linear equations by means of the variational principle. A secular equation 
can be derived from Equation 4.37 or

 H E O amn j mn n
j

n

−( ) =∑ k k 0  (4.83)

where the coefficient Hmn  and Omn  are explicitly written down as
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and
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where

 s j a R a j a R amn m n


   
 = −( ) − −( ) ′[ | | ( ) | | ( )]k G k G  (4.85a)

 

γmn m nR a R a j a j a
   
= ′ ′ −( ) −( )

+

( ) ( ) | | | |k G k G

jj a j a

R a R a j

m n 

  


| | | |

( ) ( ) |

k G k G−( ) ′ −( )
− ′ ′ kk G k G

k G

−( ) −( )

+ ′ −

m n

m

a j a

R a R a j

| | |

( ) ( ) | |



  
 aa j an( ) ′ −( ) | |k G

 (4.85b)

and
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where P  is the Legendre polynomial. ἀ e energy-dependent logarithmic 
derivative of the radial wave function

 j a R a E
R a E
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found in Fmn in Equation 4.76 in the APW representation is now replaced by
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where N  is given by

 N R E r r dr
a

 
= ( )∫ 2 2

0

ν ,

and is a constant called the norm, which already appeared in Equation 
4.44. In this way, the linearization is completed and the secular determi-
nantal equation can be efficiently solved. ἀ e restriction of spherical sym-
metry imposed on the MT potential can be lifted to perform the electronic 
structure calculation as precisely as possible. ἀ e full-potential method is 
introduced to cope with a potential of any arbitrary shape. ἀ is is called the 
full-potential linearized augmented plane wave (FLAPW) method [24,25], 
which is known as a tool capable of calculating the electronic structure 
with the highest accuracy among various all-electron first-principles band 
calculation methods.

Now we consider a crystal containing more than two atoms in the 
unit cell, including CMAs containing more than 50 atoms in the unit 
cell, in the framework of the LAPW method. ἀ e MT potential experi-
enced by an electron at the position r in the Wigner–Seitz cell around 
any atom at the position vector rs in the unit cell specified by the lattice 
vector R is expressed as

 V
V a

aMT
s s s

s s

( )
( )

r
r R r r R r

r R r
=

− − − − ≤

− − >





0
 (4.88)

where V s( )r R r− −  represents the MT potential centered at the s-th atom 
in the unit cell and as  is the radius of its MT sphere. Similarly to Equation 
4.78 for a monatomic crystal, the wave function of an electron at the posi-
tion r inside the MT sphere at the position R r+ s  is written as

χ α
k G

k G

r k G R r+
−

+

( ) = +( )⋅ +( ) 
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n

n
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A R
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where the subscript α specifies the atomic species at the s-th atom.* In the 
intermediate range outside the MT sphere, Equation 4.70 remains valid. 
By introducing the step function defined as

 θ r R r
r R r

r R r
− −( ) = − − ≤

− − >






s

s s

s s

a

a

0

1
 (4.90)

we can write down the LAPW basis function in the following form:
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 (4.91)

As is clear from Equation 4.91, we need to sum up contributions from all 
MT spheres for a crystal containing N atoms in the unit cell. As a final 
step, we need to require the Bloch condition on Equation 4.91 and con-
struct the wave function of an electron propagating through a crystal by 
summing it over allowed reciprocal lattice vectors in the same way as that 
in Equations 4.74 and 4.82.

Let us consider the case of gamma-brass as an example again. Firstly, 
the summation over azimuthal quantum number ℓ and magnetic quantum 
number m is carried out up to about ℓ = 8. ἀ ere are 26 independent atoms 
for the gamma-brass with space group I m43 . We construct Equation 4.91 
by calculating the partial radial wave function R E r( , )ν  and its derivative 

R E r( , )ν  in each MT sphere. One can clearly see how the construction 

* In order to smoothly connect χ α
k G r+

−
n

MT ( )  centered at R + rs with the plane wave χk G r+ n

inter ( )  
across the MT sphere, we can rewrite Equation 4.71 as
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 ἀ is is the reason why the phase shift exp[ ( ) ( )]i n sk G R r+ ⋅ +  appears in Equation 4.89.
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of the FLAPW basis function χk G r+ n
( )  becomes complex when dealing 

with CMAs. As mentioned above, the FLAPW basis function χk G r+ n
( ) 

must be summed over all allowed reciprocal lattice vectors, the number 
of which generally exceeds about 2500.* Obviously, the secular equation 
constructed from Equation 4.83 consists of the number of rows and col-
umns equal to that of the reciprocal lattice vectors employed. In the case 
of the gamma-brass, one has to solve the secular determinantal equation 
having 2500 × 2500 up to 5000 × 5000 matrix. ἀ is is contrasted with the 
LMTO-ASA method, where the secular determinant consists of 239 × 239 
matrix for Cu5Zn8 gamma-brass, as mentioned in Section 4.10. In addi-
tion, one needs to compute the canonical structure factor only once for a 
given structure in the LMTO-ASA.

ἀ e FLAPW method has to handle a much larger determinant to solve 
and to require a much larger capacity of memories and a longer computa-
tion time. ἀ is is a big disadvantage in comparison with the LMTO-ASA 
method upon applying to CMAs like 1/1-1/1-1/1 approximants containing 
more than one hundred atoms in the unit cell. ἀ is is the reason why the 
LMTO-ASA band calculations have been almost exclusively employed in 
the past to calculate the electronic structure of 1/1-1/1-1/1 approximants. 
However, some attempts have been recently made to perform FLAPW 
band calculations even for such CMAs. For example, Zijlstra and Bose 
[26] made FLAPW band calculations by approximating the structure of 
the Al-Pd-Mn quasicrystal by a model structure containing 65 atoms in 
the unit cell on the basis of the Quandt-Elser model [27]. More recently, 
Mizutani et al. [28] could determine the effective e/a value for transition 
metal elements Fe and Ru by performing FLAPW electronic structure cal-
culations for Al108Cu6TM24Si6 (TM = Fe and Ru) approximants contain-
ing 144 atoms in the unit cell with space group Pm3 . ἀ e details will be 
discussed in Chapters 9 and 10.

Before ending Chapter 4, we discuss why the FLAPW method is best 
suited for extracting the FsBz interaction. Since we are interested in 
the mechanism for the formation of a pseudogap in the very vicinity of 
the Fermi level, we are in a position to examine if it is created by form-
ing stationary waves as a result of interference of electron waves having 
the Fermi energy with a specific set of lattice planes. ἀ e FLAPW wave 

* ἀ e number of reciprocal lattice vectors is generally taken up to about 50 times the number 
of atoms in the unit cell for a 3d-transition metal alloy system.
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function (4.82) outside the MT sphere is constructed by superimposing 
the plane waves over reciprocal lattice vectors allowed to a given structure. 
ἀ e presence of a FsBz-induced pseudogap will be confirmed by extract-
ing the dominant plane wave of the wave vector k G+ n  in the wave func-
tion (4.82) at the principal symmetry points like the points N in the case of 
the bcc Brillouin zone, where the stationary waves are formed. ἀ is can be 
done by plotting the square of the plane wave component outside the MT 
sphere as a function of the square of the allowed reciprocal lattice vector 
at the symmetry point chosen. ἀ is is indeed the execution of the Fourier 
spectrum analysis and will be introduced as the FLAPW-Fourier method 
in Chapter 7. ἀ is is obviously a standard approach in NFE band calcula-
tions. However, as emphasized in connection with Figure 4.11, the NFE 
model is not suitably applicable to a system involving the d-band in its 
valence band. In contrast, the FLAPW method chooses FLAPW-orbitals 
as basis functions and allows us to perform precise first-principles band 
calculations for any realistic crystals and to extract the FsBz interaction in 
the same way as in NFE band calculations.

ἀ e program package WIEN2k developed by P. Blaha, K. Schwarz, 
G. Madsen, D. Kvasnicka and J. Luitz, Institut für Materialchemie, 
Technische Universität Wien, Austria, is commercially available to per-
form electronic structure calculations of crystals using density functional 
theory (DFT) [29]. It is based on the FLAPW method plus local orbitals 
(lo) method, including relativistic effects. Both the FLAPW-package devel-
oped by Freeman’s group [24,25] and the WIEN2k package were employed 
to perform first-principles FLAPW band calculations, as will be discussed 
in the remaining chapters.
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5C h a p t e r  

Hume-Rothery Electron 
Concentration Rule 
Concerning the α/β 
Phase Transformation 
in Cu-X (X = Zn, Ga, 
Ge, etc.) Alloy Systems

5.1 staBle fcc-cu veRsus metastaBle Bcc-cu
In Chapter 3, we introduced the model of Jones (I) [1], which was put 
forward in 1937 to interpret the Hume-Rothery electron concentration 
rule concerning the α/β phase transformation in the Cu-Zn alloy system. 
However, we had to point out various difficulties in his theory based on 
the NFE model. ἀ e best way to overcome difficulties in the model of Jones 
(I) will be to perform first-principles electronic structure calculations 
(see Chapter 4) for fcc- and bcc-Cu as accurately as possible and to com-
pare the respective valence-band structure energies as a function of VEC 
within the context of a rigid-band model. ἀ ough the present monograph 
is dedicated to the structurally complex metallic alloys (CMAs), we will 
attempt in this Chapter 5 to perform the FLAPW band calculations for 
fcc- and bcc-Cu in order to make clear to what extent the Hume-Rothery 
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electron concentration rule concerning the α/β phase transformation can 
be explained within the rigid-band model.

Paxton et al. [2] made such attempts in 1997 by performing LMTO-
ASA band calculations for fcc- and bcc-Cu within the rigid-band model. 
ἀ ey employed the frozen potential approximation such that a self-con-
sistent potential generated for fcc-Cu is simply transferred to bcc-Cu. ἀ is 
is quite convenient, since, to the first order in the potential difference, the 
valence-band structure energy difference ∆Uv  between fcc- and bcc-Cu 
is equal to the total-energy difference ∆U total  [3]. But their approach is 
not fully self-consistent. ἀ ey further assumed that “all calculations were 
done at the measured volume of β-CuZn.” ἀ is is apparently meant to use 
the volume per atom Va  of the CuZn B2-compound for both fcc- and bcc-
Cu under the assumption of V Va

bcc
a

fcc= .*
In Chapter 5, we determine the volume per atom for both the fcc- and 

bcc-Cu by minimizing the respective total-energies in FLAPW band cal-
culations with respect to their lattice constants. As will be shown below, 
Va

bcc  is found to be slightly larger than Va
fcc  beyond the accuracy of the 

resolution. Using the optimized atomic structure of fcc- and bcc-Cu thus 
obtained, we calculate their DOSs and the valence-band structure energy 
difference ∆Uv  and discuss the α/β phase transformation using their 
VEC dependences within the rigid-band model.

5.2  fIRst-pRIncIples BanD calculatIons 
foR fcc- anD Bcc-cu In lIteRatuRe

Prior to the discussion on the α/β phase transformation in the Cu-Zn 
system, we first review the first-principles band calculations performed 
on both fcc- and bcc-Cu in the past two decades. Typical ground-state 
properties for fcc- and bcc-Cu are summarized in Table 5.1 [5–9]. ἀ e 
cohesive energy difference between fcc- and bcc-Cu, which is defined as 
∆ε ε εcoh coh

fcc
coh
bcc= −( ) , is always positive in favor of the fcc-phase relative to 

the bcc-phase and is distributed over the range from 0.02 to 0.04 eV/atom 
or 2 to 4 kJ/mol.† ἀ is is in a perfect agreement with the experimental 

* According to literature [4], the measured lattice constant is 0.29539 nm for the CuZn 
B2-compound at the composition 47.66 at.% Zn. Its volume per atom is calculated to be 
0.01289 nm3, which is 9.8% larger than the literature value of 0.01174 nm3 for fcc-Cu [4].

† ἀ e relation ∆ ∆εcoh U= − total  holds, where ∆ ∆ε ε εcoh coh
fcc

coh
bcc fccU U= − =and total total −−U bcc

total . As 
shown in Figure 2.1, εcoh  is defined relative to the ionization energy and represents a quan-
tity positive in sign, whereas Utotal is defined relative to an infinity and represents a quantity 
negative in sign.
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evidence that fcc-Cu exists as a stable phase in the equilibrium phase dia-
gram. ἀ e lattice constant and, hence, the volume per atom can be deter-
mined from a minimum in the volume dependence of the total-energy. 
As listed in Table 5.1, the difference in the calculated volume per atom 
between fcc- and bcc-Cu is quite small and is scattered over the range of 
+0.55% to −0.49%, depending on the data in literature [5–9]. ἀ us, atten-
tion is directed to the need of determining the most accurately the volume 
per atom for both fcc- and bcc-Cu.

5.3  flapW electRonIc stRuctuRe 
calculatIons foR fcc- anD Bcc-cu

ἀ e electronic structure and the total-energy for fcc- and bcc-Cu are 
calculated, using the commercially available WIEN2k program pack-
age based on the FLAPW method [10] and the FLAPW-program pack-
age developed by Freeman et al. [11–13]. In both cases, the exchange 
and correlation energy functional of the electrons is calculated within 
the generalized gradient approximation coupled with Perdew–Burke–
Ernzerhof hybrid scheme (GGA-PBE) [14]. ἀ e generation of the muffin-
tin (MT) potential is self-consistently made for both fcc- and bcc-Cu. 
Preliminary FLAPW band calculations are performed by varying the 
radius of the MT sphere, rMT , over the range 0.1164 to 0.128 nm for both 
fcc- and bcc-Cu. It turned out that the effect of rMT  on the DOS and 
∆UV  was very small. In the present calculations using both the WIEN2k 
and Freeman-program packages, the value of rMT  is fixed to be 0.1164 
nm (=2.2 a.u.) for both fcc- and bcc-Cu.

At first, the total-energy U total  for both fcc- and bcc-Cu is computed, 
using the WIEN2k package, by varying the respective lattice constants. 
Note that the value of rMT  = 0.1164 nm is small enough to avoid any 
overlap of the neighboring MT spheres upon volume contraction in both 
phases. As shown in Figure 5.1, U total  takes its minimum at the lattice 
constants of 0.36301 and 0.28864 nm for fcc- and bcc-Cu, respectively. 
ἀ e same conclusion is reached, using the Freeman-program package. 
ἀ e volume per atom for bcc-Cu becomes 0.54% larger than that for fcc-
Cu, that is, V Va

bcc
a

fcc=1 0054. . ἀ is is taken as a clear indication of the 
breakdown of the condition V Va

bcc
a

fcc=  in the self-consistent calcula-
tions. ἀ e value of U total  for fcc-Cu turns out to be 0.038 eV/atom or 3.7 
kJ/mol lower than that of bcc-Cu. All these ground-state properties are 
quite consistent with calculated ones reported in literature [5–9], as sum-
marized in Table 5.1.



100    ◾    hume-Rothery Rules for structurally complex alloy phases

ta
B

le
 5

.1
 

G
ro

un
d-

St
at

e 
Pr

op
er

tie
s o

f f
cc

-C
u 

an
d 

bc
c-

C
u 

in
 L

ite
ra

tu
re

La
tt

ic
e 

C
on

st
an

t 
a 

[n
m

]
Vo

lu
m

e 
pe

r A
to

m
 

V a [
(n

m
)3 ]

C
oh

es
iv

e 
En

er
gy

 
ε c

oh
 [e

V
/a

to
m

]
∆ε

co
h

(=
ε c

oh
fc

c  −
 ε c

oh
bc

c )
[e

V
/a

to
m

]
(V

fc
c −

V
bc

c)/
V f

cc
[%

]
R

ef
fc

c-
C

u
bc

c-
C

u
fc

c-
C

u
bc

c-
C

u
fc

c-
C

u
bc

c-
C

u

PP
-G

O
-L

D
A

0.
36

2
0.

28
7

0.
01

18
6

0.
01

18
2

3.
83

3.
81

0.
02

+0
.3

3
5

LA
PW

-N
R-

LD
A

0.
36

1
0.

28
6

0.
01

17
6

0.
01

16
9

4.
14

4.
12

0.
02

+0
.5

5
6

PP
-L

D
A

0.
36

1
0.

28
7

0.
01

17
6

0.
01

18
2

4.
37

4.
33

0.
03

72
−0

.4
9

7
VA

SP
-G

G
A

0.
36

4
0.

28
9

0.
01

20
7

0.
01

21
2

3.
76

3
3.

72
7

0.
03

6
−0

.4
1

8
FL

A
PW

-G
G

A
0.

36
2

0.
29

0
0.

01
18

6
0.

01
21

9
3.

76
3.

72
0.

04
−0

.0
2

9

So
ur

ce
: 

J.R
. C

he
lik

ow
sk

y 
an

d 
M

.Y
. C

ho
u,

 P
hy

s. 
Re

v.
 B

38
 (1

98
8)

 7
96

6;
 Z

.W
. L

u,
 S

.-H
. W

ei
, a

nd
 A

. Z
un

ge
r, 

Ph
ys

. R
ev

. B
 4

1 
(1

99
0)

 
26

99
; S

. J
eo

ng
, P

hy
s. 

Re
v.

 B
 5

3 
(1

99
6)

 1
39

73
; C

. D
om

ai
n 

an
d 

C
.S

. B
ec

qu
ar

t, 
Ph

ys
. R

ev
. B

 6
5 

(2
00

1)
 0

24
10

3;
 Z

. T
an

g,
 M

. 
H

as
eg

aw
a,

 Y
. N

ag
ai

, a
nd

 M
. S

ai
to

, P
hy

s. 
Re

v.
 B

 6
5 

(2
00

2)
 1

95
10

8.
N

ot
e: 

PP
-G

O
: p

se
ud

op
ot

en
tia

ls 
w

ith
 lo

ca
l o

rb
ita

l b
as

is 
co

ns
ist

in
g 

of
 G

au
ss

ia
ns

; L
D

A
: l

oc
al

 d
en

sit
y 

ap
pr

ox
im

at
io

n;
 N

R:
 n

on
-

re
la

tiv
ist

ic
; P

P-
LD

A
: p

se
ud

op
ot

en
tia

l p
la

ne
-w

av
e 

ba
sis

; V
A

SP
-G

G
A

: V
ie

nn
a 

ab
-in

iti
o 

si
m

ul
at

io
n 

pa
ck

ag
e 

w
ith

 g
en

er
al

-
iz

ed
 g

ra
di

en
t a

pp
ro

xi
m

at
io

ns



hume-Rothery electron concentration Rule    ◾    101

ἀ e energy dispersion relations for the optimized structures of fcc- and 
bcc-Cu are calculated using the WIEN2k and are depicted in Figure 5.2a,b, 
respectively. ἀ e results for fcc-Cu are in good agreement with previous 
results [2,5,9,15,16]. As repeatedly mentioned in Chapter 1, Section 1.2 and 
Chapter 3, Section 3.2, the Fermi surface of fcc-Cu is characterized by the 
neck centered at the principal symmetry points L of its Brillouin zone. ἀ e 
corresponding electronic state is marked as L2′  in Figure 5.2a. Its location 
below the Fermi level can be taken as a theoretical confirmation of the 
presence of the neck across the {111} zone planes of the fcc Brillouin zone. 
As a matter of fact, the assumption of the Fermi surface with a diminishing 
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fIguRe 5.1 Total-energy calculated using the WIEN2k, as a function of the lat-
tice constant for fcc- and bcc-Cu. ἀ e radius of the MT sphere rMT is fixed to be 
0.1164 nm. Data points marked with solid circle refer to fcc-Cu, bcc-I, -II, and 
-III, for which the DOS and valence-band structure energies were calculated.
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neck in the model of Jones seriously embarrassed Hume-Rothery in early 
1960s [17], since people at that time were already well convinced by the 
discovery of the neck in fcc-Cu due to Pippard [18] (see Chapter 1, Section 
1.2 and Chapter 3, Section 3.2).

As shown in Figure 5.2b, the electronic state marked as N1′  in bcc-
Cu is also located below the Fermi level. ἀ is confirms the presence of 
the neck against the {110} zone planes in agreement with previous reports 
[2,5,9]. ἀ us, the van Hove singularity due to the contact of the Fermi 
surface with the {110} zone planes should appear below the Fermi level in 
the DOS. ἀ is is again at variance with the model of Jones [1], in which it 
is located far above the Fermi level (see Chapter 3, Figure 3.3a).

5.4  total-eneRgy anD valence-
BanD stRuctuRe eneRgy

According to the Kohn-Sham formulation of the Density-Functional 
ἀ eory (DFT) [19] (see Chapter 4, Section 4.3), the total-energy of a sys-
tem is expressed as
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fIguRe 5.2 Energy dispersion relations calculated using the WIEN2k for (a) 
fcc-Cu (a = 0.36301 nm) and (b) bcc-Cu (a = 0.28864 nm). ἀ e electronic states 
L2′ in (a) and N1′ in (b) confirm the formation of the neck across {111} and {110} 
zone planes in the fcc and bcc Brillouin zones, respectively.
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where the first term represents the one-electron energy due to both core 
and valence electrons, the second term known as the Hartree energy 
represents the contribution due to the electron–nuclei interaction plus 
average electron-electron interaction, and the third term represents the 
exchange and correlation energy. As mentioned by Cohen et al. [20], the 
Kohn–Sham formulation allows the eigenvalues to be shifted by an arbi-
trary constant V0 called the “muffin-tin zero.” In self-consistent total-
energy calculations, the value of this constant completely cancels, as long 
as we discuss a quantity given by a difference in the total-energy between 
the two competing phases.

Fcc-Cu with the lattice constant of 0.36301 nm is taken as a reference. 
Instead, we consider the bcc-Cu structures having the following three 
different lattice constants (see Figure 5.1): (I) 0.28864 nm derived from a 
minimum in the total-energy curve, (II) 0.28812 nm derived by inserting 
0.36301 nm into the relation V Va

bcc
a

fcc= , that is, assuming the same vol-
ume per atom for both phases and (III) 0.29388 nm, which is intentionally 
increased by 1.8% relative to bcc-I. Note that a difference in the lattice 
constant between bcc-I and –II is merely 0.18%.

ἀ e total-energy is calculated for these four structures, using the 
WIEN2k package. ἀ e total-energy difference ∆U total  ( = −U Ufcc bcc

total total ) 
between fcc- and bcc-Cu is summarized in Table 5.2. ἀ e value of ∆U total 
= –0.0384 eV/atom is found, regardless of whether bcc-I or bcc-II is 
employed, and is well consistent with the data in Table 5.1. ἀ is means 
that no discernible difference arises in the total-energy difference ∆U total, 
regardless of whether the bcc-I or the bcc-II is employed. However, the 
value of ∆U total  is increased to −0.05207 eV/atom, when bcc-III is 
employed.

Equation 5.1 may be rearranged into the following form:

 U U U U Uc pot inside MT pot outside MTtotal v= + + +{ }. .  (5.2)
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where the first term in Equation 5.1 is decomposed into the kinetic energy 
of valence electrons, Uv, and the binding energy of core electrons, Uc, 
and the potential energy in the curly bracket in Equation 5.1 is divided 
into those from the regions inside and outside the MT sphere. Each con-
tribution in Equation 5.2 for the fcc- and bcc-Cu is evaluated, using the 
Freeman-program package [12,13], as listed in Table 5.3.

According to Table 5.3, the valence-band structure energy Uv  looks 
small compared with Uc  and U pot outside MT. . ἀ is is not true, since the 
energy scale used in the calculation of the total-energy is arbitrary due 
to the presence of the muffin-tin zero V0. According to the free electron 
model, it is given by U EFv = 3 5/ , which roughly amounts to about +4 eV/
atom or +400 kJ/mole for fcc-Cu and is almost one-half in magnitude as 
large as the potential energy caused by the remaining terms in Equation 
5.2. More important is that only Uv  in Equation 5.2 acts against stabiliza-
tion, since it represents the repulsive energy of valence electrons caused 
by the Pauli exclusion principle. In other words, nature would always try 
to reduce Uv  as much as possible through structural transformation for 
a given alloy.

As emphasized above, the total-energy difference ∆U total  is crucially 
important in the discussion of relative stability of the two competing 
phases. An energy difference ∆U  due to each contribution in Equation 
5.2 is listed in a separate column in Table 5.3 in the units of eV/atom. 

taBle 5.2 Total-Energies for fcc-Cu and ἀ ree bcc Structures I, II, and III, Calculated 
Using the WIEN2k Package

fcc-Cu bcc-I bcc-II bcc-III

Lattice constant a 
[nm]

0.36301 0.28864 0.28812 0.29388

Volume per atom Va 
[(nm)3]

0.011959 0.012024 0.011959 0.012691

Radius of the MT 
sphere rMT [nm]

0.1164 0.1164 0.1164 0.1164

Total-energy 
difference ΔUtotal = 
U Utotal

fcc_
total
bcc  [eV/

atom]

— −0.03842
(−3.71 kJ/mol)

−0.03844
(−3.71 kJ/mol)

−0.05207
(−5.02 kJ/mol)

Binding energy at the 
bottom of the 
valence band Eo 
[eV]

−9.33834 −9.26705 −9.30773 −8.86663
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Surprisingly, all the contributions except for the potential energy outside 
the MT sphere act in favor of bcc-Cu. Indeed, this last term, the poten-
tial energy outside the MT sphere, is responsible for the stabilization of 
fcc-Cu.

Ideally speaking, one should evaluate accurately each term in Equation 
5.2 for every Cu-Zn alloy, say at 10 at.%Zn interval across both α- and 
β-phase regions and show if the total-energy difference ∆U total  changes 
its sign at the α/β phase boundary. However, FLAPW band calculations 
become an extremely formidable task, as soon as we start to work on the 
α-phase Cu-Zn alloys. ἀ is is because chemical disorder due to the addi-
tion of Zn into the Cu matrix hampers a well-defined unit cell. As a possible 
compromise, one may use either the virtual-crystal approximation (VCA) 
or the super-cell approximation (see Footnote * on page 44 in Chapter 3, 
Section 3.2). A more practical and conventional way to circumvent this 
difficulty is to employ a rigid-band model. When applied to the Cu-Zn 
alloy system, the electronic structures of fcc- and bcc-Cu are assumed to 
be the same as those of any Zn concentrations, and the position of the 
Fermi level is simply determined by the amount of electrons accommo-
dated in the respective valence bands. In addition to the rigid-band model 
above, we assume the VEC dependence of ∆U total  to originate solely from 
that of ∆Uv  in Equation 5.2. Now the discussion on the Hume-Rothery 
electron concentration rule regarding the α/β-phase transformation will 
be made in an attempt to interpret the VEC dependence of ∆Uv  in terms 
of the FsBz interactions involved in fcc- and bcc-phases.

taBle 5.3 Contributions to the Total-Energy in Equation 5.2 for fcc- and bcc-Cu 
Calculated Using the FLAPW Freeman-Package

fcc-Cu
bcc-Cu
(bcc-l)

∆U=Ufcc-Ubcc

[eV/atom]

Lattice constant a 
[nm]

0.36301 0.28864 ∆Utotal −0.035813

Volume per atom Va 
[(nm)3]

0.011959 0.012024 ∆Uv +0.5585849

Utotal [Ry] −3310.07765 −3310.07502 ∆Uc +0.9356014
Uv [Ry] 4.42024 4.37918 ∆Upot.inside MT +0.02720
Uc [Ry] −1895.97947 −1896.04824 ∆Upot.outside MT −1.557201
Upot.inside MT [Ry] −0.20409 −0.20609
Upot.outside MT [Ry] −1418.31433 −1418.19988
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In the framework of the rigid-band model discussed above, the VEC 
dependence of ∆U U Ufcc bcc

v v v= −( )  can be easily pursued in the same way 
as Jones did [1]. But a basic difference from Jones exists in the use of VEC 
instead of e/a as an electron concentration parameter in first-principles 
band calculations. ἀ e value of VEC is calculated by integrating the rel-
evant DOS from the bottom of the valence band, E0 , up to an arbitrary 
energy E:

 VEC( ) ( )E D E dE
E

E

= ′ ′∫
0

 (5.3)

and the valence-band structure energy Uv  is likewise expressed as

 U E D E E E dE
E

E

v ( ) ( )= ′ ′ −( ) ′∫ 0

0

 (5.4)

where D E( )  is the DOS of the valence band. Note that Equation 5.3 is the 
same as Equation 3.8 except for the use of VEC in place of e/a, since the 
Cu-3d band is now fully taken into account. ἀ e value of ∆Uv  can be eas-
ily evaluated, once the two DOSs for the competing phases are calculated 
(see Equation 3.5).

In the remainder of this chapter, we try to determine the VEC depen-
dence of ∆Uv  as accurately as possible in the framework of the rigid-band 
model. For this purpose, the DOSs for both fcc- and bcc-Cu must be cal-
culated with the least statistical errors to locate the extremely small van 
Hove singularities due to the FsBz interactions.

5.5 Dos foR fcc- anD Bcc-cu
Now we are ready to discuss the DOS for fcc-Cu and bcc-I, -II and –III. 
Energy bands remain unchanged under operations of some particular rota-
tions and permutations in the Brillouin zone. ἀ us, the energy information 
we wish to obtain can be reduced to an “irreducible wedge” containing only 
1/48th of the fcc and bcc Brillouin zones. ἀ is is illustrated in Figure 5.3. To 
minimize a statistical scatter in counting the DOS and to reliably extract 
small van Hove singularities, we partitioned the irreducible wedge of the 
respective Brillouin zones into 125000 or 50 50 50× ×  segments.
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ἀ e DOSs for fcc-Cu, bcc-I, and bcc-III are shown in Figure 5.4. ἀ e 
DOS for bcc-II is not shown, since it is almost superimposed onto that 
for bcc-I on the scale chosen. In all three cases, a large DOS is observed 
over −5 to −1.5 eV in the binding energy. ἀ is obviously represents the Cu 
3d-band. A deep valley in energies over −2.8 to −2.4 eV in bcc-I and -III 
is due to the splitting of the 3d-band into bonding and antibonding sub-
bands. ἀ is is a distinctive feature of bcc transition metals. ἀ e valley is 
much shallower in fcc-Cu, resulting in a characteristic difference between 
the two DOSs. It is also important to mention that the d-band width for 
bcc-III is much narrower than that for bcc-I. ἀ is is naturally understood 
as the fact that the volume per atom in bcc-III is 5.5% larger than that in 
bcc-I: the larger the volume per atom, the weaker are the orbital hybridiza-
tions, and the narrower is the width of the valence band.

As shown in the insert to Figure 5.4, there exists a noticeable differ-
ence in the binding energy at the bottom of the valence band, E0, depend-
ing on the structure involved. Its value is listed in Table 5.2. Rather than 
E0, we take more specifically a difference in E0  between fcc- and bcc-Cu, 
which is defined as ∆E0 = E Efcc bcc

0 0− . Figure 5.5 shows that ∆E0  falls onto 
a straight line as a function of ∆Va, which is defined as a difference in the 
volume per atom between fcc- and bcc-Cu, that is, V Va

fcc
a
bcc− . Now a dif-

ference between bcc-I and -II sharply emerges. It is interesting to note that 
the value of ∆E0  is the smallest but is still finite even for bcc-II, where the 
condition V Va

bcc
a

fcc=  is imposed. We will show later that ∆Va  strongly 
affects the absolute value of ∆Uv  and even its sign through ∆E0, signaling 
the importance of a proper choice of ∆Va.

H
Γ N 

P 

(b)(a)

L

X 
K 

U 

Γ

fIguRe 5.3 Irreducible wedges of the Brillouin zones of (a) fcc and (b) bcc lattices.
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One can easily calculate the electron concentration VEC by integrating 
the relevant DOS over energies using equation (5.3). ἀ e resulting VEC is 
plotted in Figure 5.6 as a function of the binding energy for fcc-Cu, bcc-I, 
and -III. We see that the value of the VEC reaches 11 electrons per atom at 
the Fermi level for all three cases, being consistent with the fact that one 
4s and ten 3d electrons are accommodated in the valence band for pure 
Cu. It is noted that the VEC curve for bcc-III runs consistently below that 
for fcc-Cu and never crosses the fcc curve over the range from the bottom 
of the valence band up to the Fermi level, while the curves for bcc-I and 
-II (the latter not shown in Figure 5.6) cross the fcc curve several times in 
this energy range. Five crossings between the fcc-Cu and bcc-I curves are 
confirmed and are marked with symbols (I) to (V) below the top of the 
Cu-3d band. As will be discussed in Section 5.6, these crossings play a key 
role in identifying the extrema in the ∆Uv -VEC  curve.

5.6  RelatIve staBIlIty of the α- anD β-phases 
In cu-x (x = zn, ga, ge, etc.) alloy systems

Now we concentrate on studies of the VEC dependence of ∆Uv  between 
fcc-Cu and bcc-I. An important remark should be exercised at this stage: 
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III, calculated using the WIEN2k. All three curves meet at VEC = 11.0 at the 
Fermi level. Crossings between the fcc-Cu and bcc-I curves within the Cu-3d 
bands are marked with symbols (I) to (V).
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the valence-band structure energy Uv calculated from Equation 5.4 for 
the two competing phases must be compared not at the same binding 
energy but at the same electron concentration VEC. In other words, ∆Uv 
is defined as a difference between U fcc

v  and U bcc
v  at a given value of VEC. 

As already discussed in Chapter 3, Section 3.3, Jones [21] derived the fol-
lowing two relations to evaluate the electron concentration dependence of 
∆Uv  for two competing phases like fcc- against bcc-Cu:

 

d U
d

E D E
dE

d
EV

fcc fcc fcc
fcc

bcc

∆( )
( ) = ( ) ( ) −VEC VEC

DD E dE
d

E E

bcc bcc
bcc

fcc bcc

( ) ( )
= −

VEC  (5.5)

and

 
d U

d

dE
d

dE
d D

V fcc bcc

fc

2

2
1∆( )

( )
= ( ) − ( ) =VEC VEC VEC cc fcc bcc bccE D E( ) − ( )

1  (5.6)

where D Efcc fcc( )  and D Ebcc bcc( )  represent the DOSs at maximum energies 
E fcc  and Ebcc  obtained by accommodating a given amount of VEC for 
fcc- and bcc-Cu, respectively. Note that the electron concentration param-
eter e/a in Equations 3.8 and 3.9 is replaced by the VEC in first-principles 
band calculations. It is now important to remind that upper limits E fcc 
and Ebcc  of the integral in Equation 5.3 for the two phases would be gen-
erally different to yield the same VEC, because the DOSs involved are 
different. ἀ is is particularly evident, when the upper limit is inside the 
Cu-3d band. However, there exist critical energies at which the condition 
E Efcc bcc=  holds and, hence, ( ) ( )VEC VECfcc bcc=  as well. ἀ is is read off 
from the energy at which the two VEC versus energy curves cross each 
other (see crossings marked with symbols (I) to (V) between the fcc-Cu 
and bcc-I in Figure 5.6).

ἀ e VEC dependence of ∆Uv  is easily calculated by inserting the DOSs 
for fcc- and bcc-Cu into Equations 5.3 and 5.4 and taking the difference 
between U fcc

v  and U bcc
v  at the same VEC value. Figures 5.7a,b are con-

structed so as to help readers identify the maxima and minima on the 
resulting ∆Uv  versus VEC curve with respect to the critical energies (I) to 
(V) shown by vertical dotted lines inside the Cu-3d bands in the respective 
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DOSs duplicated from Figure 5.4. We found that the maxima and minima 
in ∆Uv  appear exactly at crossings marked with symbols (I) to (V) in 
the two VEC curves shown in Figure 5.6. ἀ is is taken as a demonstra-
tion for the existence of the one-to-one correspondence between the con-
dition E Efcc bcc=  caused by singularities in the DOS and extrema in the 
∆Uv-VEC curve in accordance with Equations 5.5 and 5.6.
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fIguRe 5.7 (a) DOS for fcc- and bcc-Cu (bcc-I). ἀ e condition E Efcc bcc=  and, 
hence, ( ) ( )VEC VECfcc bcc=  holds at energies marked with dotted lines (I) to (V). 
(b) VEC dependence of ∆U v  for fcc- and bcc-Cu. Vertical lines (I) to (V) are 
located at VEC, where the condition E Efcc bcc=  in Equation 5.5 holds within the 
Cu-3d band. A shaded rectangle in (b) refers to the α-phase region in the Cu-Zn 
alloy system. ἀ e extrema from (I) to (V) in (b) appear at VEC=2.74, 5.65, 8.09, 
10.04, and 10.50, respectively.
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Figure 5.8a shows the DOS near the edge of the Cu-3d band for the 
bcc-I and -II Cu in comparison with that for fcc-Cu. It is found that the 
DOSs for bcc-I and -II are almost superimposed onto each other and that 
the critical energy (V) satisfying the condition E Efcc bcc=  falls at the very 
top of the Cu-3d band in both cases. ἀ is indicates that the condition 
E Efcc bcc=  is well satisfied, once the Cu-3d band is completely filled. Each 
time when the condition E Efcc bcc=  is met, the history behind it in the 
competing DOSs is reset to zero. Hence, one no longer needs to worry 
about the effect of the two sharply different structure-dependent Cu-3d 
DOSs on ∆Uv  after passing the critical energy (V). We may call it the 
“golden rule,” which holds true only when ∆Va  is small enough to allow 
crossings in the VEC-energy curves between two competing phases like 
(I) to (V) between fcc-Cu and bcc-I or -II, as shown in Figure 5.6. ἀ e 
“golden rule” above certainly holds when the electronic structures of two 
competing phases are self-consistently determined by first-principles band 
calculations or even when the condition V Va

bcc
a

fcc=  is imposed. Instead, 
bcc-III must be discarded, since no crossing with the fcc-Cu curve takes 
place, as shown in Figure 5.6.

Figures 5.8b,c show the VEC dependence of ∆Uv, when bcc-I and -II are 
employed as a counterpart of fcc-Cu, respectively. Now a sharp difference 
between bcc-I and -II emerges. ἀ ough the overall VEC dependence of 
∆Uv  is similar to each other and remains positive, we found an apparent 
difference in offsets between them. ἀ e value of ∆Uv, say, at VEC = 11.0 
corresponding to pure Cu can be read off from the ∆Uv-VEC curve for 
the three bcc-structures (not shown for bcc-III). As shown in Figure 5.9, 
we revealed that the value of ∆Uv

VEC=11.0  falls on a straight line when plot-
ted against ∆Va  for the three bcc structures I to III and that ∆Uv

VEC=11.0
 > 

0 when ∆Va  < 0, i.e., V Va
fcc

a
bcc<  and vice versa. It is worthy of noting that 

the value of ∆Uv
VEC=11.0  is close to zero but yet remains slightly positive 

even for bcc-II, where V Va
fcc

a
bcc=  is imposed. Undoubtedly, the value of 

∆Uv  is extremely sensitive to ∆Va. It should be reminded that the value of 
∆Uv

VEC=11.0  = + 0.31 eV/atom for bcc-I in Figure 5.9 is in a reasonable agree-
ment with +0.56 eV/atom derived from the FLAPW Freeman-program 
package [11–13], which is listed in Table 5.3, while that of +0.10 eV/atom 
for bcc-II may be too small.

Now we are ready to compare the electronic structures above the criti-
cal energy (V) between fcc-Cu and bcc-I (hereafter simply referred to as 
bcc-Cu) and to study how the FsBz interaction or the van Hove singular-
ity is reflected on the VEC dependence on ∆Uv. ἀ e DOSs for fcc- and 
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fIguRe 5.8 (a) DOS near the edge of the Cu-3d band for fcc-Cu, bcc-I, and 
bcc-II. (b) VEC dependence of ∆U U UV

fcc bcc I= − −( )v v , (c) VEC dependence of 
∆U U UV

fcc bcc II= − −( )v v . Symbols (IV) and (V) in (a) are located at energies, where 
the condition E Efcc bcc=  in Equation 5.5 holds. A shaded rectangle indicates the 
α-phase region in the Cu-Zn alloy system.
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bcc-Cu over the energy range –2 up to +7 eV are depicted in Figure 5.10a, 
where the critical energies (VI) to (IX) newly appear, as marked with ver-
tical dotted lines. ἀ e corresponding VEC dependence of ∆Uv  is shown 
in Figure 5.10b.

Sharp increases in both DOSs below about −1.5 eV signal the onset of 
the two different 3d-bands (see Figure 5.8a). A very weak anomaly can 
be located on a declining slope for the fcc-DOS at -1.39 eV (see an arrow 
marked with L2′ in Figure 5.10a). An inspection of the dispersion rela-
tions in Figure 5.2 allows us to identify it to be due to the van Hove sin-
gularity caused by the contact of the Fermi surface with the {111} zone 
planes. ἀ e ′L2  singularity apparently results in the condition E Efcc bcc=  
at about E = −1.2 eV, as marked with (VI) in Figure 5.10a, and, in turn, an 
extremely small maximum in ∆Uv  at VEC = 10.7 in Figure 5.10b. Note 
that this occurs at 1.2 eV below the Fermi level of pure Cu. A small cusp 
at −0.63 eV in bcc-DOS, which is marked with ′N1 , is easily ascribed to 
the contact of the Fermi surface with the {110} zone planes in bcc-Cu. ἀ e 
′N1  singularity obviously gives rise to a tiny minimum in ∆Uv  at VEC = 

11.0 corresponding to pure Cu, as marked with (VII).
ἀ e cusp at +1.47 eV in fcc-DOS can be easily designated as the contact 

of the Fermi surface with the symmetry points X or the center of the {200} 
zone planes of the fcc Brillouin zone and is denoted as ′X4 . ἀ is apparently 
results in a broad maximum in ∆Uv  at VEC = 11.65, contributing to the 
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fIguRe 5.10 (a) DOS and (b) VEC dependence of ∆UV  in the range above the 
3d-band for fcc- and bcc-Cu (bcc-I). Note that the scale on the ordinate is only 
one-twentieth as small as those in Figures 5.7a and 5.8a. ἀ e dotted vertical 
lines (VI) to (IX) in (a) refer to energies, at which the condition E Efcc bcc=  holds 
in equation (5.5). ἀ e corresponding extrema in (b) are marked using the same 
symbols as in (a). ἀ e extrema from (VI) to (VIII) in (b) appear at VEC = 10.7, 
11.0, 11.65, and 12.50, respectively. A shaded rectangle indicates the α-phase 
region in the Cu-Zn alloy system. Symbols L2′ and X4′ refer to the van Hove 
singularities due to the contact of the Fermi surface with {111} and {002} zone 
planes in the fcc-Cu, respectively, while N1′ due to contact of the Fermi surface 
to the {110} zone planes in the bcc-Cu. Two large jumps marked as L1 and N1 
reflect the overlap of electrons into the second Brillouin zone in both fcc- and 
bcc-Cu, respectively.
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stabilization of the β-phase, as marked with (VIII). Finally, a large jump in 
the DOS at +3.74 eV in fcc-Cu is caused by the overlap of electrons across 
the {111} zone planes into the second Brillouin zone of the fcc lattice and is 
denoted as L1 , while a large jump at +4.3 eV in bcc-Cu by the overlap into 
the second Brillouin zone of the bcc-lattice and is denoted as N1 . ἀ ey are 
responsible for the formation of a deep minimum at (IX) corresponding to 
VEC = 12.5. However, the minimum at (IX) is obviously outside the VEC 
range of our interest involving the α/β phase transformation.

As is clear from the above argument, the van Hove singularity due to 
the {111} zone contacts in fcc-Cu occurs well below the Fermi level and 
yields a maximum rather than a minimum in ∆Uv, while that due to the 
{110} zone contacts in the bcc-Cu results in the minimum in ∆Uv  at VEC 
= 11.0. ἀ e latter can, in principle, contribute to stabilizing the fcc-phase 
relative to the bcc-phase, though it is extremely small. ἀ is is completely 
different from the interpretation based on the model of Jones (I) [1]. It is 
stressed that all singularities at ′L2 , ′N1 , and ′X4  in the α- and β-phases do 
not work independently but are coupled to produce alternatively the maxi-
mum, minimum, and maximum in ∆Uv  at VEC = 10.7, 11.0, and 11.6, 
respectively.

Now we have to be reminded that the stability of the α-phase relative 
to the β-phase should be discussed in terms of the total-energy differ-
ence ∆U total. As assumed in Section 5.4, the VEC dependence of ∆Uc  and 
∆U pot  in Equation 5.2 is neglected within the context of the rigid-band 
model. Under such assumption, we are allowed to construct the ∆U total

-VEC curve simply by displacing the ∆Uv-VEC curve in Figure 5.10b as 
a whole downward so as to meet the condition ∆U total  = 0.036 eV/atom at 
VEC = 11.0 (see Table 5.3). In addition, thanks to the “golden rule” dis-
cussed above, the electron concentration parameter VEC may be replaced 
by e/a using the relation e a VEC/ = −10 .* ἀ e ∆U total -e/a curve thus 
obtained is shown in Figure 5.11.

ἀ e alternatively appearing minima and maxima are caused by the 
van Hove singularities characteristic of fcc- and bcc-Cu and are found to 

* ἀ e relation e/a = VEC – 10 holds, only when a partner element to Cu gives rise to its d-band 
in the valence band. Included are Zn, Ga, Ge, etc. ἀ is simple relation no longer holds when 
a partner element is free from d-electrons. For example, in the case of the α-phase Cu80Al20 
alloy, the VEC at the Fermi level amounts to 0.8 * 11 + 0.2 * 3 = 9.4, which is less than 10. To 
discuss the α/β-phase transformation more universally by including those like Cu-Al alloy 
system, the electron concentration parameter e/a should be employed. Its extraction from 
the FLAPW band calculations will be discussed in Chapter 7.
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oscillate around a straight line with a positive slope, as drawn in Figure 5.11. 
Let us assume the background contribution drawn with the straight line 
to represent the VEC dependence of terms other than ∆Uv  in equation 
(5.2). Now we can say that, relative to the straight line, the stabilization of 
the α-phase is driven by the van Hove singularity leading to the minimum 
at (VII) over the range up to about e/a = 1.2–1.3 and that of the β-phase by 
the van Hove singularity leading to the maximum at (VIII) in the vicinity 
of e/a = 1.7. But it is true that the effect of van Hove singularities on ∆U total  
is merely of the order of 0.01 to 0.02 eV/atom or 1 to 2 kJ/mol. ἀ e present 
analysis based on the rigid-band model is applicable not only to the Cu-Zn 
alloy system but also to Cu-based alloys like the Cu-X (X = Zn, Ga, Ge, 
etc.), since the VEC or e/a is only a critical parameter involved.

5.7 summaRy
We discussed the Hume-Rothery electron concentration rule regarding the 
α/β phase transformation in Cu-X (X = Zn, Ga, Ge, etc.) alloy systems by 
performing self-consistent FLAPW band calculations for fcc- and bcc-Cu 
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and bcc-Cu (bcc-I). ἀ e extrema from (VI) to (VIII) caused by the van Hove 
singularities in the respective DOSs are located at e/a = 0.7, 1.0, 1.65, and 2.50, 
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the oscillations due to van Hove singularities. Note that the depths of the mini-
mum at (VII) and maximum at (VIII) relative to the line are only 0.008 and 0.02 
eV/atom or 0.8 and 2 kJ/mol, respectively.
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and interpreted the extrema in the ΔUv-VEC curve in terms of van Hove 
singularities in the DOSs of fcc- and bcc-Cu within the rigid-band model.

Five remarks are addressed below:

 1. ἀ e effect of fine structures in the Cu-3d band on ∆Uv  is manifested 
as an oscillatory behavior with an amplitude of ±0.2 eV/atom or ±20 
kJ/mol, as shown in Figure 5.7b. ἀ e maxima and minima always 
appear alternatively in the ΔUv -VEC curve. ἀ e condition E Efcc bcc=  
holds at the termination of the Cu-3d-band in bcc-Cu, as marked 
with the symbol (V) in Figure 5.7a and Figure 5.8a. Because of the 
“golden rule,” the structure-sensitive d-band DOS exerts no direct 
influence on the subsequent extrema in ∆Uv  caused by the FsBz 
interactions. ἀ is holds true for noble metals alloyed with polyvalent 
elements.

 2. An offset in ∆Uv  is found to depend sensitively on ∆Va  between 
fcc- and bcc-Cu. A choice of the fcc- and bcc-structures to satisfy 
V Va

bcc
a

fcc=  leads to the smallest offsets of ∆E0  and ΔUv. But we con-
sider it to be artificial and, instead, should determine both structures 
self-consistently by minimizing the total-energy with respect to the 
lattice constant (see Tables 5.2 and 5.3). ἀ e contributions other than 
∆Uv  in Equation 5.2 amount to approximately 0.4 eV/atom or 40 
kJ/mol, which is quite large. ἀ e evaluation of these contributions is 
left for future work.

 3. We naturally doubt whether the rigid-band model based on fcc- and 
bcc-Cu is extendable to VEC = 11.5, where the CuZn B2-compound 
exists as a stable phase in the phase diagram. ἀ e electronic struc-
ture of the CuZn B2-compound can be also rigorously calculated 
from first-principles FLAPW method, since it is again free from any 
chemical disorder [22] (see Chapter 10, Section 10.3). However, we 
cannot construct the fcc-structure free from any chemical disorder 
at the same VEC as its counterpart. In this sense, the choice of fcc- 
and bcc-Cu would be the best at the moment to study the α/β phase 
transformation from first-principles band calculations.

 4. In principle, we have to deal with disordered alloys through solid 
solution ranges of the α- and β-phases. As mentioned in Section 
5.2, either the virtual crystal approximation (VCA) or a super-cell 
method may be better used rather than the rigid-band model. ἀ is 
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will allow us to evaluate the VEC dependence of all the terms in 
Equation 5.2 and to demonstrate that the VEC dependence of ∆Uv  
would determine an essential feature in the ∆U total -VEC curve.

 5. ἀ e van Hove singularities in both fcc- and bcc-Cu are so small that 
their effect on ∆Uv  is at most 0.01 to 0.02 eV/atom or 1 to 2 kJ/mol 
at the extrema (VII) and (VIII) in Figure 5.11. Because of this deli-
cate argument involved, we may still need some reservation to say 
that Figure 5.11 well explains the VEC dependent α/β-phase trans-
formation in noble metal alloys. However, we do not need to take 
this so pessimistically in the case of structurally complex metallic 
alloys (CMAs), since ∆Uv  becomes much larger than that revealed 
in structurally simple metals like pure Cu treated in this chapter. As 
described in Chapter 2, Section 2.3, ∆Uv  should become 20–60 kJ/
mol or 0.2–0.6 eV/atom in systems, where a deep pseudogap of 500–
1500 meV wide is formed across the Fermi level (see both Chapter 2, 
Section 2.3 and Chapter 7, Section 7.2).
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6C h a p t e r  

Structure of Structurally 
Complex Metallic Alloys

6.1 What aRe stRuctuRally complex alloys?
ἀ e structurally complex metallic alloys (CMAs) are a class of metallic 
compounds characterized by the possession of giant unit cells ranging 
from some tens up to thousands of atoms with well-defined atom clus-
ters. Many of them possess a solid solution range so that the composition 
can be varied within a single-phase field while some are stable only as 
line compounds. ἀ ere generally exist chemical disorder and vacancies 
in the structure. It has been gradually established that physical properties 
of CMAs exhibit unique features different from those of normal metallic 
alloys possessing small unit cells like fcc, bcc, hcp, and so on.

As examples of CMAs, we point to three of the most complicated inter-
metallic phases, β-Al3Mg2, Cu3Cd4, and NaCd2, all their structures having 
been solved by Samson in 1960s. ἀ e β-Al3Mg2 compound contains 1168 
atoms in the unit cell with clusters characterized by the Friauf polyhedra 
with space group Fd m3  [1,2]. According to the phase diagram [3], a solid 
solution range exists over 37.5 to 40.0 at .%Mg. In the case of Cu3Cd4, there 
are 1124 atoms in the unit cell with the lattice constant of 2.5871 nm. Its 
space group was deduced to be F m43 . Dominant coordination shells in 
Cu3Cd4 are composed of Friauf polyhedra and icosahedra [4]. ἀ e NaCd2 
with space group Fd m3  contains 1120 to 1190 atoms in the unit cell with 
the lattice constant a = 3.056 nm [5].
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As mentioned in Chapter 1, Sections 1.2 and 1.3, quasicrystals and their 
approximants have been regarded as being typical of CMAs. ἀ ey can be 
described in terms of six- or five-dimensional hyper-cubic lattice in the 
framework of the so-called cut-and-projection method. In the case of an 
icosahedral quasicrystal, an appropriate cut of a periodic density distribu-
tion ρ6( )r  in the six-dimensional space R6 by the three-dimensional phys-
ical space R3// can generate a set of atom positions, provided that ρ6( )r  is 
flat without any thickness in R3// and, hence, is completely embedded in 
the three-dimensional perpendicular space R3⊥  [6,7]. ἀ ese three-dimen-
sional objects in the space R3⊥  are called the atomic surfaces (AS).

To see the situation in a visual way, a square lattice is chosen as a hyper-
cubic lattice in the two-dimensional space R2 and the straight line segment 
with a length Δ is taken as the object AS, which is embedded in the space 
R1⊥  and is perpendicular to the physical space R1//, as shown in Figure 6.1. 
ἀ e position of R1// in the space R2 is fixed by assigning its angle θ rela-
tive to the square lattice in R2. ἀ e one-dimensional quasi-lattice or the 
Fibonacci chain* is obtained, if θ is set equal to tan ( / )−1 1 τ , where τ is the 
golden mean given by

 τ = + ≈ ⋅⋅⋅5 1
2

1 6180339887.

Similarly, icosahedral quasi-lattice is generated in R3//, if R3// is fixed by the 
angle θ  relative to R6. Likewise, approximant lattices of different orders 
can be constructed by rationalizing the angle so as to conform with any 
Fibonacci ratio, 1/0, 1/1, 2/1, 3/2, 5/3, 8/5, …, τ.

A quasicrystal is recognized as a solid achieved by setting an angle to 
tan ( / )−1 1 τ , whereas an approximant by substituting the rationalized 
Fibonacci ratio for 1/ τ . A cubic approximant can be obtained by assigning 
the same rationalized Fibonacci ratios for tanθi , where θi  ( , )i x y z= and  
is an angle between the three principal x-, y-, and z-axes in the R3// space 

* A Fibonacci chain can be generated by algorithm such that a segment of length L on a 
straight line is subdivided into a long segment L′ and short segment S′, inflate L′ = L and S′ = 
S, replace L by L + S and S by L, and so on. In its first generation, the set of LS is created from 
the 0th generation of the parent L. In the second, the third, fourth … generations, sets of 
LSL, LSLLS, LSLLSLSL, … appear. ἀ e number ratio of L over S is 1/0, 1/1, 2/1, 3/2, 5/3, 8/5, 
… and eventually converges to an irrational number τ = 1.618 …, the golden mean τ. ἀ is is 
called the Fibonacci chain. ἀ e n-th order approximants can be constructed by terminating 
the operation at the n-th generation.
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relative to those in the six-dimensional space R6. ἀ e structure of the 1/1-
1/1-1/1 approximant is achieved by fixing tan tan tan /θ θ θx y z= = =1 1 . For 
example, the AlxMg39.5Zn60.5−x (20.5 ≤ x ≤ 50.5) compounds known as the 
Bergman phase are identified as the 1/1-1/1-1/1 approximant containing 160 
atoms in its unit cell with space group Im 3  [8]. Similarly, Al15Mg43Zn42 com-
pound is identified as the 2/1-2/1-2/1 approximant with space group Pa3  and 
contains as large as 672–692 atoms in its cubic unit cell with the lattice con-
stant of 2.291–2.303 nm [9].* ἀ e approximants having orders higher than 
2/1-2/1-2/1 are too complex to perform first-principles band calculations. 
Instead, 1/1-1/1-1/1 approximants can be handled and have been chosen to 
comprehensively understand the stability mechanism of the CMAs.

Included in the category of CMAs are a series of gamma-brasses contain-
ing 52 atoms in the unit cell. ἀ e number of atoms in the unit cell is much 
smaller than those mentioned above. Nevertheless, the advantage of work-
ing with gamma-brasses as CMAs essentially stems from the following rea-
sons: (1) the number of atoms in the unit cell is still large enough to produce 
a sizable pseudogap at the Fermi level but is yet small enough to perform 
efficiently FLAPW band calculations, (2) a large number of combinations 
of elements in the periodic table give rise to stable gamma-brasses in more 

* See more details in Footnote on pg. 274, Chapter 10.

R1//

R1

a

tan θ = 1/τ

Λ

fIguRe 6.1 Construction of one-dimensional quasicrystal or Fibonacci lattice 
by cut-and-projection from a two-dimensional square lattice. An angle θ rela-
tive to the two-dimensional square lattice in R2 is chosen to be tan–1(1/τ), where 
τ = +( )1 5 2/ .
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than 20 binary alloy systems, allowing us to carry out systematic studies, 
(3) many reliable structural data have already been accumulated and are 
available in literature, and (4) the stability mechanism has been worked out 
for the first time by Mott and Jones in 1936 and has received intense atten-
tion since then by many researchers, as was discussed in Chapter 1.

At this stage, it may be worthwhile mentioning a different class of CMAs 
from the point of view of new functional materials. For example, thermo-
electric materials are requested to possess a large Seebeck coefficient, large 
electrical conductivity, and small thermal conductivity. Following the 
concept of phonon glass and electron crystal proposed by Slack [10], more 
attention has been directed to complex structures, particularly, possess-
ing “open cages” into which a heavy element is inserted. Included are the 
unfilled MX3 (M = Co, Rh, Ir, X = P, As, Sb) skutterudite compounds and 
Si or Ge clathrates. ἀ e former belongs to space group Im 3  and is charac-
terized by the possession of two cages in its unit cell containing 32 atoms. 
ἀ e rare earth element R can be inserted as a guest atom into the cage to 
form filled skutterudite compounds RM4X12 like CeFe4Sb12, in which the 
rattling of the rare earth atom Ce will produce significant phonon scatter-
ing and reduce significantly the thermal conductivity [11].

Si clathrates were first synthesized by encaging alkaline elements like 
Na, K, Rb, and Cs into the three-dimensional Si-sp3 network in 1960s. In 
1998, Nolas et al. [12] synthesized the Sr8Ga16Ge30 clathrate as candidate 
for thermoelectric applications and achieved the dimensionless figure of 
merit ZT = 0.25 at 300 K.* More recently, even the superconductivity was 
observed at 8.0 K in Ba8Si46, which was synthesized under high pressures 
of about 3 GPa and temperatures at about 800°C [13]. ἀ e intermetallic 
compound consists of 46 Si atoms and 8 Ba atoms in the cubic unit cell of 
a = 1.0328 nm with space group Pm n3  and, hence, can be included into 
the family of CMAs [14].

As described above, we will select both a series of gamma-brasses and 
several 1/1-1/1-1/1 approximants as working substances to explore the sta-
bilization mechanism of CMAs, which indeed constitutes the present main 
subjects in the remaining chapters of this book. Both gamma-brasses and 
1/1-1/1-1/1 approximants will be reviewed from the point of view of the 
atomic structure in this chapter.

* ZT is defined as TS2 /κρ , where T is the absolute temperature, S is the Seebeck coefficient, κ is 
the thermal conductivity, and ρ is the electrical resistivity. Solids possessing ZT higher than 
unity have been searched as good thermoelectric materials.
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6.2 gamma-BRasses
As has been briefly mentioned in Chapter 1, gamma-brasses can be basi-
cally described in terms of the 26-atom cluster [15]. ἀ e cluster is made 
up of four shells: four atoms are positioned on four vertices of the inner 
tetrahedron (IT), four atoms on those of the outer tetrahedron (OT), six 
atoms on those of the octahedron (OH), and twelve atoms on those of 
the cubo-octahedron (CO), as illustrated in Figure 6.2 [16]. Here, the 
cubo-octahedron represents a polyhedron formed by meeting edges of the 
cube at the middle of octahedral faces.

Gamma-brasses are divided into four families, depending on the space 
group. ἀ e most abundant forms a bcc lattice with two identical 26-atom 
clusters with space group I m43 . ἀ ey are hereafter called the I-cell 
gamma-brasses. ἀ e second largest family forms a CsCl-type structure 
composed of two different 26-atom clusters. Because the space group is 
P m43 , they are referred to as the P-cell gamma-brasses. ἀ us, both I- and 
P-cell gamma-brasses normally contain 52 atoms in its cubic unit cell. As 

(b)

Inner Tetrahedron (IT) 

Outer Tetrahedron (OT) 

Octahedron (OH) 

Cubo Octahedron (CO)

(a) 

fIguRe 6.2 (a) Four shell structures consisting of inner tetrahedron (IT), outer 
tetrahedron (OT), octahedron (OH) and cubo-octahedron (CO) for the gamma-
brass. (b) 26-atom cluster consisting of four atoms on IT, four atoms on OT, six 
atoms on OH, and twelve atoms on CO. [From Mizutani, MATERIA (in Japanese), 
45 No.11 (2006) 803.]
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typical examples of the I- and P-cell gamma-brasses, the 26-atom clusters 
in Cu5Zn8 and Cu9Al4 gamma-brasses are illustrated in Figure 6.3, respec-
tively [16].

ἀ ough they are less frequent, we have two other families of gamma-
brasses. One includes systems that form super-lattices with space group 
F m43 , being referred to as the F-cell gamma-brasses. ἀ e final one is char-
acterized by a rhombohedral unit cell with space group R m3 , a subgroup 
of P m43 , and is referred to as the R-cell gamma-brasses. ἀ e lowering of 
the cubic symmetry is generally so small that they are often described by 
the pseudo-cubic cell with a distortion angle slightly off from 90°. It tends 
to occur when the number of atoms is decreased from 52, which is brought 
about by introducing vacancies into particular atomic sites. For readers 
interested in more detailed information about the structure of gamma-
brasses, we compiled the literature data in the four different families and 
described the essence of each in the chronological order in Appendix 2, 
Section A2.2. Below we will discuss only the I- and P-cell gamma-brasses, 
since they were employed in first-principles band-calculations.

As listed in Table 6.1, we found I- and P-cell gamma-brasses in 24 
binary alloy systems [3,17]. In most cases, the gamma-brass phase has a 
finite solid solution range. Since first-principle band calculations can be 
performed only for an ordered phase without involving any chemical and/

IT (Cu) 
OT (Cu) 
OH (Cu) 
CO (Al) 

IT (Al) 
OT (Cu) 
OH (Cu) 
CO (Cu) 

IT (Zn)
OT (Cu)
OH (Cu)
CO (Zn)

cluster “a” cluster “b”

Cu5Zn8 (I43m)

(a) (b)

Cu9Al4 (P43m)

fIguRe 6.3 ἀ e 26-atom cluster in (a) Cu5Zn8 and (b) Cu9Al4 gamma-brasses 
with space groups I m43  and P m43 , respectively. [From Mizutani, MATERIA 
(in Japanese), 45 No.11 (2006) 803.]



structure of structurally complex metallic alloys    ◾    127

ta
B

le
 6

.1
 

G
am

m
a-

Br
as

se
s w

ith
 S

pa
ce

 G
ro

up
s 

I
m

43
 a

nd
 P

m
43

 in
 ἀ

re
e 

D
iff

er
en

t G
ro

up
s i

n 
Bi

na
ry

 A
llo

y 
Sy

st
em

s

G
ro

up
G

am
m

a-
Br

as
s

e/
a

So
lid

 
So

lu
tio

n 
R

an
ge

 (%
)

G
ro

up
G

am
m

a-
Br

as
s

e/
a

So
lid

 
So

lu
tio

n 
R

an
ge

 (%
)

G
ro

up
G

am
m

a-
Br

as
s

e/
a

So
lid

 
So

lu
tio

n 
R

an
ge

 (%
)

I

Cu
5Z

n 8
(I

)
21

/1
3

57
<Z

n<
70

I
Cu

9ln
4(P

)
21

/1
3

27
.7

<I
n<

31
.3

II

N
i 2B

e 1
1 (

I)
?

11
.5

<N
i<

?
A

g 5
C

d 8
 (I

)
21

/1
3

57
<C

d<
62

.5
A

g 9
ln

4(P
)

21
/1

3
31

.1
<I

n<
33

.6
N

i 2C
d 1

1 (
I)

?
12

<N
i<

19
.5

A
g 5

Zn
8 (

I)
21

/1
3

58
<Z

n<
64

.7
Au

9In
4 (

P)
21

/1
3

28
.8

<I
n<

31
.4

M
n 2

Zn
11

 (I
)

?
15

.2
<M

n<
23

Cu
5C

d 8
 (I

)
21

/1
3

52
.2

<C
d<

66

II

N
i 2Z

n 1
1 (

I)
?

15
<N

i<
30

Pt
2Z

n 1
1 (

?)
?

19
<P

t<
23

Au
5C

d 8
 (I

)
21

/1
3

61
.2

<C
d<

67
.6

Pd
2Z

n 1
1 (

I)
?

14
.5

<P
d<

24
A

l 8V
5 (

I)
?

A
l 8V

5

Au
5Z

n 8
 (I

)
21

/1
3

62
.5

<Z
n<

76
Fe

2Z
n 1

1 (
I)

?
17

<F
e<

31
M

n 3
In

 (P
)

?
M

n 3
ln

Cu
9A

l 4 
(P

)
21

/1
3

31
.5

<A
l<

37
C

o 2
Zn

11
 (I

)
?

14
.6

<C
o<

31
II

I
A

g 5
Li

8 (
I)

?
63

.5
<L

i<
76

Cu
9G

a 4
 (P

)
21

/1
3

29
.5

<G
a<

40
Ir

2Z
n 1

1 (
I)

?
15

.3
<I

r<
15

.7
Li

10
Pb

3 ?
?

22
.5

<P
b<

23
.5

N
ot

e: 
(I)

: s
pa

ce
 g

ro
up

 1
43

m
; (

P)
: s

pa
ce

 g
ro

up
 P

43
m

, S
ol

id
 so

lu
tio

n 
ra

ng
e w

as
 ta

ke
n 

fro
m

 [2
].



128    ◾    hume-Rothery Rules for structurally complex alloy phases

or geometrical disorder, it is important to fill a specific atomic species into 
each shell in the 26-atom cluster without vacancies. ἀ us, the stoichio-
metric composition of the ideal gamma-brass should fall in one of A2B11, 
A4B9, A5B8, A7B6, and A10B3 with space group I m43  and a combination 
of these two with space group P m43 . However, only the formula A5B8 
has been experimentally found for I-cell gamma-brasses, while the for-
mula A4B9 has been found for P-cell gamma-brasses.* Such stoichiometric 
compounds are found within a solid solution range. A maximum solid 
solution range and the stoichiometric compound in 24 gamma-brass alloy 
systems are summarized in Table 6.1. Among them, the composition for 
Mn3In cannot be realized, unless chemical disorder is introduced over 
shells in the 26-cluster (see Appendix 2, Section A2.2.2.10).

We have classified the I- and P-cell gamma-brasses into three groups 
in terms of a combination of constituent elements in the periodic table, as 
listed in Table 6.1. Group I consists of a combination of monovalent noble 
metal and polyvalent element, whose valency is well defined. ἀ e validity 
of the Hume-Rothery electron concentration rule of e/a = 21/13 has been 
claimed for group I. As a matter of fact, people in the 1920s had already 
been aware that the prototype Cu5Zn8 and Cu9Al4 gamma-brasses are sta-
bilized at e/a = 21/13 in spite of different solute concentrations [18–20]. 
We will elucidate the FsBz-induced stabilization mechanism in Cu5Zn8 
and Cu9Al4 by performing first-principles FLAPW band calculations in 
Chapter 7.

ἀ e group II includes totally eleven gamma-brasses, which consist of 
3d-transition metal elements like TM = V, Mn, Fe, Co, and Ni and either 
divalent elements like Be, Zn, and Cd or trivalent elements like Al and In. 
Since the e/a value for the TM element is not a priori known, it is not clear 
whether the gamma-brass in the group II is stabilized at e/a = 21/13 or 
not. ἀ is has been regarded for a long time as one of the most challenging 
themes in the electron theory of metals. In Chapter 8, we will show that the 
d-states-mediated-splitting or the d-states-mediated-FsBz interaction plays 
a key role in the stabilization of group (II) gamma-brasses and will also 
discuss the determination of the value of e/a for the TM element involved.

Group III includes gamma-brasses consisting of a combination of two 
non-transition metal elements, for which a use of their nominal valencies 

* Gamma-brasses with the composition TM2Zn11 (TM=Fe, Co, Ni, Pd, etc.) are marginal but 
are still within a solid solution range. ἀ e gamma-brasses with this composition generally 
involve chemical disorder as well as vacancies so that the number of atoms per unit cell is 
generally lower than 52 (see Chapter 8).
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does not yield the characteristic value of 21/13. ἀ e most notable example 
in this group is the Ag100-xLix (x = 63.5-76) gamma-brass, a combination 
of two monovalent elements leading to e/a = 1.0, regardless of the Li con-
centration. Hence, it has been wondered if Ag5Li8 gamma-brass obeys the 
Hume-Rothery electron concentration rule or not. We will discuss its sta-
bility mechanism in Chapter 8 in relation to the Ag-4d-states-mediated-
splitting. Li10Pb3 had been also considered as another example in group 
III, since one can easily estimate its average e/a to be 22/13, if valencies 
of Pb and Li are assumed to be four and unity, respectively. However, our 
recent experimental studies confirmed that the Li10Pb3 gamma-brass does 
not exist in the phase diagram (see Appendix 2, Section A2.1).

6.3 1/1-1/1-1/1 appRoxImants
Icosahedral quasicrystals and their approximants can be classified with 
respect to the atomic clusters building up its structure and the structure 
type. ἀ ree different atomic cluster types are known to exist in literature: 
the first described is the rhombic triacontahedron (abbreviated as RT) 
containing 44 atoms in the cluster, the second is the Mackay icosahedron 
(abbreviated as MI) containing 54 atoms in the cluster, and the third is 
the Tsai-type cluster. ἀ e first one is denoted as the RT-type or the Frank 
Kasper-type cluster, since the Al-Mg-Zn 1/1-1/1-1/1 approximant men-
tioned above has been also referred to as the Frank–Kasper compound 
[21]. ἀ e RT-type cluster is found in systems like Al-Mg-X (X = Zn, Ag, 
Cu, and Pd) and Al-Li-Cu quasicrystals and their approximants [22].* ἀ e 
MI-type cluster involves TM element as one of the major constituent ele-
ments. ἀ e MI-type cluster is found in systems composed of Al and TM 
elements like in Al-Mn, Al-Cu-Fe, Al-Cu-Ru, and Al-Pd-Re quasicrystals 
and their approximants. In 2000, Tsai and his colleagues [23] discovered 
quasicrystals in the Cd-Yb alloy system and pointed out the possession of 
atomic clusters, which are different from the RT- and the MI-type clusters, 
as described below.

* Following the pioneering work by Bergman et al. [21], the Mg32(Al, Zn)49 compound has been 
often referred to as possessing 162 atoms per unit cell, though the occupancy at the center of 
the cluster is less than unity (i.e., 0.8 in their Table 1). Mizutani et al. [8] claimed from their 
powder diffraction Rietveld analysis for a series of AlxMg39.5Zn60.5-x 1/1-1/1-1/1 approximants 
(20.5 ≤ x ≤ 50.5) that the fractional occupancies at the center of the cluster is at most 0.1 at 
20.5 at.%Al and is decreased to zero when Al concentration exceeds 30 at.%. Hence, the total 
number of atoms in the unit cell is better described as possessing 160 atoms per unit cell.
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ἀ e successive shell structure of the RT-, MI-, and Tsai-type atomic 
clusters is illustrated in Figures 6.4, 6.5, and 6.6, respectively. In both RT- 
and MI-type clusters, 12 atoms are located around a given lattice site to 
form an icosahedron and constitutes the first shell. ἀ e center of the ico-
sahedron thus formed is fully or partially filled with an atom or more 
frequently completely vacant. In the Tsai-type atomic cluster, the first shell 
is a tetrahedron composed of three or four Cd or Zn atoms at its vertices 
around the cluster center, as shown in Figure 6.6. It is noteworthy that the 
presence of this unique tetrahedral unit internally breaks the icosahedral 
symmetry [23].

ἀ ere exist twenty triangular faces on an icosahedron. In the case of 
the RT-type cluster, a dodecahedron (D and E in Figure 6.4) is formed by 
locating twenty larger atoms like Mg at the center of the triangular face of 
the icosahedron “B” on the first shell. ἀ e center of 12 pentagonal faces on 
the resulting dodecahedron is then filled with smaller atoms Al or X = Zn, 
Cu, Ag, and Pd in the case of the Al-Mg-X system. In total, 32 atoms consti-
tute the rhombic triacontahedron as the second shell. ἀ e RT-type atomic 
cluster is, therefore, composed of 44 atoms, including 12 atoms in the first 

Rhombic Triacontahedral (RT)-Type Cluster

0<x<1 12 +20 +12 =44 +(60+12)/2=80

60 atoms on vertices of
truncated icosahedron 

F, G, H 

32 atoms form a triacontahedron.

12 atoms on
vertices of

icosahedron 

12 atoms on
vertices of

icosahedron

B C

20 atoms on
vertices of

dodecahedron

D, E 

20 black atoms are placed
at the center of 20 triangular
faces of icosahedron B to form
a dodecahedron.

12 white atoms are
placed at the center of
12 pentagons of the
dodecahedron.

A truncated icosahedron
possesses 12 regular
pentagonal faces, 20 regular
hexagonal faces and 90 edges.

First shell Second shell

A

cluster center

fIguRe 6.4 Successive shell structures of atoms in the atomic cluster of the 
rhombic triacontahedral (RT)-type quasicrystals and their approximants. solid 
circles: largest atom like Mg and Li in Al-Mg-Zn and Al-Li-Cu, respectively. ἀ e 
assembly consisting of the first and second shells is called the RT-cluster. Atoms 
on the sites F, G, H are shared by two neighboring Wigner–Seitz cells.
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Mackay Icosahedral (MI)-Type Cluster 

12 +12 +30=54

II TM 

An icosahedron TM has 30 edges. The 30 mid-
edge sites are filled with atoms to form an
icosidodecahedron. An icosidodecahedron has
30 identical vertices, which are divided into six
sites MI1 and twenty-four sites MI2.

MI1, MI2 

An inner icosahedron (II) has
twelve vertices. Twelve black
atoms are located immediately
above them to form a larger
icosahedron TM.

First shell Second shell

fIguRe 6.5 Successive shell structures of atoms in the atomic cluster of the 
Mackay Icosahedral (MI)-type quasicrystals and their approximants. Solid cir-
cles: the TM atom like Fe.

Tsai-Type Atomic Cluster 

3~4 +20 +12 +30=65~66

First shell Second shell �ird shell Fourth shell 

fIguRe 6.6 Successive shell structures of atoms in the atomic cluster of the 
Tsai-type quasicrystals and their approximants. Open circles: Cd or Zn, solid 
circles: Yb or Sc.
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shell and 32 atoms in the second shell. ἀ is is a characteristic feature of the 
atomic cluster found in both the RT-type quasicrystals and approximants.

ἀ e shell structure of the MI-type cluster is shown in Figure 6.5. Twelve 
atoms are located on vertices of an inner icosahedron (abbreviated as II) as 
the first shell. On the second shell, we put further 12 atoms at atomic sites 
immediately above 12 atoms on the II. It constitutes a larger icosahedron 
called TM, since all the 12 vertices are filled with a TM element like Fe. 
ἀ irty mid-edge sites on the larger icosahedron TM are then filled with a 
mixture of atoms like Al or Cu atoms, which forms an icosidodecahedron. 
ἀ is constitutes the second shell together with atoms on the larger icosa-
hedron TM. An assembly of these 54 atoms is called the MI-type cluster, 
as shown in Figure 6.5.

In the case of Cd6Yb and Zn6Sc approximants characterized by the Tsai-
type cluster [23], the second shell is represented by a dodecahedron with 20 
Cd (Zn) atoms at its vertices, the third shell by an icosahedron with 12 Yb 
(Sc) atoms, and the fourth shell is a Cd (Zn) icosidodecahedron obtained 
by placing 30 Cd (Zn) atoms on the mid-edges of the Yb (Sc) icosahe-
dron. In total, the icosahedral cluster consists of 65–66 atoms, as shown 
in Figure 6.6. In an icosahedral quasicrystal, the atomic cluster shown in 
Figure 6.4 to 6.6 is distributed so as to satisfy an overall icosahedral sym-
metry on a quasi-periodic lattice. ἀ e structure of both RT- and MI-type 
clusters is characterized by the m35 symmetry but a slight distortion is 
always observed in 1/1-1/1-1/1 approximants. ἀ e RT-, MI- and Tsai-type 
atomic clusters are located on the body-center and corner of a cubic lattice 
to make a bcc packing in the 1/1-1/1-1/1 approximant, as described below.

ἀ e formation of a cubic unit cell may be explained by using the 
RT-type 1/1-1/1-1/1 approximant. As shown in the right-hand corner of 
Figure 6.4, the triacontahedron in the RT-type cluster possesses 30 rhom-
bic faces, each of which can be divided into two regular triangles, ending 
up with 60 triangles. Sixty atoms can be placed out from the centers of 
the 60 triangles on the faces of the triacontahedron to form a truncated 
icosahedron (F, G and H in Figure 6.4). ἀ e truncated icosahedron has 
60 vertices, 32 faces, and 90 edges. By adding further 12 atoms above the 
center of 12 regular pentagonal faces, one can form a truncated octahe-
dron consisting of totally 72 atoms. Remember that the truncated octa-
hedron is the Wigner-Seitz cell of the bcc-structure, as already illustrated 
in Figure 4.4b. It can fill the space without any overlap and/or void, when 
packed together in a body-centered cubic lattice, and ensure the posses-
sion of a periodic lattice.
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Figure 6.7 illustrates how atoms are grown into clusters and clusters 
into unit cells for both RT- and MI-type 1/1-1/1-1/1 approximants [22]. For 
example, the Al40.5Mg39.5Zn20 1/1-1/1-1/1 approximant contains 160 atoms 
in the unit cell with the lattice constant of 1.4443 nm [8]. Remember that 
72 atoms on the truncated octahedron are shared with their neighboring 
ones so that 36 atoms together with 44 atoms in the RT-cluster belong 

(a)

a

Icosahedron
of 12 atoms

Dodecahedron
of 20 Mg atoms

Rhombic Triacontahedron
or RT-cluster of 44 atoms

TM MI2
MI1

II(b)

aa

Icosahedron
of 12 atoms

Larger Icosahedron
of 12 TM atoms

Mackay Icosahedron or
MI-cluster of 54 atoms

(c)

a

aa

G1
G2

RT-type MI-type

fIguRe 6.7 (a) RT- and (b) MI-type atomic clusters and (c) the unit cells of 
the RT- and MI-type 1/1-1/1-1/1 approximants [from U. Mizutani et al., J. Phys.: 
Condens. Matter, 14 (2002) R767–R788.]. See symbols II, TM, MI1, and MI2 in 
Figure 6.5. G1 and G2 refer to glue atoms (G3 and G4 are not shown).



134    ◾    hume-Rothery Rules for structurally complex alloy phases

to each truncated octahedron. ἀ erefore, we can say that each truncated 
octahedron contains 80 atoms and forms a bcc lattice in the RT-type 1/1-
1/1-1/1 approximant.

ἀ e icosahedral quasicrystals and their approximants must be also 
distinguished from types of a quasi-lattice involved. As shown below, we 
need to consider two different quasi-lattices of P- and F-types in real qua-
sicrystals. In order to introduce two chemically different atomic clusters 
in an icosahedral quasicrystal, two families of lattice nodes, “+” or “−”, are 
assigned for a simple cubic lattice in a six-dimensional space. Namely, the 
parity of either “+” or “−” is assigned, depending on if the sum of the six 
corresponding coordinates is even or odd [24]. ἀ e super-structure can be 
generated by small differences in shapes, volumes and chemical species in 
the atomic surfaces (AS) located at sites “+” and “−.” For the sake of sim-
plicity, consider sodium-chloride in ordinary three-dimensional space. As 
shown in Figure 6.8a, its Bravais lattice is a face-centered (F-type) cubic 
with the basis consisting of a large Cl atom and a small Na atom separated 
by one-half the body-diagonal of a unit cube of lattice constant a′ = 2a. 
As will be described below, this would help us understand the assignment 
of two families of lattice nodes in a simple cubic lattice in the six-dimen-
sional space.

P-type structure due to
chemical disorder 

a´ = 2a

F-type structure 

(a) (b)

(0,0,0) (1,0,0) (2,0,0)

(1,1,0) 

(1,1,2) 

(2,2,2)

(2,2,1)

(0,2,2)
(1,2,2)

a´ = 2a

fIguRe 6.8 (a) F-type structure referring to the unit cell of NaCl. Small atoms 
are positioned with an odd lattice node where the sum of three coordinates is 
odd, while large atoms have an even node where the sum of the coordinates is 
even. (b) P-type structure. Small and large atoms are not differentiated by x-ray 
diffraction measurements, when they are randomly distributed.
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All indices in reflection lines observed for NaCl must be either even 
or odd, being characteristic of an fcc lattice with the lattice constant a′. 
However, the structure is reduced to a simple cubic lattice (P-type) of lat-
tice constant a, provided that the two atoms happen to possess equal num-
bers of electrons like K+ and Cl− in KCl or two different atomic species 
cannot be differentiated because of their random distributions over the 
lattice. ἀ is is illustrated in Figure 6.8b. Now the crystal looks to x-rays as 
if it were a monatomic simple cubic lattice of lattice constant a. In other 
words, only even integers occur in the reflection indices when indexed with 
respect to a cubic lattice of lattice constant a′. ἀ ey are called fundamental 
reflections. In the case of NaCl (F-type), all reflections of the fcc lattice of 
lattice constant a′ must be present, including weak lines with odd reflec-
tion indices, which are called superlattice reflections. In the case of the six-
dimensional Bravais lattice discussed above, only fundamental reflections 
are observed in P-type quasicrystals, whereas superlattice reflections are 
additionally observed in F-type quasicrystals, which signifies the presence 
of two different atomic clusters arranged quasi-periodically.

ἀ e argument above is extended to the generation of the two types of 
1/1-1/1-1/1 approximants from the fcc lattice (F-type) in the six-dimen-
sional space. ἀ e P-type 1/1-1/1-1/1 approximant is generated by assigning 
only the even lattice node with the lattice constant a′ in the six-dimen-
sional space. ἀ e F-type 1/1-1/1-1/1 approximant is likewise generated by 
assigning both even and odd lattice nodes with the lattice constant a′. ἀ e 
latter gives rise to two different atomic clusters at the center and the corner 
of the cubic lattice in the three-dimensional physical space.

ἀ e 1/1-1/1-1/1 approximants are classified with respect to the type of 
lattice in the six-dimensional space and the type of the atomic cluster in 
the three-dimensional space. Typical examples are listed in Table 6.2 [8, 
25–32]. ἀ ey belong to space group of either Im 3  or Pm3 . Space group 
of Im 3  is assigned, if all diffraction lines are indexed using the Miller 
indices, in which the sum h + k + l is even. Space group Pm3  is assigned, 
if extra diffraction lines appear, which are indexed with the sum of the 
Miller indices odd.

Gamma-brasses are simply differentiated with respect to the space 
group. However, we learned that 1/1-1/1-1/1 approximants must be dif-
ferentiated with respect to not only the space group, that is, I- or P-cell, 
but also the lattice-type in the six-dimensional space. Let us consider 
why such complexity exists in the approximants. For example, one may 
easily understand that F-type approximants like Al54Cu25.5Fe12.5Si8 and 
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Al54Cu25.5Ru12.5Si8 listed in Table 6.2 ought to be specified by space group 
Pm3 , since two different atomic clusters are located at the center and cor-
ner of the bcc-lattice [29,30]. However, in the case of Al75(Mn1-xFex)17Si8 
(0 ≤ x ≤0.29), including well-studied Al75Mn17Si8 approximant, the P-type 
lattice is assigned, since only a single atomic cluster is involved [26–28]. 
However, space group is deduced to be Pm3 , since the diffraction lines, 
in which the sum of the Miller indices is odd, are observed. ἀ is is because 
the two Wigner–Seitz cells in the unit cell are no longer regarded as being 
identical as a result of different arrangements of “glue” atoms connect-
ing neighboring identical atomic clusters.* ἀ e presence of so-called 
glue atoms connecting two neighboring atom clusters in the 1/1-1/1-1/1 
approximants makes their classification more complex than the gamma-
brasses free from glue atoms.

In contrast to the perfectly ordered Cu5Zn8 and Cu9Al4 gamma-brasses, 
all cubic approximants listed in Table 6.2 involve various degrees of 
chemical and geometrical disorder. Only the geometrical disorder exists 
in the first shell in the case of both Cd6M (M = Yb, Ca) [31] and Zn6Sc 
[32] (see Figure 6.6). In first-principles band calculations, such disorder 
must be avoided. Hence, we have to construct a model structure free from 
any chemical and geometrical disorder with the least sacrifice from the 
observed structure.
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7C h a p t e r  

Stabilization Mechanism 
of Gamma-Brasses 
Characterized by a 
FsBz-Induced Pseudogap

7.1  staBIlIzatIon mechanIsm DRIven 
By a fsBz-InDuceD pseuDogap

We have estimated in Chapter 2, Section 2.3 how deep and wide a pseudogap 
at the Fermi level must be to stabilize structurally complex metallic alloys 
(CMAs), and concluded that the experimentally observed pseudogap in 
many quasicrystals and approximants is indeed deep and large enough. 
It is also noted in Chapter 4 that first-principles band calculations can be 
performed successfully even for crystals containing more than 100 atoms 
in the unit cell, once their atom positions are defined without any ambi-
guities, such as chemical disorder or fractional site occupancy.*

Both I- and P-cell gamma-brasses in binary alloy systems may be clas-
sified into three groups, as discussed in Chapter 6, Section 6.2. Among 
them, group (I) gamma-brasses refer to those based on the noble metals 
Cu, Ag, or Au alloyed with the polyvalent elements such as Al, Zn, and so 
on (see Table 6.1). ἀ ey are, we believe, the best suited to study the role of 

* A fractional site occupancy means that given crystallographic sites are partially occupied by 
atoms, the remaining being left vacant.



140    ◾    hume-Rothery Rules for structurally complex alloy phases

the FsBz interaction and its impact on the stability of the CMAs. As will 
be shown below, the electronic structure of group (I) gamma-brasses is 
characterized by a FsBz-induced pseudogap at the Fermi level. In the pres-
ent chapter, we consider Cu5Zn8 and Cu9Al4 gamma-brasses as the repre-
sentative alloys of group (I), and demonstrate that a pseudogap is indeed 
induced by the FsBz interaction. We will also explain why the particular 
electron concentration e/a = 21/13 plays a predominant and key role in 
their stabilization.

In the latter half of this chapter, we address ourselves to another fun-
damental issue in group (I) gamma-brasses. All gamma-brasses in this 
group are known to exhibit a finite solid solution range. We consider it 
important to elucidate why the phase stability is maintained even at off-
stoichiometric compositions. In principle, any alloy with an off-stoichio-
metric composition would not remain stable at absolute zero, since the 
configurational entropy remains finite. ἀ is is a consequence of the “third 
law of thermodynamics.” Hence, a handling of off-stoichiometric alloys 
requires arguments about phase stability at finite temperatures. Here the 
role of vacancies has been suggested to be crucially important for many 
years. In order to deepen understanding of phase stability of off-stoichio-
metric group (I) gamma-brasses, we consider it important to collect, as a 
first step, reliable experimental data on the solute concentration depen-
dence of vacancies in the unit cell and then to discuss its effect on stabili-
zation mechanism in terms of the FsBz interactions rigorously evaluated 
for stoichiometric compounds like Cu5Zn8 and Cu9Al4. Such subjects will 
be discussed in Sections 7.6 and 7.7.

7.2  flapW BanD calculatIons foR cu5zn8 
anD cu9al4 gamma-BRasses

Both Cu5Zn8 and Cu9Al4 gamma-brasses contain 52 atoms in the cubic 
unit cell with lattice constants of 0.884 and 0.8675 nm, respectively. ἀ e 
26-atom cluster forms a bcc lattice with space group I m43  in the for-
mer [1–4], whereas the CsCl structure with space group P m43  in the lat-
ter [1,5–8]. Hence, both are typical of I- and P-cell gamma-brasses. ἀ e 
powder x-ray diffraction spectra for alloys close to Cu5Zn8 and Cu9Al4 
gamma-brass compositions are shown in Figure A2.1 and A2.3, respec-
tively, in Appendix 2, Section A2.1. ἀ e diffraction lines (210), (221), and 
(300) underlined in Figure A2.3 are present in Cu9Al4 and indexed with 
the Miller indices, the sum of which is odd. ἀ ey are observed only in 
P-cell gamma-brasses. As illustrated in Figure 6.3, chemical disorder is 
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absent and occupancy is unity in sites IT, OT, OH, and CO in the 26-atom 
clusters [1–8], allowing us to rigorously perform first-principles band cal-
culations for these two stoichiometric compounds.

In the FLAPW method discussed in Chapter 4, the motion of d-elec-
trons having a strongly localized tendency is rigorously described in terms 
of the product of the radial wave function and spherical harmonics inside 
the MT sphere. On the other hand, the motion of electrons outside the MT 
sphere is described in terms of the superposition of plane waves over recip-
rocal lattice vectors allowed for a given lattice. ἀ erefore, we can directly 
extract the FsBz interactions from the wave function outside the MT 
sphere, regardless of whether or not the transition metal TM is involved as 
a constituent element.

As emphasized in Chapter 4, the FLAPW method [9–11] treats all 
electrons and has no shape approximations for the potential and charge 
density. ἀ e exchange-correlation energies are treated within the local 
density approximation using the Hedin–Lundqvist parameterization of 
the exchange-correlation potential [12]. ἀ e core states are calculated fully 
relativistically and updated at each iteration, whereas the valence and 
semi-core states are treated semi-relativistically, that is, spin-orbit cou-
pling is neglected.

Cut-offs of the plane-wave basis, 217 eV, and of the potential represen-
tation, 1360 eV, and an expansion in terms of spherical harmonics with 
l = 8 inside the MT sphere, were used for the calculations. ἀ e resulting 
numbers of plane waves were about 2500 and 5000 for Cu5Zn8 and Cu9Al4, 
respectively. Summations over the Brillouin zone to calculate self-consis-
tent charge densities were made, using 10 and 4 special k-points [13] in 
the irreducible wedge for Cu5Zn8 and Cu9Al4, respectively (see Chapter 5, 
Figure 5.3). Convergence was judged to be sufficient, when an average root-
mean-square difference between the input and output charge densities was 
reduced to the value less than 5 × 10−5 e/(a.u.)3. We used 200 and 90 sam-
pling k-points in the irreducible wedge and the linear tetrahedron scheme 
[14,15] for calculating the DOS for both Cu5Zn8 and Cu9Al4, respectively.

ἀ e DOSs calculated by using the FLAPW method for Cu5Zn8 and 
Cu9Al4 are shown in Figure 7.1a,b, respectively [8]. A large DOS in ener-
gies centered at −7.5 eV in Cu5Zn8 is due to the Zn-3d band, whereas that 
over the range from −2.5 to −4 eV is due to the Cu-3d band. A pseudogap 
clearly exists across the Fermi level, as shown in the insert. Its width is 
about 1.2 eV and H/H0 is about 0.5 (see Chapter 2, Figure 2.6b in Section 
2.3). A pseudogap is also seen across the Fermi level in Cu9Al4 and its 



142    ◾    hume-Rothery Rules for structurally complex alloy phases

width is about 1.0 eV. ἀ e Cu-3d band of about 4 eV in width is wider than 
that in Cu5Zn8, reflecting a higher Cu concentration in Cu9Al4. Note that 
the Fermi level in both Cu5Zn8 and Cu9Al4 gamma-brasses is determined 
by filling
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fIguRe 7.1 DOS derived from FLAPW band calculations for (a) Cu5Zn8 and (b) 
Cu9Al4 gamma-brasses. A pseudogap exists across the Fermi level in both cases. 
Inserts show the blow-up of the DOS across the Fermi level. [From R. Asahi et al., 
Phys. Rev. B 71 (2005) 165103.]
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electrons per atom into the respective DOSs. As noted in the Introduction, 
these numbers account for the number of valence electrons per atom, 
VEC, accommodated in the total DOS and they differ from the electron 
per atom ratio, e/a, employed in the Hume-Rothery electron concentra-
tion rule. As is evident from the argument above, entirely different values 
of VEC are assigned to Cu5Zn8 and Cu9Al4 gamma-brasses, even though 
they are considered to have the same e/a value of 21/13. ἀ us, the Hume-
Rothery electron concentration rule is meaningful only when the e/a is 
used as a measure of electron concentration. We will learn more about its 
physical implication in the following sections.

7.3  extRactIon of the fsBz InteRactIon at the 
symmetRy poInts N of the BRIllouIn zone

ἀ e FLAPW one-electron wave function is expressed as

 ψ χi
iC

n n

n

( , ) ( )r k rk G k G
G

= + +∑  (7.1)

where k is an arbitrary Bloch wave vector inside the reduced Brillouin zone, 
G is the allowed reciprocal lattice vector in a given system like the bcc lat-
tice in the present case and i is the band index. As discussed in Chapter 4, 
Sections 4.11 and 4.12, the FLAPW basis function is given in the form:
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where R E r( , )ν
α

α  and R E r( , )ν
α

α  represent the radial wave function and 
its energy derivative at a selected energy Eν

α , respectively, Y rm (ˆ )α  is the 
spherical harmonics and the coefficients A m

α ( )k G+  and B m
α ( )k G+  are 

determined for the radial wave function and plane wave and their energy 
derivatives to be continuous across the MT sphere specified by the atomic 
species α.
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Once the self-consistent wave function given by Equation 7.1 is calcu-
lated throughout a crystal, the coefficient Ci

k G+  thus derived represents the 
Fourier component of the plane wave in the intermediate region between 
neighboring MT spheres (see Chapter 4, Figure 4.6.). By plotting the prod-
uct of Ci

k G+  and its complex conjugate as a function of the square of the 
reciprocal lattice vector, we can immediately find the plane wave com-
ponent dominating the wave function in the intermediate region. If we 
carry out this procedure for the wave function at the edge of a pseudogap 
at the principal symmetry points of the bcc Brillouin zone, we can easily 
judge which reciprocal lattice vectors or the sets of the lattice planes are 
responsible for the formation of stationary waves and, thereby, opening a 
pseudogap. We hereafter call them critical reciprocal lattice vectors or the 
sets of critical lattice planes.* ἀ is is nothing but the process of extracting 
the FsBz interaction.

ἀ e energy dispersion relations for both Cu5Zn8 and Cu9Al4 gamma-
brasses are shown in Figures 7.2a,b, respectively [8]. It is clear that the 
band gap opens across the Fermi level at the symmetry points N in I-cell 

* We call in the present monograph the reciprocal lattice vector to be critical, when the rel-
evant FsBz interaction is strong enough to produce a pseudogap at the Fermi level.
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Cu5Zn8 (M in the P-cell Cu9Al4). Both the symmetry points N and M cor-
respond to the center of the {110} zone planes of the bcc Brillouin zone 
in the reduced zone scheme but they also refer to the center of the {330} 
and {411} zone planes for gamma-brass in the extended zone scheme.* For 
instance, we focus on the wave function at the lower and higher edges of 
the pseudogap, that is, at energies of −0.54 (−0.41) and +0.58 (+0.56) eV 
relative to the Fermi level EF for Cu5Zn8 (Cu9Al4), respectively, with the 
band index i at the symmetry points N (or M). ἀ e square of its coefficient 
Ci

k G+  in Equation 7.1 is taken and summed up over the equivalent recipro-
cal lattice vectors like (411), (141), (114) for {411}.

ἀ e resulting

 
Ci

k G+∑ 2

is plotted on the semi-logarithmic scale against the square of the Miller 
indices,

 h2∑
in Figures 7.3a,b for Cu5Zn8 and in Figures 7.4a,b for Cu9Al4, respectively. 
It is clear that the sum of the squared Fourier coefficients is extremely 
large at

 h2 18∑ =

or G
2

18=  in the units of

* ἀ e center of the {110} plane of the bcc Brillouin zone is called the symmetry point N. It is 
known that all the zones specified by the set of Miller indices {hkl}, in which two of them are 
odd, pass through the points N upon reduction to the first zone. ἀ e Cu9Al4 crystallizes into 
the CsCl structure so that zone planes having the set of Miller indices, in which the sum of 
three integers are odd, also appear (see x-ray diffraction spectrum shown in Figure A2.3). 
For example, a cube bounded by six {100} zone planes forms the first Brillouin zone and 
accordingly, the rhombic dodecahedron becomes the second Brillouin zone. ἀ e center of 
the {110} planes coincides with the center of the edge of the {100} zone planes. ἀ is is referred 
to as the symmetry points M (see p. 237 in [16]).
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fIguRe 7.3 Sum of the square of Fourier coefficients over equivalent zone planes 
for the wave function at the symmetry points N at energies of −0.54 and +0.58 eV 
immediately below and above the Fermi level, respectively, as a function of the sum 
of the squared Miller indices or G

2
 for Cu5Zn8 gamma-brass [from R. Asahi et al., 

Phys. Rev. B 71 (2005) 165103]. Major zone planes are numbered as follows. 3: {321}, 
4: {330}+{411}, 5: {332}, 6: {510}+{431}, 7: {521}, 8: {530}+{433}, 9: {611}+{532}.
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fIguRe 7.4 Sum of the square of Fourier coefficients over equivalent zone planes 
for the wave function at the symmetry points M at energies of −0.41 and +0.56 eV 
immediately below and above the Fermi level, respectively, as a function of the 
sum of the squared Miller indices or G

2
 for Cu9Al4 gamma-brass [from R. Asahi 

et al., Phys. Rev. B 71 (2005) 165103]. Major zone planes are numbered as follows. 
2: {310}, 3: {321}, 4: {330}+{411}, 5: {332}, 6: {510}+{431}, 7: {521}, 8: {530}+{433}, 9: 
{611}+{532}.
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 2
2

π
a







for both gamma-brasses. As included in Figures 7.3 and 7.4, the ratio of 
intensity at G

2
18=  over the next largest one is always higher than 30 in 

all cases. Note that G
2

18=  specifies the sets of reciprocal lattice vectors 
G330  and G411  and, accordingly, the sets of {330} and {411} lattice planes 
in both I- and P-cell gamma-brasses. Since we are focusing on electronic 
states near the Fermi level at the principal symmetry points N (or M), 
the data shown in Figures 7.3 and 7.4 can be taken as a fulfillment of the 
condition 2 330kF ≅ G  and 2 411kF ≅ G . ἀ is is nothing but the demon-
stration of the matching condition in equation (4.1) from first-principles 
FLAPW band calculations. ἀ e analysis above is hereafter referred to as 
the FLAPW-Fourier method. ἀ e second largest value of

 
Ci

k G+∑ 2

in Figures 7.3a and 7.4a is found at

 h2 14∑ =

corresponding to {321} zone planes but its magnitude is only 2.2~2.7% of 
the strongest one at

 h2 18∑ =

ἀ erefore, we can alternatively say that electrons at the symmetry points 
N (or M) at energy very close to the Fermi level exclusively interact with 
the set of {330} and {411} lattice planes. Hereafter, both G330  and G411  are 
altogether referred to as G0 .

We are now ready to discuss how a pseudogap is formed at the Fermi 
level, when the matching condition 2 0( )k G G+ =  is fulfilled. ἀ e Fourier 
coefficient Ci

k G+  satisfying the relation 2 0( )k G G+ =  for Cu5Zn8 is sum-
marized in Table 7.1 [8]. It is seen that the value of Ci

G0 2/  in modes 1, 2, 
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and 3 coincides with that of Ci
−G0 2/  in its counter modes ′1 , ′2 , and ′3 , 

regardless of the choice of G0. It is now obvious that the two plane waves 
running in opposite directions with coefficients Ci

G0 2/  and Ci
−G0 2/  having 

equal magnitudes dominate in the wave function given by Equation 7.1 
at the symmetry points N (or M). ἀ is leads to the formation of either 
cos( )k r⋅ - or sin( )k r⋅ -type stationary waves. For example, we calculated 
ψ i ( , )r k

2
, using the waves with modes 1 and ′1  listed in Table 7.1. As 

shown in Figures 7.5a,b, the electron density for the occupied state is 
enhanced in between the two nuclei, whereas that for the unoccupied state 
is suppressed [8]. ἀ e same conclusion is drawn for Cu9Al4. ἀ is is the 
confirmation of the formation of stationary waves.

We may add a few more words to explain why stationary waves thus 
formed yield a pseudogap at the Fermi level. As discussed in Chapter 4, 
Section 4.2, electron waves start interfering with a periodic lattice and 

(a) E = –0.62 eV below EF (b) E = +0.58 eV above EF

fIguRe 7.5 Electron charge density distribution over (110) plane obtained by 
superimposing two waves with modes 1 and 1′ at (a) E2 = −0.62 eV (occupied 
state) and (b) E3 = +0.58 eV (unoccupied state) for Cu5Zn8 gamma-brass. A sharp 
cusp at each nucleus represents the atomic wave function inside the MT sphere. 
An intermediate region between the neighboring ions is the brightest corre-
sponding to the highest charge density and the darkest corresponding to the 
lowest charge density in (a) and (b), respectively. ἀ is confirms the formation of 
stationary waves. [From R. Asahi et al., Phys. Rev. B 71 (2005) 165103.]
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form either a cosine- or sine-type stationary wave, when the wave num-
ber of the nearly free electron wave increases and reaches one-half the 
reciprocal lattice vector along direction perpendicular to the set of lat-
tice planes like {411} and {330} in the case of gamma-brasses (see Chapter 
4, Figure 4.2). ἀ e energy of the cosine-type stationary wave is lowered, 
whereas that of the sine-type one is increased relative to that of the free 
electron. ἀ is obviously gives rise to an energy gap along this direction as 
a result of the formation of bonding and antibonding states caused by the 
FsBz interaction (see Chapter 4, Figure 4.3).

As can be seen from Table 7.1, there exist several energy eigen-values 
E E1 2, ⋅⋅⋅  at the symmetry points N near the Fermi level. If attention is 
paid to directions away from the symmetry points N in Figure 7.2, one can 
immediately find that the dispersion curves cross the Fermi level several 
times. As the consequence, small finite states remain at the Fermi level. 
ἀ e DOS is then characterized by a trough across the Fermi level hav-
ing finite states even at its bottom, as is seen in Figure 7.1. ἀ is is already 
named a pseudogap. In summary, we proved that a pseudogap originates 
from the formation of stationary waves at the symmetry points N (or M) 
as a result of the FsBz interaction involving the set of {330} and {411} lat-
tice planes in both Cu5Zn8 and Cu9Al4. ἀ is is what we shall refer to as a 
FsBz-induced pseudogap. Now we can say that G

2
=18 or the set of {330} 

and {411} lattice planes must be critical to give rise to a sizable pseudogap 
across the Fermi level in gamma-brasses in group (I).

As noted in Chapter 4, Section 4.1, we refer to “the Hume-Rothery stabili-
zation mechanism” as an electronic stabilization condition whereby an alloy 
is stabilized because a FsBz-induced pseudogap is formed across the Fermi 
level. In the next section, we will study further why the parameter e/a serves 
as a critical role, when a pseudogap is induced by the FsBz interaction.

7.4  the hume-RotheRy staBIlIzatIon mechanIsm 
foR cu5zn8 anD cu9al4 gamma-BRasses

In terms of simple chemical valence considerations, the value of e/a is 
rather self-evident in alloys involving the noble metals and the polyvalent 
elements in the periodic table and is simply given as an averaged number of 
valencies per number of constituent element atoms in the unit cell. But we 
consider it necessary to verify the validity of this conventional approach. 
In particular, a clear-cut determination of e/a is critically important for 
alloys containing TM elements located to the left of the noble metals. 
ἀ e prescription we will describe below is based on the FLAPW–Fourier 
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method, which will allow us to determine the e/a value in a theoretically 
sound way, regardless of whether a given alloy contains the TM element as 
a major constituent element [17].

First of all, the irreducible wedge corresponding to 1/48th of the 
Brillouin zone of the bcc lattice, which was already shown in Figure 5.3b, 
is partitioned into 200 elements. ἀ e FLAPW wave function is calculated 
within an energy interval E and E E+∆  at the wave vector k i  correspond-
ing to the center of each element. ἀ e electronic state 2( )k Gi +  having the 
largest Fourier coefficient in the FLAPW wave function outside the MT 
sphere is extracted in the same manner as in Figures 7.3 and 7.4. ἀ is is 
done for 200 elements and its average value at energy E is calculated:

 2 2
1

200

( )k G k G+ ≡ +
=
∑E i i E

i

ω  (7.3)

where ωi  represents the number of degeneracies. ἀ e energy eigen-values 
are not distributed at equal intervals. Hence, the value of 2( )k Gi E

+  at a 
given energy is determined by interpolating values calculated at neighbor-
ing energy eigen-values. ἀ e resulting 2

2
( )k G+ − E  relation yields an iso-

tropic and single-branch dispersion relation in the extended zone scheme. 
We consider this to represent the motion of itinerant electrons outside the 
MT sphere. In this way, we can extract the energy dispersion relation for 
electrons of a highly itinerant character. An “effective Fermi sphere” can 
be constructed in the reciprocal space from the 2

2
( )k G+ − E  dispersion 

relation. Indeed, the value of 2
2

( )k G+  at the Fermi level gives rise to the 
square of the Fermi diameter, from which the number of electrons, (e/a)total, 
contained in the Fermi sphere can be deduced. For the sake of convenience, 
the method may be hereafter called the Hume-Rothery plot.

Some caution is needed to evaluate the Fermi diameter and (e/a)total  
from a Hume-Rothery plot. Since we deal with an average quantity of 
2( )k Gi E

+  over 200 elements in the irreducible wedge at a given energy E, 
its variance must be small enough to make it physically meaningful. ἀ e 
variance σ2( )E  is defined as

 
σ σ

σ

2
2 2

2 2

8

( ) ( ) ( )

( )

E k E E k E

k E

G G G

G
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where σG E( )  is called the standard deviation defined as

 σ ωG i i E G
i

E k E( ) ≡ + −( )∑ k G ( )
2

 (7.5)

Figure 7.7 shows the energy dependence of 2
2

( )k G+  and its variance 
for Cu5Zn8 gamma-brass [17]. ἀ e variance σ2( )E  is extremely large over 
energy ranges, where the Zn-3d and Cu-3d bands are located. Otherwise, the 
variance is so small that the dispersion relation is justified to be reliable and 
meaningful. We can draw a straight line passing through the data points in 
the vicinity of the Fermi level and near the bottom of the valence band, as 
indicated in Figure 7.6a. ἀ e intercept at the Fermi level is read off as 18.47. 
ἀ is is nothing but the square of the Fermi diameter of an “effective Fermi 
sphere” and is found to be in excellent agreement with G0

2
 = 18 deduced 

from the FLAPW-Fourier method above. This is indeed a theoretical con-
firmation of the validity of the matching condition (4.1). Similarly, the data 
for Cu9Al4 gamma-brass are plotted in Figures 7.7a,b [17]. ἀ e square of the 
Fermi diameter is again found to be 18.45 from the intercept at the Fermi 
level. In this way, we can prove from first-principles band calculations that 
both Cu5Zn8 and Cu9Al4 gamma-brasses are associated with a Fermi sphere 
with the same diameter 2kF . In other words, the Hume-Rothery plot enables 
us to extract a hidden electron concentration parameter e/a from the elec-
tronic structure calculated using FLAPW first-principles band calculations, 
in which VEC appears as an explicit electron concentration parameter.

ἀ e total number of electrons per atom ( / )e a total  is calculated by insert-
ing the Fermi radius kF  thus obtained into the relation

 e a/( ) =
total

8
3

3πk
N

F

where the number of atoms per unit cell, N, is equal to 52 and kF  is in 
units of

 2π
a

As listed in Table 7.2, the value of ( / )e a total  is very close to 21/13 (=1.615) 
for both Cu5Zn8 and Cu9Al4. ἀ is is a theoretical proof of the Hume-
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Rothery electron concentration rule for both Cu5Zn8 and Cu9Al4 gamma-
brasses. ἀ e valency of the noble metal Cu, ( / )e a Cu , is easily calculated, if 
valencies of partner elements Zn and Al are assigned to be two and three, 
respectively. As listed in Table 7.2, the value is found to be close to unity for 
Cu consistent with the fact that Cu is monovalent in the metallic state.

Before ending this section, we should remark why the parameter e/a is 
more important than VEC in the formation of a FsBz-induced pseudogap. 
An essence in the FLAPW-Fourier analysis is to extract the Fermi diam-
eter from the momentum distribution of electrons outside the MT sphere, 
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fIguRe 7.6 (a) Hume-Rothery plot calculated using equation (7.3). A straight 
line passing the data points, where the variance is small, is drawn as a guide. (b) 
Energy dependence of the variance defined by Equation 7.4 for Cu5Zn8 gamma-
brass. [From R. Asahi et al., Phys. Rev. B 72 (2005) 125102.]
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while skillfully circumventing the contribution from d-electrons, which 
are mostly localized inside the MT sphere. Using such itinerant electrons, 
we have dealt with a FsBz-induced pseudogap caused by the interference 
effect with the set of the lattice planes, that is, {330} and {411} lattice planes 
for the case of gamma-brasses. As a result, the stability range is directly 
scaled with respect to e/a. ἀ is clearly demonstrates that the parameter 
e/a must be employed as a crucial electron concentration parameter in 
dealing with the Hume-Rothery stabilization mechanism or the Hume-
Rothery electron concentration rule.
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fIguRe 7.7 (a) Hume-Rothery plot calculated using equation (7.3). A straight 
line passing the data points, where the variance is small, is drawn as a guide. (b) 
Energy dependence of the variance defined by Equation 7.4 for Cu9Al4 gamma-
brass. [From R. Asahi et al., Phys. Rev. B 72 (2005) 125102.]
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7.5  e/a DepenDent physIcal pRopeRtIes 
of noBle metal alloys

In the following sections, we will deal with the Hume-Rothery electron 
concentration rule for group (I) gamma-brasses having a finite solid solu-
tion and follow the work recently reported by Mizutani et al. [18]. In 1960, 
Massalski and King [19] revealed for the first time that the lattice constant 
and the axial ratio in hexagonal close packed noble metal alloys exhibit 
systematic behavior, when plotted against e/a. ἀ eir data are reproduced 
in Figure 7.8. ἀ ey interpreted the e/a-dependent lattice constants and 
axial ratios in terms of the FsBz interaction and claimed that the FsBz 
interaction is a deciding factor that governs the electronic properties of 
noble metal alloys. Massalski further attempted to confirm the proposal 
above by studying physical quantities more directly relevant to the elec-
tronic structure than the lattice constant. As shown in Figure 7.9, the mag-
netic susceptibility due to itinerant electrons obtained after subtracting 
the ionic contribution was found to exhibit universal e/a dependences for 
various Hume-Rothery phases. In particular, the fact that the data for a 
series of gamma-brass alloys fall on a rapidly declining universal curve 
and are strongly negative in sign, was taken as the evidence for the mani-
festation of the FsBz interaction associated with {411} and {330} Brillouin 
zones [18].

Massalski and Mizutani (1978) [20] revealed, as shown in Figure 7.10, 
that the electronic specific heat coefficient in a series of phases α, β, γ, ε, 

taBle 7.2 Square of the Fermi Diameter (2kF)2, 
Square of Critical Reciprocal Lattice Vector |G|2, 
(e/a)total and (e/a)TM for Cu5Zn8 and Cu9Al4 
Gamma-Brassesa

Cu5Zn8 Cu9Al4

( )2 22
2

k
aF ×



















π
18.47 18.45

|G| 22 ×


















π
a

2
18

{411}, {330}
18

{411}, {330}

(e/a)total 1.60 1.60
(e/a)TM 0.96 0.97
ref 17 17
a Here, (e/a)TM refers to the effective valency of Cu.
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and η of noble metal alloys falls on a universal curve for each phase, when 
plotted against e/a, and interpreted the results in terms of the respective 
FsBz interactions. In good agreement with the data for magnetic suscepti-
bilities, the electronic specific heat coefficient in gamma-brass alloys was 
also found to decrease sharply with increasing e/a. ἀ ey extended the eight-
cone model developed by Ziman for pure Cu [21] to gamma-brasses and 
explained its rapidly declining e/a dependence by approximating its Fermi 
surface in the context of the “36-cone model.” Based on the model of Jones 
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(II) discussed in relation to Figure 3.4, they insisted that the composition 
range, where gamma-brass is stabilized, should be located on a sharply 
declining slope of its DOS. In this way, the electronic energy should be 
most profoundly affected when the Fermi level falls inside the pseudogap, 
rather than when it is on its top point “A” in Figure 3.1. It is interesting to 
note that their interpretation was made without using the word pseudogap 
at that time, though this is nothing but the pseudogap concept. As is clear 
from the arguments in this section, one is led to conclude that the Hume-
Rothery stabilization mechanism holds true throughout all solid solution 
ranges of the Hume-Rothery phases in noble metal alloys. We will discuss 
this subject further in the following sections, by taking into consideration 
the data on the concentration dependence of vacancies in the unit cell in a 
solid solution range for a series of group (I) gamma-brasses [18].

7.6  cu-zn anD cu-cd gamma-BRasses 
In solID solutIon Ranges

As listed in Table 6.1, most gamma-brasses possess a rather wide solubility 
range. For example, Cu5Zn8 and Cu9Al4 compounds discussed in Sections 
7.2 to 7.4 are formed at particularly stoichiometric compositions within 
the respective solid solution ranges [22]. Our objective in this section is 
to study if the Hume-Rothery stabilization mechanism works through-
out the gamma-brass solid solution range in noble metal alloys. However, 
as emphasized repeatedly, first-principles band calculations are power-
ful only for ordered alloys, free from any chemical disorder or fractional 
site occupancies. Hence, under such limited condition, we are obliged to 
discuss the stabilization mechanism by assuming the DOS constructed 
for perfectly ordered Cu5Zn8 and Cu9Al4 alloys to remain unchanged on 
alloying, that is, the rigid-band model, in which the Fermi level is allowed 
to move in accordance with a change in electron concentration e/a.

Let us consider gamma-brasses existing over 57 to 70 at .%Zn in the 
Cu-Zn alloy system. One would wonder if the application of the rigid-
band model over 57–70 at .%Zn concentration range can be justified, 
since areas under both Cu- and Zn-3d bands in the DOS definitely 
change in proportion to the solute concentration. However, as empha-
sized as the “golden rule” in Chapter 5, Section 5.6, a difference in the 
d-band profiles between the two competing phases at a given electron 
concentration would not affect the valence-band structure energy dif-
ference, once it is fully filled. ἀ us, we can safely proceed with our dis-
cussion by ignoring the composition dependence of the Zn- and Cu-3d 
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band profiles and focusing only on a change in the DOS in the very 
vicinity of the Fermi level upon varying the solute concentration rela-
tive to the host Cu5Zn8. ἀ is allows us to plot the DOS as a function of 
electron concentration in place of energy and to assign e/a = 21/13 to the 
Fermi level for the host.

One more element of caution should be exercised in the discussion of 
phase stability over a solid solution range. ἀ e Fermi radius in the left-
hand side of Equation 4.1 is obviously given by k VF a=[ ( / )/ ] /3 2 1 3π e a , 
where Va is the volume per atom. By rewriting it as k VF =[ ( / )/ ] /3 2

0
1 3π e uc , 

where V0 is the volume per unit cell and e/uc is the number of electrons 
per unit cell, we can incorporate the effect of vacancies introduced into 
the unit cell through the electron concentration parameter e/uc. Betterton 
et al. [23] observed an increase in vacancy concentration with increasing 
Al and Ga concentrations in Cu-Al and Cu-Ga gamma-brasses. Following 
the pioneering work by Bradley and Taylor in 1937 for the B2-type Ni-Al 
alloys [24], Betterton et al. conjectured that vacancies are introduced so as 
to counterbalance an increase in e/a, thereby maintaining a constant e/uc  
and, in turn, the matching condition of Equation 4.1 over a whole solid 
solution range. ἀ is means that for the present purpose we should use e/uc 
as an electron concentration parameter rather than e/a.

As discussed in the preceding sections, the number of atoms in the unit 
cell and the e/a value for Cu5Zn8 can be fixed at 52 and 21/13, respectively. 
Hence, the Fermi level in the DOS for Cu5Zn8 is now replaced by e/uc equal 
to 52 21 13 84× =( / ) . An integration of the DOS in Figure 7.1a below and 
above the Fermi level can generate a conversion relation from the energy to 
e/uc. In this way, we can immediately construct the e/uc dependence of the 
DOS, as shown in Figure 7.11 for Cu5Zn8 [18]. It is seen that the pseudogap 
range is extended over 80 < e/uc < 88 for the solid solution range of gamma-
brass in the Cu-Zn alloy system. We consider the upper limit of e/uc equal 
to 88 to be reasonable in view of the fact that the Brillouin zone bounded 
by {330} and {411} zone planes of the gamma-brass structure is capable of 
accommodating totally 90 electrons per unit cell.* ἀ is is hereafter referred 
to as (e/uc)0 = 90. If it exceeds 90, electrons have to overlap across the next 
Brillouin zone, needing extra electronic energies.

* ἀ e volume of the Brillouin zone bounded by {330} and {411} zone planes is given as VB = 
45(2π/a)3 [25]. Since 2(L/2π)3 electrons can be accommodated in a unit volume of reciprocal 
space, we can fit 2(L/2π)3 × VB = 90(L/a)3 electrons per volume V = L3 or 90 electrons per unit 
cell in the zone.
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Figure 7.12 shows the solute concentration dependence of the number 
of atoms per unit cell, N, for gamma-brasses in both Cu-Zn and Cu-Cd 
alloy systems, as determined from the lattice constant measured using 
x-ray powder diffractometer and the density by Archimedes’ principle 
using a Si single crystal as a reference [18]. It clearly shows that N remains 
at the value of 52 up to about 61.5 at .%Zn but exhibits a gradual decrease 
with further increase in Zn concentration in the Cu-Zn alloy system. In 
contrast, the value of N in Cu-Cd gamma-brass system is almost 52 only 
at the lowest Cd concentration of 56 at .% and decreases fairly rapidly with 
increasing Cd concentration. It is surprising that almost one vacancy per 
unit cell is introduced at 61.5 at .%Cd, at which an ordered alloy Cu5Cd8 
were to be formed.

We can now easily calculate the value of e/uc by taking a product of the 
number of atoms per unit cell, N, and an average e/a value by assuming 
valencies of Cu, Zn, and Cd to be one, two, and two, respectively. Indeed, 
the valency of Cu was confirmed from the Hume-Rothery plot discussed 
in Section 7.4 to be unity in Cu5Zn8. ἀ e results are plotted in Figure 7.13 
as a function of the solute concentration for both alloy systems. Let us first 
discuss the data for Cu-Zn gamma-brasses. ἀ e value of e/uc is distributed 
over 82 to 86.3. A comparison between Figures 7.11 and 7.13 immediately 
tells us that the solid solution range of gamma-brass over 58 up to 70 at.% 
Zn is found inside the pseudogap. ἀ erefore, we conclude that gamma-
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brasses over the whole solute concentration range in the Cu-Zn alloy sys-
tem are stabilized by the Hume-Rothery mechanism. However, the role of 
vacancies in this system is less clear, since a dashed line representing the 
e/uc calculated under the assumption of N = 52 throughout the solid solu-
tion range still remains below 88 at the termination of the solid solution 
range, that is, at 68 at .%Zn.

Another interesting phenomenon to be emphasized in Cu-Zn gamma-
brasses is the persistence of N = 52 in the Cu-rich concentration range 
over 57 to 62 at .%Zn. ἀ ough the lowest value of e/uc is still within the 
pseudogap (see Figure 7.11), the Fermi surface may become a bit too small 
to satisfy the matching condition ( )2 2 2

kF = G . Morton observed the long-
period super-lattice structure in the neighborhood of e/a = 1.58 in the 
Cu-Zn alloy system [26,27] and interpreted its formation in terms of the 
Sato-Toth theory [28,29], in which the split Brillouin zones constructed 
from split diffraction spots allow to maintain the matching condition to 
smaller e/a values with the generation of shorter reciprocal lattice vec-
tors [30]. We will discuss more about this issue upon discussing Ni-Zn 
gamma-brasses in Chapter 8, Section 8.5.

ἀ e situation in Cu-Cd gamma-brass alloys is less clear, since defect-
free gamma-brasses apparently do not exist [2–4,18]. Indeed, the value of 
e/uc remains well below 84 over the whole composition range, as shown 
in Figure 7.13. Such unique features are most likely caused by the posses-
sion of a large atomic size ratio between Cu and Cd, that is, r rCd Cu/ .=1 23 
in comparison with r rZn Cu/ .=1 09  in Cu-Zn alloys. As a matter of fact, 
the α-phase primary solid solution range is extremely narrow in agree-
ment with the Hume-Rothery 15% size rule. Moreover, neither bcc nor 
the CsCl-type B2 compound exists in the Cu-Cd alloy system. ἀ is is 
entirely different from the phase diagram in the Cu-Zn alloy system, in 
which successively appearing α-, β-, and γ-brasses are known to obey 
the Hume-Rothery electron concentration rule. Nevertheless, we have a 
fairly wide solid solution range for the gamma-brass. ἀ is suggests that 
the gamma-brass structure is so flexible in accommodating vacancies in 
its large unit cell that a larger amount of vacancies in the Cu-Cd system 
may be more easily introduced. We tend to believe that the lowering of 
the electronic energy by forming a pseudogap across the Fermi level may 
be large enough to overwhelm the size effect in stabilizing gamma-brass 
phase in the Cu-Cd alloy system in spite of a rather excessive accommoda-
tion of vacancies. Otherwise, gamma-brass would not appear as a stable 
phase due to such an unfavorable size ratio.
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First-principles band calculations for the Cu-Cd gamma-brass are not 
feasible because there exists no stoichiometric compound in this sys-
tem, free from chemical disorder and vacancies. For brevity, we may use 
the DOS for Cu5Zn8 gamma-brass, since chemical nature of constituent 
elements would be similar to each other. According to Figure 7.13, the 
value of the e/uc falls in the range of 80 to 82.4, which is well inside the 
pseudogap shown in Figure 7.11. As shown in Figure 7.9, a large negative 
magnetic susceptibility is observed after subtracting ionic contribution 
from the measured one. ἀ e results are found to fall on a rapidly declin-
ing universal curve with increasing the e/a value, along with the data for 
gamma-brasses in other alloy systems like Cu-Zn, Ag-Zn, and Ag-Cd 
[18,20]. ἀ is is interpreted as the possession of a large Landau diamagne-
tism [31] and can be taken as an indirect evidence for the existence of the 
Fermi level inside the pseudogap over the whole solid solution range of 
Cu-Cd gamma-brasses. In summary, we consider that all gamma-brasses 
over a whole solute concentration range in both Cu-Zn and Cu-Cd alloy 
systems are stabilized by a FsBz-induced pseudogap and, hence, obey the 
Hume-Rothery stabilization mechanism.

7.7  cu-al anD cu-ga gamma-BRasses 
In solID solutIon Ranges

In the same manner as in Figure 7.11, we can set the Fermi level at e/uc = 84 
and rescale the DOS of Cu9Al4 in Figure 7.1b with respect to the parameter 
e/uc by integrating the DOS below and above the Fermi level. ἀ e results 
are shown in Figure 7.14. It can be seen that a pseudogap extends over the 
e/uc range from 81 to 88. ἀ is is quite reasonable since it is lower than 
(e/uc)0 = 90. ἀ e solute concentration dependence of the number of atoms 
per unit cell, N, and that of the resulting e/uc are plotted in Figures 7.15 (a) 
and (b), respectively. ἀ e Cu-Al gamma-brasses are distributed over the 
range 84 < e/uc < 89. A comparison between Figures 7.14 and 15b indi-
cates that its solid solution range is essentially inside the pseudogap. As 
indicated by a dashed line in Figure 7.15b, the value of e/uc would have 
gone well beyond 90 and the gamma-brass field would be much narrowed, 
if vacancies were not to be introduced with increasing Al concentration. 
Hence, we say that the Hume-Rothery stabilization mechanism works 
over the whole Al composition range in the Cu-Al gamma-brass system as 
a result of significant introduction of vacancies into the unit cell at higher 
Al concentration range.
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Bradley et al. [32] revealed for the first time in 1938 that lowering the 
number of atoms in the unit cell well below N = 52 occurs and causes 
a cubic symmetry to break, when the Al concentration exceeds 36 at.%. 
Westman [33] claimed that the 38.9 at.%Al gamma-brass can be described 
in terms of the rhombohedral symmetry with space group R m3 , a sub-
group of P m43 . More detailed structural studies were carried out by Kisi 
and Browne in 1991 [7]. ἀ ey revealed that 31.3 to 34.0 at.%Al alloys were 
cubic with space group P m43 , while 36.8 and 38.8 at .%Al alloys were 
rhombohedrally distorted with space group R m3 . As shown in Figure 7.16, 
Mizutani et al. [18] observed the split of the {444} peak into {444} and 
{ }444  sub-peaks in the x-ray diffraction spectrum upon transformation 
into the R m3  structure for samples with x = 36, 37, and 39.9 at .%Al. ἀ is 
is consistent with the emergence of the rhombohedrally distorted phase in 
Cu-Al gamma-brasses with x ≥ 36.

One more unique feature is addressed in relation to the R m3  struc-
ture in Al-rich Cu-Al gamma-brasses. Kisi and Browne [7] pointed out 
that vacancy is absent in the cubic phase but is introduced only into 
sites IT in the cluster “b” upon the R m3  transformation (see Chapter 6, 
Figure 6.3 and also Appendix 2, Figure A2.10 and Section A2.2.4.7). ἀ ey 
also observed that interatomic distance IT-IT in both clusters “a” and 
“b” increases with increasing Al concentration within the cubic phase. 
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However, the interatomic distance IT-IT in the cluster “b” is shortened 
upon transformation as a result of the introduction of 1.2 vacancies into 
sites IT in “b.” ἀ is is now compared with the situation in Cu-Ga gamma-
brasses.

According to the structure analysis of Cu9Ga4 gamma-brass, it was iden-
tified to be isostructural to Cu9Al4 with space group P m43  [34]. However, 
the best refinements showed the existence of chemical disorder in sites 
CO of the two clusters “a” and “b” shown in Figure 6.3b. More detailed 
structure analysis was recently reported for five gamma-brasses over 32.0 
to 40.0 at .%Ga concentration, using Spring-8 synchrotron radiation beam 
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with the wavelength of 0.05 nm [18]. ἀ e Rietveld structure refinements 
for a series of Cu-Ga gamma-brasses revealed the persistence of the P m43  
structure up to 38 at .%Ga and the transformation into the R m3  structure 
at 40 at .%Ga. As soon as Ga concentration departs from x = 31, vacan-
cies begin to be introduced into not only sites CO in the clusters “a” and 
“b” but also sites IT in the cluster “b” while maintaining space group 
P m43 . As is clearly seen in Figure 7.15a, this behavior reflects the down-
ward departure of N from 52 as early as x = 32 in Cu-Ga in sharp contrast 
to the persistence of N = 52 up to x = 34 in the case of Cu-Al. ἀ ough the 
number of vacancies in Cu-Ga increases more rapidly than that in Cu-Al, 
the transformation into the R m3  structure is delayed until x = 40. It is of 
interest to study why the difference occurs.

Figure 7.17 shows the Ga concentration dependence of the interatomic 
distance IT-IT corresponding to Ga-Ga and Cu-Cu pairs in the two clus-
ters “a” and “b,” respectively. ἀ e number of vacancies over sites IT in 
the cluster “b” is also incorporated in Figure 7.17. It can be seen that it 
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increases with an increase in the Ga content and reaches unity at x = 38. 
While the distance IT-IT in the cluster “a” gradually increases, the dis-
tance IT-IT in the cluster “b” sharply decreases above about 36 at .%Ga in 
harmony with a sharp increase in the number of vacancies in sites IT in 
the cluster “b.” In contrast, a decrease in the interatomic distance CO-CO 
in the cluster “a” is found to be much more moderate, though the num-
ber of vacancies over sites CO in the cluster “a” increases as significantly 
as that over sites IT in the cluster “b” with increasing Ga concentration. 
ἀ us, it is clear that the transformation into the R m3  structure is essen-
tially triggered by an increase in vacancies over sites IT in the cluster “b” 
up to 1.7 at 40 at .%Ga.

ἀ e way of distributing vacancies over the unit cell between Cu-Al and 
Cu-Ga gamma-brasses is quite different. ἀ e difference would originate 
from that in the atomic size ratio of constituent elements, though it is 
small: r rAl Cu/ .=1 12  and r rGa Cu/ .=1 10. As mentioned in [7], vacancies in 
Cu-Al gamma-brasses are exclusively introduced into sites IT in the clus-
ter “b” along the <111> direction and promote the transformation into the 
structure with space group R m3 . However, a slightly smaller size ratio in 
Cu-Ga gamma-brass would be responsible for distributing vacancies not 
only over sites IT in the cluster “b,” but also over CO in both clusters “a” 
and “b.”

First-principles band calculations for Cu-Ga gamma-brasses are again 
formidable because of the absence of a stoichiometric compound free 
from chemical and geometrical disorder. ἀ us, we are obliged to rely on 
the DOS for Cu9Al4 because of the similarity in chemical nature of the 
constituent elements. As shown in Figure 7.15, values of e/uc in the Cu-Ga 
gamma-brasses are confined in a rather narrow range of 84 to 87 owing 
to the introduction of a large amount of vacancies. Judging from the e/uc  
dependence of the DOS for Cu9Al4 in Figure 7.14, we believe that the Fermi 
level would reside well inside the pseudogap throughout the whole Ga 
concentration range. A difference in the driving force into the R3m trans-
formation between Cu-Al and Cu-Ga alloy systems might be also related 
to the difference in the e/uc range. ἀ e value of e/uc exceeds 87 at 37 at 
.%Al, which is already near the upper edge of the pseudogap and, thereby, 
possibly rendering some modification in structure to stabilize the system. 
Instead, a slightly smaller size ratio in Cu-Ga alloy system allows to dis-
tribute vacancies more evenly over sites to effectively suppress the value of 
e/uc below 87 up to x = 40.
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7.8 summaRy
We have repeatedly emphasized the need to discuss the Hume-Rothery 
electron concentration rule for CMAs by performing first-principles band 
calculations with a particular attention to two different electron concentra-
tion parameters e/a and VEC. We have introduced in this chapter tech-
niques called the FLAPW-Fourier method and the Hume-Rothery plot to 
separate the parameter e/a from VEC and applied it to Cu5Zn8 and Cu9Al4 
gamma-brasses. We could prove that a pseudogap at the Fermi level for both 
compounds is commonly caused by the FsBz interactions associated with 
the set of {330} and {411} lattice planes in agreement with the theory due to 
Mott and Jones in 1936 on the basis of the free electron model and could 
also explain why these two gamma-brasses are stabilized at e/a = 21/13.

ἀ e FLAPW-Fourier method could extract G
2

 = 18 as a critical recip-
rocal lattice vector and the Hume-Rothery plot revealed ( )2 2kF  to be close 
to 18 in both Cu5Zn8 and Cu9Al4 gamma-brasses. ἀ is is taken as a dem-
onstration for the validity of the matching condition given by Equation 4.1 
by means of first-principles band calculations.

ἀ e solid solution range is discussed, using a criterion such that 
gamma-brass phase remains stable at finite temperatures if the Fermi level 
is inside a pseudogap, as revealed in ordered Cu5Zn8 and Cu9Al4 gamma-
brasses. ἀ e parameter e/uc is employed as a practical electron concen-
tration parameter for off-stoichiometric gamma-brasses. ἀ e parameter 
e/uc is expected to be constrained in the neighborhood of 84 given by the 
product of e/a = 21/13 and N = 52 over a whole solid solution range, since 
G

2
 in equation (4.1) remains constant and equal to 18 regardless of solute 

concentrations for group (I) gamma-brasses.
Figure 7.18 is specifically prepared to show e/uc as a function of the num-

ber of valence electrons per unit cell VE/uc for group (I) gamma-brasses 
over a whole solid solution range. ἀ e data for Ni-Zn gamma-brasses dis-
cussed in Chapter 8, Section 8.5, are also included. It is clear that e/uc is 
distributed in the neighborhood of 84 and is always lower than (e/uc)0 =  
90 for all group (I) gamma-brasses. ἀ e value of e/uc is confined over the 
range from 80 to 90, reflecting the validity of the matching condition given 
by Equation 4.1. We will discuss this issue more universally in Chapter 10.
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8C h a p t e r  

Stabilization Mechanism 
of Gamma-Brasses 
Characterized by Increasing 
Orbital Hybridizations
Role of d-States-Mediated-
FsBz Interactions

8.1 gamma-BRasses In gRoup (II)
According to Table 6.1, at least 11 gamma-brass alloys belong to group (II) 
with space group of either I m43  or P m43  in binary alloy systems. ἀ ey 
are isostructural to those based on noble metals in group (I). We natu-
rally wonder whether the stabilization mechanism remains unchanged 
between them. Indeed, many discussions have been repeatedly made with 
a belief that group (II) gamma-brasses also obey the Hume-Rothery elec-
tron concentration rule and are stabilized at e/a = 21/13 [1–5]. One of the 
difficulties in allowing such unsupported belief certainly originated from 
the fact that the e/a value of the transition metal (TM) element has been 
controversial and has remained unsolved. In Chapter 8, we try to shed 
more light on the stabilization mechanism of group (II) gamma-brasses 
by making full use of the FLAPW–Fourier method introduced in Chapter 
7, Sections 7.3 and 7.4.
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First, we have to choose group (II) gamma-brasses suitable for perform-
ing first-principles band calculations among those listed in Table 6.1. ἀ e 
best way is to find a stoichiometric ordered compound free from any chem-
ical disorder and vacancies, as was encouraged by the existence of well-
ordered Cu5Zn8 and Cu9Al4 in group (I) discussed in Chapter 7. According 
to the phase diagram [6], both Al8V5 and Mn3In apparently exist only as a 
line compound. ἀ e composition ratio 8:5 in Al8V5 is consistent with a cri-
terion for the formation of such an ordered gamma-brass (see Chapter 6, 
Section 6.2). However, Brandon et al. [7] reported the presence of chemi-
cal disorder in sites IT and OH in their structure analysis using a single-
crystal (see Appendix 2, Section A2.2.1.12). ἀ e situation in Mn3In is more 
serious. ἀ e composition ratio 3:1 is incompatible with structures forming 
an ordered gamma-brass. Indeed, Brandon et al. [8] revealed a substantial 
chemical disorder in Mn3In (see Appendix 2, Section A2.2.2.10). To the 
best of our knowledge, an ordered gamma-brass has not been reported to 
exist in group (II). We are, thus, forced to construct a model structure to 
perform first-principles band calculations. ἀ e Al8V5 and TM2Zn11 (TM = 
Ni, Co, Pd) gamma-brasses were selected, since the model structure could 
be constructed with a minimal sacrifice to eliminate chemical disorder 
from the observed structure.

8.2 tm-zn (tm = ni, pd, co, anD fe) gamma-BRasses

8.2.1 construction of the model structure

Gamma-brass phase field is extended over 15–30 at .%TM in the family of 
the TM-Zn (TM = Mn, Fe, Co, Ni, Pd, Pt, Ir) alloy systems, all of which 
belong to group (II), as listed in Table 6.1. Among them, the Rietveld struc-
ture analysis is performed only at some particular compositions for those 
with TM = Fe, Co, Ni, Pd, and Ir [9–14]. For example, neutron diffraction 
studies are reported for the single phase Ni17.7Zn82.3 gamma-brass sample 
[10]. Its space group is identified as I m43 . Among various models tested, 
the best fit is obtained, when Ni atoms are filled only into sites OT without 
any vacancies, resulting in Ni2Zn11 or 15.38 at .%Ni alloy. ἀ e same con-
clusion is drawn for Ir2Zn11, where Ir atoms are exclusively filled into sites 
OT [12]. ἀ ough chemical disorder is claimed to be also present on sites 
OH in Pd-Zn [11] and on sites IT in Fe-Zn [13], both sets of data are con-
sistent with a full occupancy of Pd or Fe atoms on sites OT. In the case of 
Co20Zn80 gamma-brass, the best refinement is achieved for the structure, 
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in which Co atoms enter more preferentially into sites OT and Zn atoms 
into sites IT [14]. Its space group is deduced to be I m43 .*

To construct an ordered gamma-brass suitable for first-principles band 
calculations, we consider it to be most appropriate to fill the TM element 
only into sites OT and Zn atoms into all remaining sites IT, OH, and CO, 
resulting in the chemical formula TM2Zn11 (TM = Fe, Co, Ni, and Pd). ἀ e 
fractional coordinates of all atoms in the unit cell and the lattice constant 
are taken from those determined experimentally for alloys with the nearby 
compositions.† Fortunately, the composition of TM2Zn11 (TM = Fe, Co, 
Ni, and Pd) gamma-brasses is almost marginal but is still within a solid 
solution range in the respective phase diagrams [6]. More details about the 
atomic structure of gamma-brasses are summarized in Appendix 2.

8.2.2 electronic structure calculations and stabilization mechanism
8.2.2.1 Ni2Zn11 and Pd2Zn11 Gamma-Brasses
To begin with, we briefly discuss energy dispersion relations along the 
direction ΓN for the gamma-brass structure in the free electron model, 
which are shown in Figure 8.1. Let us direct our attention to electronic 
states at the symmetry points N, at which many parabolic bands cross with 
one another. ἀ ey can be indexed in terms of the square of the reciprocal 
lattice vector G

2
. As shown in Figure 3.2, the symmetry point N refers to 

the center of the {110} zone of the Brillouin zone of a bcc lattice. As noted in 
Chapter 7, Section 7.3, all zones, in which two integers in the set of Miller 
indices {hkl} are odd, pass through the symmetry points N upon reduc-
tion to the first zone. For example, degenerate electronic states at the low-
est energy of −9.5 eV are easily assigned as G

2
2=  associated with the set 

of {110} lattice planes. Further crossings of free-electron parabolic bands 
taking place one after another with increasing energy can be immediately 
assigned as an increasing order of G

2
2 6 10 14 18 22 26 30 34= , , , , , , , , , …  

corresponding to the center of {110}, {211}, {310}, {321}, {330}, {411}, … zone 
planes of the Brillouin zone. ἀ e position of the Fermi level is determined 

* ἀ e possession of space group I m43  is confirmed by the convergent beam electron diffrac-
tion studies for Co20Zn80 gamma-brass alloy [14]. ἀ is rules out the report on space group 
P m43  [6].

† ἀ e atomic coordinates of a crystal structure are usually expressed as fractional coordinates, 
that is, as fractions of the a, b, and c unit vectors. For example, an atom with fractional 
coordinates (0.5, 0.5, 0.5) would lie half way along each unit cell edge and is positioned at the 
center of the unit cell.
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by filling electrons equal to e/a = 21/13 into the free-electron valence-
band. We see that the electronic states near the Fermi level are dominated 
by those characterized by G

2
 = 18 in the free electron model. In Chapter 

8, we deal with gamma-brasses, in which electronic states like G
2
=  18 

and its neighbors near the Fermi level are heavily perturbed by the TM-3d 
band involved.

ἀ e energy dispersion relations and DOS for Ni2Zn11 and Pd2Zn11 

gamma-brasses are shown in Figures 8.2 and 8.3, respectively [14]. A large 
DOS in the energy range over −7 and −9 eV is due to the Zn-3d band in 
both cases. Since the amount of Ni or Pd element is only 15.38 at.%, their 
d bands are rather small. We find that both Ni-3d and Pd-4d bands are 
still well immersed below the Fermi level. We are ready to check if the 
FsBz interaction involving G

2
 = 18 characteristic of the gamma-brass 
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fIguRe 8.1 Energy dispersion relations along the direction ΓN for a canonical 
gamma-brass structure having e/a = 21/13 and N = 52 in the free electron model 
[from U. Mizutani et al., Phys. Rev. B 74 (2006) 235119]. ἀ e number along the 
energy axis at the symmetry point N refers to the value of G

2
. Note that the ratio 

of EF over E
G

2
18=

 is 1.033, regardless of the choice of a lattice constant.
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structure is still effective enough to generate a pseudogap at the Fermi 
level, or is affected by the Ni-3d or Pd-4d band.

Figures 8.4a,b show energy spectra of the squared Fourier coefficients 
summed over equivalent zone planes,

 Ci
k G+∑ 2

of the FLAPW wave function 7.1 outside the MT sphere at the symme-
try points N at energy-eigen values ranging from −2 to +1 eV across the 
Fermi level. Here, G

2
 is fixed at representative values of 14, 18, and 22. 

ἀ is technique was already introduced as the FLAPW-Fourier method 
in Chapter 7, Section 7.3. It is clear from Figures 8.4a,b that electronic 
states associated with G

2
 = 18 predominantly appear at the bottom and 

the top of a pseudogap marked with an arrow. On the other hand, the 
G

2
 = 14 states appear only below −1 eV, while the G

2
 = 22 states only 

above +0.4 eV. ἀ is is in accordance with the behavior expected from the 
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fIguRe 8.2 (a) Energy dispersion relations and (b) DOS calculated using the 
FLAPW method for Ni2Zn11 gamma-brass. A double-headed arrow in (a) indi-
cates a gap at the symmetry point N across the Fermi level. [From R. Asahi et al., 
Phys. Rev. B 72 (2005) 125102.]
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free electron model in a sense that the higher the energy, the larger is the 
value of G

2
 involved. ἀ e results shown in Figure 8.4 are already deci-

sive enough to conclude that a pseudogap in both Ni2Zn11 and Pd2Zn11 
gamma-brasses is induced by the FsBz interactions involving the set of 
{330} and {411} lattice planes with G

2
 = 18.

In order to ascertain further our conclusion above, we show the FLAPW-
Fourier spectra at the symmetry points N at two energies corresponding 
to lower and upper edges of the pseudogap as a function of the square of 
the Miller indices,

 h2 2∑ or G

in Figures 8.5 and 8.6 on a semi-logarithmic scale for both Ni2Zn11 and 
Pd2Zn11, respectively [14]. ἀ e Fourier coefficient in both cases is extremely 
large at G

2
18= , being well consistent with the data in Figures 8.4a,b. 

ἀ e ratio of the intensity at G
2

18=  over the next intense one is higher 
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fIguRe 8.3 (a) Energy dispersion relations and (b) DOS calculated using the 
FLAPW method for Pd2Zn11 gamma-brass. A double-headed arrow in (a) indi-
cates a gap at the symmetry point N across the Fermi level. [From R. Asahi et al., 
Phys. Rev. B 72 (2005) 125102.]
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of the FLAPW wave function (7.1) outside the MT sphere at energy eigen-values of 
(a) −1.09 and (b) +0.05 eV corresponding to the bottom and top of the pseudogap, 
respectively, at the symmetry points N for Ni2Zn11 gamma-brass [from R. Asahi 
et al., Phys. Rev. B 72 (2005) 125102]. I InextG2 18=

/ : ratio of intensity at G
2

 = 18 
over the next intense one. ἀ e ordinate is on a logarithmic scale.
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of the FLAPW wave function (7.1) outside the MT sphere at energy eigen-values of 
(a) −1.14 and (b) −0.11 eV corresponding to the bottom and top of the pseudogap, 
respectively, at the symmetry points N for Pd2Zn11 gamma-brass [from R. Asahi 
et al., Phys. Rev. B 72 (2005) 125102]. I InextG2 18=

/ : ratio of intensity at G
2

 = 18 
over the next intense one. ἀ e ordinate is on a logarithmic scale.
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than 21 and 15 in the Ni2Zn11 and Pd2Zn11, respectively. All these results 
lend support to the conclusion that a pseudogap in these two systems is 
definitely caused by the FsBz interactions without being affected by the 
respective d-bands, though values of the intensity ratio I InextG 2 18=

/  are 
slightly lower than those for Cu5Zn8 and Cu9Al4 shown in Figures 7.3 and 
7.4, respectively.

In Chapter 7, Section 7.4, we have introduced the Hume-Rothery 
plot method to determine the effective e/a value for Cu5Zn8 and Cu9Al4 
gamma-brasses. Following Equations 7.3 to 7.5, we now calculate the 
energy dependence of { }2 2k G+  and its variance for Ni2Zn11 and Pd2Zn11 
gamma-brasses. ἀ e results are shown in Figures 8.7 and 8.8 [14]. ἀ e vari-
ance in the vicinity of the Fermi level is small enough to validate the value 
of { }2 2k G+  in both cases. Its value at the Fermi level corresponding to 
the square of the Fermi diameter can be directly read off from Figures 8.7 
and 8.8 to be 19.36 and 19.27 for Ni2Zn11 and Pd2Zn11, respectively. ἀ e 
total number of electrons per atom ( / )e a total  is then calculated by insert-
ing the Fermi radius kF  thus obtained into the relation

 e a/( ) =
total

8
3

3πk
N

F

where the number of atoms per unit cell, N, is assumed to be equal to 52 
and kF  is in units of
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fIguRe 8.7 Energy dependence of (a) { ( )}2 2k G+  and (b) its variance σ2 ( )E  
calculated using Equations 7.3 to 7.5 for Ni2Zn11 gamma-brass [from R. Asahi et 
al., Phys. Rev. B 72 (2005) 125102]. ἀ e square of the Fermi diameter is read off at 
the Fermi level.
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 2π
a

ἀ e value of ( / )e a total  is found to be 1.72 and 1.70 for Ni2Zn11 and Pd2Zn11, 
respectively. Since the pseudogap is confirmed to be induced by the FsBz 
interactions involving only G

2
 = 18, we conclude the value of ( / )e a total  

= 1.70-1.72 to be still acceptable as gamma-brasses obeying the e/a = 21/13 
rule. ἀ e valency of the TM element or ( / )e a TM  is easily obtained by tak-
ing the valency of the partner element Zn to be two. ἀ e ( / )e a TM  values 
for Ni and Pd turn out to be 0.15 and 0.07, respectively. All these results are 
summarized in Table 8.1.

If the arguments above are accepted, Ni2Zn11 and Pd2Zn11 gamma-
brasses fit better into group (I) classification rather than into group (II).

8.2.2.2 Co2Zn11 and Fe2Zn11 Gamma-Brasses
ἀ e energy dispersion relations and DOS for Co2Zn11 gamma-brass are 
shown in Figures 8.9 a,b, respectively [14]. Now the Fermi level is found 
in the Co-3d band, which is extended over energies from −2.5 to +0.5 eV 
across the Fermi level. ἀ us, it is of great importance to study how the 
d-band extending over the Fermi level affects the FsBz interactions associ-
ated with G

2
 = 18.
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Figure 8.10a shows the energy spectrum of the FLAPW-Fourier 
component,

 
Ci

k G+∑ 2

for Co2Zn11 gamma-brass over the energy range from −2.5 to +2 eV, which 
is wide enough to cover the Co-3d band. Here, G

2
 is fixed at values from 

14 to 34 at the symmetry points N of the bcc Brillouin zone. To emphasize 
its uniqueness, the energy spectrum for Cu5Zn8 gamma-brass in group (I) 
is also constructed over the same energy range and shown in Figure 8.10b. 
ἀ e energy range of the Co-3d band is marked with a dotted arrow in (a). 
Sizable Fourier components over the range of G

2
 = 14 to 34 are widely 

distributed inside the Co-3d band in Co2Zn11 gamma-brass. ἀ is obvi-
ously reflects the presence of flat energy dispersions inside the Co-3d band 
(Figure 8.9a). Especially, the Fourier components of G

2
 ≥ 22 normally 

appear above the Fermi level but remain significant even below about −1 
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fIguRe 8.9 (a) Energy dispersion relations and (b) DOS calculated using the 
FLAPW method for Co2Zn11 gamma-brass. [From R. Asahi et al., Phys. Rev. B 72 
(2005) 125102.]
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eV in Co2Zn11, indicating that the FLAPW wave function outside the MT 
sphere in this energy range is strongly perturbed by the Co-3d states and 
cannot be described simply in terms of the G

2
 = 14 wave like in Cu5Zn8, 

as can be seen in Figure 8.10b.
What about the stabilization mechanism for Co2Zn11 gamma-brass? 

First of all, we must note that the Co-3d band shown in Figure 8.9b is 
apparently separated by a deep pseudogap at about −0.41 eV into bonding 
and antibonding subbands due mainly to orbital hybridizations between 
Co-3d and Zn-4p states. ἀ us, one may argue that orbital hybridization 
effect would be responsible for its stabilization. But a large part of the 
antibonding subband is already below the Fermi level. ἀ is makes it dif-
ficult to explain its stabilization mechanism solely in terms of the orbital 
hybridization effect.

In the case of Cu5Zn8 discussed in Chapter 7, Section 7.3, the FsBz interac-
tion associated with G

2
 = 18 could account for the formation of a pseudogap 

across the Fermi level. ἀ is is clearly indicated in the energy spectrum 
shown in Figure 8.10b. In the case of Co2Zn11, we see from Figure 8.10a that 
the G

2
 = 18 states (marked in black) are split into bonding states below 

about −1.7 eV and antibonding states above about +0.9 eV. Furthermore, 
the intensity of the bonding states due to the G

2
 = 18 wave at about −1.7 to 

−2 eV is much stronger than that of the corresponding antibonding states 
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N for (a) Co2Zn11 and (b) Cu5Zn8 gamma-brasses over the energy range from 
about −2.5 to +2.0 eV. ἀ e value of G

2
 is fixed at six representative values of 

14, 18, 22, 26, 30, and 34. A solid arrow in (b) indicates the energy range of a 
pseudogap. A dotted arrow in (a) indicates the energy range, where the Co-3d 
band exists.
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at about +1.0 eV (see data marked in black in Figure 8.10a). ἀ erefore, we 
take this as evidence that the FsBz interactions associated with G

2
 = 18 are 

effective enough to stabilize Co2Zn11 gamma-brass. Similarly, we find that 
the G

2
 = 22 bonding states (marked in gray) also contribute to stabilizing 

Co2Zn11.
At this stage, we must note a striking difference in the behavior of split-

ting of the electronic states from that in Cu5Zn8 gamma-brass. A large part 
of bonding states in Co2Zn11 gamma-brass is deeply shifted to energies over 
−1.7 to −2.1 eV near the bottom of the Co-3d band, while antibonding states 
to energies above about +0.9 eV near the top of the Co-3d band, resulting in 
a wider “pseudogap” in between them (see the dotted arrow in Figure 8.10a). 
ἀ e formation of a widely separated bonding and antibonding states may be 
understood in such a way that the FsBz interactions, involving the strongest 
G

2
 = 18 and the next strongest G

2
 = 22, occur as if to avoid the Co-3d 

band, which apparently pushes the resulting bonding and antibonding 
states to the respective bottom and top due to the orthogonality condition 
of the sp-like wave function with the d-like one. We call this phenomenon 
the d-states-mediated-splitting or d-states-mediated-FsBz-interactions.*

An overall feature in the FLAPW–Fourier energy spectrum shown like 
in Figures 8.4 and 8.10 would be mostly reflected in the sp-partial DOS, 
since the energy spectrum is constructed from the wave function outside 
the MT sphere. Figure 8.11a shows the sp-partial DOS of Co2Zn11 gamma-
brass over the energy range from −4 to +3 eV in comparison with its total 
DOS in Figure 8.11b, which is duplicated from Figure 8.9b. ἀ e Co-3d 
bonding and antibonding subbands are marked in the total DOS in (b) 
with symbols (A), (B), and (C). Among them, we realized that the peaks 
(B) and (C) are greatly suppressed in the sp-partial DOS in (a). In other 
words, sp-electrons apparently form a pseudogap over −1 to +1 eV, though 
the peak “A” still remains near the Fermi level. We consider the forma-
tion of the pseudogap in the sp-partial DOS to be brought about by the 
d-states-mediated-splitting involving G

2
 = 18 and 22 states and to be 

essential in stabilizing the Co-Zn gamma-brass. More details will be dis-
cussed upon dealing with the stability of Al8V5 gamma-brass.

* ἀ e d-states-mediated-splitting is unique to CMAs involving d-states in the valence band. 
It is specifically called d-states-mediated-FsBz-interactions, when splitting occurs across the 
Fermi level.
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ἀ e energy dispersion relations and DOS for Fe2Zn11 gamma-brass are 
depicted in Figures 8.12a and b, respectively. ἀ e electronic structure is 
found to be quite similar to that of Co2Zn11 discussed above. Hence, only 
a brief description will be needed. ἀ e energy spectrum of the FLAPW-
Fourier components,

 
Ci

k G+∑ 2

for Fe2Zn11 is shown in Figure 8.13a in comparison with that for Cu9Al4 
in (b). Because of the presence of the dispersionless Fe-3d band over ener-
gies from −2 to +1 eV, many Fourier components over the range from 
G

2
 = 14 to 34 remain finite below the Fermi level. More important is 

that splitting of the G
2
-dependent electronic states occurs as if the Fe-3d 

band were to be avoided, forming bonding states near the bottom of the 
Fe-3d band and antibonding states near its top. ἀ is is the d-states-medi-
ated-FsBz interactions mentioned above and must be responsible for the 
stabilization of the structure. In this way, we believe that the stabiliza-
tion mechanism for TM2Zn11 (TM = Fe and Co) results from the FsBz 
interactions involving, at least, two G

2
s equal to 18 and 22 as a result of 

the mixing with the TM-3d states, that is, the d-states-mediated-FsBz-
interactions. We are now ready to determine the valency of Fe and Co by 
performing the Hume-Rothery plot.

ἀ e Hume-Rothery plot is performed for Co2Zn11 and Fe2Zn11 gamma-
brasses. ἀ e energy dependence of { }2 2k G+  and its variance are shown 
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Fe2Zn11 gamma-brass
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in Figures 8.14 and 8.15, respectively [14]. Because of the presence of Co− 
and Fe-3d bands across the Fermi level, the variance is large in the energy 
range, over which they are spread. Hence, one cannot directly read off the 
value of { }2 2k G+  at the Fermi level. As shown in Figures 8.14a and 8.15a, 
a straight line is drawn through the data points, where the variance is low: 
one in the range from −3.5 to −4 eV and the other in the range from +4 to 
+5 eV. ἀ e value of ( )2 2kF  is determined to be 19.5 and 20.0 for Co2Zn11 
and Fe2Zn11 gamma-brasses, respectively. One may say that the matching 
condition may be still satisfied, since a critical G

2
 range extends over 18 

to 22.* ἀ e total number of electrons per atom ( / )e a total  is calculated by 
inserting the Fermi radius kF  thus obtained into the relation

 e a/( ) =
total

8
3

3πk
N

F

where the number of atoms per unit cell, N, is assumed to be equal to 52 
and kF  is in units of

* ἀ e present analysis is limited only to the symmetry points N. If other symmetry points are 
included, the G

2
 = 20 corresponding to the set of {420} lattice-planes will be also counted 

as critical.
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calculated using Equations 7.3 to 7.5 for Co2Zn11 gamma-brass [from R. Asahi, 
H. Sato, T. Takeuchi, and U. Mizutani, Phys. Rev. B 72 (2005) 125102]. ἀ e square 
of the Fermi diameter is determined by extrapolating the data in the two regions: 
one centered at E = −3.5 eV and the other centered at E = +4 eV, where the vari-
ance is small.
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 2π
a

ἀ e value of ( / )e a total  is found to be close to 1.73 and 1.80 for Co2Zn11 and 
Fe2Zn11, respectively. ἀ e valency of the TM element, ( / )e a TM, is easily 
obtained by assigning the valency of the partner element Zn as two. ἀ e 
( / )e a TM  values for Co and Fe turn out to be 0.26 and 0.70, respectively. 
All relevant numerical data are summarized in Table 8.1.

8.3 al8v5 gamma-BRass

8.3.1 construction of the model structure

As mentioned in Section 8.1, Brandon et al. [7] revealed that Al8V5 gamma-
brass is isostructural to Cu5Zn8 gamma-brass with space group I m43  and 
contains 52 atoms in the unit cell with the lattice constant a = 0.9234 nm. 
It is found that four sites on IT are shared by two Al and two V atoms, four 
sites on OT by four V atoms, six sites on OH by four V atoms and two Al 
atoms and twelve sites on CO by twelve Al atoms. For first-principles band 
calculations, four Al and six V atoms are exclusively filled into sites IT and 
OH, respectively. ἀ is is made possible without changing the overall com-
position of Al8V5. ἀ e experimentally determined fractional coordinates 
of all 52 atoms in the unit cell and the lattice constant [7] are employed in 
both LMTO-ASA and FLAPW band calculations discussed below [15].
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calculated using Equations 7.3 to 7.5 for Fe2Zn11 gamma-brass [from R. Asahi, H. 
Sato, T. Takeuchi, and U. Mizutani, Phys. Rev. B 72 (2005) 125102]. ἀ e square of 
the Fermi diameter is determined by extrapolating the data in the two regions: 
one centered at E = −3.5 eV and the other centered at E = +5 eV.
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8.3.2 electronic structure calculations and stabilization mechanism

ἀ e energy dispersion relations and DOS calculated using the FLAPW 
method for Al8V5 gamma-brass are shown in Figure 8.16 [15]. ἀ e disper-
sionless and bunched electronic states in the energy range from −3 to +2 
eV across the Fermi level are certainly due to the V-3d band. It apparently 
consists of two V-3d subbands separated by a deep pseudogap at about 
+0.5 eV. Since the concentration of the transition metal element V is 38.5 
at.% and is much higher than that in TM2Zn11 (TM = Ni, Pd, Co, Fe) dis-
cussed in Section 8.2, the V-3d band forms a wider and higher DOS across 
the Fermi level.

As mentioned in Chapter 4, Section 4.10, the LMTO-ASA method is 
best suited to study the orbital hybridization effect between the V-3d and 
Al-3p states. ἀ e DOSs before and after zeroing the Al-3p/V-3d orbital 
hybridization terms in the LMTO-ASA wave function are depicted in 
Figures 8.17a,b, respectively [15]. Firstly, the DOS is well consistent with 
that derived from the FLAPW method shown in Figure 8.16b. More impor-
tant is that a pseudogap at +0.5 eV disappears, when the V-3d/Al-3p orbital 
hybridization terms are intentionally deleted from the LMTO-ASA wave 
function. ἀ erefore, we say that the V-3d states are mainly coupled with the 
Al-3p states to split the V-3d band into the bonding and antibonding sub-
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FLAPW method for Al8V5 gamma-brass. [From U. Mizutani et al., Phys. Rev. B 
74 (2006) 235119.]
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bands, resulting in the pseudogap at about +0.5 eV. We consider the V-3d/
Al-3p orbital hybridizations to be mainly responsible for stabilizing Al8V5 
gamma-brass, since the Fermi level falls at such a position that the bonding 
subband is almost fully filled, while the antibonding subband is completely 
unoccupied. As a result, Al8V5 gamma-brass may well be regarded as being 
typical of an orbital hybridization-induced pseudogap system.

We are now interested in examining whether or not the stabilization 
mechanism specific to the gamma-brass structure, particularly, the FsBz 
interaction involving G

2
 = 18, remains important in Al8V5 gamma-brass, 

in which the V-3d band widely spreads across the Fermi level. ἀ e interfer-
ence effect of electron waves with different sets of lattice planes in the pres-
ence of the V-3d band is studied by means of the FLAPW-Fourier method. 
ἀ e energy spectrum of

 
Ci

k G+∑ 2

is constructed over G
2

 values from 6 to 50 in the same manner as was 
done to construct Figures 8.4, 8.10, and 8.13 for group (II) gamma-brasses 
so far studied. ἀ e results for Al8V5 gamma-brass are shown in Figure 8.18 
by dividing the range of G

2
 into three regimes: (a) 6 ≤ G

2
 ≤ 18, (b) 22 ≤ 

G
2

 ≤ 30, and (c) 34 ≤ G
2

 ≤ 50.
Let us first direct our attention to the electronic states of G

2
6=  cor-

responding to the symmetry points N on the {211} zone planes, which are 
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orbital hybridization terms in the LMTO-ASA wave function for Al8V5 gamma-
brass. A deep pseudogap at about +0.5 eV above the Fermi level in (a) disappears 
in (b). [From U. Mizutani et al., Phys. Rev. B 74 (2006) 235119.]
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indicated by light gray bars in Figure 8.18a. ἀ e spectrum is sharply cen-
tered at around E = −7.4 eV. A comparison with the electronic states at 
the symmetry points N shown in both Figures 8.1 and 8.16a allows us to 
identify them as 6B and 6AB, which are weakly separated due to a small 
but finite form factor at G

2
6=  without being affected by the V-3d states. 

However, the energy spectrum in Figures 8.18a–c begins to be widely 
spread, when G

2
 is increased beyond 10. ἀ is is certainly due to the mix-

ture of the V-3d states.
We find from Figure 8.18 that electronic states of G

2
 ≥ 14 are split into 

bonding states below about –2 eV and antibonding states above about +2 
eV, giving rise to a pseudogap in between them. It is important to stress 
that the resulting bonding and antibonding states are densely distributed 
at the bottom and top of the V-3d band, respectively. ἀ is was already 
pointed out in connection with the stability of Co2Zn11 and Fe2Zn11 in 
Section 8.2.2.2 and named the d-states-mediated-splitting. In particular, 
the G

2
 = 18 states marked with black in Figure 8.18a are split into intense 

bonding states below about −2 eV and weak antibonding states above 
about +3 eV at the bottom and top of the V-3d band, respectively.

In Figure 8.18b involving 22 ≤ G
2

 ≤ 30, the electronic states are almost 
equally split into bonding states below the Fermi level and the antibond-
ing states above about +2 eV. ἀ e ratio of bonding states over antibonding 
states sharply decreases with increasing G

2
. In Figure 8.18c involving 34 

≤ G
2

 ≤ 50, only a very small fraction of bonding states remains below 
the Fermi level while most antibonding states appear above about +5 eV. 
Undoubtedly, an energy gain from the regime (c) can be neglected. We can 
say that the interference of electrons extending outside the MT sphere with 
sets of lattice planes involving 14 ≤ G

2
 ≤ 30, in particular G

2
 = 18 and 22, 

participates in the formation of bonding states near the bottom of the V-3d 
band. If all of the spectra from (a) to (c) are superimposed, one can realize 
that the V-3d-states-mediated-FsBz-interactions form a “pseudogap” in the 
energy range, where the V-3d band exists. However, a resulting pseudogap 
is masked in the total DOS in Figure 8.16b because of the presence of the 
V-3d states mainly residing inside the MT sphere.

ἀ e sp-partial DOS is calculated using the FLAPW method and plotted 
in Figure 8.19 [16]. As is expected, it clearly exhibits a pseudogap over the 
range from −2 to +2 eV in good agreement with the data in Figure 8.18. 
We consider that, among G

2
s ranging from 14 to 30, the G

2
 = 18 wave 

characteristic of the gamma-brass structure plays the largest contribution 
to lowering the electronic energy by forming the bonding states below 
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−2 eV near the bottom of the V-3d band and that the G
2  = 22 wave is 

also important, since significant bonding states are formed below the 
Fermi level. ἀ erefore, we conclude that Al8V5 gamma-brass is stabilized 
through the FsBz interactions mainly involving G

2
s over 18 to 22 as a 

result of the d-states-mediated-splitting. Hence, its stabilization mecha-
nism can be consistently described as the extension of that for Co2Zn11 and 
Fe2Zn11 discussed in Section 8.3.2.

We have so far limited our discussion to electronic states only at the 
symmetry points N. In order to prove the V-3d-states-mediated-FsBz inter-
actions to occur effectively and equally at symmetry points other than the 
points N, we evaluated the G

2
-dependence of two different energies of the 

system defined by the following two equations at the symmetry points N, 
Γ, and H (see Chapter 3, Figure 3.2b). ἀ e first one is given by
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fIguRe 8.19 sp-electron partial DOS calculated using the FLAPW method 
for Al8V5 gamma-brass. [From U. Mizutani et al., Ab Initio test of the Hume-
Rothery electron concentration rule for gamma-brasses, chapter 15 in Diἀuse 
Scattering in the 21st Century: Emerging Insights into Materials Structure and 
Behavior (edited by R.I. Barabash, G.E. Ice, and P.E.A. Turchi, Momentum Press, 
New Jersey, 2009), pp. 283–301.]
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where energy E weighted by state intensity C Ek G+ ( )
2  is summed from the 

bottom of the valence band, E0, to an infinity, including both occupied and 
unoccupied states as a function of the square of the reciprocal lattice vec-
tor, G

2
, at a given symmetry point. ἀ e Eav − G

2
 relation thus obtained 

represents an energy dispersion of an electron obtained by averaging over 
both bonding and antibonding states formed below and above the Fermi 
level, respectively, at the symmetry points N, Γ, and H. ἀ e second one is 
given by

 E

C E E

C E
oc

E E

E

E E

E

F

F
G

k G

k G

2

2

2

0

0

( ) =
+

=

+
=

∑

∑

( )

( )

 (8.2)

where the summation is limited up to the Fermi level so that the Eoc − G
2
 

relation represents the energy dispersion of an electron obtained by aver-
aging only over the occupied states in the valence band at three different 
symmetry points. As shown in Figure 8.20, the G

2
-dependence of both 

Eav ( )G
2

 and Eoc ( )G
2

 is quite universal, being independent of the choice of 
three different symmetry points, N, Γ, and H. Moreover, Eav ( )G

2
 is found 

to be close to the free electron behavior E ∝ +k G
2
, whereas Eoc( )G

2
 

is consistently lower than Eav ( )G
2

.* ἀ is can be taken as an additional 
proof that the V-3d-states-mediated-FsBz-interactions significantly con-
tribute to lowering the electronic energy in Al8V5 gamma-brass.

ἀ e Hume−Rothery plot for Al8V5 gamma-brass is shown in 
Figure 8.21. ἀ e variance is large over the energy range −3 to +3 eV, since 
the V-3d band exists. Hence, the data below −3 eV and above +3 eV has 
to be extrapolated to the Fermi level. ἀ e square of the Fermi diame-
ter (2kF)2 is determined to be 21.0 by taking the value at the position C 
obtained by averaging the two intersecting points A and B. Obviously, 
the accuracy in determining (2kF)2 for Al8V5 gamma-brass is the least 
reliable among those discussed earlier. ἀ e total number of electrons per 

* Note that both E Eav oc( ) ( )G G
2 2

and  represent an averaged energy per electron. ἀ e con-
tributions from states of G

2
24≥  to the valence-band structure energy can be essentially 

neglected because of their low populations below the Fermi level.
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calculated using Equations 8.1 and 8.2 at the symmetry points N, Γ, and H for 
Al8V5 gamma-brass. A thin dotted line represents the free electron model. [From 
U. Mizutani et al., Phys. Rev. B 74 (2006) 235119.]
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Fermi diameter at the point C is derived by taking an average of the intercepts 
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through the data points above +3 eV. [From U. Mizutani et al., Phys. Rev. B 74 
(2006) 235119.]
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atom (e/a)total is calculated by inserting the Fermi radius kF thus obtained 
into the relation

 e a/( ) =
total

8
3

3πk
N

F

where the number of atoms per unit cell, N, is equal to 52 and kF is in units 
of

 2π
a

ἀ e value of (e/a)total is no longer close to 21/13 (= 1.615) but is increased 
to 1.94. We see that the value tends to be progressively increased as the 
atomic number of the TM element involved becomes lower, i.e., Co2Zn11, 
Fe2Zn11, and Al8V5. ἀ e valency of the transition metal element, (e/a)TM, is 
easily calculated by assigning that of the partner element Al as three. ἀ e 
value of (e/a)TM for the V atom turns out to be 0.23. A positive e/a value for 
the V atom means that it still serves as raising the charge density outside 
the MT sphere. All relevant data are included in Table 8.1.

8.4 ag-li gamma-BRass
According to Table 6.1, there still exists another class of the gamma-brass, 
which is classified into group (III). ἀ e Ag-Li gamma-brass has been iden-
tified to be isostructural to the prototype Cu5Zn8 [17,18], though it consists 
of only monovalent elements Ag and Li without involving any TM ele-
ments. Hume-Rothery [19] mentioned in his book that “no combination of 
univalent elements can give the characteristic electron atom ratio of 21/13 
although, if lithium were divalent, the above composition would be nearly 
that required for the 21/13 ratio.” Hume-Rothery apparently tended to 
believe that the e/a = 21/13 rule would be universally applied to all gamma-
brasses having the same complex structure. ἀ e study of the stabilization 
mechanism as well as the e/a determination for the Ag-Li gamma-brass is 
of great importance to gain a deeper insight into the Hume-Rothery elec-
tron concentration rule for CMAs. We include this unique gamma-brass 
in Chapter 8, since we will discuss its stabilization mechanism in terms of 
the Ag-4d-states-mediated-splitting.
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8.4.1 construction of the model structure

As mentioned in Chapter 6 and also Appendix 2, Section A2.2.1.13, 
chemical disorder slightly exists in the experimentally determined crys-
tal structure of Ag36Li64 gamma-brass [18]. ἀ e model structure is con-
structed simply by ignoring small amount of Li atoms on sites OT and 
OH, where otherwise Ag atoms are located. ἀ is is made with a minimal 
sacrifice from the best-refined structure [18]. ἀ e ordered Ag5Li8 gamma-
brass with the lattice constant of 0.99066 nm is employed for the FLAPW 
band calculations [20]. It may be noted that 61.5 at .%Li concentration in 
Ag5Li8 is slightly off from the minimum Li concentration of 63.5 at .%Li in 
the gamma-brass phase field in the equilibrium phase diagram [6].

8.4.2 electronic structure calculations

Figures 8.22a,b show the FLAPW-derived energy dispersion relations 
and DOS for Ag5Li8 gamma-brass, respectively [20]. ἀ e bunched bands 
in the binding energies centered at −4.5 eV in (a) are obviously due to the 
Ag-4d band. ἀ e structure of dispersion relations in the energy region 
over +1 to +3 eV above the Fermi level is very similar to that found in the 
vicinity of the Fermi level for Cu5Zn8 gamma-brass shown in Figure 7.2a. 
ἀ e sparse dispersions obviously give rise to a pseudogap in the corre-
sponding DOS, as is clearly seen in the insert to Figure 8.22b. It is worth-
while mentioning, at this stage, that an unusually sharp peak is observed 
in the DOS at −5.15 eV near the bottom of the Ag-4d band. We will come 
back to this phenomenon in Section 8.4.3, where its stabilization mecha-
nism is discussed.

As discussed in Chapter 7, Sections 7.3 and 7.4, the FLAPW-Fourier 
analysis for Cu5Zn8 and Cu9Al4 gamma-brasses could identify a pseudogap 
at the Fermi level to originate from the FsBz interactions associated with 
the set of {330} and {411} lattice planes and deduce the effective e/a values 
to be essentially equal to 21/13 for both of them. A resemblance of the 
energy dispersion relations over the range +1 to +3 eV in Ag5Li8 gamma-
brass with that across the Fermi level in Cu5Zn8 strongly suggests the FsBz 
interactions involving G

2
18=  to be responsible for the formation of a 

pseudogap at 2 eV above the Fermi level. Needless to say, however, its pres-
ence above the Fermi level can have nothing to do with the stabilization of 
Ag5Li8 gamma-brass phase.

ἀ e Hume-Rothery plot was performed for Ag5Li8 gamma-brass [20]. 
ἀ e energy dependence of 2

2
( )k G+  and its variance are shown in 
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fIguRe 8.22 (a) Energy dispersion relations and (b) DOS calculated using 
the FLAPW method for Ag5Li8 gamma-brass [from U. Mizutani et al., J. Phys.: 
Condens. Matter 20 (2008) 275228]. ἀ e dispersion relations inside a rectangle 
highlighted by light gray resemble those in Cu5Zn8 gamma-brass across the 
Fermi level (see Chapter 7, Figure 7.2a). An insert to (b) represents the DOS in 
the vicinity of a pseudogap marked with an arrow.
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Figures 8.23a,b, respectively [20]. ἀ e variance is extremely small in the 
neighborhood of the Fermi level. ἀ us, we can safely determine the square 
of the Fermi diameter (2kF)2 by reading off the value of the ordinate at the 
Fermi level. It turns out to be 13.4 in the units of (2π/a)2, which is much 
smaller than G

2
18= . ἀ e value of (e/a)total for Ag5Li8 gamma-brass is eas-

ily calculated to be 1.00±0.02 by inserting (2kF)2 = 13.4 into the relation

 e a/( ) =
total

8
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3πk
N

F
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fIguRe 8.23 Energy dependence of (a) { ( )}2 2k G+  and (b) its variance σ2 ( )E  
calculated using Equations 7.3 to 7.5 for Ag5Li8 gamma-brass. ἀ e square of the 
Fermi diameter is read off at the Fermi level. [From U. Mizutani et al., J. Phys.: 
Condens. Matter 20 (2008) 275228.]
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where the number of atoms in the unit cell, N, is equal to 52 [18]. ἀ e 
valency of Li is confirmed to be unity, since that of Ag must be unity in 
the metallic state. We consider the present analysis to rule out clearly the 
Hume-Rothery postulate on divalency for Li [19].

8.4.3 stabilization mechanism

At first, we try to identify the role of the zone planes satisfying the match-
ing condition given by Equation 4.1. As was described in the preceding sec-
tion, the square of the Fermi diameter (2kF)2 in units of (2π/a)2 is deduced 
to be 13.4 for Ag5Li8 from the Hume-Rothery plot. ἀ is immediately tells 
us that a set of {321} lattice planes with G

2
14=  must be a candidate inter-

fering with electrons at the Fermi level. ἀ e NFE band calculations are 
performed to study its effect on the DOS. As shown in Figure 8.24, the 
form factor VG is extremely large only at G

2
 = 18 corresponding to the 

{330} and {411} zone planes but is extremely small at G
2
 = 14 for Ag5Li8 

gamma-brass [20].
ἀ e effect of eliminating form factors at G

2
 = 18 and 14 on the DOS is 

shown in Figures 8.26a,b, respectively, over the energy range −2 to +2 eV 
across the Fermi level [20]. A pseudogap marked by an arrow reproduces 
well that derived from the FLAPW method shown in Figure 8.22b. ἀ e 
pseudogap almost completely disappears when V

G 2 18=
 is set to zero, con-

firming that it is definitely caused by the interaction involving the set of 
{330} and {411} lattice planes. Instead, the elimination of the form factor 
V

G 2 14=
 hardly affects the DOS across the Fermi level. ἀ us, we conclude 
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2
 for Ag5Li8 gamma-brass. [From U. Mizutani et al., J. Phys.: 

Condens. Matter 20 (2008) 275228.]
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fIguRe 8.25 ἀ e DOS (gray) in (a) and (b) calculated using the NFE method for 
Ag5Li8 gamma-brass [from U. Mizutani et al., J. Phys.: Condens. Matter 20 (2008) 
275228]. An arrow indicates the pseudogap. ἀ e DOS (black) in (a) is obtained 
after zeroing the form factor V

G
2

18=
, while the DOS (black) in (b) is obtained after 

zeroing the form factor V
G

2
14=

. Note that the latter in (b) is intentionally dis-
placed upwards by 0.02 states/eV.atom to avoid an overlap with the DOS (gray).
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(b) represent the Ag-4d bonding and antibonding subbands, respectively.
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that the matching condition given by equation (4.1) does not produce any 
measurable effect on the DOS at the Fermi level in this system and we 
must seek for a stabilization mechanism other than the FsBz interactions 
involving G

2
 = 14 and 18.

ἀ e absence of a pseudogap at the Fermi level in Ag5Li8 gamma-brass 
makes studies of its stabilization mechanism difficult. ἀ e reason for 
this is that we can no longer discuss its “absolute” stability in terms of a 
pseudogap at the Fermi level and, hence, we are forced to move to the dis-
cussion on relative stability between two competing phases. In principle, 
we are not able to assume as a competing phase another realistic ordered 
compound having the same composition as that of Ag5Li8 gamma-brass.

An inspection of the Ag-Li phase diagram tells us the existence of a 
bcc phase at 38.5 at .%Ag equal to that in Ag5Li8 gamma-brass. ἀ is is 
a high temperature disordered phase stable above about 200°C. Honestly 
speaking, it is almost impossible to calculate the electronic structure and 
the total-energy of such a disordered bcc alloy with the same accuracy as 
those of Ag5Li8 gamma-brass. It is true that the α/β-phase transformation 
discussed in Chapter 5 is exceptional, since we are allowed to choose fcc- 
and bcc-Cu as competing phases, for which electronic structures can be 
calculated with an equal accuracy. To compromise with the present situ-
ation, Mizutani et al. [20] performed the FLAPW band calculations for 
AgLi B2-compound (see Chapter 10, Section 10.3) and constructed a DOS 
for the disordered 38.5 at .%Ag bcc phase simply by multiplying the DOS 
obtained for the B2-compound by a factor 4.85/6.0 so as to accommodate 
the same VEC as that in Ag5Li8.*

In the remainder of this section, we discuss only the essence of a pos-
sible scenario for the stabilization mechanism of Ag5Li8 gamma-brass and 
ask the readers to read more details about the evaluation in the valence-
band structure energy difference between them [20]. Figure 8.26a shows 
the energy dependence of the VEC for the two relevant phases. As a unique 
feature in Ag5Li8 gamma-brass, we can point out a sharp jump in VEC 
occurring at E = −5.15 eV, as marked by an arrow. A jump in VEC occurs 
without changing energy and its magnitude reaches as large as 1.25. ἀ is 
dramatically large jump in VEC can be safely attributed to the existence of 

* Since Ag and Li atoms donate eleven and one electrons per atom to the valence band, the 
total numbers of electrons per atom, VEC, filled into the DOS for Ag5Li8 gamma-brass and 
AgLi B2-compound are quite different from each other, that is, (11 × 5 + 1 × 8)/13 = 4.85 and 
(11 + 1)/2 = 6.0, respectively.
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almost flat energy dispersions at E = −5.15 eV in Figure 8.22a, and a delta-
function-like peak in the DOS in Figure 8.22 (b).

ἀe  VEC dependence of the DOS is plotted in Figure 8.26b for the 
two phases. As is clear, Ag-4d bands for both phases can accommodate 
approximately four electrons per atom and are roughly divided into 
bonding “B” and anti-bonding “AB” states over the ranges 0≤VEC≲2.0 
and 2.0≲VEC≲4.0, respectively. We can immediately find an unusually 
large growth of the Ag-4d “B” sub-band in Ag5Li8 gamma-brass. Such 
an abnormal growth of the “B” sub-band is absent in Figure 8.27, where 
the similar data for Cu5Zn8 gamma-brass are shown along with those for 
a disordered 38.5 at .%Cu-Zn bcc alloy, which are similarly constructed 
from the electronic structure of the CuZn B2-compound [21]. ἀ e “golden 
rule” discussed in relation to the phase competition between fcc- and bcc-
Cu in Chapter 5, Section 5.6 holds true in the Cu-Zn system but obviously 
breaks down in the Ag-Li system [20]. ἀ is means that a sudden rise in 
the VEC slope marked by an arrow in Figure 8.26a for Ag5Li8 gamma-
brass is truly unusual and is most likely responsible for the stabilization 
of Ag5Li8 gamma-brass.

Now we briefly discuss a possible origin for the formation of a flat-band 
near the bottom of the Ag-4d band in Ag5Li8 gamma-brass (neither in 
AgLi, CuZn B2-compounds nor in Cu5Zn8 gamma-brass). In this regard, 
we direct our attention to the evidence that the (211) x-ray diffraction peak 
is extremely strong and is comparable to the strongest peak (330) + (411) 
only in Ag5Li8 gamma-brass (see Appendix 2, Figure A2.8). ἀ is is in sharp 
contrast to that in other gamma-brasses like Cu5Zn8 or even Ag5Zn8 con-
taining the same amount of Ag as Ag5Li8 (see its diffraction spectrum in 
Figure A2.1). Noritake et al. [18] attributed the occurrence of a huge (211) 
diffraction peak in Ag5Li8 to the predominant occupation of Ag atoms in 
the set of {211} lattice planes.

Figure 8.28 shows the FLAPW–Fourier energy spectra associated with 
the G

2
 = 6, 10, 14, and 18 components of the FLAPW wave function out-

side the MT sphere at the symmetry points N for Ag5Li8 gamma-brass. As 
is clear from the argument in Section 8.4.2, the G

2
 = 18 electronic states 

are split into bonding and antibonding states due to the interference with 
the set of {330} and {411} lattice planes and are responsible for the forma-
tion of a pseudogap at about +2 eV above the Fermi level (see Figure 8.22). 
On the other hand, the NFE-like behavior without involving any splitting 
is confirmed for G

2
 = 10 and 14. Indeed, they are well away from Ag-4d 

band. More interesting to be noted is the occurrence of the Ag-4d-states-
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mediated-splitting associated with the G
2
 = 6 states, which are widely 

split into bonding and antibonding states as if to avoid the Ag-4d band.
We show in Figure 8.29 the s-, p-, and d-states partial DOSs derived 

from the FLAPW method for Ag5Li8 gamma-brass. Obviously, the flat-
band at E = −5.15 eV discussed above is mainly composed of Ag-4d states. 
However, as shown in the insert to Figure 8.29, both s- and p-states also 
participate in forming the flat-band. Measuring from the bottom of the 
valence band, we can roughly estimate the kinetic energy of itinerant sp-
electrons sustaining the flat-band to be 2.5 eV. Its insertion into the free 
electron equation λ[ ] . / [ ]nm E eV=1 226  yields the wavelength λ = 0.78 
nm. ἀ is is in good agreement with the lattice spacing 2d = 0.78 nm in 
the set of {211} lattice planes. In this way, the Bragg condition is satisfied 
and the stationary waves can be formed. We consider the Ag-4d-states-
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2
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mediated-splitting to occur at such a low energy by involving the G
2

 = 6 
states and to result in a profound condensation of a large number of Ag-4d 
electrons at −5.15 eV in promoting the stabilization of this compound. We 
can definitely say that the stabilization of Ag5Li8 gamma-brass has little 
to do with the FsBz interaction involving the set of {330} and {411} lattice 
planes. ἀ e discussion on phase stability without involving a pseudogap 
at the Fermi level is quite difficult. But it may be possible that the stabil-
ity of this unique gamma-brass is essentially brought about by the set of 
Ag-rich {211} lattice planes, which is also characteristic of the gamma-
brass structure.

8.5  ni-zn anD co-zn gamma-BRasses 
In solID solutIon Ranges

As listed in Table 6.1, a rather wide solid solution range exists in the gamma-
brass phase field in both Ni-Zn and Co-Zn alloy systems. In Chapter 7, 
Sections 7.6 and 7.7, we studied the solute concentration dependence of 
the number of vacancies introduced into the unit cell and discussed why 
Cu-Zn, Cu-Cd, Cu-Al, and Cu-Ga gamma-brasses have a rather wide solid 
solution range in terms of the FsBz interactions. Figures 8.30a,b show the 
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e/a dependence of the number of atoms per unit cell, N, and that of the 
number of electrons per unit cell, e/uc, for Ni-Zn and Co-Zn gamma-
brasses over a whole composition range, along with the data for group (I) 
gamma-brasses already shown in Figures 7.12, 7.13, and 7.15 [22]. Here the 
e/a values for Ni and Co are taken to be +0.15 and +0.26, respectively, as 
discussed in Section 8.2.2. It can be seen that the number of atoms in the 
unit cell decreases, while the value of e/uc systematically increases with 
increasing e/a, regardless of the alloy systems chosen. ἀ is indicates the 
soundness of the (e/a)TM values determined from the Hume-Rothery plot 
for Ni and Co.

We mentioned in Section 8.2.2.1 that Ni-Zn gamma-brasses exhibit a 
clear pseudogap immediately below the Fermi level and its origin is suc-
cessfully interpreted in terms of the FsBz interaction associated with G

2
 

= 18. Encouraged by this finding, we replot the DOS as a function of e/uc 
in Figure 8.31 by locating the Fermi level at e/uc = 0.15 * 8 + 2 * 44 = 89.2 
and integrating the DOS below and above the Fermi level. ἀ e experi-
mentally derived e/uc values shown in Figure 8.30b are distributed over 
78 to 83 across its whole solid solution range, as marked with an arrow 
in Figure 8.31. ἀ e Fermi level is situated inside the pseudogap over the 
whole concentration range. ἀ us, we conclude that Ni-Zn gamma-brasses 
over the solid solution range are also subjected to the Hume-Rothery 
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fIguRe 8.30 e/a dependence of (a) the number of atoms in the unit cell, N, and 
(b) the number of itinerant electrons in the unit cell, e/uc, for Cu-Zn, Cu-Cd, 
Cu-Al, Cu-Ga, Ni-Zn, and Co-Zn gamma-brasses [from U. Mizutani et al., Phil. 
Mag. 90 (2010) 1985]. ἀ e e/a values of Ni and Co are taken to be +0.15 and +0.26, 
respectively. [From R. Asahi, H. Sato, T. Takeuchi, and U. Mizutani, Phys. Rev. B 
72 (2005) 125102.]
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stabilization mechanism, though the present rigid-band approach relies 
on the DOS obtained from the idealized model structure Ni2Zn11.*

Another interesting feature in the Ni-Zn gamma-brasses is the occur-
rence of a long-period super-lattice structure in the Ni-rich region con-
taining more than 21at .%Ni. We discussed in Chapter 7, Section 7.6, the 
super-lattice formation in Cu-rich Cu-Zn gamma-brasses. A similar phe-
nomenon has been observed in Ni-rich Ni-Zn gamma-brasses [22,23]. ἀ e 
formation of the long-period super-lattice structure is believed to be elec-
tronic in origin [24,25]. Figure 8.32a shows the Zn concentration depen-
dence of the mean period of the super-lattice structure, which is reproduced 
from the data by Morton [23]. ἀ e two sets of data for the Cu-Zn and 
Ni-Zn alloy systems show no correlations, when plotted as a function of 
the Zn concentration. However, the data almost fall on a universal curve, 
when plotted against e/uc, as shown in Figure 8.32b. ἀ is may be taken as 
another evidence for the validity for an appropriate assignment of the e/a 
value for Ni.

ἀ e situation in the Co-Zn gamma-brasses is not straightforward. ἀ e 
DOS calculated for the model structure Co2Zn11 was already shown in 
Figure 8.9b. ἀ e Fermi level is located near the edge of the Co-3d anti-
bonding subband in Co2Zn11. It is important to realize that the DOS-e/uc 

* As is clear from Figure 8.30a, gamma-brasses in the Zn-rich concentration range contain a 
large number of vacancies. ἀ is is the reason why the solid solution range marked with an 
arrow is located far below e/uc = 89.2 in Figure 8.31.
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U. Mizutani et al., Phil. Mag. 90 (2010) 1985]. A vertical line refers to its Fermi 
level. An arrow indicates the solid solution range of the Ni-Zn gamma-brass. 
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plot is meaningful, only when the energy region of our interest is away 
from the d-band like in Cu5Zn8, Cu9Al4, and Ni2Zn11 gamma-brasses dis-
cussed earlier. In other words, the construction of the DOS-e/uc plot for 
the Co-Zn gamma-brass, where the Fermi level falls inside the d-band, is 
obviously unsuccessful [22].

ἀ e FLAPW band calculations have been so far limited only to the 
model structure Co2Zn11, that is, 15.3 at .%Co. Information about the elec-
tronic structure of more Co-rich gamma-brasses is needed, since its solid 
solution range extends over 15 to 29 at .%Co [22]. We consider the Rietveld 
structure analysis for the Co-rich gamma-brass to be of importance in 
order to construct a model structure at the composition as close to 30.8 
at .%Co corresponding to Co4Zn9 as possible. Its FLAPW–Fourier analysis 
will provide more crucial information about the stabilization mechanism 
of group (II) Co-Zn gamma-brasses.

8.6 summaRy
In Chapter 8, we have studied whether the Hume-Rothery electron con-
centration rule continues to hold or must be modified or even breaks 
down in gamma-brasses, where one of the constituent elements is chosen 
from the 3d-transition metal (TM) elements, and where both constitu-
ent elements are monovalent. We chose TM2Zn11 (TM = Ni, Pd, Co, and 
Fe) and Al8V5 gamma-brasses from group (II) and Ag5Li8 gamma-brass 
from group (III), as listed in Table 6.1. Among them, group (II) gamma-
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fIguRe 8.32 (a) Zn concentration and (b) e/uc dependences of the periodicity 
Λ of the long-period super-lattice structure observed in Cu-rich Cu-Zn gamma-
brasses (•) and Ni-rich Ni-Zn gamma-brasses (⦁) [from U. Mizutani et al., Phil. 
Mag. 90 (2010) 1985; A.J. Morton, Phys. Stat. Sol. A 44 (1977) 205.22, 23]. ἀ e e/
uc values are re-evaluated by using the e/a = 0.15 for Ni [from U. Mizutani, T. 
Noritake, T. Ohsuna and T. Takeuchi, Phil. Mag. 90 (2010) 1985].
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brasses are identified as being typical of orbital hybridization-induced 
pseudogap systems. ἀ e FLAPW-Fourier analysis revealed that a FsBz-
induced pseudogap for group (I) gamma-brasses discussed in Chapter 7 is 
gradually perturbed with increasing the amount of the d-states across the 
Fermi level and is intervened by the 3d-band. ἀ is is called the d-states-
mediated-FsBz interactions or d-states-mediated-splitting. A pseudogap 
observed in the energy spectrum of the FLAPW–Fourier components is 
reflected in the sp-electron partial DOS. Among G

2
s over the range from 

14 to 30 at the symmetry points N, electronic states of G
2
s from 18 to 22 

make the most significant contribution to the stabilization of Co2Zn11, 
Fe2Zn11, and Al8V5 gamma-brasses in group (II). It is emphasized that 
the range of critical G

2
s participating in forming a pseudogap across the 

Fermi level is widened due to the d-states-mediated-FsBz interactions. 
We are, therefore, led to conclude that the Hume-Rothery stabilization 
mechanism remains effective in group (II) gamma-brasses. More details 
about this issue will be discussed in Chapter 10.

ἀ e Hume-Rothery plot revealed that the e/a value gradually deviates 
from e/a = 21/13 in group (II), as the atomic number of the TM element 
decreases. We claimed that the e/a = 21/13 rule essentially holds for Ni2Zn11 
and Pd2Zn11 gamma-brasses but the departure from the e/a = 21/13 rule is 
gradually increased with decreasing the atomic number of the TM element 
involved. ἀ e e/a value for Ag5Li8 gamma-brass is deduced to be unity 
within the accuracy of 1.00 ± 0.02. ἀ e interference phenomenon to cause 
a deep pseudogap occurs at about 2 eV above the Fermi level and, hence, 
the matching condition definitely breaks down in Ag5Li8 gamma-brass. 
Its stabilization mechanism is discussed in terms of the formation of an 
extremely flat band at the bottom of the Ag-4d band. ἀ e formation of sta-
tionary waves due to the Ag-4d-states-mediated-splitting associated with 
G

2
 = 6 is suggested as its possible origin.
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9C h a p t e r  

Stabilization Mechanism 
of 1/1-1/1-1/1 
Approximants

9.1 electRonIc stRuctuRe of 1/1-1/1-1/1 appRoxImants
Since the discovery of the Al-Mn quasicrystal by Shechtman et al. in 1984 
[1], quasicrystals have been established as a new family of compounds 
characterized by the lack of translational symmetry but having rotational 
symmetries forbidden in normal crystals. ἀ eir stabilization mechanisms 
have become one of the most exciting recent topics. However, first-princi-
ples band calculations based on the Bloch theorem in the reciprocal space 
are unfortunately not applicable in this case because of the infinitely large 
unit cell. Instead, one can perform first-principles band calculations for 
the family of approximants, since the lattice periodicity is assured, no mat-
ter how large is the unit cell. In particular, the electronic structure of the 
lowest-order 1/1-1/1-1/1 approximant, containing some 130 to 170 atoms 
in the unit cell, has been extensively studied in the past. ἀ is is indeed a 
promising approach to deepen our understanding of the electronic struc-
ture of a quasicrystal, since we know from the cut-and-projection method 
(see Chapter 6, Section 6.1) that the local atomic structure between a 
quasi crystal and its approximant is essentially the same. In this chapter, 
we exclusively focus on the exploration of the stabilization mechanism of 
a 1/1-1/1-1/1 approximant itself as another class of CMAs in relation to the 
Hume-Rothery electron concentration rule.
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As noted in Chapter 1, Section 1.2, Traverse et al. [2] in 1988 revealed 
from the soft x-ray emission spectra a large depression in the DOS at the 
Fermi level in the Al-Mn quasicrystal relative to its amorphous and crystal-
line counterparts. ἀ eir pioneering work already hinted at the presence of 
a pseudogap in quasicrystals. At that time, however, people had intuitively 
expected that first-principles band calculations were beyond a practical 
level of computations, even for 1/1-1/1-1/1 approximants. A breakthrough 
was brought about by Fujiwara in 1989 [3], who performed LMTO-ASA 
band calculations for the Al-Mn approximant, containing some 138 atoms 
in the unit cell. ἀ is work revealed a deep pseudogap at the Fermi level and 
suggested it to be most likely responsible for the stability of such CMAs 
containing icosahedral clusters similar to those in quasicrystals. Since 
then, first-principles LMTO-ASA electronic structure calculations have 
been extensively carried out to affirm whether a pseudogap is a universal 
feature of all approximants and whether it becomes more pronounced, as 
the order of the approximants is increased toward that of a quasicrystal. 
Readers may consult the recent developments on this topic in books and 
in review articles [4–6].

As discussed in Chapter 4, Section 4.10, the LMTO-ASA method has 
been recognized as a fast but efficient scheme for first-principles electronic 
structure calculations. It owes its speed to the relatively small basis set, 
which consists essentially of atomic orbitals of constituent elements. ἀ is 
is the reason why the LMTO-ASA band calculation method is capable of 
determining the electronic structure even for CMAs with a giant unit cell, 
as in the case of 1/1-1/1-1/1 approximants. Moreover, it allows to extract 
the effect of orbital hybridizations among neighboring atoms and their 
involvement in the formation of a pseudogap. On the other hand, the 
FLAPW method is more suited when the contribution arising from a spe-
cific FsBz interaction needs to be examined in order to understand more 
clearly the physics behind the Hume-Rothery electron concentration rule 
(see Chapter 4, Section 4.12). Since the FLAPW wave function outside the 
MT sphere in a crystal is given as a sum of plane waves over more than two 
thousand reciprocal lattice vectors, solving a secular equation becomes a 
hard task for CMAs containing more than one hundred atoms in the unit 
cell. ἀ is is probably the reason why, in the past, theoretical studies with 
respect to the Hume-Rothery electron concentration rule for CMAs have 
not made much progress beyond the free electron model.

A large number of electronic structure calculations have already been 
reported on 1/1-1/1-1/1 approximants. Representative works reported on 
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families of RT- and MI-type 1/1-1/1-1/1 approximants are summarized 
in Table 9.1 [3,7–17]. As emphasized in Chapter 6, chemical disorder 
and defects were revealed at various sites in many of them. ἀ ey must 
be removed to perform first-principles band calculations, and, hence, the 
construction of a “model structure” becomes inevitable. We consider it 
important to criticize its appropriateness in comparison with a structure 
obtained by refining the measured structural data. However, there was a 
tendency for theoreticians working on band calculations to describe only 
briefly the model structure they constructed.

Efforts to probe more specifically the origins of the Hume-Rothery 
electron concentration rule were indeed fairly limited in the past. Among 
them, Trambly de Laissardière et al. [18] discussed the Hume-Rothery 
electron concentration rule by constructing the Anderson Hamiltonian, 
which was composed of two terms describing the motion of nearly free 
sp-electrons on one hand and d-impurities on the other hand to treat 
electrons in Al-TM based alloys. Obviously, their approach is based on 
the model Hamiltonian instead of first-principles band calculations. In 
this chapter, we aim at elucidating the stabilization mechanism of only a 
few 1/1-1/1-1/1 approximants on the basis of first-principles LMTO-ASA 
and FLAPW band calculations with an emphasis on the role of the FsBz 
interactions in the formation of a pseudogap. ἀ ey include Al-Mg-Zn and 
Al-Li-Cu approximants from the RT-type family and Al-Cu-TM-Si (TM = 
Fe and Ru) and Al-Re-Si 1/1-1/1-1/1 approximants from the MI-type family. 
Nearly Free Electron (NFE) band calculations turned out to be very valu-
able to extract the FsBz interactions for systems like 1/1-1/1-1/1 approxi-
mants, where the application of the FLAPW method is rather limited.

9.2 al-mg-zn 1/1-1/1-1/1 appRoxImant

9.2.1 construction of the model structure

ἀ e Al-Mg-Zn 1/1-1/1-1/1 approximant is, we consider, the best suited 
to explore the FsBz interactions and to examine whether a pseudogap 
is indeed FsBz-induced, since its valence band can be well described in 
the NFE model except for the Zn-3d band near its energy bottom. All the 
structure analyses so far reported claim a large amount of chemical dis-
order between Al and Zn atoms [19–21]. ἀ e fractional occupancy at the 
center of the cluster (sites A: 2a) is small and can be essentially regarded as 
being vacant, regardless of the Al concentration [20,21]. Both Al and Zn 
atoms are randomly filled into 12 sites (B: 24g) on the first icosahedron 
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with an approximate ratio of 1:4, 12 sites (C: 24g) on the second icosa-
hedron with 3:2, and 24 sites (F: 48h) on the truncated icosahedron with 
3:2, whereas no chemical disorder exists in the totally thirty-two sites D, 
E, G, and H for Mg atoms, resulting in 80-atom cluster (see Chapter 6, 
Figure 6.4 and Section 6.3).

Hafner and Krajčí [7] constructed a model structure of Al-Mg-Zn 1/1, 
2/1, 3/2, and 5/3 cubic approximants by applying the cut-and-projection 
method for a periodic Penrose lattice, as described in Chapter 6, Section 
6.1, and decorating it as proposed by Henley and Elser [22]. Briefly, Al 
atoms are placed on all vertices and Zn atoms on the mid-edge positions 
in all structural units, consisting of the two kinds of rhombohedra: prolate 
(PR) and oblate (OR) ones. Two Mg atoms are placed along the trigonal 
axis in each PR. A composition of the structure thus obtained is deduced 
to be Al26Mg64Zn72, or Al16Mg39.5Zn44.5 in %, containing 162 atoms per 
unit cell in contrast to 160 atoms per unit cell experimentally observed. 
ἀ is implies that the center of the first icosahedron (sites A: 2a) is filled 
with Al in their model. According to their composition, 12 Al atoms are 
filled into either sites B on the first icosahedron or sites C on the second 
icosahedron. ἀ e diffraction pattern calculated from their model struc-
ture apparently agrees well with the measured one. ἀ eir composition is 
located at the Al-poor side of the solid solution range [20].

Following the Rietveld structure analysis for a series of AlxMg39.5Zn60.5–x 
(20.5≤x≤50.5) 1/1-1/1-1/1 approximants [20], Roche and Fujiwara [8] put 
Zn atoms only into sites B, and Al atoms into sites C and F, while Mg 
atoms into sites D, E, G, and H, resulting in Al72Mg64Zn24 per unit cell or 
Al45Mg40Zn15 in %. ἀ eir model structure is located at the Al-rich side of 
its solid solution range. Sato et al. [9] constructed a model structure with 
the composition Al48Mg64Zn48 or Al30Mg40Zn30 in % by filling Zn atoms 
into both sites B and C and Al atoms into sites F, while Mg atoms into sites 
D, E, G, and H. ἀ e experimentally determined lattice constant of 1.4355 
nm for the Al30Mg40Zn30 approximant was employed. Since the center of 
the cluster (sites A) is set to zero in both [8] and [9] in accordance with the 
experiment, the total number of atoms in the unit cell is 160. ἀ e Al con-
centration in [9] is located in the middle of the solid solution range.

9.2.2 electronic structure calculations

Prior to the discussions on the electronic structure calculations, we 
briefly note the experimental studies concerning the Hume-Rothery sta-
bilization mechanism in Al-Mg-Zn 1/1-1/1-1/1 approximants. In 1995, 
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Takeuchi and Mizutani [23] attributed a reduction in the intensity of the 
observed x-ray photoemission valence band spectra near the Fermi level, 
relative to that of pure Al, and a clear reduction in the observed electronic 
specific heat coefficient relative to the free electron value to the existence 
of a pseudogap. ἀ e Fermi diameter was estimated by assuming valencies 
of Mg, Zn, and Al to be two, two, and three, respectively. Judging from 
observed x-ray diffraction peaks, they assumed reciprocal lattice vectors 
associated with the set of {543}, {710}, and {550} lattice planes to be the 
best candidate to satisfy the matching condition in Equation 4.1 and to 
be responsible for the formation of a pseudogap. At that time, the set of 
{543}, {710}, and {550} lattice planes with G

2
 = 50 was simply assumed 

to be critical.
Hafner and Krajčí [7] in 1993 calculated the electronic structure for 

their model structure Al16Mg39.5Zn44.5 (in %) containing totally 162 atoms 
in the unit cell, using the LMTO-ASA method. ἀ e energy dispersion 
relations and DOS are reproduced in Figures 9.1a,b. A pseudogap is 
clearly seen across the Fermi level in the DOS. ἀ ey briefly noted that 
the pseudogap was induced by closely spaced {631}, {710}+{550}, and {640} 
reciprocal lattice vectors without any detailed analysis. (Note that {543} is 
missing in [7].) ἀ eir statement above was probably made simply on the 
basis of the free electron model. Unfortunately, their dispersion relations 
along the direction ΓX or <200> in Figure 9.1a are too dense to extract any 
meaningful information about the pseudogap.
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fIguRe 9.1 (a) Energy dispersion relations calculated for the model structure 
Al26Mg64Zn72 using the LMTO-ASA method along the ΓX direction. (b) ἀ e 
corresponding DOS. A smooth DOS in (b) was obtained by recursion methods. 
[From J. Hafner and M. Krajčí, Phys. Rev. B 47 (1993) 11795.]
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Roche and Fujiwara [8] in 1998 calculated the electronic structure of 
their model structure Al72Mg64Zn24 by using the LMTO method. ἀ eir 
results on the energy dispersion relations in the vicinity of the Fermi level 
and the total DOS are shown in Figures 9.2a,b, respectively. A double 
minima structure is found inside a pseudogap formed immediately below 
the Fermi level. A width of the DOS pseudogap below the Fermi level is 
about 1 eV (see Chapter 2, Figure 2.7 in Section 2.3.). However, neighbor-
ing energy eigen-states at the symmetry points N across the Fermi level 
are separated from one another only about the order of 0.1 eV, as can be 
seen from Figure 9.2a. ἀ us, the DOS pseudogap of about 1 eV in width 
cannot be explained simply by studying energy dispersions at the symme-
try points N across the Fermi level. Indeed, the situation is entirely differ-
ent from that in Cu5Zn8 and Cu9Al4 gamma-brasses shown in Figure 7.2, 
where a gap of the order of 1 eV (i.e., 10 times larger) is opened across the 
Fermi level at the symmetry points N.

ἀ e LMTO-ASA band calculations were also performed for the 
Al48Mg64Zn48 model structure in 2001 [9]. ἀ e energy dispersion rela-
tions and DOS are shown in Figures 9.3a,b, respectively. It is clear that 
a pseudogap is present at the Fermi level in the DOS and is split into two 
minima A and B separated by a small peak at the Fermi level. An energy 
separation at the symmetry points N across the Fermi level in Figure 9.3a 
is again found to be only of the order of 0.1 eV. ἀ ese energy separations 
are too small to account for the width of the pseudogap in the DOS, which 
is again about 1 eV below the Fermi level, as can be seen from Figure 9.3b. 
ἀ is means that, in sharp contrast to the situation in Cu5Zn8 and Cu9Al4 
gamma-brasses (see Chapter 7, Figure 7.2), the electronic structure anal-
ysis solely at the symmetry points N across the Fermi level can hardly 
explain the origin of a DOS pseudogap in the approximant. We consider 
an overall deficiency in electron populations along almost all directions 
to be likely responsible for its formation in the Al-Mg-Zn approximant, as 
can be seen in sparse dispersion relations across the Fermi level inside a 
rectangle highlighted by white coloring in Figure 9.3a.

9.2.3 stabilization mechanism

Figure 9.4a shows the LMTO-ASA derived energy dispersion relations 
along the <710> direction for the Al48Mg64Zn48 model structure in com-
parison with those derived from the free electron model in Figure 9.4b [9]. 
A vertical line at
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fIguRe 9.4 Energy dispersion relations along the direction <710> derived from 
(a) LMTO-ASA method and (b) the free electron model for the model structure 
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094207]. ἀ e crossing of parabolic bands along the energy axis at the center N 
of the {710} zone planes in (b) can be identified with respect to the square of 
the relevant reciprocal lattice vector G

2
. ἀ e parabolic bands passing the Fermi 

level correspond to G
2

 = 50 in (b). A shaded rectangle in (a) indicates the region, 
where a pseudogap is formed in the DOS, as shown in Figure 9.3 (b).
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 k = =50
2

3 535( . )

in units of 2π / a  corresponds to the center of the {710} zone planes in both 
(a) and (b). Since the center of the {710} zone planes refers to the symmetry 
points N, crossings of parabolic bands there can be indexed in terms of an 
ascending order of G

2
, as shown in Figure 9.4b. It is seen that degenerate 

states indexed as G
2

 = 50 fall closest to the Fermi level in the free elec-
tron model. A comparison between (a) and (b) of Figure 9.4 indicates that 
degenerate states at the center of {710}+{543}+{550} zones with G

2
 = 50 

are only weakly lifted as a result of the interaction with the set of these 
lattice planes and that resulting electronic states remain in the vicinity of 
the Fermi level. ἀ is means that the two-wave approximation involving 
zones only with G

2
 = 50 is definitely too crude to explain the forma-

tion of a pseudogap in the DOS in the Al-Mg-Zn approximant. Another 
important remark should be added here. According to Figure 9.4b, we 
find that the frequency of crossings of parabolic bands in the free electron 
model exceeds 200 along the direction ΓN over the energy range –1≤E≤1 
eV across the Fermi level. All these degenerate states will be lifted and, 
accordingly, energy dispersions will be flattened, as shown in Figure 9.4a. 
We will show below that this is one of the prominent features of the CMA 
having 160 atoms per unit cell.

As discussed in Chapter 4, first-principles band calculations essentially 
aim at solving a secular equation like Equation 4.62. As mentioned at the 
beginning of Section 9.2.1, NFE band calculations would be adequate to 
derive the electronic structure of the Al-Mg-Zn approximant. Now let us 
consider the n-wave approximation in the framework of NFE band calcu-
lations. Since a secular determinantal equation is composed of an n-by-n 
determinant, one would end up solving n-th order polynomial equation 
in an energy E:

 a E a E an
n

n
n+ +⋅⋅⋅+ =−
−

1
1

0 0  (9.1)

where the coefficient an is composed of unperturbed free electron energies 
and non-zero form factors.* In the two-wave approximation, Equation 9.1 

* See Footnote on pg. 84, in Chapter 4, for the definition of the form factor.
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is reduced to a quadratic equation and results in the well-known energy 
dispersion relation [24]:
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where Vn is the form factor or the Fourier component of the ionic poten-
tial associated with the reciprocal lattice vector G n= ( / )2π a  and both 
E0

2= k  and En n= −( )k G 2  are unperturbed free electron energies cen-
tered at G = 0 and G = Gn.

Suppose that NFE band calculations are carried out with more than 
1000-wave approximation. Degenerate free electron parabolic bands 
indexed with G

2
 = 50 at the symmetry points N near the Fermi level in 

Figure 9.4b, for example, will be lifted in a complicated manner as a result 
of perturbations due to many nonzero form factors involved in Equation 
9.1. However, as long as the form factors are small enough to validate the 
NFE approximation, the effect of each form factor on the dispersion rela-
tions is limited only in the vicinity of the crossing region of more than 
two parabolic bands. In the case of the two-wave approximation given 
by Equation 9.2, we know that the perturbation due to the form factor Vn 
develops only in the vicinity of E0 = En and otherwise the free electron 
parabolic band is preserved (see Figure 4.3(a)).

Figures 9.5a,b compare the wave number dependences of the form fac-
tor between Cu5Zn8 gamma-brass and Al48Mg64Zn48 1/1-1/1-1/1 approxi-
mant. It is clear that only the G

2
 = 18 form factor is extremely large and 

located very near the Fermi level in Cu5Zn8. Its magnitude reaches 0.8 eV 
while the rest is less than 0.1 eV in the range 0.9 ≤ G / 2kF  ≤ 1.0. ἀ is is 
apparently responsible for the opening of a large gap reaching about 1 eV 
across the Fermi level at the symmetry points N in its dispersion relations 
(see Chapter 7, Figure 7.2a) and allowed us to interpret the DOS pseudogap 
formed across the Fermi level solely in terms of the gap opening at the 
symmetry points N. Instead, the form factor closest to the Fermi level in 
Al48Mg64Zn48 1/1-1/1-1/1 approximant is that at G

2
 = 50 associated with 

{543}, {710}, and {550} zone planes but its magnitude is only 0.2 eV. In 
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addition, two form factors at G
2  = 46 and 50, being comparable in mag-

nitude, exist over the narrow range 0.9 ≤ G / 2kF  ≤ 1.0.
To extract the role of form factors at G

2
 = 50 and 46, which may be 

hereafter referred to as V(50) and V(46), in the formation of a pseudogap, 
we performed 1505-wave NFE electronic structure calculations for the 
Al48Mg64Zn48 1/1-1/1-1/1 approximant model structure (see [9]) in such a 
way that form factors other than critical ones are set to zero. Figures 9.6a,b 
show energy dispersion relations derived when only either V(46) or V(50) 
is nonzero, respectively. It is clear that each form factor lifts degenerate 
states only in the energy region above the respective G / 2kF  values shown 
in Figure 9.5b but preserves free electron bands below them. As can be seen 
from dispersion relations inside shaded rectangles in Figures 9.6a,b, the 
form factor V(50) causes electronic states to be less populated over energies 
immediately above the Fermi level, whereas V(46) over those centered at 
–0.5 eV below the Fermi level. Sparse and flat dispersion relations become 
more evident in Figure 9.6c, where both form factors V(50) and V(46) are 
simultaneously activated, along with low energy-lying form factors V(2), 
V(4), and V(6).

Figures 9.7a–e show the effect of different combinations of form factors 
on the DOS near the Fermi level in 1505-wave NFE band calculations. 
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fIguRe 9.5 Form factors VG in the NFE model as a function of the wave number 
normalized with respect to the Fermi diameter 2kF for (a) Cu5Zn8 gamma-brass 
and (b) Al48Mg64Zn48 1/1-1/1-1/1 approximant. Note that form factors take finite 
values only at wave numbers corresponding to the reciprocal vector G  allowed 
for each system. Sizable form factors appearing in the vicinity of the Fermi level 
are indexed in terms of G

2
. ἀ e values of (2kF)2 for Cu5Zn8 gamma-brass and 

Al48Mg64Zn48 1/1-1/1-1/1 approximant are taken to be 18.47 and 49.52, respec-
tively, in units of (2π/a)2, where a is the lattice constant.
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fIguRe 9.6 Energy dispersion relations along the direction <711> for the model 
structure Al48Mg64Zn48 obtained when (a) only the form factor at G

2
 = 46 is 

nonzero and (b) only the form factor at G
2

 = 50 is nonzero in 1505-wave NFE 
band calculations. In (c), form factors at G

2
 = 2, 4, 6, 46, and 50 are non-zero. 

An energy range, where sparse electronic states are produced by the respective 
form factors, is highlighted by a shaded rectangle.



230    ◾    hume-Rothery Rules for structurally complex alloy phases

As shown in Figure 9.7a, we can confirm a pseudogap to be formed over 
the range −1 to +1 eV across the Fermi level in the DOS. ἀ e DOS in 
Figure 9.7(b), where only the form factor V(46) is taken into account, is 
characterized by a cusp at about –1 eV, followed by a sharply declining slope 
without clear formation of a pseudogap. It is similar to the DOS shown in 
Figure 3.3a in the model of Jones (I). A similar structure is formed but is 
shifted to the Fermi level in Figure 9.7c, where only the form factor V(50) 
is nonzero. A pseudogap structure, though its top edge is blurred, emerges 
across the Fermi level in (d), where both V(50) and V(46) are concomi-
tantly activated. Finally, form factors in the range G

2
≤ 6 or G / 2kF < 

0.35 are added to (d). As shown in (e), the DOS near the bottom of the 
valence band is heavily perturbed. More important is that the structure of 
the pseudogap becomes sharp and clear across the Fermi level.

From the analysis above, we can say that both form factors V(50) and 
V(46), or the sets of the Brillouin zone planes associated with G

2
 = 50 

and 46, are essential in the formation of a DOS pseudogap across the 
Fermi level in the Al-Mg-Zn 1/1-1/1-1/1 approximant, and its structure is 
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 = 

46 is non-zero. (c) DOS derived when the form factor at G
2

 = 50 is nonzero. 
(d) DOS derived when both G

2
 = 46 and 50 are nonzero. (e) DOS derived when 

form factors at G
2

 = 2, 4, 6, 46, and 50 are nonzero.
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matured through assistance of low energy-lying form factors in the range 
G

2
≤ 6. ἀ is can be viewed as the formation of a more or less spherical 

Brillouin zone net in the reciprocal space, thereby causing the Bragg reflec-
tions to occur in almost all directions. In other words, the FsBz interac-
tions involving such multi-zones must be responsible for the formation 
of a pseudogap in the Al-Mg-Zn 1/1-1/1-1/1 approximant containing as 
many as 160 atoms per unit cell.

9.3 al-li-cu 1/1-1/1-1/1 appRoxImant

9.3.1 construction of the model structure

ἀ e atomic structure of the Al-Li-Cu 1/1-1/1-1/1 approximant was inde-
pendently studied by the two groups. Both neutron and x-ray diffrac-
tion measurements were carried out on powder sample with composition 
Al94.6Cu17Li48.4 by Guryan et al. [25] and on a single-crystal with compo-
sition Al88.62Cu19.377Li50.335 by Audier et al. [26]. ἀ ey could successfully 
refine the structure with space group Im 3  with the absence of atoms at 
the center of the cluster (sites A: 2a). It contains totally 160 atoms in the 
unit cell with the lattice constant of 1.3891 nm [25] or 1.39056 nm [26]. Li 
atoms are filled into sites (D: 16f), (E: 24g), and (H: 12e) without measur-
able chemical disorder. Chemical disorder is the most substantial in sites 
(C: 24g), where Al and Cu atoms are almost evenly distributed. Sites B and 
F are shared by Al and Cu atoms with a proportion of 89:11 in its RT-type 
cluster (see Chapter 6, Figure 6.4). Such chemical disorder must be elimi-
nated in band calculations.

In LMTO-ASA band calculations for the Al-Li-Cu 1/1-1/1-1/1 approxi-
mant by Fujiwara and Yokokawa [10], the model structure was constructed 
with space group Pm3  by filling Al and Cu atoms into sites C in the clus-
ter “a” and “b” (see Chapter 6, Figure 6.4), respectively, ἀ ey simply noted 
that Al and Li atoms are filled into remaining sites without further detailed 
description. ἀ eir resulting model structure of Al96Li52Cu12 per unit cell or 
Al60Li32.5Cu7.5 in % contains 160 atoms in the unit cell. Unfortunately, no 
reference to the atomic structure, from which they deduced their model 
structure, was provided in [10]. Windisch et al. [11] also constructed the 
model structure for the Al-Li-Cu 1/1-1/1-1/1 approximant by using a slightly 
modified Henley–Elser model [22] discussed in Section 9.2.1. It contains 160 
atoms in the unit cell with space group Im3. However, its chemical formula 
was not explicitly mentioned in [11]. Sato et al. [12] modified the atomic 
structure refined by Guryan et al. [25] to eliminate chemical disorder from 
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the unit cell: Al atoms are exclusively filled into sites (B: 24g) on the first ico-
sahedron, Li atoms into sites (D: 16f) and (E: 24g) on the dodecahedron, Cu 
atoms into sites (C: 24g) on outer icosahedron and Al atoms into remaining 
outer shells. A fractional occupancy at the center of the RT-cluster (sites A: 
2a) is set to zero in agreement with the refined structure [25,26]. ἀ is leads 
to the model structure Al84Li52Cu24 per unit cell or Al52.5Li32.5Cu15 in % con-
taining 160 atoms in the unit cell with space group Im3 .

9.3.2 electronic structure calculations

Fujiwara and Yokokawa [10] revealed a deep pseudogap across the Fermi 
level for their model structure Al96Li52Cu12 and discussed the mechanism 
leading to its formation in terms of the matching condition (4.1) by esti-
mating the Fermi diameter simply by inserting the LMTO-ASA derived 
valence band width, i.e., EF  into the free electron relation E kF F= 2  in 
atomic units. A more important message from their work is that they 
judged from a narrow width of the Cu-3d peak only a small mixing 
between the Cu-3d and other orbitals. To confirm this, they calculated 
the DOS for two other model structures: one Al84Li52Cu24 obtained by 
filling only Cu atoms into sites C in both clusters “a” and “b” and the 
other Al108Li52 by filling only Al atoms into them. ἀ ey are led to conclude 
that Cu atoms play no role in the formation of the pseudogap, since the 
pseudogap structure remains unchanged among their three model struc-
tures, including Al108Li52, where Cu is absent. As will be discussed later, 
their finding plays an important role to elucidate the mechanism for the 
formation of a pseudogap in this system.

Windisch et al. [11] reported the electronic structure of not only 1/1-
1/1-1/1 but also higher-order Al-Li-Cu approximants up to 8/5-8/5-8/5. 
For the 1/1-1/1-1/1 approximant with a 160-atom cubic cell, the electronic 
structure was calculated self-consistently, using the standard LMTO 
technique in the atomic-sphere approximation (ASA). ἀ eir results are 
essentially consistent with that reported by Fujiwara and Yokokawa [10].

More detailed studies concerning the electronic structure and stabili-
zation mechanism were reported by Sato et al., using the model structure 
Al84Li52Cu24 discussed above [12]. ἀ e LMTO-ASA method was employed 
to study the orbital hybridization effect on the formation of a pseudogap, 
whereas NFE band calculations to study its origin from the viewpoint of the 
FsBz interactions. ἀ e total DOS derived from the LMTO-ASA is shown in 
Figure 9.8 and is compared with those obtained after intentionally zeroing 
(a), the Cu-3d/spd hybridization terms and (b) both Cu-3d/spd and Al-3p/
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Al-3p orbital hybridization terms. It is clear that the pseudogap remains 
unchanged in (a), but disappears when Al-3p/Al-3p terms are deleted in 
(b). ἀ is implies that the Cu-3d band has little to do with a pseudogap for-
mation, in good agreement with Fujiwara and Yokokawa [10]. Instead, the 
role of Al-3p/Al-3p orbital hybridizations has been emphasized.

9.3.3 stabilization mechanism

ἀ e stabilization mechanism developed in Reference 12 will be described 
below from the point of view of both the FsBz interactions and orbital 
hybridizations. At first, the e/a value of their model structure Al84Li52Cu24 
is easily calculated to be 2.05, since valencies of Al, Li, and Cu are three, 
unity, and unity, respectively. An insertion of e/a = 2.05 and N = 160 into 
the matching Equation 4.1 immediately indicates that the zone {631} is 
the best candidate for the FsBz interaction responsible for the formation 
of a pseudogap in Al84Li52Cu24. ἀ e form factor for the Al84Li52Cu24 model 
structure is shown in Figure 9.9 as a function of the wave number normal-
ized with respect to its Fermi diameter. It is clear that many form factors 
comparable in magnitude are distributed across the Fermi level, indicat-
ing the presence of the multi-zone effects most likely involving form fac-
tors at both G

2
 = 46 and 50 in a similar manner to the situation in the 

Al-Mg-Zn 1/1-1/1-1/1 approximant discussed in Section 9.2.3.
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Cu-3d/spd orbital hybridization terms (gray line). ἀ e latter is intentionally dis-
placed downwards by 0.2 states/eV.atom to separate two DOSs from one another. 
(b) Total DOS obtained after deleting both the Cu-3d/all-spd and Al-3p/Al-3p 
orbital hybridization terms. [From H. Sato, T. Takeuchi, and U. Mizutani, Phys. 
Rev. B 70 (2004) 024210.]
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Sato et al. [12] carried out NFE band calculations for their model 
structure Al84Li52Cu24. As emphasized in Section 9.3.2, the NFE model 
would be reasonable, since the Cu-3d band plays no essential role on the 
formation of a pseudogap and form factors are fairly small. After check-
ing that the 1061-wave approximation is accurate enough to reproduce 
main features derived from LMTO-ASA band calculations, they tried 
to extract zone planes responsible for the formation of a pseudogap at 
the Fermi level. ἀ e DOS thus obtained is plotted in Figure 9.10a. A 
pseudogap is found at the Fermi level. ἀ e DOS derived after zeroing 
several important form factors is depicted in Figures 9.10b–d. An elimi-
nation of the form factor V{631} with G

2
 = 46 significantly reduces the 

depth of the pseudogap but still leaves it to be noticeable (Figure 9.10b). 
A similar reduction in the depth of the pseudogap is also observed, when 
form factors V{543}, V{710}, and V{550}, all of which are associated with G

2
 

= 50, are eliminated (Figure 9.10c). However, when both sets of form fac-
tors with G

2
 = 46 and 50 are simultaneously deleted, we can almost per-

fectly erase the pseudogap, as shown in Figure 9.10d. ἀ is means that the 
Brillouin zones associated with both G

2
 = 46 and 50 equally contribute 

to the formation of a pseudogap.
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number normalized with respect to the Fermi diameter 2kF for the model struc-
ture Al84Li52Cu24 [from H. Sato, T. Takeuchi, and U. Mizutani, Phys. Rev. B 70 
(2004) 024210]. Sizable form factors appearing in the vicinity of the Fermi level 
are indexed in terms of G

2
. ἀ e value of (2kF)2 for Al84Li52Cu24 is taken to be 

45.20 in units of (2π/a)2, where a is the lattice constant.
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To evaluate a diminishing pseudogap by the elimination of particular 
form factors in a more quantitative way, they introduced a parameter p, 
which is defined as a ratio of the number of states involved in the energy 
range EF<E<+1 eV over that in the free electron states. As incorporated 
into Figure 9.10, the parameter p becomes close to unity only when two 
form factors at G

2
 = 46 and 50 are simultaneously removed. In addition 

to zones passing through the symmetry points N studied above, they 
also studied the effect of deletion of zones, which pass the symmetry 
points Γ and H upon reduction to the first zone. ἀ eir contribution to 
the formation of the pseudogap is found to be of minor importance.

As is clear from the arguments above, the mechanism to form a 
pseudogap in the Al-Li-Cu 1/1-1/1-1/1 approximant is essentially the same 
as that in the Al-Mg-Zn 1/1-1/1-1/1 approximant discussed in Section 9.2.3. 
But the electron concentration e/a = 2.05 in the Al84Li52Cu24 approximant 
is lower than e/a = 2.3 in the Al48Mg64Zn48 approximant. ἀ is difference 
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fIguRe 9.10 Effect of the deletion of form factors on the DOS calculated using 
1061-wave NFE band calculations for the model structure Al84Li52Cu24 [from 
H. Sato, T. Takeuchi, and U. Mizutani, Phys. Rev. B 70 (2004) 024210]. (a) A 
pseudogap is significant with p = 0.660, (b) the pseudogap remains sizable with 
p = 0.764 after zeroing the form factor V631, (c) the pseudogap remains with p = 
0.848 after zeroing form factors V543, V710, and V550, and (d) the pseudogap essen-
tially disappears with p = 0.961 after zeroing form factors V631, V543, V710, and V550. 
See the text for the definition of the parameter p.
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is reflected in the position of the two form factors V(46) and V(50) on the 
G / 2kF  axis, as can be seen in Figures 9.5b and 9.9. ἀ e set of {631} lattice 

planes associated with G
2

 = 46 would serve the most important role in 
the former, since V(46) appears at G / 2kF  nearly equal to unity. On the 
other hand, the form factor V(50) is at G / 2kF  = 1.0, and, hence, the set 
of {543}, {710}, and {550} lattice planes associated with G

2
 = 50 plays a 

principal role in the latter.
Two more remarks may be addressed before ending this section. First, 

Sato et al. [12] pointed out that the deletion of form factors having G
2
 ≤ 

16 or G / 2kF  < 0.59 also effectively eliminates the pseudogap across the 
Fermi level in the Al-Li-Cu approximant. Its importance has been already 
noted in discussing the stabilization mechanism of the Al-Mg-Zn 1/1-
1/1-1/1 approximant in Section 9.2.3 (see Figure 9.7). Hence, the role of 
low energy-lying form factors must be also important to shape up a DOS 
pseudogap structure across the Fermi level in such CMAs.

Second, we need to discuss the origin leading to the formation of a 
pseudogap in the Al-Li-Cu approximant. We have claimed in Section 9.3.2 
that the pseudogap is formed through the Al-3p/Al-3p orbital hybridiza-
tion, while in Section 9.3.3 it is formed through the FsBz interactions 
involving G

2
 = 46 and 50. Is this self-consistent with each other? Sato 

et al. [12] calculated a charge distribution of electrons within the range of 
thermal energies (≈30 meV) below the Fermi level on the (200) plane and 
could reveal the highest charge density extending along the line connect-
ing neighboring Al atoms. ἀ is is obviously attributed to the existence 
of the Al-3p/Al-3p bonding states. ἀ ey further proved that this unique 
charge distribution is destroyed, when form factors at G

2
 = 46 and 50 are 

deleted in NFE band calculations. From this they concluded that these two 
mechanisms are not independent of one another but essentially describe 
the same phenomenon from the two different points of view: the Al-3p/
Al-3p orbital hybridizations in the real space and the FsBz interactions in 
the reciprocal space.

9.4  al-cu-tm-si (tm = fe oR Ru) 1/1-1/1-1/1 appRoxImants

9.4.1 construction of the model structure

ἀ e atomic structure of Al68Cu7(Fe1-xRux)17Si8 (x = 0, 0.5 and 1) 1/1-1/1-1/1 
approximants was experimentally determined by analyzing the powder 
diffraction spectra taken with the beam line of the synchrotron radiation, 
SPring-8, Japan, by means of the Rietveld method [27,28]. Space group is 
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reduced to Im 3  as a result of random distributions of different chemical 
species in most of equivalent sites in the unit cell. ἀ e exception is that the 
transition metal element Fe or Ru is exclusively filled into 12 sites (TM: 
24g) on the larger icosahedron without any chemical disorder for both 
Al68Cu7Fe17Si8 and Al68Cu7Ru17Si8 corresponding to x = 0 and 1, respec-
tively, in the chemical formula above. As listed in Table 9.2, chemical dis-
order always exists in the distribution of Al and Cu atoms on the inner 
icosahedron (sites II: 24g) and also on the icosidodecahedron (sites MI1: 
12d and sites MI2: 48h). ἀ e first shell is formed by 12 atoms on the inner 
icosahedron while the second shell by 30 atoms on the icosidodecahedron 
and 12 atoms on the larger icosahedron TM (see Chapter 6, Figure 6.5). 
In glue sites G1, G2, and G3 connecting neighboring MI-clusters, chemi-
cal disorder is the most significant. In particular, glue sites G1 are heavily 
disordered by a mixture of Cu, Si, and vacancies, while glue sites G2 and 
G3 are occupied by Si and Al with slightly different coordinates, thereby 
being often referred to as split sites. ἀ e lattice constant of Al68Cu7Fe17Si8 
and Al68Cu7Ru17Si8 approximants turned out to be 1.248 and 1.2496 nm, 
respectively. ἀ e experimentally derived total number of atoms per unit 
cell is deduced to be 139, as listed in Table 9.2.

taBle 9.2 Refined Atomic Structure for Al68Cu7Fe17Si8 1/1-1/1-1/1 Approximant 
and Two Model Structures

Refined Structure with Space Group Im3
Model Structures with Space 

Group Pm3

Site Atoms Occ. Model 1 Model 2

II/24g Al/Cu 0.887/0.113 24Al 24Al
MI1/12d Al/Cu 0.908/0.092 12Al 12Al
MI2/48h Al/Cu 0.964/0.036 48Al 48Al
TM/24g Fe 1.0 24Fe 24Fe
G1/12e Cu/Si/

vacancy
0.04/0.6/0.36 G1 in “a” 6 Cu 6Cu

G1 in “b” 6 Si Vacant
G2/24g Si 0.378 12Al 12Si
G3/24g Al 0.622 12Al 12Al
Chemical 
formula

Al68Cu7Fe17Si8(%) Al108Cu6Fe24Si6
(Al75Cu4.2Fe16.6Si4.2 
in %)

Al96Cu6Fe24Si12
(Al69.6Cu4.3Fe16.6Si8.7 
in %)

Atoms/
unit cell

139 144 138

e/a 2.566 2.591 2.617



238    ◾    hume-Rothery Rules for structurally complex alloy phases

ἀ e model structure listed as “model 1” in Table 9.2 is constructed after 
a slight modification of the experimentally determined atomic structure 
discussed above [27]. ἀ e presence of Cu atoms with occupancies less than 
about 10 % on sites II, MI1, and MI2 is fully ignored. ἀ ese sites together 
with glue sites G3 are filled only with Al atoms. To compensate for the 
deficient Cu, the model 1 assumes Cu atoms to fill into glue sites G1. Space 
group Pm3  is intentionally employed to put six Cu atoms on glue sites G1 
in the MI-type cluster “a” and six Si atoms on G1 in the other cluster “b” (see 
Chapter 6, Figure 6.7). We obtain the chemical formula Al108Cu6TM24Si6 
(TM = Fe and Ru) per unit cell or Al75Cu4.2TM16.6Si4.2 in %. ἀ e total num-
ber of atoms per unit cell is increased from the measured value of 139 to 
144, since vacancies in the glue sites G1 are fully filled with atoms.

ἀ e structure “model 2” in Table 9.2 is also constructed to check how 
sensitively the electronic structure depends on the choice of the model. 
In the model 2, atom distribution on glue sites is fixed as follows: six sites 
G1 in the cluster “a” are filled with Cu atoms and those in the cluster “b” 
are left vacant, while 12 Si atoms are placed into sites G2. ἀ is alteration 
results in the chemical formula Al96Cu6TM24Si12 (TM = Fe and Ru) per 
unit cell or Al69.6Cu4.3TM16.6Si8.7 in %. Note that the number of atoms in 
the unit cell is 138, one atom lower than that in the refined structure.

9.4.2 electronic structure calculations and stabilization mechanism
9.4.2.1 LMTO-ASA Band Calculations
ἀ e electronic structure is calculated for the Al108Cu6Ru24Si6 approximant 
(model 1) by means of the LMTO-ASA method [15]. ἀ e resulting DOS is 
shown in Figure 9.11 (a). It is characterized by a large d-band originating 
from Cu-3d and Ru-4d states over energies centered at about −4 eV and 
a deep pseudogap across the Fermi level. ἀ e sp-d hybridization terms, 
representing a mixture of Cu-3d and Ru-4d states with all other states, 
are deleted from LMTO-ASA wave function to study the effect of the sp-d 
orbital hybridizations on DOS and dispersion relations. ἀ e DOS thus 
obtained is incorporated into Figure 9.11b using the same energy scale 
as in (a), to allow a direct comparison with the original DOS. Obviously, 
the Cu-3d states centered at about −3.5 eV and the Ru-4d states centered 
at −1 eV are now well separated. Its sp-partial DOS is then calculated and 
shown in Figure 9.11c, where a free electron parabolic DOS is drawn as 
a guide. It is clear that a pseudogap remains finite at the Fermi level in 
the sp-d hybridization-free sp-partial DOS. ἀ is must be attributed to the 
FsBz interactions [15].
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ἀ e energy dispersion relations are calculated along directions <543>, 
<550> and <710> after deleting all sp-d hybridization terms (Figure 9.11 
(b)). ἀ e results are shown in Figure 9.12 along with free electron parabolic 
bands [15]. It can be seen that many free electron parabolic bands merge at

 k = =50
2

3 535.

in units of 2π/a immediately below the Fermi level along the three direc-
tions and that electronic states involved are immediately identified as G

2
 

= 50 corresponding to the center of {543}, {550}, and {710} zone planes. 
ἀ ese degenerate states are lifted in sp-d hybridization-free bands. It is 
claimed from the analysis above that the set of {543}, {550}, and {710} 
lattice planes must be responsible for the formation of a FsBz-induced 
pseudogap at the Fermi level in the sp-d hybridization-free sp-partial DOS 
shown in Figure 9.11c. We consider the analysis above important, since a 
FsBz-induced pseudogap is present at the Fermi level but is simply hidden 
behind a much larger orbital hybridization-induced pseudogap. A FsBz-
induced pseudogap, though it is small in size, must play a key role in phase 
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fIguRe 9.11 (a) Total DOS and (b) that obtained after deleting the sp-d hybrid-
ization terms in the LMTO-ASA wavefunction and (c) sp-d hybridization-free 
sp-partial DOS for Al108Cu6Ru24Si6 approximant (model 1). [From U. Mizutani, 
T. Takeuchi, and H. Sato, Prog. Mat. Sci. 49 (2004) 227.]
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stability. Otherwise, the e/a- or e/uc-dependent phase stability would not 
be observed (see Chapter 10, Section 10.7).

A pseudogap at the Fermi level in the strongly hybridizing band shown 
in Figure 9.11a is much deeper than the FsBz-induced one shown in 
Figure 9.11c. ἀ e latter is certainly amplified as a result of the sp-d hybrid-
ization effect, which contributes to splitting of the Ru-4d states centered 
at about −1 eV (Figure 9.11b) into bonding states over −2 to −4 eV and 
antibonding states above the Fermi level (Figure 9.11a). ἀ e reason why 
MI-type quasicrystals and their approximants in the Al-Cu-TM alloy sys-
tem need Fe, Ru, or Os as the TM element from the same column in the 
periodic table, is clear. ἀ e unhybridized TM-d states need to be present 
at about −1 eV, as is the case for the Ru-4d states shown in Figure 9.11b. 
Its location at this energy is important because the sp-d hybridization cre-
ates bonding states at energies lower than –2 eV, while antibonding states 
above the Fermi level. Such electronic configurations can effectively con-
tribute to further lowering an electronic energy of the system by deepening 
a FsBz-induced pseudogap at the Fermi level through orbital hybridiza-
tions. Instead, the role of Cu is less straightforward but certainly serves as 
adjusting the electron concentration so as to bring the Fermi level near the 
minimum in the pseudogap.*

* It seems to be more difficult to explain the role of Si. However, we are aware that the approxi-
mant can be stabilized by adding Si to the Al-Cu-TM (TM = Fe, Ru, and Os) quasicrystalline 
phase. It is interesting to note that Si is exclusively filled into the outermost glue sites, which 
would likely play a key role in restoring the lattice periodicity instead of continuing the ico-
sahedral symmetry (see Table 9.2).
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As is clear from the argument above, we could confirm the valid-
ity of the matching condition given by Equation 4.1 even for the Al-Cu-
Ru-Si approximant characterized by an orbital hybridization-induced 
pseudogap. Since the set of {543}, {710}, and {550} lattice planes is deduced 
to be responsible for the formation of a FsBz-induced pseudogap, the value 
of (e/a)total can be easily estimated to be 2.57 from Equation 4.1 [15]. ἀ e 
valency of Ru is then calculated to be 0.76, provided that valencies of Cu, 
Al, and Si are unity, three, and four, respectively. As will be discussed in 
Section 9.4.2.2, these values well coincide with those deduced from a theo-
retically more rigorous Hume-Rothery plot based on the FLAPW-Fourier 
method, lending support to the above analysis based on LMTO-ASA band 
calculations.

9.4.2.2 FLAPW Band Calculations
ἀ e LMTO-ASA band calculations discussed in the preceding section are 
performed only for the model structure 1 with TM = Ru. In the present 
section, the FLAPW band calculations are employed to further elucidate 
the origin of the formation of a pseudogap in Al-Cu-TM-Si (TM = Fe and 
Ru) 1/1-1/1-1/1 approximants. First, we study if the choice of either Fe or 
Ru as the TM element or that of either the model 1 or 2 would cause any 
significant difference in the electronic structure.

Figure 9.13 shows energy dispersion relations for the model structure 2 
with (a) TM = Fe and (b) TM = Ru. Both sets of data are quite similar to 
each other: there exist extremely bunched dispersion-less electronic states 
below about −1 eV and above about +1 eV, leaving sparsely populated elec-
tronic states across the Fermi level. ἀ is certainly gives rise to a pseudogap 
in their respective DOSs. Similar results are obtained for the model struc-
ture 1 with TM = Fe and Ru. From this, we can judge a difference in the 
electronic structure caused by the choice of the model structure 1 or 2 to 
be of minor importance in the rest of discussions.

ἀ e total DOS and s-, p-, and d-partial DOSs are calculated, using the 
FLAPW method for both Al108Cu6Fe24Si6 and Al108Cu6Ru24Si6 1/1-1/1-1/1 
approximants (model 1) [16]. As shown in Figure 9.14, the total DOS is 
quite consistent with LMTO-ASA derived DOS shown in Figure 9.10a. We 
can clearly see that both the Fe-3d and Ru-4d bands are split into bond-
ing and antibonding subbands, resulting in a deep pseudogap across the 
Fermi level. As discussed in Section 9.4.2.1, this is largely caused by the 
Al-3p/TM-d orbital hybridizations and certainly contributes to the stabi-
lization of these approximants.
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ἀ e Hume–Rothery plot is performed for these two approximants, 
using the model structure 1. Figures 9.15a,b show the energy dependence 
of 2

2
( )k G+  and its variance for Al108Cu6Fe24Si6 and Al108Cu6Ru24Si6 

approximants, respectively [16]. One can draw a straight line passing the 
origin as well as regions, where the variance is small, and deduce the inter-
cept with the Fermi level to be equal to 50 for both cases. Since this repre-
sents the square of the Fermi diameter, the value of (e/a)total is immediately 
calculated to be 2.59 and 2.56 for TM = Fe and Ru, respectively. ἀ e values 
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fIguRe 9.13 Energy dispersion relations calculated using the FLAPW method 
for (a) Al96Cu6Fe24Si12 and (b) Al96Cu6Ru24Si12 1/1-1/1-1/1 approximants (model 2).
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of e/a for Fe and Ru turn out to be equally 0.8, provided that valencies of 
Cu, Al, and Si are assigned to unity, three, and four, respectively. ἀ is is 
quite consistent with the results derived from LMTO-ASA band calcula-
tions discussed in Section 9.4.2.1.

ἀ e LMTO-ASA analysis in the preceding section claimed that the 
interaction of electrons with the set of {543}, {710}, and {550} lattice planes 
with G

2
 = 50 gives rise to a FsBz-induced pseudogap across the Fermi 

level in Al68Cu7Ru17Si8 approximant with space group Im3 . ἀ e value of 
(2kF)2 = 50 derived from the Hume-Rothery plot leads to the fulfillment 
of the matching condition given by Equation 4.1 and ascertains the exis-
tence of the Hume-Rothery stabilization mechanism even for the orbital 
hybridization-induced pseudogap system.

Energy dispersion relations shown in Figure 9.13 for both Al96Cu6Fe24Si12 
and Al96Cu6Ru24Si12 model structures are almost dispersion-less and highly 
bunched below about –1 eV, where the bottom of the pseudogap is located. 
ἀ e extraction of the FsBz interactions in strongly hybridizing Al-Cu-
TM-Si (TM = Fe and Ru) 1/1-1/1-1/1 approximants would be tough, since 
both multi-zone effect discussed in the RT-type approximants in Sections 
9.2 and 9.3 and the d-states-mediated-splitting discussed in Chapter 8 are 
expected to occur simultaneously in a complicated manner. Because of 
this complexity in the electronic structure, the FLAPW-Fourier analysis 
has not yet been attempted, though we consider it to be of urgent neces-
sity to extract specific FsBz interactions. Sizable Fourier components of 
the FLAPW wave function outside the MT sphere at the symmetry points 
M near the bottom of the pseudogap would not be localized only at G
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50 but most likely spread over its neighboring ones through the d-states-
mediated-FsBz interactions.

All we can say at the moment is that more than two sets of zones having 
different G

2
s would participate in the d-states-mediated-FsBz interac-

tions in such strongly hybridizing CMAs with a giant unit cell. In the case 
of Al-Cu-TM-Si (TM = Fe and Ru) approximants, nevertheless, we believe 
that the FsBz interactions would be best described in terms of G

2
 = 50.

9.5 al-Re-si 1/1-1/1-1/1 appRoxImant

9.5.1 atomic structure free from chemical Disorder

Takeuchi et al. [17] determined the atomic structure of three single-phase 
Al82.6-xRe17.4Six (x = 7, 9 and 12) 1/1-1/1-1/1 approximants by analyzing the 
powder diffraction spectra taken with the wavelength of 0.07 nm at the 
beam line BL02B2, synchrotron radiation facility, SPring-8, Japan. ἀ ey 
could refine the data by assuming space group Pm3 . In particular, the 
data for x = 9, i.e., Al73.6Re17.4Si9 can be best refined without assuming any 
chemical disorder on all sites in the MI-cluster and glue sites as well. Al 
atoms exclusively enter into totally 24 sites (IIa: 12j) and (IIb: 12k) on inner 
icosahedra in two MI-type clusters “a” and “b” at the center and corner 
of the unit cell, respectively (see Chapter 6, Figure 6.5). Similarly, 24 Re 
atoms are filled into sites (TMa: 12j) and (TMb: 12k). Further, 60 Al atoms 
are filled into sites (MI1a: 6e) and (MI1b: 6h), (MI2a: 24l) and (MI2b: 24l), 
while six Al and twelve Si atoms enter into glue sites (G2a: 6f) and (G2b: 
12j), respectively. Finally, further twelve Al atoms are filled into common 
glue sites (G1: 12k). ἀ e ordered structure above leads to the chemical for-
mula Al102Re24Si12 containing totally 138 atoms in the unit cell with the 
lattice constant a = 1.28603 nm.

9.5.2 electronic structure calculations

ἀ e Al102Re24Si12 per unit cell or Al73.6Re17.4Si9 in % is an exceptionally 
unique 1/1-1/1-1/1 approximant free from chemical disorder, at least, 
within the accuracy of their Rietveld refinement [17]. ἀ is provides us 
with a unique opportunity to allow first-principles band calculations for 
the 1/1-1/1-1/1 approximant by directly employing the experimentally 
refined atomic structure. ἀ e DOS was calculated using the LMTO-ASA 
method for Al102Re24Si12 to analyze the Si concentration dependence of 
various physical properties such as the electronic specific heat coefficient, 
the Pauli-paramagnetic susceptibility and the temperature dependence of 
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resistivity [17]. As shown in Figure 9.16, its total DOS is characterized by 
a deep pseudogap at the Fermi level. ἀ e origin of the pseudogap is most 
likely caused by Re-5d/Al-3p orbital hybridizations. Unfortunately, how-
ever, no analysis from the viewpoint of the FsBz interactions has been so 
far attempted for this compound.

As will be discussed in Chapter 10, Section 10.3, the effective e/a value 
of Mn is deduced to be 0.46. Assuming the valency of Re to be equal to that 
of Mn, we can easily calculate the value of (e/a)total to be 2.64 close to 2.58 
for the Al-Cu-Ru-Si approximant as deduced from the Hume-Rothery plot 
in Section 9.4.2.2. ἀ is suggests that the set of {543}, {710}, and {550} lat-
tice planes associated with G

2
 = 50 would be most likely responsible for 

the formation of a FsBz-induced pseudogap, which is apparently hidden 
behind a huge orbital hybridization-induced one, as shown in Figure 9.16 
(see Chapter 10, Section 10.7 and Figure 10.17.).

9.6  Role of vacancIes to maIntaIn a constant 
e/uc In the 1/1-1/1-1/1 appRoxImants

Takeuchi et al. [29] evaluated the Fe concentration dependence of vacan-
cies introduced into glue sites upon substitution of Fe for Mn atoms in a 
series of Al73Mn18-xFexSi9 (0≤x≤12.5) 1/1-1/1-1/1 approximants by perform-
ing the Rietveld structure analysis for the x-ray powder diffraction data. 
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ἀ ey interpreted an increasing number of vacancies by assuming that the 
number of vacancies is increased so as to counterbalance an increase in 
e/a brought about by an increase in the Fe concentration and thereby to 
keep the value of e/uc unchanged.

An increase in the number of vacancies was also reported to occur upon 
the replacement of the “divalent” Yb atoms by the “trivalent” Y atoms in 
Cd-Yb-Y 1/1-1/1-1/1 approximants [30]. It was claimed that a constant e/uc 
in spite of an increase in e/a is likely attained by introducing vacancies into 
both the dodecahedral second shell and the icosidodecahedral fourth shell, 
where otherwise Cd atoms are filled. In order to draw a decisive conclusion 
on the role of vacancies, we consider it to be important to determine accu-
rately the values of (e/a)Y and (e/a)Yb from the Hume-Rothery plot.

9.7 summaRy
Extensive studies have been undertaken of the stabilization mechanisms 
involved in two RT-type Al-Mg-Zn and Al-Li-Cu approximants, and two 
MI-type Al-Cu-TM-Si (TM = Fe and Ru) approximants, by utilizing both 
LMTO-ASA and FLAPW first-principles band calculations. In the case 
of RT-type Al-Mg-Zn and Al-Li-Cu approximants, NFE band calcula-
tions are quite effective in identifying the origin of a DOS pseudogap. An 
introduction of a single form factor at the Fermi level like that at G

2
 = 

50 in the Al-Mg-Zn approximant is found to perturb the bands only in 
the vicinity of the Fermi level (see Figure 9.6b). But this is apparently not 
enough to cause a pseudogap in the DOS. It is the simultaneous introduc-
tion of the two form factors at G

2
 = 50 and 46 that is effective enough 

to produce a sizable DOS pseudogap across the Fermi level. ἀ is may be 
called a multi-zone effect. It is also of interest to note that the structure of 
a pseudogap becomes clearer, when electronic states perturbed by V(50) 
and V(46) are further modulated by long-wavelength excitations in the 
range G

2
≤6. A more quantitative analysis was made for the Al-Li-Cu 

approximant, where the situation is essentially the same as that in the 
Al-Mg-Zn approximant.

First-principles LMTO-ASA band calculations for the strongly hybrid-
ized Al-Cu-Ru-Si approximant indicate that a FsBz-induced pseudogap is 
formed as a result of interference of electrons with the set of {543}, {550}, 
and {710} lattice planes, but this is simply hidden behind a much larger 
orbital hybridization-induced pseudogap. A combination of the LMTO-
ASA analysis and the Hume-Rothery plot based on FLAPW band calcula-
tions confirmed that the matching condition still holds and, hence, the 
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Hume-Rothery stabilization mechanism works even for an orbital hybrid-
ization-induced pseudogap system. A similar situation is expected to hold 
true in the MI-type Al-Re-Si approximant.
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10C h a p t e r  

The Interplay and 
Contrasts Involved in 
the Chemistry, Physics, 
and Crystal Structures of 
Alloys and Compounds

10.1  e/a oR VEC as an electRon 
concentRatIon paRameteR

As has been emphasized frequently in this monograph, the electron 
concentration plays a crucial role in control of phase stability as well as 
numerous physical properties of alloys. In Chapter 1, we have introduced 
two different notions of electron concentration: one is the e/a, appearing 
in connection with the Hume-Rothery electron concentration rule, and 
the other is the VEC, i.e., the number of electrons per atom, including the 
d-electrons being involved in the valence band. ἀ e VEC is obviously a key 
parameter in determining the Fermi level when first-principles band cal-
culations are carried out to study the band structure. One must cautiously 
select either the e/a or the VEC as an electron concentration parameter, 
depending on the situation involved.
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Let us first consider cases, in which a universal behavior is evident when 
plotted against the VEC. Included in Figures 10.1 to 10.4 are the saturation 
magnetization known as the Slater–Pauling curve [1], the electronic specific 
heat coefficient for bcc alloys of 3d transition metals (TMs) [2], the super-
conducting transition temperature of TM alloys [3] and the themoelectric 
power in the Heusler (L21)-type Fe2VAl, where Fe, V, and Al can be partially 
replaced by late TM elements like Co and Pt, early TM elements like Ti, 
Zr, and Mo, and polyvalent elements like Si and Ge, respectively, without 
changing the structure [4]. ἀ e reason why all these physical properties 
exhibit universal behaviors with respect to the VEC stems from the fact that 
they are quantities clearly related to the total DOS at the Fermi level. In 
Section 10.8, we shall discuss in more detail why a master curve is evident 
for the VEC dependence of the Seebeck coefficient in the Fe2VAl system.

What about the e/a as an electron concentration parameter? Here, again, 
we have many examples in which a universal alloying behavior emerges 
when plotted against e/a. ἀ e axial ratio c/a, the magnetic susceptibility 
corrected for ionic contributions, and the electronic specific heat coefficient 
in noble metal alloys are typical examples, as already shown in Chapter 7, 
Figures 7.8 to 7.10 in Section 7.5. Recall that such a universal behavior col-
lapses, if the VEC is employed in place of e/a in these cases. ἀ is can be 
easily understood, if the discussion in Section 7.2 is recalled: both Cu5Zn8 
and Cu9Al4 gamma-brasses correspond to a common e/a value of 21/13, but 
yield different values of VEC of 11.615 and 8.538, respectively (see Section 
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7.2). ἀ e difference obviously arises from the fact that the partner element 
Zn possesses ten 3d-electrons in the valence band but Al does not. ἀ e rea-
son why a critical electron concentration parameter must be e/a in dealing 
with the Hume-Rothery stabilization mechanism was already explained 
in detail in Chapter 4, Section 4.2 and Chapter 7, Sections 7.3, and 7.4: the 
e/a is introduced through the Fermi diameter 2kF in the matching condi-
tion (4.1), which expresses the interference condition of itinerant electron 
waves near the Fermi level with sets of relevant lattice planes. ἀ erefore, 
physical properties and phase stability dominated by the FsBz interactions 
should be scaled in terms of the parameter e/a.

In this Chapter 10, we deal with issues concerning the two different 
electron concentrations, e/a and VEC. It has been believed over many 
years that the value of e/a for noble metal alloys can be reasonably well 
assigned by taking a composition-average between nominal valencies of 
the polyvalent element like Zn, Mg, Al, Si, etc., and the monovalent noble 
metals like Cu, Ag, or Au. However, it is also evident that the determina-
tion of e/a becomes less clear for the TM element located to the left of the 
noble metals, since the Fermi level often falls then in the energy range 
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where the d-band is only partially filled. A large number of arguments 
have been made in attempts to ascertain the e/a value for TM elements, but 
no clear-cut definition has yet emerged. Indeed, this has posed a great dif-
ficulty in interpreting the Hume-Rothery electron concentration rule for 
alloys containing TM elements. To begin with, we will review the existing 
proposals on e/a for TM elements.

10.2  exIstIng pRoposals on e/a foR the 
tRansItIon metal element

ἀ e most frequently cited e/a values for TM elements are probably those pro-
posed by Raynor in 1949 [5]. He directed his attention to CrAl7, MnAl6, FeAl3, 
Co2Al9, and NiAl3, all of which come into equilibrium with the Al-primary 
solid solution with the 3d-TM element, and pointed out that, except for FeAl3, 
the proportion of Al decreases as the number of holes per atom in 3d-atomic 
orbitals of the TM atom decreases in the Pauling model. From this, he was 
intuitively guided to conclude that electrons donated by Al fill the holes of 
the 3d-orbitals and the extent to which electrons are absorbed by the TM 
atom determines the stability of these Al-TM compounds. If the e/a ratio 
for these compounds is calculated under the assumption that each Al atom 
donates three electrons per atom and that each TM atom absorbs them to 
fill the holes in the 3d-orbitals, an approximately constant e/a ratio is main-
tained, except in the case of FeAl3: CrAl7→2.05, MnAl6→2.05, FeAl3→1.58, 
Co2Al9→2.12, and NiAl3→2.09. ἀ is led Raynor [5] to postulate that they 
are indeed typical of electron compounds and that the effective e/a values 
for Cr, Mn, Fe, Co, and Ni in the Al-TM alloys can be taken to have negative 
values −4.66, −3.66, −2.66, −1.71 and −0.61, respectively.*

In 1988, Tsai et al. [6] discovered thermally stable quasicrystals in 
Al-Cu-TM (TM = Fe, Ru, and Os) alloy systems. ἀ ey noticed that all 
these Al-based quasicrystals seem to correspond to the value of e/a close 
to 1.75, provided that negative valencies proposed by Raynor are assigned 
to TM elements involved. Using Raynor’s negative e/a scheme for TM ele-
ments, they further discovered new quasicrystals in Al-Pd-TM (TM = Mn 
and Re) alloy systems [7]. From their experiments, they were convinced to 
conclude that all Al-based quasicrystals obey the Hume-Rothery electron 
concentration rule with the e/a values centered at about 1.8. ἀ eir findings 

* For example, the effective e/a value for MnAl6 is calculated to be (e/a)total = [(–3.66) + 6 × 3]/7 
= 2.05. Unfortunately, a physical basis for the assignment of (e/a)Fe = –2.66 is quite obscure. 
Its value becomes –0.6, if Fe3Al is also assumed to be stabilized at (e/a)total = 2.1. Raynor made 
no comments on why he assumed (e/a)total = 1.58 instead of 2.1 for Fe3Al [5].
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were so dramatic that many researchers have been encouraged to employ 
the Hume-Rothery electron concentration rule coupled with Raynor’s 
negative valency scheme for TM elements as a powerful guide to search 
for new quasicrystals [8–10]. Even a theoretical reasoning for the Raynor’s 
postulate has been attempted [11,12].

ἀ ere have also been proposals for assigning a positive e/a value for the 
TM element. For example, Haworth and Hume-Rothery [13] studied the 
maximum solubility limit of the α-phase in Cu-TM-Zn and Cu-TM-Al 
alloy systems and assigned the e/a value of 1.8, 1.0, 0.8, and 0.6 to Mn, Fe, 
Co, and Ni, respectively, in order for the solubility limit to meet a common 
e/a value of 1.4. Mizutani et al. [14] performed first-principles LMTO-ASA 
band calculations for Al-Cu-Ru-Si 1/1-1/1-1/1 approximant and revealed a 
deep pseudogap across the Fermi level. ἀ ey showed that the matching of 
the Fermi surface with the set of {543}, {710}, and {550} lattice planes gives 
rise to a positive e/a value of 0.76 for Ru (see Chapter 9, Section 9.4.2.1). 
More recently, Ishimasa et al. [10,15] noted that stable quasicrystals in 
Sc-TM alloy systems they discovered always correspond to the e/a value 
in the neighborhood of 2.1, provided that positive e/a values proposed by 
Haworth and Hume-Rothery are employed for the TM element involved. 
It appears that Raynor’s negative valency scheme has been more frequently 
applied to Al-TM alloys, while the Haworth and Hume-Rothery positive 
valency scheme to Cu-TM alloys.

ἀ roughout the present volume, we have stressed the need for perform-
ing first-principles band calculations to lay foundations for the Hume-
Rothery electron concentration rule for CMAs. ἀ e FLAPW-Fourier 
method, together with the Hume-Rothery plot, is devised to extract 
the critical reciprocal lattice vector responsible for the formation of a 
pseudogap via the FsBz interactions, and the resulting electron concentra-
tion parameter e/a. A tabulation of the effective e/a values for TM elements 
in the periodic table is certainly of great interest and could be helpful to 
future researchers. Fortunately, the Hume-Rothery plot can be performed 
for any compounds, regardless of the size of the unit cell. As mentioned in 
Chapter 1, Section 1.2, the e/a rule originally proposed by Hume-Rothery 
in 1926 pointed to a regularity that, in spite of differences in atomic com-
position, is clearly responsible for the fact that all three compounds Cu5Sn, 
Cu3Al, and CuZn crystallize into a common structure of the bcc phase 
having e/a = 3/2 [16]. Many researchers, including Hume-Rothery and 
Raynor, tended to believe that all B2-compounds, including those con-
taining TM elements as a partner element, are also likely stabilized at e/a 
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= 3/2. Our objective in the next section is to examine if the e/a value for 
B2-compounds is really 3/2, irrespective of the presence or absence of the 
TM element.

10.3 hume-RotheRy plot foR the B2-compounDs
Let us first consider whether the Hume-Rothery plot provides the e/a value 
consistent with an averaged valency of constituent elements for noble metal 
alloys. Energy dispersion relations and the Hume-Rothery plot for the 
equiatomic AgLi B2-compound are shown in Figures 10.5a,b, respectively 
[17]. In spite of the location of the Ag-4d band far below the Fermi level, 
the variance σ2( )E  in AgLi B2-compound remains large and a deviation 
of data points from a straight line in { }2 2k G+  is significant up to about 
+5 eV. ἀ is is in sharp contrast to that in Ag5Li8 gamma-brass shown in 
Figure 8.23, where the variance becomes low, as soon as the Ag-4d band 
terminates at about −3.0 eV. ἀ us, a square of the Fermi diameter in the 
B2-compound has to be determined by drawing a straight line connecting 
data points above about +10 eV and near the bottom of the valence band, as 
shown in Figure 10.5b. It is deduced to be 1.5 ± 0.1 in units of (2π/a)2. ἀ e 
value of (e/a)total is then calculated to be 0.9 ± 0.1 from the relation

 e a/( ) =
total

8
3

3πk
N

F

where the number of atoms per unit cell, N, is equal to 2 and kF is in units 
of (2π/a)2. ἀ is agrees well with its average valency of monovalent Ag and 
Li within the accuracy of the analysis.

As is clear from the above argument, AgLi B2-compound must be 
excluded from the family of the e/a = 3/2 compounds. It is of interest, at 
this stage, to consider why the variance of AgLi B2-compound remains 
significant up to about +5 eV, whereas that of Ag5Li8 gamma-brass becomes 
well suppressed immediately after the Ag-4d band terminates at about −3.0 
eV. A comparison of energy dispersion relations between these two com-
pounds shown in Figures 10.5a and 8.22a immediately tells us that there is 
no essential difference in the position of the Ag-4d band: both are located 
over the energy range from −5.5 to −3.5 eV. However, we notice that dis-
persion relations in the B2-compound are much simpler and more scarce 
than those in the gamma-brass. ἀ e reason the latter is more crowded 
and less dispersive is because zone foldings more frequently occur when 
the unit cell becomes larger and larger. We consider this to be responsible 
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for a quick restoration of the free electron behavior in gamma-brass, as 
soon as the Ag-4d band is over, but for a persistent departure from this, 
up to +5eV, in the B2-compound. ἀ erefore, we can say that the higher the 
number of atoms in the unit cell, the more accurately the Fermi diameter 
can be determined from the Hume-Rothery plot. ἀ e determination of the 
Fermi diameter for structurally simple compounds like B2-compounds is 
generally less accurate than that in CMAs.

ἀ e DOS and the Hume-Rothery plot for AgMg B2-compound are 
depicted in Figures 10.6a,b, respectively [18]. ἀ ere is no pseudogap at the 
Fermi level. ἀ e value of VEC at the Fermi level is obviously equal to (11 
+ 2)/2 = 6.5. From the Hume-Rothery plot, the square of the Fermi diam-
eter is deduced to be 2.0 ± 0.1 in units of (2π/a)2. ἀ e value of ( / )e a total  
is accordingly calculated to be 1.48 ± 0.07, being consistent with the e/a 
= 3/2 rule. Judging from its high melting point of 820oC and a wide sol-
ubility range, Hume-Rothery [19] conjectured an electrochemical effect 
in AgMg to be particularly significant among B2-compounds. He even 
speculated a possible presence of AgMg molecules in liquid phase. Indeed, 
a difference in the electronegativities, ∆χ, between Ag and Mg metals is 
0.7 and is much larger than 0.3 in the Cu-Zn alloy system, according to 
the Pauling electronegativity table ( χMg  = 1.9, χAg  = 1.2, χZn  = 1.6, and 
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AgLi B2-compound. [From U. Mizutani, R. Asahi, H. Sato, T. Noritake, and T. 
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χCu = 1.9). Nevertheless, we revealed that the e/a value deduced from the 
Hume-Rothery plot is close to 3/2 and is apparently unaffected by the elec-
trochemical effect.

Figures 10.7a,b show the DOS and the Hume-Rothery plot for CuZn 
B2-compound, respectively [18]. ἀ ere is no pseudogap and VEC = (11 + 
12)/2 = 11.5 at the Fermi level. ἀ ough the Cu-3d band terminates at about 
−2.0 eV, the variance continues to remain fairly large up to +5 eV above 
the Fermi level. A straight line is drawn by connecting data points above 
about +5 eV and those near the bottom of the valence band, where the 
variance is small. From the intercept at the Fermi level, the square of the 
Fermi diameter for CuZn is determined to be 2.0 ± 0.1 in units of (2π/a)2. 
ἀ e e/a value is calculated to be 1.48 ± 0.07, in good agreement with an 
average nominal valency of 3/2. ἀ us, CuZn B2-compound can be cor-
rectly regarded as a 3/2 compound. ἀ e effective e/a value of Cu turned 
out to be +0.96, in good agreement with its nominal valency of unity, if the 
valency of two is assigned to Zn.

We have so far discussed B2-compounds involving the noble metals 
Cu or Ag and normal metals like Li, Mg, and Zn. ἀ e e/a value deduced 
from the Hume-Rothery plot is found to agree well with a composition-
weighted average of valencies of constituent elements. What happens if the 
TM element is contained as one of constituent elements in B2-compound? 
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Hume-Rothery [20] and Raynor [21] wondered whether the valency of Ni 
should be unity in NiZn, but zero in NiAl B2-compounds, provided that 
each of them is indeed an e/a = 3/2 electron compound, and valencies of 
Zn and Al are two and three, respectively.*

Figures 10.8a,b show the DOS and the Hume-Rothery plot for NiZn 
B2-compound [18]. ἀ e VEC reaches (10 + 12)/2 = 11 at the Fermi level. 
ἀ e Fermi level sits immediately following the peak in the DOS. ἀ e 
square of the Fermi diameter is determined to be 1.8 ± 0.1 in units of 
(2π/a)2 from the intercept of a straight line fitted to the data, where the 
variance is small. ἀ e value of ( / )e a total  is accordingly determined to be 
1.26 ± 0.07. It is clear that NiZn B2-compound can no longer be regarded 
as an e/a = 3/2 compound. ἀ e valency of Ni in NiZn is deduced to be 0.54, 
provided that the valency of Zn is two. What about NiAl B2-compound? 
Its DOS and the Hume-Rothery plot are shown in Figures 10.9a,b, respec-
tively [18]. ἀ e DOS has no pseudogap at the Fermi level. ἀ e VEC reaches 
(10 + 3)/2 = 6.5 at the Fermi level. ἀ e square of the Fermi diameter is 
found to be 2.25 ± 0.05 in units of (2π/a)2 and the value of ( / )e a total  to be 

* Raynor expressed a dilemma in the determination of valency of Ni in NiZn and NiAl 
B2-compounds at the 1952 Abingdon conference, where both Mott and Jones participated 
[21]. No positive suggestions were apparently made by them. ἀ e problem has remained 
unsolved till now.
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1.76 ± 0.04. ἀ erefore, NiAl B2-compound is also excluded from the fam-
ily of the e/a = 3/2 compounds. ἀ e valency of Ni in NiAl is deduced to be 
0.52, provided that the valency of Al is three. It is important to note that 
the valency of Ni is determined to be 0.53 ± 0.07 within the accuracy of the 
present analysis, regardless of whether the partner element to Ni is either 
Al or Zn, and that it is definitely higher than 0.15 for Ni2Zn11 gamma-brass 
discussed in Chapter 8, Section 8.2. We believe that the present Hume-
Rothery plot can now resolve the dilemma raised by Hume-Rothery [20] 
and Raynor [21] in the 1950s.

Finally, we show the DOS and the Hume-Rothery plot for MnZn 
B2-compound in Figures 10.10a,b, respectively [18]. ἀ e Fermi level falls 
inside the Mn-3d band. ἀ ere is no pseudogap at the Fermi level. ἀ e VEC 
reaches (7 + 12)/2 = 9.5 at the Fermi level. A straight line can be drawn 
in Figure 10.10b by connecting data points above about +10 eV and near 
the bottom of the valence band, where the variance is small. From the 
intercept at the Fermi level, the square of the Fermi diameter for MnZn 
B2-compound is determined to be 1.77 ± 0.05 in units of (2π/a)2. ἀ e 
( / )e a total  value is calculated to be 1.23 ± 0.03 from the relation

 e a/( ) =
total
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where the number of atoms per unit cell, N, is equal to 2 and kF is in 
units of

 2π
a

ἀ us, MnZn B2-compound cannot be designated as an e/a = 3/2 com-
pound. ἀ e effective e/a value of Mn turned out to be +0.46, if the valency 
of two is assigned to Zn.

In this way, positive e/a values were deduced for all TM elements stud-
ied, regardless of whether the partner element is Al or Zn. ἀ is is obvi-
ously in conflict with negative valencies proposed by Raynor [5].

10.4  (e/a)tm value foR the tRansItIon metal 
element In the peRIoDIc taBle

ἀ e value of (e/a)total has been deduced from the Hume-Rothery plot for 
a number of alloys, including B2-compounds, gamma-brasses, and 1/1-
1/1-1/1 approximants. As described above, the value of (e/a)TM for the TM 
element was then derived by assuming a nominal valency for its partner ele-
ment, which has been selected from polyvalent metals like Mg, Al, Si, and 
Zn in the periodic table. ἀ e results are summarized in Figure 10.11. ἀ e 
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Cr Mn 
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A: AgLi-B2 and Ag5Li8 gamma-brass, B: Al8V5 gamma-brass, C: MnZn-B2, D: Fe2Zn11 gamma-brass, E: Al-Cu-Fe-Si
approximant,  F: Co2Zn11 gamma-brass, G: Ni2Zn11 gamma-brass, H: NiZn-B2 and NiAl-B2, I: CuZn-B2, Cu5Zn8 and
Cu9Al4 gamma-brasses, J: Al-Cu-Ru-Si approximant, K: Pd2 Zn11 gamma-brass and L: AgMg-B2. �e number in the
bracket is the e/a value a priori given from the valency of the element.   

fIguRe 10.11 (e/a)TM derived from the Hume-Rothery plot for transition metal 
elements in the periodic table [from U. Mizutani, R. Asahi, T. Takeuchi, H. Sato, 
O.Y. Kontsevoi, and A.J. Freeman, Z. Kristallogr. 224 (2009) 17]. Numbers in the 
bracket refer to nominal valency corresponding to the number of outermost elec-
trons in the form of a free atom.
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e/a value for Li and the noble metals agrees with the nominal valency and 
is apparently independent of their surroundings such as a crystal structure, 
constituent partner elements, and their composition. However, the value 
for the TM element, particularly Ni, is found to be dependent on its sur-
roundings: (e/a)Ni = 0.15 for Ni2Zn11 gamma-brass but (e/a)Ni = 0.53 for NiAl 
and NiZn B2-compounds. A striking difference in the electronic structure 
between them must be responsible for this: a pseudogap apparently pushes 
a whole Ni-3d band well below the Fermi level in Ni2Zn11 gamma-brass 
(see Figure 8.7b), whereas its absence plus higher Ni concentration leaves 
the Fermi level in the middle of the Ni-3d antibonding subband in both 
NiZn and NiAl B2-compounds (see Figures 10.8a and 10.9a).

It is important to investigate, at this stage, whether the value of (e/a)TM 
listed in Figure 10.11 is physically more plausible than that, say, proposed 
by Raynor [5]. For this purpose, we point to the e/a dependences of the 
number of atoms per unit cell, N, and e/uc for group (I) and (II) gamma-
brasses shown in Figures 8.30a,b, respectively. We find that N decreases 
while e/uc increases with increasing e/a for all gamma-brasses studied 
in a quite universal manner. A universal behavior is particularly evident 
among the data in both (a) and (b) for Cu-Cd, Ni-Zn, and Co-Zn gamma-
brasses, where an increase in the number of vacancies with increasing e/a 
is significant. We consider that such a consistent behavior is obtained, 
thanks to correct determination of the value of (e/a)TM for Ni and Co.

One might still wonder whether a choice of a particular e/a scheme 
like Raynor’s negative valencies is simply a matter of a shift in an electron 
concentration scale. It would become more convincing if some evidence 
can be provided for the soundness of the Hume-Rothery plot method. 
Figure 10.12 shows the melting temperature of several B2-compounds 
as functions of the two different sets of e/a values: (a) one derived from 
Raynor’s negative valencies for TM elements and (b) the other derived 
from the Hume-Rothery plot, as described in Section 10.3 [22]. ἀ ere is 
no correlation in (a) but the data fall on a straight line in (b). An increase 
in (e/a)TM means an increase in electron density outside the MT sphere. 
We consider that the higher an average electron concentration outside the 
MT sphere, the stronger is the bonding strength between the neighboring 
atoms and, in turn, the higher is the melting temperature.

10.5 physIcs BehInD the matchIng conDItIon
ἀ e universality of the Hume-Rothery stabilization mechanism should be 
best studied by testing the matching condition 2kF = G  given by Equation 
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4.1. Indeed, the matching condition has been discussed quite frequently in 
the field of quasicrystals and approximants for the past two decades. In 
2005, Tsai [8] and Ishimasa [10] reviewed the matching condition by ana-
lyzing their own experimental data. Under an implicit assumption that 
the Hume-Rothery stabilization mechanism works for quasicrystals con-
taining TM elements, Tsai discussed the stability of quasicrystals by plot-
ting the reciprocal lattice vector Kp against the Fermi diameter 2kF. His 
results [8] are reproduced in Figure 10.13, where (e/a)total is first evaluated 
by using Raynor’s negative valency for the TM element and then the Fermi 
diameter 2kF is calculated by inserting it into the relation

 e a/( ) =
total

8
3

3πk
N

F

As emphasized in preceding sections, there are indications that the nega-
tive valencies proposed by Raynor are physically problematic. Moreover, 
the reciprocal lattice vector Kp appears to be always selected from one of 
the major x-ray diffraction peaks in such a way that the matching con-
dition is best fulfilled.* Ishimasa [10] also tested the 2k KF p=  relation 

* Both Kp and G  represent the magnitude of the reciprocal lattice vector to satisfy the match-
ing condition. In this monograph, Kp is used when it is selected from the measured x-ray 
diffraction peak, while G  is used when determined from the FLAPW–Fourier analysis.
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fIguRe 10.12 Melting temperature of several B2-compounds as a function of 
(a) (e/a)Raynor derived using Raynor’s negative valencies [from G.V. Raynor, Prog. 
Met. Phys. 1 (1949) 1] and (b) (e/a)TM derived from the Hume-Rothery plot based 
on the FLAPW-Fourier method [from U. Mizutani, T. Noritake, T. Ohsuna, and 
T. Takeuchi, Phil. Mag. 90 (2010) 1985].
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for Zn-Mg-Sc, Zn-Fe-Sc, Zn-Ni-Sc, and Zn-Ga-Mg-Sc quasicrystals by 
assigning empirical e/a values proposed by Haworth and Hume-Rothery 
[13] for the TM element. We consider the construction of such 2kF  versus 
Kp diagram to be far from being satisfactory as a true test of the match-
ing condition. A rigorous test of the matching condition should be made 
by determining both the 2kF  and the critical reciprocal lattice vector G  
from first-principles FLAPW band calculations.

Prior to the test of the matching condition based on the FLAPW-Fourier 
analysis, two remarks need be addressed first. In Chapter 8, Sections 8.2 
and 8.3, dealing with group (II) gamma-brasses, we stressed that, though 
the G

2
 = 18 electronic states play a key role, its neighboring G

2
 states 

also contribute to lowering the electronic energy. ἀ e number of critical 
G  values would become inherently more than two for alloys containing 
a large amount of the TM element, where the d-states-mediated-splitting 
occurs. In Chapter 9, Sections 9.2 and 9.3 dealing with RT-type 1/1-1/1-
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fIguRe 10.13 Reciprocal lattice vector Kp derived from one of the major x-ray 
diffraction peaks versus the Fermi diameter 2kF for the Al-TM, Zn- and Cd-based 
quasicrystals. Here the Fermi diameter was calculated by assuming Raynor’s 
negative valencies for transition metal elements involved. [From A.P. Tsai, The 
Science of Complex Alloy Phases, edited by T.B. Massalski and P.E.A. Turchi, 
TMS (ἀ e Minerals, Metals & Materials Society, 2005), pp. 201–214.]
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1/1 approximants, we emphasized the necessity of taking into account, 
at least, two sets of G

2
s, since more than two form factors are closely 

distributed near the Fermi level. A superposition of the Brillouin zones 
associated with more than two different G

2
s near the Fermi level would 

effectively form a more or less spherical Brillouin zone net and its interac-
tion with electrons near the Fermi level gives rise to sparse energy disper-
sion relations in almost all directions in the reciprocal space and, in turn, 
gives rise to a pseudogap across the Fermi level in the DOS in CMAs like 
Al-Mg-Zn and Al-Li-Cu 1/1-1/1-1/1 approximants. It is further claimed in 
Chapter 9, Section 9.3.3 that the most critical G

2
 can be still extracted as 

the one participating most significantly in the formation of a FsBz-induced 
pseudogap: G

2
 = 46 for Al-Li-Cu, and G

2
 = 50 for Al-Mg-Zn.

In the remainder of this section, we will work out the matching con-
dition, using the data only for group (I) gamma-brasses and RT-type 
Al-Mg-Zn and Al-Li-Cu 1/1-1/1-1/1 approximants, all of which are well 
characterized by a FsBz-induced pseudogap. ἀ e 2kF  versus G  diagram 
is shown in Figure 10.14a. Both G  and 2kF  for Cu5Zn8, Cu9Al4, Ni2Zn11 
and Pd2Zn11 gamma-brasses are unanimously determined from the 
FLAPW-Fourier method and from the Hume-Rothery plot, as discussed 
in Chapters 7 and 8.* As mentioned above, the most critical G  is deduced 
to be 50  and 46  for Al-Mg-Zn and Al-Li-Cu approximants, respec-
tively. On the other hand, the value of 2kF  can be safely determined by 
inserting valencies of one, one, two, two and three for Cu, Li, Mg, Zn, and 
Al, respectively, into the relation

 kF = ( )







3
8

1 3
N

totalπ
e a/

/

where N is 160 for both approximants and kF  is in units of

 2π
a

ἀ e data for group (I) gamma-brasses and the two RT-type approxi mants 
discussed above are plotted in Figure 10.14a, where data points are found 
to fall in a narrow region satisfying the condition 2kF  = G  and centered 

* Ni2Zn11 and Pd2Zn11 gamma-brasses are discussed in Section 8.2.2.1 by classifying them into 
group (II). It is, however, concluded that they should be better classified into group (I).
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fIguRe 10.14 Test of the matching condition given by Equation 4.1 for group 
(I) gamma-brasses and RT-type 1/1-1/1-1/1 approximants [23]. (a) |G| represents 
the critical reciprocal lattice vector causing a FsBz-induced pseudogap. Both |G| 
and the Fermi diameter 2kF are in the units of (nm)–1. (b) |G|2 and (2kF)2 are nor-
malized with respect to (2π/a)2, where a is the lattice constant.
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at 31 (nm)–1 [23]. ἀ is means that, regardless of e/a and the size of the unit 
cell, electrons near the Fermi level always possess the Fermi diameter equal 
to about 31 (nm)–1 and interfere with the set of lattice planes associated 
with the critical G  equal to 30 (nm)−1. ἀ is may be taken as a clear dem-
onstration of the Hume-Rothery stabilization mechanism for CMAs char-
acterized by a purely FsBz-induced pseudogap at the Fermi level.

Figure 10.14b is likewise constructed by plotting (2kF)2 against G
2

 in units 
of ( / )2 2π a , i.e., by expressing them as nondimensional quantitities, using 
the same data as in Figure 10.14a [23]. ἀ e data for group (I) gamma-brasses 
fall exactly at G

2
18= . ἀ e value of (2kF)2 also falls in the very vicinity of 18. 

ἀ is confirms the validity of the matching condition given by Equation 4.1. 
In RT-type Al-Mg-Zn and Al-Li-Cu approximants having larger unit cells, 
the sets of critical lattice planes responsible for the FsBz-induced pseudogap 
are those of {543}, {550}, and {710} with G

2
50=  and the {631} with G

2
46= , 

respectively. ἀe  larger the size of the unit cell, the larger is the magnitude of 
the critical reciprocal lattice vector. Hence, Figure 10.14b may be more con-
venient than Figure 10.14a to confirm which set of lattice planes participates 
in an interfering event with electron waves at the Fermi level and to cause a 
FsBz-induced pseudogap there.

Figure 10.15 shows x-ray diffraction spectra for the Al15Mg44Zn41 quasi-
crystal and Al25.5Mg39.5Zn35 1/1-1/1-1/1 approximant [24], together with the 
Brillouin zones causing a pseudogap at the Fermi level in both cases [23]. 
In (a), an arrow indicates a conventional way to select an appropriate Kp 
from the diffraction spectrum. In the case of the Al-Mg-Zn approximant, 
electrons at the Fermi level interact most significantly with the Brillouin 
zone in (b) composed of totally 84 zone planes: 48-fold {543}, 12-fold {550}, 
and 24-fold {710} zone planes (see Chapter 9, Section 9.2.3 and also [25]). 
ἀ e 48-fold {631} zone planes become the most important in the Al-Li-Cu 
approximant (see Chapter 9, Section 9.3.3, and [26]). ἀ e Brillouin zone 
bounded by 60-fold (222100) zone planes for the Al-Mg-Zn quasicrystal 
is illustrated in (c).

ἀ e depth of a pseudogap is known to depend on the magnitude of 
the form factor in the framework of the NFE model. ἀ e three different 
zone planes {543}, {710}, and {550} in the approximant have their indi-
vidual form factors and make different contributions to the formation of a 
pseudogap, though the total number of zone planes is higher than that in 
the quasicrystal. Instead, 60-fold (222100) zone planes in the quasicrystal 
are equivalent and, hence, would be more effective to produce a deeper 
pseudogap across the Fermi level. Indeed, the measured electronic specific 
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heat in the Al-Mg-Zn quasicrystal is smaller than that in its approxi mant 
[24]. We can say that an increase in the number of atoms in the unit cell, 
N, increases the magnitude of the critical G  or G

2
 in units of (2π/a) or 

(2π/a)2 (see Figure 10.14b) and, hence, the number of lattice planes having 
the critical lattice spacing 2d in the real space or the number of equi-dis-
tant zone planes in reciprocal space. ἀ is, in turn, increases the number 
of directions in the reciprocal space, along which the interference with 
electrons near the Fermi level occurs. ἀ is makes it possible to form a 
deeper pseudogap and to lower the electronic energy more efficiently to 
stabilize such a complex structure in the framework of the Hume-Rothery 
stabilization mechanism.

10.6 unIveRsal test of the matchIng conDItIon
Now we try to extend the test of the matching condition 2kF = G  to the 
data for alloys including those characterized by an orbital hybridization-
induced pseudogap, where the FLAPW-Fourier analysis and the Hume-
Rothery plot have been already performed. Rather than working on 2kF 
versus G  diagram in reciprocal space, we construct wavelength λF  
versus 2d diagram in real space by converting 2kF  into λF  through the 
relation λ πF Fk= 2 /  and the critical reciprocal lattice vector G  into the 
critical lattice spacing 2d  for the set of relevant lattice planes. Alloys stud-
ied are classified into three families: the first includes group (I) gamma-
brasses and RT-type 1/1-1/1-1/1 approximants, where the Hume-Rothery 
stabilization mechanism operates (Chapters 7 and 9 and Section 10.5), the 
second covers those, in which orbital hybridization effects and d-states-
mediated-FsBz-interactions dominate, and the third B2-compounds, 
where no pseudogap appears at the Fermi level.

All the numerical data including λF  and 2d are summarized in 
Table 10.1. ἀ e data for group (I) gamma-brasses and the two RT-type 
approximants obeying the Hume-Rothery stabilization mechanism are 
plotted in Figure 10.16a. ἀ is is the real space version of Figure 10.14a. 
Obviously, all the data well satisfy the matching condition λF  = 2d and 
fall in a narrow range of 2d = 0.40 ± 0.01 nm, regardless of the size of the 
unit cell.

ἀ e data for d-states-mediated-splitting systems, which include group 
(II) gamma-brasses and MI-type Al-Cu-TM-Si (TM = Fe, Ru) approxi-
mants, are plotted in Figure 10.16b. It is clear that the data no longer 
fall in a narrow region at 2d = 0.40 ± 0.01 nm but are scattered over a 
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range of the lattice spacing from 0.35 to 0.46 nm.* In the case of Co2Zn11 
and Al8V5 gamma-brasses, we emphasized in Chapter 8, Sections 8.2 and 
8.3, that there exist, at least, two critical G

2
s of 18 and 22 due to the 

d-states-mediated-FsBz interactions. Accordingly, the range of critical 
2d is widened. ἀ ough the data points are still limited, we are inclined 
to believe that the matching condition generally holds even for orbital 
hybridization-induced pseudogap systems, provided that 2kF and critical 

* ἀ e critical lattice spacing 2d for Al30Mg40Zn30 and Al68Cu7Fe17Si8 1/1-1/1-1/1 approximants 
is calculated to be 0.40 and 0.35 nm by inserting their lattice constants a = 1.4355 and 1.248 
nm into the relation 2d = 2 50a / ,  respectively. A smaller lattice constant in the MI-type 
approximant yields a shorter critical lattice spacing than in the RT-type 1/1-1/1-1/1 approxi-
mant. Nevertheless, the value of e/uc becomes almost the same between the two families of 
approximants (see Figure 10.17a).
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fIguRe 10.16 λF versus 2d for (a) group (I) Cu5Zn8 and Cu9Al4 gamma-
brasses and RT-type Al30Mg40Zn30 and Al52.5Li32.5Cu15 1/1-1/1-1/1 approximants, 
(b) d-states-mediated-splitting systems and (c) B2-compounds. λF: electron wave-
length at the Fermi level and 2d: critical lattice spacing for the set of lattice planes 
responsible for the formation of a pseudogap in (a) and (b). In (c), 2d represents 
the lattice spacing of the set of {110} lattice planes of B2-compounds.
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G s can be determined from first-principles band calculations and that 
the value of the most critical G  can be extracted. However, there is an 
exception to this behavior.

It can be seen from Figure 10.16b that the data point for Ag5Li8 gamma-
brass shows a departure from the matching condition line in Figure 10.16b. 
As discussed in Chapter 8, Section 8.4.2, a pseudogap in Ag5Li8 gamma-
brass appears at about +2 eV above the Fermi level as a result of interference 
with the set of lattice planes associated with G

2
 = 18. ἀ e value of 2kF has 

been deduced from the Hume-Rothery plot to be 13 6 3 66. .=  while the 
critical G  to be 18 4 24= .  in units of 2π/a. A mismatch between them 
amounts to 14%, which is not so substantially large. ἀ is may be taken as a 
warning that the matching condition must be tested with a high accuracy 
(see Chapter 8, Section 8.4.3.). More important to be noted is that there 
exists a CMA phase stabilized without satisfying the matching condition 
between 2kF and critical G . As discussed in Chapter 8, Section 8.4.3, the 
Ag-4d-states-mediated-splitting is suggested to play a key role in the sta-
bilization of Ag5Li8 gamma-brass.

ἀ e λF versus 2d diagram can be also constructed for B2-compounds 
discussed in Section 10.3. Among them, we pointed out that CuZn and 
AlMg B2-compounds satisfy the Hume-Rothery rule with e/a = 3/2 but 
that others do not. Since B2-compound contains only two atoms in the 
unit cell, the only relevant reciprocal lattice vector near the Fermi level 
must be G

2
 = 2 corresponding to the set of {110} lattice planes. ἀ e cor-

responding lattice spacing 2d is calculated from the {110} lattice planes, 
though it is not critical because the FsBz interaction involved is too weak 
to cause a noticeable pseudogap near the Fermi level (see small van Hove 
singularity due to {110} zones in the bcc-Cu DOS in Chapter 5, Section 
5.6). It happens that data points for CuZn and AgMg B2-compounds fall 
on the matching condition line λF = 2d. We have essentially constructed 
an “eἀective Fermi sphere” representing the momentum distribution of 
electrons outside the MT sphere, which is located within ±5% from the 
{110} zone planes of the Brillouin zone of a bcc lattice.* To the best of our 
knowledge, the eἀective Fermi sphere is a new concept. Its physical impli-

* It may be worthwhile mentioning that, even though the mismatch between 2kF and G  is 
only ±5%, discussing the stabilization in terms of the matching condition is meaningless for 
B2-compounds because of the absence of a pseudogap at the Fermi level.
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cation will be discussed in parallel with the e/a value deduced from the 
Hume-Rothery plot.

10.7  oRBItal hyBRIDIzatIons veRsus 
fsBz InteRactIons

We are aware that the FsBz interactions can occur only for systems, in 
which diffraction intensities consist of either a finite or infinite number 
of δ-functions, while orbital hybridization effects can occur even in dis-
ordered systems like in amorphous alloys and even in liquid state, where 
the Bragg condition is lost (see Chapter 4, Section 4.2). As emphasized in 
Chapter 8, Section 8.3, the orbital hybridization between the V-3d and 
Al-3p states in Al8V5 gamma-brass results in the formation of a pseudogap 
at about +0.5 eV above the Fermi level in its total DOS. ἀ is would nat-
urally contribute to lowering the electronic energy, since electrons are 
exclusively filled into the V-3d bonding subband. An orbital hybridiza-
tion-induced pseudogap also exists in the energy range from +1.5 to +2.0 
eV in AlV B2-compound [27]. ἀ erefore, we consider it difficult to dis-
cuss a crystal structure-dependent phase stability solely in terms of orbital 
hybridization effects.

In this regard, we may recall discussions in Chapter 8, Sections 8.3, 
where it is shown that the G

2
 = 18 wave is the most important in forming 

bonding states due to the d-states-mediated-FsBz interactions in group (II) 
gamma-brasses like Co2Zn11 and Al8V5. In Chapter 9, Section 9.4.2.1, we 
showed that a FsBz-induced pseudogap is inherently present but is hidden 
behind more prominent orbital hybridization-induced one in Al-Cu-Ru-Si 
1/1-1/1-1/1 approximant. It should be recalled that the FsBz interactions 
and the d-states-mediated-FsBz interactions as well, are both structure- 
and e/a-sensitive. Indeed, Figure 10.16b demonstrated the validity of the 
matching condition for Co2Zn11 and Al8V5 gamma-brasses in group (II) 
and MI-type Al-Cu-Ru-Si 1/1-1/1-1/1 approximant, in which the orbital 
hybridization predominates. ἀ is indicates that the d-states-mediated-
FsBz interactions would potentially play a key role in the stabilization of 
CMAs characterized by an orbital hybridization-induced pseudogap.

In order to shed more light on the Hume-Rothery stabilization mech-
anism, we try to examine if the electron concentration parameter e/a, 
or more specifically, e/uc for CMAs tends to be fixed at a specific con-
stant value, as imposed by the matching condition given by Equation 4.1, 
provided that the critical reciprocal lattice vector involved is the same. 
Relevant numerical data for various CMAs are listed in Table 10.2. It is 
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recalled that gamma-brasses in groups (I) and (II) are characterized by 
the set of the critical lattice planes {330} and {411} with G

2
 = 18 and that 

both RT- and MI-type 1/1-1/1-1/1 approximants by the set of critical lattice 
planes {543}, {710}, and {550} with G

2
 = 50.

Included in Table 10.2 are also the data from literature: Cd6Ca and 
Cd6Yb and Al15Mg43Zn42 2/1-2/1-2/1 approximant. Both Cd6Ca and Cd6Yb 
1/1-1/1-1/1 approximants are known to be described by the Tsai-type clus-
ter and to contain 168 atoms per unit cell with space group Im 3  [28]. 
ἀ e atomic structure data for Al15Mg43Zn42 2/1-2/1-2/1 approximant is also 
available in literature [24,29–31].* It contains 676–692 atoms in its unit cell 
with space group Pa3. We can safely assume the set of {11 20}, {10 50}, 
{10 43}, and {865} lattice planes to be critical in Al15Mg43Zn42 2/1-2/1-2/1 
approximant. ἀ e value of e/uc listed in Table 10.2 is simply calculated by 
taking the product of (e/a)total, which is calculated by using (e/a)TM for the 
TM element in Figure 10.11 and nominal valencies for non-TM elements, 
and the number of atoms per unit cell, N. Similarly, the number of valence 
electrons per  unit cell, VE/uc, is given by the product of VEC and N.

* ἀ e 2/1-2/1-2/1 approximant in Al-Mg-Zn alloy system was first discovered in 1995 by 
Takeuchi and Mizutani [24] at the composition Al15Mg43Zn42. ἀ e atomic structure was later 
studied by Sugiyama et al. [29] at the composition Al16Mg42Zn42 and by Lin and Corbett [30] 
at the composition Al12.6Mg31.8Zn55.6. Lin and Corbett claimed the possession of 692 atoms 
per unit cell. More recently, Kreiner [31] reported that the 2/1-2/1-2/1 approximant exists at 
composition very close to Al15Mg43Zn42 but not at Al12.6Mg31.8Zn55.6 and that it contains 676 
atoms per unit cell. We chose N = 676–692 for Al15Mg43Zn42. Fortunately, however, uncer-
tainties in N cause no serious error on a log-log scale in Figure 10.17.

taBle 10.2 (e/a)total, N, e/uc, VEC, and VE/uc for Various CMAs

CMA (e/a)total N e/uc VEC VE/uc Ref.

Cu5Zn8

G
1.615  52 84 11.615 604 CH.7

Cu9Al4 1.615  52 84 8.538 444 CH.7
Al8V5 1.94  52 100.9 3.77 196 CH.8

Al30Mg40Zn30

1/1

2.30 160 368 5.3 848 CH.9
Al52.5Li32.5Cu15 2.05 160 328 3.55 568 CH.9
Al68Cu7Ru17Si8 2.546 139 354 4.49 624 CH.9
Al73.9Re17.4Si8.7 2.645 138 365 3.78 522 CH.9
Cd6Ca 2.0 168 336 10.57 1776 [28]
Cd6Yb 2.0 168 336 12.57 2112 [28]

Al15Mg43Zn42 2/1 2.15 676–692 1453–1471 6.35 4293 [24,29–
31]

Note: G: gamma-brasses, 1/1: 1/1-1/1-1/1 approximants, 2/1: 2/1-2/1-2/1 approximants.
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Using all these data, we plotted e/uc as a function of VE/uc in Figure 10.17a 
on a log-log scale. It can be seen that the value of e/uc is fairly well kept con-
stant within the scatter of a few percentiles for each family of CMAs char-
acterized by the same critical G

2 . ἀ e data for group (I) gamma-brasses 
are well centered at e/uc = 52 × (21/13) = 84. In the case of group (II) Al8V5 
gamma-brass, the value of e/uc is slightly off from this characteristic value 
(see Table 10.2). ἀ is is naturally understood, since Al8V5 gamma-brass is 
excluded from the family obeying the e/a = 21/13 rule and is character-
ized by critical reciprocal lattice vectors G

2
s over 18 to 22 (see Chapter 8, 

Section 8.3).* We may say from the data in Figure 10.17 (a) that all gamma-
brasses including Al8V5 obey the matching condition with G

2
 = 18 to 22.† 

More surprising is that all 1/1-1/1-1/1 approximants fall in the neighbor-
hood of e/uc = 350, including not only RT- and MI-type ones but also Tsai-
type Cd6Ca and Cd6Yb. Note that all of them belong to space group Im 3 . 
ἀ us, the data in Figure 10.17a strongly indicate that G

2
=18, 50, and 125 

can be assigned as being critical for families of gamma-brasses, and 1/1-1/1-
1/1 and 2/1-2/1-2/1 approximants, respectively.

To strengthen above arguments, we plot the value of e/uc as a func-
tion of the critical G

2
 in Figure 10.17b on a log-log scale. All the data are 

found to fall on a straight line with the slope of approximately 1.5, being 
well consistent with the relation

 ( / )
/ /

e uc G∝ ( )





= 





2
2 3 2 2 3 2

kF

derived from the matching condition. Obviously, the assignment of a criti-
cal G

2
 to each family of CMAs is proved to be correct. ἀ e discussions 

above in relation to Figure 10.17 are also supported by the theory based on 
the free electron model by Mott and Jones in 1936 [32]. Its importance will 
be emphasized in Conclusions, Chapter 11.

Before ending this section, three remarks may be added. Firstly, it is 
claimed that all 1/1-1/1-1/1 approximants, irrespective of RT-, MI-, and 
Tsai-type clusters involved, create a FsBz-induced pseudogap through 

* ἀ e value of e/uc for Al8V5 is deduced to be 100.9 (= 1.94 × 52), as listed in Table 10.2. ἀ is 
is larger than the maximum number of electrons per unit cell, i.e., (e/uc)0 = 90 (see Section 
7.6.).

† ἀ e value of 2kF for Al8V5 has been deduced from the Hume-Rothery plot to be 21  = 4.58 
in units of 2π/a (see Section 8.3.2). A mismatch, defined as ( ) / ,2 2k kF F− G  amounts to +7.4 
and −2.4% when critical G s  are 18  = 4.24 and 22  = 4.69, respectively.
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interference with the set of {543}, {710}, and {550} lattice planes. Secondly, 
the matching condition is functioning for all CMAs, as long as they are 
characterized by a sizable pseudogap across the Fermi level. In other words, 
we can state that systems obeying the Hume-Rothery stabilization mecha-
nism cover not only those stabilized by forming a purely FsBz-induced 
pseudogap like group (I) gamma-brasses and RT-type 1/1-1/1-1/1 approxi-
mants but also those stabilized by producing a d-states-mediated-FsBz-
induced pseudogap, which includes group (II) gamma-brasses and MI-type 
approximants. Finally, the (e/a)TM value listed in Figure 10.11 is proved to 
be physically well acceptable.

Judging from the arguments above, we may say that the data for all qua-
sicrystals, if both 2kF and critical G s were to be rigorously determined, 
would have more perfectly satisfied the matching condition 2kF = G  than 
those shown in Figure 10.13.

10.8 Roles of VEC anD e/a In DesIgnIng neW cmas
It is now interesting to consider how one should differentiate the role of 
the two electron concentration parameters VEC and e/a to design a new 
CMA characterized by a pseudogap across the Fermi level. Let us once 
again direct our attention to the Seebeck coefficient in Fe2VAl doped with 
three different types of elements (see Section 10.1) [4]. It has been well 
established that late TM elements like Co, Pt, etc., early TM elements like 
Ti, Zr, Mo, W, etc. and non-TM elements like Si and Ge, etc. can be sub-
stituted for Fe, V, and Al, respectively, to vary VEC. ἀ e formation of a 
master curve when plotted against VEC is already shown in Figure 10.4. 
ἀ e VEC for the host Fe2VAl is simply calculated as

 VEC = + + =2 8 1 5 1 3
4

6 0* * * .  (10.1)

It is clear that the data on the Seebeck coefficient fall on a universal curve 
only if VEC is chosen as an electron concentration parameter, and that the 
data can be sharply divided into the p- and n-type regimes corresponding to 
a positive and negative Seebeck coefficient across VEC = 6.0, respectively.

ἀ e LAPW band calculations have been performed for the Fe2VAl inter-
metallic compound and its total DOS is reproduced in Figure 10.18 [33]. Its 
electronic structure is characterized by a deep pseudogap across the Fermi 
level, though Fe2VAl contains only four atoms per unit cell and cannot be 



278    ◾    hume-Rothery Rules for structurally complex alloy phases

regarded as a CMA. ἀ e pseudogap is apparently caused by splitting of 
both Fe-3d and V-3d states into bonding and antibonding subbands as a 
result of orbital hybridizations between these d-states and Al-3p states. ἀ e 
thermoelectric power is known as one of electron transport phenomena 
determined by the DOS at the Fermi level [1]. Hence, the emergence of a 
master curve indicates that a rigid-band model holds well, regardless of 
the choice of atomic species for three types of dopants. Indeed, thanks to 
the validity of the rigid-band model, Nishino [4] could design a number 
of p- and n-type thermoelectric materials based on Fe2VAl. ἀ is clearly 
indicates that the VEC can be used as a powerful parameter, when a rigid-
band model holds.

Among various quaternary alloys Nishino’s research group has so far 
synthesized, we selected those containing TM elements, whose (e/a)TM 
is available from Figure 10.11. Included are (Fe-Mn)2VAl, (Fe-Pd)2VAl, 
Fe2V(Al-Si), and Fe2V(Al-Ge). ἀ e Seebeck coefficient for these systems 
is shown in Figure 10.19 (a) as a function of (e/a)total, which is calculated 
by taking a composition-weighted average of (e/a)TM for the TM element 
and nominal valencies for polyvalent elements. ἀ e corresponding VEC 
dependence of the Seebeck coefficient is shown in Figure 10.19b. It is clear 
that the universal curve collapses, when plotted against (e/a)total, and that 
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Bonding V-3d/Al-3p 
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fIguRe 10.18 ἀ e total DOS for Fe2VAl [31]. ἀ e Fermi level corresponds to 
VEC = 6.0. Gaussian curves are roughly drawn as an eye guide to approximate 
the TM-3d/Al-3p (TM = V and Fe) bonding and antibonding subbands.
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the data are distributed in the very vicinity of (e/a)total = 1.16 except for the 
data where Si and Ge are chosen as dopants. Hence, we can no longer dis-
tinguish the p- from the n-type with respect to (e/a)total. However, it seems 
premature to conclude if the matching condition really holds true or breaks 
down in such structurally simple pseudogap system Fe2VAl. More accu-
mulation of (e/a)TM data in Figure 10.11 and the execution of the FLAPW-
Fourier analysis for the Fe2VAl are needed to confirm this behavior.

Table 10.3 lists the value of VEC for various quasicrystals in which 
orbital hybridizations between TM-d states and non-TM p-states result in 
a deep pseudogap across the Fermi level (see Chapter 9, Figures 9.11, 9.14, 
and 9.16). Quasicrystals listed are divided into several families, depending 
on characteristic features of their valence band structures. We see that 
the VEC is essentially constant for a given family of quasicrystals. For 
example, a common rigid-band cannot be assumed for Al63Cu25TM12 
(TM = Fe, Ru, and Os) and Al70Pd20TM10 (TM = Mn, Tc, and Re), since 
VECs involved are different. However, a common value of (e/a)total is likely 
assigned to them, as inferred from the data in Figure 10.17 (a). Indeed, val-
ues of (e/a)total for Al63Cu25TM12 (TM = Fe, Ru, Os) and Al70Pd20TM10 (TM 
= Mn, Re) quasicrystals turn out to be 2.22 and 2.16, respectively, if (e/a)TM 
listed in Figure 10.11 is employed. It is almost at the value around 2.2.*

* In this evaluation, we assumed (e/a)TM for Pd to be 0.07, which is obtained for Pd2Zn11 
gamma-brass, where the Pd-4d band is immersed well below the Fermi level (see Figure 
8.2). A slightly larger (e/a)TM would be obtained, if the Hume-Rothery plot is made for other 
Pd-compounds, in which the Pd-4d band is located closer to the Fermi level.
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fIguRe 10.19 (a) Seebeck coefficient as a function of (e/a)total, which is calculated 
using (e/a)TM in Figure 10.11, (e/a)Al = 3 and (e/a)Si = (e/a)Ge = 4. (b) Seebeck coef-
ficient as a function of VEC for Fe2VAl doped with Mn, Pd, Si, and Ge elements. 
ἀ e data on the Seebeck coefficient are due to courtesy by Prof. Y. Nishino.



280    ◾    hume-Rothery Rules for structurally complex alloy phases

Tsai [8, 9] employed Raynor’s negative valency scheme for TM elements 
and designed a new quasicrystal by substituting 5 at.%V and 5 at.%Co for 
10 at.%Mn in Al70Pd20Mn10 with the hope that (e/a)total is kept unchanged.* 
If (e/a)TM in Figure 10.11 is used, the value of (e/a)total turns out to be 2.16 
and 2.13 for Al70Pd20Mn10 and Al70Pd20V5Co5, respectively, being again 
kept unchanged. Moreover, this is a condition leading to a constant VEC 
equal to 4.8. Hence, his successful synthesis of the quaternary quasicrys-
tal does not necessarily lend support to the validity of Raynor’s negative 
valency scheme. ἀ e usefulness of the parameter VEC in quasicrystals 
would more effectively come into play, if electronic properties like the 
Seebeck coefficient in Figure 10.4 are available and plotted as a function 
of VEC. ἀ e parameter (e/a)total, if it is evaluated using (e/a)TM listed in 
Figure 10.11, may be also useful in design of a new CMA characterized 

* Raynor did not discuss the valency of V atom [5]. Tsai [8, 9] apparently assigned its valency 
as −5.66 by extrapolating Raynor’s negative e/a tendency to increase by one in negative direc-
tion with decreasing the atomic number by one.

taBle 10.3 VEC for Quasicrystals Characterized by the Orbital 
Hybridization-Induced Pseudogap

VEC Ref.

Al63Cu25TM12
(TM = Fe, Ru, Os)

0.63*3 + 0.25*11 + 0.12*8 = 5.60 8

Al70Pd20TM10
(TM = Mn, Tc, Re)

0.7*3 + 0.2*10 + 0.1*7 = 4.8 8

Al70Pd20V5Co5 0.7*3 + 0.2*10 + 0.05*5 + 0.05*9 = 4.8 8
Cd6Ca (6*12 + 2)/7 = 10.57 8
Cd6Sr (6*12 + 2)/7 = 10.57 8
In4Ag2Ca (4*13 +2 *11 + 2)/7 = 10.85 8
Cd6Yb (6*12 + 16)/7 = 12.57 8
Ag47Ga38Yb15 0.47*11 + 0.38*13 + 0.15*16 = 12.51 8
In4Ag2Yb (4*13 + 2*11 + 16)/7 = 12.85 8
Zn84Mg8TM8 0.84*12 + 0.08*2 + 0.08*4 = 10.56 10
TM = Ti, Zr, Hf
Zn74Ni10Sc16 0.74*12 + 0.1*10 + 0.16*3 = 10.36 10
Zn74Co6Sc16 0.78*12 + 0.06*9 + 0.16*3 = 10.38 10
Zn74Fe7Sc16 0.77*12 + 0.07*8 + 0.16*3 = 10.28 10
Zn75Mn10Sc15 0.75*12 + 0.1*7 + 0.15*3 = 10.15 10
Zn72Cu12Sc16 0.72*12+0.12*11+0.16*3 = 10.44 10
Zn74Ag10Sc16 0.74*12+0.10*11+0.16*3 = 10.46 10
Zn74Au11Sc16 0.74*12 + 0.11*11 + 0.16*3 = 10.57 10
Cu48Ga34Mg3Sc15 0.48*11 + 0.34*13 + 0.03*2 + 0.15*3 = 10.21 10
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by a pseudogap at the Fermi level, since we may tune compositions and a 
combination of constituent elements so as to keep it unchanged.

10.9 summaRy
ἀ e value of (e/a)TM for most of 3d-TM elements in the periodic table can be 
deduced from the Hume-Rothery plot and is summarized in Figure 10.11. 
Its value is always a small and positive number less than unity in sharp 
contrast to negative valencies proposed by Raynor in 1949. Its soundness 
was confirmed in various ways such as the (e/a)total dependence of the 
melting temperature for B2-compounds shown in Figure 10.12, and the 
e/uc behavior in Figure 10.17.

ἀ e matching condition given by Equation 4.1 was studied by using 
the Fermi diameter 2kF deduced from the Hume-Rothery plot and criti-
cal G s from the FLAPW-Fourier method for gamma-brasses, 1/1-1/1-1/1 
approximants and B2-compounds. ἀ e matching condition holds true for 
all CMAs, as long as they are characterized by a sizable pseudogap across 
the Fermi level. It is emphasized that a FsBz-induced pseudogap, including 
the d-states-mediated one, is both structure- and e/a-sensitive through the 
Brillouin zone specific to a given structure. ἀ e data shown in Figures 10.16 
and 10.17 can be taken as a strong evidence for this. All 1/1-1/1-1/1 approxi-
mants with space group of either Im 3  or Pm3, which include RT-, MI-, 
and Tsai-types, form a FsBz-induced pseudogap through interference with 
the set of {543}, {710}, and {550} lattice planes. It is claimed that systems 
obeying the Hume-Rothery stabilization mechanism cover not only those 
stabilized by forming a purely FsBz-induced pseudogap like in group (I) 
gamma-brasses and RT-type 1/1-1/1-1/1 approximants but also those sta-
bilized by forming a d-states-mediated-FsBz-induced pseudogap like in 
group (II) gamma-brasses and MI-type approximants.

Finally, we discussed how the role of the two electron concentration 
parameters VEC and e/a should be differentiated in a possible design of 
a new CMA characterized by a pseudogap across the Fermi level. ἀ e 
VEC can be used as a useful parameter to design a new alloy as long as 
a rigid-band model holds, whereas the parameter e/a or e/uc calculated 
from Figure 10.11 is also useful, since it plays a different role from VEC 
and points to the value imposed by the matching condition (see Chapter 7, 
Figure 7.18, and Figure 10.17).
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11C h a p t e r  

Conclusions

In 1948, Hume-Rothery wrote one of his famous books entitled Electrons, 
Atoms, Metals and Alloys in the form of a dialogue between a “Young 
Scientist” and an “Older Metallurgist” to help readers in metallurgical 
industries be stimulated by a deliberate raising of questions [1]. ἀ e pres-
ent author has decided to adopt this admirable approach to help his read-
ers learn what is new in this monograph and what still remains unsolved 
and is left over for future work.

Young Scientist: I know that the Hume-Rothery electron concentration 
rule has received basic support in terms of the free electron the-
ory advanced by Mott and Jones in 1936, which could provide 
a reason why the electron per atom ratio e/a values can favor 
the respective fcc, bcc, and gamma-brass phases in the noble 
metal alloys. I understand that the argument was that a spheri-
cal Fermi surface touches the respective Brillouin zone planes. 
Why did you write a new book on this topic?

Older Metallurgist: Yes, you may well ask. However, we are well aware that 
the free electron model was too simple to explain the various elec-
tronic properties of “realistic” metals and alloys. A quasicrystal 
was discovered in 1984. People started to recognize the impor-
tance of a pseudogap at the Fermi level in the DOS that contributes 
to stabilizing such complex metallic compounds. A pseudogap 
can never be worked out within the free electron model. As men-
tioned in Chapter 2, Section 2.3, the electronic energy of a given 
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system can be lowered most efficiently, if the Fermi level of an 
alloy is located in the range of the DOS pseudogap.

As noted at the end of Chapter 10, Section 10.5, an increase 
in the number of atoms in the unit cell accompanies an 
increase in the number of Brillouin zone planes (or the num-
ber of relevant equivalent lattice planes), making the Brillouin 
zone “more spherical.” ἀ is, in turn, increases the number of 
directions in the reciprocal space, along which the interference 
with electrons near the Fermi level occurs. Hence, the larger 
the number of atoms per unit cell, the deeper is the pseudogap 
formed at the Fermi level, and the more efficient is the lowering 
of the electronic energy tending to stabilize a given structure. 
ἀ is is the gist of the Hume-Rothery stabilization mechanism 
for CMAs. Hence, the need for performing first-principles elec-
tronic structure calculations for CMAs containing more than 
50 atoms per unit cell has become urgent to resolve some of the 
yet unsettled questions regarding the Hume-Rothery electron 
concentration rule, particularly, for CMAs. ἀ is is the present 
book’s aim.

YS: Why did you place so much emphasis on the difference between the 
two different electron concentration parameters, e/a and VEC?

OM: As discussed in Chapter 3, Section 3.2, Jones fully ignored the Cu-3d 
band, and calculated the DOS for fcc- and bcc-Cu in the NFE 
model. By having done this, he could automatically select an 
e/a value as an electron concentration parameter and directly 
link his results with the Hume-Rothery electron concentration 
rule, which is also expressed in terms of e/a. As emphasized in 
Chapter 1, Sections 1.2 and 3.2, however, the discovery of the 
neck in the Fermi surface contour in pure Cu by Pippard in 1957 
eliminated the applicability of the Jones approach. Indeed, his 
failure obviously stemmed from neglecting the Cu-3d band. To 
elucidate the physics behind the Hume-Rothery electron con-
centration rule, I have emphasized the need for performing 
first-principles band calculations, where the Cu-3d band Jones 
ignored is fully taken into account. However, an integrated DOS 
now gives rise to the VEC instead of e/a. So, a problem has newly 
arisen how to extract from first-principles band calculations the 
electron concentration parameter e/a, which is essential in the 
Hume-Rothery electron concentration rule.
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In collaboration with my colleagues, we have developed a 
very useful technique named the FLAPW-Fourier method to 
extract from first-principles FLAPW band calculations the criti-
cal reciprocal lattice vector G  responsible for the formation of a 
pseudogap. ἀ e essence of the FLAPW-Fourier method relies on 
the fact that the FLAPW wave function outside the MT sphere 
is expanded into plane waves with respect to the reciprocal lat-
tice vector allowed to a given lattice (see Chapter 7, Sections 
7.3 and 7.4). By extending the FLAPW-Fourier method, we 
have also developed the Hume-Rothery plot, which allows us to 
extract the value of e/a from first-principles band calculations. 
Interestingly, the above approach made it also possible to derive 
a new set of effective e/a values for transition metal (TM) ele-
ments in the periodic table. ἀ ey turn out to be slightly positive 
numbers across the 3d-series, as summarized in Figure 10.11.

YS: You stressed in Chapter 5 that the total-energy difference ∆U total 
between the two competing phases is crucially important in the 
discussion of their relative stability, and pointed out that in the 
phase competition between fcc- and bcc-Cu, the largest contri-
bution to ∆U total  is not the valence-band structure energy dif-
ference ∆Uv  but the ∆Upot.outside MT  (see Table 5.3). ἀ is is rather 
surprising, since many of us had implicitly understood ∆Uv  to 
be the largest, as Jones did. Nevertheless, you took into account 
only the VEC dependence of ∆Uv  within the rigid-band model 
and judged the VEC dependence of ∆Upot.outside MT  to be essentially 
negligible in the α/β phase transformation (Chapter 5, Section 
5.6). I see the reason for your approach, since only the term Uv 
among those in Equation 5.2 can be pursued as a function of the 
VEC through the FsBz interactions, which are reflected as the 
van Hove singularities on the competing DOSs. However, in the 
remaining chapters, you have apparently ignored the contribu-
tion from terms other than Uv  in Equation 5.2 and discussed 
an “absolute stability” for CMAs solely in terms of Uv  without 
considering competing phase(s). Is this reasonable?

OM: I appreciate your difficulty here. A discussion about the relative sta-
bility between two competing phases even at absolute zero gets 
to be rather involved. As mentioned in connection with stabil-
ity of Ag5Li8 gamma-brass in Chapter 8, Section 8.4.3, I argued 
that one has to find from the phase diagram an appropriate 
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metastable phase as a counterpart competing with a given CMA 
compound. A candidate could be selected by examining neigh-
boring phases having a slightly different composition. However, 
to make first-principles band calculations feasible, the two 
competing phases so chosen must be perfectly ordered at the 
same composition. So, a construction of such two ordered com-
pounds having the same composition is almost impossible. In 
other words, a discussion about relative stability between fcc- 
and bcc-Cu as in Chapter 5 must be regarded as a very rare and 
ideal case. As stated at the end of Chapter 5, Section 5.7, α and 
β-phases in the Cu-Zn alloy system are competing with each 
other within only a few kJ/mol in the total-energy difference. 
Even in such an ideal case, we realized the discussion on rela-
tive stability to be a formidable task, particularly since van Hove 
singularities are extremely small for structurally simple phases 
(see Chapter 5, Figure 5.10).

ἀ at is why I emphasized that such a severe condition is more 
relaxed when dealing with CMAs. As shown in Figure 2.7, the 
presence of a deep pseudogap across the Fermi level in the DOS 
can lower the valence-band structure energy by 10 to 60 kJ/mol. 
As repeatedly emphasized, most CMAs are indeed character-
ized by a pseudogap at the Fermi level. People would further 
say that a quasicrystal having a deep pseudogap at the Fermi 
level is not competing with a hypothetical phase characterized 
by the free electron-like monotonic band, but is actually com-
peting with an approximant having also a pseudogap. ἀ e situ-
ation can become again very delicate. Hence, I simply assumed 
throughout the volume that the presence of a pseudogap at the 
Fermi level is significant enough to stabilize such a CMA only 
through the reduction in the valence-band structure energy Uv 
without worrying about other terms in Equation 5.2 and any 
relative stability with possible competing phases. So, there is 
much work still to be done here.

YS: Why did you spend so many pages for gamma-brasses rather than 
quasicrystals among various CMAs?

OM: As stated in the Introduction, gamma-brasses have played a consider-
able role in the development of modern solid-state physics. More 
practically speaking, the execution of the FLAPW band calcu-
lations is of vital importance to extract the FsBz interactions, 
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which play a key role in the Hume-Rothery electron concen-
tration rule. ἀ e size of the unit cell must be large enough to 
produce a sizable pseudogap at the Fermi level but is still small 
enough to perform efficiently the FLAPW band calculations. 
Gamma-brasses containing 52 atoms per unit cell are ideally 
suited for this purpose. Moreover, there are more than 20 binary 
alloy systems that crystallize into the gamma-brass structure 
with space group of either I m43  or P m43 . ἀ is provides a 
unique opportunity to make systematic studies within a given 
family of CMAs. It is also worthwhile mentioning that research 
on both Cu5Zn8 and Cu9Al4 gamma-brasses dates back to the 
1920s, being initiated by Westgren, Phragmén, and Bradley and 
developed later by Hume-Rothery, Mott, and Jones in the 1930s. 
Indeed, we could extract an essence of the physics behind the 
Hume-Rothery electron concentration rule by performing first-
principles band calculations for a series of gamma-brasses with 
and without containing TM elements.

YS: Does the ratio 21/13 carry a special meaning for the stabilization of 
Cu5Zn8 and Cu9Al4 gamma-brasses?

OM: As stated in Chapter 1, Section 1.3, Westgren and Phragmén were the 
first in 1928 to mention that the ratio 21/13 can be commonly 
assigned to both compounds, provided that valencies of Cu, Zn, 
and Al are assumed to be unity, two, and three, respectively: (5 
* 1 + 8 * 2)/13 = 21/13 and (9 * 1 + 4 * 3)/13 = 21/13. However, 
we can deduce only a fractional number close to 21/13 from 
the Hume-Rothery plot based on the FLAPW band calculations 
(Chapter 7, Section 7.4). If it is expressed as a numerical value like 
1.615, one cannot judge whether both compounds can be said to 
be really characterized by the same e/a value. To emphasize the 
physics behind it, or the existence of a common FsBz interaction 
between them, we should better use the ratio 21/13 rather than 
1.615. Instead, the value of VEC is no longer the same between 
them: (5 * 11 + 8 * 12)/13 = 151/13 = 11.615 and (9 * 11 + 4 * 3)/13 
= 111/13 = 8.538. In this case, the use of a complicated ratio like 
151/13 would make little sense.

YS: Can you explain why Cu5Zn8 gamma-brass crystallizes into the struc-
ture with space group of I m43 , whereas Cu9Al4 gamma-brass 
into the structure with space group P m43 ?
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OM: ἀ e x-ray diffraction spectra are very similar between the Cu-Zn 
and Cu-Al gamma-brasses (see Appendix 2, Figures A2.1 and 
A2.3). ἀ e latter can be distinguished from the former only by 
the existence of (221), (300), and (210) diffraction lines associ-
ated with the CsCl-type super-lattice structure. ἀ ere is a dif-
ference in atomic size ratio between these two alloy systems: 
r rCu Zn/ . / . .= =1 278 1 394 0 92  and r rCu Al/ . / . .= =1 278 1 432 0 89 . It 
may be worthwhile mentioning the work by Brandon et al. [2]. 
ἀ ey discussed the difference in the ordering schemes in the 
gamma-brass structure in terms of packing efficiencies at the 
respective radius ratios of the two constituent elements and in 
terms of maximizing the number of unlike-atom neighbors while 
minimizing the number of like-atom neighbors in the structure.

YS: You said at the beginning of Chapter 7 that any alloy with an off-
stoichiometric composition would not remain stable at absolute 
zero, since the configurational entropy remains finite. ἀ is must 
be a consequence of the “third law of thermodynamics.” Hence, 
a handling of off-stoichiometric alloys requires the arguments 
about phase stability at finite temperatures. You emphasized 
the role of vacancies in the case of gamma-brasses in Chapter 7, 
Sections 7.6 and 7.7. ἀ e number of quenched-in vacancies and 
the degree of chemical disorder would depend on a thermal his-
tory of a sample studied. I wonder if a reliable discussion can 
be made on phase stability of an off-stoichiometric alloy and a 
finite solid solution range as well.

OM: I fully agree with your comments. Indeed, the discussions in Chapter 
7, Sections 7.6 and 7.7, are concerned with phase stability over 
the solid solution range at finite temperatures and are not as 
accurate as those made in Sections 7.2 to 7.4 for ordered Cu5Zn8 
and Cu9Al4 gamma-brasses at absolute zero. I had to assume the 
rigid-band model to discuss the solid solution range in group (I) 
gamma-brasses. ἀ e rigid-band model was also employed for 
the discussion on the α/β-phase transformation in the Cu-Zn 
alloy system in Chapter 5. Its justification is not self-evident.

It is true that an off-stoichiometric alloy can exist only as a 
metastable phase because of the presence of chemical disorder. 
A phase diagram would eventually lose any finite solid solution 
range around an ordered compound, if appropriate anneal-
ing is done for an infinitely long time. In the case of the Cu-Zn 
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alloy system, only pure Cu and Zn at the both ends, and Cu5Zn8 
gamma-brass and CuZn B2-compound would remain stable at 
absolute zero. A thermally stable quasicrystal can exist only at 
a very specific composition without containing any disorder. 
However, any quasicrystals and CMAs so far synthesized in 
laboratories would contain a certain degree of quenched-in dis-
order, no matter how sharp the diffraction spots are. Perfectly 
ordered compounds may exist only in our imagination. In a 
practical approach, one has to decide on a maximum tolerable 
presence of such disorder, above which the system could be no 
longer treated as a “perfectly ordered compound.”

YS: So you said that even if there are vacancies and chemical disorder at 
high temperatures, a given structure may settle down to have 
a perfect chemical order corresponding to an expected stoichi-
ometry at absolute zero. Since all the structures are observed 
only at “real” temperatures, we really don’t know if they would 
be there at absolute zero. I know that you can only do your 
first-principles band calculations at absolute zero, but this 
avoidance of dealing with entropy and off-stoichiometry still 
worries me.

OM: Nobody can surely say that both Cu5Zn8 and Cu9Al4 gamma-brasses 
are stable as ordered compounds at absolute zero. At any real 
temperatures, one always has to worry about quenched-in-
vacancies or chemical disorder even in ordered compounds. Its 
presence inevitably involves statistical averaging over all pos-
sible randomly distributed atom configurations. In the present 
monograph, I limited myself to the assumption that ordered 
compounds like Cu5Zn8 and Cu9Al4 gamma-brasses exist as a 
stable phase at absolute zero to take full advantage of using first-
principles band calculations. No such works at absolute zero 
have been reported in the past for the H-R rules.

As I mentioned in Chapter 5, alpha and beta phases are com-
peting within only a few kJ/mol in the valence-band structure 
energy difference at absolute zero. Such a small difference in the 
electronic energy arising from extremely small van Hove sin-
gularities on the DOS (Figures 5.10 and 5.11) would be smeared 
out, as soon as statistical averaging is made for randomly dis-
tributed atom configurations at off-stoichiometric composi-
tions. Nevertheless, we have the H-R rule with e/a = 1.4 for noble 
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metal alloys. As you say, this empirical rule was established at 
the working temperatures. ἀ is is a big dilemma. It is beyond our 
present ability to discuss the α/β phase competition by incorpo-
rating factors like the entropy term at finite temperatures into 
the free-energy difference, though it is unlikely to expect any 
e/a dependent behavior in the entropy term. Clearly, there is a 
need to develop a theoretical tool to clarify accurately the effect 
of contributions arising from statistical averaging of atom con-
figurations on the DOS and to calculate the electronic struc-
ture and the total-energy for an off-stoichiometric alloy with the 
same accuracy as that available now for an ordered compound.

YS: What is remaining as a future work regarding the Hume-Rothery elec-
tron concentration rule?

OM: Hume-Rothery himself had hoped to eventually enable engineers and 
industry researchers to design a new functional alloy by fully 
playing with the critical alloying parameters, i.e., atomic size 
factor, electronegativity difference, and electron concentration 
without relying on highly sophisticated calculations. However, 
all of us are now well aware that this was too optimistic. To 
design a new alloy, one must first consult the equilibrium phase 
diagram, because a material we handle is available only at “real” 
temperatures. Of course, the recent development of computer 
science concerning first-principles calculations is extremely 
powerful and will definitely serve more and more important 
roles in the future. ἀ e development of a new functional mate-
rial can be made in a more efficient way with the assistance of 
first-principles calculations. For example, the evaluation of the 
total-energy in first-principles band calculations like WIEN2k 
certainly provides us with valuable information about whether 
a new material designed is liable to be stabilized or not, before 
its synthesis is attempted in laboratory.

Nevertheless, I consider the availability of an e/a table like 
that shown in Figure 10.11 to be of very useful importance as 
an assisting tool in alloy designing in the future. I trust that its 
usefulness and power has been demonstrated in many cases in 
the present monograph: you can find examples directly from the 
e/a, or e/uc, plots such as in Figures 7.18, 8.30, 8.32b, 10.12b, 
10.17a,b, 10.19a, etc., and others indirectly from the matching 
condition such as in Figures 10.14 and 10.16. However, there still 
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remain many missing data in Figure 10.11. Data for remaining 
TM elements could be added. In Chapter 10, Section 10.4, we 
emphasized that a different set of (e/a)TM values must be assigned 
to some TM elements like Ni, depending on the location of its 
d-band relative to the Fermi level. Such “surrounding effect” on 
(e/a)TM must also be clarified. ἀ e “surrounding effect” on the 
e/a value for elements in the column IV and V in the periodic 
table should be also studied. All these works are likely to be 
done in near future by performing the Hume-Rothery plots for 
various compounds. A complete establishment of the e/a table 
in Figure 10.11 will be of great help in designing new materials.

I am hoping that the newly established e/a values can be cou-
pled with the VEC and used to design new functional alloys and 
compounds. Future research will judge the effectiveness of this 
approach.

OM: Before ending our dialogue, I tell you how precisely the Mott and 
Jones theory proposed in 1936 [3] caught the essence of the 
Hume-Rothery electron concentration rule in spite of the use 
of the naive free electron model in the presence of the Brillouin 
zone having a vanishing energy gap. As discussed in connection 
with Figure10.17 in Section 10.7, we could identify the critical 
G

2
 in the units of (2π/a)2 to be 18, 50, and 125 for the fam-

ily of gamma-brasses, 1/1-1/1-1/1 and 2/1-2/1-2/1 approximants, 
respectively. Consider this within the free electron model. A 
critical (e/a)c was defined in Chapter 3, Section 3.1 as the elec-
tron concentration obtained when the Brillouin zone plane is 
inscribed by a Fermi sphere. Obviously, the Fermi energy and 
the energy at the center of the relevant Brillouin zone plane 
are given as E aF =[ ( / )/ ] /3 2 3 2 3π e uc  and E ac = ( / )π 2 2

G  in 
the atomic units for cubic systems, respectively. ἀ e condition 
E EF c=  immediately leads to

 e uc G/
/

( ) =









c

π
3

2 3 2

 (11.1)

An insertion of G
2 = 18, 50, and 125 into Equation 11.1 

results in (e/uc)c= 80, 370, and 1464 for the family of gamma-
brasses, 1/1-1/1-1/1 and 2/1-2/1-2/1 approximants, respectively. 
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As summarized in Table 11.1, the free electron model reproduces 
the data in Figure 10.17a within the accuracy of ±10% for the 
respective families. ἀ e discussion above clearly demonstrates 
that Mott and Jones laid the most basic theoretical foundations 
on the Hume-Rothery electron concentration rule.

RefeRences
 1. W. Hume-Rothery, Electrons, Atoms, and Alloys (Metal Industry, ἀ e Louis 

Cassier Co., Ltd., 1948).
 2. J.K. Brandon, H.S. Kim, and W.B. Pearson, Acta Cryst. B35 (1979) 1937.
 3. N.F. Mott and H. Jones, The Theory of the Properties of Metals and Alloys 

(Oxford University Press, England, 1936).

taBle 11.1 Critical |G|2, N, (e/a)total, e/uc, and (e/uc)c for CMAs

critical G
2

[×(2π/a)2] N (e/a)total e/uc (e/uc)c

[(e/uc) − (e/uc)c]/
(e/uc)c (%)

Cu5Zn8 18 52 1.615 84 80 5
Al30Mg40Zn30 
1/1-1/1-1/1 
approximant

50 160 2.30 368 370 −0.5

Al68Cu7Ru17Si8 50 139 2.58 358 370 −3.2
Cd6Ca, Cd6Yb 50 168 2.0 336 370 −9.2
Al15Mg43Zn42 
2/1-2/1-2/1 
approximant

125 692 2.15 1460 1464 –0.3

Note: Critical G
2

: square of the reciprocal lattice vector responsible for causing a FsBz-
induced pseudogap at the Fermi level, N: number of atoms per unit cell, (e/a)total: 
electrons per atom ratio obtained by composition-weighted average of nominal 
valency for the non-TM element and (e/a)TM for the TM element listed in Figure 
10.11, e/uc: number of electrons per unit cell given by the product of N and e/a, 
and (e/uc)c: number of electrons per unit cell given by Equation 11.1.
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Appendix 1: Atomic 
Size Ratio Rule

ἀ e atom size ratio of constituent elements must be close to unity to allow 
the formation of an alloy. For example, the ratio of the Goldschmidt radii 
of two constituent atoms is in between 0.8 and 1.2 for favorable alloy 
formation. Its theoretical foundation based on the elasticity theory was 
advanced in 1950s by Friedel [1] and Eshelby [2]. ἀ e size difference is 
defined as ε = − ≅ −( )/ ( )/r r r r r rB A B B A A , where r i A Bi ( )= or  refers to the 
Goldschmidt radius of the element A and B. Both Friedel and Eshelby 
evaluated the elastic energy of an alloy on the basis of the sphere-in-hole 
model, in which a spherical solute atom is inserted into a hole in the matrix. 
For example, Eshelby [2] deduced the following criterion for a tolerable 
size difference ε  to allow the formation of a primary solid solution:

 ε
µ

γ<






kT
V

m

a 3

1 2/

 (A1.1)

where Tm  is the melting point, µ is the shear modulus, γ is the total volume 
change per solute atom and Va  is the volume per atom. ἀ e value of γ turns 
out to be about 1.61, since

 γ σ
σ

= −
+

31
1

holds for homogeneous isotropic systems, where σ is the Poisson ratio nearly 
equal to 0.3. Eshelby found ε  to be around 0.15 by estimating kT Vm a/µ  to 
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be 0.042 and took this as a possible interpretation for the Hume-Rothery 
15% size rule [2].

More recently, Egami and Waseda [3] proposed the minimum solute 
concentration cB

min  in an A-B binary alloy system to obtain an amorphous 
phase by rapid quenching and revealed that cB

min  is inversely proportional 
to the atomic volume mismatch between the solute atom B and the solvent 
atom A:

 c
V

B B A

A
min .×

−( )
=

V V
0 1  (A1.2)

where VA  and VB  represents the volumes of the atom A and B, respec-
tively. Equation A1.2 is immediately rewritten in terms of the atom size 
ratio r rB A/ :

 cB

B A

min .
/

= ×
( ) −













0 1 1

1
3

r r
 (A1.3)

where r rA B<  is assumed. A minimum solute concentration (%) is plotted 
as a function of the atom size ratio in Figure A1.1. ἀ e value is about 30%, 
when r rB A/ .=1 1  but is sharply decreased to less than 5%, when the ratio 
is increased to 1.45. Remember that this is the criterion for the formation 
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fIguRe a1.1 Atomic size ratio rB/rA dependence of the minimum solute con-
centration (%), beyond which an amorphous phase is favorably formed in an 
A-B binary alloy system. [From T. Egami and Y. Waseda, J. Non-Cryst. Solids 64 
(1984) 113.]
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of an amorphous phase extending outside a primary solid solution. ἀ is is, 
therefore, wider than the 15% size rule but points to an enhanced instabil-
ity of a primary solid solution with an increasing size ratio.

RefeRences
 1. J. Friedel, Adv. Phys. 3 (1954) 446.
 2. J.D. Eshelby, Solid State Physics, edited by F. Seitz and D. Turnbull (Academic 

Press, New York, 1956), vol. 3, pp. 115–119.
 3. T. Egami and Y. Waseda, J. Non-Cryst. Solids 64 (1984) 113.
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Appendix 2: Crystal 
Structures of 
Gamma-Brasses

Detailed studies of the atomic structure of gamma-brasses are important 
in gaining a deeper insight into the electronic structure and the stability of 
complex metallic alloys (CMAs). ἀ e present author in collaboration with 
T. Noritake, Toyota Central Research and Development Laboratories, Inc., 
studied the atomic structure of a number of binary gamma-brasses in a 
systematic manner by using a laboratory x-ray diffractometer with Cu-Kα 
radiation (Rigaku, RINT-TTR), unless otherwise stated. All samples, for 
which x-ray diffraction spectra are displayed in Section A2.1, were syn-
thesized by the present author between 2005 to 2009. ἀ e measured x-ray 
diffraction spectra for representative gamma-brasses are shown with a 
brief comment. In particular, the data for the Li-Pb alloy clearly show the 
absence of gamma-brass phase at the composition Li10Pb3 and those for 
Mn-In alloys indicate the difficulty in synthesizing a single-phase gamma-
brass phase.

In Section A2.2, we compiled previous works on the atomic structure 
of gamma-brasses with I-, P-, F-, and R-cells available in literature in the 
chronological order.

a2.1  x-Ray DIffRactIon spectRa foR a 
seRIes of BInaRy gamma-BRasses

ἀ e powder diffraction spectra for 62 at.%Zn-Cu and 62 at.%Zn-Ag 
gamma-brasses are shown in Figure A2.1. All diffraction lines are indexed 
in terms of the Miller indices, whose sum is even. Both compounds are 
indeed identified as being typical of I-cell gamma-brasses with space 
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group I m43 . ἀ e most intense (330) and (411) diffraction line is charac-
teristic of the cubic gamma-brass. ἀ e diffraction spectrum for 60 at.%Cd-
Cu gamma-brass is shown in Figure A2.2. All the diffraction lines can be 
indexed with space group I m43 . In contrast to the data for Cu-Zn and 
Ag-Zn gamma-brasses shown in Figure A2.1, the (310) diffraction line is 
unusually strong. ἀ is would reflect its unique atomic arrangements in 
the 26-atom cluster (see Chapter 7, Section 7.6 and Section A2.2.1.4).
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fIguRe a2.1 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
62.0 at.%Zn-Cu and 62.0 at.%Zn-Ag gamma-brasses.
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Diffraction spectra for 31.5 at.%Al-Cu and 31.0 at.%Ga-Cu gamma-
brasses are shown in Figure A2.3 as typical examples for P-cell gamma-
brass. ἀ e existence of (210), (221), and (300) diffraction lines, which are 
underlined, are characteristic of P-cell gamma-brass with space group 
P m43 , since the sum of the Miller indices in them is odd. ἀ e (221) plus 
the (300) diffraction line associated with G

2
 = 9 is only weakly observed 

in the Cu-Ga gamma-brass.
ἀ e preparation of a single-phase Al8V5 gamma-brass was found to be 

difficult, since it is formed as a line compound through the peritectic reac-
tion between Al-rich liquid phase and Al-V bcc phase at 1670°C in the 
Al-V phase diagram [1]. ἀ e sample was melted in a BN crucible using an 
induction furnace. Figure A2.4 shows the x-ray diffraction spectrum for 
Al8V5 gamma-brass after the heat-treatment at 1050°C for 24 h. All the 
diffraction lines were seemingly indexed without any trace of impurity 
phases. However, we realized that diffraction lines of V-rich AlV bcc phase 
taken with Cu-Kα radiation happens to be so close to those of gamma-
brass that its presence could be hardly detected. Indeed, we were often 
disturbed by the segregation of V-rich Al-V bcc phase in the gamma-
brass matrix, the existence of which was detected in micrographs taken 
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fIguRe a2.2 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
60.0 at.%Cd-Cu gamma-brass.
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fIguRe a2.3 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
31.5 at.%Al-Cu and 31.0 at.%Ga-Cu gamma-brasses.
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with SEM (scanning electron microscope). It may be clever to synthesize 
a single-crystal for the structure analysis, as reported by Brandon et al. 
[2, A2.2.1.12], rather than trying to make a polycrystalline Al8V5 gamma-
brass ingot.

According to the Mn-In phase diagram [1], Mn3In compound is formed 
as a result of the peritectic reaction between In-rich liquid and Mn-rich 
β-Mn phase at 910°C. We melted an appropriate amount of Mn and In 
with the ratio of Mn:In = 3:1 in an alumina crucible using an induction 
furnace and annealed the resulting ingot at 900°C for 336 h. ἀ e SEM 
micrograph revealed a mixture of Mn3In gamma-brass and α-Mn phase. 
To reduce the impurity phase, melt-spinning technique was employed to 
form rapidly quenched ribbon samples with a few 10 µm in thickness and 
5–10 mm in length. Ribbons were subsequently annealed at 890°C for 72 
h. As shown in Figure A2.5, α-Mn phase still remained as an impurity 
phase. ἀ e growth of a tiny single crystal is probably a clever way to syn-
thesize a single-phase Mn3In gamma-brass (see Section A2.2.2.10).

ἀ e gamma-brass phase can be relatively easily prepared in both Ni-Zn 
and Co-Zn alloy systems. Figure A2.6 shows two diffraction spectra for 
17.0 and 25.0 at.%Ni-Zn gamma-brasses. ἀ e diffraction lines for the 
Ni-poor sample are quite sharp and can be perfectly indexed in terms 
of space group I m43 , while those for the Ni-rich one are fairly broad. 
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fIguRe a2.4 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
Al8V5 gamma-brass.
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We originally thought this as a sign of the difficulty in producing a high-
quality gamma-brass phase in Ni-rich composition range. However, it was 
soon realized that this is caused by the formation of a long-period super-
lattice, as reported by Morton [4]. As shown in the insert, we can observe 
three successive sub-peaks on smaller angle side of the main peak due to 
{330} and {411} lattice planes. ἀ is, along with TEM observations [5], was 
taken as evidence for the formation of a long-period super-lattice struc-
ture in Ni-rich Ni-Zn gamma-brasses.

In contrast to Ni-Zn gamma-brass, a single-phase gamma-brass was 
easily synthesized over 15 to 30 at.%Co in the Co-Zn gamma-brass alloy 
system without any formation of a long-period super-lattice structure 
[5]. ἀ e diffraction spectra for 15.0 and 29.0 at.%Co-Zn samples corre-
sponding to both low and high ends of its composition range are shown in 
Figure A2.7. All the diffraction lines are indexed using space group I m43 . 
Unfortunately, the Co-Zn gamma-brass phase is incorrectly referred to as 
possessing space group P m43  in its phase diagram [1].
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fIguRe a2.5 X-ray powder diffraction spectra taken with Cu-Kα radiation for 
Mn3In gamma-brass. ἀ e ribbon sample was annealed at 890°C for 72 h.



appendix 2: crystal structures of gamma-Brasses    ◾    305

0

1000

In
te

ns
ity

 (c
ou

nt
s)

25.0 at. %Ni-Zn
a = 0.88451 nm

2000

3000

4000

30 40 50 60 70 80

(4
31

), 
(5

10
)

(3
30

), 
(4

11
)

(330), (411)

(5
21

)

(6
00

), 
(4

42
)

(6
11

), 
(5

32
)

(6
31

)
(5

43
), 

(5
50

), 
(7

10
)

(7
32

), 
(6

51
)

(7
21

), 
(6

33
), 

(5
52

)

(2
11

)
(2

20
)

(3
10

)
(2

22
)

(3
21

)

(4
20

)
(3

32
)

(4
22

)

2 θ (deg)

2 θ (deg)
43.0 43.5

20
0

In
te

ns
ity

 (c
ou

nt
s)

17.0 at. %Ni-Zn
a = 0.89238 nm

2

4

6

8

10

12

14×103

40 60 80 100
2 θ (deg)

(2
11

)

(3
10

)
(2

22
)

(3
21

)

(3
32

)

(4
31

), 
(5

10
)

(4
22

)

(5
21

) (6
00

), 
(4

42
)

(6
31

)
(5

43
), 

(5
50

), 
(7

10
)

(7
21

), 
(6

33
), 

(5
52

)
(7

32
), 

(6
51

)
(5

54
), 

(7
41

)
(6

60
), 

(8
22

)

(3
30

), 
(4

11
)

fIguRe a2.6 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
17.0 at.%Ni-Zn and 25.0 at.%Ni-Zn gamma-brasses.
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fIguRe a2.7 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
15.0 at.%Co-Zn and 29.0 at.%Co-Zn gamma-brasses.
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ἀ ree alloys with 64, 70, and 73 at.%Li in the Ag-Li alloy system were 
synthesized in a molybdenum crucible using an induction furnace in a 
glove-box. ἀ e preparation of a high-quality Ag-Li gamma-brass was diffi-
cult because of volatility and reactivity of lithium. ἀ e ingot was annealed 
at 458 K for 10 days. Only the 64 at.%Li-sample was brittle enough to grind 
into powders in a glove-box. Figure A2.8 shows the diffraction spectrum 
for the 64.3 at.%Li-Ag sample [6]. ἀ e diffraction peaks confirm the for-
mation of gamma-brass with space group I m43 . In the phase diagram [1], 
this phase is described as γ3 with space group “ P m43 ?” A small peak at 2θ 
= 28.1° was attributed to β-phase AgLi phase precipitated as an impurity 
phase. More important to be noted is the appearance of a huge (211) peak, 
which is comparable to the most intense (330) and (411) peak in magni-
tude. ἀ is is apparently caused by Ag atoms densely distributed over the 
set of {211} lattice planes and is suggested to serve as a crucial role in its sta-
bilization (see Chapter 8, Section 8.4.3). More detailed structure analysis 
of this alloy was made, using the powder diffraction spectrum taken with 
the wavelength of 0.050226 nm at the beam-line BL02B2, Synchrotron 
Radiation Facility, Spring-8, Japan [6].

We attempted to synthesize Li10Pb3 gamma-brass, which is listed as a 
compound containing 52 atoms in its unit cell with space group P m43  
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fIguRe a2.8 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
64.3 at.%Li-Ag gamma-brass.
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in the Li-Pb phase diagram [1]. An appropriate amount of 99+%Li sheet 
and 99 %Pb shots was melted for 30 s in a molybdenum crucible using an 
induction furnace in Ar-gas circulating glove-box. ἀ e ingot thus obtained 
was annealed at 700°C for 10 h. As shown in Figure A2.9, almost all dif-
fraction lines were indexed in terms of Li3Pb, Li7Pb2, Li8Pb3, and Pb. No 
evidence for the growth of gamma-brass phase was confirmed. ἀ is lends 
strong support to the work by Zalkin and Ramsey [7,8]. We conclude the 
absence of Li10Pb3 gamma-brass phase in the Li-Pb alloy system.
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fIguRe a2.9 x-ray powder diffraction spectra taken with Cu-Kα radiation for 
23.0 at.%Pb-Li alloy.
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a2.2 gamma-BRasses In lIteRatuRe

a2.2.1 I-cell gamma-Brasses

ἀ e essence of each contribution to I-cell gamma-brasses is reviewed 
below:

A2.2.1.1 A. Westgren and G. Phragmén, Phil.Mag. 50 (1925) 311.
Carpenter pointed out for the first time the similarity of phase diagrams 
of Cu-Zn, Ag-Zn, and Au-Zn alloys. ἀ e structure of these three sys-
tems was studied by x-ray methods. ἀ e structure analogies are revealed 
such that, with increasing Zn concentration, fcc α-phase is followed by 
β-, γ-, and ε-phases before ending with Zn primary solid solution called 
η-phase. Owing to a significant difference in diffractive powers between 
constituent elements, β-phase in Ag-Zn and Au-Zn was safely proved to 
crystallize in the CsCl-structure. ἀ e CsCl-type structure was also sug-
gested for Cu-Zn β-phase, though its identification was difficult because 
of negligibly small difference in diffractive power between Cu and Zn. 
ἀ ey also found that all three γ-phases strikingly resemble each other and 
are also very similar to the phase in Cu-Al alloys. ἀ ey mentioned that 
all gamma-brasses contain 52 atoms in the unit cubic cell. ἀ e chemi-
cal formula Cu4Zn9, Ag4Zn9, and Au4Zn9 were suggested, since these 
correspond to compositions within homogeneous gamma-brass ranges. 
Unfortunately, their chemical formula proved to be incorrect later, as evi-
denced by Bradley and ἀ ewlis [A2.2.1.2].

A2.2.1.2 A.J. Bradley and J. Thewlis, Proc.Roy.Soc. (A) 112 (1926) 678.
ἀ e structure of the Cu-Zn gamma-brass was refined by using the data of 
Westgren and Phragmén [A.2.2.1.1]. ἀ ere is a fundamental relationship 
between the structures of gamma-brasses (and also alpha-manganese) and 
a bcc lattice. Beta-brass is bcc with the lattice constant 0.2945 nm. ἀ e unit 
cell contains two atoms. ἀ e lattice constant of gamma-brass is 0.885 nm 
and each unit cell contains 52 atoms. ἀ e side of the unit cube is therefore 
exactly three times that of beta-brass and its volume is 27 times as great. 
If gamma-brass had 54 atoms in the unit cell, they might be arranged in 
exactly the same way as the atoms of beta-brass, namely, on a bcc lattice. In 
this case, gamma-brass would only give rise to those lines, which appear on 
beta-brass. ἀ e existence of extra lines for gamma-brass can be accounted 
for if we suppose two of 54 atoms to be omitted without greatly displac-
ing the remaining 52 atoms. ἀ ese considerations show that a possible 
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structure of gamma-brass consists of a bcc arrangement with 1 atom in 
27 removed, the remaining atoms being slightly displaced, but necessarily 
in such a manner that the cubic symmetry is preserved. ἀ e authors could 
conclude that “IT (inner tetrahedron)” and “CO (cubo octahedron)” atoms 
are Zn and “OT (outer tetrahedron),” and “OH (octahedron)” atoms are 
noble metals Cu, Ag, or Au (see Chapter 6, Figure 6.2). In this way they 
were led to conclude that there are 32 Zn atoms and 20 Cu atoms in the unit 
cell. Bradley and ἀ ewlis concluded that the chemical formulas proposed 
by Westgren and Phragmén [A2.2.1.1] were incorrect and concluded that 
the true formulas should be Cu5Zn8, Ag5Zn8, and Au5Zn8.

A2.2.1.3  A.F. Westgren and G. Phragmén, Metallwirtschaft 7 
(1928) 700; Trans. Farad. Soc. 25 (1929) 379.

ἀe  e/a = 21/13 rule for gamma-brass was first pointed out in 1928. ἀ e 
authors stated as follows: “When Cu, Ag, or Au is combined with a diva-
lent metal (Zn, Cd, etc.), the homogeneity range of gamma-brass phase 
corresponds to the formula of the type Cu5Zn8, Ag5Cd8, etc., and if they 
are alloyed with a trivalent metal (Al, etc.), the concentration interval of 
the phase includes values corresponding to formula of the type Cu9Al4. In 
these phases, there are 21 valency electrons per 13 atoms.” ἀ e regulari-
ties concerning the ratio of valency electrons to atoms are also mentioned 
in beta-phase with the ratio 3:2 and in close-packed hexagonal structure 
(ε-phase) with the ratio 7:4. Note that their proposal on Cu9Al4 was made 
before the detailed structure refinement by Bradley in 1929 (see A2.2.2.2).

A2.2.1.4 A.J. Bradley and C.H. Gregory, Phil. Mag. 12 (1931) 143.
A considerable resemblance was expected in two gamma-brasses Cu5Zn8 
and Cu5Cd8. As a first step, cadmium atoms simply replaced Zn atoms and 
an attempt was made to get an agreement between calculated and observed 
intensities by adjusting the parameters. However, this turned out to be 
impossible. ἀ ey were led to a very definite but unexpected conclusion. 
Although the positions occupied by the 52 atoms are similar in Cu-Zn and 
Cu-Cd, the distributions of the atoms are quite different. ἀ e best agree-
ment was obtained by putting 16 Cu atoms into IT and OT, whereas 4 Cu 
and 32 Cd atoms are put into OH and CO in a random way.

A2.2.1.5 R.E. Marsh, Acta Cryst. 7 (1954) 379.
ἀ e refinement of crystallographic parameters for Ag5Zn8 gamma-brass 
was undertaken by least-squares analyses of powder and single-crystal 
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x-ray diffraction photographs with Cu-Kα radiation. A small single crys-
tal was isolated from the ingot and was oriented by Laue photography. 
Space group was confirmed to be I m43 .

A2.2.1.6  O.v. Heidenstam, A. Johansson, and S. Westman, 
Acta Chem.Scand. 22 (1968) 653.

ἀ e atomic structure of Cu5Zn8, Cu5Cd8 and Cu9Al4 gamma-brasses was 
investigated by using neutron powder diffraction method. Both Cu5Zn8 
and Cu5Cd8 have been reported to belong to space group I m43 , while 
Cu9Al4 belongs to P m43 . ἀ e structure was described in terms of the two 
clusters, each comprising 26 atoms. ἀ e completely ordered Au5Zn8 type 
distribution is seen to give the best agreement with the observation. But 
somewhat randomized versions cannot be completely ruled out. Regarding 
Cu5Cd8, the model reported by Bradley and Gregory was found to be the 
best one.

A2.2.1.7  A. Johansson, H. Ljung, and S. Westman, Acta 
Chemica Scandinavica 22 (1968) 2743.

Single-phase gamma-brass NixZn100–x (15.9 ≤ x ≤ 19.7) alloys were studied. 
ἀ e neutron diffraction studies were made for the x = 17.7 sample. Its space 
group was identified as I m43 . Among various models, Ni2Zn11 with Ni on 
sites OT resulted in the best fit. In this model, there are no Ni-Ni contacts. 
In general, the minimum number of like-atom contacts is favored in the 
gamma-brass structure. Assuming Fe-Zn gamma-brass to be analogous 
to Ni-Zn gamma-brass, they carried out a refinement, but final values may 
be still less accurate.

A2.2.1.8  V.A. Edstrom and S. Westman, Acta Chemica 
Scandinavica 23 (1969) 279.

Single-phase PdxZn100–x gamma-brasses (x = 18.0 and 20.0) were analyzed. 
ἀ e number of atoms per unit cell turned out to be N = 51.8 for x = 18.0.

A2.2.1.9  L. Arnberg and S. Westman, Acta Chemica 
Scandinavica 26 (1972) 513.

ἀ e Ir15.3Zn84.7 sample was found to be a single-phase gamma-brass. Both 
single crystal and powder data showed it to be bcc with space group I m43 . 
ἀ e gamma-brass phase seems to be homogeneous between 15.3 and 15.7 
at.%Ir. ἀ e lower composition corresponds almost exactly to the stoichio-
metric composition Ir2Zn11.
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A2.2.1.10  L. Arnberg and S. Westman, Acta Chemica 
Scandinavica 26 (1972) 1748.

ἀ e powder x-ray diffraction data were taken for Ag-Li alloy, using mono-
chromatized Cu-Kα radiation with a focusing Guinier-Hagg camera of 
80 mm diameter.

A2.2.1.11  J.K. Brandon, R.Y. Brizard, P.C. Chieh, R.K. McMillan, 
and W.B. Pearson, Acta Cryst. B30 (1974) 1412.

ἀ e atomic structure of Cu5Zn8, Cu5Cd8, and Fe3Zn10 was determined by 
using single-crystal x-ray diffraction techniques with Mo-Kα radiation. 
A good agreement with earlier results was confirmed in the refinements 
of Cu5Zn8 and Cu5Cd8 with support of the ordering in the former, and 
absence of any Cd on sites IT and OT in the latter. ἀ e refined structure of 
Fe3Zn10 gave different results from those by Johansson et al. [6].

A2.2.1.12  J.K. Brandon, W.B. Pearson, P.W. Riley, C. Chieh, and 
R. Stokhuyzen, Acta Cryst. B 33 (1977) 1088.

ἀ ey studied both Al8V5 and Al8Cr5 gamma-brasses using the GE XRD-6 
x-ray diffractometer with Mo-Kα radiation. It is found that Al8V5 has 
I-cell, whereas Al8Cr5 has R-cell. If an increase in electron concentration 
per unit cell is responsible for the stabilization of R-cell structure, it must 
be presumed that V absorbs some electrons provided by Al into its hybrid-
ized bands having mainly the d-character. If one electron per V atom were 
absorbed, this would allow three filled bands below the Fermi level and the 
electron concentration in the valence band would be 76 (= 20 × (–1) + 32 
× 3) per 52-atom cell for the composition Al8V5. However, it is unknown 
whether the absorption of electrons would be as great as this.

Note added by the present author: ἀ eir interpretation is not consistent 
with the data listed in Table 10.2 (see Chapter 8, Section 8.3.2, and Chapter 
10, Section 10.7).

A2.2.1.13  T. Noritake, M. Aoki, S. Towata, T. Takeuchi, and 
U. Mizutani, Acta Cryst. B 63 (2007) 726.

ἀ e atomic structure of Ag36Li64 gamma-brass was determined by ana-
lyzing the powder diffraction pattern taken with the use of synchrotron 
radiation beam with the wavelength of 0.050226 nm. It turned out that the 
compound contains 52 atoms in its unit cell with space group I m43  and 
that Li atom enters exclusively into sites IT and CO, whereas Ag atom into 
sites OT and OH in the 26-atom cluster. Small amounts of Li also exist in 
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sites OT and OH, resulting in chemical disorder. ἀ ey revealed that the 
volume of IT and CO shrinks, while that of OT and OH expands relative to 
that of the corresponding polyhedra in the original bcc lattice and that this 
is a universal feature found in other gamma-brasses like Cu5Zn8 and Al8V5, 
for which the structure data are available.

a2.2.2 p-cell gamma-Brasses

ἀ e essence of each of the following contributions to P-cell gamma-brasses 
is reviewed below:

A2.2.2.1  E.R. Jette, G. Phragmén, and A.F. Westgren, 
J. Inst. Metals, 31 (1924) 193.

ἀ e x-ray studies were made for the C16-type CuAl2, γ− and β-phases in 
the Cu-Al alloy system. ἀ ey measured both lattice constant and density 
for 30.9, 37.0, and 43.9 at.%Al gamma-brasses and revealed the number of 
atoms per unit cell to decrease with increasing the Al concentration.

A2.2.2.2 A.J. Bradley, Phil. Mag. 6 (1929) 878.
ἀ e powder diffraction data were taken for Cu100-xAlx (30.9<x<35.6) 
gamma-brasses. ἀ e structure was proved to be cubic. Moreover, some 
additional lines, which belong to planes with h + k + l = odd, were 
observed. From this it was concluded that the unit cube is primitive and 
not body-centered in contrast to Cu-Zn gamma-brass. ἀ e structure of 
Cu-Al gamma-brasses was deduced to be cubic with 52 atoms per unit cell 
and could be best understood if the two subgroups of atoms are consid-
ered. ἀ ere are 16 Al atoms and 36 Cu atoms in the “ideal” alloy, so that 
it is represented by the stoichiometric formula Cu9Al4 corresponding to a 
composition with 30.8 at.%Al.

A2.2.2.3 A.J. Bradley and P. Jones, J. Inst. Metals. 51 (1933) 131.
ἀ e two Cu100-xAlx (x = 25.0 and 28.3) alloys obtained by quenching from 
temperatures 850 and 1000°C, respectively, turned out to be a single β′-phase 
with the CsCl-structure. It was also shown that gamma-brass phase exists 
between 30.9 and 35.6 at.%Al and the structure modification takes place, 
when Al concentration further increases. In the former, the atomic struc-
ture of the alternate clusters is identified. ἀ is is in agreement with earlier 
investigations and confirms the formula Cu9Al4 for the gamma-brass. ἀ e 
gamma-brass structure is modified beyond 35.6at.%Al. ἀ ese alloys are no 
longer cubic but the departure from cubic symmetry is so slight that it is 
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possible to take an assumed value for the lattice spacing, which is equal to 
the cube root of the volume of the unit cell.

A2.2.2.4  A.J. Bradley, H.J. Goldschmidt, and H.J. 
Lipson, J. Inst. Metals, 63 (1938) 149.

ἀ ey studied the structure of totally 24 Cu-Al alloys over the composi-
tion range 30.9 to 50.2 at/%Al by using x-rays with Co-Kα radiation and 
revealed that an increase in Al content yields five phases including three 
gamma-brass structures denoted as γ, γ1, and γ2 plus ζ(Cu4Al3) and η(CuAl) 
phases, all of which are derived from the same elementary body-centered 
cube. With increasing the Al content beyond Cu9Al4, the lattice constant 
gradually increases but the density decreases. ἀ e number of atoms per 
cell was found to be almost 52 within γ-phase over the range 31.3 to 35.2 
at.%Al. In Al contents over 35.4 and 38.3 at.%, the lattice spacing becomes 
fairly constant but the density decreases steadily. ἀ is is referred to as 
γ1-phase and the number of atoms per cell is distributed over 51.6 to 50.9, 
that is, more or less one vacancy is introduced into γ-phase. When Al con-
tent increases beyond 38.3 at.%, the lattice spacing begins to decrease as 
does the density. ἀ is is γ2-phase and the number of atoms per cell is dis-
tributed over 50.5 to 49.7. Hence, there is a gradual elimination of atoms 
with increasing Al content. ἀ e lines become broader at low angles and are 
split into many components at higher angles. When the Al content reaches 
35.5 at.%, there is a sudden change in symmetry.

A2.2.2.5 S. Westman, Acta Chem. Scand. 19 (1965) 1411.
ἀ e x-ray powder and single-crystal diffraction photographs were taken, 
using monochromatized Cu-Kα radiation. ἀ e composition of a single-
phase sample was Cu68.5Al31.5 close to the stoichiometric Cu69.2Al30.8 or 
Cu9Al4. ἀ e lattice constant turned out to be a = 0.87023 nm. ἀ e structure 
was described in terms of two geometrically similar clusters of 26 atoms 
each and found to be consistent with that deduced by Bradley and Jones.

A2.2.2.6  O. v. Heidenstam, A. Johansson, and S. Westman, 
Acta Chem.Scand. 22 (1968) 653.

A refinement of the Cu9Al4 structure based on single-crystal diffrac-
tometer data was already carried out by Westman [A2.2.2.5]. However, 
some peculiarities remained at the end of the refinement, especially in 
the temperature factors of Al atoms. ἀ e present work is to repeat the 
refinement, using the old data with a program suited to the treatment of 
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cubic symmetry. In their analysis, individual thermal parameter values 
lay within one standard deviation from the average value. ἀ is is taken 
as evidence that the atomic distribution deduced by their group must be 
quite reliable.

A2.2.2.7  R. Sokhuyzen, J.K. Brandon, PC. Chieh, and W.B. 
Pearson, Acta Cryst. B30 (1974) 2910.

Gamma-brass Cu9Ga4 is cubic with space group P m43 . Single-crystal dif-
fractometer data were obtained using the Zr-filtered Mo-Kα radiation. ἀ e 
structure was refined from 140 observed reflections. ἀ ree slightly differ-
ent gamma phases exist in the Cu-Ga system in the composition range 
from 30 to 42.5 at.%Ga. ἀ e refinements were carried out starting with 
coordinates of Cu9Al4 reported by Westman [A2.2.2.5] and Heidenstam et 
al. [A2.2.2.6]. ἀ e chemical disorder exists on the sites CO in the clusters 
“a” and “b” in contrast to Cu9Al4.

A2.2.2.8  J.K. Brandon, R.Y. Brizard, W.B. Pearson, and 
D.J.N. Tozer, Acta Cryst. B33 (1977) 527.

Single crystals of Au9In4 and Ag9In4 were studied by using an automatic 
four-circle diffractometer with Mo-Kα radiation. ἀ e N = 52 atoms per 
unit cell was deduced for Au9In4 from the measured lattice constant and 
density. ἀ e starting structure model was that of Cu9Al4 determined by 
v. Heidenstam et al. [A2.2.2.6]. ἀ e refinement led to a structure, in which 
there was some slight mixing of In with Au on sites CO in the cluster “a” 
and some slight mixing of Au with In on sites CO in the cluster “b”. Instead, 
accurate structure determination for Ag9In4 appears remote because of 
the small number of observable reflections with h + k + l = odd resulting 
from a small difference in atomic scattering factors between In and Ag. 
Nevertheless, they have established without doubt that Ag9In4 has a primi-
tive cubic cell rather than a bcc cell. Evidence for the primitive cell comes 
from the observation of 12 very weak h + k + l = odd reflections. ἀ ey also 
confirmed that Co-Zn gamma-brass has an I-cell (see Figure A2.7).

A2.2.2.9 L. Arnberg and S. Westman, Acta Cryst. A34 (1978) 399.
ἀ e crystal structure of Cu9Al4 has been further refined by using a 
Cu35.4Al16.6 or 31.9 at.%Al-Cu single-crystal with graphite-monochroma-
tized Cu-Kα radiation. ἀ e atom position parameters do not differ much 
from those given by Heidenstam et al. [A2.2.2.6] but the precision is bet-
ter by a factor of ~2 in the standard deviations. ἀ e anisotropy of thermal 
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vibrations is discussed by plotting their directional dependence in the form 
of thermal ellipsoids. In the cluster “a,” thermal vibrations of Al atoms on 
the IT and Cu atoms on the OT are directed toward the vacancies at 0, 0, 0 
and 1/2, 1/2, 1/2. In the cluster “b,” however, only remarkable oscillations 
along these directions are seen in Cu atoms on the IT, whereas Cu atoms 
on the OT vibrate isotropically.

A2.2.2.10  J.K. Brandon, H.S. Kim, and W.B. Pearson, 
Acta Cryst. B35 (1979) 1937.

Single-crystal x-ray diffraction experiments with Zr-filtered Mo-Kα radi-
ation revealed that the alloy of composition Mn3In has a gamma-brass 
type structure with space group P m43  and lattice constant a = 0.942 nm. 
ἀ ey observed weak but easily visible reflections of type h + k + l = odd, 
indicating that Mn3In has a primitive cubic lattice.

Why the two different ordering schemes of Cu9Al4 and Mn3In occur 
among P-cell gamma-brass structures can be understood in terms of pack-
ing efficiencies at the respective radius ratios of the two constituent ele-
ments and in terms of maximizing the number of In-Mn neighbors while 
minimizing the number of In-In neighbors in the structure. ἀ e location 
of the larger In atoms on sites OH and CO in the cluster “b” maximizes 
the packing fraction in I-cell instead of P-cell. Going from I-cell to P-cell 
reduces the number of contacts for the large In atoms with themselves and 
increases the number of unlike In-Mn contacts. ἀ is is the reason why 
Mn3In has a P-cell rather than an I-cell.

a2.2.3 f-cell gamma-Brasses

ἀ e essence of each contribution to F-cell gamma-brasses is reviewed 
below.

A2.2.3.1 A. Westgren and G. Phragmén, Z. Metallkd. 18 (1926) 279.
ἀ e powder diffraction photographs were taken for three Cu-based gamma-
brasses containing 61 at.%Zn, 31 at.%Al, and 20 at.%Sn. ἀ e strongest dif-
fraction peak was observed at Σh2 = 72 for Cu-Sn gamma-brass, which was 
four times as large as Σh2 = 18 for both Cu-Zn and Cu-Al gamma-brasses. 
ἀ is indicates that the unit cell is twice as large as that in the prototype 
gamma-brasses. ἀ e measured density is 8.95 g/cm3 and the lattice constant 
is deduced to be 1.791 nm, which is indeed almost twice that of Cu5Zn8 
gamma-brass (a = 0.887 nm). ἀ e number of atoms in the unit cell is esti-
mated to be 416. ἀ is is precisely eight times as large as those in already 



appendix 2: crystal structures of gamma-Brasses    ◾    317

discussed Cu-Zn and Cu-Al gamma-brasses and confirmed that the unit 
cell of Cu4Sn gamma-brass is constructed by doubly stacking the unit cell 
of the prototype gamma-brass along the x-, y-, and z-directions.

A2.2.3.2 A. Westgren and G. Phragmén, Z.anorg.Chem. 175 (1928) 80.
ἀ ey reported the x-ray structure data for α-, β-, γ-, ε-, and η-phase Cu-Sn 
alloys. ἀ e β-phase was identified as the bcc structure containing 2 atoms 
in its unit cell with lattice constant a = 0.2972 nm. ἀ is could confirm 
Hume-Rothery’s postulate that the structure of 15 at.%Sn is close to 16.6 
at.%Sn corresponding to Cu5Sn with e/a = 3/2 and is analogous to that in 
CuZn beta-brass.

ἀ ere is a Cu-Sn phase very similar to those of γ-Cu-Zn and γ-Cu-Al 
phases. It crystallizes into the fcc structure containing 416 atoms with 
the lattice constant 1.791 nm. ἀ e chemical formula Cu31Sn8 (20.5 at.%Sn) 
was proposed to be the best, since the valence electron concentration 
becomes 21:13 in agreement with those of prototype Cu5Zn8 and Cu9Al4 
gamma-brasses.

A2.2.3.3 J.D. Bernal, Nature, Lond. 122 (1928) 54.
ἀ e Cu4Sn single-crystal is found to have a cubic structure with a face 
centered lattice of side 1.792 nm, thus confirming the powder photograph 
observation of Westgren and Phragmén [see Section A2.2.3.1]. With a cell 
of this large size, it is difficult to ascertain the number of atoms in the cell. 
However, its close relation to Cu5Zn8 gamma brass worked out by Bradley 
and ἀ ewlis, which has a cell of almost exactly half the dimensions, 0.887 
nm and gives intensities of reflections for the 50 corresponding planes of 
almost identical values, makes it almost certain that the total number of 
atoms in the cell is 52 × 8 = 416. Such a number cannot be made up from 
molecules of Cu4Sn and the most probable values to fit with the density 
8.95 are 328 atoms Cu and 88 atoms Sn, which makes the formula Cu41Sn11. 
Note that the chemical formula proposed by Westgren and Phragmén cor-
responds to 20.5 at.%Sn, whereas that by Bernal to 21.15 at.%Sn.

A2.2.3.4 J.S.L.Leach and G.V.Raynor, Proc.Roy.Soc. A224 (1954) 251.
ἀ e structure of Cu12Sn2Al2 showed a complex diffraction pattern very 
similar in distribution and intensity of diffraction lines to that of the 
ordered gamma-brass Cu41Sn11. ἀ e lattice constant for Cu74.77Sn10.93Al14.3 
turned out to be 1.7783 nm, almost six times the side of the unit cube of 
the parent body-centered cubic structure (a = 0.2971 nm). ἀ e e/a value 
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of this compound is 1.6139 close to the value of 1.6 for Cu4Sn or 85/52 (= 
1.634) for Cu41Sn11.

A2.2.3.5  A. Johansson and S. Westman, Acta 
Chem.Scand. 24 (1970) 3471.

ἀ e gamma-brass-like phase with the approximate composition Pt3Zn10 is 
described in terms of face-centered cubic structure with a lattice param-
eter of ~1.811 nm with space group F m43 . ἀ e structure is formed by 
four different clusters “a”, “b”, “c” and “d”, each with site-sets IT, OT, OH 
and CO. ἀ e sites OH in the cluster “a” are unoccupied, while those in the 
remaining three clusters “b”, “c” and “d” are occupied by a mixture of Pt 
and Zn. In the cluster “b,” either sites IT or OT are unoccupied and the 
two versions of this cluster are statistically distributed over the structure 
in equal numbers. ἀ e sites OT in all remaining clusters “a,” “c,” and “d” 
are filled with Pt, while the sites OH in clusters “b,” “c,” and “d” are occu-
pied by a mixture of Pt and Zn.

A2.2.3.6  L. Arnberg, A. Johansson, and S. Westman, 
Acta Cryst. A31 (1975) S98.

ἀ e structure of gamma-brass-like Cu41Sn11 compound was reported. It 
is described as face-centered cubic with the lattice constant of ~1.798 nm 
with space group F m43 . Four different clusters are centered at 0,0,0 etc, 
1/2, 1/2, ½, etc., 1/4, 1/4, 1/4, etc., and 3/4, 3/4, 3/4, respectively. Sn atoms 
occupy one CO, one OH and one OT site of three different clusters. ἀ ere 
are no Sn-Sn contacts in this structure model.

A2.2.3.7  M.H. Booth, J.K. Brandon, R.Y. Brizard, C. Chieh, 
and W.B.Pearson, Acta Cryst. B33 (1977) 30.

In cubic gamma-brasses with F-cell, four different 26-atom clusters, “a,” 
“b,” “c,” and “d” pack together in an arrangement of a superstructure of 
the bcc lattice. Two single crystals Cu41Sn11 and Cu9Sn3Ni were selected 
from crushed portions of each alloy. Space group F m43  was chosen, since 
typical gamma-brass structures can be described in terms of the 26-atom 
clusters packed about point sites of 43m  symmetry. In Cu41Sn11, the frac-
tional occupancy of IT in the cluster “a” is consistent with the measured 
density. Fractional occupancies in Cu9Sn3Ni, which has a similar Sn distri-
bution, occur on sites IT in the cluster “a” and also on sites CO in the clus-
ter “c.” Such additional vacancies found in Cu9Sn3Ni provide a mechanism 
to maintain valency electron concentration with fewer atoms per unit cell, 
since the percentage of low valency Cu atoms is smaller than in Cu41Sn11.
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ἀ e ordering in Cu41Sn11 is accounted for on the basis that Sn atoms shall 
not be close neighbors. It can be also shown that this condition cannot be 
satisfied in P- or I-cells at this composition. ἀ is may justify the adoption 
of F-cell. Similar ordering occurs in Cu9Sn3Ni. A further consequence of 
the observed ordering of Cu41Sn11 in F-cell is an increase in the number 
of unlike Sn-Cu contacts. Maximizing the number of unlike contacts as a 
factor in the stability of the gamma-brass structures is important.

a2.2.4 R-cell gamma-Brasses

ἀ e essence of each contribution to R-cell gamma-brasses is reviewed 
below.

A2.2.4.1 A.J. Bradley and P. Jones, J. Inst. Metals. 51 (1933) 131.
ἀ is work was the first to point out that cubic gamma-brass phase exists only 
between 30.9 and 35.6 at.%Al in the Cu-Al alloy system and that the struc-
ture modification occurs when the Al concentration exceeds 35.6 at.%.

A2.2.4.2 A.J. Bradley and S.S. Lu, Z. Krist. 96 (1937) 20.
ἀ ey showed Al8Cr5 gamma-brass to have a rhombohedral gamma-brass-
like structure and determined the atom positions.

A2.2.4.3  A.J. Bradley, H.J. Goldschmidt, and H.J. 
Lipson, J. Inst. Metals, 63 (1938) 149.

ἀ ey pointed out the occurrence of structural changes, as Al content 
increases beyond Cu9Al4. With increasing Al concentration, two derivative 
structures γ1 and γ2 of lower symmetry and fewer atoms per unit cell were 
mentioned. ἀ e cubic gamma-phase lasts up to 35 at.%Al, above which it is 
replaced by γ1, which is further replaced by γ2 above about 38 at.%Al.

A2.2.4.4 S. Westman, Acta Chem. Scand., 19 (1965) 2369.
ἀ e lattice constant is measured as a function of Al concentration over 
the range from 30.4 to 41.7 at.%Al covering both cubic and rhombohedral 
phases in the Cu-Al alloy system. ἀ e diffraction photographs and spec-
trogoniometer data identified space group R3m for the 38.9 at.%Al sample.

A2.2.4.5  T. Lindahl, A. Pilotti, and S. Westman, Acta 
Chem. Scand. 22 (1968) 748.

ἀ e pseudo-cubic unit cell was found to possess a = 0.94067 nm and α 
= 90.413° for Cu-Hg gamma-brass. A combination with the measured 
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density of 12.6 g/cm3 led them to conclude the chemical formula Cu15Hg11. 
A stoichiometric Cu15Hg11 may be derived from a hypothetical Cu8Hg5 
structure by substitution of Hg for Cu in the only one-fold Cu position in 
the primitive rhombohedral cell.

ἀ e chemical formula Cr9Al17 was proposed by substitution of Al for 
Cr in a one-fold position in the primitive cell. ἀ e pseudo-cubic cell was 
found to have its lattice constant a = 0.91031 nm and α = 90.326°.

A2.2.4.6 T. Lindahl and S. Westman, Acta Chem. Scand. 23 (1969) 1181.
ἀ e Cu-Hg alloy they studied was described in terms of a rhombo hedral 
structure with the pseudo-cubic lattice parameter of 0.94024 nm. It is 
alternatively described as an ordered version of the Cu5Cd8 structure-
type, with Hg in one six-fold and two three-fold positions in the primitive 
unit of the bcc cell. ἀ e chemical formula Cu7Hg6 was proposed.

A2.2.4.7  J.K. Brandon, W.B. Pearson, P.W. Riley, C. Chieh, and 
R. Stokhuyzen, Acta Cryst. B33 (1977) 1088.

ἀ e gamma-brasses with R-cell with α<90° appear to have valence elec-
trons in excess of 88 or 89 per 52-atom cell. ἀ ey developed a hypothesis 
such that the distortion is stabilized by the valence-band structure energy 
and R-cell structure occurs at higher electron concentration than cubic 
gamma-brass.

A single crystal for the x-ray analysis was selected from the powder having 
38.5 at.%Cr in Al. ἀ e x-ray analysis revealed space group R3m (No. 160). In 
gamma-brasses with R-cell, the crystallographic site sets in I-cell are subdi-
vided into IT1 + IT3, OT1 + OT3, OH3+ + OH3− and CO6 + CO3+ + CO3−, 
where superscripts + and − are used to distinguish OH and CO positions 
with components along [111] and [ ]111  relative to the center of the clus-
ter. IT1 and OT3 have components along [111], whereas IT3 and OT1 have 
components along [ ]111  from the center of the cluster. ἀ e body-centered 
rhombohedral cell with 52 atoms and α~90o allows convenient comparison 
of atomic coordinates with those in I-cell gamma-brasses.

In body-centered cubic gamma-brasses, the clusters of 26 atoms are 
roughly spherical in their overall shape. In rhombohedral Cr5Al8, where 
only one threefold symmetry axis along [111] exists, the ordering of atoms 
is such that smaller Cr atoms are predominant in the sites in that half 
of the cluster along the positive [111] direction. ἀ e larger Al atoms are 
predominant in the other half of the cluster. Hence, the observed atomic 
ordering, together with an expected collapse of the positive [111] half of 



appendix 2: crystal structures of gamma-Brasses    ◾    321

the cluster whenever an IT1 site is vacant, tends to give the clusters in 
Cr5Al8 a conical distortion with the point of the cone directed along the 
positive [111] direction. ἀ e situation, in which a rhombohedral distortion 
is induced as a result of an introduction of a vacancy into the IT1 site, is 
illustrated in Figure A2.10.

Because of the transition metals occurring in R-cell gamma-brasses, 
the valence electron concentration is hard to assess. ἀ e Al-Cu phase is 
the only one without a transition metal atom. If all sites are fully occupied, 
the Al-Cu phase would be homogeneous over the range 92.5 to 94.7 elec-
trons per 52-atom cell. If in the Al-Cr phases the transition metal contrib-
utes no electrons to the valence band, they would contain approximately 
93.6 to 97.5 electrons per 52-atom cell. Such evidence suggests that R-cell 
gamma-brasses probably occur at electron concentration higher than 
those at which cubic gamma-brasses are obtained. On this basis, it is pos-
sible to develop a hypothesis that R-cell phases are the results of a distor-
tion, which is stabilized by the band structure energy.

Suppose that there is a rhombohedral distortion of the structure with 
α < 90o, so that the six reciprocal planes (110), (011), ( )110 , ( )101 , and 

fIguRe a2.10 26-atom cluster “b” in R-cell. A symbol (◽) indicates the vacancy 
on tetrahedral site IT1. ἀ e distorted inner tetrahedron and the distorted plane 
of the cubo-octahedron are drawn with black lines.
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( )011  move in towards the origin and the other six planes ( )110 , ( )101 , 
( )011 , ( )110 , ( )101 , and ( )011  move away from the origin. Overlap of 
the Fermi surface on the six planes that moved towards the origin would 
exert forces on the planes in the direction of the origin and thus stabilize 
the distortion. Such overlap will increase the DOS so that electrons are 
accommodated at a significantly lower energy than in the cubic structure. 
A possible variation as a function of the angle of distortion, α, of the free 
energy of the rhombohedral structure is shown. Beyond a certain degree 
of distortion, the rhombohedral phase has a lower free energy than the 
other phase(s) and becomes a stable phase.

It is surprising to find that Al8V5 has I-cell, whereas Al8Cr5 has R-cell, 
since there are essentially no vacant sites in Al8V5 and it would be expected 
to have the same high electron concentration as Al8Cr5 under the assump-
tion that any transition metal contributes no electrons to the valence band. 
If the above hypothesis for the stability of phases with R-cell is correct, that 
is, R-cell requires the electron concentration higher than that for I-cell, 
Al8V5 should have the electron concentration lower than Al8Cr5. To reduce 
the electron concentration, only V, but not Cr, absorbs some electrons pro-
vided by Al into its hybridized bands, which have mainly d character.

Note added by the present author: See more discussion on the stability 
of Al8V5 gamma-brass in Chapter 8, Section 8.3.

A2.2.4.8 E.H. Kisi and J.D. Browne, Acta Cryst. B47 (1991) 835.
In this work, powders for neutron diffraction experiments were prepared 
by ball milling. ἀ e density was also measured. Neutron powder diffrac-
tion data were collected on the Debye-Scherrer-geometry high-resolution 
powder diffractometer, using λ = 0.1376 nm neutrons from a Ge mono-
chrometer. ἀ e starting model for refinement was that of stoichiometric 
Cu9Al4. It was found that 31.3 ~ 34.0 at.%Al alloys were cubic with space 
group P m43  while 36.8 and 38.8 at.%Al alloys were rhombohedrally dis-
torted with space group R3m.

ἀ e lattice constant increases with increasing Al content but at a decreas-
ing rate in the cubic region. Instead, the lattice constant decreases with 
increasing Al content in the rhombohedrally distorted region. ἀ e dis-
tortion from cubic is smaller than that reported for other rhombohedral 
gamma-brasses. Measured densities show an accelerated decline in the 
rhombohedrally distorted region. ἀ ere is a steady increase in the number 
of electrons per unit cell up to 34.0 at.%Al. However, within experimental 
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error, the electron concentration per cell in the distorted region becomes 
constant at 88 in agreement with the theory of Jones.

 (A) Al substitution in the cubic regime: ἀ e structure of stoichiometric 
Cu9Al4 gamma-brass is described as IT = Al, OT = Cu, OH = Cu, CO 
= Cu in the cluster “a”, IT = Cu, OT = Cu, OH = Cu, CO = Al in the 
cluster “b”. With an increase in Al content, significant amounts of 
Al substitution for Cu were found to occur on sites IT and OH in the 
cluster “b.”

 (B) Rhombohedrally distorted regime: ἀ e rhombohedral distortion 
was introduced into CO in the cluster “a,” and sites IT and OH in the 
cluster “b” in the original cubic atom arrangements above. Excess Al 
was added to sites CO-3+ in the cluster “a,” whereas structural vacan-
cies were introduced into sites IT-1, IT-3 and OH-3− in the cluster “b.” 
Among them, the site IT-1 in the cluster “b” is fully vacant in the 38.8 
at.%Al sample, meaning the loss of one Cu atom. Further refinement 
failed because the large number of parameters involved prevented 
the use of chemical constraints to enforce the correct Al content. An 
emphasis is laid on the contraction and distortion around sites IT-1 
and IT-3 and OH-3− in the cluster “b” but that of sites CO-3+ in the 
cluster “a” is small. It is therefore likely that the occupancy changes 
on the sites IT in the cluster “b” are primarily due to vacancies whilst 
on sites CO in the cluster “a” due to Al substitution.

ἀ e wide range of compositional stability for the gamma-brass structures 
in the Cu-Al system was postulated to occur by the formation of structural 
vacancies in order to keep the number of valence electrons per unit cell 
constant at 88 (see Chapter 7, Section 7.7). In the case of R-cell gamma-
brass, Brandon et al. (1977) [see Section A2.2.4.7] suggested that a zone 
splitting occurs which maintains a Fermi surface-Brillouin zone bound-
ary contact in a reduced cell containing 104 valence electrons per unit 
cell. Increasing the electron concentration would increase the rhombohe-
dral distortion. However, the present work confirmed that this is not the 
case in Cu-Al alloys, since the rhombohedral distortion can maintain 88 
valence electrons per unit cell.

Note added by the present author: It is possible to construct from the 
data in Section A2.2.4.8 the ordered R-cell Cu-Al gamma-brass. Ordered 
atom arrangements with space group R3m are as follows: IT-1 = 1Al, IT-3 
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= 3Al, OT-1 = 1Cu, OT-3 = 3Cu, OH-3+ = 3Cu, OH-3− = 3Cu, CO-6 = 6Cu, 
CO-3+ = 3Cu, CO-3− = 3Cu in the cluster “a” and IT-1 = vacancy, IT-3 = 
3Cu, OT-1 = 1Cu, OT-3 = 3Cu, OH-3+ = 3Cu, OH-3− = 3Cu, CO-6 = 6Al, 
CO-3+ = 3Al and CO-3− = 3Al in the cluster “b”. ἀ is yields Cu35Al16 con-
taining 51 atoms per cell as a result of the introduction of one vacancy on 
the site IT-1 at the cluster “b”. ἀ e total electron concentration per unit 
cell, e/uc, is 83. ἀ e resulting e/a is 83/51 = 1.627. Alternatively, CO-3+ 

= 3Al in the cluster “a” may be also chosen and otherwise the same as 
above. ἀ e chemical formula changes to Cu32Al19 and the value of e/uc is 
increased to 89 and e/a becomes 1.741. First-principles band calculations 
for these ordered structures will provide valuable information about the 
transformation into space group R3m.
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stabilization mechanism, 233–236
Windisch et al. (1994), 231–232

Al-Mg-Zn 1/1-1/1-1/1 approximant
80-atom cluster, 219–221
absence of center atoms, 219–221
Brillouin zone, 267–268
critical at |G|2 =50 and 46, 235–236, 

265
failure of two-wave NFE band 

calculations, 226
FsBz interactions, 219
Hafner and Krajcí (1993), 221–222
model structure, 219–221
Rietveld structure analysis, 221
Roche and Fujiwara (1998), 221, 223
Sato et al. (2001), 221, 223
Takeuchi and Mizutani (1995), 222
x-ray diffraction spectrum, 267–268

Al-Mg-Zn quasicrystal
60-fold (222100) zone planes, 267–268
Brillouin zone, 267–268
x-ray diffraction spectrum, 267–268

Al-Pd-Mn model structure, Zijlstra and 
Bose (2006), 94

Al-Re-Si 1/1-1/1-1/1 approximant
ordered compound, 244
pseudogap, 245
Re-5d/Al-3p orbital hybridization, 

245
Takeuchi et al. (2003), 244–245

Al-rich Cu-Al gamma-brasses
rhombohedral symmetry R3m, 165
splitting of x-ray diffraction peaks, 

165, 167
Al-3p/Al-3p orbital hybridizations, 

232–233
Al8Cr5, R-cell gamma-brass, 320–322
All-electron method, 57
Al8V5

Brandon et al. (1977), 191, 312
chemical disorder, 174, 191
model structure, 191
sp-partial DOS, 195–196

V-3d-states-mediated-FsBz-
interactions, 193–199

α-phase, 3, 5, 8
α/β phase transformation

Cu-X (X=Zn, Ga, Ge, etc) alloy 
systems, 97–119

fcc-Cu versus bcc-Cu, 97–119
model of Jones (I), 38–44, 97
to optimize the volume per atom, 

98–101
rigid-band model, 97–119
valence-band structure energy 

difference ∆Uv, 98–119
Amorphous phase, 273, 296
Antibonding subband, Al8V5, 193–195
Approximant, lattice periodicity, 10, 

122–123, 217
APW method, 85–88

allowed reciprocal lattice vectors, 
85–87

APW orbital, 87
motion of electron outside the MT 

sphere, 85
MT sphere, 85–86
spherical harmonics, 87
variational principle, 88

Arnberg, L., 311–312, 315–316, 318
Asahi et al. (2005a), Cu5Zn8 and Cu9Al4, 

140–156
Asahi et al. (2005b), TM2Zn11 (TM=Ni, 

Pd, Co and Fe), 176-191
Atom size ratio, 295
Atomic size ratio rule, 295–297
Atomic sphere, 59, 65–66
Atomic Sphere Approximation (ASA), 59, 

74–75
Atomic Surfaces (AS), 122
Atomic volume mismatch, 296
Audier et al. (1988), Al-Li-Cu 1/1-1/1-1/1 

approximant, 231
Au9In4, Brandon et al. (1977), 315

B

B2-compound
AgLi, 255–256
AgMg, 256–257
AlV, 273
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CuAu, 79
CuZn, 257–258
MnZn, 260–261
NiAl, 258–259
NiZn, 258–259

Basic vectors, 10
Basis function, 70, 87
Bcc-Cu, neck across the {110} zone planes, 

102
Bcc-Cu (bcc-I), determined from a 

minimum in the total-energy 
curve, 103

Belin-Ferré, 11, 218
Bergman phase, 123
Bernal, J.D., 317
β-Al3Mg2,121
β-phase, 3, 5, 8
Betterton et al. (1951-52), Cu-Al and 

Cu-Ga gamma-brasses, 160
Binding energy at the bottom of valence 

band E0

fcc-Cu, bcc-I, bcc-II, bcc-III, 104
its difference between fcc- and bcc-Cu 

∆E0, 107–108
Bloch theorem, 61, 67–68
Bohr radius, 23
Bonding subband, Al8V5, 193–195
Booth, M.H., 318–319
Bradley, A.J., 309–310, 313–314, 319
Bradley (1929), first identification of 

Cu9Al4, 313
Bradley and Taylor (1937), Ni-Al 

B2-compounds, 160
Bradley and ἀ ewlis (1926)

Cu-Zn gamma-brass, 13, 309–310
first identification of Cu5Zn8, Ag5Zn8 

and Au5Zn8, 13, 309–310
Bradley et al. (1938), vacancy in Cu-Al 

gamma-brasses, 165, 314
Bragg law, 12, 209
Brandon, J.K., 312, 315, 316, 320–322
Bravais lattice, F- and P-type lattices, 

134–135
Brillouin zone, 8, 38–39, 267–268

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
267–268

Al-Mg-Zn quasicrystal, 267–268

irreducible wedge, 78
simple cubic lattice, 53–54

Brillouin zone of gamma-brass, 90 
electrons per unit cell, 39, 160

c

Cancellation theorem, 69
Cd6M (M=Yb, Ca), geometrical disorder, 

137
Charge-density wave, 34
Chemical disorder, Al-Li-Cu 1/1-1/1-1/1 

approximant, 231–232
Chemical potential, 24
Chemistry, historical survey, 6–11
Clathrate

Ba8Si40, 124
Sr8Ga16Ge30, 124

CMA
stability, 49
stabilized without satisfying the 

matching condition, 272
structurally complex metallic alloys, 3

CMAs. See Structurally complex alloys
Co-Zn gamma-brasses, failure of 

DOS-e/uc plot, 212–213
Coherent-potential approximation (CPA), 

43
Cohesive energy, 21, 25

covalent bonding, 26
elements in periodic table, 22
its difference between fcc- and bcc-Cu, 

98–100
metallic bonding, 24–25

Complete solid solution, Ni-Pt, 28–29
Complex metallic alloys (CMA), 55, 119, 

121–137
Configurational entropy, 29
Core electron states, 63–64
Core electron states, orthogonality 

condition, 63–64
Coulomb potential energy, 56
Covalent bonding, 21
Co2Zn11, sizable Fourier components 

inside the Co-3d band, 185–186
Co2Zn11 and Fe2Zn11, 183–191
Critical energies, (VEC)fcc=(VEC)bcc, 110

golden rule, 112
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Critical lattice spacing 2d, 269–273
Critical reciprocal lattice vector |G|2

Co2Zn11,187–188
Cu5Zn8 and Cu9Al4, 156
group (I), (II) and (III) gamma-

brasses, 184
Critical reciprocal lattice vector |G| or 

|G|2, its definition, 55, 144, 151
Crystallography, historical survey, 11–14
CsCl-type structure, 13, 125–126
Cu-Al alloys, Jette et al. (1924), 12, 313
Cu-Al gamma-brass, R-cell gamma-brass, 

322–324
Cu-Cd gamma-brass, Bradley and 

Gregory (1931), 310
Cu-Cd gamma-brasses, 163–164, 300–301

large atomic size ratio, 163
large negative magnetic susceptibility, 

164
Cu-Ga gamma-brasses, Mizutani et al. 

(2010), 167–169
Cu-Sn gamma-brass

Arnberg et al. (1975), 318
Booth et al. (1977), 318
Westgren and Phragmén (1926), 

316–317
Cu3Al, Hume-Rothery (1926), 7
Cu9Al4

Arnberg and Westman (1978), 315
Bradley (1929), 13, 313
energy dispersion relations, 144
group (I) gamma-brass, 127–128, 140
its first identification, 313
O.v.Heidenstam et al. (1968), 311, 314
Westman (1965), 314

Cu3Cd4, CMA, 121
Cu9Ga4, Sokhuyzen et al. (1974), 315
Cu5Sn, Hume-Rothery (1926), 7
Cu31Sn8, Westgren and Phragmén (1928), 

7, 13, 317
Cut-and-projection method, 10, 122–123, 

217
Cu5Zn8

Bradley and ἀ ewlis (1926), 13, 
309–310

Brandon et al. (1974), 312
energy dispersion relations, 144
group (I) gamma-brass, 127–128, 140

its first identification, 309
NFE band calculations, 84–85
O.v.Heidenstam et al. (1968), 311
pseudogap, 81–85, 140–144
Westgren and Phragmén (1928), 7, 

317
CuZn B2-compound, 207–208

Hume-Rothery plot, 257–258

D

d-states-mediated-FsBz-interaction
its definition, 187
more than two critical |G|2, 187, 188, 

195-196, 214, 244, 264, 271
structure- and e/a-sensitive, 273
widening of critical lattice spacing, 

269–271
d-states-mediated-splitting, 128, 173–214

Al8V5, 193–195
d-states-mediated-FsBz-interactions, 

187
its definition, 187
orthogonality condition, 187
sp-partial DOS, 187–188, 195–196

∆Utotal-e/a curve, contributions other than 
∆Uv, 116–118

∆Uv-e/a curve, 116
∆Uv-VEC curve, 109-119

sensitive to ∆Va, 112–114
successive appearances of maximum 

and minimum, 109–119
van Hove singularity in DOS, 111–119
at variance with the model of Jones 

(I), 116
Density functional theory (DFT), 56, 

102–103
DFT-GGA-PBE theory, 56–57
DFT-LDA theory, 56–57
DFT theory

Kohn and Sham formulation, 56, 
102–103

total-energy, 56, 102–106
Diamagnetic susceptibility, 15, 164
Dimensionless figure of merit, 124
DOS

Ag5Li8, 200–201
AgMg B2-compound, 256–257



Index    ◾    329

Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-
1/1 approximants, 238–239

Al-Li-Cu 1/1-1/1-1/1 approximant, 
233–236

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
222, 224, 225, 230

Al8V5, 192–193
Co2Zn11 and Fe2Zn11, 183–191
Cu5Zn8 and Cu9Al4, 141–142
CuZn B2-compound, 257–258
derivation of VEC, 109
e/uc dependence, 160–171, 211–212
effect of form factors, 84–85, 228, 230, 

234–235
fcc- and bcc-Cu, 108, 111, 113, 115
free electron model, 41
hypothetical Cu, 31
MnZn B2-compound, 260–261
NiAl B2-compound, 258–259
Ni2Zn11 and Pd2Zn11, 176–178
NiZn B2-compound, 258–259
DOS pseudogap, extremely small 

energy separations in energy 
dispersions, 223

Double minima structure, Al-Mg-Zn 
1/1-1/1-1/1 approximant, 
223–225

e

e/a
Al-Li-Cu 1/1-1/1-1/1 approximant, 233
axial ratio in hcp noble metal alloys, 

157
in control of phase stability, 249
its clear-cut determination, 151–156
its definition, 6
its determination for the TM element, 

261
deviation from e/a=21/13 in group (II) 

gamma-brasses, 184, 214
electron per atom ratio, 2
electronic specific heat coefficient in 

noble metal alloys, 158
existing proposals for the TM element, 

253–255
Hume-Rothery electron concentration 

rule, 6

interference phenomenon of itinerant 
electron waves with sets of 
relevant lattice planes, 252

magnetic susceptibility in noble metal 
alloys, 158

e/a=21/13, group (I) gamma-brass, 140, 
156

e/a-dependent phase stability, 5
e/a dependent physical properties, 

156–159
e/a-dependent stability, α - and β-phases, 

38–44, 109–117
e/a for TM element, Raynor, 253–254
e/a versus VEC, 6, 43, 154, 249–253, 

277–281, 286
(e/a)c

α-phase, 38–39
β-phase, 38–39
free electron model, 38–39, 293–294
γ-phase, 38–39
its definition, 38–39, 293–294
Mott and Jones (1936), 38–39, 293–294

(e/a)Co, Co2Zn11, 190–191
(e/a)Cu, Cu5Zn8 and Cu9Al4, 152–156
(e/a)Fe

Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-
1/1 approximants, 242–243

Fe2Zn11, 191
(e/a)Li, Ag5Li8, 202–203
(e/a)Mn, MnZn B2-compound, 260–261
(e/a)Ni

NiAl B2-compound, 258–260
Ni2Zn11, 182–183, 260
NiZn B2-compound, 258–260

(e/a)Pd, Pd2Zn11, 182–183
(e/a)Ru, Al-Cu-TM-Si (TM=Fe or Ru) 1/1-

1/1-1/1 approximants, 242–243
(e/a)TM

elements in periodic table, 261–262
group (I), (II) and (III) gamma-

brasses, 184
melting temperature of 

B2-compounds, 262–263
surrounding effect, 262, 293
test of its soundness, 262

(e/a)total

Ag5Li8, 202
AgLi B2-compound, 255–256
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AgMg B2-compound, 256–257
Al-Cu-TM-Si (TM=Fe or Ru) 

1/1-1/1-1/1 approximants, 
242–243

Al8V5, 197–199
Co2Zn11 and Fe2Zn11, 188–191
Cu5Zn8 and Cu9Al4, 153–156
CuZn B2-compound, 257–258
group (I), (II) and (III) gamma-

brasses, 184
Hume-Rothery plot, 152
its derivation, 152–153
MnZn B2-compound, 260–261
NiAl B2-compound, 258–260
Ni2Zn11 and Pd2Zn11, 182–183
NiZn B2-compound, 258–260
table for various CMAs, 184, 270, 274, 

294
(e/a)total and VEC, design of a new CMA, 

280–281
(e/a)V, Al8V5, 197–199
e/uc

Cu-Al and Cu-Ga gamma-brasses, 
164–166

Cu-Zn and Cu-Cd gamma-brasses, 
161–162

effect of vacancies in unit cell, 160
its definition, 160–161
its solute concentration dependence, 

162, 166, 211
kept constant at a critical |G|2, 274–276
more practical electron concentration 

parameter for off-stoichiometric 
alloys than e/a, 170

Ni-Zn gamma-brasses, 211–212
role of (e/a)TM, 262
soundness of (e/a)TM for TM=Co and 

Ni, 211
table for various CMAs, 274, 294
e/uc versus critical |G|2 plot, 3/2-power 

law, 275–276
e/uc versus critical |G|2 plot on a log-log 

scale, 275–276
e/uc versus VE/uc plot, 171, 274–276

kept constant, 170–171, 274–276
matching condition, 170–171, 274–276

Edstrom, V.A., 311
Effective Fermi diameter, 55

Effective Fermi sphere, 55, 152, 272
Egami and Waseda (1984), 296
Elastic energy, 295
Electrochemical effects, 1, 256
Electron-electron interaction, 55
Electronegativity

its difference between elements, 1, 9, 
256

Miedema model, 29
Pauling, 3, 256

Electronic specific heat coefficient, 9, 
156–158, 250–251

Electrostatic energy, 23
Empirical e/a=3/2 rule for β-phase noble 

metal alloys, 7, 254–255
Empirical e/a=7/4 rule for ε-phase noble 

metal alloys, 8
Empirical e/a=21/13 rule for γ-phase noble 

metal alloys, 7–8, 13, 310
Energy dependence of {2        |K+G|}2

Ag5Li8, 200–203
AgLi B2-compound, 255–256
AgMg B2-compound, 256–257
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 242–243
Al8V5, 197–199
Co2Zn11 and Fe2Zn11, 188–191
CuZn B2-compound, 257–258
itinerant electrons outside the MT 

sphere, 152
its definition, 152
MnZn B2-compound, 260–261
NiAl B2-compound, 258–259
NiZn B2-compound, 258–259
Ni2Zn11 and Pd2Zn11, 182–183

Energy dispersions
Ag5Li8, 200–201
AgLi B2-compound, 255–256
Al-Mg-Zn 1/1-1/1-1/1 approximant, 

222, 224–225, 229
Al8V5, 192, 196–198
canonical gamma-brass structure, 

175–176
Co2Zn11 and Fe2Zn11, 185, 189
Cu5Zn8 and Cu9Al4, 144
fcc-Cu and bcc-Cu, 101–102
free electron model in Al-Mg-Zn 1/1-

1/1-1/1 approximant, 225
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NFE band calculations for Al-Mg-Zn 
1/1-1/1-1/1 approximant, 
228–229

Ni2Zn11 and Pd2Zn11, 177–178
symmetry points N, 175–176

Energy gap, Si, 32
Enthalpy of formation

Au-Ni, 27
heat of mixing, 26
Ni-Pt, 28

Entropy of formation
entropy of mixing, 26
Ni-Pt, 28

ε-phase, 5, 8
Eshelby (1956), 295
Exchange and correlation energy, 56, 103

f

F-cell gamma-brass, 126, 316–319
Arnberg et al. (1975), 318
Bernal (1928), 317
Booth et al. (1977), 318
Johansson and Westman (1970), 318
Leach and Raynor (1954), 317
Westgren and Phragmén (1926), 

316–317
Westgren and Phragmén (1928), 317

F-type 1/1-1/1-1/1 approximant, 
Al54Cu25.5Fe12.5Si8, 135–137

Fcc-Cu, neck across the {111} zone planes, 
101

Fcc-Cu and bcc-Cu
energy dispersions, 102
optimized structure, 101

Fermi energy versus Fermi level, 24
Fermi surface of highly concentrated 

noble metal alloys, 10
Fermi surface, Cu, 9
Fermi wavelengh λF versus critical lattice 

spacing 2d, matching condition, 
269–273

Fe2VAl
DOS, 278
pseudogap, 277–278
validity of a rigid-band model, 278
VEC, 277

Fibonacci chain, 122
First-principles band calculations

1/1-1/1-1/1 approximants, 220
FLAPW and LMTO-ASA, 16
Hume-Rothery electron concentration 

rule, 49–50
VEC, 6, 249

FLAPW band calculations
Al-Cu-TM-Si (TM=Fe or Ru) 

1/1-1/1-1/1 approximants, 
241–244

Cu9Al4, 140–143
Cu5Zn8, 140–143
fcc- and bcc-Cu, 99–102
total-energy of fcc- and bcc-Cu, 

102–106
FLAPW Fourier coefficient, Cu5Zn8, 

145–149
FLAPW-Fourier energy spectrum

Ag5Li8, 207, 209
Al8V5, 193–195
Co2Zn11 and Cu5Zn8, 186
Fe2Zn11 and Cu9Al4, 189
Ni2Zn11 and Pd2Zn11, 179
sp-partial DOS, 187–188, 196

FLAPW-Fourier method
Al8V5, 193–196
Cu5Zn8 and Cu9Al4, 143–151
extraction of critical reciprocal lattice 

vector, 143–151, 254, 287
FLAPW-Fourier spectrum

Cu5Zn8 and Cu9Al4, 146–147
Ni2Zn11 and Pd2Zn11, 180–181

FLAPW method
extraction of the FsBz interactions, 94
FLAPW-Fourier method, 95
FLAPW wave function outside the MT 

sphere, 94–95
Fourier spectrum analysis, 95
FsBz-induced pseudogap, 95
full-potential method, 92
interference of electron waves with 

specific set of lattice planes, 94
lifting of restriction of spherically 

symmetric MT potential, 92
a system containing more than two 

atoms per unit cell, 92–95
WIEN2k program package, 95
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FLAPW one-electron wave function, 
Fourier component of plane 
wave, 143–151

FLAW method, Freeman’s group FLAPW 
package, 95

Form factor
Ag5Li8, 203–206
Al-Li-Cu 1/1-1/1-1/1 approximant, 

233–236
Al-Mg-Zn 1/1-1/1-1/1 approximant, 

227–231
Cu5Zn8, 84, 228
its role on the formation of a 

pseudogap, 84, 227–231
Fractional coordinates, 175
Free electron model, 38–39, 176, 225, 

293–294
Free energy of formation

Au-Ni, 27
free energy of mixing, 26
Ni-Pt, 28

Friauf polyhedra, 121
Friedel (1954), 295
Friedrich, Knipping and Laue (1912), 11
FsBz interaction, Al8V5, 193–195
FsBz-induced pseudogap

Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-
1/1 approximants, 239, 243, 276

Al-Mg-Zn and Al-Li-Cu 1/1-1/1-1/1 
approximants, 265, 276

Cu5Zn8 and Cu9Al4, 151, 270–271, 276
group (I) gamma-brasses, 139–171
group (II) gamma-brasses, 173–199
Ni2Zn11 and Pd2Zn11, 178–182

FsBz-induced stabilization mechanism, 
128

FsBz interaction
Cu5Zn8 and Cu9Al4, 143–151
δ-function-like diffraction peaks, 273
interference of electrons with set of 

lattice planes, 54
its extraction at symmetry points N, 

143–151
NFE band calculations for Al-Li-Cu 

1/1-1/1-1/1 approximant, 
232–236

origin of a pseudogap, 50–55, 94
structure- and e/a-sensitive, 273

van Hove singularity, 112
wave function outside the MT sphere, 

141
FsBz interactions involving multi-zones

Al-Li-Cu 1/1-1/1-1/1 approximant, 
234–236

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
231

Fujiwara (1989), LMTO-ASA for Al-Mn 
approximant, 11, 50–51, 218

g

Gamma-brass
absence of Li10Pb3 gamma-brass phase, 

129, 307–308
Ag100-xLix (x=63.5~76), 129, 199–200, 

307
Ag5Li8, 129, 199–210
centered at e/uc=84, 275–276
Co2Zn11 and Fe2Zn11, 183–191
Cu9Al4, 13, 126–129, 140–156, 313–315
cubo-octahedron (CO), 125
Cu5Zn8, 13, 81, 126–129, 140–156, 309, 

311–312
e/a=21/13, 13, 128, 152–156
F-cell gamma-brass, 126, 316–319
at finite temperatures, 140
group (I), 127, 139
group (II) and (III), 127, 173–214
I-cell gamma-brass, 125, 309–313
inner tetrahedron (IT), 125
LMTO-ASA band calculations, 81–83
Mn3In, 127–128, 316
octahedron (OH), 125
off-stoichiometric compositions, 140, 

159–169, 210–213
outer tetrahedron (OT), 125
P-cell gamma-brass, 125, 313–316
R-cell gamma-brass, 126, 319–324
space group I m43 , 125–127
{330} and {411} zone planes with |G|2 

=18, 145–151
TM2Zn11 (TM=Fe, Co, Ni, Pd, etc), 128, 

174–191
26-atom cluster, 81, 125
vacancies, 140, 159–169, 210–213

γ-phase, 3, 5
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Generalized gradient approximation 
(GGA), 56

Giant unit cell, 10, 121
Glue atom, 1/1-1/1-1/1 approximant, 137
Golden mean, 122
Golden rule, 112, 118, 159

critical energies, 112
edge of the d-band, 112
its breakdown, 207
rigid-band model, 159

Goldschmidt radius, 2, 295
Ground-state properties, fcc- and bcc-Cu, 

98–100
Group (I) gamma-brass

its definition, 127–128
e/a=21/13, 140, 156
FsBz-induced pseudogap, 140–151
solid solution range, 140, 159–169, 

210–213
Group (II) gamma-brass, 173–199, 

210–213
d-states-mediated-splitting, 173–199
definition, 127–128
widening of critical |G|2 range , 

187–188, 195, 214
Group (III) gamma-brass

Ag-Li gamma-brass, 199–210
FLAPW-Fourier method, 207–210
its definition, 127–129

Guryan et al. (1988), Al-Li-Cu 1/1-1/1-1/1 
approximant, 231

h

Handbuch der Physik, 16
Hartree approximation, 56
Hartree energy, 56, 103
Hartree-Fock approximation, 56
Heat of fusion, Si, 26
Heidenstam, O.v., 311, 314–315
Henley and Elser (1986), Al-Mg-Zn 

1/1-1/1-1/1 approximant, 221
Hexagonal close packed noble metal 

alloys, axial ratio, 156–157
Historical development

Chemistry and metallurgy, 6–11
crystallography, 11–14

physics, 14–17
Hume-Rothery, 1, 7, 9, 199, 254, 256, 258, 

285
belief that all B2-compounds obey the 

e/a=3/2 rule, 254, 258
e/a=3/2 rule for β-phase, 7, 12, 254

Hume-Rothery (1948), “Electrons, Atoms, 
Metals and Alloys”, 285

Hume-Rothery (1962), Ag-Li gamma-
brass, 199

Hume-Rothery 15 % size rule, 296
Hume-Rothery electron concentration 

rule, 5, 8, 37, 173, 217, 249, 286
α/β phase transformation, 38–44, 

97–119
free electron model, 38–39, 285, 

293–294
gamma-brass, 13, 123–124, 128–129, 

288–289
its theoretical proof, 153
quasicrysals, 10, 253, 268
Trambly de Laissardière et al. (1995), 

219
Hume-Rothery matching condition, 55
Hume-Rothery plot

Ag5Li8, 200–203
AgLi B2-compound, 255–256
AgMg B2-compound, 256–257
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 242–243
Al8V5, 197–199
B2-compounds, 255–261
Co2Zn11 and Fe2Zn11, 188–191
Cu5Zn11 and Cu9Al4, 152–156
CuZn B2-compound, 257–258
derivation of (e/a)total, 152–156
derivation of effective (e/a)TM for TM 

element, 183, 188–191, 197–199, 
242–243, 254, 287

determination of square of the effective 
Fermi diameter (2kF)2, 152–156

MnZn B2-compound, 260–261
NiAl B2-compound, 258–259
Ni2Zn11 and Pd2Zn11, 182–183
NiZn B2-compound, 258–259
variance, 152–154

Hume-Rothery rules, 1, 8, 15
Mott and Jones (1936), 16
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Hume-Rothery size factor rule, 2
Hume-Rothery stabilization mechanism

Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-
1/1 approximants, 243

all CMAs characterized by a 
pseudogap at the Fermi level, 
273–277

basic concept, 55, 151–156
Cu-Zn and Cu-Cd gamma-brasses in 

solid solution range, 159–164
e/uc versus |G|2, 273–277
its empirical tests, 263–264
its universality, 269–273
orbital hybridization-induced 

pseudogap system, 243, 262–277
rigid-band model, 97–117, 159–166, 

210–212
Hume-Rothery-type stabilization, 55
Hyper-cubic lattice, 122

I

I-cell gamma-brass, 125, 127–128, 139, 
309–313

Arnberg and Westman (1972a), 311
Arnberg and Westman (1972b), 312
Bradley and Gregory (1931), 310
Bradley and ἀ ewlis (1926), 309–310
Brandon et al. (1974), 312
Brandon et al. (1977), 312
Cu5Zn8, 140
Edstrom and Westman (1969), 311
Ir2Zn11, 174
Johansson et al. (1968), 311
Marsh (1954), 310
Noritake et al. (2007), 312
O.v.Heidenstam et al. (1968), 311
Westgren and Phragmén (1925), 309
Westgren and Phragmén (1928), 310

I-cell versus P-cell gamma-brass, 289–290
Icosahedral quasicrystal and its 

approximant, RT-, MI- and Tsai-
type clusters, 129

Icosahedral quasicrystal and its 
approximant, type of quasi-
lattice, 134

Interference effect with different sets of 
lattice planes, Al8V5, 193

Interference effect with set of {330} and 
{411} lattice planes, 155

Interference phenomenon, itinerant 
electrons running in a periodic 
lattice potential, 52, 54

Interference phenomenon, Bragg law, 52
Intermediate phases, 30–31
Ionization energy, 25
Ir-Zn gamma-brass, Arnberg and 

Westman (1972), 174, 311
Irreducible wedge

Cu5Zn8 and Cu9Al4, 141
fcc and bcc lattice, 106–107
its partitioning, 106, 152

J

Johansson, A., 311, 318
Jones (1937), 8, 15-16

α-phase and β-phase, 16, 38–44
model of Jones (I), 38–44

Jones (1962), model of Jones (II), 44–46

K

kF-(e/a)total relation, 153, 182, 190, 199, 202, 
255, 260, 265

(2kF)2 versus critical |G|2 plot, 265–267
Kinetic energy, kinetic energy of 

electrons, 24–25, 30–34
Kisi, E.H., 322–324
Kisi and Browne (1991), Cu-Al gamma-

brasses, 165
Kittel (1956), 2
KKR-ASA equation, 65–69
KKR method

destructive interference, 66
multiple-scattering, 66

Kohn and Sham (1965), 56
Kohn and Sham formulation, muffin-tin 

zero, 103
Korringa-Kohn-Rostoker (KKR) method, 

57

l

Landau diamagnetism, 15, 164
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LAPW method
Bloch condition, 90
energy at the center of gravity in 

valence band, 89
energy independent LAPW basis 

function, 90
expansion into spherical harmonics, 89
LAPW orbital, 90
linearization, 88–92

Lattice constant, fcc- and bcc-Cu, 100
Lattice vector, 79
Leach, J.S.L., 317–318
Lindahl, T., 319–320
Linearization method, Andersen, 70
Li10Pb3, absence of gamma-brass phase, 

307–308
LMTO-ASA band calculations

Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-
1/1 approximants, 238–241

Al-Li-Cu 1/1-1/1-1/1 approximant, 
231–233

Al-Re-Si 1/1-1/1-1/1 approximant, 
244–245

Cu5Zn8, 81–83
LMTO-ASA method

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
222–225

CuAu B2-compound, 80
efficient scheme for first-principles 

band calculations, 85, 218
energy independent MTO, 75
logarithmic derivative on the MT 

sphere, 70
minimal basis, 85
MTO function, 70
orbital hybridization effect in Al8V5, 

192–193
orbital hybridization effects, 218
potential function, 69
spd-d orbital hybridization, 81–85

LMTO-wave function, Cu5Zn8, 81
Local density approximation (LDA), 56, 

141
Long-period super-lattice structure

Cu-rich Cu-Zn gamma-brasses, 163
Morton, 163, 212
Ni-rich Ni-Zn gamma-brasses, 212
Sato and Toth theory, 163, 212

Low energy-lying form factors, Al-Mg-Zn 
and Al-Li-Cu 1/1-1/1-1/1 
approximants, 230–231, 236

m

m35 symmetry, slight distortion, 132
Mackay icosahedron (MI)-type cluster, 

130–131
Al-Cu-Fe, Al-Cu-Ru, Al-Mn, 

Al-Pd-Re, 129
icosahedron, 131–132
icosidodecahedron, 131–132
inner icosahedron (II), 131–132
larger icosahedron, 131–132

Macroscopic atom (MA) model, 29
Madelung constant, 21
Marsh, R.E., 310–311
Massalski, 1, 156–159

FsBz interaction, 156
Massalski and King (1960), hexagonal 

close packed noble metal alloys, 
156–157

Massalski and Mizutani (1978)
36-cone model for gamma-brass, 157
electronic specific heat coefficient, 

156–159
Hume-Rothery phases, 10, 156–159
pseudogap in gamma-brass, 157–159

Matching condition
3/2-power law in e/uc versus critical 

|G|2 plot, 275–276
Al-Cu-TM-Si (TM=Fe and Ru) 1/1-

1/1-1/1 approximants, 241, 243, 
273–276

Cu5Zn8 and Cu9Al4, 148, 156
extraction of 2kF and critical |G| 

from FLAPW-Fourier method, 
144–156, 264

group (II) gamma-brasses, 273
its failure in Ag5Li8, 203–206, 272
its universal test, 269–277
2kF versus critical |G| plot, 265–266
(2kF)2 versus critical |G|2 plot, 265–266
orbital hybridization-induced 

pseudogap system, 269–277
theoretical confirmation of its validity, 

153, 264
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Matching condition for various CMAs, 
270

Matching condition with |G|2 =50, 
Al-Mg-Zn 1/1-1/1-1/1 
approximant, 222, 236

Matching condition
physics, 262–269
universal test, 269–273

Metallic bonding, 21, 23–25
MI-type 1/1-1/1-1/1 approximant, 

129–133, 220
unit cell, 133

Miedema, Miedema model, 29
Minimum solute concentration, 296
Mizutani et al. (2005), Al-Cu-TM-Si 

(TM=Fe or Ru) 1/1-1/1-1/1 
approximants, 236–241

Mizutani et al. (2006), Al8V5, 191–199
Mizutani et al. (2008), Ag5Li8, 200–210
Mizutani et al. (2009)

Al-Cu-TM-Si (TM=Fe or Ru) 
1/1-1/1-1/1 approximants, 
241–244

Hume-Rothery plot for 
B2-compounds, 255-261

Mizutani et al. (2010), Cu-Al and Cu-Ga 
gamma-brasses, 165-169

Mn3In
Brandon et al. (1979), 316
chemical disorder, 174

MnZn B2-compound, Hume-Rothery 
plot, 260–261

Model of Jones (I)
difficulties, 9, 97
diminishing neck, 40, 101–102
failure due to neglect of Cu-3d band, 

9, 43, 286
Model of Jones (II), 44–46, 110–117

pseudogap, 46
Model structure

Ag5Li8, 200
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 236–238
Al-Li-Cu 1/1-1/1-1/1 approximant, 

231–232
Al-Mg-Zn 1/1-1/1-1/1 approximant, 

219–221
Al8V5, 191

TM2Zn11 (TM=Ni, Pd, Co and Fe), 
174–175

Morton, long-period super-lattice 
structure, 163, 212–213

Mott, 11, 15–16
Mott and Jones (1936), 8, 16, 37–39, 49, 

124, 293–294
e/a-dependent stability of fcc, bcc and 

gamma-brasses in noble metal 
alloys, 37–39, 285

gamma-brass, 124
MT potential, its generation for fcc- and 

bcc-Cu, 99
MT sphere

its radius, 86, 99
spherically symmetric potential, 59, 65

Muffin-tin (MT) potential, 57
Muffin-tin (MT) sphere, 6, 57, 86, 99
Muffin-tin orbital (MTO) method, 57
Muffin-tin zero, 59, 103
Multi-zone effect

1/1-1/1-1/1 approximants, 246, 
264–265

Al-Li-Cu 1/1-1/1-1/1 approximant, 
234–236

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
228–231

n

NaCd2, CMA, 121
Nearly free electron model (NFE), 38–40, 

84–85, 226-231
Negative e/a for TM elements

Raynor (1949), 10, 253
Tsai et al. (1988), 10, 253

Negative valencies, Raynor (1949), 10, 253
NFE band calculations

Al-Li-Cu 1/1-1/1-1/1 approximant, 
234–236

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
226–231

Cu5Zn8, 84–85
n-wave approximation, 226–227

Ni-Zn and Co-Zn gamma-brass, solid 
solution range, 210–213

Ni-Zn gamma-brass, Johansson et al. 
(1968), 311
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Ni-Zn gamma-brasses
e/uc dependence of DOS, 211–212
Hume-Rothery stabilization 

mechanism, 211–212
long-period super-lattice structure, 

212–213
NiAl B2-compound, Hume-Rothery plot, 

258–259
Nishino (2005), Fe2VAl, 278
NiZn B2-compound, Hume-Rothery plot, 

258–259
Noble metal alloys, c/a, χ and γ, 156–159
Noritake et al. (2007), Ag5Li8, 207
Norm, 72, 92
Number of atoms per unit cell N

Cu-Al and Cu-Ga gamma-brasses, 
164–166

Cu-Zn and Cu-Cd gamma-brasses, 
161–164

Ni-Zn and Co-Zn gamma-brasses, 211
Number of electrons per unit cell. see 

e/uc
Number of valence electrons per unit cell. 

see VE/uc

o

Off-stoichiometric alloys, 159–160, 290
1/1-1/1-1/1 approximant

AlxMg39.5Zn60.5-x (20.5≤x≤50.5), 123
centered at e/uc=350, 275–276
chemical and geometrical disorder, 

136–137
F-type, 135–136
first-principles band calculations, 

217–219
FsBz-induced pseudogap, 275–277
FsBz interactions involving multi-

zones, 231
glue atoms, 137
its definition, 122–123
P-type, 135–136
space group Im 3, 135–136
space group Pm3, 135–136
type of lattice, 135–136

One-electron approximation, 55–56
One-electron band structure energy, 56
Open cages, 124

Orbital hybridization
among neighboring atoms, 23
bonding and antibonding states, 50–51
crystals, amorphous alloys and liquid 

metals, 273
LMTO-ASA, 50
Si, 26
spd-d, 81

Orbital hybridization effect
Al-Li-Cu 1/1-1/1-1/1 approximant, 

232–233
Co2Zn11, 186
irrelevant to a crystal-structure- 

and e/a-dependent phase 
stabilization mechanism, 273

Orbital hybridization-induced pseudogap
Al-Cu-TM-Si (TM=Fe or Ru) 

1/1-1/1-1/1 approximants, 239
Al8V5, 192–193

Orbital hybridization versus FsBz 
interaction, 273–277

Orthogonality condition, 60, 187
Orthogonality condition, core electron 

states, 63–64
Overlap integral, 70

p

P-cell gamma-brass, 125, 127–128, 139, 
313–316

Arnberg and Westman (1978), 315
Bradley (1929), 313
Bradley and Jones (1933), 313–314
Bradley et al. (1938), 314
Brandon et al. (1977), 315
Brandon et al. (1979), 316
Cu9Al4, 140, 314–315
Jette et al. (1924), 313
Mn3In, 174, 316
O.v.Heidenstam et al. (1968), 314
Sokhuyzen et al. (1974), 315
Westman (1965), 314

P-type 1/1-1/1-1/1 approximant
Al75(Mn1-xFex)17Si8 (0<x<0.29), 136–137
Al75Mn17Si8 approximant, 136–137

Pair potential approach, 29
Partial wave, 58, 78, 93, 141
Pauli exclusion principle, 24
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Paxton et al. (1997)
frozen potential approximation, 98
LMTO-ASA for fcc- and bcc-Cu, 98

Pd-Zn gamma-brass, Edstrom and 
Westman (1969), 311

Pearson, 14
Peierls, 15
Peierls transition, 34
Periodic density distribution, 122
Phase shift, 63, 93
Phonon glass and electron crystal, Slack, 

124
Physics, historical survey, 14–17
Pippard (1957), neck in the Fermi surface 

of Cu, 9, 43, 49
Poisson ratio, 295
Positive e/a for TM elements

Haworth and Hume-Rothery (1952), 
254

Ishimasa et al. (2004), 254
Mizutani et al. (2004), 254

Positron annihilation angular correlation 
curve, 9

Potential energy from the region inside 
the MT sphere, 103–104

Potential energy from the region outside 
the MT sphere, 103–104

Potential function, 67
Powder x-ray diffraction spectra taken 

with Rigaku, RINT-TTR, 
299–308

Primary solid solution, 295
Principal symmetry points, 39, 144
Pseudogap

Ag5Li8, 200–201
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 238–239, 
241–242

Al-Li-Cu 1/1-1/1-1/1 approximant, 
232–236

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
222–231

Al-Mn approximant, 50–51
Al-Re-Si 1/1-1/1-1/1 approximant, 245
Al8V5, 192–196
Co2Zn11 and Fe2Zn11, 183–189
Cu9Al4, 140–151
Cu5Zn8, 81–85, 140–151

depth and width, 31–34
effects due to Ni-3d and Pd-4d band, 

176–182
Fe2VAl, 277–278
formation of bonding and antibonding 

states, 151
formation of stationary waves, 150–151
FsBz-induced pseudogap, 54, 144–151
FsBz interactions, 50–54
FsBz interactions involving multi-

zones, 228–231, 234–236, 246, 
264–265

hypothetical Cu with a rectangular 
DOS, 31–34

its definition, 11
low energy-lying form factors, 231, 

236
Massalski and Mizutani (1978), 

157–159
Mott (1969), 11
Ni2Zn11 and Pd2Zn11, 176–182
orbital hybridizations, 50–51
plane wave components at its edge, 144
soft x-ray emission spectra, 11, 218
structurally complex metallic alloys 

(CMAs), 119, 139
two possible mechanisms for its 

formation, 49–55
Pseudopotential method, 57
Purely FsBz-induced pseudogap system, 

possession of the Fermi 
diameter and critical |G| of 31 
(nm)-1, 265–267

   possession of critical lattice 
spacing 2d=0.40 nm, 269–271

q

Quasi-lattice
lattice nodes, 134
P- and F-type, 134
super-structure, 134

Quasicrystal, 10, 122, 217
Al-Cu-TM (TM=Fe, Ru and Os), 10, 

253, 279–281
Al-Mn, 11, 217
Al-Pd-TM (TM=Mn and Re), 10, 253, 

279–281
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possession of common (e/a)total, 
279–281

R

R-cell gamma-brass
Bradley and Jones (1933), 319
Bradley and Lu (1937), 319
Bradley et al. (1938), 319
Brandon et al. (1977), 320–322
Kisi and Browne (1991), 165–167, 

322–324
Lindahl and Westman (1969), 320
Lindahl et al. (1968), 319
pseudo-cubic cell, 126, 319–324
Westman (1965), 319

Radial wave function, 60
Raynor (1949), proposal on negative e/a 

values, 10, 253
Raynor, a belief that all B2-compounds 

obey the e/a=3/2 rule, 254, 258
Relative stability, 46, 206, 287
Relative stability of α- and β-phases, 

109–119
Rhombic triacontahedron (RT)-type 

cluster, 130
Al-Li-Cu 1/1-1/1-1/1 approximant, 129
Al-Mg-X (X=Zn, Ag, Cu and Pd) 1/1-

1/1-1/1 approximant, 129
dodecahedron, 130
Frank Kasper-type cluster, 129
icosahedron, 130
m35 symmetry, 132
rhombic triacontahedron, 130

Rhombohedral symmetry R3m
Al-rich Cu-Al gamma-brasses, 165–167
Ga-rich Cu-Ga gamma-brass, 167–169
its first finding in Cu-Al gamma-brass, 

313
role of vacancy, 165–169
Westman (1965), 319

Rietveld refinements with synchrotron 
radiation

Al-Re-Si 1/1-1/1-1/1 approximants, 244
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 236–237
Cu-Ga gamma-brasses, 167-169

Rigid-band model, 38, 43, 97–119, 
159–165, 212

golden rule, 159
RT- and Mackay icosahedron (MI)-type 

clusters, m35 symmetry, 132
RT-type 1/1-1/1-1/1 approximant

Al-Li-Cu 1/1-1/1-1/1 approximant, 
231–236

Al-Mg-Zn 1/1-1/1-1/1 approximant, 
219–231

truncated icosahedron, 130, 132
truncated octahedron, 132–133
unit cell, 133
Wigner-Seitz cell, 132–133

RT-type 1/1-1/1-1/1 approximants, critical 
at |G|2 =46 and 50, 230, 234–236

s

Samson, 121
Seebeck coefficient

thermoelectric materials, 124
a universal curve against VEC, 277

Set of critical lattice planes, 144
Shear modulus, 295
Shechtman et al. (1984), Al-Mn 

quasicrystal, 10, 217
Sine-type or cosine-type stationary wave, 

53
Six-dimensional space, 122
Size factor effects, 2
Skutterudite compound

filled skutterudite compounds RM4X12, 
124

unfilled MX3 (M=Co, Rh, Ir, X=P, As, 
Sb), 124

Slack (1995), phonon glass and electron 
crystal, 124

Slater (1937), development of APW 
method, 59

Soft x-ray emission spectrum
Belin-Ferrè, 11
Traverse et al. (1988), 218

Sokhuyzen, R., 315
Solid solution

Cu-Al and Cu-Ga gamma-brass, 
164–169
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Cu-Zn and Cu-Cd gamma-brass, 
159–164

Ni-Zn and Co-Zn gamma-brasses, 
210–213

Sommerfeld, 15
sp-partial DOS

Al8V5, 195–196
Co2Zn11, 187–188
FLAPW-Fourier energy spectrum, 

187–188
Space group F m43 , 126
Space group I m43 , 125
Space group P m43 , 125
Space group R3m, 126
spd-d orbital hybridization, Cu5Zn8, 81–85
Sphere-in-hole model, 295
Spherical Bessel function, 62
Spherical harmonic, 58
Spherical Neumann function, 62
Spin-density wave, 34
Square of critical reciprocal lattice vector 

|G|2, Cu5Zn8 and Cu9Al4, 
144–149

Square of the Fermi diameter (2kF)2, 152
Ag5Li8, 202
AgLi B2-compound, 255–256
AgMg B2-compound, 256–257
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 242
Al8V5, 197
Co2Zn11 and Fe2Zn11, 184, 190–191
Cu5Zn8 and Cu9Al4, 153–156
CuZn B2-compound, 257–258
group (I), (II) and (III) gamma-

brasses, 184
MnZn B2-compound, 260–261
NiAl B2-compound, 258–259
Ni2Zn11 and Pd2Zn11, 182–184
NiZn B2-compound, 258–259

Square of the Miller indices, 145
Stabilization mechanism

1/1-1/1-1/1 approximants, 217–247
Al-Li-Cu 1/1-1/1-1/1 approximant, 

233–236
Al-Mg-Zn 1/1-1/1-1/1 approximant, 

223–231
CMAs, 49, 269

Co2Zn11 and Fe2Zn11, 186–190
group (II) gamma-brasses, 173–174
orbital hybridizations, 51
quasicrystals, 49

Standard deviation, variance, 152–153
Structurally complex alloys, its definition, 

121–124
Structure factor

canonical structure factor, 78
its definition, 67
two-center notation of Slater and 

Koster, 78
Super-cell approximation, 44, 105, 119
Super-lattice, 13, 134–135, 163, 212–213, 

290, 302
Superconducting energy gap, Al, 33
Surrounding effect, 262, 293

t

Takeuchi et al. (2001), role of vacancies 
in 1/1-1/1-1/1 approximants, 
245–246

Takeuchi et al. (2003), Al-Re-Si 1/1-1/1-1/1 
approximant, 244–245

ἀ ermoelectric materials, 124
ἀ ird law of thermodynamics, 29, 140, 290
TM-Zn (TM=Mn, Fe, Co, Ni, Pd, Pt, Ir), 

174–175
TM2Zn11 (TM=Fe and Co), d-states-

mediated-FsBz-interactions, 188
TM2Zn11 (TM=Ni, Pd, Co, Pd and Fe), 

chemical disorder, 174–175
Tolerable size difference, 295
Total-energy, 21, 23

fcc- and bcc-Cu, 99–119
as a function of lattice constant, 41, 99
its definition, 56
its difference between two competing 

phases ∆Utotal, 103–119
various contributions, 105

Total-energy and valence-band structure 
energy, 102–119

Total-energy difference ∆Utotal

bcc-I, bcc-II, bcc-III, 104
between fcc- and bcc-Cu, 103, 116–117
as a function of VEC, 105, 116–119
relative stability, 117, 287
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Transition metal (TM) element, e/a, 5, 
128, 173–199, 241, 242–243, 
253–262

Traverse et al. (1988), soft x-ray emission 
spectra, 11, 218

Truncated octahedron, 57, 132
Tsai et al. (1988)

Al-Cu-TM (TM=Fe, Ru and Os) and 
Al-Pd-TM (TM=Mn and Re) 
quasicrystals, 10, 253

choice of Raynor’s negative e/a scheme, 
253, 280

Tsai-type 1/1-1/1-1/1 approximant, Cd6Ca 
and Cd6Yb, 131–132, 274

Tsai-type cluster
Cd6Yb, 132
dodecahedron, 131–132
icosidodecahedron, 131–132
tetrahedron, 130–131
Zn6Sc, 132

2/1-2/1-2/1 approximant
Al15Mg43Zn42, 123, 274–276
centered at e/uc=125, 274–276

v

Vacancy
Al-Mn-Fe-Si and Cd-Yb-Y 1/1-1/1-1/1 

approximants, 245–246
Cu-Al and Cu-Ga gamma-brasses, 

164–169
Cu-Zn and Cu-Cd gamma-brasses, 

159–164
its role on phase stabilization, 140
Ni-Zn and Co-Zn gamma-brasses, 

210–213
Valence-band structure energy difference 

∆Uv

as a function of ∆Va,, 114
as a function of VEC, 109–119
its definition, 109–110
its e/a dependence in the model of 

Jones (I), 40–43
its e/a dependence in the model of 

Jones (II), 44–46
rigid-band model, 105–119

Valence-band structure energy Uv, 26, 42
fcc Cu and bcc Cu, 38–44, 105

as a function of VEC, 97, 105–106
its definition, 42, 103–106

van Hove singularity
extrema in ∆Uv-VEC curve, 109–119
fcc- and bcc-Cu, 106, 114–117
fcc- and bcc-Cu in the model of Jones 

(I), 40–41
its definition, 39, 54
its effect on ∆UV , 119

Variance
Ag5Li8, 200, 202
AgLi B2-compound, 255–256
AgMg B2-compound, 256–257
Al-Cu-TM-Si (TM=Fe or Ru) 1/1-1/1-

1/1 approximants, 242–243
Co2Zn11 and Fe2Zn11, 188, 190–191
CuZn B2-compound, 257–258
MnZn B2-compound, 260–261
NiAl B2-compound, 258–259
Ni2Zn11 and Pd2Zn11, 182–183
NiZn B2-compound, 258–259

Variational principle, 80
VE/uc, its definition, 274
VEC

Cu5Zn8 and Cu9Al4, 142–143
electronic specific heat coefficient 

for 3d-transition metal alloys, 
250–251

first-principles band calculations, 6, 
249

its definition, 6
orbital hybridizations, 51–52
quasicrystals, 279–281
Slater-Pauling curve, 250
superconducting transition 

temperature of transition metal 
alloys, 250–251

table for various CMAs, 280
thermoelectric power in the Heusler-

type Fe2VAl, 250, 252
VEC dependence of ∆Uv, 109–117, 287
VEC versus e/a, see e/a versus VEC
Virtual crystal approximation (VCA), 44, 

105, 118
Volume per atom Va, 160

breakdown of the condition 
V Va

bcc
a

fcc= , 99
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fcc-Cu, bcc-I, bcc-II, bcc-III, 104–105
fcc-Cu and bcc-Cu, 41, 98–119
its effect on the width of 3d-band, 107

Volume per atom difference ∆Va, fcc- and 
bcc-Cu, 107–119

Volume per unit cell V0, 160

W

Westgren, powder x-ray diffraction, 12
Westgren and Phragmén (1925), α-, β-, γ- 

and ε-phases, 7, 309
Westgren and Phragmén (1926), gamma-

brasses, 13, 316–317
Westgren and Phragmén (1928), first 

proposal on e/a=21/13 rule, 7, 
13, 310

Westman, 14, 311–315, 318–320
Westman (1965), Cu-Al gamma-brass, 

165, 315
WIEN2k, FLAPW band calculations, 

99–104
Wigner and Seitz (1933), 7, 57

Wigner-Seitz cell, 24, 57–59
Wigner-Seitz cell, 58

Miedema model, 29
Wigner-Seitz sphere, 65
W.L. Bragg, 15

x

X-ray diffraction
fundamental reflections, 135
superlattice reflections, 135

X-ray diffraction spectrum
31.5 at.%Al-Cu gamma-brass, 302
60.0 at.%Cd-Cu gamma-brass, 301
15.0 at.%Co-Zn gamma-brass, 306
29.0 at.%Co-Zn gamma-brass, 306
31.0 at.%Ga-Cu gamma-brass, 302
64.3 at.%Li-Ag gamma-brass, 307
17.0 at.%Ni-Zn gamma-brass, 305
25.0 at.%Ni-Zn gamma-brass, 305
62.0 at.%Zn-Ag gamma-brass, 300
62.0 at.%Zn-Cu gamma-brass, 300
Al-Mg-Zn 1/1-1/1-1/1 approximant, 

267–268
Al-Mg-Zn quasicrystal, 267–268
Al8V5 gamma-brass, 303
Li10Pb3 alloy, 308
Mn3In gamma-brass, 304

z

Ziman (1961), eight-cone model for pure 
Cu, 157

Zn6Sc, geometrical disorder, 137




	Table of Contents
	Preface
	Chapter 1. Introduction
	Chapter 2. Chemical Bonding and Phase Diagrams in Alloy Phase Stability
	Chapter 3. Early Theories of Alloy-Phase Stability
	Chapter 4. First-Principles Band Calculations Using the Muffin-Tin Potential
	Chapter 5. Hume-Rothery Electron Concentration Rule Concerning the α/β Phase Transformation in Cu-X (X = Zn, Ga,Ge, etc.) Alloy Systems
	Chapter 6. Structure of Structurally Complex Metallic Alloys
	Chapter 7. Stabilization Mechanism of Gamma-Brasses Characterized by a FsBz-Induced Pseudogap
	Chapter 8. Stabilization Mechanism of Gamma-Brasses Characterized by Increasing Orbital Hybridizations
	Chapter 9. Stabilization Mechanism of 1/1-1/1-1/1 Approximants
	Chapter 10. The Interplay and Contrasts Involved in the Chemistry, Physics, and Crystal Structures of Alloys and Compounds
	Chapter 11. Conclusions
	Appendix 1: Atomic Size Ratio Rule
	Appendix 2: Crystal Structures of Gamma-Brasses
	Index
	Back cover

