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Crystallization kinetics of homopolymers:
bulk crystallization

9.1 Introduction

In discussing the crystalline state of polymers the concern up to now has been pri-
marily with equilibrium concepts and expectations. Although the fusion of polymers
is well established to be a problem in phase equilibrium, stringent experimental pro-
cedures must be employed to approach the necessary conditions. It is concluded
from equilibrium theory that for homopolymers of regular structure high levels of
crystallinity should be attained.(1) However, this conclusion is contrary to usual
experience. Since the crystalline phase only develops at a reasonable rate at tem-
peratures well below the equilibrium melting temperature, the state that is actually
observed in a real system is a nonequilibrium one. The constitution and properties
of the state that is achieved are the result of the competition between the kinetic
factors involved in the transformation and the requirements for thermodynamic
equilibrium. In a formal sense one is dealing with a metastable state. This general-
ization is not unique to polymer crystallization. It also holds for a vast majority of
substances that undergo a liquid to crystal transformation. For polymers, however,
kinetic control is the dominant factor. For example, the crystallization from the
melt of an n-alkane of about one hundred carbon atoms occurs extremely rapidly at
a temperature just infinitessimally below its equilibrium melting temperature. On
the other hand, a comparable crystallization rate in a low molecular weight linear
polyethylene fraction of the same molecular weight is only achieved at undercool-
ings of about 25 ◦C. Polymer crystallization only occurs at a reasonable rate at
temperatures well below the equilibrium melting temperature. The reasons for this
behavior will emerge from the discussion of crystallization kinetics that ensues.

Kinetic studies, by their nature, represent a general type of experimental ob-
servation. Therefore, caution must be exercised in deducing specific molecular
mechanisms from kinetic data. Very often several different mechanisms can ex-
plain the same experimental results. Despite this restraint it is possible, with care,

1
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Fig. 9.1 Plot of specific volume at 25 ◦C for an unfractionated linear polyethy-
lene (Marlex50) against the crystallization temperature. Time of crystallization is
adjusted so that the crystallization is essentially complete at the specified temper-
ature.(2)

to deduce some of the salient features that are important to the understanding of the
crystallization process in polymers. Although the general results that are obtained
are important, any specific deductions that are made are not necessarily unique.
The possibility of different interpretations always needs to be recognized.

There are many examples that demonstrate that polymer properties depend on the
crystallization conditions, and thus the crystallization kinetics. This generalization
can be illustrated by examining some simple properties. In Fig. 9.1 the specific
volume at 25 ◦C of an unfractionated linear polyethylene is plotted against the
crystallization temperature.(2) In this example the crystallization was conducted
isothermally from the pure melt. The times of crystallization were adjusted so
that no significant crystallization occurred on cooling, prior to the specific volume
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measurement. For crystallizations carried out at relatively low temperatures, the
specific volumes varied from 1.06 to 1.04 cm3 g−1. These values are in the range
usually reported for this polymer. However, as the crystallization temperature is
raised a sharp decrease in the specific volume occurs. This quantity is now sensitive
to small changes in the crystallization temperature. The lower values are indicative
of the high levels of crystallinity that are achieved as the crystallization is conducted
at temperatures closer to the melting temperature. The extrapolation of the plot in
Fig. 9.1, as indicated by the dashed curve, portends the distinct possibility that at still
higher crystallization temperatures even lower specific volumes would be observed.
For crystallization conducted at the melting temperature, a specific volume of about
1.00 cm3 g−1 is predicted. This value is very close to the density of the completely
crystalline polymer as deduced by Bunn from the x-ray determination of the unit cell
of polyethylene.(3) It implies the formation of a nearly perfect macroscopic single
crystal under these crystallization conditions. Experimental confirmation of the
extrapolated curve would involve crystallization for such intolerably long periods
of time as to be impractical to carry out. As a general rule the transformation in
polymers is rarely, if ever, complete. For a pure homopolymer of regular structure
the fraction transformed can vary from about 0.90 to as low as 0.30, depending on
molecular weight, molecular weight distribution and crystallization temperature.1

A wide range in densities can thus be obtained at 25 ◦C for the same crystalline ho-
mopolymer. The values depended directly on the crystallization temperature. Other
thermodynamic, physical, and mechanical properties are also sensitive to the man-
ner in which the crystallization is conducted. Another example of the importance
of crystallization conditions in governing properties is illustrated in Fig. 9.2.(4)
Here the crystallite thickness of a molecular weight fraction of linear polyethylene
(Mw = 1.89 × 105, Mn = 1.79 × 105) is plotted as a function of the crystalliza-
tion temperature. There is a dramatic increase in these values at about 125 ◦C. A
profound effect is observed in the maximum crystallite thickness.

A striking example of the importance of crystallization kinetics and mechanisms
on properties is seen in the influence of molecular weight. It was found in Chapter 2
(Volume 1) that above a very modest chain length the equilibrium melting temper-
ature and equilibrium level of crystallinity only increase slightly with a further in-
crease in chain length. Yet, because of kinetic factors the crystallinity level that can
actually be obtained depends very strongly on molecular weight. This dependence
is reflected in the major influence of molecular weight on all of the microscopic and
macroscopic properties of crystalline polymers. In general, the morphology of poly-
mers, as well as other key structural variables, can be expected to be governed by the

1 A detailed discussion of the level of crystallinity that can be attained will be given in Volume 3. The role of
molecular constitution and crystallization conditions will be examined in detail at that point.
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Fig. 9.2 Plot of crystallite thickness as a function of crystallization or quenching
temperature for a molecular weight fraction of linear polyethylene, Mw = 1.89 ×
105, Mn = 1.79 × 105.(4)

crystallization conditions. This behavior will be discussed in more detail in chap-
ters concerned with morphology, structure and properties (Volume 3). A complete
understanding of properties and behavior of crystalline polymeric systems requires
knowledge and information of the mechanisms involved in the transformation, in
addition to the equilibrium characterization. In principle, this information can be
deduced from crystallization kinetic experiments.

There are several different kinds of experimental methods that are commonly
used to observe the time development of crystallinity in polymers. One method is
concerned with assessing the isothermal rate at which the total amount of crys-
tallinity develops from the supercooled liquid. This procedure involves measuring
the overall rate of crystallization. In carrying out these experiments it is necessary
to follow a change in a property that is sensitive to crystallinity. Measurements
of the changes in density or specific volume are commonly used for this method.
However, other techniques have also been successfully used. These include wide-
and small-angle x-ray scattering, vibrational spectroscopy, nuclear magnetic res-
onance, depolarized light microscopy and differential scanning calorimetry. Each
method has a characteristic and different sensitivity to crystallinity.

In another widely used method, the isothermal rate of formation and subsequent
growth of spherulites are studied by either polarized light microscopy or small-
angle light scattering. Spherulites are spherical aggregations of individual crystal-
lites that develop into supermolecular structures that are easily visible in the light
microscope. Although spherulite structures are widely observed they are not, how-
ever, a universal mode of polymer crystallization. In particular, spherulites are not
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observed at the extremes of either high or low molecular weights and their forma-
tion is sensitive to polydispersity.(5–7) Thus, kinetic studies that are restricted to
spherulite growth rates do not encompass the complete range of molecular weights.
In favorable situations, particularly when the crystallization takes place from dilute
solution, the growth rate of specific crystal faces can be followed using electron
microscopy.(8a,b, 9)

9.2 General experimental observations

The isothermal rate at which the total amount of crystallinity develops in homopoly-
mers follows a universal pattern that was first observed by Bekkedahl in his classic
study of natural rubber.(10) Some typical isotherms that represent the course of crys-
tallization in polymers are illustrated in Figs. 9.3 and 9.4 for natural rubber (10)
and linear polyethylene (11) respectively. Changes with time of the specific volume
were used to follow the crystallization in both of these examples. For polyethylene,
the relative extent of the transformation is plotted against the time; for natural rub-
ber the percentage decrease in specific volume is given. When the polymer sample
is quickly transferred from a temperature above the melting temperature to the pre-
determined crystallization temperature, there is a well-defined time interval during
which no crystallinity is observed. This time has often been termed the induction or
incubation period. It was pointed out many years ago that this time interval must de-
pend on the detector used to monitor the development of crystallinity.(12) Different
experimental techniques vary in their sensitivity to detect crystallinity.(13) Within
a given technique, the sensitivity will also depend on the particular instrument
used. A quantitative investigation of these differences, involving several different
methods, has been reported.(13) Imai, Kaji and collaborators (14,15) have shown,
using small-angle x-ray scattering produced by synchrotron radiation, that density
fluctuations occur within the so-called induction period. Subsequently, higher level
fluctuations have also been observed.(13,16) An understanding of the molecular
and structural basis for these fluctuations is evolving. It has been suggested that
nucleation and growth processes take place during this induction period.(13,16,17)
Serious consideration also needs to be given to transient (non-steady-state) nucle-
ation that precedes the attainment of the steady state.(17a,b) The non-steady-state
nucleation, with its associated embryonic nuclei, will occur within the induction
time scale. Rheological and light scattering studies have shown that a network
structure develops at the very early stages of crystallinity development.(17c,d) Pre-
sumably, the network structure is formed within the induction period by very small
crystallites. A variety of possible structures can develop within the induction period
and some have been observed.(17e) However, the induction time itself is a mea-
sure of the sensitivity of the detector being used. Spreading out of the time scale,
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by studies at low undercoolings, will enable a definitive analysis of the structures
involved.

After the onset of observable crystallization, the process proceeds at an accel-
erating rate that is autocatalytic in character. Finally, a pseudo-equilibrium level
of crystallinity is approached. A small, but finite, amount of crystallinity develops
at very slow rates over many decades of time in this region. This flat portion of
the isotherm is often referred to as the “tail”. There are thus several regions in an
isotherm where the rate of change of crystallinity with time is clearly different.
However, the crystallization process is a continuous one. No sudden changes, or
discontinuities, are discernible in the isotherms. The sigmoidal shaped isotherms,
which are illustrated in Figs. 9.3 and 9.4, are characteristic of the overall crystalliza-
tion of all homopolymers. Such isotherms are prima facie evidence of nucleation
and growth processes.

When the change in the property being studied is plotted against the logarithm of
time, as illustrated in Fig. 9.5 for a molecular weight fraction of linear polyethylene,
important additional information can be obtained.(18) The major features of the
crystallization isotherms are still maintained. However, in this plot the isotherms
all have the same shape. With the exception of the tail portion in some cases, the
isotherms can be superposed upon one another by merely shifting the curves along
the horizontal axis. This implies that there is a reduced temperature–time variable.
Consequently, from a purely experimental point of view a single isotherm, based
on the reduced variable involving time and temperature, can be constructed. This
isotherm is representative of the crystallization of a given polymer. The implications
of this observation will be discussed subsequently.

An important feature of Figs. 9.3, 9.4 and 9.5 is the strong negative temperature
coefficient displayed by the crystallization process. This phenomenon is observed
in all polymer crystallization conducted in the vicinity of the melting temperature.
For the example shown in Fig. 9.5 the rate decreases by more than four orders of
magnitude over only a seven degree temperature interval. A temperature coefficient
of this type and magnitude is quite different from a chemical process. It is a very
strong indication of nucleation controlled crystallization. We shall find, in detailed
discussion later in this chapter, that nucleation plays a central role in polymer
crystallization.

When the crystallization is conducted over the complete accessible temperature
range, i.e. from below the melting temperature to above the glass temperature,
a more complex temperature dependence evolves. A typical example is given in
Fig. 9.6 for natural rubber.(19) Here the time taken for half of the crystallization
to develop is plotted as a function of the crystallization temperature. Many other
homopolymers behave in a similar manner. This type of temperature dependence is
not restricted to long chain polymers. It is also observed during the crystallization
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Fig. 9.3 Crystallization of natural rubber at various temperatures as measured by
the decrease in specific volume. Temperature of crystallization is indicated for
each isotherm. (From Bekkedahl (10))

Fig. 9.4 Plot of quantity (V∞ − Vt)/(V∞ − V0) against the time for the crystal-
lization from the melt of an unfractionated linear polyethylene. Temperature of
crystallization is indicated for each isotherm.(11)
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Fig. 9.5 Plot of V (t)/VL(0) against log time for an unfractionated very high molec-
ular weight linear polyethylene at indicated crystallization temperatures. Insert at
right demonstrates a common superposed isotherm.(18)

Fig. 9.6 Plot of the crystallization rate of natural rubber over an extended temper-
ature range. The rate plotted is the reciprocal of the time requested for one-half
the total volume change. (From Wood and Bekkedahl (19))

of monomeric substances.(20,21) At temperatures in the vicinity of T 0
m the crys-

tallization rate is very slow, so that for any reasonable time of measurement the
appearance of crystallinity will not be detected. As the temperature is lowered, the
rate progressively increases and eventually passes through a maximum. At crys-
tallization temperatures below the maximum, the overall rate of crystallization is
retarded once again. This interval coincides with the temperature range where the
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Fig. 9.7 Demonstration of superposition over extended temperature range for nat-
ural rubber. Plot of relative crystallinity against log time for crystallization at
indicated temperatures. (Data from Fig. 9.3 and Bekkedahl (10))

glass temperature of the supercooled polymeric liquid is approached. For some
polymers the crystallization rate becomes so rapid at temperatures below T 0

m that
it is extremely difficult to detect the temperature at which the rate is a maximum.
As is illustrated in Fig. 9.7, the superposition of isotherms is also maintained for
crystallization over this extended temperature range. The isotherms of other poly-
mers that show a rate maximum can also be superposed over the complete range of
crystallization temperatures.

Studies of the rates of spherulite formation and growth in thin films have pro-
vided important information about the crystallization kinetics of polymers. In the
vicinity of the melting temperature, the rate at which spherulites are formed de-
pends very strongly on the crystallization temperature and increases very rapidly
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Fig. 9.8 Plot of spherulite growth rates against time for poly(ethylene adipate),
M = 9900, at indicated crystallization temperatures. (From Takayanagi (23))

as the temperature is lowered. For example, for poly(decamethylene adipate) the
rate at which spherulitic centers are generated deceases by a factor of 10 5 as the
crystallization temperature is raised from 67 to 72 ◦C.(22) These results clearly
indicate that the birth of spherulites is also governed by a nucleation process.

An impressive body of experimental evidence, involving many polymers, demon-
strates that at a fixed temperature the radius of a growing spherulite of a pure ho-
mopolymer increases linearly with time. These observations are consistent with the
autocatalytic nature of the isotherms illustrated in Figs. 9.3, 9.4 and 9.5. The linear
growth rate is also sensitive to temperature as illustrated in Fig. 9.8 for poly(ethylene
adipate).(23) The growth rates are clearly defined by the slopes of the straight lines.
A marked negative temperature coefficient is again observed. Thus, both the birth of
spherulites and their growth are nucleation controlled processs. As the level of crys-
tallinity increases, problems of resolution caused by the overlapping of spherulites
make counting and measuring their sizes difficult. Consequently, although a potent
quantitative tool, this technique is restricted to relatively low levels of crystallinity
and a restricted molecular weight range.

As the crystallization temperature is lowered the growth rate increases until
a maximum is observed. With a further decrease in the temperature, the rate
of growth diminishes. The temperature variation of the spherulitic growth rate
is thus qualitatively similar to the temperature coefficient of the overall rate of
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Fig. 9.9 Plot of spherulite growth rates against crystallization temperature for
indicated molecular weights. (From Magill (24))

development of crystallinity. A typical example of the spherulite growth rate over
an extended temperature range is shown in Fig. 9.9 for molecular weight frac-
tions of poly(tetramethyl-p-silphenylene siloxane).(24) The equilibrium melting
temperature of this polymer is 152 ◦C while the glass temperature is about −17 ◦C.

With this qualitative discussion of the major characteristics of polymer crystal-
lization, we are in a position to develop the subject in a more quantitative manner.
We consider first the basic theoretical developments. The experimental results will
then be presented and the two compared. Based on this comparison, further modi-
fications and refinements that are needed in the theory will be discussed.

9.3 Mathematical formulation

The development of a new phase within a mother phase, such as a crystal within a
liquid, involves the birth of the phase and its subsequent development. The former
process is termed nucleation and the latter, growth. It is also possible for growth to
be nucleation controlled. In this case it is necessary to distinguish between the initi-
ation or primary nucleation and growth or secondary nucleation. For most cases of
interest, isothermal crystallization can be described in terms of the nucleation fre-
quency N and the growth rates Gi of the different crystallographic planes designated
by the subscript i . The amount of material transformed as a function of the time
can be calculated, subject to the restraints that are imposed on the kinetic process.
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The underlying theoretical basis for the overall crystallization kinetics of poly-
mers is found in the theory developed for metals and other monomers.(25–29) In
monomeric systems the fraction of the liquid transformed to crystal varies from 0 to
1 over the time course of the crystallization. As was pointed out, the transformation
in polymers is rarely, if ever, complete. This well-established experimental fact, and
the reasons for this restraint, present a major problem that needs to be resolved in
extending the crystallization kinetics theories from monomers to polymers. How-
ever, before discussing polymers, it is instructive to examine the theoretical base
that has been established for monomers.

A simple case to consider is that in which, once born, a given center grows unim-
peded by the initiation and growth of other centers. This model, termed free growth,
serves as a convenient frame of reference for further theoretical development. It
was proposed by von Göler and Sachs.(25) We let N ′ be the steady-state nucleation
frequency per unit of untransformed mass. The number of nuclei generated in a
time interval dτ , at time τ is given by

dn = N ′(τ ) λ(τ ) dτ (9.1)

Here, λ(τ ) is the fraction of untransformed material at time τ . If w(t,τ ) is the mass
of a given center at time t , that was initiated at time τ (τ ≤ t) and grew without
restriction, then

1 − λ(t) =
t∫

0

w(t,τ ) dn =
t∫

0

w(t,τ ) N ′(τ ) λ(τ ) dτ (9.2)

Alternatively, Eq. (9.2) can be expressed as

1 − λ(t) = ρc

ρl

t∫
0

v(t,τ ) N (τ ) λ(τ ) dτ (9.3)

where N (τ ) is now the nucleation frequency per unit of untransformed volume,
v(t,τ ) is the corresponding volume of the growing center, and ρc and ρl are the
densities of the crystalline and liquid phases, respectively.

The evolution of an individual growing center is assumed to be completely
independent of the mass or volume already transformed as well as the growth of
other centers. In particular, the effect of the impingement of growing centers upon
one another is neglected. Thus, no mechanism has been imposed for the cessation
of the crystallization. Although these assumptions are unrealistic, the results turn
out to be of practical importance.

In order to solve the integral equation, Eq. (9.3), it is necessary that the nucleation
and growth processes, i.e. v(t,τ ) and N (τ ), be specified. A very simple nucleation
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mechanism is one where N (τ ) is independent of the amount of material transformed,
i.e. it is constant. This implies either steady-state homogeneous nucleation or a
specific type of heterogeneous nucleation where the number of nuclei activated
is constant with time. Another possibility involving heterogeneous nucleation is
that all nuclei are activated at t = 0. The simple possibilities are not, however,
necessarily the correct ones in terms of physical reality.

The growth rates can be either isotropic, i.e. the same in all directions, or
anisotropic, where the rates in the different directions are not the same. Besides
the geometry and dimensionality of the growth, one also has to consider its time
dependence. Growth can be either interface controlled, so that the rate is linearly
dependent on (t,τ ) in one dimension, or diffusion controlled, so that the dimension
will vary as (t − τ )1/2. Thus, for isotropic linear growth

v(t,τ ) = f3Gx G yGz(t − τ )3 (9.4)

where Gx , G y , and Gz are the linear growth rates in the x, y, z directions respec-
tively. The growth vectors are assumed to be independent of time. The shape factor
f is characteristic of the geometry of the growing center. The assumption of a
linear rate of growth implies that the rate of volume change of a growing cen-
ter is proportional to its surface area. Growth is therefore governed by processes
that occur at the crystal–liquid interface. If, on the other hand, the diffusion of
the crystallizing entity to the interface is rate controlling, then v(t,τ ) will vary
with (t − τ )3/2 for the isotropic case. For a linear growth, that is restricted to two
dimensions

v(t,τ ) = f2Gx G yγz(t − τ )2 (9.5)

where γz represents the dimension held fixed. Similarly, for growth in one dimen-
sion,

v(t,τ ) = f1Gxγyγz(t − τ ) (9.6)

Corresponding expressions can be written for diffusion controlled growth.
For the case where N (τ ) is constant, equal to N , and growth is three dimensional,

Eq. (9.3) becomes

1 − λ(t) = ρc

ρl
Nf3Gx G yGz

t∫
0

(t − τ )3λ(τ ) dτ (9.7)

Then, for isotropic growth

1 − λ(t) = ρc

ρl
Nf3G3

t∫
0

(t − τ )3λ(τ ) dτ (9.8)



14 Crystallization kinetics of homopolymers

The solution of this integral equation is (25)

λ(t) = 1 − cosh k3t cos k3t (9.9)

where k3, considered to be a rate constant, is given by ( 3
2 Nf3Gx G yGz)1/4. Isotropic

growth in one and two dimensions, with N (τ ) constant, gives

λ(t) = 2

3
exp

(
k2t

2

)
cos

(√
3

2
k2t

)
+ 1

3
exp(−k2t) (9.10)

and

λ(t) = cos k1t (9.11)

respectively.(29a) Here the subscripts 1, 2, 3 indicate the dimensionality of the
growth. The above equations do not provide for a natural termination of the crystal-
lization process, since real solutions exist for 1−λ(t) > 1, i.e. after the crystalliza-
tion process is complete. In fact, the functions involved oscillate about 1−λ(t) = 1.
Therefore, their use must be arbitrarily restricted to the physically sensible region
0 ≤ 1 − λ(t) ≤ 1. The solutions for diffusion controlled growth lead to a similar
dilemma. These results are a natural consequence of the free-growth approximation.

For the initial portions of the transformation, the rate equations can be expanded
in series terms of ki t . When the first two terms of the expansion are retained,
Eqs. (9.9), (9.10) and (9.11) become

1 − λ(t) ∼= (k3t)4/4 (9.12)

1 − λ(t) ∼= (k2t)3/6 (9.13)

1 − λ(t) ∼= (k1t)2/2 (9.14)

for the respective growth geometries, with interface control. These expressions are
commonly called the free-growth approximations. They suggest that for the most
rudimentary analysis of the kinetic data a plot of log(1 − λ(t)) against time log t
should yield a straight line.

A comparison of the complete solution of the Göler–Sachs equations, Eqs. (9.9),
(9.10) and (9.11), with the approximate forms given by Eqs. (9.12), (9.13) and (9.14)
indicates that the differences between them are not significant. For the cases of three-
and two-dimensional growth the two resulting expressions are virtually identical
up to 1 − λ(t) = 1, the physically real region. It will be of interest to ascertain
subsequently how this simple development actually describes the crystallization
kinetics of polymers.

When the condition of a constant nucleation rate is relaxed, a variety of other
possibilities exists. A similar statement can also be made if the growth rate constants
are not held fixed. We focus attention on the consequences of removing certain of
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the restrictive conditions on the nucleation rate. If, for example, it is assumed that
all the nuclei are activated at time t = 0 then the crystallization rates will be similar
to those given by Eqs. (9.12), (9.13) and (9.14), with the exponent of t reduced by
one integer. Another case that can be given a simple mathematical treatment is when
the rate of nucleus formation follows a first-order rate law with the specific rate
constant v. The case of a fixed number N̄ of potential nuclei, or heterogeneities,
being initially present and having the specific probability v of developing into
crystallites is detailed in the following. The corresponding nucleation rate is then
given by

N = N̄ exp(−τ ) (9.15)

where τ = vt . For this type of nucleation, the Göler–Sachs model becomes

1 − λ(t) = C3G3 N̄

v3

[
exp(−vt) − 1 + vt − (vt)2

2!
+ (vt)3

3!

]
≡ A3 (9.16)

1 − λ(t) = C2G2 N̄

v2

[
2 − 2 exp(−vt) − 2vt + (vt)2

] ≡ A2 (9.17)

for three- and two-dimensional growth, respectively. The constants C3 and C2 incor-
porate the geometric and density factors involved. When vt is large, corresponding
to a high probability for the initial growth of all potential or nuclei sites, Eqs. (9.16)
and (9.17) reduce to

1 − λ(t) = C ′
3t3 (9.18)

and

1 − λ(t) = C ′
2t2 (9.19)

These equations have the same form as Eqs. (9.13) and (9.14) that were obtained
for the initial portion of a system nucleating at a constant rate that grows in either
two or one dimension respectively. In the other extreme, if vt is small Eqs. (9.16)
and (9.17) reduce to

1 − λ(t) = C ′′
3 vt4 (9.20)

and

1 − λ(t) = C ′′
2 vt3 (9.21)

respectively. In this extreme, not all the centers are initiated at t = 0. Rather they
are activated at a constant rate. For an actual mechanism operating between these
two extremes, the potential nuclei will become depleted at some intermediate stage
of the transformation. The exponent of t will then vary between 3 and 4 for three-
dimensional growth and 2 and 3 for two-dimensional growth. The exponent in this



16 Crystallization kinetics of homopolymers

situation will not have a constant integral value over the complete transformation
range.

The Göler–Sachs formulation has the obvious shortcoming that there is no mech-
anism for the termination of the transformation. This is of serious concern for the
crystallization of metals and other low molecular weight substances where the ac-
tual transformation is complete. Serious discrepancies are observed between the
free-growth theory and experiment in these systems, particularly toward the end of
the transformation. It is clear that some mechanism for termination needs to be in-
troduced into the analysis. The mutual interference of growing crystalline regions
that originate from separate nuclei needs to be taken into account. In a liquid–
crystal type transformation when two such regions impinge upon one another a
common interface develops. All growth will cease along this interface. This type
of impingement is thus a natural mechanism by which crystallite growth can cease.
It is independent of the type of nucleation that is operative. This concept, primarily
geometrical in nature, is an important one. The initial treatment of this problem was
given by Johnson and Mehl (26), Avrami (27), Evans (28) and Kolmogorov.(29)
We shall discuss the Avrami approach in some detail since it has been the one most
widely applied to polymers.

In addressing the impingement problem Avrami introduced the concept of phan-
tom nuclei and the “extended volume” of transformed material that results from
such nuclei. Phantom nuclei are nuclei that are allowed to develop in the volume
that has already been transformed. Thus their designation as phantom. The total
number of nuclei, real and fictitious, that are generated in the time interval dτ is
given by

dn′ = N ′λ′ dτ + N ′(1 − λ)′ dτ = N ′ dτ (9.22)

Here N ′(1 − λ)′ dτ represents the number of nuclei that would have originated in
the mass fraction 1 − λ, if it had not become transformed. The extended fraction
transformed, (1 − λ)′, includes the contribution from the phantom nuclei. It can be
expressed as

(1 − λ)′ =
t∫

0

w(t,τ ) dn′ =
t∫

0

w(t,τ ) N ′(τ ) dτ (9.23)

The extended fraction transformed will be larger than the actual fraction trans-
formed. It then remains to relate the actual fraction transformed, 1 − λ, to the
extended one.(27) Consider a small region, selected at random, where a fraction
1−λ remains untransformed at time τ . During the interval τ to τ +dτ the extended
fraction transformed in this region will increase by d(1 − λ)′ and the true fraction
by d(1 − λ). In this new extended fraction, d(1 − λ)′, a fraction λ, on the average,
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will lie in previously untransformed material and contribute to d(1 − λ), while
the remainder will already be in transformed material. Consequently, the relation
between d(1 − λ) and d(1 − λ)′ can be written as

d(1 − λ)

d(1 − λ)′ = λ(t) (9.24)

This result is the reason that the concept of phantom nuclei was introduced and
included in the definition of (1 − λ). These conclusions follow only if d(1 − λ) can
be treated as a completely random volume element.

The integration of Eq. (9.24) yields

(1 − λ(t)) = 1 − exp[(1 − λ)′] (9.25)

When (1 − λ)′ from Eq. (9.23) is substituted into Eq. (9.25)

(1 − λ(t)) = 1 − exp


−

t∫
0

w(t,τ ) N ′(τ ) dτ


 (9.26)

or alternatively,

(1 − λ(t)) = 1 − exp


−ρc

ρl

t∫
0

v(t,τ ) N (τ ) dτ


 (9.27)

Either equation, (9.26) or (9.27), is the basic Avrami relation. They should not be
identified with expressions that are derived from them. These equations describe the
kinetics of phase transformations for a one-component monomeric system. Only
an integral has to be evaluated, rather than the need to solve an integral equation
as in the free-growth case. The integral can be evaluated by specifying the nucle-
ation and growth laws that are operative. A quantitative description of the fraction
transformed as a function of time is then obtained. There are obviously many pos-
sibilities that can be considered, with many different expressions resulting. Any
one of these is a descendent of the basic Avrami equation (9.26 or 9.27). Strictly
speaking, it is not proper to identify any of the derived ones as the Avrami equation.
A computer simulation agrees with the Avrami result, provided the distribution
of nuclei is random and the phantom nuclei are included in the calculation.(29b)
An alternative derivation of the general Avrami expression, one that avoids the
introduction of “phantom nuclei”, has been given by Yu and Lai.(29c)

One possible set of conditions out of many, which has been popular, is for
the steady-state nucleation rate to be achieved at t = 0 and to remain invariant
with the fraction of material transformed. Thus N (τ ) can be treated as a constant.
Similarly, the crystallite growth rate is assumed to be linear and constant. With
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these simplifying assumptions analytical solutions of Eqs. (9.26) and (9.27) are
obtained. For three-dimensional linear growth,

ln(1/λ) = π

3

ρc

ρl
NG3t4 ≡ kst

4 (9.28)

For a disk of fixed thickness lc developing radially according to a linear growth law,

ln(1/λ) = π

3
lc

ρc

ρl
NG2t3 ≡ kdt3 (9.29)

Similarly, for a one-dimensional growing system,

ln(1/λ) = krt
2 (9.30)

With these specified restrictions on the nucleation and growth rates, the derived
Avrami equation can be expressed as

λ(t) = exp{−ktn} (9.31)

or

1 − λ(t) = 1 − exp{−ktn} (9.31a)

Either equation, (9.31) or (9.31a), is commonly termed the Avrami equation. How-
ever, they are merely derived expressions that are based on a very specific set of
assumptions. Alternatively Eq. (9.31) can be expressed as

ln ln λ = − ln k − n ln t (9.32)

The exponent n is usually termed the Avrami exponent. The value of n appropriate
to systems with invariant nucleation and growth rates is dependent on the geometry
of the growth. The n values for specific geometries for either interface or diffusion
controlled growth are summarized in Table 9.1. It is clear from this summary that
even using the derived Avrami expression the exponent n does not define a unique
nucleation and growth set.

In another approach to the problem, Evans examined the expansion of circles
and spheres.(28) This analysis can be related to crystal growth in either two or
three dimensions. An analog in two dimensions is raindrops falling randomly on
a pond. In this case, the probability that the number of circles that pass over a
representative point P, within a certain time t from the start of the rain, is exactly
C is given by Poisson’s relation exp(−E)EC/C!. Here E is the expected number
of waves. The probability that the point P (selected at random) will escape being
crossed by an expanding wave, i.e. C = 0, is given by exp(−E). Thus the fraction
of the area of the pond that remains uncovered at time t is θ (t) = exp(−E). In terms
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Table 9.1. Values of exponent n for various types of nucleation and growth acts

Homogeneous Heterogeneous
Growth habit nucleation nucleationa

Diffusion
Linear growth controlled growth Linear growth

Steady state t = 0b Steady state t = 0

Sheaf-likec 6 5 7/2 5/2 5 ≤ n ≤ 6
Three-dimensional 4 3 5/2 3/2 3 ≤ n ≤ 4
Two-dimensional 3 2 2 1 2 ≤ n ≤ 3
One-dimensional 2 1 3/2 1/2 1 ≤ n ≤ 2

a According to Eq. (9.15).
b All nuclei activated at t = 0.
c From L. B. Morgan, Phil. Trans. R. Soc., 247, 13 (1954).

of crystallization, θ (t) can be identified with the fraction untransformed. Thus

λ(t) = exp(−E) (9.33)

It then remains to calculate E and to specify the rate of droplet formation, i.e. the
nucleation rate.

To obtain E , the contribution dE due to an annulus of breadth dr situated around
P at a radial distance r , is integrated over all values of r from zero to Gt. G is the
lineal growth velocity and the annulus possesses an area equal to 2πr dr. During a
period equal to (t − r/G), any point within the annulus will be capable of sending
out circles that will reach P before time t . Thus

dE = N (t − r/G) 2πr dr (9.34)

where N is now the steady-state nucleation rate per unit area. Then

E = 2π N

Gt∫
0

(tr − r 2/G) dr = πNG3t3/3 (9.35)

Substituting into Eq. (9.32)

λ(t) = exp(−E) = exp(−πNG3t3/3) = exp(−kdt3) (9.36)

Equation (9.36) is identical to Eq. (9.29) obtained by the Avrami analysis for the
same types of nucleation and growth. Calculation of three-dimensional growth by
this method yields Eq. (9.28). The Evans method can also be applied to other growth
geometries with the corresponding Avrami expressions resulting.
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Heterogeneous nucleation is also important in analyzing polymer crystallization.
Certain types can be treated directly by the Avrami method. The results obtained,
however, are specific to the details assumed. Many possibilities exist for activating
heterogeneous nuclei. In analyzing heterogeneous nucleation by the Göler–Sachs
method the specific case of the nuclei being initiated by a first-order rate law was
treated. Under the same conditions the Avrami analysis gives

ln

(
1

λ

)
= C3G3 N̄

v3

[
exp(−vt) − 1 + vt − (vt)2

2!
+ (vt)3

3!

]
= A3 (9.37)

for three-dimensional lineal growth, and

ln

(
1

λ

)
= C2G2 N̄

v2
[2 − 2 exp(−vt) + (vt)2] = A2 (9.38)

for the two-dimensional case.
The right-hand sides of Eqs. (9.37) and (9.38) are the same as were obtained

by Göler and Sachs (Eqs. (9.16) and (9.17)). The right-hand sides thus reduce in
the same way for large and small values of v. For three-dimensional growth n is
in the range of 3 to 4. For two-dimensional growth, 2 ≤ n ≤ 3, while for one-
dimensional growth, 1 ≤ n ≤ 2. These values are included in the tabulation of
Table 9.1. It is apparent that even with the mild restrictions that have been imposed,
details of the growth geometry and type of nucleation cannot be elucidated from
the kinetic isotherms solely by specifying the value of the exponent n. Depending
on the specifics of the nucleation and growth, the Avrami exponent does not need
to be a constant integer over the complete course of the transformation. In fact, the
expectation is that it would not be so when the myriad of available possibilities is
taken into account. Put another way, the fact that n is not integral, or varies over
the course of the transformation, is not by itself a shortcoming of the basic Avrami
equation (Eq. (9.26) or (9.27)). This conclusion is true even for a lineal growth rate.

As has been indicated earlier, both Eq. (9.31) and Eq. (9.31a) have been com-
monly termed the Avrami relation. Either one is a very simple and convenient
expression to use and hence their widespread adoption. However, it should be rec-
ognized that they are restricted in scope because of the limited nucleation and growth
processes that have been considered. Thus, caution must be exercised when inter-
preting results using these equations. Theoretical isotherms based on the derived
Avrami equations are plotted in Fig. 9.10 in accordance with Eq. (9.31a) for n = 1,
2, 3 and 4. The curves in Fig. 9.10 have several important features in common. Their
general shapes are in qualitative accord with the experimental observations that were
described previously. When examined in detail, differences exist that distinguish
one curve from another. As n increases from 1 to 4, the time interval at which
crystallinity becomes apparent becomes greater. However, once the transformation



9.3 Mathematical formulation 21

Fig. 9.10 Plot of theoretical derived Avrami isotherms according to Eq. (9.31a),
for n = 1, 2, 3 and 4.

develops, the crystallization rate becomes greater the higher the value of the ex-
ponent n. All the curves have a common point of intersection at 1 − λ(t) = 0.6.
Beyond this point the approach to termination becomes more rapid the larger the
value of n. Because of the similarity in shape of the theoretical curves it can be
anticipated that in the analysis of experimental data, even when the assumptions
made in the derivation are adhered to, it will be a difficult matter to decide between
n = 4 or 3. This is particularly true for the early stages of the transformation where
the most reliable experimental data are obtained. From purely a mathematical point
of view, larger values of n can also be involved. However, the theoretical isotherms
for n values of 5 or 6 can scarcely be distinguished from that for n = 4.

It is of interest at this point to compare the character of the isotherms that
are predicted by the simplified Avrami form (Eq. 9.31a) and the free growth of
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(a) (b)

(c) (d)

(a) (b)

(c) (d)

Goler-Sachs"
Goler-Sachs"

Fig. 9.11 Comparison of theoretical isotherms between Göler–Sachs, derived Avrami and
Tobin. (a) n = 4, (b) n = 3, (c) n = 2, (d) n = 1.

Göler–Sachs (Eqs. 9.12–9.14). This comparison is given in Fig. 9.11 for n = 1, 2,
3 and 4. (The curves marked Tobin are given for later discussion.) The isotherms are
very close to one another for small extents of the transformation for all values of n.
However, as the transformation progresses the agreement between the two theories



9.3 Mathematical formulation 23

depends on the n value. For example, for n = 4 the isotherms are virtually identi-
cal to about 30% of the transformation. The difference between the two isotherms
remains small up to about 70% of the transformation. At this point the difference,
in terms of experiment, is well within any error. At the higher levels of the trans-
formation the two isotherms diverge in a significant manner. The Avrami isotherm
becomes more protracted reflecting the influence of the termination process. The
agreement, and closeness of the isotherm, is reduced as n decreases. For example,
when n = 1 agreement is only found for the first 10% of the transformation. In
summary, the two theories give essentially the same results at low levels of absolute
crystallinity. However, as the transformation progresses important differences are
predicted particularly towards the end of the process where the Avrami termina-
tion step is important. The significance of these differences, in terms of polymer
crystallization, can only be decided by analysis of experimental data.

The influence of heterogeneous nucleation on the crystallization kinetics is
examined in Fig. 9.12 in terms of the Avrami formulation. In this figure the

Fig. 9.12 Comparison of theoretical isotherms for homogeneous and heteroge-
neous nucleation. Plot of extent of transformation against log time for indicated
situations. Homogeneous: derived Avrami with n = 4 and 3. Heterogeneous:
first-order rate law v = 0.9, 0.01 and 0.001. (From Eqs. (9.37) and (9.38))
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Fig. 9.13 Comparison of theoretical homogeneous and heterogeneous nucleation
by plotting ln(−ln λ) against log time. Situations correspond to those in Fig. 9.12.

isotherms for homogeneous steady-state nucleation and lineal growth (two- and
three-dimensional) are compared with those where nuclei are activated according
to a first-order law (Eqs. (9.37) and (9.38)), with different rate constants. The role
of the heterogeneities in influencing the shape of the isotherms is not as great as
might have been anticipated. There is just a slight difference between the isotherms
at the early stages of the transformation. However, as the crystallization progresses
and the concentration of available nuclei decreases, the rate of crystallization is
reduced, particularly as 1 − λ(t) approaches unity. These isotherms are replotted
in Fig. 9.13 as ln(−ln λ) against log t . This type of plot illustrates more vividly the
changes that occur with this type of heterogeneous nucleation. When the isotherms
are analyzed in the conventional manner, by using Eq. (9.32), the Avrami exponent
is found to be n = 4 at the early stages of the transformation and approaches 3
towards the end of the crystallization. Thus, if the value of n were calculated in this
manner, it would vary with the extent of the transformation for the same growth
geometry. Over a limited range in experimental data a fractional value of n would
be obtained. This type of result is often misinterpreted as reflecting a change in the
growth geometry. A similar conclusion is reached for two-dimensional growth. In
this case n varies from 3 to 2 over the range (1 − λ) = 0 to 1.
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The isotherms illustrated in Fig. 9.12 only represent one type of nuclei activation.
If, for example, all of the potential nuclei are activated at t = 0, equations of the form
of Eqs. (9.28) to (9.31) result. There is obviously a variety of activation processes
that can be postulated, each of which will result in its own unique isotherm. Hence,
for a given growth geometry there can be many differently shaped isotherms that
have n values that not only differ but apparently vary with the time course of the
transformation. Hence, it should not be unexpected when considering the complete
transformation to observe decreasing values of the Avrami exponent with time.
This observation is not caused by a deficiency in the general Avrami formulation
(Eqs. 9.26 and 9.27) but rather by the varying nucleation rate with time.

The two theories that have been outlined were developed for the crystallization
of monomeric substances where the transformation is complete. The termination of
the crystallization process in monomers has been attributed by the Avrami analysis
to the mutual impingement of growing centers. The extent of the liquid–crystal
transformation in homopolymers is never complete. It can vary from 30% to 90%
depending on the circumstances. In considering a theoretical base for the crys-
tallization kinetics of long chain molecules, the superposability of the isotherms
gives strong support to the concurrence of nucleation and growth processes. The
widespread observations that the radius of a growing spherulite increases linearly
with time are consistent with the assumption that growth is controlled by pro-
cesses occurring at the crystallite–melt interface. These assumptions are consistent
with the monomeric theories that have been discussed above. Therefore, a similar
approach is suggested in treating polymer crystallization kinetics.

In order to adapt the Avrami concept to polymers, and to account for the in-
complete transformation, an arbitrary normalization procedure was introduced.(12)
Following the Avrami framework, and analogous to Eq. (9.24), it was proposed that
for polymeric systems

d(1 − λ)

d(1 − λ)′ = 1 − U (t) (9.39)

where U (t) is the “effective fraction” of the mass transformed at time t . It is defined
as that fraction of the total mass into which further crystal growth cannot occur.
This quantity includes the actual mass transformed as well as the disordered chain
units that are noncrystallizable at time t . The additional assumption is made that
the “effective fraction” transformed is proportional to the actual mass fraction
transformed, the proportionality factor being 1/[1−λ(∞)]. The quantity 1−λ(∞)
is the weight fraction of polymer that is crystalline at the termination of the process.
The proportionality factor has been assumed to be independent of time. For small
values of the amount transformed, d(1−λ) � d(1−λ)′, this difficulty is alleviated.
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With

U (t) = 1 − λ(t)

1 − λ(∞)
(9.40)

the integration of Eq. (9.39) yields

ln
1

λ[1 − λ(∞)]
= [1 − λ(t)]′

[1 − λ(∞)]
(9.41)

Since (1 − λ(t))′ is the same as for monomeric substances

ln

[
1 − λ(∞)

λ(t)

]
= 1

1 − λ(∞)

ρc

ρl

t∫
0

v(t,τ ) N (τ ) dτ (9.42)

In order to express the time dependence of 1 − λ the details of the nucleation and
growth processes need to be specified. If the integration of Eq. (9.42) is carried
out under the same set of assumptions made previously for low molecular weight
substances, an equation of the form

ln

[
1 − λ(∞)

λ(t)

]
= 1

1 − λ(∞)
ktn (9.43)

results. The interpretation of the exponent n, as given in Table 9.1, is still valid. The
results embodied in Eq. (9.43) contain the same restrictions as previously, since
specific growth and nucleation rates have been assumed. Equation (9.43) is then a
derived Avrami equation proposed for homopolymers.

In order to compare theory with experiment, the equations must be recast in
terms of directly measured quantities. For example, if the specific volume is being
measured, Eq. (9.43) can be rewritten as

ln

[
V∞ − Vt

V∞ − V0

]
= − 1

1 − λ(∞)
ktn (9.44)

where V0 is the initial volume (the volume of the melt at t = 0), V∞ is the final
volume, and Vt the volume at time t . Other properties that change with the amount
of the transformation can be treated in a similar manner. If expressed in terms of
the relative volume shrinkage, a(t) = (V0 − Vt )/V0, Eq. (9.44) becomes

ln

[
1 − a(t)

a(∞)

]
= − 1

1 − λ(∞)
ktn (9.45)

If the degree of crystallinity 1 − λ(t) is defined as (Vc − Vt )/(Vl − Vc),2 then

1 − λ(t)

1 − λ(∞)
= 1 − exp

(
− 1

1 − λ(∞)
ktn

)
(9.46)

2 This definition is predicated on the assumption that the specific volumes of the crystalline and amorphous phases
are additive in a polymer that is only partly crystalline.
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The normalization that has been proposed to the Avrami equation is a very formal
one. The unique structural features of long chain molecules, the connectivity of
chain units and the melt structure have not as yet been explicitly taken into account.

9.4 Comparison of theory with experiment: overall crystallization

There are some inherent problems in analyzing the experimental results of overall
crystallization kinetics that need to be recognized. It is of paramount importance
that the initial melt be chemically and structurally pure. Residual crystallites, chem-
ical impurities, partial orientation of the chains and other inhomogeneities lead to
misleading results.(30–34b) Very high molecular weight species often retain some
orientation in the melt.(34) Structural irregularities in disordered chains are often
subtle and are not easily detected. These factors can have a major influence on the
crystallization kinetics. There can also be difficulties in reproducibility, and thus
in interpretation, among polymers that have the same chemical and structural re-
peating units. A major reason for these discrepancies is that the molecular weight
and polydispersity strongly influence the crystallization kinetics. It is also possible
that the same polymer can apparently give different results because of impurities
present in some cases and absent in others. In some instances unapparent to the in-
vestigator, a small amount of a comonomer is deliberately introduced into the chain
by the manufacturer. Thus, it is possible that a polymer having the same repeating
units but coming from different sources will not always yield the same results.(35)
Residual catalyst fragments can also influence the co-unit of the crystallization.

Despite these concerns, when crystallization kinetics experiments are conducted
so that prior to crystallization the sample is completely molten, the chains in ran-
dom conformation and degradative processes avoided, the resulting isotherms are
extremely reproducible. They are independent of the initial temperature of the melt
at which the sample is held.(12,35,36) An important factor is that complete melt-
ing be ensured. There are some reports where the expected reproducibility is not
achieved. In these cases, the aforementioned conditions may not be operative, or
the rate of cooling of the sample is such that isothermal crystallization does not
occur at the predetermined temperature.

The literature concerning the experimental results of the overall crystallization
kinetics of homopolymers is quite vast. It encompasses virtually all types of re-
peating units of crystallizable polymers. From this abundance, a representative set
of examples has been chosen that illustrates the basic experimental results. These
data allow for a quantitative assessment of the theoretical developments that have
been presented so far.

To compare experimental results with theory we start with the Göler–Sachs free-
growth expressions, approximated by Eqs. (9.12) to (9.14). Accordingly, a plot
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(a)

Fig. 9.14 Plot of log crystallinity, or relative crystallinity, against log time for
representative polymers. (a) Linear polyethylene, M = 122 000 (34); (b) linear
polyethylene M = 8 × 106 (34); (c) poly(1,3-dioxolane) (38); (d) poly(phenylene
sulfide) (37).

of the log of either (1 − λ(t)) or the relative extent of the transformation against
log time should be linear. The slope of the straight line should correspond to the
Avrami exponent n. Examples of this analysis are given in Figs. 9.14a–d.(34,37,38)
Despite the simplicity of this approach there is good adherence of the experimental
data to this theory. The straight lines drawn correspond to the theory and the slopes
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(c)

Fig. 9.14 (cont.)
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represent the Avrami exponent. The linear polyethylene fraction, M = 122 000,
fits the Göler–Sachs theory to absolute crystallinity levels of about 45%. However,
when the molecular weight is increased to 8 × 106, deviations occur in the range of
20–25% crystallinity.(34) On a relative basis, the data for poly(phenylene sulfide)
fit the Göler–Sachs theory for about 90% of the transformation.(37) The results for
poly(1,3-dioxolane) are similar.(38) In other examples, not shown, a poly(ethylene
oxide) fraction (M = 365 000) adheres to theory for 50–60% of the transfor-
mation;(39) while poly(ether ether ketone) follows the Göler–Sachs formulation
for more than 80% of the transformation.(40) This kind of agreement has been
found for all homopolymers. Based on the widespread experimental results we can
conclude that the free-growth approach explains a significant portion of the trans-
formation. When deviations from theory occur, they are such that the crystallization
proceeds at a more protracted rate than is expected. It is noteworthy, and certainly
surprising, that this simple theory can quantitatively explain a major portion of the
transformation of such a complex crystallizing system.

The next step in analyzing experiment is to compare the results with one of
the derived Avrami expressions. We recall that Avrami introduced a specific mode
for termination of the transformation. There are essentially two ways in which the
comparison can be made. One reliable, and informative, way is to superpose the
experimental isotherms, based on either absolute or relative crystallinity, onto a
master isotherm of a 1 − λ(t) against log t plot. This master experimental isotherm
can then be compared with the theoretical derived Avrami type plots as illustrated
in Fig. 9.10. In this way, both the best fit and the extent of the transformation at
which deviation from theory occurs can be clearly and definitively established.
Alternatively, taking advantage of Eq. (9.32), a plot of ln(− ln λ) against ln t should
give a straight line with slope equal to n. It is informative to examine both of these
methods.

Figure 9.15 gives several examples of the fitting method.(19,34,41–43) Here,
either absolute or relative crystallinity levels are plotted against log t . The best fit
with a derived Avrami is indicated by the solid curve. The corresponding n value is
also given. In these examples, as well as many others, there is always a good fit be-
tween theory and experiment for a major portion of the transformation. For the high
molecular weight linear polyethylene fraction (Fig. 9.15a) adherence to the derived
Avrami is found for a level of crystallinity of about 15% or approximately half of
the transformation.(34) For poly(oxetane) (Fig. 9.15b), good agreement is found
for about 25% crystallinity,(41) while for natural rubber (Fig. 9.15c) agreement
is found for about 60–80% of the transformation corresponding to a crystallinity
level of 20–30%.(19) The polyimide, ODPA 1,3 (Fig. 9.15d) shows deviation from

3 The structural formula for this polyimide is given in Table 6.3 (Volume 1).
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(b)

Fig. 9.15 Comparison of derived Avrami equation with experimental results. Plot
of fraction crystallinity against log time. (a) Linear polyethylene fraction M =
8 × 106 (34); (b) poly(oxetane) (41); (c) natural rubber (19); (d) polyimide ODPA
1 (42); (e) poly(phenylene sulfide) (43).
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(c)

(d)

Fig. 9.15 (cont.)
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(e)

Fig. 9.15 (cont.)

theory at crystallinity levels less than 10%.(42) In contrast, poly(phenylene sul-
fide),(9.15e) when plotted on a normalized basis, adheres to theory, with n = 3 over
the complete transformation.(43) Other polymers, such as poly(caprolactam),(44)
New polyimide (45) and poly(aryl ether ether ketone ketone) (46), among others,
also agree with theory when examined on this basis. Different values of n are of
course needed for each polymer.

An alternative method to compare theory with experiment, the use of Eq. (9.32),
is illustrated by several examples in Fig. 9.16a–d.(23,34,42,43) The results for
poly(ethylene adipate)(23) and poly(phenylene sulfide) (43), Figs. 9.16a and b
respectively, give the expected straight lines when normalized crystallinity levels
are used. However, this is not always the case as shown in Figs. 9.16c and d for a
linear polyethylene fraction (34) and the poly(imide) ODPA 1 respectively.(42) In
these examples, linearity is not observed over the complete transformation range.
However, the fitting procedure indicates that the transformation is continuous. In
contrast, as is indicated in Figs. 9.16c and d, deviation from theory in this type of plot
results in a sharp break and another straight line with a different slope. The double
log type plot exaggerates the final portion of the crystallization and often leads to
a misconception in interpreting mechanisms in terms of the kinetics.(42,47) A plot
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(a)

(b)

Fig. 9.16 Fit of experimental data to Eq. (9.32). (a) Poly(ethylene adipate) (23);
(b) poly(phenylene sulfide) (42); (c) linear polyethylene fraction M = 47 000 (34);
(d) poly(imide) ODPA 1 (42).
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(c)

(d)

Fig. 9.16 (cont.)

according to Eq. (9.32) results in a distorted scale that can allow for a superficially
good fit of the experimental data, when in fact the agreement may only hold for the
early part of the crystallization.

Another example of this type of analysis is given in Fig. 9.17 for the crystalliza-
tion kinetics of a mixture of two poly(ethylene oxide) fractions.(47) In Fig. 9.17a the
set of superposed isotherms is fitted to the derived Avrami expression, with n = 3.
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(b)

Fig. 9.17 Fit of mixture of two poly(ethylene oxide) fractions to derived Avrami
equation. Crystallization temperatures indicated. (a) Solid curve theoretical
isotherms with n = 3. (b) Use of Eq. (9.32). (Data from Cheng and Wunderlich
(47))
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Very good agreement is found between theory and experiment up to about 70% of
the transformation. The usual deviations are observed at the higher transformation
levels as the crystallization rate becomes more protracted than predicted. It is clear
that the crystallization is a continuous process. There is no obvious discontinuity
when deviation from theory occurs. In contrast, when the same data are analyzed
according to Eq. (9.32) two intersecting straight lines result, as is illustrated in
Fig. 9.17b. It was concluded from the latter plot that two different mechanisms
were involved in the crystallization. These results were then used to support a par-
ticular theory.(47) Caution must clearly be exercised in analyzing crystallization
kinetic data in this manner.

Another problem encountered in analyzing experimental data according to Eq.
(9.32) occurs when attempts are made to obtain the best straight line fit over the
complete range. This procedure assumes that the derived Avrami expression is valid
over the complete transformation. Usually when this method is adopted, nonintegral
values such as 3.8, 3.3, etc. are obtained for the exponent n. Attempts are then usually
made to explain the results in terms of growth geometries. As an example, when this
method was used in analyzing the results for poly(aryl ether ether ketone ketone) n
values in the range 2.3 to 2.5 were obtained.(46) However, when the fitting method
was used the superposed isotherm adhered to n = 4 over the complete range.

A typical isotherm can be deduced after applying the fitting method to the overall
crystallization kinetics of a large number of different homopolymers. A schematic
example of such an isotherm is given in Fig. 9.18. The isotherm is drawn so that
a pseudo-equilibrium crystallinity level of 0.75 is reached. A striking feature of
this isotherm is that despite the distinctly different regions that are observed there
are no indications of any discontinuities. In Region I both the Göler–Sachs free
growth and the derived Avrami are obeyed. There is really no need to introduce
Avrami in this region since nothing is gained. Although the derived Avrami con-
tinues along the dashed line, the actual crystallization proceeds at a reduced rate
in Region II. Eventually the crystallization slows down and enters Region III, the
so-called “tail” region. Here, crystallization proceeds very slowly with time. In this
region there is only a small percentage increase in the crystallinity level over many
decades of time. There are clearly major impediments present to crystallization in
this flat portion of the isotherm. The crystallization is obviously not of the Avrami
type. There is, therefore, no point in discussing it in terms of the exponent n. The
superposition is not clear in this region but the isotherms appear to join one another
after long times. This portion of the isotherm will be discussed in more detail in
Volume 3 because of the structural and morphological changes that are involved.
It is preferable not to define the complete transformation in terms of primary and
secondary crystallization. These expressions have meant different things to differ-
ent investigators. Sometimes secondary crystallization has meant the deviations



38 Crystallization kinetics of homopolymers

Fig. 9.18 Plot of degree of crystallinity against log time for a typical isotherm.

from a derived Avrami equation. Other times it has meant the “tail” or flat region,
where crystallization is very slow. In another definition, secondary crystallization
takes place from the noncrystalline regions in the confined environment of already
existing crystallites. In this concept primary crystallization is defined as crystal-
lization from the pure melt.(46a,b) The relation between this latter definition and
the experimentally observed isotherm is not obvious. A great deal of confusion has
resulted from the use of this particular terminology for a continuous process.

With this understanding of the relation between theory and experiment the possi-
ble reason(s) for the deviations that are observed between the two can be considered.
Also of concern are the advantages, if any, of using the Avrami approach relative
to that of free growth. It turns out that important information can be obtained by
studying the influence of molecular weight on the kinetics. In this effort a plot is
given in Fig. 9.19 of a set of isotherms, superposed to 127 ◦C, for the indicated
molecular weight fractions of linear polyethylene.(34) Here, the absolute level of
crystallinity is plotted against log time. The solid curve represents the theoretical
derived Avrami for n = 3. The crystallinity level at which deviations from the
theoretical curve occur decreases as the molecular weight increases. For example,
the deviations occur at a crystallinity level of about 0.25 for M = 1.2 × 106 and
increase to about 0.55 for M = 1.15 × 104. Similar results have been found in
poly(ethylene oxide)(39) and poly(tetramethyl-p-silphenylene siloxane).(48) This
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Fig. 9.19 Plot of degree of crystallinity 1 − λ(t) against log time for indicated
molecular weight fractions of linear polyethylene. Isotherms for each molecular
weight superposed to 127 ◦C.(34)

important influence of chain length is given in more detail in Figs. 9.20a and
b for linear polyethylene and poly(ethylene oxide) molecular weight fractions
respectively.

The crystallinity levels for different situations are plotted against the molecular
weight in Fig. 9.20.(34,49) The influence of molecular weight on the crystallinity
level that can be attained at an isothermal crystallization temperature is quite evident
in this figure. In polyethylene, for example, the crystallinity level that is attained
remains constant until M = 105. There is then a precipitous drop with molecular
weight. The deviations from both Avrami and free growth follow a similar pattern.
Most important and striking is the fact that, within experimental error, both theo-
ries give the same result. Put another way, as far as quantitative agreement between
theory and actual experiment is concerned the free-growth approximation does just
as well as Avrami. The results for poly(ethylene oxide) follow a similar pattern.
Other factors, beside the Avrami termination mechanism, must be involved as the
crystallization of long chain molecules progresses.

The profound influence of molecular weight on the crystallization kinetics gives
a clue as to a possible reason for the adequacy of the free-growth concept at the early
stages and the deviation from the expectations from the Avrami theory. Initially,
prior to the onset of crystallization, the melt of a polymer is composed of entangled
chains, loops, and knots, as well as other structures that can be considered to be
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Fig. 9.20 Plots of crystallinity levels as functions of molecular weight. (a) Lin-
ear polyethylene fractions (34); (b) poly(ethylene oxide) fractions (49). Pseudo-
equilibrium level of crystallinity that is attained 	; crystallinity levels at which
deviations occur from theory: Göler–Sachs ●; Avrami ©. Dashed curve represents
ratio of crystallinity level at which deviation occurs to that actually attained.

topological defects. Although chemically pure, these structures cannot participate
in the crystallization. The concentrations of such units are molecular weight de-
pendent and are relegated to the noncrystalline regions. Moreover, there will be
regions around such “defects” that are also not transformable as was discussed for
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cross-linked systems.4 As the development of crystallinity progresses the availabil-
ity of transformable units decreases relative to the total number of noncrystalline
units. Consequently, the level of crystallinity that can be attained with molecu-
lar weight will decrease. Under these circumstances, neither the nucleation nor the
growth rates will be invariant with the extent of the transformation. Moreover, small
sequence lengths of potentially crystallizable units will be isolated and will not be
able to participate in the crystallization.(49a,49b)

The influence of chain entanglement in the melt on the crystallization process
has also been described by Galeski and coworkers.(49c) Advantage was taken of
the fact that, when linear polyethylene is crystallized under high pressure and tem-
perature, a high level of crystallinity, about 0.90–0.95, is achieved. Upon fusion,
the initial entanglement concentration will be low or nonexistent. There is a time
interval, of the order of 30 min, before the usual entangled melt is regenerated.
During this time the crystallization from the melt is significantly enhanced in com-
parison to that for a conventional melt. This enhancement has been attributed to
the spherulite growth rate. Most of the work was performed with a polydisperse
sample, Mw = 55 000, Mn = 11 500, so that the conclusions are tempered by the
high concentration of low molecular weight species. Investigations of this type with
a series of high molecular weight fractions should be quite illuminating. It has also
been claimed that by varying the initial thickness in linear polyethylene the primary
nucleation rate increases with the entanglement density.(50a)

Another example that demonstrates the influence of chain entanglements is
found in the melt crystallization kinetics of pure poly(dimethyl siloxane) (Mn =
740 000).(50b) It is found that in this case the derived Avrami equation with n = 3
can account for 95% of the transformation. This relatively rare event can be ex-
plained by the fact the molecular weight between entanglements of this polymer is
12 000 as compared, for example, with 830 for linear polyethylene.(50c) Thus, the
number of entanglements per chain is relatively low as compared to other polymers.
It will also be shown in Chapter 13 that a derived Avrami expression explains more
than 90% of the crystallization of linear polyethylene from dilute solution.

The crystallization of an isotactic poly(styrene) sample that was originally freeze
dried from a 0.01 wt percent benzene solution vividly demonstrates the influence of
chain entanglements on the kinetics.(50d) Such a sample has a minimal amount of
entanglements since it essentially comes from a dilute solution. Consequently it was
found that freeze dried samples crystallized, in terms of half-times, approximately
nine times faster than the untreated polymer. Both samples crystallized from the
pure melt in the conventional manner. This result is consistent with the Flory–Yoon
calculations that the chains cannot disentangle each other from the melt during the
time scale of the crystallization.(50e,50f) This calculation is consistent with the

4 This problem, and the influence on the melting temperature, have been discussed in Chapter 7 (Volume 1).
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Table 9.2. Deviation of experiment crystallization kinetic theories for
selected polymers

1 − λ Deviation

Polymer (1 − λ)∞ Göler–Sachsa Avramib Avrami/(1 − λ)∞ Ref.

Poly(ether ether ketone)
Low temperature 0.18 0.13 0.17 0.94 a
High temperature 0.35 0.23 0.22 0.63

New poly(imide)
Low temperature 0.24 0.15 0.23 0.96 b
High temperature 0.25 0.17 0.22 0.88

Poly(1,3-dioxolane) 0.50 0.30 0.32 0.64 c
Poly(chlorotrifluoro
ethylene) 0.60 0.50 0.48 0.72 d

Poly(3,3-dimethyl
oxetane) 0.63 0.30 0.48 0.76 e

Poly(oxetane) 0.53 0.28 0.25 0.47 f
Poly(cis-1,4-butadiene)

Low temperature 0.50 0.50 0.50 1.00 g
High temperature 0.55 0.50 0.45 0.82

a Göler–Sachs from Eqs. (9.12) and (9.13).
b Avrami from Eq. (9.31a).
References
a. Cebe, P. and S. D. Hong, Polymer, 27, 1183 (1986).
b. Hsiao, B. S., B. B. Sauer and A. Biswas, J. Polym. Sci.: Pt. B: Polym. Phys., 32, 737

(1994).
c. Alamo, R., J. G. Fatou and J. Guzman, Polymer, 32, 274 (1982).
d. Hoffman, J. D. and J. J. Weeks, J. Chem. Phys., 37, 1723 (1962).
e. Perez, E., J. G. Fatou and A. Bello, Coll. Polym. Sci., 262, 913 (1984).
f. Perez, E., A. Bello and J. G. Fatou, Coll. Polym. Sci., 262, 605 (1984).
g. Feio, G. and J. P. Cohen-Addad, J. Polym. Sci.: Pt. B: Polym. Phys., 26, 389 (1988).

influence of chain entanglements on the crystallization process and their effective
permanent nature. DiMarzio et al. have argued to the contrary.(50g) They calculated
that the entanglements present no impediment to the reeling in of molecules to the
growing crystal front. It was further concluded that the role of entanglements would
be negligible in the crystallization process.(50h) This conclusion is contrary to the
abundant experimental results that are now available.

As an aside, it should be noted at this point that chain entanglements have
been shown theoretically to also influence many structural properties.(50i) These
properties, such as crystallinity levels and lamellar thickness, will be discussed in
detail in Volume 3.

The similarity of the two theories in explaining the experimental results, prior to
deviation, has been found in many other polymers as is indicated in Table 9.2. Data
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for a range of molecular weights are not available for these polymers. Tabulated are
the final level of crystallinity attained, (1−λ)∞; the crystallinity levels at which the
different theories deviate; and the ratio of the 1 − λ Avrami deviation to (1 − λ)∞.
We find once again that the 1 −λ deviation values for Göler–Sachs and Avrami are
close to one another. When the (1 −λ)∞ value that is attained is relatively low then
the deviation level is close to this value. For example, the New poly(imide) and
poly(ether ether ketone) only attain crystallinity levels of the order of 25% or less.
The kinetic data for these polymers adhere quite well to the theories over this range.
The results for some other polymers such as nylon 11,(50) poly( ∋-caprolactone),(44)
poly(phenylene sulfide) (43) and poly(ether ether ketone ketone) (46) show similar
agreement. For polymers that attain high levels of crystallinity agreement between
theory and experiment does not encompass the complete transformation range.
However, as indicated in the table a significant portion of the transformation can
be explained equally well by either the free-growth or Avrami theories.

The introduction of the impingement concept has made substantial improve-
ment in fitting the observed crystallization kinetics of metals, and other monomeric
systems, to theory. However, as the analysis of experimental data has indicated, no
significant gain over the free-growth approximation is achieved in the crystallization
kinetics of polymers. Cessation of crystalline growth because of the impingement of
growing centers is thus not the major reason for the observed reduction in the crys-
tallization rate of polymers with the extent of transformation. This is true even when
the incomplete transformation is taken into account by the proposed normalization
procedure. One must then seek other reasons that are unique to polymers as the
source of the deviations. Despite the deviation of experiment from the Göler–Sachs
and Avrami theories, the results demonstrate that one is dealing with a classical
nucleation and growth process. This general conclusion must be kept in mind as
modifications are proposed. In the next section we explore the efforts that have been
made to resolve this problem.

9.5 Further theoretical developments: overall crystallization

The realization that the derived Avrami equation does not account for the observed
isotherms has led to many proposed modifications. It should be recalled that the
basic premise of the Avrami development is that the impingement of two growing
centers causes a cessation of their growth. This concept was introduced to allow for
the termination of the transformation of monomeric substances. The proposed alter-
ations to Avrami fall into three main categories: re-examination of the impingement
and termination steps; allowing for more than one nucleation and growth process
to take place; variations in the nucleation and growth rates with the extent of the
transformation. We shall consider the major consequences of these endeavors in this
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Fig. 9.21 Comparison of Austin–Rickett and derived Avrami equation for different
values of exponent n. Plot of degree of crystallinity 1−λ(t) against log time. Solid
curve derived Avrami, Eq. (9.31a). Dashed curve Austin–Rickett, Eq. (9.49).

section. Some of the modifications have their origin in the basic Avrami equation.
Others are based on one of the derived expressions.

Closely following the Avrami expression is an empirical relation introduced by
Austin and Rickett, based on the experimental results for the decomposition of
austenite steel.(51) The relation can be expressed as

1 − λ(t) = 1 − [(kt)n + 1]−1 (9.47)

Equation (9.47) is compared with the derived Avrami, Eq. (9.31a), in Fig. 9.21.
Here the extent of the transformation is plotted against the log time for integral
values of the exponent n. There are only small differences between the two relations,
particularly in the usual range of polymer crystallization. Analysis of typical kinetic
data indicates that deviations from either theory occur at about the same crystallinity
level.

In an alternative approach, Lee and Kim (52) proposed that impingment can be
described by a modification of Eq. (9.24). They suggest that

d(1 − λ(t))

d(1 − λ(t))′ = (λ(t))1−C (9.48)
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where C is a constant, termed the impingement parameter. When C = 0 the derived
Avrami type equation is obtained. The Austin–Rickett equation, (9.47), is obtained
when C = 1.

Tobin (53) has treated the impingement problem in a somewhat different manner
from that of Avrami. The premise that impingement is the cause of the cessation
of growth and the termination of the crystallization is still the underlying prin-
ciple involved. This analysis was initially developed for a constant homogeneous
nucleation rate accompanied by either two- or three-dimensional growth. It was sub-
sequently extended to heterogeneous nucleation. For the two-dimensional problem,
the transformed area at time t , A(t), can be represented as

A(t) = N0

t∫
0

f (t,τ )[A0 − A(τ )] dτ (9.49)

where A0 is the initial area of the sample. The quantity f (t, τ ) represents the
transformed area that develops from each initiating nucleus. The new concept that
is introduced resides in the assumption that

f (t,τ ) = G2

{
A0 − A(t)

A0

}
(t − τ )2 (9.50)

Thus, it is assumed that at time t each growing center has its effective area reduced
by the same factor, irrespective of when it was formed. Substituting Eq. (9.50) into
Eq. (9.49) and integrating over τ , the nonlinear Volterra integral equation

1 − λ(t)

λ(t)
= Kt3 − 3K

t∫
0

(t − τ )2 λ(τ ) dτ (9.51)

results. Here K is defined as NG/3. Equation (9.51) cannot be solved in closed
form. The complete solution can only be obtained by numerical methods. However,
approximate solutions, adequate for most purposes, are easily obtained.

The zeroth-order solution to this integral equation is

1 − λ(t)

λ(t)
= Kt 3 (9.52)

or

λ(t) = Kt 3/(1 + Kt 3) (9.53)

A first-order solution can be obtained by setting the zeroth-order solution into
Eq. (9.51).
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Then

1 − λ(t)

λ(t)
= 3K

t∫
0

(t − τ )2(1 + K t3)−1dτ (9.54)

The integral in Eq. (9.54) can be evaluated in closed form yielding the first-order
solution. The preceding argument can be extended to three-dimensional growth,
with the result that (53)

1 − λ(t)

λ(t)
= K t4 − 4K

t∫
0

(t − τ )3 λ(τ ) dτ (9.55)

Corresponding approximate solutions result. In either case the zeroth- and first-
order solutions for 1 − λ(t) do not differ from one another by more than 2% over
the complete transformation range. Both the first-order and the exact solutions vary
as either t2 or t3 for large values of t for two- and three-dimensional growth, respec-
tively. It is suggested, therefore, that the first-order solution may be a reasonable
approximation to the exact solution. For small values of 1−λ(t), Eq. (9.54) becomes

K t 3 = 1 − λ(t)

λ(t)
� ln

1

λ(t)
(9.56)

and corresponds to the derived Avrami expression for two-dimensional growth. A
corresponding result occurs for growth in three dimensions. The equations then
reduce to the Göler–Sachs expressions for smaller values of 1 − λ(t).

Theoretical isotherms calculated according to the Tobin zeroth-order solution
are given in Fig. 9.11, where a comparison can be made with those of Avrami
and Göler–Sachs. The major features of the isotherms are similar to one another.
The differences become accentuated as the exponent n is lowered. The Tobin plot
reduces to the Avrami formulation at low to modest extents of transformation. At
sufficiently low values of 1 − λ(t) they all reduce to the free-growth approxima-
tion. However, as the crystallization progresses, small but significant differences
develop. The rate calculated by the Tobin equation becomes slower than the Avrami
calculation. At still higher levels of transformation the development of crystallinity
in the Tobin analysis becomes more protracted and diffuse. There is a clear, ana-
lytical termination to the Avrami that is relatively sharp when compared to Tobin.
Although there is an apparent termination in the Tobin isotherm in Fig. 9.11, the
complete integral equation does not allow for such. The Tobin analysis gives a slight
improvement in explaining the experimental results. However, it does not account
for the major differences that are observed.
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When there is a fixed number, N̄ , of nuclei, all of which are activated at the same
t = 0, the Tobin analysis gives (53)

1 − λ(t)

λ(t)
= N̄k2G2t2 (9.57)

For three-dimensional growth under the same conditions

1 − λ(t)

λ(t)
= N̄k3G3t3 (9.58)

When the activation of nuclei follows a first-order rate law

1 − λ(t)

λ(t)
= N̄k2v

t∫
0

(t − τ )2 λ(t) exp(−vτ ) dτ (9.59)

for two-dimensional growth and the same rate constant that was adopted earlier
(Eqs. 9.16 and 9.17). The zeroth-order solution of this integral equation is

1 − λ(t)

λ(t)
= N̄k2

v

t∫
0

(t − τ )2 exp(−vτ ) dτ (9.60)

The integral in Eq. (9.60) can be evaluated in closed form. In analogy to Eq. (9.17)

1 − λ(t)

λ(t)
= A2 (9.61)

The changes that take place in
1 − λ(t)

λ(t)
with time follow the same pattern as

ln(1/λ) in Eq. (9.38). This analysis can be extended to three-dimensional growth
with analogous results.

In quite another approach to the problem it has been postulated that two distinctly
different Avrami type crystallizations are operative during the transformation. These
processes can occur in either series or parallel with one another. They are based
on the derived Avrami expression, Eq. (9.31a). In the series type the first step is
termed the primary crystallization, the other the secondary one. However, it is not
made clear in many applications where in the model isotherm shown in Fig. 9.18
one process stops and the other begins. The primary process that is initiated at time
t = 0 is given by (54,55)

[1 − λ(t)]1 = [1 − λ(∞)]1[1 − exp(−k1t n)] (9.62)

The subscript 1 denotes the primary crystallization process. The crystallinity that
develops in the second stage, which is initiated at time t = τ , is expressed in a
similar manner.
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Thus

[1 − λ(t − τ )]2 = [1 − λ(∞)]2[1 − exp(−k2(t − τ )m)] (9.63)

In these equations [1 − λ(∞)]1 and [1 − λ(∞)]2 are the pseudo-equilibrium crys-
tallinity levels that are attained for the respective processes. Each of these has a
different value for the Avrami exponent and rate constant. The total transformation
at time t , 1 − λ(t), the sum of Eqs. (9.62) and (9.63), is given by

[1 − λ(t)] = [1 − λ(t)]1 +
0∫

t

− [λ(t)]

[
∂(1 − λ(t − τ ))

∂τ

]
(9.64)

Equation (9.64) can then be rewritten as

[1 − λ(t)] = [1 − λ(∞)]1[1 − exp(−k1t n)] + [1 − λ(∞)]2k2m

×
0∫

t

1 − exp(−k1τ
n)m−1[1 − exp(−k2(t − τ )m)] dτ (9.65)

Alternatively, it can be expressed as

1 − λ(t)

1 − λ(∞)
= [1 − λ(∞)]1

[1 − λ(∞)]
[1 − exp(−k1t n)] + λ(∞)1

1 − λ(∞)
k2m

×
0∫

t

[1 − exp(−k1t n)](t − τ )m−1[1 − exp{−k2(t − τ )m}] dτ (9.66)

Here 1 − λ(∞) = 1 − λ1(∞) + 1 − λ2(∞) and 1−λ(t)
1−λ(∞) represents the fraction of

total crystallinity. The integrals in Eqs. (9.65) and (9.66) cannot be evaluated ana-
lytically. However, they can be calculated by approximate numerical and graphical
methods.(56,57)

A theoretical isotherm for the two-stage series model, as calculated from
Eq. (9.66), is illustrated in Fig. 9.22.(55) The contribution to the total crystallinity
of each of the individual steps is also shown. In this example n was taken equal
to 1 and 3. For the parameters adopted in this particular example the apparent
value of the observed n is about 2. Such two-stage processes can lead to fractional
values of the Avrami exponent as well as values that vary with the extent of the
transformation. The results depend on the choice of parameters. Considering the
number of arbitrary parameters involved, and the selection of the time scale, it is
not surprising that agreement can be obtained with different sets of experimental
data. The physical significance of this approach is of concern since the model taken
is arbitrary. The same kind of result can be obtained for a variety of heterogeneous
nucleation mechanisms.
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Fig. 9.22 Theoretical isotherms for two-stage series model. Plot of fraction crys-
tallinity χ against log time. Curve A for first-order process, n = 1. Curve B
primary crystallization, n = 3. Curve C total crystallinity. (From Hillier (55))

Pérez-Cardenas et al. developed a more realistic multi-stage process by consid-
ering an isotherm of the type shown in Fig. 9.18.(58) Region I, where the derived
Avrami or free-growth expressions hold, is defined as the primary crystallization.
A quality ζ is introduced that represents the weight fraction of polymer that has
crystallized at the end of Region II. It is assumed that Region II represents both pri-
mary and secondary crystallization. Region III, on the other hand, only represents
secondary crystallization. With these assumptions it is found that

1 − λ(t)

1 − λ(∞)
= 1 − exp(−k1t n − k2tm)[k1n(1 − ζ )

(9.67a)

×
t∫

0

exp(k1τ
n + k2τ

n)τ n−1 dτ + 1]

for
1 − λ(t)

1 − λ(∞)
≤ ζ . However, when

1 − λ(t)

1 − λ(∞)
> ζ

1 − λ(t)

1 − λ(∞)
= 1 − (1 − ζ ) exp(k2t∗m) exp(−k2t n) (9.67b)

Here t∗ corresponds to the time where only the secondary crystallization is opera-
tive. There are now five arbitary parameters available to fit experimental data. It is
not surprising that a good fit can be obtained by this multi-stage process.
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The multi-stage processes described above are said to be in series since one starts
at t = 0 and the other at a later time. If, however, the secondary process is also
initiated at t = 0, Eq. (9.66) then becomes

1 − λ(τ )

1 − λ(∞)
= [1 − λ(∞)]1

[1 − λ(∞)]
[1−exp(−k1t n)]+ λ(∞)1

1 − λ(∞)
[1−exp(−k2tm)] (9.68)

Equation (9.68) represents the two-stage parallel crystallization model, proposed
by Velisaris and Seferis.(59) This model has also been found to fit selected experi-
mental data.(60)

Another multi-stage process that has been suggested focuses attention on nucle-
ation rates.5(61) Two distinctly different steady-state nucleation rates, N1 and N2,
are assumed. The rates change at time t = tc. Thus at t < tc, N2 = 0, and the
derived Avrami formulation will apply. However, at time t ≥ tc the steady-state
nucleation rate will be given by

N (t) = N1tc + N2(t − tc) (9.69)

With this nucleation rate the Avrami form becomes

1 − λ(t) = 1 − exp

[−π

3

ρc

ρ1
G3(N1tc + N2t − N2tc)t

3

]
(9.70)

for three-dimensional lineal growth.
The modifications that have been proposed to bring the Avrami formulation

into closer agreement with experiment are phenomenological in nature. The main
focuses have been on the impingement calculation and the introduction of multi-
stage processes. They do not take into account the melt structure and the unique
features of polymer chains. Dunning, in 1954, questioned the importance of the
basic Avrami premise to polymer crystallization.(62) The issue raised was the
importance of the impingement of one crystallite upon another in the termination
process when long chain molecules were involved. Other possibilities that are
unique to polymers were suggested that could lead to a continuous reduction in
the overall crystallization rate with time and provide an effective termination to the
transformation.

It was pointed out earlier that the changing constitution of the melt that occurs
as the crystallization progresses should have an important influence on the kinetics.
This is due to the fact that the topological defects, as well as surrounding regions,
cannot be incorporated into the crystal lattice. In effect, there will be liquid-like, or
amorphous, regions that cannot be transformed. It can then be assumed that initially,
and throughout the course of the transformation, a constant fraction λ∗ of the chain
units cannot be crystallized. When the fraction transformed plus untransformable

5 This concept can also be applied to the growth process either by the limiting volume that is available or by
nucleation controlled growth.
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approaches unity there will be an effective termination to the crystallization. There
is therefore a cessation mechanism that is unique to long chain molecules. This
effect will be minimal at the early stages of the transformation but will manifest
itself more as the crystallization progresses. In contrast to monomeric systems,
termination does not require the impingement of crystallites. Other factors can thus
intervene before impingement becomes important. It is of interest to apply this
concept to both the free-growth and Avrami formulations.

Following the earlier free-growth development, the number of nuclei generated
in time dτ can now be expressed as

dn = N (τ )[λ(τ ) − λ∗] dτ (9.71)

where N (τ ) is the steady-state nucleation rate per transformable volume. The nu-
cleation rate, N (τ ), is still constant. However, the number of nuclei generated in
the interval dτ is now reduced by the factor λ(τ ) − λ∗. The level of crystallinity as
a function of time is expressed as

1 − λ(t) =
t∫

0

v(t,τ ) N (τ )(λ(τ ) − λ∗) dτ (9.72)

for three-dimensional linear growth. Here v(t,τ ) is given by Eq. (9.4). A comparison
of Eq. (9.72) with Eq. (9.3) indicates that as the transformation progresses the
crystallization level will be less than calculated when the melt structure is not
taken into account. However, the complete solution of Eq. (9.72) does not yield
termination.(62a)

When applying this concept to the Avrami formulation the phantom nuclei have
to be taken into account. They will now be located in both the untransformable as
well as the transformed regions. The analysis proceeds as previously with either
Eq. (9.26) or (9.27). Neither the fraction transformed nor untransformable appear
explicity in either of these equations. Hence, in order to introduce the influence
of the untransformable fraction on the extent of the transformation a decrease in
N (τ ) with the level of crystallinity, or time, needs to be postulated. Several efforts
have been made to resolve the problem in this manner.(63–66) However, they all
involve postulating an arbitrary retardation in either the nucleation rate, the lineal
growth rate, or in both. There is no physical or molecular basis for the functions
that have been proposed. The normalization procedure that led to Eq. (9.42) was an
effort to account for the fractions of untransformable material in the kinetics. The
formalism of nucleation and growth has also been applied to the development of the
stable crystalline state from a metastable one, rather than from the pure melt.(66a)
Formally, the analysis is qualitatively similar to the two-stage series process that
was discussed previously.(54,55)
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9.6 Further experimental results: overall crystallization

The Avrami exponent n plays a key role in the analysis of overall crystallization
kinetics. Therefore, it is of interest to ascertain the physical significance, if any, of
this parameter. The summary given in Table 9.1 shows that an n value does not
represent a unique set of nucleation and growth processes. However, there is the
possibility that a rationale can be made between the n value, the crystallization
mechanisms, and the morphology and structure in the crystalline state. In order
to explore this possibility a representative set of n values for different polymers
has been compiled in Table 9.3.6 In a few rare cases the n value changes with
the crystallization temperature. This finding reflects a lack of superposition, and
that changes occur in either or both the nucleation and growth processes with
temperature. Of particular importance is the dependence of n on molecular weight,
and the relation, if any, between this exponent and the supermolecular structure that
evolves.7

Two low molecular weight fractions of linear polyethylene, M = 4200 and 5800,
have n values of 4 as does the n-alkane C192H386.(34,67) Thus, the overall crystal-
lization kinetics of the high molecular weight n-alkanes are similar if not identical
to those of low molecular weight polyethylene fractions of comparable molecular
weight. Low molecular weight fractions of poly(ethylene terephthalate) can also
be fitted with an Avrami exponent of 4.(68) The data for most of the low molecular
weight polyether fractions can also be fitted with n = 4. Different investigators have
reported different n values for low molecular weight poly(ethylene oxides), similar
to what has been found for the higher molecular weight homopolymers.(64,69,70)
Therefore, a subjective decision with regard to the n value has been made from the
data available for this polymer. There appears to be a strong tendency in the results
for low molecular weights to adhere to n = 4.

The relation between n and the supermolecular structure that is formed is of
interest. The low molecular weight polyethylene fractions that have n values of 4
form a unique type of superstructure. They can be represented by either rods or a
rod-like assembly of the lamellar crystallites.(5) For molecular weights 7800 and
11 500, crystallized at high temperatures, 129 ◦C and 130 ◦C, n is also equal to 4
and similar superstructures are observed. In this molecular weight range the high
crystallization temperatures are borderline between the different type superstruc-
tures that are formed by linear polyethylene.(5) As the crystallization temperature

6 The Avrami exponent n is evaluated by the curve fitting procedure that has been described. It only applies to
that portion of the isotherm that fits Eq. (9.31a). However, there are situations where a subjective decision has
to be made. These are cases where, although a significant portion of the transformation can be fitted by n = 3,
about half the transformation is also satisfied by n = 4. The problem is whether n = 4 represents the actual
mechanism with deviations from the Avrami equation ensuing.

7 A detailed discussion of the supermolecular structures, or morphology, and their dependence on molecular
weight and crystallization conditions will be given in Volume 3.
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Table 9.3. Values of Avrami exponent n for selected polymers

Polymer n Reference

Ethylene (linear)
M = 4200 4
M = 5800

a
M = 7800–1.2 × 106 4

3a

M = 3 × 106–8 × 106 2
Ethylene oxide

M = 3.5 × 105–1 × 107 3 b
M = 3.5 × 104 2 b
M = 4 × 103–1.64 × 105 3 b′

Phenylene sulfide
M = 24 000 2 c
M = 44 000 2 d
M = 49 000 3 c
M = 64 000 3 c
M = 104 000 2 d

1,3-Dioxolane
M = 8800–120 000 3 e

Trimethylene oxide
M = 8000–157 000 3 f

Hexamethylene oxide
M = 2000–33 000 4 g

Octamethylene oxide
M = 3400–90 000 4 h

Decamethylene oxide
M = 2000–150 000 4 i

3,3-Dimethyl oxetane
M = 18 500–130 000 3 j

Hexamethylene adipamide
Tc = 162 ◦C to 250 ◦C 3 k
Tc = −36 ◦C to −24 ◦C 2 l
Tc = 235 ◦C to 247 ◦C 3 l
Tc = 251 ◦C to 252 ◦C 4 l

Nylon-11 4 m
4,6-Urethane 2.3 n
New polyimide 4 o
Polyimideb ∼2 p
Polyimide LARC-CPI 2 q
Hexamethylene adipate 3 r
Butylene terephthalate 3 s
Decamethylene terephthalate 3–4 t

(cont.)
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Table 9.3. (cont.)

Polymer n Reference

Ethylene terephthalate
T melt 294 ◦Cc

Tc = 235–250 ◦C 4 u
Tc = 170–220 ◦C 3
Tc = 110–160 ◦C 2
Tc = 108 ◦C 3

T melt 268 ◦C
Tc = 250 ◦C 4 u
Tc = 106–249 ◦C 3

T melt 290 ◦C
Tc = 200–225 ◦C 3 s

T melt 290 ◦C
Tc = 211–223 ◦C 3 v

T glass
Tc = 112–123 ◦C 3

∋-Caprolactone 4 w
Ether ether ketone 3 x
Ether ether ketone ketone 2 y

a M = 7800 and 11 500 have values of n = 4 for crystallization
temperatures of 129.1 ◦C and 130.1 ◦C, at lower crystallization
temperatures n = 3.
b Polyimide of 4,4′-oxydiphthalic acid and ethylene glycol.
c Initial melt temperature prior to crystallization.
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is lowered n becomes 3. Concomitantly, well-developed spherulitic structures are
observed for molecular weights up to and including 1.2 × 106 with n = 3. The
order within the spherulites decreases, however, with increasing molecular weight.
For higher molecular weights, 3.8–8 × 106, n = 2 and no defined superstructures
are discerned. Consistent with this n value only randomly oriented lamellae that are
not correlated with one another are observed.(4,5) For linear polyethylene, there
is a very good correlation between the superstructures that are observed and the
Avrami exponent n.

Studies with poly(ethylene oxide) give qualitatively similar results.(49,71) At
the high molecular weights, 3.8 × 106 and greater, n = 3 and spherulites are
observed. Presumably, if still higher molecular weights were studied, randomly
arranged lamellae, with n = 2, would be observed following the pattern established
by linear polyethylene. Intermediate structures, between spherulites and hedrites,
develop at lower molecular weights. Here, the n values of 3 reflect the domination
of the spherulitic type structures. At molecular weights 3.5 × 104 and lower n =
2, reflecting the fact that only hedrites form. Presumably, these grow by a two-
dimensional rate controlling process. Thus, there is also a correlation between the
Avrami exponent n and the superstructure that evolves for this polymer.

For poly(1,3-dioxolane) n = 3, independent of the isothermal crystallization
temperatureandmolecularweight, in the range8800–120 000.(38,72a)Aspherulitic
type growth is implied by these results. However, light microscopic studies show
that there is a superstructure transition, from spherulite to hedrite, at the elevated
crystallization temperatures.(38,72) Thus, there must be a change in nucleation type
to compensate for the apparent change in growth habit. Alternatively, the growth
could still maintain an element of three-dimensional character.

The kinetic data for poly(hexamethylene adipamide) present some interesting
correlations.(73) At the highest crystallization temperatures n = 4. According to the
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formal analysis, this value is consistent with sporadic homogeneous nucleation and
three-dimensional isotropic spherulitic growth. The spherulite size distribution, as
measured by polarized light microscopy, and the fact that the number of spherulites
increases with crystallization time confirm this conclusion. At lower crystallization
temperatures, 235 ◦C–247 ◦C, n = 3. In this temperature interval, all the spherulites
at any given crystallization time have the same size. This direct observation implies
predetermined nucleation initiated at t = 0. It is consistent with the measured expo-
nent. At very low crystallization temperatures for this polymer n = 2. It is inferred
from this result that the crystallization is fibrillar from a sporadic type nucleation.

The studies with poly(ethylene terephthalate) by different investigators demon-
strate the influence of the specific sample, the initial state prior to crystallization,
and the crystallization temperatures on the kinetics. The results of Hartley et al.
(74) show that the value of n depends on both the crystallization temperature and
the temperature of the melt prior to crystallization. Presumably, at the higher melt
temperatures more of the potential heterogeneous nuclei are destroyed. This pre-
sumption is borne out by light microscopic observation. For example, for melt
temperature of 294 ◦C n = 4 at the highest crystallization temperatures. Consis-
tent with this value, microscopic studies show a distribution of spherulite sizes,
the number of which increases with time. At this initial high melt temperature
(294 ◦C) and a crystallization temperature of 220 ◦C the spherulites are all of the
same size and their number does not change with the crystallization time. This
microscopic observation is consistent with a kinetic value of n = 3. For crystal-
lization at 110 ◦C n = 2. Under these crystallization conditions no discernible or
definitive structures are observed under the microscope. This observation reflects
the large number of nucleation acts that occur at this low temperature that lead to an
undefined fine grained structure. The microscopic observations after crystallization
at 108 ◦C were ambiguous and did not allow for a comparison with the determined
value of n = 2.(74) In contrast, at a lower melt temperature, 268 ◦C, and crystal-
lization temperature of 245 ◦C a value of 3 is observed instead of 4. Concomitantly,
a fine grained structure is observed indicating the presence of a large number of
pre-determined nuclei. The complementary microscopic and kinetic studies with
poly(hexamethylene adipamide) and poly(ethylene terephthalate) demonstrate that
in many situations there is a good correlation between the Avrami exponent and
the superstructure that evolves.

The overall crystallization kinetics, accompanied by morphological observa-
tions, have also been observed for several different polyimides.(42,45,75) For New
polyimide n = 4, and well-developed spherulites are formed.(45) The polyimide
LARC-CPI gives n = 2 at all crystallization temperatures, and spherulitic structures
are not observed.(75) Rather a hedrite or sheaf-like structure consistent with two-
dimensional growth forms. The kinetic and morphological behavior of polyimides
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based on 4,4′-oxydiphthalic anhydride (ODPA) and ethylene glycol have also been
reported.(42) The kinetic data for the three polyimides of this type that were stud-
ied could be fitted to an n value of 2. The complete transformation was used to
obtain this value. However, for about the first one-third of the total transformation,
using the fitting procedures described, the data agree very well with n = 3. This
n value is consistent with microscopic studies that show the formation of three-
dimensional supermolecular structures. The possible reasons for the protracted rate
that subsequently develops have already been discussed in detail.

This survey of a variety of polymers demonstrates that when n values are obtained
in an appropriate manner there is a self-consistency between the Avrami exponent
and the supermolecular structures that are observed.(76) There are, however, cases
where such a correlation cannot be made even for the same polymer.(46,76a,76b)
This inconsistency can be attributed to different samples of the same polymers as
well as differing roles played by heterogeneities.

There have been many reports of nonintegral values for n. In some cases these
are natural consequences of heterogeneous nucleation of the kinds that have been
described. Very often they are the result of trying to fit the Avrami formulation to the
complete transformation. This procedure ignores the basic theoretical assumptions
that are involved and the deviations from the Avrami theory that are observed. Values
of n less than 1 have also been reported.(77) Although n = 1 can be tolerated by
the Avrami approach, lower values cannot be explained in any straightforward
manner. However, caution must be taken to insure that, in analyzing kinetic data
that give these low n values, one is dealing with homopolymers of flexible chains
and not a copolymer or a liquid crystal forming polymer. Moreover, the method
of measurement must be commensurate with the time scale of the crystallization.
Otherwise, it is quite possible that only the final portion of the crystallization is
observed. When this occurs an apparent low n value will be deduced.

Studies of the overall crystallization kinetics also give important information
as to the role played by molecular weight and polydispersity in the crystalliza-
tion process. The influence of molecular weight on the crystallization rate, when
fractions are used, is illustrated in Fig. 9.23a for linear polyethylene (34) and in
Fig. 9.23b for poly(tetramethyl-p-silphenylene siloxane).(78) In these figures the
log of the overall crystallization rate, expressed in terms of 1/τ0.01 or 1/τ1/2, is plot-
ted against the log of the molecular weight for a series of isothermal crystallization
temperatures. In both of these examples well-defined maxima are observed. The
location of the maximum is dependent on the crystallization temperature, shift-
ing to lower molecular weights as the crystallization temperature is reduced. The
depth of the maximum is also a function of the crystallization temperature. Only a
very shallow maximum is observed at the lower crystallization temperatures. The
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(a)

Fig. 9.23 Dependence of overall crystallization rate on molecular weight for a se-
ries of isothermal crystallization temperatures. (a) Plot of log 1/τ0.01 against log Mw
for fraction of linear polyethylene at indicated crystallization temperatures.(34) (b)
Plot of log 1/t1/2 against log Mw for fraction of poly(tetramethyl-p-silphenylene
siloxane) at indicated crystallization temperature. (From Magill (78))
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results for poly(ethylene oxide) are very similar to those of linear polyethylenes
illustrated.(39) Other poly(ethers) behave in a similar manner.(79)

Since the linear polyethylene data are extensive we examine them in some de-
tail. In the lower molecular weight range the crystallization rates increase over
several decades with increasing molecular weight until a maximum in the rate is
reached. The molecular weight at the maximum value depends on the crystallization
temperature. The maximum is in the range of M = 1–2 × 105 for the highest crys-
tallization temperature. The molecular weight at the maximum steadily decreases
as the crystallization temperature is lowered. At the lower isothermal crystallization
temperatures the maximum in the rate occurs at M = 1–2 × 104. At the left-hand
side of the maximum there is an almost linear relation, in the log-log plot, between
1/τ0.01 and molecular weight. The slope in this region is essentially independent of
the crystallization temperature. In contrast, at the right side of the maximum there
is a complex relationship between the crystallization rate and molecular weight.
The specifics are dependent on the temperature. At the lower crystallization tem-
peratures in this region, there is only a relatively small change in the time scale with
molecular weight. However, at the higher crystallization temperature there is ini-
tially a very sharp decrease in 1/τ0.01 with molecular weight, followed by a definite
leveling off at the very highest molecular weights. The molecular weight at which
the leveling off occurs is also dependent on the crystallization temperature. At the
higher crystallization temperatures the leveling off begins at about M � 106, while
at the lower ones it begins at lower molecular weights. For example, at a crystal-
lization temperature of 129 ◦C the time for 1% of crystallinity to develop is about
10 min at the rate maximum. This time increases to about 103 min for M � 106 and
levels off at this value up to the highest molecular weight studied, M = 8 × 106.
In contrast, for crystallization at 125 ◦C, τ0,01 is only 1 min at the maximum rate.
It increases to about 5 min at approximately M = 7 × 105 and then levels off. At
the very lowest crystallization temperature there is only a slight change in the rate
over a thousand-fold variation in chain length.

The dependence of the crystallization rate on molecular weight and crystalliza-
tion temperature is obviously complex. Depending on the polymer being studied,
and the crystallization temperature, the crystallization rate can either increase, de-
crease, or show very little change with molecular weight. Studies over a limited
molecular weight range result in the observation of only one of these possibilities.
The maximum in the crystallization rate with molecular weight at constant temper-
ature indicates that at least two competing mechanisms are operative. An analysis of
these data requires the results of similar spherulite growth rate studies as a function
of molecular weight. In addition, a discussion of nucleation theory appropriate to
long chain molecules is needed. Therefore, a detailed analysis of the influence of
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molecular weight on the crystallization rate will be postponed until these subjects
have been discussed.

It has been emphasized that the crystallization process is continuous despite the
fact that several distinctly different regions can be recognized. Typical isotherms,
as well as simultaneous wide- and small-angle x-ray synchrotron studies with linear
polyethylene fractions have demonstrated the continuity. There is no indication of
any discontinuity during the course of the crystallization or the abrupt doubling, or
quantization of the crystallite thickness.(80,81) The completion of the transforma-
tion (Region III) is characterized by a flat or “tail” portion in the isotherm. Here
the crystallinity level increases extremely slowly. It can be represented by a linear
relation on a log time basis. It would take many decades of time to achieve a 10%
increase in the level of crystallinity in this portion of the transformation. Although
the contribution of the tail portion to the total crystallinity is small, some important
structural changes that affect many physical properties do in fact take place. In ad-
dition to the formation of small crystallites, thickening of the already existing ones
also takes place.(82) A detailed consideration of these factors, and their influence
on properties, will be discussed in conjunction with the morphology and structure
of crystalline polymers (Volume 3).

9.7 Nonisothermal crystallization

Attention up to now has been focused on isothermal crystallization. This mode of
crystallization is most amenable to theoretical analysis and comparison with exper-
imental results. However, crystallization can also occur by cooling from the melt
or heating from the glassy state. Nonisothermal crystallization has many practical
applications. It is thus of interest to analyze such processes. There has been a great
deal of theoretical and experimental activity in this area, which has been exten-
sively summarized.(66,83,84) Therefore, focus here will be on the basic theoretical
principles involved and pertinent experimental results.

Most of the theories are based on a derived Avrami expression, such as Eq.
(9.31a), with a variety of modifications.(66,83,84) Cooling from the melt can be
thought of as passing through a succession of isotherms each at a given crystallinity
level that corresponds to the particular time and temperature. Since the isotherms
are superposable, a typical one can be represented by the isotherm illustrated in
Fig. 9.18. As long as the nonisothermal crystallization process is restricted to Region
I (in Fig. 9.18) at all temperatures, the assumption of a derived Avrami, or the
equivalent free-growth expression, is valid. It should be recalled that in this region
the free-growth and Avrami expressions fit the data equally well. However, when
at a given time and temperature the transformation takes place in Region II or III,
the basic underlying assumption, common to most theoretical developments, is no
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longer valid. The structural factors in the melt that cause deviation from Region I
will now become important.

Underlying any theoretical development is the temperature, T (t), at time t . In
general

T (t) = T0 − ψ(t) (9.73)

Here T0 is the initial melt temperature and ψ(t) is the time function for either cooling
or heating. The simplest case to consider is a constant cooling rate where ψ(t) =
φt , φ being a constant. Using the Evans approach to isothermal crystallization
kinetics, Ozawa showed that when a sample is cooled from the equilibrium melting
temperature to the temperature T , at a constant rate φ, the volume fraction of
transformed material can be expressed as (85)

1 − λ(t) = 1 − exp


−4π

φ3

T∫
T 0

m

N (θ ) [V (T ) − V (θ )]2 G(θ ) dθ


 (9.74)

for three-dimensional growth. Here N (θ ) is the number of nuclei per unit volume
that are activated between temperatures T 0

m and θ , G(θ ) is the radial growth rate
and V (T ) is given by the expression

V (T ) =
T∫

T 0
m

G(θ ) dθ (9.75)

In this formulation the fraction transformed will depend on the type of nucleation
that is taking place. For instantaneous nucleation, the nucleation rate, N (θ ), is inde-
pendent of time and cooling rate. It only depends on the temperature. Consequently,
under these circumstances

ln{−ln[1 − λ(T )]} = C1 − 3 ln|φ| (9.76)

The constant C1, termed the cooling crystallization function, is given by

ln 4π + ln

∣∣∣∣∣∣∣
T∫

T 0
m

N (θ ) [V (T ) − V (θ )]2 G(θ ) dθ

∣∣∣∣∣∣∣ (9.77)

For noninstantaneous nucleation, N (θ ) is a function of temperature and time. The
specifics need to be prescribed. For steady-state nucleation, where nuclei are formed
at a constant rate per unit volume, Ṅ (θ ) = N (θ ), it follows that

ln{− ln[1 − λ(T )]} = C2 − 4 ln|φ| (9.78)



62 Crystallization kinetics of homopolymers

where

C2 = ln 4π + ln

∣∣∣∣∣∣∣
T∫

T 0
m




θ∫
T 0

m

Ṅ (u) du


 [V (T ) − V (θ )]2 G(θ ) dθ

∣∣∣∣∣∣∣ (9.79)

Equations (9.76) and (9.77) can be written in general form as

ln{− ln[1 − λ(T )]} = C − n ln|φ| (9.80)

where n is the Avrami exponent. The mathematics involved in the Ozawa calcu-
lation is straightforward. However, the implicit assumption is made that all of the
crystallization takes place in Region I, and the particular type, or types, of nucle-
ation has to be assumed. It is also possible that the type of nucleation will change
during the time course of the crystallization. If these assumptions are not fulfilled,
disagreement with experiment can be anticipated. Moreover, the time lag to reach
the desired temperature on cooling (or heating) has not been taken into account. It
is implicitly assumed that the temperature is reached instantaneously.

The approach taken by Nakamura et al., in another theoretical development, is
also based on the Avrami approach.(86,87) However, in this analysis the general
Avrami expression is used. Therefore, the integral in Eq. (9.27) has to be evaluated.
The evaluation of this integral has been simplified in the theory by assuming the
isokinetic condition. This condition requires that the ratio G(T )/N (T ) be a constant.
With this requirement, the integral can be evaluated. The result is that the relative
extent of the transformation can be expressed as (87,88)

1 − λ(T )

1 − λ(∞)
= 1 − exp


−

t∫
0

[K (T ) dτ ]n


 (9.81)

where

K (T ) = k(T )1/n (9.82)

the quantity k being defined by Eq. (9.28). Equation (9.81) can be expressed as a
function of temperature by introducing the constant cooling rate. Thus, Eq. (9.81)
can be written as

1 − λ(T )

1 − λ(∞)
= 1 − exp


−


 1

φ

T∫
T 0

m

K (T )1/n dt




n
 (9.83)
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Fig. 9.24 Plot according to Eq. (9.80) of ln(− ln xam) against ln φ for
poly(phenylene sulfide), M = 75 000 at indicated temperatures. (From Lopez
and Wilkes (43))

The validity of the general Avrami expression over the range of crystallinities
studied is assumed, as is the isokinetic process. Hieber has pointed out that the
Nakamura equation, Eq. (9.81), contains both the Avrami and Ozawa limits.(88a)

The Ozawa and Nakamura theories are basic to this problem. It is, therefore,
appropriate to compare them with experimental results before discussing modi-
fications that have been made. A detailed summary of this comparison has been
given.(84) Some typical examples follow. Figure 9.24 is a plot, according to
Eq. (9.80), for the nonisothermal crystallization of poly(phenylene sulfide).(43)
A parallel set of straight lines results that are completely consistent with the theory.
These results indicate that in this case the basic premise of the theory is fulfilled. Fur-
thermore, the Avrami n is in good agreement with the value obtained from isother-
mal crystallization kinetics. Good agreement with the Ozawa theory is also found
with poly(caprolactam) (88), isotactic poly(propylene) (89–93), poly(vinylidene
fluoride) (94) and New TPI polyimide,(94a) among others. Reasonable agreement
was obtained between the n value and that obtained in isothermal experiments.
The results for isotactic poly(propylene) give indication that there is a shift from
homogeneous to heterogeneous nucleation as the temperature is increased.(91) The
results that agree with the Ozawa theory imply that the crystallization is restricted
to Region I. Conflicting results have been reported for poly(ethylene terephthalate).
Agreement was found with Ozawa’s theory when a narrow and modest cooling rate
was used.(85) However, deviations were found at the beginning and end of the
crystallization when a wide range in cooling rates was studied.(95)
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Fig. 9.25 Plot according to Eq. (9.80) of log{− ln[1 − x(t)]} against log φ for
poly(butylene naphthalene 2,6-dicarboxylate) at indicated temperatures. (From
Papageorgiou and Karayannidis (96))

A similar plot for poly(butylene naphthalene 2,6-dicarboxylate) is given in
Fig. 9.25.(96) In contrast to the previous figure, these plots are only linear at the
lower portion and curvature is observed at the higher levels of crystallinity. These
results indicate that in this case the crystallization has not been limited to Region I.
Curvature in the Ozawa type plot has also been observed with poly(aryl ether ether
ketone) (40), poly(aryl ether ether ketone ketone) (97) and poly(aryl ether ether
sulfide).(97a) Curvature and deviation from the theory will be observed, if crystal-
lization occurs beyond Region I, because the derived Avrami equation is no longer
valid.

Hieber has shown that a number of studies of nonisothermal crystallization of
isotactic poly(propylene) and poly(ethylene terephthalate) can be treated by the
Nakamura model.(88a) This model has also been shown to hold for syndiotactic
poly(styrene) and poly(caprolactone). (98,98a) The results for linear polyethylene
have not been conclusive. All of the studies have involved unfractionated polymers.
In one study curvature was observed in the Ozawa type plot.(89) In another study,
with a different sample, the Nakamura model was shown to hold.(88)

A variety of theoretical modifications have been made to the two basic
theories.(99–100f) These include utilizing the Tobin rather than the Avrami relation,
modifying the Avrami equation, introducing a linear combination of homogeneous
and heterogeneous nucleation, including an induction or lag time, modifying the
isokinetic assumption, and accounting for secondary crystallization among others.
Progress in this area requires studies with either molecular weight fractions or
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well-characterized distributions with the samples being devoid of additives. The
wide range in cooling rates needs to be studied. In this way basic experimental
facts will be established that are consistent with a given polymer.

9.8 Spherulite initiation and growth: general concepts

Another useful way to study crystallization kinetics is to measure the rate at which
supermolecular structures form and grow. Supermolecular structures represent the
organization of individual crystallites into well-defined, three-dimensional arrays.
Most common among the observed superstructures are spherulites. They represent
a spherical organization of the crystallites. Although spherulites are a common
manifestation of polymer crystallization they are by no means universal. There are
important restraints of molecular weight, distribution, chain structure and crystal-
lization temperature on spherulite formation.(5,6,7) In particular, spherulites are
not observed with high molecular weight polymers, which in general do not form
superstructures. Low molecular weight species form other kinds of structures. Thus,
there is a limitation on the crystallization conditions and molecular constitutions
that can be studied by this technique. Since a given spherulite is not completely
crystalline the relation between the nucleation and growth of a crystallite and that
of a spherulite is not a priori obvious.

Carefully conducted experiments have shown that it is possible for spherulites to
develop sporadically in both time and space in thin polymer films.(22,23,101,102)
Repetitive experiments have indicated that spherulites do not necessarily form in
identical positions if complete melting of the sample is ensured. However, a study of
poly(decamethylene terephthalate) has shown that although spherulites are formed
sporadically in time, they appear in identical positions within the sample.(103)
Experimental evidence showed that for this sample the spherulitic centers are
initiated from a fixed number of heterogeneities. There is a strong tendency for
spherulites to appear in the same position in the field of view after successive
crystallizations.(73,74,104–106) In some cases this observation is solely a result
of incomplete melting.(33,36,102) In others, it can also be due to the presence of a
finite number of nucleation catalysts in the polymer melt.

It is universally observed that in the vicinity of the melting temperature the rate at
which spherulites are generated depends very strongly on the crystallization temper-
ature. The rate increases very rapidly as the temperature is lowered. As was pointed
out earlier, the rate at which spherulite centers are generated in poly(decamethylene
adipate) decreases by a factor of 105 as the crystallization temperature is raised from
67 to 72 ◦C.(22,107) The effect is quite general and is illustrated in Fig. 9.26 for
the crystallization of poly(hexamethylene adipamide).(108) Here the number of
spherulites that are formed per unit volume is plotted against the time for a series of
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Fig. 9.26 Plot of spherulite nucleation rate in poly(hexamethylene adipamide),
Mn = 14 600, at indicated crystallization temperatures. (From McLaren (108))

temperatures. The strong negative temperature coefficient for spherulite initiation
in this region is quite apparent.

An impressive body of experimental evidence has demonstrated that the radius of
a growing spherulite of a pure homopolymer increases linearly with time at a fixed
temperature. A typical example was illustrated in Fig. 9.8 for the spherulitic growth
rate of poly(ethylene adipate).(23) The linear growth rates are clearly defined and
are typical of other polymers. The linear increase of the spherulite diameter with
time implies that the growth is not diffusion controlled. It indicates that the rate
of volume change is proportional to the surface area. Growth is thus controlled by
processes that occur at the boundary.(109) Figure 9.8 also illustrates that the linear
growth rate is very sensitive to the crystallization temperature. In the vicinity of the
melting temperature there is a very strong negative temperature coefficient. As the
crystallization temperature is lowered for this polymer the growth rate increases.
Typically, when isothermal crystallizations are carried out over a wide temperature
range a maximum is observed in the spherulite growth rate. This characteristic was
illustrated in Fig. 9.9 for poly(tetramethyl-p-silphenylene siloxane). Other exam-
ples are found with different molecular weight fractions of poly(ethylene terephtha-
late),(110) isotactic poly(styrene) (111) and many other polymers. With a further
decrease in the temperature, as the glass temperature is approached, a marked
retardation in the rate of spherulite growth takes place. This type of behavior is
independent of molecular weight. Thus, the temperature variation in the spherulitic
growth rate is similar to the temperature coefficient of the overall rate of crystalliza-
tion that was described previously. The temperature at which the maximum in that
rate occurs for a given polymer is similar for both types of rate measurements. The
plot in Fig. 9.9 indicates that at a fixed crystallization temperature the spherulite
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growth rate depends on molecular weight. This molecular weight dependence will
be discussed subsequently along with that of the overall crystallization.

9.9 Nucleation theory: temperature coefficient in vicinity of T 0
m

9.9.1 Low molecular weight nonchain molecules

The experimental results make evident that the crystallization rate of polymers is
strongly influenced by the crystallization temperature. There are several points of
interest that are common to all crystallizing polymers. Characteristically, a strong
negative temperature coefficient is observed in the vicinity of the equilibrium melt-
ing temperature. Because of its low rate in the vicinity of the melting temperature,
crystallization can only be carried out at temperatures well below the melting tem-
perature, i.e. at large undercoolings. This is in marked contrast to low molecular
weight substances. Another characteristic of the crystallization process is the max-
imum observed in the rate when the crystallization is carried out over an extended
temperature range. A significant retardation in the crystallization rate takes place
as the glass temperature is approached.

The analysis of the overall crystallization kinetics led to the conclusion that, in
common with low molecular weight species, crystallization of polymers is governed
by nucleation and growth processes. This general conclusion establishes the basic
framework within which the problem can be analyzed. In principle, two different
types of nucleation processes could be operative.(112) One of these is the required
initiation of crystallization, termed primary nucleation. There are several different
growth mechanisms. These include growth by screw dislocation, growth on an
atomically rough surface and growth by nucleation. The latter, termed secondary
nucleation, is important to spherulite growth rates, and could differ from the primary
one. Material also has to cross the crystal–liquid interface in order for crystal growth
to proceed. All of these processes have different temperature coefficients. There is a
set of concepts that can be used to explain the temperature behavior of crystallizing
substances. These general principles have been established in a straightforward,
general manner. However, when applying these principles to a specific class of
substances, polymers in our case, one has to be concerned with the details. To
rephrase an old saying “the devil is in the details”. Because of the general nature
of the mechanisms involved one must be careful and exercise caution in reaching
conclusions. It can be anticipated that there may be several different mechanisms
that can be invoked to explain the same experimental results. Therefore, postulates
or assertions that are made need to be carefully examined.

With this introduction, the discussion of the temperature coefficient begins with
a detailed analysis of the crystallization kinetics in the vicinity of T 0

m. It will become
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evident that nucleation is the dominant process in this temperature region. Poly-
mers, and chain molecules in general, bring some unique features to the nucleation
problem. These involve the dimensions of a nucleus relative to the molecular length
of the chain and the arrangement, or conformation, of the repeating units within
the nucleus. To establish the proper background, it is advisable to first examine nu-
cleation processes in low molecular weight, nonchain molecules before discussing
polymers. Quantitative descriptions of a variety of nucleation types have been given
in detail.(113,114) These apply equally well to low molecular weight substances
as well as polymers. We shall select a few, from the many examples that have been
analyzed, to illustrate the basic principles involved, and to emphasize the important
differences between them.

If two phases A and B of a single component are in equilibrium at Tm and if
phase B has the lower free energy at temperatures below Tm, it does not neces-
sarily follow that phase B will spontaneously form when the temperature is low-
ered. For the macroscopic phase to develop, it must first pass through a stage
where it consists of relatively small particles. It is, therefore, possible for small
structural entities of phase B to be in equilibrium with phase A at temperatures
below Tm. This occurs because the decrease in Gibbs free energy that would nor-
mally characterize the development of a large phase can be offset by contributions
from the surfaces of the small particles. Hence the relative contributions of the
surface area and volume to the Gibbs free energy of the particle determine the
stability. Nucleation is the process by which a new phase is initiated within a
parent phase, a nucleus being a small structural entity of the new phase. Nuclei
can be formed homogeneously in the parent phase by means of statistical fluc-
tuations of molecular clusters. The nucleation process can also be catalyzed by
the presence of appropriate heterogeneities. Nuclei can also form preferentially
on foreign particles, walls or cavities as well as on the surfaces of already exist-
ing crystals. Although heterogeneous nucleation is usually the predominant initi-
ation mechanism for bulk systems, an analysis of homogeneous nucleation in low
molecular weight substances provides a deep insight into the principles that are
involved.

A simple, but instructive example is found in the formation of a spherical nucleus.
The free energy of homogeneously forming such a nucleus from the melt is

�G = −(4/3)πr 3 �Gv + 4πr 2σ (9.84)

Here �Gv is the bulk free energy change per unit volume, σ is the surface free
energy per unit area and r is the radius of the sphere. This function is illustrated
in Fig. 9.27. As the radius increases, �G initially increases until a maximum is
reached at r = r ∗. The free energy then decreases precipitously and becomes
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Fig. 9.27 Schematic diagram for the free energy of formation of a spherically
shaped nucleus.

negative. At the maximum

r = r ∗ = 2σ

�Gv

(9.85)

and

�G = �G∗ = 16π

3

σ 3

(�Gv)2
(9.86)

If �Gv is expanded in a Taylor series about Tm the first term, �Gv(Tm) = 0. The
second term is �Gv(Tm) �Hv(Tm − T )/Tm. Utilizing this expression

r ∗ = 2σ Tm

�Hv �T
(9.87)

and

�G∗ =
(

16π

3

)
σ 3

(�Hv)2

T 2
m

(�T )2
(9.88)

Here, Tm − T , defined as �T , is the undercooling. Thermodynamic stability of the
nucleus is attained when �G = 0, and

rs = 3σ

�Gv

(9.89)

Nuclei smaller than r ∗ are inherently unstable and disappear from the system since
�G increases with increasing size. However, nuclei that exceed this critical di-
mension can easily grow to sizes exceeding the minimum stability requirement.
�G now decreases very rapidly as the radius increases. �G∗ represents the free
energy barrier that must be surmounted before a stable new phase can develop. We
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distinguish, therefore, between the dimension of a stable nucleus, �G = 0, and the
critical dimension at the barrier height, �G∗. For spherical geometry the ratio of
the respective radii is 3/2. However, the drop in �G from r ∗ to rs is very steep. The
essence of classical nucleation theory, as embodied in Eq. (9.84), is to consider the
free energy contribution of a structurally perfect phase of finite size and to add to
it the excess free energy due to the presence of a surface.8 This classical concept,
attributed to Gibbs,(115) implies that the nucleus is sufficiently large that its inte-
rior is homogeneous and its exterior surface is well defined. When �T becomes
large, the nuclei sizes become very small and can approach atomic dimensions.
The above conditions no longer hold and more sophisticated nucleation theories
are necessary.(116,117) However, despite these complications, the classical the-
ory of nucleation has been shown to have widespread applicability, particularly in
understanding polymer crystallization.

The simplicity of the foregoing analysis is a consequence of introducing spherical
symmetry into the problem. Consequently, only one surface and one surface free
energy are involved. There is, however, no real physical requirement that the nucleus
be spherical. Asymmetric nuclei, where several different surfaces are involved, can
also be treated in the same way. From among the many possibilities, we take as an
example the homogeneous formation of a monomeric substance into a cylindrically
shaped nucleus. Other three-dimensional geometries can equally well be chosen.
These can include cubes and rectangular parallelepipeds. The free energy of forming
a cylindrical nucleus that contains ρ molecules in cross-section and ζ molecules in
length is given as (12)

�G = 2ζ
√

πρσun + 2ρσen − ζρ�Gv (9.90)

Here, �Gv is the free energy of fusion per molecule, σun the lateral interfacial free
energy per molecule, and σen the interfacial free energy per molecule at the cylinder
ends. The interfacial free energies, σun and σen, are those involved in forming a
nucleus. They are not the same as the corresponding free energies associated with
the mature crystallites of finite size. It is important that they not be identified as such.
The contributions of strain and edge free energies are neglected in this example.
There is neither a maximum nor minimum in the free energy surface represented by
Eq. (9.90). It does, however, contain a saddle point. The coordinates of the saddle
point are obtained by setting (∂�G/∂ζ )ρ and (∂�G/∂ρ)ζ equal to zero. It then
follows that

ρ∗ = 4πσ 2
un

�G2
v

(9.91)

8 In the sense employed here, the perfect phase possesses the lowest free energy consistent with the constraints
imposed on the system. Hence the presence of equilibrium type defects, such as lattice vacancies, is automatically
included. The possibility that nonequilibrium type defects may exist in the macroscopic crystal or crystallite
that eventually develops is not pertinent to the problem of nucleus formation.
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and

ζ ∗ = 4σen

�Gv

(9.92)

These dimensions are those of the critical-size nucleus. At the saddle point

�G = �G∗ = 8πσ 2
unσen

�G2
v

(9.93)

It is convenient to define a set of reduced variables

ρ̄ = ρ

ρ∗ ζ̄ = ζ

ζ ∗ �Ḡ = �G

�G∗ (9.94)

Equation (9.90) can then be rewritten as

�Ḡ = 2ζ̄ ρ̄1/2 + ρ̄ − 2ζ̄ ρ̄ (9.95)

A graphical representation of Eq. (9.95) is given in Fig. 9.28 as a contour map for
constant values of �Ḡ. The free energy barrier that must be overcome, �Ḡ = 1,
is located at the saddle point, ζ̄ = ρ̄ = 1. A stable nucleus is achieved when

Fig. 9.28 Contour diagram for constant values of �Ḡ = �G/�G∗ according to
Eq. (9.95).
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the contour line �Ḡ = 0 is crossed. The attainment of stability thus involves an
increase in dimensions over that characterizing a critical-size nucleus. There are
a large number of paths that originate at the saddle point, and allow for stability
to be achieved. However, the pursuit of certain paths is futile. It can be seen from
Fig. 9.28 that ρ̄ must exceed unity, irrespective of the value of ζ̄ , in order for �Ḡ
to become negative. On the other hand, ζ̄ can be fixed at unity and stability will be
achieved if ρ̄ exceeds 4. Hence growth in the ζ direction does not need to occur
beyond the critical size in order for a stable crystallite to develop. This conclusion
is an important consequence of this type of nucleation. A firm requirement of Eq.
(9.95) is that ζ̄ must exceed 1/2 for a stable nucleus to be formed even if unrestricted
lateral growth is allowed. Although forbidden paths can be delineated, it is not a
priori possible to prescribe a unique path for the growth of an asymmetric nucleus
of critical size to a thermodynamically stable crystallite. The conclusions reached
for other three-dimensional geometries follow those established for the cylindrical
nucleus. Characteristically, for this type of nucleation �G∗ is always proportional
to 1/�G2

v. The proportionality factor will depend on the geometry assumed. This
type of nucleation has also been termed three-dimensional nucleation because of
the geometry involved.

The temperature dependences of ρ∗ and ζ ∗, as well as �G∗, are characteristic
of nucleus formation. At the melting temperature Tm, �Gv is zero, so that the
critical dimensions, and �G∗, are infinite. As the melting temperature is lowered,
the governing variable is the undercooling that changes dramatically with just small
variations in the crystallization temperature Tc. In turn major changes occur in the
critical dimensions. Thus, there is a strong temperature dependence of the quantities
involved in forming a critical-size nucleus. It can be anticipated that these unique
features will have a marked influence on the rate at which stable nuclei are formed.

In homogeneous nucleation, critical-size nuclei are formed by statistical fluctu-
ations in the melt. However, nucleation processes can also be catalyzed by hetero-
geneities. Heterogeneous nucleation is the most common type that is encountered.
There are several different types of heterogeneity that enhance the formation of
stable nuclei. Extraneous solids and grain boundaries can catalyze the nucleation
process.(118–120) Also, surfaces that are wetted by the nucleus, cavities within
which nucleation is favored, and container walls will also enhance the nucleation
process. Embryonic nuclei can be retained in cavities above the melting temper-
ature.(121) Nucleation can occur on already formed crystal surfaces. This type
of nucleation can take place coherently, incoherently or epitaxially. All of these
possibilities have important implications to polymer crystallization.

An example of a foreign surface that is wetted by the nucleating species is
illustrated in Fig. 9.29.(122) Here we consider the nucleus of species B to be in
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Fig. 9.29 Schematic example of heterogeneous nucleation on a flat substrate. The
nucleus makes a contact angle θ with the substrate. (From Uhlmann and Chalmers
(122))

the shape of a spherical cap of radius r . It is being formed on the flat nucleating
substrate so all are immersed in the liquid phase A. Here, θ is the contact angle for
equilibrium with respect to the horizontal force components. The balance of the
horizontal forces can be written as

−σαβ cos θ = σβs − σαs = Ws (9.96)

where the σ ’s are the appropriate surface tensions. Substrates that are characterized
by θ < 180◦ for a particular nucleant can serve as nucleation catalysts. Ignoring
strain, �Ghet, the free energy change in forming such a nucleus, can be written as
(122)

�Ghet = πr 2(1 − cos2 θ )Ws + 2πr 2(1 − cos θ )σαβ

−π

3
r 3(2 + cos θ )(1 − cos θ )2�Gv (9.97)

It then follows that

r ∗ = 2σαβ

�Gv

(9.98)

and

�G∗
het = 4π

3

σ 2
αβ

(�Gv)2
(2 + cos θ )(1 − cos θ )2 (9.99)

Thus,

�G∗
het = �G∗ f (θ ) (9.100)

where

f (θ) = (2 + cos θ)(1 − cos θ )2

4
(9.101)

and �G∗ is the free energy change required to form the nucleus homogeneously.
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It is important to note that r ∗, given by Eq. (9.98), is identical with that obtained
from Eq. (9.85) for homogeneous nucleation of a spherical body. The principal
role of a nucleating heterogeneity is to reduce the barrier to nucleation caused by
the surface interfacial free energy. Equations (9.99) and (9.100) show that in this
situation the free energy barrier to nucleation decreases with decreasing θ , and
approaches zero as θ → 0.

Instead of the spherical cap, a cylindrical nucleus of height h and radius r , forming
on the substrate, can also be treated.(123) It follows from similar arguments that

r∗ = 2σun

�Gv

h∗ = 2(σαβ + σβs − σαs)

�Gv

(9.102)

and

�G∗
het = 4πσ 2

un

�G2
v

(σαβ + σβs − σαs) (9.103)

Here σun represents surface free energy, and σαβ , σβs and σαs the respective surface
tensions. When σαs = σβs, Eq. (9.103) becomes

�G∗
het = 4πσ 2

unσαβ (9.104)

For isotropy, σun = σαβ so that

r ∗ = h∗ (9.105)

and

�G∗
het = 4πσ 3

αβ

�G2
v

(9.106)

Nuclei with other geometries that are formed on a wetting substrate can be treated
in a similar manner. The critical dimensions are inversely proportional to �Gv, for
this type of heterogeneity, irrespective of the nucleus geometry. On the other hand,
�G∗

het is inversely proportional to the square of �Gv. The proportionality constants
are, however, dependent on the geometry involved. The expression for�G∗

het is qual-
itatively similar in form to that of the homogeneous case. The general result is that
�G∗

het = f (θ ) �G∗
hom, with f (θ ) varying between zero and unity. The temperature

dependence of the free energy of forming a critical-size nucleus is identical in both
cases. However, less free energy is expended in forming the heterogeneous nucleus.

The possibility exists that embryos, or nuclei, can form and be retained within
cavities of foreign bodies even though under the same conditions they would be
unstable on flat surfaces. The necessary stability conditions have been established
for cylindrical and conical shaped cavities.(121) It is found that embryos can be
retained in cavities at temperatures above the bulk melting temperature if certain
conditions with respect to geometry, dimensions and surface tensions are satisfied.
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The retention of embryos within cavities can explain the effect of thermal history
on the subsequent nucleation and crystallization, even when the sample is heated
above the melting temperature.

Another type of nucleus that is of special interest involves the deposition of
a collection of molecules on an already developed crystal face. The nucleus can
be either three-dimensional or unimolecular. In the latter case only a monolayer
is formed. This type of nucleus was suggested by Gibbs.(123) In the Gibbs type
nucleus one dimension is fixed. Therefore, growth from an embryo to a critical-
size nucleus is restricted to the two lateral dimensions. We are thus dealing with
a two-dimensional nucleation process in contrast to the previous discussion. This
type of nucleus can form either coherently, i.e. in register with the already formed
crystal face or incoherently, where there is a mismatch between the faces. Since this
nucleus is formed on an already existing crystal face it can be thought of as a growth
nucleus, so that growth occurs by a secondary nucleation process.(112) Nucleation
controlled growth may be involved in some crystallization processes. There are,
however, other possible growth mechanisms.(124) An initiating or primary nucleus
in one form or another must always be involved in the crystallization process.

In analogy to the model of a spherical nucleus that was used to demonstrate
the basic principles of three-dimensional nucleation, a disk-shaped nucleus can be
taken to represent the two-dimensional case. This disk has a fixed thickness l and a
variable radius r . When deposited coherently as is illustrated in Fig. 9.30 the only
new surface formed will be the lateral one. The surface at the top of the disk is
compensated by the loss of the original surface of the crystal. Consequently, the
free energy change for coherently forming such a disk is given by

�GD = 2πrlσun − πr 2l �Gv (9.107)

Here σun is the lateral surface free energy.
The critical values of r ∗ and the barrier height, �G∗

D, are given by

r ∗ = σun

�Gv

�G∗
D = πlσ 2

un

�Gv

(9.108)

Fig. 9.30 Schematic example of coherent nucleation of a disk on an already formed
crystal surface.
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It is also possible for the molecules to be deposited incoherently, so that the
surfaces of the nucleus and crystal are not in register. In this case the top and bottom
surfaces do not completely compensate one another. There is a net interfacial free
energy between the pillbox and substrate that we will designate as σ . Therefore,
for this type of nucleation (125,126)

�GD = 2πrlσun − πr 2σ − πr 2l �Gv (9.109)

and

r ∗ = σun

�Gv − σ

l

(9.110)

with

�G∗
D = πlσ 2

u

�Gv − σ

l

(9.111)

The radius of a critical-size nucleus is greater for a mismatched, incoherent nucleus
than one deposited coherently. The free energy barrier required to form such a
nucleus is also greater.

With this background the formation of a Gibbs type nucleus, composed of
monomers, can be analyzed. The free energy change in forming such a nucleus
that is one molecule thick, ρ units broad and ζ units long is given by

�G = 2σenρ + ζσun − ρζ �Gv (9.112)

There is no contribution from the interfacial free energy of the upper surface of
the nucleus in this case since it is canceled by the matched coverage of the lower
surface. This geometric factor is an important characteristic of this type of nucleus.
The critical conditions for the formation of a stable nucleus are given by the saddle
point of the surface defined by Eq. (9.112). Consequently,

ρ∗ = 2σun

�Gv

ζ ∗ = 2σen

�Gv

(9.113)

and

�G∗ = 4σenσun

�Gv

(9.114)

For such a coherent two-dimensional nucleus, �G∗ is inversely proportional
to �Gv. This is in contrast to a three-dimensional type nucleus, formed either
homogeneously or heterogeneously, where �G∗ is inversely proportional to the
square of �Gv. Although the proportionality factors are different, the important
difference between the two nuclei types is the dependence on �Gv. Although the
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detailed critical dimensions vary according to the model, the strong dependence on
the undercooling is the dominant factor. It is inherent to all nucleation theories. An
interesting question, and one that will be addressed shortly, is how to distinguish
the specific type of nucleus that is involved in a particular crystallization.

An extremely important conclusion reached from Eq. (9.113) is that ζ ∗ corre-
sponds to the minimum size for the thermodynamic stability of a mature crystallite,
even if growth in the lateral dimensions is unrestricted. Thus, if the value of ζ ∗

given by Eq. (9.113) is maintained, the mature crystallite that evolves will be ther-
modynamically stable at the crystallization temperature. However, such a crystal
will melt at a temperature just infinitesimally above the crystallization temperature,
irrespective of the value of ρ. Hence, if this type of surface, or growth, nucleus is
involved in a real crystallization process, a mechanism must be provided by which
the longitudinal dimension increases beyond critical size in order for a crystallite
to be stable above the crystallization temperature. This mandatory requirement is
an inherent property of a Gibbs type nucleus. This requirement holds irrespective
of the molecular species involved since it is based on a straightforward thermo-
dynamic requirement. It will become evident shortly that this requirement is very
important in polymer crystallization. In contrast, thermodynamic stability can be
achieved in a three-dimensional nucleus without any need for increasing ζ ∗.

Following the general pattern of analysis, the critical parameters for a unimolec-
ular, noncoherent nucleus can be expressed as

ρ∗ = 2σun

�Gv − σ/a
ζ ∗ = 2σen

�Gv − σ/a
(9.115)

and

�G∗ = 4σenσun

�Gv − σ/a
(9.116)

Here a is the thickness of the monolayer. For this type of nucleation ζ ∗ is greater
than the corresponding value that is obtained for coherent nucleation. Therefore,
there is an enhanced stability to the mature crystallite of thicknesses ζ ∗.

Coherent nucleation on the face of an already formed crystallite is not restricted
to a unimolecular layer. Growth nuclei can also be multilayer, i.e. the thickness is not
fixed. In this case a three-dimensional process is involved and �G∗ is proportional
to �G−2

v .
The main focus up to now has been on the properties of different types of nuclei.

In applying these concepts to crystallization kinetics it is necessary to formulate
an expression for the rate at which stable nuclei are formed. Since embryos, or
nuclei, will in general grow one molecule at a time as a result of statistical thermal
fluctuations, those containing less than the requisite number of molecules will
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disappear without reaching critical size. Occasionally a series of energy fluctuations
will produce a nucleus that exceeds the critical size. Based on a proposal by Becker
(127), Turnbull and Fisher (128) treated this rate problem by taking advantage of
Eyring’s absolute rate theory. They considered the reaction

βi + αl � βi+l (9.117)

at steady state. Here αl represents the liquid phase and βi the nucleus of the new
phase being formed. It was found that the steady-state rate of forming critical-size
nuclei per mole of untransformed material per unit time could be expressed as

N = (n0kT/h) exp[−(ED + �G∗)/kt] (9.118)

where n0 is a constant. Equation (9.118) was derived for a process that does not
require the long-range diffusion of molecules. ED is the activation free energy for
the short-range movement of molecules crossing the interfacial boundary in order
to join the nucleus. An equation having a similar form is also obtained for heteroge-
neous nucleation.(118) Equation (9.118) represents steady-state nucleation. There
is a transient nucleation process that proceeds reaching steady-state.(17a,17b)

Equation (9.118) accounts for the marked negative temperature coefficient of the
crystallization rate that is observed in the vicinity of the melting temperature. Not
only is there a very strong temperature coefficient, but it is in the opposite direction
to that of conventional chemical reactions. Conventionally, the rate of a process
or reaction increases with increasing temperature. On the other hand, nucleation
rates increase with decreasing temperature at low to moderate undercoolings. The
reason is the dependence of �G∗ on the inverse of T 0

m − T . At temperatures just
below T 0

m, the nucleation rate has a very large negative temperature coefficient
primarily as a result of the variation of the term exp(−�G∗/RT). Small decreases
in the crystallization temperature in this region reduce �G∗ by a relatively large
amount. The nucleation rate is then enhanced by the exponential argument. As
the temperature is decreased further the nucleation increases at a much slower
rate, reaches a maximum value, and then decreases. At temperatures below the
maximum, the positive temperature coefficient is a result of the dominance of the
transport term exp(−ED/RT) in Eq. (9.118). If nucleation is assisted by foreign
bodies, or surface heterogeneities, the temperature dependence is the same as in
the homogeneous case, but the numerical factors differ. Steady-state nucleation,
as embodied in Eq. (9.118), explains in a qualitative way the major aspects of
temperature dependence of the crystallization rate in the vicinity of Tm.

The study of nucleation, and consequently crystallization, from the melt can be
complicated by heterogeneities. Under these circumstances nucleation will occur
at temperatures that are much higher than the homogeneous case. In a classical set
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of experiments Turnbull showed that small mercury droplets can be supercooled
by a much greater amount than the bulk liquid.(121) The principle involved here is
that when the sample is divided into small droplets the heterogeneities are isolated.
Thus, the vast majority of the droplets will be free of heterogeneities and the trans-
formation of the sample will then occur by homogeneous nucleation. Homogeneous
nucleation by this technique has been demonstrated for many metals, inorganic and
organic compounds (129–131) including the n-alkanes.(132–135b) For example,
various metals have been supercooled from about 60 ◦C to several hundred degrees
utilizing this method. Organic and inorganic compounds have been undercooled
by as much as 150 ◦C. Even the n-alkanes, which can scarcely be supercooled in
the bulk, can be undercooled as much as 20 ◦C utilizing the droplet technique. The
results of such studies with polymers will be discussed shortly.

9.9.2 Long chain molecules

9.9.2.1 Homogeneous nucleation

Nucleation theory involving low molecular weight substances has been introduced
to serve as a background for the related problem in polymer crystallization. The
basic concepts of classical nucleation theory were, therefore, emphasized. Differ-
ent nucleation models and nuclei structures were presented to serve as a broad
base upon which to discuss nucleation processes involving long chain molecules.
This procedure enables both a comprehensive and critical analysis to be made of
polymer crystallization. There is no reason to believe that polymers do not follow
the same basic principles that govern nucleation theory of monomeric substances.
The same laws of thermodynamics and kinetics should apply. However, cognizance
must be taken of the molecular character of long chain molecules, particularly the
connectivity of the repeating units. One must then ask in what way, if any, does this
structural feature modify conventional nucleation theory.

In developing theory pertinent to polymers it is necessary to consider the nature
of the ordered portion of a molecule that participates in nucleus formation. It will
be asymmetric, i.e. very long in the chain direction and relatively narrow in the
lateral dimensions. Therefore, at least two different surfaces will be involved. At
a minimum, the chain will be characterized by an interfacial free energy of the
surface that is normal to the chain axis, σen, and an interfacial free energy, σun,
associated with the lateral surface. It is emphasized again that a sharp distinction
must be made between the interfacial free energies characteristic of the nucleus, and
the corresponding quantities for the mature crystallite. These will be designated as
σec and σuc. The surface structure of the mature crystallite does not have to be the
same as the nucleus from which it is formed. The interfacial free energies will be
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altered accordingly. There is no a priori reason for the mature crystallite to mimic
the nucleus.

Nuclei composed of low molecular weight species contain the requisite number
of complete molecules. In contrast, with the exception of extremely low molecular
weights, an entire chain molecule will not be located within the nucleus. A possible
exception to this generalization is when the complete polymer chain is compacted,
or folded up in such a manner that the entire molecule can be placed within the
nucleus. This situation will be very rare, if it in fact exists at all. Irrespective of
the type of nucleation, be it two- or three-dimensional, or how the chain units are
structured within the nucleus, the number of units ζ in the ordered sequence that
participates in forming the nucleus must be selected from among all the x repeating
units of the chain. This selection requirement introduces an additional entropy term,
as compared to monomers, to the free energy for forming a nucleus. Accordingly,
the critical dimensions of the stable nucleus will be affected.

This problem can be treated by using the Flory expression for the free energy of
fusion, �G f, of a crystallite ζ units long and ρ units broad selected from N chains
each having x repeating units. As has been shown (1)

�G f

xN
= ζρ

xN
�Gu + RT

x
ln

(
1 − ζρ

xN

)
+ RTρ

xN

[
ln D + ln

(x − ζ + 1)

x

]
(9.119)

Here �Gu is the free energy of fusion per repeating unit of the infinitely long chain
and ln D ≡ exp[−2σen/RT]. The quantity σen plays the role of an interfacial free
energy accounting for the dissipation of order from the crystalline to disordered
state, which cannot take place abruptly. Since nucleation only involves low levels

of crystallinity ln(1 − ζρ

xN
) ≈ −ζρ

xN
so that Eq. (9.119) becomes

�G f = ζρ�Gu − RT
ζρ

x
+ RTρ ln

(
x − ζ + 1

x

)
− 2ρσen (9.120)

The first term in Eq. (9.120) represents the bulk free energy of fusion for the ζρ

units that form the nucleus. The next two terms result from the finite length of the
chain. The first of these expresses the entropy gain due to the increased volume
available to the ends of the molecule after melting. The second results from the fact
that only a portion of the repeating units of a given molecule participate in nucleus
formation. It represents the entropy gain that arises from the number of different
ways a sequence of ζ units can be located in a chain x units long.(1) This latter
term is important because it introduces the effect of a finite chain length on the net
free energy of fusion and consequently on the free energy of forming a nucleus.
The expression for a single chain is given by Eq. (9.120) with ρ = 1.

The free energy change that takes place in forming a nucleus from a collection
of chain molecules can now be calculated. The selection process that has been
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outlined must be taken into account irrespective of the nucleation mode and the
chain conformation within the nucleus. This selection process is a crucial step in
forming a nucleus. Subsequently, additional conditions, or restraints, on the nucleus
can be added if deemed necessary. The selection of the sequences by itself leads to
a perfectly legitimate nucleus that has been commonly termed a “bundle” nucleus.
This kind of nucleus does not place any restraints on the shape or structure of the
mature crystallite that develops from it.

After selecting the sequences from ρ chains a nucleus can be formed by merely
arranging them in a cylindrical array. This nucleus, the earliest one studied for
polymer chains, was selected because it accounts for both the general features and
chain asymmetry in a straightforward manner.(12) The number of surfaces involved
is minimal. The free energy of forming such a nucleus can be expressed as (136)

�G = 2π 1/2ρ1/2ζσun+2ρσen −ρζ �Gu + RT

x
ζρ−ρRT ln

(
x − ζ + 1

x

)
(9.121)

The surface that is described by Eq. (9.121) is virtually identical to that described
by Eq. (9.90) and contains a saddle point. The critical dimensions, ζ ∗ and ρ∗, are
defined by the coordinates at the saddle point. Appropriate differentiations yield

ρ∗1/2 = 2π 1/2σun

�Gu − RT
x − RT

(x − ζ ∗ + 1)

(9.122)

and

ζ ∗

2

(
�Gu − RT

x
− RT

x − ζ ∗ + 1

)
= 2σen − RT ln

(
(x − ζ ∗ − 1)

x

)
(9.123)

It then follows that

�G∗ = π 1/2ζ ∗ρ∗1/2σun (9.124)

for a chain of length x , when the complete molecule does not participate in the
nucleation act. The quantity �Gu represents the free energy of fusion per repeating
unit of the infinite molecular weight chain. On the other hand Eqs. (9.122), (9.123)
and (9.124) refer to chains of finite length. Utilizing the first-order approximation,
�Gu can be expressed as

�Gu
∼= �Hu

(
T 0

m − T
)

T 0
m

(9.125)

where T 0
m is the equilibrium melting temperature of the perfect crystal of infinite

molecular weight. Thus the equilibrium melting temperature of the actual chain of
length x is not directly involved. The reason for this surprising result is that the
ζ ∗ρ∗ units that are selected to participate in the nucleus do not recognize the chain
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Fig. 9.31 Plot of ζ ∗ against chain length x for indicated temperatures for linear
polyethylene. Parameters used T 0

m = 145.5 ◦C, σun = 100 cal mol−1, and σen =
4600 mol−1.(136)

ends, except for the correction term embodied in Eqs. (9.122)–(9.124). Therefore,
in contrast to the conventional nucleation theory appropriate to monomers, the
equilibrium melting temperature of the species directly involved is not used with
chain molecules. The undercooling is therefore not reckoned in the conventional
manner since the same value of �Gu is used for all chain lengths. The error involved
in adopting conventional procedures can be significant for small values of x . It is
less important and becomes negligible at the higher molecular weights. In the limit
of infinite molecular weight, Eqs. (9.122)–(9.124) reduce to

ρ∗ = 4πσ 2
un

�G2
u

(9.126)

ζ ∗ = 4σen

�G2
u

(9.127)

�G∗ = 8πσ 2
unσen

�G2
u

(9.128)
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These equations reflect the fact that for a chain of infinite molecular weight there
is no influence of end-groups in the selection and nucleation processes. Equations
(9.126)–(9.128) are identical to those obtained for nonchain low molecular weight
species when arranged in the same three-dimensional geometric array.

The influence of chain length on ζ ∗, based on Eq. (9.123), is illustrated in
Fig. 9.31.(136) Here ζ ∗ is plotted against the chain length at a series of differ-
ent temperatures for polyethylene, taken as a model system. The parameters that
were used are indicated in the legend. ζ ∗ is essentially independent of chain length
at the higher molecular weights. The range over which ζ ∗ is constant with chain
length increases with decreasing crystallization temperature. Put another way, when
compared at the same undercooling, calculated from T 0

m, ζ ∗ is independent of molec-
ular weight at large undercoolings. For the lower molecular weights a significant
increase in ζ ∗ with chain length is found.

An important characteristic of nucleation, the strong dependence of the critical
dimensions on the undercooling in the vicinity of T 0

m, is graphically illustrated in
Figs. 9.32 and 9.33. In these figures, ζ ∗ and ρ∗ are plotted against the temperature,

Fig. 9.32 Plot of ζ ∗ against T according to Eq. (9.126). Values of ratio σen/�Hu
are indicated and T 0

m is taken to be 137.5 ◦C.
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Fig. 9.33 Plot of ρ∗ against T according to Eq. (9.127). Values of ratio σun/�Hu
are indicated and T 0

m is taken to be 137.5 ◦C.

according to Eqs. (9.126) and (9.127), for different values of the ratios σen/�Hu

and σun/�Hu. At T 0
m, taken as 137.5 ◦C in this example, the critical dimensions are

infinite. They decrease sharply, but continuously, as the temperature is lowered.
This decrease is very dramatic in the range of low undercoolings. However, for
crystallization temperatures well removed from T 0

m (�T of the order of 40 to 50 ◦C
in this example) the critical nucleus dimensions become small. They are essen-
tially insensitive to further decreases in the crystallization temperature. Thus, with
the same values of the parameters over the complete range of crystallization tem-
peratures, the critical dimensions become small and essentially constant at large
undercoolings. This result is a natural consequence of classical nucleation theory.
It can be seriously questioned whether the classical nucleation concepts are valid at
the dimensions of the very small nuclei that form at large undercooling. It is evident
that �G∗ is a continuous function that is strongly dependent on the crystallization
temperature. Since Eqs. (9.126) and (9.127) are the same for monomers and high
molecular weight polymers, the contour diagram of Fig. 9.28 applies equally well
to polymers.
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Fig. 9.34 Schematic diagram of the nucleation of a long chain molecule on a flat
substrate.(137)

9.9.2.2 Heterogeneous nucleation

Nucleation theory pertinent to chain molecules, including the selection process,
can be extended to a variety of heterogeneous processes.(137) The analysis is
similar to that used for monomeric substances. Again, each situation has to be
treated separately. In one example that has been analyzed the heterogeneity is a flat,
incompressible surface. The polymer chains are deposited on this surface and form
a nucleus whose shape is defined by the requirement that surface free energy be a
minimum. As is shown in Fig. 9.34, such a nucleus contains ρ chains, or ordered
sequences, each being ζ repeating units long. For illustrative purposes, the chain
length is taken to be sufficiently large that the free energy of fusion is independent of
molecular weight.9 The quantities σun and σen are again the interfacial free energies
characteristic of the nucleus–liquid interface parallel and perpendicular to the chain
direction respectively; σk and σh are the corresponding free energies characteristic
of the heterogeneity–liquid and heterogeneity–nucleus interfaces. The contact angle
is defined by θ . Analysis of the problem leads to Eq. (9.129) for �G, the change
in free energy required to form such a nucleus(137)

�G = 2ρσen + K (θ )2π 1/2σ 1/2ζσun − ζρ�Gu (9.129)

where

K (θ ) = [(1/π )(θ − 1/2 sin 2θ )]1/2 (9.130)

9 The effect of finite chain length can easily be included in the expression for the free energy of fusion. The same
physically meaningful results are obtained from the equations that describe the critical nucleus.
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The coordinates of the saddle point of the surface described by Eq. (9.129), that
correspond to the dimensions of the critical-size nucleus, are

ζ ∗ = 4σen/�Gu (9.131)

ρ∗ = K 2(θ )

(
4πσ 2

un

�G2
u

)
(9.132)

It follows that

�G∗ = K 2
f (θ)8πσ 2

unσe

�G2
u

= K 2
f (θ )�G∗

H (9.133)

Here, �G∗
H is again defined as the free energy change in a homogeneously formed

three-dimensional nucleus of the same geometry. Although �G∗ and ρ∗ are altered
by the substrate, ζ ∗, the critical nucleus size in the chain direction, is not. Insofar
as the nucleation rate is dependent on �G∗ this type of heterogeneity will have
a catalytic effect. However, ζ ∗, which is an important quantity in other aspects of
morphology and structure, remains unchanged.

The influence of the substrate in lowering the free energy barrier for the formation
of stable nuclei is expressed by the ratio �G∗/�G∗

H. This ratio depends on K 2
f (θ )

and thus on the contact angle θ . As θ → π , K 2
f → 1 and the two free energies

become equal to one another in this physically tenable situation. However, as θ → 0,
K 2

f → 0 so that �G∗ approaches zero. This is a physically untenable situation and
results from the breakdown of Eq. (9.130). The change in �G∗/�G∗

H with contact
angle is the same as for monomeric species that form a spherical cap nucleus on the
substrate.(118) There are similarities between the asymmetric nucleus formed by
chain molecules on a flat substrate and monomeric substances that form a spherical
cap.

The breakdown in three-dimensional nucleation, which was indicated above, oc-
curs when σk−σh = σu. This situation leads to the consideration of the unimolecular
deposition of ρ chains on the foreign substrate. In this case

�G = 2ζσun + 2ρσen − ρζ �Gu + ρζ (σu + σh − σk) (9.134)

This mode of nucleation is favored only if (σu+σh−σk) < 0. Under these conditions
the critical dimensions of the monolayer nucleus are given by

ζ ∗ = 2σen

q �Gu
(9.135)

ρ∗ = 2σun

q �Gu
(9.136)



9.9 Nucleation theory: temperature coefficient in vicinity of T 0
m 87

where

q ≡ 1 + Ws

�Gu
(9.137)

and

Ws ≡ −(σun + σn − σk) (9.138)

It follows that

�G∗ = 2σunζ
∗ (9.139)

When q > 1, the critical dimensions and the free energy for nucleation are all
reduced relative to the homogeneous process. For the special case q = 1, i.e.
σk − σh = σu, these equations reduce to those for the coherent formation of a
monomolecular layer nucleus on the face of an existing crystallite. This important
special case will be treated in more detail shortly.

To summarize, for nucleation on a flat surface the mode of nucleation is deter-
mined by the relative values of σun, σh and σk. When σh−σk ≥ σun three-dimensional
homogenous nucleation is preferred; for σun > σn − σk three-dimensional hetero-
geneous nucleation will occur. When σn − σk ≤ −σu two-dimensional nucleation
will result. For the unique situation of σh − σk = −σu the nucleation process will
be formally identical to the classical Gibbs coherent monolayer nucleus. These
are general conclusions applicable alike to both monomers and polymers. A ma-
jor difference between the two nucleation modes is that for the three-dimensional
heterogeneous process ζ ∗ is not altered relative to homogeneous nucleation. How-
ever, it will be reduced relative to the size required for coherent unimolecular
nucleation.

The theory for the nucleation of monomeric substances within cavities or crevices
that are contained within the mother phase (118,138) can also be extended to long
chain molecules.(137) The specific examples that have been treated are illustrated
in Fig. 9.35. Each diagram represents a cross-sectional view of the crevice normal
to the chain direction. The shaded areas indicate the polymer chain. The free energy
of forming a nucleus can again be written in the general form of Eq. (9.129). The
constant K (θ ) now depends on the shape assumed by the nucleus in filling the
crevice. When θ < α + π/2 the crystal–liquid interface can be either convex (case
(i)) or concave (case (ii)). It is equal to zero for the special situation of a flat interface
where θ + α − π/2 = 0.(139) When θ > α + π/2, two separate liquid–crystal
interfaces must exist as is illustrated by case (iii) in Fig. 9.35. By operating on
Eq. (9.129) in the usual manner it is found that the critical conditions are identical
to those for nucleation on a flat substrate.
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Fig. 9.35 Schematic diagram for nucleation within a conical cavity.(137)

The nuclei geometries appropriate to the heterogeneous nucleation of chain
molecules that have been considered are the simplest ones to treat geometrically.
They correspond to those treated for monomeric substances. All of the models
treated yield the common result that ζ ∗ = ζ ∗

H . The origin of this conclusion can be
shown in the following.(137) Without recourse to a detailed model, one can write

�G = 2ρσen − ζ�(ρ) − ζρ �Gu (9.140)

where φ(ρ) is a function of ρ. A detailed analysis shows that in order for ζ ∗ = ζ ∗
H ,

�(ρ) = const.ρ1/2 (9.141)

Nuclei geometries that satisfy Eq. (9.141) must yield the result ζ ∗ = ζ ∗
H . The result

that ζ ∗ = ζ ∗
H is thus not completely general. However, it is satisfied by the models

most commonly used to represent nuclei on substrates. Other types of cavities, or
crevices, can be proposed that will not satisfy Eq. (9.141).

Under certain circumstances stable embryos of long chain molecules can be
retained in cavities above their melting temperature.(137) This conclusion is in
accord with results for monomeric substances. A general analysis that encompasses
all possible heterogeneous nucleation processes cannot be formulated. The detailed
nature of the substrate and the manner in which chain units fill cavities must be
specified before the problem can be solved.

9.9.2.3 Gibbs type nucleation

Of special interest in the realm of nucleation theory is the formation of a Gibbs type
nucleus by long chain molecules. In analogy to monomers this involves the coherent
deposition of a monomolecular layer of chain units on the surface of an already
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Fig. 9.36 Schematic representation of Gibbs type nucleus of long chain molecules.
(a) Bundle nucleus, ζ is thickness of nucleus; (b) regularly folded chain, adjacent
re-entry nucleus. l is thickness of nucleus.

existing crystallite. Coherency implies that the sequences being deposited are in
register with the crystal surface and the crystallographic features are maintained.
Thus, a portion of the crystal surface is replaced by that of the nucleus. This type of
two-dimensional nucleus can play the role of a growth or secondary nucleus. The
structure of one such nucleus of this type is schematically illustrated in Fig. 9.36a.
The nucleus being formed in this example is composed of unfolded chains, which
represent a legitimate model for chain nucleation. The free energy of forming such
a nucleus from long chain molecules can be expressed as (139)

�G = 2ζσun + 2ρσen − ζρ �Gu + RT

x
ζρ − ρRT ln

(
x − ζ + 1

x

)
(9.142)

The last two terms in Eq. (9.142) have the same significance as was described for
three-dimensional nucleation. The dimensions of the critical-size nucleus are

ρ∗ = 2σun

�Gu − RT

x
− RT

x − ζ + 1

(9.143)

ζ ∗ =




2σen − RT ln

(
x − ζ ∗ + 1

x

)

�Gu − RT

x


 (9.144)

and

�G∗ = 2σun




2σen − RT ln

(
x − ζ ∗ + 1

x

)

�Gu − RT

x


 = σunζ

∗ (9.145)
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As the chain length x gets very large these expressions reduce to the classical results

ζ ∗ = 2σen

�Gu
ρ∗ = 2σun

�Gu
�G∗ = 4σenσun

�Gu
(9.146)

Equation (9.146) is applicable both to monomers and to polymers of high molecular
weight. As with three-dimensional nucleation, the undercooling of finite length
chains need to be reckoned from the equilibrium melting temperature of the infinite
chain. The contour diagram for the reduced variables of ζ ∗ and ρ∗ for this type
of nucleation has the same major features and is qualitatively similar to that in
Fig. 9.28 for three-dimensional nucleation. A numerical analysis of Eq. (9.146),
indicates that the classical limiting result is obeyed for values of x approximately
equal to or greater than 104.(139) The conclusions reached for two-dimensional
coherent nucleation are valid, irrespective of the molecular chain structure of the
mature crystallite that eventually evolves, as long as the complete chain molecule
does not participate in the nucleation act.

It was noted previously that although nuclei described by Eqs. (9.143)–(9.146)
are stable at the crystallization temperature they are thermodynamically unstable
at an infinitessimally higher temperature. In order to be stable above the crystal-
lization temperature, ζ ∗ must increase, i.e. growth must take place in the chain
direction irrespective of the value of ρ∗. The conclusion is an inherent and invi-
olable characteristic of Gibbs type coherent nucleation. It applies equally well to
monomers and polymers, irrespective of the polymer chain conformation within
the nucleus. There is no problem in achieving stability with monomers and with
the bundle type nucleus that was just considered. The chain conformation within
this nucleus places, in principle, no impediment to growth in the chain direction.
Hence it is possible for ζ to increase beyond ζ ∗ isothermally and achieve stability
above Tc.

In addition to nucleation theory, the steady-state rate at which critical-size nu-
clei are formed is an important quantity in analyzing crystallization kinetics. The
expression for this quantity can be developed in a manner similar to that for low
molecular weight systems. Instead of the stepwise addition of atoms or molecules,
chain units or sequences of units are added. Consequently, the steady-state rate at
which nuclei are formed per unit untransformed volume is again expressed as

N = N0 exp

{−ED

RT
− �G∗

RT

}
(9.118)

The nuclei considered to this point have consisted of unfolded chains arranged
either in a three-dimensional bundle or in a monolayer. This kind of nucleus can
lead in a natural and straightforward manner to all known mature crystallite struc-
tures and related morphologies and superstructures. Other types of nuclei, where
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the chains are configured and packed in different ways, can also be considered.
However, the sequence selection requirement must always be satisfied. Any such
modifications will result in an increase in �G∗, the barrier height that needs to be
overcome to form such a nucleus. If the chains, for example, are assumed to be
folded in a regular array, the end surface free energy must be increased because of
the additional contributions from the fold and strain free energies.(140–142) The
need of gauche rotational states to establish a regularly folded structure in linear
polyethylene involves an excessive increase in free energy.

9.9.2.4 Regularly folded chain nucleation

As was described in the introductory chapter, when homopolymers are crystallized
either in the bulk or from solution, lamellar-like crystallites are formed. Depending
upon the crystallization conditions the thickness of the crystallites can range up to
several hundred angstroms. In contrast, the length of the lamellae can be as much as
several micrometers, while the width is somewhat reduced from this value. In such
crystallites the chain axes are preferentially oriented normal to the basal plane of
the lamellae. Studies of the lamellae dimensions, coupled with the observed chain
orientation, require that, except for very low molecular weights, some type of chain
folding takes place in the mature crystallites. Based on those observations, and the
interpretation of transmission electron micrographs, a specific type of chain folding
has been postulated.(143–144a) It was assumed that in the crystallite a chain makes
a set of sharp, hairpin-like bends, with adjacent re-entry of the ordered sequences.
It is thus assumed that a chain in the crystallite resembles a folded fire hose.(145)
Detailed studies involving a variety of experimental and theoretical techniques have
made quite clear that, despite the lamellar structure and the requirement of some
type of folding, regular chain folding with adjacent re-entry is not a common feature
of polymer crystallization.10(141,142,145a)

A nucleation theory involving growth has been proposed.(146–149) It is assumed
that the chains within the nucleus are regularly folded with adjacent re-entry. It is
based on the premise that the chain conformation and surface structure of the nucleus
are the same as those of the mature crystallite that evolves. The assumption that the
chains in a lamellar crystallite are regularly folded can be seriously questioned as
a general rule in polymer crystallization. Also to be questioned is identifying the
nucleus chain structure with that of the crystallite. Crystallite growth is taken to be
nucleation controlled consistent with the observed spherulite growth rates.

In this theory a Gibbs type nucleus was selected to represent the growth nucleus.
Other types of growth nuclei could just as easily be postulated. Thus, the nucleus

10 A detailed discussion of the chain conformation within the mature lamellar crystallite, as well as the associated
interfacial structure, will be found in Volume 3.
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is composed of a unimolecular layer of regularly folded chains that are coherently
deposited on the face of an already existing crystallite. A schematic representation
of such a regularly folded chain nucleus is depicted in Fig. 9.36b. In this nucleus,
the thickness of the chain or monolayer is defined as b0; l is the fold length; and a
is the width of the nucleus. Crystal growth will then be normal to the 100 or 101
planes. There is obviously a fundamental difference between this nucleus and the
one composed of unfolded chains. There are some unique features associated with
a nucleus of regularly folded chains that warrant a detailed analysis.

The free energy change �G rf that is incurred in forming a regularly folded chain
nucleus from the melt is given as (146–150)

�G rf = 2b0lσun + 2b0aσen − ab0l �Gu (9.147)

Equation (9.147) can be recognized as also representing the coherent unimolecular
deposition of monomers and unfolded polymer chains (see Eqs. 9.112 and 9.142). In
fact, the only difference between these equations is that the interfacial free energy,
σen, represents surfaces with different structures. The interfacial free energies σun

and σen, as well as the free energy of fusion per repeating unit, �Gu, have their usual
meaning. Their values will depend on the model taken. However, most importantly,
the equations are formally the same. Specifically, the a dimension for the regularly
folded chain can be written as

a = νa0 (9.148)

where ν can only take on integral values 1, 2, 3, . . . and a0 is the effective width of
the chain, i.e. the actual width plus the additional contribution necessitated by the
discrete folding. Thus

�G rf = 2b0lσun + 2a0b0νσen − a0b0νl �Gu (9.149)

or

�G rf = 2b0lσun + νa0b0[2σen − l �Gu] (9.150)

In the high molecular weight approximations of Eqs. (9.149) and (9.150), the terms
representing the sequence selection of the requisite number of repeating units to
form the nucleus from the x repeating units have been neglected. As was pointed out
earlier, the selection step is necessary for any type of nucleus formation. Hidden
in σen is the free energy change required to form the sharp bend. This quantity
can be excessive in many polymers and will act to suppress the formation of such
a nucleus. Furthermore, since the complete molecule is not contained within the
nucleus, the junction points between the ordered and disordered sequences need
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Fig. 9.37 Schematic diagram of the free energy of forming a regularly folded,
adjacent re-entry nucleus �Grf plotted against the number of sequences ν.

to be taken into account. Neither of these factors have been explicitly taken into
account in formulating Eq. (9.150). These factors will cause the total free energy
of forming a nucleus of regularly folded chains to be substantially increased.

The surface represented by Eq. (9.150) is not continuous. Therefore, the critical
dimensions of the nucleus, and the free energy barrier to be overcome, cannot be
obtained in the conventional manner. A different procedure has to be adopted. Con-
sider the quantity l = l∗ = 2σen/�Gu, which is the critical value for a conventional
Gibbs nucleus. For a regularly folded chain nucleus, with l = l∗, �G rf = 2b0l∗σun.
For all values of l ≤ l∗ and of ν, �G rf will always be positive. Therefore, a stable
nucleus that corresponds to �G rf = 0 cannot be formed with l∗. As is indicated in
Fig. 9.37, there must be a maximum in �G rf in order for a path to exist that allows
the nucleus to become stable. The stability requirement can only be satisfied when
l > l∗. The first step in the nucleation process, ν = 1, is crucial in forming this
type of nucleus. It defines the critical value of l ≡ l∗

g > l∗. The length l∗
g is the

critical dimension in the chain direction of the growth, or secondary, nucleus. It
is popularly termed the fold length. According to Eq. (9.150), �G rf decreases by
the amount a0b0[2σen − l∗

g �Gu] with each successive step, for all values of ν > 1.
Eventually, �G rf will become zero and the nucleus will achieve stability. Thus,
the value of l∗, the conventional critical dimension, serves as a boundary. Values
of l < l∗ cannot lead to stability under any circumstances. On the other hand, any
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value of l > l∗ will lead to a stable nucleus and thus to a crystallite. This condition
for stability is the same as for all other types of unimolecular coherent nucleation.

The crucial step in this theoretical development is to specify the value of l∗
g . This

quantity not only determines the fold length but also the nucleation and growth rates.
The schematic diagram in Fig. 9.37 indicates that although larger fold lengths would
grow faster, since fewer steps are needed to reach stability, they would be nucleated
less frequently because of the high free energy barrier that needs to be overcome.
On the other hand, in the extreme where l is just infinitesimally greater than l∗,
the barrier is very small so that the initiation of growth is facile. Growth, however,
would be very slow under these conditions because of the large number of steps
that are needed to achieve stability. A compromise in the value of l between these
two extremes needs to be reached. This compromise value, l∗

g , will represent the
length of the critical dimension or fold period of the nucleus.

Several different approaches have been made in an effort to resolve this
formidable problem. Price (151) has transformed Eq. (9.150) into the form

(a − a∗)(l − l∗) = −(�G rf − �G∗
rf)/�Gu (9.151)

A contour diagram can be constructed whose characteristics are similar to those of
a three-dimensional nucleus. The objective is to calculate the distribution of l when
l > l∗. This calculation requires knowing the shape of the steepest profile of the
pass on this surface. This profile can be expressed as

�G rf − �G∗
rf = b0 �Gu (l∗)2

[
l

l∗ − l

]2

(9.152)

Under these conditions the ratio of the number of nuclei with free energy �G to
that having the free energy �G∗ is

P = exp{−(�G − �G∗)/kt} (9.153)

Analysis of Eq. (9.153) indicates that the distribution of l/ l∗ is very narrow. The
average value of l/ l∗ can be expressed as

〈l/ l∗〉 =

∞∫
1

(l/ l∗)P d(l/ l∗)

∞∫
1

P d(l/ l∗)
(9.154)

and leads to the result that

〈l/ l∗〉 = l + l

l∗

(
kt

πb0 �Gu

)1/2

(9.155)
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Thus, the average value of l is only slightly greater than l∗. The argument is then
made that since the distribution is narrow, 〈l〉 can be identified with the thickness
of the growth nucleus l∗

g . Thus, l∗
g ≡ 〈l〉, for l > l∗, only exceeds l∗ by an extremely

small amount at low to moderate undercoolings. Eventually l∗
g will be used to

calculate �G∗
rf, and define the steady-state nucleation rate. The upper limit for l/ l∗

in the integral of Eq. (9.154) has been taken to be infinity. This limit is unrealistic
since the largest possible value of l is limited by the chain length. The necessary
correction will bring the quantity 〈l/ l∗〉 even closer to unity.

In another approach to the problem, which leads to similar results, the steady-
state growth (nucleation) rate is calculated following the principles developed by
Turnbull and Fisher for more conventional nucleation processes.(128) The forward
and backward rates of depositing a strip are expressed according to standard kinet-
ics.(146) The overall steady-state nucleation (or growth) rates are thus calculated.
The free energy diagram given in Fig. 9.37 indicates that, except for the first step,
the free energy difference between successive steps is the same. Therefore, the for-
ward and backward steps will have the same rates for each value of ν greater than
one. For all steps except the first, the forward rates can be expressed as

α1 = α2 = α3 = . . . ≡ α (9.156)

The backward rates can be written as

β2 = β3 = β4 = . . . ≡ β (9.157)

The forward rate for the first step is defined as α0 and the backward one as β1. If Nν

is the occupancy after step ν, the rates of change for the first step can be expressed
as

dN1

dt
= Niα0 − N1β1 + N2β2 − N1α (9.158)

and

dNν

dt
= Nv−1α + Nv+1β − Nv(β + α) (9.159)

for all values of ν greater than 1. The set of differential equations given by
Eqs. (9.158) and (9.159) appear in a variety of other problems.(109) In the steady
state, d N ν/dt = 0 for all values of ν. The net rate of growth or flux, can be expressed
as (146,147)

S(l) = N0α0(α − β)

α − β + β1
(9.160)
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For many purposes, including the present, β1 can be set equal to β. Then

S(l) = N0α0

[
1 − β

α

]
(9.161)

The individual rates, obtained from transition state theory, can be expressed as

α0 = kT

h
exp

(−ED

kT

)
exp

(−�G∗
1

kT

)
(9.162)

and

β

α
= exp[−a0b0(2σe − l �Gu)] (9.163)

It follows that

S(l) ≡ N = N0kt

h

{
exp

[
− (ED + �G∗

1)

kT

]
[1 − exp(−E/kT)]

}
(9.164)

Here �G∗
1 is the free energy change that occurs with the attachment of the first

sequence (ν = 1); i.e. the barrier height. E is defined as

E ≡ a0b0[2σen − l �Gu] (9.165)

In Eq. (9.164) the transport term is represented by ED; �G∗
1 is the activation free

energy required to deposit the first strip. The explicit value of �G∗
1 is defined

by l∗
g . The first exponential term within the bracket is thus the Turnbull–Fisher

relation for the steady-state nucleation rate of monomers and nonfolded polymers.
This conventional expression for the steady-state nucleation rate is modulated by
the second term within the brackets. This term is present because of the basic
assumption that the nuclei are composed of regularly folded chains. The extent of
the modulation depends on the difference between l∗

g and l∗. When this difference
is large there will be a significant effect. However, when (l∗

g − l∗) is small there
will scarcely be any influence and the conventional expression will apply. Under
these circumstances there is no indication in the equation that the chains within the
nucleus are regularly folded.

The relation of l∗
g to l∗ is a key factor in this analysis. The value of l∗

g has arbitrarily
been defined as 〈l〉, when all values of l ≥ l∗ are taken into account. The justification
for this identification is the claim that the distribution in l is narrow. The value of
l∗
g , so defined, was also assumed to correspond to the thickness of the nucleus that

corresponds to the steady-state rate of passage over the free energy barrier �G∗
1.

It is further stated, but not proved, that l∗
g defined in this manner corresponds to

the crystallite thickness that has the maximum growth rate.(152) Based on these
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assumptions, it follows that

l∗
g ≡ 〈l〉 =

∞∫
1

S(l)l dl

/ ∞∫
1

S(l) dl (9.166)

From the assumptions made, and Eq. (9.166), the thickness of the growth nucleus
can be expressed as

l∗
g = 2σen

�Gu
+ kT

2b0σun

[
4σun/a0 − �Gu

2σun/a0 − �Gu

]
(9.167)

Accordingly, l∗
g also defines the thickness of the mature crystallite. In the vicinity

of T 0
m, where �Gu is small, Eq. (9.167) reduces to (146)

l∗
g = 2σen

�Gu
+ kT

b0σun
(9.168)

The first term in Eq. (9.168) is identical to the critical thickness of a Gibbs nucleus
composed of monomers, or nonfolded polymer chains that are coherently formed
as a monolayer on an already existing crystallite. The second term in Eq. (9.168)
is a small correction term that allows for thermodynamic stability at temperatures
above the crystallization temperature. The nucleus composed of nonfolded chains
could be made thermodynamically stable above the crystallization temperature by
following a similar procedure. The method used is not unique for regular folded
chain nuclei. It follows from Eq. (9.168) that

�G∗ = 4b0σenσun

�Gu
+ C (9.169)

where C is a very small constant, which can also be introduced into other models. It
is trivial at low undercoolings. In essence this calculation tells us that 〈l〉 represents
very thin nuclei and crystallites that are only marginally stable. The identification
of 〈l〉 with l∗

g is in effect an arbitrary decision that is made to remove the instability
above the crystallization temperature. This instability is inherent to all coherent
unimolecular nuclei models. It is not unique to one composed of regularly folded
polymer chains. This value of l∗

g must be greater than l∗ and could also be defined as
the 〈l〉. Stability could be achieved by nonfolded chains by a small amount of growth
in the chain direction. Experiments show that crystallite thickening actually occurs
during isothermal crystallization.11 Thus, stability can be achieved by thickening,
irrespective of the model assumed for the nucleus.

It has been estimated that the second term in Eq. (9.169) is no more than about 10 Å

at low to moderate undercooling, and is probably less.(153–156) In the temperature

11 A discussion of isothermal crystallite thickening will be presented later.
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range where nucleation dominates the crystallization process, this term would make
only a very small contribution to the crystallite thickness. Since l∗

g is very close
to l∗ at low undercooling, the steady-state nucleation rate will not deviate in any
meaningful manner from the conventional Turnbull–Fisher relation. Formally then,
the same results are obtained irrespective of whether the chains within the nucleus
are regularly folded or not. It is ironical that a discrimination cannot be made
between the different chain conformations within the nucleus from either the steady-
state nucleation rate or the critical dimensions. Price has reinforced this conclusion
in a more detailed discussion of this point.(113)

The discussion of regularly folded chain nucleation has been limited so far to
low undercoolings. At sufficiently large supercoolings l∗

g passes through a min-
imum and increases with a further decrease in the crystallization temperature.
When �T = (2σun/Tm) (a0 �Hu), l∗

g approaches infinity. This behavior has been
termed the “δl catastrophe”. It is solely a consequence of the definition of l∗

g and
the subsequent averaging. The predicted increase in l∗

g with decreasing crystalliza-
tion temperature has never been observed. In an attempt to rectify this anomaly
a parameter that varies between zero and one was introduced.(156) Its purpose
was to apportion the free energy gain between the forward and backward reaction
during the deposition of a sequence. By appropriate choice of this parameter, the
subsequent averaging removes the “catastrophe” in the expression for l∗

g . However,
this endeavor, as well as others, addresses a moot point. Besides concern for the
validity of the regularly folded chain nucleus this “catastrophe” is the result of the
calculation leading to the second term in Eq. (9.168) and is only predicted to occur
at large undercoolings. In this case the dimensions of a nucleus are extremely small.
As was pointed out earlier it is questionable whether the concept of the macroscopic
surfaces required for conventional nucleation theory applies for the small nuclei
dimensions that are involved.

A variety of modifications has been proposed to the original theory of regularly
folded chain nucleation.(109,157). The proposed changes include: fluctuations in
the length of the strip deposited;(157,158) deposition by small increments rather
than simply laying down the complete strip;(159) computer simulations,(159a,b,c)
and the participation of more than one chain in the nucleus; and removal of the
condition that the chains within the nucleus must be precisely folded. However,
none of the proposed alterations make any fundamental changes in the conclusions.
In the general scheme of things, these suggestions can be considered to be relatively
minor, since the basic assumption of regularly folded chains, with adjacent re-entry,
is still the underlying concept. Rather than making minor corrections to this model
major concern should be directed to the question of whether there is any validity to
the concept of a regularly folded chain conformation within the nucleus.

The assumption of nuclei being composed of regularly folded chains with
adjacent re-entry is intimately related to the concept that mature crystallites of
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homopolymers have similar chain conformations.(140–149) However, serious con-
cerns have been raised regarding the idea that mature crystallites are composed of
regularly folded chains with adjacent re-entry.(140,160–165b) Consequently the re-
ality of nuclei being composed of regular folded chains can be seriously questioned.
In addition to the general concerns, specific criticisms have been made of the actual
calculation. It has been argued that the basic assumption inherent to this model is
irrelevant with respect to crystallization from the pure melt.(159) Binsbergen has
pointed out that it is highly improbable that such a nucleus will be formed.(165) It
has also been pointed out that the end interfacial free energy σen will in general be
greater for a regularly folded nucleus than the bundle type.

Calvert and Uhlman emphasize the distinction between the interfacial energies
of the nucleus and the mature crystallite.(140) This distinction becomes important
when the magnitudes of σen for nuclei of either a bundle type or a regularly folded
chain are compared. It has been argued that σen of a regularly folded chain is sub-
stantially less than that for a bundle type nucleus.(149,165c) When the free energy
required for adjacent re-entry is properly calculated, the results are dependent on
the specific polymer.(141,142) For linear polyethylene a bundle type nucleus can be
formed. This conclusion, however, is in contrast to the surface structure of mature
crystallites, where the calculation of σec is involved.

Besides the high end interfacial free energy, σen, that is associated with nuclei
composed of regularly folded chains, objections have also been made to the re-
stricted form of growth that such nuclei allow.(140) It was pointed out that once
a single unit of the chain is attached to the surface, the final position of any other
unit in the molecule is effectively predetermined. This is a highly unlikely situation
in a high density melt. Competition between different parts of a molecule, or from
different chains, can be expected in the natural course of events. A crystal growth
theory was developed that starts with a bundle type nucleus and leads in a natural
way to lamellar crystallites. It encompasses the major experimental results.

The theory that has been developed for the nucleation of regularly folded chains
appears complex when compared with other theories. In fact, despite the apparent
complexities, the main conclusions of the theory are relatively simple. They are the
same when other chain conformations are assumed for the nucleus. The thickness of
the nucleus in the chain direction is the same as that expected for monomers, and for
polymers with other chain conformations as long as a Gibbs type nucleus is assumed.
In addition, the steady-state nucleation and growth rates have the same functional
form and temperature dependence as is found for monomers and polymers with
other chain structures within the nucleus.

Sanchez (109) and Price (113) have detailed the fact that the temperature de-
pendence of the growth rate for regularly folded chain nuclei is adequately inter-
preted by conventional nucleation theory. The basis for this conclusion is found in
Table 9.4. In this table the dependence of �G∗ on �Gu, and thus the undercooling,
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Table 9.4. Values of �G∗ for different type nuclei

Type Nucleation Molecular Species �G∗

Coherent monomolecular Monomer
4σenσun

�Gu

Polymer a – bundle
4σenσun

�Gu

Polymer a – regularly folded
4σenσun

�Gu

Three-dimensional homogenous Monomer (cylinder)
8πσenσ

2
un

�G2
u

Polymer a – bundle (cylinder)
8πσenσ

2
un

�G2
u

Polymer a – regularly folded
32σenσ

2
un

�G2
u

(rectangular parallelepiped)

Three-dimensional heterogeneous Monomer – cylinder f(θ)�G∗
H

Polymer a – cylinder k(θ)�G∗
H

a High molecular weight approximation.

is given for different types of nuclei. Once the type of nucleation is specified (two-
or three-dimensional) then the temperature dependence of �G∗ is the same for
monomers and polymers. For polymers it is independent of the chain conforma-
tion within the nucleus. The steady-state nucleation or growth rate is obtained
by substituting the appropriate value for �G∗ in the Turnbull–Fisher expression,
Eq. (9.118). The only differences in the growth rate expressions are in the actual
values assigned to the interfacial free energy σen. Table 9.4, and related commen-
tary,(113) make abundantly clear that studies of growth rates, and their temperature
coefficients, cannot distinguish between nuclei composed of either regular folded
or unfolded chains irrespective of whether two- or three-dimensional nucleation is
involved. It is ironical that the major conclusions that are reached for regular folded
chain nucleation are, for all practical purposes, the same as for the nucleation of
nonfolded chains. Therefore, nucleation with regularly folded chains cannot be
established solely by analysis of the temperature coefficient of growth rates. Inde-
pendent support from sources other than crystallization kinetics is needed to justify
this assumption. Such support has not as yet been forthcoming. It is inherently
difficult to obtain independent values of the interfacial free energies in order to
distinguish between the different chain conformations within the nucleus.

An interesting problem to consider is the role of molecular weight in modulating
the nucleation of chain molecules. A sequence of an infinite number of repeating
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units is required to form a critical nucleus at T 0
m. This is true irrespective of whether

the nucleus is two or three dimensional, formed homogeneously or heterogeneously,
or composed of folded or unfolded chains. As the system is cooled slightly below
T 0

m the dimensional requirements for critical nucleus formation can still exceed
the chain length. For a bundle-like nucleus under these conditions, ζ ∗ would have
to exceed the number of repeating units per chain. For a regularly folded chain
nucleus the critical chain length must be greater than the product of the number
of units in a stem multiplied by the number of stems in the critical-sized nucleus.
Hence, depending on the molecular weight, irrespective of the chain configuration
within the nucleus, there will already be an undercooling range where nucleation,
and thus crystallization, cannot occur. This effect will be more severe the lower
the molecular weights. Therefore, unless the highly unlikely matching of chain
ends occurs, the chain length limitation is one reason that polymer crystallization
only takes place at reasonable rates at larger undercoolings, relative to monomeric
substances. Another important reason for the large undercoolings required is the
high interfacial free energy that is associated with the end surface.

It has been concluded that the specific chain conformation within the nucleus
cannot be determined by analyzing the temperature coefficient of the growth or
overall crystallization rates. There are, however, other aspects of the nucleation
process that still need to be elucidated. One is the question of whether the nucleation
is homogeneous or is assisted by foreign bodies. The other is deciding whether either
a two- or three-dimensional nucleation process is involved. An effective method that
assesses the role of heterogeneities in nucleation, in any system, is to isolate them
in small droplets. If the droplets are made small enough, then the vast majority of
them will be free of heterogeneities. Studying crystallization within the droplets will
then give a measure of homogeneous nucleation. This approach was very effective
in resolving the problem with metals and other low molecular weight substances,
including the n-alkanes. A similar strategy has also been applied to polymers. An
analysis of the results will be given in Sect. 9.12. In order to address the question of
whether a two- or three-dimensional nucleation process is operative it is necessary
to analyze the temperature coefficient of crystallization of some typical polymers.
This analysis is given in the next section.

9.10 Analysis of experimental data in vicinity of T 0
m

It is quite evident that nucleation plays an important role in polymer crystallization.
It is dominant in the vicinity of the equilibrium melting temperature, as is manifested
by the marked negative temperature coefficient. It is important, therefore, to define
the particulars of the nucleation process that are operative in a given situation.
In order to attain this objective, the analysis at this point is limited to isothermal
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crystallization carried out close enough to the equilibrium melting temperature
that the temperature variation of the activation energy in the transport term can be
neglected. For three-dimensional nucleation �G∗ is proportional to (1/�T )2, while
for two-dimensional �Gu is proportional to 1/�T . Consequently, the steady-state
nucleation rate, N , for a three-dimensional process can be expressed as

N = N0 exp

[−ED

RT
− κ3T 02

m

T (�T )2

]
(9.170)

Here the constant κ3 specifies several quantities. These are: the geometry of the
nucleus; whether it is formed homogeneously or heterogeneously; in certain situa-
tions whether it is deposited coherently or incoherently; and the enthalpy of fusion
per repeating unit. Two-dimensional steady-state nucleation (initiation or growth)
can be expressed as

N = N0 exp

[−ED

RT
− κ2T 0

m

T �T

]
(9.171)

Here κ2 plays a defining role for two-dimensional nucleation similar to that of κ3.
Equations (9.170) and (9.171) are general and can be used to investigate spherulite
initiation and growth as well as overall crystallization kinetics.

The linear spherulite growth rate can be expressed as

G = G0 exp

[−ED

RT
− g3T 02

m

T (�T )2

]
(9.172)

for three-dimensional nucleation and

G = G0 exp

[−ED

RT
− g2T 0

m

T �T

]
(9.173)

for the two-dimensional case. Here the parameters g3 and g2 play comparable roles
as κ3 and κ2 in Eqs. (9.170) and (9.171). A dependence on (1/�T ) usually in-
volves unimolecular deposition. However, this temperature dependence can also
result from a three-dimensional nucleus with an extraordinarily large contribution
from an edge or line free energy.(146,147,166) The (1/�T )2 dependence of a
three-dimensional growth nucleus can also result from coherent deposition in three
dimensions.(146,147) The possibility also exists that the presence of a parent crys-
tallite could influence the orientation and organization of the adjacent amorphous
region and thus promote nucleation in its vicinity.

The concern at this point is limited to the temperature dependence. Therefore,
the specifics of the nucleus structure, which are embodied in the parameters k2,
k3, g2 and g3, do not have to be specified at this time. The second term of the
exponential argument should dominate in the present temperature range of interest.
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Fig. 9.38 Plot of log N against (T 2
m/T ) (1/�T )2 © and against (Tm/T )(1/�T ) ●

for poly(decamethylene sebacate). (Data from Flory and McIntyre (22))

Consequently, plots of log N or log G against the appropriate temperature variable
should yield straight lines.

The results of Flory and McIntyre (22) for the rate of formation of spherulitic cen-
ters in molten poly(decamethylene sebacate) provide a good set of data to examine
whether Eq. (9.170) or (9.171) is operative. In these experiments the undercooling
ranges from 11 ◦C to 16 ◦C. Concomitantly the initiation rate increases by a factor
of 104. This result is clearly indicative of nucleation control. The log of the rate
of spherulite formation, log N , for this polymer is plotted against (T 2

m/T )(1/�T )2

and (Tm/T )(1/�T ) in Fig. 9.38. Excellent straight lines are obtained with either
plot. Thus, it is not possible to discriminate between the two distinctly different
initiation nucleation processes by analysis of the temperature coefficient.

A similar analysis, using Eqs. (9.172) and (9.173), can be made of spherulite
growth rates of this polymer. Plots of log G against the two temperature coeffi-
cients are given in Fig. 9.39 for the same polymer. Excellent straight lines are
again obtained with both of the plots. The spherulite growth rate data for linear
polyethylene behave in a similar manner, as is illustrated in Fig. 9.40 for a molec-
ular weight fraction M = 210 000.(167) Similar results are obtained with other
molecular weight fractions of linear polyethylene. Analysis of the growth rates of
virtually all other polymers gives similar results. Thus, a decision as to whether
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Fig. 9.39 Plot of log G against (T 2
m/T )(1/�T )2 © and against (Tm/T )(1/�T ) ●

for poly(decamethylene sebacate). (Data from Flory and McIntyre (22))

two- or three-dimensional nucleation is operative cannot be made solely on the
basis of the temperature coefficient of spherulite growth rates. Analysis of the
temperature coefficient of overall crystallization gives a similar conclusion. This
conclusion remains unaltered when any reasonable variation is made in the value
of T 0

m. The analysis can, however, be distorted by the introduction of an arbitrary
transport term. Specific but arbitrary transport terms can favor one of the nucle-
ation processes over the other. This procedure is unwarranted because of the small
interval in the crystallization temperature that is involved.

In summary, within the limits of the precision of the kinetic data that are available
a decision cannot be made as to whether a two- or three-dimensional nucleation
process is operative, for either nucleation or growth, irrespective of the experimental
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Fig. 9.40 Plot of log G against (T 2
m/T )(1/�T )2

● and against (Tm/T )(1/�T ) ©

for a fraction of linear polyethylene M = 210 000. T 0
m taken to be 145.5 ◦C. (Data

from Hoffman et al. (167))

method. Although a particular choice may be consistent with a specific model it
cannot be used as evidence to demonstrate that the specific nucleation process is
actually operative. We are thus faced with an unfortunate and frustrating situation
since nucleation plays such an extremely important role in controlling kinetics
and the resulting structure and morphology. The latter is an important factor in
determining the properties of crystalline polymers. Despite the fact that the desirable
specifics of nucleation cannot be definitively established, the control role played
by nucleation in polymer crystallization is well established. One has to appeal to
physical intuition in selecting the type of nucleus. A Gibbs type growth nucleus will
be assumed in discussing spherulite growth rates. The temperature coefficients of the
nucleation and growth rates, and the value of g3 are predetermined by the selection
of this nucleus type. It must always be recognized that this choice is an assumption.

With the adoption of a Gibbs nucleus, spherulite growth rates in the vicinity
of T 0

m can be analyzed by use of Eq. (9.173). As was shown previously, in the
absence of any contribution from the edge interfacial free energy �G∗

rf is given
by Eq. (9.69).(147) �G∗

rf can be identified with �G∗, the classical result, for all
meaningful purposes. Therefore, the dependence of the spherulite growth rate, G,
on the crystallization temperature will have the same form as that of any coherent
unimolecular nucleus, whether it be monomer or polymer, with folded or unfolded
chains.
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The analysis of the temperature coefficient of the overall crystallization rate
is more complex. In this case both the initiation of the crystallite (or spherulite)
and its subsequent growth has to be accounted for. Both of these processes are
nucleation controlled. However, they are not necessarily of the same type. There
are many possibilities that are consistent with a specific set of experimental results.
For example, it could be assumed that the initiating or primary nucleus is three-
dimensional and formed either homogeneously or heterogeneously. The further
assumption can be made that the secondary or growth nucleus also has three-
dimensional characteristics. It can be postulated further that the critical free energy
required to form a secondary nucleus is less by a factor ā than that for primary
nucleation. With these assumptions

ln ks = ln k0 − nED

RT

[1 + (n − 1)ā]κ3T 2
m

T (�T )2
(9.174)

It can be postulated equally well that both the primary and secondary nuclei are two
dimensional. The possibility that one nucleation is two dimensional and the other
three cannot be ruled out. The temperature coefficient of all these possibilities will
satisfy the experimental data so that a decision as to which pairs are involved is
extremely difficult. This is an unfortunate situation since spherulites do not develop
in many high molecular weight homopolymers and in random copolymers as the
comonomer content increases.

The kinetic data can now be examined in terms of the concepts that have been
developed. Attention is focused on spherulite growth rates since the analysis is
simpler. With the understanding of the assumptions involved, ln G is plotted against
T 0

m/T �T in Fig. 9.41 for some representative polymers.(72,167,168,169). The
temperature range for crystallization has now been expanded slightly but is still in
the vicinity of T 0

m. In preparing this figure the accepted values of T 0
m for each of

the polymers were used.(170) Contrary to the theoretical expectations developed
so far, none of the plots can be represented by a single straight line. The data for
each polymer are, however, well represented by a continuous curve. Similar results
are obtained if the overall crystallization rates, in terms of ln(1/τ ), are analyzed. In
some of the plots in Fig. 9.41, as well as those for other polymers, the data can be
approximated by two intersecting straight lines. In a few situations the data can be
represented by a single straight line.(167) The range of crystallization temperatures
that can be studied is important. In the present discussion the polymers do not
exhibit a maximum in the crystallization rate. In some cases, the temperature range
that can be studied is very restricted. For example, measurements of the spherulite
growth rates of linear polyethylene are limited to a 6–8 ◦C range in crystallization
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Fig. 9.41 Plot of ln G against Tm/T �T for some representative polymers.
(a) Linear polyethylene fractions M = 74 400. (Data from Hoffman et al.
(167)); (b) poly(ethylene oxide), M = 152 000 (From Kovacs and Gonthier
(168)); (c) poly(chlorotrifluoroethylene) (From Hoffman and Weeks (169));
(d) poly(dioxolane) (From Alamo (72)).

temperatures.(167,171) This is a very small temperature interval and severely limits
conclusions that can be derived from the experimental data.12

The representative plots in Fig. 9.41 present a dilemma that needs to be resolved
before any progress can be made in understanding crystallization kinetics. This
concern lies well beyond the question as to how best to represent the data, i.e.
by either a continuous curve or two intersecting straight lines. The fundamental
issue is to understand why the plots are not linear. There are several possibilities
that can be considered in efforts to resolve this problem. One involves including
the transport term. In the plots in Fig. 9.41 the activation energy for transport, or
the transfer, of a unit from the liquid to crystalline region across the interfacial
boundary has been neglected. Moreover, the exact form of ED, the argument of the
exponential term, has to be specified. Another possible reason for the nonlinearity
of the plots involves the nucleation term. The argument can be made that spherulite
growth involves successive nucleation acts. This would be true irrespective of what

12 It has also been postulated that nucleation in polyethylene at atmospheric pressure occurs through a hexagonal
phase known to be stable only at high temperatures and pressures.



108 Crystallization kinetics of homopolymers

specific chain conformation is involved. This successive nucleation process raises
some questions that have not been considered heretofore. The simple nucleation
and growth rate expressions, represented by Eq. (9.170) to Eq. (9.173), need to be
re-examined. Each of these problems, i.e. nucleation and transport, will be analyzed
separately. The nucleation aspects of the problem will be considered first. The role
of the transport term will be treated subsequently since it is better examined when
crystallization over the complete accessible temperature range is considered. On
the other hand nucleation is best analyzed when considering experimental data in
the vicinity of T 0

m.
A key factor in considering growth by successive nucleation acts on a crystal-

lite surface is the relation between the rate of nucleation and that of spreading in
the direction normal to the chain axes. The spreading rate will be designated as g.
This problem was addressed by Nielsen (172), by Hillig (173) and by Calvert and
Uhlmann (140) in treating the identical problem in three dimensions for monomeric
systems. The magnitudes of the nucleation and spreading rates will be different and
each will have different temperature coefficients. The possible temperature coeffi-
cients for the different types of nucleation have already been discussed. The general
form of the nucleation rate–temperature curve is essentially the same for all poly-
mers. Except for low molecular weights it is independent of chain length. On the
other hand, the temperature coefficient of the spreading rate is not as clear. Con-
flicting reports have been reported with the same set of investigations (173a,b) and
between investigators.(173c,174) The issue is whether g depends on the supercool-
ing, or has a temperature coefficient typical of an activated process. There is also
the question of whether g depends on molecular weight.(148)

The relationship between the rates as a function of the crystallization temperature,
or undercooling, leads to some interesting situations. Schematic representations
of three extreme cases are illustrated in Fig. 9.42. No effort has been made in
these schematics to represent the interfacial structure. The conclusions reached
are not dependent on the structure of the interfacial region. In the example shown
in Fig. 9.42a, the spreading rate is much greater than the nucleation rate at all
temperatures. Under these conditions a given growth layer will be complete before
a new one is initiated. This temperature region corresponds to simple unimolecular
nucleation. The growth rate relation previously derived applies. In the literature this
region is termed Regime I.(174). In another extreme, limited to large undercoolings,
both �G∗ and the nuclei sizes are extremely small. The nucleation rate is very
rapid and effectively constant with crystallization temperature. As is illustrated
in Fig. 9.42c a large number of small nuclei will form on the crystallite face.
Consequently, there is a limited area into which a nucleus can grow. Spreading is
thus effectively retarded in the direction normal to the chain axes. The spreading
rate therefore will be essentially zero under these circumstances. This region has
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(a)

(b)

(c)

Fig. 9.42 Schematic representation of nucleation spreading rates in three different
regimes. (a) Regime I; (b) Regime II; (c) Regime III. Interfacial region is not
represented in these schematics.

been termed Regime III. Between the two extreme cases just described, the first
of which occurs at low undercoolings, the other at very large undercoolings, there
is also another possibility. In this situation the nucleation and spreading rates are
comparable to one another. Therefore, several nucleation acts will take place on
the same crystallite surface before a given layer is filled and growth can proceed.
This case is schematically illustrated in Fig. 9.42b and is termed Regime II. The
relation between the nucleation and spreading rates will be reflected in the net
growth rate G. In essence, therefore, there has to be concern as to whether single
or multinucleation takes place on a given crystal face and the relation between
the nucleation and spreading rates. In the realm of small molecule crystallization,
where these phenomena are observed, the first case is known as the “small crystal
model”, the last, the “large crystal model”.(140)

There is another case involving polymers that should be considered. This is
when g is small, as might be expected for very high molecular weight chains. This
regime will be designated as Ia. In this situation nuclei will not spread much beyond
the critical dimension in the lateral direction. There will not be any indication
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of a regime transition if this condition is maintained over the compete range of
crystallization temperature.

Despite the different relations that exist between the nucleation and spread-
ing rates, the crystallite and spherulite growth rates are still nucleation controlled
processes. However, the actual temperature dependence will reflect the relative
positioning of the two rates and the temperature region that is traversed during
crystallization. There are, therefore, several possible reasons that the spherulite
growth and overall crystallization rates do not in general adhere to the simple for-
mulation of Eq. (9.173). To analyze the kind of experimental result illustrated in
Fig. 9.41, a modification of the theory is clearly needed. Before addressing this
problem in polymers, it is informative to examine how it has been treated for low
molecular weight substances. At this point, the interest is only with growth and
crystallization at the right side of the rate maximum. Discussion of the very rapid
nucleation region (high undercooling), Regime III, will be discussed shortly.

This problem was initially analyzed by Nielsen (172), Hillig (173) and Calvert
and Uhlmann (140) for the crystallization of low molecular weight substances. In
the small crystal model, where the rate of spreading is much greater than that of
nucleation, the growth step sweeps completely over the crystal substrate of length
L and pauses before the next layer is nucleated. Formally, let dn be the number of
nuclei that form in the time interval t to t + dt on the surface of the crystal face.
Then those that nucleated at time t = 0 can be expressed as

dn = π L2 N dt (9.175)

where L is taken as the radius of the substrate. The length L could correspond
to one edge of a crystallite. It could just as well be smaller due to some type of
obstacle to the spreading, for example imperfections in the lattice. It is difficult to
quantitatively define this quantity.13 If the rate of forming a growth layer is G/b,
where b is the thickness of the growth step, then the number of nuclei formed in
time b/G must be unity. It then follows that

b/G∫
0

π L2 N dt = 1 (9.176)

so that

G = πbL2 N (9.177)

In this temperature region the growth rate is directly proportional to the steady-state
nucleation rate and the area of the substrate. The temperature dependence will then

13 Other two-dimensional surfaces can be used for the shape of the substrate. Except for the constraints, the results
are identical.
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be given by the classical nucleation rate Eq. (9.171). It is tacitly assumed that the
temperature dependence of L is minimal, and that it remains constant with time.

In the large crystal model new growth steps nucleate before the entire substrate is
covered, i.e. multinucleation takes place on a given surface. Under these conditions,
the growth rate G depends on both N and g. Therefore, the number of nuclei formed
on the crystal surface in the time interval t to t +dt, that nucleated at t = 0, is given
by

dn = π (gt)2 N dt (9.178)

The number of nuclei formed in time b/G can still be approximated by unity,
although the initial nucleus has not spread to fill the entire substrate. It follows that

b/G∫
0

π (gt)2 N dt ≈ 1 (9.179)

and

G = (π/3)1/3bg2/3 N 1/3 (9.180)

Therefore, the temperature coefficients in the two regions will be quite different.
It is a straightforward matter to extend these concepts to polymer crystallization.

This adoption can be accomplished without the need to assume a specific chain
conformation within the nucleus. The results are quite general in this regard. It
is convenient to make the assumption that the spreading in the chain direction is
severely retarded relative to that in the lateral direction. This is a reasonable as-
sumption for chain molecules. The more general case, where the spreading rates
along and normal to the chain axis are allowed, can also be treated. With this simpli-
fying assumption, Sanchez and DiMarzio (175) showed how to adapt the results for
small molecules to polymers. The adaptation involves reducing the growth along
the substrate by one dimension so that the thickness of the growth strip, l, or the
growth nucleus, is constant, determined only by the crystallization temperature.
The growth rate is then controlled by the lateral dimension L of the crystal face
as well as the nucleation and spreading rates. Equations (9.177) and (9.180) are
then transcribed to polymers. Thus, for unimolecular nucleation the growth rate in
Regime I, G(I) is expressed as

G(I) = bLN (9.181)

The growth rate in Regime II, G(II) is expressed as

G(II) = b(Ng)1/2 (9.182)
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Equations (9.181) and (9.182) represent the two extreme situations that have been
treated.(156,176) They should be considered as asymptotes to the physical situa-
tions described by Regimes I and II. The issue of chain folding, and the associated
interfacial structure, is not involved in reaching these conclusions.

If it can be assumed that in the vicinity of T 0
m the temperature coefficient of the

nucleation rate will dominate

d(ln G(II))

d(T �T )−1

/
d(ln G(I))

d(T �T )−1
= 1/2 (9.183)

and the temperature coefficients of the growth rates will differ by a factor of 1/2 in
these extremes. Equation (9.183) assumes that the temperature dependence of g can
be ignored and there is no influence of molecular weight on this quantity. Based
on the above analysis it is not surprising that typical growth data, as illustrated
in Fig. 9.41, do not adhere to the simple formulation given by Eq. (9.171). The
physical situations represented by Eqs. (9.181) and (9.182) are quite reasonable. It
should be recognized, however, that they represent extreme or asymptotic situations.
The fundamental question arises as to the nature of the transition between the two
regimes, i.e. is it sharp or diffuse? The transition from one regime to the other has
been tacitly assumed to be sharp.(174) A great deal of experimental data has been
analyzed from this viewpoint.(174,177) On the other hand, Point and coworkers
have argued that the transition from one to the other is so diffuse that the two regimes
may in fact not exist.(173c,178a–d) The argument is based on the continuum theory
given by Frank.(179) Although Frank gives an analytical solution to the problem,
it was not presented in a tractable form that could be quantitatively applied to
experimental data. It is possible, however, to utilize Frank’s theory to address the
problem in question.(180)

In the Frank theory, growth takes place on a substrate of length L . Each nucleation
event creates a pair of steps that travel to the left and to the right with a spreading
rate g. There are on the average l(x) of the former and r (x) of the latter. Since no
steps enter from outside the limits x = ± 1

2 L

l
(
x − 1

2 L
) = r

(
x − 1

2 L
) = 0 (9.184)

Between these limits

δ l

δ t
= N + g

(
δ l

δ x

)
− 2glr (9.185)

δ r

δ t
= N − g

( δ r

δ x

)
− 2glr (9.186)
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where the three terms on the right represent initiation, drift and annihilation respec-
tively. At steady state Eqs. (9.185) and (9.186) can be equated to zero so that

dl/dx = −N/g + 2lr = −dr/dx (9.187)

Therefore

d(l + r )

dx
= 0 (9.188)

and

l + r = 2c (9.189)

where c is a constant. By symmetry, the differential equation to be solved becomes

dl/dx = −N/g + 4cl − 2l2 (9.190)

It is convenient to introduce the quantity Q, defined as (179)

Q = (P2 − L2c2) where 0 < Q <
π

2
(9.191)

and

P ≡ L

(
N

2g

)1/2

(9.192)

It then follows that

Lc = Q tan Q (9.193)

and

P = Q sec Q (9.194)

The growth rate G, the quantity that is actually measured, is defined as

G = 2bcg (9.195)

where b is the width of the chain.
Solutions to this problem were given for values of Q → 0 and Q → π/2.(179)

The former approximation leads to the growth rate in Regime I, defined by
Eq. (9.181). The latter corresponds to growth in Regime II, and to Eq. (9.182).
The main interest here, however, is in the nature of the transition between the two
regimes. This intermediate region was not explicitly described by Frank. In treat-
ing the same problem Lauritzen (176) calculated the upper and lower bounds to
Regime II.
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The problem is to express G in terms of (1/T �T ) by means of the steady-state
nucleation rate. To put Frank’s solution in a form that can be applied to experimental
data, it is noted that (180)

GL = 2bgcL = (Q tan Q)2bg (9.196)

Upon rearrangement, Eq. (9.196) gives

G∗ ≡ G

(
L

2bg

)
= Q tan Q (9.197)

In this equation G∗ can be considered to be a reduced value of the growth rate.
Furthermore

P2 = L2

(
N

2g

)
= Q2 sec2 Q = Q2 + Q2 tan2 Q (9.198)

The steady-state nucleation rate can then be expressed as

N = P2

(
2g

L2

)
= [(Q2 + Q2 tan2 Q)]

2g

L2
(9.199)

Upon rearrangement

N ∗ ≡ NL2

2g
= Q2 + Q2 tan2 Q (9.200)

where N ∗ is now a reduced steady-state nucleation rate.
From the Turnbull–Fisher expression for coherent deposition on an already ex-

isting substrate it follows that

ln N ∗ = − ln
2g

L2 N0
− ED

RT
− Kg

T �T
(9.201)

and

ln G∗ = − ln
2bg

L
+ ln G (9.202)

Here Kg = 4σunσenTm/�Hu. If the temperature dependence of the transport term
is neglected, for the moment, Eqs. (9.201) and (9.202) can be written as

ln N ∗ = −K1 − KgTm

T �T
(9.203)

and

ln G∗ = −K2 + ln G (9.204)

In the last two equations the constants K1 and K2 are unknown. They depend on
the specific quantities L , b, g, and N0. The theoretical relation between G∗ and
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Fig. 9.43 Plot of ln G∗ against ln N ∗ according to Eqs. (9.203) and (9.204).

N ∗ is implicitly given by the quantity Q that can vary from 0 to π /2. A plot of
ln G∗ against ln N ∗ is given in Fig. 9.43. This plot in effect represents the complete
solution to Frank’s equation. It cannot be represented by a single straight line. The
two straight lines that are drawn represent Regimes I and II, and their slopes differ
by the expected factor of 2. However, the transition from one regime to the other is
not sharp. Thus, according to the theory the transition is diffuse. It now remains to
ascertain how well the experimental data fit the theory, and how diffuse the transition
actually is.

To analyze the experimental growth rates, plots of ln G against Tm/T �T are
superimposed on the theoretical plot given in Fig. 9.43. The constants Kg, K1 and
K2 are chosen so that the experimental data fit the theoretical plot at its asymp-
totes. Examples, utilizing spherulite growth rate–temperature data for some typical
homopolymers, are given in the following.

The spherulite growth rates of linear polyethylene fractions have been extensively
used in analyzing regime transitions.(167,171,174,176) However, for reasons that
will become apparent shortly, analysis of this data will be postponed until later. The
first polymer that will be analyzed by the method outlined above is a high molecular
weight poly(ethylene oxide) fraction. Selection of a high molecular weight fraction
avoids complications in the nucleation theory and the possibility of a change
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Fig. 9.44 Plot of ln G against crystallization temperature, Tc, for fraction of
poly(ethylene oxide). ● M = 152 000 (From Kovacs and Gonthier (168)); ©

M = 105 000 (From Cheng et al. (181)); � M = 180 000 (From Marentette and
Brown (182)); � M = 130 000 (From Booth and Price (183)); � M = 190 000
(From Booth and Price (183)).

from extended to folded chain crystallites with crystallization temperature. Growth
rates in the molecular weight range of 105 for this polymer are available from
several different investigators and are illustrated in Fig. 9.44.(168,181–183) With
one exception, all of the ln G–T data delineate smooth curves that are very close to
one another. In one data set there are several inflections in the curve that were not
observed by the others.(181) For analysis we have selected the data of Kovacs and
Gonthier (168) since they cover the largest temperature range, 25 K. The fit to the
master plot is shown in Fig. 9.45. The upper x-axis in the figure indicates the actual
crystallization temperature. The solid points in the plot represent the experimental
data. The high and low temperature data are fitted quite well by straight lines, whose
slopes are in the ratio of 1:2. These regions represent Regimes I and II, each of
which extends over a significant temperature range. However, the transition from
one regime to the other is not sharp. It takes place over a temperature interval of
about 4 K. Although this plot establishes that the two regimes exist for this polymer,
the transition from one to the other is diffuse.

A similar analysis of the growth rate data for poly(chlorotrifluoroethylene) is
shown in Fig. 9.46.(169) Here, the data cover a 35 K range in crystallization tem-
perature. The results for this polymer adhere quite well to the theory. The two
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Fig. 9.45 Fit of experimental spherulite growth rate data, (●) to theoretical plot for
poly(ethylene oxide), M = 152 000. (Data from Kovacs and Gonthier (168))

Fig. 9.46 Fit of experimental spherulite growth rate data (●) to theoretical plot for
poly(chlorotrifluoroethylene). (Data from Hoffman and Weeks (169))



118 Crystallization kinetics of homopolymers

Fig. 9.47 Plot of ln G against (Tm/T )(1/�T ) for poly(chlorotrifluoroethylene).
(Data from Hoffman and Weeks (169))

regime regions are again well defined. There is, however, a diffuse transition re-
gion of about 5.5 K. The results are thus similar to those found for poly(ethylene
oxide). The same data are plotted in the more conventional manner, as ln G against
Tm/T �T , in Fig. 9.47. As is shown, the data points can be represented by two inter-
secting straight lines. However, the slope ratio is only 1.7 in this case. This deviation
from a ratio of 2 is beyond experimental error and is not acceptable as a demon-
stration of a I–II transition. However, the analysis given in Fig. 9.46, using Frank’s
theory, demonstrates that a regime transition does in fact take place. Results similar
to those found in Figs. 9.45 and 9.46 are also found in the analysis of growth data for
other polymers. These polymers include poly(dioxolane),(38) where there is an 8 K
interval between the asymptotes that define Regimes I and II, poly(butene),(184)
poly( ∋-caprolactone),(185) and poly(L-lactic acid) (186) among others. The growth
data for many polymers can be represented by two intersecting straight lines when
plotted in the conventional manner. In some cases the slope ratios are well removed
from 2 and the data cannot be fitted to the Frank theory.(187)

The spherulite growth rates of linear polyethylene fractions have been studied in
detail.(167,171) The data obtained have been used extensively in arguments and
discussions as to whether or not Regimes I and II exist, and, if they do, whether the
transition from one to the other is sharp or diffuse.(178a–e,188) Detailed analysis
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Fig. 9.48 Plot of ln G against (Tm/T )(1/�T ) for a linear polyethylene fraction,
M = 133 000. (Data from Labaig (171))

of these results has been postponed because they suffer from a serious limitation.
Unfortunately, isothermal spherulite growths of linear polyethylene fractions can
only be measured over a small temperature interval. In the cases where the I–II
transition in linear polyethylene has been analyzed, the crystallization temperatures
have been limited to only a 5–7 K range. Data over such a limited temperature range
are not adequate for an analysis of such an important matter. However, because of
the widespread use of these data, and the contrary conclusions that have been
reached, it is worthwhile to examine the results. Despite the large number of data
points that have been obtained with each fraction, over a limited temperature range,
the conclusions reached need to be severely tempered. As an illustrative example
we take the results for a fraction Mw = 133 000.(171) A conventional plot of the
data, as illustrated in Fig. 9.48, can be represented by two intersecting straight lines,
apparently indicating a sharp transition. However, the slope ratio of the two straight
lines is 1.74. This is not an acceptable ratio for a transition between Regimes I
and II, despite the fact that it has been used as such. In contrast, when the same
data are analyzed by the Frank theory, as is shown in Fig. 9.49, Regimes I and
II are clearly defined. The I–II transition occurs over a 1.2 K interval in this case.
Similar results are obtained for the other linear polyethylene fractions that have
been studied.(167,171) The conclusions are thus the same as were reached for
other polymer types, although the transitions here are much less diffuse.
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Fig. 9.49 Fit of experimental spherulite growth rate data (●) to theoretical plot of
a linear polyethylene fraction M = 133 000. (Data from Labaig (171))

Regimes I–II transitions have also been reported in two lower molecular weight
fractions of linear polyethylene, M � 30 000 and M � 70 000. The transition in
both cases is diffuse as was illustrated in Fig. 9.49 for a fraction M = 133 000. The
transition occurs over a 1–2 K temperature interval for all the linear polyethylene
fractions studied. The diffuse nature of the I–II transition, as predicted by the
Frank theory, is now well established for all polymers. It is important to recall
that the underlying principles governing the I–II Regime transition are not limited
to polymers. They are equally applicable to low molecular weight substances.
Furthermore, for long chain molecules a regularly folded chain conformation within
the nucleus is not required.

In the analysis of the I–II transition, attention so far has been focused solely on the
nucleation term in the expression for the growth rate. The transport term has not been
considered. Over the limited temperature range that is involved in the I–II transition
region, reasonable values of the activation energy have only a slight influence in
the analysis. This point is demonstrated in Fig. 9.50 for the poly(ethylene oxide)
data shown in Fig. 9.45. Here ED was taken as 10 000 cal mol−1. The data still
fit the Frank theory quite well and the breadth of the transition is still about 4 K.
Reasonable values of ED for this and other polymers do not sensibly change the
result.
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Fig. 9.50 Fit of experimental growth rate data (●) to theoretical plot for
poly(ethylene oxide) M = 152 000 with ED = 10 000 cal mol−1. (Data from
Kovacs and Gonthier (168))

The analysis given above for some representative homopolymers strongly sup-
ports the concept that Regimes I and II exist. These regimes are in fact more than
just asymptotes. The different relations between the nucleation and spreading rates
manifest themselves in the macroscopic growth rates and explain the observed
temperature coefficients. However, the results also demonstrate that the transition
between Regimes I and II is not sharp as has been widely thought. The transitions
are in fact diffuse in accord with the expectations from the Frank theory.

It is of interest at this point to examine the values of the constants K1 and K2.
A summary of the values of these constants for some typical homopolymers is
given in Table 9.5. It is difficult to ascertain any pattern, or relation, between these
values and the chemical nature of the chain repeating unit. Furthermore, it is not
possible to obtain values for the specific quantities g, L , and N0 that specify K1 and
K2. Lauritzen has shown that when the quantity Z ≡ NL2/4g is less than 0.01 the
system is in Regime I.(176) In order to use the value of Z to determine the regime of
a particular data set, three independent quantities, two if the ratio N/g is considered
as one, need to be known. Since all of these quantities are independent of one another
Z cannot be calculated without making several arbitrary assumptions.(176)
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Table 9.5. Summary of constants K1 and K2

Polymer K1 K2 Reference

Poly(ethylene oxide) −23 −10 a
Linear polyethylene

Mw = 30 600 −29 −12 b
Mw = 35 000 −33 −15 c
Mw = 74 000 −34 −16 b
Mw = 133 000 −32 −16 b

Poly(chlorotrifluoro ethylene) −11 −12 d
Poly( ∋-caprolactone) −9.4 −10 e
Poly(butene) −11 −11 f
Poly(L-lactic acid) −23 −15 g
Poly(dioxolane) −32 −10 h

References
a. Kovacs, A. J. and A. Gonthier, Koll. Z. Z. fur Polym., 250, 520 (1974).
b. Hoffman, J. D., L. J. Frolen, G. S. Ross and J. I. Lauritzen, Jr., J. Res. Nat. Bur. Stand,

70A, 671 (1978).
c. Labaig, J. J. Ph.D. Thesis, Louis Pasteur University Strasburg (1978).
d. Hoffman, J. D. and J. J. Weeks, J. Chem. Phys., 37, 1723 (1962).
e. Goulet, L. and R. E. Prud’homme, J. Polym. Sci.: Pt. B: Polym. Phys., 28, 2329 (1980).
f. Monasse, B. and J. M. Haudin, Makromol. Chem. Macromol. Symp., 20/21, 295 (1988).
g. Vasanthakumari, R. and A. J. Pennings, Polymer, 24, 175 (1983).
h. Alamo, R., J. G. Fatou and J. Guzman, Polymer, 23, 374 (1982).

It might be expected that the differences in the growth of a crystallite face would
alter the morphology of mature crystallites in the two regimes. Such changes have
been reported for some polymers (38,167,186,187,189) but not for others.(189a)
A more detailed discussion of this point will be found in Volume 3. To summa-
rize, the analysis of the spherulite growth rates in the vicinity of T 0

m requires the
introduction of the concepts characteristic of Regimes I and II and the transitions
from one to the other. Similar results are found when overall crystallization rates
are analyzed.(189a)

9.11 Kinetics over an extended temperature range

As has been noted previously, when the crystallization is conducted over an extended
temperature range most homopolymers display a maximum in both spherulite
growth and overall crystallization rates. There are a few polymers that do not
show rate maxima under these conditions. In these cases sufficiently low crystal-
lization temperatures cannot be attained in order for a maximum to be observed.
The objective in this section is to utilize the general concepts of nucleation and
growth to interpret the experimental results. The main points to be addressed are
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an explanation of the maxima, the reality of a transition from Regime III to II and
a consideration of the polymers that do not show the maximum.

To formulate the problem the Turnbull–Fisher approach is adopted once again.
The Gibbs type nucleus is assumed to still be operative at the lower tempera-
tures.(129) It is necessary, however, to introduce a transport term that accounts
for the fact that as the glass temperature is approached crystallization will become
severely retarded. The Arrhenius activation term that has been used up to now fails
some 50–80 ◦C above the glass temperature.(190) To rectify this problem it has
been found useful to borrow the Vogel expression.(191) This expression has been
useful in explaining the bulk viscosity of glass forming liquids.14 With this set of
assumptions the spherulite growth rate over an extended temperature range can be
expressed as (174)

G = G0 exp

( −U ∗

T − T∞

)
exp

( −KT 0
m

Tc �Gu(T )

)
(9.205)

The particular regime involved remains undefined at the moment. Since the interest
now is in crystallization over a large temperature range account must be taken of the
temperature dependence of the interfacial free energies, embodied in K , and �Gu,
the free energy of fusion per repeating unit. The former has been tacitly ignored.
The latter can be formally expressed by the expansion of �Gu(T ) about T 0

m. Up
to now, since the analysis was limited to crystallization in the vicinity of T 0

m, only
the first term in the expansion has been used. Now, if further terms are needed,
the appropriate derivatives of the specific heat can be used. To avoid this formal
thermodynamic procedure an empirical relation, based on several assumptions, has
been proposed.(192) Utilizing this empiricism Eq. (9.205) can be written as

G = G0 exp

( −U ∗

T − T∞

)
exp

( −KT 0
m

(T �T ) f

)
(9.206)

where f is defined as

f ≡ 2Tc

T 0
m + Tc

(9.207)

In the analysis of experimental results that follows the introduction of the parameter
f does not sensibly affect the interpretation of the results.

In the above equation T∞ is the temperature where molecular or segmental motion
ceases. It can be defined in terms of the glass temperature, Tg, as

T∞ = Tg − C (9.208)

14 Alternatively, other expressions can be used that serve the same purpose just as well.
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Here U ∗ and C are constants whose values cannot be a priori specified.(193)
Equation (9.206) can conveniently be rewritten as

G = G0 exp

( −U ∗

T − Tg + C

)
exp

(−KT 0
m

T �T

)
(9.209)

There are several points that need to be kept in mind when applying Eq. (9.209). The
Vogel equation represents viscous flow and is global in character. On the other hand,
in polymer crystallization the transport takes place across a boundary, and is thus lo-
calized. The form of the Vogel equation is what is important in the present context. It
is not necessary that the constants be the same as those involved in viscous flow of the
pure polymer melt. Contrary to what is often stated, Eqs. (9.206) and (9.209) do not
represent any basic theory. These equations represent the result of introducing a set
of assumptions into the well-founded Turnbull–Fisher theoretical expression for the
steady-state nucleation rate. The assumptions involve adoption of the Gibbs type nu-
cleus and the Vogel expression for segmental motion. These equations do not require
a specific chain conformation within the nucleus. Despite these restraints, the appli-
cability of Eq. (9.209) to crystallization over an extended temperature range can be
investigated.

The spherulite growth rate of isotactic poly(styrene) has been extensively studied
over a wide temperature range.(190,194–197) A summary of results from five
different investigations is given in Fig. 9.51. There is excellent agreement among
these diverse sources. The results of Miyamoto et al. (194) have been selected
for detailed analysis since they encompass a large temperature range, 13 K above
Tg and 22.4 K below T 0

m. The analysis of these data, according to Eq. (9.209), is
given in Fig. 9.52. Here the points represent the experimental data and the curve
is Eq. (9.209) with U ∗ = 1499 and C = 39. These constants are reasonable ones.
There is very good agreement between theory and experiment. There is no evidence
in this plot of a transition from one regime to another. Another example of this
type of analysis is given in Fig. 9.53 for poly(aryl ether ether ketone).(198) Good
agreement is again obtained between theory and experiment for this polymer within
one regime. The constants in this case are U ∗ = 3690, C = 73. As is shown in
Fig. 9.54, similar results are obtained with the aliphatic polyester, poly(3-hydroxy
butyrate) (199) with U ∗ = 4335 and C = 71.

The results shown in Figs. 9.52 to 9.54 indicate that the growth rate data can
be represented by Eq. (9.209) without invoking any transition from one regime to
another. It can be reasonably assumed that the crystallization is occurring in Regime
II. Similar results are obtained for many other polymers, as is summarized in Table
9.6. The U ∗ and C constants listed in the column marked “No III–II” give excellent
smooth curve fits to the experimental data. The values of the constants needed
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Fig. 9.51 Plot of ln G against crystallization temperature, Tc, for isotactic
poly(styrene), ● Miyamoto et al. (194); © Suzuki and Kovacs (190); � Boon et al.
(195); � Edwards and Phillips (196); ■ Iler (197).

Fig. 9.52 Plot of ln G against crystallization temperature, Tc, for isotactic
poly(styrene). Solid curve according to Eq. (9.209) with U ∗ = 1499, C = 39,
● experimental results from Miyamoto et al. (194).
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Fig. 9.53 Plot of ln G against crystallization temperature, Tc, for poly(aryl ether
ether ketone). Solid curve according to Eq. (9.209) with U ∗ = 3690, C = 73, ●

experimental results. (From Medellin-Rodriguez, et al. (198))

Fig. 9.54 Plot of ln G against crystallization temperature, Tc, for poly(hydroxy
butyrate). Solid curve according to Eq. (9.209) with U ∗ = 4335, C = 72, ●

experimental results. (From Organ and Barham (199))
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Table 9.6. Analysis of Regime III–II transition

Polymer No III–II U /C Yes III–II U /C Reference

iso-Poly(styrene) 1499/30 1525/36; 2300/48; 4120/74; a
5640/90

Poly(tetramethylene-p- 520/0 1500/21; 4090/68; 5800/90 b
silphenylene siloxane)
M = 56 000

cis-Poly(isoprene) 1936/38 2050/19; 4120/36; 9950/66 c
M = 313 000

Poly(caproamide) 672/0 1625/10; 4000/55 d
Poly(caproamide) 2129/60 2000/41; 4000/76; 4940/90 e
Poly(L-lactic acid) 2514/37 2350/0; 4000/17; 17500/90 f
Poly(phenylene sulfide) 1299/27 1590/27; 4000/63; 6390/90 g

M = 51 000
Poly(R-epichlorohydrin) 1273/21 1500/7; 4120/49; 8940/90 h
Poly(ethylene terephthalate) 1967/34 2500/29; 4000/46; 9400/90 i
Poly(aryl ether ether ketone) 3690/73 2435/46; 4120/62; 6850/90 j
Poly(ethylene-2,6-naphthalene 4900/46 6000/44; 8000/57; 10000/36 j

dicarboxylate
Poly(3-hydroxy butyrate) 4335/72 2550/38; 4050/52; 8500/90 k
Poly(1,3-dioxolane) 7570/54 4120/12; 9800/22 l
TPI (polyimide) 692/0 1490/9; 4120/41; 10850/90 m
Poly(oxymethylene) 1037/0 25500/0 n
cis-Poly(butadiene) 381/0 1480/25; 3950/64; 6070/90 o
Poly(propylene oxide) 461/0 4100/36; 9500/90 p
syn-Poly(propylene) 461/0 1480/11; 4120/58; 6800/90 q
Poly(3-hydroxy valerate) 751/0 1685/0; 4050/31; 9956/67 r
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c. Phillips, P. J. and N. Vatansever, Macromolecules, 20, 2138 (1987).
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Fig. 9.55 Plot of ln G + U ∗/R(T − T∞) against (Tm/T )(1/�T ) for isotactic
poly(styrene). ■ U ∗ = 1499, C = 39; © U ∗ = 1525, C = 36; � U ∗ = 2300,
C = 48; � U ∗ = 4120, C = 74. (Data from Miyamoto et al. (194))

are reasonable ones. Alternatively, according to Eq. (9.209) a plot of ln G +
U ∗/R(T − T∞) against Tm/T �T gives a straight line when these constants are
used. It could be concluded from this analysis that, with the selection of appropri-
ate parameters, the crystallization over the complete temperature range does not
require a transition to Regime III.

However, the situation is not as simple as it appears. With just a small change in
the value of U ∗, for a given polymer, a discontinuity can be observed in the plot of
ln G+U ∗/R(T −T∞) against T 0

m/T �T . Such behavior is illustrated in Fig. 9.55 for
the same isotactic poly(styrene) data used in Fig. 9.52. The solid squares represent
the results obtained using the same constants as in Fig. 9.52. Obviously, a straight
line results. However, when U ∗ is increased from 1499 to 1525 cal mol−1, and C
reduced from 39 to 36, a curvature appears in the plot, as indicated by the open
circles in the figure. As the constants are varied the data can be represented by two
intersecting straight lines. There is a set of constants, U ∗ = 4120 cal mol−1 and
C = 74, that gives a slope ratio of 2.0. This situation corresponds exactly to a III–II
Regime transition. Similar results are found for all the polymers listed in Table 9.6.
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The column labeled “Yes III–II” lists the sets of U ∗ and C values that allow for
plots of the type illustrated in Fig. 9.55 to be represented by two intersecting straight
lines, with slope ratios of 2.0. Each set defines a different transition temperature.

The analysis of the spherulite growth rate data over an extended temperature
range thus presents a major dilemma. The reason is that the values of the constants
U ∗ and C are not known a priori for a given polymer. It is important to recognize
that there is no set of universal constants, as has been proposed,(174, 190,193)
although this concept is often invoked. Each polymer will have its own set of
unique constants. There are, thus, two conflicting results from the above analysis.
In one case for a given set of constants there is no evidence for a regime transition,
the crystallization taking place in Regime II. On the other hand, there is another
set of constants for a given polymer that allow the data to adhere exactly to a III–
II transition. There is no basis at present to discriminate between the two sets of
constants.

The physical basis for the existence of Regime III is quite plausible. The nu-
cleation rate continuously increases with decreasing temperature. Thus, at low
temperatures, i.e. large undercoolings, the rate is rapid and the nuclei are profuse
and small in size. Consequently, there is not too much space into which the nuclei
can spread and grow. More quantitatively, the mean separation distance between
nucleation sites in Regime II, Sk, can be expressed as (193)

Sk = (2g/N )1/2 (9.210)

The increase in nucleation rate with �T is the dominant term in Eq. (9.210).
Consequently, the distance between nucleation sites decreases with the undercool-
ing. Eventually, at sufficiently low crystallization temperatures the site separation
becomes comparable to the chain width. There is, thus, a temperature region where
the nucleation rate is once again the dominant factor. The growth rate expression
then becomes the same as in Regime I. In the type of plots shown in Fig. 9.55
the ratio of the slope in Regime III to that in Regime II should be 2:1. This result
is easily obtainable with the data available, as is the contrary result of no regime
transition. This enigma has been observed previously where, however, the reality
of Regime III has been assumed.(198,199a)

It should be emphasized once again that the issue is not one of physical reality.
The physical situation is succinctly expressed by Eq. (9.210). Rather it is a question
of whether a definite transition exists between Regimes II and III, or whether the
changes are gradual and diffuse. An argument has been made that Regime III does
not exist at all.(178a) The contrary argument has been made that there is a sharp
transition between Regimes II and III.(193) The analysis of experimental growth
rate data is equivocal in the matter. Even with the large amount of suitable data that
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is available, it is difficult to make an objective choice without knowledge of U ∗ and
C for each polymer. This is a problem that is clearly in need of resolution.

Polymers that crystallize in a temperature interval well removed from Tm, but
whose growth rates do not display maxima, also present problems with respect to
the existence of the III–II transition. Polymers in this category include poly(butylene
terephthalate),(200) poly(trimethylene terephthalate),(201) poly(pivalolactone),
(202,203) one study of poly(methylene oxide),(204) linear polyethylene over a
slightly more extended temperature range (205, 205a) and a set of reports for iso-
tactic poly(propylene).(206–210)

When plotted according to Eq. (9.209) the data for both poly(trimethylene tereph-
thalate) (201) and poly(pivalolactone) (202,203) yield two intersecting straight
lines. The slope ratio in each case was 2. The constants U ∗ = 1500 and C = 30
were used for both polymers, along with extrapolated values of T 0

m. The temper-
ature range for crystallization was 35 K. The results were not too sensitive to the
chosen values of U ∗ and C . Poly(pivalolactone) is, however, polymorphic. This is
a factor that needs to be investigated further and taken into account if necessary.
These results, along with a linear polyethylene fraction, M = 70 300,(205) seem to
be exceptions to the general finding. The temperature range studied for the linear
polyethylene fraction was extended to 15 K. Analysis of the data for this polymer,
using an Arrhenius expression with ED = 5736 and T 0

m = 144.7 ◦C, gave two
sharp transitions, with slope ratios that were appropriate to the regimes involved.
However, small variations in ED and T 0

m yield slightly diffuse transitions, and such
a transition has been reported.(205a)

The study of poly(butylene terephthalate) gave quite different results.(200) The
data in this case extended over 23 K. Utilizing the extrapolated value of 236 ◦C
for T 0

m the data could be fitted by two intersecting straight lines. However, in this
case the slope ratio was 3.41. This value is not compatible with a III–II transition.
However, if T 0

m is taken to be 260 ◦C, two intersecting straight lines with a slope
ratio of 2 are observed. The analysis of the experimental results for this polymer
demonstrates how the same data can yield two intersecting straight lines, but with
different slope ratios. The slope ratios can vary over a wide range depending on the
choice of T 0

m. The equilibrium melting temperature of poly(butylene terephthalate)
has also been reported to be at 247 ◦C.(211) The importance of T 0

m in determining
whether there is a sharp III–II transition is emphasized by these results. Analysis of
the available growth rate data for isotactic poly(propylene), to be discussed later,
will further expand on this conclusion.

The study of poly(methylene oxide) by Pelzbauer and Galeski (204) is often
quoted as representing a sharp III–II transition.15(193,212) However, in another

15 The unusual temperature variables that are used in this report, for both three- and two-dimensional nucleation,
should be noted. In the present analysis, the basic growth–temperature data have been extracted from this work.
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study of this polymer the growth rate was found to go through a maximum with
crystallization temperature.(213) This data set can be treated in the manner pre-
viously described (see Table 9.6). The Pelzbauer and Galeski data, encompassing
19 K, can be reasonably represented in the usual type plot by two intersecting
straight lines. The slopes depend on the values taken from T 0

m and the Vogel equa-
tion constants. The slope ratio is 2.2 when T 0

m is taken as 198 ◦C and the transport
term ignored. This ratio can be reduced by increasing T 0

m and introducing U ∗ and
C . It is then possible to achieve a ratio of 2 for the slopes of the two straight lines.

The growth rate of isotactic poly(propylene) has been studied over the accessi-
ble temperature range by many different investigators.(206–210) The fundamental
problem here is establishing the value of T 0

m by conventional extrapolative methods.
Isotactic poly(propylene) is unique in displaying melting kinetics.(214) In the fu-
sion range, the observed melting temperature of isotactic poly(propylene) depends
on the time the sample is held at a given temperature. It is thus extremely difficult to
reliably estimate T 0

m. Estimates of this quantity have ranged from 185 ◦C to 215 ◦C.
It may in fact be even higher. With this uncertainty in T 0

m, it is not surprising that
different conclusions have been reached with regard to the III–II transition in this
polymer. Slope ratios, based on two intersecting straight lines, have ranged from 1.4
to 2.6 depending on the value taken for T 0

m. However, by arbitrarily choosing a T 0
m

value each of the poly(propylenes) studied can be represented by two intersecting
straight lines, with a slope ratio of 2. Thus, they can be made to represent a sharp
III–II transition. The necessary T 0

m values are 199 ◦C (210), 189 ◦C (207), 186 ◦C
(208) and 175 ◦C.(209)

To further complicate matters the concept of a diffuse III–II transition was in-
troduced by Xu et al.(210) Their data are well represented by two intersecting
straight lines of slope ratio 2 when T 0

m is taken to be 199 ◦C. However, it was con-
cluded for other reasons that T 0

m for this polymer is properly 212.1 ◦C. The results
of using 212.1 ◦C for T 0

m in analyzing this data are shown in Fig. 9.56, utilizing
U ∗ = 1500 cal, C = 30. Although the major portion of the data points can be
represented by two intersecting straight lines of slope ratio 2 there is a set of points
that cannot be included. The III–II transition has now become a diffuse one. The
transition occurs gradually over a temperature range of approximately 9 K.(210)
Thus by selecting appropriate values of T 0

m the transition can be made either sharp
or diffuse. It can be anticipated that for still higher T 0

m values the transition would
become more diffuse. Eventually, a transition, as such, would not be perceptible.
The analysis of isotactic poly(propylene) growth data further emphasizes the fact
that in order to decide whether the transition is sharp, and with the proper slope ratio,
or is diffuse, depends on the confidence in the value of T 0

m. Another problem related
to the III–II transition in isotactic poly(propylene) is the fact that vibrational spec-
troscopic studies have shown that a structural change occurs in the residual melt at
about 136 ◦C.(214a,b) This temperature corresponds to the one usually assigned to
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Fig. 9.56 Plot of ln G + U ∗/R(T − T∞) against (Tm/T )(1/�T ) for isotactic
poly(propylene). T 0

m taken as 212.1 ◦C. (From Xu et al. (210))

Fig. 9.56a Overall birefringence change as a function of crystallization temper-
ature and time for a metallocene catalyzed isotactic poly(propylene), Mw =
5.75 × 105 with 0.3% chain structural defects. (From Alamo and Chi (209))

the regime transition. The structural change would affect �Gu and thus �G∗. In this
connection, Fig. 9.56a is a plot of the time change of the overall birefringence with
crystallization temperature of a metallocene catalyzed isotactic poly(propylene),
Mw = 5.75 × 105, that has 0.3% chain structural irregularities.(209) An obvious
discontinuity occurs in the birefringence in the same temperature region where the
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II–III Regime transition is deduced from growth rate studies. It is, therefore, very
likely from these observations that the discontinuity in the temperature coefficient
of the growth rate is a consequence of structural and morphological changes rather
than a regime transition.

Regime transitions can also be investigated by analysis of the overall crystal-
lization rate. The advantage in this case is that a much wider molecular weight
range can be studied, as compared to spherulite formation and growth. However,
the disadvantage is that both the initiation and growth nucleation processes are
involved and they cannot be separated from one another. An investigation of the
overall crystallization kinetics, utilizing differential scanning calorimetry, has been
reported for linear polyethylene over the molecular weight range M = 3.1 × 103

to 8.0 × 106.(215,216) Although limited to only a 14 K interval in crystallization
temperatures, interesting results were obtained because of the molecular weight
range involved.

Figure 9.57 is a plot, on a logarithmic scale, of 1/τ0.25 against the nucleation
function T 0

m/T0 �T . Here τ0.25 represents the time for 25% of the transformation to
take place. A Gibbs type nucleus is assumed in the analysis. The implied assumption
is thus made that the secondary or growth nucleation is controlling. For molecular
weight fractions greater than 8.0 × 105 the data are well represented by the same
linear relation over the complete range of crystallization temperatures. There is no
indication of either a break or discontinuity in the data so that there is no regime
change with crystallization temperature for the highest molecular weights studied.

Fig. 9.57 Plot of log (τ0.25)−1 against (T 0
m/Tc)(1/�T ) for indicated molecular

weight. © 8 × 106; ● 5 × 106; � 3 × 106; � 8 × 105; � 4.25 × 105; ■ 1.07 × 105;
� 5.3 × 104; © 1.95 × 104. T 0

m = 145.5 ◦C.(215)
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It should be noted parenthetically that spherulite growth rates of linear polyethylene
cannot be measured in this molecular weight range. In contrast, the data point for
molecular weights equal to or less than 8.0 × 105 cannot be represented by a linear
relation. The data points for M = 8 × 105 and 4.25 × 105 are represented by
two intersecting straight lines, suggesting that a I–II Regime transition is involved.
Three intersecting straight lines give a good representation of the data for the lower
molecular weights, suggesting that Regime III has also been attained. This latter
conclusion is consistent with the spherulite growth rate results.(205,205a) In order
to decide whether these results represent regime transitions an analysis of the slope
ratios needs to be made.

The ratio of the slopes in Regimes II to I and II to III are plotted in Fig. 9.58.
It is quite evident in this plot that the two slope ratios depend strongly on the
molecular weight. Starting with the highest molecular weights (the straight lines of
Fig. 9.57), and an assigned slope ratio of l, there is a monotonic decrease in both
the II/I and II/III ratio with decreasing molecular weight. A more comprehensive
plot of the II/I slope ratios is given in Fig. 9.58a as a function of temperature.(216)
Included here are the values obtained for low molecular weight linear polyethylene
fractions,(216) the higher molecular weights (215) and a high molecular weight
n-alkane C192H384,(21) all obtained from overall crystallization kinetics as well as
the values obtained from spherulite growth rates.(167) Figure 9.58a makes quite
clear that the slope ratios of Regime II/I increase linearly with molecular weight.

Fig. 9.58 Plot of slope ratios and slope as a function of molecular weight of linear
polyethylene fractions. © I–II transition; ● II–III transition; � slope in Regime II.
(Data from (215))
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Fig. 9.58a Plot of ratio of II/I slopes for linear polyethylene fractions as a function
of molecular weight. From overall crystallization kinetics: low molecular weight
■ (216); high molecular weight © (215); n-alkane C192H384 � (217); Spherulite
growth rate ● (167)(216)

The results reported from spherulite growth rate studies, approximately M � 104 to
105, adhere or are very close to the same straight line. A value of unity is approached
for very high molecular weights from the straight line in Fig. 9.58a and the ratio
of about 0.3 at the lower end. It should also be noted that in the original concept
of Regimes I and II that was developed for non-chain-like monomeric systems the
II/I ratio was calculated to be 0.33.(173)

The theoretical result, embodied in Eq. (9.183), is based on the assumption that
the spreading rate does not depend on molecular weight. The slope ratio depends
on the relation between the nucleation rate N and the spreading rate g. The steady-
state nucleation rate is not molecular weight dependent in the range of interest.
However, the spreading rate could be molecular weight dependent.(148) The slope
ratios can be given a qualitative explanation by postulating that g decreases with
increasing molecular weight, as a consequence of the changing melt structure. The
linear relation that is observed in Fig. 9.57 for the highest molecular weights could
be explained by g being so small that crystallization will not proceed much beyond
stable nuclei size at all crystallization temperatures. Hence, the growth rate will
depend only on the nucleation rate and will be the same as in Regime I and Regime
III, but for different physical reasons. As the molecular weight decreases g should
increase because of the reduced influence of entanglements on segmental mobility.
This argument leads to the expectation that there will be major changes in the slope
in Regime II. As is seen in Fig. 9.58 the slope in this regime for linear polyethylene



136 Crystallization kinetics of homopolymers

decreases by about 45% as M decreases from 8 × 106 to 5.3 × 104. The variation
in g thus makes a major contribution to the molecular weight dependence of the
overall crystallization rate of linear polyethylene.

Other polymers, as typified by poly(3,3-dimethyl thietane), show maxima in the
overall crystallization rate.(218) The data can be analyzed in a manner comparable
to that described for spherulite growth rates and the conclusions are the same.
Whether a transition from Regime II to III is discerned depends on the values taken
for the Vogel constants.

Another problem concerned with crystallization over an extended temperature
range is the temperature maximum, Tmax, in the crystallization rate. In an early
analysis, it was concluded that the ratio Tmax/Tm should be in the range 0.8–0.9.
This conclusion agreed with the experimental data for two polymers that were
available.(12) Since then, the results for many more polymers have followed a
similar pattern.(219–221a) Plots of Tmax against Tm are given in Figs. 9.59 and 9.60
for spherulite growth and overall crystallization rates, respectively. In each case the
plots represent a set of extensive data for many different polymers. The straight
lines drawn obey the relation

Tmax = 0.82 ± 0.005 T 0
m (9.211)

in both cases. Thus, based on extensive experimental results, with but a few ex-
ceptions, Tmax/Tm = 0.82 for homopolymers. Similar results are obtained for low
molecular weight substances.(221a)

The results embodied in Figs. 9.59 and 9.60, and Eq. (9.211) should receive a
natural explanation from the growth rate–crystallization temperature expression.
For simplicity in analyzing the problem, we initially assume an Arrhenius type
activation energy and a Gibbs type nucleation. Equation (9.173) has been shown to
be valid for temperatures 50–80 ◦C above Tg. Utilizing a more complex transport
term will not sensibly alter the conclusions.(222) By differentiating Eq. (9.173) and
setting the result to zero it is found that (219,220,221)

Tmax

Tm
= (φ + 1)1/2

(φ + 1)1/2 + 1
(9.212)

Here φ = E/K , where K = 4b0σenσun/�Hu. A plot, according to Eq. (9.212),
of Tmax/Tm against E/K is given in Fig. 9.61.(220) The striking feature of the
curve in this figure is the very rapid increase in Tmax/Tm with E/K . The ratio of
Tmax/Tm levels off at about 0.80–0.90 for E/K values greater than 25. Thus, the
functional form of Eq. (9.212) indicates that Tmax/Tm is relatively insensitive to the
ratio E/K and levels off in the experimentally observed range. Therefore, utilizing
a simple growth rate expression explains the location of the maximum quite well.
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Fig. 9.59 Plot of temperature of maximum spherulite growth rate, Tmax, against
equilibrium melting temperature, Tm, for indicated polymers. (1) isotac-
tic poly(styrene) (a); (2) poly(tetramethyl-p-silphenylene siloxane) (b); (3)
poly(cis-isoprene) (c); (4) poly(caproamide) (d,e); (5) poly(L-lactic acid)
(f); (6) poly(phenylene sulfide) (g,h); (7) poly(R-epichlorohydrin), poly(S-
epichlorohydrin), poly(I-RS-epichlorohydrin) (i); (8) poly(ethylene terephthalate)
(j,k,l); (9) poly(aryl ether ether ketone) (m,n); (10) poly(ethylene-2,6-naphthalene
dicarboxylate) (n); (11) poly(3-hydroxybutyrate) (o); (12) isotactic poly(methyl
methacrylate) (q); (13) poly(dioxolane) (r); (14) New TPI poly(imide) (s); (15)
poly(methylene oxide) (t); (16) poly(cis-butadiene) (u); (17) poly(propylene ox-
ide) (v,w); (18) poly(imide) BPDA + 134 APB (x); (19) poly(imide) BPDA +
C12 (x); (20) syndiotactic poly(propylene) (y); (21) poly(3-hydroxy valerate)
(z); (22) poly(ethylene succinate) (aa); (23) poly(aryl ether ketone ketone) (bb);
(24) poly(phenylene ether ether sulfide) (cc); (25) poly(tetramethylene isophtha-
late) (dd); (26) poly(hexamethylene adipamide) (e,ee); (27) poly(tetrachloro-bis-
phenol-A adipate) (ff); nylon 6–10 (ee).
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Similar results are obtained when a three-dimensional type nucleation is used in
conjunction with an Arrhenius transport term.(222)

The analysis is more complex when a Vogel type transport term is used. Now,
three parameters are involved, U ∗, T∞ or C , and K . By differentiating Eq. (9.205)
and setting the results equal to zero, one obtains (222)

Tmax

Tm
= 2(ψ + 1)

ψ
− Tmψ + Tm + 4T∞

ψTmax
+ 2T∞(Tm + T∞)

ψT 2
max

−
(

TmT 2
∞

ψT 3
max

)
(9.213)
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Fig. 9.60 Plot of temperature of maximum, Tmax, of overall crystallization rate
against equilibrium melting temperature Tm. (1) poly(trimethylene oxide)
(a,b); (2) poly(2,2′-bis-4,4′-oxyphenyl propane carbonate) (c); (3) poly(cis-
1,4-butadiene) (d); (4) poly(dimethyl siloxane) (e,f,g); (5) poly(imide)
ODPA n = 1 (h); (6) poly(imide) ODPA n = 2 (h); (7) poly(imide)
ODPA n = 3 (h); (8) poly(imide) New TPI (i,j); (9) poly(1-pentene) (k);
(10) poly(ethylene-2,6-naphthalene dicarboxylate) (l,m); (11) poly(ethylene suc-
cinate) (n); (12) poly(methylene oxide) (o); (13) poly(aryl ether ether ketone)
(p,q); (14) poly(aryl ether ketone ketone-terephthalic acid) (r); (15) poly(aryl
ether ketone ketone-isophthalic acid) (s); (16) poly(aryl ether ketone ether ke-
tone ketone) (t); (17) isotactic poly(styrene) (u); (18) poly(butylene terephtha-
late) (v); (19) poly(hexamethylene adipamide) (w); (20) poly(phenylene sulfide)
(x,y); (21) poly(cis-isoprene) (z,aa); (22) poly(imide-BPDA + 134APB) (bb,cc);
(23) poly(imide - BDPA + C12) (bb,cc); (24) poly(pentamethylene terephtha-
late) (dd); (25) poly(tetramethylene isoterephthalate) (dd); (26) poly(L-lactic acid)
(ee,ff,gg); (27) poly(ethylene adipate) (hh); (28) poly(ethylene terephthalate) (ii,jj);
(29) poly(3,3-bis-chloromethyl oxacyclobutane) (kk); (30) poly(β-hydroxy oc-
tanoate) (ll); (31) poly(3,3-dimethyl thietane (kk,mm); (32) poly(imide PI-2) (nn);
(33) poly(phenylene ether ether sulfide) (oo); (34) syndiotactic poly(styrene) (pp).
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where ψ = U ∗/K . Equation (9.213) does not allow a simple comparison with
experimental results. Numerical methods, using fixed constants, need to be used
to analyze the results. When the constants U ∗ and C that give the best fit of the
rate data are used, Tmax/Tm is found to be in the range of 0.80–0.85, with but a few
exceptions. An example is given in Fig. 9.62 for the crystallization of natural rubber
and poly(aryl ether ether ketone). These two polymers represent extreme cases of
Tg and T 0

m. T 0
m = 308 K, Tg = 201 K for the former polymer and 668 K and 417 K

for the latter. Here Tmax/Tm, calculated according to Eq. (9.213), is plotted against
U ∗/K for different values of C . All of the curves have similar shapes and are close
to one another for the range in the value of C . Even for this more general growth
expression there is still only a narrow range of allowable values of Tmax/Tm.

9.12 Homogeneous nucleation and interfacial free energies

9.12.1 Homogeneous nucleation

It has been pointed out on several occasions that, when a continuous volume of
a crystallizable liquid is cooled from the melt, nucleation is most often initiated
by heterogeneities. These heterogeneities can be foreign substances, as well as
crevices, cracks and surfaces within pure substances. Heterogeneous nucleation is
common to all crystallizing substances, low molecular weight species as well as
polymers. If, however, the heterogeneities are isolated in the melt, as for example
in small droplets, their influence will be minimal. Nucleation and crystallization
will then proceed homogeneously. As was alluded to earlier, this technique was
pioneered by Turnbull in his study of metals.(120,223) It has since been applied
to a variety of organic and inorganic low molecular weight compounds (129,131)
including the n-alkanes.(132–135b,224) Before analyzing the application of this
technique to polymers it is instructive to examine the results obtained with low
molecular weight substances.
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Fig. 9.61 Theoretical plot, from Eq. (9.212), of Tmax/Tm against E/K . (Adapted
from Okui (220))

Fig. 9.62 Theoretical plot from Eq. (9.213) of Tmax/Tm against U ∗/K for poly(aryl
ether ether ketone) and natural rubber and different values of the constant C . For
natural rubber: � C = 0; ● C = 30; © C = 51.6. For poly(aryl ether ether ketone):
✕ C = 0; ■ C = 30; � C = 51.6.

The analysis of experimental results takes advantage of the fact that the nu-
cleation rate increases rapidly with increasing temperatures. It is then possible to
define a homogeneous nucleation temperature, T ∗, because the transition from a
small fraction of droplets frozen to all of them solidifying occurs over a narrow
temperature interval. Experimentally T ∗ ≈ 0.82T 0

m for many substances, such as
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metals, some organic compounds and alkyl halides. However, this generalization
does not include the n-alkanes.(129,225) In analyzing the data from the droplet-type
experiment involving low molecular weight substances, including the n-alkanes, it
has usually been assumed that the nucleus is spherical. Thus, only one surface is
involved. The free energy change in forming such a critical-size nucleus, �G∗, is
expressed by Eq. (9.88).

�G∗ =
(

16π

3

) (
σ 3

�Hv

)2 (
Tm

�T

)2

(9.88)

The σ value can be obtained by measuring the nucleation rate as a function of
undercooling, and applying the Turnbull–Fisher relation. Alternatively, this value
can be obtained by measuring nucleation kinetics under different continuous cooling
rates.(134) It is convenient at this point to introduce a reduced temperature T ∗/T 0

m

and a reduced undercooling �T ∗
R ≡ (T 0

m − T ∗)/T 0
m.

Of particular interest in the present context are the results for the n-alkanes,
since they represent low molecular weight chain molecules. The nucleation of
a series of n-alkanes, from C5H12 to C60H122, has been studied by the droplet
technique.(131–135b,224) The extension of the n-alkane study to 60 carbon atoms,
as well as including low molecular weight polyethylene fractions, has significantly
enhanced our understanding of the problem(135–135b) and has lead to important
implications with regard to polymer nucleation. The reduced undercoolings, �T ∗

R ,
for the n-alkanes are plotted against the carbon number, n, in Fig. 9.63.

The results of the different investigators are in good accord with one another
for these direct observations. The plots show three distinct regions. There is a
sharp decrease in �T ∗

R from 0.20 for C5H12 to approximately 0.04 for C18H38. This
anomalous low value is maintained to about C25H52. There is then a gradual increase
in �T ∗

R with carbon number, until a value of 0.086 is reached for C60H122, the highest
n-alkane studied. There is the suggestion in the data that for the lower carbon number
n-alkanes the odd-numbered ones have slightly lower reduced undercoolings than
the even-numbered ones. The anomalous behavior found in the lower carbon n-
alkanes has been attributed to nucleation of the metastable hexagonal phase and the
effect of surface freezing.(135a) Since the principal interest here is in the relation
of these results to polymer nucleation, attention is focused on the upsweep that set
in at n approximately equal to 25. Also plotted in this figure are the results for what
have been termed low molecular weight polyethylenear fractions.16 The results for
the fractions fit in very smoothly with those of the n-alkanes. The plot also indicates
that a saturation or leveling off of �T ∗

R would occur at approximately 0.12. This

16 These low molecular weight polyethylene fractions are actually hydrogenated poly(butadienes). They are,
therefore, random type ethylene-butene copolymers.
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Fig. 9.63 Plot of reduced undercooling, �T ∗
R , against n, the number of carbons in the

n-alkanes and low molecular weight fractions. n-alkanes: © Oliver and Calvert (134); ●

Uhlmann et al. (133); � Turnbull and Cormia (132); ■ Phipps (224); � Kraack et al.
(135,135a); low molecular weight fractions: Kraack et al. (135,135b).

value of �T ∗
R is comparable to that found for fractionated and unfractionated linear

polyethylenes (see below).(226,227)
A compilation of the interfacial free energies, σ , assuming spherical nuclei, that

were obtained from the droplet experiments by the different investigators is given
in Fig. 9.64.17 The odd–even effect is again observed. Starting at about n = 25 there
is again a monotonic increase in σ with carbon number. The low molecular weight
fractions fit smoothly with the n-alkane data in this plot and a leveling off of σ is
observed.

The changes in both the relative undercooling and the interfacial free energy that
occur at about n = 25 are indicative of a transition between two different nucleation
modes. For the shorter n-alkanes the complete molecules can participate in the
nucleation in a classical sense. However, it has been proposed that as the molecular
length increases the bundle type of nucleation sets in.(135,135a) This proposal is
consistent with the low molecular weight fractions following the same pattern as the
higher n-alkanes. Small angle x-ray studies have demonstrated that the crystallite
thicknesses in this molecular weight range are comparable to the extended chain

17 For some of the alkanes Oliver and Calvert (134) give results from both isothermal kinetic and cooling rate
studies. The data from the isothermal kinetics are used here. Phipps (224) used both the steady-state nucleation
rate and one in which a time lag was taken into account. The data from the steady-state nucleation rate were
used in Fig. 9.64.
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Fig. 9.64 Plot of interfacial free energy, σ , (based on spherical nuclei) against n,
the number of carbons in the n-alkanes and low molecular weight fractions. ©,
cooling only, Oliver and Calvert (134); ● Uhlmann et al. (133); � Turnbull and
Cormia (132); ■ Phipps (224); � Kraack et al. (135,135a); low molecular weight
fractions: Kraack et al. (135,135b).

length. Folded chain crystallites are only expected to occur at about n ∼= 200.(225a)
Hence, chain folding cannot be involved in nucleus formation in the range of chain
length studied and has to be ruled out. The bundle type nucleus has been shown
to be acceptable for chain-like molecules. It remains to be seen what information
deduced from the results for the n-alkanes, and the low molecular weight fractions,
can be applied to high molecular weight polymers.

In order to examine the connection, if any, between the results just described and
higher molecular weight polymers, it is necessary to analyze the appropriate droplet
experiments. In their pioneering study, Cormia, Price and Turnbull carried out the
first successful study of droplet crystallization in polymers.(226) An unfractionated
linear polyethylene, with a broad molecular weight distribution, was used in this
initial work. An example of the effect of dispersing the sample into droplets on
the crystallization of this polymer is illustrated in Fig. 9.65.(226) In this figure the
fraction of the droplets solidified is plotted against the undercooling, and temper-
ature, for slow cooling from the liquid state. Less than about 5% of the droplets
solidify above 100 ◦C. This solidification is probably due to heterogeneities that
are isolated in these droplets. More than 50% of the droplets freeze in the critical
range 85–87 ◦C and solidification is complete at 84 ◦C. The solidification process
is clearly quite sharp. When crystallized in the bulk, linear polyethylene can only
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Fig. 9.65 Plot of number fraction solidified, n/n0, against temperature. Cooling
rate 0.58 ◦C min−1 above 100 ◦C; 0.17 ◦C min−1 below 100 ◦C. (From Turnbull
and Cormia (132))

be supercooled by about 20 ◦C. However, where the heterogeneities are isolated in
the droplets the supercooling that can be attained is increased to 60 ◦C. For linear
polyethylene T ∗/T 0

m = 0.86 and the relative undercooling, �T ∗
R = 0.14. The latter

value is comparable to the saturation value observed in Fig. 9.63.
All the polymers that have been studied by this technique show similar levels

of supercooling.(227–231) A compilation of the undercooling, �T , that can be
achieved by the polymers studied, using the droplet method, is given in Table 9.7.
The undercoolings obtained for the variety of polymers that are listed range from
about 60 ◦C to 100 ◦C. In all cases, the supercoolings achieved are much greater
than those obtained by the crystallization of continuous bulk samples. The reduced
undercoolings for the different polymers range between 0.14 and 0.20. The reduced
undercoolings that are characteristic of all polymers are comparable to those for
low molecular weight inorganic and organic compounds.(129) However, as has
been pointed out, the lower carbon number n-alkanes are an exception to this
generalization.

The relationship, if any, between the droplet experiments for the n-alkanes
greater than n = 25, the low molecular weight fractions, and high molecular
weight polyethylenes can now be examined. It has been pointed out that, when
plotted against 1/n, the undercoolings for the n-alkanes with 30 ≤ n ≤ 60 ex-
trapolate linearly to �T = 60 ◦C.(135) As is indicated in Table 9.7 this value
(�T = 60 ◦C) is the same as found directly in a variety of high molecular weight lin-
ear polyethylenes.(135) The reduced undercoolings of these n-alkanes, and the low
molecular weight fractions, approach a saturated or asymptotic value of about 0.12
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Table 9.7. Parameters obtained from droplet kinetics of polymers

Polymer �T ◦C �T ∗ Shapea T 0
m

◦Cb σ 2
unσen erg3 cm−6 Reference

Linear polyethylene ∼60 0.14 cylinder 142 15 500 a
Broad molecular ∼60 0.15 rectangular 141 14 200 b
weight distribution parallelepiped

∼60 0.15 ” 142 14 960 b
∼60 0.14 ” 143 15 740 b
∼60 0.14 ” 144.7 17 200 b

Mw = 3200, ∼45 0.11 ” 131.7 1 180 c
Mn = 2140
Mw = 9700, ∼60 0.15 ” 141.0 12 400 c
Mn = 9150
Mw = 11 740, ∼60 0.15 ” 142.0 15 000 c
Mn = 10 970
Mw = 23 000, ∼60 0.14 ” 144.1 18 610 c
Mn = 17 690
Mw = 30 600, ∼60 0.14 ” 144.6 18 600 c
Mn = 24 710
Mw = 49 890, ∼60 0.14 ” 145.2 17 400 c
Mn = 36 370
Mw = 119 200, ∼60 0.14 ” 146.0 20 000 c
Mn = 96 600
Mw = 249 000, ∼60 0.14 ” 146.2 20 500 c
Mn = 179 00
Broad distribution ∼55 0.13 — 143 — d

isotactic Poly(propylene) ∼100 0.22 — 186 — dc

isotactic Poly(propylene) ∼100 0.22 cylinder 178 25 000 e
Poly(ethylene oxide) ∼65 0.19 — 66 — d
Poly(ethylene oxide) ∼65 0.20 — 58 — f
isotactic Poly(styrene) ∼100 0.20 — 240 — d
Poly(caprolactam) ∼90 0.18 — 227 — d
Poly(oxymethylene) ∼84 0.18 — 195 — d
Poly(3,3-bis chloro-methyl ∼90 0.19 — 191 — d
oxycyclobutane)

a Geometric shape assumed for nucleus.
b Equilibrium melting temperature used in calculation.
c Product of interfacial energies not listed because of unusual value used for �G∗.
References
a. Cormia, R. L., F. P. Price and D. Turnbull, J. Chem. Phys., 37, 1333 (1962).
b. Gornick, F., G. S. Ross and L. J. Frolen, J. Polym. Sci., 18C, 79 (1967).
c. Ross, G. S. and L. J. Frolen, J. Res. Nat. Bur. Stand., 79A, 701 (1975).
d. Koutsky, J. A., A. G. Walton and E. Baer, J. Appl. Phys., 38, 1832 (1967).
e. Burns, J. R. and D. Turnbull, J. Appl. Phys., 37, 4021 (1966).
f. Price, F. P. Abstract Symposium on Macromolecules, IUPAC, Wiesbaden, Germany,

Sect. 1, paper 1B2 (1959).
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or slightly higher. This value is essentially identical to those found with the higher
molecular weight polymers (see Table 9.7). The interfacial free energies, σ , of the
n-alkanes and the low molecular weight fractions extrapolate smoothly to the value
deduced for high molecular weight polymers, about 25–26 erg cm−2.(135,135b,228)
This value is based on the assumption of a spherical nucleus in all cases.

The smooth behavior of these quantities, from the higher n-alkanes (30 ≤ n ≤
60) and low molecular weight polyethylene to high molecular weight polymers,
indicates that, irrespective of the nucleation mode of the n-alkanes, it persists with
the polymers. It has been pointed out that chain folding cannot be involved in the
nucleation of the n-alkanes in the range studied. This conclusion is not restricted
by the fact that spherical nuclei have been assumed. A bundle type nucleus appears
to be a good candidate for the nucleation mode in long chain molecules. It has been
pointed out (Sect. 9.9) that such nuclei can lead to mature, lamellar crystallites
in a natural way. It has also been shown that the excessively high values that have
been calculated for σen are not correct.(135b) These results strongly suggest that the
bundle, or fringe micelle, concept for critical-size nuclei of long chain molecules
needs to be given serious consideration. Although rejected by many, but not all, it
should be revisited in terms of theory and experiment. A mature, lamellar crystallite
cannot support a fringed micelle structure, because of the need to dissipate the flux
of chains emanating from the basal plane.18 However, this is not a problem with a
nucleus because of the small lateral dimensions that are involved.(231a) There is
no inconsistency between a bundle type nucleus and a mature lamellar crystallite.

9.12.2 Interfacial free energies

Nucleation in isolated droplets represents the classical homogeneous three-
dimensional situation. Only spherical nuclei have been considered up to now in
analyzing the results from the droplet experiments. It is more realistic to assume an
asymmetric shaped nucleus for the larger alkanes and polymers. For such a nucleus

�G∗ = Kσ 2
unσenT 2

m

(�Hu�T )2
(9.214)

where the constant K specifies the geometry of the assumed nucleus. The product
of the interfacial free energies, σ 2

unσen, can be obtained from the variation of the
nucleation frequency with undercooling. In one type of experiment the isothermal
rate of nucleation in the droplets is measured at different temperatures. The product
of the interfacial free energies is obtained by applying the Turnbull–Fisher relation.

18 This problem will be discussed in detail in Volume 3.
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Fig. 9.66 Plot of number fraction crystallized against the supercooling for different
cooling rates. Curve A, 0.023 ◦C min−1. Curve B, 0.130 ◦C min−1. (From Turnbull
and Cormia (132))

Another method that is used to determine the steady-state nucleation rate is to
measure the fraction of droplets crystallized at different cooling rates. Plots of the
fraction of the droplets frozen against the temperature produces a set of displaced
S-shaped curves. An example is illustrated in Fig. 9.66.(132) Cormia, Price and
Turnbull showed that for cooling rates r1 and r2

ln(r1/r2) = 2�G∗�TD

kT �TAv
(9.215)

where �TD is the undercooling and �TAv is the displacement of the two curves at
their mid-point.

The values of σ 2
unσen that have been obtained from droplet studies are also given

in Table 9.7. The values depend directly on the assumed nucleus geometry. For a
cylindrical nucleus the factor K in Eq. (9.213) is 8π ,(12) it is 32 for a rectangular
parallelepiped and is reduced to 30 when it is assumed that the nucleus is built
upon the unit cell of polyethylene.(157) Other type geometries, with corresponding
values of K , could be used equally well. The actual value obtained for the product
of interfacial energies obviously depends on the arbitrary assumption of the nucleus
geometry. Except for the lowest molecular weight fractions of polyethylene, the
products σ 2

unσen are in the range of 15 000–20 000 erg3 cm−6 for all the polymers
studied. The values found for linear polyethylene are in good agreement with one
another when cognizance is taken of the different nuclei geometries and different
samples that are involved. Not unexpectedly, the interfacial product deduced from
the kinetic data is sensitive to the value taken from T 0

m. For example, for one set
of data σ 2

unσen varies from 14 200 to 17 200 erg3 cm−6 as T 0
m changes from 141 ◦C

to 144.7 ◦C.(228) It would be expected to be even higher for T 0
m = 145.5 ◦C.
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There is only a slight variation of the listed σ 2
unσen values with molecular weight.

In calculating �G∗ for polyethylene, the equlibrium value, T 0
m, should be used

for M ≥ 20 000. Then, except for the lowest molecular weights, the values of
σ 2

unσen determined from the droplet experiments are independent of chain length.
The interfacial free energy product obtained for isotactic poly(propylene) is greater
than that of linear polyethylene.

The droplet studies demonstrate that homogeneous nucleation in polymers can
be observed and the results quantified utilizing basic nucleation theory. Because
of the asymmetric nature of chain molecules, more than one surface is involved
in nucleus formation. In the simplest case of only two surfaces, the product of
interfacial free energies σ 2

unσen is obtained. In order to relate the chemical nature
and structure of the chain repeating unit to the free energy of forming a nucleus
it is advantageous to know the values of the separate interfacial free energies. The
problem of separating this product into its two factors, in a confident manner, is a
formidable one. Several methods have been suggested to resolve this problem.

One method that has been used to effect this separation is to invoke the Gibbs–
Thomson relation. The interfacial free energy, σec, associated with the basal plane
of the mature lamellar crystallite is obtained from the relation between the melting
temperature and crystallite thickness for bulk crystallized polymers. The inherent
assumption is then made that σec for the mature crystallite can be identified with σen

of the nucleus. In this manner the separation of the product of interfacial free energy
can be achieved. This rather drastic assumption has not been substantiated. There
is no requirement that the interfacial structure of a mature crystallite replicates that
of the initiating nucleus. In fact this situation is highly unlikely.

In a different approach, the results from droplet experiments that involved both
the n-alkanes and linear polyethylene were combined.(226) The σ value of 9.6
erg cm−2 obtained for n-octadecane, assuming a spherical nucleus, was identified
with σun, the lateral or side interfacial free energy of polyethylene. A value of σen

of 168 erg cm−2 was then obtained by this procedure. However, there is a serious
question as to whether the identification between σ and σun is valid. Moreover, as
was pointed out earlier the results for octadecane are anomalous. The value of σ

increases monotonically for n ≥ 25, and extrapolates to σ ≈ 20–23 erg cm−2 for
high molecular weight polyethylene. There is thus the additional problem of what
value to use for σ in following this procedure.

Attempts to obtain σun for polymers have been made by taking advantage of
an empirical relation obtained by Staveley and coworkers for monomeric organic
and inorganic compounds (133,232), and by Turnbull for metals.(233) They found,
from droplet type experiments, that the empirical relation

α = σg/�H (9.216)
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satisfies the experimental results. Here �H is the molar heat of fusion and σg is
defined as

σg ≡ A1/2V 2/3σ (9.217)

A is Avogadro’s number and V is the molar volume. The interfacial free energy,
σ , is the value obtained from the droplet experiment and homogeneous nucleation,
assuming spherical nuclei. The quantity σg is a measure of the surface free energy
of a mole of the substance at the interface. It was found for seventeen compounds
that the parameter α varied from 0.23 to 0.37.(133,232) For metals it varied from
0.32 to 0.45.(233) Although α lies in a fairly narrow range, it is far from constant
for low molecular weight substances.

In adapting this procedure to polymers, it was proposed that (149,169)

α = σun

�Hub
(9.218)

where b is the chain thickness. Subsequently, Eq. (9.218) was modified to (156,174)

α = σun

�Hu(ab)1/2
(9.219)

where a is the molecular width, and ab is the cross-sectional area of the chain.
It is not clear why in following Eq. (9.216) the molar volume was not used in
Eq. (9.219). In order to obtain σun from Eq. (9.219) the value, or values, of α for
different polymers needs to be determined. It is important to ascertain whether α

has the same value for all polymers, varies from one type to another or is unique for
each polymer. To accomplish this task it is necessary to determine σun independent
of Eq. (9.219).

The method that has been used to determine σun was to utilize the quantity σunσen

determined from spherulite growth rate data.(156,174) The quantity σen is again
identified with σec, which is again obtained from the Gibbs–Thomson relation.
This procedure was used to analyze the melting temperature–thickness data of
linear polyethylenes crystallized from dilute solution (234) and the growth rate
data of the same polymer.(167) Following this procedure σec = 93±8 erg cm−2 and
σun = 13.7 erg cm−2. This value for σun gives α = 0.11 for linear polyethylene.(174)
This value is low compared to those obtained for metals and other low molecular
weight species. The question is whether this low value is due to either the procedure
adopted, and the assumption made to obtain σun, or is it an inherent property of
long chain molecules? In support of this result it was pointed out that, from the
homogeneous nucleation of n-octadecane, σ based on spherical nuclei is equal to
9.6 erg cm−2.(135) This leads to α = 0.12 for this alkane. However, as shown in
Fig. 9.64, for the higher carbon nucleus n-alkanes σ is subsequently greater than
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the value for n-octadecane. If one takes the leveling off value of about 20 erg cm−2

from Fig. 9.64 the value of α is found to be approximately 0.25.
A similar analysis was carried out with poly(pivalolactone).(202) The σen value

was identified with σec, the latter again being obtained by the application of the
Gibbs–Thomson equation. From the productσunσen, obtained from spherulite growth
rate studies, σun is equal to 30 erg cm−2. This deduced value of σun leads to α = 0.25,
a much higher value than for linear polyethylene. It was concluded that there are two
classes of polymers, one with α = 0.25 and the other, typified by linear polyethy-
lene, with α = 0.11. Such a generalization cannot be made based solely on the
study of two polymers.19 The results for a variety of polymer types are needed in
order to decide whether α is constant, varies from polymer to polymer or falls into
a group pattern. In addition, the identification of σen with σec needs to be justified.
Caution should be exercised in adopting either α = 0.11 or 0.25 for a particular
polymer. Even if the value of 0.11 is found to be correct for linear polyethylene
it cannot be automatically used with other polymers. The ratio σun/�Hu appears
in the growth rate expression for binary mixtures (Chapter 11). However, it is not
correct in general to assign it the value of 0.11.(199a,200,233a–c)

A value of σun can also be determined by comparing the product of interfacial free
energies obtained from homogeneous nucleation with that from spherulite growth
rates. The factor σ 2

unσen is obtained from the droplet experiments, while spherulite
growth rates give σunσen. The ratio of the two gives σun. The appropriate data are
available for linear polyethylene. (167,171,226,228) Analysis of this data indicates
that σunσen is independent of molecular weight (see Sect. 9.14). A typical value is
1200 erg2 cm−4. The values of σ 2

unσen taken from the droplet experiments depend on
the sample studied and the shape assumed for the nuclei. Assuming a cylindrical
nucleus, Cormia, Price and Turnbull determined σ 2

unσen to be 15 500 erg3 cm−6. For
fractions, and a rectangular parallelepiped nucleus, σ 2

unσen ranged from 18 000 to
20 000 erg 3 cm−6 for the higher molecular weights.(228) These data put σun in the
range of 13–17 erg cm−2. Considering all the results for the widely studied linear
polethylene there is an uncertainty of at least 30–40% in the value of σun.

The indirect methods that have been used to determine σun are inconclusive. A
theoretical approach has been proposed that focuses on the chain conformation in
the molten state.(235) Attention is given to the entropy change that occurs when a
sequence of chain units is transferred from the melt to the nucleus. Specifically, the
entropy change in transferring a sequence of n∗ units, of length l∗, from the pure
melt (state 1) to a surface layer (state 2) is calculated. This surface layer is localized
in close proximity to the nucleus (crystal) surface but it is only attached at a few

19 A similar analysis has also been given for poly(chlorotrifluoroethylene).(174) However, in this analysis the
crystallite thickness was identified with the small-angle x-ray scattering long period. Hence there is concern
over the use of the Gibbs–Thomson equation with these data.
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points. The actual attachment of the sequence to the nucleus in crystallographic
register is not considered. It is also assumed that there is no enthalpic contribution
to the free energy change involved. Consequently, for the process outlined

�G1→2 = −T �S1→2 (9.220)

It is further postulated that

�S1→2 = −�Su

C∞
(9.221)

where we recall that C∞ is the characteristic ratio for the given polymer. It is then
argued that (235,236)

−T �S1→2 = T �Su

C∞
= T

[
�Hu

Tm
a0b0lbn∗

] /
C∞ (9.222)

where lb is the C–C bond length in a carbon backbone chain. When Eq. (9.222) is
identified with the expression for adding the first sequence to a Gibbs type nucleus
composed of regularly folded chains,

�G∗
l = 2b0σunlun∗ (9.223)

Then

σun = T

(
�Hu

Tm

) (a0

2

) (
lb

lu

)
1

C∞
∼= �Hu

(
a0

2

lb

lu

)
1

C∞
(9.224)

results. Here lu is the projected bond length in the chain direction.
It would be appropriate in deriving Eq. (9.224) to include an additional step,

namely the transfer of the sequence from state 2 to the appropriate nucleus surface,
state 3. The need for this step is in fact implied by the introduction of the entropy and
enthalpy of fusion into the calculation. The quantity σun only makes physical sense
in terms of state 3. The rate determining step is not pertinent to a thermodynamic
calculation.

Underlying the above analysis is the assumption that the change in entropy
for a sequence of length l∗ in going from state 1 to state 2 scales with 1/C∞. It
has been pointed out that this assumption implies that the conformational entropy,
Sconf, should also scale with 1/C∞(237). Calculations using rotational isomeric state
theory have shown that for many polymers Sconf does not correlate with C∞. This
conclusion is not surprising since the conformational entropy of a statistical chain
depends only on the number and relative energies of the bond rotational states. On
the other hand C∞ is a measure of the statistically thermodynamically averaged
extension of the chain in space. In addition, C∞ also depends on the structure and
geometry of the chain. This criticism is significant and needs to be given serious
consideration.
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It should be noted that C∞ is the characteristic ratio of an infinite or high molecu-
lar weight chain. For example the asymptotic or limiting value of the characteristic
ratio is not reached for linear polyethylene until the number of methylene units is
greater than about 150.(237a) For lower chain lengths the characteristic ratio in-
creases with the number of repeating units. Consequently, if the theory as embodied
in Eq. (9.224) is correct, σen should decrease with n in this molecular weight region,
and should be an important factor for the n-alkanes.

As has been indicated there is no direct way of obtaining σun. It has been proposed
that in the present case σun be obtained from growth rate kinetics and C∞ calculated
from Eq. (9.224). It can then be compared with experiment, or the results from
rotational isomeric state theory. Conversely, the known C∞ can be used to calculate
σun and the results compared with experiment. Either way further assumptions need
to be made to establish the value of σun. The problem is that σun has to be separated
from either the product of σunσen or σ 2

unσen depending on the type of nucleation that
is assumed. Furthermore, since σen is not known, it is invariably identified with
σec as obtained from the Gibbs–Thomson equation. This procedure thus involves
assumption built upon assumption. It is implicitly assumed that a Gibbs type nucleus
is involved and that σec can be identified with σen. With these assumptions one can
proceed with the comparison between theory and experiment.(198,235)

Hoffman and coworkers found, using the procedures outlined above, reasonably
good agreement between the calculated value of C∞ and those for polyethylene,
isotactic poly-(styrene), poly(l-lactic acid), isotactic poly(propylene), and poly( ∋-
caprolactone).(235) On the other hand the agreement is poor for poly(pivalolactone)
(237) as well as for poly(ethylene terephthalate), poly(aryl ether ether ketone) and
poly(ethylene naphthalene dicarboxylate). (198) The comparison between theory
and experiment, despite the many assumptions made, remains inconclusive.

There is obviously much still to be done in order to establish the value of σun

for a given polymer. The work to date has established the order of magnitude of
σun and indicates that it is much less than σen. Beyond this general conclusion, the
value of σun remains uncertain for any given polymer.

9.13 Nucleation catalysts

The influence of foreign bodies, surfaces, crevices and similar entities that ac-
celerate the nucleation process has been discussed earlier in this chapter. These
heterogeneities are fortuitous since they have not been deliberately introduced into
the system. In many instances strong efforts are made to remove them. However,
there are also cases where specific species are deliberately introduced in order to ac-
celerate the crystallization and alter properties. Such substances have been termed
nucleation catalysts. They are usually low molecular weight organic and inorganic
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Fig. 9.67 Plots of Tp against filler content for isotactic poly(propylene oxide) with
silica additives. © polymer plus untreated silica; ● polymer plus Me4SiCl treated
silica. (From Cole and St. Pierre (247))

compounds. However, polymers can also serve in this role.(238–240) Even residual
catalysts from the polymerization often serve the same purpose. In special cases
nucleation catalysts can direct the development of a given crystalline polymorph,
as for example the β polymorph of isotactic poly(propylene).(241) In this section
the role of nucleation catalysts in altering polymer crystallization will be examined.
Typical examples of the overall crystallization and spherulite growth rates will be
analyzed. The main purpose is to determine the kind of structures that are involved
and the general principles, if any, that govern the catalysis.

A qualitative assessment of the effectiveness of a particular compound as a
nucleating agent can be obtained by cooling the sample in a scanning differential
calorimeter, or an equivalent apparatus, at a fixed cooling rate. The temperature, Tp,
at which an exotherm is first observed can be taken as a measure of the substance
as a nucleating agent. This is in effect a qualitative measure of the crystallization
rate. For example, Tp of isotactic poly(propylene) can be raised about 25 ◦C by
appropriate choice of catalyst;(242–244) the Tp of poly(ethylene terephthalate) can
be increased by 35 ◦C;(245) while Tp for poly(dimethyl siloxane) has been increased
by 25 ◦C.(246) As an example, the effectiveness of two silicas as nucleating agents
for isotactic poly(propylene oxide) is illustrated in Fig. 9.67.(247) The optimum
crystallization temperature steadily increases from 10 ◦C to 35 ◦C with increasing
concentration of nucleating agent and then essentially levels off. There is also a
small but significant difference between the treated and untreated silica.

Cooling rate studies establish that a significant increase in crystallization rates can
be achieved by the addition of appropriate compounds. A more quantitative analysis
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Fig. 9.68 Plot of number of crystallization centers against crystallization temper-
ature for isotactic poly(propylene) containing various amounts of AlOH tertiary
butyl benzoate. Weight percent: ● 0.03; © 0.01; 	 0.30; � 1.0; � 3.0. (From Bins-
bergen and de Lange (248))

of the crystallization kinetics is then important. A first step is to examine the increase
in the number of nucleation centers that are formed. A typical example is given in
Fig. 9.68. Here, the catalytic effect of finely divided AlOH tertiary butyl benzoate on
the number of crystallization centers that are formed in isotactic poly(propylene), at
different crystallization temperatures, is shown.(248) At a fixed temperature there
is about a four order of magnitude increase in the number of crystallization centers
for a 0.03 to 1.0 increase in the weight percent of the catalyst. Other nucleation
catalysts for isotactic poly(propylene) initiate centers in a similar manner.(249,250)
Nucleation catalysts have a profound effect in isotactic poly(propylene) as well as
other polymers.(251)

Nucleation catalysts also have a strong influence on the overall crystallization
kinetics, as is demonstrated in the experimental isotherms illustrated in Figs. 9.69
and 9.70 for poly(caprolactam) (238) and poly(ethylene terephthalate) (253) re-
spectively. The isotherms for poly(ethylene terephthalate) are for a fixed crystal-
lization temperature with different types of nucleation catalyst at the indicated
weight percent. In all cases the isotherm shapes are similar to one another. There is
an enhancement of the crystallization rate that is also found with other catalysts for
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Fig. 9.69 Effect of Pb3(PO4)2 as a nucleating agent on the crystallization isotherms
of poly(caprolactam). Pure polymer: © Tc = 205 ◦C; ● Tc = 200 ◦C ; � Tc =
180 ◦C. Pb3(PO4)2: 	 0.1%, Tc = 205 ◦C; � 0.1%, Tc = 200 ◦C; 	 0.1%, Tc =
180 ◦C. (From Inoue (238))

Fig. 9.70 Comparison of crystallization isotherms for pure poly(ethylene tereph-
thalate) and with indicated additives. (From Groeninckx et al. (253))

this polymer.(254) Some additives turn out to be more effective than others. The
isotherms for poly(caprolactam) are given at three different crystallization temper-
atures, for the pure polymer and for added 0.1% of Pb3(PO4)2. These results are
similar and the isotherm shapes are not sensibly affected by the addition of the
catalyst. However, the crystallization rates are greatly enhanced at a given crys-
tallization temperature. Similar results are reported for isotactic poly(propylene)
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Fig. 9.71 Spherulite growth rates of isotactic poly(propylene) with different sor-
bitol compounds as nucleation catalysts. pure polymer; ● dibenzylidene sorbitol;

(p-chloro, p-methyl) dibenzylidene sorbitol, bis (p-ethylbenzylidene sor-
bitol. (Data from (249))

(249,250), poly(phenylene sulfide) (252) and isotactic poly(propylene oxide) (247)
among others.

In most studies the derived Avrami equation (Eq. 9.31a) has been used to analyze
the isotherms. According to Eq. (9.31) a double logarithmic plot is usually made
with the data. Most commonly, a nonintegral value of the Avrami exponent was
obtained. Despite the inherent shortcoming in analyzing the data by this method, the
conclusion can be made that for a given polymer the Avrami n value is independent
of the nature and concentration of the catalyst. Thus, the isotherms are superposable
with one another and that of the pure polymer.

Spherulite growth rates are an important aspect of polymer crystallization.
According to Binsbergen and de Lange (248) the growth rate of nucleated isotactic
poly(propylene) is the same as that of the non-nucleated polymer. The constancy
of spherulite growth rates is illustrated in Fig. 9.71 for isotactic poly(propylene)
that has different sorbital compounds added as nucleation catalysts.(249) There is
clearly no change in growth rates between the pure polymer and those containing
the nucleation catalysts. Similar results are found when sodium benzoate is added
to isotactic poly(propylene) as a nucleation catalyst.(250) With few exceptions, the
constancy in spherulite growth rates with added nucleation catalysts appears to be
the general rule.

Table 9.8 compares the influence of different nucleating agents on the spherulite
growth rate of poly(ethylene terephthalate).(254) The growth rate at 237 ◦C for the
pure polymer is 3.9±0.3 µm min−1. Except for CaO, the spherulite growth rates are
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Table 9.8. Spherulitic growth rates (µm/min) of poly(ethylene terephthalate)
samples containing indicated nucleating agents for crystallization

at 237 ◦C (254)

Concentration of
solid in sample, % CaO TiO2 MgO BaSO4 SiO2 Al2O3

0.2 2.7 ± 0.6 3.4 ± 0.4 2.9 ± 0.5 4.1 ± 0.5 4.3 ± 0.5 4.2 ± 0.4
0.5 2.8 ± 0.6 4.0 ± 0.4 3.6 ± 0.5 3.6 ± 0.5 3.0 ± 0.5 3.7 ± 0.4
0.75 2.6 ± 0.6 3.7 ± 0.4 3.9 ± 0.5 4.0 ± 0.5 3.7 ± 0.5 4.1 ± 0.4
1.0 2.3 ± 0.6 4.2 ± 0.4 3.8 ± 0.5 4.2 ± 0.5 3.7 ± 0.5 4.0 ± 0.4
1.5 2.1 ± 0.6 4.2 ± 0.4 4.4 ± 0.5 4.2 ± 0.5 3.6 ± 0.5 4.2 ± 0.4
2.0 2.1 ± 0.6 4.3 ± 0.4 3.2 ± 0.5 3.5 ± 0.5 3.7 ± 0.5 4.2 ± 0.4
2.5 1.9 ± 0.6 4.1 ± 0.4 4.0 ± 0.5 3.7 ± 0.5 4.1 ± 0.5 3.6 ± 0.4
3.0 2.0 ± 0.6 3.7 ± 0.4 4.1 ± 0.5 3.5 ± 0.5 3.3 ± 0.5 3.8 ± 0.4

independent of the kind and concentration of catalyst and agree quite well with that
of the pure polymer. It is interesting to note that although CaO and MgO crystallize
in the same system they exert quite a different influence on the growth rates.

The spherulite growth rates of isotactic poly(styrene), nucleated with silica, are
unique.(255) At low crystallization temperatures, to the left of the rate maximum,
there is no difference in rate between the nucleated and unnucleated polymers.
However, at high crystallization temperatures, at the right side of the maximum,
the growth rates are reduced significantly by the nucleation catalysts. Moreover, the
maximum in the growth rate is lowered by about 8 ◦C. A qualitative interpretation of
these results is based on the concept that the silica particle interacts with the polymer
to create entanglements in the melt.(255) The excess entanglements would affect
the transport term through the parameter U ∗.

In general, the rate at which growing centers are initiated increases with the con-
centration of nucleation catalyst. In most cases, the spherulite growth rate remains
constant. Consequently, the average spherulite size decreases and their distribution
becomes more uniform. Effective nucleating agents reduce spherulite diameters by
one-fifth to one-tenth that of the non-nucleated polymer. The magnitude and range
of spherulite diameters found in poly(caprolactam) with different kinds and con-
centrations of additives are shown in Fig. 9.72.(238) The size range decreases and
narrows dramatically with the initial addition of the catalyst. There is only a small
change in diameter with further increase in the additive concentration. Eventually
a constant and narrow diameter range is reached. In the example shown there are
only small differences between the different catalysts.

The addition of a second component, even in small amounts, does not necessarily
result in nucleation catalysis in the sense discussed. Either, or both, of the glass
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Fig. 9.72 Plot of spherulite size range against wt percent additive for
poly(caprolactam) crystallized at 150 ◦C. pure polymer; NaH2PO4,
Na7P5O16; ● Pb3(PO4)2; ♦ TiO2. (Data from (238))

and melting temperatures can be altered with concomitant changes in either the
overall crystallization or spherical growth rates without affecting the spherulite
size. For example, the addition of a small amount of diphenylamine to poly(ethylene
terephthalate) alters the growth rate of spherulites but not their size.(256)

To summarize the experimental results the rate of primary crystallization is
greatly increased with the addition of a nucleation catalyst while the secondary
or growth nucleation remains constant. The increase in the number of growing
centers results in a reduction in the spherulite sizes. This results in a reduction in
the light scattering and the enhancement in clarity and surface gloss in moldings and
film.(254,257,258) There is a direct correlation in the effectiveness of the nucleating
agent, as measured by the increase in Tp, and the clarity of the sample. The reduction
in particle size reduces the light scattering and hence the turbidity of the sample.
Opacity is associated with the large coarse spherulites in non-nucleated polymers,
and clarity with small sizes in nucleated polymers. The density also increases with
the effectiveness of the nucleation catalyst, indicating an increase in the degree of
crystallinity.(254,257)

The question arises as to whether there are any general requirements for an
effective nucleating agent. Among the factors that need to be considered are the
chemical nature, crystal structure and size of the nucleant and their relation to
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the corresponding features in the polymer. Several ideas have been proposed with
respect to the mode of action of the nucleant. The effective nucleants can be divided
into two broad categories. One group is where the interaction leading to nucleation
catalysis is physical in character. In this case the nucleant needs to be insoluble in the
polymer melt.(259) In the other, the catalysis is the result of chemical interactions.
A polymer, such as poly(ethylene terephthalate), can be catalyzed as a result of
either chemical reactions (245,260) or by physical interaction.(254) Analysis of
the pertinent experimental results should lead to an understanding of the principles
that are involved.

Extensive studies of possible nucleating agents for poly(olefins), focusing pri-
marily on isotactic poly(propylene), have allowed for some of the requirements
for effective nucleation catalysts to be defined.(248,259,261) Nucleating agents
are in the main crystalline and are most efficient in a fine dispersion of small
crystals. However, the dispersed nucleating agent needs to be large enough to
accommodate nuclei of critical size. The catalysts are usually insoluble in the
polymer melt. If not, they crystallize on cooling before the polymer does. The cat-
alyst also has to be of low energy and wet the polymer. Most agents consist of
a hydrocarbon group and either a polar group or a condensed aromatic structure.
Binsbergen has suggested that most of these compounds consist either of paral-
lel rows or parallel layers of molecules.(259) The layers expose the hydrocarbon
groups while the polar groups are confined to the center. Nucleating agents in this
category that are effective for isotactic poly(propylene) are also active with other
poly(olefins), such as linear polyethylene, isotactic poly(4-methyl-1-pentene) and
isotactic poly(styrene).(259,260)

Epitaxial crystallization of a polymer on the surface of a nucleating agent has
also been established as a major mechanism for nucleation catalysis.(261a) For
epitaxy to occur, there has to be a match between crystallographic planes of the two
species. Although this requirement is very specific, certain crystallographic features
allow this mechanism to be operative with the poly(olefins), some poly(amides) and
poly(esters) as well as certain low molecular weight species. In an interesting ob-
servation, finely divided crystalline isotactic poly(propylene) was found to act as
a good nucleating agent for linear polyethylene.(258) In a series of papers, Lotz
and Wittman pointed out that helical poly(olefins) possess crystallographic faces in
which the side-groups form well aligned rows.(262,263) This structural feature can
interact with polyethylene, aliphatic poly(esters) and poly(amides). Each of these
polymers is characterized by a trans–trans ordered backbone conformation. There-
fore, this diverse group of polymers can act as nucleating agents for one another.
As a corollary, it is, therefore, not unexpected that among low molecular weight
substances the same compound can serve as a nucleating agent for this diverse
group of polymers. An epitaxial type crystallization has also been suggested as the
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catalytic mechanism between poly(caproamide) and its most effective nucleating
agent, talc.(264) Talc is also an effective nucleating agent for poly(ethylene tereph-
thalate) by means of epitaxial nucleation.(264a) In this case contact between the
(100) plane of poly(ethylene terephthalate) and the (001) talc basal surface has
been established as well as an alignment of the polymer chain axis with the [100],
[110] and [11̄0] directions in the talc. Although epitaxy is an effective mechanism
for nucleation catalysis it is not the only one that can be involved in heterogeneous
systems. However, the other cases are not amenable to a general set of rules.(258)
There is a set of agents that can act as nucleation catalysts for either the α or β

forms of isotactic poly(propylene) and in some cases both.(263a) Detailed crystal-
lographic relations have been established between the polymers and the nucleating
species.

The crystallization kinetics for the physical type of nucleation catalysis follows
the formulation of heterogeneous nucleation that has been given previously. The
results with specific geometric forms have been detailed.(261,265) In contrast to
the heterogeneous catalysis just described, the increase in nucleation rate can also
be achieved in a homogeneous system. In this case, the additive is soluble in the
polymer melt and some type of chemical interaction or reaction takes place between
the two. The result is the formation of the nucleating species. This process can
be termed chemical nucleation. One group of nucleants in this category is metal
salts.(245,260) The chemical reaction usually involves a reduction in molecular
weight, through chain scission, and the formation of ionic chain ends that associate
into clusters. The nucleation efficiency is closely linked to the presence of ionic
clusters. Nucleation that involves this type of catalysis has been demonstrated for
poly(ethylene terephthalate) (245,260,266,267), poly(aryl ether ketone) (260) and
poly(aryl ether ether ketone).(260) Nucleation catalysis caused by a gelation process
has also been suggested in special cases.(268)

A scale has been proposed by which the effectiveness of a nucleation catalyst can
be assessed. In addition to comparing the crystallization temperature on cooling the
nucleated polymer with that of the pure polymer, the crystallization temperature
of the self-seeded polymer is also taken into account.(268,269) The self-seeded
polymer (270) is taken to represent the ideal nucleated system. The efficiency of a
nucleating agent, E , expressed as a percentage, is given as (268,269)

E = 100(Tp − Tco)/(Tcmax − Tco) (9.225)

Here Tp is the crystallization temperature of the polymer with the additive, Tco that
of the pure polymer, and Tcmax that of the self-seeded polymer. A table of E values
for additives of the α phase of isotactic poly(propylene) has been given.(268,269)
To be meaningful Tcmax must be reproducible. If it is then E will scale with Tp.
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9.14 Influence of molecular weight

In the discussion up to now, the influence of molecular weight on different aspects
of the crystallization process has been alluded to. As examples, the shape of the
isotherms depends on molecular weight as does the level of crystallinity that can
be attained at a given crystallization temperature. The dependence of the overall
crystallization rate on molecular weight and crystallization temperature is a complex
matter, as was illustrated in Fig. 9.23 for linear polyethylene and poly(tetramethyl-
p-silphenylene siloxane). The role of molecular weight will be examined in more
detail in this section, within the framework of the nucleation and growth concepts
that have been developed. The discussion will be divided into three parts: oligomers
represented by high molecular weight n-alkanes; low molecular weight fractions
of different polymers; and polymers of moderate to high molecular weights.

9.14.1 Crystallization of n-alkanes

The synthesis of high molecular weight n-alkanes, containing between 100 and
400 chain carbon atoms, has allowed for a detailed studyof thecrystallizationof
these model molecules.(271–273) A high molecular weight n-alkane is well suited
to serve as a model compound since each chain has exactly the same length and
end-group. Either extended chain crystallites or some type of folded one can be
formed, depending on the chain length and crystallization conditions. There is a
chain length below which extended chain crystals are always formed irrespective of
the crystallization temperature. However, the n-alkanes that are greater than about
150 carbons can form either extended or some type of folded crystallite, depending
on the crystallization temperature.20(273–275) Thus, it is possible to study the
nucleation parameters for the same chain when either folded or extended mature
crystallites result. The n-alkanes can serve as a bridge to low molecular weight
fractions of linear polyethylene, as well as other polymers. In turn the results from
studies with low molecular weight chain molecules lead naturally to the larger chain
lengths.

The overall crystallization kinetics of the high molecular weight n-alkanes yields
superposable, classical isotherms of the Avrami type. An example is given in
Fig. 9.73, where ln(1 − λ(t)) is plotted against ln t for C192H386.(278) The studied
temperature interval of 118–124 ◦C encompasses the time scale of about 0.25–200
min for the detection of crystallinity. Low frequency Raman acoustical mode (LAM)
studies indicate that extended chain crystallites are formed at all temperatures in

20 The nature of the interfacial structure of the folded n-alkane crystallites will be discussed in Volume 3. Different
possible structures will be presented. At this point it is not necessary to assume either that the crystallite thickness
is quantized or that the interface is sharp with adjacent re-entry.(275,276) Other possibilities exist.(277)
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Fig. 9.73 Double logarithmic plot of the degree of crystallinity, 1−λ, against time
for melt crystallized C192H386. Crystallization temperatures indicated.(278)

the temperature range studied. The Avrami relation is followed for about 60% of
the transformation. From the slopes of the parallel straight lines in the figure the
Avrami exponent is found to be 4.0±0.2. Thus, the crystallization follows classical
concepts since there is no entanglement problem with these chain molecules.

It is also instructive to study the course of the crystallization by following the
exotherms that evolve as a function of time. An example is given in Fig. 9.74
for the rapid isothermal crystallization of C192H386 at temperatures below those
of the previous figure.(278) In Fig. 9.74a, for crystallization at 117 ◦C, only one
exothermic peak is observed. This peak can be attributed to the extended crystallite
form. For crystallization at 116 ◦C, Fig. 9.74b, two exothermic peaks are observed.
The peak at about 0.5 min can be assigned to a nonextended form that, with time,
develops into the extended form as manifested by the major exotherm observed at
0.89 min. The exotherm for crystallization at 115 ◦C, Fig. 9.74c, shows a major peak
at 0.21 min with the beginning of a new exotherm developing at about 0.75 min.
Eventually, after longer crystallization times at this temperature, the extended form
develops completely from the folded form. Small-angle x-ray scattering studies with
C246H494 give qualitatively similar results.(279) The significance of the thickening,
as well as thinning, during the crystallization process will be discussed shortly.

The temperature dependence of the overall crystallization rate is of particular
interest in terms of the nucleation processes involved. The log of the crystallization
rates for the high molecular weight n-alkanes C168H338, C192H386 and C240H482 are
plotted against the crystallization temperature in Fig. 9.75.(280) In this example,
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Fig. 9.74 Isothermal crystallization temperatures for melt crystallized C192H386
using the exothermic method. (a) At 117 ◦C; (b) at 116 ◦C; (c) at 115 ◦C.(278)

the crystallization rate is taken as the inverse of the time necessary to obtain a
crystallization level of 5%. The shapes of the curves that describe each of the
alkanes are similar to one another. They are, however, displaced along the time and
temperature axes. The crystallization rate decreases with increasing temperature.
There are indications of a plateau region in these plots. A discontinuity is also
observed in each of the plots.

Results of a similar type of study with C246H494 are given in Fig. 9.76.(281)
Here the rate is plotted against the crystallization temperature. The rate displays a
maximum, followed by a sharp minimum. A rapid increase in the rate then occurs
over a very narrow temperature region. Similar results have been reported for normal
hydrocarbons ranging from C194H390 to C294H590.(282) The plots in Fig. 9.75 imply a
similar behavior. The observation of a rate maximum in the vicinity of T 0

m is a unique
observation, as is the minimum that follows. Maxima in crystallization rates are
quite common and have been described earlier. However, in the previous examples
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Fig. 9.75 Plot of rate of crystallization as function of temperature for the indicated
n-alkanes crystallized isothermally from the pure melt. Open symbols represent the
formation of once-folded crystals. Closed symbols are data for extended crystals.
Half-closed symbols represent the experimental values that may be affected by a
rapid transformation from once-folded to extended crystals.(280)

Fig. 9.76 Plot of reciprocal times 1/t10 against crystallization temperature Tc for
C246H494 crystallized from the pure melt. t10 is the time for 10% of the transfor-
mation. T E

m is the melting point of the extended chain crystal. (From Ungar and
Keller (281))
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the maximum occurs well below T 0
m and the rate decreases as the temperature is

lowered. Before considering possible reasons for the rate maximum in the n-alkanes,
it is helpful to analyze the data presented in Fig. 9.75 in more detail.

In analyzing the data from Fig. 9.75 in terms of nucleation theory it is important to
establish the temperature regions where the structure that initially crystallizes from
the melt is well defined. Therefore, the temperature regions where initially folded
crystals are formed and maintained needs to be specified. Also to be defined are the
regions where extended chain crystals are initially formed. It is also necessary to
specify the temperature interval where the initially formed folded chain crystallites
thicken with time. In order to obtain the necessary information recourse is made to
experiments of the type described in Fig. 9.74. The crystallization rates of initially
formed folded structures, where the thickening process does not interfere with the
rate measurements, are represented by open symbols in Fig. 9.75. The crystallization
rates of extended structures that are initially formed from the melt are represented
by closed symbols. The temperatures where the rate measurement may be affected
by the thickening of folded crystallites to extended ones are represented by the half-
closed symbols. There is a temperature interval in each of the curves in Fig. 9.75
where the crystallization rate does not change very much with temperature. In this
temperature range most, but not all, of the half-closed symbols are found. This
result indicates that the plateaus shown by the log rate–Tc curves (or maxima in the
rate–Tc curves) need to be associated, at least in part, with the temperature regions
where the transformation of folded to extended crystallites is rapid.

The temperatures over which the isothermal crystallization of the n-alkanes takes
place are restricted to a small interval in the vicinity of the equilibrium melting tem-
perature.(283) Therefore, the transport term in the expression for the crystallization
rate will remain essentially constant. Thus, the free energy change, �G∗, required to
form a critical size nucleus controls the nucleation and thus the crystallization rate.
The expression for �G∗ for chains of finite length appropriate to the high molecular
weight n-alkanes has been given by Eqs. (9.124) and (9.145). The formation of a
coherent Gibbs type nucleus as the controlling nucleation process is taken as an
example. Consequently Eq. (9.145) is appropriate. Other types of nucleation mod-
els could equally well be used. The appropriate plot is made in Fig. 9.77 where the
log of the rate is plotted against the nucleation temperature function for coherent
surface nucleation.(280) The same symbols as those in Fig. 9.75 are used. The plots
in Fig. 9.77 are well represented by sets of intersecting straight lines. A compilation
of the slopes of the straight lines is given in Table 9.9. The high temperature region,
where extended crystals are formed, is termed Region I with slope SI. In analogy,
the low temperature region is designated as III and the intermediate region as II.
The three regions are clearly demonstrated by the results for C192H386. The slopes
in the high and low crystallization temperature regions (I and III respectively) are
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Table 9.9. Slopes of straight lines in Fig. 9.77

n-Alkane SI SII SIII

C168H338 −170 −35 —
C192H386 −170 −30 −170
C240H482 — −30 −170

Fig. 9.77 Plot of log crystallization rate against nucleation temperature function
for coherent unimolecular nucleation for the n-alkanes indicated. Symbols as in
Figure 9.75.(280)

the same.21 The fact that the slopes are identical indicates that both extended and
folded chain crystallites have the same value of σen. The conclusion is then reached
that the same nucleus leads to mature crystallites with different chain structures.
Since extended structures are formed it is highly unlikely that the nucleus is of the
regularly folded type. These results demonstrate that it is not necessary to assume a

21 These regions should not to be identified with Regimes I, II and III.
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particular chain structure within the nucleus to account for the crystallite structure
that is eventually observed.(284,285)

The data for C240H482 are well represented by two straight lines, whose slopes are
the same as those for C192H386 in the low and intermediate crystallization region. It
is a reasonable expectation that if data could be obtained at higher crystallization
temperatures, the temperature coefficient would be similar to that for C192H386. The
results for C168H338 in the high temperature region support this expectation since
the slope is identical to that obtained in the high temperature region for C192H386.

There is an intermediate region in the plots in Fig. 9.77 where the slopes, SII,
for the three alkanes are the same. However, their values are reduced from those in
Regions I and III. As the half-closed symbols indicate, most of the data points in this
region represent crystallization temperatures where initially folded chain crystal-
lites form but are then rapidly transformed to extended ones. Consequently, analysis
of the kinetics in this region is severely complicated by the isothermal thickening
and the structural transformation that takes place during crystallization. This is also
the temperature interval where the rate maxima have been reported. Folded chain
crystallites are unstable at temperatures in the vicinity of the junction point between
Regions II and III and crystallite thickening begins at these temperatures.

In summary, the overall crystallization rate–temperature relations of the high
molecular weight n-alkanes can be divided into three regions. In the low temper-
ature region folded structures are formed from the melt. The thickening process
is sufficiently slow in this region so as not to affect the rate measurements. In the
high temperature region folded structures no longer crystallize. The crystallization
rates of well-defined extended crystallites are measured at these temperatures. In
the intermediate temperature region that connects the two, the isothermal crystal-
lite thickening and the accompanying structural changes severely complicate the
analysis.

The unique maximum in the crystallization rate has already been noted. Sev-
eral explanations have been put forth to explain this observation. One is the so-
called “poisoning effect” proposed by Sadler and collaborators.(286–290) This
“self-poisoning” of the crystal growth surface is postulated to be caused by the
deposition of almost stable folded crystallites that retard the development of the
extended chain crystallites. On this basis this phenomenon would be limited to crys-
tallization temperatures in the vicinity of the junction of Regions II and III. Rate
equation models based on the hypothesis, as well as computer simulations, have
reproduced the qualitative features of the unique rate–crystallization temperature
curves.(284,291)

Another theory that has been proposed to explain this phenomenon is based on
a unique application of nucleation theory.(292,293) It is assumed that two types
of nuclei are formed. One is an extended chain, nonfolded nucleus, that does not
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encompass the complete molecule. The other is a once-folded nucleus. The critical
size of the chain folded nucleus, and its temperature coefficient follow the theory
developed for folded chain nucleation.(146,147) In contrast, it is assumed that the
critical-size in the chain direction of the extended type nucleus does not follow
nucleation theory. Rather, its rate of formation is governed by an Arrhenius type
temperature dependent process. This assumption of two different types of nuclei,
each with different temperature coefficients for formation, obviously leads to a
maximum in the nucleation rate and concomitantly the crystallization rate. It was
further assumed, contrary to experimental results, that at crystallization tempera-
tures below the maximum in C246H484 extended chains were nucleated from the
original melt.

The proposals made to explain the unique crystallization rate–crystallization
temperature relation found in the n-alkanes have ignored the role of crystallite
thickening. The temperature region where the maximum and inversion in the crys-
tallization rate occurs has been shown to coincide with profound isothermal thick-
ening of a folded structure to an extended one.(280,294) This phenomenon has been
shown to quantitatively influence the overall crystallization kinetics. It will also be
expected to influence growth rates accordingly. This aspect of the crystallization of
the high molecular weight n-alkanes has been controversial. However, the crystal-
lization of the n-alkanes from solution sheds further light on the problem and will
be discussed in Chapter 13.

The growth rates of the supermolecular structures that are formed by the high
molecular weight n-alkanes have also been studied. They complement the over-
all crystallization kinetic results.(295–301) The nucleation rate, determined by
counting the number of crystals growing within a defined area, has also been re-
ported.(298) Microscopic studies indicate that at low crystallization temperatures
the folded chain crystallites develop spherulitic type supermolecular structures. At
the high crystallization temperatures, the extended chain crystallites do not form
spherulitic structures. Rather, long crystallites are observed that consist of parallel
stacks of continuous lamellae. Both types of morphology are observed in the higher
carbon number alkanes. Thus, from the growth rate studies with these alkanes, it
is possible to determine how the different morphologies and crystallite structures
affect the crystallization kinetics and nucleation process.

The n-alkanes from C94H190 to C246H494 can only be crystallized over a nar-
row range of crystallization temperatures in the vicinity of their respective melting
temperatures.(298–301) The available temperature interval varies from 0.25 ◦C for
C94H190 to 4 ◦C for C162H326 and C246H494. A dramatic increase in the growth rate
with decreasing crystallization temperature is observed even over this small temper-
ature interval. For example, the growth rate for C98H198 decreases by a factor greater
than 30 as the crystallization temperature decreases from 114.9 ◦C to 113.5 ◦C.(299)
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The growth rates of C122H246 to C246H494 are reduced by factors of 5 to 7 over the
accessible temperature range.(300) However, this is still a substantial decrease. The
rapid increase in the growth rate with decreasing crystallization temperature is a
quantitative reflection of the well-known observation that n-alkanes in this size
range can scarcely be supercooled. The extremely small temperature interval that
is available for growth rate studies, a few degrees or less, makes a detailed analysis
difficult. However, it has been claimed that the growth rates are directly propor-
tional to the undercooling.(299,300) This conclusion is in accord with theoretical
considerations (301) where, however, the implicit assumption is made that the com-
plete molecule participates in the nucleation. This conclusion is not in accord with
droplet experiments involving the higher molecular weight n-alkanes.(135a) The
growth rate data that were presented adhere quite well to the expectation from clas-
sical two-dimensional nucleation theory. The product of interfacial free energies
for nucleation, σunσen, increases significantly in this range of n-alkanes.

The growth rates of the n-alkanes, C246H494 (295,298) and C294H590 (295,297),
can be studied over a larger temperature range, of 10–11 ◦C. Folded chain and ex-
tended chain crystals are formed with each of these alkanes. The growth rates show
both a maximum and a minimum with crystallization temperature, as is illustrated
in Fig. 9.78 for C246H494.(295) Since both types of crystallites, folded and extended,
can be formed with the same alkane it is instructive to analyze the data in terms
of appropriate nucleation theory. The growth rate data of C246H494 will be studied
since they are more extensive.

Accordingly, the growth rate data for C246H494 reported by Sutton et al. (295)
are plotted in Fig. 9.79 according to the analysis of nucleation theory pertinent to
low molecular weight chain molecules.(302) For illustrative purposes, a coherent,
unimolecular type nucleation is selected. A value of 2000 cal mol−1 of sequences
is taken for σen.22 Only the kinetic data that represent the formation of well-defined
structures directly from the pure melt are analyzed. The extended chain crystallites,
which satisfy this criterion, develop at the high crystallization temperatures, Tc ≥
125 ◦C, and are represented by the closed circles in the figure. The folded chains,
which give spherulitic structures, are formed at Tc ≥ 120 ◦C, and are represented
by the open circles. Crystallization at the intermediate temperatures is represented
by the half-filled circles. In this latter temperature region the structures that are
measured do not represent those that were initially formed from the melt. The
situation is analogous to Region II that was defined in the analysis of the overall

22 In this analysis, as has been pointed out earlier, the value of σen has to be a priori stated. Using the mature
crystallite as a reference σen values of 2000 cal mol−1, 2300 cal mol−1 and 2500 cal mol−1 were taken for
C168H338, C192H386 and C240H482 respectively.(280) The basic analysis is not affected by these choices, since
only the relative horizontal location of the plots is influenced. In these calculations T 0

m was taken as 145.5 ◦C
and �Hu = 950 cal mol−1.
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Fig. 9.78 Plot of crystal growth rate as a function of crystallization temperature
for C246H494 crystallized from pure melt. (Adopted from Sutton et al. (295))

Fig. 9.79 Plot of ln G against �G∗/2σunTc for C246H494. Upper axis gives corre-
sponding crystallization temperature Tc.(302)
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crystallization kinetics. In this region, rapid isothermal thickening of the initial
folded structure takes place.23 The measured growth rates will, therefore, be affected
by the thickening. Another problem is the possible “poisoning” of the growth
surface. Whatever the reason, or reasons, the intermediate temperature region does
not represent growth rates of structures that were directly formed from the melt.
Consequently, the growth kinetics in this region are not pertinent to our immediate
interest. The growth rate data reported by Organ et al. (298) for the same n-alkane
are displaced slightly from those in Fig. 9.79. However, when analyzed these data
give the same temperature dependence of the growth rate.

The important conclusion to be made from Fig. 9.79 is that the growth rate data
for both extended and folded chain crystallites, which correspond to nonspherulitic
and spherulitic morphologies respectively, adhere to the same straight line. Thus, for
a constant value of σun the interfacial free energies associated with the basal planes
of the nuclei, σen, are the same for the two different chain conformations and the
accompanying morphologies that are associated with the mature crystallites. This
is the same conclusion that was reached from studies of the overall crystallization
kinetics of the n-alkanes C168H338, C192H386 and C240H482. The absolute value of σen

is not of immediate concern here. The fact that the same value of σen applies in both
cases requires that the interfacial structure of the nucleus be the same, irrespective
of the chain conformation within the nucleus and of the supermolecular structure
of the mature crystallites that evolve. There is no physical law that requires that
the structure of the macroscopic crystallite that develops be the same as that of the
nucleus from which it is formed. This principle has been discussed in detail with
regard to polymer crystallization.(140,274,278)

The ratio ζ ∗/x is crucial in determining the thickness of the mature crystal-
lite.(274,278) Since, depending on the crystallization temperature, either extended
or folded chain crystallites result, it is reasonable to assume that the nucleus is
of the bundle type. For low molecular weights and high crystallization tempera-
tures (low undercoolings) ζ ∗ will be comparable to x . In this situation there are
no major impediments to growth along the chain axis and extended chain crys-
tallites will result. In contrast, for high molecular weights and low crystallization
temperatures, ζ ∗ will always be much less than x . Growth in the chain direc-
tion will, therefore, be severely retarded. Under these circumstances the disor-
dered chain units that need to be incorporated into the growing crystal will be
highly entangled with one another. The possibility also exists for multiple nucle-
ation acts to occur within the same chain. There are clearly restraints to growth
in the chain-axis direction when ζ ∗ is small. Under these conditions some type of

23 Crystallite thickening that is observed at this point is distinct from that which occurs during the tail portion of
the isotherms for high molecular weight polymers.
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Fig. 9.80 Plot of ζ ∗/x as a function of chain length for indicated values of σen at a
constant undercooling, �T = 20. Three-dimensional nucleation theory used.(274)

folded chain crystallite that is consistent with a local free energy minimum will
result.

Estimates of the ratio ζ ∗/x can be obtained from nucleation theory pertinent
to chain molecules. These estimates will enable an assessment to be made of the
validity of the above explanation. For illustrative purposes the arbitrary assumption
is made that when ζ ∗/x ≥ 0.5 growth along the chain axis is sufficiently rapid to
allow extended chain thicknesses to be achieved. The value of 0.5 is only taken
as a convenient reference point. Other critical values such as 0.6 and 0.7 could
serve equally well to examine the problem. The ζ ∗ value can be obtained from
either Eq. (9.123) or Eq. (9.144) for a given crystallization temperature and chain
length. The effect of chain length is illustrated in Fig. 9.80 for three-dimensional
nucleation, utilizing Eq. (9.123).(274) Here ζ ∗/x is plotted against x , for different
values of σen, in cal mol−1 for a fixed undercooling (T 0

m − Tc) = 20. As a point
of reference we focus attention on the curve for σen = 2000. Even at this fairly
large undercooling the ζ ∗ values for the shorter n-alkanes are very close to the
extended chain length and thus extended chain crystallites should result. However,
when the chain length is increased, to several hundred units, ζ ∗ is well below
0.5, and decreases further with increasing chain length. Thus, as the chain length
increases, growth in the chain direction will become progressively more difficult and
consequently extended chain crystallites will not form easily. However, the chain
length at which the nuclei size reaches half the molecular length does change. When
σen is increased to 4000 cal mol−1 ζ ∗/x does not decrease to 0.5 until a chain of about
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Fig. 9.81 Plot of ζ ∗/x against temperature for x = 168 and 288 for indicated
values of σen. Two-dimensional nucleation theory used. x = 168 (—); x = 288
(- - -).(274)

500 units is reached. In contrast, when σen is reduced to 1000 cal mol−1 this condition
is achieved at x = 50. Similar results are obtained when comparisons are made at
�T = 5 ◦C. At this low undercooling ζ ∗/x values are higher at corresponding chain
lengths. This ratio still decreases with x , with the rate of decrease being dependent
on the value of σen.

The conclusions just reached are not limited to three-dimensional nucleation
processes. Qualitatively similar results are obtained when a coherent, unimolecular
nucleation process (two-dimensional Gibbs type) is considered. An example of the
results for this type of nucleation is given in Fig. 9.81 for chain lengths of 168 and
288 units.(274) For this nucleation mode the same trends are observed as found with
three-dimensional nucleation. However, smaller nuclei sizes are obtained for the
same parameters. Similar to the three-dimensional case nuclei thicknesses greater
than half the extended length are obtained at the lower undercoolings and higher
interfacial free energies. The transition from extended to smaller size crystallites
is again predicted to occur within the range of chain lengths of the high molecular
weight alkanes that have been studied.

The nucleation theory that has been used in this analysis is based on the in-
herent properties of chain molecules. The nuclei sizes are very sensitive to chain
length in this molecular weight region when reasonable values are assumed for the
nucleation interfacial free energy. The demarcation between extended and folded
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type crystallites, as it depends on chain length and crystallization temperature, is
explicable in a natural way by this analysis. The conclusions are based on the rel-
ative nuclei sizes with the implication that they control the thickness of the mature
crystallites. Thus, different crystallite structures can evolve from the same type of
nucleus.

The n-alkanes have other interesting properties that will be discussed subse-
quently. Their crystallization kinetics from solution will be treated in Chapter 13.
The thickening and thinning of the crystallites that occur during isothermal crys-
tallization will be considered in more detail in Volume 3. Also of interest is the
structure of the interface of folded type crystallites formed by the n-alkanes and the
question of whether the crystallite thickness is quantized. These matters will also
be treated in Volume 3. Droplet type experiments with these alkanes will obviously
be of great interest.

The availability of the high molecular weight n-alkanes, with their uniformity
of chain length, has produced some new and interesting experimental results. Not
unexpectedly several different interpretations have resulted. Most importantly the
results serve as a base, or reference, for the crystallization of low molecular weight
polymer fractions, the subject of the next section.

9.14.2 Low molecular weight fractions

The crystallization of low molecular weight polymer fractions in themselves is of
interest. They also serve as another bridge to the understanding of the crystallization
kinetics of the higher molecular weight species. Studies with different types of low
molecular weight polymers have been reported and their major features can be com-
pared. In particular the crystallization kinetics of low molecular weight fractions
of linear polyethylene can be compared with those of the n-alkanes of comparable
chain length. It is important to recognize that, when analyzing experimental results
for low molecular weight polymers, their chain lengths are not uniform, no matter
how well fractionated. Thus, in contrast to the n-alkanes end-groups cannot be
paired and molecular crystals are not formed. For example, low molecular weight
poly(ethylene oxide) fractions have been widely used in studies of crystallization
kinetics. The polymer, as prepared, usually has a Poisson distribution (303) with a
ratio of weight to number average molecular weight of 1.08. Despite this narrow
distribution, only about 40% of the molecules correspond to the most probable or
peak molecular weight.(304) Although such polymers are useful by themselves
they cannot be treated as possessing uniform chain lengths. Point has demonstrated
that in a conventional type poly(ethylene oxide) sample, Mn = 3490, fraction-
ation occurs during isothermal crystallization.(305) Thus, low molecular weight
poly(ethylene oxides), as well as other polymer fractions, cannot be considered as
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Fig. 9.82 (a) Plot of absolute crystallinity, 1 − λ(t), against log t , at indicated
temperatures for a linear polyethylene fraction, M = 5800. (b) Superimposed
isotherms. Solid curve theoretical derived Avrami, n = 4.(34)

having uniform chain lengths. Caution must then be exercised when interpreting
kinetic studies involving such polymers.

Keeping these cautionary concerns in mind an analysis of the overall crystalliza-
tion kinetics of low molecular weight polymers can be undertaken. A typical set
of isotherms is illustrated in Fig. 9.82 for a linear polyethylene fraction having a
viscosity average molecular weight of 5800.(34) Here, the absolute level of crys-
tallinity is plotted against the log of time. Typical shaped isotherms are observed
that superpose quite nicely, as is indicated by the plot in the right-hand side of
the figure. The solid curve represents the derived Avrami expression with n = 4.
The experimental results fit this Avrami for about 90% of the transformation. The
data represent an almost ideal fitting to the simplified Avrami equation. Other poly-
mers of low molecular weight display similar features, i.e. superposition of the
isotherms and close adherence to Avrami over almost the complete extent of the
transformation with n = 4. These polymers include poly(ethylene oxide) (306),
other poly(ethers) (306–308) and poly(ethylene terephthalate).(68)

The excellent agreement between the Avrami theory and experiment with n = 4,
over almost the complete transformation range, can be taken as a reflection of a
simple initial melt structure where the chains are essentially disentangled. As has
been noted previously, as the molecular weight is increased deviations from the
Avrami theory occur at progressively decreasing levels of crystallinity, while n is
reduced to 3 and then to 2 at the very high molecular weights with the development of
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(A)

(B)

Fig. 9.83 Plot of Raman-derived crystallite size distribution for a linear polyethy-
lene fraction, Mw = 5800, Mn = 5600 crystallized at 125 ◦C. (A) (a) after 75 min;
(b) after 120 min. (B) after 14 days.(309)

more complex melt structures involving chain entanglements and other topological
restraints. The importance of the initial melt structure in the crystallization process
is emphasized by these results. There are thus examples with polymer where the
derived Avrami is an excellent representation of the experimental results.

As observed with the n-alkanes, crystallite thickening in the low molecular
weight samples can occur during the entire course of the crystallization. Cog-
nizance of the thickening process must again be taken into account when analyzing
kinetic data in this molecular weight range. An example of such thickening is given
in Figs. 9.83A and B for a linear polyethylene fraction (Mw = 5800, Mn = 5600)
crystallized at 125 ◦C.(309) As shown in Fig. 9.83A, at early times the thickness
size distribution is centered at about 200 Å. This thickness corresponds to about
half the extended chain length. After crystallizing for about 120 minutes, a well-
defined bimodal thickness distribution develops. A well-developed new peak at
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about 500 Å, which corresponds to extended chain crystallites, is now observed.
After long time crystallization, the most probable value of the crystallite thickness,
shown in Fig. 9.83B, corresponds to the extended chain length. There is clearly a
definite thickening kinetics that is part of the overall crystallization. Low molec-
ular weight fractions of poly(ethylene oxide) have also been shown to undergo
thickening, as well as thinning, during isothermal crystallization.(310–313) It can
be expected that isothermal thickening of all low molecular weight polymers will
occur during the entire course of crystallization from the pure melt.

In studying the crystallization kinetics in the low molecular weight range it is
important once again to establish whether at a given crystallization temperature
the crystallites formed are folded, extended, or if a transformation from one to the
other occurs during the time course of the crystallization. This information can be
obtained from examining the relationship between the melting and crystallization
temperatures.(309) It has been shown that for fractions Mn = 1586 and Mn = 2291
there is only a slight change in the melting temperature with crystallization tem-
perature.(309) Direct measurements on molecular weight fractions in this range,
which have narrow distributions, indicate that the thicknesses of the crystallites
are comparable to their extended chain lengths. The result is an invariance in the
melting temperature with crystallization temperature. However, when the molec-
ular weights are increased to Mn = 3769 and 5600 the melting–crystallization
temperature relation changes. The results are shown in Fig. 9.84.(309) A signif-
icant increase in the melting temperature is observed with each of these poly-
mers over only a small change in the crystallization temperature. At crystallization
temperatures above and below this temperature the melting temperatures do not

Fig. 9.84 Plot of observed melting temperature, Tm, against crystallization tem-
perature, Tc, for linear polyethylene fractions. © fraction Mw = 4116, Mn = 3769;
● fraction Mw = 5800, Mn = 5600.(309)
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Fig. 9.85 Plot of log overall crystallization rate, 1/τ0.05, against crystallization
temperature, Tc, for two linear polyethylene fractions. © Mn = 2900; � Mn =
3900.(316)

change. Extended chain crystallites are formed at the higher crystallization temper-
atures and some type of folded chain crystallites at the lower ones. These unique
melting temperature–crystallization temperature relations have been confirmed for
linear polyethylene and the difference in crystallite thicknesses verified.(314) A
similar relation has also been reported for poly(ethylene oxide) in the molecular
weight range 3000–8000.(315) Thus, for low molecular weight polyethylenes and
poly(ethylene oxides) a discrimination between the formation of either folded or
extended chain crystallites can be made, based on the crystallization temperature.

Examples of the overall crystallization rates of two linear polyethylene fractions,
Mn = 2900 and 3900, are plotted as functions of temperature in Fig. 9.85.(316)
These fractions correspond to carbon numbers C207 and C279 respectively. The
plots for the fractions are similar to those of the n-alkanes that were illustrated in
Fig. 9.74. The striking feature in the plots of both the alkanes and fractions is the
discontinuity that is observed. A discontinuity in such plots of overall crystallization
is typical of the crystallization of low molecular weight species. The data for these
fractions are plotted in Fig. 9.86 according to the nucleation theory appropriate to
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Fig. 9.86 Plot of log overall crystallization rate, 1/τ0.05, against nucleation function
for two linear polyethylene fractions. ■ Mn = 2900; 	 Mn = 3900.(316)

low molecular weights, assuming a Gibbs type nucleus. The data can be represented
by three intersecting straight lines. These are very similar to that found for the n-
alkanes, as was illustrated in Fig. 9.77. The slopes in the low and high temperature
regions are the same for each polymer. Furthermore, the slopes of each of the two
polymers are also the same. These results indicate that the values of σen are the
same for both polymers at all crystallization temperatures. A comparison of the
overall crystallization kinetics between the n-alkanes and the polymer fractions of
similar carbon numbers is given in Fig. 9.87.(316) The slopes and the crystallization
time scales of the polymers and n-alkanes are close to one another. However, the
polymers crystallize at slightly slower rates at comparable values of �G∗. It can
be concluded from the plots in Fig. 9.87 that both the n-alkanes and fractions obey
the same nucleation kinetics, for comparable chain lengths.

Discontinuities are also observed in plots of the growth rate against the crys-
tallization temperature for low molecular weight polymers. The polymers studied
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Fig. 9.87 Crystallization rates of n-alkanes and molecular weight fractions of linear
polyethylene that have comparable carbon numbers. n-alkanes – – – ; polyethylene
—.(316)

include poly(ethylene adipate),(23) poly(ethylene oxide),(317–319a)24 isotactic
poly(propylenes),(320) and linear polyethylene.(314)25 The growth rates of the
low molecular weight poly(ethylene oxides) have received a great deal of atten-
tion because of their narrow molecular weight distribution.(317–319a) The exten-
sive investigations by Kovacs and coworkers (318,319) with the low molecular
weight poly(ethylene oxides) serve as excellent examples. The log of the growth
rates as functions of the crystallization temperatures are plotted in Fig. 9.88 for
poly(ethylene oxides) with molecular weights Mn = 1890, 2780, 3900 and 9970.

24 An inversion in the growth rate of methoxy terminated poly(ethylene oxide), with a molecular weight of 3000
has been reported.(317) The inversion occurred in a 1 ◦C temperature range where both extended and folded
crystallites are observed. The isothermal thickening that takes place here can easily influence the growth rate
measurement.

25 It was pointed out in the discussion of melting temperature depressions that the actual concentration of the
chain structural defects needs to be specified. Specification of the pentad fraction is not adequate. Analysis of
the crystallization kinetics could be affected in a significant manner, depending on the sequence distribution.
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Fig. 9.88 Plots of log growth rate against crystallization temperature for
poly(ethylene oxide) molecular weight fractions. (a) Mn = 1890; (b) Mn = 2780;
(c) Mn = 3900; (d) Mn = 9970. ● extended chain crystallites; © folded chain
crystallites. (Data from Kovacs et al. (319))

The plots for the three lowest molecular weights display a well-defined discontinu-
ity, similar to that observed in the overall crystallization kinetics of low molecular
weight polyethylene fractions and the n-alkanes. There is a definite flattening of the
growth rate at the low crystallization temperatures. The coordinates of the discon-
tinuity move to higher crystallization temperatures as the chain length increases.
Following this trend, the discontinuity has disappeared for Mn = 9970. As found
earlier, the corresponding plot for Mn = 152 000 is also continuous and similar
in shape to the one for Mn = 9970. The solid symbols in the plots for the three
lowest molecular weights represent the fact that extended chain structures are ob-
served eventually. They do not necessarily represent structures that were initially
formed. This is particularly true for the lower end of this temperature region. At
the lower crystallization temperatures some type of folded structure is formed. For
the higher molecular weights, M ≥ 9970, folded chain crystallites are formed at
all crystallization temperatures, resulting in a continuous growth rate–temperature
curve.

The data plotted in Fig. 9.88 cover a wide range in undercooling, from about 20
to 50 ◦C. Consequently, it is necessary to take into account higher order terms in
the expansion of �Gu. By expanding �Gu in a series around T 0

m

�Gu(T ) = �Gu

(
T 0

m

) + �Hu

T 0
m

�T − �Cp

2T 0
m

(�T )2 − �Cp − T 0
m�C ′

p

6T 02
m

(�T )3 + · · ·
(9.226)
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Fig. 9.89 Plot of free energy of fusion of poly(ethylene oxide) to different levels
of approximation. - - - first order; – – second order; — third order.(316)

Here �Cp is the difference in specific heat between the crystalline and liquid state
and �C ′

p = ∂�Cp

∂T
. The undercooling, �T , is properly reckoned from T 0

m. The
only restraint in deriving Eq. (9.226) is the number of terms that are retained in the
expansion. The series expansion can be carried out to as many terms as is desired. No
arbitrary assumptions have to be made with respect to the temperature dependence
of either the entropy or enthalpy of fusion. All that is needed to evaluate �Gu(T )
are the experimentally available specific heats as a function of temperature, T 0

m and
�Hu.

The first term on the right of Eq. (9.226), �Gu(T 0
m), is zero at T 0

m. The second
term on the right is the �Gu(T ) value that is usually used and is the first-order cor-
rection. The next two terms follow in a natural manner and are termed the second-
and third-order corrections. Figure 9.89 illustrates how �Gu of poly(ethylene ox-
ide) varies with crystallization temperature when the first, second or third orders
are considered. The usual values for T 0

m and �Hu are used in this calculation. The
specific heat values are those given by Wunderlich.(321) Over the undercooling
range of interest there is essentially no difference between the second- and third-
order plots. However, �Gu will be greater if only the first-order correction is used.
As the temperature increases the differences between the orders become progres-
sively smaller. As long as �T is not too large the first-order correction, which is
commonly used, is adequate for most purposes.

The data in Fig. 9.88 for the four polymers are plotted according to nucleation
theory in Fig. 9.90. Here, the temperature dependence of �Gu is taken into account
by following Eq. (9.226). The values of σen used are increased slightly with chain
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length.(322) The plots for the three lowest molecular weights are similar to one
another and also to those of the high molecular weight n-alkanes and low molecular
weight polyethylenes. The major feature of each plot is the two parallel straight
lines that represent the crystallization temperatures where either extended or folded
structures develop. There is also an intermediate temperature region in Fig. 9.90
that connects the two parallel straight lines. Here the data points are represented by a
plateau-like curve, as was observed with polyethylene. This temperature region is a
reflection of the isothermal thickening, at Tc, of the initially once folded crystallite
to an extended one. The shapes of the curves are essentially the same for first-,
second- and third-order corrections. Corrections to �Gu beyond second order do
not have any sensible effect. Deviations from linearity are also observed at the
lowest crystallization temperatures. In this undercooling range �Gu is large so that
the growth rate is relatively insensitive to changes in the crystallization temperature.

The plot for the highest molecular weight, Mn = 9970, is different in that there
is no discontinuity. For this, and higher molecular weights, only folded chain crys-
tallites form. The plot for this sample is linear, except for the lowest crystallization
temperature. This deviation is indicative of a regime transition as was demonstrated
for a higher molecular weight poly(ethylene oxide) (see Fig. 9.45). The main con-
clusion to be reached from the growth rate studies with the low molecular weight
poly(ethylene oxides) is that crystallites with different chain conformations have
the same σen value. Thus, they must evolve from the same nucleus. The same con-
clusion was reached earlier from an analysis of the overall crystallization kinetics of
high molecular weight n-alkanes and low molecular weight polyethylene fractions.

The growth rates of two low molecular weight fractions of linear polyethylene
have also been reported.(314) Analysis of these data allows for an assessment of
the generalization of the results obtained with the poly(ethylene oxides). The log of
the growth rate of the two linear polyethylene fractions, Mw = 5800, Mn = 4957
and Mw = 3900, Mn = 3390, are plotted against the crystallization temperature in
Fig. 9.91.(314) These studies were carried out over a sufficient temperature interval
so that the major features can be discerned. Other reports in the literature do not in-
clude a large enough temperature range for present purposes.(167,171) The growth
rate–temperature patterns are similar for both fractions. The crystallite structures
that were formed initially, either folded or extended chains, are represented by the
open and closed symbols respectively. The vertical lines in the figures bracket the
four to five degree temperature interval where it has been shown that isothermal
thickening takes place.(309) The different temperature regions are clear, although
the discontinuities are not as marked as were found in the studies of the overall
crystallization kinetics. The data from Fig. 9.91 are plotted in Fig. 9.92 according
to nucleation theory, again assuming a Gibbs type nucleus. In this figure the plots
for the two fractions are similar to one another. The high and low temperature data,
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Fig. 9.91 Plot of ln growth rate against crystallization temperature for two linear
polyethylene fractions. Circles Mw = 3900, Mn = 3390; squares Mw = 5800,
Mn = 4957. Open symbols folded chain crystallites; closed symbols extended
chain crystallites. (Data from Chiu et al. (314))

which represent initially formed extended and folded crystallites respectively, are
represented by parallel straight lines, indicative of the fact that the same value of
σen is involved. The slopes of the straight lines in the linear region are the same
for both polymers. In the low temperature region they are superposed upon one
another. The vertical lines again represent the region of isothermal crystallite thick-
ening. The two linear regions are connected by curves, rather than straight lines.
These are consequences of the influence of crystallite thickening on the measured
crystallization rate. Thus, the results for the low molecular weight polyethylene
fractions follow the same pattern as the growth rates of the poly(ethylene oxides)
and the overall crystallization kinetic studies.

The relation between the growth rate and crystallization temperature of low
molecular weight fractions of isotactic poly(propylene) follows a pattern similar
to poly(ethylene oxide) and polyethylene. Figure 9.93 is a plot of log growth rate
against the crystallization temperature for two fractions of isotactic poly(propylene),
Mn = 2000 and Mn = 3000.(319) The curves are similar to those of the other
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Fig. 9.92 Plot of ln growth rate against nucleation function for data in Fig. 9.91.
Symbols the same.

Fig. 9.93 Plot of log growth rate against crystallization temperature for two low
molecular weight fractions of isotactic poly(propylene) � Mn = 2000; 	 Mn =
3000. (From Janimak and Cheng (320))
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polymers studied. There is the implication that further analysis, according to nucle-
ation theory, would lead to the same conclusions with regard to σen. However, this
analysis is severely hampered in this case by the large uncertainty in T 0

m for isotactic
poly(propylene).(214) It can be shown that by appropriate selection of T 0

m, within
the acceptable limits, plots similar to those for polyethylene and poly(ethylene
oxide) result and the same conclusions can be reached. This conclusion needs to
be tempered in the case of isotactic poly(propylene) because the crystallite thick-
nesses, and thus the regions of folded and extended chain crystallites, have not been
defined for these fractions.

There is substantial evidence that all of the low molecular weight polymers stud-
ied follow a similar pattern. However, the complexities introduced by crystallite
thickening during the course of the crystallization make it difficult, and somewhat
tenuous, to deduce any reliable information about regime transitions in low molec-
ular weight polymers.

9.14.3 High molecular weight

The background that has been developed with respect to the role of nucleation
and growth in governing crystallization kinetics, coupled with the behavior of
low molecular weights, serves as a basis for analyzing the influence of higher
molecular weight on the crystallization process. As will be seen, there is in fact
a profound influence of molecular weight on both the overall crystallization and
the spherulite growth rates, as well as on the primary nucleation. The experimental
results will be presented first. The theoretical explanations and expectations will
then be compared with the actual results. Experimental results are available for a
variety of polymer types covering a wide range in chain lengths and crystallization
temperatures.

Figure 9.23, where the overall crystallization rate of linear polyethylenes is plot-
ted in the form of 1/τ0.01 against Mw at different crystallization temperatures, can
serve as a convenient point of reference because of the extensive range in molecu-
lar weights and crystallization temperatures that were studied.(34) The molecular
weights range from less than 104 to almost 107, while the undercoolings vary from
13 ◦C to 30 ◦C. When such a wide range in variables is examined it becomes clear
that one is dealing with a complex phenomenon. At low temperatures, large un-
dercoolings, there is only a slight dependence of the crystallization rate on chain
length. However, at higher crystallization temperatures the rate actually increases
with molecular weight until a broad maximum is reached. The molecular weight
at the maximum depends on the crystallization temperature and varies from 104 to
almost 105. Beyond the maximum there is a decrease in rate with molecular weight.
This decrease becomes markedly sharper the higher the crystallization temperature.
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Fig. 9.94 Log-log plot of crystallization rate τ0.1 against number average molecular
weight, Mn, for poly(ethylene oxide) fraction at indicated crystallization temper-
atures. (From Jadraque and Fatou (39))

The overall crystallization rate is essentially constant for molecular weights greater
than 2 × 106 at all crystallization temperatures. With this complex behavior, it is
important to ascertain whether these results are general for polymers or are limited
to linear polyethylene.

Figure 9.94 gives the results of a similar study with poly(ethylene oxide) that
covers a molecular weight range from 103 to 106.(39) The main features found in
linear polyethylene are also found in poly(ethylene oxide). There are only minor
differences between the two polymers. Other polymers, although not as extensively
studied, also show the major features found in Figs. 9.23 and 9.94. For example,
maxima with molecular weight in the rates have been observed in poly(ethers)
such as poly(oxetane),(41) poly(decamethylene oxide),(306) poly(hexamethylene
oxide) (307) as well as in poly( ∋-caprolactone).(323) A leveling off of the rate
at the higher molecular weights was also observed with poly(decamethylene ox-
ide).(306) The crystallization rate does not always decrease with molecular weight.
There is a range of molecular weights where the rate actually increases with chain
length, and an interval where it is constant. There is also a region where the rate
decreases with molecular weight. However, this region is only one part of the total
picture.(167,323–325)
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Fig. 9.95 Log-log plot of spherulite growth rate, Gs, against viscosity average
molecular weight, Mη, for poly(ethylene oxide) fractions. Crystallization temper-
atures ◦C: © 53.4; ● 53.5; � 55.7; ■ 56.9; 	 58.2; � 59.1. (From Maclaine and
Booth (326))

The relation between the spherulite growth rate, molecular weight and crystal-
lization temperature follows a similar pattern in general. There are, however, some
important differences between specific polymers that depend on the molecular
weight range studied. The growth rate results that have been reported fall in several
distinct categories that are best described by specific experimental results. A case in
point is the results for poly(ethylene oxide) that are given in Fig. 9.95.(326) Several
important features are illustrated in this figure. A well-defined maximum is ob-
served at the higher crystallization temperatures. As the crystallization temperature
is reduced the maximum is less well defined. The molecular weight correspond-
ing to the rate maximum increases with the crystallization temperature. In the low
molecular weight range, below the maximum, there is a sharp increase in the growth
rate with chain length. At these chain lengths the rate of change is not very depen-
dent on the crystallization temperature. In contrast, at high molecular weights, at the
right-hand side of the maximum, the rate of change is sensitive to the crystallization
temperature. At high temperatures, the slopes of the log G– log M plots are about
−1. The slope, however, decreases dramatically as the crystallization temperature
is lowered. Eventually, at sufficiently low temperatures the growth rate only de-
pends very slightly on molecular weight. Thus, if the growth rate is expressed as
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Fig. 9.96 Log-log plot of spherulite growth rate, G, against number average degree
of polymerization, xn for poly( ∋-caprolactone) fractions. Crystallization tempera-
tures indicated. (From Chen et al. (327))

G = KMa , the exponent a varies from −1 to 0 as the crystallization temperature
decreases. Except for the invariance in the growth rate at high molecular weights,
these results are similar to those found in the studies of overall crystallization rate.

The dependence of the growth rate on molecular weight of poly( ∋-caprolactone)
is similar, as is illustrated in Fig. 9.96.(327) The variation of the maximum with
crystallization temperature is the same as that found for poly(ethylene oxide). The
growth rate–molecular weight relation is also similar with the slope increasing with
the crystallization temperature. The molecular weight is apparently sufficiently high
so that the invariance of the growth rate with molecular weight is observed. Similar
features are found in the growth rate–molecular weight relation of poly(3,3′-diethyl
oxetane).(328)

The growth rates of linear polyethylene, taken from the works of Labaig (171)
and Hoffman et al. (167), are summarized in Fig. 9.97. With the exception of two
inexplicable data points at the highest molecular weights studied, good agreement is
found between the two investigations. There is a severe limitation to the temperature
interval in which the spherulite growth rate of linear polyethylene can be studied.
At the high crystallization temperatures the spherulite growth rate is too slow for
most molecular weights, while at lower crystallization temperatures it is much too
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Fig. 9.97 Log-log plot of spherulite growth rate, G, against weight average molec-
ular weight, Mw, for linear polyethylene fractions at indicated crystallization tem-
peratures. ● Data from Labaig (171); ©, 	 data from Hoffman et al. (167,337).

rapid. A further limitation is that at high molecular weights spherulitic structures
are not observed in linear polyethylene at all crystallization temperatures. Thus
there is only a very limited data set available for the analysis of linear polyethylene
as compared to the growth rates of other polymers. Some of the features found in
poly(ethylene oxide), poly( ∋-caprolactone) and other polymers are also found in lin-
ear polyethylene. The maximum in the rate is well defined and its position increases
with crystallization temperature. For molecular weights below the maximum the
growth rate again increases sharply with chain length and the rate of change is not
sensitive to the crystallization temperature. Based on the limited data available it
appears that for molecular weights greater than the maximum the slopes only vary
slightly with temperature. Estimates of the slopes vary from about −1.5 to −1.7;
see below.(324,337) In contrast to the results of overall crystallization studies, an
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Fig. 9.98 Log-log plot of spherulite growth rate, G, against molecular weight
for poly(tetramethyl-p-silphenylene siloxane) fractions at indicated crystallization
temperatures. (Data from Magill (330))

invariance in the growth rate with chain length is not observed. This is because of
the chain length limitation on spherulite formation. Thus, the growth rate of linear
polyethylene does not display all of the features observed with other polymers.
Hence, because of restrictions of crystallization temperature and molecular weight,
the results for linear polyethylene do not give an adequate data base from which
to develop a theoretical understanding of the influence of molecular weight on the
crystallization kinetics of polymers.

The diversity in the growth rate–molecular weight relations is demonstrated in
Fig. 9.98 for poly(tetramethyl-p-silphenylene siloxane).(330) Even though molec-
ular weights as low as 104 were studied with this polymer no maximum is ob-
served in the growth rate. There is a linear decrease with molecular weight until
M � 2–3×105. The growth rate becomes invariant at the higher molecular weights,
at all crystallization temperatures. The slopes in the linear portion of Fig. 9.98 are
approximately −0.55 and are essentially independent of the crystallization tem-
perature. Figure 9.98 is not unique. A very similar dependence of the growth rate
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Fig. 9.99 Log-log plot of spherulite growth rate, G, against weight average molec-
ular weight, Mw, for poly(aryl ether ether ketone) at indicated crystallization tem-
peratures. (From Deslandes et al. (332))

on molecular weight was also found with the high melting polymorph of trans-
poly(1,4-isoprene).(331)

Another example of the growth rate–molecular weight relation is shown in
Fig. 9.99 for poly(aryl ether ether ketone).(332) The double log plot of the data for
this polymer, over the molecular weight range studied, only shows a linear decrease
of growth rate with chain length. Neither the constancy at high molecular weights
nor the increase in growth rate at the lower molecular weights are observed. The
molecular weight dependence given in Fig. 9.99 can be expressed by the relation

log G(Tc) = log A(Tc) + B(Tc) log Mn (9.227)

where A(Tc) and B(Tc) are functions of the crystallization temperature. The slopes
of the straight lines vary from −2.7 to −3.5 between 279 ◦C and 295 ◦C. A similar
relation was found with poly(phenylene sulfide), where the slopes varied between
−2.1 and −3.1.(43) Qualitatively similar results have also been observed with
poly(ethylene terephthalate) (110) and isotactic poly(styrene),(333) with the slopes
varying with the crystallization temperature.

Studies of unfractionated isotactic poly(1-butene) over the range Mw=
1.16–3.98 × 105, have found that the spherulite growth rate was independent of
chain length.(333a) The influence of molecular weight on fraction of isotactic
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poly(propylene) presents a very interesting situation.(333b) The spherulite growth
rates of fractions of the metallocene catalyzed polymer vary from 1.68 × 10−6 to
0.89×10−6 cm s−1 as the molecular weight increases from 8.6×104 to 3.58×105.
This represents normal behavior in terms of the behavior of the other polymers
that have been discussed. In contrast, Ziegler–Natta catalyzed fractions give quite
different results. Surprisingly the growth rates of these fractions are independent of
molecular weight and the concentration of the chain defects. This result suggests
that blocky type copolymer behavior is involved in this case.(333b)

The primary nucleation rates of folded, as well as extended chain crystallites
of bulk crystallized linear polyethylene have also been studied.(334,336a) The
nucleation rate was obtained by counting the number of crystals that were observed
as a function of time within a visual field during isothermal crystallization.(335)
The number of crystals observed was assumed to correspond to the number of
nuclei that were formed initially. The molecular weight range studied for folded
chain crystallite formation was 3.0 × 104 to 9.9 × 104.26 This molecular weight
interval corresponds to the interval where the growth rate decreases with molecular
weight at the lower crystallization temperature. At lower undercoolings the growth
rate in this molecular weight range increases with molecular weight.(167,171) (see
Fig. 9.97) The results, shown in Fig. 9.100, are plotted in the form of log N against
(�T )−2. This plot is appropriate for primary, initiating nucleation.(12) The major
feature in this plot is the set of parallel straight lines. This implies that �G∗, the
free energy necessary to form a critical size nucleus, is independent of molecular
weight. Thus, the product of interfacial free energy σenσ

2
eu is also independent of

molecular weight. Furthermore, it is found that for folded chain crystallites the
power law

N ∼ M−2.3
n (9.228)

is obeyed. A power law is also observed for the nucleation of extended chain
crystallites. However, in this case the exponent is −1.(335)

The steady-state nucleation rate depends on G0, the transport term, and the free
energy of forming a critical-size nucleus. The results shown in Fig. 9.100 indicate
that the product of interfacial free energy σenσ

2
un is independent of molecular weight

for the range of linear polyethylenes that was studied. The parallel displacement of
the straight lines is a reflection of the influence of molecular weight on the transport
term. The product σenσun can be obtained from the temperature dependence of the
spherulite growth rate. The results from two studies of linear polyethylene (167,171)
and of poly(ethylene oxide) (326) are given in Fig. 9.101 where a Gibbs type of

26 The molecular weight range studied has been extended to 1.39 × 105 and the exponent in Eq. (9.228) changed
to −2.4.(336a)
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Fig. 9.100 Plot of log of primary nucleation rate, N , against (�T )−2 for linear
polyethylene fractions of indicated molecular weights. (From Ghosh et al. (334))

Fig. 9.101 Plot of product σenσun in erg2 cm−4 against log weight average molec-
ular weight, Mw. 	 poly(ethylene oxide) data from (326); ● linear polyethylene
(167); © linear polyethylene (171).
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nucleation has again been assumed. Only molecular weights 2 × 104 and greater
are considered to avoid the complexities of the finite chain correction term. There
is good agreement between the two polyethylene studies and the values are similar
to those for poly(ethylene oxide). It is evident in these examples that for moderate
and high molecular weights, the product σenσun is independent of molecular weight
in agreement with the nucleation studies. Thus, there is no contribution from �G∗

to the molecular weight dependence of the growth rate. It is important to note that
the constancy of σenσun does not imply that the same holds for σec or σuc. The latter
are characteristic of the mature crystallite. The basal plane structures of the nucleus
and mature crystallite are quite different.

It was pointed out previously that both the overall crystallization rate and the
crystallinity level that can be attained depended on molecular weight as a con-
sequence of chain entanglements in the melt. Further investigations have shown
that the spherulite growth rates and the primary nucleation rate, both of which
involve a transport term, also depend on the entanglement density.(49c,336) The
role of entanglements was assessed by taking advantage of the fact that the high
pressure-high temperature crystallization of linear polyethylene yields extended
chain crystallites with very high levels of crystallinity. Therefore, the chains in the
pure melt of such crystallites will be essentially disentangled. Re-entanglement
takes place in approximately 5–30 minutes. There is thus a time period wherein
the entanglement density increases and appropriate measurements can be made.
The spherulite growth rate is increased by 25–45% for a partially disentangled
melt relative to a melt with a normal concentration of entanglements.(49c) Sim-
ilarly, the primary nucleation rate increases with a decrease in the entanglement
density. However, �G∗ remains constant, being independent of the entanglement
density.

The molecular weight dependences of many polymers have been presented in
order to emphasize the complex behavior and diversity of results. Appropriate
theory must explain this behavior. In particular, the increase, decrease and constancy
of the overall crystallization kinetics and spherulite growth rates with molecular
weight needs to be taken into account. Also to be explained are how the rates
are tempered by the crystallization temperatures and the chemical nature of the
chain repeating unit. The extensive set of experimental results available allows for
a critical and objective examination of this problem and the explanations that have
been offered.

An empirical relation has been proposed by Cheng and Wunderlich to explain
the dependence of the growth rate on molecular weight.(47) This relation can be
expressed as

log G = A log(ln M) + B (9.229)
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The constants A and B depend on the crystallization temperature, or undercooling.
In this expression, with A negative, G is a monotonically decreasing function of M .
This expression was fitted to the data for several polymers, including poly(ethylene),
poly(ethylene oxide), poly(ethylene terephthalate), poly(tetramethyl-p-silphenyl-
ene siloxane) and poly(trans-1,4-isoprene).(47) However, the high molecular weight
data, where G is independent of M , and the low molecular weight range, where
G increases with M, were tacitly ignored. The growth–molecular weight data for
poly(aryl ether ether ketone) could not be fitted to Eq. (9.229) since downward
curvature results.(332) When straight lines are forced through the data it is difficult
to give physical meaning to the resulting slopes. As was pointed out the data for
this polymer could be fitted by the empirical relation, Eq. (9.226). The data for
poly(phenylene sulfide) behave in a similar manner.(43,332) It can be concluded
that, at best, the proposed empirical relation is restricted to the range where the
growth rate decreases with molecular weight. Even with this restriction, not all
polymers follow Eq. (9.229).

Reptation theory has been applied to the crystallization kinetics of polymers
in an attempt to explain the role of molecular weight.(50g,148,150,205a,329,337)
The concept of chain reptation was initially introduced by de Gennes to explain the
viscoelastic behavior of polymers in the pure melt.(338,339) The problem is to ex-
plain the motion of a chain in a medium filled with entangled other chains that form
a network-like structure.(340) The chain motion is retarded by the entanglement
of the chains with one another as well as by other topological restraints. Thus, no
chain can move sideways very far without having to cross the forbidden obstacles.
However, the chain can move between these obstacles in a worm- or snake-like
motion. This motion has been termed reptation. A detailed molecular theory based
on this concept has been developed by Doi and Edwards.(341) In this treatment
the motion of a chain is restricted to a hypothetical tube of uncrossable constraints,
the diameter of which corresponds to the mesh size of the pseudo-network. The
chain is allowed to diffuse through this tube. The theory has successfully explained
a variety of viscous and viscoelastic phenomena in polymer melts.(341,342)

The reptation concept has been introduced in an attempt to explain the postulated
reeling of chains from the entangled melt. A chain is thought to diffuse through
the hypothetical tube to the growing crystal face, where a sequence of length ζ ,
corresponding to the crystallite thickness, is deposited.(148,337) It is thus assumed
that there is a substantial degree of regular chain folding in the mature crystallite.
Attention is focused on explaining the spherulite growth rate of linear polyethylene.
The available data for this polymer are limited to about only one decade in molecular
weight, ∼2×104 to ∼2×105. The friction coefficient is proportional to the number
of chain units, n, in the dangling chain. This number in turn is identified with the
complete chain. An important, implicit assumption is made that a chain is involved
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in only one crystallite. In the initial formulation of the problem the postulate was
made that the product of the front factor, G0, and the transport term in Eq. (9.205)
can be expressed as

βg = (Ci/n)(kT/h) exp[−U ∗/R(T − T∞)] (9.230)

The expression for βg, termed the retardation factor, represents an arbitrary assump-
tion.27 Equation (9.230) can also be written in the form (337)

βg = (Ci/n)(kT/h) exp[−Q∗
D/RT] (9.231)

where Ci is a constant characteristic of the regime and Q∗
D is the activation energy

for reptation. The growth rate is then expressed as28(337)

Gi = (Ci/M) exp(−Q∗
D/RT) exp

(−Ki T 0
m

T �T

)
(9.232)

The dependence of the growth rate on molecular weight is found explicitly in the
front factor. This is solely a consequence of the assumption made in proposing
Eq. (9.230). There could be perhaps an implicit dependence on chain lengths in the
transport term. There is, however, no dependence on the thermodynamic contribu-
tion to �G∗, which is consistent with the experimental results previously described.

In order to explain the growth rate data for linear polyethylene it was necessary
to modify Eq. (9.231).(329) The resulting expression is written as

Gi = (Ci/M1+ε)(�T ) exp

(−Q∗
D

RT

)
exp

(−Ki T 0
m

�T

)
(9.233)

The quantity ε is of statistical mechanical origin and arises from the free energy
change associated with the first attachment of the chain to the crystallite surface.
The undercooling, �T , (in the front factor) enters through the retardation term and
the force pulling on the molecule. When applying Eq. (9.232), at constant �T , to
linear polyethylene, it was found that ε = ±0.2.(329) This result was confirmed by
Okada et al. for other linear polyethylene data that encompassed a still more limited
molecular weight range.29(324) Additional modifications have been made to further
explain the growth rates of linear polyethylene.(150,205a) A fraction M � 70 000
was designated as undergoing perturbed reptation. Based on experience, further
modifications to the reptation theory can be expected.

27 See discussion leading to Eq. (2–8) in Ref. (148).
28 For the purpose of illustration and simplicity, it is assumed here that we are dealing with a monodisperse system.

This simplification avoids having to define the moment of the molecular weight distribution that may be involved.
The required moment to be used has been changed several times during the course of the development.

29 In these analyses �T was calculated from the equilibrium melting temperature for the finite molecular weight
chain rather than the infinite one.(324)
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It has been pointed out that, even limiting the region to where the growth rate
decreases with molecular weight, the experimental results for other polymers do not
conform to the predictions appropriate to linear polyethylene.(325) Although the
form of the decreases is similar for all polymers studied the exponent varies from
polymer to polymer. Moreover, contrary to the results for linear polyethylene, the
exponent varies significantly with the crystallization temperature for most polymers
that have been studied.

The explanation given for the growth rates of linear polyethylene is highly spe-
cific. Based on the successive modifications that have been made, there is a serious
question as to whether the reptation concept, as it has been applied, has general
applicability to the crystallization kinetics of polymers. If the basic ideas of rep-
tation theory are appropriate, major alterations have to be made so that it explains
the molecular weight dependence of all polymers.

Studies of the overall crystallization rate of polyethylene, as well as other
polymers, indicate that the rates become independent of chain length at high
molecular weights. Presumably this is a reflection in part of the contribution
of the growth rate. The spherulite growth rates of poly(trans-1,4-isoprene),(331)
poly( ∋-caprolactone),(327) poly(3,3′-diethyl oxetane) (328) and poly(tetramethyl-
p-silphenylene siloxane) (330) also become invariant at high molecular weights.
This aspect of crystallization kinetic cannot be explained by the current adoption
of reptation theory. Also of concern, and not to be neglected, is the region where
the growth rate increases with molecular weight.

In the molecular weight range where the growth rate decreases with molecular
weight reptation theory requires that the chain length dependence resides in the
front factor G0. The form of the dependence can be expressed as G0 ∼ 1/Ma .
For linear polyethylene a � 1.2 at all crystallization temperatures. It has been
explicitly shown that G0 � 1/Mn for poly(ethylene terephthalate). It is the only
polymer where G depends inversely on molecular weight.(110) However, this study
was limited to the restricted molecular weight range Mn = 1.9 × 104 to 3.9 ×
104. It is thus difficult to generalize the conclusions with regard to G0 from these
results. The G0 term depends on molecular weight for isotactic poly(styrene) and
is proportional to M−0.25

n .(333) Lovering found that up to Mn = 150 000 there
is a pronounced effect of molecular weight on the growth rate of poly(trans-1,4-
isoprene). At higher molecular weights the growth rates are essentially independent
of chain length.(331) The results in the region where the growth rate decreases with
molecular weight could not be explained by either the transport or nucleation terms.
Thus, the molecular weight dependence must reside in G0.

Any influence of molecular weight on the transport term will be through the
quantities U ∗ and T∞. The latter quantity will depend on the glass temperature. It
will only vary in the low molecular weight range. This factor has been shown to
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have a negligible effect on the growth–molecular weight relation.(329) It is also
expected that any U ∗ dependence on molecular weight will only be in the low
molecular weight range.

There are other factors that should be given consideration. The analysis of the
overall crystallization rate of linear polyethylene suggested that the spreading rate
is influenced by the chain length. This possibility needs to be explored in analyzing
the spherulite growth rate. It has also been proposed that sliding diffusion and its
molecular weight dependence plays an important role.30(334,335)

It has been found quite generally that there is a molecular weight range where
both the growth and overall crystallization rates increase with chain length. Chain
entanglements are not important in this low molecular weight range. Hence, the
effect of reptation should be minimal. The results here should be considered in terms
of the undercooling, rather than the crystallization temperature. As the molecular
weight increases in this range, the finite chain correction to the free energy of
forming a nucleus decreases. Therefore, the effective undercooling increases with
chain length at a fixed temperature. As a consequence, an increase of the growth
rate with molecular weight at a fixed crystallization temperature is to be expected.

The crystallization rates are essentially independent of molecular weight at very
low undercooling. At these crystallization temperatures the crystallite thicknesses
are small relative to the chain length. Hence a given chain will participate in many
crystallites. Therefore, the absolute value of the molecular weight will not be a
factor under these circumstances. A comparable argument can be made for the very
high molecular weights where the growth and crystallization rates are independent
of chain length. Here the ordered sequence to be deposited is also relatively small
compared to the chain length. Therefore, the molecule again participates in many
crystallites. In this range, the molecular weight is once again not controlling. It has
also been noted that in the molecular weight range where G � M−a , the exponent
a usually varies with the crystallization temperature or undercooling. This result
could also be related to the crystallite thickness, which would allow for a chain
to participate in more and more crystallites as the crystallization temperature is
lowered.

In summary, when a wide range in molecular weights is studied the relation
between crystallization rates is obviously quite complex. The rates can increase,
decrease or remain constant with chain length, depending on the molecular weight
range of interest and the crystallization temperature. The interval where those
changes occur is specific to a given polymer. As a result, although a qualitative
description can be offered to the experiment results, quantitative explanation is
lacking. Although reptation theory, or variants thereof, may play a role in restricted

30 The concept of sliding diffusion will be discussed in Chapter 13.
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molecular weight and crystallization temperature ranges for a given polymer, its
general applicability has not as yet been established. Several suggestions have been
made that may improve the situation. These remain to be explored.

9.15 Epilogue

A comprehensive discussion of the many different aspects of the crystallization
kinetics of homopolymers from the pure melt has been presented in this chapter.
A comprehension of crystallization kinetics is central to understanding structure
and properties in the crystalline states. A great deal of the observed phenomena
can be explained by modifying conventional nucleation and growth processes,
characteristic of low molecular weight substances, to the behavior of long chain
molecules. Although a well-developed framework has been established, within
which to view the crystallization kinetics of polymers, it is quite evident that there
are still major problems that remain to be resolved.

A key problem is to theoretically establish the appropriate primary and secondary
nucleation processes that are operative. This includes defining the geometry of the
rate controlling nucleus, i.e. whether it is two-dimensional or three-dimensional.
It should be recalled that the experimental results can fit either model. Of crucial
importance is the chain conformation within the nucleus. Conventional type data
are not discriminatory. They can be fitted by either a bundle type nucleus, or one
in which the chains are regularly folded with adjacent re-entry. At present, either
type of nucleus is consistent with the experimental results. It is important that it
be recognized that it is not necessary for there to be a one-to-one relation between
the nucleus structure and the mature crystallite that evolves. It is not necessary to
assume a regularly folded chain nucleus in order for a mature lamellar crystallite to
evolve. It is important that the crucial role of nucleation in polymer crystallization
be taken from the realm of assumption and placed on a first principled theoretical
base. Similar concerns can be expressed with respect to the transport term.

In analyzing temperature coefficient data, when applying nucleation theory, reli-
able and accurate values of the equilibrium melting temperature need to be known.
This quantity is difficult, if not impossible, to determine experimentally. It can be
obtained theoretically in special cases. Usually one of several extrapolation meth-
ods is used. The extrapolative methods themselves will be discussed in detail in
Volume 3. As this point, it should be recognized as a formidable problem that is in
need of resolution.

Another key problem is establishing a theoretical isotherm that explains the
development of overall crystallinity over the complete extent of the transformation.
Since the free growth approximation explains the experimental results as well as
the Avrami type theory, the impingement cessation mechanism is not adequate. It
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is evident that the role of chain entanglement and the changing residual structure
of the melt, as crystallinity progresses, needs to be explicitly taken into account in
developing a theoretical isotherm from a molecular point of view.

A firm theoretical basis needs to be established to explain the complex molec-
ular weight dependence of the crystallization rates. Theory should encompass and
explain the extensive experimental data from the many polymers that are available
for analysis.

The analysis and conclusions found in this chapter serve as the basis for the
discussion in subsequent chapters of this volume. These include the crystallization
of copolymers; polymer–polymer blends; the influence of external force on crys-
tallization kinetics; and the kinetics in polymer–diluent mixtures, including dilute
solutions.
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10

Crystallization kinetics of copolymers

10.1 Introduction

It was noted in Chapter 5 (Volume 1) that both the course of fusion and the equili-
brium melting temperature depend on the sequence propagation probability param-
eter, p, and whether the crystalline phase remains pure. It is known that in simple
liquids the introduction of a second component significantly alters the nucleation
rate and consequently the overall rate of crystallization from the melt. The phase
diagrams for such two-component systems govern to a large extent the crystal-
lization process. In copolymers the equivalent of a second component is built into
the chain. Hence, changes in the crystallization process of copolymers, relative to
homopolymers, can be expected, and are in fact supported by kinetic studies. With
copolymers, however, it is the sequence propagation probability rather than the
composition that is important.

In this chapter the overall crystallization kinetics and spherulite growth rates of
the major copolymer types will be presented and analyzed. It should be recalled
from the point of view of polymer crystallization that chains containing struc-
turally different repeating units, although chemically identical, are also treated as
copolymers. These include branch points and regio defects as well as stereo and
geometric isomers. As a matter of convenience, the influence of cross-links will
also be included in this chapter.

10.2 Random type copolymers

10.2.1 Overall crystallization

The chain microstructure of random copolymers can be represented by p = XA, the
mole fraction of the major crystallizing repeating unit. Studies of the overall crys-
tallization kinetics of random copolymers are of particular importance since as the
comonomer content increases the spherulitic structure becomes poorly developed
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Fig. 10.1 Plot of quantity (V∞−V t)/(V∞−V0) against log t for the crystallization
of a poly(butadiene) containing 80% 1,4-trans unit. Temperature of crystallization
is indicated for each isotherm.(1)

and eventually disappears. Thus, although the measurements of spherulite growth
rates are quite informative, they can only be studied over a limited composition
range. Distinction also has to be made as to whether or not the comonomer enters
the lattice. It can be assumed in the discussion in this section that, unless otherwise
noted, the crystalline phase remains pure.

Typical examples of the overall crystallization kinetics of random type copoly-
mers will be given in the following. Included will be the characteristics of the
isotherms, and the influence of both composition and molecular weight. Figure 10.1
gives a set of isotherms for an emulsion polymerized poly(butadiene).(1) This poly-
mer contains 80% of crystallizable 1,4-trans units. The remaining units, that are
not crystallizable, are distributed among 1,4-cis and 1,2 addition. The observed
melting temperature of this polymer is 37 ± 1 ◦C. It is evident that in this case
the isotherms are quite different from those characteristic of a pure homopolymer.
The isotherms are no longer superposable, their shapes being dependent on the
crystallization temperatures. However, when the crystallization is conducted at the



10.2 Random type copolymers 217

Fig. 10.2 Plot of percentage change in crystallization level against log t for the
crystallization of a long chain branched polyethylene. Temperature of crystalliza-
tion is indicated for each isotherm. (From Buchdahl et al. (2))

larger undercoolings the isotherm shapes begin to resemble those of a homopoly-
mer. This effect is illustrated by the dashed curve in Fig. 10.1, which was calculated
from Eq. (9.31a) with n = 3. However, as the crystallization temperature is raised,
the transformation proceeds more slowly and the isotherms spread out in fan-like
fashion along the time axis.

The overall crystallization kinetics of polyethylenes that contain long chain
branches follow a similar pattern, as is illustrated in Fig. 10.2.(2) In this case,
the methine carbons, to
which the long chain branches are attached, serve as the structural irregularity. The
lack of superposability of the isotherms is again apparent. Their characteristics are
similar to those of poly(butadiene). A comparison of the isotherm shapes in Fig.
10.2 with those for linear polyethylene, Fig. 9.4 or 9.5, demonstrates the strong
influence small amounts of structural irregularities, usually about 1% of branch
points, have on the overall crystallization kinetics.

The same type isotherms are found when comonomers are introduced into the
chain. An example is given in Fig. 10.3. Here the extent of the transformation,
1−λ, is plotted against log time for three different hydrogenated poly(butadienes),
which are random ethylene–butene copolymers, that have narrow molecular weight
and composition distributions. In this example, the branch content is fixed but
the molecular weight is varied. Again, the isotherms for a given copolymer do
not superpose. In this example, for a given molecular weight the isotherms at
different crystallization temperatures do not merge at long times, as they do in
linear polyethylene fractions. The crystallization rate and the temperature interval
over which isothermal crystallization can take place in a practical time scale are
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Fig. 10.3 Plot of the extent of transformation, (1 − λ), against log time for the
crystallization of hydrogenated poly(butadienes) at the indicated temperatures. The
weight-average molecular weights and mol percent branch points are indicated.(3)

dependent on molecular weight. For the highest molecular weight illustrated, the
crystallization interval is 94–101 ◦C; it shifts to 100–108 ◦C for M = 4.9×104 and
to 104–111 ◦C for M = 6.95 × 103.

Analysis of experimental data for some copolyesters (4,5,6) and syndiotactic
poly(propylene)(6a) indicates a superposition of isotherms. However, in these ex-
amples the crystallization was conducted at relatively large undercoolings. Super-
position is to be expected under these circumstances.
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Fig. 10.4 Plot of extent of transformation, (1 −λ), against log time for the crystal-
lization of hydrogenated poly(butadienes) and one ethylene-1-hexene copolymer
(1.21 mol % branch points) at the indicated temperatures. The weight-average
molecular weight and mol percent branch points are indicated.(3)

The crystallization rate is also dependent on the co-unit content at a fixed molec-
ular weight. This point is illustrated in Fig. 10.4 for random ethylene copolymers,
where the co-unit concentration varies, but the molecular weight is held fixed at
about M = 5×104.(3) The major features of copolymer crystallization are observed
again. However, these features are accentuated with increasing co-unit content. For
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example, although the temperature interval where isothermal crystallization can
be carried out in a reasonable time is the same for all the copolymers, the loca-
tion depends on copolymer composition. There is a change of about 40 ◦C in the
accessible crystallization range as the mole fraction of branch points varies from
1.21 to 5.68 mol percent. Only a small part of this change can be attributed to
the decrease in the equilibrium melting temperature and thus to the decrease in
undercooling. The major reason for this change is the concentration of sequences
available for crystallization at a given temperature as a consequence of the chain
microstructure. The isotherm shapes change drastically with increasing co-unit con-
tent, reflecting the fact that crystallization is becoming more protracted. Studies of
the overall crystallization kinetics of a set of random ethylene–octene copolymers
give similar results.(7,8) In different molecular weight ranges, at a fixed undercool-
ing, the crystallization rate decreases as the comonomer content increases. When
the comonomer concentration is fixed the rate decreases with increasing molecular
weight. These kinetic studies make quite clear that the molecular weight and copoly-
mer compositions are independent variables that govern the crystallization. This in
turn will be reflected in both microscopic and macroscopic properties. Moreover,
it is important when studying structure and properties of random type copolymers
that the complete range of isothermal crystallization needs to be considered.

The examples given up to now have been limited to crystallization temperatures
in the vicinity of Tm. In this temperature region a strong negative temperature coef-
ficient, similar to that of homopolymers, is observed for the crystallization process.
As an example, for the copolymers illustrated in Fig. 10.3 there is about a four
orders of magnitude time change over only a 6–7 ◦C temperature interval. Other
copolymers behave in a similar manner. Copolymers show features that are sim-
ilar to those of homopolymers when crystallized over the complete temperature
range. In particular, a maximum in the crystallization rate is still observed. For
some copolymers one or the other species crystallizes, depending on the composi-
tion, and a maximum in the overall crystallization rate can occur.(9a) An example
is given in Fig. 10.5 for the crystallization of the random copolyester, ethylene
terephthalate–azelate.(9) Here, the half-time of the crystallization, t1/2, is plotted
against the crystallization temperature for different compositions of this copoly-
mer. At high temperatures the very strong negative temperature coefficient indicates
nucleation control. The rate in this region is significantly reduced at a fixed crys-
tallization temperature as the comonomer content increases. As the crystallization
temperature is lowered a maximum in the rate is observed (a minimum in t1/2). The
locations of the rate maxima depend on the copolymer composition. As the tem-
perature is lowered below the maxima the crystallization rate decreases once again.
However, an interesting phenomenon occurs, in that an inversion in the rate with
temperature takes place. The crystallization rate now increases with comonomer
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Fig. 10.5 Plot of crystallization half-time, t1/2, against crystallization temperatures,
Tc, for random copolyesters of ethylene terephthalate–azelate at indicated mol
percent azelate. Composition: © 6 mol%; � 11 mol%; ● 25 mol%; � 31 mol%.

content. This inversion in rate with composition can be attributed to the decrease in
the glass temperature with increasing comonomer content. For this system the glass
temperature decreases from 70 ◦C for the homopolymer to 14 ◦C for the copolymer
with the highest comonomer content studied. The crystallization behavior of this
copolyester demonstrates dramatically the important role of the equilibrium melt-
ing temperature and nucleation at the high crystallization temperatures, and that of
the glass temperature, and thus the transport term, at the low temperatures.

In order to understand the nature of the copolymer isotherms, the basis for su-
perposability needs to be examined. The Avrami type isotherm, and the deduction
of superposition, is based on the implicit assumption that the composition and
structure of the melt do not change during the course of the transformation. Con-
sequently, in the simplest case the nucleation and growth rates were taken to be
independent of the extent of transformation. This underlying assumption has al-
ready been questioned for homopolymer crystallization where entanglements and
other topological defects are not crystallizable. This underlying assumption of the
constancy of nucleation and growth rates clearly will not apply to random copoly-
mers. In this case both the composition and sequence distribution of the residual
melt change continuously during the course of the crystallization. Consequently,
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the increasing accumulation of the noncrystallizable species in the melt results
in a continuous depression of the melting point. Thus, the effective undercooling
decreases, even though the crystallization temperature itself is held constant. The
question as to whether this expectation leads to isotherm shapes that have been
observed in copolymers needs to be examined.

Based on these considerations the kinetic equations appropriate to the crystal-
lization of a copolymer composed of A and B units arranged in random sequence
distribution has been investigated.(10) In this analysis only the A units are allowed
to enter the crystal lattice. It is convenient to characterize the extent of the trans-
formation at time t by a parameter θ ≡ [1 − λ(t)]/[1 − λ(∞)], where λ(∞) is the
fraction of the noncrystalline material at the completion of the transformation and
λ(t) is the corresponding quantity at time t . With these conventions, the steady-
state nucleation rate per untransformed unit volume, at the conversion θ , can be
expressed as

N (θ) = N0 X θ
Aexp

(
− ED

RT
− �G∗

θ

RT

)
(10.1)

Here X θ
A is the mole fraction of A units in the melt and �G∗

θ is the free energy of
forming a nucleus of critical size at θ . In terms of the composition of the completely
molten phase,

N (θ) = N (0)
X θ

A

X 0
A

exp

(
−�G∗ − �G∗

θ

RT

)
(10.2)

N (0) is the steady-state nucleation rate at t = 0, corresponding to the initial melt
composition X 0

A, and �G∗
θ is the corresponding critical free energy. For a homoge-

neously formed cylindrically shaped nucleus

�G∗
θ = 8πσ 2

unσen

�Gu(θ )2
(10.3)

where �Gu
∼= �Hu(Tθ − T/Tθ ), with Tθ being defined as the equilibrium melting

point of the system at conversion θ . From the ideal expression for the melting point
depression of random copolymers, it follows that

1

Tθ

− 1

Tm
= − R

�Hu
ln

X θ
A

X 0
A

(10.4)

The ratio of X θ
A/X 0

A can be expressed as

X θ
A

X 0
A

= 1 + (wB/wA)(MA/MB)

1 + (wB/wA)(MA/MB){1 − θ [1 − λ(∞)]/wA} (10.5)

where wA and wB are the initial weight fractions of the A and B units respectively,
and (MA/MB) is the ratio of molecular weights of the units. The attenuation of the
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nucleation rate is then given by

N (θ )

N (0)
=

(
X θ

A

X 0
A

)
exp

{
C

T

[(
Tm

Tm − T

)2

−
(

Tθ

Tθ − T

)2
]}

(10.6)

where C = 8πσ 2
unσen/�H 2

u . The use of Eq. (10.6) involves the assumption that
Tθ depends solely on the ratio of X θ

A/X 0
A, i.e. on the chemical composition of the

melt. However, as is known from theory, and experiment, a further reduction in Tθ

will occur in copolymers at finite levels of crystallinity because of the change in
the sequence distribution of the crystallizable units (see Chapter 5). In the present
context, therefore, the value of Tθ for random copolymers is underestimated. In
this example a homogeneous, three-dimensional nucleus is assumed for illustrative
purposes. However, qualitatively similar results are obtained when other type nuclei
are assumed.

The reduction in the nucleation rate can be readily calculated, provided the ap-
propriate parameters are known for the parent homopolymer. The results of such
a model calculation for random ethylene copolymers are given in Fig. 10.6 taking

Fig. 10.6 Theoretical plot of − ln[N (θ )/N (0)] against θ for two random copoly-
mers of indicated composition. The initial undercoolings are indicated by the
numbers in parentheses.(10)
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MA/MB = 0.44 and 1 − λ(∞) = 0.75.1(10) Two compositions, and two under-
coolings for each, are taken as examples. When small amounts of co-ingredients
are added, a slight but perceptible attenuation of the nucleation rate is predicted
at large undercoolings. This manifests itself primarily at the latter portions of the
transformation. However, if the undercooling is decreased, or if the concentration
of B units is slightly increased, the attenuation in the nucleation rate becomes
significant. Changes are now expected for even small amounts of crystallization.
These effects result from the decrease in the true undercooling (Tθ − T ) with the
extent of the transformation. For large nominal undercoolings, the relative change
with the transformation is small, so that the nucleation rate is only slightly reduced.
However, at small nominal undercoolings, the change in Tθ with conversion is such
that an appreciable reduction in the nucleation rate is predicted. This effect becomes
more significant as the initial concentration of the B units is increased.

To proceed further in the analysis, it is necessary to develop the general math-
ematical formulation for the kinetics of phase changes, allowing for the exclusion
of noncrystallizing units from the lattice. In essence, this involves evaluating the
integral appearing in Eq. (9.16) while accounting for the changes in the nucleation
and growth rates with the extent of the transformation. To accomplish this, the
primary nucleation rate is expressed as

N (τ )

N (0)
= h(τ ) (10.7)

The linear growth rate G(z) can be written as G(0) g(z), where G(0) is the initial
rate at t = 0. Then

v(t, τ ′) = K G(0)n−1[Φ(t, τ ′)]n−1 (10.8)

where

Φ(t, τ ) =
t∫

τ ′

g(z) dz (10.9)

The more general expression for the kinetics of phase change then becomes (10)

1 − λ(t)

1 − λ(∞)
= 1 − exp


 nk

1 − λ(∞)

t∫
0

h(τ )[Φ(t, τ )]n−1 dτ


 (10.10)

where k = (1/n)(ρc/ρl)K N (0) G(0)−1. Since the growth rate is expected to be
nucleation controlled, both h(τ ) and g(τ ) are, in general, functions of 1 − λ(t).
When g(τ ) and h(τ ) are equal to unity, Eq. (9.42) is regenerated.

1 The parameters used are given in Table 1 of Ref. (10).
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Fig. 10.7 Theoretical plot of 1 − θ against log(t/τ ∗
1/2) for three different copoly-

mers. Initial undercoolings are indicated in the parentheses. Dotted curves calcu-
lated from Eq. (10.10).(10)

Equation (10.10) is not susceptible to any simple analytical solution. It must be
evaluated by numerical methods. For purposes of calculation, it has been assumed
that growth proceeds by means of a three-dimensional nucleation process. Qual-
itatively similar results are obtained if coherent unimolecular growth nucleation
is assumed. The attenuation of the nucleation rate previously described has been
utilized. The results are summarized in Fig. 10.7 where 1 − θ is plotted against the
reduced time rate variable (t/τ ∗

1/2), τ ∗
1/2 being the hypothetical half-time that would

be observed if Eq. (9.31a) were obeyed.
It is evident from Fig. 10.7 that noncrystallizing units incorporated into the chain

cause major changes in the isotherm shape as compared to those of homopoly-
mers. Deviations from superposable behavior are predicted. They become more
pronounced with increasing concentration of the noncrystallizable comonomer
and decreasing undercooling. When compared with homopolymers, the calculated
isotherms show a retardation in the crystallization process. A characteristic fan-
ning out along the time axis is invariably observed. The dashed curves in Fig. 10.7
represent isotherms calculated from Eq. (9.31a), with n = 4 where the nucleation
and growth rates are assumed to be invariant with the extent of the transformation.
It can be seen that at large values of undercooling copolymer isotherms typical of
homopolymer are approached. The isotherms also tend toward superposability in
the limit of low levels of crystallinity. The calculations are thus in qualitative accord
with the experimental observations for the overall crystallization of random type
copolymers.

The extreme sensitivity of the crystallization isotherms to small amounts of ir-
regular structure is demonstrated in Fig. 10.7 for WB = 0.01. Although deviations
from Eq. (9.31a) are not observed until 1 − θ � 0.6, a small but significant depar-
ture from the homopolymer theory develops as the level of crystallinity increases
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Fig. 10.8 Plot of the relative amount transformed of poly(1,4-butadiene) against log
time for indicated crystallization temperature. Data from Fig. 10.1. Crystallization
temperatures: � 17 ◦C; � 15 ◦C, � 12 ◦C, � 9 ◦C, � 6 ◦C, � 3 ◦C, ● 0 ◦C, © −3 ◦C.
Derived Avrami equation: — n = 3; − − n = 4.

further. Crystallization kinetics thus presents a method by which small amounts of
noncrystallizing chain units can be detected.

With this theoretical background it is of interest to analyze, by means of the
Avrami formulation, the overall crystallization kinetics of some typical random type
copolymers. The results are illustrated in Figs. 10.8, 10.9 and 10.10 for poly(trans-
1,4-butadiene) (1), long chain branched polyethylene (2) and an ethylene–octene
copolymer (11), respectively. The data for the first two polymers cover the indicated
range of crystallization temperatures. Only one crystallization temperature, 115 ◦C,
was studied with the ethylene–octene copolymer. In all three examples illustrated,
the early portions of the isotherms fit derived Avrami, with an integral value of n.
Quite often when Eq. (9.31a) is used to analyze the data nonintegral values of the
exponent n are obtained.(12,13,14) This type of analysis leads to an erroneous
interpretation of the basic mechanisms involved. It is often concluded that the nu-
cleation and growth rates change with the extent of the transformation. However,
the results can be explained by the fact that the composition of the melt, and the se-
quence distribution, is continuously changing. The analysis of the ethylene–octene
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Fig. 10.9 Plot of the relative amount transformed of long chain branched polyethy-
lene against log time for indicated crystallization temperatures. Crystallization
temperatures: � 108.11 ◦C; � 106.72 ◦C; � 105.72 ◦C; ● 104.1 ◦C; © 101.88 ◦C.
Data from Fig. 10.2. Derived Avrami equation: — n = 3; − − n = 4.

copolymer, given in Fig. 10.10, indicates that the derived Avrami relation, with
n = 3, holds for better than half of the transformation.

Earlier in this section it was shown that the overall crystallization rates of random
copolymers are dependent on molecular weight. This behavior is now examined
in more detail by the plots given in Fig. 10.11.(3) The data are for a set of hy-
drogenated poly(butadienes) with approximately 2.3 mol percent branch points.
The time required to develop 10% of the absolute amount of crystallinity, τ0.10, is
plotted against the molecular weight. There are several distinguishing features in
this figure. Except for the lowest temperatures, the crystallization rate decreases
(τ0.10 increases) with increasing molecular weight. This dependence is strong at
the highest crystallization temperatures. At the lower ones there are only modest,
or negligible, rate changes with molecular weight. These results are qualitatively
similar to those observed for linear polyethylene, as well as other homopolymers,
as was described in Chapter 9. Linear polyethylene, however, yields a definite rate
maximum at the higher crystallization temperatures. At low crystallization temper-
atures, the maximum is no longer observed in linear polyethylenes and the rate is
essentially independent of chain length. The crystallization temperatures at which
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Fig. 10.10 Plot of relative amount transformed for an ethylene–octene random
type copolymer, (0.21 mol percent octene) as a function of log time crystallized at
115 ◦C. (Data from Akpalu et al. (11))

the maxima with molecular weight are observed in linear polyethylene correspond
to undercoolings of about 20 ◦C or less. The crystallization of the hydrogenated
polybutadienes with about 2.3 mol percent branch points are conducted at un-
dercoolings in the range of 26–43 ◦C. Maxima would not be observed in linear
polyethylene for crystallization carried out at these high undercoolings. The large
difference in undercooling appears to be the reason that maxima are not observed
for this set of copolymers. In analogy with homopolymer, it can be concluded that
the overall crystallization rate of random copolymers depends on molecular weight
in a complex manner.

The comonomer concentration also has a profound influence on the crystalliza-
tion rate. It governs the temperature interval where the observation of crystallinity
is practical. Typical behavior is illustrated in Figs. 10.12a and b for hydrogenated
poly(butadiene) and hexamethylene adipamide-co-hexamethylene terephthalate re-
spectively.(3,15) Here, the reciprocal of the crystallization rate is plotted as a
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Fig. 10.11 Plot of log crystallization rate (τ0.1) against log Mw for hydrogenated
poly(butadienes) with ∼2.3 mol percent branch points. Isothermal crystallization
temperatures are indicated.(3)

function of the undercooling. The plots illustrate the major changes that take place
in the rate, at a fixed undercooling and molecular weight, due only to copolymer
composition. The shapes of the curves for either polymer are similar to one an-
other. The curves are displaced along the �T axis according to composition. In
order to maintain a given crystallization rate a substantial increase in the undercool-
ing is required as the co-unit content increases. For example, in order to maintain
τ0.10 = 102 min for the hydrogenated poly(butadienes) requires a �T of 28 ◦C
for the 1.21 mol percent copolymer and a �T of 52 ◦C for the 5.68 mol percent
copolymer. Conversely, at a given undercooling the crystallization rate decreases
with increasing co-unit content. Examination of Fig. 10.12b indicates that the crys-
tallization rates of the copolyamides behave in a similar manner. It can be expected
that other random type copolymers will show similar behavior.
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Fig. 10.12a Plot of crystallization rate, τ0.1, as a function of undercooling, �T ,
for copolymers with Mw � 5 × 104: © ethylene–hexene; �, �, � hydrogenated
poly(butadiene). Mol percent branch points indicated.(3)

The plots in Fig. 10.12 emphasize the strong negative temperature dependence
in the crystallization rate in the vicinity of the melting temperatures. These results
are indicative of nucleation controlled crystallization in this temperature region.
Accordingly, we analyze the kinetics in terms of steady-state nucleation theory and
the Turnbull–Fisher relation

N = N0 exp[−ED/RT − �G∗/RT ] (9.118)

It is then necessary to assume a model for the nucleus and to calculate �G∗ for a
random copolymer. We take a cylinder as a model for a three-dimensional nucleus.
Other geometries could be selected equally well. Except for a constant factor, the
basic conclusions that are reached are independent of the geometry that is assumed
for the nucleus. In the model selected, the nucleus is composed of ρ polymer
chains each of ξ units that are aligned parallel to the length of the cylinder. As in
the case of homopolymers, the free energy, �Gd, for forming a small crystallite or
nucleus is obtained from the expression given by Flory.(16) For a random copolymer
comprising A and B units, with only the A units participating in the crystallization,
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Fig. 10.12b Plot of crystallization rate of poly(hexamethylene adipamide) and
its copolymer with hexamethylene terephthalate against undercooling, �T . Pure
homopolymer ©. Comonomer composition: ● 2 mol%; � 5 mol%; � 10 mol%;
� 15 mol%; � 20 mol%. (From Harvey and Hybart (15))

the free energy, �Gd, for forming a three-dimensional nucleus homogeneously is
given by

�Gd = 2ξσunπ
1/2ρ1/2 − ξρ �Gu + RT

x

ZA

Z̄
ξρ + 2ρσen

−RTρ ln
(x − ξ + 1)

x
− RTρξ ln XA (10.11)

Here, �Gu is the free energy of fusion per repeating unit of an infinite molecular
weight homopolymer of A units. In this equation, XA is the mole fraction of the A
structural units, ZA is the number of segments in an A unit, ZB is the number of
segments in a B unit and Z̄ ≡ ZA + (1 − XA) is the average number of segments
per unit. The total number of units of both types (A and B) per polymer molecule
is given by x ; σun is the nucleation interfacial free energy of the lateral surface and
σen is the corresponding free energy for the end surface.
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The dimensions of the critical size nucleus, ξ ∗ and ρ∗, are determined by the
saddle point of the surface given by Eq. (10.11), and are expressed as

ρ∗1/2 = 2σunπ
1/2

�Gu − RT [(1/x) + 1/(x − ξ ∗ + 1) − ln XA]
(10.12)

ξ ∗

2

[
�Gu − RT

x
+ RT

(x − ξ ∗ + 1)
+ RT ln XA

]
= 2σen − RT ln

(
x − ξ ∗ + 1

x

)
(10.13)

The free energy change at the saddle point, �G∗, is then

�G∗ = π 1/2ξ ∗σunρ
∗1/2 (10.14)

Following the same procedure the properties of a Gibbs type two-dimensional,
unimolecular, coherent nucleus can also be calculated. For this type of nucleus

�Gd = 2ξσun − ξρ �Gu + RT

x

ZA

Z̄
ξρ

+ 2ρσen − RTρ ln

(
x − ξ + 1

x

)
− RTρξ ln XA (10.15)

and the dimensions of the critical size nucleus become

ρ∗ = 2σun

�Gu − RT [(1/x) + 1/(x − ξ ∗ + 1) − ln XA]
(10.16)

and

ξ ∗ = 2σe − RT ln[(x − ξ ∗ + 1)/x]

�Gu − (RT/x) + RT ln XA
(10.17)

so that

�G∗ = 2ξ ∗σun (10.18)

In the limit of infinite molecular weight, x → ∞, Eqs. (10.14) and (10.18)
reduce to

�G∗ = 8πσenσ
2
un/(�Gu + RT ln XA)2 (10.19)

�G∗ = 4σenσun/(�Gu + RT ln XA) (10.20)

for the two types of nucleation being considered. If XA = 1, the equations reduce
to those obtained for homopolymers. The analysis represented by Eqs. (10.11) to
(10.18) can again be considered to represent a selection process. It represents the
initial step in selecting the minimum length and number of crystallizable sequences
that are required to form a nucleus of critical size. If necessary, additional steps can
be added to the crystallization process.



10.2 Random type copolymers 233

Fig. 10.13 Plot of ln crystallization rate, 1/τ0.1, against nucleation tempera-
ture function for coherent, unimolecular surface nucleation for hydrogenated
poly(butadiene) having ∼2.3 mol percent branch points for different molecular
weights. Molecular weights: � 6.95 × 103; � 2.4 × 104; ● 1.6 × 104; � 4.9 × 104;
� 7.9 × 104; � 1.94 × 103; © 4.6 × 105.(3)

The experimental results for a set of hydrogenated poly(butadienes) serve as good
examples with which to test the applicability of the nucleation theory that has been
developed. These copolymers have approximately 2.3 mol percent branch points
with weight average molecular weights that vary from 6.95 × 103 to 4.60 × 105. A
two-dimensional coherent, unimolecular nucleation process has been selected for
illustrative purposes. The value of σen used in the following example is 2000 cal
mol−1. Varying σen over the range of 1000–4000 cal mol−1 does not sensibly alter the
results. Similar conclusions are reached if a three-dimensional nucleation process is
used in the analysis. In analyzing the experimental results τ0.1 is taken as a measure of
the crystallization rate. This quantity is plotted against the appropriate temperature
function in Fig. 10.13. The latter is taken from Eq. 10.18. T 0

m is taken as 145.5 ◦C
and �Hu = 950 cal mol−1. There are some important features to this figure. The
data for the three lowest molecular weights can be represented by two intersecting
straight lines. The distinct possibility exists that the fraction M = 49 000 can also
be represented in a similar manner. On the other hand, the data for the three highest
molecular weights define a single straight line. These results are qualitatively similar
to those obtained for molecular weight fractions of linear polyethylene analyzed in
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a similar manner.(17) The only difference in the results between the two polymer
types is the molecular weight range where the change from linearity occurs. For
linear polyethylene a single straight line represents the data for fractions Mw ≥
8 × 105. The data can be represented by two intersecting straight lines for lower
molecular weights. From the point of view of crystallization kinetics the temperature
dependence between the two polymer classes is similar to one another. However,
the random copolymers appear to behave as much higher molecular weights when
compared to the homopolymers. The change in slope between the two straight lines
is reminiscent of a Regime I–II transition that was discussed in detail with respect
to homopolymer crystallization. The regimes represent asymptotic conditions in
the analysis of homopolymer crystallization. The transition from one to the other
is not as sharp as appears in Fig. 10.13.

It is also of interest to examine the temperature dependence of this set of copoly-
mers when the co-unit content is varied at a fixed molecular weight. An appropriate
set of data are plotted in Fig. 10.14 using coherent, unimolecular nucleation theory
in the infinite molecular weight approximation. For comparative purposes data for
a linear polyethylene fraction of similar molecular weight are also given. The data
for all the copolymers, whose compositions range from 1.21 to 5.68 mol percent

Fig. 10.14 Plot of log crystallization rate, 1/τ0.1, against nucleation tempera-
ture function for coherent, unimolecular surface nucleation for copolymers with
Mw � 5 × 104. Hydrogenated poly(butadiene): (a) 5.68 mol% branch points;
(b) 4.14 mol% branch points; (c) 2.30 mol% branch points. Ethylene–hexene,
1.21 mol% branch points (d). Linear polyethylene (e).(3)
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Table 10.1. Comparison of
slopes from Fig. 10.14a

Mol % branch 10−5 slope,
points cal mol−1

0.0 4.2 (I)b

2.1 (II)
1.21 7.6
2.30 7.5
4.14 7.6
5.68 8.3

a From Ref. (3).
b I and II refer to Regimes I and

II respectively.

branch points, are well represented by a set of parallel straight lines.2 The slopes
are listed in Table 10.1, along with those for the linear polyethylene. The straight
lines are displaced according to composition, reflecting the changing time scale.
The slopes of the straight lines are constant within experimental error. Thus, it can
be concluded that the product σenσun is independent of copolymer composition. Ex-
periment only yields the product σenσun so that the value of σen can only be obtained
by invoking arbitrary assumptions. If the assumption is made that σun is essentially
independent of copolymer composition then it can be concluded that σen is also
constant independent of composition.

The conclusion that σen is independent of copolymer composition has very im-
portant ramifications. Morphological studies indicate that as the co-unit content
increases the lamellar crystallites degrade and eventually become micellar in char-
acter. Concomitantly, spherulites become more poorly developed. Eventually, at
sufficiently high comonomer content, they do not form at all.3(18,19) Despite the
loss of the lamellar-like crystallite structure the value of σen, or more properly the
product of σenσun, remains constant. These results demonstrate that it is not required,
or necessary, to relate the chain conformation within the nucleus to that within the
mature crystallite. The nucleus is an extremely small entity as compared to the crys-
tallite. The value of σen only reflects the contribution between the junction of the
ordered and disordered sequences, and perhaps a few units beyond the interfacial
region of the nucleus. It is not dependent on the nominal copolymer composition.
However, the structure of the interfacial region of a mature crystallite can be ex-
pected to be different since a relatively large surface area is involved. In this case

2 Included in this data set are the results for an ethylene–hexene copolymer of similar molecular weight with
1.21 mol percent branch points.

3 A more detailed discussion of the morphology and structure of random copolymers will be given in Volume 3.
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there will be contributions from many sequences, some from the same chain and
some from others. Hence, the value of σec could very well vary with copolymer
composition. There is no requirement that the value of σen, or the product of σenσun,
that is deduced from kinetics be the same as that of a mature crystallite.

The conclusion that the value of σen is independent of whether or not lamellar
crystallites are formed is similar to the conclusion reached in analyzing both the
growth and overall crystallization rates of high molecular weight n-alkanes (see
Sects. 9.14.1 and 9.14.2). In these instances, as well as with low molecular weight
fractions of linear polyethylene, the same interfacial free energy for nucleation is
involved, irrespective of whether extended or folded chain crystallites are formed.
It becomes clear that it is not necessary to postulate that a nucleus is composed of
regular folded chains in order to form lamellar-like crystallites.

The analysis of the temperature coefficient data emphasizes the importance of
nucleation in the crystallization of copolymers. Equations (10.13) or (10.17) indi-
cate that not all the potentially crystallizable sequences in the untransformed melt
can participate in the nucleation act. The thickness, ξ ∗, of a critical size nucleus
is determined by the copolymer composition and crystallization temperature. Only
sequences containing ξ ∗, or a larger number of units, can be involved in forming a
critical size nucleus. A significant number of chain units, therefore, cannot partic-
ipate. This limitation on the sequences, and thus the crystallizable units, that can
participate in nucleation has important implications for many aspects of the crys-
tallization process. The extent of this limitation is illustrated in Fig. 10.15. Here ξ ∗,
as calculated from Eq. (10.17), is plotted against the mol percent of branch points,

Fig. 10.15 Plot of critical sequence length, ζ ∗, for coherent unimolecular surface
nucleation against mol percent branch points of hydrogenated poly(butadiene), or
similar random type copolymers. Vertical bars represent temperature intervals for
isothermal crystallization of each copolymer.(3)
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for M ∼= 5 × 104, at different crystallization temperatures. The parameters used
are appropriate to the hydrogenated poly(butadiene).(3) The bars in the figure rep-
resent the experimental temperature range for isothermal crystallization of each of
the copolymer fractions studied, as well as for linear polyethylene. For illustrative
purposes in this calculation we have used a constant value of σen. It can be deduced
from Fig. 10.15 that at low crystallization temperatures, i.e. high undercoolings,
the value of ξ ∗ is small and not sensitive to copolymer composition. Thus at large
undercoolings �G∗ is also small so that the nucleation rate is rapid and indepen-
dent of copolymer composition. It is comparable to that of the homopolymer under
similar conditions. In contrast, at the high crystallization temperatures much longer
sequence lengths are required for nucleation and their size increases significantly
with co-unit content. Since the effective undercooling also decreases during the
isothermal crystallization, this effect will become more profound with the extent
of the transformation. Thus, in addition to the equilibrium requirements even more
stringent restraints are placed on the sequence length that can actually participate in
the nucleation (crystallization) process. Qualitatively similar results are obtained
for other modes of nucleation and values of σen. The Gibbs type nucleus that is
used here for illustrative purposes does not form stable crystallites at temperatures
infinitesimally above the crystallization temperatures unless either thickening oc-
curs or there is a reduction in the interfacial free energy as the mature crystallite
develops. It is difficult to resolve this dilemma for random copolymers.

The value of ξ ∗ sets a limit on the fraction of the sequences that can participate
in the nucleation. This fraction can be calculated irrespective of how they are
distributed among the crystallites.(3) The number of sequences, ν, of CH2 groups,
each of which contains a number of units equal to or greater than ξ ∗, can be expressed
as

ν = νa(1 − XA)X ξ∗−1
A (10.21)

Here νa is the number of crystallizable units and XA is their mole fraction. The
fraction of crystallizable sequences, fc, is found by dividing Eq. (10.21) by the
total number of CH2 sequences. Thus,

fc = ν/(no. of branches + 1) (10.22)

The results of this calculation are shown in Fig. 10.16, where fc is plotted against
the mol percent branch points for a family of crystallization temperatures. As is
illustrated in the figure, the fraction of sequences that can participate in nucleation
decreases rapidly with co-unit content at a fixed molecular weight. This factor will
significantly retard the crystallization rate and will require a reduction in tempera-
ture in order for the transformation to proceed. The experimental temperature range
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Fig. 10.16 Plot of fraction of sequences, fc, that can participate in nucleation
against mol percent branch points at indicated crystallization temperature in ◦C.(3)

of the crystallization is also indicated in the figure. For linear polyethylene the cor-
responding temperature interval is about 120–130 ◦C for fc equal to unity. The
value of fc rapidly drops to the 0.2–0.3 range for copolymers with 2.3 mol percent
branches and greater. For these copolymer fractions, the crystallization temperature
is adjusted accordingly to allow for the fractions of sequences required. The 1.21
mol percent copolymer requires a higher value of fc. Thus, in effect, fc establishes
the temperature range over which isothermal crystallization can be conducted in a
reasonable time frame, i.e. from minutes to days.

The same factors of the melt structure, such as entanglements and other topolog-
ical structures, that are important in homopolymer crystallization will also affect
copolymers. However, for random copolymers the ξ ∗ requirement, and the concen-
tration of eligible sequences, dominates the crystallization kinetics.

The isotherms of the copolymers with the lower co-unit content initially follow,
with but minor exceptions, the Avrami or Goler–Sachs formulation with n = 3. In
this respect they are similar to homopolymers of modest molecular weight 104–106.
However, for the higher co-unit copolymers n changes from 3 to 2. Electron mi-
croscopy studies have shown that in this range of copolymer composition lamellar-
like crystallites are no longer formed.(19,20) This is another example of the value
of the exponent n reflecting the crystallite growth.

The role of sequence selection during the isothermal crystallization of random
type copolymers can be monitored by means of differential scanning calorimetry.
(21–24) The evolution of the melting endotherms with the time of crystallization
shows some unique features. An example of this development is shown in Fig. 10.17
for a hydrogenated poly(butadiene) with 2.3 mol percent branch points crystal-
lized at 89.8 ◦C.(24) In this experiment the fusion process was initiated from the
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Fig. 10.17 Thermograms from differential scanning calorimetry for a hydro-
genated poly(butadiene), 2.2 mol percent branch points; Mw = 108 000, crystal-
lized at 89.8 ◦C. Times of crystallization are indicated, as are the peak temperatures
of the two endotherms.(24)

isothermal crystallization temperature, without any cooling. Initially, at this crys-
tallization temperature, only a single broad endothermic peak, centered at 101 ◦C
is observed on fusion. However, with time, as the crystallization progresses an-
other peak develops, which is centered at about 92.8 ◦C. The intensity of this peak
increases with the crystallization time and is shifted to higher temperatures. The
temperature increase is 2 ◦C in this example. In contrast, the peak of the higher
melting endotherms only increases about 0.4 ◦C.

The results for a similar type of experiment, where the crystallization temper-
ature is increased to 100.8 ◦C are shown in Fig. 10.18. In this case only a single,
broad endotherm is observed, even after crystallization for more than 4000 min-
utes. The endothermic peak increases by only 0.8 ◦C over this time span. Figure
10.19 illustrates the increase of the respective endothermic peaks for the copolymer
crystallized at different temperatures. The curve describing the results for crystal-
lization at the highest temperature only shows a slight increase in the endothermic
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Fig. 10.18 Thermograms from differential scanning calorimetry for a hydro-
genated poly(butadiene), 2.3 mol percent branch points; Mw = 108 000, crys-
tallized at 100.8 ◦C. Times of crystallization are indicated, as are the peak temper-
atures of the endotherms.(24)

Fig. 10.19 Plot of melting temperature against time after isothermal crystallization,
at indicated temperatures, of a hydrogenated poly(butadiene), 2.3 mol percent
branch points, Mw = 108 000.(24)
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peak in the time interval studied. However, it does portend further increases with
longer crystallization time. The results for the lowest crystallization temperature
show a substantial increase in the position of the low melting endotherm, but only
a slight change in the higher one. It has been demonstrated that the two peaks are
a consequence of isothermal crystallization. They are not due to melting or partial
melting and subsequent recrystallization.(22,23)

The development of multi-peaks after isothermal crystallization has also been
observed in ethylene–1-alkanes and other ethylene copolymers.(24–28) This phe-
nomenon can be expected in all types of random copolymers. The development
of the low temperature endotherm has been termed secondary crystallization.(28)
It obviously bears no relation to the secondary crystallization processes that have
been attributed to the crystallization of pure homopolymers. The development of
the low temperature peak does not manifest itself directly in other overall crystal-
lization studies.(3) The isothermal development of two endothermic peaks has also
been observed during the crystallization of certain high melting polymers.(29–32)
The low temperature peak found in this group of polymers has been attributed
to the crystallization of constrained sequences. There is the suggestion, based on
the results for the random copolymers, that structural irregularities, such as long
branches among others, may be incorporated in these chains.

The development of two endothermic peaks during the isothermal crystallization
of random type ethylene copolymers raises the question as to why at least two broad
crystallite populations form. The answer lies in the recognition of the sequence
distribution of the initial melt inherent to this class of copolymers. Depending on
the copolymer composition and crystallization temperature only sequences equal
to or greater than a critical length can participate in the nucleation and thus the
crystallization. The crystallization rates within the allowable set of sequences will
depend on the temperature. At the high crystallization temperatures, only the longer
sequences will have an undercooling sufficiently high that they can crystallize
at a reasonable rate. However, the undercooling for the shorter sequences will
be low, retarding their crystallization over a reasonable time scale. Thus, at the
higher crystallization temperature only a single endotherm is observed. As the
crystallization temperature is lowered, the effective undercooling is increased thus
allowing for the crystallization of the short sequences, albeit at a more protracted
rate. The nature of the endotherms and their dependence on the crystallization
temperature can be explained in a qualitative manner by focusing attention on the
initial sequence distribution. The increase in the melting peaks of both the high and
low temperature endotherms can be attributed to the changing sequence distribution
in the melt; in particular the removal of the shorter sequences to the crystalline state.
It does not necessarily follow that because the melting temperature of a random
copolymer increases that the crystallites are thickening.(26) The chemical potential
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of the melt is of equal importance with that of the crystallite state in determining
the melting temperature. Changes in the sequence distribution in the residual melt
will alter its chemical potential.

In summary, certain features of the overall crystallization kinetics of copoly-
mers are similar to those of homopolymers, while in other respects there are some
fundamental differences. A major controlling factor of both the equilibrium and
kinetics of copolymer crystallization is the chain microstructure. What is important
is the sequence distribution of the crystallizable units. The importance of the distri-
bution of sequence lengths of the crystallizing species in all aspects of copolymer
crystallization cannot be overemphasized. Even on an equilibrium basis, not all the
crystallizable sequences can participate in the crystallization process. Equilibrium
theory makes clear that only sequences that exceed a certain critical length (not to
be confused with the critical sequence length for nucleation) can participate in the
crystallization at a given temperature. This requirement explains the broad melting
range characteristic of random copolymers and the large decrease in the equilib-
rium level of crystallinity with co-unit content.(33) Although the concern here is
with kinetic processes, the equilibrium requirements serve as a necessary bound. In
addition there is a further restriction on the fraction of sequences that can participate
in forming a nucleus of critical size. This restraint, which can be severe, depends on
the undercooling at which the crystallization is conducted and the co-unit concen-
tration. This is a major factor that severely limits the level of crystallinity that can be
actually attained relative to the theoretical equilibrium expectation. These consid-
erations also contribute with rare exception to the retardation of the crystallization
rate with increasing comonomer content, at a constant undercooling, when there is
only one specific crystallization.(33a)

The deviations that are observed from either the free-growth or Avrami rela-
tions can be attributed in part to the general problem encountered in homopolymer
crystallization, i.e. the role of chain entanglements. In addition, there is a major con-
tribution to the deviations due to the decreasing availability of eligible sequences as
the transformation proceeds. This is due to the decrease in the undercooling at con-
stant temperature. As a consequence, in contrast to homopolymer crystallization,
copolymer isotherms are not superposable. Deviations from theory are observed at
much lower levels of crystallinity, although the same basic type of nucleation is
involved with both homopolymers and copolymers. Nucleation catalysts influence
copolymer crystallization in a similar manner to that of homopolymers.(33b)

The isotherm shapes that are characteristic of random copolymers give clear
indication of a nucleation and growth type transformation taking place, despite
the fact that the isotherms do not superpose. In addition, the unique temperature
coefficient in the vicinity of the melting point requires the adoption of appropriate
nucleation theory. However, the general concept of nucleation and growth governing
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the crystallization of polymers in the bulk has been seriously questioned and an
alternative proposed.(34–37) The concept proposed is to be primarily motivated
by electron microscopic observations that are complemented by small-angle x-ray
determinations of the crystallite thicknesses upon both crystallization and fusion. It
is more appropriate to discuss this concept in Volume 3, where the relation between
structure, morphology and properties of copolymers will be discussed in Chapter 16.

10.2.2 Random copolymers: spherulite growth rates

Spherulites are frequently observed in random copolymers. However, as in ho-
mopolymers, spherulite development is not a universal mode of copolymer crystal-
lization. The molecular weight, chain microstructure and crystallization tempera-
ture establish the boundary for spherulite formation in random copolymers.(38–40)
Important limitations are imposed on the study of spherulite growth. Quantitative
studies of spherulite growth rates, using optical microscopy, are by necessity lim-
ited to relatively low levels of crystallinity. There are, however, certain advantages
in studying spherulite growth rates in random copolymers as long as the limitations
are recognized.

Studies with many different random type copolymers have shown that the rate
of change of the spherulite radius with time is constant.(41–43) In these cases the
concentration of comonomer is low and the level of crystallinity that is attained
is small. Thus, the anticipated nonlinearity, due to the changing composition and
sequence distribution with the isothermal transformation, is not always observed.
It is apparent from Fig. 10.6 that under these circumstances deviations from ho-
mopolymer type growth will be small. However, for higher comonomer contents,
and longer crystallization times, nonlinear growth rates are observed. An example
is given in Fig. 10.20 for an ethylene–vinyl acetate copolymer that contains 6.0 mol
percent of comonomer and about 1 mol percent of long-chain branches.(44) Ini-
tially the growth rate of this copolymer is constant but it slowly decreases as the
transformation progresses. The decrease in rate can in this case be attributed to the
changing sequence distribution and composition of the melt.

The dependence of the spherulitic growth rate on co-unit content and molecular
weight follows the pattern that was established by the studies of the overall crystal-
lization rate.(3) For example, the growth rates of the ethylene–vinyl acetate copoly-
mers decrease by several orders of magnitude, at a fixed value of the nucleation tem-
perature function T 0

m/T �T , as the comonomer content increases from that of the
homopolymer to the 6 mol percent copolymer.(44) Studies with molecular weight
and composition fractions of random ethylene–1-octene copolymers are more ex-
tensive and show similar features.(8) An example is given in Fig. 10.21 where ln G
is plotted against �T for molecular weight fractions in the range Mw = 17–23×103
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Fig. 10.20 Plot of spherulite growth rates against time for an ethylene–vinyl acetate
copolymer that has 6.0 mol percent comonomer. Curves (a) and (b) represent two
different directions. (From Nachtrab and Zachmann (44))

Fig. 10.21 Plot of ln G against �T for linear polyethylene and a set of ethylene–
octene copolymers of comparable molecular weight and varying comonomer con-
tent. ● Linear polyethylene. Copolymers: © Mw = 23 600, 0.42 mol% branches;
� Mw = 18 120, 1.1 mol% branches; � Mw = 17 500, 2.2 mol% branches. (Data
from Lambert and Phillips (8))
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that have different comonomer contents.(8) There is a two to five order of mag-
nitude reduction in the growth rate, depending on the value of �T , between the
homopolymer and the copolymer with 2.2 mol percent branch points. Similar be-
havior is found in other molecular weight ranges.(8)

The expression that was used to analyze the temperature dependence of the
growth rate of homopolymers can also be applied to copolymers. Therefore, in the
infinite molecular weight approximation, well removed from the glass temperature,

G = G0 exp

[
− ED

RT
− g2T 0

m

T �T

]
(9.173)

When applied to copolymers, Tm and �T refer to the appropriate composition of the
random copolymer. The growth rates for three different molecular weight ranges
of random ethylene–1-octene copolymers, each with varying comonomer content,
are plotted according to Eq. (9.173) in Figs. 10.22a, b and c.(8) The Tm values
are calculated from ideal equilibrium theory with the crystalline phase being pure.
In each of the figures the growth rate for the complementary homopolymer is also
given. The data for some of the fractions can be represented by a single straight line.
In other cases, the data can be fitted to two intersecting straight lines, indicating
that the simple nucleation theory being used does not apply.

The fact that different portions of the data can be represented by two straight lines
of different slopes is suggestive of regime behavior involving the relations between
the nucleation and spreading rates. The temperature interval for crystallization is
narrow, ranging only from 6 ◦C to 10 ◦C at the most, and is similar to that of the
linear polyethylenes. The plots for the low and intermediate molecular weights,
Figs. 10.22a and b, are suggestive of Regimes I and II asymptotes. However, the
slope ratios range from 1.5 to 2.1 for the two intersecting straight lines drawn
in Fig. 10.22a. Thus, for the lowest molecular weights the slope ratios are not
constant, nor is the I–II transition sharp. The data for three of the four copolymer
fractions shown in Fig. 10.22b are well represented by single straight lines. The
other two, in this intermediate molecular weight region, can be represented by two
intersecting straight lines. These slope ratios are 2.2 and 2.3 indicating that a I–II
Regime transition might be taking place. The three fractions that are represented
by straight lines have either the highest co-unit content or a molecular weight
that is significantly higher than the others. These results are reminiscent of the
overall crystallization rate results of the high molecular weight linear polyethylene
fractions. The fraction in the highest molecular weight group (Fig. 10.22c) that
can be represented by a straight line also represents the larger molecular weight. A
general rule appears to be developing that, insofar as growth rates are concerned, as
the chain length and comonomer content increase the ethylene copolymers behavior
resembles that of much higher molecular weight linear polyethylenes.
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Fig. 10.22 Plot of ln G against Tm/T �T for a set of ethylene–octene copolymers
of similar molecular weight and varying comonomer content. (a) ● linear polyethy-
lene Mw = 18 120. Copolymers: © Mw = 23 600, 0.42 mol% branch points; �
Mw = 18 600, 1.1 mol% branch points; � Mw = 17 500, 2.2 mol% branch points.
(b) ● linear polyethylene Mw = 51 500. Copolymers: © Mw = 89 900, 0.67 mol%
branch points; � Mw = 54 700, 1.36 mol% branch points; � Mw = 41 800, 1.55
mol% branch points; � Mw = 65 500, 3.2 mol% branch points. (c) Copolymers:
● Mw = 174 700, 0.29 mol% branch points; © Mw = 117 500, 0.55 mol% branch
points; � Mw = 104 000, 1.11 mol% branch points. (Data from Lambert and
Phillips (8))
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Fig. 10.22 (cont.)

Fig. 10.23 Plot of ln G∗ against ln N ∗, according to Eqs. (9.203) and (9.204),
for ethylene– octene copolymers. (a) Mw = 18 600, 1.1 mol% branch points; (b)
Mw = 54 700, 1.36 mol% branch points; (c) Mw = 117 500, 0.55 mol% branch
points. (Data from Lambert and Phillips (8))

The data can be analyzed more exactly by applying Frank’s continuum theory fol-
lowing the procedure used for homopolymers.(45,46) The results of such an analysis
are shown in Fig. 10.23 for three typical fractions, one from each of the molecular
weight groups. For the low and intermediate molecular weight fractions, curves (a)
and (b), the asymptotes of regimes I and II are attained at low and high crystallization
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temperatures, respectively. There is a diffuse transition between the two regimes as
was found in homopolymers. The plot for the highest molecular weight, curve (c),
shows that crystallization occurs in Regime II at the highest crystallization tem-
peratures. However, at the lower crystallization temperatures the theory no longer
holds. At these temperatures there is probably a major retardation in the spreading
rate and eventually only extremely rapid nucleation takes place. The change is very
diffuse, and is the cause of the high slope ratios for the plots in Fig. 10.22c.

The product of the interfacial free energies, σunσen, for the copolymers can be
determined from the slopes of the appropriate straight lines in the different regimes.
The average value of σunσen for the copolymers in the two lowest molecular weight
groupings is about 1200 erg2 cm−4. This value is comparable to those found for
linear polyethylene fractions. This product of the interfacial free energies is slightly
greater than the 1000 erg2 cm−4 found for the copolymers in the highest molecular
weight group. Small changes in the equilibrium melting temperatures can account
for this difference. To emphasize once again, these values are for nucleation and
not for the mature crystallites.

The specific influence of copolymer composition and molecular weight on the
growth rate is examined in Fig. 10.24, where different sets of copolymers are plotted,

Fig. 10.24 Plot of ln G against Tm/T �T for ethylene–octene copolymers of com-
parable concentration of branch points with varying molecular weights. (a) ●

Mw = 89 900, 0.67 mol% branch points, © Mw = 117 500, 0.55 mol% branch
points; � Mw = 23 600, 0.42 mol% branch points. (b) © Mw = 104 000, 1.10
mol% branch points; ● Mw = 54 700, 1.36 mol% branch points; � Mw = 18 600,
1.11 mol% branch points. (Data from Lambert and Phillips (8))
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so chosen that their comonomer contents are close to one another but their molecular
weights vary. One such set is given in Fig. 10.24a where the fraction of branch points
is about 0.5 mol percent and the molecular weights vary from 24 000 to 118 000.
The branch point content is about 1.1 mol percent for the copolymer set given in
Fig. 10.24b and the molecular weights are in the same range, 19 000 to 104 000.
In both examples there is a significant decrease in the growth rate with molecular
weight at any given value of Tm/T �T . The decrease in rate is more marked for the
higher co-unit content copolymers. These results are qualitatively similar to those
found for the overall crystallization rates of the hydrogenated poly(butadienes) (3)
and linear polyethylene above a critical molecular weight (Fig. 9.97).

In a unique and interesting set of experiments the spherulite growth rates of a
linear polyethylene and a set of random type ethylene–octene copolymers, of vary-
ing comonomer content, were studied at very large undercoolings.(47) It was found
that at these undercoolings the highest growth rates of the copolymers merged with
one another and with that of the linear polyethylene. This result is expected, based
on the plots in Fig. 10.15. At the large undercoolings in question, ζ ∗ is theoretically
expected to be essentially independent of copolymer composition. Thus, �G∗, the
steady-state nucleation rates, and the growth rates of the parent homopolymer and
the copolymers will be close to one another. This conclusion follows from basic
nucleation theory as applied to random copolymers. The convergence of growth
rates at large undercooling does not represent a major breakdown of theories that
describe polymer crystallization.(47)

The dependence of the spherulite growth rate on copolymer composition can
be calculated from first principles. For illustrative purposes, a coherent unimolec-
ular type nucleation is assumed. The spherulite growth rate in the vicinity of the
equilibrium melting temperature can then be written as

GC = GC
0 exp

{−EC
D

RT
− �G∗,C

RT

}
(10.23)

where the superscript C refers to a random copolymer. For the parent homopolymer

GH = GH
0 exp

{−EH
D

RT
− �G∗,H

RT

}
(10.24)

where the superscript H refers to the homopolymer. It is reasonable to assume that
EH

D � EC
D and GH

0 � GC
0 so that

ln GC − ln GH = 4b0σenσun

RT �GH
u

[
1 − �GH

u

�GC
u

]
(10.25)
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or

ln GC − ln GH = 2b0σunζ
∗,H

RT

[
1 − �GH

u

�GC
u

]
(10.26)

It has been assumed that the respective interfacial free energies for nucleation as-
sociated with the homopolymers and copolymers are the same. The product of
interfacial free energies has been shown to be essentially independent of compo-
sition for a given set of copolymers. However, their identification with that of the
parent homopolymers is a serious assumption. In Eq. (10.26) �GH

u and �GC
u are

the free energies of fusion per repeating unit of the homopolymers and copolymers
respectively, and ζ ∗,H is defined as ζ ∗ at the crystallization temperature. This de-
velopment is predicated on the assumption that the crystalline phase remains pure.
Recalling that

�GC
u = �GH

u + RT ln(1 − XB) (10.27)

and expanding the logarithm for small values of XB, the mole fraction of noncrys-
tallizing units, it follows that

ln GC = ln GH −
(

2b0σunζ
∗,H

�GC
u

)
XB (10.28)

Thus, based on standard nucleation theory a linear relation between ln GC and XB

is to be expected at a constant value of �GC
u . Equation (10.28) can be recast in

terms of ζ ∗,c as

ln GC = ln GH − (b0 σunζ
∗,Hζ ∗,c/σen)XB (10.29)

since

ζ ∗,C = 2σen

�GC
u

(10.30)

At large undercoolings Eq. (10.29) can be approximated by

ln GC ∼= ln GH − K ζ ∗,C XB (10.31)

At a fixed crystallization temperature ζ ∗,C will depend on XB as indicated in Fig.
10.15 for random copolymers of ethylene. At low crystallization temperatures and
large undercoolings, ζ ∗,C will be essentially constant over a relatively large range
in comonomer content. At intermediate crystallization temperatures ζ ∗ increases
slowly with composition. Over a small range in co-unit content the relation is linear.
At the highest crystallization temperatures, the increase in ζ ∗,C with XB is more
pronounced, but is still linear over a small interval in XB.

Andrews et al. have postulated that the growth rate is attenuated in direct pro-
portion to the probability of finding sequences of lengths ζ ∗,C or greater.(43) With



10.3 Block or ordered copolymers 251

this postulate, it is found that

ln GC ∼= ln GH − ζ ∗,C XB (10.32)

which is of the same form as Eq. (10.31), but with K = 1. Experimental data
for several systems (8,43) follow the linear relation expected from Eqs. (10.31)
or (10.32) for small values of XB. However, when the slopes are analyzed with
K = 1, serious difficulties arise in rationalizing the apparent values of ζ ∗,C that are
deduced.

10.3 Block or ordered copolymers

Since the sequence propagation parameter, p, of a block copolymer differs from
that of a random type, the crystallization kinetics can be expected to be different.
Since p → 1 for a block copolymer, the kinetics should approach that of the ho-
mopolymer. There are, however, several important mitigating factors. The melt,
from which crystallization ensues, in a block copolymer possesses unique features
that could influence the kinetics. The melt can be either homogeneous, in the con-
ventional sense, or heterogeneous. When heterogeneous, or phase separated, the
melt could be comprised of one of several different domain structures, such as
cylinders or spheres, that were described in Chapter 5 (Volume 1). The strength of
the segregation plays an important role in the microphase separation and domain
structure. During the crystallization of a block copolymer there is a competition
between maintaining the domain structure, such as spheres, cylinders, lamellae and
gyroids, or developing the conventional alternation of crystalline and amorphous
layers. The segregation strength is important in this regard. Thus, the different pos-
sible structures in the initial melt could influence the course of the crystallization
and thus the morphology and properties. When one block of a diblock copolymer
does not crystallize, the question as to whether the state of the noncrystallizing
block, glass or rubber-like, influences the crystallization kinetics needs to be ad-
dressed. If both blocks crystallize then the role of the already crystallized block
on the crystallization of the other one is important. For triblock copolymers the
location of the crystallizing block could be important. All of these possibilities, and
perhaps others, must be kept in mind in the analysis of the crystallization kinetics
of block copolymers.

Since block copolymers can be synthesized in a variety of chain architectures,
we consider first diblock copolymers in which only one block can crystallize.
An example of the overall crystallization kinetics of a diblock copolymer, atac-
tic poly(styrene)–poly(ethylene oxide), is illustrated in Fig. 10.25.(48) Here the
relative fraction transformed is plotted against log time, at different crystalliza-
tion temperatures. Only the poly(ethylene oxide) block, Mn = 9900, crystallizes
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Fig. 10.25 Plot of relative fraction transformed against log time for block copoly-
mer of poly(ethylene oxide) and atactic poly(styrene). (From Seow et al. (48))

Fig. 10.26 Demonstration of superposability with isotherms of Fig. 10.25.

in this copolymer. The isotherm shapes are similar to those of the corresponding
homopolymer. The superposition of the isotherms is readily apparent, as is illus-
trated in Fig. 10.26. The solid curve drawn in the figure represents the derived
Avrami equation with n = 3. Good agreement between experiment and theory is
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attained for about 70–80% of the transformation. This behavior is virtually identi-
cal to that of the corresponding homopolymer. The fact that very long sequences
of the crystallizing component are involved in both the homopolymer and block
copolymer is the reason for the similarity in kinetics. A similarity in isothermal
shapes between block copolymer and homopolymer is found in other copolymers
as well.(49–52) This reflects the fact that the Avrami exponent is maintained. In
general the crystallization rate, overall or spherulitic growth, decreases in a block
copolymer relative to that of the parent homopolymer.(50,53–55) Within this gen-
eralization there are interesting specific situations. Consequently we consider in
somewhat more detail the influence of the noncrystallizing block, i.e. whether it is
rubber-like or glassy, on the crystallization kinetics. Also of interest is whether the
microdomains in the initial melt are weakly or strongly segregated and the influence
of the domains on the crystallization.

When the noncrystallizable block in a diblock copolymer is rubber-like the
isotherm shapes are very similar to those of the parent homopolymers.(55,56) This
situation exists even when the crystallization occurs from a well-defined melt struc-
ture.(55,57,58) However, at a fixed undercooling, there is a reduction in the overall
crystallization and spherulite growth rates.(55) When the growth rates of ethylene
oxide–butadiene block copolymers, and the corresponding homopolymer, are plot-
ted against 1/�T it is found, with the exception of the lowest content ethylene
oxide polymer, that a set of parallel straight lines results irrespective of the initial
melt domain structure.(55) This result implies that the products of interfacial free
energies for nucleation are similar to one another.

The situation is quite different when the noncrystallizing component is a glass.
When Tg of the noncrystallizable block is greater than Tm of the crystallizable block
there is the potential for the crystallization to be confined to local domains. Although
many interesting morphological situations can evolve, the interest at this point is
focused on the crystallization kinetics in the confined space. Some typical results
are given by the block copolymer tetrahydrofuran–styrene, where the poly(styrene)
is the glassy component.(54) An important finding is the fact that the isotherm
shapes, as manifested by the Avrami exponent n, depend on the composition of the
crystallizing component. For example, when the concentration of the crystallizing
block is 59% by volume, the isotherm shape, described by n � 2, is the same as
that of the parent homopolymer. In contrast, when the tetrahydrofuran is reduced
to 29%, crystallinity could not be developed. At intermediate compositions, 51.5
and 38%, the n values are very small, ∼0.5. It is evident that except for the highest
tetrahydrofuran content, the crystallization is subject to severe constraints.

Another example of confined crystallization is illustrated by the block copolymer
hydrogenated poly(butadiene)–poly(vinyl cyclohexane).(59) The glass temperature
of poly(vinyl cyclohexane) is about 145 ◦C, well above the melting temperature of
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the hydrogenated poly (butadiene). Depending on the molecular weight and chain
length of the crystallizing component, well-defined domain structures form in the
melt. In turn these structures are maintained in the crystalline state. The final level
of crystallinity that is attained does not depend on the initial mesophase geometry.
However, the time scale, or crystallization rate, is dependent on the initial domain
structure. When the crystalline blocks form a continuous matrix, as gyroids and
cylinders of high composition, the overall crystallization rate is essentially that of
the pure parent homopolymer. However, when the hydrogenated poly(butadiene)
domains are not spatially continuous, as lamellar or low composition cylinders, a
greater degree of supercooling is necessary in order for the copolymer to reach the
same level of crystallinity as the homopolymer and aforementioned copolymers.

The differences in time scale, relative to the initial domain structures, are also re-
flected in the detailed kinetics, the isotherm shapes and the Avrami exponents.(59a)
When there is connectivity between the domain structures, the usual sigmoidal
shaped isotherm results. However, when the crystalline block is confined to a spe-
cific domain, first-order crystallization kinetics result. This corresponds to a derived
Avrami equation with n = 1. The significance of these results will be discussed
shortly in terms of other findings.

Interesting information can be obtained when the melt structure is examined
in detail. In particular, it is convenient to describe the nonhomogeneous melt as
two categories, weakly and strongly segregated microdomains.4 When weakly seg-
regated, the microdomains, or meso-phases, are destroyed by the crystallization
process. Examples of this type of behavior have been found in diblocks of ethylene–
ethylene alt propylene,(60) ethylene–ethylene ethylene,(55,57) ethylene–3-methyl-
1-butene,(61) caprolactone–butadiene,(58) oxyethylene–oxybutylene (62) as well
as others.5(63) In these cases, irrespective of the initial microdomain structure, the
kinetic data are well represented by Avrami type isotherms. Typically the Avrami
exponent is 3.0 for an appreciable extent of the transformation as is illustrated with
ethylene–ethylene ethylene diblocks.(57) Thus, when weakly segregated, the mi-
crodomains characteristic of the initial melts are overwhelmed, and have no effect
on the crystallization. Conventional lamellar-like crystallites are formed even when
the mesophase in the melt is not lamellar.

The situation with strongly segregated systems is quite different. In this case,
the crystallization is confined to the individual domains, whose dimensions are
the order of nanometers.(64,65) As a consequence, the crystallization kinetics are
significantly different from the usual Avrami type. In a pioneering study, Loo et al.

4 The segregation power is defined by χ12 N when χ12 is the Flory–Huggins interaction parameter and N is the
overall chain length.

5 The block that is usually termed ethylene is really a hydrogenated poly(butadiene), i.e. ethylene–butene random
copolymer.
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Fig. 10.27 Plot of time course of integrated intensity of small-angle x-ray scatter-
ing for (a) block copolymer hydrogenated poly(butene)–styrene-ethylene-butene
crystallized at 67 ◦C and (b) hydrogenated poly(butadiene) crystallized at 95 ◦C.
(Adapted from Loo et al. (64))

investigated the crystallization of a diblock of hydrogenated poly(butadiene) with a
noncrystallizing terpolymer component of styrene-ethylene-butene, termed SEB63.
In this case the noncrystalline component is rubber-like.(64) Small-angle x-ray
scattering indicates that the melt of this particular copolymer is composed of spher-
ical microdomains. Transmission electron microscopy showed that, after isother-
mal crystallization, the hydrogenated poly(butadiene) component crystallized as
spheres of regular size and spacing. The strong segregation in the melt confined
the crystallization of the copolymer to 25 nm spheres. In turn, the crystalliza-
tion kinetics reflects this constraint. A subsequent study extended the molecular
weight range and composition of the crystallizing block in this type of copoly-
mer.(65) This procedure allowed for the development of spherical and cylindrical
domains with different order–disorder transition temperatures. In general, confin-
ing crystallization to individual microdomains drastically affects the crystallization
kinetics.

Figure 10.27 gives plots of the time course of the integrated small-angle x-ray
scattering during isothermal crystallization of the diblock copolymer and of the
parent crystallizing component, hydrogenated poly(butadiene).(64) The isotherm
for the hydrogenated poly(butadiene) is typical of a nucleation–growth transfor-
mation. It can be represented in the customary manner by the appropriate derived
Avrami relation for this random type copolymer.(3) The crystallization kinetics of
the diblock copolymer is quite different. It is well described by a simple exponential
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Fig. 10.28 Plot of isothermal crystallization half-time against crystallization tem-
perature for block copolymer (E/SEB63) and hydrogenated poly(butadiene) (E40).
(From Loo et al. (64))

decay, or first-order process. This corresponds to a derived Avrami equation with
n = 1. Such first-order kinetics indicates that the rate of isothermal crystallization
is proportional to the fraction of spheres that have yet to crystallize. This result
is consistent with the crystallization being confined to individual microdomains.
This result is suggestive of homogeneous nucleation and the droplet experiments
discussed in Chapter 9. The reason is that the number of microdomains far exceeds
the number of heterogeneities, or impurities, in the sample.(64) Thus, large under-
coolings can be achieved. Because of the size of the spheres, crystal growth from
the nucleation to the microdomain boundary is essentially instantaneous. Conse-
quently only nucleation rate is determined for the crystallization. The extent of the
undercooling that can be achieved in the block copolymer relative to that of the par-
ent crystallizable polymer is illustrated in Fig. 10.28. Here, the relation between the
crystallization half-time and the crystallization temperature for both the copolymer
and parent polymer are given. For example, at a half-time of 10 min the undercool-
ing is about 37 ◦C and 7 ◦C for the block copolymer and parent polymer respectively.
These undercoolings are comparable to those found in homogeneous and hetero-
geneous droplet experiments. There is thus strong evidence that the crystallization
is constrained in this system and that the nucleation process is homogeneous. In
principle, experiments at lower undercooling would allow for an accurate determi-
nation of the product of interfacial free energies. These results are consistent with
and can explain the kinetic results obtained with the ethylene–vinyl cyclohexane
block copolymer that were described above.

Detailed studies of the ethylene–styrene–ethylene–butene copolymers has al-
lowed for a more quantitative discrimination between weakly and strongly segre-
gated copolymers.(65) The microdomains were spherical in one set of copolymers,
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Fig. 10.29 Plot of Avrami exponent n and crystallization half-time against
the isothermal crystallization temperature for the diblock copolymer ethylene–
styrene-ethylene-butene Mn = 35 000, weight fraction ethylene 0.14. Squares rep-
resent data acquired by synchrotron radiation, circles, data aquired by laboratory-
based Kratky camera. (From Loo et al. (65))

and the segregation strength was varied through molecular weight control at con-
stant copolymer composition. The order–disorder transition temperatures varied
from 200 ◦C to greater than 300 ◦C for those copolymers. The crystallization kinet-
ics of a copolymer having cylindrical domains was also investigated.

The crystallization kinetics is shown to reflect the segregation strength. An ex-
ample of the key kinetic parameters is given in Fig. 10.29 for one of the blocks
with spherical domains, Mn 35 000, that has an order–disorder transition temper-
ature of 200 ◦C. The Avrami exponent is greater than 3 at the high crystallization
temperatures and approaches 1 at the lower ones. Transmission electron micro-
graphs indicate that the crystallization is confined to the spherical domains in this
case. In contrast, at the higher temperature the domain structure is destroyed upon
crystallization.(65) The higher molecular weight, strongly segregated sample, with
spherical domains, exhibited confined crystallization under all conditions, even
when the crystallization took several hours to complete.(64,65) The boundary be-
tween confined crystallization and so-called breakout crystallization was found to
depend on the ratio of the normalized segregation strength during crystallization
to that of the segregation strength at the order–disorder temperature. The ratio
(χ Nt)c/(χ Nt)ODT � 3 represents the boundary between confined and breakout
crystallization and the concomitant first-order or sigmoidal kinetics respectively.

The block copolymers with cylindrical microdomains also show confined and
breakout crystallization and the expected crystallization kinetics. There is, however,
an intermediate region for this class of copolymer. In this region small-angle x-ray
scattering patterns indicated that the crystallization was confined to the cylindrical
domains, yet sigmoidal type kinetics resulted.(65) This intermediate rate region
is defined approximately by 1.5 < (χ Nt)c/(χ Nt)ODT. Here, so-called templated
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crystallization occurs in that the cylindrical domains in the melt guide the growing
crystals but do not completely confine them. As observed by electron microscopy,
so-called “rogue” crystals connect different cylinders. This allows a large volume
of material to be crystallized from a single nucleus, resulting in sigmoidal type
crystallization kinetics. Since the rogue crystals are infrequent the small-angle x-
ray patterns are indistinguishable from the situation where the crystallization is
confined to the cylinders within which the nucleus was originally formed.

There are many interesting aspects to the crystallization of diblock copolymers.
The nonhomogeneity of the melt and the influence of the microdomain struc-
tures in the effects of the crystallization process on the resulting properties of-
fer many areas for study. The ability, by means of constrained crystallization, to
achieve classical homogeneous nucleation offers the possibility to further explore
and expand nucleation theory as applied to long chain molecules. Strongly segre-
gated diblock copolymers offer ideal systems with which to study homogeneous
nucleation.

There have not been any reports of first-order crystallization kinetics in triblock
copolymers.(59,66–72) This however does not mean that strongly segregated tri-
block copolymers do not exist. There is evidence for strong segregation that mani-
fests itself in its ability to attain large supercoolings, and by implication homogenous
nucleation and first-order kinetics.(66–72) As examples, in the block copolymers
ethylene oxide–isoprene–ethylene oxide (66) and ethylene oxide–styrene–ethylene
oxide (69) supercoolings 60–90 ◦C greater than that of the comparable homopoly-
mer, poly(ethylene oxide), are easily achieved. Similar undercoolings are attained in
other systems.(70–72) In all of these examples the actual isotherms were not deter-
mined. Thus, the type of kinetics, sigmoidal or first-order, is not known. However,
it is implied.

When the data for the triblock vinyl cyclohexane–hydrogenated butadiene–vinyl
cyclohexane is compared with the corresponding diblock copolymers, from 4 to
15 additional degrees of supercooling are needed to develop appreciable crys-
tallinity.(50) However, when this difference in supercooling is taken into account
the role of the microdomain structure in governing the isothermal crystalliza-
tion is similar for the triblock copolymer as previously described for the diblock
polymer.

The triblock copolymer styrene–butadiene– ∋-caprolactone, the last being the
crystallizable block, serves as example of a weakly segregated system.(67) Although
both the overall crystallization and spherulite growth rates are reduced relative to the
crystallizing homopolymer, the temperature ranges for isothermal crystallization
are approximately the same for the copolymer and homopolymer. Consequently,
the Avrami exponent is only slightly reduced from that of the parent homopolymer.
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The overall crystallization and spherulite growth rates have been studied for
several segmental, or multiblock copolymers.(73–76) As a rule, with but few ex-
ceptions, they crystallize at much slower rates than the corresponding crystallizing
homopolymer with a molecular weight corresponding to the block length. De-
creasing the concentration of the crystallizing component also reduces the rates.
The spherulite growth rates of multiblock copolymers of poly(tetramethylene-p-
silphenylene siloxane), (TMPS)–poly(dimethyl siloxane) have been investigated
over an extensive range of temperatures and compositions.(74) The results are
given in Fig. 10.30 and illustrate the influence of composition on the growth rate.
Growth rate maxima, similar to those found in the homopolymer, are observed with
the copolymers that contain smaller comonomer concentrations. Although no def-
inite maxima are observed as the poly(dimethyl siloxane) concentrations increase
above 20%, the plots give clear indication that they would be found if the studies
were carried out at still lower temperatures. The crystallization range is reduced as
the dimethyl siloxane content is increased. Concomitantly, the maximum growth
rate decreases smoothly and monotonically with the addition of comonomers. Other
segmented block copolymers behave in a similar manner in that the maximum is
maintained, but at a reduced value.(76)

Fig. 10.30 Plot of spherulite growth rates of TMPS homopolymer and TMPS–
dimethyl siloxane copolymers as a function of temperature for different copolymer
compositions. © homopolymer; � 90/10; � 80/20; ♦. 50/50; ⊕ 40/100; �. 30/70.
(From Li and Magill (74))
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The glass temperatures of this set of copolymers vary from −20 ◦C for the ho-
mopolymer to −105 ◦C for the 30/70 copolymer. The extrapolated equilibrium
melting temperatures range from 110 ◦C to 160 ◦C respectively over the same com-
position range.(74) Thus, the necessary information is available with which to
compare rate data utilizing Eq. (9.209). The objective is to ascertain whether the
parameters involved, U ∗ and C , follow a systematic pattern with copolymer com-
position. All of the data shown in Fig. 10.30 can be fitted quite well by Eq. (9.209)
using arbitrary parameters. The best fits are illustrated in Figs. 10.31a, b, and c for
the 90/10, 50/50 and 30/70 copolymers respectively. The other copolymers follow
a similar pattern. Despite the good fit that is obtained there is no systematic pattern
to the values of the parameters needed. For example, values of U ∗ are found to be
in the range 5046 to 1124, while C varies from 122 to 28. There is, however, no
relation between the parameters needed and copolymer composition. In another
approach to fitting the data, U ∗ and C were fixed at 1500 and 30, parameters that
were thought to be universal over time. Following this procedure respectable fits are
found with the homopolymer and the 90/10 copolymer. The agreement, however, is
poor for the higher poly(dimethyl siloxane) content copolymers. It is not surprising
that good fits could be obtained over the complete composition and crystallization
temperature range by the arbitrary selection of U ∗ and C values for each copolymer.

Fig. 10.31 Plot of ln G against crystallization temperature for TMPS–dimethyl
siloxane copolymers. Curve calculated from Eq. (9.209) with arbitrary parameters.
Solid points experimental results. Copolymer composition: (a) 90/10; (b) 50/50;
(c) 30/70. (Data from Li and Magill (74))
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Fig. 10.31 (cont.)

The influence of block length on the spherulite growth rate can be found in a
set of urethane linked poly(ethylene oxide) block copolymers.(75) The copolymers
consisted of uniform block length of either 34, 45 or 90 repeating units with total
molecular weights that varied from several thousand to 3–6 × 104. The 34 repeat-
ing unit blocks (M = 1500) always crystallized in extended form. In contrast
the 90 repeating unit blocks (M = 3900) crystallized in a folded structure at all
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Fig. 10.32 Plot of spherulite growth rate against weight average molecular weight,
M̄w, for poly(ethylene oxide) D and segmented block copolymers A, B, C. Block
length in repeating units: (A) 34; (B) 45; (C) 90. (From Friday and Booth (75))

crystallization temperatures. The copolymers containing 45 repeating units in the
block (M = 2000) crystallized in either an extended or folded form, depending on
the crystallization temperature. The influence of polymer molecular weight on the
spherulite growth rates of the block copolymers, as compared with the homopoly-
mer crystallized under similar conditions, is illustrated in Fig. 10.32. In contrast
with the homopolymer, the growth rates of the three block copolymers decrease
monotonically with increasing molecular weight. The copolymers with the larger
block lengths crystallize more rapidly than the others, at a fixed molecular weight.
The block copolymers are of modest molecular weight, yet the dependence of their
growth rate on chain length is typical of homopolymers of higher molecular weights.

A detailed analysis of the temperature coefficient of the spherulite growth of
these copolymers cannot be made because of the limited range of crystallization
temperatures and the uncertainty in their equilibrium melting temperatures. How-
ever, some qualitative observations can be made.(77) There is no significant change
in the product σenσun with molecular weight for each series of polymers of fixed
block length. The interfacial free energy products of the copolymers with differ-
ent block lengths are close to one another. The fact that either extended or folded
mature crystallites form in one series does not manifest itself in the analysis of the
temperature coefficient, i.e. in the interfacial product for nucleation.

It has already been noted that when crystallized over an extended temperature
range, the crystallization rates of both random and block type copolymers display
rate maxima, similar to those of homopolymers. A compilation of the ratios of the
temperature of maximum growth rate, Tmax, to the equilibrium melting temperature
of the copolymer, Tm, is given in Table 10.2. For a given copolymer the ratio
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Table 10.2. Spherulite growth rate maxima in copolymers

Polymer Comonomer Mol % Tmax/Tm Reference

Poly(oxymethylene) dioxolane 4 0.90 a
7 0.90

1,3-dioxane 1 0.89
3 0.89
6 0.90

dioxepane 3 0.89
6 0.89
9 0.89

epichlorohydrin 2 0.89
5 0.90
7 0.90

Poly(ethylene adipate) hexamethyl diisocyanate 5 0.85 b
diphenylmethane 5 0.87

diisocyanate
1.5 naphthalene 5 0.88

diisocyanate
2,4-toluene diisocyanate 8 0.82

5 0.89
3 0.86
2 0.84

Poly(ethylene terephthalate) azelate 6 0.77 c
11 0.76
25 0.75
31 0.72

Poly(tetramethylene dimethyl siloxane 0 0.79 d
p-silphenylene siloxane)

10 0.77
20 0.76

Copolyimidesa 0 0.91 e
20 0.86
40 0.82
60 0.82
80 0.88

100 0.87

Poly(β-hydroxy butyrate) hydroxy propionate 16 0.84 f
18 0.87

hydroxy valerate 7 0.79 g
6 0.78

hydroxy valerate 12 0.78 h
hydroxy valerate 77 0.80 i

(cont.)
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Table 10.2. (cont.)

Polymer Comonomer Mol% Tmax/Tm Reference

hydroxy valerate 8 0.83 j
19 0.87
34 0.89
55 0.87
71 0.88
82 0.88
95 0.88

stereo isomers 92b 0.84 k
88 0.87
76 0.89

Poly(β-hydroxyoctanoate)c — 0.82 l
Poly(L-lactide) 3d 0.85 m

6 0.85

a See Ref. (e) for structural formula
b Percent isotactic diads
c See Ref. (j) for composition of this terpolymer
d Percent D isomer
Reference
a. Inoue, M., J. Polym. Sci. 8, 2225 (1964).
b. Onder, K., R. H. Peters and L. C. Spark, Polymer, 18, 155 (1977).
c. Jackson, J. B. and G. W. Longman, Polymer, 10, 873 (1969).
d. Li, H. M. and J. H. Magill, J. Polym. Sci.: Polym. Phys. Ed., 16, 1059 (1978).
e. Hsiao, B. S., J. A. Kreuz and S. Z. D. Cheng, Macromolecules, 29, 135 (1996).
f. Cao, A., M. Ichikawa, K. Kasuya, N. Yoshie, N. Asakawa, Y. Inoue, T. Doi and

H. Abe, Polymer J., 28, 1096 (1996).
g. Organ, S. J. and P. J. Barham, J. Mater. Sci., 26, 1368 (1991).
h. Akhtar, S., C. W. Pouton and L. J. Notarianni, Polymer, 33, 117 (1992).
i. Pearce, R. P. and R. H. Marchessault, Macromolecules, 27, 3869 (1994).
j. Scandola, M., G. Ceccorulli, M. Pizzoli and M. Gazzano, Macromolecules, 25, 1405

(1992).
k. Abe, H., I. Matsubara, Y. Doi, Y. Hori and A. Yamaguchi, Macromolecules, 27, 6018

(1994).
l. Gagnon, K. D., R. C. Fuller, R. W. Lenz and R. J. Farris, Rubber World, November

1992, p. 32.
m. Huang, J., M. S. Lisowski, J. Runt, E. S. Hall, R. T. Kean, N. Buehler and J. S. Lin,

Macromolecules, 31, 2593 (1998).

Tmax/Tm is independent of the comonomer introduced. The ratio for the different
copolymers ranges from about 0.75 to 0.90. These values are similar to those of the
homopolymer, and for essentially the same reason.

To conclude this section we compare some aspects of the crystallization of three
model polyethylenes of different chain structures.(78) The different molecular ar-
chitectures are: a linear copolymer, hydrogenated poly(butadiene); a hydrogenated
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Fig. 10.33 Plot of ln of crystallization rate, 1/τ0.1, against nucleation tempera-
ture function for indicated copolymers based on hydrogenated poly(butadiene).
Open symbol rates measured from exotherms; closed symbol rates measured from
endotherms.(78)

poly(butadiene)–atactic poly(propylene) diblock copolymer; and a three-arm star
hydrogenated poly(butadiene). An important feature of these copolymers is that
their crystallizing portions, hydrogenated poly(butadiene), all have the same molec-
ular length and the fraction of short chain branches is the same. The isotherm shapes
of these copolymers are similar to one another.(78) Figure 10.33 gives a summary
of the crystallization rates in terms of τ0.1, the time required to reach 10% of the
maximum attained crystallinity, as they depend on the nucleation temperature func-
tion for random copolymers.6 The slopes in these plots, which reflect the product of
interfacial free energies for nucleation, increase approximately two-fold from the
linear copolymers to the star copolymers. The increase in the interfacial free energy
can be attributed to the disorder at the crystal–liquid interfacial region. Although
the three polymers have similar co-unit contents of the crystallizing species, the
star and block copolymers have additional features that cannot be incorporated in
the nucleus. For the block copolymer it is the junction with the noncrystallizing
block, while for the star it is the region surrounding the junction point where the
three chains join one another.

6 The open symbols in this figure represent rates measured from exotherms; the solid symbols represent rates
determined from endotherms.
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Figure 10.33 indicates that at a fixed undercooling the copolymers have sig-
nificantly different crystallization rates. Put another way, the curves in the figure
are shifted along the horizontal axis. The result is that the star copolymer is the
slowest crystallizer. This retardation can be attributed to the transport term in the
crystallization rate. In terms of the Vogel equation, U ∗ varies from 1500 cal mol−1

for the linear copolymer for C = 30 to 5650 cal mol−1 for the star copolymer. This
result is physically satisfactory since the long chain branches in the star copolymer
retard the transport or diffusion of the crystallizing units to the interface. The rate
of transport of the block copolymer segments would be expected to be between
those of the linear and star polymers.

10.4 Both comonomers crystallize

Some interesting situations develop when both co-units are able to crystallize. The
reason is that the species that crystallizes initially influences the crystallization of
the other component that subsequently crystallizes at a lower temperature. In effect
the crystallization of the lower melting component is constrained due to the presence
of the already crystallized material. Examples of this phenomenon are found in both
block, random and segmented type copolymers. A dramatic example of this effect is
demonstrated by the segmented block copolymers of poly(ethylene terephthalate)–
poly(butylene terephthalate).(79) The butylene terephthalate block crystallizes first
on cooling, in this example. A significant enhancement in the crystallization rate of
the poly(ethylene terephthalate) component is observed. For example, based on
half-times, overall crystallization rate of the poly(ethylene terephthalate) block is
increased about five-fold in the copolymer that only contains about 5% of the
poly(butylene terephthalate). Increasing the poly(butylene terephthalate) concen-
tration to about 20% slightly decreases the crystallization rate. The poly(butylene
terephthalate) crystallites provide nucleation sites for the subsequent crystallization
of the poly(ethylene terephthalate) component that results in an increase in the
rate relative to that of the pure homopolymer. Superstructures that are unique to
poly(butylene terephthalate) appear first in the crystallization process. They are
then followed by the growth of the poly(ethylene terephthalate) spherulites. A sim-
ilar enhancement in the overall crystallization rate is found in the block copolymer
poly(p-dioxanone)–poly( ∋-caprolactone).(80) In this case, the poly(p-dioxanone)
crystallizes first on cooling. When this block is fully crystallized, the isothermal
crystallization kinetics of the poly( ∋-caprolactone) block is accelerated. The crys-
tallization rate is actually faster in some of the copolymers relative to the rate of
the homopolymer.

Another example of confined crystallization is found in the isothermal overall
crystallization kinetics of di- and triblock copolymers of poly( ∋-caprolactone)–
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poly(ethylene oxide).(81) On cooling, the poly( ∋-caprolactone) block crystallizes
first, followed by poly(ethylene oxide). It was found that the kinetic parameters,
determined from the derived Avrami equation, i.e. the half-times, rate constants and
exponents for the poly( ∋-caprolactone) component in the diblock, are very similar
to those of the corresponding homopolymer. In contrast the spherulite growth rate of
the p-dioxanone block in the poly(p-dioxanone)–poly( ∋-caprolactone) copolymer
is decreased by a factor of about 10 when the poly( ∋-caprolactone) block is molten.
A slightly lower crystallization rate is observed for the poly( ∋-caprolactone) in the
triblock copolymer. However, there is a significant retardation in the growth rate of
the poly(ethylene oxide) block. In some cases, depending on the relative length of
the two blocks, the ethylene oxide component does not crystallize at all. The Avrami
exponent for the poly( ∋-caprolactone) block is about 3 in all copolymers, compa-
rable to that of the homopolymer. On the other hand, the value of the exponent n is
about 2 for the poly(ethylene oxide) block, suggesting a different morphology from
that of the corresponding homopolymer. The extrapolated equilibrium melting tem-
perature for poly( ∋-caprolactone) in the diblock is just slightly lower than that of
the corresponding homopolymer. However, comparable melting temperatures for
the poly(ethylene oxide) block are 14–18 ◦C lower than that of the homopolymer.
These results suggest major morphological change for the poly(ethylene oxide)
block, while that of the poly( ∋-caprolactone) remains essentially unaltered. Qual-
itatively similar results are found in the Avrami exponent for the crystallization
of the poly( ∋-caprolactone) block in the poly(p-dioxanone)-poly( ∋-caprolactone)
copolymer.(80) Here the exponent is lower than that of the homopolymer and is
reduced further with a decrease in the concentration of the poly( ∋-caprolactone)
block.

Random type copolymers, where both comonomers can crystallize, are also
known. Here a distinction must be made between co-crystallization with iso-
morphous or isodimorphic replacement, and when the comonomers do not co-
crystallize. In either case the crystallization kinetics is directly influenced by the
appropriate phase diagram.

An example of isodimorphism, and the related crystallization kinetics, is typified
by the random copolymers of 3-hydroxy butyrate–3-hydroxy valerate.(82) The
melting temperature–composition relation of this copolymer was given in Fig.
5.17 (Volume 1). For this copolymer, depending on the composition, either of the
comonomers can co-crystallize in the other’s lattice. When the concentration of the
3-hydroxy butyrate is less than 40 mol percent, crystallization occurs in the poly(3-
hydroxy butyrate) lattice. When its concentration is greater than 40 mol percent,
crystallization takes place in the poly(3-hydroxy valerate) lattice. The copolymer
that contains 41 mol percent of 3-hydroxy valerate reflects the coexistence of both
crystal phases and corresponds to a pseudo-eutectic composition.
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Fig. 10.34 Plot of spherulite growth rate as function of crystallization temperature
for poly(3-hydroxy butyrate) and random copolymers of 3-hydroxy butyrate and
3-hydroxy valerate. Numbers on curves are mol percent 3-hydroxy butyrate. (From
Scandola et al. (82))

The spherulite growth rates of these random type copolymers are given as func-
tions of the crystallization temperature in Fig. 10.34. The curves in this figure follow
the conventional pattern. Over the extended range of crystallization temperatures
studied, a rate maximum is observed. There is, however, a striking effect of the
position of these curves relative to the phase diagram. For compositions to the
left of the eutectic, indicated by the closed circles in this figure, there is a marked
decrease in rate with increasing concentration of the 3-hydroxy valerate compo-
nent. In contrast, the opposite trend is observed for compositions to the right of the
eutectic (open circles). In this composition range the growth rates increase with
the 3-hydroxy valerate content. The curves shift to higher temperatures, and the
growth maxima progressively increase. Thus, the change from the poly(3-hydroxy
butyrate) lattice to that of poly(3-hydroxy valerate) alters the relationship between
the growth rate and composition. This effect can be correlated with the maxi-
mum rate, Gmax. A plot of log Gmax against the mol percent of 3-hydroxy butyrate is
given in Fig. 10.35. There is a striking similarity between this figure and the melting
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Fig. 10.35 Plot of log spherulite growth rate maxima against mol percent 3-hydroxy
valerate for random copolymers of 3-hydroxy butyrate–3 hydroxy valerate. (From
Scandola et al. (82))

temperature–composition relation (Fig. 5.17). The positions of the growth maxima
in Fig. 10.35 can be directly correlated with the phase diagram.

A contrasting situation to the above is when each of the comonomers can crys-
tallize individually. An example for random copolymers is found in the series of
copolyamides containing 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA),
with either 1,3-bis(4-amino phenoxy) benzene (134APB) or 1,12-dodecanediamine
(C12).(83,84) The spherulite growth rates of this set of copolymers, as well as the
corresponding homopolymers, are plotted as functions of temperature in Fig. 10.36.
(83) Except for the 20/80 composition (134APB/C12) the characters of the growth–
temperature curves are very similar to one another. The usual maximum in the
rate is observed when an extended range in crystallization temperatures is stud-
ied. The temperature of the maximum growth rate shifts to lower temperatures
with increasing concentration of the C12 comonomer. Except for the 40/60 and
20/80 copolymers, the maximum growth rates are very close to one another. The
kinetics in the composition range 100/0 to 40/60 are dominated by the crystalliza-
tion of the 134APB/BPDA co-units. In the range 20/80 to 0/100 crystallization of
C12/BPDA dominates. In addition to a lower growth rate, the 20/80 copolymer
shows a double maximum. The double maximum is due to the growth of two dif-
ferent types of spherulites. This probably reflects the separate crystallization of the
two comonomers. Since the equilibrium melting temperatures, as well as the glass
temperatures, are known for this set of copolymers,(84) it is natural to attempt to
fit the experimentally observed growth rate–temperature data to Eq. (9.209). For
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Fig. 10.36 Plot of spherulite growth rate against crystallization temperature for
copolyimides described in text for indicated 134APB/C12 compositions. (From
Hsaio et al. (83))

unexplainable reason(s), an acceptable fit cannot be attained with the copolyimide
data of Fig. 10.36 for any meaningful values of U ∗ and C .

10.5 Long chain branches and covalent cross-links

It is convenient at this point to consider the crystallization kinetics of covalently
cross-linked polymers, as well as those with long chain branches. Strictly speaking
neither of these can be classified as copolymers. However, the branches and cross-
links introduce structural irregularities into the chain. The isotherms illustrated in
Fig. 10.2 for the crystallization of long chain branched polyethylene at low under-
coolings, have the same characteristics as chemically distinct random copolymers
under the same conditions. Studies of long chain branched poly(butylene terephtha-
late) (85) and poly(phenylene sulfide) (86) indicate that the overall crystallization
rate, as well as the spherulite growth rate, decreases with increasing branching con-
centrations. Similar results are found with poly(ethylene terephthalate).(86a) An
example of the change in crystallization rate with branching is illustrated in Fig.
10.37, where the half-time is plotted against the crystallization temperature for a
series of long chain branched poly(butylene terephthalates).(85) The polymers are
characterized by the number average degree of branching, which ranges from zero
for pure polymer to greater than 1. The latter represents the gel point. Figure 10.37
clearly shows that the rate decreases with branching concentration at all crystal-
lization temperatures. A substantial decrease, a factor of 5 or more, is observed at
the higher crystallization temperatures. The data for both polymers can be fitted in
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Fig. 10.37 Plot of half-time, t1/2, against crystallization temperature for long chain
branched poly(butylene terephthalate). Number average degree of branching:
© zero; � 0.5; � 0.6; � 0.6; ● > 1. (From Righetti and Munari (85))

the conventional manner to the Avrami theory.(85,86) Since the crystallization was
conducted at relatively large undercoolings superposable isotherms were obtained
as would be expected from theory. The Avrami exponent was about 3 for both the
linear and branched polymers. An analysis of the temperature coefficient for the
poly(butylene terephthalates), according to coherent unimolecular nucleation the-
ory, indicates that the product of interfacial free energies, σunσen, increases with the
long chain branching content. This conclusion is similar to that previously noted
for the star hydrogenated poly(butadiene) relative to the linear copolymer.

The overall crystallization kinetics of star-branched poly( ∋-caproamides) have
also been studied.(87) The kinetics for the linear, three- and six-arm star polymers
follow a similar pattern. The data are amenable to an Avrami type analysis and
the isotherms are superposable. Their shapes are essentially the same for the three
polymers, reflecting the similarity in the exponent n. The time scales, however,
are different at the same supercoolings. This is reflected in the half-times. When
compared at comparable supercoolings the half-time for the linear polymer is about
twice that of the six-arm star one. The half-time for the three-arm star lies in
between. The covalent cross-linking of a collection of polymer chains represents
more than just the introduction of structural irregularities. As the cross-links are
randomly introduced, highly ramified structures evolve from the initial set of linear
chains. The molecules are also partitioned between sol and gel portions.(88–90)
The details of the portioning depend on the initial molecular weight distribution
and the extent of the cross-linking. Thus, the structure of the sol and gel, for a
given initial molecular weight distribution, is not constant but will depend on the
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cross-linking level. The infinite network that is eventually formed is characterized
by the molecular weight between cross-links, Mc. Such networks are rarely perfect
and can contain a significant concentration of chain ends. The sol and gel portions
would be expected to display different crystallization kinetics and have features
that are different from linear chains with just a random distribution of defects or
comonomers. For example, it was found that the isothermal crystallization rate of
end-linked poly(tetrahydrofuran) networks was reduced when the sol fraction was
removed.(90a)

The properties of cross-linked systems depend on the state of the polymer at the
time the cross-links are introduced. It is necessary and very important to specify
whether the chains are in the completely amorphous or crystalline states at the
time the cross-links are introduced, or if they are cross-linked in solution.(91)
When cross-linking crystalline polymers the nature of the crystalline state is also
important, i.e. whether the crystallites are randomly oriented or are oriented in a
specific manner. Moreover, the efficacy of cross-linking between the crystalline
and noncrystalline regions is important. It is generally assumed that, irrespective
of the initial polymer state, the cross-links are randomly introduced. It was shown
in Chapter 7 (Volume 1) that the order initially present in a crystalline polymer
is retained to some degree in the melt, if the cross-links are introduced in the
crystalline state. In contrast, when the cross-links are introduced into a completely
amorphous polymer the melt remains disordered even after crystallization. The melt
structure in turn influences the resulting melting temperature and morphology. It
can be expected that the crystallization kinetics will also be affected.

When analyzing cross-linked systems a distinction must be made between the
whole polymer and the sol–gel fractions. The concentration and distribution of
the cross-links will be different in each fraction. The particular method by which
the cross-links are introduced could also influence the kinetics. They can be in-
troduced by specific chemical reactions or in special cases by the action of high
energy ionizing radiation. Ultimately, all these factors have to be sorted out. Most
of the studies of the crystallization of cross-linked polymers have involved either
natural rubber, poly(cis-1,4-isoprene), or polyethylenes with different molecular
architecture.

Some general observations can be made with respect to the crystallization kinet-
ics of cross-linked systems before specific data are analyzed.(92,93) The crystal-
lization rates are retarded relative to the corresponding non-cross-linked polymers
and the attainable level of crystallinity is significantly reduced. The influence of
cross-linking in retarding the major aspects of the crystallization is much greater
than their nominal concentration. Sigmodal type isotherms are typically observed,
thus indicating that nucleation and growth processes are still involved.
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Fig. 10.38 Plot of normalized crystallinity level as a function of log time for natural
rubber cross-linked to varying extents with sulfur at 2 ◦C. Curve derived Avrami
equation with n = 3. Combined sulfur content in percent: © zero; ● 0.1; � 0.2; �
0.3; � 0.35; � 0.40; � 0.43; � 0.46; � 0.5. (Data from Bekkedahl and Wood (92))

Natural rubber is usually cross-linked in the amorphous state and the crystal-
lization kinetics subsequently studied. Thus some of the complications that were
outlined above are avoided. Figure 10.38 gives an example of the crystallization
isotherms at 2 ◦C of natural rubber cross-linked to varying degrees with sulfur in
the amorphous state.(92) The normalized fraction transformed is plotted against
log time for varying amounts of combined sulfur. It can be assumed that in this
system the cross-links were introduced randomly. The shapes of the isotherms are
reminiscent of the crystallization of non-cross-linked polymers. As is indicated in
the figure, the isotherms for the different extents of cross-linking are superposable
with one another. The data can be fitted quite well with the derived Avrami equa-
tion with n = 3. Other methods of chemically cross-linking natural rubber lead to
similar results.(92,93) The plots in Fig. 10.38 also make clear that the cross-linking
severely retards the crystallization rate. For example, the time scale for the crys-
tallization is shifted by several orders of magnitude between the non-cross-linked
polymers and the one with 0.5% combined sulfur.
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Fig. 10.39 Plot of crystallization half-time as a function of combined sulfur. (From
Bekkedahl and Wood (92))

The decrease in the crystallization rate with the extent of cross-linking is il-
lustrated definitively in Fig. 10.39.(88) Here the half-time is plotted against the
amount of combined sulfur, from either just rubber–sulfur compounding or from
tetramethylthiuram disulfide (Tuads). The main finding here is that although small
amounts of combined sulfur only reduce the crystallization rates slightly, the retar-
dation in rates becomes profound as the cross-linking level increases. It is likely
that the decrease is caused by the influence of the cross-links on the transport term
in the expression for the crystallization rate. Segmental or reptation type motion
will be impeded by the intermolecular cross-links. Among other factors, the spread-
ing rate will also be retarded. The true equilibrium melting temperature will also
be slightly reduced because of the small concentration of cross-links introduced.
Consequently, the nucleation should not be seriously affected.

Since the crystallization of natural rubber can be carried out over an extended
temperature range, it is not surprising that rate maxima are also observed with the
cross-linked polymers.(94) An example is shown in Fig. 10.40 where the crystal-
lization half-times are plotted against the crystallization temperature. The cross-
linking in this example was accomplished by Tuads, with the combined sulfur
increasing from sample D1 to D4. The shapes of the curves in the figure are similar
to one another. They are, however, displaced to longer times, at all temperatures,
as the cross-link density increases. The maxima in the rate are apparent and appear
at the same temperature at the different levels of cross-linking. The temperatures
of the maxima are virtually identical to that of the non-cross-linked polymer.

The above examples point out that the formal aspects of the overall crystallization
kinetics are unaffected by the introduction of intermolecular cross-links, when the
cross-links are introduced in the amorphous state. The fanning out of the isotherms,
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Fig. 10.40 Plot of half-time for crystallization against crystallization temperature
for natural rubber crystallized with Tuads. Percent Tuads: D1, 0.75; D2, 1.5; D3,
2.5; D4, 3.5. (Data from Russell (94))

typical of random copolymers as the crystallization temperature increases, is not
observed in the cross-linked natural rubber system, at least up to the level of cross-
linking that has been studied. However, there is a profound effect on the time scale
for crystallization at a fixed temperature.

The overall crystallization kinetics of an unfractionated linear polyethylene,
cross-linked by a peroxide reaction has also been studied.7(95,96) A special feature
of this work was the study of the separated sol and gel portions at different levels
of cross-linking. The overall crystallization rates, in terms of the reciprocal of the
half-time, 1/t1/2, are plotted against the crystallization temperature in Figs. 10.41
and 10.42 for a set of sol and gel fractions respectively. The gel fractions are
characterized by the molecular weight between cross-links, Mc, assuming ideal
network formation. The sol portions are defined by their number average molecular

7 The state of the polyethylene when the cross-linking reaction takes place is not made clear in this work.
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Fig. 10.41 Plot of reciprocal half-time as a function of crystallization temperature
for sol fraction of cross-linked linear polyethylene. Number average molecu-
lar weight, Mn: © original non-cross-linked polymer; ● 7106; � 7077; � 6422;
� 4561; � 5634; � 4150. (From Phillips and Lambert (95))

Fig. 10.42 Plot of reciprocal of half-time against crystallization temperature for
the crystallization of the gel portion of cross-linked linear polyethylene. Molecular
weight between cross-links, Mc × 10−3: © original polymer; � 12.7; � 9.4; � 5.7;
� 4.5; � 3.6; ◆ 3.1; •| 2.2; •| 1.9; 1.3; •| 0.96; � 0.56. (From Lambert et al. (96))
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weight. The molecular weights of these highly ramified structures were determined
by gel permeation chromatography, utilizing the standard universal relation.

There is a systematic change in the crystallization rate of the gels with the
concentration of cross-links (Fig. 10.42). In particular, as Mc of the network de-
creases, the range of isothermal crystallization moves to lower temperatures. This
reflects a significant reduction in the crystallization rate at a fixed temperature as the
cross-linking density increases. The data for these samples with the lowest cross-
link density cannot be distinguished from one another. However, the time scale is
greater than that of the uncross-linked polymers. As the concentration of cross-links
increases there is a continuous decrease in the crystallization rate at fixed crystal-
lization temperatures. For example, for a Tc of 112 ◦C, the crystallization rate is
imperceptible for gels with molecular weights between cross-links, Mc, equal to
1300 or less. However, the rate is discernible for Mc = 1900 and increases about
60–70 fold for the gel with Mc = 3600. Conversely, at a fixed rate, for example
1/t1/2 = 1.5 × 10−2 sec−1, the crystallization temperatures range from 119 ◦C for
the non-cross-linked polymer to 102 ◦C for the gel with Mc = 560. Thus, there is
a significant retardation in the crystallization with cross-linking of the gel portion
that is qualitatively similar to that found in natural rubber. In contrast, the crystal-
lization rates of the sol do not give a simple pattern (Fig. 10.41). However, there
does appear to be a qualitative increase in the rate with the assigned molecular
weight. This may be a reflection of changes in cross-linking density and branching.

The strong negative temperature coefficients that are observed for both the sol
and gel portions suggest that the kinetic data be analyzed according to nucleation
theory. In principle, this will allow the question of regimes to be addressed. In
order to properly perform this analysis, the equilibrium melting temperatures of
both the sol and gel fractions need to be reliably known. The highly ramified, and
different, structures of the sol and gel,(88,89) and the state in which the cross-links
are introduced makes it extremely difficult to establish the required equilibrium
melting temperatures. Thus, the required information with which to properly carry
out a regime analysis is not available.

Both the sol and gel follow Avrami type kinetics of nucleation and growth. An
example is given in Fig. 10.43 for a lightly cross-linked gel fraction of polyethylene
with Mc = 17 300.(95) Here, the relative fraction transformed is plotted against log
time for different crystallization temperatures. As is indicated in the right of the
diagram a set of superposable isotherms results. All of the isotherms can be fitted
with an Avrami exponent n = 3 for about 15% of the transformation. The deviation
from Avrami occurs at a much lower crystallinity level than the non-cross-linked
polymers. This could be a consequence of the decrease in the sequence lengths
available for crystallization because of the cross-linking. The basic kinetic data
for the other gel fractions would allow for a more detailed and comprehensive
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Fig. 10.43 Plot of fraction transformed against log time for gel portion of cross-
linked linear polyethylene having Mc = 17 300. Solid curve for superposed
isotherm, derived Avrami equation with n = 3. Crystallization temperatures are
indicated. (Data from Phillips and Lambert (95))

analysis. It is important to assess the dependence of the Avrami exponent, and
the transformation level at which deviations occur, on the cross-linking level. The
limited published data indicate that the sol fractions behave in a similar manner.
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Crystallization kinetics of polymer mixtures

11.1 Introduction

A large number of studies concerned with the crystallization kinetics of polymer–
polymer mixtures have been reported. One reason for this abundance of information
is a basic scientific interest coupled with the many ramifications that are inherent
to such systems. There is also a pragmatic interest since physical and mechanical
properties, as well as environmental features, can be altered and controlled by the
appropriate mixing of polymeric components. It is useful to follow the same method-
ology used in discussing the equilibrium aspects of crystalline polymer–polymer
mixtures (see Chapter 4, Volume 1) when analyzing their crystallization kinetics.

The nature of the melt and the pathway followed during the course of the trans-
formation are important factors in governing the crystallization kinetics of binary
mixtures. Depending on the molecular weight, the structural regularity of the chain
and the value of the interaction parameter χ1, the blends can be either completely
miscible over the complete composition range, partially miscible or completely
immiscible. Phase separation may occur upon increasing or decreasing the tem-
perature, depending on the change in χ1. Thus a lower or upper critical solution
temperature, or both, can be observed. In order for a proper analysis to be made of
the crystallization kinetics in blends, it is important that the complete phase diagram
be established for partially miscible systems. The crystallization kinetics will thus
depend on the phase relationships and thermal history, or the pathway, that is taken.

It also has to be known whether only one, or both components can crystallize. If
in fact both components are capable of crystallizing it has to be further determined
whether they do so independently or if co-crystallization occurs between the two
species. Another situation that needs to be considered separately is whether the two
components are chemically identical. This could involve differences in stereo, regio
or geometric isomers, molecular architecture or chain lengths. Each of these cate-
gories of binary blends is important and will be discussed in the sections that follow.
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11.2 Components completely miscible in melt: only one component
crystallizes

11.2.1 Experimental results

In this section we consider the case where both components are miscible over the
complete composition range. However, only one of the components can crystallize.
As a consequence of the miscibility, only one glass temperature is observed that
varies continuously with composition from that of one pure homopolymer to the
other. The depression of the melting equilibrium temperature is usually small, and
follows the pattern described in Chapter 4. The window available for crystalliza-
tion, between the equilibrium melting temperature and the glass temperature, will
depend primarily on the changes in the glass temperature with composition. The
crystallization rates can expect to vary accordingly. The crystallization kinetics of
the blends are studied in the conventional manner by measuring either the overall
crystallization or spherulite growth rates.

The spherulite growth rates of the crystallizing component in several differ-
ent type blends are given in the following figures. Here, the rates are plotted
as a function of the crystallization temperature for different compositions. The
data for poly(vinylidene fluoride)–poly(methyl methacrylate) blends are given in
Fig. 11.1,(1) where poly(methyl methacrylate) is the noncrystallizing component.
Miscibility of the mixture has been demonstrated for the composition and crys-
tallization range that was studied. In this blend, the glass temperature increases
from −50 ◦C for pure poly(vinylidene fluoride) to +45 ◦C for the 50/50 mixture. In
contrast the equilibrium melting temperatures only decrease by about 10 ◦C over
the same composition range. Characteristically, there is a decrease in the growth
rate with dilution at any crystallization temperature. However, the relative decrease
in the growth rate is much greater at the lower crystallization temperatures. The
spherulite radii vary linearly with time over the composition and temperature ranges
studied, indicating a constant growth rate.1

Figure 11.2 represents the growth rate data for blends of poly(3-hydroxybutyrate)
with one of either of two cellulose acetate butylates as the noncrystallizing compo-
nent.(2) There are only small changes in both the glass and melting temperatures
with composition in these blends. A maximum in the growth rate is observed for
all compositions. Although the shapes of the curves are qualitatively similar to one
another, the decrease in the growth rate is again greater at the lower crystallization
temperatures. The growth rates are linear up to 50/50 composition for both the
blends as illustrated.2 A similar behavior, including the maxima in the growth rates,

1 The spherulite radius of the crystallizing component in binary mixtures is not always linear with time. Nonlinear
growth, and reasons thereof will be discussed in Sect. 11.7.

2 For the 50/50 and higher blends the growth rate increases with time in one of the blends. This behavior has been
attributed to the crystallization of the cellulose ester component at the higher concentration.(2)
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Fig. 11.1 Spherulite growth rate of poly(vinylidene fluoride) as a function of crys-
tallization temperatures in blends with poly(methyl methacrylate) at indicated
composition. (From Wang and Nishi (1))

has also been observed in other miscible blends of poly(3-hydroxybutyrate) with
other noncrystallizing components.(3,4)

Spherulite growth rates, over a broad composition range, of blends of
poly(pivalolactone) with poly(vinylidene fluoride) are given in Fig. 11.3.(5) In this
mixture the poly(vinylidene fluoride) component is noncrystalline at all composi-
tions over the range of crystallization temperatures studied. As the concentration
of poly(vinylidene fluoride) increases in this blend the glass temperature decreases
from −3 ◦C for pure poly(pivalolactone) to −38 ◦C for the pure noncrystallizing
component. Concomitantly, the equilibrium melting temperature is reported to de-
crease by about 30 ◦C. This is a rather large change for a binary mixture.3 The data
in Fig. 11.3 dramatically demonstrate the decrease in growth rates with dilution.
The retardation in growth rate is again much greater at the lower crystallization
temperature.

A common feature of the cited examples is the decrease in growth rate with dilu-
tion. Yet, in one case the glass temperature increases with the concentration of the

3 The equilibrium melting temperatures were obtained by extrapolative methods. The nonlinear nature of the data
involved in the extrapolation allows for the distinct possibility of a large uncertainty in the T 0

m values obtained.
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Fig. 11.2 Spherulite growth rate of poly(3-hydroxybutyrate) as a function temper-
ature in blends with two different cellulose acetate butyrates. Numbers on curves
cellulose ester weight percent. (From Pizzoli et al. (2))

noncrystallizing component,(1) in another it decreases,(5) and yet in the third there
is not much change in the glass temperature with dilution.(2) The decrease in the
growth rate, as well as in the overall crystallization with an added noncrystallizing
component is a general, but not unique, phenomenon. It has been observed in blends
of a wide variety of crystalline homopolymers.(6–13a) However, exceptions to this
generalization have been observed. For example, the spherulite growth rate of iso-
tactic poly(styrene) in blends with poly(vinyl methyl ether) was found to increase
with the added second component.(14) In a blend with poly(1,4-butylene adipate),
poly(vinylidene fluoride) crystallizes more rapidly than the pure polymer.(15) In
another example, poly(ethylene-2,6-naphthalate) follows a similar pattern.(16) It
crystallizes more rapidly in a blend with poly(1,4-butylene sebacate) than it does
by itself. It can be concluded, however, as a general proposition, that in miscible
blends the spherulite growth rate of the crystallizing component decreases with the
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Fig. 11.3 Spherulite growth of poly(pivalolactone) as a function of temperature
in blends with poly(vinylidene fluoride) at indicated compositions. (Data from
Huang et al. (5))

addition of the non-crystallizing component. This effect is observed irrespective
of how the glass temperature changes with composition. Except in a few reported
cases, the equilibrium melting temperature is only depressed a small amount by
the addition of the second component. Hence, there will not be any significant
change in the effective undercooling during isothermal crystallization. Although
the interval between glass and melting temperatures must influence the growth ki-
netics, other factors must be involved as well. There is an obvious dilution effect
and the influence of the second component on the transport and nucleation term in
the crystallization rate. These factors will be discussed in the next section.
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Fig. 11.4 Plot of spherulite growth rates of poly(pivalolactone) as a function of
composition in blends with poly(vinylidene fluoride) (circles), pivalolactones and
poly(3-hydroxybutyrate) in cellulose acetate butyrate (squares), at indicated crys-
tallization temperatures. (Data from (2) and (5))

The varying influence of dilution at a fixed crystallization temperature is illus-
trated in Fig. 11.4. Here, the growth rates for the poly(pivalolactone)–
poly(vinylidene fluoride) mixtures and one of the poly(3-hydroxybutyrate) blends
are plotted against the composition for several different crystallization temperatures.
The more extensive data for the poly(pivalolactone)–poly(vinylidene fluoride)
blends emphasize the role of crystallization temperature. At the highest temperature
shown, 210 ◦C, the growth rate changes by about an order of magnitude over the
concentration range studied. In contrast, at the low crystallization temperatures the
growth rates span more than two orders of magnitude over the same composition
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Fig. 11.5 Plot of relative fraction transformed against log time for poly( ∋-
caprolactone) in a 30/70 blend with poly(hydroxy ether) of bisphenol A phenoxy
for a set of isothermal crystallization temperatures. (Data from (17))

range. The poly (3-hydroxybutyrate)–cellulose acetate butyrate blends follow a
similar pattern, as do other blends that have been studied.

The spherulite growth and overall crystallization rates complement one another
in blends, as they do in other systems. A typical set of isotherms of the crystallizing
component in binary mixtures is shown in Fig. 11.5. The plots in Fig. 11.5 are
for a 30/70 blend of poly( ∋-caprolactone) with poly(hydroxy ether) of bisphenol
A phenoxy for a range of isothermal crystallization temperatures.(17) Sigmoidal
shape isotherms, typical of homopolymers, as well as other blends of this type, are
observed.(6) The isotherms superpose very nicely as is indicated by the plot on
the right of the figure. The data are fitted quite well with an Avrami n = 3 over
the complete transformation range, indicative of interface control of the growth.
The isotherm shapes are maintained when the composition is named at a fixed
isothermal crystallization temperature. This point is illustrated in Fig. 11.6. Here
a set of isotherms is given for different compositions at a fixed crystallization
temperature. The isotherm shapes are maintained at all compositions so that they
superpose very nicely with an Avrami exponent equal to 3. There is a significant
increase in the time scale for crystallization as the concentration of the crystallizing
component decreases. These results are qualitatively similar to those observed for
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Fig. 11.6 Plot of relative fraction transformed against log time at different compo-
sitions at 309.6 K for same blend as in Fig. 11.5. Composition: © 100/0; ● 90/10
� 80/20; � 70/30; � 65/35; ■ 60/40. (Data from (17))

spherulite growth rates. The overall crystallization kinetics of other binary blends
behave in a similar manner.

In the example given in Figs. 11.5 and 11.6 the Avrami n remains constant
with dilution. However, this is not always the case. There are examples where n
increases with addition of the second component,(6) as well as those where it de-
creases.(12,22) These variations in n apparently reflect changes in the morphology
with dilution.

Two typical examples of the overall crystallization rate, expressed as either t0.5

or peak time, are given in Fig. 11.7 for poly(ethylene oxide)–poly(vinyl phenol)
(18) and for poly(aryl ether ether ketone)–poly(ether imide) (19) in Fig. 11.8. The
dependence of the crystallization rates on composition are similar to one another
and are closely related to the results for other binary mixtures. The overall crys-
tallization rates follow the pattern established for spherulite growth rates. At the
higher crystallization temperatures only a modest decrease in the rate is observed
with the addition of the noncrystallizing component. However, with a decrease in
the crystallization temperature the polymeric diluent becomes more effective in
reducing the rate. Because of the retardation in the rate with dilution a much wider
range in isothermal crystallization temperatures can be studied. Thus, for the more
dilute blends a maximum in the rates with temperature can be observed. This is
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Fig. 11.7 Plot of half-time, τ0.5, for the crystallization of poly(ethylene oxide)
against crystallization temperatures of blends of poly(ethylene oxide)–poly(p-
vinyl phenol). Composition: © 100/0; ● 90/10; � 80/20; ■ 70/30; � 65/35. (From
Pedrosa et al. (18))

Fig. 11.8 Plot of isothermal crystallization peak time for poly(aryl ether ether ke-
tone) in blend with poly(ether imide) for different compositions. Compositions
indicated in figure. Peak time from isothermal exotherms using differential scan-
ning calorimetry. (From Hsiao and Sauer (19))

indicative of the influence of the transport term in the crystallization process as the
temperature is lowered. The ratios of Tmax/Tm for the two blends shown are in the
usual range for pure homopolymers and copolymers discussed previously. It can
be noted in Fig. 11.8 that the rate maximum moves to higher temperatures with
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the addition of poly(ether imide). A similar phenomenon is also observed in blends
of poly(ethylene-2,6-naphthalene dicarboxylate) with poly(ether imide).(20) The
homopolymer poly(ethylene-2,6-naphthalene dicarboxylate) (PEN) shows a tem-
perature maximum in its overall crystallization rate. When blended with poly(ether
imide) the crystallization rate decreases with dilution at all crystallization tem-
peratures. Concomitantly, the temperature of the maximum is shifted to higher
temperatures. The reason for the shift in both cases can be attributed to a significant
increase in the glass temperature with increasing concentration of the poly(ether
imide) component. This shift in the maximum shows that in fact the location of the
glass temperature, and the narrowing of the window, can influence the crystalliza-
tion rate in a significant manner.

Attention also has to be given to the role of molecular weight of each of the
components. Of particular importance is the molecular weight of the noncrystal-
lizing component. Some interesting results have been reported.(21) An example is
given in Fig. 11.9 for blends of poly(ethylene oxide), M =90 000, and poly(methyl
methacrylate) of varying molecular weight. Each blend in this example has the
same composition, 70% by weight of poly(methyl methacrylate). As the molecular
weight increases the spherulite growth rate decreases at all crystallization temper-
atures. It should be noted that the asymptotic values of the glass temperatures are

Fig. 11.9 Plot of spherulite growth rate of poly(ethylene oxide) in a blend with
poly(methyl methacrylate) as a function of crystallization temperatures. Composi-
tion of blends 70/30 by weights. Molecular weights of the poly(methyl methacry-
late) fractions are indicated. (From Alfonso (21))
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Fig. 11.9a Plot of spherulite growth rate at 30 ◦C of poly( ∋-caprolactone) as a func-
tion of its molecular weight for mixtures with poly(vinyl chloride). Compositions
of mixtures are indicated. (From Chen et al. (21a))

reached in the blends with the two highest molecular weight poly(methyl methacry-
late) fractions. Thus, the decrease in growth rates cannot be attributed to variations
in the glass temperature. There is also no sensible change in the equilibrium melt-
ing temperature. Thus, the temperature window for crystallization is the same in
both blends. Therefore, other factors must be involved in causing the decrease in
the growth rate. It has been suggested that the diffusion of the noncrystallization
component away from the growth front plays a major role.(21)

Similar results have been obtained with blends of poly(vinylidene fluoride) and
poly(vinyl pyrrolidene).(21) The growth rate of the crystallizing poly(vinylidene
fluoride) in a 9 w/w mixture is reduced by about one order of magnitude as the
molecular weight of poly(vinyl pyrrolidene) increases from 10 000 to 750 000.
The results are again suggestive of the influences of diffusion processes. A more
detailed consideration of diffusion of the noncrystallizing component will be given
in Sect. 11.7.

Based on the experimental results that have been described, it is natural to inquire
whether the basic theoretical framework that has been developed for the crystal-
lization kinetics of one-component systems can be adapted to polymer mixtures.
This question is addressed in the next section.

The molecular weight of the crystallizing component also has a strong influ-
ence on the spherulite growth rate. This is illustrated in Fig. 11.9a for the growth
rate, at 30 ◦C, of poly( ∋-caprolactone) as a function of its molecular weight for
different mixtures with poly(vinyl chloride).(21a) A maximum in the growth rate is
observed for the pure poly( ∋-caprolactone) as was previously noted (see Fig. 9.96).
The maximum persists in the 80/20 blend, although it is much broader. With the
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further addition of poly(vinyl chloride) the maximum disappears and the growth
rates decrease monotonically with the molecular weight of the crystallizing com-
ponent. In contrast, a maximum in the growth rate is observed for the 70/30 blend
as the molecular weight of the noncrystallizing component, poly(vinyl chloride),
increases.(21a)

11.2.2 Theory: two-component miscible melts

In order to examine the role of composition on the spherulite growth rate of the
crystallizing component in a miscible blend, and indirectly on the overall crystal-
lization rate, the effect of dilution on each of the terms in the growth rate equation
for a one-component system needs to be modified. Consequently, starting with Eq.
(9.205) it is found that (23–25)

G(v2) = v2G0 exp

[ −U ∗(v2)

RT − Tg(v2) + C(v2)
− �G∗(v2)

RT

]
(11.1)

The conventional pre-exponential factor, G0, needs to be multiplied by v2, the vol-
ume fraction of the crystallizing component, since the nucleation rate is proportional
to the concentration of crystallizable units.

The exponential transport term is influenced by dilution in several ways. The
constants C and U ∗ will in general depend on composition. The glass temperature,
Tg, of a miscible system varies continuously with composition. It can be either de-
termined experimentally, or calculated from one of several theoretical relations that
are available. The influence of the constants U ∗ and C on the growth–temperature
relation was discussed in detail in Chapter 9. It was found that a set of universal
constants does not exist. These constants can be arbitrarily chosen, within broad
limits. The choice has a profound effect over an extended range of crystallization
temperatures.

There are several reasons why the free energy of forming a critical size nucleus
depends on composition. Therefore, it is informative to derive the appropriate ex-
pressions.4 The free energy of homogeneously forming a three-dimensional cylin-
drically shaped nucleus from the melt of a collection of uniform polymer chains in
a binary mixture can be expressed, in the high molecular weight approximation, as
(23–25)

�G(v2) = ζρ �G ′
u − 2ρσen − 2ζσun(πρ)1/2 + RT ln v

ρ2

2 (11.2)

The last term in Eq. (11.2) is an entropic contribution to the free energy that results
from the probability of selecting the ρ polymer sequence from the binary mixture.

4 The analysis that follows is very similar to that for the mixture of a polymer with a low molecular weight
diluent.(22–25)
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The other terms are similar to those for homopolymer nucleation. The bulk free
energy of fusion per repeating unit at the specified composition is given by �G ′

u .
It represents the bulk free energy of fusion of the pure polymer plus that of mixing,
or dilution. It has been tacitly assumed in this derivation that the two species are
uniformly distributed throughout the system. Therefore, Eq. (11.2) will not be valid
when either of the components is present at a low concentration. Analysis of the
free energy surface given by Eq. (11.2) yields

ζ ∗ = 4σen − 2RT ln v2

�G ′
u(v2)

(11.3)

and

ρ∗ = 4πσ 2
un

[�G ′
u(v2)]2

(11.4)

for the coordinates of the saddle points. It then follows that

�G∗(v2) = 8πσ 2
unσen − 4πRTσ 2

un ln v2

�G ′
u(v2)

(11.5)

There are thus two specific places where the dilution directly influences �G∗(v2);
the ln v2 term and �G ′

u(v2). The latter can be approximated by �G ′ ∼= �Hu(Tm −
T )/Tm. Tm is now the equilibrium melting temperature of the crystallizing polymer
in the mixture. There is also the distinct possibility, which cannot be ruled out, that
either, or both, of the interfacial free energies, σen and σun, depend on composition.

A similar analysis can also be carried out for the formation of a coherent uni-
molecular nucleus on an already existing crystal face. Following the procedure used
for the pure polymer, it is found that (25)

�G∗ = 4b0σunσen

�G ′
u

− 2σun RT ln v2

b0�G ′
u

(11.6)

for this type of nucleus. In analyzing the experimental spherulite growth rates it
will be assumed that a coherent, unimolecular nucleation process is involved.5

Consequently,

G(v2) = G0v2 exp

{ −U ∗

T − Tg + C
− 4b0σunσenTm

RT �Hu(Tm − T )
+ 2σunTm ln v2

b0�Hu(Tm − T )

}
(11.7)

In writing Eq. 11.7 the tacit assumption has been made that the crystallization
is taking place in Regimes I or III, i.e. only the steady-state nucleation is rate

5 It should be recalled that the adoption of this type of nucleus involves a basic assumption that has not been given
independent verification. Other types of two- and three-dimensional nucleations also fit the experimental data.
Upon analysis, they lead to the same general conclusions.
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determining. In Regime II, where the spreading rate has to be taken into account,
�G∗ of Eq. 11.6 needs to be divided by two. In the diffuse transition region,
between the asymptote of Regimes I and II, an analysis similar to that given for
pure homopolymers and copolymers needs to be employed. It is very possible that
dilution will cause a shift or change in regime transitions.

The last term in Fig. (11.7) is often written as 0.2Tm ln v2/(Tm − T ).(26) This
expression, which is commonly used, is a consequence of the assumption that
σun = 0.1b0�Hu. The basis for this assumption has been discussed in detail in
Chapter 9. It is clear that severe limitations are imposed on this expression. There
are serious questions as to the validity of the constant, 0.1, that is used. As has
been discussed, this constant is not even on a firm basis when applied to linear
polyethylenes. The ratio σun/b0�Hu is best taken as an arbitrary parameter when
analyzing experimental data.

Equation (11.7) is based on the corresponding relation for the pure polymer by
accounting for the concentration dependence of each term. Although this appears
to be a valid procedure, the crystallization process could in fact be more complex.
Implicit in deriving Eq. (11.7) is the assumption that the spherulite radius increases
linearly with time. This observation implies interface control. The growth rate is then
constant at a given crystallization temperature. Although this assumption is valid
for pure homopolymer crystallization, deviations have been observed in miscible
blends. The possible importance of the diffusion of the noncrystallizable component
away from the growth form has already been alluded to. These two factors are
intimately related and will be discussed subsequently. At this time the adherence
of experimental data to Eq. (11.7) will be examined. In examining the validity
of Eq. (11.7) examples are selected where the spherulite growth rate is constant.
Thus, the complexities of nonlinear growth and the importance of diffusion can be
neglected.

As a first approximation in using Eq. (11.7) it is assumed that U ∗, C , σen, σeu

and G0 are independent of composition. The melting temperature, Tm, the glass
temperature, Tg, b0 and �Hu will be known from independent measurements. With
these assumptions Eq. (11.7) can be written

ln G(v2) − ln v2 − U ∗

T − Tg(v2) + C
− 2σunTm(v2) ln v2

b0 �Hu �T (v2)

= ln G0 − 4b0σunσenTm(v2)

R �Hu T �T (v2)
(11.8)

The left-hand side of Eq. (11.8) contains the measured growth rate, the known
composition dependent terms, the constants U ∗ and C and the ratio σun/b0 �Hu.
The latter factor is taken to be an arbitrary parameter. The values for the constant U ∗

and C are arbitrarily selected. It is recalled, from the analysis of pure homopolymers,



296 Crystallization kinetics of polymer mixtures

that drastic alterations can result by varying U ∗ and C . A plot of the left-hand side
of Eq. (11.8) should be linear for a given composition. A common straight line for
different compositions should result if the assumptions made are valid.

Appropriate plots to assess Eq. (11.8) are given in Fig. 11.10 for blends of
poly(ethylene oxide)–poly(methyl methacrylate).(27) Different values of the ratio
σun/b0�Hu, defined as ψ , are used in the figure. The values U = 1500, C = 30
were arbitrarily selected for all compositions for illustrative purposes. The Tg and
Tm values reported were used. The data for the different compositions, plotted
according to Eq. (11.9), fall on the same straight line for each of the three values
of ψ that are illustrated. Thus, the three values of ψ used give good agreement
between theory and experiment although ψ = 0.1 gives a slightly better fit. Analysis
shows that poly(vinylidene fluoride)–poly(methyl methacrylate) blends behave in
a similar fashion.(1) The results are plotted in Fig. 11.11 according to Eq. (11.8).
In this plot U ∗ = 1500 and C = 30 are again assumed and ψ is taken to be
0.05. Once again the blends of different composition delineate the same straight
line. When different values of ψ are used, as is illustrated, 0.05 gives the best fit.
However, when the results for other type blends are analyzed they do not always
follow the pattern given in Figs. 11.10 and 11.11. In some cases, close to parallel
straight lines are found with varying blend composition. In other blends, straight
lines are not observed. A case in point is the spherulite growth rates of blends of
poly(pivalolactone)–poly(vinylidene fluoride).(5)

The growth rate data of these blends, given in Fig. 11.12, encompass a wide
range in composition. These data are plotted in Fig. 11.12 according to Eq. (11.8)
for a range in ψ values. The glass and melting temperatures used in the calculations
are those reported. A difference in melting temperatures of 30 ◦C between the pure
homopolymer and the 10/90 blend was reported. The values of U ∗ and C were
again taken to be 1500 and 30 respectively. As is indicated in Fig. 11.12 the data
cannot be represented by a common straight line or even by a straight line for each
composition, for any of the values of ψ . Rather, a family of curves, with gradual
curvature, emanate from a common origin. For a ratio of 0.125 (Fig. 11.12c) there
is a change in curvature direction with dilution. On the other hand, for a ratio of
0.05 (Fig. 11.12b), the direction of curvature is the same for all compositions. As
the ratio decreases below 0.05, that nature of the curves remains the same but they
are positioned closer to one another. Even if the last term in Eq. (11.8) is neglected,
as in Fig. 11.12a, the data for the different compositions do not fall on a common
curve. The common origin for the curves in Fig. 11.12, for each value of ψ , indicates
that G0 is independent of composition. It is thus clear that within the limits of the
assumptions that were made Eq. (11.8) does not explain the dependence of the
growth rate data of these blends on composition and crystallization temperature.
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Fig. 11.10 Plots of left-hand side of Eq. (11.8) against Tm/T �T for blends of
poly(ethylene oxide)–poly(methyl methacrylate). Composition poly(ethylene ox-
ide)/poly(methyl methacrylate): ● 100/0; © 90/10; � 80/20; � 70/30; ■ 60/40. (a)
ψ = 0.05, (b) ψ = 0.10, (c) ψ = 0.15. (Data from (27))
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Fig. 11.10 (cont.)

Fig. 11.11 Plot of left-hand side of Eq. (11.8) against Tm/T �T for
blends of poly(vinylidene fluoride)–poly(methyl methacrylate). Composition
poly(vinylidene fluoride)/poly(methyl methacrylate): ● 100/0; © 82.5/17.5; �
75/25; � 67.5/32.5; ■ 55/45; � 50/50. ψ = 0.05. (Data from (1))
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Fig. 11.12 Plot of left-hand side of Eq. (11.8) against Tm/T �T for blends of
poly(pivalolactone)–poly(vinylidene fluoride). Composition poly(pivalolactone)/
poly(vinylidene fluoride): � 100/0; ■ 70/30; � 50/50; � 30/70; © 20/80; ● 10/90.
(a) ψ = 0; (b) ψ = 0.05; (c) ψ = 0.125. (Data from (5))
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Fig. 11.12 (cont.)

Before inquiring as to possible reasons for the difference in behavior between
these blends and those illustrated in Figs. 11.10 and 11.11 it is helpful to closely
examine the nature of the curves in Fig. 11.12. Taking the plots in Fig. 11.12b as an
example, each curve can, within experimental error, be r.easonably represented by
two intersecting straight lines. This possibility is reminiscent of the Regime III–II
transition that has been discussed in Chapter 9. However, only the straight lines
for the pure homopolymers and the 70/30 mixture give slope ratios close enough
to 2.0 to be consistent with such a regime transition. The slope ratio of the other
blend compositions cannot be reconciled with such a regime transition. In general
a discussion of regime transitions in blends is premature unless the large number
of parameters involved in Eq. (11.8) can be firmly established. The different results
that can be obtained by the selection of constants has been demonstrated in the
discussion of pure homopolymers.

There is concern as to why this particular blend behaves so differently from those
illustrated in Figs. 11.10 and 11.11. Other blends such as poly(ethylene oxide)–
poly(vinyl acetate),(28) poly(3-hydroxy butyrate)–cellulose acetate butyrate,(29)
poly(3-hydroxybutyrate)–poly(ethylene oxide) (30) and poly(3-hydroxybutyrate)–
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poly(epichlorhydrin),(31) among others, give a straight line for each composition
when the data are plotted according to Eq. (11.8). However, all of the straight lines
are displaced from one another, so that a common straight line is not observed. Im-
portant in the analyses are the values taken for the equilibrium melting temperatures
of the pure crystallizing homopolymers and those of the blends. As was pointed
out in Chapter 4, the decrease in the melting temperature with dilution should
be small, except in unusual circumstances. However, for the poly(pivalolactone)–
poly(vinylidene fluoride) blends the decrease in equilibrium melting temperature is
reported to be rather large.(5) Equilibrium melting temperatures have to be deter-
mined by extrapolative methods.(32) These methods will be discussed and assessed
in detail in the chapters dealing with morphology and structure. For present purposes
it suffices to state that a linear extrapolation is involved. However, the data for the
poly(pivalolactone) blends were curved. This fact complicates the determination
of the equilibrium melting temperature and results in a serious uncertainty in the
values. It is therefore reasonable to examine the influence of Tm on the calculated
growth rate curves.

To accomplish this task, it has been arbitrarily assumed that the decrease in Tm

between the pure crystallizing polymer and the 10/90 mixture is only 10 ◦C. This
difference was then proportioned among the blends. The results of the calculation,
with this change in Tm, are shown in Fig. 11.13. Focusing first on Fig. 11.13a, where
the ratio equals 0.05, the curves for each of the compositions are now much closer
to one another than the corresponding plot of Fig. 11.12. In fact, the curves for the
pure polymers, the 70/30 and 50/50 blends are virtually identical to one another.
Moreover, the data from the more dilute blends can now be represented by straight
lines that are close to one another. Increasing or decreasing the value of ψ has the
same effect as was observed in the plots of Fig. 11.11. Thus, the analysis of growth
data of this blend requires, at a minimum, reliable values of the equilibrium melting
temperature.

In general, no definitive conclusion can be made with regard to the quantitative
validity of Eq. (11.8) to any given blend without independent knowledge of the
many parameters that are involved. Of particular importance is the knowledge of
the equilibrium melting temperatures of each composition. This problem is no
different than discussed in Chapter 9 for the crystallization of pure homopolymers.
This is a fundamental problem that underlies the analysis of all aspects of the
crystallization kinetics of polymers. It has been found that Eq. (11.8) qualitatively
satisfies the growth rates of several different type blends. The uncertainties in
U ∗, C and Tm for specific cases do not allow for the specification of ψ for any
mixture. The universal use of ψ = 0.1 is unwarranted without further supporting
evidence.
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Fig. 11.13 Plot of left-hand side of Eq. (11.8) against Tm/T �T for blends
of poly(pivalolactone)–poly(vinylidene fluoride). Equilibrium melting temper-
ature arbitrarily proportional over a 10 ◦C interval (see text). Composition
poly(pivalolactone)/poly(vinylidene fluoride): ● 100/0; © 70/30; � 50/50; � 30/70;
■ 20/80; � 10/90. (a) ψ = 0.05, (b) ψ = 0.25. (Data from (5))
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11.3 Miscible blend: both components crystallize

Interesting situations develop when both of the components crystallize from a
miscible melt. The component that crystallizes first, usually the higher melting
polymer, crystallizes from the two-component melt at the nominal composition.
It would be expected to follow the same crystallization pattern that was discussed
previously. However, the crystallization of the second, lower melting, component
does not take place at the nominal composition. Rather, it takes place from a mixture
of the residual noncrystalline portion of the high melting polymer and the second
component. Moreover, it can be anticipated that the morphology that was established
by the first component crystallizing will influence the crystallization of the second
component. There is adequate data in the literature to analyze the crystallization
kinetics of such systems and to test the expectations.

The crystallization kinetics of binary blends of poly(vinylidene fluoride)–
poly(1,4-butylene adipate) provides a data set suitable for analysis.(33) To set the
boundaries for the analysis, the melting temperature of the pure poly(vinylidene
fluoride) is 175 ◦C while that of the poly(butylene adipate) 61 ◦C. There is, however,
only a 15 ◦C difference between the glass temperatures of the two polymers: −45 ◦C
for poly(vinylidene fluoride) and −60 ◦C for poly(butylene adipate). Poly(butylene
adipate) does not form spherulites in this blend at any composition. However,
poly(vinylidene fluoride) does so over a wide composition range. For blends that
contain less than 60% by weight of poly(butylene adipate) the spherulite radii in-
crease linearly with time up to impingement, indicating a constant growth rate. On
the other hand, in blends that contain 60% or more of poly(butylene adipate) a non-
linear spherulite growth rate develops at the advanced stages of the crystallization.

Plots of the spherulite growth rate of the poly(vinylidene fluoride) component
are given in Fig. 11.14 for different compositions. The main features that were
found previously in other miscible blends are again observed. It is evident that the
spherulite growth rate is significantly depressed due to the addition of poly(butylene
adipate). The retardation in rate is much greater at the lower crystallization tem-
peratures than the higher ones. At the lower crystallization temperature, the growth
rate is reduced by more than an order of magnitude. Another way of depicting these
results is shown in Fig. 11.15. Here the growth rates are plotted against the under-
cooling for the different blends. At the high undercoolings there is a significant
decrease in the growth rate with dilution. On the other hand, at the low undercool-
ings the diminution in the rate is small. These results indicate that the changes in
rate with composition cannot be due solely to changes in the equilibrium melting
temperatures of the blends. At the same time, the change in the glass temperature
from one pure species to the other pure one is no greater than 15 ◦C. The observed
results must, therefore, primarily be a direct consequence of the dilution itself.
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Fig. 11.14 Plot of spherulite growth rates of poly(vinylidene fluoride), in blends
with poly(1, 4-butylene adipate), as a function of temperature at indicated compo-
sition. (From Pennings and Manley (33))

Fig. 11.15 Plot of spherulite growth rates of poly(vinylidene fluoride) in blend with
poly(1,4-butylene adipate) as a function of temperature at indicated composition.
(From Pennings and Manley (33))

The temperature interval for crystallization of most of the blends is small so that a
quantitative analysis of the data according to Eq. (11.8) is precluded.

In contrast to the spherulite growth rates, the overall crystallization of both
components can be resolved in these blends.(33) Typical isotherms are observed
for the crystallization of poly(vinylidene fluoride). They can be fitted with an Avrami
n = 3 for a significant portion of the transformation. There is a progressive shift
of the isotherms to longer times with dilution. These results are thus consistent
with the reduction in spherulite growth rates with the addition of poly(butylene
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Fig. 11.16 Plot of normalized isothermal crystallization of poly(1,4-butylene adi-
pate) in blends with poly(vinylidene fluoride) as a function of log time. Blend
composition indicated. Crystallization temperature 43 ◦C. (From Pennings and
Manley (33))

adipate). The crystallization of the poly(vinylidene fluoride) is expected because it
crystallizes from a homogeneous melt.

The overall crystallization kinetics of the poly(butylene adipate) in the blends
behaves quite differently. A set of isotherms, at a fixed temperature, for different
compositions is given in Fig. 11.16.(33) In this case isotherms of the blends are
shifted to shorter crystallization times relative to those for pure poly(butylene adi-
pate). For this component the crystallization rates are faster in the blends illustrated.
The overall crystallization rate is greatest in the 20/80 blend, indicating that there
is a maximum in the rate when plotted against the concentration of poly(vinylidene
fluoride). The overall crystallization rate of the blend that contains 20 wt per-
cent of poly(vinylidene fluoride) is approximately five times faster than the pure
poly(butylene adipate). The enhancements to the crystallization rate manifest them-
selves in the isotherm shapes that are illustrated in Fig. 11.16. The isotherms for pure
poly(butylene adipate) fit an Avrami n = 3 quite well. However, the best fit is ob-
tained with n = 2 for all blend compositions. Thus, a change in either the nucleation
or growth rates, or both, is indicated. The unique crystallization of the poly(butylene
adipate) component can be attributed to the influence of the already crystallized
poly(vinylidene fluoride). These crystallites offer surfaces that can enhance the nu-
cleation process. In addition, and important, is the fact that the crystallization takes
place in constrained regions due to the presence of the poly(vinylidene fluoride)
crystallites. The poly(butylene terephthalate) crystallizes within an ordered matrix
formed by the component that crystallized first. Thus, the crystallization is probably
restricted to the interlamellar region. This restriction will enhance the crystallization
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Fig. 11.17 Plot of spherulite growth rate of poly(butylene succinate) in blends with
poly(vinylidene fluoride) as a function of crystallization temperature. Composition
poly(butylene succinate)/poly(vinylidene fluoride): � 100/0; ● 80/20; � 60/40.
(From Lee et al. (35))

rate. An enhanced crystallization rate of the lower melting component has also been
observed in blends of poly(phenylene sulfide)–poly(ethylene terephthalate).(34) In
blends of poly( ∋-caprolactone)–poly(carbonate) the half-time for the crystalliza-
tion of the lower melting poly( ∋-caprolactone) increase slightly with the initial
poly(carbonate) concentration. The rate then levels off as the poly(carbonate) con-
centration increases.(34a) This is another example of rate enhancement.

Both components in blends of poly(vinylidene fluoride)–poly(butylene succi-
nate) also crystallize. However, in this mixture both polymers can form spherulites
independent of one another so that their respective growth rates can be measured as
a function of temperature and composition.(35) The growth rate of poly(vinylidene
fluoride), the component that crystallizes first, follows the expected pattern with
crystallization temperature and composition. The usual significant reduction in
growth rate is observed with dilution. The spherulite growth rates, as a function
of the crystallization temperature, of the lower melting component, poly(butylene
succinate) are shown in Fig. 11.17. In this case the effect of dilution on the growth
rate is quite small. The growth rate–temperature plot for the blend containing 80%
poly(butylene succinate) is identical to that for the pure polymer. There is only a
very small decrease in the rate, at all temperatures, for the blend containing 60%
of this component. The small effect of dilution gives strong indication that the
crystallite morphology established by the crystallization of the poly(vinylidene flu-
oride) component plays an important role in governing the crystallization of the
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Fig. 11.18 Plot of normalized crystallinity level of poly(butylene succinate) in
blends with poly(vinylidene fluoride) as a function of log time. Composition
poly(butylene succinate)/poly(vinylidene fluoride): © 100/0; ● 80/20; � 60/40;
� 40/60. (Data from (35))

poly(butylene succinate). This influence also manifests itself in the overall crystal-
lization kinetics. Figure 11.18 gives the isotherms for crystallization at 190 ◦C for
the different blends.(35) The time scale, from the pure polymer to the 40/60 blend,
is limited. It is different from what would be expected if a crystalline matrix did
not pre-exist. Although the initial stages of the crystallization can be fitted with an
Avrami n = 2, deviations set in at the early stages of the transformation. The devia-
tions become more accentuated as the blend becomes more dilute in poly(butylene
succinate).

Poly(ethylene terephthalate) and poly(butylene terephthalate), which crystallize
separately from one another, form miscible blends over the complete composition
range.(36) A single glass temperature is observed, that varies from 300 K for pure
poly(butylene terephthalate) to 340 K for pure poly(ethylene terephthalate). There
are only small changes in the melting temperatures for either the poly(ethylene
terephthalate) or poly(butylene terephthalate) rich mixtures and there is but a few
degrees change in the melting temperature of blends dilute in one or the other
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Fig. 11.19 Plot of crystallization rate constants of poly(ethylene terephthalate) in
blends with poly(butylene terephthalate) as a function of crystallization temper-
ature. Composition poly(butylene terephthalate)/poly(ethylene terephthalate): ✕

0/100; � 10/90; ● 20/80; © 40/60. (From Escala and Stein (36))

Fig. 11.20 Plot of crystallization rate constant of poly(butylene terephthalate) in
blends with poly(ethylene terephthalate) as a function of crystallization temper-
ature. Composition poly(butylene terephthalate)/poly(ethylene terephthalate): ●

100/0; ✕ 80/20; © 60/40. (From Escala and Stein (36))

species. The higher melting poly(ethylene terephthalate) crystallizes first. The over-
all crystallization rates for each of the polymers are given in Figs. 11.19 and 11.20
as a function of the crystallization temperature for a series of compositions. The
poly(ethylene terephthalate) component displays the characteristic rate maximum,
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typical of this polymer, at all compositions. The maxima shift to lower temperatures
as the poly(ethylene terephthalate) concentration is reduced. The conventional be-
havior is found at the right side of the maxima. Here the overall crystallization rate,
expressed in terms of the Avrami rate constant, decreases with dilution. However,
the situation is quite different at the left side of the maximum. Here an inversion
occurs. The crystallization rate actually increases with decreasing poly(ethylene
terephthalate), which is the first component to crystallize. The differences in rate
with dilution, depending on the crystallization temperature, are illustrated more
clearly in Fig. 11.21. In this figure, half-times are plotted against the composition

Fig. 11.21 Plot of half-time of poly(ethylene terephthalate) as a function of its
concentration in blends with poly(butylene terephthalate). (a) Crystallization tem-
perature 200 ◦C. (b) Crystallization temperature 130 ◦C. (From Escala and Stein
(36))
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Fig. 11.22 Plot of crystallization half-time of poly(butylene terephthalate) as a
function of its concentration in blends with poly(ethylene terephthalate), at the
indicated crystallization temperatures. (From Escala and Stein (36))

for a temperature selected to be on either side of the maximum. In Fig. 11.21a, for
crystallization at the right side of the maximum, there is a modest increase in the
half-time indicating a retardation in the rate with dilution. In contrast, for crystal-
lization at 130 ◦C, Fig. 11.21b, which is at the left side of the maximum, there is a
decrease in t1/2 indicating a significant increase in the crystallization rate. This is
clearly opposite to what is expected solely from dilution. This enhancement of the
crystallization rate can be attributed to the decrease in the glass temperature with
the addition of poly(butylene terephthalate). For the composition range of interest
here, pure polymer to the 60% blend, the glass temperature decreases by about
30 ◦C.

The overall crystallization rate of poly(butylene terephthalate), shown in Fig.
11.20, follows a different pattern. Although a maximum is still observed, it is much
broader than that of poly(ethylene terephthalate). The influence of concentration on
the crystallization rates in different temperature regions is summarized in Fig. 11.22,
where plots of the half-time are given. At high temperatures there is virtually no
change with composition. At the lower temperatures there is only a slight increase
in half-time with dilution. The large change that is expected due to dilution alone
is tempered by two factors. One is the increase of the glass temperature with the
added poly(ethylene terephthalate). The other is the fact that the crystallization is
occurring within an already existing crystallite morphology. The restraints that are
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imposed on the amorphous region will in general enhance the crystallization of the
second crystallizing component.

The examples that have been used to illustrate the crystallization of miscible
binary blends, wherein both components crystallize, allow for some generalizations
to be made. The higher melting component behaves in the manner expected for
miscible blends where only one component crystallizes, in that there is a continuous
decrease in the crystallization rate as the noncrystallizing second component is
added. However, the crystallization of the lower melting component is different.
The crystallization is strongly influenced by the already existing crystallites. In
turn the influence of dilution is minimal, and in some cases completely overcome.
Thus, the crystallization rate is no longer reduced and in some cases enhanced as
the second component is added.

11.4 Chemically identical components

11.4.1 Introduction

Blends that are composed of two polymers that have the same chemical repeat-
ing units present a special situation. There are several reasons for differences in
crystallization behavior between chemically identical chains. These include stereo-
differences between the chain units, as for example blends of isotactic, syndiotactic
and atactic polymers. There can also be geometric differences in that chains can
have predominantly cis or trans units. The presence of regio structures in one of
the polymers is also a possibility. There can also be differences in chain length
between the two components. Another set of examples in this category involves
differences in the chain architecture. For the same repeating unit there can be linear
chains, chains with either long or short chain branches, or both, as well as star
type molecules. Blends where both components are chemically identical are well
known and have been extensively studied. Irrespective of the chemical nature of
the chains involved it is necessary to specify whether the species are miscible in
all proportions, immiscible or partially miscible in order for a proper analysis to be
made. Chemical identity does not necessarily ensure miscibility between the two
components.

11.4.2 Blends of two molecular weight fractions and defined distributions

The dependence of the crystallization rate on molecular weights was discussed in
Chapter 9. The profound influence of molecular weight fractions on the rate raises
the interesting question as to the role of polydispersity in governing the crystalliza-
tion kinetics. Studies of the crystallization kinetics of polydisperse homopolymers
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have been the norm. Consequently, there is a large amount of data in the literature
that deals with such systems. However, studies with well-defined distributions, so
that comparison can be made with fractions, and the role of polydispersity can be
quantitatively assessed, are few in number. One approach to the problem would
be to study analytically defined distributions and to compare the kinetic results
with fractions that correspond to different moments of the distribution. An elemen-
tary example of a molecular weight distribution would be a binary mixture of the
same species with different chain lengths. If the crystallization kinetics of the two
pure species are established, then a study of the kinetics of the binary blends, as
a function of composition, will give information as to the role of polydispersity.
Studies of such blends, amenable to analysis, are available.(37–39) Also available
for analysis are mixtures of several fractions having distributions with different
moments.(40)

The half-times, τ1/2, for this isothermal crystallization of two different sets of
binary blends of linear polyethylene are plotted in Fig. 11.23.(37) The molecular
weights of the two pure components in the blend illustrated in Fig. 11.23a are
9 × 103 and 3.7 × 105 respectively, while in Fig. 11.23b the molecular weights of
the pure species are 2.6 × 104 and 3.8 × 106. A family of curves is generated at
different crystallization temperatures for each blend. The dependence of the half-
time on composition is quite different for the two mixtures. There is a smooth,
monotonic increase in τ1/2 as the concentration of the low molecular weight com-
ponent increases in the blend illustrated in Fig. 11.23a. On the other hand, in
the blends illustrated in Fig. 11.23 there is initially a monotonic decrease in τ1/2

as the concentration of the low molecular weight species increases until a mini-
mum is reached at about 70%. As the concentration of the low molecular weight
component increases further, τ1/2 monotonically increases reaching the value of
the pure lower molecular weight component. The time scale is dependent on the
crystallization temperature in the usual manner. The shapes of the curves in ei-
ther set are displaced from one another but are independent of the crystallization
temperature.

The apparent disparity in behavior between the two blends can be explained
when the half-times are analyzed in terms of the weight average molecular weights
of the mixtures rather than composition. The results are given in Fig.11.24a and b
for the two sets of blends. Although the two plots still appear to be quite different,
there is a natural explanation when the plots are compared with the results for
molecular weight fractions of linear polyethylene (see Fig. 9.23a). The τ1/2 for the
low molecular weight component in the 9×103–3.7×105 blends lies well to the left
of the minimum in Fig. 9.23a, while the high molecular weight component is in the
plateau region for the two crystallization temperatures of interest. Consequently, as
is shown in Fig. 11.24, there is essentially a linear decrease in τ1/2 with the weight
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average molecular weight of the mixture. In contrast, in the 2.6 × 104–3.8 × 106

blends the low molecular weight species are still located to the left of the minimum
in Fig. 9.23a. However, the high molecular weight component is now located well
to the right of it. Therefore, as would be expected, and shown in Fig. 10.24b, τ1/2

goes through a minimum when plotted against the weight average molecular weight
of the blend. Thus, the apparently diverse results between the two blends can be
given a consistent and rational explanation by comparing τ1/2 of the weight average
molecular weight of the binary mixtures with those for the corresponding pure
species.

There is a question whether during the course of isothermal crystallization of bi-
nary blends, as well as other polydisperse systems, molecular weight fractionation

Fig. 11.23 (a) Plot of crystallization half-time, τ1/2, against percent M = 9000 for
binary blends of linear polyethylene molecular weight fractions. Pure components:
M = 9000 and 370 000. Crystallization temperature: ● 130 ◦C; © 129 ◦C; � 127 ◦C.
(b) Plot of crystallization half-time, τ1/2, against percent M = 26 000 for binary
blends of linear polyethylene. Pure components M = 26 000 and 3.8 × 106.
Crystallization temperature: ● 130 ◦C; © 128 ◦C. (From Ohno (37))
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Fig. 11.23 (cont.)

occurs. It has been shown that for a linear polyethylene with a broad molecular
weight distribution only molecular weights less than 5000 separate out, or fraction-
ate, during isothermal crystallization.(41,42) On the other hand, molecular weights
greater than about 10 000 co-crystallize and do not segregate during isothermal
crystallization. The crystallization isotherms of the 9×103–3.7×105 mixtures can
be examined to ascertain whether fractionation can be detected. A set of typical
Avrami type plots with differing concentrations of this blend is given in Fig. 11.25.
The theoretical plot, with n = 3, is given by the solid curve in the figure. The
superposed, experimental isotherms give the same type of fit that is conventionally
observed between theory and experiment. The low molecular weight pure compo-
nent follows the theory over the complete extent of the transformation. As the higher
molecular weight component is added, progressive deviation from theory sets in
since the average molecular weight increases. There is, however, no indication in the



Fig. 11.24 Plots of crystallization half-time, τ1/2, against weight average molecular
weight Mw for binary blends of linear polyethylenes. (a) Pure components M =
9000 and 370 000. Crystallization temperature: © 130.0 ◦C; ● 129 ◦C. (b) Pure
components M = 260 000 and 3.8 × 106. Crystallization temperature: © 130 ◦C;
● 128 ◦C. (Data from Ohno (37))
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Fig. 11.25 Plot of relative crystallinity against log time for superposed linear
polyethylene blends of M = 9000 and 370 000. Compositions indicated: IV,
M = 370 000; II, M = 9000. Crystallization temperature 130 ◦C. (Data from
Ohno (37))

crystallization kinetics that fractionation occurs during the crystallization. Blends of
molecular weight fractions of poly(ethylene oxide) behave in a similar manner.(38)
It was shown in Fig. 9.27a that when plotted in the appropriate manner there is no
indication from the kinetics of any fractionation in the poly(ethylene oxide) blends.
Although fractionation of the low molecular weight species may very well be taking
place in both type blends, it does not manifest itself in measurements of the overall
kinetics.

Spherulite growth rates of blends of linear polyethylene, M = 66 000/M =
2500, plotted as a function of the crystallization temperature for different
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Fig. 11.26 Plot of log spherulite growth rate of a linear polyethylene fraction
M = 66 000 in a blend with M = 2500, as a function of temperature. Composition:
M 66 000/M 2500: ■ 1.0/0; © 0.8/0.2; ● 0.6/0.5; ◆ 0.4/0.6; � 0.2/0.8. (From Rego
et al. (43))

compositions are given in Fig. 11.26. (43) The curves are essentially parallel but
shifted along the temperature axis. Accompanying morphological studies demon-
strate that fractionation occurs at these crystallization temperatures. Yet this is not
expressed in the growth rate data. It was assumed that the displacement in growth
rate curves is equivalent to a shift in the equilibrium melting temperature of the
blends. The equilibrium melting temperatures can be calculated for the case when
the low molecular weight component does not enter the crystalline lattice.(44)
These are the values needed to further analyze the temperature dependence of the
growth rate. We can conclude that fractionation, when it is known to occur, is not
detected by either overall crystallization or spherulite growth rate studies.

The spherulite growth rates of poly(ethylene oxide) blends, M = 5000/M =
270 000, display a qualitatively similar behavior.(39) In this case, both components
co-crystallize in a common lattice at large undercoolings. At the low undercoolings
separate phases result. There is no indication of this fractionation in the growth
rate–temperature plots. Morphological studies demonstrate the fractionation.

The growth rates of molecular weight distributions composed of poly
(tetramethyl-p-silphenylene siloxane) fractionshavebeenstudied.(40) Thefractions
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and polydisperse samples follow the same pattern when compared on the basis of
the number average molecular weight. The growth rates of the mixtures are inde-
pendent of chain length at the higher molecular weights, thus following the pattern
found for the fractions.

It is interesting to note that a pattern of retardation in growth rates is also observed
in binary mixtures of high molecular weight n-alkanes.(45,46) The radial growth
rate is slower in dilute blends relative to that of the major component, irrespective
of whether the added component is longer or shorter.

11.4.3 Blends with different molecular architectures

The polymerization of some monomers leads to different structures or molecular
architectures. The polyethylenes, with the same chemical repeating unit, repre-
sent good examples of this phenomenon. Linear polyethylene, often referred to
as high density polyethylene, is a linear chain. Long chain branches can also be
introduced that have short chain branches appended. This chain structure is of-
ten referred to as low density polyethylene. Polyethylene can also form copoly-
mers that can be divided into two groups. In one grouping the comonomers are
1-alkenes, and the copolymers, with short chain alkane branches, are commonly
referred to as linear low density polyethylenes. More polar comonomers, such as
vinyl acetate, methacylic acid, and methyl acylate, among others, comprise another
group.

Both components are usually crystallizable in blends composed of two different
structural polyethylenes. Fundamental to understanding crystallization kinetics in
such blends is the nature of the melt, i.e. whether or not it is homogeneous. It
does not necessarily follow that although both components have the same chem-
ical repeat that they are miscible over the complete composition range. In order
for a valid comparison to be made it is also important that both components have
comparable molecular weights. Small-angle neutron scattering provides direct in-
formation on the melt homogeneity of such mixtures.(47) Such studies have shown
that in the melt blends of linear and low density polyethylenes are homogeneous
at all compositions.(47,48) Similar studies of blends of linear polyethylene with
ethylene–butene copolymers, hydrogenated poly(butadiene), have shown that they
are homogeneous in the melt when the branch content is relatively low, ∼4 branch
points per 100 backbone carbons.(49) However, when the branch content is higher,
∼8 branch points per 100 carbons, phase separation takes place in the melt. The
more polar copolymers, such as ethylene–vinyl acetate, when admixed with linear
polyethylene undergo phase separation over a wide range in copolymer composi-
tions.
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The properties of the blend in the solid state depend on several factors: the homo-
geneity of the initial melt state; the crystallization kinetics; and whether or not the
two species co-crystallize. Co-crystallization depends not only on the homogeneity
of the melt but also the presence of sufficiently long sequences of ethylene units
in each of the components. Thus, the sequence distribution of the crystallizable
sequences in a copolymer determines co-crystallization since it controls both melt
homogeneity and crystallization kinetics.

A key factor in governing the extent of co-crystallization in binary polyethylene
blends is the closeness of the crystallization rates of each of the components.(50–
52) The difference in rate diminishes with increasing concentration of the lin-
ear component in the blend. The amount of co-crystallization is favored by lower
isothermal crystallization and is maximized by rapid, quenched crystallization con-
ditions. Blend composition and molecular structure of the components also have
an influence on co-crystallization. The different results that can be obtained for
different modes of crystallization have important implications for the morphology
and properties in the solid state. Therefore, to gain further insight it should be
fruitful to examine and analyze the crystallization kinetics of such blends in more
detail.6

The temperature for the onset of crystallization at a constant cooling rate, T0, is
a qualitative measure of the crystallization rate of the system. This temperature re-
flects the behavior of the most rapidly crystallizing component. An example of such
a kinetic study is given in Fig. 11.27 for blends of a linear polyethylene fraction with
different random ethylene-1-alkene copolymers.(39) All the components have sim-
ilar weight average molecular weights and comonomer composition. Hydrogenated
poly(butadiene), HPBD, is a random ethylene–butene copolymer with a very narrow
molecular weight and composition distribution. In contrast, although the copolymer
designated as E-B is also an ethylene–butene copolymer, prepared by Ziegler–Natta
catalysis, it has a broad molecular weight and composition distribution. The distri-
bution in this copolymer is such that the lower molecular weight chain contains a
greater concentration of comonomer units while the longest chains are very lightly
branched and approach the chain structure of a linear chain. The copolymer desig-
nated E-H is an ethylene–1-hexene random copolymer with a narrow composition
and most probable molecular weight distribution prepared by a metallocene type
catalyst. The plots in the figure indicate that the crystallization rates, as reflected
in T0, are dominated by the linear component up to a copolymer concentration of

6 The extensive overall crystallization kinetics that have been reported for blends of linear polyethylene with
random ethylene-1-alkene copolymers cannot be analyzed in a consistent manner.(40) Hence, they are not
reported here. The reason is that the crystallization temperatures were expressed in terms of an arbitrarily
defined undercooling, T0 − Tc, where T0 is the peak crystallization temperature obtained by dynamic cooling.
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Fig. 11.27 The dependence of the crystallization temperature, Tc, for linear
polyethylene blends with different copolymers as a function of composition. �
hydrogenated poly(butadiene); � ethylene–hexene; © ethylene–butene. Crystal-
lization was carried out by cooling at 10 K min−1 from melt. (50)

about 75%. Hydrogenated poly(butadiene) blend has the greatest difference in rates
between the pure components. Following the principle that has been enunciated,
calorimetric studies have shown that the extent of co-crystallization in this blend is
the smallest among the three studied. In contrast, the T0 value for the Ziegler–Natta
catalyzed ethylene–butene copolymer is close to that of the linear component. The
reason is that, in the distributions of this copolymer, the longer chains, which are
lightly branched or unbranched, drive the crystallization. Consequently, the largest
extent of co-crystallization is found. The ethylene–hexene blends, where the T0

values for the pure components are between the other two copolymers, have an
intermediate degree of co-crystallization.

In another example, the spherulite growth rates of a similar type ethylene–butene
copolymer and of a low molecular weight fraction of linear polyethylene (M =
2500) are very close to one another over a range of crystallization temperatures.(53)
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It is found that extensive co-crystallization occurs in blends of these two species,
in accord with the principles outlined.

11.4.4 Blends with different stereoirregularities

An interesting set of binary mixtures are those between polymers of different stereo
structures. Among others the crystallization kinetics of isotactic poly(styrene)–
atactic poly(styrene), (25,54,55) syndiotactic poly(styrene)–atactic poly(styrene),
(56) isotactic poly(propylene)–atactic poly(propylene) (55,57) and blends of iso-
tactic and atactic poly(3-hydroxy butyrate),(58,59) and poly(d-lactic acid) with
poly(l-lactic acid) (60) have been studied. In analyzing the kinetics of such blends
the distinction still needs to be made as to whether the components are miscible in
all proportions, partially miscible, or immiscible at all concentrations. Surprising
as it may seem, this is an important consideration for these kinds of mixtures.

A typical example of the spherulite growth rates of these blends is given in Fig.
11.28 for the isotactic–atactic poly(styrene) pair as a function of temperature for
different compositions.(54) The molecular weights in this mixture are 5.5 × 105

and 4.8 × 103 for the isotactic and atactic polymers, respectively. The usual rate
maximum for the pure polymer is found at about 180 ◦C and is maintained for all
the blends, even the most dilute one. There is a systematic, continuous decrease
in growth rate as the atactic component is added. Similar results are found with

Fig. 11.28 Spherulite growth rates of isotactic poly(styrene) in blend with atactic
poly(styrene) at indicated composition. (From Yeh and Lambert (54))
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Fig. 11.29 Plot of ratio (G/G0) of growth rate G in mixture to that of pure isotactic
poly(styrene) at 180 ◦C against percent atactic poly(styrene). Molecular weights
of atactic polymer indicated. (Adapted from Yeh and Lambert (54))

molecular weights as high as 1.8 × 106 for the atactic opponent. The growth rate
maxima for the different molecular weights are in the range 178 ◦C to 183 ◦C. To
illustrate the influence of the atactic polymer concentration, the ratio of the growth
rate G to that of the undiluted polymer G0 is plotted in Fig. 11.29 as a function of the
concentration.(54) The systematic depression of the growth rate with the addition
of the atactic component is significant. The growth rate has been reduced by a half
in the 50/50 mixture. There is no sensible influence of the molecular weight of the
atactic polymer on the growth rate at all blend compositions. The magnitude of the
depression is typical of the crystallization of a component from a miscible melt.
Close examination of the data indicates that there is a discontinuity in the growth
rate, at fixed compositions, between molecular weight 1.98 × 104 and 5.1 × 104.
The reason for this is not evident, but it could be due to changes in morphological
features.

Essentially the same features are found in isotactic–atactic blends of poly(3-
hydroxy butyrate).(58,59) The rate maximum that is observed in the pure isotactic
polymer is maintained in the blends. The growth rate and maxima are systematically
reduced with dilution. The maximum temperatures do not vary by more than just a
few degrees.

Blends of syndiotactic poly(styrene) with the corresponding atactic polymer
are miscible over the complete composition range.(56) The spherulite growth rate
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Fig. 11.30 Spherulite growth rate, G, of isotactic poly(propylene) in blend with
atactic poly(propylene) as a function of crystallization temperature. Compositions
of blends indicated in figure. (Data from Keith and Padden (55))

depends on both composition and crystallization temperature in the conventional
manner for miscible systems. As in other miscible systems, the dilution effect is
much greater at the lower crystallization temperatures than the higher ones.

Blends of isotactic–atactic poly(propylene) have been widely used to study mor-
phological features and to develop mechanisms for spherulite formation.(55) The
results of such a study are given in Fig. 11.30 for a blend of isotactic poly(propylene),
Mw = 1.78×105, with an atactic poly(propylene) component, Mw = 8.7×104.(55)
The spherulite growth rate is plotted against the crystallization temperature in this
figure for compositions that range from the pure isotactic poly(propylene) to a
mixture that contains 60% of the atactic component. The spherulite growth rate
decreases with increasing crystallization temperature as would be expected. Most
striking is the fact that at any given temperature the growth rate only changes
slightly, if at all, with added atactic component. These results have been confirmed
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in another study,(57) and are in marked contrast to those just described and what
is expected for a melt miscible system. More properly the comparison of growth
rates should be made at the same undercooling using equilibrium melting tempera-
tures for the calculation. The data define one curve when plotted against �T . This
behavior is a characteristic of blends with immiscible components. Such systems
will be discussed in more detail subsequently. However, theoretical consideration
(61,62) as well as other types of experiments (63) indicate that the isotactic–atactic
poly(propylene) pair is miscible in the melt. Thus, there is a dilemma between these
results and the spherulite growth rates.

11.5 Partially miscible blends

In this section the crystallization kinetics of blends whose components are mis-
cible in some proportion in the melt will be discussed. In such partially miscible
systems, liquid–liquid phase separation could intervene and influence the crystal-
lization process. Therefore, in order to properly analyze the crystallization kinetics
in such systems it is necessary that the phase diagram be established. These sys-
tems represent a classical example where the melt structure plays an important
role in governing the ensuing crystallization. The reason for this requirement will
become clear as some typical phase diagrams, involving a crystallizable polymer,
are examined.

Figure 11.31 represents the complete phase diagram for a mixture of poly( ∋-
caprolactone) with an atactic noncrystallized poly(styrene). A typical upper critical
solution temperature (UCST) is exhibited.(64) The two-phase region is delineated
by the binodial. The spinodial within the heterogeneous region is also indicated.
The melting temperature of poly( ∋-caprolactone) decreases slightly with added
poly(styrene) until the two-phase region is reached. The melting temperature within
the two-phase region (not shown) is invariant as a consequence of the phase rule.
In this example, the glass temperature was calculated by the Fox equation.(65)
Comparable phase diagrams can also be found for binary mixtures that display a
lower critical solution temperature (LCST).(66–68) The region between the bin-
odial and spinodial is metastable. The region at temperatures below the spinodial is
unstable.

A unique situation can be observed with a UCST type phase diagram. In this
particular case the blend is miscible above Tm, but displays a miscibility gap be-
low.(69,70) There is no equilibrium basis for liquid–liquid phase separation to take
place below the melting temperature–composition boundary. However, it is possi-
ble for the melt to be sufficiently supercooled below Tm that liquid–liquid phase
separation does in fact occur. Therefore, in a practical sense crystallization occurs
in competition with liquid–liquid phase separation.
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Fig. 11.31 Phase diagram of poly( ∋-caprolactone)–atactic poly(styrene) blends. ■

binodial; © spinodial; � melt–crystal coexistence curve; ● glass transition tem-
perature; — — glass transition temperature calculated. (From Li and Jungnickel
(64))

The role of the phase diagram in directing the crystallization kinetics and even-
tually the morphology and structure, can be analyzed. Crystallization of either or
both components in the homogeneous region will be the same as has already been
discussed. However, the situation is quite different when crystallization takes place
from the two-phase region. The two phases that are in equilibrium with one an-
other will have different compositions. Depending on the choice of temperature
and nominal composition the crystallization can occur from either the metastable
region or the unstable spinodial region. Crystallization from the metastable region
involves the usual nucleation and growth processes. However, in the unstable region,
crystallization proceeds by a spinodial decomposition mechanism.(71–74)

In phase separation that is governed by nucleation and growth a new phase is
initiated by a nucleus that proceeds to grow in the conventional manner. Molecules,
or polymer segments, that feed the new phase follow ordinary transport behav-
ior. The diffusion coefficient is thus positive (“downhill diffusion”) because in the
metastable region the second derivative of the Helmholz free energy with respect
to composition is positive. This coefficient makes the major contribution to the
variation of composition. In contrast, in the unstable, spinodial region, the second
derivative of the Helmholz free energy is negative. Segments move from low to
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high concentration in what has been termed “uphill diffusion”. An important con-
sequence of spinodial decomposition is the continuous change in composition and
the interconnected phase morphology.(75,76) The connectivity of phases results in
some unique morphological features as compared to the nucleation and growth.
These morphological features, and the domains that are involved, could promote
nucleation at their interface. However, the immediate interest at this point is to
ascertain how the different paths that can be followed from the melt are reflected
in the crystallization kinetics.

An excellent example of the role played by liquid–liquid phase separation in
the ensuing crystallization is found in blends with syndiotactic poly(styrene).(77)
Measurements of the glass temperature in mixtures with poly(2,6-dimethyl-1,4-
diphenylene oxide) (PPO) indicate that the components are miscible in all propor-
tions in the melt. However, mixtures of syndiotactic poly(styrene) with poly(vinyl
methyl ether) represent partially miscible blends. When the poly(vinyl methyl ether)
content exceeds 20% by weight, the melt separates into two liquid phases, one rich
in syndiotactic poly(styrene), the other in poly(vinyl methyl ether). Thus, the two
blends have a common crystallizing component. However, in one the crystallization
takes place from a homogeneous melt; in the other from one that is phase sepa-
rated. The different melt structures profoundly affect the crystallization kinetics.
This can be seen when a comparison is made between the crystallization kinetics
of syndiotactic poly(styrene) from a homogeneous or phase separated melt.

The spherulitic growth rates of syndiotactic poly(styrene) in both blends are given
in Fig. 11.32. The addition of poly(vinyl methyl ether) causes an increase in the
growth rates relative to the pure polymer that are independent of the composition at
all crystallization temperatures. The growth rate of the pure polymer is represented
by the solid circles in this figure. This unusual behavior is a consequence of the
crystallization taking place from a phase separated melt. There could, however, be
some contribution from the decrease in the glass temperature. On the other hand,
for the homogeneous blend the growth rate decreases in the conventional manner
with the addition of PPO. Thus, there is a very striking difference in the polystyrene
growth rates in the two blends because of the different initial melt structures.

The dependence of the overall crystallization rate on the composition of these
two blends differs from those of the growth rates.(77) The half-time for syndiotactic
poly(styrene) crystallization is plotted against the crystallization temperature for
both type blends in Fig. 11.33. The half-times for the pure syndiotactic polymer
are represented again by the solid circles. For this type of measurement the half-
times increase with the addition of either poly(vinyl methyl ether) or PPO. The
addition of poly(vinyl methyl ether) causes a larger increase in the half-time and
thus a greater reduction in the crystallization rate. The overall crystallization rate is
a reflection of both initiation and growth of crystallization. Both of these processes
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Fig. 11.32 Spherulite growth rate, G, for syndiotactic poly(styrene) in blends with
poly(vinyl methyl ether) and with PPO, as a function of the crystallization tem-
perature Tc. Composition: ● pure syndiotactic poly(styrene); poly(styrene)–PPO
� 90/10, ■ 80/20, poly(styrene)–poly(vinyl methyl ether) ▲ 80/20, ♦ 70/30, ◆

60/40. (From Cimmino et al. (77))

Fig. 11.33 Crystallization half-time, τ1/2, as a function of crystallization tempera-
ture, Tc, for different blend compositions of syndiotactic poly(styrene) with either
poly(vinyl methyl ether) or PPO. Composition syndiotactic poly(styrene)–PPO:
● pure syndiotactic poly(styrene); � 90/10; ■ 80/20. Composition syndiotactic
poly(styrene)–poly(vinyl methyl ether) ♦ 90/10; ◆ 80/20. (From Cimmino et al.
(77))
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Fig. 11.34 Plot of superposed normalized intensity maximum against reduced time,
t/t1/2, for poly( ∋-caprolactone)–poly(styrene) blend. Curve A: Fraction poly( ∋-
caprolactone) crystallized at 40 ◦C: © 1.0; ● 0.9; � 0.8; ■ 0.7; � 0.6. Curve B:
fraction poly( ∋-caprolactone) crystallized at Tc = © 30 ◦C, ● 35 ◦C, ♦ 39.5 ◦C, ■

41.0 ◦C and � 42.5 ◦C. (From Nojima et al. (78))

are nucleation controlled. Hence, the difference between the spherulite growth and
overall crystallization rates of the blends is due to the initiating nucleation process.
Analysis of spherulite densities indicates that each of the added polymers reduces
the nucleation density of the syndiotactic poly(styrene); poly(vinyl methyl ether)
more so than PPO. This then explains the difference between the spherulite and
overall crystallization rates of the two blends.

A potentially interesting situation can develop when the crystallization is initi-
ated in the homogeneous region of the phase diagram. As crystallization proceeds
the composition will become such that the mixing of the crystallized units with
the noncrystallizing component will lead to liquid–liquid phase separation. In this
case the crystallization kinetics and resulting morphology will be altered. This case
has been examined with poly( ∋-caprolactone)–atactic poly(styrene) blends.(64,78)
Crystallization kinetics studies have addressed this phenomenon using small-angle
x-ray scattering.(78) The results of such studies are given in Fig. 11.34, where the
normalized scattering intensity is plotted against the reduced time, t/t1/2. Sets of
superposable isotherms result. The plots for different initial conditions in the ho-
mogeneous regions, including that for the pure poly( ∋-caprolactone) indicate that
the kinetics are not influenced by the eventual intervention of liquid–liquid phase
separation.

11.6 Blend with two completely immiscible components

The crystallization of a mixture of two polymers that are immiscible over the
complete composition range presents some features that have not been previously
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encountered. In immiscible systems, v2 is effectively unity so that Eq. (11.7) reduces
to Eq. (9.205). One naturally has to distinguish between the situation where both
polymers can crystallize or where only one can. In either case, the initial crystalliza-
tion involves one of the components. The other component will be dispersed in the
melt in droplet-like domains.(79–83) Details of the domain structure will depend
on the composition. Therefore, one can anticipate that the initial morphology in the
melt of incompatible blends could very well influence the ensuing crystallization,
irrespective of whether the second component crystallizes or not.

Spherulite growth rates of blends with two immiscible components fall into two
categories. Typical results for one group are illustrated in Fig. 11.35 for blends of iso-
tactic poly(propylene)–low density polyethylene(84) and of poly(ethylene oxide)–
poly(vinyl chloride).(85) Despite the presence of immiscible spherical-like domains
in the melt, the growth rates in each of the blends are independent of composition
over the temperature range studied. Similar results are found in immiscible blends of
isotactic poly(propylene) with a polyethylene based ionomer,(86) poly(ethylene
oxide)–poly(propylene oxide) blends (87) and isotactic poly(propylene)–atactic
poly(styrene) blends.(88) A striking example of this invariance in growth rate is
found when the crystallization of poly(3-hydroxybutyrate) in a blend with poly(vinyl
acetate) is compared with one where an ethylene–propylene copolymer is the second
component.(89) In the former case the two components are miscible in all propor-
tions and the dependence of the growth rate on concentration is that expected. On
the other hand, with ethylene–propylene the two components are immiscible. As a
result the growth rates are independent of composition at all crystallization temper-
atures. In some immiscible blends the growth rates are very similar to one another,
but not quite independent of composition. As an example, the growth rates are
constant with composition for blends of poly(3-hydroxybutyrate)–poly(methylene
oxide) at the high crystallization temperatures. However, a slight decrease in the
rates takes place with dilution at lower crystallization temperatures.(80)

In contrast to the behavior described above, there are many examples where
the growth rate of the crystallizing component is influenced by the dispersed
droplets of the second compound. This is particularly true of blends of isotac-
tic poly(propylene) with various elastomers.(79,83,90) An example is given in
Fig. 11.36 where the second components are poly(isobutylenes) of different molecu-
lar weights.(79,83) The spherulite growth rate–composition relations for this system
are different from those previously encountered and vary with the molecular weight
of the poly(isobutylene). These results indicate that the dispersed phase plays a dif-
ferent role in each molecular weight range. In fact, morphological studies show
that the dispersed poly(isobutenes) behave differently, depending on molecular
weight.(79)

At low concentrations of the low molecular weight polymer, PiB(LM), all of the
polymer is rejected between the spherulites at all crystallization temperatures. As



330 Crystallization kinetics of polymer mixtures

Fig. 11.35 (a) Spherulite growth rate of isotactic poly(propylene) in blends with
low density polyethylene as a function of composition at indicated crystallization
temperature. (From Galeski et al. (84)) (b) Spherulite growth rate of poly(ethylene
oxide) in blends with poly(vinyl chloride) as a function of composition at indicated
crystallization temperatures. (From Martenette and Brown (85))

the concentration increases, however, some of the droplets are trapped in the inte-
rior; the higher the concentration the more droplets are occluded. These changes
are reflected in the kinetic data of Fig. 11.36a. Distinct droplets of the medium
molecular weight poly(isobutylene), PiB(MM), are observed at all concentrations
and temperatures. The droplets are rejected by the spherulite boundaries, includ-
ing those generated within the spherulites. The concomitant decrease in spherulite
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Fig. 11.36 Plots of spherulite growth rates of isotactic poly(propylene) in blends
with poly(isobutylene) (PiB) as a function of composition at indicated crystalliza-
tion temperatures. (a) Low molecular weight PiB; (b) medium molecular weight
PiB; (c) high molecular weight PiB. (From Martuscelli (79))

growth rate, at all temperatures, for blends with PiB(MM), Fig. 11.36b, is con-
sistent with the rejection of the dispersed particles. The plots in Fig. 11.36c for
blends with the high molecular weight elastomer, PiB(HM), show some unique
features. A minimum in the growth rate is observed at about 10% PIB concen-
tration at all temperatures followed by a monotonic, small increase. Concomitant
morphological studies show that the blends containing less than 10% of PiB do
not have any droplet structure. However, when the PiB concentration is increased
above this value a droplet structure appears in the melt and occlusion occurs dur-
ing crystallization. As the crystallization temperature increases more material is
rejected into the interspherulitic region and less remains inside the spherulite. The
results summarized in Fig. 11.36 demonstrate a definite correlation between the
melt morphology, as it involves the droplets, and the molecular weight dependence
of the growth rate concentration curves.

In the initial melts of blends of two immiscible components the noncrystallizable
component is segregated in droplet domains. During crystallization the domains can
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be rejected by the crystallizing front at the growth boundary or may be occluded
or deformed. In these situations additional energy is dissipated so that Eq. (9.205)
must be modified accordingly. It has been suggested that the growth rate can now
be expressed as (79)

G = G0 exp −
{

U ∗

R(T − T∞)
− �G∗

RT
− E

RT

}
(11.9)

In effect, an additional term has been added to the conventional transport and
nucleation terms. The additional activation energy, E , for these additional processes
can be expressed as

E = E1 + E2 + E3 + E4 + E5 (11.10)

Here E1 is the energy dissipated by the growing spherulite rejecting the noncrys-
tallizing component into the interlamellar region; E2 is the energy required by the
growth front to effect the rejection of the droplet domain in the melt; E3 is the
kinetic energy required to overcome the insertion of the droplet; E4 is the energy
required to form new interfaces between the spherulite and droplet; and E5 is the
energy dissipated when the engulfed drops are deformed by the crystallizing front.
Details of the modification of the growth rate by these energy dissipation processes
have been summarized.(83) In essence the growth rate in immiscible systems is
influenced by the size of the dispersed phase and the interfacial energies involved.
Central to the problem for rejection, engulfment or deformation is a quantity �φ. It
is defined as the difference between the interfacial free energy of the crystallizing
entity and the included material, and that of the melt and the included material, γpl.
Thus

�φ = γps − γpl (11.11)

When �φ < 0 the dispersed domains in the melt are more likely to be engulfed
than rejected by the growing front. The situation is more complex when �φ > 0.
Under this condition of slow rates of crystallization the domains are pushed along
by the growing front. At higher rates they will be engulfed. At some intermediate
crystallization rate the domain may be displaced for short distances before being
engulfed. For a given value of �φ there is a critical domain size such that, at a
constant growth rate, domains of this size and larger are engulfed.

With all these possibilities, modifications of the conventional growth rate can be
expected in some blends.(79) It is, therefore, not surprising that the growth rate–
composition relations of blends with two immiscible components are not unique
and a variety of results can be expected, as is observed.
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Fig. 11.37 Plot of fraction crystalline against log time for indicated crystallization
temperatures for poly(ether ketone ether ketone ketone) in a 65/35 immiscible
blend with poly(ether sulfone). (From Androsch et al. (82))

As with other systems the overall crystallization rates of immiscible blends
complement those involving spherulite growth rates and provide additional insight
to the problem. In general, isotherms representing the overall crystallization kinetics
obey the derived Avrami formulation in a manner similar to that of the corresponding
pure crystallizing components.(82,87) As an example, Fig. 11.37 is a plot of the
fraction crystallinity as a function of log time of poly(ether ketone ether ketone
ketone) (PEKEKK) in 65/35 immiscible blend with poly(ether sulfone) over a range
of crystallization temperatures.(82) Typical superposable isotherms are observed
whose major characteristics are similar to those of pure homopolymer.

An unusual feature is found in immiscible systems when the crystallization rates
are examined as a function of concentration. An example is given in Fig. 11.38
for the blend of PEKEKK and poly(ether sulfone). Here the isothermal exotherm
is plotted against the composition of the noncrystallizing component at various
temperatures. The initial addition of poly(ether sulfone) results in a decrease in the
crystallization rate. A maximum is reached at about 30% of the added component.
Further additions of the diluent polymer result in an increase in the crystallization
rate. These results contrast rather sharply with those of the miscible blend of the
same crystallizing polymer and poly(ether imide).(82) For the miscible blend, as
illustrated in Fig. 11.39, the peak times increase continuously with added poly(ether
imide). Thus, the structure of the immiscible melt, both initially and as crystalliza-
tion progresses, is an important factor in governing the rate–composition relation
for isothermal crystallization.
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Fig. 11.38 Plot of dsc peak time dependence on concentration of poly(ether sul-
fone), PES, in immiscible blends with poly(ether ketone ether ketone ketone) at
indicated isothermal crystallization temperatures. (From Androsch et al. (82))

Fig. 11.39 Plot of dependence of dsc peak time on the crystallization temperature
for poly(ether ketone ether ketone ketone) in immiscible blends with poly(ether
imide) at indicated compositions. (From Androsch et al. (82))

The enhancement of the overall crystallization rate with increasing concentra-
tion of the noncrystallizing component in immiscible systems is found in many
immiscible blends.(80,87,91–93) A striking example is illustrated in Fig. 11.40
for poly(ethylene terephthalate)–poly (carbonate) blends.(92) For blends contain-
ing less than 80 wt percent of the poly(carbonate) component the crystallization
rate of the poly(ethylene terephthalate) is greatly enhanced. Kinetic studies for
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Fig. 11.40 Plot of crystallization rate, 1/τ1/2, of poly(ethylene terephthalate) as a
function of crystallization temperature in blends with poly(carbonate) for indicated
compositions. (From Reinsch and Rebenfeld (92))

poly(carbonate) content greater than 80% could not be carried out. The increase
in the overall crystallization rate can be attributed to the noncrystallizing surfaces
that are introduced. These foster the heterogeneous initiation of stable nuclei and
a more rapid overall crystallization rate. This mechanism is not involved in the
spherulite growth rate and thus the difference in the influence of the concentration
of the noncrystallizing component can be explained.

Morphology is not the only factor that determines the overall crystallization
kinetics in immiscible binary mixtures. The nature of the noncrystallizing com-
ponent can also play a significant role. We consider as an example two differ-
ent immiscible blends in which poly(phenylene sulfide) is the crystallizing com-
ponent.(81) In one blend, the added component is linear polyethylene, in the
other poly(ethylene terephthalate). Typical melt morphology is observed in both
blends. Poly(phenylene sulfide) is the continuous phase at high concentration. How-
ever, at lower poly(phenylene sulfide) concentrations both linear polyethylene and
poly(ethylene terephthalate) form the continuous phase. Despite the similarities of
phase morphology the overall crystallization kinetics of poly(phenylene sulfide) is
different in the two blends. These differences are illustrated in Fig. 11.41 where
the crystallization half-time is plotted against the crystallization temperature for
different compositions of both blends. Although the general characters of all the
curves are similar to one another there are important quantitative differences. In
one case the crystallization rate of the poly(phenylene sulfide) is enhanced; in the
other case it is retarded. The half-times are systematically reduced by the addition
of linear polyethylene. In contrast, the half-time is increased by the addition of non-
crystallizing poly(ethylene terephthalate). Analysis of the rate constants indicates
that there is a minimum in the rates at about 50/50 composition. Therefore, there
must be some type of specific interaction, or lack thereof, in the melt that leads to
the opposite behavior despite the similarity in morphological features.
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Fig. 11.41 Plot of crystallization half-time for crystallization of poly(phenylene
sulfide) in blends with linear polyethylene and with poly(ethylene terephthalate)
as a function of crystallization temperature. Pure poly(phenylene sulfide) ●. Com-
position poly(phenylene sulfide)–linear polyethylene blends: � 50/50; � 75/25; ©

90/10. Composition poly(phenylene sulfide)–poly(ethylene terephthalate) blends:
■ 50/50; � 75/25; � 90/10. (From Jog et al. (81))

11.7 Nonlinear growth and diffusion

It has been tacitly assumed in the discussion up to now that the spherulite radius
increases linearly with time. Thus, the growth rate is constant at a given crystal-
lization temperature. Linear growth is most commonly observed in one-component
systems, as well as in many binary blends. As has been pointed out earlier this
type of behavior is indicative of interface controlled growth. However, in binary
mixtures nonlinear growth of the crystallizing component is not uncommon. The
nonlinearity indicates that the radial growth is no longer interface controlled. It
is found in all types of blends, including completely miscible ones, those that are
partially or completely immiscible, as well as some whose melt structure was not
investigated.

Nonlinear growth is often observed in miscible melts that have a low molecular
weight noncrystallizing component. An example of such behavior is illustrated in
Fig. 11.42 for a mixture of isotactic poly(propylenes) with a low molecular weight
(M =540) atactic poly(propylene).(55) The nonlinearity in the growth is quite ap-
parent in this example. It is found that when the molecular weight of the atactic com-
ponent in this blend is equal to or greater than 2600 the growth is linear. Okada et al.
found similar results in their study of a 60/40 isotactic–atactic poly(styrene) blend.
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Fig. 11.42 Plot of radius of isothermally growing spherulite as a function of time,
at 135 ◦C, in a blend of isotactic poly(propylene), M = 178 000, and atactic
poly(propylene), M = 540. (From Keith and Padden (55))

In this blend, when the molecular weight of the atactic component was greater than
1.94 × 104 linear growth was observed.(94) However, when the molecular weight
was less than 5.2 × 103 the growth was nonlinear, and decreased with time. Other
examples of nonlinear growth caused by a low molecular weight, noncrystalliz-
ing added species have also been found in blends of poly( ∋-caprolactone)–atactic
poly(styrene)(69,98) and isotactic poly(propylene)–liquid paraffin (M =338).(96)
In general, for a melt of a given composition nonlinear growth is favored by reduc-
ing the molecular weight of the added component or increasing the crystallization
temperature.

Several mechanisms have been proposed to explain the underlying reason for
nonlinear growth in miscible systems. Major attention has been given to the role
played by the diffusion of the noncrystalline component away from the growing
spherulite front, assuming that all, or a major portion, is rejected during the crys-
tallization.(13,55,97,98) The growth rate is not only influenced by the initial melt
composition but also by the changing composition at the growth front, due to the
rejection of the added components. In a qualitative sense, when a steady state in
the concentration of the added component is reached, the growth rate should be
linear. However, if a steady-state is not reached, then commensurate with the time
scale, the growth rate will be nonlinear because of the varying composition. In the
extreme, for high molecular weights, where the diffusion will be slow, then a steady
state is effectively reached at t = 0 and growth will be linear. On the other hand,
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for low molecular weights a steady state will not be reached at t = 0 and nonlinear
growth will result. Thus, the relative roles of the diffusion and growth rates are
important in this problem. The influence of diffusion of the second component will
be explored further. This is distinct from direct diffusion controlled crystallization
that can be observed in both one and two component systems. In this latter case,
growth is not interface controlled.

It has been shown that for a planar growth front (97,99)

C(x)

C0
= 1 + exp

(
−Gx

D

)
(11.12)

Here C(x) is the concentration of the added component at a distance x from the
growth front, C0 is the initial concentration, and that at large x , and D is the diffusion
rate of the noncrystallizing species. It is assumed here, for simplicity, that all of
the species is rejected by the growing spherulite. The left-hand side of Eq. (11.12)
is the fractional decrease in the concentration between the value at the interphase
and that far removed. Equation (11.12) can also be generalized to include other
shape growth fronts.(97,98) When this fractional decrease reaches the value 1/e, a
quantity δ, termed the diffusion length, is given by

δ = D/G (11.13)

This characteristic length was originally introduced by Keith and Padden (99) in
their discussion of spherulite growth and texture. The diffusion length is a mea-
sure of the distance where there is an appreciable concentration gradient. It is
an important concept not only in the present context but in describing spherulite
texture.7

When δ is small growth will be linear. This corresponds to high molecular weights
and low diffusion rates and reasonable values of G. In contrast, when D is large,
corresponding to low molecular weights and low values of G, δ will be large. The
growth rate will become nonlinear with the larger diffusion length. The growth rate
can be varied over a wide range by choice of the crystallization temperature. This
involves either or both the undercooling and the relation to the glass temperature.
Okada et al. have shown that by calculating D, and using measured values of G,
the variation of δ with molecular weight of the noncrystallizing component, in
isotactic–atactic blends of poly(styrene) follows the pattern outlined.(94)

The increasing concentration of the noncrystallizing component at the growth
front with time serves to reduce the growth rate, as is observed. There are several
reasons for the decrease. One is the usual decrease in growth rate with dilution of
the melt as is found in blends with constant growth rates. The other, only pertinent in

7 A similar calculation was carried out by Kit (100) for lamellar growth.
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general to low molecular weight noncrystallizing components, is the reduction of the
equilibrium melting temperature. In turn, the undercooling at a fixed crystallization
temperature is reduced, as is the growth rate.

Alfonso and Russell (13) have given a phenomenological expression for the
spherulite growth rate in terms of the competition between the inherent capabil-
ity of the crystallite to grow and the diffusion or transport away from the growth
of the noncrystallizing component. The slower of the two processes will be rate
determining. Their expression for the growth rate is

G = v2k1k2

k1 + k2
exp

(−�G∗

RT

)
(11.14)

Here, k1 is the rate of transport of the crystallizing segments across the liquid–crystal
interface and k2 is the rate at which the noncrystallizing component diffuses away
from the growth front. There are two extreme cases of interest. If k2 � k1, the rate
of transport across the interface is rate controlling. Equation (11.7) is regenerated
since k1 can be expressed in terms of the Vogel equation. If, on the other hand,
k1 � k2, k2 dominates the process and the diffusion step becomes rate determining.
If the maximum distance that the segments must diffuse away from the growth front
is defined as d, then

k2 = d/(d2/D) = D/d (11.15)

where D is the diffusion coefficient of the noncrystallizing component. Conse-
quently

G = v2
D

d
exp

(
−�G∗

RT

)
(11.16)

where d plays a role equivalent to δ.
The discussion of nonlinear growth caused by a low molecular weight noncrystal-

lizing added component has focused on the quantity δ and the diffusion coefficient
of the added component. With just a few exceptions, little attention has been given
to the kinetics when nonlinear growth rates are involved. An exception is found
in a 60/40 isotactic–atactic poly(styrene) blend.(94) The growth rates of this blend
are plotted in Fig. 11.43 as a function of log MA at the indicated temperatures.
The molecular weight, MA, is that of the atactic component. The growth rates were
obtained from the initial slope of the spherulite radius as a function of time. At
the highest temperature, Tc = 195 ◦C, G initially increases sharply with MA and
then displays a shallow maximum as MA increases further. In contrast, at the lower
temperatures G initially decreases with increasing MA, reaches a minimum value
and then undergoes a small increase with further increase in molecular weight.
Similar results have been obtained by others.(54) Of particular interest in these
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Fig. 11.43 Plot of initial growth rate G for a 60/40 isotactic–atactic poly(styrene)
blend as a function of molecular weight of the atactic component, at indicated
crystallization temperatures. (From Okada et al. (94))

data is the fact that nonlinear growth is observed when MA is less than its value
at the minimum. Conventional, linear growth is observed when MA exceeds the
minimum molecular weight. It was proposed that these results could be explained
by the influence of the coefficient of the atactic component on the nucleation and
spreading rates.(94) It should be noted, however, that the glass temperature of this
blend increases with MA and then levels off. The leveling off of molecular weight
corresponds to the minimum observed in Fig. 11.43. The glass temperature is 0 ◦C
at the lowest value of MA, and levels off at about 100 ◦C. Thus, it is in this range
of the glass temperature where the transport term is affected. Thus, the continuous
increase in the glass temperature will cause a concomitant decrease in the growth
rate. A minimum in the rate will be needed when the glass temperatures remain
constant. This effect will be greater the lower the crystallization temperature.

In order to develop a firmer understanding of the underlying basis for nonlinear
spherulite growth in immiscible systems, more extensive experimental investiga-
tions are needed. It is important that more attention be given to the kinetics of
nonlinear growth. This involves studies over the complete composition range, car-
ried out over extensive isothermal crystallization temperatures. In particular, blends
that undergo a Regime I to II transition would be important since the relative nu-
cleation and spreading rates could be assessed. It is also important to quantitatively
evaluate the parameter δ and its role in governing nonlinear growth. Varying the
growth rate, by crystallization temperature and molecular weight of the crystalliz-
ing component, while keeping the molecular weight of the low molecular weight
species constant, would be informative.



11.7 Nonlinear growth and diffusion 341

Fig. 11.44 Plot of spherulite diameter of isotactic poly(propylene) as a function of
time at 145 ◦C, in blends with a random ethylene–propylene copolymer. Weight
fraction isotactic poly(propylene) copolymers: © 50/50; ● 70/30. (From Inaba et al.
(102))

Nonlinear spherulitic growth of the crystallizing component is also observed
as a consequence of the concurrence of crystallization and liquid–liquid phase
separation.(69,95,101–103) This case differs from the previous situation in that
the noncrystallizing component need not be of low molecular weight.(102,103)
Examples of nonlinear growth, caused by this process, in blends having two high
molecular weight components are given in Figs. 11.44 and 11.45. Figure 11.44 is
a plot of the spherulite diameter as a function of time for blends of two different
compositions of isotactic poly(propylene), Mw = 2.35 × 105, with an ethylene–
propylene random copolymer, 73 mol percent ethylene, Mw = 1.49 × 105.(102)
The weight percent of the components isotactic poly(propylene)/ethylene propylene
copolymer are 50/50 and 70/30. The blends were subject to demixing at 200 ◦C for 5
min and then isothermally crystallized at 145 ◦C. The phase separation occurred by
a spinodal decomposition mechanism. It is clear that with time the growth becomes
nonlinear. However, linear growth is observed when the crystallization temperature
is reduced to 140 ◦C. The example in Fig. 11.45 is for a blend of poly(ethylene
terephthalate)–poly(ether imide) that displays an upper critical solution temperature
in supercooled melts.(103) Marked deviations from linearity of the growth rates
are observed for the higher crystallization temperatures. However, at crystallization
temperatures below 210 ◦C the growth rates are linear. All of the crystallization
temperatures are within the two phase regions. Similar results are found with other
compositions of the two components. The morphological features of these blends
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Fig. 11.45 Plot of spherulite radius of poly(ethylene terephthalate) in a blend with
poly(ether imide) as a function of time at indicated crystallization temperatures.
Blend composition poly(ethylene terephthalate)/poly(ether imide) 70/30. (From
Chen et al. (103))

are similar to those that were illustrated in Fig. 11.44 since the phase separation
also occurred by spinodal decomposition.8

When demixing occurs by spinodal decomposition, the noncrystalline compo-
nent forms droplets, and a characteristic morphology develops.(102,103) These
structures serve as an impediment to spherulitic growth, and rearrange with time.
Depending on the growth rate, which is governed by the crystallization tempera-
ture, the crystallizing front will either encounter a fixed environment or one that is
changing with time. Thus, at low crystallization temperatures, with relatively rapid
growth, the spherulite radius will increase linearly with time. In contrast, at high
crystallization temperatures, with relatively slow growth rates and the changing
noncrystalline environment, the radius will no longer increase linearly with time.

Another example of nonlinear growth in blends with two high molecular weight
components is illustrated in Fig. 11.46.(104) The blends illustrated are poly(ethylene
oxide) as the crystallizing component, with either ethylene–methacrylic acid or
styrene–hydroxy styrene copolymers as the noncrystallizing ones. The components
in blends are completely miscible over the complete composition range. Each of the
copolymers is thought to have strong intermolecular interactions with poly(ethylene
oxide). As a consequence, it is claimed that there is a significant decrease in the
equilibrium melting temperature with the added noncrystallizing component. If

8 The characteristic morphology of such phase separated blends will be discussed in more detail in Volume 3.
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Fig. 11.46 Plot of spherulite radius as a function of time for poly(ethylene oxide) in
blends with either ethylene–methacrylic acid or styrene–hydroxy styrene copoly-
mer. With ethylene–methacrylic acid: poly(ethylene oxide)/ethylene–methacrylic
acid � 80/20, Tc = 52.5 ◦C; × 70/30, Tc = 48 ◦C. With styrene–hydroxy styrene:
poly(ethylene oxide)/styrene–hydroxy styrene ◆ 80/20, Tc = 55.5 ◦C; ■ 70/30,
Tc = 46.5 ◦C. (From Wu et al. (104))

correct, these blends represent an unusual situation, considering the colligative na-
ture of melting point depressions. However, this concept can explain the nonlinear
growth. The relatively large melting point depression, with the accompanying de-
crease in undercooling, will reduce the growth rate with time as the concentration
of the added component in the noncrystalline region increases.

An unusual situation is illustrated in Fig. 11.47. Here the spherulite radius of
poly(3-hydroxy butyrate) in a 50/50 blend with cellulose acetate butyrate is plotted
against the crystallization time.(2) Although the growth rate is constant for isother-
mal crystallization at 65 ◦C it is not so at the higher crystallization temperature. At
these temperatures the radius is not linear, and the growth rate actually increases
with time. This is indeed a unique case. In all the systems studied heretofore,
the growth rates were either linear or decreased with time. This behavior is only
observed over a limited composition range in blends of these two components.

The conventional decrease in growth rate with time has been attributed to the
rejection of the noncrystallizing component from the crystallizing species. Thus,
the melt becomes richer in the noncrystallizing component with the resultant de-
crease in the growth rate. For a consistent interpretation of the results shown in
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Fig. 11.47 Plot of spherulite radius of poly(3-hydroxy butyrate) as a function
of time in a 50/50 blend with cellulose acetate butyrate at three crystallization
temperatures: � 65 ◦C, ● 95 ◦C, © 130 ◦C. (From Pizzoli et al. (2))

Fig. 11.47 one needs to formulate a mechanism for a decrease in the concentra-
tion of the added component in the melt. It is postulated, and demonstrated, that
in the composition range of interest the cellulose acetate butyrate component also
crystallizes.(2) Its concentration in the residual melt thus will be reduced, and an
acceleration in the growth rate will result. The crystallization is shown to occur
over a limited concentration range and is thus consistent with other aspects of the
experimental results. Although unique, these results can be interpreted in a manner
that is consistent with other results.
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12

Crystallization under applied force

12.1 Introduction

The discussion of crystallization kinetics, and the mechanisms involved, has so far
been limited to quiescent crystallization. In essence, except for polymer structure
and composition, the only variable considered was temperature. This has given a
limited perspective to the overall subject, since polymers crystallize when subject to
applied forces such as hydrostatic pressure, tensile, biaxial and shear deformation
among others. Different morphologies and structures result from these types of crys-
tallization. As a result, properties can be drastically altered. The analysis of the crys-
tallization kinetics of polymeric systems when subject to such external forces is the
subject of the present chapter. Although this an important area, the literature is not
as rich as in some of the other areas that have been discussed. However, the results
that have been obtained are interesting and hopefully will stimulate further inquiry.

12.2 Effect of hydrostatic pressure

12.2.1 Overall crystallization kinetics

Under hydrostatic pressure the force is applied uniformly in all directions. The
discussion will be divided into two parts: the overall crystallization kinetics in this
section and spherulite growth rates in the following. The application of hydrostatic
pressure increases both the glass and equilibrium melting temperatures. However,
since each increases at a different rate the window for crystallization to occur will
be altered. The change in the melting temperature can be calculated by application
of the Clapeyron equation. It should be recalled that in order to properly calculate
the equilibrium melting temperature by this method the specific volumes of the
crystal and liquid have to be known as a function of temperature. If not, significant
errors can occur. The increase in the glass temperature needs to be determined
experimentally.

348



12.2 Effect of hydrostatic pressure 349

Fig. 12.1 Plot of quantity (Vt −V∞)/(V0 −V∞) against log t for poly(cis-isoprene)
at indicated temperatures and pressures.(2)

An important consideration in analyzing crystallization kinetics under these con-
ditions is the distinct possibility of the formation of polymorphs that in turn influence
the crystallization process. For example, referring to the phase diagram of linear
polyethylene (Fig. 6.13, Volume 1) a hexagonal form develops after crystallization
from the melt at high temperatures and pressures. It is possible, in general, for the
polymer to be nucleated in one form and eventually transform to the more stable
form with time. It is also possible for the hexagonal form to be nucleated at tem-
peratures and pressures where this structure does not appear in the phase diagram.
It has been suggested that other polymers, particularly poly(cis-1,4-isoprene), also
crystallize through a metastable form.(1)

In order to establish the basis for analyzing the experimental results for both
types of measurements, it is necessary to ascertain what modifications have to
be made in Eq. (9.209), and related expressions, as a consequence of the applied
pressure. There is the question with respect to the nucleation term in Eq. (9.209)
whether the two interfacial free energies, σen and σun, as well as �Hu, or �Su,
depend on pressure. There is also concern as to whether the parameters U ∗ and C
in the transport term vary. Pertinent experimental results can be examined, keeping
in mind these concerns.

Figure 12.1 gives a set of isotherms, obtained dilatometrically, for the crystal-
lization of poly(cis-isoprene) at different pressures and two crystallization temper-
atures.(2) The isotherms have similar shapes, irrespective of the temperature and
pressure of crystallization. This leads to a set of superposable isotherms, for both
temperatures and pressures, as is illustrated in Fig. 12.2. The experimental points
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Fig. 12.2 Demonstration of superposability of isotherms of poly(cis-isoprene) for
indicated temperatures and pressures. Solid line plotted according to Eq. (9.31a)
with n = 3.(2)

represent the isotherms obtained at the indicated temperatures and pressures. They
are plotted on an arbitrary time scale so as best to bring them into coincidence. The
solid line is drawn in accordance with the derived Avrami equation, Eq. (9.31a),
with n = 3. The plots demonstrate good agreement between experiment and theory
for a major portion of the transformation. As in quiescent crystallization, devia-
tions from the theory develop towards the end of the transformation. The disparity
for poly(cis-isoprene), natural rubber, crystallized under pressure is observed at
a crystallinity level of about 25%. Linear polyethylene,(3–5) see below, and other
polymers,(6) yield superposable isotherms and adhere to the Avrami equation when
crystallized under applied pressure.

The crystallization rate of poly(cis-isoprene) displays a maximum with crys-
tallization temperature under atmospheric pressure (Fig. 9.6). As is illustrated in
Fig. 12.3 this maximum is still maintained for crystallization under applied pres-
sure.(2) Here the rate constant, from the derived Avrami expression, is plotted



12.2 Effect of hydrostatic pressure 351

Fig. 12.3 Plot of log ks (Avrami rate constant) for poly(cis-isoprene) against crys-
tallization temperature at indicated applied hydrostatic pressure.(2)

against the crystallization temperature for different pressures. At one atmosphere
the rate maximum is observed at −24 ◦C. As the pressure is increased the maxi-
mum progressively moves to higher temperatures. At a pressure of 800 kg cm−2

the maximum has increased to −5 ◦C. Concomitantly there is a decrease in the rate
constant at the maximum. An inversion in the rate with applied pressure is also
observed. The overall crystallization rate increases with pressure at temperatures
to the right of the maximum. The opposite is observed at temperatures to the left of
the maximum. In this temperature region the rate decreases with applied pressure.
These results indicate that at least two mechanisms are still involved that vary dif-
ferently with temperature and pressure. At high temperatures, where the nucleation
term predominates, the increased undercooling with applied pressure, at a fixed
crystallization temperature, is important. At the lower temperature, the change in
the transport term with pressure is important as it involves the glass temperatures,
U ∗ and C . The ratio T ∗/Tm is still in the range 0.81–0.83 for this polymer over the
pressure range studied.

The overall crystallization rate of linear polyethylene, as a function of tempera-
ture and pressure has been extensively studied.(3–13) The polymorphism of linear
polyethylene at elevated temperatures and pressures makes the analysis of its crys-
tallization kinetics more complex. Depending on conditions, either a hexagonal
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form or the conventional orthorhombic can be observed. Consequently, in princi-
ple, a true phase diagram, i.e. one that relies on equilibrium melting temperature,
needs to be available in order to properly interpret the kinetic results. Such a dia-
gram is unfortunately not available. Recourse then has to be made to a pseudo-phase
diagram such as Fig. 6.13. Such a diagram is based on observed melting temper-
atures. The phase diagram, true or pseudo, will depend on molecular weight and
polydispersity. In many instances this requirement makes it difficult to definitively
interpret the results of different investigators. In general the usual orthorhombic
form is observed after crystallization at low to moderate pressure. However, at high
pressures and temperatures, above about 3 kbar and 220 ◦C, the hexagonal form
develops from the melt. At these high temperatures and pressures, crystallites in
the range of 1000 Å to 3 micrometers are formed.(14,15) Such crystallites have
been termed extended chain crystals.1 In analyzing the kinetic data it is important
to establish which of the two polymorphs forms initially, and if any transforma-
tion occurs during the time course of crystallization. It should be recognized that
with rare exceptions (5,9) the studies were carried out with samples having a broad
molecular weight distribution with a significant concentration of low molecular
weights.

Superposable isotherms are observed following crystallization from the melt,
irrespective of whether orthorhombic or hexagonal crystals are formed. A set of
isotherms for an unfractionated linear polyethylene (Mn = 14 000, Mw = 64 000)
that is stated to be crystallizing in the hexagonal form is given in Fig. 12.4.(7)
The superposition of the isotherms is quite clear. Crystallization under conditions
that yield the orthorhombic phase also gives superposable isotherms that resem-
ble those obtained at atmospheric pressure. There is, however, a major difference
between the shapes of the isotherms in the two cases. At high pressure, and the
formation of the hexagonal phase, the Avrami exponent is about 1.(7–11) In con-
trast, when the orthorhombic crystal structure is formed n is 3 or 2, depending on
the particular sample being studied. The n values thus reflect the different struc-
tures that are evolving. The shapes of the isotherms are obviously quite different
in the two cases.(10,12) The formation of the hexagonal structure, with n = 1,
leads to the thick extended chain type crystallites. The value of n = 1 suggests
one-dimensional growth. This conclusion is supported by microscopic observa-
tions.(12a) In contrast, the orthorhombic form leads to lamellar crystallites with
the conventional thicknesses. Deviations from the derived Avrami expression are
observed as the crystallization progresses in both cases.

1 It does not necessarily follow that the crystallite thickness can be identified with the length of the completely
ordered chain.(16) Details of the structure and morphology of such polyethylene crystallites will be discussed
in detail in Volume 3.
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Fig. 12.4 Plot of relative extent of crystallization of an unfractionated linear poly-
ethylene as a function of log time at 5300 bar at indicated temperatures. A =
V∞ − Vt/V∞ − V0. (From Kyotani and Kanetsuna (7))

The use of molecular weight fractions results in some interesting observations.(5)
Figure 12.5 illustrates an unusual two-stage crystallization process that takes place
isothermally at high pressure when fractions are used. The conditions here are
such that the hexagonal phase initially forms from the pure melt. The early stages
of the crystallization display conventional type isotherms. A long plateau region
then develops, followed by the further development of substantial amounts of addi-
tional crystallization. Similar results are implied in the works of Matsuoka (3) and
Hoehn et al.(17) These results are consistent with the observed double endotherms
found in similar crystallized samples (18–20), as well as dilatometric studies that
show two melting temperatures.(21) These results strongly suggest that each of the
polymorphs is forming in turn. Direct structural studies and identification of the
crystallizing species would be extremely helpful in interpreting these results.

It has been claimed, based on studies in the pressure–temperature range of 2.5
kbar and 180–310 ◦C, that, irrespective of the position in the pseudo-phase diagram,
crystallization never occurs directly in the orthorhombic phase.(22,23) This impor-
tant conclusion is based solely on morphological studies with a molecular weight
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Fig. 12.5 Plot of relative extent of crystallization of molecular weight fraction of
linear polyethylene as a function of log time at 5000 bar and 235 ◦C. Number
average molecular weights: V = 17 000; VI = 50000; VII = 130000. (From
Hatakeyama et al. (5))

fraction of linear polyethylene Mw = 3.2 × 104, Mw/Mn = 1.11. Crystallization is
said to proceed through the hexagonal phase, even when the orthorhombic phase
is the more stable one. Put another way, it is thought that the hexagonal poly-
morph always initiates the crystallization, irrespective of whether it is the stable
or metastable phase, or whether the crystallization is carried out above or below
the triple point. When the crystallization is carried out at pressures and tempera-
tures where the orthorhombic phase is stable, a transformation to this polymorph
eventually occurs with time. No appreciable crystallite thickening takes place under
these conditions. In contrast, when the hexagonal polymorph is maintained during
the course of the transformation, rapid crystallite thickening to the extended form
takes place.

There is a contradiction between the above concepts and the Avrami exponents.
The latter are consistent with the initial formation and growth of either the or-
thorhombic or hexagonal forms. On the other hand, the two-stage isotherms cannot
be explained by these concepts. A resolution of these complementary, but contra-
dictory, results is clearly needed. This resolution is important not only for the under-
standing of the high pressure–high temperature crystallization but also the strong
suggestion that has been made that crystallization of polyethylene at atmospheric
pressure also proceeds from the metastable polymorph.(22–24) By implication this
argument would apply to other polymers as well.

In the discussion of polymorphism in Chapter 6 several different possible equi-
librium transformations from one form to another were outlined. It was pointed out
that kinetic factors can also play an important role in determining which polymorph
is actually observed under specific conditions. An important factor in the crystal-
lization process is the nucleation step and the free energy barrier that needs to be
overcome in order to form a nucleus of critical size. It does not necessarily follow
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that the barrier height, the free energy required to form a critical size nucleus, is
related to the stability of the equilibrium crystallite. Taking a Gibbs nucleus as an
example the free energy barrier depends on the ratio σenσun/�Gu. Thus, depending
on the relative value of this ratio between the different polymorphs, it is possible,
in principle, for the less thermodynamically stable form to nucleate first. Initially
this crystal structure will then be propagated. Theoretically, a transformation to the
more stable form will eventually occur. This appears to be the situation for the
high pressure–high temperature crystallization of linear polyethylene, if indeed
the hexagonal polymorph is always formed initially. Detailed kinetic studies, as a
function of temperature and pressure, that are restricted to the crystallization of the
hexagonal phase, as well as the determination of its free energy of fusion, would
help to better understand the problem. In contrast, when the thermodynamically
most stable form is nucleated first, this structure will be maintained during the
course of crystallization.

A characteristic of isothermal crystallization is that the overall crystallization rate
increases with applied pressure.(5–7,9,13) This effect can in general be attributed
to an increase in the undercooling. However, there is an independent influence of
pressure, when the data are analyzed at constant undercooling. To appraise the
situation, reliable values of the equilibrium melting temperature, and thus the un-
dercooling, are needed as a function of pressure. This temperature can be estimated
by an extrapolative method that depends on the relation between the observed melt-
ing and crystallization temperatures at different pressures,(13) or by an empirical
relation based on the Clapeyron.(5) Although there is a consistent small difference
between the two methods it is not significant for present purposes. Hence, we will
use the equilibrium melting temperatures given by Hatakeyama et al. and the kinetic
data they reported covering the pressure range of 1000 kg cm−2 to 5000 kg cm−2.(5)
These equilibrium melting temperatures used here are empirical in nature.

Figures 12.6 and 12.6a summarize the overall crystallization rates in terms of
half-times, t1/2, as a function of undercooling at pressures ranging from 1000 to
5000 kg cm−2.(5) Linear plots are obtained for the two lowest pressures. This is the
pressure region where folded chain crystallites form.(5) At the higher crystallization
pressures, although the plots are not linear, the curves parallel one another. At
the higher pressures, where the hexagonal structures are formed, extended chain
crystals grow rapidly in one dimension in the chain direction. The plots make
clear that at any undercooling there is a significant decrease in the half-time with
increasing pressure. For example, at �T = 10, t1/2 is approximately 2000 min
at 1000 kg cm−2. As has been pointed out, concomitantly the Avrami exponent
decreases from about 3 to 1 as the crystallization rate is enhanced.

It is appropriate at this point to interject, perhaps out of turn, results that have
been reported for the lateral growth of the hexagonal form of linear polyethylene at
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Fig. 12.6 Plot of crystallization half-time, t1/2, against undercooling, �T , for
linear polyethylene crystallized at 1000 and 2000 kg cm−2. Unfractionated
polyethylenes: �, �Mn = 5.2 × 104, Mw/Mn = 2.7; ©, ● Mn = 5.4 × 104,
Mw/Mn = 3.0. (From Hatakeyama et al. (5))

pressures that are either in the stable or metastable region for this polymorph.(22)
Figure 12.7 is a plot of the lateral growth rate against the reciprocal undercooling
of the hexagonal form at different pressures.2(22) In this work, a parallel set of
straight lines is found for both low and high pressures. The growth rates decrease
significantly with pressure, in accord with the results for the overall crystallization
rates. There appears to be a discrepancy between the linearity of these results
at high pressure and those of the overall crystallization rates under comparable
conditions. Strictly speaking the overall crystallization and growth rates should not
be compared.

2 The plots in Fig. 12.7 are crucially dependent on the values taken for the equilibrium melting temperatures of
the hexagonal polymorph.
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Fig. 12.6a Plot of crystallization half-time, τ1/2, against undercooling, �T , for
linear polyethylene crystallized at 4000 and 5000 kg cm−2. Unfractionated
polyethylenes: �, � Mn = 5.2 × 104, Mw/Mn = 2.7; ©, ● Mn = 5.4 × 104,
Mw/Mn = 3.0. Fraction: � Mn = 5.0 × 104, Mw/Mn = 1.3. Symbols with
vertical lines represent two-stage crystallization. (From Hatakeyama et al. (5))

The kinetic studies suggest that at sufficiently high pressures extended chain
crystals of linear polyethylene grow isothermally, directly and rapidly from the
melt, at the crystallization temperature.(4,7,12,20,25,26) However, morphological
studies have lead to quite different conclusions.(23,27–30) Based on morphological
studies, it has been postulated that crystallization always begins with folded chain
crystallites. Eventually, chain extension occurs under isothermal conditions. This
conclusion is based primarily on the observation of tapered growth faces of iso-
lated lamellae as seen by transmission electron microscopy, in samples quenched
from high pressure. Other interpretations have been offered for the microscopic
observation.(4,25)

Despite some differences in interpretation and discrepancies that exist between
experimental results, a major feature has emerged from the high temperature–high
pressure studies with linear polyethylene. This feature is related to the fact that
when the hexagonal phase is maintained rapid crystallite thickening takes place in
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Fig. 12.7 Plots of lateral growth rates as a function of the reciprocal undercooling
for linear polyethylene crystallized at the indicated pressures. (From Rastogi et al.
(22))

the chain direction. A basic question to be addressed is why this occurs under these
crystallization conditions. The hexagonal crystal has certain unique features that
are consistent with the observed thickening. The crystals in this phase possess some
degree of conformational disorder.(31,32) There is only order in two dimensions.
The chain units in this state possess a high degree of molecular mobility and perform
rotational and translational motions. NMR measurements of linear polyethylene in
the hexagonal phase indicate a high rate of transactional diffusion in the chain
direction.(33)
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Hikosaka and coworkers have addressed some aspects of this problem by in-
troducing the concept of sliding diffusion.(34–37) Underlying this concept is the
deduction from x-ray diffraction analyses that the interaction between chains in
the hexagonal form is much weaker than in the orthorhombic form.(38) This is
consistent with the well-known properties of polyethylene chains in the hexagonal
form that were described above. In this development attention is focused on sec-
ondary nucleation, the growth of nuclei past critical size, and the free energy region
�G = �G∗ to �G = 0. The same concepts have also been used to develop a
theory for primary nucleation.(37) The chain conformations in the nuclei of critical
size are assumed to be regularly folded, with adjacent re-entry in both cases.3

In essence, the steady-state nucleation rate of Turnbull and Fisher is modified to
account for the growth of nuclei past �G∗. The critical free energy, �G∗, remains
unaltered. Attention is directed to the activation energy E for transport of a repeating
unit across the interfacial boundary. The activation energy is considered to consist
of two terms. One is the activation energy, termed Es, that is required to add a unit
to the side surface of the nucleus. The other, Ee, is that needed to add a unit to the
end surface. Consequently, E can be written as

E = pEe + (1 − p)Es (12.1)

where p is the probability of attaching a unit to the end surface. It is assumed that
Es is related to the energy of reeling in of a chain from the melt and is estimated to
be small. Equation (12.1) then becomes

E � pEe (12.2)

The assertion is made that it is extremely difficult for a repeating unit to dif-
fuse from the residual melt, or liquid, to the end surface of the growing nucleus.
Therefore, in order for a nucleus to thicken, i.e. grow in the chain direction, most
units must diffuse from the interior of the molecule to the end surface. This concept
of nucleation past �G∗ is what is meant by the sliding diffusion of a chain. The
conventional activation energy for transport is then replaced by Ee. It will depend
on the structure of the nucleus in terms of the chain conformation, lattice param-
eter and defects. For a close packed strongly interacting chain structure, such as
the orthorhombic phase of linear polyethylene, the work required to draw a chain
through the nucleus is proportional to its frictional coefficient κ , and thickness l.
In contrast, in the hexagonal phase the chains are defected and loosely paired so
that translational motion is facile. Thus, to include the extremes, and situations in

3 It was pointed out in Chapter 9 that the adoption of this chain structure with the nucleus represents a major
assumption. Other chain conformations within the nucleus can serve equally well. The same functional form
for �G∗ and the steady-state nucleation rate will be obtained as long as a Gibbs type nucleus is considered.
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between, E can be expressed as

E = Ee = pκlv 0 < v ≤ 1 (12.3)

Following these arguments, it turns out that the quantity E effectively determines,
through the nucleation rate, whether or not thickening will occur following the for-
mation of a critical size nucleus. Parenthetically, it should be noted that for a Gibbs
type nucleus to be stable at a temperature infinitesimally above the crystallization
temperature thickening in the chain direction must occur, irrespective of the crystal
modification involved.

The nucleation rate is calculated following the method of Frank and Tosi (39)
by incorporating the assumptions outlined above. In this method a set of sequential
processes, with forward and backward rates, is calculated, in this case starting at
the critical size nucleus. The nucleation rate can then be written as (34)

N = N0 exp

[
−�G∗

RT
− E∗

R(T − Tg)

]
Ps = N0 APs (12.4)

where

Ps ≡
∞∑

m=0

exp

[
�Gm

RT
+ Em

R(T − Tg)
− A

]−1

(12.5)

Here the subscript m represents the stage number and E∗ is the activation energy
corresponding to the barrier height. In this theory Em is not necessarily constant but
is allowed to vary with m. When E is constant, Eq. (12.4) reverts to the conventional
expression for the steady-state nucleation rate. As given, the steady-state nucleation
rate is the product of two factors. One is overcoming the free energy barrier to form
a nucleus; the other the survival probability of a critical size nucleus. In effect, what
is being considered is what takes place in the region between �G∗ and �G = 0.
The change in �G is known to be precipitous in this region. The key quantity in the
analysis is Em , which in turn depends on the parameters κ and ν. Analysis indicates
that for large values of κ and ν nucleation will not occur, so that thickening will not
be observed. However, for low values of these parameters nucleation can proceed
and thickening will occur along the chain direction.

These ideas have been adapted to explain the molecular weight dependence of the
primary and secondary growth nucleation of linear polyethylene in the hexagonal
phase.(35–37) It is demonstrated experimentally that the free energy of forming
a critical size nucleus does not depend on molecular weight. Therefore, either or
both the transport term and front factors are involved. It was concluded that both
of the nucleation processes involve sliding diffusion within the nucleus with the
disentanglement of chains in the interfacial region.
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Serious questions can be raised regarding the basic concept of sliding diffusion
within the nucleus, or crystallite, and the accompanying theoretical development.
Several of these merit serious consideration. Among them is the concern as to
why the sliding diffusion is not invoked prior to forming a critical size nucleus.
The physical reason for the assumption that Em increases with each growth stage
is crucial and needs to be justified. A related problem is that the chains within
the critical size nucleus are assumed to be regularly folded, and presumably in
the orthorhombic form. With such a nucleus structure how does sliding diffusion
become effective for a nucleus past �G∗? If on the other hand the critical nucleus
is composed of chains in the hexagonal form how can one conclude that folded
chain crystallites are formed initially and then develop into extended form?

The discussion of the overall crystallization kinetics of linear polyethylene makes
apparent that the formation of extended chain crystallites in this polymer, at high
temperature and pressure, is not as well understood as would be desired. Significant
theoretical and experimental problems remain to be resolved. The important fact
that thickening in the chain direction takes place within the hexagonal phase is well
established. However, some matters still remain to be addressed. If the complete
chain exists in this mesomorphic state then facile chain extension will occur in a
natural way. However, if the complete molecule is not involved in the hexagonal
state, there will be some degree of entanglement among the units from different
molecules. Hence, some type of chain disentanglement needs to be invoked to allow
for extended chain crystallites to develop. To completely analyze crystallization
involving the hexagonal phase the appropriate thermodynamic parameters need to
be established. As was pointed out earlier the delineation, as closely as possible,
of equilibrium phase diagrams for a range of molecular weight fractions would be
highly desirable.

12.2.2 Growth kinetics

Spherulite or lamellar growth rates have been studied under high pressure and
temperature for several polymers. These include poly(cis-1,4-isoprene), natural
rubber,(1) the high and low melting polymorphs of poly(trans-1,4-isoprene), gutta
percha,(40) linear polyethylene (13,22) and poly(ethylene terephthalate).(41) The
radial growths of the two polymorphs of poly(trans-1,4-isoprene) are linear with
time at all crystallization temperatures at pressures up to 3 kbar.(40) The growth
rates of each of the forms are plotted in Fig. 12.8 as functions of temperature
at the indicated pressures. The maxima observed at 1 bar move to successively
higher temperatures with increasing pressure. The magnitude of the growth rate
at the maximum decreases continuously with pressure. These results are quali-
tatively similar to the influence of pressure on the overall crystallization rate of



362 Crystallization under applied force

Fig. 12.8 Plot of spherulite growth rates of the low (a) and high (b) melting poly-
morphs of poly(trans-1,4-isoprene) as functions of temperature at the indicated
pressures. (From Davies and Cucarella (40))

poly(cis-1,4-isoprene) (Fig. 12.3). In this case the growth rate increases with pres-
sure at temperatures to the right side of the maximum and decreases at temperatures
at the left of the maximum. The growth rates of poly(ethylene terephthalate) were
studied up to a pressure of 2 kbar, but restricted to temperatures at the left of
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the maximum.(41) The growth rates decreased substantially with pressure in this
temperature region.

The influence of pressure on the lamellar growth rate of poly(cis-1,4-isoprene) is
quite different than what was described above.(1,42) In this case, although the max-
ima move to higher temperatures with increasing applied pressure, their magnitude
initially increases and then levels off. As was shown in Fig. 12.7, the lateral growth
rates of the hexagonal form of linear polyethylene generate a set of parallel straight
lines when plotted against the reciprocal of the undercooling. The growth rates in
this case decrease with pressure. It is tempting to conclude, if the undercoolings
are reliable, that the product of interfacial free energies, σunσen is independent of
pressure. However, �Su, which appears in the denominator of �G∗, is a function
of pressure. Thus, until the relation between �Su and pressure is established, no
conclusion can be made with respect to the dependence of σunσen on pressure.

The dependence of the spherulite and lamellar growth rates on the crystallization
temperature, at each pressure studied, can be fitted by the conventional relation,
Eq. (9.209), for all polymers studied. This relation, which has been successful in
analyzing growth rate data at atmospheric pressure, assumes a Gibbs type nucleus
and a transport term expressed by the Vogel expression. Therefore, the values of
T 0

m and Tg as a function of pressure need to be known a priori. In addition, the
pressure dependence of the expansion terms in the free energy of fusion also need
to be known, as do the parameters U ∗ and C . The analysis of the growth rate–
temperature data, at atmospheric pressure, for many polymers has shown that there
is a wide range in the values of these parameters that can satisfactorily explain the
data. Thus, the conclusions reached with regard to the existence of regimes and
the product of the interfacial free energies, σenσun, depended on the specific set
of parameters, from among many, that were chosen. A similar problem exists in
analyzing growth rates at elevated pressure.

The growth rate studies have not led to a definitive conclusion. This is due in
part to the few polymers that have been studied and the limited pressure range
covered. However, the major obstacle is the need to specify a large number of
independent parameters. This presents a formidable problem to accomplishing an
objective analysis.

12.3 Crystallization kinetics under uniaxial deformation

Crystallization under an applied hydrostatic pressure is uniform in all directions. In
contrast, other types of deformation such as uniaxial, biaxial and shear are direc-
tional and thus anisotropic. These types of deformation have a major influence on
the crystallization process and therefore on the resulting properties. In the studies
involving uniaxial and biaxial deformation, which will be discussed, the sample is
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Fig. 12.9 Plot of relative volume decrease, open symbols, and relative stress de-
crease, closed symbols, as a function of log time for vulcanized natural rubber at
−26 ◦C at indicated extension ratios. Stress measurements scaled appropriately.
(From Gent (44))

initially deformed in the pure melt. The deformation is maintained as the temper-
ature is lowered to allow for isothermal crystallization to ensue. The deformation
is maintained during the entire course of the crystallization. It is important in these
types of studies that the polymers be covalently cross-linked and the resultant
networks be well characterized. If the system is not cross-linked, flow will occur
with the initial deformation and continue as crystallization proceeds.4

Both overall and growth rate kinetics have been studied with rubber-like polymers
under uniaxial deformation. The conventional techniques, described earlier, have
been used to study the overall kinetics. In addition, measurement of the relaxation
in the applied stress with time, while the sample is held at constant length, is an
effective method by which to measure the development of crystallinity.(43) As the
crystallinity progresses the stress decreases until it becomes zero. At this point
the well-known spontaneous elongation occurs.(44,45) The relative decrease in the
stress with time can be related to the increase in the level of crystallinity and gives
results that are the same as those obtained by other methods. An example of this
comparison is given in Fig. 12.9.(44) In this figure the relative decreases in volume
and in stress are plotted against log time. It is evident that there is a one-to-one
correspondence between the two quantities. It should also be noted that typical
isotherms are observed, whose shapes vary with the elongation ratio.

4 We shall not be concerned with the situation where crystallization takes place as the sample is deformed with
time. The interest here is limited to the case where the extension ratio(s) are maintained constant during the
course of the crystallization. This restraint allows for a simpler analysis of a complex problem.
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The isotherms obtained for homopolymers at a constant elongation ratio, at
different temperatures, can be superposed upon one another in the conventional
manner. An example is given in Fig. 12.10 for natural rubber crystallized without
deformation and at an extension ratio α of 5.(43) Here 1 − λ(t) is plotted against
log time at the indicated crystallization temperature. Linear plots are observed over
most of the transformation. The slopes of the straight lines are the same for each
elongation ratio. However, they are quite different for the two cases illustrated. This
difference is a reflection of the different values of the Avrami exponent n, which
varies with the elongation ratio. An example of the variation in n is illustrated in
Fig. 12.11 for natural rubber.(43) In this example n is about 3 for α = 1 and mono-
tonically decreases to n � 1 for α = 6. Other polymers show a similar behavior.
For example, n � 1 for cross-linked polyethylene over a range in extension ratios
from 2 to 5.(46) The values of n that have been observed for poly(ethylene tereph-
thalate) are in the vicinity of 1 at high extension ratios.(47–49a) The n value of this
polymer decreases from 3 to 1 as the sample is deformed from the isotropic state
to one of high deformation. A similar decrease in n with deformation has also been
observed for poly(pentenamer).(50) The n value for poly(isobutylene) is also about
unity at high deformation.(51) The n value for cross-linked polyethylene, swollen
in xylene, is also approximately equal to unity.(52) The n values are in the range
of 0.7 to 1.0 for poly(trans-1,4-butadiene) at relatively low extension ratios.(53)
This could probably be attributed to the structural irregularity of the chain in this
polymer.

The fact that n � 1 at large deformations for many polymers is consistent with
one-dimensional growth from nuclei that are activated at t = 0. The change in n
values with elongation ratio suggests that there are major changes in morphology
with increasing extension ratio. There are, in fact, direct morphological observations
that support this conclusion. It has been demonstrated that when natural rubber is
stretched in the melt, and the deformation maintained during crystallization, there
is a change from spherulitic to aciform growth.(43,54) These observations give
further support to the argument that the Avrami does indeed reflect the shapes of
the morphological forms that evolve during crystallization.

An interesting observation associated with crystallization under uniaxial defor-
mation is the marked enhancement of the crystallization rate at constant tempera-
tures.(43,44,55,56) For example, the crystallization rate constant of natural rubber
increases by six to nine orders of magnitude with extension ratio at constant temper-
atures.(43) This enhancement is also reflected in the crystallization half-time, which
also increases by several orders of magnitude.(44,46,47,55,56) This enhancement
of crystallization rate is not limited to rubber-like polymers. It is also observed in
poly(pentenamer) (50) and in poly(ethylene terephthalate) (47–49,57,57a) when
crystallized under uniaxial deformation. The change in rate can be attributed in part
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Fig. 12.11 Plot of Avrami exponent n against elongation ratio α for natural rub-
ber.(43)

to the changing crystallization mechanism with deformation. However, the main
contributor is the substantial increase that occurs in the undercooling with extension
at constant temperature. It has been concluded in studies of other polymers that the
crystallization rate depends solely on the undercooling and is independent of the
associated changes in the crystallization mechanism.(50,55,56) In order to resolve
the problem, reliable values of the equilibrium melting temperature as a function
of the extension ratio are needed. The discussion in Chapter 7 (Volume 1) showed
how difficult it is to reliably establish this quantity.

Figure 12.10 indicates that there is a strong negative temperature dependence of
the overall crystallization rate. This behavior is found in other axially deformed sys-
tems as well.(54,55,58) This observation is usually indicative of the involvement of
nucleation in the crystallization process. When studying the overall crystallization
it is not possible to distinguish between either the primary or secondary nucleation
processes. Even if a particular type of nucleation is selected other problems remain.
These include having an accurate value of T 0

m as a function of the extension ratio. In
addition it is necessary to know the entropy of fusion per repeating unit, �Su, as a
function of the deformation. This quantity enters the analysis from the free energy
necessary to form a critical size nucleus, which depends in part on the free energy
of fusion. The temperature dependence of the latter free energy involves �Su or
�Hu/Tm. There is also a fundamental question as to whether conventional nucle-
ation theory as developed for quiescent crystallization will be directly applicable
to deformed systems. The significance of classical nucleation theory in the present
context needs to be examined further. Considering the complications involved pru-
dence suggests postponing an analysis of the temperature coefficient until all these
problems are resolved. However, while being cognizant of these difficulties, it is
still informative to analyze the data according to conventional nucleation theory.
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Fig. 12.12 Plot of ln(1/τ0.2) against T 2
m/(�T )2T for natural rubber: ● α = 1;

� α = 2; � α = 3; � α = 4; � α = 5; © α = 6.(43)

Following conventional nucleation theory, ln(1/τ0.2) is plotted against either
T 2

m/T (�T )2 or Tm/T (�T ) for three- and two-dimensional nucleation respectively.
Straight lines should result, in the absence of any regime transition. The slopes of the
straight lines are proportional to σ 2

enσu/�Hu or σenσu/�Hu. Since �Hu = Tm�Su

the slopes, with slight error in the variation of Tm can also be taken to be inversely
proportional to �Su. The crystallization rates of natural rubber, 1/τ0.2 are plotted
against the appropriate temperature function for either three-or two-dimensional nu-
cleation in Figures 12.12 and 12.13 respectively.5(43) Straight lines are obtained for
either type nucleation at each elongation ratio. However, the magnitude of the slope
increases with the extent of the deformation. For example, if three-dimensional nu-
cleation is assumed, the slope increases twelve-fold as α varies from 1 to 6. For
two-dimensional nucleation, there is a ten-fold increase for the same range in α.

It is very tempting to assign the major changes in the slopes to variations in
the product of the interfacial free energies. This would imply a large increase in
this product with elongation. However, �Su will decrease with the extent of the
deformation. This factor can have a major influence in explaining the increasing
magnitude of the slopes with extension ratio. The barrier height to steady-state
nucleation, �G∗, will depend on either 1/�Su or 1/(�Su)2, according to the type

5 In analyzing these data, the equilibrium melting temperatures were calculated from the Flory theory.(59) As
discussed in Chapter 7 this theory gives good results at the higher deformations, but is lacking at the lower ones.
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Fig. 12.13 Plot of ln(1/τ0.2) against Tm/(�T )T for natural rubber. Symbols same
as in Fig. 12.12.(43)

of nucleus suggested. At high extension ratios �Su will be small. Under the cir-
cumstances �G∗ as well as the critical dimensions will become very large. In this
situation, there will be little influence, if any, of conventional nucleation on the
crystallization process. There is then serious concern as to whether nucleation in
the conventional sense is applicable to the crystallization of deformed systems. The
development of a macroscopic crystalline phase requires the formation of a series
of small crystallites, or embryos, of ever increasing size. During this process the
Gibbs free energy will increase until the contributions of the surfaces of the embryos
are overcome at the critical value of �G∗. The issue here is whether, during the
crystallization of highly deformed and directionally oriented systems, the build up
of small embryos is necessary in order for the new macroscopic phase to develop.
The plots in Figs. 12.12 and 12.13 indicate that, in contrast to the lower values of α,
at the higher ones crystallization takes place over a narrow undercooling interval.
This behavior is not characteristic of conventional nucleation. There is then an im-
portant question to resolve as to whether a different type of nucleation is involved,
or if nucleation is necessary at all in this situation. The problem can be summarized
as follows.

Under quiescent crystallization conditions the initial melt is essentially random.
There are no directing forces present that would maintain an element of preferen-
tial order. The development of order under these conditions involves concentration
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Fig. 12.14 Plot of lamellar growth rate, G, as a function of temperature for cross-
linked natural rubber at indicated strains. (Adapted from Andrews et al. (60))

fluctuations and the formation of three-dimensional embryos, or nuclei, as a precur-
sor to crystallization. In contrast, in a highly axially deformed melt, the chain axes
are already preferentially oriented in the chain direction. Thus, under these circum-
stances the melt structure is biased in one direction for the development of order
and crystallinity. Put another way, the chains are effectively in the “crystallization
position”, in that order is well-developed in the longitudinal direction in the melt at
large deformations. It is only necessary, with minor adjustment, to develop lateral
order and thus a three-dimensional crystalline system. Therefore, it is not clear
whether under these conditions classical nucleation theory applies. Wide-angle x-
ray diffraction studies of poly(ethylene terephthalate) (59a,59b) and of a random
copolymer of ethylene terephthalate–ethylene napthalene-2,6-dicarboxylate (59c)
suggest the formation of a mesophase precursor prior to the development of crys-
tallinity. The subject area of the crystallization from a highly axially oriented melt
presents some interesting experimental and theoretical problems.

Growth rate measurements can also be made on systems crystallizing under
deformation. Andrews et al. have in fact carried out studies of the lamellar growth
rate in cross-linked natural rubber at relatively low strains.(60) The study was
limited to two extension ratios and one network.6 A summary of the results is
given in Fig. 12.14. A maximum in the growth rate with temperature is observed
in each of the deformed samples, similar to that reported for undeformed natural
rubber. The magnitudes of the two growth rates at the maxima are comparable to
one another. However, there is an increase of about 15 ◦C between the two maxima.

6 The results reported for the non-cross-linked sample are not being considered here for the reasons discussed
previously.
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This difference can be attributed qualitatively to the increase in the equilibrium
melting temperature with strain. At the lower temperatures, ≤20 ◦C, the growth
rates are comparable to one another. At temperatures greater than the maximum
there is a precipitous drop in the growth rates in both cases. This effect is more
marked with the sample under 50% strain, where the growth rate becomes severely
retarded. A quantitative analysis of this data is difficult without firm values of the
equilibrium melting temperatures and growth rate data for the undeformed, but
cross-linked sample.

The experimental results for the crystallization kinetics of cross-linked systems
that are deformed uniaxially are interesting in that new concepts are introduced.
Clearly, more work is needed to explore these implications and develop a coherent
understanding, particularly of the initiation process. Additional growth rate data will
help in this endeavor as well as the firm establishment of the required parameters.

12.4 Crystallization kinetics under biaxial deformation and under shear

Analysis of the crystallization kinetics for polymers subject to either biaxial or
shear deformation is hampered by the lack of knowledge of the equilibrium melting
temperatures for these situations. This is true for both theoretical and experimental
attempts to obtain this quantity. In addition, there is also a paucity of appropriate
experimental data to guide efforts in obtaining these melting temperatures.

The isothermal crystallization kinetics of biaxially deformed natural rubber has
been studied.(61) In this work the extension ratios in each direction are kept the
same. A set of isotherms at a fixed crystallization temperature, but different ex-
tension ratios, is given in Fig. 12.15. The isotherm shapes are different from one
another. There is also an enhancement of the crystallization rate with increasing
extension ratio. The data could be fitted to the derived Avrami expression over a
major portion of the transformation. Based on the conventional analysis, there is
a significant decrease in the Avrami exponent n with the extension ratio. It de-
creases from 3 in the undeformed state to a little less than 1 at extension ratios
3 × 3. The pattern previously described for the uniaxial deformation of natural
rubber (Fig. 12.11) is also followed in this case. The change in the exponent most
probably reflects changes in the growth pattern, which, however, were not reported.
The observed melting temperature increases by about 50 ◦C over this deformation
range. The dependence of the crystallization rate on temperature was not reported.
Hence, the conventional nucleation analysis cannot be made. There should be some
interesting ramifications in applying nucleation theory to crystallization under this
type of deformation.

The studies of the crystallization under uniaxial and biaxial deformation involved
cross-linked systems and the strain was maintained throughout the transformation.
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Fig. 12.15 Crystallization isotherms at −27 ◦C for biaxially stretched natural rub-
ber. Plot of normalized intensity of the (120) Bragg reflection. (From Oono et al.
(61))

Flow of the polymer was not involved. Similar studies have not been reported for
systems crystallizing under shear stress. In the studies that have been reported flow
was always involved. Typical instrumentation involves either a Couette type vis-
cometer or a parallel plate rheometer, or variations thereof. Usually measured are the
induction times, i.e. the growth and primary nucleation rates, as well as the overall
rate of crystallization. The shear rates studied vary considerably among the differ-
ent investigations. In some investigations a low and narrow range is studied; others
encompass a broad range in shear rates. Two shear regimes can be recognized.(61a)
Under mild conditions of applied shear there is no change in morphology. Under
stronger shear conditions the problem is more complex in that a variety of morpho-
logical changes occur. It has been claimed that in the case of shear flow there is no
significant change in the equilibrium melting temperature.(62)

A different type of investigation involves a brief shearing of the melt. Further
crystallization is allowed to proceed with the removal of the applied stress.(62–63)
The intent of this type of experiment is to separate the primary nucleation (really a
precursor structure) from the crystal growth that takes place at the later times. This
is obviously a very complex crystallization process to analyze. Chain relaxation
dynamics will play an important role in crystallization under these conditions. It
has been shown that the subsequent growth and overall crystallization rates depend
on the time of pre-shearing and the shearing intensity.(63,64) It is not clear that
only the primary nucleation rate is involved during the time interval that shear is
applied. Utilizing this technique, the crystallization rate of a polydisperse isotactic
poly(propylene) was enhanced by two orders of magnitude relative to quiescent
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Fig. 12.16 Plot of induction time against shear rate for the crystallization of an
unfractionated linear polyethylene, Mw = 1.86 × 106 at indicated temperatures.
(From Lagasse and Maxwell (66))

crystallization.(64a) However, despite these complexities there is interest in focus-
ing attention on the precursor formation under certain conditions.(65)

A major consequence of imposing shear on the system is an enhancement of
the crystallization rate. The simplest ramification of this enhancement is found in
the increase in the induction time with shear rate. The onset of crystallization (the
induction time) at a constant shear rate and crystallization temperature is reflected
by a significant rise in the melt viscosity.7 An example of the rate enhancement,
in terms of the induction time, is shown in Fig. 12.16 (66) for a polydisperse
linear polyethylene Mw = 1.86×106. Crystallization is extraordinarily slow under
quiescent conditions at the indicated temperature.(67) However, at a shear rate of
10 sec−1 the induction time is reduced to a few tenths of a second. Over the range
of shear rates studied the induction times vary by four orders of magnitude.

Dilatometric or optical studies allow the degree of crystallinity to be measured
as a function of time. Details of the complete crystallization process can then be
analyzed. Figure 12.17 is an example of the change in the level of crystallinity
as a function of time at the indicated shear rate for a poly(ethylene oxide) sample,
M = 7×103.(68) The enhancement of the crystallization rate with increasing shear
rate is quite clear in these plots. The isotherms become much steeper with shear rate.

7 As discussed in Chapter 9 the induction time reflects the sensitivity of the detector. However, when used for
comparative purposes, as in the present case, the use of induction times to qualitatively represent the rate is
adequate.
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Fig. 12.17 Plot of degree of crystallinity, Xcr, against ln time for poly(ethylene
oxide), M = 7000, at indicated temperatures and shear rates. (From Sherwood
et al. (68))

As the shear rate increases the isotherms move closer together. In fact, eventually a
saturation is reached. For a slightly higher molecular weight poly(ethylene oxide)
the isotherms are virtually identical for shear rates in the range 28–140 sec−1.(69)
Similar saturations are observed with poly( ∋-caprolactone) (70) and an isotactic
poly(propylene) copolymer.(64)

Isotherms such as those shown in Fig. 12.17 can be fitted formally to the derived
Avrami equation. The main interest in this analysis is obtaining the value of the
Avrami exponent. The results are unusual and surprising. In the shear-flow type
experiment the n values are found to be relatively large and significantly increase
with the shear rate. For example, n values in the range 3 to 8 have been found for
poly( ∋-caprolactone)(68,70), and 6 for poly(p-dioxanone.(61a) The value for an
isotactic poly(propylene) copolymer is as high as 12.(64) Values ranging from 3
to 16 have been found for poly(ethylene oxide).8(68,69,71) The n values that are
obtained under shear are quite different from those obtained either under quiescent
crystallization conditions or uniaxial and biaxial deformation. In these cases the n
value can usually be interpreted in terms of the type of nucleation and the growth
geometry.

8 It was found from a study of isotactic poly(propylene), up to shear rates of 2 s−1, that when the induction time
was subtracted from the real time more conventional values of n were obtained.(72) In this work n = 2 was
found for quiescent crystallization.
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The physical meaning of the high n values in the shear experiment is not clear.
There is a serious question as to whether the Avrami approach is even applicable
for such highly deformed systems. Light microscopic observations of an unfrac-
tionated linear polyethylene have shown that above a critical shear rate, where the
crystallization is accelerated, a fibrillar-like morphology is observed.(66) Below
the shear rate conventional spherulitic morphology is observed. Within the Avrami
framework, nucleation is indicated as the primary reason for the high n values.
It has been suggested that the shear stress disrupts the growing crystallites.(69)
This in turn results in the introduction of effective nuclei into the untransformed
melt. If correct, this offers at least one explanation for the large n values that are
observed. Other theoretical reasons within the Avrami framework have also been
proposed.(62)

The nucleation rate during shear induced crystallization has been measured under
the assumption that each morphological structure, such as spherulites or axialites,
comes from one nucleus. Thus, by measuring the number of such structures per
unit volume as a function of time the nucleation rate can be obtained. For example,
by this measure there is a thirty-fold increase in the nucleation density in poly( ∋-
caprolactone) with the application of a stress of 500 Pa.(70) The nucleation density
obtained by this method is not usually linear with time.(64,68,73) However, there is a
linear portion that allows for a representative nucleation rate to be obtained. Another
example of the increase in nucleation rate with shear rate is illustrated in Fig. 12.18

Fig. 12.18 Plot of nucleation rate against shear rate, γ̇ s−1, for a copolymer of
isotactic poly(propylene) at indicated temperatures: � Tc = 133.9 ◦C; � Tc =
136.4 ◦C; © Tc = 138.5 ◦C. (From Tribout et al. (64))
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for a copolymer of isotactic poly(propylene).(64) There is a significant increase in
the nucleation rate with shear rate in this example. Based on this and other studies
(68,73,74) a major factor causing the accelerated crystallization is attributed to the
increased nucleation rate.

The question can be raised whether nucleation in the conventional sense is ap-
plicable to highly deformed systems. This is similar to the problem posed in the
discussion of crystallization under high axial deformation. The kind of fluctuation
required for nucleation in isotropic systems may no longer be necessary in highly
deformed systems. In highly deformed systems the chain axes are essentially primed
for crystallization. Bearing directly on this problem is one aspect of the experiment
that involves the brief shearing of the initial melt. As was pointed out earlier the
structures that appear after the initial deformation are identified with nuclei on a
one-to-one basis. After strongly shearing a polydisperse isotactic poly(propylene)
sample the time required for the precursor to appear has been found to decrease with
increasing temperature.(65) This observation is opposite to the expectation from
classical nucleation theory. It would appear that, under intense initial deformation,
nucleation, or effective nucleation, avoids the high activation free energy barrier
characteristic of conventional nucleation. The crystallization process appears to
circumvent this barrier. A similar pathway for nucleation and crystallization was
suggested for systems crystallizing under large uniaxial deformation ratios. There
is the suggestion from these studies that the crystallization from highly deformed
polymer melts involves a unique set of initiating mechanisms.

Spherulite growth rates have also been measured as a function of shear
rate.(64,73) The results for poly(butene-1) indicate that although the growth rates
decrease with increasing isothermal crystallization temperature, there is very little
change with shear rate up to 2 s−1.(73) In contrast, the growth rate, at a shear rate
of 10 s−1, of a copolymer of isotactic poly(propylene) increases four to six-fold
relative to that under quiescent crystallization conditions.(64) There are obviously
not enough available growth rate data to reach any general conclusions with regard
to the influence of shear rate.

It is to be expected that the molecular weight should have a strong influence in the
shear-flow experiments. There is again a paucity of data in this regard. The results
with unfractionated linear polyethylene (66) and poly(ethylene oxide) (68,69) lead
to what appear to be reasonable conclusions. It is found that for a given shear
rate and temperature the higher molecular weights have lower induction times. It
has also been found that the higher molecular weight isotactic poly(propylene)
crystallizes faster than the lower ones.(69a) The isotherms of moderate and high
molecular weight poly(ethylene oxide) become saturated at surprisingly low shear
rates. Decreasing the molecular weight separates these curves. Studies with a wide
range of molecular weight fractions are needed to enhance the results obtained with
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polydisperse polymers. This would allow for a more quantitative assessment of the
role of molecular weight.

The crystallization kinetic studies involving shear have involved flowing systems.
Studies involving cross-linked systems, as have been reported for crystallization
under uniaxial and biaxial deformation, would be extremely helpful in understand-
ing the basic problem involved. Melting temperatures as a function of deformation
and crystallization temperature could be determined. These data would help in
constructing an equilibrium theory. By analogy, estimates could then be made at
the undercoolings involved. A better understanding would evolve of the nucleation
process and its relation to that of undeformed systems.
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13

Polymer–diluent mixtures

13.1 High molecular weight n-alkanes

The crystallization kinetics of the monodisperse, high molecular weight n-alkanes
from solution follows the unique pattern observed in the melt crystallization of such
species.(1–4) The characteristic dependence of the observed rate on the crystalliza-
tion temperature measured using differential scanning calorimetry is illustrated
in Fig. 13.1 for the crystallization of C198H398 from a 3.85% toluene solution.(5)
Typically, in crystallization from solution, as well as from the pure melt, the crystal-
lization rate reaches a maximum several degrees below the melting temperature of
the extended crystals. A minimum follows, as the temperature is lowered just a few
more degrees. The further lowering of the temperature results in a steep increase in
the rate. It is easily demonstrated that folded chain crystallites are initially formed
at crystallization temperatures in the vicinity of the minimum.1 Similar inversions
in the crystallization rates have been reported for the n-alkanes C246H494 (5) and
C294H590 using the same method.(6) Wide-angle x-ray scattering studies, utilizing
synchrotron radiation, yield similar results for C162H326 and C246H494 crystallizing
from solution.(6a) Growth rate studies with C198H398 and higher n-alkanes also
show maxima and minima with crystallization temperature, as does the initiation
and spreading of a given layer.(6b–6e)

In the crystallization of C246H494 from a dilute solution in toluene (0.14% w/w)
two minima are observed in the crystallization rate–temperature plot.(7) One oc-
curs in the vicinity of the transition from the once-folded to extended form. The
other, observed at a lower temperature, occurs in the vicinity in the transition from
the twice-folded form to the once-folded structure. It has been reported that the
primary nucleation and growth rates also follow a pattern similar to that illustrated

1 The detailed nature of the folding, and the associated interfacial structure, is not pertinent to the present discussion.
The folded structure and the question of whether precise sharp integral folding takes place (3,4) will be discussed
in Volume 3.
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Fig. 13.1 Plot of rate of crystallization of C198H398 from a 3.85% toluene solution
against the crystallization temperature, Tc. � extended chain crystallites; ● folded
chain crystallites. (From Organ et al. (5))

in Fig. 13.1.(8,9) The observed rate–crystallization temperature dependence of the
high molecular weight n-alkanes is quite unique. They are anomalous in the realm
of polymer crystallization as well as in other systems. It is, therefore, of interest
and importance to explain the basis of these well substantiated results.

A poisoning, or self-poisoning, effect, as it has been termed, has been pos-
tulated to explain the crystallization rate–temperature relation typified by
Fig. 13.1.(4,6c,6d,8) Particular attention has been focused on the temperature re-
gion of the minimum. Here, it has been established that a transition from folded to
extended chain crystallites takes place. The minimum in the rate has been attributed
to the deposition of folded chain crystallites on the lateral surface of the already
growing extended chain crystals. Thus, the growth of extended chain crystallites is
retarded and a minimum in the rate results.(11) This postulate fits the concept of
rough surface growth that has been advanced by Sadler and Gilmer.(12–14) Calcu-
lations made on this basis have replicated diagrams such as that in Fig. 13.1.(14,15)

In analyzing and interpreting the results shown in Fig. 13.1 it is important that
the structures that form initially from solution, or the melt, be clearly identified. In
addition, it is essential that any changes in structure that occur during the course
of the crystallization be accounted for in the analysis. If these concerns are not
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heeded major problems develop in the analysis of the data. A complicating fea-
ture is the fact that isothermal crystallite thickening occurs during the course of
the crystallization of the high molecular weight n-alkanes.(7,10,16–19) Depending
on the length of the molecule, and the mode of crystallization, isothermal thick-
ening may proceed from what is initially close to a once-folded crystallite to the
extended form. For the longer chains isothermal thickening can proceed through
multiple refolding stages. In contrast, although the thickening of lamellar crys-
tallites of polymers is known to occur during isothermal crystallization from the
pure melt,(20) such thickening has not been observed during the crystallization of
polymers from dilute solution.(21–24) There has been the fundamental question of
how, if at all, the isothermal thickening influences the observed crystallization rate
and the interpretation of the experimental observations. As a consequence of these
concerns it is necessary to examine the thickening process in detail and assess its
influence in the analysis of the data and the conclusions drawn.

Differential scanning calorimetry is both a convenient and a useful method with
which to study isothermal thickening.2 Both endothermic and exothermic type mea-
surements complement each other and are helpful in understanding this problem.
Particular attention will be given to the temperature region where the transition
from the once-folded to extended form occurs because of the interest in the rate in-
versions. The DSC exotherms for the crystallization of C168H338 from a 4% toluene
solution are shown in Fig. 13.2.(10) Only a narrow temperature interval, 70–76 ◦C,
is practical for the study of the exothermic processes. The major feature in this
figure is the appearance of double exothermic peaks. The first exotherm, the one
that appears earliest, is found at longer times with increasing crystallization tem-
peratures. This is characteristic of a decreasing crystallization rate with increasing
temperature. On the other hand, the behavior of the second exotherm is quite the
opposite. The process associated with this exotherm becomes faster with increasing
temperature. At Tc = 76 ◦C both peaks overlap, resulting in a broad exotherm.

To obtain some insight into the process or processes that lead to these exotherms,
the crystallization at a given temperature was interrupted at different times. For
example, the crystallization was stopped at a time between the two exotherms, at a
time corresponding to the maximum of the second exotherm, and after the second
exotherm was completed. After each of these time intervals the crystals were rapidly
melted from the crystallization temperature, Tc. The melting endotherms resulting
from these interrupted experiments are given in Fig. 13.3.(18) This procedure also
allows for the construction of a crystallization isotherm and an analysis of the
kinetics, see below. The dissolution endotherms of Fig. 13.3 have been identified

2 The interest at this point is limited to the influence of isothermal thickening on the kinetics. The structural and
morphological changes that occur on thickening, as well as theoretical interpretations of the process, will be
discussed in Volume 3.
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Fig. 13.2 DSC exotherms for the crystallization of C168H338 from 4 w/v% toluene
solution at the indicated temperatures.(10)

with a specific chain structure. The higher temperature endotherm can be identified
with the melting of the extended crystallites; the lower temperature endotherm with
once-folded crystallites. For this alkane and concentration only, extended crystals
were obtained at temperatures equal to greater than 77 ◦C. At low temperature, the
lower endothermic peaks form initially and are maintained for long time periods.

Associated with the thermograms of Fig. 13.3 is the area under the endotherms.
At each temperature, the total area under the endotherm remains constant with
time, within experimental error. This result indicates a conservation of the level
of crystallinity throughout the transformation. Concomitantly, the dissolution tem-
perature of each structure remains constant with time. This important factor, the
conservation of crystallinity, is illustrated more vividly in Fig. 13.4.(18) It is clear
from the plots that the area corresponding to the extended crystals increases at the
expense of the folded crystals. At 65 ◦C more than 1000 min is needed for this
isothermal transformation to be completed. However, when the crystallization tem-
perature is raised to 72 ◦C the folded crystallites disappear after about 5.5 min.
The conservation of the level of crystallinity throughout the transformation in this
temperature region requires that no additional crystallites be formed with increas-
ing crystallization time. Therefore, it can be concluded that the crystallites having
the higher dissolution temperature develop at the expense of the lower dissolution
crystallites that are formed initially. In effect, therefore, what is taking place is the
isothermal thickening of once-folded crystallites to extended ones. This behavior
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(a)

(b)

Fig. 13.3 DSC dissolution endotherms after the crystallization of C168H338 from
a 4 w/v% solution in toluene for the indicated times. (a) Crystallization at 65 ◦C;
(b) Crystallization at 72 ◦C. The integrated areas of the endotherms, in arbitrary
units, are also indicated.(18)

is observed at all temperatures in the vicinity of the rate minima. At both high and
low crystallization temperatures only a single endotherm is observed representing
the extended and folded forms respectively. The transformation illustrated in Figs.
13.3 and 13.4 was observed to be independent of dilution at concentration as low
as 0.15%.(18)

A concise summary of the time required for the complete transformation from
the folded to extended forms, as a function of crystallization temperatures, is given
in Fig. 13.4a.(18a) Here the data are for C168H338 crystallizing from a 4% toluene
solution. It is evident that the transformation is very rapid at crystallization tempera-
tures greater than 72 ◦C. At the highest temperatures the formation of folded crystals
and their transformation to extended form is almost simultaneous. In general, it is
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Fig. 13.4 Integrated area under dissolution (endothermic peaks) against crystal-
lization time for C168H338 crystallizing from a 4 w/v% toluene solution at the
indicated crystallization temperatures. (a) 65 ◦C; (b) 72 ◦C. ● low temperature
endotherms, © high temperature endotherms.(18)

important for the kinetic analysis to establish the crystallization temperature range
where the rate of transformation of the folded structure is comparable to its for-
mation. This allows for the delineation of the temperature interval where the direct
crystallization of the pure form cannot be quantitatively analyzed.

The isothermal thickening is observed in other high molecular weight n-alkanes
as well.(5,7,10,18,19) A similar set of thermograms for the crystallization of
C240H482 from dilute solution is illustrated in Fig. 13.5.(18) The characteristics
of the thermograms are very similar to those found with C168H338. In the example
shown, the low temperature endotherm is consistent with the melting of the twice-
folded crystallites, while the endotherm centered at about 91.5 ◦C represents the
melting of the once-folded crystallite. Studies with C246H494 show similar multiple
endotherms in different temperature ranges.(7) In one range the transition from
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Fig. 13.4a Plot of time for complete transformation from once-folded to extended
form for C168H338 crystallizing from a 4% toluene solution. (From Alamo and Chi
(18a))

Fig. 13.5 DSC dissolution temperature after the crystallization of C240H482 from
a 4 w/v% solution of toluene at 75 ◦C. Crystallization times are indicated.(18)
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twice-folded to once-folded was observed. The transition from a once-folded to
extended structure was observed in a higher temperature range. In an earlier study
with C246H494 only broad endotherms were observed.(5)

With this background with regard to the origin of the endothermic peaks in the
thermogram the crystallization kinetics can be analyzed. It needs to be recognized
that within the data to be analyzed there are two distinctly different, and separate,
kinetic processes involved. One is the formation from the melt, or solution, of a dis-
tinct crystallite structure, such as the extended form, once-folded, twice-folded, etc.
The other involves the isothermal transformation from one form to another. When
the two are intermixed a very complex situation results. At this point the kinetics
of the formation of the distinct forms from the melt (without any further structural
changes) will be treated. The consequences when the two kinetic processes are
intermixed will also be considered.

The crystallization kinetics can be analyzed by taking the inverse of the time to
reach 10% of crystallization as a measure of the crystallization rate. The crystalliza-
tion rates of C168H338 from various concentrations in toluene are given in Fig. 13.6.
Most of the data were obtained for a 4% solution. The sparser set of data that were
obtained from 1% and 0.15% solutions are also included in the figure. All the data
represent the crystallization rates of the structures that were initially formed. The
open symbols represent the initial formation of folded chain crystallites. The closed
symbols represent the extended chain crystals. The rate of crystallization decreases
with increasing crystallization temperature. The data from the 4% solution show a
distinct break at the crystallization temperature where folded crystals are no longer
formed. Similar trends are observed for the 1 and 0.15% solutions. The data indicate
that decreasing concentration decreases the crystallization rate of both the folded
and extended structural forms.

Although a discontinuity is observed in the plot in Fig. 13.6, where there is a
change in the structure crystallizing from the melt, either an extended crystallite or
a once-folded one, no minimum is observed in the rate. There is then the question
of why the minimum, or minima, is reported. In the temperature range of interest
the isothermal transformation (thickening) of a folded to extended structure is very
rapid.(18) If one counts this contribution to the high temperature endotherms as
coming from the melt then, as indicated in Fig. 13.7, a minimum is observed in
the rate. In this figure the open and closed circles represent the crystallization rates
of the structures that form initially either folded or extended; the closed triangles
represent the rate of the isothermal transformation. Therefore, it is important that
the origin of and contribution to the endothermic peaks be clearly identified. At the
expense of some redundancy it needs to be recognized that there are two distinctly
different kinetic processes involved. Their intermixing leads to a minimum in the
rate plot, as is illustrated in Fig. 13.7 for C168H338. This is the reason why minima
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Fig. 13.6 Rate of crystallization, 1/τ0.101 as a function of crystallization temper-
ature of C168H338 crystallizing from toluene solution at indicated concentrations.
Open symbols represent data for once-folded crystals. Closed symbols are for
extended crystals.(10)

have been reported in many alkanes.(3,5–8,11) The reason for the discontinuity
observed in Fig. 13.6 remains to be resolved.

The higher molecular weight n-alkanes such as C198H398, C240H482, C246H494

and C294H590 display, in addition to the transition from once-folded to extended,
the transformation from three-extended to twice-ended as well as twice to once-
extended.(2,6,7,10) Minima in the rates are observed in each of the transition re-
gions. It is shown that the minima are a result of including the isothermal transfor-
mation of one form to another with the structures that initially crystallize from the
melt. Minima in the rate of crystallization of the high molecular weight n-alkane
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Fig. 13.7 Rate of crystallization versus temperature for C168H338 crystallizing from
a 4 w/v% toluene solution. © data for the initial formation of once-folded crystals.
● data for extended crystals. � related to the isothermal transformation of once-
folded to extended crystals.(10)

from the pure melt have also been reported.(2,4,8,9,25,26) A similar explanation
can be offered for these observations.

In summary, the experimental observations of minima in the kinetic studies are
not in question. These are clearly the result of the type of experiment involved. In
interpreting the results, however, it needs to be recognized that these observations
are the consequence of the intermixing of two distinctly different kinetic processes.
This intermixing leads to the observed minima. The role, if any, of “self-poisoning”
in influencing the kinetics, either overall or growth, must be superposed on the rapid
transformation of a folded crystallite to an extended one.(6c,6d)

It is also of interest to examine the temperature coefficient of the crystallization
rate in terms of appropriate nucleation theory.(27) Accordingly, the ln of the crys-
tallization rates of C168H338 and C240H482 from a 4% solution in toluene are plotted
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Fig. 13.8 Plot of ln crystallization rate against nucleation temperature function for
coherent unimolecular surface nucleation for C168H338 and C240H482 crystallizing
from a 4 w/v% toluene solution. Open and closed symbols represent folded and
extended crystals respectively. ©, ● for C168H338; �, � for C240H482.(10)

in Fig. 13.8 against the nucleation temperature function for coherent unimolecular
nucleation (Gibbs type), taking into account the finite chain length. Only data for the
crystallite structures that were initially formed in the original solution are utilized.
Thus, for C168H338 the rates of crystallization of nearly once-folded crystallites
(represented by open circles) and extended crystals (closed circles) are given in the
figure. Similarly, the data for three-times-folded C240H482 crystallites (open trian-
gles) and once-folded ones (open squares) are also included. The complications in
analysis, when the transition from one form to the other, i.e. isothermal thickening,
is taking place, are thus avoided. Striking similarities are found in the slope of the
crystallization rate data corresponding to all of the folded forms (open symbols).
Thus, three parallel straight lines, which are only slightly displaced from one an-
other, can be drawn through the data and thus reflect almost identical temperature
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coefficients. This result indicates quite clearly that the same type of nucleation pro-
cess is involved irrespective of the different kinds of crystallites (close to three-times
or once-folded) that are developed.

The interpretation of the data that correspond to the initial formation of extended
C168H338 crystallites (closed circles) is more complex. A line parallel to those of
the folded crystals can be drawn for the three data points obtained at the highest
temperatures. This would be consistent with the analyses of the melt-crystallized
system (see Fig. 9.77). This description of the data leaves an intermediate temper-
ature region, indicated by the dashed line, where the rate decreases very rapidly
with temperature. The experimental point obtained at the highest crystallization
temperature with C240H482 seems to indicate a similar rapid decrease of the rate
with increasing temperature. However, this representation cannot be interpreted
according to conventional regime theory. The ratio of the slopes in this case will be
inverted. Alternatively, if the three highest data points are neglected only the two
intersecting straight lines that are drawn need to be considered. In this case, the
change in slope can be related to a Regime I to II transition in analogy to the results
obtained for the rates of C168H338 from the melt. A more consistent interpretation
would be obtained. However, there is no justification for neglecting the three high
temperature data points.

In summary, the dependence of the crystallization rate on the temperature of
the high molecular weight n-alkanes, for crystallization from either the melt or
solution, can be divided into three regions. There is a low temperature region where
folded structures are initially found. Here the thickening or transformation process
is sufficiently slow so that the rates obtained from either endotherms, exotherms
or direct growth measurements are not affected. Secondly, there is an intermediate
crystallization temperature region where the isothermal thickening rate is rapid and
the crystallization rate will be affected. The third high temperature crystallization
region corresponds to the case when only the extended form crystallizes.

13.2 Crystallization from dilute and moderately dilute solutions

Investigations of the crystallization kinetics of polymers from dilute solution are
of particular interest. Well-defined lamellar-like crystallites are formed in this con-
centration region. Moreover, in contrast to crystallization from the pure melt, or
concentrated solution, the chains are relatively isolated from one another. Both the
overall crystallization and lamellar growth rates have been studied in this concen-
tration range. Attention will initially be given here to the overall crystallization
studies and the analysis of the data obtained.

Figures 13.9 to 13.12 give sets of isotherms, plotted as the relative fraction
transformed against the log time, for a series of molecular weight fractions of
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Fig. 13.9 Plot of relative extent of transformation against log time for a molecular
weight fraction of linear polyethylene, Mw = 6.6×104, at a weight fraction 0.025
in n-hexadecane. The crystallization temperatures are indicated. (From Chu (29))

Fig. 13.10 Plot of relative extent of transformation against log time for a molecular
weight fraction of linear polyethylene, Mn = 3 × 105, at a 0.55% solution in n-
hexadecane. The crystallization temperatures are indicated.(28)
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Fig. 13.11 Plot of relative extent of transformation against log time for a molecular
weight fraction of linear polyethylene, Mw = 9.6×105, at a weight fraction 0.025
in n-hexadecane. The crystallization temperatures are indicated. (From Chu (29))

linear polyethylene crystallized from dilute solutions of n-hexadecane.(28,29) The
molecular weights range from 6.6 × 104 to 3.1 × 106. Characteristic sigmoidal
shaped isotherms are again observed and are typical of nucleation and growth
processes. The autocatalytic nature of crystallization from dilute solution is quali-
tatively similar to that observed for the crystallization from the pure melt. There is
a difference, however, between the two cases. The termination of the crystallization
from dilute solution is relatively abrupt. On the other hand, bulk crystallization is
characterized by a small, but continuous, increase in the level of crystallinity, over
an extended time period. There is also a strong negative temperature coefficient for
all the molecular weights indicating, as in bulk crystallization, the importance of
nucleation processes.

The isotherm shapes for a given molecular weight fraction are quite similar,
suggesting that they can be superposed one onto the other. Figure 13.13 demon-
strates the superposition of the data for two of the fractions. The isotherms for
the other fractions behave in a similar manner. It is clear from these plots that the
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Fig. 13.12 Plot of relative extent of transformation against log time for a molecular
weight fraction of linear polyethylene, Mw = 3.1×106, at a weight fraction 0.025
in n-hexadecane. The crystallization temperatures are indicated. (From Chu (29))

superposition principle is obeyed for crystallization from dilute solution. The solid
curve that is drawn in each of the figures represents the derived Avrami equation for
n = 4. In contrast to bulk crystallization, there is extraordinarily good adherence
between the Avrami formulation and the experimental data over almost the com-
plete transformation. This is true even for the very high molecular weight fraction,
M = 3.1 × 106. Almost exact fits are obtained, with only small deviations at the
very end of the transformations. With just a few exceptions, similar results have
been reported for linear polyethylene in other solvents.(28,30–32) For example,
good agreement with the derived Avrami, with n = 4, has been found in p-xylene
and decalin.(28,30,32) An unfractionated sample, M = 3.0 × 106, gives an n value
of 3 at low undercoolings and n = 4 at higher undercooling (32), as do lower molec-
ular weights in n-paraffins.(31) Two solvents α-chloronaphthalene and tetralin give
n = 3 at all crystallization temperatures.(30)

Similar results have been found with other polymers crystallizing from dilute
solutions. The crystallization of molecular weight fractions of poly(ethylene oxide),
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Fig. 13.13 Examples of superposition of isotherms. (a) Data from Fig. 13.10,
Mn = 3.0 × 105. (b) Data from Fig. 13.12, Mn = 3.1 × 106. Solid curves derived
Avrami equation with n = 4.

M = 2×104 to 2×106, from dilute solutions of either p-xylene or ethanol showed
good adherence to the derived Avrami equation with n = 4, over an appreciable
extent of the transformation.(33,34) An unfractionated isotactic poly(propylene),
Mw � 3.6 × 105, yields a set of superposable isotherms, when crystallized from a
0.3% solution of either ether tetralin or decalin.(35) A plot of the data according
to Eq. (9.32) that is given in Fig. 13.14 makes clear both the superposition and
adherence to a derived Avrami expression. In this case the exponent n is again
found to be 4. An exponent of 4 has also been found for poly(ethylene terephthalate)
crystallizing from several different solvents.(36)

There are several noteworthy and important features that are characteristic of
polymer crystallization from dilute solution. A derived Avrami equation fits the
isotherms over almost the complete transformation. Except for very low molecular
weights, this is contrary to the results for bulk crystallization.(37) The reason for
this difference and the crystallinity level that is attained will be discussed shortly.
The crystallization of polymer from dilute solution can be considered to be ideal,
since the kinetics resemble the crystallization of low molecular weight substances.
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Fig. 13.14 Log–log plot of ln(1 − X ) against time for isotactic poly(propylene),
Mw � 3.6 × 105, crystallizing from a 0.3% decalin solution. X represents the
fraction transformed. (From Shah and Lahti (35))

The value of 4 for the exponent n for crystallization from dilute solution is
difficult at first to reconcile with the well-established lamellar crystallites that are
observed.(28,30) However, studies have shown that the basic morphological form
that crystallizes under these conditions consists of elongated three-dimensional
crystallites.(32) Rather than single crystals, the crystallite structures are highly
branched, three-dimensional lamellar networks, that are supported by the solvent
during growth. This geometry remains the same over a wide range in molecular
weights and independent of whether the Avrami exponent is 3 or 4.(32) Thus, an
exponent of 4 represents steady-state nucleation and three-dimensional growth.
For nucleation initiated at t = 0, the exponent is reduced to 3 for the same growth
geometry.

It has been noted that the transformation is almost complete for linear polyethy-
lene crystallized from dilute solution. For example, the crystallinity level that is
attained at the isothermal crystallization temperature varies from about 85–90%
at the lower molecular weights, ≤ 1 × 105, to about 75–80% at higher molecular
weights, including M = 3.1 × 106.(28,38) These results can be contrasted with
those for bulk crystallization. At the isothermal crystallization temperatures the
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Fig. 13.15 Plot of Avrami n value for molecular weight fractions of linear polyethy-
lene crystallizing from the pure melt and polymer–n-hexadecane mixtures. W2 is
weight fraction of polymer: n = 4 ©; n = 3 �; n = 2 �. (From Chu (29))

attained crystallinity level is much less. It is only about 0.40 for the high molecular
weights.

There are also major differences in the Avrami n values between crystallization
in the bulk and from dilute solution. These differences are illustrated in Fig. 13.15,
where a map is given showing the relation between the n value and concentration
for linear polyethylene fractions in n-hexadecane.(29) The interest at present is
comparing the dilute range with the pure polymer, W2 = 1. The results for the in-
termediate fractions, which are important, will be discussed in the next section. The
n values equal 4 for all molecular weights, Mw = 2.0×104 to 3.1×106, in the dilute
range. In contrast, for bulk crystallization n only equals 4 at the very low molecular
weights. There is a gradual reduction in n from 4 to 2 as the molecular weight is
increased.(37)

The decrease in attained crystallinity level with molecular weight as a result of
isothermal crystallization of the pure polymer has been attributed to the increasing
entanglements along the chain with molecular weight. The entangled units, and
nearby neighbors, are rejected into the residual amorphous melt by the growing
crystallites. Hence, the final crystallinity level is systematically reduced and the
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kinetics altered accordingly. In dilute solutions the chain molecules are relatively
isolated from one another so that entanglements do not present a significant im-
pediment to crystallization. With the removal of this obstacle to crystal growth
the growing polymer crystallite resembles low molecular weight systems in many
respects. Hence, the ideal derived Avrami equation is obeyed with very high levels
of crystallinity being achieved.

Further evidence for the influence of chain entanglement in the crystallization
process is found in the crystallization of an isotactic poly(styrene) sample that was
prepared from a freeze-dried dilute benzene solution.(38a) Entanglements in such a
sample will be minimal. The overall crystallization rate in such samples, in terms of
t1/2, is enhanced by a factor of seven to eight relative to conventional crystallization
from the pure melt.(38a) Experiments with isotactic poly(propylene), freeze-dried
from n-octane, showed a similar enhancement in the crystallization rate.(38b) This
type of experiment complements the overall crystallization rate of polymers from
dilute solution.

The fact that the entanglement problem is no longer a factor has a major influ-
ence on the relation between crystallization rate in dilute solution and molecular
weight. McHugh et al. noted that a linear polyethylene fraction, M = 3.8 × 105,
crystallized slower than a higher molecular weight, M = 3.0 × 106, from a 0.1%
xylene solution.(32) A more detailed picture of the influence of molecular weight
on the crystallization rate in the dilute range is given in Fig. 13.16.(29) Here τ0.1

is plotted against log Mn for the crystallization at a weight fraction of 0.025, from
a hexadecane solution. The quantity τ0.1 represent the time, in minutes, for 10%
of the transformation to occur. It is the inverse of the crystallization rate 1/τ0.1.
In the lower molecular weight range, the crystallization rate increases with chain
length at all the crystallization temperatures. This result is similar to that found for
crystallization from the pure melt. The same explanation can be given in that there
is a change in the effective undercooling because of the correction for chain length.
A plateau region is reached with molecular weight and then the crystallization rate
increases with chain length. In this molecular weight range the crystallization from
dilute solutions is faster with increasing chain length. This result is the opposite
to that observed for crystallization from the melt. However, the molecular weight
dependence of the overall crystallization rate depends on the nature of the solvent.
For example, when crystallizing from dilute solutions of α-chloronaphthalene the
opposite effect is found.(38) The rate decreases with increasing chain length in this
solvent. It will be found shortly that the variation of the growth rate with molecular
weight in the dilute range depends on both concentration of the polymer and its
thermodynamic interaction with the solvent. The basis for the solvent effect needs
to be investigated in more detail.
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Fig. 13.16 Plot of time in minutes for 10% of the transformation to occur, τ0.1, as a function of
molecular weight for fraction of linear polyethylene crystallizing from dilute n-hexadecane
solution. Crystallization temperatures are indicated. (From Chu (29))

In dilute solution there is also a strong, negative temperature coefficient to the
crystallization rate. This indicates that nucleation is still an important factor in the
crystallization process. To develop a nucleation theory for polymer–diluent mix-
tures, the complete Flory expression for the free energy of fusion (39) is introduced
into the free energy equation for forming either a cylindrical (three-dimensional)
nucleus or a Gibbs type that involves the coherent unimolecular deposition of chains
(two-dimensional).(40–42a) In analogy to the results for the pure polymer, each of
the surfaces that result contains a saddle point that defines the critical dimensions
of the nucleus, ρ∗ and ζ ∗, and consequently the critical free energy, �G∗, necessary
to form such a nucleus. Then, for a three-dimensional nucleus in the high molecular
weight approximation (40–42a)

ρ∗ = 4πσ 2
un

(�G ′
u)2

(13.1)

ζ ∗ = 4σen − 2RT ln v2

�G ′
u

(13.2)

�G∗ = 8πσun2σen − 4π RT σ 2
un ln v2

(�G ′
u)2

(13.3)
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where

�G ′
u = �Gu − RT

Vu

V1

{
(1 − v2) − χ1

(
1 − v2

2

)}
(13.4)

Similarly, for a Gibbs type nucleus (40)

ρ∗ = 2σun

�G ′
u

(13.5)

ζ ∗ = 2σun − RT ln v2 (13.6)

�G∗ = 4σunσen − 2σun RT ln v2

�G ′
u

(13.7)

The free energy expression that is used here involves the Flory–Huggins mixing
relation.(39) This relation involves a uniform distribution of polymer segments in
the melt. Although valid for concentrated and moderately concentrated solutions
it is not appropriate for dilute solutions. Hence Eqs. (13.1) to (13.7) must be used
with caution. The ln v2 term that is added to �G∗ is in effect an entropic contri-
bution. It represents the probability of selecting the ρ crystalline sequences from a
mixture whose composition is v2 in the vicinity of the polymer chain. For mixtures
of monomeric substances and for polymer–diluent mixtures, where the segment
density is uniform throughout the mixture, v2 can be identified with the nominal
concentration. However, for dilute polymer systems, where the segment distribution
is nonuniform, v2 represents the effective polymer concentration within the swollen
coil. The probability of selecting the required number of sequences, whether from
a single chain or a plurality of chains, will depend on the local concentrations and
not the nominal one.

With this understanding of the limitation of present theory, some typical temper-
ature coefficient data can be examined. In the usual type plot, the log of the rate is
plotted against the nucleation temperature function. For three-dimensional nucle-
ation this quantity is expressed as (T 0

s /�T )2(1/Tc); while for a Gibbs type nucleus
it is given as (T 0

s /�T )(1/Tc). Here T 0
s is the equilibrium dissolution temperature,

i.e. the equilibrium melting temperature at the concentration in question. For a
pure system a linear plot should result whose slope can be related to the product
of either σenσun or σ 2

unσen, depending on the type of nucleation assumed. However,
according to Eqs. (13.3) and (13.7), the value of the slope will also depend on ln v2,
for polymer–diluent mixtures. Therefore, for dilute solution the effective volume
fraction, v2, needs to be known in order to extract the product of interfacial free
energies from the data.

The influence of dilution on the crystallization rate is illustrated in Fig. 13.17 for
an unfractionated linear polyethylene crystallizing from α-chloronaphthalene.(42)
Here the crystallization rate is plotted according to three-dimensional nucleation
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Fig. 13.17 Plot of log(1/τ0.9) against temperature variable (T 2
m/T )(1/�T )2 for lin-

ear polyethylene crystallizing from α-chloronaphthalene mixture. Volume fraction
of diluent in each mixture, v1, is indicated.(42)

theory. The trends are the same if the data are analyzed according to the formation
of a Gibbs type nucleus. The data encompass the complete composition range, from
pure polymer to a 0.01% solution. A family of straight lines results, whose slopes
steadily increase as the polymer concentration decreases from the pure system
to the 1% mixture. However, for the hundred-fold change, of 1% to 0.01%, in
concentration the slope remains essentially constant. The results for the higher
concentration range will be discussed in the next section. The interest at present
is in the dilute range. In this range, the results indicate that the effective polymer
concentration is constant, independent of the nominal concentration, if it is assumed
that the interfacial free energies are independent of dilution.

Although the temperature coefficient of the crystallization rate is independent of
the concentration for concentrations less than 1%, the time scale of crystallization is
not. At a fixed value of the temperature function, (Tm/�T )2(1/T ), the crystalliza-
tion rate steadily decreases with decreasing polymer concentration. Thus, while at a
fixed undercooling, the overall rate of crystallization is dependent on concentration,
its temperature dependence is independent of the concentration.

Figure 13.18 illustrates the role of specific solvents in mediating the crystalliza-
tion kinetics in dilute solutions. Here, the ln of the rate of a linear polyethylene
fraction is plotted against the nucleation temperature function, (Ts/�T )(1/Tc), for
a Gibbs type two-dimensional nucleus, for four different solvents.(30) In this exam-
ple the molecular weight of the fraction is 1 × 105 crystallizing from a v2 = 0.003
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Fig. 13.18 Plot of ln(1/τ0.1) against (T 0
m/T )(1/�T ) for a linear polyethylene frac-

tion, M = 1 × 105, crystallizing from a v2 = 0.003 solution of the following dilu-
ents: © decalin; � tetralin; � p-xylene; ● n-hexadecane; � α-chloronaphthalene.
(From Riande and Fatou (30))

solution. Characteristically, a set of parallel straight lines is obtained. This result is
consistent with products of interfacial free energies and the effective volume fraction
being independent of the nature of the diluent. However, the crystallization rates, at
a given undercooling, are not necessarily the same. Decalin, tetralin and p-xylene
fall on the same straight line. The diluents n-hexadecane and α-chloronaphthalene
differ. The polymer crystallizes the fastest in the latter solvent. It is tempting to
relate these differences in rate to the intensity of the polymer–solvent interaction
as reflected in the parameter χ1. However, the values reported for χ1 do not ap-
pear to support this postulate.(30) Decalin has the lowest value for χ1, xylene the
highest, yet their rates are the same. The most rapid crystallization takes place in
α-chloronaphthalene whose χ1 value is close to that of p-xylene. Based on the
values given for χ1, there does not appear to be any correlation between it and the
crystallization rate.
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The growth rate of polymer crystallization from dilute solution has also been
studied. Major emphasis has been on the crystallization of linear polyethylene from
a variety of solvents, although poly(ethylene oxide) has also been studied in this
regard. Usually, the growth rates of specific faces, such as the (110) and (100),
in linear polyethylene have been recorded, although the light scattering technique
has also been used. Of particular interest is the influence of molecular weight,
polymer concentration and the thermodynamic nature of the solvent in governing the
crystallization. These factors will be discussed in terms of experimental results and
theoretical interpretations. Molecular weight fractionation is well established to take
place during the crystallization of polymers from dilute solution.(43–45) Therefore,
attention will be focused primarily on studies involving molecular weight fractions.

In a pioneering work, Holland and Lindenmeyer found that the growth rate of
linear polyethylene crystallizing from a 0.01% p-xylene solution decreased with
decreasing molecular weight at a constant crystallization temperature.(46) A similar
effect has also been reported by others.(47–49) This dependence on chain length is
opposite to what is observed in the same molecular weight range for crystallization
from the pure melt. However, detailed studies indicate that the molecular weight
dependence of the growth rate of linear polyethylene depends on both the polymer
concentration and on the nature of the solvent.(50–53) An example is illustrated
in Fig. 13.19 for the crystallization of linear polyethylene fractions from p-xylene
solutions at different polymer concentrations.(50) At the lowest concentrations
studied, 0.001 wt percent, the growth rate increases continuously with molecular
weight at all crystallization temperatures. However, when the polymer concentra-
tion is increased to 0.01% the growth rate becomes constant at a molecular weight
of about M = 105. The growth rate goes through a maximum at about M = 105 for

Fig. 13.19 Plot of log G against log M for molecular weight fractions of linear
polyethylene crystallizing from dilute solution of p-xylene. (a) 0.001 wt%; (b)
0.01 wt%; (c) 0.1 wt%. Isothermal crystallization temperatures are (1) 86.60 ◦C;
(2) 87.90 ◦C; (3) 89.90 ◦C; (4) 90.70 ◦C. (From Cooper and Manley (50))
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the more concentrated solution, 0.1%. The growth rate–molecular weight relation
at this composition is qualitatively similar to that observed for crystallization from
the pure melt. A minimum in the growth rate is observed at concentration 0.001%
to 0.1% when molecular weights in the range 3.1×103 to 1.2×104 are studied.(52)

Growth rate studies of linear polyethylene from other solvents have also been re-
ported.(51,53) The results obtained with decalin, a relatively good solvent, are very
similar, at all concentrations, to those obtained with p-xylene.(51) In contrast, in a
poorer solvent, n-octane, a maximum in the growth rate is observed at all concentra-
tions studied, 0.001% to 0.1 wt%.(48) However, the rate of decrease is much steeper
in this case. Growth rates of linear polyethylene crystallizing from tetradeconol
(0.05%), over the molecular weight range M = 1.4×104 to 1.2×105, are essentially
constant at the lower crystallization temperatures.(53) However, as the temperature
is raised the crystallization rate of the lowest molecular fractions decreases.

No simple pattern has as yet emerged for the role of solvent in mediating the
growth rate of linear polyethylene in dilute solution. Both the concentration and
thermodynamic interaction with the solvent play an influential role in the growth
rate–molecular weight relation. There is the suggestion that segment–segment in-
teractions, both intra- and intermolecular are important.

Growth rate studies, utilizing a light scattering method, have also been reported
for molecular weight fractions of poly(ethylene oxide) crystallizing from a 0.01 wt
percent solution of toluene. The role of chain length is illustrated in Fig. 13.20 as a

Fig. 13.20 Plot of log G against crystallization temperatures for molecular weight
fractions of poly(ethylene oxide) crystallizing from 0.01 wt% toluene solution.
Molecular weights: � 5.6 × 104; � 1.05 × 105; � 1.60 × 105; ● 3.25 × 105;
© 7.70 × 105. (From Ding and Amis (54))
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plot of log G against crystallization temperature for a set of molecular weights that
range from M = 5.63×104 to 7.70×105.(54,55) It is clear from this figure that at the
same crystallization temperature longer chains crystallize much faster than shorter
ones. This effect is greater at the higher crystallization temperatures than at the lower
ones. Data for the crystallization of poly(ethylene oxide) from other solvents and
concentrations, in the dilute range, are not available. Molecular weight fractionation
can be accomplished, both for linear polyethylene and poly(ethylene oxide), based
on crystallization kinetics by appropriate choice of solvent and temperature.

The dependence of the growth rate on polymer concentration, C , is usually
expressed as

G = Cα (13.8)

With a few exceptions, the exponent α is less than 1.(56) Examples of the relation
between the growth rate and concentration of two linear polyethylene fractions in
p-xylene at several different temperatures are given in Fig. 13.21.(50) Over the
concentration range studied here, C approximately 10−2 to 10−4 wt percent, α is
a constant that only varies slightly with crystallization temperature. However, the
value of α depends on the molecular weight as can be discerned from the plots in
Fig. 13.22.(50) However, when the molecular weight is lowered to Mw = 4050 and
Mw = 3100 the plots of log G and log C are no longer linear.(52) The slight increase
with temperature is seen to be a property of the low molecular weight fractions. The
change with temperature is negligible at the higher molecular weight. However, at

Fig. 13.21 Logarithmic plots of the growth rate of the (110) face of linear polyethy-
lene fractions in p-xylene as a function of the concentration in weight percent.
(a) Mw = 15 700; (b) Mw = 451 000. Crystallization temperatures: (1) 86.60 ◦C;
(2) 87.90 ◦C; (3) 89.90 ◦C; (4) 90.70 ◦C. (From Cooper and Manley (50))
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Fig. 13.22 Plot of the value of α against the crystallization temperature for the
indicated molecular weight fractions. 15 K ≡ 15 700; 25 K ≡ 25 200; 61 K ≡
61 600; 84 K ≡ 83 900, 196 K ≡ 195 900; 451 K ≡ 451 000. (From Cooper and
Manley (50))

still lower weights, Mw = 3100 to 11 600, the α dependence on the crystallization
temperature is more complex.(52) For molecular weights 6750 and 11 600 α first
increases with crystallization temperature, passes through a maximum and then
decreases. In sharp contrast to the results for high molecular weight fractions, α

decreases monotonically with increasing crystallization temperature for the two
lowest molecular weights studied. More important in Fig. 13.22 is the change in α

with chain length, at a fixed crystallization temperature. At the highest crystalliza-
tion temperature studied, 90.68 ◦C, α decreases from about 0.6 at Mw = 15 700 to
about 0.1 at Mw = 451 000. The change in α with chain length is similar at the
lower crystallization temperature. Thus, at the highest molecular weight studied,
M = 451 000, the growth rate is only very slightly dependent on concentration. It
can be presumed that at still higher molecular weights the growth rate will become
independent of concentration.

The growth rates in decalin are similar to those in p-xylene over a molec-
ular weight range of 15 700 to 451 000.(51) In contrast, the α values obtained
from crystallization from n-octane are higher than those formed with either de-
calin or p-xylene. In this solvent the growth rate–molecular weight plots show a
maximum at concentrations 10−3 to 10−1. Most interesting is the fact that in n-
octane α initially decreases with molecular weight, similar to the observation with
p-xylene and decalin. However, at Mw ∼ 70 000, at all crystallization temperatures,
α reaches a minimum value and then increases. This is a rather unique behavior.
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Fig. 13.23 Plot of log G (100 face) against log C for a linear polyethylene fraction,
M = 1.1 × 104, crystallizing from an n-octane solution at different crystallization
temperatures: � 88.8 ◦C; � 90.7 ◦C; © 92.2 ◦C; � 94.2 ◦C; � 94.8 ◦C. (From Toda
et al. (59))

These results give further indication that the thermodynamic nature of the solvent
plays an important role in the polymer crystallization from dilute solution.

A striking example of the role of the solvent is found in the difference in growth
rates of isotactic poly(styrene) in dilute solution of either mesitylene, a good solvent,
or a mixture of n-tetradecane and decalin, a poor solvent.(59) The growth rates are
about three orders of magnitude greater in the poor solvent than in the good one,
over a wide range in crystallization temperatures.

Toda and coworkers have studied the growth rate of linear polyethylene frac-
tions over a much wider concentration range, C = 10−1–10−6 wt percent, than was
discussed above.3 (58,59) The molecular weights used in their work ranged from
6.5 × 103 to 3.2 × 104. Since these studies were restricted to relatively low molec-
ular weights, caution needs to be exercised in generalizing the conclusions reached
to higher chain lengths. One of the interesting results found from the study of
very dilute solutions is illustrated in Fig. 13.23 for the growth rate of a fraction
M = 1.1 × 104 in n-octane.(58) Here log G is plotted against log C for a family
of crystallization temperatures. The data are now represented by gentle curves at
each temperature. They are similar to those of low molecular weight fractions in
p-xylene at higher concentrations.(52) The high concentration data in Fig. 13.23
can be represented by a straight line that yields an α value of about 0.5. This
value is comparable to that reported by Cooper and Manley for a similar molecular
weight in the same solvent.(51) It is important to recall that in this concentration
range α is a decreasing function of molecular weight in xylene and in the lower

3 The investigators expressed some doubt about the reliability of the concentration cited in the very dilute range,
since the solutions were prepared by dilution.(58)
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Fig. 13.24 Plot of log G, of (110) face, against log C for linear polyethylene
fractions crystallizing from tetrachloroethylene solution. Molecular weight and
crystallization temperature: © Mw = 6.5 × 103, Tc = 69.7 ◦C; � Mw = 1.1 × 104,
Tc = 69.0 ◦C; � Mw = 1.6 × 104, Tc = 71.5 ◦C; � Mw 3.2 × 104, Tc = 73.5 ◦C.
The growth rate data are displaced along the vertical axis for clarity. (From Toda
(59))

molecular weight range for n-octane.(50,51) Hence, α = 0.5 is not representative
of all polyethylene molecular weights, in that it is only valid for molecular weights
of about 1 × 104. A qualitatively similar relation between α and molecular weight
has been reported for poly(ethylene oxide) in toluene.(55) The asymptotes for the
low concentration in Fig. 13.26 yield an α value of 1.0 for M = 1.1 × 104. The
concentration corresponding to the intersection of the two asymptotes has been
defined as C0 and given theoretical significance.

The role of molecular weight, within the restricted range studied, is shown in
Fig. 13.24.(59) Here, log G is plotted against log C for a set of molecular weight
fractions covering the interval M = 6.5 × 103 to 3.2 × 104, crystallizing from
tetrachloroethylene. The data can be represented by a straight line at the higher
concentrations, for all the molecular weights studied. However, the extent of the
linearity is dependent on the chain length. For M = 6.5 × 103 the linearity only
extends to C � 10−3. However, for M = 3.2 × 104 the linearity extends to solu-
tions as dilute as C � 10−5. Following this trend, it is not difficult to presume that
for slightly higher molecular weights the plot would be linear over the complete
composition range studied. Under those circumstances the quantity C = C0 would
not exist. A similar conclusion can be reached from growth rate of a fraction M =
1.1 × 104 from p-xylene solution over an extended concentration range at several
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crystallization temperatures.(59) Linearity is observed at some crystallization
temperatures but not others. The actual existence of the parameter C0 is very limited.

Plots of log G against log C of poly(ethylene oxide) fractions from dilute toluene
solution are linear over the concentration range of C = 10−3 to greater than 10−1 for
molecular weights ranging from 5.63×104 to 3.25×105. At a fixed crystallization
temperature α increases slightly with a decrease in molecular weight. This effect is
qualitatively similar, although not as marked, to that observed in linear polyethylene
crystals grown from dilute p-xylene solutions.(50) The poly(ethylene oxide) system
is weakly dependent on temperature at a fixed molecular weight. This is again
similar to the linear polyethylene–p-xylene system. In general the α values for
the poly(ethylene oxide systems) are larger than those for linear polyethylene at
comparable molecular weights.

Before attempting any theoretical interpretation it is useful to summarize the
experimental results. There are several important factors that need to be considered.
The dependence of the growth rate on concentration, in the dilute range of present
interest, can be expressed by the parameter α. For low molecular weights, ≤3.2 ×
104, α gradually increases with the concentration in both good and poor solvents.
However, as the molecular weight increases, α becomes a constant. It decreases
with chain length and tends toward zero at the higher molecular weights. Thus, at
the higher molecular weights, M = 2.3×105, the growth rate becomes independent
of concentration.

The variation of the growth rate with molecular weight depends on the poly-
mer concentration and thermodynamic nature of the solvent. In a poor solvent,
like n-octane, the growth rate initially increases with molecular weight, reaches a
maximum and then decreases. In the better solvent, like p-xylene, there is a strong
influence of polymer concentration. In the most dilute solution studied, 0.001 wt
percent, there is a continual increase in growth rate with chain length. At the highest
polymer concentration the behavior is similar to that found in n-octane. There is
no coherent and complete set of data that encompasses a large range in polymer
concentration, molecular weight, different solvents and a variety of polymers with
which to develop a general theory. It would be interesting, for example, to perform
this type of growth measurements in a 	 solvent. However, it is worthwhile to
consider the interpretations that have been made of the available data.

Several theories have been proposed to explain the available experimental data.
These are based on the presumed role played by cilia during polymer crystallization
from dilute solution. Two different approaches have been made to explain how cilia
influence the crystallization process. One set of ideas has been put forth by Sanchez
and DiMarzio.(60,61) Their underlying proposal is that when in solution a chain of
finite length attaches itself to a crystal growth front, the crystallization (nucleation)
need not start from the end of the chain. Most likely a central portion of the chain
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would be involved. Two ends of the chain are then left dangling in solution. The
longer one crystallizes more rapidly on the growth strip by regular chain folding.
It is presumed that the shorter one does not crystallize on this layer but dangles in
solution, and is a cilium. These dangling end sequences are allowed to nucleate the
following growth step by regular chain folding. At this point one might inquire as to
what prevents the shorter sequence of chain units from crystallizing on the original
growth front. If this were to happen then, depending on the length of the shorter
sequence, either the growth front would be completed, leaving behind a sequence
of still shorter dangling chains, or the initial cilium would be exhausted leaving a
defect on the growth front. It is not clear why the proposed mechanism is limited
to dilute solution crystallization and not also advocated for crystallization from the
pure melt.

This proposal involves two distinctly different nucleation processes. One only in-
volves the cilia with a steady-state nucleation rate N c. The other, with a steady-state
nucleation rate N s, is the conventional segmental nucleation from dilute solution.
The net steady-state nucleation rate, N , is expressed by

N = w1 N c + w2 N s (13.9)

where w1 and w2 are weighting factors that are difficult to evaluate. Although clearly
defined they are in effect arbitrary parameters. It can be expected that w1 would be
small at low molecular weights, but would become more important at the higher
molecular weights. It then remains to examine the dependence of both N c and N s

on concentration, solvent type, molecular weight and crystallization temperature.
The problem was formulated in terms of forward and backward rate constants

for the two nucleating types following the conventional procedure for nucleation
theory. The individual behavior of N c and N s was investigated. Both nucleation
rates behaved in a similar qualitative manner with respect to molecular weight and
crystallization temperature. However, a significant difference was found between
the two with respect to their dependence on the polymer concentration. Accord-
ing to this theory the nucleation rate N s goes through a broad maximum with
molecular weight. The maximum is shifted to lower molecular weights as the crys-
tallization temperature is lowered. The nucleation rate for cilia, N c, does not show
the broad maximum. However, there is a leveling off in the log N c–log Mw plot. If,
however, the weighting factor w1 is assumed to be inversely proportional to molec-
ular weight, an arbitrary assumption, then a broad maximum appears in a plot of
log(w1 N c) against log Mw. The temperature dependences of N c and N s are taken to
be approximately the same and are represented by conventional nucleation theory.

The concentration dependences of N c and N s are quite different from one another.
Therefore, the actual nucleation rate, or growth rate will depend on the weighting
factors that can be arbitrarily selected. If only solution molecules are involved in
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the nucleation, the growth rate is found to be proportional to the concentration, i.e.
α = 1, except for very low molecular weights.(60) For pure cilia nucleation α is
less than 1 and decreases with chain length at a given crystallization temperature. At
a given molecular weight α increases with crystallization temperature. According
to this theory α would not change from unity if nucleation of polymer molecules
from solution were the only nucleation process involved. Therefore some other
mechanism for nucleation and growth must be involved. Cilia nucleation has been
proposed to fill the gap.

The plots in Fig. 13.19 allow for one comparison to be made between theory
and experiment. In the linear polyethylene–xylene system, the dependence of the
growth rate on molecular weight, over the range M = 1.5 × 104 to 4.5 × 105, de-
pends strongly on the polymer concentration. This result is not apparent from the
theory. Qualitative agreement could probably be attained by appropriate choice
of the weighting parameters. With respect to the temperature dependence, α in-
creases with temperature at the lower molecular weights in agreement with theory.
However, at the higher molecular weights there is a negligible dependence of α

on the crystallization temperature. In accordance with theoretical expectations α

decreases with molecular weight. However, it appears to be approaching zero at
high molecular weights, M � 106. Thus, the experimental results indicate that for
very long chains the growth rate will not depend on concentration in the dilute
range. This conclusion was not anticipated.(60) In contrast, α for the poly(ethylene
oxide)–toluene system only shows a weak molecular weight dependence.(55) Defi-
nite conclusions cannot be reached with respect to the agreement between the theory
outlined and the available experimental data, because of conflicting expectations.

Another mechanism for the role of cilia, in the crystallization from dilute solu-
tion, has been postulated by Toda and coworkers.(62) This theory is based on the
works of Seto (47,63) and on Frank’s theory,(64) which was discussed in Chapter 9.
In essence, two steps traveling in opposite directions approach one another and are
allowed to collide. As a consequence of the contact a pair of cilia is generated.
Each can nucleate on the next layer and travel in both directions. The major con-
clusions from the analysis of this model are as follows. When the chain length is
relatively small, nucleation by cilia can be neglected. For linear polyethylenes the
cut-off molecular weight is approximately 3.0 × 104. Below this molecular weight
cilia nucleation is not important. In Regime I, irrespective of whether or not cilia
nucleation is taken into account

G � C exp(−K/Tc �T ) (13.10)

In Regime II, when growth is controlled by the solute molecules

G � C1/2 exp(−K/2Tc �T ) (13.11)
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When cilia nucleation is the controlling factor in this regime

G � C1/3 exp(−2K/3Tc �T ) (13.12)

Striking in these equations is the fact that there is no explicit indication of the role
of molecular weight. All experimental results show that, at a fixed polymer concen-
tration and crystallization temperature, the growth rate depends on the molecular
weight. It is also established that α varies with chain length. In particular, for the
high molecular weights, where cilia nucleation would dominate, the α values for
poly(ethylene oxide)–toluene are well above the 1/3 value predicted above. In the
case of linear polyethylene in p-xylene α is less than 1/3 for the highest molecular
weight studied and is expected to decrease further for longer chain lengths. Ding
and Amis have concluded that cilia nucleation is unimportant in the crystallization
of poly(ethylene oxide) from dilute toluene solution.(54,55)

It has been suggested that the adsorption of polymer chains on the growth face
complements or even replaces in importance nucleation by cilia.(59,64,65) It was
argued that the unusual dependence of growth rate on concentration, as illustrated
in Fig. 13.24, results from the surface adsorption of the polymer. The change in the
surface nucleation, which is directly related to the growth rate, is due to the extent
of coverage of the growth face by the adsorbed polymer. By studying the growth
kinetics of [100] twins, formed by linear polyethylene, the nucleation rate was found
to be proportional to C at the lower concentrations and independent at the higher
ones. Concomitantly, the spreading rate increased linearly with concentration over
the whole range studied.(64,65) The surface adsorption of polymers will then cause
a fractional power dependence of the growth rate on concentration. The conclusion
of the importance of polymer adsorption on the growth process is based solely on
an analysis of data that is limited to low molecular weights.

The interpretation of experimental results has focused mainly on the role of cilia.
The conclusions have been mixed. The importance of cilia, and their influence on
the crystallization from dilute solutions, cannot be adequately analyzed without a
complete set of experimental data. However, some features of solvent influence
become clearer when adequate data are available. This point is illustrated in Figure
13.25 where the values of α for linear polyethylene crystallizing from p-xylene,
decalin and n-octane are plotted against the weight average molecular weight.(50–
52) Decalin and p-xylene are considered to be relatively good solvents for linear
polyethylene, while n-octane is a poorer one. There are some important features
in these plots that are not apparent when the molecular weight range is limited to
1–3 ×104.

When crystallizing from p-xylene, linear polyethylene displays a maximum in
α at about M = 4 × 103 followed by a slow monotonic decrease to about 0.2 at
M = 4.5 × 105. Indications are that α will decrease further as the chain length
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Fig. 13.25 Plot of α against the weight average molecular weight for linear
polyethylene crystallizing from different solvents. p-xylene: © 86.0 ◦C and
86.6 ◦C; ● 90.7 ◦C. Decalin � 85.3 ◦C; n-octane � 98.0 ◦C.

increases. Thus, in this solvent the decrease in α suggests that the contribution of
intermolecular interaction to growth decreases with molecular weight. A contri-
bution from cilia nucleation to the growth is not expected for M ≤ 3 × 104.(62)
Hence, the maximum must result from some other cause.

The variation of α with molecular weight in the poorer solvent, n-octane, is dif-
ferent. The lower molecular weight range, <1 × 104, was not studied. Therefore,
it is not known whether there would be a maximum also in this range. However, in
this solvent there is a broad minimum centered about 7–8 ×104. The growth rate
shows a maximum in the same molecular weight range for all concentration stud-
ies 0.1%–0.001%.(51) The maximum becomes more pronounced as the nominal
concentration decreases.

The summary given in Fig. 13.25 indicates that the thermodynamic interaction
between polymer and solvent plays an important role in governing growth from
dilute solution. A better solvent, with a lower χ1 value, will expand the coil and
reduce intramolecular segmental interaction. In contrast, the coil will contract in a
poorer solvent and intramolecular interactions will become enhanced. The relation
between the nominal concentration and the effective concentration, the quantity
needed for nucleation theory, will also be affected by the nature of the solvent.
There has not been very much attention paid to this important aspect of the prob-
lem. Studies with poorer solvents, in the lower molecular weight range, could be
illuminating. The influence of cilia is minimal under these circumstances so that
the role of solvent could be assessed independently. The source of the chain units
that form the nucleus, i.e. from either within a molecule or between molecules, or
proportional between them, needs to be elucidated.
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13.3 Temperature dependence: crystallization from dilute solution

The temperature dependence of the growth rate from dilute solution follows the
pattern established by the crystallization from the pure melt. An example is given
in Fig. 13.26 of the growth rate of isotactic poly(styrene) from a 0.1% dimethyl
phthalate solution over an extended temperature range.(66) Following the crystal-
lization of the pure polymer, a maximum in the rate is observed and there is a severe
retardation of the rate in the vicinity of the melting and glass temperatures. Both the
nucleation and transport terms are operative in the dilute solution crystallization.
However, the growth rate is reduced by about three orders of magnitude relative to
that of the pure melt and the temperature for maximum growth is reduced about
100 ◦C.(67)

At the right side of the maximum, in the vicinity of the melting temperature there
is strong evidence for nucleation controlled growth. This was suggested by stud-
ies of overall crystallization (30) and confirmed by many growth rate–temperature
studies. The plots in Fig. 13.23 for poly(ethylene oxide) crystallizing from toluene
show a three to four orders of magnitude increase in the growth rate with a

Fig. 13.26 Plot of log G against crystallization temperature Tc for isotactic poly
(styrene) crystallizing from a 0.1% dimethyl phthalate solution. (From Tanzawa
(66))
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Fig. 13.27 Plot of growth rate against crystallization temperature for a linear
polyethylene fraction, Mw = 4050, crystallizing from p-xylene at indicated con-
centrations. (From Leung et al. (52))

10–12 ◦C decrease in the crystallization temperature. Similar results have been
reported for linear polyethylene crystallizing from p-xylene.(52) An example is
shown in Fig. 13.27 for the crystallization of a low molecular weight polyethylene
fraction, Mw = 4050. Here, the strong negative temperature coefficient is clear as
is the discontinuity in the plot. A higher molecular weight, Mw = 11 600, shows a
similar temperature coefficient, but the data give a continuous curve.(52)

The application of nucleation theory to the data, irrespective of the type selected,
requires an accurate value of the equilibrium dissolution temperature, T 0

s , because
of the crucial role played by the undercooling in the analysis. The problem is that
major differences in T 0

s values have been reported for the same polymer–solvent
system. For example, in the same investigation, depending on the extrapolation
method used, T 0

s for p-xylene is given as 118.6 ± 2 ◦C, for n-octane it ranges
from 127 ± 1 ◦C to 124 ± 2 ◦C, while in decalin it varies from 113.0 ± 1.5 ◦C to
116.5±2 ◦C.(68) Among different investigations T 0

s values for p-xylene have been
reported as 108.2 ◦C,(65), 110.5 ± 1 ◦C (69) and 118.6 ± 2 ◦C.(68) The reported
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values of T 0
s for n-octane have varied from 116.4 ± 1 ◦C,(70) 120.2 ± 1.4 ◦C (69)

and 124 ◦C to 127 ◦C.(68) A similar disparity is found with other solvents. An
extreme situation is represented by decalin, where reported T 0

s values range from
105.4 ◦C (72) to 116.5 ◦C.(68) Consequently, in the conventional plot of the growth
rate against the nucleation temperature function, in the vicinity of the equilibrium
melting temperature, either a straight line or a curve could result depending on the
choice of the value for T 0

s . It is also possible to develop regime or pseudo regime
transitions. Because of the uncertainties that are involved it is prudent not to focus
on the analysis according to nucleation theory.4

Comparisons have been made between the product of interfacial free energies
determined from the growth rate–temperature relation for bulk and dilute solution
crystallization. The problem in this case is again selecting the proper values of T 0

m

and T 0
s . Rather drastic changes in the ratio of the product of interfacial free energies

can be obtained by varying these two equilibrium temperatures.(49) This concern is
true both for linear polyethylene and poly(ethylene oxide). By appropriate selection
of T 0

s and T 0
m the slopes of the straight lines obtained from the data plotted according

to nucleation theory can be made to be identical.(71–73) Considering the range in
values reported for T 0

s it cannot be concluded that the products of interfacial free
energies, and thus the crystallization mechanisms, are the same in both cases.(72,73)

13.4 Crystallization from concentrated mixtures

The concentration range being considered in this section is one where the molecules
overlap with one another. The Flory–Huggins relation for the free energy of mixing
will hold in this concentration range.(74,75) Consequently, in contrast to dilute
solutions, the effective concentration that is involved in nucleation theory can be
closely identified with the nominal concentrations. With molecular overlap, chain
entanglement becomes an important factor to consider in the analysis of crystalliza-
tion kinetics. The number of chain entanglements per molecule, E , can be expressed
as (76)

E = MNv2/ME − 1 (13.13)

where ME is the number of entanglements per molecule in the pure state. The final
level of crystallinity attained and the crystallization rate will be strongly influenced
by chain entanglements, as well as by other kinds of topological defects. The
overall crystallization and spherulite growth rates from concentrated solutions will
be analyzed in turn.

4 The plots in Fig. 13.18 suffer from the same deficiency. However, in this case efforts were made to use a consistent
set of T 0

s values.(30)
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Fig. 13.28 Schematic representation of superposed isotherms of poly(dimethyl
siloxane) and its mixtures with toluene. The normalized crystallinity level is plotted
against log time. The curves are arbitrarily shifted along the log t axis for clarity.
Curve (1), v2 = 1.00; curve (2), v2 = 0.79; curve (3), v2 = 0.59; curve (4),
v2 = 0.42; curve (5), v2 = 0.32. (From Feio et al. (78))

Large negative temperature coefficients are characteristic of the overall crys-
tallization rates at all compositions. This is again indicative of the importance of
nucleation, which is a dominant factor for the crystallization of pure polymer to
dilute solution. The details of nucleation in concentrated mixtures will be discussed
shortly. Focusing attention first on the character of the isotherms it is found quite
generally that at a given composition their shapes are similar at different crys-
tallization temperatures so that the superposition principle still holds. However,
the shape and character of the isotherms change in a systematic manner with dilu-
tion.(29,31,34,40,77,78) A schematic representation of the isotherm shapes, typical
of polymer–diluent mixtures is given in Fig. 13.28 for poly(dimethyl siloxane)–
toluene mixtures.(78) The curves in this figure are arbitrarily displaced from the
time origin in order of increasing steepness. There is clearly a change in isotherm
shape with composition. In this example for concentrated and moderately concen-
trated mixtures, 0.79 > v2 > 0.59, there is a retardation in the overall crystal-
lization rate in comparison with that of the pure polymer. However, with further
dilution, the shapes of the isotherms become progressively closer to that of the pure
polymer.

A major reason for the isotherm shape changes can be attributed to the changing
composition of the residual melt as crystallization progresses.(79) The situation is
similar to that discussed earlier with regard to copolymer crystallization. As crys-
tallization proceeds, the melt becomes more dilute in polymer. The equilibrium
melting temperature is thus reduced, as is the effective undercooling at the constant
isothermal crystallization temperature. Concomitantly, the crystallization rate be-
comes progressively protracted with time. However, at high dilution, the order of
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v2 = 0.10 or less, the change in the effective undercooling with time, at a constant
crystallization temperature, is usually small, since the equilibrium melting temper-
ature is not as sensitive to polymer concentration in this range. The change is of
the order of 1 ◦C or less. This is consistent with the isotherm shapes observed in
the dilute range as was illustrated earlier in Figs. 13.10 and 13.11. The isotherm
shapes are also tempered by chain entanglement, which plays a role similar to that
in polymer crystallization from the pure melt.

The dependence of the n values in the derived Avrami expression on composi-
tion is also of interest. Because of the nature of the isotherms, and the deviations
from theory, the determination of n needs to be limited to the early stages of the
transformation. Figure 13.15, previously discussed for dilute mixtures of linear
polyethylene and n-hexadecane, also contains n values for the complete concen-
tration range for molecular weight fractions from 2.0 × 104 to 8.0 × 106. Referring
to this figure, it is clear that n depends on both chain length and composition. At
a fixed molecular weight, the integral value of n increases with dilution. At low to
moderate molecular weights n increases from 3 to 4 as the polymer concentration
decreases. Eventually, at high dilution theoretical isotherms are obtained. The range
in composition for which n = 4 increases as the molecular weight decreases. For
the very high molecular weights n increases from 2 for the pure polymer to 3 for
the dilute systems.

An analysis of the overall crystallization rate with composition requires that the
comparison be made either at constant undercooling or at one of the nucleation
temperature quantities, Tm/T �T or T 2

m/T (�T )2. This requirement is essential be-
cause of the importance of nucleation to the crystallization process. The overall
crystallization kinetics of a variety of polymer–diluent systems have been reported.
Many different relations between the overall crystallization rate and composition
have been observed. For example, as is shown in Fig. 13.17 there is a contin-
uous decrease in the crystallization rate with dilution for linear polyethylene–α-
chloronaphthalene mixtures.(42) The results for poly(trans-1,4-isoprene) in methyl
oleate follow a similar pattern.(80) In contrast, the rates for poly(dimethyl siloxane)
crystallizing from toluene, at compositions v2 = 0.32 to 0.79, are the same at all
undercoolings, but are faster than that of the pure polymer.(78) Another example
is found with poly(ethylene oxide)–diphenyl ether mixtures.(77) In this case the
crystallization rates for the pure polymer and composition v2 = 0.92 to 0.51 are
the same. However, the rates for the more dilute mixtures, v2 = 0.04 and 0.30
are lower. For poly(decamethylene adipate)–dimethyl formamide mixture the rates
for the pure polymer and v2 = 0.80 are the same.(77) The mixture of isotactic
poly(propylene) with dotricontane shows interesting behavior.(81) At all under-
coolings studied, the crystallization rate initially decreases with dilution, reaches
a minimum in the range v2 � 0.7 (a maximum in t1/2) and then slowly increases
with further dilution, up to v2 = 0.10.
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Fig. 13.29 Plot of slope, S, of straight lines in Fig. 13.17 against −log v2. (Data
from Ref. (42))

The examples cited above indicate a wide diversity in the overall crystallization
rate–composition relations among the different mixtures studied. A general pat-
tern has not emerged from these studies. These results may reflect either specific
differences between the different systems studied or may be a consequence of inad-
equate values being used for the equilibrium melting temperatures at the different
compositions.

The slopes of the straight lines in Fig. 13.17 increase with dilution. According
to Eq. (13.3) the slopes in this plot should be a linear function of −log v2. When
plotted according to the dictates of a Gibbs type nucleus the slopes should also
be a linear function of −ln v2. The volume fraction v2 needed is the effective vol-
ume fraction of diluent. The slopes of the straight lines in Fig. 13.17 are plotted
against −ln v2 in Fig. 13.29. In this example the nominal polymer volume fraction
is used. The plot in Fig. 13.29 adheres quite well to a linear relation up to a polymer
concentration of v2 = 0.03. This result gives further verification of the need of
the log v2 term in �G∗. With further dilution, deviations from linearity set in. A
polymer concentration higher than the nominal one is necessary in order to satisfy
the linearity requirement. At these compositions the solution is no longer uniform
with respect to the concentration of polymer segments. The effective volume frac-
tion of the polymer then needs to be used. To satisfy the linearity requirement in
this case v2 would have to be of the order 0.02 to 0.03. If these values are taken
then the plot in Fig. 13.29 would be linear over the complete composition range. It
is not unreasonable that a concentration of this magnitude represents the polymer
segments within the domain of the swollen polymer.
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Fig. 13.30 Plot of log
[
G exp

(
−U ∗

T − T0

)]
against T 0

s /T �T for isotactic poly

(styrene) crystallizing from its mixture with dimethyl phthalate. Percent polymer:
© pure polymer; � 50%; � 30%; � 0.1%. (From Miyamoto et al. (67))

The radial growth rates of spherulites that develop in this composition range
are usually linear with time for the early stages of the transformation.(67,82–85)
However, the rates become retarded with time as a consequence of the dilution of
the residual melt and the resulting decreases in the undercooling. The composition
change is aided by diffusion in the vicinity of the phase boundary. When the linear
portion of the growth rate is used, the rate decreases with polymer concentration at
constant undercooling or nucleation temperature parameter for most of the reported
systems.(67,82,86,87) In some mixtures the growth rates become close to one
another at high dilutions. The measured primary nucleation rate of poly(ethylene
oxide) in tripropionin has also been found to decrease with decreasing polymer
concentration.(85) This conclusion depends on the values used for the equilibrium
melting temperature for the pure polymer and the diluent mixtures.

Plots of log
[
G exp

(
−U ∗

T − T0

)]
against T 0

s /T �T for isotactic poly(styrene) crys-

tallizing from its mixtures in dimethyl phthalate are given in Fig. 13.30.(67) The
slope continuously decreases with dilution, indicating the influence of the ln v2

term in �G∗. A similar effect is seen in Fig. 13.31 where the nucleation rate for
the initiation of spherulite formation is plotted against 1/(�T )2 for poly(ethylene
oxide) crystallizing from tripropionin.(87) The increase in the slopes of the straight
lines in the figure with polymer concentration is again consistent with the ln v2 term
in Eq. (13.7). Thus, there is further experimental evidence of the importance of ln
v2 in the expressions for the nucleation and growth rates.
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Fig. 13.31 Plot of log nucleation rate against 1/(�T )2 for poly(ethylene oxide)
crystallizing from tripropionin solutions. Weight percent polymer: � 30%; © 10%;
� 5%. (From Sasaki et al. (87))

In order to obtain the product of the interfacial free energies for nucleation from
the slopes of the straight lines in Fig. 13.31 (as well as for other systems) both
the effective volume fraction and reliable equilibrium melting temperature need to
be known. For these reasons values of the product σenσun cannot be obtained in a
routine manner even for crystallization from dilute solutions. Even if the proper
value of σenσun could be obtained from experimental data there is a problem that
has been discussed previously. It is the matter of obtaining σen. To obtain this
important quantity the value of σun/�Hu needs to be independently known. As
has been pointed out earlier this ratio does not have a universal value as has been
implied.(73) Even the value of 0.1 given for linear polyethylene can be seriously
questioned. Thus, there are several major problems that need to be overcome in
order to obtain the product σenσun from kinetic data and from it, the key quantity
σen.

Polymers that show a rate maximum with respect to temperature in the pure state
do so also when crystallizing from diluent mixtures.(42a,67,88) Two examples are
shown in Figs. 13.32 and 13.33 for isotactic poly(styrene) crystallizing from ether
benzophenone or dimethyl phthalate respectively.(42a,67) Characteristically, the
addition of the diluent causes a shift of the crystallization range to lower temper-
atures. A similar effect was observed with bisphenol-A poly(carbonate).(88) In
addition, the growth rate maximum increases with the initial addition of diluent.
This phenomenon is observed up to about 20% diluent in the case of benzophenone
(Fig. 13.32) and about 50% with dimethyl phthalate (Fig. 13.33). A similar pattern is
also indicated for the poly(carbonate)–diluent mixture.(89) With further additions
of diluent there is a continuous decrease in the growth maxima up to very dilute
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Fig. 13.32 Plot of spherulite growth rates of isotactic poly(styrene) crystallizing
from its mixture with benzophenone against the crystallization temperature for
indicated volume fraction of polymer. (From Boon and Azcue (42a))

Fig. 13.33 Plot of spherulite growth rates of isotactic poly(styrene) crystallizing
from its mixtures with dimethyl phthalate against the crystallization tempera-
ture. Weight percent polymer: © pure polymer; � 50%; � 30%; � 0.1%. (From
Miyamoto et al. (67))
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Fig. 13.34 Plot of spherulite growth rates of isotactic poly(styrene) crystallizing
from mixtures with benzophenone against the reduced temperature 	 = (T −Tg)/
(Tm − Tg). Data from Fig. 13.32. (From Boon and Azcue (42a))

systems as is illustrated in Fig. 13.33. It is stated that the behavior in the benzophe-
none system follows a similar pattern.(42a) In the examples cited an expansion of
the crystallization range is observed with dilution. This can be accounted for by
a larger depression of the glass temperature relative to the melting temperature.
For the benzophenone mixtures the glass temperature decreases by about 150 K
over the complete composition range. The melting temperature decreases by only
about 75–100 K over the same range. The influence of the glass and melting tem-
peratures in shifting the crystallization range can be seen by introducing a reduced
temperature variable 	 defined as (42a)

	 = (T − Tg/Tm − Tg) (13.14)

The experimental growth rate data of Fig. 11.32 are plotted against 	 in Fig. 13.34.
The shapes of the curves are now similar to one another and the data for several
of the mixtures fall on the same curve. The maxima for all compositions occurs at
	 = 0.57. From the data given, the ratio of Tmax/Tm is about 0.85 for the isotactic
poly(styrene)–benzophenone system at all compositions. The ratios for the dimethyl
phthalate mixtures appear to be slightly lower.

13.5 Solvent induced crystallization

The crystallization process can be initiated, or accelerated, by interaction with
appropriate solvents. Two different situations can be distinguished. In one case,
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crystallization of the polymer can occur from either the pure melt or the glassy
state. Crystallization is induced by interaction with a solvent in this state. In the
other situation the polymer, either homopolymer or copolymer, possesses sufficient
structural regularity to be potentially crystallizable, but crystallization is not kinet-
ically favored. Interaction with an appropriate solvent rectifies this situation and
allows for crystallinity to develop.

The latter situation is found in some homopolymers and copolymers. It is quite
commonly used to induce crystallization in stereo irregular polymers.(89–92) The
reason for the difficulty is that the melting temperature and glass temperature are so
close to one another that the kinetics for crystallization is unfavorable. Put another
way, the window of opportunity for crystallization is quite small. This problem
can be alleviated by treating the polymer with a diluent that would depress the
glass temperature a greater amount than the melting temperature. According to
Eq. (3.2) the addition of a diluent with a large molar volume with a poorer sol-
vent power (positive χ1) will result in a minimal melting point depression at a
given polymer concentration. On the other hand, the depression of the glass tem-
perature depends primarily on composition and not on the nature of the diluent.
Thus, by utilizing the appropriate diluent, the temperature interval between the
melting and glass temperatures can be substantially increased over that of the undi-
luted polymer. By expanding the temperature window in this manner the kinetics
for crystallization becomes more favorable. This method has been successfully
used to develop crystallinity in poly(styrene) synthesized by alfin catalysts,(89)
poly(methyl methacrylate) prepared by free radical or ionic methods (90–92) and
poly(ethylene isophthalate).(93,94)

The solvent induced crystallization from the glassy state differs from the con-
ventional crystallization of polymer–diluent mixtures. In the latter case there is a
uniform mixture of polymer and diluent prior to crystallization. In solvent induced
crystallization the diluent has to penetrate and diffuse through the glassy polymer
prior to the onset of crystallization. The diffusion of the solvent can play a crucial
role in the overall crystallization process. The same requirements for a diluent to be
effective still hold. Although a diluent that depresses the glass temperature can be
very effective, it is important that at the same time the melting temperature depres-
sion be minimized. It is theoretically possible to narrow the crystallization window
rather than expand it. By doing so crystallizations will be repressed. This method
is particularly effective and useful with polymers that crystallize slowly when pure
and can be quenched, without crystallization, to the glassy state. Crystallization
can be carried out below the glass temperature of the undiluted polymer. For ex-
ample, the crystallization temperature has to be 30–50 ◦C higher than the glass
temperature for crystallization to occur in undiluted, nonoriented poly(ethylene
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Fig. 13.35 Plot of wide-angle x-ray diffraction intensity of the (100) plane of
poly(ethylene terephthalate) as a function of immersion time in either dioxane or
nitromethane. Crystallization temperatures are indicated. (From Desai and Wilkes
(96))

terephthalate).(95) In contrast, the crystallization of this polymer can take place
at least 70 ◦C below Tg by immersion in an appropriate solvent.(96) Similar ef-
fects have been observed by the solvent induced crystallization of syndiotactic and
isotactic poly(styrene).(97,97a)

The isotherms that represent crystallization that is solvent induced do not always
give the typical sigmoidal shape found in conventional crystallization. (95,96,98–
104) Examples are given in Fig. 13.35 for the solvent induced crystallization of
poly(ethylene terephthalate) by either dioxane or nitromethane.(96) The isotherms
in this figure do not resemble those of the Avrami type. It can be suspected that the
penetration of the solvent and its diffusion through the sample is rate determining.
This suspicion is confirmed by the plots in Fig. 13.36.(104) Here the crystallinity is
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Fig. 13.36 Plot of percent crystallinity against the square-root of time for initially
quenched, amorphous films of poly(ethylene terephthalate) exposed to saturated
methylene chloride vapor at indicated temperatures. Film thickness: (a) 33.8 mil,
0.086 cm; (b) 12.0 mil, 0.03 cm; (c) 1 mil, 0.0025 cm. (From Durning et al. (104))

plotted against the square-root of time for initially amorphous films of poly(ethylene
terephthalate) subject to the action of methylene chloride at the indicated temper-
atures. Figure 13.36a represents the results with the thickest film used (33.8 mil,
0.086 cm). In this case the straight line that represents the data is typical of Fickian



13.5 Solvent induced crystallization 427

Fig. 13.36 (cont.)

type diffusion.5 Thus, for films of this thickness, diffusion is rate controlling in
the crystallization process. For the film of intermediate thickness (12.0 mil, 0.03
cm), diffusion dominates at the higher crystallization temperature, but not at the
lower one. The plots in Fig. 13.36c, which represent the thinnest film (1.0 mil,
0.0025 cm), show that there is no longer any indication of diffusion influence on
the crystallization process. In fact, the data fit the derived Avrami in the conven-
tional manner with n = 3.(104) Figure 13.37 summarizes the influence of film
thickness for the poly(ethylene terephthalate)–methylene chloride system.(104) At
a fixed temperature of 38 ◦C the two thicker films show control by Fickian type
diffusion, the thinner film clearly does not. Thus diffusion, as the rate determining
step of solvent induced crystallization, is not always involved. Each case must be
independently investigated.

The experimental results indicate that in solvent induced crystallization there
is an interplay between the conventional Avrami type kinetics and the diffusion
of the solvent through the polymer sample. There are many different factors in-
volved. These include the type of diffusion, whether or not Fick’s law is obeyed,
the geometry and dimensions of the sample and the role of the solvent in reduc-
ing the glass and equilibrium melting temperature, and the solubility parameter
among others.(104a) Complete analysis of this crystallization process is obviously

5 In Fickian diffusion, the diffusion coefficient is a constant independent of the composition. Under these conditions
the square-root of time rate law holds. However, the diffusion of vapors or liquids in a polymer film does not
necessarily follow Fick’s law.(105,106)
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Fig. 13.37 Plot of percent crystallinity against the square-root of time for initially
quenched, amorphous films of poly(ethylene terephthalate) of indicated thick-
nesses exposed to saturated methylene chloride vapors at 38 ◦C. (From Durning
et al. (104))

complex. There is a series of papers that develop the theoretical framework for this
problem.(104,107–109)
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Pérez-Cardenas, H., 49, 206
Peters, R.H., 140, 264
Petraccone, V., 155, 211
Philips, R., 64, 207
Phillips, J.S., 138
Phillips, L.W., 141, 143, 144, 145, 211
Phillips, P.J., 112, 118, 122, 124 (2),

125, 126, 127 (2), 129, 137, 138 (2),
154 (2), 209, 210 (3), 220 (2), 241
(2), 243, 244, 245 (3), 246, 247, 248,
249 (2), 251, 275 (2), 276 (2), 277,
278 (3), 279 (2), 281 (2), 349, 351,
355 (2), 361 (4), 363 (2), 377 (2),
378 (2)

Phillips, P.K., 152, 211
Phillips, R.A., 241 (2), 279 (2), 321,

324, 346
Pilati, F., 270, 281
Piorkowska, F., 41, 198 (2), 205
Piro, M., 140
Pirozzi, B., 155, 211
Pizzoli, M., 218, 243, 264, 267, 268,

269, 278, 279, 281, 283 (2), 285 (2),
287, 343, 344 (3)

Plazek, D.J., 8, 205
Pogodina, N.V., 5 (2), 204 (2), 204
Point, J.J., 98, 99, 108, 112 (5), 118

(4), 129, 176, 209 (6), 213
Pomposo, J.A., 289, 290, 345



448 Author index

Porter, R., 314, 345
Porter, R.S., 27, 205
Posner, A.S., 2 (2), 204
Postma, J., 195, 201, 214
Pouton, C.W., 264
Powers, J., 140
Pracella, M., 329, 330, 334, 346, 347
Prasad, A., 130 (2), 167, 210, 213, 285

(2), 286, 287, 296, 299, 301, 302,
344

Pratt, C.F., 54
Price, C., 99, 116 (2), 209, 210
Price, F.P., 48, 52, 65, 68, 94, 98, 99,

100, 144, 145 (2), 146, 147 (2), 150,
152, 155, 206 (2), 207, 208, 209, 211
(3), 285, 288, 289, 344, 373, 374 (5),
375 (2), 376 (3), 379 (3), 416, 430

Prins, K.O., 358, 378
Pritz, C.M., 324, 346
Privalko, V.P., 136 (2), 211
Procter, D., 165, 213, 380, 428
Prud’homme, J., 258 (3), 280
Prud’homme, R.E., 55, 118, 122, 127,

138, 206, 210, 226, 243, 279 (2),
285, 345

Przygocki, W., 157, 158, 159, 160 (2),
161, 212

Psarski, M., 41, 198 (2), 205
Putra, E.G.R., 380 (2), 381, 388 (2),

389, 428 (2)

Quinn, F.A., Jr., 5, 25, 27, 70, 81, 136,
140, 149, 196, 204

Quiram, D.J., 254, 280

Rabesiaka, J., 27, 205
Radusch, H.J., 329, 333 (4), 334 (2),

346
Ragestor, G., 334, 347
Rahman, M.H., 285, 289, 344

Raines, M., 329 (2), 334, 346
Ran, S., 370, 378
Randall, J.C., 196 (2), 214
Rangarajan, P., 254, 280
Raquez, J.M., 266, 267, 281
Rastogi, S., 353 (2), 354 (3), 356 (2),

357, 358, 361, 377 (3)
Ratta, V., 27, 205
Raynaers, H., 285, 344
Rebenfield, L., 334 (2), 347, 425 (2),

426, 427 (2), 428, 431
Rees, D.V., 357 (3), 378 (3)
Regester, J.W., 353, 377
Reghetti, M.C., 218, 278
Register, R.A., 254 (5), 255 (4), 256

(3), 257 (5), 280 (5)
Rego, J.M., 317 (2), 320, 345, 346
Reinsch, V.E., 334 (2), 347
Ren, M., 365, 378
Renner, C.A., 140, 269 (2), 281
Rensch, G.J., 152, 211
Riande, E., 367, 378, 389, 394 (5), 395,

396 (2), 398, 399 (3), 401, 402, 414,
417 (4), 429 (6)

Riba, S.M., 52, 177, 206
Richards, R.B., 65 (2), 207
Richards, R.W., 253, 280
Richardson, L., 241 (2), 279
Richardson, P.H., 253, 280
Rickett, R.L., 44, 206
Riekel, C., 370, 378
Riffle, J.S., 64, 138, 141, 207
Righetti, M.C., 270 (2), 271 (2), 281
Risch, B.G., 28 (2), 30, 54 (2), 56 (2),

138, 140, 205, 206, 259, 271, 280,
281

Roberts, B.W., 5, 7, 91, 99, 204, 208,
216 (2), 226, 278

Roberts, D.E., 2 (2), 204
Robitaille, C., 258 (3), 280



Author index 449

Rodiagues, D., 54
Rodriguez, F., 395, 429
Rodriques, D., 56 (2), 206
Rodriques, E.D., 259, 280
Rohleder, J., 54
Roitman, D.B., 130 (2), 152 (2), 153,

154 (2), 210, 211
Roover, J., 140, 195 (2), 199 (2), 214
Ross, G.S., 103, 105, 106 (2), 107 (2),

115, 118, 119, 122 (2), 134, 135,
144, 146 (2), 147 (2), 148, 149, 151,
152 (3), 186, 190, 192, 193, 196 (2),
197, 209, 211 (2)

Rude, E., 242, 279
Rudolf, B., 324, 346
Runt, J., 130 (2), 152, 210, 264, 285,

342, 343, 344, 347
Ruso, S., 91, 99, 208
Russell, E.W., 274, 275, 281
Russell, T.P., 226, 228, 278, 285 (2),

337, 339, 344, 345
Russell, W.B., 425 (2), 426, 427 (2),

428 (2), 431 (2)
Russo, S., 270, 281
Ryan, A.J., 253 (2), 254 (9), 255 (4),

256 (3), 257 (5), 280 (9)

Saad, G.R., 300, 345
Sabir, F.N., 195 (2), 199 (2), 214
Sachs, G., 12 (2), 14, 205
Sadiku, E., 243., 279
Sadler, D.M., 169 (5), 213 (5), 381 (3),

403, 429 (4)
Saito, H., 337 (2), 338, 339, 340 (2),

347 (2), 420, 430
Sajkiewicz, P., 64, 207
Sakai, Y., 5, 204
Sakiewicz, P., 63, 207
Sakurai, K., 253, 280
Salmeron, M., 329, 333, 334, 347

Sanchez, I.C., 66, 95, 98, 99, 111, 207,
209, 409 (2), 411, 430 (2)

Sandiford, D.J.H., 141
Sarti, B., 284, 344
Sartirana, M.L., 270, 281
Sasai, K., 321, 346
Sasaki, T., 420 (3), 421, 430 (2)
Satkowski, M.M., 321, 322, 346
Sato, K., 51, 206
Sauer, B.B., 33, 38, 42, 54, 56 (2), 127,

138 (2), 140, 205 (2), 289, 290, 345
Sawada, S., 351 (2), 352 (4), 355, 377

(2)
Saylor, C.P., 364, 378
Scandola, M., 243, 264, 267, 268, 269,

279, 281, 283 (2), 284, 285 (2), 287,
343, 344 (4)

Schacht, E., 267, 281
Schell, A., 329, 347
Scherer, G., 79, 141, 143, 144, 145,

150, 151, 208
Schmaltz, H., 258 (3), 280
Schmidt, H., 285, 344
Schmidtke, J., 243, 279
Schneider, H.A., 140
Schöla, E., 365, 378
Schultz, D.N., 253, 280
Schultz, J.M., 138, 140, 312, 317, 319,

337, 338 (2), 345, 347
Sears, J.W., 76, 208
Seferis, J.C., 50, 206
Seifel, S., 38, 205
Selliti, C., 285, 324, 345, 346
Seow, P.K., 251, 253, 279
Sessa, V., 17, 205
Seto, T., 351, 352, 377, 403, 411 (2),

429, 430
Sevez, A., 301, 345
Seward, T.P., 326, 346
Shah, J.K., 395, 396, 429



450 Author index

Shanks, R.A., 158, 212
Sharples, A., 27, 54, 65, 205, 207
Sheldon, R.P., 155, 211, 425 (4), 431

(4)
Shen, C.C., 258 (2), 280
Shen, D., 141
Sherwood, C.H., 373, 374 (3), 375,

376, 379
Shibayama, M., 272, 281
Shingankuli, V.L., 306, 329, 335, 336,

345, 346
Shinozaki, D.M., 141
Shiomi, T., 253 (7), 254, 280 (2)
Sibilia, J.P., 162, 212
Sics, I., 373, 379
Siddiquee, S.K., 5, 204
Silvestre, C., 60 (2), 63, 152, 207, 211,

285, 300, 324, 326 (2), 327 (2), 329,
345 (2), 346 (2), 347

Singfield, K.L., 127, 138
Singh, A., 243, 250, 251, 279, 370 (2),

378
Sirota, E.B., 5 (6), 79 (3), 141 (3), 143

(7), 144 (4), 145 (6), 146 (2), 148
(3), 151, 171, 204 (2), 208 (3)

Sisson, J.A., 253, 280
Skoulios, A., 251, 253, 279
Slonimskii, G.L., 52, 140 (2), 206
Smets, G., 138, 156, 157, 212, 425, 431
Smith, F.L., 317, 345
Smith, F.S., 365 (3), 378
Smith, W.H., 364, 378
Somani, R.H., 373, 376, 379 (2)
Somarjai, G., 68, 208
Song, S.S., 156, 212
Sonoda, C., 424, 431
Soto, M., 319, 346
Spark, L.C., 140, 264
Spell, A., 424 (4), 431 (2)
Spina, S., 140

Spruiell, J.E., 51, 60 (2), 63, 64, 127,
138, 206, 207 (2)

Srinivas, S., 5 (6), 28 (2), 30, 54, 130,
131 (4), 132, 138 (2), 140, 141, 204
(2),

205, 210, 373, 376, 379 (2)
St John Manley, R., 285, 303, 304 (3),

305 (2), 345 (2)
St Lawrence, S., 141
St. Pierre, L.E., 138
Stachurski, Z.H., 27, 65, 205
Stack, G.M.L., 52, 60, 135, 163 (2),

164 (4), 165 (2), 166 (2), 167, 168,
170, 173 (5), 174 (2), 175 (2) , 178
(2), 179 (4), 186 (2), 206, 207, 211,
212, 213 (4), 214, 382 (6), 383 (2),
384 (2), 385 (4), 386, 388, 389, 390,
429 (3)

Stackurski, Z.H., 54
Stadler, R., 258 (6), 280 (2)
Stakurski, Z.H., 50, 206
Stannett, V.T., 140
Staveley, A.K., 79, 208
Staveley, L.A.K., 150, 151, 211
Stehling, F.C., 318 (4), 319, 345 (2),

346 (2)
Stein, R.S., 140, 285, 306, 307, 308 (2),

309, 310, 319, 344, 345 (2), 346,
365, 373, 374 (3), 375, 376, 378, 379

Steiner, K.J., 138
Stejny, J., 145, 211, 212, 380 (2), 388,

428
Steward, R.D., 365 (3), 378
Stockmayer, W.H., 271, 277, 281
St-Pierre, L.E., 155 (3), 158, 159 (2),

211, 212 (2)
Straff, R., 79, 141, 143, 144, 145, 150,

151, 208
Straupe, G., 162 (2), 179, 182 (2), 183,

187, 212, 213, 214



Author index 451

Strobl, G., 99, 209, 243 (4), 279 (4)
Stroupe, J.D., 424 (4), 431 (2)
Stuart, H.A., 54
Su, A.C., 127, 138, 190, 201, 214
Sudaphol, P., 127
Sun, H., 365, 378
Sun, Q., 398, 429
Supaphol, P., 138
Superunchuk, T., 140
Sutton, S.J., 170 (3), 171 (5), 172, 213

(3), 213, 389, 429
Suzuki, S., 341 (4), 342, 347
Suzuki, T., 123, 124, 125, 129, 210
Swinton, F.L., 54

Tabahashi, M., 190, 193, 200 (2), 214
Takahashi, H., 272, 281
Takahashi, M., 359 (2), 360 (2),

378 (2)
Takahashi, T., 420 (3), 421, 430 (2)
Takahashi, Y., 253, 279
Takayanagi, M., 10 (2), 33 (2), 34, 65

(2), 66, 182, 205, 207
Takayanagi, T., 140
Takemura, T., 353, 357 (2), 377, 378
Takenaka, K., 253 (7), 254, 280 (2)
Takeshita, H., 253 (2), 280
Takimoto, J.-I., 374, 379
Talbuddin, S., 342, 343, 347
Tanaka, H., 324, 341 (2), 346, 347 (2)
Tanaka, S., 5, 204
Tanzawa, J., 414 (3), 420 (4), 421 (2),

422, 430 (2)
Tanzawa, Y., 124 (2), 125 (2), 127, 128,

137, 210
Tashiro, K., 130, 131 (2), 132 (2), 210,

319, 346, 382, 384, 386, 425, 429,
431

Taylor, K.D., 152, 211
Tazawa, H., 306 (2), 307 (2), 345

Teckoe, J., 170 (3), 171, 213
Tejuka, Y., 253 (2), 280
Terrill, N.J., 254, 280
Terry, A.E., 380, 388, 428
Terselius, B., 317 (2), 345
Teyssie, Ph., 253 (2), 258, 280
Theil, M.H., 374, 379
Thierry, A., 162 (5), 212 (3)
Thomann, R., 324, 346
Thomas, D.C., 79, 208
Thum-Albrecht, T., 243, 279
Tinas, J., 54, 177 (2), 190 (2), 213
Tobin, M.C., 45, 46, 47, 206
Toda, A., 5, 41, 108 (2), 122, 190, 193,

196 (5), 197, 198, 200 (2), 202 (2),
204, 205, 209 (2), 210, 214 (5), 354,
359 (4), 360 (3), 377, 378 (3), 407
(6), 408, 409 (2), 411 (2), 412 (5),
413, 415, 416, 430 (6)

Tolman, R.C., 70, 208
Tomellium, M., 17, 205
Tonami, H., 365 (2), 378
Tonelli, A.E., 153, 154, 211
Tosi, M., 98, 209, 360, 378
Towns-Andrews, E., 254, 280
Tribout, C., 372, 374 (2), 375 (2), 376

(3), 379
Tseng, H.T., 138, 351, 355 (2), 361 (3),

377, 378
Tso, C.C., 141, 180, 182, 186 (2), 187,

214
Tsoa, A.H., 373, 376, 379
Tsukada, H., 253 (7), 254, 280 (2)
Turnbull, D., 5, 72 (3), 74, 78 (2), 79

(2), 86, 87, 91, 95, 99, 141 (3), 143,
144 (2), 145 (3), 146 (2), 147 (2),
149 (2), 150 (2), 151, 152, 204, 208
(6), 211 (4), 216 (2), 226, 278, 326,
346

Turner, B., 353 (2), 377 (2)



452 Author index

Turska, E., 33, 43, 205
Turturro, G., 159 (2), 212

Ueberreiter, K., 138, 140
Ugazin, M., 341, 347
Uhlmann, D.R., 72, 73 (2), 79, 91, 99

(4), 108, 109, 110, 141, 143, 144,
145, 150, 151, 173, 208 (3), 326,
346, 350, 351, 357 (4), 377 (2)

Ulrich, R.D., 376, 379
Ungar, G., 145, 163, 164, 165 (2), 166,

169, 170 (3), 171, 173, 211, 212 (2),
213 (5), 358 (2), 378, 378, 380 (10),
381 (9), 382, 388 (8), 389 (6), 428
(10), 429 (4)

Urban, M.W., 165, 212
Urbanovici, E., 140
Ushio, M., 130, 210

Vadimsky, R.G., 430
Valdecasas, R.G., 399 (3), 417, 429
van Antwerpen, F., 66, 127, 138, 141,

160, 195, 201, 207, 212
Van Den Benghe, J., 421, 424 (2),

430
van Egmond, J.W., 5, 204, 226, 228,

278
Van Kerpel, R., 424, 431
van Krevelen, D.W., 66 (2), 124, 125,

127, 138, 141, 160, 195, 201, 207
(2), 210, 212

Vandenberg, E.J., 155 (2), 158, 212
Vane, L.M., 395, 429
Vantansever, N., 127
Vasanthakumari, R., 118, 122 (2), 127,

137, 210
Vatansever, N., 118, 122, 137, 210
Vaughan, A.S., 170 (3), 171 (5), 172,

213 (3), 318, 345, 389, 429
Velisaris, C.N., 50, 206

Veno, Y., 425, 431
Vera-Graziano, R., 49, 206
Verdona, M.P., 365, 378
Verma, R.K., 38, 205
Vicolais, L., 140
Vidts, A., 267, 281
Viers, B.D., 97, 209
Vilanova, P.C., 52, 177, 206
Vogel, H., 123, 210
Voigt-Martin, I.G., 3, 4, 55, 60, 178,

179 (5), 186, 204, 207, 213, 235,
238, 279, 382, 429

Volkova, L.A., 424 (2), 431
Volmer, M., 87, 208
Von Göler, F., 12 (2), 14, 205
vonGlydenfeldt, F., 258 (6), 280 (2)

Wagner, J., 249 (2), 279
Wales, M., 155, 211
Walton, A.G., 5, 78, 146, 147, 204, 211
Wang, J., 54
Wang, R.C., 291, 324, 337, 341 (4),

342 (2), 345, 346, 347
Wang, S., 64, 207
Wang, T.T., 283, 284, 285, 298, 324,

344, 346
Wang, W., 138, 140
Wang, Y.F., 418, 420, 430 (2)
Wang, Z., 370, 378
Wang, Z.G., 5 (6), 204 (2)
Warakomshi, J.M., 271, 281
Warner, F.P., 285, 344
Wasiak, A., 60 (2), 63, 64, 207 (3),

365, 378
Wataoka, I., 41, 205
Watnabe, K., 374, 379
Watnabe, T., 62, 207
Weaver, T.J., 382, 429
Weeks, J.J., 42, 97, 106, 107, 116, 117,

118, 122, 151, 209 (2)



Author index 453

Wegner, G., 52, 135, 163 (3), 164 (4),
165 (2), 166 (2), 168, 170, 173 (3),
206, 211, 212, 213 (2), 382 (5), 383
(2), 384 (2), 385 (4), 386, 388, 389,
390, 429 (2)

Weigmann, H.D., 425 (2), 426, 427 (2),
428, 431

Weimann, P.A., 253, 258, 280
Weinhold, J.D., 324, 346
Welch, M.B., 218, 278
Welch, P., 5, 99, 204, 209
Welsh, G.E., 370, 378
Wendorff, J.H., 324, 346
Weng, W., 329, 347
Wesson, R.A., 64, 207
White, J.L., 156, 212
White, S., 54
Whiting, M.C., 145, 163 (2), 165, 211,

212 (3), 213, 380 (3), 388, 428 (2)
Wignall, G.D., 318 (2), 319, 345, 346
Wilkes, G.L., 27, 28 (2), 30 (2), 31, 33

(3), 43, 54 (3), 56 (2), 63 (2), 64, 138
(2), 140 (2), 141, 195, 199, 205 (3),
206, 207, 259, 270, 271 (2), 280, 281
(2), 425 (4), 428, 431 (2)

Williams, D.N., 238, 241, 279
Williams, J.L.R., 421, 424 (2), 430
Willis, H.A., 131, 210
Willis, J.W., 329, 347
Windle, A.H., 370, 378
Winter, H.H., 5 (2), 195, 204 (2), 214
Wiswe, D., 140
Wittman, J.C., 155, 161 (3), 162 (6),

211, 212 (7)
Wlochowicz, A., 63, 64, 157, 158, 159,

160 (2), 161, 207, 212
Wolkowicz, M.D., 321, 324, 346, 375,

376 (3), 379
Wong, W.Y., 192 (2), 201, 214
Wood, B.A., 140

Wood, L.A., 6, 8, 30 (2), 31, 140, 204,
272, 273 (3), 274, 281

Woodruff, D.P., 75, 79, 141, 143, 208
(2)

Wozniak, A., 64, 207
Wu, G., 306, 345
Wu, L., 342, 343, 347
Wu, S., 365, 378
Wu, Z., 54
Wunderlich, B., 33, 35, 36, 37, 51, 52,

57, 184, 198, 199, 205, 206 (2), 214,
241, 279, 312, 316, 345, 352 (2),
357, 377 (2), 378

Xiao, Z., 398, 429
Xing, P., 152, 211
Xu, J., 130, 131 (4), 132, 210, 241 (2),

279

Yamada, K., 196 (4), 202, 214 (2), 359
(2), 360, 378

Yamada, T., 341 (4), 342, 347
Yamadera, R., 424, 431
Yamaguchi, A., 264
Yamamota, Y., 359, 378
Yamamoto, S., 253, 254, 280
Yamamoto, T., 98, 209
Yamamoto, Y., 420 (3), 421, 430 (2)
Yamane, H., 321, 346
Yamashito, T., 65, 207
Yamazaki, S., 41, 196 (2), 198, 205,

214 (2)
Yan, D., 131, 210
Yan, W.Y., 285, 344
Yang, J.M., 341 (3), 342 (2), 347
Yasuniwa, M., 130, 210, 353, 357 (2),

377, 378
Yeh, G.S.Y., 321 (3), 322 (2), 339, 346
Yen, F., 258 (2), 280, 373, 376, 379
Yim, A., 155, 211



454 Author index

Yoon, D.Y., 41 (2), 91 (4), 99 (4), 206
(2), 208 (2)

Yoon, K.H., 218, , 278
Yoshie, N., 264
Yoshioka, A., 425, 431
Young, R., 27, 205
Yu, G., 17, 205
Yuan, Z., 398, 429
Yung, W.S., 365, 378

Zachmann, H.G., 38, 60, 99, 140, 205,
207, 209, 243 (2), 244, 279, 365 (2),
378, 428, 431

Zahradnik, F., 329, 333 (4), 334 (2),
346

Zeng, X., 380, 381, 388, 389, 428

Zettlemoyer, A.C., 5 (2), 68, 78 (2), 98,
99, 100, 204 (2), 208

Zhang, A., 130, 131 (2), 179 (3), 210,
213 (3), 218, 278

Zhang, H., 64, 207
Zhang, X., 130 (2), 152, 210, 285, 344
Zhang, Z., 365, 378
Zhao, J., 365, 378
Zhdanov, A.A., 140 (2)
Zhou, J., 259 (2), 280
Zhu, X., 131, 210
Ziabicki, A., 64, 207
Zichy, V., 162, 212
Zoller, P., 350, 351, 355, 377
Zschack, P.R., 179 (2), 213 (2)
Zue, G., 398, 429



Subject index

Page numbers in italics, e.g. 381, indicate references to figures. Page numbers in
bold, e.g. 42, denote entries in tables.

n-alkanes
crystallation from polymer–diluent

mixtures 380–91, 381
crystallization rate 388, 389
crystallization rate and nucleation

temperature 390
DSC dissolution endotherms 384
DSC dissolution temperature 386
DSC exotherms 383
endothermic peaks 385
transformation time 386

crystallization of n-alkanes 163–76
crystallization rates 166, 168
crystallization temperatures 164,

165, 166
degree of crystallinity 164, 165

AlOH tertiary butyl benzoate 156, 156
anisotropic growth 13
applied forces, effect on crystallization

348
biaxial deformation and shear 371–7
hydrostatic pressure

growth kinetics 361–3
overall crystallization kinetics

348–61
uniaxial deformation 363–71

Austin–Rickett relation 44–5
compared to Avrami equation 44

Avrami model 18–27
deviation of experimental results

from theory 42
experimental results 31–3
isotherms 21, 23

compared to other models 22
nucleation 24
values of exponent n for selected

polymers 53–4

bundle nucleus 81

catalysts for homopolymer nucleation
154–62

spherulitic growth rates 159
coherent nucleation 75, 75
copolymers, crystallization kinetics

215
block or ordered copolymers 251–66

Avrami exponent 257
isothermal crystallization

half-time 256
relative fraction transformed

against time 252

455



456 Subject index

copolymers (cont.)
spherulite growth rate against

average molecular weight 262
spherulite growth rates 263–4
superimposability of isotherms

252
copolymers where both comonomers

crystallize 266–70
long chain branches and covalent

cross-links 270–8
random type copolymers

effect of noncrystallizing units 225
nucleation and branch points

237–8, 238
nucleation rate reduction 223
overall crystallization 215–43,

235
spherulite growth rates 243–51

critical sequence length 236–7, 236
crystallization temperature 59–60

ethylene terephthalate–azelate
copolymers

crystallization half-time 221
ethylene–hexene copolymers

crystallization rate 229, 234
ethylene–octene copolymers

spherulite growth rates 244, 246 –7,
248

transformation extent 228
ethylene–vinyl acetate coploymers

spherulite growth rates 244

Gibbs type nucleation 88–91, 89
Göler–Sachs model 15–16

deviation of experimental results
from theory 42

experimental findings 27–33
isotherms: compared to other models

22

heterogeneous nucleation 72–5, 73,
85–8

long chain molecule on a flat surface
85

nucleation within a conical cavity 88
homogeneous nucleation 79–84, 83,

84, 141–8
droplet kinetics parameters 147
number fraction solidified 146
reduced undercooling 144

homopolymers, crystallization kinetics
1–5, 203–4

behaviour around the equilibrium
melting temperature 101–22

nucleation spreading rates 109
behaviour over extended temperature

range 122–41
maximum overall crystallization

rates against equilibrium
melting temperatures 139

maximum spherulite growth rates
against equilibrium melting
temperatures 137

overall birefringence change 132
comparison between theory and

experimental findings 27–43
plot of crystallinity against time

36, 39
plot of crystallinity as a function

of molecular weight 40
crystallite thickness of polyethylene

3–4, 4
droplet kinetics parameters 147
further experimental results 52–60
further theoretical developments

43–51
theoretical isotherms for

two-stage series model 49
general experimental observations

5–11



Subject index 457

homogeneous nucleation 141–8
reduced undercooling 144

interfacial free energy 145,
148–54

number fraction crystallized 149
mathematical formulation 11–27

values of n for nucleation and
growth 19

molecular weight, influence of 163
crystallization of n -alkanes

163–76, 164, 165, 166, 168
high molecular weight 189–203
low molecular weight fractions

176–89, 177
nonisothermal crystallization 60–5
nucleation catalysts 154–62

spherulitic growth rates 159
nucleation theory

long chain molecules 79–101, 83,
84

low molecular weight nonchain
molecules 67–79, 69

number fraction solidified 146
specific volume of polyethylene 1–3,

2
spherulite initiation and growth

65–7
nucleation rate 66

incoherent nucleation 76
interfacial free energy 145, 148–54

number fraction crystallized 149
isotropic growth 13–15

lead phosphate (Pb3(PO4)2)157, 157
lower critical solution temperature

(LCST) 324

molecular weight, effect on
crystallization 163

crystallization of n-alkanes 163–76,
164, 165, 166, 168, 182

high molecular weight 189–203
number average molecular weight

190
low molecular weight fractions

176–89, 177
crystallite size distribution 178
nucleation function 185, 188
overall crystallization rate 180,

181
spherulite growth rates in

copolymers 262

nucleation in copolymers
nucleation and branch points 237–8,

238
nucleation in homopolymers 141–8

catalysts 154–62
spherulitic growth rates 159

droplet kinetics parameters 147
long chain molecules

Gibbs type nucleation 88–91, 89
heterogeneous nucleation 85–8,

85, 88
homogeneous nucleation 79–84,

83, 84
regularly folded chain nucleation

91–101, 93, 100
low molecular weight nonchain

molecules 67–79
coherent nucleation 75
free energy of formation 68–72,

69, 73
heterogeneous nucleation 73

nucleation spreading rates 109
number fraction solidified 146
reduced undercooling 144

nylon
Arrami exponent 53



458 Subject index

nylon (cont.)
equilibrium melting temperature

maximum spherulite growth rate
137

phantom nuclei 16, 17
poly(aryl ether ether ketone)

equilibrium melting temperature
maximum spherulite growth rate

137
growth rate 126
poly(ether imide) blends

isothermal crystallization
peaktime 290

Regime III–II transition 127
spherulite growth rates 195

poly(aryl ether ketone ether ketone
ketone)

equilibrium melting temperature
maximum overall crystallization

rate 139
poly(aryl ether ketone

ketone–isophthalic acid)
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(azelate)
poly(ethylene terephthalate)

copolymers
spherulite growth rates 263

poly(butadiene)
containing 80% 1,4-trans units 216
hydrogenated forms

crystallization rate 231, 233, 234,
265

melting temperature against
isothermal crystallization 240

thermograms 239, 240
transformation extent 218, 219

poly(cis-1,4-butadiene)

deviation of experimental results
from theory 42

equilibrium melting temperature
maximum overall crystallization

rate 139
maximum spherulite growth rate

137
Regime III–II transition 127

poly(trans-1,4-butadiene)
transformation extent 226

poly(butene)
styrene–ethylene–butene coploymers

time course of integrated intensity
255

values of K1 and K2 constants 122
poly(1,4-butylene adipate)

poly(vinylidene fluoride) blends
isothermal crystallization 305
spherulite growth rates 304

poly(butylene naphthalene
2,6-dicarboxylate)

nonisothermal crystallization 64
poly(butylene succinate)

poly(vinylidene fluoride) blends
crystallinity levels 307
spherulite growth rates 306

poly(butylene terephthalate)
Arrami exponent 53
equilibrium melting temperature

maximum overall crystallization
rate 139

long branched chains 273
poly(ethylene terephthalate) blends

crystallization half-time 309, 310
crystallization rate constants 307,

308
poly(caproamide)

equilibrium melting temperature
maximum spherulite growth rate

137



Subject index 459

Regime III–II transition 127
poly(caprolactam)

droplet kinetics parameters 147
effect of additives on spherulite size

160
effect of lead phosphate 157

poly(ε-caprolactone)
Arrami exponent 54
poly(hydroxy ether) blends

relative fraction transformed 288
poly(styrene) blends

normalized intensity maximum
228

phase digram 325
poly(vinyl chloride) blends

spherulite growth rates 292
spherulite growth rates 192
values of K1 and K2 constants 122

poly(carbonate)
poly(ethylene terephthalate) blends

crystallization rate 335
poly(chlorofluoroethylene)

deviation of experimental results
from theory 42

poly(3,3-bis-chloromethyl
oxycyclobutane)

droplet kinetics parameters 147
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(chlorotrifluoroethylene)
growth rate 107, 118

experimental fit 117
values of K1 and K2 constants 122

poly(decamethylene adipate)
spherulite growth rates 10

poly(decamethylene oxide)
Arrami exponent 53

poly(decamethylene sebacate)
growth rate 104

spherulite formation rate 103
poly(decamethylene terephthalate)

Arrami exponent 53
poly(3,3-dimethyl oxetane)

Arrami exponent 53
deviation of experimental results

from theory 42
poly(dimethyl siloxane)

crystallization from toluene 417
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(tetramethyl-p-silphenylene
siloxane) copolymers

spherulite growth rates 259, 260
–1, 263

poly(3,3-dimethyl thietane)
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(2,6-dimethyl-1,4-diphenylene
oxide) (PPO) 326–8

poly(styrene) blends
spherulite growth rates 327

poly(1,3-dioxane)
poly(oxymethylene) copolymers

spherulite growth rates 263
poly(dioxepane)

poly(oxymethylene) copolymers
spherulite growth rates 263

poly(1,3-dioxolane)
Arrami exponent 53
crystallinity 29
crystallization kinetics 55
deviation of experimental results

from theory 42
equilibrium melting temperature

maximum spherulite growth rate
137

growth rate 107



460 Subject index

poly(1,3-dioxolane) (cont.)
poly(oxymethylene) copolymers

spherulite growth rates 263
Regime III–II transition 127
values of K1 and K2 constants 122

poly(diphenylmethane diisocyanate)
poly(ethylene adipate) copolymers

spherulite growth rates 263
poly(epichlorohydrin)

poly(oxymethylene) copolymers
spherulite growth rates 263

poly(I-RS-epichlorohydrin)
equilibrium melting temperature

maximum spherulite growth rate
137

poly(R-epichlorohydrin)
equilibrium melting temperature

maximum spherulite growth rate
137

Regime III–II transition 127
poly(S-epichlorohydrin)

equilibrium melting temperature
maximum spherulite growth rate

137
poly(ether ether ketone)

Arrami exponent 54
deviation of experimental results

from theory 42
poly(ether ether ketone ketone)

Arrami exponent 54
poly(ether imide)

poly(aryl ether ether ketone) blends
isothermal crystallization

peaktime 290
poly(ether ketone ether ketone

ketone) blends
DSC peak time 334

poly(ether ketone ether ketone ketone)
poly(ether imide) blends: DSC peak

time 334

poly(ether sulfone) blends
crystallinity levels 333
DSC peak time 334

poly(ether sulfone)
poly(ether ketone ether ketone

ketone) blends
crystallinity levels 333
DSC peak time 334

polyethylene
Avrami model compared with

experimental results 31
Arrami exponent 53
binary blends of molecular weight

fractions
crystallization half-time 313 –14,

315
relative crystallinity 316
spherulite growth rates 317

chain length versus ζ ∗ 82
cross-linked 276, 278
crystallinity 28
crystallite thickness 3–4, 4
crystallization 7
crystallization from decalin 413
crystallization from n-hexadecane

solution 402
Avrami exponent 397
transformation extent 392, 393,

394
transformation time 399

crystallization from n-octane 413
face growth rate 407

crystallization from p-xylene 404,
413

face growth rate 406
growth rate against temperature

415
crystallization from

tetrachloroethylene solution
408



Subject index 461

crystallization from
α-chloronaphthalene 401, 403

crystallization kinetics 55
crystallization under hydrostatic

pressure
crystallization extent 353, 354
crystallization half-time 356
lateral growth rates 358

crystallization under shear
induction time 373

dependence of overall crystallization
rate on molecular weight 58

droplet kinetics parameters 147
ethylene–butene blends

crystallization temperature
dependence 320

ethylene–hexene blends
crystallization temperature

dependence 320
fit of experimental data to Avrami

equation 35
growth rate 105, 107, 119

experimental fit 120
growth rate against crystallization

temperature 187
percentage change in crystallization

level 217
plot of crystallinity as a function of

molecular weight 40
poly(butadiene) blends

crystallization temperature
dependence 320

poly(phenylene sulfide) blends
crystallization half-time 336

poly(propylene) blends
spherulite growth rates 330

primary nucleation rate 197
slope ratios versus molecular weight

134 –5
sol and gel fractions 276, 277, 278

specific volume 1–3, 2
spherulite growth rates 193, 244
transformation extent 227
values of K1 and K2 constants 122

poly(ethylene adipate)
equilibrium melting temperature

maximum overall crystallization
rate 139

fit of experimental data to Avrami
equation 34

poly(1,5-naphthalene diisocyanate)
copolymers

spherulite growth rates 263
poly(2,4-toluene diisocyanate)

copolymers
spherulite growth rates 263

poly(diphenylmethane diisocyanate)
copolymers

spherulite growth rates 263
poly(hexamethyl diisocyanate)

copolymers
spherulite growth rates 263

spherulite growth rates 10
poly(ethylene oxide)

Arrami exponent 53
crystallization from toluene 405
crystallization from tripionin

solution
nucleation rate 420

crystallization kinetics 55
crystallization rate against number

average molecular weight 190
crystallization under shear

crystallinity extent 374
droplet kinetics parameters 147
ethylene–methacrylic acid blends

spherulite radius 343
fit of experimental data to derived

Avrami equation 36
free energy of fusion 184



462 Subject index

poly(ethylene oxide) (cont.)
growth rate 107, 116

experimental fit 117, 121
growth rate against crystallization

temperature 183
interfacial free energy product 197
plot of crystallinity as a function of

molecular weight 40
poly(methyl methacrylate) blends

spherulite growth rates 291
theoretical plots 297

poly(styrene) copolymers
relative fraction transformed

against time 252
poly(vinyl chloride) blends

spherulite growth rates 330
poly(p-vinyl phenol) blends

crystallization half-time 290
spherulite growth rates 191
styrene–hydroxy styrene blends

spherulite radius 343
values of K1 and K2 constants 122

poly(ethylene succinate)
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

poly(ethylene terephthalate)
Arrami exponent 54
crystallization kinetics 56
effect of additives 157
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

exposed to methylene chloride
vapour

crystallinity extent 426, 428
immersion in dioxane

x-ray diffraction intensity 425
immersion in nitromethane

x-ray diffraction intensity 425
poly(azelate) copolymers

spherulite growth rates 263
poly(butylene terephthalate) blends

crystallization half-time 309, 310
crystallization rate constants 307,

308
poly(carbonate) blends

crystallization rate 335
poly(ether imide) blends

spherulite radius 342
poly(phenylene sulfide) blends

crystallization half-time 336
Regime III–II transition 127
spherulitic growth rates with

nucleating agents 159
poly(ethylene-2,6-naphthalene

dicarboxylate)
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

Regime III–II transition 127
poly(hexamethyl adipamide)

crystallization rate
hexamethylene terephthalate

copolymer 230
poly(hexamethyl diisocyanate)

poly(ethylene adipate) copolymers
spherulite growth rates 263

poly(hexamethylene adipamide)
Arrami exponent 53
crystallization kinetics 55–6
equilibrium melting temperature



Subject index 463

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

spherulite nucleation rate 66
poly(hexamethylene adipate)

Arrami exponent 53
poly(hexamethylene oxide)

Arrami exponent 53
poly(β-hydroxy butryate)

poly(hydroxy propionate)
copolymers

spherulite growth rates 263
poly(hydroxy valerate) copolymers

spherulite growth rates 263–4
stereo isomer copolymers

spherulite growth rates 264
poly(3-hydroxy butyrate)

cellulose acetate butyrate blends
spherulite growth rates 285
spherulite radius 344

growth rate 126
poly(3-hydroxy valerate)

copolymers
spherulite growth rates 268, 269

Regime III-–II transition 127
poly(hydroxy ether)

poly(ε-caprolactone) blends
relative fraction transformed 288

poly(β-hydroxy octanoate)
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(hydroxy propionate)
poly(β-hydroxy butryate)

copolymers
spherulite growth rates 263

poly(3-hydroxy valerate)
equilibrium melting temperature

maximum spherulite growth rate
137

poly(3-hydroxy butyrate)
copolymers

spherulite growth rates 268, 269
poly(β-hydroxy butryate)

copolymers
spherulite growth rates 263–4

Regime III–II transition 127
poly(β-hydroxyoctanone)

copolymers
spherulite growth rates 264

polyimides
Avrami model

Arrami exponent 53
compared with experimental

results 32
fit of experimental data to Avrami

equation 35
copolyimides

spherulite growth rates 270
copolymers

spherulite growth rates 263
crystallization kinetics 56–7
deviation of experimental results

from theory 42
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

Regime III–II transition 127
poly(isobutylene)

poly(propylene) blends
spherulite growth rates 331

poly(cis-isoprene)
crystallization under hydrostatic

pressure
Avrami rate constant 351



464 Subject index

poly(cis-isoprene) (cont.)
isotherms at different pressures

349
suposability of isotherms at

different pressures and
temperatures 350

equilibrium melting temperature
maximum overall crystallization

rate 139
maximum spherulite growth rate

137
Regime III–II transition 127

poly(trans-1,4-isoprene)
crystallization under hydrostatic

pressure
spherulite growth rates 362

poly(l-lactic acid)
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

Regime III–II transition 127
values of K1 and K2 constants 122

poly(l-lactide)
copolymers

spherulite growth rates 264
poly(methyl methacrylate)

equilibrium melting temperature
maximum spherulite growth rate

137
poly(ethylene oxide) blends

spherulite growth rates 291
theoretical plots 297

poly(vinylidene fluoride) blends
spherulite growth rates 284
theoretical plots 298

poly(1,5-naphthalene diisocyanate)
poly(ethylene adipate) copolymers

spherulite growth rates 263

poly(octamethylene oxide)
Arrami exponent 53

poly(oxetane)
Avrami model compared with

experimental results 31
deviation of experimental results

from theory 42
poly(oxymethylene)

droplet kinetics parameters 147
equilibrium melting temperature

maximum spherulite growth rate
137

poly(1,3-dioxane) copolymers
spherulite growth rates 263

poly(dioxepane) copolymers
spherulite growth rates 263

poly(dioxolane) copolymers
spherulite growth rates 263

poly(epichlorohydrin) copolymers
spherulite growth rates 263

Regime III–II transition 127
poly(2,2′-bis-4,4′-oxyphenyl propane

carbonate)
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(pentamethylene terephthalate)
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(1-pentene)
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(phenylene ether ether sulfide)
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137



Subject index 465

poly(phenylene sulfide)
Avrami model compared with

experimental results 33
Arrami exponent 53
crystallinity 29
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

fit of experimental data to Avrami
equation 34

nonisothermal crystallization 63
poly(ethylene terephthalate) blends

crystallization half-time 336
polyethylene blends

crystallization half-time 336
Regime III–II transition 127

poly(pivolactone)
poly(vinylidene fluoride) blends

spherulite growth rates 286, 287
theoretical plots 299– 300, 302

poly(propylene)
crystallization from decalin solution

transformation extent 396
crystallization under shear

nucleation rate 375
droplet kinetics parameters 147
effect of AlOH tertiary butyl

benzoate 156
effect of sorbitol compounds 158
equilibrium melting temperature

maximum spherulite growth rate
137

ethylene–propylene copolymer
blends

spherulite diameter 341
growth rate 132
growth rate against crystallization

temperature 188

isotactic/atactic blends
spherulite growth rates 323
spherulite radius growth 337

overall birefringence change 132
poly(isobutylene) blends

spherulite growth rates 331
polyethylene blends

spherulite growth rates 330
Regime III–II transition 127

poly(proplylene oxide)
equilibrium melting temperature

maximum spherulite growth rate
137

filler content 155
Regime III–II transition 127

poly(styrene)
crystallization from benzophenone

solution
spherulite growth rates 422,

423
crystallization from dimethyl

phthalate solution 414, 419
spherulite growth rates 422

droplet kinetics parameters 147
equilibrium melting temperature

maximum overall crystallization
rate 139

maximum spherulite growth rate
137

growth rate 125, 128
isotactic/atactic blends

growth rate ratios 322
initial growth rates 340
spherulite growth rates 321

poly(ethylene oxide) copolymers
relative fraction transformed

against time 252
poly(vinyl methyl ether) blends

spherulite growth rates 327
poly(ε-caprolactone) blends



466 Subject index

poly(styrene) (cont.)
normalized intensity maximum

228
phase digram 325

PPO blends
spherulite growth rates 327

Regime III–II transition 127
poly(teramethylene isophthalate)

equilibrium melting temperature
maximum spherulite growth rate

137
poly(tetrachloro-bis-phenol-A adipate)

equilibrium melting temperature
maximum spherulite growth rate

137
poly(tetramethylene isoterephthalate)

equilibrium melting temperature
maximum overall crystallization

rate 139
poly(tetramethyl-p-silphenylene

siloxane)
dependence of overall

crystallization rate on molecular
weight 58

poly(dimethyl siloxane) copolymers
spherulite growth rates 259,

260–1, 263
spherulite growth rates 194

poly(tetramethylene-p-silphenylene
siloxane)

equilibrium melting temperature
maximum spherulite growth rate

137
Regime III–II transition 127

poly(2,4-toluene diisocyanate)
poly(ethylene adipate) copolymers

spherulite growth rates 263
poly(trimethylene oxide)

Arrami exponent 53
equilibrium melting temperature

maximum overall crystallization
rate 139

poly(4,6-urethane)
Arrami exponent 53

poly(vinyl chloride)
poly(ε-caprolactone) blends

spherulite growth rates 292
poly(ethylene oxide) blends

spherulite growth rates 330
poly(vinyl methyl ether)

poly(styrene) blends
spherulite growth rates 327

poly(p-vinyl phenol)
poly(ethylene oxide) blends

crystallization half-time 290
poly(vinylidene fluoride)

poly(1,4-butylene adipate) blends
isothermal crystallization 305
spherulite growth rates 304

poly(butylene succinate) blends
crystallinity levels 307
spherulite growth rates 306

poly(methyl methacrylate) blends
spherulite growth rates 284
theoretical plots 298

poly(pivolactone) blends
spherulite growth rates 286, 287
theoretical plots 299–300, 302

polymer mixtures, crystallization
kinetics 282

chemically identical components 311
blends of two molecular weight

fractions with defined
distributions 311–18, 315

blends with different molecular
architecture 318–21

blends with different
stereoirregularities 321–4

completely immiscible blends of two
components 328–35



Subject index 467

completely miscible but single
component crystallization

experimental results 283–93
theory of two-component melts

293–301
completely miscible with both

components crystallizing
303–11

nonlinear growth and diffusion
336–44

partially miscible blends 324–8
polymer–diluent mixtures

crystallization from concentrated
mixtures 416–23

crystallization from dilute solutions
391–413

isotherms 395
high molecular weight n-alkanes

380–91, 381
crystallization rate 388, 389
crystallization rate and nucleation

temperature 390
DSC dissolution endotherms 384
DSC dissolution temperature 386
DSC exotherms 383
endothermic peaks 385
transformation time 386

solvent-induced crystallization
423–8

temperature dependence 414–16

regularly folded chain nucleation
91–101

free energy diagram 93
free energy values for different

nuclei 100

rubber
Avrami model compared with

experimental results 32
crystallinity level 273, 275
crystallization 7
crystallization rate 6–9, 8
crystallization under biaxial

deformation
isotherms 372

crystallization under uniaxial
deformation 366, 368

Avrami exponent 367
lamellar growth rate 370
relative volume decrease 364

relative crystallinity 9

spherulites 4–5, 55
growth rates 10

crystallization temperature 11
poly(ethylene adipate) 10

initiation and growth 65–7
maximum growth rates against

equilibrium melting
temperatures 137

nucleation rate 66
random type copolymers

growth rates 243–51

tail of an isotherm 6, 37, 60
tetramethylthiuram disulfides (Tuads)

274, 274, 275

upper critical solution temperature
(UCST) 324

Vogel expression 123


	Cover
	Half-title
	Title
	Copyright
	Contents
	Preface
	9 Crystallization kinetics of homopolymers: bulk crystallization
	9.1 Introduction
	9.2 General experimental observations
	9.3 Mathematical formulation
	9.4 Comparison of theory with experiment: overall crystallization
	9.5 Further theoretical developments: overall crystallization
	9.6 Further experimental results: overall crystallization
	9.7 Nonisothermal crystallization
	9.8 Spherulite initiation and growth: general concepts
	9.9 Nucleation theory: temperature coefficient in vicinity of T
	9.9.1 Low molecular weight nonchain molecules
	9.9.2 Long chain molecules
	9.9.2.1 Homogeneous nucleation
	9.9.2.2 Heterogeneous nucleation
	9.9.2.3 Gibbs type nucleation
	9.9.2.4 Regularly folded chain nucleation


	9.10 Analysis of experimental data in vicinity of T
	9.11 Kinetics over an extended temperature range
	9.12 Homogeneous nucleation and interfacial free energies
	9.12.1 Homogeneous nucleation
	9.12.2 Interfacial free energies

	9.13 Nucleation catalysts
	9.14 Influence of molecular weight
	9.14.1 Crystallization of n-alkanes
	9.14.2 Low molecular weight fractions
	9.14.3 High molecular weight

	9.15 Epilogue
	References

	10 Crystallization kinetics of copolymers
	10.1 Introduction
	10.2 Random type copolymers
	10.2.1 Overall crystallization
	10.2.2 Random copolymers: spherulite growth rates

	10.3 Block or ordered copolymers
	10.4 Both comonomers crystallize
	10.5 Long chain branches and covalent cross-links
	References

	11 Crystallization kinetics of polymer mixtures
	11.1 Introduction
	11.2 Components completely miscible in melt: only one component crystallizes
	11.2.1 Experimental results
	11.2.2 Theory: two-component miscible melts

	11.3 Miscible blend: both components crystallize
	11.4 Chemically identical components
	11.4.1 Introduction
	11.4.2 Blends of two molecular weight fractions and defined distributions
	11.4.3 Blends with different molecular architectures
	11.4.4 Blends with different stereoirregularities

	11.5 Partially miscible blends
	11.6 Blend with two completely immiscible components
	11.7 Nonlinear growth and diffusion
	References

	12 Crystallization under applied force
	12.1 Introduction
	12.2 Effect of hydrostatic pressure
	12.2.1 Overall crystallization kinetics
	12.2.2 Growth kinetics

	12.3 Crystallization kinetics under uniaxial deformation
	12.4 Crystallization kinetics under biaxial deformation and under shear
	References

	13 Polymer–diluent mixtures
	13.1 High molecular weight n-alkanes
	13.2 Crystallization from dilute and moderately dilute solutions
	13.3 Temperature dependence: crystallization from dilute solution
	13.4 Crystallization from concentrated mixtures
	13.5 Solvent induced crystallization
	References

	Author index
	Subject index

