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THE MOLECULAR CHALLENGE

Sir Ethylene, to scientists fair prey,

(Who dig and delve and peek and push and pry,

And prove their findings with equations sly)

Smoothed out his ruffled orbitals, to say:

“I stand in symmetry. Mine is a way

Of mystery and magic. Ancient, |

Am also deemed immortal. Should I die,

Pi would be in the sky, and Judgement Day

Would be upon us. For all things must fail,

That hold our universe together, when

Bonds such as bind me fail, and fall asunder.

Hence, stand I firm against the endless hail

Of scientific blows. I yield not.” Men

And their computers stand and stare and wonder.
W.G. LOWE
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Preface to the Third Edition

We have attempted to improve and update this text while retaining the features that
make it unique, namely, an emphasis on physical understanding, and the ability to
estimate, evaluate, and predict results without blind reliance on computers, while still
maintaining rigorous connection to the mathematical basis for quantum chemistry. We
have inserted into most chapters examples that allow important points to be emphasized,
clarified, or extended. This has enabled us to keep intact most of the conceptual
development familiar to past users. In addition, many of the chapters now include
multiple choice questions that students are invited to solve in their heads. This is not
because we think that instructors will be using such questions. Rather it is because we
find that such questions permit us to highlight some of the definitions or conclusions
that students often find most confusing far more quickly and effectively than we can
by using traditional problems. Of course, we have also sought to update material
on computational methods, since these are changing rapidly as the field of quantum
chemistry matures.

This book is written for courses taught at the first-year graduate/senior undergraduate
levels, which accounts for its implicit assumption that many readers will be relatively
unfamiliar with much of the mathematics and physics underlying the subject. Our
experience over the years has supported this assumption; many chemistry majors are
exposed to the requisite mathematics and physics, yet arrive at our courses with poor
understanding or recall of those subjects. That makes this course an opportunity for
such students to experience the satisfaction of finally seeing how mathematics, physics,
and chemistry are intertwined in quantum chemistry. Itis for this reason that treatments
of the simple and extended Hiickel methods continue to appear, even though these are no
longer the methods of choice for serious computations. These topics nevertheless form
the basis for the way most non-theoretical chemists understand chemical processes,
just as we tend to think about gas behavior as “ideal, with corrections.”

xvii
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Preface to the Second Edition

The success of the first edition has warranted a second. The changes I have made reflect
my perception that the book has mostly been used as a teaching text in introductory
courses. Accordingly, [ have removed some of the material in appendixes on mathemat-
ical details of solving matrix equations on a computer. Also I have removed computer
listings for programs, since these are now commonly available through commercial
channels. I have added a new chapter on MO theory of periodic systems—a subject
of rapidly growing importance in theoretical chemistry and materials science and one
for which chemists still have difficulty finding appropriate textbook treatments. I have
augmented discussion in various chapters to give improved coverage of time-dependent
phenomena and atomic term symbols and have provided better connection to scatter-
ing as well as to spectroscopy of molecular rotation and vibration. The discussion
on degenerate-level perturbation theory is clearer, reflecting my own improved under-
standing since writing the first edition. There is also a new section on operator methods
for treating angular momentum. Some teachers are strong adherents of this approach,
while others prefer an approach that avoids the formalism of operator techniques. To
permit both teaching methods, I have placed this material in an appendix. Because this
edition is more overtly a text than a monograph, I have not attempted to replace older
literature references with newer ones, except in cases where there was pedagogical
benefit.

A strength of this book has been its emphasis on physical argument and analogy (as
opposed to pure mathematical development). I continue to be a strong proponent of
the view that true understanding comes with being able to “see” a situation so clearly
that one can solve problems in one’s head. There are significantly more end-of-chapter
problems, a number of them of the “by inspection” type. There are also more questions
inviting students to explain their answers. I believe that thinking about such questions,
and then reading explanations from the answer section, significantly enhances learning.

It is the fashion today to focus on state-of-the-art methods for just about everything.
The impact of this on education has, I feel, been disastrous. Simpler examples are often
needed to develop the insight that enables understanding the complexities of the latest
techniques, but too often these are abandoned in the rush to get to the “cutting edge.”
For this reason I continue to include a substantial treatment of simple Hiickel theory.
It permits students to recognize the connections between MOs and their energies and
bonding properties, and it allows me to present examples and problems that have max-
imum transparency in later chapters on perturbation theory, group theory, qualitative
MO theory, and periodic systems. I find simple Hiickel theory to be educationally
indispensable.

Xix



XX Preface to the Second Edition

Much of the new material in this edition results from new insights I have developed
in connection with research projects with graduate students. The work of all four of
my students since the appearance of the first edition is represented, and I am delighted
to thank Sherif Kafafi, John LaFemina, Maribel Soto, and Deb Camper for all I have
learned from them. Special thanks are due to Professor Terry Carlton, of Oberlin
College, who made many suggestions and corrections that have been adopted in the
new edition.

Doubtless, there are new errors. I would be grateful to learn of them so that future
printings of this edition can be made error-free. Students or teachers with comments,
questions, or corrections are more than welcome to contact me, either by mail at the
Department of Chemistry, 152 Davey Lab, The Pennsylvania State University, Univer-
sity Park, PA 16802, or by e-mail directed to JL3 at PSUVM.PSU.EDU.
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Preface to the First Edition

My aim in this book is to present a reasonably rigorous treatment of molecular orbital
theory, embracing subjects that are of practical interest to organic and inorganic as well
as physical chemists. My approach here has been to rely on physical intuition as much
as possible, first solving a number of specific problems in order to develop sufficient
insight and familiarity to make the formal treatment of Chapter 6 more palatable. My
own experience suggests that most chemists find this route the most natural.

I have assumed that the reader has at some time learned calculus and elementary
physics, but I have not assumed that this material is fresh in his or her mind. Other
mathematics is developed as it is needed. The book could be used as a text for under-
graduate or graduate students in a half or full year course. The level of rigor of the book
is somewhat adjustable. For example, Chapters 3 and 4, on the harmonic oscillator and
hydrogen atom, can be truncated if one wishes to know the nature of the solutions, but
not the mathematical details of how they are produced.

I have made use of appendixes for certain of the more complicated derivations or
proofs. This is done in order to avoid having the development of major ideas in the
text interrupted or obscured. Certain of the appendixes will interest only the more
theoretically inclined student. Also, because I anticipate that some readers may wish
to skip certain chapters or parts of chapters, I have occasionally repeated information
so that a given chapter will be less dependent on its predecessors. This may seem
inelegant at times, but most students will more readily forgive repetition of something
they already know than an overly terse presentation.

I have avoided early usage of bra-ket notation. I believe that simultaneous intro-
duction of new concepts and unfamiliar notation is poor pedagogy. Bra-ket notation is
used only after the ideas have had a change to jell.

Problem solving is extremely important in acquiring an understanding of quantum
chemistry. I have included a fair number of problems with hints for a few of them in
Appendix 14 and answers for almost all of them in Appendix 15.!

It is inevitable that one be selective in choosing topics for a book such as this. This
book emphasizes ground state MO theory of molecules more than do most introductory
texts, with rather less emphasis on spectroscopy than is usual. Angular momentum
is treated at a fairly elementary level at various appropriate places in the text, but
it is never given a full-blown formal development using operator commutation rela-
tions. Time-dependent phenomena are not included. Thus, scattering theory is absent,

UIn this Second Edition, these Appendices are numbered Appendix 12 and 13.

xxi



XXii Preface to the First Edition

although selection rules and the transition dipole are discussed in the chapter on time-
independent perturbation theory. Valence-bond theory is completely absent. If I have
succeeded in my effort to provide a clear and meaningful treatment of topics relevant to
modern molecular orbital theory, it should not be difficult for an instructor to provide
for excursions into related topics not covered in the text.

Over the years, many colleagues have been kind enough to read sections of the
evolving manuscript and provide corrections and advice. I especially thank L. P. Gold
and O. H. Crawford, who cheerfully bore the brunt of this task.

Finally, I would like to thank my father, Wesley G. Lowe, for allowing me to include
his sonnet, “The Molecular Challenge.”



Chapter 1

Classical Waves
and the Time-Independent
Schrodinger Wave Equation

[J 1-1 Introduction

The application of quantum-mechanical principles to chemical problems has revolu-
tionized the field of chemistry. Today our understanding of chemical bonding, spectral
phenomena, molecular reactivities, and various other fundamental chemical problems
rests heavily on our knowledge of the detailed behavior of electrons in atoms and
molecules. In this book we shall describe in detail some of the basic principles,
methods, and results of quantum chemistry that lead to our understanding of electron
behavior.

In the first few chapters we shall discuss some simple, but important, particle systems.
This will allow us to introduce many basic concepts and definitions in a fairly physical
way. Thus, some background will be prepared for the more formal general development
of Chapter 6. In this first chapter, we review briefly some of the concepts of classical
physics as well as some early indications that classical physics is not sufficient to explain
all phenomena. (Those readers who are already familiar with the physics of classical
waves and with early atomic physics may prefer to jump ahead to Section 1-7.)

[J 1-2 Waves
1-2.A Traveling Waves

A very simple example of a traveling wave is provided by cracking a whip. A pulse of
energy is imparted to the whipcord by a single oscillation of the handle. This results
in a wave which travels down the cord, transferring the energy to the popper at the end
of the whip. In Fig. 1-1, an idealization of the process is sketched. The shape of the
disturbance in the whip is called the wave profile and is usually symbolized ¥ (x). The
wave profile for the traveling wave in Fig. 1-1 shows where the energy is located at a
given instant. It also contains the information needed to tell how much energy is being
transmitted, because the height and shape of the wave reflect the vigor with which the
handle was oscillated.
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Figure 1-1 » Cracking the whip. As time passes, the disturbance moves from left to right along
the extended whip cord. Each segment of the cord oscillates up and down as the disturbance passes
by, ultimately returning to its equilibrium position.

The feature common to all traveling waves in classical physics is that energy is trans-
mitted through a medium. The medium itself undergoes no permanent displacement;
it merely undergoes local oscillations as the disturbance passes through.

One of the most important kinds of wave in physics is the harmonic wave, for which
the wave profile is a sinusoidal function. A harmonic wave, at a particular instantin time,
is sketched in Fig. 1-2. The maximum displacement of the wave from the rest position
is the amplitude of the wave, and the wavelength X is the distance required to enclose
one complete oscillation. Such a wave would result from a harmonic! oscillation at
one end of a taut string. Analogous waves would be produced on the surface of a quiet
pool by a vibrating bob, or in air by a vibrating tuning fork.

At the instant depicted in Fig. 1-2, the profile is described by the function

Y (x) = Asin(2rx /1) (1-1)

(¢ =0 when x =0, and the argument of the sine function goes from 0 to 2, encom-
passing one complete oscillation as x goes from 0 to A..) Let us suppose that the situation
in Fig. 1-2 pertains at the time ¢ = 0, and let the velocity of the disturbance through the
medium be c. Then, after time ¢, the distance traveled is c?, the profile is shifted to the
right by ¢t and is now given by

W(x, 1) = Asin[27 /1) (x — ct)] (1-2)

Figure 1-2 » A harmonic wave at a particular instant in time. A is the amplitude and A is the
wavelength.

A harmonic oscillation is one whose equation of motion has a sine or cosine dependence on time.
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A capital W is used to distinguish the time-dependent function (1-2) from the time-
independent function (1-1).

The frequency v of a wave is the number of individual repeating wave units passing
a point per unit time. For our harmonic wave, this is the distance traveled in unit time
¢ divided by the length of a wave unit L. Hence,

v=c/A (1-3)
Note that the wave described by the formula
W (x, 1) = Asin[2Qmr /L) (x —ct) + €] (1-4)

is similar to W of Eq. (1-2) except for being displaced. If we compare the two waves
at the same instant in time, we find W’ to be shifted to the left of W by ei/2x. If
€=m,3m, ..., then ¥ is shifted by A/2,31/2, ... and the two functions are said to be
exactly out of phase. If € =2m,4m, ..., the shiftis by A, 2A, ..., and the two waves
are exactly in phase. ¢ is the phase factor for W’ relative to W. Alternatively, we can
compare the two waves at the same point in x, in which case the phase factor causes
the two waves to be displaced from each other in time.

1-2.B Standing Waves

In problems of physical interest, the medium is usually subject to constraints. For
example, a string will have ends, and these may be clamped, as in a violin, so that
they cannot oscillate when the disturbance reaches them. Under such circumstances,
the energy pulse is unable to progress further. It cannot be absorbed by the clamping
mechanism if it is perfectly rigid, and it has no choice but to travel back along the string
in the opposite direction. The reflected wave is now moving into the face of the primary
wave, and the motion of the string is in response to the demands placed on it by the two
simultaneous waves:

W(x,t)= \yprimary(x, 1) + Wreflected (X, 1) (1-5)

When the primary and reflected waves have the same amplitude and speed, we can
write

W(x,t) = Asin[2r/A)(x —ct)]+ Asin[(2w/A)(x + ct)]
= 2A4sin(2rx /A)cos(2mct /A) (1-6)

This formula describes a standing wave—a wave that does not appear to travel through
the medium, but appears to vibrate “in place.” The first part of the function depends
only on the x variable. Wherever the sine function vanishes, ¥ will vanish, regardless
of the value of . This means that there are places where the medium does not ever
vibrate. Such places are called nodes. Between the nodes, sin(27x/A) is finite. As
time passes, the cosine function oscillates between plus and minus unity. This means
that W oscillates between plus and minus the value of sin(2wx /A). We say that the x-
dependent part of the function gives the maximum displacement of the standing wave,
and the ¢-dependent part governs the motion of the medium back and forth between
these extremes of maximum displacement. A standing wave with a central node is
shown in Fig. 1-3.
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Figure 1-3 » A standing wave in a string clamped at x =0 and x = L. The wavelength 1 is equal
to L.

Equation (1-6) is often written as
W(x,t) =1 (x)cos(wt) 1-7)
where
w=2mc/A (1-8)

The profile 1 (x) is often called the amplitude function and w is the frequency factor.

Let us consider how the energy is stored in the vibrating string depicted in Fig. 1-3.
The string segments at the central node and at the clamped endpoints of the string
do not move. Hence, their kinetic energies are zero at all times. Furthermore, since
they are never displaced from their equilibrium positions, their potential energies are
likewise always zero. Therefore, the total energy stored at these segments is always
zero as long as the string continues to vibrate in the mode shown. The maximum kinetic
and potential energies are associated with those segments located at the wave peaks
and valleys (called the antinodes) because these segments have the greatest average
velocity and displacement from the equilibrium position. A more detailed mathematical
treatment would show that the total energy of any string segment is proportional to
¥ (x)? (Problem 1-7).

1-3 The Classical Wave Equation

It is one thing to draw a picture of a wave and describe its properties, and quite another
to predict what sort of wave will result from disturbing a particular system. To make
such predictions, we must consider the physical laws that the medium must obey. One
condition is that the medium must obey Newton’s laws of motion. For example, any
segment of string of mass m subjected to a force F' must undergo an acceleration of F'/m
in accord with Newton’s second law. In this regard, wave motion is perfectly consistent
with ordinary particle motion. Another condition, however, peculiar to waves, is that
each segment of the medium is “attached” to the neighboring segments so that, as
it is displaced, it drags along its neighbor, which in turn drags along its neighbor,
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Figure 1-4 » A segment of string under tension 7. The forces at each end of the segment are
decomposed into forces perpendicular and parallel to x.

etc. This provides the mechanism whereby the disturbance is propagated along the
medium.?

Let us consider a string under a tensile force 7. When the string is displaced from
its equilibrium position, this tension is responsible for exerting a restoring force. For
example, observe the string segment associated with the region x to x + dx in Fig. 1-4.
Note that the tension exerted at either end of this segment can be decomposed into
components parallel and perpendicular to the x axis. The parallel component tends to
stretch the string (which, however, we assume to be unstretchable), the perpendicular
component acts to accelerate the segment toward or away from the rest position. At
the right end of the segment, the perpendicular component ¥ divided by the horizontal
component gives the slope of 7. However, for small deviations of the string from
equilibrium (that is, for small angle «) the horizontal component is nearly equal in
length to the vector T'. This means that it is a good approximation to write

slope of vector T = F/T atx+dx (1-9)
But the slope is also given by the derivative of W, and so we can write
Foiax =T (0V/0x), 44y (1-10)

At the other end of the segment the tensile force acts in the opposite direction, and we
have

Fo=—TOW/dx)y (1-11)
The net perpendicular force on our string segment is the resultant of these two:
F=T[(0%/3x)5+ax — (0W/3x);] (1-12)

The difference in slope at two infinitesimally separated points, divided by dx, is by
definition the second derivative of a function. Therefore,

F=T3*W/dx?dx (1-13)

2Fluids are of relatively low viscosity, so the tendency of one segment to drag along its neighbor is weak. For
this reason fluids are poor transmitters of transverse waves (waves in which the medium oscillates in a direction
perpendicular to the direction of propagation). In compression waves, one segment displaces the next by pushing
it. Here the requirement is that the medium possess elasticity for compression. Solids and fluids often meet this
requirement well enough to transmit compression waves. The ability of rigid solids to transmit both wave types
while fluids transmit only one type is the basis for using earthquake-induced waves to determine how deep the
solid part of the earth’s mantle extends.
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Equation (1-13) gives the force on our string segment. If the string has mass m per
unit length, then the segment has mass m dx, and Newton’s equation F' =ma may be
written

T 9*W/ox>=m 3>V /31> (1-14)

where we recall that acceleration is the second derivative of position with respect to time.

Equation (1-14) is the wave equation for motion in a string of uniform density
under tension 7. It should be evident that its derivation involves nothing fundamental
beyond Newton’s second law and the fact that the two ends of the segment are linked
to each other and to a common tensile force. Generalizing this equation to waves in
three-dimensional media gives

LR Y B i d BT (1-15)
Y Y DY X, ¥,z =P -
axZ 92 92 Y or2

where 8 is a composite of physical quantities (analogous to m/T) for the particular
system.

Returning to our string example, we have in Eq. (1-14) a time-dependent differential
equation. Suppose we wish to limit our consideration to standing waves that can be
separated into a space-dependent amplitude function and a harmonic time-dependent
function. Then

W(x,1) =y (x)cos(wt) (1-16)
and the differential equation becomes

d*y(x) m  d*cos(wt)
cos(wt) I I ?W(X)T =

or, dividing by cos(wt),

—n—;W(x)wz cos(wt) (1-17)

d*y (x)/dx* = —(0*m | TP (x) (1-18)

This is the classical time-independent wave equation for a string.

We can see by inspection what kind of function v (x) must be to satisfy Eq. (1-18).
Y is a function that, when twice differentiated, is reproduced with a coefficient of
—w?m/T. One solution is

Y = Asin (w m/Tx) (1-19)

This illustrates that Eq. (1-18) has sinusoidally varying solutions such as those discussed
in Section 1-2. Comparing Eq. (1-19) with (1-1) indicates that 27 /A = w/m/T.
Substituting this relation into Eq. (1-18) gives

d*yr (x) /dx* = — Q2 /M) (x) (1-20)

which is a more useful form for our purposes.
For three-dimensional systems, the classical time-independent wave equation for an
isotropic and uniform medium is

(82/9x%+02/3y* + 02 /0 (x, v, 2) = —Q2r /)Y (x, , 2) (1-21)



Section 1-4 Standing Waves in a Clamped String 7

where A depends on the elasticity of the medium. The combination of partial derivatives
on the left-hand side of Eq. (1-21) is called the Laplacian, and is often given the short-
hand symbol V2 (del squared). This would give for Eq. (1-21)

VY (x, ,2) = —Qr /W)Y (x, p, 2) (1-22)

D 1-4 Standing Waves in a Clamped String

We now demonstrate how Eq. (1-20) can be used to predict the nature of standing waves
in a string. Suppose that the string is clamped at x =0 and L. This means that the
string cannot oscillate at these points. Mathematically this means that

Y O0)=y(L)=0 (1-23)

Conditions such as these are called boundary conditions. Our question is, “What
functions v satisfy Eq. (1-20) and also Eq. (1-23)?” We begin by trying to find the most
general equation that can satisfy Eq. (1-20). We have already seen that 4 sin(2wx /1)
is a solution, but it is easy to show that 4 cos(2mx /1) is also a solution. More general
than either of these is the linear combination’

Y(x)=AsinQrx/A) + Bcosmx /L) (1-24)

By varying 4 and B, we can get different functions .

There are two remarks to be made at this point. First, some readers will have
noticed that other functions exist that satisfy Eq. (1-20). These are 4exp(2mwix/A)
and Aexp(—2mix/X), where i =+/—1. The reason we have not included these in
the general function (1-24) is that these two exponential functions are mathematically
equivalent to the trigonometric functions. The relationship is

exp(Fikx) =cos(kx) xisin(kx). (1-25)

This means that any trigonometric function may be expressed in terms of such exponen-
tials and vice versa. Hence, the set of trigonometric functions and the set of exponentials
is redundant, and no additional flexibility would result by including exponentials in
Eq. (1-24) (see Problem 1-1). The two sets of functions are linearly dependent.*

The second remark is that for a given 4 and B the function described by Eq. (1-24)
is a single sinusoidal wave with wavelength A. By altering the ratio of 4 to B, we cause
the wave to shift to the left or right with respect to the origin. If 4 =1 and B =0, the
wave has anode at x =0. If A =0 and B =1, the wave has an antinode at x =0.

We now proceed by letting the boundary conditions determine the constants 4 and B.
The condition at x =0 gives

Y (0) = 4sin(0) + Bcos(0) =0 (1-26)

3Given functions f1, f2, f3 ... . A linear combination of these functions is ¢ f1 +¢2 fo +¢3 f3+ - -+, where
c1,¢2,c3, ... are numbers (which need not be real).

4If one member of a set of functions ( f1, />, f3,...) can be expressed as a linear combination of the remaining
functions (i.e., if f] =c2 f2 + ¢33+ ---), the set of functions is said to be linearly dependent. Otherwise, they
are linearly independent.
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However, since sin(0) =0 and cos(0) = 1, this gives
B=0 (1-27)
Therefore, our first boundary condition forces B to be zero and leaves us with
Y(x)=Asin(2mwx/A) (1-28)
Our second boundary condition, at x = L, gives
Y(L)y=AsinRrL/1A)=0 (1-29)

One solution is provided by setting 4 equal to zero. This gives 1 =0, which corresponds
to no wave at all in the string. This is possible, but not very interesting. The other
possibility is for 2w L /L tobe equal to 0, 7, +27, ... , £nm, ... since the sine function
vanishes then. This gives the relation

2rL/h=nm, n=0,%1,£2,... (1-30)
or
A=2L/n, n=0,%1,%2,... (1-31)
Substituting this expression for A into Eq. (1-28) gives
Y(x)=Asin(nax/L), n=0,%1,£2,... (1-32)

Some of these solutions are sketched in Fig. 1-5. The solution for » =0 is again the
uninteresting ¥ = 0 case. Furthermore, since sin(—x) equals —sin(x), it is clear that
the set of functions produced by positive integers n is not physically different from the
set produced by negative n, so we may arbitrarily restrict our attention to solutions with
positive n. (The two sets are linearly dependent.) The constant 4 is still undetermined.
It affects the amplitude of the wave. To determine A4 would require knowing how much
energy is stored in the wave, that is, how hard the string was plucked.

It is evident that there are an infinite number of acceptable solutions, each one
corresponding to a different number of half-waves fitting between 0 and L. But an even
larger infinity of waves has been excluded by the boundary conditions—namely, all
waves having wavelengths not divisible into 2 L an integral number of times. The result

Figure 1-5 » Solutions for the time-independent wave equation in one dimension with boundary
conditions ¥ (0) =y (L) =0.
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of applying boundary conditions has been to restrict the allowed wavelengths to certain
discrete values. As we shall see, this behavior is closely related to the quantization of
energies in quantum mechanics.

The example worked out above is an extremely simple one. Nevertheless, it demon-
strates how a differential equation and boundary conditions are used to define the
allowed states for a system. One could have arrived at solutions for this case by simple
physical argument, but this is usually not possible in more complicated cases. The dif-
ferential equation provides a systematic approach for finding solutions when physical
intuition is not enough.

1-5 Light as an Electromagnetic Wave

Suppose a charged particle is caused to oscillate harmonically on the z axis. If there
is another charged particle some distance away and initially at rest in the xy plane,
this second particle will commence oscillating harmonically too. Thus, energy is being
transferred from the first particle to the second, which indicates that there is an oscil-
lating electric field emanating from the first particle. We can plot the magnitude of
this electric field at a given instant as it would be felt by a series of imaginary test
charges stationed along a line emanating from the source and perpendicular to the axis
of vibration (Fig. 1-6).

If there are some magnetic compasses in the neighborhood of the oscillating charge,
these will be found to swing back and forth in response to the disturbance. This means
that an oscillating magnetic field is produced by the charge too. Varying the placement
of the compasses will show that this field oscillates in a plane perpendicular to the
axis of vibration of the charged particle. The combined electric and magnetic fields
traveling along one ray in the x y plane appear in Fig. 1-7.

The changes in electric and magnetic fields propagate outward with a characteristic
velocity ¢, and are describable as a traveling wave, called an electromagnetic wave.
Its frequency v is the same as the oscillation frequency of the vibrating charge. Its
wavelength is A = ¢/v. Visible light, infrared radiation, radio waves, microwaves,
ultraviolet radiation, X rays, and y rays are all forms of electromagnetic radiation,
their only difference being their frequencies v. We shall continue the discussion in the
context of light, understanding that it applies to all forms of electromagnetic radiation.

e s
®
@
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Figure 1-6 » A harmonic electric-field wave emanating from a vibrating electric charge. The wave
magnitude is proportional to the force felt by the test charges. The charges are only imaginary; if
they actually existed, they would possess mass and under acceleration would absorb energy from the
wave, causing it to attenuate.
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Figure 1-7 » A harmonic electromagnetic field produced by an oscillating electric charge. The
arrows without attached charges show the direction in which the north pole of a magnet would be
attracted. The magnetic field is oriented perpendicular to the electric field.

If a beam of light is produced so that the orientation of the electric field wave is
always in the same plane, the light is said to be plane (or linearly) polarized. The plane-
polarized light shown in Fig. 1-7 is said to be z polarized. If the plane of orientation
of the electric field wave rotates clockwise or counterclockwise about the axis of travel
(i.e., if the electric field wave “corkscrews” through space), the light is said to be right
or left circularly polarized. If the light is a composite of waves having random field
orientations so that there is no resultant orientation, the light is unpolarized.

Experiments with light in the nineteenth century and earlier were consistent with
the view that light is a wave phenomenon. One of the more obvious experimental
verifications of this is provided by the interference pattern produced when light from a
point source is allowed to pass through a pair of slits and then to fall on a screen. The
resulting interference patterns are understandable only in terms of the constructive and
destructive interference of waves. The differential equations of Maxwell, which pro-
vided the connection between electromagnetic radiation and the basic laws of physics,
also indicated that light is a wave.

But there remained several problems that prevented physicists from closing the book
on this subject. One was the inability of classical physical theory to explain the intensity
and wavelength characteristics of light emitted by a glowing “blackbody.” This problem
was studied by Planck, who was forced to conclude that the vibrating charged particles
producing the light can exist only in certain discrete (separated) energy states. We
shall not discuss this problem. Another problem had to do with the interpretation of a
phenomenon discovered in the late 1800s, called the photoelectric effect.

[ J 1-6 The Photoelectric Effect

This phenomenon occurs when the exposure of some material to light causes it to eject
electrons. Many metals do this quite readily. A simple apparatus that could be used to
study this behavior is drawn schematically in Fig. 1-8. Incident light strikes the metal
dish in the evacuated chamber. If electrons are ejected, some of them will strike the
collecting wire, giving rise to a deflection of the galvanometer. In this apparatus, one
can vary the potential difference between the metal dish and the collecting wire, and
also the intensity and frequency of the incident light.

Suppose that the potential difference is set at zero and a current is detected when
light of a certain intensity and frequency strikes the dish. This means that electrons
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Figure 1-8 » A phototube.

are being emitted from the dish with finite kinetic energy, enabling them to travel to
the wire. If a retarding potential is now applied, electrons that are emitted with only a
small kinetic energy will have insufficient energy to overcome the retarding potential
and will not travel to the wire. Hence, the current being detected will decrease. The
retarding potential can be increased gradually until finally even the most energetic
photoelectrons cannot make it to the collecting wire. This enables one to calculate the
maximum kinetic energy for photoelectrons produced by the incident light on the metal
in question.
The observations from experiments of this sort can be summarized as follows:

1. Below a certain cutoff frequency of incident light, no photoelectrons are ejected, no
matter how intense the light.

2. Above the cutoff frequency, the number of photoelectrons is directly proportional
to the intensity of the light.

3. As the frequency of the incident light is increased, the maximum kinetic energy of
the photoelectrons increases.

4. In cases where the radiation intensity is extremely low (but frequency is above the
cutoff value) photoelectrons are emitted from the metal without any time lag.

Some of these results are summarized graphically in Fig. 1-9. Apparently, the kinetic
energy of the photoelectron is given by

kinetic energy = (v — vg) (1-33)

where £ is a constant. The cutoff frequency vy depends on the metal being studied (and
also its temperature), but the slope 4 is the same for all substances.
We can also write the kinetic energy as

kinetic energy = energy of light — energy needed to escape surface (1-34)
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Figure 1-9 » Maximum kinetic energy of photoelectrons as a function of incident light frequency,
where vy is the minimum frequency for which photoelectrons are ejected from the metal in the absence
of any retarding or accelerating potential.

The last quantity in Eq. (1-34) is often referred to as the work function W of the metal.
Equating Eq. (1-33) with (1-34) gives

energy of light — W =hv — hyy (1-35)

The material-dependent term W is identified with the material-dependent term /4vy,
yielding

energy of light= E = hv (1-36)

where the value of / has been determined to be 6.626176 x 1073* J sec. (See Appendix
10 for units and conversion factors.)

Physicists found it difficult to reconcile these observations with the classical electro-
magnetic field theory of light. For example, if light of a certain frequency and intensity
causes emission of electrons having a certain maximum kinetic energy, one would
expect increased light intensity (corresponding classically to a greater electromagnetic
field amplitude and hence greater energy density) to produce photoelectrons of higher
kinetic energy. However, it only produces more photoelectrons and does not affect their
energies. Again, if light is a wave, the energy is distributed over the entire wavefront
and this means that a low light intensity would impart energy at a very low rate to an
area of surface occupied by one atom. One can calculate that it would take years for an
individual atom to collect sufficient energy to eject an electron under such conditions.
No such induction period is observed.

An explanation for these results was suggested in 1905 by Einstein, who proposed
that the incident light be viewed as being comprised of discrete units of energy. Each
such unit, or photon, would have an associated energy of 4#v,where v is the frequency
of the oscillating emitter. Increasing the intensity of the light would correspond to
increasing the number of photons, whereas increasing the frequency of the light would
increase the energy of the photons. If we envision each emitted photoelectron as
resulting from a photon striking the surface of the metal, it is quite easy to see that
Einstein’s proposal accords with observation. But it creates a new problem: If we are
to visualize light as a stream of photons, how can we explain the wave properties of
light, such as the double-slit diffraction pattern? What is the physical meaning of the
electromagnetic wave?
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Essentially, the problem is that, in the classical view, the square of the electromag-
netic wave at any point in space is a measure of the energy density at that point. Now
the square of the electromagnetic wave is a continuous and smoothly varying function,
and if energy is continuous and infinitely divisible, there is no problem with this the-
ory. But if the energy cannot be divided into amounts smaller than a photon—if it has
a particulate rather than a continuous nature—then the classical interpretation cannot
apply, for it is not possible to produce a smoothly varying energy distribution from
energy particles any more than it is possible to produce, at the microscopic level, a
smooth density distribution in gas made from atoms of matter. Einstein suggested that
the square of the electromagnetic wave at some point (that is, the sum of the squares
of the electric and magnetic field magnitudes) be taken as the probability density for
finding a photon in the volume element around that point. The greater the square of
the wave in some region, the greater is the probability for finding the photon in that
region. Thus, the classical notion of energy having a definite and smoothly varying
distribution is replaced by the idea of a smoothly varying probability density for finding
an atomistic packet of energy.

Let us explore this probabilistic interpretation within the context of the two-slit
interference experiment. We know that the pattern of light and darkness observed on
the screen agrees with the classical picture of interference of waves. Suppose we carry
out the experiment in the usual way, except we use a light source (of frequency v) so
weak that only 4v units of energy per second pass through the apparatus and strike
the screen. According to the classical picture, this tiny amount of energy should strike
the screen in a delocalized manner, producing an extremely faint image of the entire
diffraction pattern. Over a period of many seconds, this pattern could be accumulated
(on a photographic plate, say) and would become more intense. According to Einstein’s
view, our experiment corresponds to transmission of one photon per second and each
photon strikes the screen at a localized point. Each photon strikes a new spot (not to
imply the same spot cannot be struck more than once) and, over a long period of time,
they build up the observed diffraction pattern. If we wish to state in advance where the
next photon will appear, we are unable to do so. The best we can do is to say that the
next photon is more likely to strike in one area than in another, the relative probabilities
being quantitatively described by the square of the electromagnetic wave.

The interpretation of electromagnetic waves as probability waves often leaves one
with some feelings of unreality. If the wave only tells us relative probabilities for
finding a photon at one point or another, one is entitled to ask whether the wave has
“physical reality,” or if it is merely a mathematical device which allows us to analyze
photon distribution, the photons being the “physical reality.” We will defer discussion
of this question until a later section on electron diffraction.

EXAMPLE 1-1 A retarding potential of 2.38 volts just suffices to stop photoelectrons
emitted from potassium by light of frequency 1.13 x 1013 s~!. What is the work
function, W, of potassium?

SOLUTION »  Ejjgi =hv=W + K Eciectrons W =hv — K Egjectron = (4.136 x 10719V 5)
(1.13 x 1015 s71) —2.38eV =4.67eV —2.38e¢V =2.29¢V [Note convenience of using 4 in units
of eV s for this problem. See Appendix 10 for data.] <
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EXAMPLE 1-2 Spectroscopists often express A E for a transition between states in
wavenumbers , e.g., m ™!, or cm ™!, rather than in energy units like J or eV. (Usually
cm™! is favored, so we will proceed with that choice.)

a) What is the physical meaning of the term wavenumber?

b) What is the connection between wavenumber and energy?

¢) What wavenumber applies to an energy of 1.000 J? of 1.000eV?

SOLUTION » a) Wavenumber is the number of waves that fit into a unit of distance (usually of
one centimeter). It is sometimes symbolized v. ¥ =1/, where A is the wavelength in centimeters.
b) Wavenumber characterizes the light that has photons of the designated energy. E=hv=hc/A=
hcv. (where c is given in cm/s).

¢) E=1.0001J =hcd; 9 =1.0001T/hc=1.0007/[(6.626 x 1073* J )(2.998 x 100 cm/s)] =
5.034 x 102 cm—1L. Clearly, this is light of an extremely short wavelength since more than 1022
wavelengths fit into 1 cm. For 1.000 eV, the above equation is repeated using / in eV s. This gives
7 =8065cm 1. <

D 1-7 The Wave Nature of Matter

Evidently light has wave and particle aspects, and we can describe it in terms of photons,
which are associated with waves of frequency v = £/ h. Now photons are rather peculiar
particles in that they have zero rest mass. In fact, they can exist only when traveling
at the speed of light. The more normal particles in our experience have nonzero rest
masses and can exist at any velocity up to the speed-of-light limit. Are there also waves
associated with such normal particles?

Imagine a particle having a finite rest mass that somehow can be made lighter and
lighter, approaching zero in a continuous way. It seems reasonable that the existence
of a wave associated with the motion of the particle should become more and more
apparent, rather than the wave coming into existence abruptly when m = 0. De Broglie
proposed that all material particles are associated with waves, which he called “matter
waves,” but that the existence of these waves is likely to be observable only in the
behaviors of extremely light particles.

De Broglie’s relation can be reached as follows. Einstein’s relation for photons is

E=hv (1-37)
But a photon carrying energy E has a relativistic mass given by
E=mc? (1-38)
Equating these two equations gives
E=mc?=hv=hc/ (1-39)
or

me=h/\ (1-40)
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A normal particle, with nonzero rest mass, travels at a velocity v. If we regard Eq. (1-40)
as merely the high-velocity limit of a more general expression, we arrive at an equation
relating particle momentum p and associated wavelength A:

mv=p=h/r (1-41)
or
r=h/p (1-42)

Here, m refers to the rest mass of the particle plus the relativistic correction, but the
latter is usually negligible in comparison to the former.

This relation, proposed by de Broglie in 1922, was demonstrated to be correct shortly
thereafter when Davisson and Germer showed that a beam of electrons impinging on a
nickel target produced the scattering patterns one expects from interfering waves. These
“electron waves” were observed to have wavelengths related to electron momentum in
just the manner proposed by de Broglie.

Equation (1-42) relates the de Broglie wavelength A of a matter wave to the momen-
tum p of the particle. A higher momentum corresponds to a shorter wavelength. Since

kinetic energy T =mv? = (1/2m)(m*v?) = p*/2m (1-43)
it follows that
p=~2mT (1-44)

Furthermore, Since £ =T + V', where E is the total energy and V is the potential
energy, we can rewrite the de Broglie wavelength as

h
V= T (1-43)

Equation (1-45) is useful for understanding the way in which A will change for a
particle moving with constant total energy in a varying potential. For example, if the
particle enters a region where its potential energy increases (e.g., an electron approaches
a negatively charged plate), £ — V' decreases and A increases (i.e., the particle slows
down, so its momentum decreases and its associated wavelength increases). We shall
see examples of this behavior in future chapters.

Observe that if £ >V, A as given by Eq. (1-45) is real. However, if £E <V, A
becomes imaginary. Classically, we never encounter such a situation, but we will find
it is necessary to consider this possibility in quantum mechanics.

EXAMPLE 1-3 A He”* ion is accelerated from rest through a voltage drop of 1.000
kilovolts. What is its final deBroglie wavelength? Would the wavelike properties
be very apparent?

SOLUTION » Since a charge of two electronic units has passed through a voltage drop
of 1.000 x 103 volts, the final kinetic energy of the ion is 2.000 x 103 eV. To calculate A, we first
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convert from eV to joules: KE = p?/2m = (2.000 x 103 eV)(1.60219 x 10~19 J/eV) =3.204
x 10710 J. m g, = (4.003 g/mol)(10~3 kg/g)(1 mol/6.022 x 1023 atoms) = 6.65 x 10727 kg;
p=+2mpe  KE=[2(6.65x 10727 kg)(3.204 x 10710 )1/2=2.1 x 102 kgm/s. A=h/p=
(6.626 x 10734 Js) /(2.1 x 10721 kg m/s) =3.2 x 10~ 13 m = 0.32 pm. This wavelength is on the
order of 1% of the radius of a hydrogen atom—too short to produce observable interference results
when interacting with atom-size scatterers. For most purposes, we can treat this ion as simply a
high-speed particle. <

D 1-8 A Diffraction Experiment with Electrons

In order to gain a better understanding of the meaning of matter waves, we now consider
a set of simple experiments. Suppose that we have a source of a beam of monoener-
getic electrons and a pair of slits, as indicated schematically in Fig. 1-10. Any electron
arriving at the phosphorescent screen produces a flash of light, just as in a television
set. For the moment we ignore the light source near the slits (assume that it is turned
off) and inquire as to the nature of the image on the phosphorescent screen when the
electron beam is directed at the slits. The observation, consistent with the observations
of Davisson and Germer already mentioned, is that there are alternating bands of light
and dark, indicating that the electron beam is being diffracted by the slits. Further-
more, the distance separating the bands is consistent with the de Broglie wavelength
corresponding to the energy of the electrons. The variation in light intensity observed
on the screen is depicted in Fig. 1-11a.

Evidently, the electrons in this experiment are displaying wave behavior. Does this
mean that the electrons are spread out like waves when they are detected at the screen?
We test this by reducing our beam intensity to let only one electron per second through
the apparatus and observe that each electron gives a localized pinpoint of light, the
entire diffraction pattern building up gradually by the accumulation of many points.
Thus, the square of de Broglie’s matter wave has the same kind of statistical significance
that Einstein proposed for electromagnetic waves and photons, and the electrons really
are localized particles, at least when they are detected at the screen.

However, if they are really particles, it is hard to see how they can be diffracted.
Consider what happens when slit b is closed. Then all the electrons striking the screen
must have come through slit a. We observe the result to be a single area of light on
the screen (Fig. 1-11b). Closing slit @ and opening b gives a similar (but displaced)

Observer
i ~

Phospharescent screen
Microscope
g

a
(_r \ Double slit <a (I)‘ Light source b
Collimating slit bf Observer

Source of monoenergetic
beam of electrons

W

Figure 1-10 » The electron source produces a beam of electrons, some of which pass through slits
a and/or b to be detected as flashes of light on the phosphorescent screen.
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Intensity
-—

(a) (b) (c) (d) (e)
Figure 1-11 » Lightintensity at phosphorescent screen under various conditions: (a)  and b open,

light off; (b) a open, b closed, light off; (c) a closed, b open, light off; (d) a and b open, light on, A
short; (e) @ and b open, light on, X longer.

light area, as shown in Fig. 1-11c. These patterns are just what we would expect for
particles. Now, with both slits open, we expect half the particles to pass through slit a
and half through slit b, the resulting pattern being the sum of the results just described.
Instead we obtain the diffraction pattern (Fig. 1-11a). How can this happen? It seems
that, somehow, an electron passing through the apparatus can sense whether one or
both slits are open, even though as a particle it can explore only one slit or the other.
One might suppose that we are seeing the result of simultaneous traversal of the two
slits by two electrons, the path of each electron being affected by the presence of an
electron in the other slit. This would explain how an electron passing through slit a
would “know” whether slit » was open or closed. But the fact that the pattern builds
up even when electrons pass through at the rate of one per second indicates that this
argument will not do. Could an electron be coming through both slits at once?

To test this question, we need to have detailed information about the positions of the
electrons as they pass through the slits. We can get such data by turning on the light
source and aiming a microscope at the slits. Then photons will bounce off each electron
as it passes the slits and will be observed through the microscope. The observer thus
can tell through which slit each electron has passed, and also record its final position
on the phosphorescent screen. In this experiment, it is necessary to use light having
a wavelength short in comparison to the interslit distance; otherwise the microscope
cannot resolve a flash well enough to tell which slit it is nearest. When this experiment
is performed, we indeed detect each electron as coming through one slit or the other,
and not both, but we also find that the diffraction pattern on the screen has been lost
and that we have the broad, featureless distribution shown in Fig. 1-11d, which is
basically the sum of the single-slit experiments. What has happened is that the photons
from our light source, in bouncing off the electrons as they emerge from the slits, have
affected the momenta of the electrons and changed their paths from what they were
in the absence of light. We can try to counteract this by using photons with lower
momentum; but this means using photons of lower E, hence longer A. As a result,
the images of the electrons in the microscope get broader, and it becomes more and
more ambiguous as to which slit a given electron has passed through or that it really
passed through only one slit. As we become more and more uncertain about the path
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of each electron as it moves past the slits, the accumulating diffraction pattern becomes
more and more pronounced (Fig. 1-11e). (Since this is a “thought experiment,” we can
ignore the inconvenient fact that our “light” source must produce X rays or y rays in
order to have a wavelength short in comparison to the appropriate interslit distance.)

This conceptual experiment illustrates a basic feature of microscopic systems—we
cannot measure properties of the system without affecting the future development of the
system in a nontrivial way. The system with the light turned off is significantly different
from the system with the light turned on (with short 1), and so the electrons arrive at the
screen with different distributions. No matter how cleverly one devises the experiment,
there is some minimum necessary disturbance involved in any measurement. In this
example with the light off, the problem is that we know the momentum of each electron
quite accurately (since the beam is monoenergetic and collimated), but we do not know
anything about the way the electrons traverse the slits. With the light on, we obtain
information about electron position just beyond the slits but we change the momentum
of each electron in an unknown way. The measurement of particle position leads to
loss of knowledge about particle momentum. This is an example of the uncertainty
principle of Heisenberg, who stated that the product of the simultaneous uncertainties in
“conjugate variables,” a and b, can never be smaller than the value of Planck’s constant
h divided by 47 :

Aa-Ab>h/4r (1-46)

Here, Aa is a measure of the uncertainty in the variable a, etc. (The easiest way to
recognize conjugate variables is to note that their dimensions must multiply to joule
seconds. Linear momentum and linear position satisfies this requirement. Two other
important pairs of conjugate variables are energy—time and angular momentum—angular
position.) In this example with the light off, our uncertainty in momentum is small
and our uncertainty in position is unacceptably large, since we cannot say which slit
each electron traverses. With the light on, we reduce our uncertainty in position to
an acceptable size, but subsequent to the position of each electron being observed, we
have much greater uncertainty in momentum.

Thus, we see that the appearance of an electron (or a photon) as a particle or a wave
depends on our experiment. Because any observation on so small a particle involves a
significant perturbation of its state, it is proper to think of the electron plus apparatus
as a single system. The question, “Is the electron a particle or a wave?” becomes
meaningful only when the apparatus is defined on which we plan a measurement.
In some experiments, the apparatus and electrons interact in a way suggestive of the
electron being a wave, in others, a particle. The question, “What is the electron when
were not looking?,” cannot be answered experimentally, since an experiment is a “look”
at the electron. In recent years experiments of this sort have been carried out using
single atoms.>

EXAMPLE 1-4 The lifetime of an excited state of a molecule is 2 x 10~ s. What
is the uncertainty in its energy in J? In cm™!? How would this manifest itself
experimentally?

5See F. Flam [1].
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SOLUTION » The Heisenberg uncertainty principle gives, for minimum uncertainty AE - At =
h/Ar. AE=(6.626 x 10734 Ts)/[(47)(2 x 1072 §)]=2.6 x 10720 T (2.6 x 10720]) (5.03 x 1022
em~ 1171 =0.001 cm~! (See Appendix 10 for data.) Larger uncertainty in E shows up as greater
line-width in emission spectra. <

D 1-9 Schrodinger’s Time-Independent Wave Equation

Earlier we saw that we needed a wave equation in order to solve for the standing waves
pertaining to a particular classical system and its set of boundary conditions. The same
need exists for a wave equation to solve for matter waves. Schrodinger obtained such
an equation by taking the classical time-independent wave equation and substituting
de Broglie’s relation for A. Thus, if

V2 =—Qx /0y (1-47)
and
. k___ (1-48)
T 2Zm(E —V) )
then

[—(#? /872 m)V2 4+ V (x, p,2)| ¥ (x, y,2) = EY(x, y, 2) (1-49)

Equation (1-49) is Schrodinger’s time-independent wave equation for a single particle
of mass m moving in the three-dimensional potential field V.

In classical mechanics we have separate equations for wave motion and particle
motion, whereas in quantum mechanics, in which the distinction between particles and
waves is not clear-cut, we have a single equation—the Schrodinger equation. We have
seen that the link between the Schrodinger equation and the classical wave equation is
the de Broglie relation. Let us now compare Schrodinger’s equation with the classical
equation for particle motion.

Classically, for a particle moving in three dimensions, the total energy is the sum of
kinetic and potential energies:

(/2m)(pi + py+ P +V =E (1-50)
where p, is the momentum in the x coordinate, etc. We have just seen that the analogous

Schrodinger equation is [writing out Eq. (1-49)]

—h? (9% 3% 92
|:—< +—+—)+V(x,y,z)] v(x,y,z2)=E¥(x,y,2) (1-51)

872m \9x2 ' 9y ' 322

It is easily seen that Eq. (1-50) is linked to the quantity in brackets of Eq. (1-51) by a
relation associating classical momentum with a partial differential operator:

Py <> (h/27i)(3/3x) (1-52)

and similarly for p, and p.. The relations (1-52) will be seen later to be an important
postulate in a formal development of quantum mechanics.
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The left-hand side of Eq. (1-50) is called the hamiltonian for the system. For this
reason the operator in square brackets on the LHS of Eq. (1-51) is called the hamiltonian
operator® H. For a given system, we shall see that the construction of H is not difficult.
The difficulty comes in solving Schrodinger’s equation, often written as

Hy =Ey (1-53)

The classical and quantum-mechanical wave equations that we have discussed are
members of a special class of equations called eigenvalue equations. Such equations
have the format

Op f=cf (1-54)

where Op is an operator, f is a function, and c is a constant. Thus, eigenvalue equations
have the property that operating on a function regenerates the same function times a
constant. The function f that satisfies Eq. (1-54) is called an eigenfunction of the
operator. The constant c is called the eigenvalue associated with the eigenfunction
f. Often, an operator will have a large number of eigenfunctions and eigenvalues of
interest associated with it, and so an index is necessary to keep them sorted, viz.

Op fi=cifi (1-55)

We have already seen an example of this sort of equation, Eq. (1-19) being an eigen-
function for Eq. (1-18), with eigenvalue —w?m/T.

The solutions i for Schrodinger’s equation (1-53), are referred to as eigenfunctions,
wavefunctions, or state functions.

EXAMPLE 1-5 a) Show that sin(3.63x) is not an eigenfunction of the operator
d/dx.

b) Show that exp(—3.63ix) is an eigenfunction of the operator d/dx. What is its
eigenvalue?

c¢) Show that %sin(3.63x) is an eigenfunction of the operator

((—h?/87%m)d?/dx?). What is its eigenvalue?

SOLUTION » a)% sin(3.63x) = 3.63 cos(3.63x) # constant times sin(3.63x).
b) j—xexp(—3.63ix) = —3.63iexp(—3.63ix) =constant times exp(—3.63ix). Eigenvalue=
—3.63i.
¢) (=h?/8w%m)d?/dx*) L sin(3.63x) = (—h?/87%m)(1/m)(3.63) L cos(3.63x)
[(3.63)2h2%/872m] - (1/7) sin(3.63x)

= constant times (1/m) sin(3.63x).
Eigenvalue = (3.63)2h2/872m. <

6An operator is a symbol telling us to carry out a certain mathematical operation. Thus, d/dx is a differential
operator telling us to differentiate anything following it with respect to x. The function 1/x may be viewed as a
multiplicative operator. Any function on which it operates gets multiplied by 1/x.
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1-10 Conditions on ¢

We have already indicated that the square of the electromagnetic wave is interpreted as
the probability density function for finding photons at various places in space. We now
attribute an analogous meaning to > for matter waves. Thus, in a one-dimensional
problem (for example, a particle constrained to move on a line), the probability that the
particle will be found in the interval dx around the point x; is taken to be wQ(x dx.
If ¢ is a complex function, then the absolute square, |1//|2 = Y *y is used instead of
¥2.7 This makes it mathematically impossible for the average mass distribution to be
negative in any region.

If an eigenfunction v has been found for Eq. (1-53), it is easy to see that cyr will
also be an eigenfunction, for any constant c. This is due to the fact that a multiplicative
constant commutes® with the operator H, that is,

H(cy)=cHy =cEy = E(cy) (1-56)

The equality of the first and last terms is a statement of the fact that ¢y is an eigen-
function of H. The question of which constant to use for the wavefunction is resolved
by appeal to the probability interpretation of |y |2. For a particle moving on the x axis,
the probability that the particle is between x = —oo and x = +o0 is unity, that is, a
certainty. This probability is also equal to the sum of the probabilities for finding the
particle in each and every infinitesimal interval along x, so this sum (an integral) must
equal unity:
400
c*c YEX)Y (x) dx =1 (1-57)
—0o0
If the selection of the constant multiplier ¢ is made so that Eq. (1-57) is satisfied,
the wavefunction ¥’ = ¢ is said to be normalized. For a three-dimensional function,
cyr(x, v, z), the normalization requirement is

+00 +00 +o00o
c*c/ / vE(x, y, ) (x, y, z)dxdydzz|c|2/ |1/f|2dv=1
—00 J—o0 J—0 all space
(1-58)

As a result of our physical interpretation of [y |? plus the fact that ¥» must be an
eigenfunction of the hamiltonian operator H, we can reach some general conclusions
about what sort of mathematical properties ¥ can or cannot have.

First, we require that i be a single-valued function because we want |y 1% to give an
unambiguous probability for finding a particle in a given region (see Fig. 1-12). Also,
we reject functions that are infinite in any region of space because such an infinity
will always be infinitely greater than any finite region, and |v|> will be useless as a
measure of comparative probabilities.® In order for Hyr to be defined everywhere, it
is necessary that the second derivative of Y be defined everywhere. This requires that
the first derivative of i be piecewise continuous and that v itself be continuous as in
Fig.1d. (We shall see an example of this shortly.)

1t f=u+iv, then f*, the complex conjugate of £, is given by u — iv, where u and v are real functions.
84 and b are said to commute if ab = ba.
9There are cases, particularly in relativistic treatments, where v is infinite at single points of zero measure, so

that ||? dx remains finite. N ormally we do not encounter such situations in quantum chemistry.
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2
(a) Not acceptable
(not single valued)
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(b) Not acceptable
/\ (not continuous)
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/ |
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Figure 1-12 » (a) ¥ is triple valued at x. (b) v is discontinuous at xq. (c) ¥ grows without limit
as x approaches +oo (i.e., ¥ “blows up,” or “explodes”). (d) ¥ is continuous and has a “cusp” at xg.
Hence, first derivative of ¥ is discontinuous at x( and is only piecewise continuous. This does not
prevent ¥ from being acceptable.

Functions that are single-valued, continuous, nowhere infinite, and have piecewise
continuous first derivatives will be referred to as acceptable functions. The meanings
of these terms are illustrated by some sample functions in Fig. 1-12.

In most cases, there is one more general restriction we place on i, namely, that
it be a normalizable function. This means that the integral of |¥|% over all space
must not be equal to zero or infinity. A function satisfying this condition is said to
be square-integrable.

1-11  Some Insight into the Schrodinger Equation

There is a fairly simple way to view the physical meaning of the Schrédinger equation
(1-49). The equation essentially states that £ in Hyr = E depends on two things, V
and the second derivatives of ¢. Since V' is the potential energy, the second derivatives
of ¥ must be related to the kinetic energy. Now the second derivative of i with respect
to a given direction is a measure of the rate of change of slope (i.e., the curvature, or
“wiggliness”) of v in that direction. Hence, we see that a more wiggly wavefunction
leads, through the Schrédinger equation, to a higher kinetic energy. This is in accord
with the spirit of de Broglie’s relation, since a shorter wavelength function is a more
wiggly function. But the Schrédinger equation is more generally applicable because we
can take second derivatives of any acceptable function, whereas wavelength is defined
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Figure 1-13 » (a) Since V' =0, E=T. For higher 7, ¢ is more wiggly, which means that A is
shorter. (Since  is periodic for a free particle, X is defined.) (b) As V' increases from left to right, ¥
becomes less wiggly. (c)—(d) ¥ is most wiggly where V' is lowest and 7 is greatest.

only for periodic functions. Since E is a constant, the solutions of the Schrodinger
equation must be more wiggly in regions where V' is low and less wiggly where V' is
high. Examples for some one-dimensional cases are shown in Fig. 1-13.

In the next chapter we use some fairly simple examples to illustrate the ideas that
we have already introduced and to bring out some additional points.

D 1-12 Summary

In closing this chapter, we collect and summarize the major points to be used in
future discussions.

1. Associated with any particle is a wavefunction having wavelength related to particle

momentumby A=h/p=h//2m(E—V).

2. The wavefunction has the following physical meaning; its absolute square is pro-
portional to the probability density for finding the particle. If the wavefunction is
normalized, its square is equal to the probability density.

3. The wavefunctions v for time-independent states are eigenfunctions of Schrodinger’s
equation, which can be constructed from the classical wave equation by requir-
ing A="h//2m(E — V), or from the classical particle equation by replacing py
with (h/2mi)d/ok, k=x, y, z.
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4. For ¢ to be acceptable, it must be single-valued, continuous, nowhere infinite, with
a piecewise continuous first derivative. For most situations, we also require ¥ to
be square-integrable.

5. The wavefunction for a particle in a varying potential oscillates most rapidly where
V' is low, giving a high T in this region. The low V" plus high 7" equals E. In another
region, where V' is high, the wavefunction oscillates more slowly, giving a low T,
which, with the high V', equals the same E as in the first region.

1-12.A Problems!®

1-1. Express A cos(kx) + Bsin(kx) + Cexp(ikx) + Dexp(—ikx) purely in terms of
cos(kx) and sin(kx).

1-2. Repeat the standing-wave-in-a-string problem worked out in Section 1-4, but
clamp the string at x =4L /2 and —L /2 instead of at 0 and L.

1-3. Find the condition that must be satisfied by « and 8 in order that v (x) =
Asin(ax) 4 Bcos(Bx) satisfy Eq. (1-20).

1-4. The apparatus sketched in Fig. 1-8 is used with a dish plated with zinc and also
with a dish plated with cesium. The wavelengths of the incident light and the
corresponding retarding potentials needed to just prevent the photoelectrons from
reaching the collecting wire are given in Table P1-4. Plot incident light frequency
versus retarding potential for these two metals. Evaluate their work functions
(in eV) and the proportionality constant / (in eV s).

TABLE P1-4 »

Retarding potential (V)

A(A) Cs Zn
6000 0.167 —
3000 2.235 0.435
2000 4.302 2.502
1500 6.369 1.567
1200 8.436 6.636

1-5. Calculate the de Broglie wavelength in nanometers for each of the following:

a) An electron that has been accelerated from rest through a potential change of
500V.
b) A bullet weighing 5 gm and traveling at 400 m s~!.

1-6. Arguing from Eq. (1-7), what is the time needed for a standing wave to go through
one complete cycle?

10Hints for a few problems may be found in Appendix 12 and answers for almost all of them appear in
Appendix 13.
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1-7.

1-8.

1-10.

1-11.

1-12.

The equation for a standing wave in a string has the form
W(x,t)=1vY(x)cos(wt)

a) Calculate the time-averaged potential energy (PE) for this motion. [Hint: Use
PE=— [ Fd¥; F=ma;a=03*V/3t?]

b) Calculate the time-averaged kinetic energy (KE) for this motion. [Hint: Use
KE =1/2mv? and v=9W/d¢.]

¢) Show that this harmonically vibrating string stores its energy on the average
half as kinetic and half as potential energy, and that £ (x)avoupz(x).

Indicate which of the following functions are “acceptable.” If one is not, give
a reason.

a) y=x

b) ¥ =x2

c) ¥ =sinx

d) ¥ =exp(—x)

&) ¥ =exp(—x?)

. An acceptable function is never infinite. Does this mean that an acceptable

function must be square integrable? If you think these are not the same, try to
find an example of a function (other than zero) that is never infinite but is not
square integrable.

Explain why the fact that sin(x) = —sin(—x) means that we can restrict
Eq. (1-32) to nonnegative n without loss of physical content.

Which of the following are eigenfunctions for d /dx?

a) x2

b) exp(—3.4x2)

c) 37

d) exp(x)

e) sin(ax)

f) cos(4x) 4+ isin(4x)

Calculate the minimum de Broglie wavelength for a photoelectron that is pro-
duced when light of wavelength 140.0 nm strikes zinc metal. (Workfunction of
zinc =3.63 eV.)

Multiple Choice Questions

(Intended to be answered without use of pencil and paper.)

1. A particle satisfying the time-independent Schrodinger equation must have

a) an eigenfunction that is normalized.
b) a potential energy that is independent of location.
c) ade Broglie wavelength that is independent of location.
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d) a total energy that is independent of location.
e) None of the above is a true statement.

2. When one operates with d 2 /dx? on the function 6 sin(4x), one finds that

a) the function is an eigenfunction with eigenvalue —96.
b) the function is an eigenfunction with eigenvalue 16.
c¢) the function is an eigenfunction with eigenvalue —16.
d) the function is not an eigenfunction.

e) None of the above is a true statement.

3. Which one of the following concepts did Einstein propose in order to explain the
photoelectric effect?

a) A particle of rest mass m and velocity v has an associated wavelength A given by
A=h/mv.

b) Doubling the intensity of light doubles the energy of each photon.

c) Increasing the wavelength of light increases the energy of each photon.

d) The photoelectron is a particle.

e) None of the above is a concept proposed by Einstein to explain the photoelectric
effect.

4. Light of frequency v strikes a metal and causes photoelectrons to be emitted having
maximum kinetic energy of 0.90 4v. From this we can say that

a) light of frequency v/2 will not produce any photoelectrons.

b) light of frequency 2v will produce photoelectrons having maximum kinetic
energy of 1.80Av.

c¢) doubling the intensity of light of frequency v will produce photoelectrons having
maximum Kinetic energy of 1.80/v.

d) the work function of the metal is 0.90 2 v.

e) None of the above statements is correct.

5. The reason for normalizing a wavefunction v is

a) to guarantee that i is square-integrable.

b) to make ¥ *y equal to the probability distribution function for the particle.
¢) to make v an eigenfunction for the Hamiltonian operator.

d) to make  satisfy the boundary conditions for the problem.

e) to make i display the proper symmetry characteristics.

Reference

[1] F. Flam, Making Waves with Interfering Atoms. Physics Today, 921-922 (1991).



Chapter 2

Quantum Mechanics of Some
Simple Systems

D 2-1 The Particle in a One-Dimensional “Box”

Imagine that a particle of mass m is free to move along the x axis between x =0 and
x = L, with no change in potential (set ¥ =0for 0 <x < L). Atx =0 and L and at all
points beyond these limits the particle encounters an infinitely repulsive barrier (J = oo
for x <0, x > L). The situation is illustrated in Fig. 2-1. Because of the shape of this
potential, this problem is often referred to as a particle in a square well or a particle in
a box problem. It is well to bear in mind, however, that the situation is really like that
of a particle confined to movement along a finite length of wire.

When the potential is discontinuous, as it is here, it is convenient to write a wave
equation for each region. For the two regions beyond the ends of the box

—h* &% +ooy =Ey, x<0,x>L
G = b x — b x -_—
8m2m dx? (2-1)
Within the box, 1 must satisfy the equation
—h2 d2¢
—=FE L
Sntmdx2 LV 0=r S (22)

It should be realized that £ must take on the same values for both of these equations;
the eigenvalue E pertains to the entire range of the particle and is not influenced by
divisions we make for mathematical convenience.

Let us examine Eq. (2-1) first. Suppose that, at some point within the infinite barrier,
say x = L +dx, ¥ is finite. Then the second term on the left-hand side of Eq. (2-1) will
be infinite. If the first term on the left-hand side is finite or zero, it follows immediately
that £ is infinite at the point L + dx (and hence everywhere in the system). Is it
possible that a solution exists such that £ is finite? One possibility is that ¢ =0 at all
points where V' = co. The other possibility is that the first term on the left-hand side
of Eq. (2-1) can be made to cancel the infinite second term. This might happen if the
second derivative of the wavefunction is infinite at all points where V' = 0o and ¢ # 0.
For the second derivative to be infinite, the first derivative must be discontinuous, and
so v itself must be nonsmooth (i.e., it must have a sharp corner; see Fig. 2-2). Thus,
we see that it may be possible to obtain a finite value for both £ and v at x = L + dx,
provided that ¥ is nonsmooth there. But what about the next point, x = L 4+ 2dx, and
all the other points outside the box? If we try to use the same device, we end up with
the requirement that v be nonsmooth at every point where /' = co. A function that is

27
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V =00 V=00
for all for all
x<0 x =L
0 —_ X
0 L

Figure 2-1 » The potential felt by a particle as a function of its x coordinate.

continuous but which has a point-wise discontinuous first derivative is a contradiction
in terms (i.e., a continuous f cannot be 100% corners. To have recognizable corners,
we must have some (continuous) edges. We say that the first derivative of ¥ must be
piecewise continuous.) Hence, if V' = oo at a single point, we might find a solution
which is finite at that point, with finite energy. If /' = 0o over a finite range of connected
points, however, either £ for the system is infinite, and  is finite over this region or
E is not infinite (but is indeterminate) and v is zero over this region.

We are not concerned with particles of infinite energy, and so we will say that the
solution to Eq. (2-1)is ¢ =0.!

Turning now to Eq. (2-2) we ask what solutions 1 exist in the box having associated
eigenvalues E that are finite and positive. Any function that, when twice differentiated,
yields a negative constant times the selfsame function is a possible candidate for .
Such functions are sin(kx), cos(kx), and exp(dikx). But these functions are not all
independent since, as we noted in Chapter 1,

exp(xikx) =cos(kx) +isin(kx) (2-3)

We thus are free to express ¥ in terms of exp(Zikx) or else in terms of sin(kx) and
cos(kx). We choose the latter because of their greater familiarity, although the final
answer must be independent of this choice.

The most general form for the solution is

¥ (x) = Asin(kx) 4+ B cos(kx) (2-4)

where A, B, and k remain to be determined. As we have already shown, i is zero at
x <0, x > L and so we have as boundary conditions

¥(0)=0 (2-5)
Y(L)=0 (2-6)

Mathematically, this is precisely the same problem we have already solved in Chap-
ter 1 for the standing waves in a clamped string. The solutions are

Y(x) = Asin(nex/L), n=1,2,..., O<x<lL
Y(x) =0, x=<0,x>L (2-7)

I Thus, the particle never gets into these regions. It is meaningless to talk of the energy of the particle in such
regions, and our earlier statement that £ must be identical in Egs. (2-1) and (2-2) must be modified; £ is constant
in all regions where v is finite.
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Figure 2-2 » As the function f(x) approaches being nonsmooth, § approaches zero (the width of
one point) and n approaches infinity.

One difference between Eq. (2-7) and the string solutions is that we have rejected the
n =0 solution in Eq. (2-7). For the string, this solution was for no vibration at all—
a physically realizable circumstance. For the particle-in-a-box problem, this solution
is rejected because it is not square-integrable. (It gives ¢y =0, which means no particle
on the x axis, contradicting our starting premise. One could also reject this solution
for the classical case since it means no energy in the string, which might contradict a
starting premise depending on how the problem is worded.)
Let us check to be sure these functions satisfy Schrédinger’s equation:

—h? d*[Asin(nx/L)]

Ay (x) = 872m dx?
—h? An2n2 . (mm)
= — sin
872m L? L
n2h? . /NTX
PG

This shows that the functions (2-7) are indeed eigenfunctions of H. We note in passing
that these functions are acceptable in the sense of Chapter 1.



30 Chapter 2 Quantum Mechanics of Some Simple Systems

The only remaining parameter is the constant 4. We set this to make the probability
of finding the particle in the well equal to unity:

L L
/ V2 (x)dx = A> / sin?(nwx/L)dx =1 (2-9)
0 0

This leads to (Problem 2-2)
A=./2/L (2-10)

which completes the solving of Schrodinger’s time-independent equation for the prob-
lem. Our results are the normalized eigenfunctions

Yp(x)=+/@2/L)sin(nrx/L), n=1,2,3,... (2-11)
and the corresponding eigenvalues, from Eq. (2-8),
E,=n’h*/8mL* n=1,2,3,... (2-12)

Each different value of n corresponds to a different stationary state of this system.

D 2-2 Detailed Examination of Particle-in-a-Box Solutions

Having solved the Schrodinger equation for the particle in the infinitely deep square-
well potential, we now examine the results in more detail.

2-2.A Energies

The most obvious feature of the energies is that, as we move through the allowed states
(n=1,2,3,...), E skips from one discrete, well-separated value to another (1, 4, 9
in units of #%/8m L?). Thus, the particle can have only certain discrete energies—the
energy is quantized. This situation is normally indicated by sketching the allowed
energy levels as horizontal lines superimposed on the potential energy sketch, as in
Fig.2-3a. The fact that each energy level is a horizontal line emphasizes the fact that £ is
a constant and is the same regardless of the x coordinate of the particle. For this reason,
E is called a constant of motion. The dependence of E onn? is displayed in the increased
spacing between levels with increasing » in Fig. 2-3a. The number # is called a quantum
number.

We note also that E is proportional to L ~2. This means that the more tightly a particle
is confined, the greater is the spacing between the allowed energy levels. Alternatively,
as the box is made wider, the separation between energies decreases and, in the limit
of an infinitely wide box, disappears entirely. Thus, we associate quantized energies
with spatial confinement.

For some systems, the degree of confinement of a particle depends on its total energy.
For example, a pendulum swings over a longer trajectory if it has higher energy. The
potential energy for a pendulum is given by V' = %kx2 and is given in Fig. 2-3b. If
one solves the Schrodinger equation for this system (see Chapter 3), one finds that the
energies are proportional to n rather than n>. We can rationalize this by thinking of
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l ' N 7
\ |
n=3 \ J
\ /
\ /
\ /
\ /
n=2
n=1
(a) (b) (c)

Figure 2-3 » Allowed energies for a particle in various one-dimensional potentials. (a) “box” with
infinite walls. (b) quadratic potential, V = %kx2. (¢) V' =—1/|x|. Tendency for higher levels in (b)
and (c) not to diverge as in (a) is due to larger “effective box size” for higher energies in (b) and (c).

the particle as occupying successively bigger boxes as we go to higher energies. This
counteracts the n? increase in energy levels found for constant box width. For the
potential ' = —1/ |x| (which is the one-dimensional analog of a hydrogen atom) E
varies as 1/ n? (Fig. 2-3c), and this is also consistent with the effective increase in L
with increasing E.

The energy is proportional to 1/m. This means that the separation between allowed
energy levels decreases as m increases. Ultimately, for a macroscopic object, m is so
large that the levels are too closely spaced to be distinguished from the continuum of
levels expected in classical mechanics. This is an example of the correspondence prin-
ciple, which, in its most general form, states that the predictions of quantum mechanics
must pass smoothly into those of classical mechanics whenever we progress in a con-
tinuous way from the microscopic to the macroscopic realm.

Notice that the lowest possible energy for this system occurs for n =1 and is £ =
h?/8m L?. This remarkable result means that a constrained particle (i.e., L not infinite)
can never have an energy of zero. Evidently, the particle continues to move about in
the region O to L, even at a temperature of absolute zero. For this reason, 42/8mL?
is called the zero-point energy for this system. In general, a finite zero-point energy
occurs in any system having a restriction for motion in any coordinate. (Note that finite
here means not equal to zero.)

It is possible to show that, for L # oo, our particle in a box would have to violate the
Heisenberg uncertainty principle to achieve an energy of zero. For, suppose the energy
is precisely zero. Then the momentum must be precisely zero too. (In this system,
all energy of the particle is kinetic since V' =0 in the box.) If the momentum p, is
precisely zero, however, our uncertainty in the value of the momentum Ap, is also
zero. If Ap, is zero, the uncertainty principle [Eq. (2-46)] requires that the uncertainty
in position Ax be infinite. But we know that the particle is between x =0 and x = L.
Hence, our uncertainty is on the order of L, not infinity, and the uncertainty principle
is not satisfied. However, when L = oo (the particle is unconstrained), it is possible for
the uncertainty principle to be satisfied simultaneously with having £ =0, and this is in
satisfying accord with the fact that £ = h?/8m L? goes to zero as L approaches infinity.

Finally, we note that each separate value of n leads to a different energy. Thus,
no two states have the same energy, and the states are said to be nondegenerate with
respect to energy.
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EXAMPLE 2-1 Consider an electron in a one-dimensional box of length 258 pm.
a) What s the zero-point energy (ZPE) for this system? For a mole of such systems?

b) What electronic speed classically corresponds to this ZPE? Compare to the speed
of light.

SOLUTION » a) ZPE = Ejpypest = En—1
1)2(6.626 x 10734 5)2
= 1212 /8m L = (1)7(6.626 x 1071 5)
8(9.11 x 1031 kg)(258 x 10~12m)?2
=9.05x10"17;

Per mole, this equals
(9.05 x 107127)(6.022 x 1023 mol~1)(1kJ/103 J) = 54.5kI mol !

b) E is all kinetic energy since /' =0 in the box, so £ = mv2/2. Hence,

12 —191,71/2
U:[E] _ [ 200510 TH ) 106 ms!
m 9.11 x 1031 kg

Compared to the speed of light, this is % =0.0047, or about 0.5% of the speed of

light. <

2-2.B Wavefunctions

We turn now to the eigenfunctions (2-11) for this problem. These are typically displayed
by superimposing them on the energy levels as shown in Fig. 2-4 for the three lowest-
energy wavefunctions. (It should be recognized that the energy units of the vertical
axis do not pertain to the amplitudes of the wavefunctions.)

It is apparent from Fig. 2-4 that the allowed wavefunctions for this system could
have been produced merely by placing an integral number of half sine waves in the

Vs
i \./ i
-
43
)
v
B 4 E,
c
w
2
1 E,
0 L

Figure 2-4 » The eigenfunctions corresponding ton =1, 2, 3, plotted on the corresponding energy
levels. The energy units of the ordinate do not refer to the wavefunctions . Each wavefunction has
a zero value wherever it intersects its own energy level, and a maximum value of /2/L.
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range 0—L. The resulting wavelengths would then yield the energy of each state through
application of de Broglie’s relation (1-42). Thus, by inspection of Fig. 2-4, the allowed
wavelengths are

A=2L/n, n=12,3,... (2-13)
Therefore
p=h/r=nh/2L (2-14)
and
E=p?/2m=n*h*/8mL? (2-15)

in agreement with Eq. (2-12). As pointed out in Section 1-11, the wavefunctions having
higher kinetic energy oscillate more rapidly. (Here V' =0, and E is all kinetic energy.)

Let us now consider the physical meaning of the eigenfunctions yr. According to our
earlier discussion, ¥> summarizes the results of many determinations of the position
of the particle. Suppose that we had a particle-in-a-box system that we had somehow
prepared in such a way that we knew it to be in the state with n = 1. We can imagine
some sort of experiment, such as flashing a powerful y-ray flashbulb and taking an
instantaneous photograph, which tells us where the particle was at the instant of the
flash. Now, suppose we wish to determine the position of the particle again. We want
this second determination to be for the n = 1 state also, but we cannot use our original
system for this because we have “spoiled” it by our first measurement process. Hitting
the particle with one or more y-ray photons has knocked it into some other state, and
we do not even know which one. Therefore, we must either reprepare our system, or
else use a separate system whose preparation is identical to that of the first system. In
general we shall assume that we have an inexhaustible supply of identically prepared
systems. Therefore, we take a second photograph (on our second system) using the
same photographic plate. Then we photograph a third system, a fourth, etc., until we
have amassed a large number of images of the particle on the film. The distribution
of these images is given by wlz. (Since ¥ is always a real function for this system,
we do not need to bother with ¥ *y.) Other states, like v, 13, will lead to different
distributions of images. The results for the several states are depicted in Fig. 2-5. It
is obvious that the probability for finding the particle near the center of the box is
predicted to be much larger for the » =1 than the n =2 state.

The probability for finding the particle at the midpoint of the “wire” in the n = 2 state
approaches zero in the limit of our measurement becoming precise enough to observe
a single point. This troubles many students at first encounter because they worry about
how the particle can get from one side of the box to the other in the » =2 state. In fact,
this question can be raised for any state whose wavefunction has any nodes. However,
our discussion in the preceding paragraph shows that this question, like the question,
“Is an electron a particle or a wave when we are not looking?” has no meaningful
answer because no experiment can be conceived that would answer it. To test whether
or not the particle does travel from one side of the box to the other, we would have to
prepare the system in the » =2 state and measure the position of the particle enough
times so that we either (a) always find it on the same side (requires many measurements
for confidence), or (b) find it on different sides (requires at least two measurements).
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Figure 2-5 » 12 and observed particle distribution for the three lowest-energy and one high-energy
state of the particle in a one-dimensional box.

But for our question to be answered, the system must be in the n = 2 state throughout
this entire experiment, and we have seen that the process of measuring particle position
prevents this. (If we find the particle first on the left and later on the right, we cannot
be sure it did not travel across the midpoint while the system was perturbed by the first
measurement.) Thus, the sketches in Fig. 2-5 are most safely regarded as a summary
of the results of measurements on an ensemble of systems.

Classically, since the particle has constant energy, hence constant speed, we would
expect the particle to spend equal time in each line segment dx between 0 and L, but
Fig. 2-5 shows that the quantum system with n = 1 predicts that the particle spends
more time in segments near the center. It is characteristic of lower-energy states of
quantum-mechanical systems to display “anti-classical” distributions. With higher
quantum numbers, the distribution becomes difficult to distinguish from the distribution
predicted by classical physics (see Fig. 2-5). This is another example of the tendency
of quantum-mechanical predictions to approach classical predictions when one goes
toward the macroscopic realm (here large n and therefore large F).

EXAMPLE 2-2 For a particle in the n = 2 state in a one-dimensional box of length L,
a) estimate the probability, p, for finding the particle between x =0 and x =0.20L.
b) calculate the probability that you estimated in part a.

c) what probability for finding the particle between x =0 and x =0.20L is predicted
by classical physics?
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SOLUTION » a) The sketch of ¢22 in Fig. 2-5 makes it clear that the probability for finding the
particle in the range 0 <x < L /415 0.25 (equal to the area under the curve). Therange 0 <x <0.20L
is 20% shorter, and the missing 20% of the range is associated with a relatively large probability—
almost double the average in the range. That means we are missing nearly 40% of the probablity, so
slightly more than 60% remains. 60% of 0.25 is 0.15, so the probability, p, in the range 0 — 0.20L
is slightly larger than 0.15.

b)
0.2L 2 r02L 2
P =/ szdxz—/ sin® <ﬂ> dx
0 L Jo L
2\ (LY [0% 2
)= / sin2 (75 a4 2mx
L) \27x) Jo L L
1 0.4
—/ sin2ydy
T Jo
Y

o] L. 04L
(from Appendix 1); {E ~ 3 sin 2yl }

l {O.Zn — 1sinO.Srr}
T 4

= 0.20— L sin0.87 =0.153
4

¢) The classical particle travels with constant speed, hence has a constant probability function. There-
fore, the probability for finding the particle in any 20% of the box is 0.20. <

2-2.C Symmetry of Wavefunctions

Inspection of Fig. 2-5 shows that the particle has equal probabilities for being observed
in the left half and right half of the box, regardless of state. This seems reasonable
because there is no physical factor discriminating between these halves. We shall now
show that the hamiltonian operator is invariant for a reflection through the box center,
and that a necessary consequence of this is that ¥ has certain symmetry properties.

First, we show that H is invariant. Reflection through the box center is accomplished
by replacing x by —x 4+ L. We can define a reflection operator R such that Rf(x) =
f(—=x+ L); i.e., R reflects any function through a plane normal to x at x = L/2 (see
Fig. 2-6).

Imaginary reflecting plane

re

Figure 2-6 » A function f(x) and its mirror image reflected at x = L /2.
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The kinetic part of the hamiltonian, 7', is unchanged by R:

o d? —h? d?
RT=R|—— | =
[ 872m dxl] 872m d (—x + L)?
—h2 d2
T 8nlmdx? @10

where we have used the fact that L is constant and d/d(—x) = —d/dx. That the
potential part of H is unchanged by reflection through L /2 is easily seen; the identical
infinite barriers merely interchange position. Therefore, RT =T and RV =V, and
RH=R(T+V)=RT+RV=T+V==H.

Now let us see what this means for eigenfunctions of H. Assume we have a nor-
malized eigenfunction v

Hy =Ey (2-17)

The two sides of Eq. (2-17) will still be equal if we reflect our coordinate system
throughout the equation. (If two functions are identical in one coordinate system, say
a right handed system, then they are identical in any coordinate system.) Therefore,?

(RH)(RY) = (RE)(RY) (2-18)

But £ is simply a constant, and so it is immune to R. Furthermore, we have just seen
that RH = H. Therefore,

H(RY) = E(RY) (2-19)

which shows that the function Ry is an eigenfunction of H with the same eigenvalue
as .

We have already mentioned that the eigenfunctions of this system are nondegenerate
with respect to energy. This is equivalent to saying that no two linearly independent
eigenfunctions having the same eigenvalue exist for this system. But we have just shown
that ¥ and Ry are both eigenfunctions having the same eigenvalue E. Therefore, we
are forced to conclude that ¢ and R are linearly dependent, that is,

RY =cyr (2-20)

where ¢ is a constant. A moment’s thought shows that Ry must still be normalized
(since reflecting a function does not change its area or the area under its square), and
it also must still be real (since reflecting a real function does not introduce imaginary
character). Therefore,

L L L
/ (RW)de=1=/ (Cl//)zdx=02/ Vldx =c? (2-21)
0 0 0

where we have made use of the fact that i is normalized. If 2= 1, then ¢ ==1 and

Ry =4y (2-22)

2The parentheses in Eq. (2-18) are meant to show the restricted extent of operation of R. This is a departure
from the usual mathematical notational convention, but it is hoped that this temporary departure results in greater
clarity for the student.
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When Ry =+, as is the case for 1 or ¥3 (Fig. 2-4), ¥ is said to be symmetric, or
even, for reflection. If Ry = —r, as for ¥, V¥ is said to be antisymmetric, or odd.
(A function that is neither symmetric nor antisymmetric is said to be unsymmetric, or
asymmetric. Be careful to avoid confusing “asymmetric” with “antisymmetric.”)

We have proved a very important property of wavefunctions. In general, if  is the
wavefunction for a nondegenerate state, it must be symmetric or antisymmetric under
any transformation that leaves H unchanged.

2-2.D Orthogonality of Wavefunctions

It is possible to show that integration over the product of two different particle-in-a box
eigenfunctions, v, and ¥, must give zero as the result:

L
/ VnYmdx =0, n#m (2-23)
0

When functions have this property—that their product gives zero when integrated over
the entire range of coordinates—they are said to be orthogonal. (Since the “box”
eigenfunctions vanish for x <0 or x > L, integration from 0 to L suffices.)

We can use symmetry arguments to demonstrate orthogonality among certain pairs
of “box” eigenfunctions, for example, {1 and yr». Figure 2-7 shows that, since |
is symmetric and v is antisymmetric for reflection, the product of these functions is
antisymmetric. (In fact, it is not difficult to show in general that the product of two
symmetric or of two antisymmetric functions is symmetric, and that an antisymmetric
function times a symmetric function gives an antisymmetric product. See Problem 2-7.)
Integration over an antisymmetric function must give zero as the result since an antisym-
metric function has to have equal amounts of positive and negative area. Therefore, ¥
and v, are orthogonal “by symmetry” as, indeed, are all the symmetric—antisymmetric
pairs of wavefunctions. Since all {’s having odd quantum number » are symmetric,
and all ¥’s having even n are antisymmetric, we have used symmetry to prove v, and

(+)
i

(+)

(+)

Figure 2-7 » 1| is symmetric, V¥ is antisymmetric, and 1 ¥ is antisymmetric. The total signed
area bounded by the odd functions is zero since complete cancellation of positive and negative com-
ponents occurs.
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egion | Region I1
Figure 2-8 » The potential for a one-dimensional “box” with one infinite barrier at x <0 and a
barrierof V =U at x > L.

Y orthogonal for n even and m odd. To show orthogonality for n» and m both even or
both odd requires doing the integral out explicitly (Problem 2-9).

The eigenfunctions (2-11) are orthogonal to each other and individually normalized,
and we refer to them as orthonormal functions. Mathematically, this is summarized as

0,n#£m

=68um (2-24)
1, n=m

L
/ YnYmdx =
0

The quantity §,_,, is called the Kronecker delta function, and it is merely a convenient
shorthand for the information in the braces.

EXAMPLE 2-3 1 and 3 are both symmetric functions. Therefore their product,
Y13, is symmetric. How, then, can the integral of this product vanish?

SOLUTION » A sketch of the product of these functions shows it to be symmetric, with negative
values in the central region and wings of positive values on each side. Since ¥| and ¥3 are known to
be orthogonal, the negative region must exactly cancel the sum of the two positive regions (though
we wouldn’t know this for sure from a sketch). This shows that, whereas the integral over an
antismmetric integrand must equal zero, an integral over a symmetric (or unsymmetric) integrand
may or may not equal zero. |

D 2-3 The Particle in a One-Dimensional “Box”

with One Finite Wall

Let us now modify the system just discussed by lowering the potential on one side of
the “box” to some finite value U. The resulting potential is shown in Fig. 2-8. We can
think of a bead on a wire encountering infinite repulsion at x = 0 and finite repulsion
for x > L. As before, it is convenient to break up the problem into separate regions of
x. For the region x <0 where V' is infinite, 1 must be zero for the same reasons as
before (Section 2-1).

When the particle is in region I of Fig. 2-8, /' =0 and all is identical to our earlier
box. Therefore, in this region we will have harmonic waves of the general form

Y= Arsin(2mwx /A1) + Brcos(Rmx /A) (2-25)
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where we have used the form (1-24) in which the wavelength appears explicitly. As
before, the boundary condition that v vanish at x =0 forces Bj to vanish, leaving

Y1 = Arsin(2mx /A1) (2-26)

For the moment we have no other boundary condition on 1 because we do not know
that ¥ equals zero at the finite barrier. We do know, however, that the wavelength A,
whatever it turns out to be, will be related to the energy through

A=h/2m(E — V) (2-27)

and, since V1 =0 (in region 1),
M=h/V2mE (2-28)

which is a real number for positive E.
We now turn to region II. Since V' is constant here also, { will again be a harmonic
wave. As before, we have our choice of two general forms:

Y = Ay sin(2mx /) + B cos(2mx /Air) (2-29)
or [see Eq. (2-3)]
Y= Crexp(+2mix/An) + Dy exp(—2mix /i) (2-30)

There are two possibilities for the energy of the particle: £ <U and £ > U. The first
of these corresponds to the classical situation where the particle has insufficient energy
to escape from the box and get into region II. Let us see what quantum mechanics says
about this case in region II.

For this case, A is imaginary since

An=h/2m(E—-U) (2-31)

and £ — U is negative. Because Ay is imaginary, it is more convenient to use the
general form (2-30) because then the 7 in the exponential argument can combine with
the i of Ay to produce a real argument. Let us assume that Ay is equal to i times a
positive number. (This will not affect our results.)

Let us now examine the properties of the two exponential functions in Eq. (2-30).
The first exponential has an argument that is real (because the i’s cancel) and positive
(because of our above assumption). As x increases, this exponential increases rapidly,
approaching infinity. Since acceptable functions do not blow up like this, we set Cy
equal to zero to prevent it. The second exponential has a negative, real argument, so it
decays exponentially toward zero as x approaches infinity. This is acceptable behavior,
and we are left with

Y = Dy exp(—2mix/Am) (2-32)

We now have formulas describing fragments of the wavefunction for the two regions.
All that remains is to join these together at x = L in such a way that the resulting
wavefunction is continuous at x = L and has a continuous first derivative there. (Recall
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from Section 2-1 that this second requirement results from the fact that the potential is
finite at x = L. Hence, ¥ must be smooth at x = L.)
The continuity requirement gives

A[ sin(Zer/)q) = DH exp(—ZniL/AII) (2-33)

Taking the derivatives of Y1 and Yy and setting these equal at x = L (to force smooth-
ness) gives

2m /A Arcosm L /A1) = (—2mi /i) Dy exp(—2mwi L /Ay) (2-34)

The exponential term is common to both Eqs. (2-33) and (2-34), providing the basis
for another equality:

Arsin(r L /A1) = (—A1irr/iry) cos(Qm L /A1) (2-35)
or
tan(27w L /A1) = iAqr/ A (2-36)
Substituting for A and Ay as indicated by Egs. (2-28) and (2-31) gives
tan(2w L2mE/h) = —vE/NJU — E (2-37)

The only unknown in Eq. (2-37) is the total energy E. For given values of L, m, and
U, only certain values of E < U will satisfy Eq. (2-37). Thus, the particle can have
only certain energies when it is trapped in the “box.” These allowed energies can be
found by graphing the left-hand side and right-hand side of Eq. (2-37) as functions of
E. The values of E where the plots intersect satisfy Eq. (2-37). Figure 2-9 illustrates
the graphical solution of Eq. (2-37) for a particular set of values for L, m, and U.

Once a value of E is selected, A1 and Ayy are known [from Eqgs. (2-28) and (2-31)] and
it remains only to find A1 and Dyy. The ratio A1/ Dyp may be found from Eq. (2-33). The
numerical values of 41 and Dy will then be obtainable if we require that the wavefunc-
tion be normalized. A set of such solutions is shown in Fig. 2-10.

Before solving for the case where E > U, let us discuss in detail the results just
obtained.

In the first place, the energies are quantized, much as they were in the infinitely deep
square well. There is some difference, however. In the infinitely deep well or box, the
energy levels increased with the square of the quantum number z. Here they increase
less rapidly (the dashed lines in Fig. 2-10 show the allowed energy levels which result
when U = 00) because the barrier becomes effectively less restrictive for particles with
higher energies (see the following). For the lowest solution, for example, slightly less
than one-half a sine wave is needed in one box width of distance. Thus, the wavelength
here is slightly longer than in an infinitely deep well of equal width, and so, by de
Broglie’s relation, the energy is slightly lower. Notice that the effect of lowering the
height of one wall is least for the levels lying deepest in the well.

The solutions sketched in Fig. 2-10 indicate that there is a finite probability for
finding the particle in the region x > L even though it must have a negative kinetic
energy there. Thus, quantum mechanics allows the particle to penetrate into regions
where classical mechanics claims it cannot go. Notice that the penetration becomes
more appreciable as the energy of the particle approaches that of the barrier. This results



Section 2-3 The Particle in a One-Dimensional “Box” with One Finite Wall 41

12 1

1 — <27rL‘/2mE)/

/-an———h

°l /

8 H

6 H

H JE

_vE

ol U-E

2+

T N N I S N N | J

0 2 4 6 8 10 12 14 16

E X 10

Figure 2-9 » Graphical solution of the equation —tan(2w Lv2mE/h) = VE/~/U — E. Here
L =250 nm, m =9.11 x 10~31 kg, U=1eV =16.02 x 1020 J. Intersections occur at E =
0.828 x107207,330%x 107207, 7.36 x 10720 Jand 12.8 x 10720 J.

from the fact that £ — U determines the rate at which the exponential in yy decays
[see Egs. (2-31) and (2-32)]. In the limit that U — oo, the wavefunction vanishes at
the barrier, in agreement with the results of the infinite square well of Section 2-1.

If the barrier in Fig. 2-8 has finite thickness (V' becomes zero again at, say, x =2L),
then there is a finite probability that a particle in the well will penetrate through the
barrier and appear on the other side. This phenomenon is called quantum-mechanical
tunneling, and this is the way, for example, an o particle escapes from a nucleus even
though it classically lacks sufficient energy to overcome the attractive nuclear forces.
We emphasize that the tunneling referred to in this example is really not a stationary
state phenomenon. We have an initial condition (particle in the well) and ask what the
half-life is for the escape of the particle—a time-dependent problem.

We saw earlier that the energy quantization for the particle in the infinitely deep well
could be thought of as resulting from fitting integral numbers of half sine waves into
a fixed width. Most sine waves just will not fit perfectly, and so most energies are not
allowed. In this problem the waves are allowed to leak past one of the well walls, but
we can still see why only certain energies are allowed. Suppose that we pick some
arbitrary energy E for the particle. We know that vy must be zero at the left wall of the
well where V' = oo. Starting there, we can draw a sine wave of wavelength determined
by E across the well to the right wall, as shown in Fig. 2-11. When the wave hits the
right wall, it must join on smoothly to a decaying exponential, which also depends on
E. Most of the time, it will be impossible to effect a smooth junction, and that particular
value of £ will be disallowed.

Let us now consider the case where £ > U. In region I, the considerations are the
same as before. Then, vy is a sine wave that can be drawn from the left wall and has a
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Figure 2-10 » Solutions for particle in well with one finite wall (see Fig. 2-9 for details). Dashed
lines correspond to energy levels which would exist if U = oo.

wavelength determined by E(=T') from de Broglie’s relation. This sine wave arrives
at x = L with a certain magnitude and a certain derivative (assuming that the multiplier
A1 has been fixed at some arbitrary value). In region I, we also have a solution of the
usual form

Y (x) = Ay sin(2rw x /A) + Bricos(2mx /Anr) (2-38)

where A is real and determined by E — U, which is now positive. The question is, can
we always adjust Ay (by changing Ay and Byy) so that it has the same value and slope
at x = L that g has? A little thought shows that such adjustment is indeed always
possible. The two adjustments allowed in 1 correspond to a change of phase for Y
(a shift in the horizontal direction) and a change in amplitude for ;. The only thing
about Y1 we cannot change is the wavelength, since this is determined by £ — U. This
is just a physical description of the mathematical circumstance in which we have two
adjustable parameters and two requirements to fit—a soluble problem. The essential
difference between this case and that of the trapped particle is that here we have fewer
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Figure 2-11 » An example of partial wavefunctions for an arbitrary energy £. These functions
cannot be joined smoothly at x = L and so this value of E is not allowed.

boundary conditions. Before, our square-integrability requirement was used to remove
a positive exponential term. That requirement is, in effect, a boundary condition—1r
must vanish at x = co—and it led to energy quantization. Then we used the normality
requirement to achieve unique values for Ay and Dy;. In this case we cannot get a
square-integrable solution. ¥y goes on oscillating as x — oo, and so we have no
boundary condition there. As a result, £ is not quantized and ¥ is not normalizable,
so that only ratios of Ay, Ay, and By are obtainable.

The energy scheme for the particle in the potential well with one finite wall, then, is
discrete when E < U, and continuous when £ > U.

Notice the way in which the wavelengths vary in Fig. 2-10. We have already seen
that the time-independent Schrodinger equation states that the total energy for a particle
in a stationary state is the same at all particle positions (i.e., a constant of motion). The
kinetic and potential energies must vary together, then, in such a way that their sum is
constant. This is reflected by the fact that the wavelength of an unbound solution is
shorter in region I than it is in region II. In region I, ¥ =0, so that all energy of the
particle is kinetic (7 = E). In region II, V' > 0, so that the kinetic energy (T = E — V)
is less than it was in region 1. Therefore, the de Broglie wavelength, which is related to
kinetic energy, must be greater in region II.

EXAMPLE 2-4 For the system described in the caption for Fig. 2-9, calculate the
percentage drop of the lowest-energy state that results from barrier penetration.

SOLUTION » For this, we need to solve the problem for the simple particle-in-a-box system
(for which U = c0).
n’h? (1)%(6.626 x 107341 5)?

- = =9.64x 1072]
8mL2  8(9.11 x 1031 kg)(2.500 x 10~10m)2 x

Ey

compared to 8.28 x 1021 3. Barrier penetration lowers E| by 14%. <
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D 2-4 The Particle in an Infinite “Box” with
a Finite Central Barrier

Another example of barrier penetration in a stationary state of a system is provided by
inserting a barrier of finite height and thickness at the midpoint of the infinite square
well of Section 2-1 (see Fig. 2-12).

The boundary conditions for this problem are easily obtained by obvious extensions
of the considerations already discussed. Rather than solve this case directly, we shall
make use of our insights from previous systems to deduce the main characteristics of
the solutions. Let us begin by considering the case where the barrier is infinitely high.

(a)

/m
S ——]
(b)
1 A
/rn
— 1
(c)
A J
/m
S~
—
—L —a 0 +a \-——/ +L
(d)

Figure 2-12 » (a) Solutions for identical infinite square wells. (b) Effect of finite partition on half
waves. (c) Symmetric combination of half waves. (d) Antisymmetric combination of half waves.
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Then the problem becomes merely that of two isolated infinite square wells, each well
having solutions as described in Sections 2-1 and 2-2.

Now, as the height of the barrier is lowered from infinity, what happens? The levels
lying deepest in the two sections should be least affected by the change. They must
still vanish at the outer walls but now they can penetrate slightly into the finite barrier.
Thus, the lowest state in, say, the left-hand section of the well will begin to look as
given in Fig. 2-12b. The solution on the right side will do likewise, of course. As
this happens, their energies will decrease slightly since their wavelengths increase.
However, since the two wells are no longer separated by an infinite barrier, they are no
longer independent. We can no longer talk about separate solutions for the two halves.
Each solution for the Schrédinger equation is now a solution for the whole system from
x =—L to +L. Furthermore, symmetry arguments state that, since the hamiltonian for
this problem is symmetric for reflection through x = 0, the solutions, if nondegenerate,
must be either symmetric or antisymmetric through x =0.

This requirement must be reconciled with the barrier-penetration behavior indicated
by Fig. 2-12b, which is also occurring. One way to accomplish this is by summing the
two half waves as shown in Fig. 2-12c¢, giving a symmetric wavefunction. Alternatively,
subtraction gives the antisymmetric form shown in Fig. 2-12d. Both of these solutions
will be lower in energy than their infinite-well counterparts, because the wavelengths
in Fig. 2-12c and d continue to be longer than in 2-12a. Will their energies be equal to
each other? Not quite. By close inspection, we can figure out which solution will have
the lower energy.

In Figs. 2-12b to 2-12d, the slopes of the half wave, the symmetric, and the antisym-
metric combinations at the finite barrier are labeled respectively m, m’, and m”. What
can we say about their relative values? The slope m’ should be less negative than m
because the decaying exponential producing m has an increasing exponential added to
it when producing m’. Slope m” should be more negative than m since the decaying
exponential has an increasing exponential subtracted from it in case d, causing it to
decay faster. This means that the sine curve on the left-hand side of Fig. 2-12¢ cannot
be identical with that on the left side of Fig. 2-12d since they must arrive at the barrier
with different slopes. (The same is true for the right-hand sides, of course.) How
can we make the sine wave arrive with a less negative slope m’?—by increasing the
wavelength slightly so that not quite so much of the sine wave fits into the left well
(see Fig. 2-13a). Increasing the wavelength slightly means, by de Broglie’s relation,
that the energy of the particle is decreased. Similarly, the sine curve in Fig. 2-12d must
be shortened so that it will arrive at the barrier with slope m”, which corresponds to
an energy increase. Of course, now that the energy has changed outside the barrier, it
must change inside the barrier too. This would require going back and modifying the
exponentials inside the barrier. But the first step is sufficient to indicate the qualitative
results: The symmetric solution has lower energy. In Fig. 2-13a is a detailed sketch of
the final solution for the two lowest states.

There is a simpler way to decide that the symmetric solution has lower energy. As
the barrier height becomes lower and lower, the two solutions become more and more
separated in energy, but they always remain symmetric or antisymmetric with respect to
reflection since the hamiltonian always has reflection symmetry. In the limit when the
barrier completely disappears we have a simple square well again (but larger), the lowest
solution of which is symmetric. (See Fig. 2-13b.) This lowest symmetric solution must
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Figure 2-13 » (a) Detailed sketch of the two lowest solutions for the infinite square-well divided
by a finite barrier at the midpoint. The waves are sketched from a common energy value for ease of
comparison. Actually, the symmetric wave has a lower energy. (b) A correlation diagram relating
energies when the barrier is infinite (left side) with those when the barrier vanishes. Letters A and S

refer to antisymmetric and symmetric solutions, respectively.

“come from” the symmetric combination of smaller-well wavefunctions sketched at the
left of Fig. 2-13b; similarly, the second lowest, antisymmetric solution of the large well
correlates with the antisymmetric small-well combination (also at left in Fig. 2-13b).
A figure of the kind shown in Fig. 2-13b is called a correlation diagram. It shows how
the energy eigenvalues change throughout a continuous, symmetry-conserving process.
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We shall see that the correlation of wavefunction symmetries in such a manner as this
is a powerful technique in understanding and predicting chemical behavior.

The splitting of energy levels resulting from barrier penetration is an extremely
pervasive phenomenon in quantum chemistry. It occurs regardless of whether the barrier
separates identical or nonidentical potential regions, i.e., regardless of whether the final
system is symmetric or unsymmetric. When two atoms (N and N, or C and O) interact
to form a molecule, the original atomic wavefunctions combine to form molecular
wavefunctions in much the same way as was just described. One of these molecular
wavefunctions may have an energy markedly lower than those in the corresponding
atoms. Electrons having such a wavefunction will stabilize the molecule relative to the
separated atoms.

Another case in which energy level splitting occurs is in the vibrational spectrum
of ammonia. Ammonia is most stable in a pyramidal configuration, but is capable
of inverting through a higher-energy planar configuration into an equivalent “mirror
image” pyramid. Thus, vibrations tending to flatten out the ammonia molecule occur
in a potential similar to the double well, except that in ammonia the potential is not
discontinuous. The lowest vibrational energy levels are not sufficiently high to allow
classical inversion of ammonia. However, these vibrational levels are split by inter-
action through barrier penetration just as quantum mechanics predicts. The energy
required to excite ammonia from the lowest of these sublevels to its associated sublevel
can be accurately measured through microwave spectroscopy. Knowledge of the level
splittings in turn allows a precise determination of the height of the barrier to inversion
in ammonia (see Fig. 2-14).

Itis easy to anticipate the appearance of the solutions for the square well with central
barrier for energies greater than the partition height. They will be sinusoidal waves,
symmetric or antisymmetric in the well, and vanishing at the walls. Their wavelengths
will be somewhat longer in the region of the partition than elsewhere because some of
the kinetic energy of the particle is transformed to potential energy there. A sketch of
the final results is given in Fig. 2-15.

EXAMPLE 2-5 Fig. 2-15 shows energy levels for states when the barrier has finite
height. When the barrier is made infinitely high, the levels at £1 and £, merge
into one level. Where does the energy of that one level lie—below Ej, between
E1 and Ej, or above E>—and why?

SOLUTION » It lies above E3. When the barrier is finite, there is always some penetration, so
A is always at least a little larger than is the case for the infinite barrier. If A is larger, E is lower. <«

D 2-5 The Free Particle in One Dimension

Suppose a particle of mass m moves in one dimension in a potential that is everywhere
zero. The Schrédinger equation becomes

—h? d*y
872m dx2

Ey (2-39)
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Figure 2-14 » Sketch of potential for inversion vibrational mode in ammonia. The lowest levels
are split by tunneling. The low energy transition A £ is visible in the microwave region whereas the
second transition A E» is visible in the infrared. AE] =0.16 x 10722 g, AE,="7.15x 10722 7.

which has as solutions
W = Aexp(£2wi2mEx/ h) (2-40)
or alternatively, trigonometric solutions
v =A'sinQrN2mEx/h), W =A cosQrv2mEx/h) (2-41)

As is most easily seen from the exponential forms (2-40), if E is negative, v will
blow up at either 400 or —oo, and so we reject negative energies. Since there are
no boundary conditions, it follows that £ can take on any positive value; the energies
of the free particle are not quantized. This result would be expected from our earlier
results on constrained particles. There we saw that quantization resulted from spatial
constraints, and here we have none.

The constants 4 and A’ of Egs. (2-40) and (2-41) cannot be evaluated in the usual
way, since the solutions do not vanish at x = +0co0. Sometimes it is convenient to
evaluate them to correspond to some experimental situation. For instance, suppose that
one was working with a monoenergetic beam of electrons having an intensity of one
electron every 10~ m. Then we could normalize ¥ of Eq. (2-40) so that

107°m
/ ly|Pdx =1
0

There is a surprising difference in the particle distributions predicted from expres-
sions (2-40) and (2-41). The absolute square ¥ *1r of the exponentials is a constant
(A*A4), whereas the squares of the trigonometric functions are fluctuating functions
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of x. It seems sensible for a particle moving without restriction to have a constant
probability distribution, and it seems absurd for it to have a varying probability distribu-
tion. What causes this peculiar behavior? It results from there being two independent
solutions for each value of E (except £ =0). This degeneracy with respect to energy
means that from a degenerate pair, ¥ and ', one can produce any number of new
eigenfunctions, ¥ = ay + by’ (Problem 2-11). In such a situation, the symmetry
proof of Section 2-2 does not hold. However, there will always be an independent pair
of degenerate wavefunctions that will satisfy certain symmetry requirements. Thus, in
the problem at hand, we have one pair of solutions, the exponentials, which do have
the proper symmetry since their absolute squares are constant. From this pair we can
produce any number of linear combinations [one set being given by Eq. (2-41)], but
these need not display the symmetry properties anymore.

The exponential solutions have another special attribute: A particle whose state is
described by one of the exponentials has a definite linear momentum, whereas, when
described by a trigonometric function, it does not. In Section 1-9, it was shown that
the connection between classical and wave mechanics could be made if one related the
classical momentum, p,, with a quantum mechanical operator (4 /27i)d/dx. Now,
for a particle to have a definite (sharp) value p for its momentum really means that,
if we measure the momentum at some instant, there is no possibility of getting any
value other than p. This means that the particle in the state described by ¥ always has
momentum p, no matter where it is in x; i.e., its momentum is a constant of motion,
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just as its energy is. This corresponds to saying that there is an eigenvalue equation for
momentum, just as for energy. Thus

h dy
2ri dx
The statement made earlier, that the exponential solutions correspond to the particle

having sharp momentum, means that the exponentials (2-40) must be solutions to
Eq. (2-42). This is easily verified:

h d |:Aexp(:l:2ni\/2mEx):|=i\/2m—E|:Aexp(:l:2ni«/2mEx):|

14 (2-42)

2mi dx h h

Thus, the positive and negative exponential solutions correspond to momentum values
of +v/2mFE and —+/2mE, respectively, and are interpreted as referring to particle
motion toward 400 and —oo respectively. Since energy is related to the square of
the momentum, these two solutions have identical energies. (The solution for £ =0
corresponds to no momentum at all, and the directional degeneracy is removed.) A
mixture of these states contains contributions from two different momenta but only one
energy, so linear combinations of the exponentials fail to maintain a sharp value for
momentum but do maintain a sharp value for energy.

EXAMPLE 2-6 An electron is accelerated along the x axis towards x = oo from rest
through a potential drop of 1.000 kV.

a) What is its final momentum?

b) What is its final de Broglie wavelength?

¢) What is its final wavefunction?

SOLUTION » a) p, = +2mE = [2(9.105 x 1073! kg)(1.602 x 10~161)]11/2 = 1.708 x
10~ kgms_l

_h_ _ 6.626x1073)s —11
DIAr=5= 1.708x10- 2 kgms~! =3.879> 107" m

c) ¥ = Aexp(+2mi~/2m Ex / h)(choose + because moving towards x = +00) = Aexp(2wip/ h)x
= Aexp(Qmix/ir) = Aexp[27i(2.578 x 1010 m~1)x]. <

D 2-6 The Particle in a Ring of Constant Potential

Suppose that a particle of mass m is free to move around a ring of radius » and zero
potential, but that it requires infinite energy to get off the ring. This system has only
one variable coordinate—the angle ¢. In classical mechanics, the useful quantities and
relationships for describing such circular motion are those given in Table 2-1.

Comparing formulas for linear momentum and angular momentum reveals that the
variables mass and linear velocity are analogous to moment of inertia and angular veloc-
ity in circular motion, where the coordinate ¢ replaces x. The Schrodinger equation
for circular motion, then, is

—h?* d*y (¢)
82l  d¢?

=Ey(¢) (2-43)
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TABLE 2-1 »
Quantity Formula Units
Moment of inertia I =mr? gcm? or kgm?
Angular velocity w=Ap/At=v/r 57!
Angular momentum (linear mvr =Iw gem?/sorergsorts
momentum times orbit radius)
which has, as solutions
Aexp(Like) (2-44)

or alternatively

A’ sin(k¢) (2-45)
and

A’ cos(ke) (2-46)

where [substituting Eq. (2-45) or (2-46) into (2-43) and operating]
k=2n~2I1E/h (2-47)

Let us solve the problem first with the trigonometric functions. Starting at some
arbitrary point on the ring and moving around the circumference with a sinusoidal func-
tion, we shall eventually reencounter the initial point. In order that our wavefunction
be single valued, it is necessary that i repeat itself every time ¢ changes by 27 radians.
Thus, for ¢ given by Eq. (2-45),

sin(k¢) =sin[k(¢p + 27)] (2-48)
Similarly, for ¢ given by Eq. (2-49)
cos(kgp) =cos(kep + 2km) (2-49)

Either of these relations is satisfied only if £ is an integer. The case in which £ =0 is
not allowed for the sine function since it then vanishes everywhere and is unsuitable.
However, k =0 is allowed for the cosine form. The normalized solutions are, then,

¥ = (1//m)sin(kp), k=1,2,3,...
¥ = (1//m)cos(ke), k=1,2,3,...
v=(/ \/ﬂ) (from the k£ = 0 case for the cosine) (2-50)

Now let us examine the exponential form of i (Eq. 2-44). The requirement that ¥
repeat itself for ¢ — ¢ + 27 gives

Aexp(ike) = AexplLik(¢p +2m)] = A exp(Like) exp(£2mik)
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or
exp(£27ik) =1
Taking the positive case and utilizing Eq. (2-3), we obtain
cosQrk)+isinQmrk)=1 or cos2mk)=1 and sin(2wk)=0

Again, k must be an integer. (The same result arises by requiring that dvr/d¢ repeat
for ¢ — ¢ + 2m.) Thus, an alternative set of normalized solutions is

W= (1/¢2n) exp(ike) k=0,+1,+2, 43, ... (2-51)
The energies for the particle in the ring are easily obtained from Eq. (2-47):
E=k*h*/87%1, k=0,+1,42,43,... (2-52)

The energies increase with the square of k, just as in the case of the infinite square
well potential. Here we have a single state with £ =0, and doubly degenerate states
above, whereas, in the square well, we had no solution at £ =0, and all solutions were
nondegenerate. The solution at £ = 0 means that there is no finite zero point energy
to be associated with free rotation, and this is in accord with uncertainty principle
arguments since there is no constraint in the coordinate ¢.

The similarity between the particle in a ring and the free particle problems is strik-
ing. Aside from the fact that in the ring the energies are quantized and the solutions
are normalizable, there are few differences. The exponential solutions (2-51) are
eigenfunctions for the angular momentum operator (h/2mwi)d/d¢. The two angular
momenta for a pair of degenerate solutions correspond to particle motion clockwise or
counterclockwise in the ring. (The nondegenerate solution for £ =0 has no angular
momentum, hence no ability to achieve degeneracy through directional behavior.) The
particle density predicted by the exponentials is uniform in the ring, while that for the
trigonometric solutions is not. Since the trigonometric functions tend to localize the
particle into part of the ring, thereby causing A¢ # oo, it is consistent that they are
impure momentum states (A ang. mom. 7 0). (Infinite uncertainty in the coordinate
¢ means that all values of ¢ in the range 0-27 are equally likely.)

EXAMPLE 2-7 Demonstrate that any two degenerate exponential eigenfunctions
for a particle in a ring are orthogonal.

SOLUTION » Such a pair of degenerate wavefunctions can be written as {4 = ﬁ exp(ik),

_ 1 ; e 2 -
Y= oo exp(—ik¢). These are orthogonal if fO wi Y— d¢ =0 where we must use the complex

conjugate of either one of the wavefunctions since i is complex. But wj‘_ =v_,s0

2w 1 2 1 2
V_y_do = 7/ exp(—2i¢)d¢p = 7/ [cos(2¢) — i sin(2¢)]d ¢
7 Jo 27 Jo
1
= o [sin@o§T —i(—cos2p)3" |
= %[sin@n) —sin(0) +icos(4m) —icos(0)]

1
= —[0-0+4i—-i]=0.
2
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D 2-7 The Particle in a Three-Dimensional

Box: Separation of Variables

Let us now consider the three-dimensional analog of the square well of Section 2-1.
This would be a three-dimensional box with zero potential inside and infinite potential
outside. As before, the particle has no probability for penetrating beyond the box.
Therefore, the Schrodinger equation is just
—h* (9% 3?7 9?

— |+t =k 2-53

872Zm <3x2 92 822) v=Ev (2-3)
and v vanishes at the box edges.

The hamiltonian operator on the left side of Eq. (2-53) can be written as a sum of
operators, one in each variable (e.g., H; = (—h2/8n2m)82/8x2). Let us assume for
the moment that i can be written as a product of three functions, each one being a
function of a different variable, x, y, or z (i.e., ¥ = X(x)Y (y)Z(2)). If we can show
that such a ¢ satisfies Eq. (2-53), we will have a much simpler problem to solve. Using
this assumption, Eq. (2-53) becomes

(Hy+H,+ H)XYZ=EXYZ (2-54)
This can be expanded and then divided through by XY Z to obtain

H. XYZ + H,XYZ H,XYZ
XYZ XYZ XYZ

Now, since H,, for example, operates only on functions of x, but not y or z, we
can carry out some limited cancellation. Those functions that are not operated on
in a numerator can be canceled against the denominator. Those that are operated on
cannot be canceled since these are differential operators [e.g., in (1/x)dx?/dx it is not
permissible to cancel 1/x against x? before differentiating: (1/x)dx?/dx # dx/dx].
Such cancellation gives

H.X H)Y HZ

X Y VA
Now, suppose the particle is moving in the box parallel to the x axis so that the variables
y and z are not changing. Then, of course, the functions Y and Z are also not changing,

so H,Y/Y and H;Z/Z are both constant. Only H, X/ X can vary—but does it vary?
Not according to Eq. (2-56), which reduces under these conditions to

=FE (aconstant) (2-55)

= F (aconstant) (2-56)

X

+ constant + constant = £ (a constant) 2-57)

Therefore, even though the particle is moving in the x direction, H, X/ X must also be a
constant, which we shall call E. Similar reasoning leads to analogous constants £, and
E.. Furthermore, the behavior of Hy X/ X must really be independent of whether the
particle is moving parallel to the y and z axes. Even if y and z do change, they do not
appear in the quantity Hy X/ X anyway. Thus we may write, without restriction,

He X HyY £ H.Z

_E7 S )
X o Y Y VA

E; (2-58)
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and, from Eq. (2-56),
Ex+E,+E.=E (2-59)

Our original equation in three variables has been separated into three equations, one in
each variable. The first of these equations may be rewritten

H X=FE. X (2-60)

which is just the Schrodinger equation for the particle in the one-dimensional square
well, which we have already solved. For a rectangular box with L, # L, # L. we have
the general solution

Y=XYZ=./2/Lysin(nymx/Ly)\/2/Lysin (nyny/Ly) V2/L;sin(n;mz/L;)

(2-61)
and
E=E,+E,+ E.= (h%/8m) (ni/L)% +n2/L2+ nf/Lﬁ) (2-62)
For a cubical box, L, = L, = L, =L, and the energy expression simplifies to
E=(?/8mL?) (2 +n% +n?) (2-63)
The lowest energy occurs when ny =n,=n, =1, and so
Ei1(1)=3h%/8mL? (2-64)

Thus, the cubical box has three times the zero point energy of the corresponding one-
dimensional well, one-third coming from each independent coordinate for motion (i.e.,
“degree of freedom’). The one in parentheses indicates that this level is nondegenerate.
The next level is produced when one of the quantum numbers » has a value of two
while the others have values of one. There are three independent ways of doing this;
therefore, the second level is triply degenerate, and E(3) = 6h2/8m L?. Proceeding,
E3(3)=9h?/8mL?, E4(3)=11h%/SmL?, Es(1)=12h>/8mL?, E¢(6) =14h>/8m L2,
etc. Apparently, the energy level scheme and degeneracies of these levels do not proceed
in the regular manner which is found in the one-dimensional cases we have studied.

EXAMPLE 2-8 Verify that Eg is six-fold degenerate.

SOLUTION »  Eg = 144%/8mL?, so n? + ni +n2 = 14. There is only one combination of
integers that satisfies this relation, namely 1, 2, and 3. So we simply need to deduce how many
unique ways we can assign these integers to ny, 7, and n;. There are three ways to assign 1. For
each of these three choices, there remain but two ways to assign 2, and then there is only one way
to assign 3. So the number of unique ways is 3 x 2 x 1 =6. (Or one can simply write down all of
the possibilities and observe that there are six of them.) <

We shall now briefly consider what probability distributions for the particle are
predicted by these solutions. The lowest-energy solution has its largest value at the
box center where all three sine functions are simultaneously largest. The particle
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(b)

)

i,
el ]

Figure 2-16 » Sketches of particle probability distributions for a particle in a cubical box.
@ny=ny=n:=1.(b)ny=2,ny=n-=1. () nxy=ny=n;=2.

distribution is sketched in Fig. 2-16a. The second level may be produced by setting
ny =2, and ny,=n; =1. Then there will be a nodal plane running through the box
perpendicular to the x axis, producing the split distribution shown in Fig. 2-16b. Since
there are three ways this node can be oriented to produce distinct but energetically
equal distributions, this energy level is triply degenerate. The particle distribution for
the state where n, =n, =n, =2 is sketched in Fig. 2-16¢. It is apparent that, in the
high energy limit, the particle distribution becomes spread out uniformly throughout
the box in accord with the classical prediction.

The separation of variables technique which we have used to convert our three-
dimensional problem into three independent one-dimensional problems will recur in
other quantum-chemical applications. Reviewing the procedure makes it apparent that
this technique will work whenever the hamiltonian operator can be cleanly broken into
parts dependent on completely different coordinates. This is always possible for the
kinetic energy operator in cartesian coordinates. However, the potential energy operator
often prevents separation of variables in physical systems of interest.

It is useful to state the general results of separation of variables. Suppose we have
a hamiltonian operator, with associated eigenfunctions and eigenvalues:

Hvyi = Ei; (2-65)
Suppose this hamiltonian can be separated, for example,

H (e, p) = Hy (@) + Hp (B) (2-66)
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where o and g stand for two different coordinates or groups of coordinates. Then it
follows that

Vik=fj(a)gk(B) (2-67)
where
Hyfj=ajfj (2-68)
and
Hp gk = bi gk (2-69)
Furthermore,
E;jx=a;+b (2-70)

In other words, if a hamiltonian is separable, then the eigenfunctions will be products
of eigenfunctions of the subhamiltonians, and the eigenvalues will be sums of the
subeigenvalues.

D 2-8 The Scattering of Particles in One Dimension

Consider the potential shown in Fig. 2-17a. We imagine that a beam of particles, each
having energy FE, originates from the left and travels toward x = oo, experiencing a
constant potential everywhere except at the potential step at x = 0. We are interested in
what becomes of these particles—what fraction makes it all the way to the “end” (some
kind of particle trap to the right of the step) and what fraction is reflected back toward
x = —oo. Problems of this type are related to scattering experiments where electrons,
for example, travel through potential jumps produced by electronic devices or through
a dilute gas where potential changes occur in the neighborhood of atoms.

This kind of problem differs from most of those discussed earlier because the particle
is not trapped (classically), so all nonnegative energy values are possible. We already
know what the form of the eigenfunctions is for the constant potentials to the left and
right of the step for any choice of £. On the left they are linear combinations of
exp(Liv/2m Ex/h), where /i = h/2m, and to the right they are linear combinations
of exp(i~/2m(E — U)x/hk). The only thing we do not yet know is which linear
combinations to take. That is, we need to find 4, B, C, and D in

Yieft = Aexp(ikx/h) + Bexp(—ikx/h), x <0, k=+2mE 2-71)
Vright = C exp(ik'x /h) + Dexp(—ik'x/h), x>0, k'=y2m(E—-U) (2-72)

We have seen earlier that the exponentials having positive arguments correspond to
particles traveling from left to right, etc. We signify this with arrows in Fig. 2-17a.
The nature of Vg is qualitatively different depending on whether E is larger or
smaller than the step height U. If E < U, the exponential arguments become real.
One of the exponentials decays and the other explodes as x increases, just as we saw
in Section 2-3. We discard the exploding exponential. The decaying exponential on
the right must now be made to join smoothly onto e at the step. That is, Yer and



Section 2-8 The Scattering of Particles in One Dimension 57

A — C —_—
g D —~—
U e
e
0 X
0
(a)
u -
E t \ /\ /\ ~_
0 - X
0
(b)
1 1
B [c
|Af2 |Af
0 0
0 1 0 1

(© (d)

Figure 2-17 » (a) A potential step of height U at x =0. (b) A wavefunction having £ = U/2.
(c) Fraction of particles reflected as a function of E. (d) Fraction of particles transmitted as a function
of E. (Note: The vertical line at left of parts (a) and (b) is not a barrier. It is merely an energy
ordinate.)

Vright must have the same value and slope at x =0 (Fig. 2-17b). This means that
(fch2:eqn2-72 must have real value and slope at the step, which forces it to be a
trigonometric wave. Because there is no additional boundary condition farther left, this
trigonometric wave can always be shifted in phase and amplitude to join smoothly onto
the decaying exponential at the right. (Compare Fig. 2-17b to Fig. 2-11.) The final
values of 4 and B are simply those that give the appropriate phase and amplitude.

The ratio 4*A/B*B is the relative fluxes of particles traveling toward the right or
left in the region to the left of the step. If | 4| =| B, the fluxes are equal, corresponding
to total reflection of the beam from the step potential.

It is not difficult to show (Problem 2-24) that |4| = | B| whenever ey has real
value and slope at any point, i.e., for any trigonometric wave, and so the potential of
Fig. 2-17a gives total reflection if £ < U. (The fact that some particle density exists
at x > 0 due to barrier penetration does not affect this conclusion. The evaluation of
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extent of reflection assumes that a time-independent (steady-state) situation has been
achieved, so the penetration population remains constant and none of the new particles
entering from the left are “lost” due to barrier penetration.)

The situation changes when we consider cases for £ > U. For any such E, we now
have two acceptable exponential functions on both the right and the left. We proceed
by realizing that the function with coefficient D in vion should be rejected since it
corresponds to particles traveling from right to left, i.e., to particles that have been
reflected from the trap. But we assume the trap to be 100% effective, so once again we
have only one term in gne As before, we set about forcing the values and slopes of
Egs. (2-71) and (2-72) (with D =0) to be equal at x = 0. This time, however, there is
no requirement that these values be real. We arrive at the relations (Problem 2-25)

B _k—K  C 2%

i an ViR, (2-73)
The extent of reflection is equal to
B (k—K)°
— = (2-74)
|A| (k+ k)

This can be seen to range from zero, when k' =k, to one, when k' =0. k' =k when E =
E —U,i.e.,when U is negligible compared to £. So zero reflection (total transmission)
is approached in the high-energy limit. Only when £ = U does k' =0, so total reflection
occurs only when E equals the barrier height (or, as we saw previously, is lower).
A plot of the fraction of particles reflected versus E/U appears in Fig. 2-17c. The
transmission, equal to 1.0-reflection, is plotted in Fig. 2-17d.

The approach represented by this scattering problem is to identify the two terms
that can contribute to the wavefunction in each region; then to recognize that one of
the terms in one region is lost, either because it explodes or because it corresponds
to reflection from the particle trap; then to force a smooth junction at the position of
the discontinuity in the potential; and finally to draw conclusions about reflection and
transmission from the values of the absolute squares of the coefficients. Notice that,
for £ > U, we could just as well have postulated the beam to be coming from the
right, with the trap at the left. This would lead us to set A =0 in Eq. (2-71). Even in
cases like this, where the particles are passing over the edge of a potential cliff, there
is backscatter (Problem 2-26).

An additional feature appears when we consider potentials that change at two points
in x, as in Fig. 2-18a. The solution now involves three regions and two places (x = %+a)
where 1 and dvr/dx must be made equal. As before, we decide where the particle
source and trap are and set one coefficient equal to zero (say G). Detailed solution
of this problem is tedious.® For our purposes, it is the nature of the result that is
important. The extent of transmission as a function of E/U is plotted in Fig. 2-18b.
There are two obvious ways this differs from the step-potential transmission function
of Fig. 2-17d: First, some of the particles are transmitted even when their energy is less
than U. This is the result of barrier penetration leading to finite particle density at the
right-hand side of the barrier transmission due to tunneling. (The extent of tunneling
transmission depends on the thickness of the barrier.) Second, there are oscillations

3See Merzbacher [2, Chapter 6].
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Figure 2-18 » (a) A rectangular-hill potential of height U and width 2a. (b) Fraction of beam
transmitted as a function of £/U, where U = h2/27r2ma2.

in the transmission function for £ > U, with 100% transmission occurring at intervals
in E instead of only in the infinite limit. These come about because of interference
between waves reflecting off the front and back edges of the barrier. This is most easily
understood by recognizing that 100% transmission corresponds to no reflection, so then
B =0. This occurs when the wave reflecting back from x = —a is of opposite phase
to that reflecting back from x = +a, and this happens whenever there is an integral
number of de Broglie half-wavelengths between x = —a and a. At energies where this
happens, the beam behaves as though the potential barrier is not there.

The variation of reflection from thin films (e.g., soap bubbles) of light of different
wavelengths results in the perception of colors and is a familiar example of scattering
interference. Less familiar is the variation in reflection of a particle beam, outlined
above. However, once we recognize the wave nature of matter, we must expect particles
to manifest the same sort of wave properties we associate with light.

2-9 Summary

In this chapter we have discussed the following points:

1. A particle constrained in the classical sense (i.e., lacking the energy to overcome
barriers preventing its motion over the entire coordinate range) will have quantized
energy levels and a finite zero-point energy. In the mathematical analysis, this arises
from requirements on i at boundaries.
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2.

10.

11.
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Y can be nonsmooth, or cusped, where V is infinite at a point. If V' is infinite over
a finite range, ¥ must be zero there.

Nondegenerate eigenfunctions of H must be symmetric or antisymmetric for any
operation that leaves H unchanged.

lv|? may be regarded as a statistical measure—a summary of many measurements
of position on independent, but identically prepared, systems.

Quantum-mechanical predictions approach classical predictions in the limits of
large E, or large mass, or very high quantum number values.

Integrals with antisymmetric integrands must vanish.

|w|2 does not vanish in regions where V' > E if V' is finite. This is called “barrier
penetration.”

One-dimensional motion of a free particle has a continuum of energy levels. Except
for £ =0, the states are doubly degenerate. Therefore, any mixture of such a
pair of states is still an eigenfunction of H. But only two eigenfunctions (for a
given E #0) are also eigenfunctions for the momentum operator. These are the
exponential functions. Since they correspond to different momenta, mixing them
produces functions that are not eigenfunctions for the momentum operator.

Motion of a particle on a ring has quantum-mechanical solutions very similar to
those for free-particle motion in one dimension. In both cases, there is no zero-point
energy. Both are doubly degenerate for £ > 0 because two directional possibilities
are present. Both have a set of exponential solutions that are eigenfunctions for
momentum. The main difference is that the particle-in-a-ring energies are quan-
tized, due to head-to-tail “joining conditions” on .

Increasing the dimensionality of a particle’s range of motion increases the number
of quantum numbers needed to define the wavefunctions. In cases where the
hamiltonian operator can be written as a sum of operators for different coordinates
(i.e., is “separable”), the problem greatly simplifies; the wavefunctions become
products, and the energies become sums.

Scattering problems are treated by selecting an energy of interest from the con-
tinuum of possibilities, removing functions that describe nonphysical processes
such as backscatter from the trap, and matching wave values and slopes at region
boundaries. Resulting wavefunctions show wave interference effects similar to
those observed for light.

2-9.A Problems

2-1. Ascertain that the expression (2-12) for energy has the proper dimensions.

2-2. Solve Eq. (2-9) for 4.

2-3. There is a simple way to show that 4 in Eq. (2-9) must equal +/2/L. It involves

sketching 12, recognizing that sin” x 4 cos? x = 1, and asking what 4 must equal
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2-4.

2-5.

2-6.

2-7.

2-8.

2-10.

in order to make the area under 2 equal 1. Show this for » =1, and argue why
it must give the same result for all 7.

Evaluate the probability for finding a particle in the middle third of a one-
dimensional box in states with n =1, 2, 3, 10%. Compare your answers with the
sketches in Fig. 2-5 to see if they are reasonable.

a) Estimate the probability for finding a particle in the n =1 state in the line
element Ax centered at the midpoint of a one-dimensional box if Ax =0.01L.
How does this compare to the classical probability?

b) Repeat the problem, but with Ax centered one third of the way from a box
edge.

a) Use common sense to evaluate the following integral for the particle in a
one-dimensional box, assuming that ¥ is normalized.
L/5
lﬁszdx

b) How does this value compare to that for the integral over the same range, but
using v instead of ¥5? (Larger, smaller, or equal?) Use a sketch to defend
your answer.

Let S and A be respectively symmetric and antisymmetric functions for the
operator R. Evaluate the following, where R operates on every function to its
right: (a) RS (b) RA (c) RSS (d) RAA (e) RAS (f) RAASASSA (g) RAASASAA.
Can you think of a simple general rule for telling when a product of symmetric
and antisymmetric functions will be antisymmetric?

Using the concept of odd and even functions, ascertain by inspection of sketches
whether the following need be identically zero:

a) [ sinfcos6do

b) /7 sin6cos6df
) f_llx cos x dx

d) [ cosysin® ydy
e fo sin’ 6 cos? 6 d6
N fy sin 6 cos> 6 do
9 [1, [l xPydxdy
h) /™ xsinxcosxdx
i) 7 sinx-L sin?x dx
D sin2x£ sinx dx

. Verify Eq. (2-23) for the general case n # m by explicit integration.

For the potential of Fig. 2-8, when E < U the energies are discrete, and when
E > U, they are continuous. Is there a solution with £ = U? What special
requirements are there, if any, for such a solution to exist?
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2-11.

2-12.

2-13.

2-14.

2-15.

2-16.
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Figure P2-12 »

Prove the following statement: any linear combination of degenerate eigenfunc-
tions of H is also an eigenfunction of H.

In a few words, indicate what is wrong with the wavefunctions sketched in the
potentials shown in Fig. P2-12. If the solution appears to be acceptable, indicate
this fact.

A double-well potential ranges from x =0 to x =2L and has a thin (width =
0.01L) rectangular barrier of finite height centered at L.

a) Sketch the wavefunction that goes with the fourth energy level in this system,
assuming that its energy is less than the height of the barrier.
b) Estimate the energy of this level for a particle of mass m.

Use the simple approach presented in Problem 2-3 to demonstrate that 4 =
1/4/m for the trigonometric particle-in-a-ring eigenfunctions and 1/+/27 for the
exponential eigenfunctions.

1/2

Explain why (2m)™ /“exp(i «/iq&) is unacceptable as a wavefunction for the

particle in a ring.

For a particle in a ring, an eigenfunction is ¥ = (1//7) cos(3¢).

a) Write down H.

b) Evaluate Hy and identify the energy.

c¢) Is this a state for which angular momentum is a constant of motion? Demon-
strate that your answer is correct.
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2-17.

2-18.

2-19.

2-20.

2-21.

Consider two related systems—a particle in a ring of constant potential and
another just like it except for a very thin, infinitely high barrier inserted at ¢ = 0.
When this barrier is inserted,

a) are any energies added or lost?

b) do any degeneracies change?

c) are exponential and sine—cosine forms both still acceptable for eigenfunc-
tions?

d) is angular momentum still a constant of motion?

Consider a particle of mass m in a two-dimensional box having side lengths L
and L, with L, =2L, and V =0 in the box, 0o outside.

a) Write an expression for the allowed energy levels of this system.

b) What is the zero-point energy?

c¢) Calculate the energies and degeneracies for the lowest eight energy levels.

d) Sketch the wavefunction for the fourth level.

e) Suppose V' =10 J in the box. What effect has this on (i) the eigenvalues?
(ii) the eigenfunctions?

Consider the particle in a three-dimensional rectangular box with Ly = L, =
L./2. What would be the energy when ny =1,n,=2,n,=2? For ny =1,
ny=1,n,=47 Canyou guess the meaning of the term “accidental degeneracy?”

Consider a particle of mass m in a cubical box with ¥V =0at0 < x, y,z< L.

a) Is (1/ «/5) (s, — V5 ,,) an eigenfunction for this system? Explain your
reasoning.

b) Estimate the probability for finding the particle in a volume element AV =
0.001V at the box center when the system is in its lowest-energy state. What
is the classical value?

Kuhn [1] has suggested that the mobile 7 electrons in polymethine dyes can be
modeled after the one-dimensional box. Consider the symmetric carbocyanine
dyes (I) where the positive charge “resonates” between the two nitrogen atoms.
The zigzag polymethine path along which the  electrons are relatively free to
move extends along the conjugated system between the two nitrogens. Kuhn
assumed a box length L equal to this path length plus one extra bond length
on each end (so that the nitrogens would not be at the very edge of the box
where they would be prevented from having any m-electron charge). This
gives L = (2n + 10)/ where [ is 1.39 A, the bond length of an intermediate
(i.e., between single and double) C—C bond. The number of 7 electrons in the
polymethine region is 2n + 10. Assume that each energy level in the box is
capable of holding no more than two electrons and that the electronic transition
responsible for the dye color corresponds to the promotion of an electron from
the highest filled to the lowest empty level, the levels having initially been
filled starting with the lowest, as shown in Fig. P2-13. Calculate AE and A
for the cases n =0, 1,2, 3 and compare with the observed values of maximum
absorption of about 5750, 7150, 8180, and 9250 A, respectively.
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2-22,

2-23.

2-24.

2-25.
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Figure P2-13 »

Show whether momentum in the x direction is a constant of motion for a free par-
ticle of mass m in states described by the following functions. In cases where it is
a constant of motion, give its value. In all cases, evaluate the kinetic energy of the
particle.

a) Y =sin3x
b) ¥ =exp(3ix)
¢) ¥ =cos3x

d) ¥ =exp(—3ix)

Show whether angular momentum perpendicular to the plane of rotation is a
constant of motion for a particle of mass m moving in a ring of constant potential
in states described by the following functions. In cases where it is a constant of
motion, give its value. In all cases, evaluate the kinetic energy of the particle.

a) ¥ =(1//m)cos3¢

b) ¥ = (1/+/27) exp(—3i¢)
¢) ¥ =(1/J7)sin3¢

d) ¥ = (1/4/27) exp(3i¢h)

Demonstrate that the requirement that v = A exp(ikt) + B exp(—ikt) have real
value and slope at a point in x suffices to make | 4| =|B].

Derive relations (2-73) and (2-74) by matching wave values and slopes at the step.
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2-26. Solve the problem for the step potential shown in Fig. 2-17a, but with the beam
traveling from a source at right toward a trap at left.

2-27. The reflection coefficient is defined as | B|? /14 |2 for a beam originating from the
left of Fig. 2-17a. The transmission coefficient is defined as (k'/ k) |C 2 /14 2.

a) Why is the factor £’/ k needed?
b) Show that the sum of these coefficients equals unity, consistent with a
steady-state situation.

2-28. For scattering from a potential such as that in Fig. 2-18a, 100% transmission
occurs at various finite particle energies. Find the lowest two values of E/U
for which this occurs for particles of mass m, barrier width d, and barrier height
U=2h*/7*md?.

2-29. Calculate “frequencies” in cm™! needed to accomplish the transitions A E; and
AEj in Fig. 2-14.

Multiple Choice Questions

(Try to answer these by inspection.)

1. The integral [ cos(x)sin(x)dx

a) equals zero for any value of a, and cos(x) is antisymmetric in the range of the
integral.

b) is unequal to zero except for certain values of a, and cos(x) is symmetric in the
range of the integral.

c) equals zero for any value of a and cos(x) is symmetric in the range of the integral.

d) is unequal to zero except for certain values of @, and sin(x) is antisymmetric in
the range of the integral.

e) equals zero for any value of a, and sin(x) is symmetric in the range of the integral.

2. [77 xsin(x) cos(x) dx

Which one of the following statements is true about the above integral and the three
functions in its integrand?

a) All three functions are antisymmetric in the range and the integral equals zero.

b) Two functions are antisymmetric and one is symmmetric in the range, and the
integral is unequal to zero.

¢) Two functions are symmetric and one is antisymmetric in the range, and the
integral is equal to zero.

d) One function is symmetric, one is antisymmetric, and one is unsymmetric in the
range, and the integral is unequal to zero.

e) None of the above is a true statement.
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3. In solving the particle in a one-dimensional box problem with infinite repulsive
walls at x =0 and L, we started with the function A4 sin(kx) + B cos(kx). Which
one of the following is a true statement?

a) The value of & is found by requiring that the solution be normalized.

b) Adding C exp(ikx) to the above function would prevent it from being an eigen-
function of the hamiltonian operator.

c) It is necessary that this function equal L when x =0.

d) The boundary condition at x = L is used to show that B =0.

e) None of the above is a true statement.

4. It is found that a particle in a one-dimensional box of length L can be excited from
the n =1 to the n =2 state by light of frequency v. If the box length is doubled, the
frequency needed to produce the » = 1 to n = 2 transition becomes

a) v/4
b) v/2
c) 2v
d) 4v
e) None of the above is correct.

5. For a particle in a one-dimensional box with infinite walls at x =0 and L, and in the
n = 3 state, the probability for finding the particle in the range 0 <x < L/4 is

a) greater than 1/3.

b) exactly 1/6.

c) exactly 1/3.

d) less than 1/6.

e) None of the above is correct.

6. A student calculates the probability for finding a particle in the left-most 10% of a
one-dimensional box for the n =1 state. Which one of the following answers could
be correct?

a) 1.742
b) 0.024
c) 0.243
d) 0.100
e) None of the above is reasonable.

7. Which one of the following statements is true about the particle in a one-dimensional
box with infinite walls? (All integrals range over the full length of the box.)

a) [ W32 dx =0 because these wavefunctions are orthogonal.

b) [ Y13 dx =0 because both of these wavefunctions are symmetric.
c) f Yr1¥ dx = 0 because these wavefunctions are normalized.

d) f Y13 dx =0 because these wavefunctions are orthogonal.

e) None of the above is a true statement.
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8.

9.

10.

11.

Which one of the following is the correct formula for the lowest-energy eigenfunc-
tion for a particle in a one-dimensional box having infinite barriers at x = —L /2
and L/2?

a) \/%sin(nx/L)
b) \/%cos(nx/L)
c) \/%exp(inx/L)

d) \/%exp(—inx/L)
e) None of the above is correct.

A particle is free to move in the x dimension without constraint (i.e., under the
influence of a constant potential, which we assume to be zero). For this system,
the wavefunction ¥ (x) = exp(3.4x) is not acceptable because

a) it is not an eigenfunction of the hamiltonian operator.
b) it is multi-valued.

¢) itis discontinuous.

d) it approaches infinity as x approaches infinity.

e) it goes to zero as x approaches minus infinity.

Consider two identical one-dimensional square wells connected by a finite bar-
rier. Which one of the following statements about the quantum-mechanical time-
independent solutions for this system is true when two equivalent “half-solutions”
in the two wells are joined together to produce two overall solutions?

a) The combination that is symmetric for reflection through the central barrier
always has the lower energy of the two.

b) The combination that places a node in the barrier always has the lower energy
of the two.

¢) The sum of the two half-solutions always has the lower energy of the two.

d) The difference of the two half-solutions always has the lower energy of the two.

e) None of the above is a true statement.

For a single particle-in-a-ring system having energy 942 /872 we can say that the
angular momentum, when measured, will equal

a) 374

b) V12A

c) either 37 or —37

d) zero

e) None of the above is a true statement.

12. A particle in a ring has wavefunctions that

a) result from placing an integral number of half-waves in the circumference of
the ring.

b) must be eigenfunctions for (h/2wi)d /d¢.

c¢) are all doubly degenerate, due to two rotational directions.



68

13.

14.

15.

Chapter 2 Quantum Mechanics of Some Simple Systems

d) correspond to energies that increase with the square of the quantum number.
e) None of the above is a true statement.

The hamiltonian operator for a system is
H=—h?/87°m)V? +x2 + y* + 22
For this system we should expect

a) two quantum numbers at most.

b) eigenfunctions that are sums of functions, each depending on only one of the
variables.

c) eigenvalues that are products of eigenvalues of separated equations.

d) eigenvalues that are sums of eigenvalues of separated equations.

e) None of the above is a correct statement.

For a particle in a one-dimensional box with one infinite barrier and one finite
barrier of height U,

a) ¥ =0 at both barriers if E is less than U.

b) barrier penetration is smallest for the lowest-energy state.

¢) no more than one quantized state can exist, and its energy is less than U.
d) only states having E greater than U can exist.

e) None of the above statements is correct.

For a particle of mass m in a cubical box having edge length L,

a) the zero point energy is 342 /8m L>.

b) the probability density has its maximum value at the box center for ¥»1].
c¢) the degeneracy of the ground state is 3.

d) 1111 has three nodal planes.

e) None of the above is a true statement.
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Chapter 3

The One-Dimensional Harmonic
Oscillator

D 3-1 Introduction

In Chapter 2 we examined several systems with discontinuous potential energies. In this
chapter we consider the simple harmonic oscillator—a system with a continuously vary-
ing potential. There are several reasons for studying this problem in detail. First, the
quantum-mechanical harmonic oscillator plays an essential role in our understanding
of molecular vibrations, their spectra, and their influence on thermodynamic properties.
Second, the qualitative results of the problem exemplify the concepts we have presented
in Chapters 1 and 2. Finally, the problem provides a good demonstration of mathemat-
ical techniques that are important in quantum chemistry. Since many chemists are not
overly familiar with some of these mathematical concepts, we shall deal with them in
detail in the context of this problem.

D 3-2 Some Characteristics of the Classical
One-Dimensional Harmonic Oscillator

A pendulum consisting of a large mass hanging by an almost weightless wire, and
swinging through a very small angle, is a close approximation to a classical harmonic
oscillator. It is an oscillator since its motion is back and forth over the same path.
It is harmonic to the extent that the restoring force on the mass is proportional to the
horizontal component of the displacement of the mass from its rest position. This force
law, known as Hooke’s law, is the common first approximation made in the analysis of
a system vibrating about an equilibrium position. If we let the x axis be the coordinate
of displacement of the mass, with x =0 as the rest position, then we may write the
restoring force as

F=—kx, (3-1)

where £ is the force constant. The minus sign assures that the force on the displaced
mass is always directed toward the rest position.

We can use this force expression to determine an equation of motion for the mass,
that is, an equation relating its location in space, x, to its location in time, #:

d*x (1)

F=—kx(t)=ma=m i

(3-2)

69
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or

d?x (1)
dt?

= (—k/m)x (1) (3-3)

According to this equation, x(¢) is a function that, when differentiated twice, is regen-
erated with the multiplier —k/m. A general solution is

x(t)=asin|,/—t]|+bcos|, —¢ (3-4)
m m

If we require that x(¢) be at its maximum value L at =0 (as though the pendulum
is held at its position of maximum displacement and then released at = 0), then it
follows that b= L. Since the pendulum is also motionless at t =0, (dx(¢)/dt);=0 =0,

and so a =0. Hence,
k
x (t)=Lcos (,/ — t) (3-5)
m

Thus, the equation of motion [Eq. (3-3)] leads to a function, x(¢), that describes the
trajectory of the oscillator. This function has the trigonometric time dependence char-
acteristic of harmonic motion. From this expression, we see that x(¢) repeats itself
whenever the argument of the cosine increases by 2. This will require a certain time
interval ¢'. Thus, the pendulum makes one complete back and forth motion in a time ¢’

given by
k
J= =2 f=2n |2 (3-6)
m k

so the frequency of the oscillation v is

v:l/t’:L 2 (3-7)
2 NV m
Suppose that one were to take a multiflash photograph of a swinging pendulum from
above. The result would look as shown in Fig. 3-1a, the number of images being much
greater near the termini of the swing (called the “turning points”) than at the middle
because the pendulum is moving fastest as it crosses the middle. This, in turn, results
from the fact that all the potential energy of the mass has been converted to kinetic
energy at the middle point. We thus arrive at a classical prediction for the time-averaged
distribution of the projection of the harmonic oscillator in the displacement coordinate:
This distribution function is greatest in regions where the potential energy is highest
(Fig. 3-1b) (Problem 3-1).
Let us calculate and compare the time-averaged potential and kinetic energies for the
classical harmonic oscillator. When the particle is at some instantaneous displacement
x', its potential energy is

V (x") = (applied force times distance to return to x = 0)

’

x 1
= kx dx = —kx' (3-8)
0 2
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(a)

(b)

Figure 3-1 » (a) Results of a uniform multiflash photograph of a swinging pendulum as pho-
tographed from above. (b) Distribution function corresponding to the continuous limit of discrete
distribution shown in (a).

The cumulative value of the potential energy over one complete oscillation, V, is given
by the integral

t t’
Ve (t'—0)= / V() dt = %k / x (0 dt (3-9)
0 0

Substituting for x (¢) as indicated in Eq. (3-5)

/ 1 2 g 2 k
Vc(t —O)=§kL / cos Et dt
0
Yz smi [ et (E [k
_sz m/k/0 cos( mt)d( mt (3-10)

When t =¢/, \/k/mt =27, and we may rewrite Eq. (3-10) as

1 2
Ve (t' —0) = szz,/m/k/ cos® ydy= (mw/2)kL*\/m/k (3-11)
0
If we now divide by ¢’ to get the average potential energy per unit time, we find

Ve(t' =0)  (r/DkL>/m]k kL*
¢ 2 m/k 4

Thus, we have the average potential energy. If we knew the total energy, which is a
constant of motion, we could get the average kinetic energy by taking the difference.

V=

(3-12)
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It is easy to evaluate the total energy by taking advantage of its constancy over time.
Since we can choose any point in time to evaluate it, we select the moment of release
(t =0 and x = L). The mass is motionless so that the total energy is identical to the
potential energy:

1
E= Ech2 (3-13)

Comparing Egs. (3-12) and (3-13) we see that, T =kL? /4. On the average, then, the
classical harmonic oscillator stores half of its total energy as potential energy and half
as kinetic energy.

EXAMPLE 3-1 A 10.00g mass on a Hooke’s law spring with force constant £k =
0.0246 N m~! is pulled from rest at x =0 to x = 0.400 m and released.

a) What is its total energy?

b) What is its frequency of oscillation?

¢) How do these answers change if the mass weighs 40.00 g?

SOLUTION » a) E=T+V. Atx=0.400m,7 =0, E=V =kx2/2=0.50(0.0246N m~!)
(0.400m)2 =0.00207

1/2 _in1/2
_ 1 (k)" _ 1 (0.0246Nm _ -1
b) ”—E(%> —H( 0.0100 kg ) =0.25s

¢) FE is unchanged, and v is halved to 0.125 s~1. The energy depends on the force constant and
the displacement of the oscillator, but not on the mass of the oscillator. The frequency depends not
only on the force constant, but also on the mass because the frequency is affected by the inertia of
the oscillator. A greater mass has a lower frequency of oscillation for the same force constant. «

D 3-3 The Quantum-Mechanical Harmonic Oscillator

We have already seen [Eq. (3-8)] that the potential energy of a harmonic oscillator is
given by

V(x)= %kxz (3-14)

so we can immediately write down the one-dimensional Schrodinger equation for the
harmonic oscillator:

[(—hz/Snzm)(dz/dxz) + %kx2:| VU (x) = Ey(x) (3-15)

The detailed solution of this differential equation is taken up in the next section.
Here we show that we can understand a great deal about the nature of the solutions to
this equation by analogy with the systems studied in Chapter 2.

In Fig. 3-2a are shown the potential, some eigenvalues, and some eigenfunctions for
the harmonic oscillator. The potential function is a parabola [Eq. (3-14)] centered at
x =0 and having a value of zero at its lowest point. For comparison, similar information
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(a)

()

(b)

Figure 3-2 » The potential function, energy levels, and wavefunctions for (a) the harmonic oscil-
lator, (b) the particle in the infinitely deep square well. (c) tﬁz for the harmonic oscillator in the state

n=>5.

is graphed in Fig. 3-2b for the particle in a box with infinitely high walls.

important features of the harmonic oscillator are:

Some

1. The energy-level spacing for the harmonic oscillator is constant. As mentioned
in Chapter 2, we expect the energy levels for the harmonic oscillator to diverge
less rapidly than those for the square well because the higher energy states in the
harmonic oscillator have effectively larger “boxes” than do the lower states (that is,
the more energetic the oscillator, the more widely separated are its classical turning
points). That the spacing for the oscillator grows less rapidly than that for the box
is therefore reasonable. That it is actually constant is something we will show

mathematically in the next section.

2. The wavefunctions for the harmonic oscillator are either symmetric or antisymmetric
under reflection through x =0. This is necessary because the hamiltonian is invariant
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to reflection through x =0 and because the eigenfunctions are nondegenerate. Both
of these conditions apply also to the box problem. If we imagine moving from the
box potential to the parabolic potential by a process of continuous deformation, the
symmetry is not altered and there is no reason to expect nondegenerate box levels
to come together and become degenerate. Therefore, the oscillator wavefunction
symmetries are not surprising. Asaconsequence, we have at once that the symmetric
wavefunctions are automatically orthogonal to antisymmetric wavefunctions, as
discussed earlier. (Actually, all the wavefunctions are orthogonal to each other. This
is proved in Section 3-4.)

3. The harmonic oscillator has finite zero-point energy. (The evidence for this in
Fig. 3-2a is the observation that the line for the lowest (n = 0) energy level lies
above the lowest point of the parabola, where V' =0.) This is expected since the
change from square well to parabolic well does not remove the restrictions on particle
position; it merely changes them.

4. The particle has a finite probability of being found beyond the classical turning
points; it penetrates the barrier. This is to be expected on the basis of earlier
considerations since the barrier is not infinite at the classical turning point. (The
potential becomes infinite only at x = 4-00.)

5. In the lowest-energy state the probability distribution favors the particle being in
the low-potential central region of the well, while at higher energies the distribution
approaches more nearly the classical result of favoring the higher potential regions
(Fig. 3-2c).

D 3-4 Solution of the Harmonic Oscillator

Schroédinger Equation
3-4.A Simplifying the Schrédinger Equation
Equation (3-15) is simplified by substituting in the following relations:
o =8n°mE/h* (3-16)
B2 = 4n’mk/ h? (3-17)
The quantities o and B have units of m~2. We will assume that 8 is the positive root

of 2. The quantity o is necessarily positive. The Schrodinger equation now can be
written

2
%ﬂa—ﬁ%ﬁ)wm:o (3-18)

3-4.B Establishing the Correct Asymptotic Behavior

At very large values of |x|, the quantity « (which is a constant since E is a con-
stant) becomes negligible compared to f2x2. That is, the Schrodinger equation (3-18)
approaches more and more closely the asymptotic form

d*y (x)/dx? = B2 (x), x| — o0 (3-19)
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What we need, then, are solutions (x) that approach the solutions of Eq. (3-19) at
large values of |x|. The solutions for Eq. (3-19) can be figured out from the general
rule for differentiating exponentials:

(d/dx)exp(u(x)) =exp(u(x))du(x)/dx (3-20)
Then
(@*/dx?) exp(u(x)) = [(du(x)/dx)* + d*u(x) /dx*]exp(u(x)) (3-21)

We want the term in square brackets to become equal to f2x? in the limit of large |x|.
We can arrange for this to happen by setting

u(x)=+Bx2/2 (3-22)
for then
(d*/dx?) exp(u(x)) = (B*x* £ B) exp(£px?/2) (3-23)

At large values of |x|, B is negligible compared to 82x2, and so exp(£Bx2/2) are
asymptotic solutions for Eq. (3-19). As |x| increases, the positive exponential increases
rapidly whereas the negative exponential dies away. We have seen that, for the wave-
function to be physically meaningful, we must reject the solution that blows up at large
|x|. On the basis of these considerations, we can say that, if 1 contains exp(—fx2/2),
it will have the correct asymptotic behavior if no other term is present that dominates
at large |x|. Therefore,

¥ (x) =q(x)exp(—Bx*/2) (3-24)

and it remains to find the function ¢ (x).

3-4.C The Differential Equation for g(x)
Substituting Eq. (3-24) into the Schrodinger equation (3-18) gives

dq(x) d*q(x)
dx dx?

exp(—px?/2) [—ﬂq (x) —2Bx +aq (x)} =0 (3-25)

This equation is satisfied only if the term in brackets is zero:

d*q(x) dq
—2Bx
dx? d
Thus, we now have a differential equation for g (x).

At this point it is convenient to transform variables to put the equation into a simpler
form. Let

28 ff) +@—B)g(x)=0 (3-26)

y= \/Ex (3‘27)
Then

djdy=d/d (/Ex) — (1 /\/E) d/dx (3-28)
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so that
d/dx =/Bd/dy (3-29)
Similarly
d*>  Bd?
i d_y2 (3-30)
and
Y
= 3-31
x 7B (3-3D
Substituting Egs. (3-29)—(3-31) into (3-26), and defining f(y) as
Fo =71 (VBx) =4 (3-32)
we obtain (after dividing by B)
d? d
df D 2D 4 wrpy—11 £ () =0 (3-33)
y dy

3-4.D Representing f as a Power Series

Now f(y) is some function of y that must be single valued, continuous, and smooth
(i.e., have a continuous first derivative), if ¥ is to be properly behaved. Can we think
of any functions that satisfy these properties? Of course, we can think of a limitless
number of them. For example, 1, y, yz, y3, y4, etc., are all single valued, continuous,
and have continuous derivatives, and so is any linear combination of such functions (e.g.,
4y3 — y+3). Other examples are sin(y) and exp(y). These functions can be expressed
as infinite sums of powers of y, however, and so they are included, in principle, in the
first example. Thus

sin(y) =y — /314 /51— ¥ /T4 (3-34)
and
exp(y) =) )" /n! (3-35)
n=0

that is, sin(y) and the set of all positive powers of y are linearly dependent. Because the
powers of y can be combined linearly to reproduce certain other functions, the powers
of y are called a complete set of functions. However, we must exercise some care with
the concept of completeness. The positive powers of y cannot be used to reproduce a
discontinuous function, or a function with discontinuous derivatives. Hence, there are
certain restrictions on the nature of functions g(y), that satisfy the relation

o0

g =Y cn) (3-36)

n=0
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These restrictions define a class of functions, and the powers of y are a complete set
only within this class. The positive powers of y, then, form a complete set, but if we
remove one of the members of the set, say 1 (the zero power of ), then the set is no
longer complete. This means that the remaining members of the set cannot compensate
for the role played by the missing member. In other words, the missing member cannot
be expressed as a linear combination of the remaining members. In this example

L#£> en)! (3-37)
n=1

This is easily demonstrated to be true since the left-hand side of Eq. (3-37) is unity
whereas the right-hand side must be zero when y = 0 for any choice of coefficients.
Thus, the powers of y are linearly independent functions (no one of them can be
expressed as a linear combination of all the others).

The function f(y) involved in ¥ should be a member of the class of functions for
which the powers of y form a complete set. Therefore, we may write

o0

fm=>Y ey (3-38)

n=0

and seek an expression for the unknown multipliers c;,.

3-4.E Establishing a Recursion Relation for f

Notice that if

fM=c+ay+ay’ +ey’ +ayt+-- (3-39)
then

df () /dy=ci+2cry+3c3)* +4cay® +- - (3-40)
and

d> f(»)/dy* =2cr +2-3c3y+3-4esy® +--- (3-41)

Thus, substituting Eq. (3-38) into (3-33) gives

1-2¢0+2-3c3y43-4cay* +--—2c1y—2-2¢21° —2-3¢3)° — - -

+[(@/B) —1lco+[(a/B) —1lc1y+[(@/B) — 1cay* +---
=0 (3-42)

Now we will take advantage of the fact that the various powers of y form a linearly
independent set. Equation (3-42) states that the expression on the LHS equals zero
for all values of y. There are two ways this might happen. One of these is that minus
the constant part of the expression is always exactly equal to the y-dependent part, no
matter what the value of y. This would require a relationship like Eq. (3-37) (except
with an equality), which we have seen is not possible for independent functions. The
remaining possibility is that the various independent parts of Eq. (3-42) are individually
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equal to zero—the constant is zero, the coefficient for y is zero, etc. This gives us a
whole set of equations. Setting the constant term equal to zero gives

2co + [(a/B) —1lcp=0--- m=0 (3-43)
Setting the coefficient for the first power of y to zero gives
2-3c3—=2c1 +[(a/B)—1]c1=0--- m=1 (3-44)
The y? term gives
3-4c4—2-2c0+[(a/B) —1]lca=0--- m=2 (3-45)
By inspecting this series, we can arrive at the general result
(m+1)(m +2)cmi2 + (/) =1 =2m]cy, =0 (3-46)

or

—[(e/B) —2m — 1]
(m+1)(m+2)

Cm+2 = Cm (3'47)

Equation (3-47) is called a recursion relation. If we knew cp, we could produce
c2, ¢4, Cg, etc., by continued application of Eq. (3-47). Similarly, knowledge of ¢
would lead to c3, ¢s, etc. Thus, it appears that the coefficients for even powers of y
and those for odd powers of y form separate sets. Choosing co determines one set,
and choosing c; determines the other, and the choices for ¢y and ¢; seem independent.
This separation into two sets is reasonable when we recall that our final solutions
must be symmetric or antisymmetric in x, hence also in y. The asymptotic part of v,
exp(—Bx2/2), is symmetric about x = 0, and so we expect the remainder of ¥, f (), to
be either symmetric (even powers of y = /Bx) or antisymmetric (odd powers). Thus,

we can anticipate that some of our solutions will have co #0, ¢ #0, ¢4 #0, ... and
c1=c3=cs5="---=0. This will produce symmetric solutions. The remaining solutions
will have co=cp =c4=---=0and ¢] #0, ¢c3 #0, ..., and be antisymmetric.

EXAMPLE 3-2 Evaluate ¢3 and ¢;5 if ¢; =1, for arbitrary & and 8. What ratio o/
will make c3 =0? What ratio o/ will make ¢s5 =0 but ¢3 # 0?

SOLUTION » ¢ =1,Forc3,weusem=1, c3= _[a(/f)(_ﬁ_” x 1= 3_g/ﬁ.
Forcs weusem =3, c¢5= _[a/f_sé_l] X [3—g/ﬂ] = (7_(1/’91)2(3_‘1/@.

o/B =3 makes c3 =0 (and also c5). a/B =7 makes c5 =0, but not c3. <

3-4.F Preventing f(y) from Dominating the Asymptotic Behavior

We now examine the asymptotic behavior of f(y). Recall that, at very large values
of |y|, f(») must become insignificant compared to exp(—px2/2) =exp(—)?/2). We
will show that f(y) fails to have this behavior if its power series expression is infinitely
long. That is, we will show that f(y) behaves asymptotically like exp(y?), which
dominates exp(—y?/2).



Section 3-4 Solution of the Harmonic Oscillator Schrodinger Equation 79

We know that the series expression for exp()?) is

4 6 +2

2 2 VY Y V!
=1 EARNNIE AN 3-48
xpO) =ty e o Y aar i T (3-48)

The series for f(y) has terms
ey Fen2y P enay (3-49)

The ratio between coefficients for two adjacent terms high up in the series (large n) for
exp(yz) is, from Eq. (3-48)

coefffory"™>  (n/2)! 1 lagen2 (3:50)
coeff fory” — [(m/2)+1]' (n/2)+1 n
and for f(y) itis, from Egs. (3-49) and (3-47),
coeff fory"**  ¢up0  —(@/B) +1+2n lugen 2 3.51)

coeff fory” ¢,  n?24+3n+2 n

This means that, at large values of y, when the higher-order terms in the series dominate,
£(») behaves like exp(y?). Then

Jim y ()= lim_f(») exp(—y*/2) =exp(y*/2) — oo (3-52)

The asymptotic behavior of ¥ is ruined. We can overcome this problem by requiring
the series for f()) to terminate at some finite power. In other words, f(») must be
a polynomial. This condition is automatically fulfilled if any one of the coefficients
in a given series (odd or even) is zero since Eq. (3-47) guarantees that all the higher
coefficients in that series will then vanish. Therefore, we require that some coefficient
vanish:

Cnp2=0 (3-53)
Assuming that this is the lowest zero coefficient (i.e., ¢, #0), Eq. (3-47) gives

(¢/B)—2n—1=0 (3-54)
or

a=pB2n+1) (3-55)

3-4.G The Nature of the Energy Spectrum

Now we have a recipe for producing acceptable solutions for the Schrédinger equation
for the harmonic oscillator. If we desire a symmetric solution, we set c; =0 and co = 1.
If we want the polynomial to terminate at )”*, we require that & and 8 be related as in
Eq. (3-55). In this way we can generate an unlimited number of symmetric solutions,
one for each even value of # that can be chosen for the terminal value. Similarly, an
unlimited set of antisymmetric solutions results from setting co =0 and ¢; = 1 and
allowing the highest contributing value of n to take on various odd integer values.
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(Solved Problem 3-2 provides an example by showing that cs becomes the first odd-
power-coefficient equal to zero if /8 =7.)

Since we now know that an acceptable solution satisfies Eq. (3-55), we can exam-
ine the energy spectrum. Substituting into Eq. (3-55) the expressions for « and B
[Egs. (3-16) and (3-17)], we obtain

872mE/h* = Qu~/mk/h)(2n + 1) (3-56)

or
E=h(n+%> (%) \/k/mz(n—F%)hv (3-57)

where the classical definition of v [Eq. (3-7)] has been used.

This result shows that, whenever z increases by unity, the energy increases by 4v, so
the energy levels are evenly spaced as shown in Fig. 3-2. At absolute zero, the system
will lose its energy to its surroundings insofar as possible. However, since n = 0 in the
lowest permissible state for the system, there will remain a zero-point energy of %h V.

3-4.H Nature of the Wavefunctions

The lowest energy solution corresponds to » = 0. This means that cq is the highest
nonzero coefficient in the power series expansion for f(y). Hence, we must set c; =0.
(The odd-powered series coefficients are all zero for this case.) Thus, for » =0, we can
write the unnormalized wavefunction as [from Eq. (3-24)]

Yo = coexp(—y*/2) = coexp(—px>/2) (3-58)

This is just a constant times a Gauss error function or simple “gaussian-type” function.
This wavefunction is sketched in Fig. 3-2 and is obviously symmetric.

The next solution has n =1, ¢; #0 but c3 =c¢5="---=0. (The even-powered series
coefficients are all zero for this case.) The unnormalized wavefunction for » = 1 is then
Yi1(») =cryexp(—)?/2) (3-59)

The exponential is symmetric and y is antisymmetric, and so their product, ¥1(y), is
antisymmetric (Fig. 3-2).

To get ¥, we need to use the recursion relation (3-47). We know that odd-index
coefficients are all zero and that only cp and ¢ of the even-index coefficients are
nonzero. Assuming cg = 1, we have (using (Eq. 3-47) with m =0)

—[(e/B)—2-0—1] (a/p)—1
)= ]l =—
(H(®2) 2

But the ratio «/ 8 is determined by the requirement that ¢4 = 0. Referring to Eq. (3-55),
this gives (for n =2) /8 =5, and so

(3-60)

cp=—4/2=-2 (3-61)
and the unnormalized wavefunction is

Y2 () = (1 =23 exp(—3%/2) (3-62)
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Polynomials like (1 —2y?), which are solutions to the differential equation (3-33),
are known as Hermite (her-meet) polynomials, H,(y). In addition to the recursion
relation (3-47), which we have derived, other definitions are known. One of these
involves successive differentiation:

d" exp(=)*)
Hy () = (=" exp(yh) —— = (3-63)
y
Thus, if we want H(y), we just set n =2 in Eq. (3-63) and evaluate that expression to
get
Hy(y) =4y =2 (3-64)
which differs from our earlier result by a factor of —2. Yet another means of producing
Hermite polynomials is by using the generating function

G(y,u)=exply” = (u—)’1= D (Hy(y)/n)u" (3-65)
n=0

We use this expression as follows:

1. Express the exponential in terms of its power series, writing down a few of the leading
terms. There will exist, then, various powers of # and y and factorial coefficients.

2. Collect together all the terms containing u?.

3. The coefficient for this term will be equal to H>(y)/2.

This is a fairly clumsy procedure for producing polynomials, but Eq. (3-65) is
useful in determining general mathematical properties of these polynomials. For
instance, Eq. (3-65) will be used in showing that the harmonic oscillator wavefunctions
are orthogonal.

3-4.1 Orthogonality and Normalization

We will now show that the harmonic oscillator wavefunctions are orthogonal, i.e., that

+00 +00
Un(M¥m(y)dy= Hy () Hu () exp(=y")dy=0--- n#m  (3-66)

—0o0 —0o0

Consider the integral involving two generating functions and the exponential of y?:

+00
/ G(y,u)G(p, v)exp(—1*)dy

+o0
=22 f PO o y2)dy (3-67)

Cnm

where we label the integral ¢, for convenience. The left-hand side of Eq. (3-67) may
also be written as [using Eq. (3-65)]

+o00 +oo
/ exp[—(y — u — v)*]exp(2uv)dy = exp(2uv) / exp[—(y —u —v)*ldy
- - (3-68)
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However, we can add constants to the differential element without affecting the integral
value, and u and v are constants when only y varies. Therefore, (3-68) becomes (see
Appendix 1 for a table of useful integrals)

+00
exp(2uv) / expl—(y —u —v)?1d(y — u — v) = expuv) /7

= V{1l 4 2uv +4u>v? )2V + 8V /3 4 - 4 2"l 4} (3-69)

This expression is equal to the right-hand side of Eq. (3-67). Comparing Eq. (3-67)
with (3-69), we see that ¢1; =2./7 since the term «'v! is multiplied by 27 in Eq. (3-69)
and by ¢y in Eq. (3-67). Similarly ¢y, =4./7 /2! But ¢ =0. Hence, we arrive at the
result

+00
Cnm = / M exXp (_y2) dy= \/E (2n/n!) Snm (3-70)

—c0 n!m!

(8n.m 1s the “Kronecker” delta. It is a discontinuous function having a value of unity
when n = m but zero when n #m.) So

+00
Yn D) Ym (0) dy=/mm!12" 8, (3-71)

This proves the wavefunctions to be orthogonal and also provides us with a normalizing
factor. Normality refers to integration in x, rather than in y = /Bx, so we must change
the differential element in Eq. (3-71):

+00

—+00
W2 () dy=\B f Y2 () dx = /mn2" (3-72)

Requiring that fjozo 1&3 (¥) dx =1 leads to the expression for the normalized wave-
functions:

1/2
1
wn(y)z(,/é,,> Hy(Dexp(—)?/2),  n=0,12,...  (3-73)
7 2"n!

The first members of the set of Hermite polynomials are

H) =1, H()=2y, Hh(y)=4"-2, H(»)=8y"—12y
Hy(y) = 16y* —48y* + 12, Hs(y) =32)° — 160> + 120y (3-74)
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3-4.J Summary of Solution of Harmonic-Oscillator
Schrédinger Equation

The detailed solution is so long that the reader may have lost the broad outline.
The basic steps were:

1. Determine the asymptotic behavior of the Schrodinger equation and of . This
produces a gaussian factor exp(— y?/2) times a function of y, f(»).

2. Obtain a differential equation for the rest of the wavefunction, f(y).

3. Represent f(y) asapower series in y, and find a recursion relation for the coefficients
in the series. The symmetries of the wavefunctions are linked to the symmetries of
the series.

4. Force the power series to be finite (i.e., polynomials) so as not to spoil the asymptotic
behavior of the wavefunctions. This leads to arelation between « and f that produces
uniformly spaced, quantized energy levels.

5. Recognize the polynomials as being Hermite polynomials, and utilize some of the
known properties of these functions to establish orthogonality and normalization
constants for the wavefunctions.

EXAMPLE 3-3 Which of the following expressions are, by inspection, unacceptable
eigenfunctions for the Schrodinger equation for the one-dimensional harmonic
oscillator?

a) (645 —480y* +720y? — 120) exp(»*/2)

b) (64y° —480y° 4+ 720y — 120) exp(—)?/2)

) (64y° —480y* +7201 — 120) exp(—y*/2)

SOLUTION » a) is unacceptable because exp(2/2) blows up at large |y|.
b) is unacceptable because the polynomial contains terms of both even and odd powers.
¢) is acceptable. <

D 3-5 Quantum-Mechanical Average Value of

the Potential Energy

We showed in Section 3-2 that the classical harmonic oscillator stores, on the average,
half of its energy as kinetic energy, and half as potential. We now make the analogous
comparison in the quantum-mechanical system for the ground (» = 0) state.

The wavefunction is

Yo(x) = (B/m)"/* exp(—Bx?/2) (3-75)

and the probability distribution of the particle along the x coordinate is given by wg (x).
The total energy is constant and equal to

Eo= %hv = (h/4m)/k/m (3-76)
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and the potential energy as a function of x is
1 2
Vix)= Ekx (3-77)

The probability for finding the oscillating particle in the line element dx around some
point x7 is 1//5 (x1) dx, since g of Eq. (3-75) is normalized. Hence, the average value
for the potential energy is simply the sum of all the potential energies due to all the
elements dx, each weighted by the probability for finding the particle there:

o0 +00
V= / [prob. to be in dx][V atdx]dx = wg(x)V(x) dx (3-78)
This is
_ 1 +00 1 1
v =p/m'? Sk / exp (=px?)aPdx=\/B/m sk o\[n/B> (379

where we have referred to Appendix 1 to evaluate the integral. Using the definition of
B (Eq. 3-17) we have

o0

V =k/AB = (k/4) - h ) ~/mk) = (h/87)\/k/m (3-80)

which is just one half of the total energy [Eq. (3-76)]. This means that the average
value of the kinetic energy must also equal half of the total energy, since V + T = E.
We thus arrive at the important result that the ratio of average potential and kinetic
energies is the same in the classical harmonic oscillator and the ground state of the
quantum-mechanical system. This result is also true for the higher states. For other
kinds of potential, the storage need not be half and half, but whatever it is, it will be the
same for the classical and quantum-mechanical treatments of the system. We discuss
this point in more detail later when we examine the virial theorem (Chapter 11 and
Appendix 8).

D 3-6 Vibrations of Diatomic Molecules

Two atoms bonded together vibrate back and forth along the internuclear axis. The
standard first approximation is to treat the system as two nuclear masses, m| and m>
oscillating harmonically with respect to the center of mass. The force constant % is
determined by the “tightness” of the bond, with stronger bonds usually having larger k.

The two-mass problem can be transformed to motion of one reduced mass, (i, vibrat-
ing harmonically with respect to the center of mass. w is equal to mymo/(m1 + m»).
The force constant for the vibration of the reduced mass remains identical to the force
constant for the two masses, and the distance of the reduced mass from the center
of mass remains identical to the distance between m and m;. Thus we have a very
convenient simplification: We can use the harmonic oscillator solutions for a single
oscillating mass u as solutions for the two-mass problem. All of the wavefunctions and
energy formulas are just what we have already seen except that m is replaced by . The
practical consequence of this is that we can use the spectroscopically measured energy
spacings between molecular vibrational levels to obtain the value of £ for a molecule.
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EXAMPLE 3-4 There is a strong absorption in the infrared spectrum of HCl at
2992 cm~!, which corresponds to an energy of 5.941 x 1072Y J. This light energy,
E, is absorbed in order to excite HCI from the n = 0 to the n = 1 vibrational state.
What is the value of %, the force constant, in HC1?

(] 3

SOLUTION » The vibrational spacing #v must be equal to 5.941 x 1029J. We know that,
since u replaces m, v = (1/2m)+/k/w, which means that k = 4712E2,u/h2. The formula for p
is mymcy/(myg +mey) = 1.614 x 10~27 kg. It follows that k is equal to 472(5.941 x 10~297)2
(1.614 x 10~27kg) /(6.626 x 10734J5)2 =512N m~!. <

-7 Summary

In this chapter we have discussed the following points:

1.

6.

The energies for the quantum-mechanical harmonic oscillator are given by the for-
mula £, =(m+1/2)hv, n=0,1,2,..., where v=(1/27)/k/m. This gives
nondegenerate energy levels separated by equal intervals (2v) and a zero-point
energy of hv/2.

The wavefunctions for this system are symmetric or antisymmetric for reflection
through x =0. This symmetry alternates as n increases and is related to the presence
of even or odd powers of y in the Hermite polynomial in .

Each wavefunction is orthogonal to all of the others, even in cases where the sym-
metries are the same.

The harmonic oscillator wavefunctions differ from particle-in-a-box wavefunctions
in two important ways: They penetrate past the classical turning points (i.e., past
the values of x where £ =), and they have larger distances available to them as a
result of the opening out of the parabolic potential function at higher energies. This
gives them more room in which to accomplish their increasing number of wiggles
as n increases, and so the energy does not rise as quickly as it otherwise would.

The manner in which the total energy is partitioned into average potential and kinetic
parts is the same for classical and quantum-mechanical harmonic oscillators, namely,
half and half.

Vibrations in molecules are usually approximately harmonic. Mass is replaced by
reduced mass in the energy formula. Measuring the energy needed to excite a
molecular vibration allows one to calculate the harmonic force constant for that
particular vibrational mode.

3-7.A Problems

3-1. From the equation of motion (3-5) show that the classical distribution function is

proportional to (1 —x2/L%)~1/2,
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3-2.

3-4.

3-5.

3-8.

3-9.

3-10.

Chapter 3 The One-Dimensional Harmonic Oscillator

A classical harmonic oscillator with mass of 1.00 kg and operating with a force
constant of 2.00 kg s™2 =2.00 ] m~2 is released from rest at =0 and x =
0.100 m.

a) What is the function x (¢) describing the trajectory of the oscillator?
b) Where is the oscillating mass when ¢ = 3 seconds?

c) What is the total energy of the oscillator?

d) What is the potential energy when ¢ = 3 seconds?

e) What is the time-averaged potential energy?

f) What is the time-averaged kinetic energy?

g) How fast is the oscillator moving when ¢ = 3 seconds?

h) Where are the turning points for the oscillator?

i) What is the frequency of the oscillator?

. Find the expression for the classical turning points for a one-dimensional har-

monic oscillator in terms of n, m, &, and k.

a) Equation (3-73) for ¥, () is a rather formidable expression. It can be broken
down into three portions, each with a certain purpose. Identify the three parts
and state the role that each plays in meeting the mathematical requirements
on .

b) Produce expressions for the normalized harmonic oscillator with n =0, 1, 2.

Operate explicitly on ¥y with H and show that v is an eigenfunction having
eigenvalue Av/2.

. a) At what values of y does ¥, have a node?

b) At what values of y does 1/,22 have its maximum value?

. Give a simple reason why (2 + y — 3y%)exp(—)?/2) cannot be a satisfactory

wavefunction for the harmonic oscillator. What about 2yexp(+)?/2)? You
should be able to answer by inspection, without calculation and without reference
to tabulations.

Consider the function (32x> — 160x> + 120x) exp(—x2 /2).

a) How does this function behave at large values of +x? Explain your answer.
b) What can you say about the symmetry of this function?
¢) What are the value and slope of this function at x =07?

Let f(x)=3cosx +4. f(x)isexpressedasapowerseriesinx: f(x)=)c,x",
withn=0,1,2,....

a) What is the value of ¢y?
b) What is the value of ¢1?

Only one of the following is H5(y), a Hermite polynomial. Which ones are not,
and why?

a) 16)° 4+ 130y

b) 24y° — 110> +90y — 18
¢) 32)° —160y% 4+ 120y
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3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

3-17.

3-18.

3-19.

3-20.

3-21.

3-22,

3-23.

Sketch the function (1 — 2x2) exp(—xz) Versus x.

Given that [;° x exp(—x?)dx =1/2,and [;~ x? exp(—x?) dx = /7 /4, evaluate

a) ffoooxexp(—xz)dx
b) ffooox2 exp(—x2)dx

Evaluate [ (x + 4x3) exp(—5x2) dx.

For the n =1 state of the harmonic oscillator:

a) Calculate the values of the classical turning points.

b) Calculate the values of the positions of maximum probability density.

¢) What is the probability for finding the oscillator between x =0 and x = co0?

d) Estimate the probability for finding the oscillator in a line increment Ax equal
to 1% of the distance between classical turning points and centered on one of
the positions of maximum probability density.

Calculate the probability for finding the ground state harmonic oscillator beyond
its classical turning points.

Use the differential expression (3-63) for Hermite polynomials to produce H, ().
Use the generating function (3-65) to produce H> ().

Write down the Schrodinger equation for a three-dimensional (isotropic) har-
monic oscillator. Separate variables. What will be the zero-point energy for
this system? What will be the degeneracy of the energy level having a value of
(9/2)hv? (5/2)hv? Sketch (roughly) each of the solutions for the latter case
and note their similarity to case (b) in Fig. 2-16.

Suppose ¥ (x) = (1/2)kx? for x > 0, and oo for x < 0. What can you say about
the eigenfunctions and eigenvalues for this system?

a) Evaluate H3(x) at x =2.
b) Evaluate H>(sin6) at 6 =30°.

What is the average potential energy for a harmonic oscillator when n =5? What
is the average kinetic energy?

Each degree of translational or rotational freedom can contribute up to %R to the
molar heat capacity of an ideal diatomic gas, whereas the vibrational degree of
freedom can contribute up to R. Explain.

Calculate the force constants for vibration in H19F, H35C1, H81Br, and H127L
given that the infrared absorptions for the » =0 to n = 1 transitions are seen,
respectively, at 4138, 2991, 2649, and 2308 cm~!. What do these force constants
imply about the relative bond strengths in these molecules?
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Multiple Choice Questions
(Try to answer these without referring to the text.)

1. Which one of the following statements conflicts with the quantum mechanical results
for a one-dimensional harmonic oscillator?

a) The smaller the mass of the oscillating particle, the greater will be its zero-point
energy, for a fixed force constant.

b) The frequency is the same as that of a classical oscillator with the same mass and
force constant.

c) Increasing the force constant increases the spacing between adjacent energy
levels.

d) The spacing between adjacent energy levels is unaffected as the vibrational quan-
tum number increases.

e) The vibrational potential energy is a constant of motion.

2. A quantum-mechanical harmonic oscillator

a) spends most of its time near its classical turning points in its lowest-energy state.
b) has ¢ =0 at its classical turning points.

¢) has doubly degenerate energy levels.

d) has energy levels that increase with the square of the quantum number.

e) None of the above is a correct statement.

3. Light of wavelength 4.33 x 10~ m excites a quantum-mechanical harmonic oscilla-
tor from its ground to its first excited state. Which one of the following wavelengths
would accomplish this same transition if i) the force constant only was doubled? ii)
the mass only was doubled?

a) 433x107°m
b) 2.16 x 107 m
¢) 3.06 x 107°m
d) 6.12x 10 m
e) 8.66 x 107 m

4. For a classical harmonic oscillator, the probability for finding the oscillator in the
middle 2% of the oscillation range is

a) greater than 0.02.

b) equal to 0.02.

¢) less than 0.02.

d) unknown since it depends on the force constant.
e) unknown since it depends on the amplitude.



Chapter 4

The Hydrogenlike lon, Angular
Momentum, and the Rigid Rotor

[J 41 The Schrddinger Equation and the Nature
of Its Solutions

4-1.A The Schrédinger Equation

Consider the two-particle system composed of an electron (charge —e) and a nucleus
having atomic number Z and charge Ze. (See Appendix 12 for values of physical
constants, such as e.) Let x1, 1, z1 be the coordinates of the nucleus and x», ), z2
be those for the electron. The distance between the particles is, then, [(x] — x2)2 +
(y1 — »)? + (21 — 22)%1'/2. The potential energy is given by the product of the charges
divided by the distance between them. If e is expressed in coulombs, C, the potential
energy in joules is

_ —Ze?
= /2
4 g [(x1 —x2)% 4+ (11 — »)? + (21 — 22)?] /

where &g is the vacuum permittivity (8.8542 x 10712 J=! C2 m~!). The time-
independent Schrodinger equation for this system is

—h? 32+82+32 h? a2+a2+a2
8m2M \9x2  ay?  9z0 ) 8wPme \0x3 9y 923

Vv

(4-1)

ze }w )
- 12 x15y1a217-x27y2a22
dreg [(x1 —x2)2 + (1 — 1)? + (21 — 22)?] /
:Ew(xlyylﬁzlaXZa.VZsZZ) (4_2)

where M and m,. are the masses of the nucleus and electron, respectively. The
hamiltonian operator in brackets in Eq. (4-2) has three terms, corresponding to a
kinetic energy operator for the nucleus, a kinetic energy operator for the electron, and
a potential term for the pair of particles.

Equation (4-2) has eigenfunctions v that are dependent on the positions of both the
electron and the nucleus. It is possible to convert to center-of-mass coordinates and
then to separate Eq. (4-2) into two equations, one for the motion of the center of mass
and one for a particle of reduced mass moving around a fixed center to which it is
attracted in exactly the same way the electron is attracted to the nucleus. Because this

89
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conversion is rather tedious, we will not perform it in this book,! but merely discuss the
results. The first of the two resulting equations treats the center of mass as a free particle
moving through field-free space; its eigenvalues are simply translational energies of
the ion. For us, the interesting equation is the second one, which is

—h? (32 N 32 N 32) Ze? o \
— |+t =+ ) X, ),z
82w \0x2  9y? 922 4n€0(x2+y2+22)1/2
=Ey(x,y,2) (4-3)

The quantity u is the reduced mass for the particle in our center-of-mass system, and
is given by

pn=meM/(me+ M) (4-4)

The coordinates x, y, and z are the coordinates of the reduced-mass particle with respect
to the center of mass of the system.

Even without going through the detailed procedure of converting to center-of-mass
coordinates, we can show that Eq. (4-3) makes sense. In the idealized case in which M
is infinitely greater than m., u equals m., and Eq. (4-3) becomes just the Schrodinger
equation for the motion of an electron about a fixed nucleus at the coordinate origin.
For real atoms or ions this would not be a bad approximation because, even in the
case of the lightest nucleus (i.e., the hydrogen atom), M is nearly 2000 times m., and
so u is very close to me, and the center of mass is very near the nucleus. Therefore,
the result of using center-of-mass coordinates to separate the Schrodinger equation is
almost identical to making the assumption at the outset that the nucleus is fixed, and
simply writing down the one-particle Schrodinger equation:

i (az + 2 +82> ze Yy, ) =EY(x,y.2)  (4-5)
— X,y,Z = x,y,z -
8wZme \ 0x2  09y? 9z 47180(x2+y2+22)1/2

The use of m, instead of u [i.e., Eq. (4-5) instead of (4-3)] has no effect on the qual-
itative nature of the solutions. However, it does produce small errors in eigenvalues—
errors that are significant in the very precise measurements and calculations of atomic
spectroscopy (Problem 4-1). In what follows we shall use p, but for purposes of
discussion we will pretend that the nucleus and center of mass coincide.

Equation (4-3) can be transformed into spherical polar coordinates. (Some important
relationships between spherical polar and Cartesian coordinates are given in Fig. 4-1).
The result is

[(—h? /872 n) V2 — (Z&? Jdmeor) ¥ (r, 6, ) = EYr (r, 6, ¢) (4-6)

Here V2 is understood to be in spherical polar coordinates. In these coordinates it
looks quite complicated:?

2 L (50 N L P L1 32 “n
==—\|r— — | smmb— -5 5 -
r2 dr ar r2sin6 96 90 r2sinZ 6 3>

Isee, for example, Eyring et al. [1, Chapter VI] or Levine [2, pp. 127-130].
2See, e.g., Eyring et al. [1, Appendix III].
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x =rsin 0 cos ¢

y =rsinfsing o< x,y,z<o

z=rcos @ L_0~ 0<r<e
0<6<m
0<¢p<2n

|
|
|
i
dv = r? sin 6 dr df d¢ :
l
|
|
|

Figure 4-1 » The spherical polar coordinate system. The angle ¢ is called the azimuthal angle.
Notice that the differential volume element is not equal to dr d6 d¢ and that the ranges of values for
r, 6, ¢ are not —oo to 400.

However, this coordinate system is the natural one for this system and leads to the
easiest solution despite this rather formidable looking operator.

Notice that the potential term, —Z e’ /4mepr, hasno 6 or ¢ dependence. The potential
is spherically symmetric. However, 6 and ¢ dependence does enter the hamiltonian
through V2, so the eigenfunctions v may be expected to show angular dependence.

Next we describe the solutions of the Schrodinger equation (4-6), relegating to later
sections the mathematical details of how the solutions are obtained.

EXAMPLE 4-1 Using the spherical polar coordinate system of Fig. 4-1, calculate
the volume occupied by the skin of a spherical shell, where the inside radius of the
skin is 100.0 mm and the thickness of the skin is 1.000 mm.

SOLUTION » One way to solve this problem is to calculate the volume inside the entire sphere,
including the skin, and then to subtract the volume of the sphere occupying the space inside the
skin. The formula for the volume of a sphere of radius r can be calculated from dv by integrating
7 from O to r, 6 from O to 7, and ¢ from O to 27:

r ) T 2 ’,3 . o
V = redr sin6do dop=—| - —cosO|T -
/0 /0 /(; ¢ 3 lo lo 215

2 =1 2m =t
=—(—(-1-1) 2n==mnr
3 3

(You presumably already knew this formula, but it is useful to review how it comes out of this
integration.) Proceeding,
Vekin = V (r=101 mm) — V (» = 100 mm)

_4 3_ 3 _ 5 3
= 37'[[(101 mm) (100 mm)~]=1.269 x 10°mm

Another way (slightly less exact) to approximate this volume is to calculate the area of the spherical
shell (4772) and multiply by its thickness:
V ~4r? Ar = 47(100 mm)? - 1.00 mm

= 1.257 x 10° mm?>

For a skin whose thickness is small compared to its radius, we see that this approximation is
very good. <
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4-1.B The Nature of the Eigenvalues

The potential energy, —Ze?/4megr, becomes negatively infinite when » =0 and
approaches zero as » becomes very large. This potential is sketched in Fig. 4-2 for the
case in which Z =1. We expect the energy levels to diverge less rapidly here than was
the case for the harmonic oscillator since the “effective box size” increases more rapidly
with increasing energy in this case than in the harmonic oscillator case. (See Fig. 2-3
for the one-dimensional analogs.) Since the harmonic oscillator levels are separated by
a constant (hv, for one- or three-dimensional cases), the hydrogenlike ion levels should
converge at higher energies. Figure 4-2 shows that this is indeed the case. Furthermore,
by analogy with the case of the particle in a box with one finite wall, we expect the
allowed energies to form a discrete set for the classically trapped electron (£ < 0)
and a continuum for the unbound cases (£ > 0). Thus, the spectrum of eigenvalues
sketched in Fig. 4-2 is in qualitative accord with understandings developed earlier.
The lowest allowed energy for the system is far above the low-energy limit (—oo) of
the potential well. This corresponds to the finite zero point energy which we have seen

%//
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Figure 4-2 » The potential function V' = —e? /4megr with eigenvalues superimposed (dashed

lines). Degeneracies for the first few levels are noted on the right.
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in other systems where particle motion is constrained. Here it means that, at absolute
zero, the electron does not come to rest on the nucleus (which would give T =0,
V =—o00, E = —00), but rather continues to move about with a finite total energy.

All of the energy levels of Fig. 4-2 are degenerate except for the lowest one. The
order of the degeneracy is listed next to each of the lowest few levels in Fig. 4-2.
This degeneracy is not surprising since we are dealing here with a three- dimensional
system, and we have earlier seen that, in such cases (e.g., the cubic box), the physical
equivalence of different directions in space can produce degeneracies (called “spatial
degeneracies”). We shall see later that some of the degeneracies in this system do
indeed result from directional equivalence (here, spherical symmetry), whereas others
do not.

The discrete, negative eigenvalues are given by the formula

—uZz%e* Z?

E,=———==(-13.6058eV)—, n=1,2,3,... 4-8
" 8eZh2n? ( © )n2 " (4-8)

EXAMPLE 4-2 Calculate the ionization energy (I E) of C>% in its ground state, in
electron volts.

SOLUTION » The ionization energy equals the negative of the ground state energy. Z =6 and
n=1,s0 E=(13.6058eV) 30 =489.808eV. <

4-1.C The Lowest-Energy Wavefunction

We will now discuss the lowest-energy eigenfunction of Eq. (4-6) in some detail, since

an understanding of atomic wavefunctions is crucial in quantum chemistry. The deriva-

tion of formulas for this and other wavefunctions will be discussed in later sections,

but it is not necessary to labor through the mathematical details of the exact solution of

Eq. (4-6) to be able to understand most of the essential features of the eigenfunctions.
The formula for the normalized, lowest-energy solution of Eq. (4-6) is

W (r) = (1//7)(Z/a0)*'* exp(—Zr/ao) (4-9)

where ap =5.2917706 x 10~ ! m (called the Bohr radius) and Ze is the nuclear charge.
A sketch of ¥ versus 7 for Z =1 is superimposed on the potential function in Fig. 4-3a.
It is apparent that the electron penetrates the potential barrier (Problem 4-3).

The square of the wavefunction (4-9) tells us how the electron is distributed about
the nucleus. In Fig. 4-3b is plotted %() as a function of ». We refer to ¥ as the
electron probability density function. In this case, the probability density is greatest at
the nucleus (» = 0) and decays to zero as r becomes infinite.

It is important for the chemist to be able to visualize the electron distributions, or
charge “clouds,” in atoms and molecules, and various methods of depicting electron
distributions have been devised. In Fig. 4-3 a few of these are presented for the lowest-
energy wavefunction. The dot picture (Fig. 4-3c) represents what one would expect
if one took a multiflash photograph of a magnified, slowed-down hydrogenlike ion
(assuming no disturbance of the ion by the photographing process). Each dot represents
an instantaneous electron position, and the density of these dots is greatest at the nucleus.
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Figure 4-3 » (a) H-atom wavefunction superposed on —e? /r potential curve. (b) Wavefunction
squared for H and He™. (c) Dot picture of electron distribution. (d) Contour diagram of electron
distribution. (e) Computer-generated graphic version of (d). (f) Single-contour representation of
electron distribution.

An alternative way of picturing the charge is to draw a contour diagram, each contour
indicating that the density has increased or decreased by a certain amount (Fig. 4-3d).
A more striking version of the contour plot for 1//12S is shown in Fig. 4-3e. Perhaps the
simplest representation is a sketch of the single contour that encloses a certain amount
(say 90%) of the electronic charge (Fig. 4-3f). (We have been describing the electron
as a point charge moving rapidly about the nucleus. However, for most purposes it is
just as convenient to picture the electron as being smeared out into a charge cloud like
those sketched in Fig. 4-3. Thus, the statements the electron spends 90% of its time
inside this surface, and 90% of the electronic charge is contained within this surface,
are equivalent.)

The multiflash “photograph” sketched in Fig. 4-3c shows the electron probability
density to be greatest at the nucleus. Suppose that we were just to take a single flash
photograph. Then the electron would appear as a single dot. At what distance from the
nucleus would this dot be most likely to occur? Surprisingly, the answer is not zero.
Despite the fact that the probability density is a maximum at » = 0, the probability for
finding the electron in a volume element at the nucleus approaches zero. This is because
the probability density, ¥2(r), is the measure of the probability per unit volume for the
electron being at various distances from the nucleus. When we compare a tiny volume
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4m r*y?

> r
00 r

mp

Figure 4-4 » The volume-weighted probability density for the lowest-energy eigenfunction of the
hydrogenlike ion. The most probable value of r occurs at rmp.

element near the nucleus with an identical one farther out, we see from Fig. 4-3 that
there is indeed more likelihood for the electron being in the volume element nearer the
nucleus. But there are more volume elements associated with the larger distance. (The
number of identical volume elements varies as the area of the surface of the sphere,
47r2.) Hence, the probability for the electron being in a radial element dr at a given
distance r from the nucleus is given by the number of volume elements at » times the
probability density per unit volume element. The reason for the near-zero probability
for finding the electron in a volume element at the nucleus is that the number of volume
elements associated with » = 0 is vanishingly small compared to the number associated
with larger » values. Figure 4-4 is a graph of 477212, the volume-weighted probability
density. It is apparent that the most probable value of r, ryyp, occurs at a nonzero
distance from the nucleus. [The reader is familiar with analogous distinctions. Rhode
Island has a higher population density than Texas, but the population of Texas (density
times area) is greater. Again, matter in the universe has a much higher mass density
in stars and planets than in intergalactic gas or dust, but the total mass of the latter far
exceeds that of the former due to the much greater volume of “empty” space.]

EXAMPLE 4-3 Estimate, for the hydrogen atom in the 1s state, the amount of
electronic charge located in a spherical shell that is 1.00 pm thick and which has a
radius of 60.0 pm.

SOLUTION » Recall from Example 4-1 that, for relatively thin shells like this, we can
estimate the volume of the shell by taking its area times its thickness. Also, we expect
the charge density, 1//2, to change very little over the 1.00pm thickness of the shell, so
we can take its value at 60.0pm as constant. Then charge density = Vi = 60.0pm) =
(y'rag)_1 exp(—2(60.0pm)/ag). Recalling that ag = 52.9 pm, this gives 0.0329a0_3. This gives
density per cubic bohr. To proceed, we can either convert this to density per cubic picometer by
dividing by (52.9 pm/ bohr)3 or by converting » to bohr, by dividing by 52.9 pm/bohr. We choose the
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latter. Then » =60.0pm/52.9 pm/bohr = 1.13ap, and Ar = 1.00pm/52.9 pm/bohr = 0.01894y,
so volume of shell = 47r2Ar = 47(1.13a9)?(0.0189ap) = 0.3028a3. Volume times density

= (0.3028(18)(0.0329(10_ 3) =0.010. So 1% of the electronic charge resides in this shell. |

We can calculate the value of 71, by finding which  value gives the maximum value
of 47722, Recall that we can do this by finding the value of r that causes the first
derivative of 47 rzwz to vanish, that is, we require

(d/dr)[amr*n = (Z ao)? exp(—2Zr/ag)] =0 (4-10)
This gives
constants - [2r — (2Zr2/a0)] exp(—2Zr/ap) =0 “4-11)

The term in brackets vanishes when » = ag/Z, so this is the value of ryp. For
Z =1, rmp=ap; ag is the most probable distance of the electron from the nucleus in
the hydrogen atom. For the He™ ion (Z = 2), the most probable distance is only half
as great, consistent with a more contracted charge cloud.

Of more interest, often, is the average value of the distance of the electron from
the nucleus. If we could sample the instantaneous distance of the electron from the
nucleus a large number of times and calculate the average value, what sort of result
would we obtain? The probability for finding the electron at any given distance r is
given by the volume-weighted probability density of Fig. 4-4. Inspection of that figure
suggests that the average value of the position of the electron 7 is greater than 7y, the
most probable value. But exactly how much bigger is 7 than r,p? How should we
compute the average value? The reader is familiar with the way an average test score
is calculated from a collection of scores. For example, suppose the series of scores to
be averaged is 0, 2, 6, 6, 7,7, 7, 10, and that 0 and 10 are the minimum and maximum
possible scores. The average is given by

sum of scores

average =
number of scores

042464647 +T+T7+10 45
- 8 )

(4-12)

Another way to write this is

frequency of score x score

average = -
sum of frequencies

1:040-1+1-240-340-440-5+2-6+3-74+0-8+0-9+1-10
14+0+14+0+0+0+2+34+0+0+1

or

Z}go (frequency of i) - i

average = (4-13)

19, (frequency of i)

The same idea is used to compute a quantum-mechanical average. For the average value
of r we take each possible value of 7 times its frequency (given by ¥>dv) and sum
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over all these values.? For a continuous variable like 7, we must resort to integration to
accomplish this. We divide by the “sum” of frequencies by dividing by f V2 dv. Thus

SRy 2qy [P d [ sing dO [5° ry?r2dr
fall space W2dv - fall space W2dv

7=

(4-14)

The denominator is unity since ¥ is normalized. The integrals over 6 and ¢ involve
parts of the volume element dv, and not V2, because this wavefunction (4-9) does not
depend on 6 or ¢. Continuing,

o¢]
F=¢lF" —cosff -m! (Z/ao)3/ rdexp (—2Zr/ag) dr (4-15)
0

Utilizing the information in Appendix 1 for the integral over r, this becomes

2 [—(—=1) + 11(1/7)(Z Jap)33!
(2Z Jap)*

=

(4-16)

=47 - (1/7)(Z Jap)® - 6ay /16 Z* = 32%0 4-17)
(It is useful to remember that integration over the ¢ and 6 parts of dv gives 47 as the
result if no other angle-dependent functions occur in the integral.) Comparing (4-17)
with our expression for ryp indicates that 7 is 1.5 times greater than 7.

Notice that the lowest-energy eigenfunction is finite at ¥ =0 even though V is infinite
there. This is allowed by our arguments in Chapter 2 because the infinity in ' occurs
at only one point, so it can be cancelled by a discontinuity in the derivative of . This
is possible only if ¥ has a corner or cusp at » =0 (see Fig. 4-3a and e).

4-1.D Quantum Numbers and Nomenclature

There are three quantum numbers, 7, [, and m (all integers), characterizing each solution
of the Schrodinger equation (4-6). Of these, only » enters the energy formula (4-8),
so all solutions having the same values of n but different values of / and m will be
energetically degenerate. As is shown in following sections, these quantum numbers
are related in their allowed values. The / quantum number must be nonnegative and
smaller than n. The m number may be positive, negative or zero, but its absolute value
cannot exceed /. Thus,

/1=0,1,2,...,n—1 (4-18)
|m| <l (4-19)

For the lowest-energy wavefunction we have already described, n =1, so/=m =0.
No other choices are possible, so this level is nondegenerate. The convention (from
atomic spectroscopy) is to refer to an / = 0 solution as an “‘s function,” or “‘s orbital.”
(For [=0,1,2,3,4,5, the spectroscopic designation goes s, p, d, f, g, h.) Because n
equals unity, the wavefunction is labeled 1s.

3The 472 part of 4r2y? in Fig. 4-4 is included in dv, as will be seen shortly.
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When n =2, there are four sets of / and m quantum numbers satisfying rules (4-18)
and (4-19). They are listed below with their spectroscopic labels:

I=0,m=0 2s I=1,m=0 2po

(4-20)
I=1,m=—-1 2p_ I=1,m=+4+1 2ppy

Extending these rules to the n = 3 energy level produces nine functions designated
3s, 3p—1, 3p0, 3p+1, 3d—3, 3d_1, 3dg, 3d41, 3d4+>. In general, the degeneracy of the
energy level characterized by 7 is n?.

EXAMPLE 4-4 Explain how it comes about from the quantum number rules that
the degeneracy equals n>.

SOLUTION » The rules indicate that, for each value of n, there are n values of / (e.g.,
n=1,l=0;n=2,l=0and 1,...), and each value of / is associated with 2/ + 1 m; values (e.g.,
=2, mj=-2,-1,0,1,2, which is five values). Note that 2/ + 1 must be an odd number of
member states, and the odd number within each set keeps increasing as / increases. Thus, for
n=4,1=0,1,2,3, leading to degenerate sets of states, respectively having 1, 3, 5, and 7 members.
But a sequence of n odd numbers, starting from 1, is always equal to n?. QED <

4-1.E Nature of the Higher-Energy Solutions

The second energy level is associated with the 2s, 2p_1, 2pg and 2p,; orbitals. The
wavefunction for the 2s state is

1% - (£>3/2 (2—g)ex (—Zr) (4-21)
*7 4v2r \ao a0 ) P\ 249

Since this is a function of » only, it is a spherically symmetric function. (In fact, all
s orbitals are spherically symmetric.) The 2s orbital is more “spread out” than the 1s
orbital because the exponential in 15 decays more slowly and because the exponential
is multiplied by Zr/aq (the 2 becomes negligible compared to Zr/ag at large r). As a
result, the charge cloud associated with the 2s orbital is more diffuse. (For this reason,
when we approximate a polyelectronic atom like beryllium by putting electrons in
Is and 2s orbitals the 2s electrons are referred to as “outer’” and the 1s electrons are
called “inner.”

At small values of r, (2 — Zr/agp) is positive, and at large distances it is negative,
S0 Yros has a spherical radial node (a zero in the r coordinate). In Fig. 4-5 the first
three s orbitals are plotted. We see that the nth s orbital has (» — 1) spherical nodal
surfaces dividing regions where the wavefunctions have different sign. The appearance
of more and more nodes in the radial coordinate as the energy increases is certainly
familiar from previous examples. Notice how the wavefunctions oscillate most rapidly
and nodes are most closely spaced in the regions near the nucleus where the electron
classically would have its greatest kinetic energy.

The 2s orbital is orthogonal to the 1s orbital, and also to all higher s orbitals. This
would not be possible if there were no radial nodes. The product ;s> will vanish
upon integration only if it either vanishes everywhere or else has positive and negative
regions that cancel on integration. Since V15 and s are almost everywhere finite, the
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former condition does not occur. Since 15 has the same sign everywhere, their product
can have positive and negative regions only if o5 has positive and negative regions,
and hence, a node.

Let us now consider the 2p functions. They are*

1 (zZ\"? zr —7Zr
Vap, = Wir <%> %exp< 2 )cos@ (4-22)
1 [ Z\"? zr —Zr\ . '
Vopy, = $m (%) w0 exp (2—00) sin @ exp (Ei¢) (4-23)

All of these functions have the same radial exponential decay as the 2s orbital, so we
can say that the 2s and 2p orbitals are about equal in size. However, since the 2p orbitals
contain the factor Zr/ay where the 2s contains (2 — Zr/ayp), the 2p orbitals vanish at
the nucleus and not at any intermediate » value; they have no radial nodes. The 2p
orbitals are endowed with directional properties by their angular dependences. The
2po orbital is particularly easy to understand because the factors » cos 6 behave exactly
like the z Cartesian coordinate. Hence, we can rewrite 2pg (also called 2p;) in mixed

coordinates as
o= () o0 () @2
=——|[ — zex -
== 4 /ax \ao P\ 240

" 4nr2y
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Figure 4-5 » s wavefunctions versus r and volume-weighted electron densities versus 7 for the
hydrogenlike ion.

r

r

4The = factor in Y2p,, results from a phase factor that is omitted from many textbooks. It has no effect on
our discussion here, but is consistent with an implicit choice of sign for certain integrals appearing in Appendix 4.
See, e.g., Zare [4, Chapter 1].
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(Be careful not to confuse the atomic number Z with the coordinate z.) The exponential
term in Eq. (4-24) is spherically symmetric, resembling a diffuse 1s orbital. The
function z vanishes in the xy plane and becomes increasingly positive or negative as
we move away from the plane in either direction. As a result, ¥p_ looks as sketched in
Fig. 4-6. It has nearly spherical lobes, one with positive phase and one with negative
phase. When /3, is squared, the contour lines remain unchanged in relative position,
but the function becomes everywhere positive in sign.

The 2p4; orbitals are more difficult to visualize since they are complex functions.
The charge distributions associated with these orbitals must be real, however. These
are given by ¥ *yr, where ¥ * is the complex conjugate of vr. (Recall that, for complex
wavefunctions, ¥ *y must be used for probability distributions, rather than ¥2.) One
obtains the complex conjugate of a function by merely reversing the signs of all the i’s
in the function. It is evident from Eq. (4-23) that w;pﬂ =—12p_, and w;p,l =—Y2p,,-

Hence W;pﬂ Vop,, = w;p,l Vop_, = —V2p,, V2p_,: both the 2p, | and the 2p_; orbitals

give the same charge distribution. This distribution is the same as that for the 2p,

orbital except that the angle dependence is % sin? 6 instead of cos2 6. However, since

sin? 0 4 cos? @ = 1, it follows that the sum of 2p,.; and 2p_ charge clouds must be such

r4 V4
} - X [ > X
(a) (b)
+ =
2/ 2p3, 2p,, + 202, 20_,

(c)

Figure 4-6 » (a) Drawing of the 2p; orbital. (b) Drawing of the square of the 2p; orbital. (c) Draw-
ing of wzzpz + wikp,l Yop_, + wéﬁml ¥2p,, = spherically symmetric distribution. The curved lines in
(c) are a visualization aid and are not mathematically significant.
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that, when added to the charge cloud for 2pg a spherical charge cloud results (since the
angular dependence is removed). We already know that the 2p, distribution is dumb-
bell shaped, so it follows that 2p; and 2p_; produce doughnut-shaped distributions.
(A sphere minus a dumbbell equals a doughnut. See Fig. 4-6.) The shape can also be
inferred from the sin” #-dependence, which is a maximum in the x y plane.

When solving the particle-in-a-ring problem, we saw that we could arrive at either a
set of real trigonometric solutions or a set of complex exponential solutions. Since the ¢
dependence of the 2p | orbitals is identical to that for m = £1 solutions of the particle
in the ring, the same situation holds here. Because ¥, and Yy, _, are energetically
degenerate eigenfunctions, any linear combination of them is also an eigenfunction of
the hamiltonian (Problem 2-11). Therefore, let us find linear combinations that are
entirely real. The complex part of 2y, , exp(%i¢), satisfies the relation

exp(=£ig) =cos ¢ % i sing (4-25)
so that
exp(+ip) +exp(—ig) =2cos ¢ (4-26)
and
i 'exp(4ip) — exp(—ig)] =2sin¢ (4-27)

Thus, we have two linear combinations of exp(£i¢) that are real. It follows immedi-
ately that

1 1 [(zZ\"*zr —Zr\ .
wsz=—[1//2pl—1/f2p+l]=—( ) —exp( )s1n9cos¢ (4-28)

V2 427 ao ao 2aq

Yop = ! [1// + Y ]_ ! Wz " fsing (4-29)
20y 2p-1 2P+ 4427 \ao P 2ag

V2 40
where the factor 2~ !/2 is used to maintain normality. Since » sin cos ¢ and 7 sin 6 sin ¢

are equivalent to the Cartesian coordinates x and y, respectively, Egs. (4-28) and (4-29)
are commonly referred to as the 2p, and 2p,, orbitals. They are exactly like the 2p,
orbital except that they are oriented along the x and y axes (merely replace the z in
Eq. (4-24) with x or y).

The 2s, 2py, 2py, and 2p, orbitals are all orthogonal to one another. This is easily
shown from symmetry considerations. Each 2p orbital is antisymmetric for reflection
in its nodal plane, whereas 2s is symmetric for all reflections. Hence, the product
Y25 ¥op is always antisymmetric with respect to some reflection so its integral vanishes.
The 2p functions are mutually orthogonal because, if one 2p orbital is antisymmetric
for some reflection, the others are always symmetric for that reflection. Hence, the
product is antisymmetric for that reflection. Another way to show that the 2p orbitals
are mutually orthogonal is to note that they behave like x, y, and z vectors and that these
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vectors are orthogonal (i.e., perpendicular; orthogonality in functions is equivalent to
perpendicularity in vectors). Sometimes the orthogonality of functions is most clearly
seen if we sketch out the product and note whether the positive and negative regions
cancel by symmetry (Fig. 4-7).

The n =3 level has nine solutions associated with it. The 3s orbital, plotted in
Fig. 4-5, has one more node than the 2s orbital and is more diffuse. The 3p orbitals have
the same angular terms as did the 2p orbitals so they can be written as real functions
having the same directional properties as x, y and z vectors. The 3p orbitals differ from
the 2p orbitals in that they possess a radial node and are more diffuse (see Fig. 4-8).
The remaining five levels, 3d levels, may also be written in either complex or real form.
The real orbitals are given by the formulas

3d, = (1/¥3) (3cos?6 - 1)

3dx;ay2= 2 <Z>3/2 (22,,)2 (—Zr) sini@cos2¢
- =\ — ] ex : :

. /25927 \ao 3ag p 3ap S%n 0 sin2¢

2= sin20 cos ¢

w
o
<
[N]
Il

sin 20 sin ¢ (4-30)

These angular factors, times 72, have directional properties identical to the Cartesian
subscripts on the left, except that 3d,. is a shorthand for 3d;,2_,>. These orbitals are
sketched in Fig. 4-8. Itis obvious from these figures that 3d,>_ > has the same symmetry
and orientation as the sum of the two vectors x2 and — y2, and that the other 3d orbitals
have a similar connection with the notation (except for 3d,2). The 3d functions are

Product @
O

Equal and opposite regions
cancel by symmetry

s times 2p,

. QL
AS

V&
AN\

Equal and opposite regions
2px times 2p, cancel by symmetry

Figure 4-7 » Drawings of orbitals and their products to demonstrate orthogonality.
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3p,

3d

Xz

Figure 4-8 » Some hydrogenlike orbitals at the n =3 level.

about the same size as the 3p and 3s functions, but have no radial nodes at intermediate
r values.

A general pattern emerges when we examine the nodal properties of the orbitals at
various energies. At the lowest energy we have no nodes and the level is nondegenerate.
At the next level, we find that each function possesses a single node. There is one way to
putin aradial node and so we get one 2s orbital. Or we can put in a planar node. But we
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have three choices for orthogonal orientations of this plane leading to three independent
p orbitals. At the n =3 level we find orbitals containing two nodes. The possibilities
are: two radial nodes (3s), a radial node and a planar node (3py, 3p,, 3p;), two planar
nodes (3dyy, 3dy, 3dy-, 3d,2_,2,3d2_,2,3d2_2). (But, since 22—y (P —x)=
— y?, the last three 3d orbitals are not linearly independent. Hence the last two
are combined to form 3d,: 2 —x? 42—y =32 — (24P + ) =32 -2
This function can be seen to correspond to a positive dumbbell encircled by a small
negative doughnut, or “belly band.” The two nodes in this orbital arising from nodes in
6 are conical surfaces rather than planes.) It is apparent that the degeneracies between
various 2p orbitals, or 3d orbitals, are spatial degeneracies, due only to the physical
equivalence of various directions in space. The degeneracy between 2s and 2p, or 3s,
3p, and 3d is not due to spatial symmetry. The fact that an angular node is energetically
equivalent to a radial node is a peculiarity of the particular potential (—Ze? /47 eqr) for
this problem. This degeneracy is removed for noncoulombic central-field potentials.
The eigenfunctions corresponding to states in the energy continuum, like the bound
states, can be separated into radial and angular parts. The radial parts of the spherically
symmetric eigenfunctions at two nonnegative energies are given in Fig. 4-9. Note that
the rate of oscillation of these functions is greatest at the nucleus, where the local kinetic
energy is largest, in accord with the ideas presented in Chapters 1 and 2. Unbound-state

| /\ /\ /\
i
[\ d
| \-/ v \/
-
e
m\. 1 1 v 1 1 1
< 10 20 30
S r (bohrs)
(b)

Figure 4-9 » Radial part of unbound H-atom states (times ») versus 7 at two energies: (a) £ =
13.6eV; (b) E=0.
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wavefunctions are not used in most quantum chemical applications, so we will not
discuss them further in this book.

EXAMPLE 4-5 A nodal plane is one through which a wavefunction is antisymmetric
for reflection. Consider the 3dy, and 3d,. orbitals of Fig. 4-8. Through which
planes do these two orbitals have different reflection symmetries?

SOLUTION » 34, is antisymmetric for reflection only through the x, z and y, z planes. 3d),
is antisymmetric for reflection only through the x, z and x, y planes. Hence, these orbitals differ
in their symmetries for reflection through the y, z and x, y planes. <

[ J 4-2 Separation of Variables

We shall indicate in some detail the way in which the Schrédinger equation (4-6) is
solved. Recall the strategy of separating variables which we used in Section 2-7:

1. Express v as a product of functions, each depending on only one variable.
2. Substitute this product into the Schrédinger equation and try to manipulate it so that

the equation becomes a sum of terms, each depending on a single variable. These
terms must sum to a constant.

3. Since terms for different variables are independent of each other, the terms for each
variable must equal a constant. This enables one to set up an equation in each
variable. If this can be done, the initial assumption (1) is justified.

In this case we begin by assuming that

Y (r,0,¢)=R(r)O0)D () (4-31)
Substituting into Eq. (4-6) gives

—h? 0a (2R RO Lod (. d9 RO 1 d*o
—_— — | r— ——— | sinf— _—
8mw2ur? dr dr sin® do do sin?@ d¢?

Ze?
47T8()I’

RO®=EROD (4-32)

Since each derivative operator now acts on a function of a single coordinate, we use
total, rather than partial, derivative notation.

Let us first see if we can isolate the ¢ dependence. Multiplying Eq. (4-32) by
(—8m ur?sin® 6/ h> RO®) and rearranging gives

sin?0 d [ ,dR 872 ur?sin? 0 Ze?
— +————— | E+

R ar\" ar h2 4 eor
sinf d de 1 d*®
= (sino== )+ =S~ =0 (433
B d@(sm d9)+d>d¢2 (4-33)

The » and 6 dependence is still mixed in the first two terms, but we now have a rather
simple term in the coordinate ¢. Now we can argue, as in Section 2-7, that, as ¢ alone
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changes, the first three terms in Eq. (4-33) do not change. That is, if only ¢ changes,
Eq. (4-33) may be written

constant + constant + constant + (1/ d>)(d2® /d¢2) =0 (4-34)
so that
(1/®)(d*®/d¢?) = —m? (a constant) (4-35)

We call the constant —m? for future mathematical convenience. We can rearrange
Eq. (4-35) into the more familiar form for an eigenvalue equation:

d*®/d¢p? = —m> P (4-36)

We arrived at Eq. (4-36) by assuming that only ¢ changes while » and 6 are constant.
However, it should be obvious that the behavior of the term in ¢ is uninfluenced by
changes in r and 6 since it has no dependence on these coordinates. Thus, by estab-
lishing that this term is constant under certain circumstances, we have actually shown
that it must be constant under all circumstances, and we have produced an eigenvalue
equation for .

We can now proceed with further separation of variables. Since we know that the
last term in Eq. (4-33) is a constant, we can write

1d ,dR +8nzur2 Ea Ze? + 1 d . 9d® m? 0
—— = — ([ sin6— | — =
Rdr dr h? Amegr ®sinf db do sin 6

(4-37)

Note that we have separated the 6 and » dependences by dividing through by sin? 6.
We now have two terms wholly dependent on 7 and two wholly dependent on 6, their
sum being zero. Hence, as before, the sum of the two r-dependent terms must equal a
constant, 8, and the sum of the 6-dependent terms must equal — 8. Thus

d ( ,dR +8712,ur2 . Ze? R—BR 438)
JR— e — — -
dr dr h? A eor

1 d de m>e

— = (sine=—) - = O 4-39

sin6 do (Sm d@) sn2e = P 39

where we have multiplied through by R in the first equation and by ® in the second.

The assumption that ¥y = R®® has led to separate equations for R, ®, and ®. This
indicates that the assumption of separability was valid. However, there is some linkage
between R and ® via 8, and between ® and & via m.

D 4-3 Solution of the R, ©, and & Equations
4-3.A The ® Equation

The solution of Eq. (4-36) is similar to that of the particle in a ring problem of
Section 2-6. The normalized solutions are

®=(1/v27)exp(imp), m=0,£1,42, ... (4-40)

As shown in Section 2-6, the constant m must be an integer if @ is to be a single-valued
function.
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4-3.B The © Equation

There is great similarity between the mathematical techniques used in solving the R and
® equations and those used to solve the one-dimensional harmonic oscillator problem
of Chapter 3. Hence, we will only summarize the steps involved in these solutions and
make a few remarks about the results. More detailed treatments are presented in many
texts.’

The ® equation can be solved as follows:

1. Change the variable to obtain a more convenient form for the differential equation.
2. Express the solution as a power series and obtain a recursion relation.

3. Observe that the series diverges for certain values of the variables, producing
nonsquare-integrable wavefunctions. Correct this by requiring that the series termi-
nate. This requires that the truncated series be either symmetric or antisymmetric
in the variable and also that § of Eq. (4-38) and (4-39) be equal to /(/ 4+ 1) with /
an integer.

4. Recognize these truncated series as being the associated Legendre functions.

5. Return to the original variable to obtain an expression for ® in terms of the starting
coordinate.

Reference to the end of Section 3-4 will illustrate the similarity between this and the
harmonic oscillator case.
The final result for m > 0 is

QI+1) (—|m!
2 {4+ |m)

172
Orm(0) = (—1)" [ } P (cos6) (4-41)

For m < 0 the phase factor (—1)"” should be omitted.® The term in square brackets
is a normalizing function, and Pllm| (cos @) represents some member of the series of
associated Legendre functions. When m = 0, these become the ordinary Legendre
polynomials. The first few ordinary Legendre polynomials are

Pyx) =1, Pi(x)=x, P2(>6)=%(3x2 -1)
P3(x) = %(5x3 —3x) (4-42)

The first few associated Legendre functions are

Pl(x)=(1—-xHY2, P}(x)=3(1-xH2x,
Pix)=3(1—-x2), Plx)=3(1-xH2(5x2-1), (4-43)
PE(x)=15(1 —x%)x, Pj(x) =151 —x2)3/2

It is also true that

P"x)=0if |m|>1 (4-44)

5See, e.g., Pauling and Wilson [3, Chapter 5].
OThis is the same phase factor that we saw earlier for ¥pp y
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Thus, ®(0), and hence ¥ (r, 8, ¢), vanishes unless |m| </, giving us one of our quantum
number rules [Eq. (4-19)].
The associated Legendre functions satisfy an orthogonality relation:

+1
/ PP Py d = 2 H D! (4-45)

i QI+ d—mn ™"

For a further discussion of these functions, the reader should consult a more advanced
text on quantum mechanics.

4-3.C The R Equation

The R equation can be solved as follows:

1. Assume that E is negative (this restricts us to bound states), and note that 8 =/(/ + 1)
from the previous solving of the ® equation.

2. Change variables for mathematical convenience.

3. Find the asymptotic solution pertaining to the large » limit, where the R equation
becomes simplified.

4. Express the wavefunction as a product of the asymptotic solution and an unknown
function. Express this unknown function as a power series and (after dealing with
some singularities) obtain a recursion relation.

5. Note that the power series overpowers the asymptotic part of the solution unless the
series is truncated. This leads to the requirement that » be an integer and hence that
E be quantized. It also requires that n > /.

6. Recognize the truncated series to be associated Laguerre polynomials times p’,
where p is defined below.

The resulting solution is, if p = me,

12
2Z\° n—1-1)! .
Ru=—||—) s ——3 —p/2)p'L 4-46

l [(”%) 2n[(n+l)!]3:| exp(=p/2) p L,y (p) (4-46)

where p =2Zr/nag and ag = egh? /mrmee* =5.2917706 x 10~ m. The term in brack-
ets is a normalizing function. The exponential term is the asymptotic solution and it
guarantees that R(r) will approach zero as r approaches infinity. The third term, p’, is
produced in the course of removing singularities (i.e., places where parts of a differen-
tial equation become infinite). The last term, L(p), symbolizes the various members
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of the set of associated Laguerre polynomials. Like the Legendre functions, these
are mathematically well characterized. A few of the low-index associated Laguerre
polynomials are

Li(p)=1, Li(p)=2p—4,

(4-47)
Li(p) =—=3p*+18p— 18, Li(p)=—6

D 4-4 Atomic Units

It is convenient to define a system of units that is more natural for working with atoms
and molecules. The commonly accepted system of atomic units for some important
quantities is summarized in Table 4-1. [Note: the symbol 7 (“h-cross or h-bar”) is
often used in place of #/2m.] Additional data on values of physical quantities, units,
and conversion factors can be found in Appendix 10.

In terms of these units, Schrodinger’s equation and its resulting eigenfunctions and
eigenvalues for the hydrogenlike ion become much simpler to write down. Thus, the

TABLE 4-1 » Atomic Units

Values of some atomic
properties in atomic units

Quantity Atomic unit in cgs or other units (a.u.)
Mass me=9.109534 x 10728 g Mass of electron = 1 a.u.
Length ao=4mweoh? / mee? Most probable distance of 1s
=0.52917706 x 10~19m electron from nucleus of H
(=1 bohr) atom =1 a.u
Time o=aoh/ 2 Time for 1s electron in H
=2.4189 x 107175 atom to travel one bohr
=1au.
Charge e=4.803242 x 10710 esu Charge of electron = —1 a.u.
=1.6021892
%1071 coulomb
Energy e? JAmsoan=4.359814 x 10713 ] Total energy of 1s electron in
(=27.21161¢eV = 1 hartree) H atom =—1/2 a.u.
Angular h=h/2n Angular momentum for
momentum =1.0545887 x 10734 Js particle in ring = 0, 1,
2,...au.
Electric field e/aj=>5.1423 x 10°V/cm Electric field strength at
strength distance of 1 bohr from

proton =1 a.u.
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TABLE 4-2 » Eigenfunctions for the Hydrogenlike Ion in Atomic Units

Spectroscopic symbol Formula

Is (1//m)Z3? exp(—Zr)

2s (1/42m)Z3/2(2 — Zr) exp(—Zr/2)

2p. (1/43/27) Z3/%r exp(—Zr/2) sin 6 cos ¢

2p, (1/4327)Z%/%r exp(—Zr/2) sin O sin ¢

2p- (1/4327) Z3/%r exp(—Zr/2) cos O

3s (1/813/37) 23227 — 18Zr +22%r?) exp(—Zr/3)
3p« (V2/81/m)Z>/*r(6 — Zr) exp(—Zr/3) sin 6 cos ¢
3p, (V2/81/m)Z>/*r(6 — Zr) exp(—Zr/3) sin 0 sin ¢
3p: (V2/81/m)Z%%r(6 — Zr) exp(—Zr/3) cos
3d2(=3d3.2_,2) (1/81/67)Z7?r? exp(—Zr/3)(3cos? 6 — 1)
3d,2_ 2 (1/81/27) Z7/?r% exp(—Zr/3) sin” 6 cos 2¢

3d,, (1/81+/27) Z7/?r% exp(—Zr/3) sin® 0 sin 2¢

3d,- (1/81+/27) Z7?r% exp(—Zr/3) sin 26 cos ¢

3d,, (1/813/27) Z7/?r% exp(—Zr/3) sin 26 sin ¢

Schrodinger equation in atomic units is (assuming infinite nuclear mass, so that y =m.)

1 Z
-V —— |y =Ey (4-48)
2 r
The energies are
ZZ
E,= ) (4-49)

The lowest-energy solution is

Vs =+/Z3/mexp(—Zr) (4-50)

The formulas for the hydrogenlike ion solutions (in atomic units) of most interest
in quantum chemistry are listed in Table 4-2. The tabulated functions are all in real,
rather than complex, form. Problems involving atomic orbitals are generally far easier
to solve in atomic units.

D 4-5 Angular Momentum and Spherical Harmonics

We have now discussed three problems in which a particle is free to move over the
entire range of one or more coordinates with no change in potential. The first case
was the free particle in one dimension. Here we found the eigenfunctions to be simple
trigonometric or exponential functions of x. The trigonometric form is identical to the
harmonic amplitude function of a standing wave in an infinitely long string. We might
refer to such functions as “linear harmonics.” The second case was the particle-in-a-
ring problem, which again has solutions that may be expressed either as sine-cosine or
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exponential functions of the angle ¢. By analogy with linear motion, we could refer
to these as “circular harmonics.” Finally, we have described the hydrogenlike ion,
where the particle can move over the full ranges of 6 and ¢ (i.e., over the surface of a
sphere) with no change in potential. The solutions we have just described—the prod-
ucts ®; ,(0)P,,(¢p)—are called spherical harmonics and are commonly symbolized
Y1 m(6,¢). Thus form >0

QI+1) (= |m)!
4 ([ +|m])!

1/2
Yim(©, ¢)=(=1)" [ } P (cosB)exp(im¢)  (4-51)
and for m < O the factor (—1)" is omitted. Because so many physical systems have
spherical symmetry, spherical harmonics are very important in classical and quantum
mechanics.

Closely linked with spherical harmonics is angular momentum. Angular momentum
is an important physical property because it is conserved in an isolated dynamical
system; it is a constant of motion for the system. Angular momentum is described by
magnitude and direction, so it is a vector quantity.” The classical system, in the absence
of external forces, is constrained to move in such a way as to preserve both the direction
and the magnitude of this vector. For a mass of m kg moving in a circular orbit of
radius » m with an angular velocity of w radians per second, the angular momentum
has magnitude mriw kg m?/s (or, alternatively, joule seconds). The direction of the
vector is given by the right-hand rule: the index finger of the right hand points along the
particle trajectory and the extended thumb points along the angular momentum vector
(see Fig. 4-10). (Alternatively, in a right-handed coordinate system, motion of a mass
in the x y plane from +x toward 4y produces angular momentum in the 4z direction.)
In vector notation, L =r x p, where L is angular momentum, r is the position vector,
and p is the linear momentum.

Some of the more interesting properties of angular momentum relate to the situation
where circular motion occurs in the presence of an external field. A familiar example
is a gyroscope mounted on a pivot and experiencing the gravitational field of the earth.
The gyroscope flywheel is usually started with the gyroscope in an almost vertical
position. After release, the gyroscope precesses about the axis of field direction. As
time passes, the tilt of the gyroscope away from the field direction (which we take to be
the z direction) increases (see Fig. 4-11). If there were no friction in the bearings, the
angle of tilt would not change, and the gyroscope would precess about z indefinitely,
maintaining whatever angle of tilt it found itself with initially. Notice that, in such

mr

Figure 4-10 » The angular momentum vector L for a particle of mass m moving with angular
velocity w about a circular orbit of radius 7 in the direction indicated.

7Strictly speaking, angular momentum is a pseudovector—it is dual to a second order antisymmetric tensor.
However, for the remainder of this book, we can and shall ignore this distinction.
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a case, the angular momentum due to the flywheel, L¢, is conserved in magnitude
only. Its direction is constantly changing. Thus, Ly is not a constant of motion in the
presence of a z-directed field. Neither are the components Ly, and Ly, which change
in magnitude as the gyroscope precesses. However, Lg, is a constant of motion if the
angle of tilt does not change. If we add on to Lt the angular momentum L due to the
precession of the gyroscope as a whole (including the center of mass of the flywheel
but ignoring its rotation), we find that the total angular momentum for the gyroscope
(including flywheel motion), L. and its components Ly, L, and L, behave similarly
to Lt and its components (see Fig. 4-12). We may summarize these observations from
classical physics as follows: a rotating rigid body conserves L (hence, Ly, Ly, L)
in the absence of external forces. In the presence of a z-directed, time-independent
external force, L, and |L|, the magnitude of L (but not its direction) are conserved.
Furthermore, in a system comprising several moving parts, the total angular momentum
is the sum of the individual angular momenta, and the z component is the sum of the
individual z components:

L=>)L (4-52)
L:=) Ly (4-53)

Many characteristics of the classical situation are maintained in quantum mechan-
ics. In particular, it can be shown that a hydrogenlike ion eigenfunction can always
be associated with “sharp” values for L., but not for Ly or Ly, and that the mag-
nitude of L is sharp, but not its direction. We have indicated several times in this
book that a sharp value (i.e., a constant of motion) exists when a state function is an
eigenfunction for an operator associated with the property. For example, all of our
hydrogenlike ion wavefunctions are eigenfunctions for the hamiltonian operator, so all
are associated with sharp energies. We introduced the operator for the z-component of
angular momentum, in Section 2-6, as (h/2mwi)d/d¢. Generalizing to situations with
several variables requires switching to partial derivative notation. Then our operator,

Path of gyroscope Flywheel

Zz

Figure 4-11 » A gyroscope with the angular momentum of the flywheel, L, together with x, y,
and z components of Ly, at a given instant.
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Figure 4-12 » The total angular momentum of the gyroscope L is shown as the sum of Lg, the
angular momentum of the flywheel, and Lg, the angular momentum of the gyroscope. L precesses,
so only L, and the magnitude of L are constants of motion.

symbolized L., is (hi/i)d/9¢. In atomic units, L.is (1/i)a/d¢. This operator was
introduced in Section 2-6, where it was given the symbol py. (A general discussion on
operators will be given in Chapter 6. The carat symbol is frequently used to denote an
operator.) Our statement that hydrogenlike eigenfunctions have sharp L, means that
we expect izllfn’]’m (r, 0, ¢) = constant - Y, ;. (r, 6, ¢). Since all these eigenfunctions
have exp(im¢) as their only ¢-dependent term, it follows immediately that

LoV tm =mhvy 1m (4-54)

or, equivalently,
LYim (0, 0) =mhY,, 0, ¢) (4-55)

Hence, the quantum number m is equal to the z component of angular momentum in
units of # for the state in question. This means that the angular momentum associated
with an s state (/ =0, so m = 0) has a zero z component, while a p state (/ =1, so
m=—1,0,41) can have a z component of —#, 0, or /.

The other quantity that we have stated is conserved in these systems is the magnitude
of L. In quantum mechanics, it is convenient to deal with the square of this magnitude
L2. The quantum-mechanical operator associated with this quantity is

L* = —1*[(8%/36%) +cot8(3/0) + (1/sin*6) (8% /3]
= —h*[(1/sin0)(3/30)sin0(3/30) + (1/sin” 0)(3%/3¢*)]  (4-56)

The result of operating on Y; (6, ¢) with this operator is
L?Y1m 0.9) =1+ 1)A*Y1. (0, ¢) (4-57)

This means that the square of the magnitude of the total angular momentum equals
I+ 1)h2. Hence, for an s state it is zero, for a p state it is 2h2, for a d state it is 642, etc.
One can construct vector diagrams to parallel these relationships. A few of these are
sketched in Fig. 4-13.
Operators for Lyand L y can also be constructed. They are

= ih[sin¢g(0/060) +cotB cos¢(9/d¢)] (4-58)

Ly
L, = —ih[cos$(3/36) — cotf sinp(d/d¢)] (4-59)
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(a)

(b)

(c)

Figure 4-13 » Vector relationships that satisfy the following rules: L2=I0l+1),L,=m,
m=-—I,—1+1,...,0,...,1—1,1. The quantum rules correspond to a classical analog where the
gyroscope can have only certain discrete angles of tilt. (a)s; /=0; [/ 4+1)=0; m=0. (b) p;
=51+ 1)=2;m=—-1,0,41. (¢)d; [=2;I(l+1)=6; m=—-2,—1,0,+1, +2. (all in atomic
units)

The hydrogenlike eigenfunctions are not necessarily eigenfunctions for either of these
operators (Problem 4-23).

It is interesting to consider the physical meaning of these results. If a quantity has a
sharp value, it means that we will always get that value no matter when we measure that
property for systems in the state being considered. Thus, the z component of angular
momentum for hydrogen atoms in the 2p.; state will always be measured to be 417,
or one atomic unit. For the x or y component, however, repeated measurements (on an
ensemble of 2p, 1 atoms) will yield a spread of values. We can measure (or compute)
an average value of L, or L, but not a sharp value. In terms of our mental model (a
gyroscope) this seems sensible enough except for one thing. Our hydrogenlike eigen-
functions are solutions for a central field potential with no external field. Under such
conditions, L, Ly, Ly, and L, are classically all constants of motion. Why, then, are
they not all sharp quantum mechanically? The answer is that quantum-mechanical state
functions never contain more information than is, in principle, extractable by measure-
ment. To measure a component of angular momentum in a system always means, in
practice, subjecting the system to some sort of external force. Furthermore, this system
must obey the limitations decreed by the uncertainty principle. The hydrogenlike ion
wavefunctions cannot simultaneously be eigenfunctions for L s L s and I » because
that would give simultaneous sharp values (i.e., no uncertainty) for the conjugate vari-
ables angular momentum vector length and angular momentum vector orientation. This
would violate the uncertainty principle, which is in turn a reflection of limitations on
our ability to measure one variable without affecting another (see Section 1-8).

It is possible, working only with the quantum-mechanical operators, to generate
the eigenvalues of L. and L?. This approach is a deviation from our main line of



Section 4-6 Angular Momentum and Magnetic Moment 115

development and is contained in Appendix 4. (It is recommended that Chapter 6 be
completed before reading Appendix 4.) We give only the results. They are

Lofim=mhfim, m=—l,—I+1,... ,1—1]1 (4-60)
L2 fim =1+ 1) R fim (4-61)

These look like the results already given in Egs. (4-55) and (4-57). There is a difference,
however. Here there is no indication that m is an integer, whereas in Eq. (4-55) m
must be an integer, as indicated by the presence of zero in its value list. There are two
ways in which we can have a sequence of the form —/, —/+1,...,/ —1,/. One way
is to have an integer series, for example, —2, —1, 0, +1, 42, which must contain zero.
The other way is to have a half-integer series, for example, —%, —%, +%, +%, which
skips zero. If we work only with the properties of the operators, we find that either
possibility is allowed. But if we assume that the as-yet-unspecified eigenfunctions f; ,,
are separable into 6- and ¢-dependent parts, we find ourselves restricted to the integer
series. For orbital angular momentum (due to motion of the electron in the atomic
orbital), the z component must be (in atomic units) an integer, for we have seen that
the state functions i contain the spherical harmonics Y; ,,, which are indeed separable.
Spin angular momentum for an electron (to be discussed in more detail in the next
chapter), has half-integer z components of angular momentum, and the eigenfunctions
corresponding to spin cannot be expressed with spherical harmonics.

D 4-6 Angular Momentum and Magnetic Moment

If a charged particle is accelerated, a magnetic field is produced. Since circular motion
of constant velocity requires acceleration (classically) it follows that a charged particle
having angular momentum will also have a magnetic moment. The magnetic moment
is proportional to the angular momentum, colinear with it, and oriented in the same
direction if the charge is positive. For an electron, the magnetic moment is given by

p=—PL (4-62)

where fe, the Bohr magneton, has a value of 9.274078 x 1072* J T~! (equal to a.u.),
where T is magnetic field strength in Tesla. (8, is defined to contain the /4 that belongs
to L, so it is only the v//(/ 4+ 1) part of L that is used in the calculation.)

EXAMPLE 4-6 What is the magnitude of the orbital magnetic moment for an elec-
tron in a 3d state of a hydrogen atom? In a 4d state of He™?

SOLUTION » For any d state, / =2, so, in au., || = BeL = Ber/ITU+1) = V6 =
2.27 x 1072371, (Since we want magnitude, we can ignore the minus sign.) The value does
not depend on the quantum number n nor on atomic number Z, so it is the same for He™. <

Applying a magnetic field of strength B defines a z-direction about which the mag-
netic moment vector precesses. The z-component, ., of the precessing vector interacts
with the applied field B. The interaction energy is

E=—p.B=p.L.B=pmB (4-63)
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This means that some of the degeneracies among the energy levels of the hydrogenlike
ion will be removed by imposing an external magnetic field. For instance, the 2pq
and 2p_ energy levels will be raised and lowered in energy, respectively, while 2s and
2po will be unaffected (see Fig. 4-14). This, in turn, will affect the atomic spectrum
for absorption or emission. The splitting of spectral lines due to the imposition of an
external magnetic field is known as Zeeman splitting. Because the splitting of levels
depicted in Fig. 4-14 is proportional to the z component of orbital angular momentum,
given by m#, it is conventional to refer to m as the magnetic quantum number.

In the absence of external fields, eigenfunctions having the same n but different /
and m are degenerate. We have seen that this allows us to take linear combinations
of eigenfunctions, thereby arriving at completely real eigenfunctions like 2p, and 2p,
instead of 2p 1 and 2p_;. When a magnetic field is imposed, the degeneracy no longer
exists, and we are unable to perform such mixing. Under these conditions, 2py, 2p,,
3dyy, etc. are not eigenfunctions, and we are restricted to the pure m =0, &1, £2...
type solutions.

Thus far we have indicated that the stationary state functions for the hydrogenlike
ions are eigenfunctions for L? and L., and we have compared this to the fact that |L|
and L are constants of motion for a frictionless gyroscope precessing about an external
field axis. But how about atoms with several electrons? And how about molecules? Are
their stationary state functions also eigenfunctions for [?and L.? A general approach
to this kind of question is discussed in Chapter 6. For now we simply note that the
spherical harmonics are eigenfunctions of L? and iz [Egs. (4-55) and (4-57)] and
that any state function of the form ¥ (r, 6, ¢) = R(r)Y; (6, ¢) will necessarily be an
eigenfunction of these operators. But the spherical harmonics are solutions associated
with spherically symmetric potentials. Therefore, it turns out that eigenfunctions of
the time-independent hamiltonian operator are also eigenfunctions for [?and L. only
if the potential is spherically symmetric. In the more restricted case in which i has

3d,,
1 3s, 3p,,. 3py. 3p_, -_— gp+13' 3d:+31d
—— —3$, 30,
18 3d,,. 3d,,,3d,,3d_,,3d_, 3., ,03d_1°
———3d,,
3
S 1 —_—,,
& gt .2, %%, — 2,2,
] e ——r
w
V
My
- % 3 1s 1s
Field off Field on

Figure 4-14 » Energy levels of a hydrogenlike ion in the absence and presence of a z-directed
magnetic field.
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the form ¥ (7, 0, ¢) = f(r, 0) exp(im¢), Y will still be an eigenfunction of ]:Z but not
of L2?. This situation applies in systems having cylindrically symmetric potentials,
dependent on r and 6 but not ¢ (e.g., H;r , N2). We discuss such cases in more detail in
Chapter 7.

[ ] 47 Angular Momentum in Molecular
Rotation—The Rigid Rotor

We have seen that the two-particle system of an electron and a nucleus rotating about a
center of mass (COM) can be transformed to the one-particle system of a reduced mass
rotating about a fixed point. However, this transformation can be made for any two-mass
system, and so it applies also to the case of the nuclei of a rotating diatomic molecule.
As we now show, the mathematical outcome for the rotating diatomic molecule is
strikingly similar to that for the hydrogenlike ion.

The simplest treatment of molecular rotation ignores vibrational motion by assuming
that the distance between the nuclei is fixed. The resulting model is therefore called
the rigid-rotor model. Let there be two nuclear masses, m | and m», separated from the
COM by distances 71 and r, respectively. Then, because of the way that the COM is
defined, we have that

miry =mor (4-64)
The moment of inertia, /, is
= 2 2
=myri +mar; (4-65)

It is not difficult to show (Problem 4-35) that the same moment of inertia results from
a reduced mass u rotating about a fixed point at a distance » =r| + r,. That is, if
mimy

== 4-66
iz ——— (4-66)

then
[ = pur? (4-67)

Therefore, solving the problem of a reduced mass u rotating about a fixed point at the
fixed distance » =y + 1 is equivalent to solving the two-mass rigid-rotor problem. In
effect, the rotating-diatomic problem is transformed to a particle-on-the-surface-of-a-
sphere problem.

As usual, we write the Schrodinger equation by starting with the general prescription
[(—h?/20)V? + V¢ = Ev. Then we recognize that ¥ is constant over the spherical
surface (corresponding to the diatomic molecule having no preferred orientation), so
we can set ¥ = 0. Since 7 is a constant, the first term in V> [Eq. (4-7)] vanishes due to
the d/dr operators. The resulting Schrodinger equation is [using Eq. (4-67)]

[(1/sin6)(0/00)sinB(3/06) + (l/sin2 9)(32/8¢2)]1ﬁ(9, P) = (—21E/h2)1p(9, b)
(4-68)
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Equation (4-68) is the same as the ®, ® equations seen earlier [(4-36) and (4-39)]
with 8 =21E /A, and so we already know the eigenvalues and eigenfunctions. We
noted earlier that 8 =/(/ + 1). For molecular rotation it is conventional to symbolize
the ® quantum number as J, rather than /. This leads to

J(J+1)=21E/h* (4-69)
or
E=J(J+DR /21 J=0,1,2,... (4-70)

Since V' =0, E is entirely kinetic energy. Because r is not a variable, there is no analog
to the principal quantum number 7, and J is not limited in its highest value. (Note also
that atomic units, which are designed to simplify electronic problems, are not normally
used for molecular rotation or vibration.)

The eigenfunctions are, as before, the spherical harmonics Y, ,(6, ¢), with m ; =
0,%1,+£2,...,£J. Thus we have an s-type solution (J =0, m y =0) that has constant
value over the spherical surface, three p-type solutions (J =1,m ;=+41,0, —1), five
d-type solutions, etc. For each value of J, there are 2./ + 1 eigenfunctions.

The s-type solution has zero energy. One can imagine that the reduced mass is
motionless on the surface of the sphere and has equal probability for being found
anywhere. This transforms back to a picture where the diatomic molecule is not
rotating and where there is no preferred orientation. Since £ =0 when J =0, we
conclude that there is no zero-point energy for free rotation. (However, if rotation is
restricted so that some orientations become preferred, the zero-point energy becomes
finite.)

The three p-type solutions are degenerate, hence can be mixed to give real functions
analogous to py, py, p-. We could represent the p, function by taking a globe and
marking a circular region of positive phase around the northern polar region, with a
matching region of negative phase around the southern pole. Clearly, these rigid-rotor
wavefunctions have the same symmetries as their hydrogenlike counterparts. A p.
rotational state corresponds to a molecule (or ensemble of molecules) rotating with
kinetic energy 2/42/21 (since J = 1) with little likelihood of finding the reduced mass
near the equator (i.e., with little probability of finding the diatomic molecule oriented
nearly perpendicular to the z axis.)

Angular momentum for the rigid rotor also follows the hydrogenlike system rules.
The square of the total angular momentum equals J(J + 1)A2, and the z component
equals m jh.

Transitions between rotational energy levels can be detected spectroscopically. Once
such energy differences are identified with specific changes in J, it becomes a simple
matter to solve for r, the internuclear distance in the rigid rotor.

For example, suppose an absorption peak for H®!'Br seen at 101.58cm™! is
assigned to the J = 6 < 5 transition. Since the energies of these levels are
42h%/21 and 30h2/21, respectively, their difference is 1242/21. This energy is
equal to that of the photons of light at 101.58 cm~!. Solving this relation gives
I =3.3069 x 107* kg m?>. We know that this equals ur2, and we know how to get
u from my and mp; [Eq. (4-46)]. So we can solve for r, finding » = 141.44 pm
(Problem 4-37).
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4-

1.

8 Summary

The motion of two masses moving about a center of mass can be transformed to
motion of a single reduced mass moving about a fixed point. The radius of rotation
for the reduced mass is identical to the distance of separation of the original two
masses. For hydrogenlike ions, the nuclear mass is so much greater than the electron
mass that the reduced mass is almost identical to the electron mass.

. The bound-state energies for time-independent states of the hydrogenlike ion depend

on only the atomic number Z and the quantum number # (a positive integer) and
vary as —Z2/2n?. This means that the energies get closer together as 7 increases
and that there is an infinite number of such negative energy levels. Each such energy
level has degeneracy n2. A continuum of energies exists for unbound (E > 0) states.

. Each stationary state wavefunction is characterized by three quantum numbers, 7,

[, and m, all integers, with / ranging from O to n — 1 and m ranging from —/ to
+/1. If / =0, we have an s state and ¥ is spherically symmetric with a cusp at the
nucleus. If /=1,2,... wehave ap,d, ... state, and ¢ vanishes at the nucleus and
is not spherically symmetric. In all states there is a finite probability for finding the
electron beyond the classical turning point.

. Eigenfunctions R, ;(¥)©y ,, (8) P, (¢) with m # 0 are complex but can be mixed to

form real eigenfunctions. However, if an external field causes states of different m
to be nondegenerate, such mixing will produce noneigenfunctions.

. All the stationary state eigenfunctions are orthogonal to each other, and radial and/or

angular (usually planar) nodes are instrumental in this. The effect of a radial node
on energy is the same as that of an angular node, so that all eigenfunctions with,
say, three nodes (all radial, all angular, or a combination) are degenerate. This is
peculiar to the —#~! potential.

. Separation of variables is not “perfectly clean” since the differential equations for R

and © (Egs. (4-38) and (4-39)), are linked through 8 and those for ® and ® (Eq. 4-40)
are linked through m. This leads to interdependencies in the values of n, /, and m.

. Spherical harmonics are the angular parts of solutions to Schrodinger equations for

systems having spherically symmetric potentials. These functions are eigenfunc-
tions of L, and L? as well as H, so such states have sharp values of L., L?, and E.
The value of L, is m#, and for L2 itis /(I + 1)A2%, where I and m must be integers.
In atomic units the quantity % does not appear in these formulas.

The z component of the magnetic moment due to orbital motion of a charged particle
is proportional to m#, and so m is called the magnetic quantum number. This
magnetic moment contributes to the Zeeman splitting seen in spectra of hydrogenlike
ions in magnetic fields.

Eigenfunctions other than spherical harmonics exist for L? and L., but these are not
separable into - and ¢-dependent functions. In these cases, / and m can be half-
integers. These cases do not arise in orbital motion, but do arise in spin problems.
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10. If V is cylindrically symmetric [i.e., V" =V (r, 6)], the eigenfunctions of the hamil-
tonian are still eigenfunctions for L but not for 2. Hence, m# still equals the z
component of angular momentum for such a system. Here, z is the direction of the
axis of rotational symmetry, i.e., the internuclear axis of the molecule.

11. The rules for allowed angular momentum magnitudes and orientations are the
same for the rigid rotor as for the hydrogenlike ion. This leads to the following
relationships in terms of the rotational quantum numbers J =0,1,2,..., my =
0,£1,...,+J:

Length of angular momentum vector =+/J(J + 1)A.

Component of angular momentum perpendicular to internuclear axis = m j#i.
Kinetic energy of rotation: Ty = J(J + 1)4%/21.
Degeneracy of level: g;=2J+ 1.

4-8.A Problems

4-1. An observed spectroscopic transition in the hydrogen atom involves the 2 p < 1s
transition. Using Eq. (4-8), evaluate this energy difference in units of hertz (Hz).
(1 Hz=1 s'.) Do the calculation using both m. and . (See Appendix 10 for
constants and conversion factors.) How much error in this calculation, in parts
per million, is introduced by ignoring the finite mass of the nucleus (i.e., using
me instead of wu)?

4-2. Sketch qualitatively, on the same r axis, wz(r) for a 1s state and 4772 for the
variation of dv with . Sketch the radial distribution function, which is the product
of these two functions, and explain why it vanishes at » =0, oo.

4-3. For a hydrogen atom in the 1s state, ¥ = (1/4/) exp(—r), in atomic units.

a) Calculate the value of 7 (in a.u.) at the classical turning point.
b) Calculate the percentage of the electronic charge that is predicted to be beyond
the classical turning point. (See Appendix 1 for useful integrals.)

4-4. Using atomic units, compute for a 1s electron of the hydrogenlike ion [ =
(v/Z3/m)exp(—Zr)]. (See Appendix 1 for useful integrals.)

a) the most probable distance of the electron from the nucleus,

b) the average distance of the electron from the nucleus,

c¢) the distance from the nucleus of maximum probability density,

d) the average value of the potential energy (V' = —Z/r). Note how these quanti-
ties depend on atomic number Z. Also, why do you think that, when Z =1, (d)
is not minus the reciprocal of (b)? Why is (d) lower than minus the reciprocal
of (b)?

4-5. Demonstrate by integration that the 1s and 2s orbitals of the hydrogen atom are
orthogonal. (See Appendix 1 for useful integrals.)
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4-6.

4-7.

4-8.

4-10.

4-11.

4-12.

4-13.

4-14.

Normalize the function » exp(—r) cos 6.

Obtain the average value of position x, for a particle moving in a one-dimensional
harmonic oscillator potential in a state with the normalized wavefunction

¥ = (B/487m)"/* [ 2V/Bx) — 12/Bx | exp(~Bx/2)
[There is an easy way to do this problem.]

For a particle in a one-dimensional box with boundaries at x =0 and L and for
any quantum number 7:

a) Show how you would set up the calculation for the mean square deviation of
the particle from its average position.

b) Explain qualitatively how you would expect the value of (a) to vary with
quantum number 7.

c) Evaluate the expression from part (a) in terms of » and L. Calculate the value
for n =1, 2. Discuss the relative values of these numbers for reasonableness.

. Sketch the 2p, and the 3d), wavefunctions. Demonstrate, without explicitly

integrating, that these are orthogonal.
Repeat Problem 4-4, but for the 2py wavefunction.

Find an expression for the classical turning radius for a hydrogenlike ion in terms
ofn,l,m,and Z.

Show that the sum of the charge distributions of all five 3d orbitals is spherically
symmetric.

Try to answer the following questions without looking up formulas or using
pencil and paper. Use atomic units.

a) What is the energy of the hydrogen atom in the 1s state?

b) What is the energy of Het when n =12 n =27

c) What is the degeneracy of the n =5 energy level of hydrogen?

d) How many planar nodes does the 4d,; orbital have? How many radial nodes?

e) What is the potential energy in a hydrogen atom when the electron is 0.50 a.u.
from the nucleus?

You should be able to answer the following questions (use a.u.) in your head or
with trivial calculations.
An unnormalized eigenfunction for the hydrogen atom is

¥ = (27 — 18r + 2r?) exp(—r/3)

a) What are the / and m quantum numbers for this state?
b) How many radial nodes does this function possess?
¢) What is the energy of this state?

d) What is the classical turning radius for this state?
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4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

4-21.

4-22.

4-23.

4-24.

4-25.

4-26.
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W = N (6r — r?) exp(—r/3) sin 0 sin ¢ is an eigenfunction, in a.u., for the hydro-
gen atom hamiltonian. N is the normalizing constant. Without looking at
formulas in the text, answer the following questions by inspection:

a) Is there a node in the » coordinate? If so, where?
b) Which state is this? (Give orbital symbol—e.g., 1s, 2p;, etc.)

Without comparing to tabulated formulas, state whether each of the following
could reasonably be expected to be an eigenfunction (unnormalized) of the hamil-
tonian for a hydrogenlike ion. Explain why.

a) (27 —18Zr +2Z°r*)exp(—2Zr/3)
b) rexp(Zr/2)sinf cos¢
c) rsinfexp(—ig).

Calculate the average value of x for the 1s state of the hydrogen atom. Explain
why your result is physically reasonable.

a) Calculate the most probable value of 6 in the 2p; state of the hydrogen atom.
b) Calculate the values of 6 corresponding to nodal cones in the 3d> orbital.

Demonstrate that Eq. (4-30) for 3dy, has the same angular dependence as the
function x y.

Verify Eq. (4-45) using P;(x) with Pj(x) and with P;(x) [from Eq. (4-42)].
What does Eq. (4-45) imply for the integral over all space of Y3, ¥34_,?

Using Eqgs. (4-51) and (4-43), write the normalized spherical harmonic function
Y3,-2(6, ¢). For which type of hydrogenlike AO does this function give the
angular dependence?

Verity Eq. (4-55).

Test the 2pg eigenfunction to see if it is an eigenfunction for LyorlL » [Eqs
(4 58) and (4-59)]. Show that the 1s function is an eigenfunction of L T L s

LZ, and 1.2. Explain, in terms of the vector model, this seeming violation of the
discussion in the text.

Work out the value of 1:21//2p0 by brute force and show that the result agrees with
Eq. (4-57).

Sketch the vector diagram (as in Fig. 4-13) for the 4f orbitals of hydrogen. How
does this compare to the diagram for the 6f orbitals of He™t?

Sometimes eigenfunctions for an operator can be mixed together to produce
new functions that are still eigenfunctions. Listed below are some operators
with pairs of their eigenfunctions. Indicate in each case whether mixtures of
these pairs will or will not continue to be eigenfunctions for the operator shown.
(You should be able to do this by inspection, using your knowledge of these
systems.)
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4-217.

4-28.

4-29.

4-30.

4-31.

Operator Eigenfunctions

a) H(1 dim. box) V1 V3

b) I:I(ring) sin 3¢ cos 3¢

c) iz(ang. mom.) exp(3ig) exp(—3i¢p)
d) A (cubical box) V123 V222

e) H (H atom) V2 Vap,

f) H (H atom) V3 Vs

A hydrogenlike ion is in a state having a z-component of angular momentum
equal to —2 a.u.

a) What is the smallest possible value of the length of the angular momentum
vector for this state?
b) What symbol describes the state corresponding to your answer to part (a)?

Calculate the average angular momentum, L., fora particle in a ring of constant
potential having wavefunction

a) (1/y/m)sin3¢
b) (1/+/27)exp(—3i¢)

Evaluate each of the following integrals. Look for labor-saving approaches.
Integrals are over all space unless otherwise indicated.

a) wapxiszpde
b) [ Yop, L22p dv
¢) [ Yap, Lytop dv
d [ ¢3dx27y2 Vop dv

e) [ exp (2i¢) exp (—3i¢) d

Evaluate each of the following in a.u. (You should be able to answer these by
inspection.) Note: ¥, ; » stands for a hydrogen atom eigenfunction of H.

a) [;21/f3,2,1

b) L%y,

c) [:11,03px

d) (1/i)(3/3¢)Y2p_,

For each of the following operators, indicate by “yes” or “no” whether 3,
(with Z = 1) is an eigenfunction. If it is, then also give the eigenvalue in a.u.

a) —3Vvi—1/r
b) —1V2-3/r
o L.

d) —3v?2

e) Ly

~

f) L?
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4-32.

4-33.

4-34.

4-35.

4-36.

4-37.

4-38.

4-39.

4-40.

4-41.
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g r
h) 1/r

For the 3s state of the hydrogen atom, estimate the amount of electronic charge
between 211 pm and 213 pm.

Calculate in hertz the splitting between 2 py and 2 p41 of a hydrogen atom by a
magnetic field of 2 tesla. Compare this with the 2 p «— 1s transition energy (in
parts per million).

Try to answer (by inspection) the following questions about the n = 4 states of
the hydrogen atom.

a) What is the energy of the level, in a.u.?

b) What is the degeneracy of the level?

¢) What values for the length of the orbital angular momentum vector (in a.u.)
are possible?

d) Into how many sublevels (of energy) is the n =4 level split by imposition of
a magnetic field?

e) What is the degeneracy of the unshifted portion of the sublevels referred to
in (d)?

Show that the moment of inertia for two masses, m1 and m,, moving on a rigid
massless bar about the center of mass at distances r; and rp, respectively, is
identical to that of a reduced mass y =mm>/(m| + m>) moving about a point
at a distance of r =r| + .

Show that Eq. (4-68) can be written, using ]:2’ in a form that is analogous to the
classical relation for a freely rotating mass, L2/27 =T.

Using that mpg = 1.0078 a.m.u. and mp,; = 80.9163 a.m.u., calculate u and verify
the value of r given at the end of Section 4-7.

Assuming an internuclear distance of 127.5 pm in D3°Cl, compute the expected
positions in cm ™! for the absorption peaks corresponding to J =1 <0, 2 <1,
3«2 (D=2.0141 am.u., *Cl = 34.9688 a.m.u.).

The J =1 <=0 transition in 2C'°0 occurs at 3.86 cm™~!. Calculate the internu-
clear distance. (2C = 12 a.m.u. by definition, 160 = 15.9949 a.m.u.)

HCI has a permanent electric dipole moment, which means that the reduced
mass has a partial electric charge in the transformed version of the system.
This in turn means that there is a magnetic moment vector parallel to the total
angular momentum vector. Describe qualitatively what happens to the ener-
gies of the J = 3 rotational states when HCl is subjected to a uniform magnetic
field.

_ 1/2
Uncertainty in position in one dimension, Ax, is defined as [x2 — )Ez] That is,
it is the square root of the difference between the average squared position and

the square of the average position. Calculate Ar for the 1s state of the hydrogen
atom.
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Multiple Choice Questions
(Try to answer these without referring to the text or using pencil and paper.)

1. A particle on the surface of a sphere has quantum number J =7. The energy level
to which this state belongs has a degeneracy of

a) 56
b) 49
c) 42
d) 14
e) None of these.

2. A particle on the surface of a sphere in the state having J =4, m ;=4

a) has E = 16A2/21.

b) has a z-component of angular momentum of 47.

c) doesn’t exist because this state violates quantum number rules.
d) has a degeneracy of 20.

e) None of the above is a true statement.

3. HI and DI are made to undergo the same transition (say J =11 «<— J =10, but the
particular J values are not important). The light frequency inducing the transition
for HI is equal to v. Approximately which frequency would you expect to induce
the same transition for DI?

a) 2v
b) v/2
c) V2v
d) v/v2

e) None of these.

4. The electronic energy of Li** in the 2s state is

a) the same as that of H in the 1s state.
b) nine times that of H in the 1s state.
¢) one-fourth that of H in the 1s state.
d) four-ninths that of H in the 1s state.
e) nine-fourths that of H in the 1s state.

5. Consider the following expressions, where v is a hydrogen-atom wavefunction.

1) fallspace '(/f*rwdv 2) %w*wrzsinezo
3) Lyry =0 H ¥ =0

Which one of the following is a true statement?

a) Expression 1 is equal to unity if ¢ is normalized.

b) Expression 4 is true when r is the position of a radial node.
¢) Expression 3 is true everywhere because 1 * is a constant.
d) Expression 2 is true when r is at its most probable value.

e) Expression 3 is true when r is at its most probable value.



126 Chapter 4 The Hydrogenlike lon, Angular Momentum, and the Rigid Rotor

6. A 5d,, atomic orbital has

a) 2 planar and 1 radial nodes.
b) 2 planar and 3 radial nodes.
¢) 3 planar and 1 radial nodes.
d) 5 nodes all together.

e) None of the above is correct.

7. For a hydrogen atom in an n = 4 state, the maximum possible z-component of orbital
angular momentum is

a) 2h
b) 34
c) 12k
d) 6k

e) None of the above is correct.

8. The following is an eigenfunction for the hydrogen atom:
U= |:1/ 327m(3)] (r/ap) exp(—r/2agp) cos 6
Which one of the following statements about v is true?

a) The term on the left, up to the exponential, is the normalizing constant.
b) This ¢ has a nonzero value at the nucleus.

¢) For this state, / =1 and m; =0.

d) This state has a spherical electron cloud distribution.

e) None of the above statements is true.

9. The radial distribution function for a 1s state, 47 rzwlzs , indicates that

a) the most probable value of the distance from the nucleus is zero.

b) the average value of r is zero.

c) the average value of r is greater than the most probable value.

d) the average value of r is equal to the most probable value.

e) the electron cloud density per cubic picometer is greatest at a radius other
than zero.
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Chapter 5

Many-Electron Atoms

D 5-1 The Independent Electron Approximation

In previous chapters we have dealt with the motion of a single particle in various
potential fields. When we deal with more than one particle, new problems arise and
new techniques are needed. Some of these are discussed in this chapter.

In constructing the hamiltonian operator for a many electron atom, we shall assume
a fixed nucleus and ignore the minor error introduced by using electron mass rather
than reduced mass. There will be a kinetic energy operator for each electron and
potential terms for the various electrostatic attractions and repulsions in the system.
Assuming n electrons and an atomic number of Z, the hamiltonian operator is (in atomic
units)

H(1,2,3,...,n =——Zv2 Z(Z/rl)—l—z Z — (5-1)

i=1 j=i+1 Fij

The numbers in parentheses on the left-hand side of Eq. (5-1) symbolize the spatial
coordinates of each of the n electrons. Thus, 1 stands for x1, yi, z1, or r, 61, ¢1,
etc. We shall use this notation frequently throughout this book. Since we are not here
concerned with the quantum-mechanical description of the translational motion of the
atom, there is no kinetic energy operator for the nucleus in Eq. (5-1). The index i refers
to the electrons, so we see that Eq. (5-1) provides us with the desired kinetic energy
operator for each electron, a nuclear electronic attraction term for each electron, and an
interelectronic repulsion term for each distinct electron pair. (The summation indices
guarantee that 1/r1 and 1/, will not both appear in H. This prevents counting the
same physical interaction twice. The indices also prevent nonphysical self-repulsion
terms, such as 1/r2, from occurring.) Frequently used alternative notations for the
double summation in Eq. (5-1) are % Zl”# ; 1/7;j, which counts each interaction twice

and divides by two, and ZK or Z which is merely a shorthand symbol for the
expression in Eq. (5-1). In each of these alternative notations, the summation is still
over two indices, but the second Z symbol is “understood.”

For the helium atom, Eq. (5-1) becomes (see Figure 5-1)

1 1
H(1,2)= —§v2 - —Vz Q2/r1) = (2/r) + (1/r12) (5-2)
The helium hamiltonian (5-2) can be rewritten as
H(1,2)=h(1)+h@2)+1/r2 (5-3)

127
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)
Nucleus

Figure 5-1 » Interparticle coordinates for a three-particle system consisting of two electrons and
a nucleus.

where

. |
h(z):—EVi —2/r; (5-4)

In Eq. (5-3) we have merely grouped H into two one-electron operators and one two-
electron operator. There is no way to separate this hamiltonian completely into a sum
of one-electron operators without loss of rigor. However, if we wish to approximate the
hamiltonian for helium in such a way that it becomes separable, we might try simply
ignoring the interelectronic repulsion term:

Happrox :h(l) +h(2) (5'5)

If we do this, our approximate hamiltonian H,pprox treats the kinetic and potential
energies of each electron completely independently of the motion or position of the
other. For this reason, such a treatment falls within the category of “independent
electron approximations.”

Notice that each individual one-electron hamiltonian (5-4) is just the hamiltonian for
ahydrogenlike ion, so it has as eigenfunctions the 1s, 2s, 2p, etc., functions of Chapter 4
with Z =2. Such one-electron functions are referred to as atomic orbitals.! Represent-
ing them with the symbol ¢; (e.g., ¢1 = 1s, ¢ = 2s, ¢3 = 2py, 4= 2p,, etc.) we have,
then,

h(D)¢i(1) =€i¢i(1) (5-6)

where ¢; is referred to as the orbital energy, or one-electron energy for atomic orbital
¢;. As we saw in Chapter 4, ¢; is given in atomic units by

1
€ = —522/112 (5-7)

where 7 is the principal quantum number for ¢;, and Z is the nuclear charge. The “1” in
Eq. (5-6) indicates that ¢; (1) is a function whose variable is the position of electron 1.

We will now show that products of the atomic orbitals ¢ are eigenfunctions of
Hipprox- Let the general product of atomic orbitals for helium be written ¢; (1)¢;(2).
Then

Happrox®i (1) (2) = (h(1) +h(2))¢i (1)¢(2) (5-8)
=h (1) ¢i(1)¢;(2)+h(2)¢i(1)¢;(2) (5-9)

I'The term “atomic orbital” is used for any one-electron function used to describe the electronic distribution
about an atom.
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But /(1) does not contain any of the variables in ¢ ;(2), and so they commute. Similarly,
h(2) and ¢; (1) commute, and

Happrox i (1)9(2) = ¢;(2)h (1) i (1) + ¢i (1)h (2) $(2)
= ¢;(Deidi(1) +¢i(1)e;¢;(2)  [from Eq. (5-6)]
= (e +¢€;) ¢ (D9;(2) = E¢gi (1)¢;(2). (5-10)

Thus, ¢;(1)¢;(2) is an eigenfunction of Hypprox, and the eigenvalue E is equal to
the sum of the orbital energies. These results are yet another example of the general
rules stated in Section 2-7 for separable hamiltonians. Indeed, once we recognized that
Happrox 18 separable, we could have written these results down at once.

Since the above terminology and results are so important for understanding many
quantum-chemical calculations, we will summarize them here:

1. The hamiltonian for a multielectron system cannot be separated into one-electron
parts without making some approximation.

2. Ignoring interelectron repulsion operators is one way to allow separability.

3. The one-electron operators in the resulting approximate hamiltonian for an atom are
hydrogenlike ion hamiltonians. Their eigenfunctions are called atomic orbitals.

4. Simple products of atomic orbitals are eigenfunctions for the approximate hamilto-
nian.

5. Inthis approximation the total energy is equal to the sum of the one-electron energies.

EXAMPLE 5-1 What electronic energy is predicted by the above approximation for
the lithium atom in its ground state? What is the experimental value for the total
electronic energy, given that the first and second ionization energies are 0.198 a.u.
and 2.778 a.u.?

SOLUTION » The ground state configuration for lithium is 1s22s, so Eqpprox =2€15+ €25 =

2(—% . ?—; a.u.) + (—% . g—; a.u.) = —10.125a.u. The experimental value of E equals minus the
sum of all three ionization energies. The first two values are given, and the third can be calculated

using the formula for one-electron ions: [E3 =—E; 21 = —(—% . %) =4.500a.u. Therefore,
Eexp=—(0.198 +2.778 +-4.500) a.u. = —7.476 a.u. Clearly, the approximate hamiltonian predicts
an electronic energy that is much lower than the experimental value. <

D 5-2 Simple Products and Electron Exchange Symmetry

In the independent particle model just described, the wavefunction for the lowest-energy
state for helium is 1s(1)1s(2) since this has the lowest possible sum of one-electron
energies. The electronic configuration for this state is symbolized 1s2, the superscript
telling us how many electrons are in 1s orbitals. What might we expect for the electronic
configuration of the lowest excited state? The answer is 1s2s (superscript “ones” are
implicit). (At this point there is no reason for preferring this configuration to, say,
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1s2p,, but we shall show later that, in multielectronic systems, the 2s orbital has a
lower energy than does a 2p orbital, even though they have the same principal quantum
number.) Thus, we might write

v(1,2)=1s(1)2s(2) =/8/m exp(—2r1)y/1/m (1 —rp) exp(—r2) (5-11)

He* 1s He* 2s

If one were to calculate 71, the average distance from the nucleus for electron 1, using this
wavefunction, one would obtain a value of % a.u., consistent with the 1s state of a helium
ion. For electron 2 one would find an average value, 7, of 3 a.u., characteristic of the 2s
state (Problem 5-2). How does this correspond to what we would find experimentally?

Before answering this question, we must recall that there are special problems asso-
ciated with measuring the properties of an atomic system. The process of “seeing”
electrons in atoms well enough to pinpoint their positions perturbs an atom so strongly
that it cannot be assumed to be in the same state after the measurement. To get around
this problem, we can assume that we have a very large number of identically prepared
helium atoms, and that a single measurement of electronic positions will be made on
each atom. It is assumed that the average of the instantaneous 7 values for a billion
systems is identical to the average r value for a billion instants in a single undisturbed
system.

When we consider the measurement of average values for 7; and »; in helium, we
immediately encounter another problem. Say we can effect a simultaneous measure-
ment of the two electronic distances in the first He atom. We call these »; and , and
tabulate them for future averaging. Then we move on to a new helium atom and mea-
sure 71 and 7 for it. But we clearly have no way of identifying a particular one of these
electrons with a particular one of the earlier pair. There is no connection between 7
for one atom and r; for the next since all electrons are identical. If we want to know r,
we can only average them all together and leave it at that.

Thus, the wavefunction (5-11) does not seem to be entirely satisfactory since it
enables us to calculate 7| # r», something that is in principle impossible to measure.
We need to modify the wavefunction so that it yields an average value for | and r;
(or for any quantity) that is independent of our choice of electron labels. This means
that the electron density itself, given by v (1, 2)%, must be independent of our electron
labeling scheme.

In a two-electron system like helium, there are only two ways to arrange the labels
“1” and “2” in a single product function. For example, the product 1s2s can be written

Is(1)2s(2) or 2s(1)1s(2) (5-12)
Squaring these gives two different functions, namely,

15%(1)25%(2) = (8/m) exp(—4r1) (1/m) (1 — 21y +r3) exp(—2r)

) ) N (5-13)
2s°(1)1s°(2) = (8/m) exp(—4r2)(1/m)(1 — 211 +77) exp(—2r1)

These are different since they predict, for instance, different distributions for electron 1.
The functions (5-12) are said to differ by an interchange of electron indices, or coor-
dinates. (Since electron labels denote position coordinates, interchange of labels in
the mathematical formula corresponds to interchanging positions of electrons in the
physical model.) For 2 to be invariant under such an interchange, it is necessary that
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Y itself be either symmetric or antisymmetric under the interchange. That is, if P is
an interchange operator such that Pf(1,2) = f(2, 1) then we need a v such that

Py =4y (5-14)
since then
P(Y?) = (Py)* = (£y)> =y7
One such wavefunction is given by the sum of eigenfunctions (5-12),
s = (1/vV2)[1s(1)2s(2) +2s(1) 1s(2)] (5-15)
since
Py = (1/v/2)[1s(2)2s(1) + 2s(2) 1s(1)] = ¥

(the factor 1/ V2 keeps the wavefunction normalized). Wavefunction (5-15) is thus
symmetric under electron interchange. Is Eq. (5-15) still an eigenfunction for Happrox?
Yes, because the eigenfunctions (5-12) are degenerate (both have E = € + €55) and
can therefore be mixed together in any way we choose and still be eigenfunctions. The
antisymmetric combination is

Ya=(1/v/2)[1s(1)2s(2) — 2s(1)15(2)] (5-16)

Thus far we have shown that simple products of atomic orbitals give us two degen-
erate eigenfunctions of Hypprox for the configuration 1s2s and that these eigenfunctions
fail to have the required symmetry properties for interchange of electron coordinates.
But we have shown that, by taking the sum and difference of these simple products, we
can form new eigenfunctions of Hypprox that are respectively symmetric and antisym-
metric with respect to the interchange of electron coordinates, so that 12 is invariant
to electron interchange.

There is another way we can demonstrate that the helium atom eigenfunctions ought
to be symmetric or antisymmetric for electron exchange: We can examine the hamilto-
nian operator. We have shown in Chapter 2 that nondegenerate eigenfunctions must be
symmetric or antisymmetric for any operation that leaves the hamiltonian unchanged
and that degenerate eigenfunctions may always be mixed together in some combina-
tion so that they too are symmetric or antisymmetric. This suggests that, for the case
under discussion (the helium atom), the hamiltonian operator might be unchanged by
an exchange of electrons. First we examine Happrox:

PHapprox = P[h(l) +h(2)] =h(2) +h(1) = Happrox (5-17)

Our approximate hamiltonian is invariant to electron exchange, so any nondegenerate
eigenfunctions must be symmetric or antisymmetric for interchange of electron labels
(or positions). Only because the 1s2s configuration leads to degenerate eigenfunctions
were we able to find unsymmetric? eigenfunctions like Eq. (5-12). This situation is
reminiscent of the particle-in-a-ring system discussed in Chapter 2, where degenerate,

2A function is unsymmetric for any operation that produces neither plus nor minus that function; i.e., if Pf =y
and y # £ f, then f is unsymmetric under the operation P.
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symmetric exponential eigenfunctions could be mixed to form degenerate unsymmetric
trigonometric eigenfunctions. Let us now examine the full hamiltonian H:

PH(1,2)=Plh(1) +h(2)+1/ri2l=h2)+h(1)) +1/r21=H(1,2)  (5-18)

Since 712 and r7 are the same distance, it is evident that the exact H is likewise invariant
to interchange of electron labels. Thus, we see that appeal either to physical argument
or to the invariance of H and of Hypprox to exchange of electrons leads us to recognize
the need to impose symmetry conditions on the wavefunctions.

We now summarize the points we have tried to convey in this section.

1. A simple product function of the type 1s(1)2s(2) enables one to calculate different
values of 7 for electrons 1 and 2. This makes no physical sense since the electrons
are identical particles and hence are not physically distinguishable.

2. Wavefunctions that overcome this difficulty must be either symmetric or antisym-
metric with respect to exchange of electron labels (coordinates).

3. The fact that this kind of “exchange symmetry” must be present is also (or alter-
natively) seen from the fact that A (and also Happrox) is invariant under such an
exchange operation.

EXAMPLE 5-2 Given the functions f(x1) = xl2 and g(x2) =exp(x2), show that, for
x1=1,x0 =2, f(x1)g(x2) is unsymmetric for exchange of the two x positions,

f(x1)g(x2)+g(x1) f(x2) is symmetric, and f(x1)g(x2) — g(x1) f(x2) is antisym-
metric.

SOLUTION » For fg, we are examining what happens when x% exp(xp) turns into x% exp(x).

That is, we are comparing lzexp(2) to 22 exp(1). The resulting values are 7.389 and 10.873—
obviously neither plus or minus times each other. fg+ gf equals 12 exp(2) + 22 exp(l), or
7.389 + 10.873. After switching positions, we get 10.873 4 7.389, which is obviously the same
thing. fg— gf gives 7.389 — 10.873. After switching, it gives 10.873 — 7.389, which is obviously
minus one times the first value. <

D 5-3 Electron Spin and the Exclusion Principle

Chemical and spectral evidence indicates that metals in Groups IA and IB of the periodic
table are reasonably well represented by an electron configuration wherein one loosely
held “valence” electron occupies an s orbital and all other electrons occur in pairs in
orbitals of lower principal quantum number. Thus, lithium has a ground-state electronic
structure approximated by the configuration 1s%2s, sodium by 1s22s22p%3s, copper by
1522522p©3s23p®3d'%4s, etc. (A configuration indicating that all orbitals of given n
and/ are doubly occupied, leaving no other electrons, is often called a closed shell. Thus,
the above-cited examples each consist of a closed shell plus one s valence electron.)
The observation that each atomic orbital in such configurations is occupied by no more
than two electrons was without a theoretical explanation for some time.
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When an atom like sodium is placed in an external magnetic field, what should
be the magnetic moment of the atom due to orbital motion of the electrons? The
s electrons should contribute nothing since, by definition of s,/ =0 and hence the
magnetic quantum number m = 0 for such electrons. An electron in a p orbital may
have an orbital magnetic moment, but if all p levels (/ =1, m =+1, 0, —1) are equally
occupied, the net magnetic moment should be zero. It is clear, then, that we might
expect atoms in Groups IA and IB to possess no magnetic moment due to electron
orbital motion. Nevertheless, Gerlach and Stern [1, 2] found that, when a beam of
unexcited silver atoms is passed through an inhomogeneous magnetic field, it splits
into two components as though each silver atom possesses a small magnetic moment
capable of taking on either of two orientations in the applied field. (In a homogeneous
magnetic field, the north and south poles of a magnetic dipole experience equal but
oppositely directed forces, causing the dipole to become oriented. An example is a
magnetic compass in the magnetic field of the earth. In an inhomogeneous magnetic
field the poles experience opposite but unequal forces, causing the entire dipole to be
accelerated through space in addition to being oriented.) Uhlenbeck and Goudsmit
[3] and Bichowsky and Urey [4] independently suggested that the electron behaves
as though it were a particle of finite radius spinning about its center of mass. Such a
spinning particle would classically have angular momentum and, since it is charged,
an accompanying magnetic moment.>

If we accept the model of electron spin, then we can rationalize our experimental
facts if we assume each electron is capable of being in one of but two possible states of
opposite spin. This is done in the following way. If we attribute opposite spins to the
two 1s electrons in, say, silver, their spin moments should cancel. Similarly, all other
orbital-sharing electrons would contribute nothing if their spins were opposed. Only
the outermost (5s) electron would have an uncanceled spin moment. Its two possible
orientations would cause the beam to split into two components as is observed.*

The evident need for the introduction of the concept of electron spin means that our
wavefunctions of earlier sections are incomplete. We need a wavefunction that tells us
not only the probability that an electron will be found at given r, 6, ¢ coordinates in
three-dimensional space, but also the probability that it will be in one or the other spin
state. Rather than seeking detailed mathematical descriptions of spin state functions,
we will simply symbolize them « and 8. Then the symbol ¢ (1) (1) will mean that
electron number 1 is in a spatial distribution corresponding to space orbital ¢, and that
it has spin «. In the independent electron scheme, then, we could write the spin orbital
(includes space and spin parts) for the valence electron of silver either as 5s(1)c(1) or
5s(1)B(1). These two possibilities both occur in the atomic beam and interact differently
with the inhomogeneous magnetic field.

We now focus on the manner in which spin considerations affect wavefunction
symmetry. The electrons are still identical particles, so our particle distribution must be

3This classical model, developed in the 1920s, is pedagogically useful and is responsible for the term spin, which
is still employed to describe the fourth quantum number. However, it was not until 1948 and 1967 that mathematical
studies of the properties of linearized equivalents of the Schodinger equation revealed the mathematical connection
to this quantum number. For an entry to the literature, see Roman [10].

4Actually, other experimental evidence, such as splitting of atomic spectral lines due to applied magnetic fields,
was also available. Furthermore, experience with the quantum theory of orbital angular momentum played a role
in the treatment of electron spin. The reader should not think that the historical development of quantum theory
of spin was as naive or simple as we make it appear here.
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insensitive to our choice of labels. This last statement is equivalent to saying that i must
be symmetric or antisymmetric for interchange of electron space and spin coordinates.
Let us examine this situation in the case of ground state helium and lithium atoms.

In the independent electron approximation, the lowest-energy configuration for
helium is 1s%. Let us write the various conceivable spin combinations for this config-
uration. They are

Is(Wa()1sQ)x(2) a(Da(2) (5-19)
IsaIs@pO | oo Jap) (5-20)
Is(DB(D)1s)ar(2) B2 (5-21)
Is(HB(D1s2)B2) BHBQ) (5-22)

It is easy to see that the common space term 1s(1)1s(2) is symmetric for electron inter-
change. Likewise, o(1)a(2) and B(1)B(2) are each symmetric, so Egs. (5-19) and
(5-22) are totally symmetric wavefunctions. The spin parts of Egs. (5-20) and (5-21) are
unsymmetric (not antisymmetric) for interchange, so these wavefunctions are not satis-
factory. However, we can take the sum and difference of Egs. (5-20) and (5-21) to obtain

(1/vV2)[a(1)B2) + B(Ha(2)] (5-23)
(1/vV2)la()BR) — B (2)] (5-24)

The 2~!/2 serves to maintain normality if we assume « and 8 to be orthonormal:

1s(1)1s(2) {

/a*(l)a(l)dw(l) = /ﬂ*(l)ﬁ(l)dw(l)zl (5-25)

/a*(l)ﬁ(l)da)(l) - /ﬂ*(l)a(l)da)(l)zo (5-26)

Here we use integrals and a differential element dw in a “spin coordinate w.” This is
notationally convenient but not, for our purposes, worth delving into. We can interpret
integration over w to be in effect equivalent to summing over the possible electron
indices. If, for a particular electron index, the spins agree, then the integral equals unity.
If they disagree, the integral vanishes. Wavefunction (5-23) consists of symmetric space
and spin parts, so it is overall symmetric. Wavefunction (5-24) contains a symmetric
space part times an antisymmetric spin part, so it is overall antisymmetric. We have
succeeded, then, in writing down four wavefunctions for the configuration 1s> having
proper symmetry for electron interchange. Three of these, Egs. (5-19), (5-22), (5-23),
are symmetric and one, Eq. (5-24), is antisymmetric. Experimentally, we know that
the ground state of helium is a singlet, that is, there is but one such state. This suggests
that the wavefunction must be antisymmetric for exchange of electron space and spin
coordinates.

EXAMPLE 5-3 We have just shown four wavefunctions resulting from four spin
functions times a symmetric space part (1s*). Can we manipulate the 1s* configu-
ration to obtain an antisymmetric space part, as we did for the 1s2s configuration?
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SOLUTION » We can try to produce an antisymmetric space function by taking the product
difference 1s(1)1s(2)-1s(2)1s(1). Since these two products are really the same, this combination
equals zero. Thus, whereas two different orbitals can be arranged in two product combinations, one
symmetric and the other antisymmetric, we find that a single orbital, doubly occupied, can appear
only in one simple product, which must be symmetric for electron exchange. <

Now let us try lithium. The lowest-energy configuration should be 1s, and we can
write eight unique space-spin orbital products:

a(Da2)a3) (5-27)
a(Da(2)B(3) (5-28)
a(1)B(2)a(3) (5-29)
1s(D1s@)153) ) PDe@aB) (5-30)
a(1)B(2)B(3) (5-31)
B(Ma(2)B(3) (5-32)
BMB2)a(3) (5-33)
B(B2)B(3) (5-34)

Of these, the first and last are totally symmetric for all electron interchanges. The
remaining six are unsymmetric for two out of three possible interchanges. Can we
make appropriate linear combinations of these as we did for helium? Let us try. The
problem is simplified by recognizing that, if we start with, say, two «’s and one S,
we still have that number of «’s and B’s after interchange of electron labels. Hence,
we mix together only functions that agree in total numbers of @’s and 8’s, i.e., (5-28),
(5-29), (5-30) with each other, or (5-31), (5-32), (5-33) with each other. Let us try the
sum of (5-28), (5-29), and (5-30). Ignoring normalization, this gives the spin function

a(Da2)B3) +a(1)B2)a3) + B(Da)a(3) (5-35)

Interchanging electron spin coordinates 1 and 2 gives

aQa(MB3) +a2)B(a3) + B2)a(Da(3)

which, upon reordering each product, is easily seen to be identical to (5-35). The same
result arises from interchanging 1 and 3 or 2 and 3, and so (5-35) is symmetric for all
interchanges. The sum of (5-31), (5-32), and (5-33) is likewise symmetric. Can we find
any combinations that are totally antisymmetric? A few attempts with pencil and paper
should convince one that it is impossible to find a combination that is antisymmetric
for all interchanges. Experimentally, we know that no state of lithium corresponds to
a 1s> configuration.

To summarize, we have found that for the configuration 1s> we can write three wave-
functions that are symmetric and one that is antisymmetric under exchange of electron
space and spin coordinates, while for the configuration 1s> we can construct symmetric
or unsymmetric wavefunctions, but no antisymmetric ones. The physical observation
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is that atoms exist in only one state having an electronic structure approximately repre-
sented by the configuration 1s2, but that there are no atoms having any state represented
by 1s3. This and other physical evidence has led to the recognition of the exclusion prin-
ciple: Wavefunctions must be antisymmetric with respect to simultaneous interchange
of space and spin coordinates of electrons.’ In invoking the exclusion principle, we
exclude all of the 1s® wavefunctions and three out of the four wavefunctions we were
able to construct for the ground state of helium, leaving (5-24) as the only acceptable
wave-function.

We have seen that the ground state configuration of lithium cannot be 1s3. Can we
satisfy the exclusion principle with the next-lowest energy configuration 1s?2s? We
will try to find a satisfactory solution, but our manipulations will be simplified if we
streamline our notation. We will write a function such as 1s(1)1s(2)2s(3)x(1)8(2)x(3)
as 1sls2saBa, allowing position in the sequence to stand for the electron label. Inter-
changing electrons 1 and 2 is then represented by switching the order of space functions
in positions 1 and 2 and spin functions in positions 1 and 2 thus

Is1s2saBa =2 Is1s2sBaw (5-36)

This interchange produced a new function rather than merely reversing the sign
of our starting function. But if we take the difference between the two products
in Eq. (5-36), we will have a function that is antisymmetric to 1, 2 interchange:
Is1s2s(xfa — Bar). Now we subject this to a 1, 3 interchange and the new products
produced are subtracted to give a function that is antisymmetric to 1, 3 interchange:
Isls2s(axfo — Baa)—2slsls(eBa — aaB). The first pair of terms is still not antisym-
metric to 2, 3 interchange, and the second pair is not antisymmetric to 1, 2 interchange.
We can use either one of these interchanges to produce two new terms to subtract.
Either way, the resulting wavefunction, antisymmetric for all interchanges, is

S
V6

The factor 6~!/2 normalizes (5-37) since all of the six space-spin products are normal-
ized and orthogonal to each other product by virtue of either space-orbital or spin-orbital
disagreement, or both. Note that, whereas the two-electron wavefunction for helium
was separable into a single space function times a spin function, the lithium wavefunc-
tion must be written as a linear combination of such products. This is usually true when
we deal with more than two electrons.

Since 15%2s is the lowest-energy configuration for which we can write an anti-
symmetrized wavefunction, this is the ground state configuration for lithium in this
independent-electron approximation.

In summary, phenomenological evidence suggests that an electron can exist in either
of two “spin states” in the presence of a magnetic field. Writing wavefunctions including
spin functions and comparing these with experimental facts indicates that states exist
only for wavefunctions that satisfy the exclusion principle.

[1s1s2s(aBa — Baa) + 1s2s1s(Baa — aaB) + 2slsls(aaf —afa)]  (5-37)

5A broader statement is: Wavefunctions must be antisymmetric (Symmetric) with respect to simultaneous
interchange of space and spin coordinates of fermions (bosons). A fermion is characterized by half-integral
spin quantum number; a boson is characterized by integral spin quantum number. Electrons have spin quantum
number % and are therefore fermions.



Section 5-4 Slater Determinants and the Pauli Principle 137

D 5-4 Slater Determinants and the Pauli Principle

It was pointed out by Slater [5] that there is a simple way to write wavefunctions
guaranteeing that they will be antisymmetric for interchange of electronic space and spin
coordinates: one writes the wavefunction as a determinant. For the 1s22s configuration
of lithium, one would write

Is(Da(l) 1s@)a(2) 1s3)a(3)
V= 7 Is(DB(1)  1s(2)B(2) 1s(3)BA3) (5-38)
2s(Da(l) 2s(2Q)a(2) 2s(3)a(3)

Expanding this according to the usual rules governing determinants (see Appendix 2)
gives

%[IS(l)Ot(l)18(2)/3(2)28(3)a(3) +2s(Dar (1) 1s(2)ex(2) 1s(3) B(3)

+1s(1)B(1)2s(2)a(2)1s(3)a(3) — 2s(D e (1)1s(2) B(2)1s(3)x (3)
—1s(1)B(1)1s(2)x(2)2s(3)x (3) — Is(Dex(1)2s(2)x(2)1s(3) B(3)] (5-39)

w:

This can be factored and shown to be identical to wavefunction (5-37) of the preceding
section.

A simplifying notation in common usage is to delete the «, 8 symbols of the spin-
orbitals and to let a bar over the space orbital signify 8 spin, absence of a bar being
understood to signify « spin. In this notation, Eq. (5-38) would be written

Is(l) 1s(2) 1s(3)
v=—|15(1) 15Q2) 15(3) (5-40)
V6 25(1) 2s(2) 2s(3)

The general prescription to follow in writing a Slater determinantal wavefunction is
very simple:

1. Choose the configuration to be represented. 1s152s was used above. (Here we write
15152s rather than 1s22s to emphasize that the two 1s electrons occupy different spin-
orbitals.) For our general example, we will let U; stand for a general spin-orbital
and take a four-electron example of configuration Uy U, U3 Us.

2. For n electrons, set up an n X n determinant with (n)~1/2 as normalizing factor.
Every position in the first row should be occupied by the first spin-orbital of the
configuration; every position in the second row by the second spin-orbital, etc. Now
put in electron indices so that all positions in column 1 are occupied by electron 1,
column 2 by electron 2, etc.

In the case of our four-electron configuration, the recipe gives

u U2 U3 Ui

L [Ux(1) U2 U23) U4
- 5-41
v VA Us() Uz(2) Uz(3) Us(4) G4

Us(l) Us(2) Us(3) Usd
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Notice that the principal diagonal (top left to bottom right) contains our original con-
figuration U U, U3z Uy. Often, the Slater determinant is represented in a space-saving
way by simply writing the principal diagonal between short vertical bars. The nor-
malizing factor is deleted. Thus, Eq. (5-41) would be symbolized as |U;(1)U3(2)
Us(3)Us(4)|.

We have indicated the general recipe for writing down a Slater determinant, and we
have seen that, for the configuration 1s152s, this gives an antisymmetric wavefunc-
tion. Now we will give a general proof of the antisymmetry of such wavefunctions
for exchange of electrons. We have already seen that interchanging the space and spin
coordinates of electrons 1 and 2 corresponds to going through the wavefunction and
changing all the 1s to 2s and vice versa; i.e., electron labels denote coordinates. In
a Slater determinant, interchanging electron labels 1 and 2 is the same thing as inter-
changing columns 1 and 2 of the determinant. [See Eq. (5-41) and note that columns 1
and 2 differ only in electron index.] But a determinant reverses sign upon interchange
of two rows or columns. (See Appendix 2 for a summary of the properties of determi-
nants.) Hence, any Slater determinant reverses sign (i.e., is antisymmetric) upon the
interchange of space and spin coordinates of any two electrons.

Suppose we tried to put two electrons into the same space-orbital with the same spin.
This would require that the same spin-orbital be written twice in the configuration,
causing two rows of the Slater determinant to be identical. [If both 1s electrons in
Eq. (5-40) had « spin, the bars would be absent from row 2.] We just stated that
the determinant must reverse sign upon interchange of two rows. If we interchange
two identical rows, we change nothing yet the sign must reverse: the determinant
must be equal to zero. Thus, the determinantal wavefunction vanishes when we try
to put more than one electron into the same spin-orbital, indicating that this is not a
physically allowed situation. This is a generalization of our earlier discovery that no
1s configuration is allowed by the exclusion principle, such a configuration requiring
at least two electrons to have the same space and spin functions.

This restriction on allowable electronic configurations is more familiar to chemists as
the Pauli principle: In assigning electrons to atomic orbitals in the independent electron
scheme, no two electrons are allowed to have all four quantum numbers (n,l, m, spin)
the same. The Pauli principle is a restatement of the exclusion principle as it applies in
the special case of an orbital approximation to the wavefunction.

D 5-5 Singlet and Triplet States for the 1s2s Configuration
of Helium

We showed in Section 5-2 that two space functions having proper space symmetry
could be written for the configuration 1s2s. One was symmetric (Eq. 5-15) and one
was antisymmetric (Eq. 5-16). Now we find that spin functions must be included in
our wavefunctions, and in a way that makes the final result antisymmetric when space
and spin coordinates are interchanged. We can accomplish this by multiplying the
symmetric space function by an antisymmetric spin function, calling the result v ,.
Thus,

Ysa(l,2) = (1/V2)[1s(1)25(2) + 2s(D1s(2)](1/v/2)[a(DB2) — (D (2)] (5-42)
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Alternatively, we can multiply the antisymmetric space term by any one of the three
possible symmetric spin terms:

a(Da(2) (5-43a)
Vas(1,2) = (l/ﬁ)[ls(l)zs@) —2s(D1s(2)] § 1/VD)[(DBQ2) + B(D(2)]  (5-43b)
B()B(2) (5-43c)

All four of these wavefunctions satisfy the exclusion principle and each is linearly
independent of the others, indicating that four distinct physical states arise from the
configuration 1s2s.

There are a number of important points that can be illustrated using these wave-
functions. The first has to do with Slater determinants. Let us write down a Slater
determinantal expression corresponding to wavefunction (5-43a). The configuration is
Is(1)a(1)2s(2)x(2), giving the Slater determinant (where absence of a bar indicates
o spin)

1
a,s 1,2 =—
Vas(l,2) 7

which, upon expansion, gives us Eq. (5-43a). If we attempt the same process to
obtain Eq. (5-43b), we encounter a difficulty. The configuration 1s(1)c(1)2s(2)8(2)
leads to a 2 x 2 determinant, which, upon expansion, gives two product terms,
whereas Eq. (5-43b) involves four product terms. The Slater determinantal functions
corresponding to Egs. (5-42) and (5-43b) are, in fact,

1s(1) 1s(2)

2s(1)  2s(2) (5-44)

1|1 1
sa(1,2) = —=1 — —
Ysal,2) ﬁ{ﬁ 5

The lesson to be gained from this is that a single Slater determinant does not always
display all of the symmetry possessed by the correct wavefunction. (In this particular
case, a single determinant restricts one of the AOs to « spin and the other to 8, which
is an artificial limitation.)

Next we will investigate the energies of the states as they are described by these
wavefunctions. We have already pointed out that they are degenerate eigenfunctions
of Happrox, but we will now examine their interactions with the full hamiltonian (5-2).
Since our wavefunctions are not eigenfunctions of this hamiltonian, we cannot compare
eigenvalues. Instead we must calculate the average values of the energy for each
wavefunction, using the formula

Is() 1s(2)
25(1) 25(2)

15(1) 15(2)
25(1)  2s(2)

} (5-45)

[V*Hy dt
Jv*yde

The symbol “dt” stands for integration over space and spin coordinates of the electrons:
dt =dvdw. Since both space and spin parts of our wavefunctions are normalized
[cf. Egs. (5-25) and (5-26)], the denominator of Eq. (5-46) is unity and may be ignored.
The energy thus is given by the expression

E= (5-46)

_ 1 1
E= / Y [—EV% - §V§ —Q/r) —2/r) + (1/r12)] ¥ dt (5-47)
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Notice that the energy operator H contains no terms that would interact with spin
functions o and . (Such terms do arise at higher levels of refinement, but we ignore
them for now.) Hence, the spin terms of i can be integrated separately, and, since all
spin factors in Eqgs. (5-42) and (5-43) are normalized, this gives a factor of unity in all
four cases. This means that the average energies will be entirely determined by the
space parts of the wavefunctions. This, in turn, means that all three states (5-43), which
have the same space term, will have the same energy but that the state approximated by
the function (5-42) may have a different energy. If our approximate representation of
the exact eigenfunctions is physically realistic, we expect helium to display two excited
state energies in the energy range consistent with a 1s2s configuration. Furthermore,
we expect one of these state energies to be triply degenerate.

Which of these two state energies should be higher? To determine this requires that
we expand our energy expression (5-47) for each of the two space functions (5-42)
and (5-43).

Eg = % //[15*(1)23*(2) +25%(1) 1s%(2)] [-%v% - %vg —@/r)
—@2/m) + (1/r12)] [1s(1)2s(2) £ 2s(1)1s(2)]dv(D)dv(2) (5-48)

(The subscript on E refers to the degeneracy of whichever energy level we are consider-
ing.) This expands into a large number of terms. Integrals over one-electron operators
may be written as products of two integrals, each over a different electron.® Thus, the
expansion over the kinetic energy operators gives

{ j 15 (D[ —4V, 2T1s(1) (1) j 2% 0RATA)

+ J 2s*(2)[ —1V,%]2s(2) dv(2) [ 1s* U(ll)
+ [ 49,250 et [ 15t psraid)
+J 1s* @ - 47,1150 dof2) [ 25* o)
o [ 15— 4y sy oty [ 252mst2ranly
+ [ 27— 19,2115 d02) | 15ty
+ [ 2sr—49.2 s ety [ 15205277000
+ [ 15— 49,212502) @) : k/*a»snﬁv’d?} o

6We have already shown that, if the 1/r> term is absent, the energy is equal to E1s + E»s, for He™, which is
equal to —2.5 a.u. Therefore, the detailed breakdown leading to Eqgs. (5-49)—(5-51) is not necessary. However, we
will present it in detail in the belief that some students will benefit from another specific example of integration
of two-electron products over one-electron operators.
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The orthogonality of the 1s and 2s orbitals causes the terms preceded by =+ to vanish.
Furthermore, integrals that differ only in the variable label [such as those in the second
and third terms of (5-49)] are equal, so that this expansion becomes

/ 1s*(1) [—%Vlz:| 1s(1)dv(1) +/2S*(1) [—%V%] 2s(1) dv(1) (5-50)
Expansion of Eq. (5-48) over (—2/rj — 2/r5) proceeds analogously to give
[ 1 2m1syan) + [ 2550) 2/my 2o (5-51)
The final term in the hamiltonian, 1/72, occurs in four two-electron integrals:
; { |[ s as@amosnze v dve)
+ // 2s*(1)1s*(2)(1/r12)2s(1)1s(2) dv(1) dv(2)
+ / / 15(125*Q)(1/r12)25(D)15Q) do(1) dv(2)
+ // 2s*(1)1s*(2)(1/r12)1s(1)2s(2) dv(1) dv(2)} (5-52)
The first two integrals of (5-52) differ only by an interchange of labels “1”” and “2 ,” and

so they are equal to each other. The same is true of the second pair. Thus, the average
value of the energy is

Eg = {/ 1s%(1) [—%v%] ls(l)dv(l)—i-/ 1s%(1) [—2/r1] 1s(1) dv(1)
—I—/Zs*(l) [—%vf] 2s(1)dv(1) +f25*(1)[—2/r1]2s(1)dv(1)
+// 15%(1)25%(2) (1/r12) 1s(1)25(2) dv(1) dv(2)
:I://1s*(1)25*(2)(1/r12)2s(1)ls(2)dv(l)dv(Z)} (5-53)

Notice that, since —%VZ — 2/r is the hamiltonian for He™, the first two integrals of
Eq. (5-33) combine to give the average energy of He™ in its 1s state. The second pair
gives the energy for He™ in the 2s state. Thus, Eq. (5-53) can be written

Ei=Eis+ Ex+J+K (5-54)
3

where J and K represent the last two integrals in Eq. (5-53). No bars appear on E
or E»s because these “average energies” are identical to the eigenvalues for the He™
hamiltonian (Problem 5-15).

The integral J denotes electrons 1 and 2 as being in “charge clouds” described by
1s*1s and 2s*2s, respectively. The operator 1/71> gives the electrostatic repulsion
energy between these two charge clouds. Since these charge clouds are everywhere neg-
atively charged, all the interactions are repulsive, and it is necessary that this “coulomb
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Figure 5-2 » The function produced by multiplying together hydrogenlike 1s and 2s orbitals. R
is the radius of the spherical nodal surface.

integral” J be positive. Alternatively, we can argue that the functions 1s*1s, 2s*2s,
and 1/r1o are everywhere positive, so the integrand of J is everywhere positive and J
must be positive.

The integral K is called an “exchange integral” because the two product functions in
the integrand differ by an exchange of electrons. This integral gives the net interaction
between an electron “distribution” described by 1s*2s, and another electron in the same
distribution. (These distributions are mathematical functions, not physically realizable
electron distributions.) The 1s2s function is sketched in Fig. 5-2. Because the 2s orbital
has a radial node, the 1s2s function (which is the same as 1s*2s since the 1s function
is real) also has a radial node. Now the function 1s(1)2s(1)1s(2)2s(2) will be positive
whenever r| and r; are either both smaller or both larger than the radial node distance
(R in Figure 5-2). But when one r value is smaller than R and the other is greater,
corresponding to the electrons being on opposite sides of the nodal surface, the product
Is(1)2s(1)1s(2)2s(2) is negative. These positive and negative contributions to K are
weighted by the function 1/717, which is always positive and hence unable to affect
the sign of the integrand. But 1/71> is smallest when the electrons are far apart. This
means that 1/7> tends to reduce the contributions where the electrons are on opposite
sides of the node (i.e., the negative contributions), and so the value of K turns out to be
positive (although not as large in magnitude as J, which has no negative contribution
at all).

Since the integral K is positive, we can see from Eq. (5-54) that the triply degenerate
energy level lies below the singly degenerate one, the separation between them being
2K. (We note in passing that these independent-electron wavefunction energies are not
simply the sum of one-electron energies as was the case when we used Hypprox, thereby
ignoring interelectronic repulsion.)

The experimental observation agrees qualitatively with these results. There are two
state energies associated with the 1s2s configuration. When the atom is placed in an
external magnetic field, the lower-state-energy-level splits into three levels. The state
having the higher energy has a “multiplicity” of one and is called a singlet. The lower-
energy with multiplicity three is called a triplet. (The reference to a “triplet state”
should not be construed to mean that this is one state. It is a triplet of states.)

Itis possible to use vector arguments similar to those presented in Chapter 4 to under-
stand why the triply degenerate level splits into three different levels in the presence of
a homogeneous magnetic field. Let us first consider the case of a single electron. We
have already indicated that two spin states are possible, which we have labeled « and .
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In a magnetic field the angular momentum vectors precess about the field axis z, as
depicted in Figure 5-3. The z components of the angular momentum vectors are con-
stant but the x and y components are not. Because the allowed z components must
in general differ by one atomic unit (stated but not proved in Chapter 4), and because
there are but two allowed values (inferred from observations such as the splitting of
a beam of silver atoms into two components), and because the two kinds of state are
oppositely affected by magnetic fields, it is concluded that the z components of angular
momentum (labeled my) are equal to +% and —% a.u. for o and B, respectively. Fol-
lowing through using orbital angular momentum relations as a model, we postulate an
electron spin quantum number s equal to the maximum z-component of spin angular
momentum in a.u., % and a spin angular momentum vector s having length +/s(s + 1)
a.u. The degeneracy, g; =2s + 1, equals 2, in agreement with the two orientations in
Fig. 5-3.

As noted in Chapter 4, half-integer quantum numbers correspond to eigenfunctions
that cannot be expressed as spherical harmonics. We will not pursue the question
of detailed expressions for « and 8 here. (However, see the problems at the end of
Chapter 9.)

Now let us turn to the two-electron system. We will assume that the magnetic
moments of the two electrons interact independently with the external field. This
ignores the fact that each electron senses a small contribution to the magnetic field
resulting from the magnetic moment of the other electron.

Another factor that could affect the magnetic field sensed by the spin moment is the
magnetic moment resulting from the orbital motions of the electrons, although this is
not present if both electrons are taken to be in s atomic orbitals (AOs). For two electrons,
we can imagine four situations: aw, off, Ba, and BB. We pointed out earlier (Section
4-5) that, for a system composed of several moving parts, the total angular momentum
is the sum of the individual angular momenta, and the z component is the sum of the
individual z components. For the four spin situations listed above, this means that the
net z components of spin angular momentum (labeled M) are +1, 0,0, and —1 a.u.,
respectively. The spin combinations «f + Ba [from the triplet (5-43b)] and off — B«

Figure 5-3 » The angular momentum vectors for o and g precess around the magnetic field axis
z. The z components of these vectors are constant and have values of +% and —% a.u. respectively.
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Figure 5-4 » Energy levels for singlet and triplet levels of 1s2s helium in (a) absence, and
(b) presence of an external magnetic field.

[from the singlet (5-42)] are linear combinations of o8 and Ba. However, since these
two functions have the same value for the z component of angular momentum (zero),
their linear combinations will also have that value. It follows that the z components
of the spin angular momenta of the triplet of states (5-43) are 41, 0, and —1 a.u., and
for the singlet (5-42) it is zero. Because the electrons are charged, these spin angular
momenta correspond to spin magnetic moments, which interact differently with the
applied magnetic field to give splitting of the triplet (see Figure 5-4). It is customary
to refer to all three spin states in (5-43) as having parallel spins even though the vector
diagram for the (5-43b) state is not particularly in accord with this terminology. For
the singlet state, the spins are said to be opposed, or antiparallel.

[ J 56 The Self-Consistent Field, Slater-Type Orbitals,

and the Aufbau Principle

Up to now we have used wavefunctions that, while not being eigenfunctions of the
hamiltonian, are eigenfunctions of an “effective hamiltonian” obtained by ignoring the
interelectronic repulsion operator 1/7;;. That is, these wavefunctions would be exactly
correct if the electrons in helium were attracted by the nucleus, but did not repel each
other. For this reason, we have referred to this as an independent electron approxi-
mation. Because we have neglected interelectronic repulsion, we cannot expect such
a wavefunction to give very good numerical predictions of charge density or energy.
We can compare the energy of He in the 1s? (ground) state as predicted by our inde-
pendent electron wavefunction and Hyppr0x (—108.84 eV) with the experimental value
(—=79.0143 eV). (See Table 5-1.) This shows that the predicted energy is much too low,
which is understandable since we have neglected an important repulsive (hence positive)
interaction energy. But we can account for much of this neglected energy by calculating
the average value of the energy using H (with 1/71; included) instead of Hy oy . This
gives a value of —74.83 eV—much better, though now too high by more than 4 eV. Even
though we have now accounted for interelectronic repulsion, there is still a problem:
Because we ignored interelectronic repulsion in arriving at these wavefunctions, they
predict electron densities that are too large near the nucleus. In reality, interelectronic
repulsion prevents so much build-up of charge density. Methods have been devised that
partially overcome this problem by retaining the convenient form of orbital products
but modifying the formulas for the orbitals themselves to make them more diffuse.
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TABLE 5-1 » Average Values for Energy Calculated from Helium Atom Ground State
Approximate Wavefunctions?

Wavefunction description E(eV)
1) Product of He™ orbitals —74.83
2) Product of hyrdrogenlike orbitals with ¢ fixed by SCF
method —77.48
3) Best product-type wavefunction —77.870917

4) Nonorbital wavefunction of Pekeris [9]. This wavefunction
uses functions of 71, rp and > as coordinates and has
the form of an exponential times a linear combination of
1078 terms —79.00946912

9E = [y* Hyrdt/[ y*ydt, where H is given by Eq. (5-2).

Let the ground state of helium be our example. We take the ordinary independent-
electron wavefunction as our initial approximation:

1s(1)1s(2) =+/8/m exp(—2r1)+/8/m exp(—2r2) (5-55)

These atomic orbitals are correct only if electrons 1 and 2 do not “see” each other via
a repulsive interaction. They really do repel each other, and we can approximate this
repulsion by saying that electron 2 “sees” electron 1 as a smeared out, time-averaged
charge cloud rather than the rapidly moving point charge that is actually present. The
initial description for this charge cloud is just the absolute square of the initial atomic
orbital occupied by electron 2: [1s(2)]%. Our approximation now has electron 1 moving
in the field of a positive nucleus embedded in a spherical cloud of negative charge.
Thus, for electron 1, the positive nuclear charge is “shielded” or “screened” by electron
2. Hence, electron 1 should occupy an orbital that is less contracted about the nucleus.
Let us write this new orbital in the form

Is'(1) = /&3 /7 exp(=¢r1) (5-56)

where ¢ is related to the screened nuclear charge seen by electron 1. The mathematical
methods used to evaluate ¢ will be described later in this book.

Next we turn to electron 2, which we now take to be moving in the field of the
nucleus shielded by the charge cloud due to electron 1, now in its expanded orbital.
Just as before, we find a new orbital of form (5-56) for electron 2. The value of &
that we calculate for electron 2, however, will be different from what we found for
electron 1 because the shielding of the nucleus by electron 1 is different from what it
was by electron 2 in our previous step. We now have a new distribution for electron
2, but this means that we must recalculate the orbital for electron 1 since this orbital
was appropriate for the screening due to electron 2 in its old orbital. After revising
the orbital for electron 1, we must revise the orbital for electron 2. This procedure
is continued back and forth between electrons 1 and 2 until the value of { converges
to an unchanging value (under the constraint that electrons 1 and 2 ultimately occupy
orbitals having the same value of ¢). Then the orbital for each electron is consistent
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with the potential due to the nucleus and the charge cloud for the other electron: the
electrons move in a “self-consistent field” (SCF).

The result of such a calculation is a wavefunction in much closer accord with the
actual charge density distributions of atoms than that given by the complete neglect of
interelectron repulsion.” A plot of the electron density distribution in helium as given
by wavefunction (5-55) and by a similar wavefunction with optimized ¢ is given in
Fig. 5-5. Because each electron senses only the time-averaged charge cloud of the
other in this approximation, it is still an independent-electron treatment. The hallmark
of the independent electron treatment is a wavefunction containing only a product of
one-electron functions. It will not contain functions of, say, 712, which would make
depend on the instantaneous distance between electrons 1 and 2.

Atomic orbitals that are eigenfunctions for the one-electron hydrogenlike ion (for
integral or nonintegral Z) are called hydrogenlike orbitals. In Chapter 4 we noted that
many hydrogenlike orbitals have radial nodes. In actual practice, this mathematical
aspect causes increased complexity in solving integrals in quantum chemical calcula-
tions. Much more convenient are a class of modified orbitals called Slater-type orbitals
(STOs). These differ from their hydrogenlike counterparts in that they have no radial
nodes. Angular terms are identical in the two types of orbital. The unnormalized radial
term for an STO is

R(n, Z,s)=r""Yexp[—(Z —s)r/n] (5-57)
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Figure 5-5 » Electron distribution in helium as given by SCF and unshielded independent electron
approximations.

"In practice, mathematical techniques have been found that lead to a self-consistent solution without explicit
iteration between evolving AOs that converge to some final optimized . Examples are described in Chapters 7
and 12. A thorough discussion of the SCF and related methods is given in Chapter 11.
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where Z is the nuclear charge in atomic units, n is the principal quantum number, and
s is a “screening constant” which has the function of reducing the nuclear charge Z
“seen” by an electron. Slater [7] constructed rules for determining the values of s
that will produce STOs in close agreement with those one would obtain by an SCF
calculation. These rules, appropriate for electrons up to the 3d level, are

1. The electrons in the atom are divided up into the following groups: 1s|2s,2p|3s,
3p|3d.

2. The shielding constant s for an orbital associated with any of the above groups is
the sum of the following contributions:

a) Nothing from any electrons in groups to the right (in the above list) of the group
under consideration

b) 0.35 from each other electron in the group under consideration (except 0.30 in
the 1s group)

c) If the orbital under consideration is an s or p orbital, 0.85 for each electron with
principal quantum number less by 1, and 1.00 for each electron still “farther in”;
for a d orbital, 1.00 for all electrons farther in

For example, nitrogen, with ground state configuration 1s>2s> 2p>, would have the
same radial part for the 2s and 2p STOs. This would be given by the formula (n =2,
Z=T,§=4%x035+2x0.85=3.1)

Ros2p(2,7,3.1) =r® Vexp[—(7 —3.1)r/2] =rexp(—1.95r)
For the 1slevel, n=1,Z =7, s =0.30, and
Ris =exp(—6.7r)

Comparing orbital exponents, we see that the 1s charge cloud is compressed much
more tightly around the nucleus than are the 2s and 2p “valence orbital” charge clouds.
Slater-type orbitals are very frequently used in quantum chemistry because they provide
us with very good approximations to self-consistent field atomic orbitals (SCF-AOs)
with almost no effort.

Clementi and Raimondi [8] have published a refined list of rules for the shielding
constant, which extends to the 4p level. Their rules include contributions to shielding
due to the presence of electrons in shells outside the orbital under consideration. Such
contributions are not large, and, up to the 3d level, there is reasonably good agreement
between these two sets of rules.

The fact that STOs have no radial nodes results in some loss of orthogonality. Angular
terms still give orthogonality between orbitals having different/ or m quantum numbers,
but STOs differing only in their » quantum number are nonorthogonal. Thus, 1s, 2s,
3s, ... arenonorthogonal. Similarly 2p;, 3p;, ... or3d,;,4dy,, ... arenonorthogonal.
In practice, this feature is handled easily. The only real problem arises if one forgets
about this nonorthogonality when making certain calculations.

When carrying out SCF calculations on multielectronic atoms, one finds that the
orbital energies for 2s and 2p functions are not the same. Similarly, 3s 3p, and 3d orbitals
are nondegenerate. Yet these orbitals were degenerate in the one-electron hydrogenlike
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system in which energy was a function of »n but not of / or m. Why are these orbital
energies nondegenerate in the many-electron calculation? A reasonable explanation can
be found by considering the comparative effectiveness with which a pair of 1s electrons
screen the nucleus from a 3s or a 3p electron. Comparing the 3s, 3p, and 3d hydrogenlike
orbital formulas in Table 4-2 shows that the 3s orbital is finite at the nucleus, decreasing
proportionally to » for small . The 3p orbitals vanish at the nucleus but grow as r for
small 7. The 3d orbitals vanish at the nucleus but grow as r2 for small 7. The result of
all this is that an s electron spends a larger amount of its time near the nucleus than a p
electron of the same principal quantum number, the p electron spending more time near
the nucleus than the d, etc. Hence, the s electron penetrates the “underlying” charge
clouds more effectively and is therefore less effectively shielded from the nucleus.
Since the s electron sees a greater effective nuclear charge, its energy is lower than
that of the p electron. (This effect is not obvious in STOs since the 3s and 3p STOs
have the same radial function which vanishes at the nucleus. However, the STO for 3d
does reflect the nondegeneracy since Slater’s rules give it a different screening constant
from 3s or 3p.)

The tendency for higher / values to be associated with higher orbital energies leads
to the following orbital ordering:

1s 25 2p 3s 3p 4s 3d 4p 5s 4d S5p 6s 5d 4f 6p 7s 6d 5f . .. (5-58)

When we get to principal quantum numbers of 3 and higher, the energy differences
between different / values for the same n become comparable to the differences between
different »n levels. Thus, in some atoms, the 4s level is almost the same as the 3d level,
etc.

In compiling data on ground states of atoms, Hund noticed that greatest stability
results if the AOs in a degenerate set are half-filled with electrons before any of them
are filled. This generalization, called Hund’s rule, is sometimes stated in an alternative
form: Of the states associated with the ground state configuration of an atom or ion,
those with greatest spin multiplicity lie deepest in energy. Chemists generally find the
former version to be more convenient, spectroscopists the latter. The reason for the
equivalence of these statements will emerge later in this chapter.

EXAMPLE 5-4 An unexcited Fe atom has an electronic configuration of
1522522 p®3523 pb4523d°. What is its spin multiplicity?

SOLUTION »  All electrons below 3d© are spin-paired in orbitals, hence contribute nothing to
Mg. In 3d®, we have 4 electrons that can each occupy a 3d AO alone. If we follow Hund’s
rule and seek maximum spin multiplicity, we make all their spins the same (). Then maximum,
Mg=4- % =2, 50 §=2, and spin multiplicity is 2S5 + 1 =5. The atom has a quintet ground “state”
(really five states). |

The energy-ordering scheme (5-58) coupled with the Pauli or exclusion principle
and Hund’s rule leads us to a simple prescription for “building up” the electronic con-
figurations of atoms. This aufbau principle is familiar to chemists and leads naturally
to a correlation between electronic structure and the periodic table. The procedure is to
place all the electrons of the atom into atomic orbitals, two to an orbital, starting at the
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low-energy end of the list (5-58) and working up in energy. In addition, when filling a
set of degenerate levels like the five 3d levels, one half-fills all the levels with electrons
of parallel spin before filling any of them. This prescription enables one to guess the
electronic configuration of any atom, once its atomic number is known, unless it hap-
pens to put us into a region of ambiguity, where different levels have almost the same
energy. (Electronic configurations for such atoms are deduced from experimentally
determined chemical, spectral, and physical properties.) The configuration for carbon
(atomic number 6) would be 1s22s%2p?, with the understanding that p electrons occupy
different p orbitals and have parallel spins. (Recall that we expect the most stable of all
the states arising from the configuration 1s>2s>2p? to be the one of highest multiplicity.
The 2p electrons can produce either a singlet or a triplet state just as could the two
electrons in the 1s2s configuration of helium. The triplet should be the ground state and
this corresponds to parallel spins, which requires different p orbitals by the exclusion
principle.)

It is important to realize that the orbital ordering (5-58) used in the aufbau process
is not fixed, but depends on the atomic number Z. The ordering in (5-58) cannot be
blindly followed in all cases. For instance, the ordering shows that 5s fills before 4d.
It is true that element 38, strontium, has a - --4p®5s24d° configuration. But a later
element, palladium, number 46, has - - - 4p®4d'%5s0 as its ground state configuration.
The effect of adding more protons and electrons has been to depress the 4d level more
than the 5s level.

D 5-7 Electron Angular Momentum in Atoms

Most of our attention thus far has been with wavefunction symmetry and energy.
However, understanding atomic spectroscopy or interatomic interactions (in reactions
or scattering) requires close attention to angular momentum due to electronic orbital
motion and “spin.” In this section we will see what possibilities exist for the total
electronic angular momenta of atoms and how these various states are distinguished
symbolically.

We encountered earlier (Section 4-5) the notion that the total angular momentum for
a classical system is the vector sum of the angular momenta of its parts. If the system
interacts with a z-directed field, the total angular momentum vector precesses about
the z axis, so the z component continues to be conserved and continues to be equal to
the sum of z components of the system’s parts. Since quantum hydrogenlike systems
obey angular momentum relations analogous to a precessing classical system, it is this
z-axis behavior that we focus on as we seek to construct the nature of the total angular
momentum from the orbital and spin parts we already understand.

Because it is the tofal angular momentum that is conserved in a multicomponent
classical system, it is the total angular momentum that obeys the quantum rules we have
previously described for separate spin and orbital components. If we consider a one-
electron system, the combined spin-orbital angular momentum can be associated with
a quantum number symbolized by j (analogous to s and /). Then we can immediately
say that the allowed z components of total angular momentum are, in a.u., m ; = =+,
+(j —1),... and that the length of the vectoris /j(j + 1) a.u.

The implication of accepting total angular momentum as the fundamental quantized
quantity is that the spin and orbital angular momenta do not individually obey the
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quantum rules we have so far applied to them—s and / are not “good” quantum numbers.
However, for atoms of low atomic number they are in fact quite good, especially for
low-energy states, and we can continue to refer to the s and / quantum numbers in such
cases with some confidence. (Classically, this corresponds to cases where there is little
transfer of angular momentum between modes.)

5-7.A Combined Spin-Orbital Angular Momentum for
One-Electron lons

The key to understanding the following discussion is to remember that a quantum
number /, s, or j really tells us three things:

1. It equals the maximum value of m;, mg, or m ;. If I =2, the maximum allowed value
of my is 2, and the maximum z component of orbital angular momentum is 2 a.u.

2. It allows us to know the length of the related angular momentum vector, 1, s, or j,
in a.u. For j, this is given by /j(j+ 1). If j =2, the length of the total angular
momentum vector j is \/6 a.u.

3. It allows us to know the degeneracy, g, of the energy level due to states having this
angular momentum. For s, this is 2s 4+ 1. If s =1/2, gg =2. The corresponding /
degeneracies produce the s, p, d, f degeneracies of 1, 3,5, 7.

Using the hydrogen atom as our example, let us consider what the fotal electronic
angular momentum is in the ground (1s) state. For an s AO, / =0, and so there is no
orbital angular momentum. This means that the fotal angular momentum is the same
as the spin angular momentum, so j=s=1/2,m ; =+1/2. The diagram for the vector
Jj» then, looks just like that for s (Fig. 5-3).

Niw

t ms (max) 1 »
, oy
1 m; (max) 2 ~
\ o) =302
2 m, (max)
0
h!
-2
-1
-3 ~3

(@) (b)

Figure 5-6 » (a) Maximum z components of orbital and spin angular momenta for a p electron
leading to a fotal zcomponent of 3/2. (b) The four states corresponding to the j =3/2 vector assuming
its possible z intercepts (3/2,1/2, —1/2, —3/2).
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Figure 5-7 » (a) j=1/2, resulting whenlis oriented with its maximum z intercept and s is oriented
in its other orientation (other than as in Fig. 5-6). (b) The two states corresponding to the J =1/2
vector assuming its possible z intercepts (1/2, —1/2).

More interesting is an excited state, say 2p. Now /=1and s =1/2. From/=1 we
can say that the maximum orbital z component of angular momentum is 1 a.u. s=1/2
tells us that there is an additional maximum spin z component of 1/2. The maximum
sum, then, is 3/2 for the z component of j. But, if this is the maximum m ;, then j
itself must be 3/2 and the length of j must be 1/(3/2)(5/2) = 1.94 a.u. There must be
2j 4+ 1 =4 allowed orientations of j, with z intercepts at 3/2,1/2, —1/2, —3/2 in a.u.
(Fig. 5-6).

We are not yet finished with the 2p possibilities. The total angular momentum is
the sum of its orbital and spin parts, and we have so far found the way they combine
to give the maximum z component. But this is not the only way they can combine. It
is possible to have m; =1 and my; = —1/2. Then the maximum m ; =1/2,s0 j=1/2,
giving us a vector j of length /(1/2)(3/2) a.u. and two orientations (Fig. 5-7).

So far we have identified six states, four with j =3/2 and two with j =1/2. This
is all we should expect since we have three 2p AOs and two spins, giving a total
of six combinations. It seems, though, that we could generate some more states by
now letting m; =0 or —1 and combining these with my = +1/2. However, these
possibilities are already implicitly accounted for in the multiplicity of states we rec-
ognize to be associated with the j =3/2, 1/2 cases already found. This illustrates
the general approach to be taken when combining two vectors: Orient the larger
vector to give maximum z projection, and combine this projection with each of the
allowed z components of the smaller vector. This gives all of the possible m ;(max)
values, hence all of the j values. In other words, it gives us all of the allowed vec-
tors, j, each oriented with maximum z component, and it remains only to recognize
that these can have certain other orientations corresponding to z intercepts of m ; — 1,
mj—2,... ,—m]'.

States can be labeled to reflect all of the angular momentum parts they possess. The
main symbol is simply s, p, d, f, g, etc. depending on the / value as usual. A superscript
at left gives spin multiplicity (2s + 1) for the states. A subscript at right tells the j
quantum number for the states. If an individual member of the group of states having
the same ; value is to be cited, it is identified by placing its m ; value at upper right.
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Thus, all six of the states discussed above can be referred to as *p states. The two
groups having different total angular momentum are distinguished as >p3 /2 and Zp1 /2
One of the four states in the former group is the 2p3_ /12/ ? state.

The general form of the symbol is 251" Such symbols are normally called term
symbols, and the collection of states they refer to is called a term (except when an
individual state is denoted by inclusion of the m ; value).

The reason for distinguishing between the 2p3 2 and p1 /2 terms is that they occur
at slightly different energies. This results from the different energies of interaction
between the magnetic moments due to spin and orbital motions. For instance, if / and
s are coupled so as to give the maximum j, their associated magnetic moments are
oriented like two bar magnets side by side with north poles adjacent. This is a higher-
energy arrangement than the other extreme, where / and s couple to give minimum j,
acting as a pair of parallel bar magnets with the north pole of each next to the south
pole of the other. So %p; /2 should be lower in energy than ’m /2 for hydrogen.

EXAMPLE 5-5 For a hydrogen atom having » = 3,/ = 2, what are the possible
j values, and how many states are possible? Indicate the lengths of the j vectors
in a.u. What term symbols apply?

SOLUTION » If/ =2 (d states), there are five AOs and two possible spins, so we expect a total
of ten possible states. The maximum possible values of the z-component of angular moment for
orbital and spin respectively are 2 and 1/2. So the maximum value is 5/2 giving a vector length
of \/35/4 a.u. and six possible z projections, hence six states. The term symbol is 2d5 /2. The
remaining possible j value is 2 — 1/2 =3/2, accounting for four more states and giving a vector
length of +/15/4 a.u. and a term symbol of 2d3/2. <

5-7.B Spin-Orbital Angular Momentum for Many-Electron Atoms

Much of what we have seen for one-electron ions continues to hold for many-electron
atoms or ions. All the symbolism is the same, except that capital letters replace low-
ercase: The quantum numbers are L, S, and J, and the main symbol becomes S, P, D,
F, G, etc. There is a total orbital angular momentum vector L with quantum number
L that equals the maximum value of M;. The length of L is «/L(L + 1) a.u., and it
has 2L + 1 orientations. Vectors S and J behave analogously. When constructing the
vectors J, we continue to place the larger of L and S to give maximum z intercept,
and add to this the possible z intercepts of the smaller vector. The situation, then, is
just as before except that we need to figure out the possible values for My and Mg by
combining the allowed values of m;(1), m;(2), ... and ms(1), ms(2), ... 8

8This procedure of first combining individual orbital contributions to find L and spin contributions to find S
and then combining these to get J is referred to as “L—S coupling,” or “Russell-Saunders coupling.” The other
extreme is to first combine 1 and s for the first electron to give j(1), 1 and s for the second electron to give j(2), ...
and then combine these individual-electron j’s to give J. This is more appropriate for atoms having high atomic
number (in which electrons move at relativistic speeds in the vicinity of the nucleus), and is referred to as “j—;
coupling.” We will not describe j—j coupling in this text. The reader should consult Herzberg [6] for a fuller
treatment.
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For example, if we have found that M;(max) =2 (which means L = 2) and
Mg (max) =1 (which means S = 1), we have that M ;(max) can be 2+ 1,240, and
24 (—1), or 3,2, and 1. This means that the possible values of J are 3, 2, 1, giving
three different J vectors. Since L =2 and S =1, the term symbols for these three J
cases are D3, 3D, and 3D;. Notice that the multiplicities of these three terms—7,
5, and 3, respectively, obtained from 2.J + 1—total 15 states, which is just what we
should expect for the 3D symbol (spin multiplicity of 3, orbital multiplicity of 5). The
15 triplet-D states are found in three closely spaced levels, differing in energy because
of different spin-orbital magnetic interactions.

The problem remains, how do we find the M} and M| values that allow us to construct
term symbols? There are two situations to distinguish in this context, and a different
approach is taken for each.

1. Nonequivalent Electrons. The first situation is exemplified by carbon in its
1522s%2p3p configuration. It is not difficult to show that the electrons in the 1s and
2s AOs contribute no net angular momentum and can be ignored: The spins of paired
electrons are opposed, hence cancel, and the s-type AOs have no angular momentum,
hence cannot contribute. However, even p, d, etc. sets of AOs cannot contribute if they
are filled because then any orbital momentum having z intercept m; is canceled by one
with —m;. The important result is that filled subshells do not contribute to orbital or
spin angular momentum. The remaining 2p and 3p electrons occupy different sets of
AOs, hence are called nonequivalent electrons.

Since these electrons are never in the same AO, they are not restricted to have opposite
spins at any time—their AO and spin assignments are independent. There are three AO
choices (p1, po, p—1) and two spin choices—six possibilities—for each electron, hence
36 unique possibilities. We should expect, therefore, 36 states to be included in our
final set of terms.

We first find the possible L values. m; for each electronis 1,0, or —1. We orient the
larger of the 1 vectors to give the maximum m;(1) = +1 and orient the second 1 in all
possible ways, giving m;(2) =41, 0, —1. (Since the vectors have equal length in this
case there is no “larger—smaller” choice to make.) The net M values are +2, 41, 0,
and this tells us that the possible L values are 2, 1, 0.

Treating m values similarly gives My =1,0,s0 S=1,0.

Thus, we have three L vectors and two S vectors. We now combine every one of the
L, S pairs. In each case, we again take the longer in its position of greatest z overlap
and combine it with the shorter in all of its orientations. This gives the J values shown
in Table 5-2. The appropriate term symbols follow from L, S, and J in each case.
Thus, our term symbols are D3, 3Dy, 3Dy, 'Dy, 3Py, 3Py, 3Py, 1Py, 3S; and 'S for a
totalof 74+5+3+54+54+34+ 14343+ 1=36 states.

In the absence of external fields, these 36 states occur in 10 energy levels, one for
each term. These lie at different energies for several reasons. We have already seen,
in our discussion of 1s2s helium states, that different spin multiplicities are associated
with different symmetries of the spin wavefunction, meaning that the space part of
the wavefunctions also differ in symmetry. This has a significant effect on energy, so
1S and 38, for example, have rather different energies. Different L values amount to
different occupancies of AOs, which also has an effect on the spatial wavefunctions, so
3P and 3S have different energies. Finally, we have already seen that different J values
correspond to different relative orientations of orbital and spin angular momentum
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TABLE 5-2 » [ and S Values for Two
Nonequivalent Electrons and Resulting J Values

and Term Symbols
L S J Term
3 D3
2 1 2 3D,
1 3D,
2 0 2 D,
2 3p,
1 1 1 3p,
0 3p,
1 0 1 p,
0 1 1 33,
0 0 0 ISy

vectors, hence of magnetic moments. For light atoms, this is a relatively small effect,
s0 3Py, 3Py, and 3Py have only slightly different energies. The resulting energies for
states of carbon in 1s22s?2p?, 1s22s?2p3p, and 1s>2s>2p4p configurations are shown
in Fig. 5-8. Only the major term-energy differences are distinguishable on the scale of
the figure. The line for 3D is really three very closely spaced lines corresponding to
3D3, 3Dy, and 3D terms.

2. Zeeman Effect. It was pointed out in Section 4-6 that the orbital energies of
a hydrogen atom corresponding to the same » but different m; undergo splitting when
a magnetic field is imposed. Now we have seen that spin angular momentum is also
present. Therefore, a proper treatment of the Zeeman effect requires that we focus on
total angular momentum, not just the orbital component. Since there are 2./ + 1 states
with different M; values in a given term, we expect each term to split into 2J + 1
evenly separated energies in the presence of a magnetic field, and this is indeed what
is seen to happen (through its effects on lines in the spectrum). For example, a >P;
term splits into five closely spaced energies, corresponding to M;=2,1,0, —1, =2,
and a'P; term splits into three energies.

A surprising feature of this phenomenon is that the amount of splitting is not the
same for all terms, despite the fact that adjacent members of any term always differ by
=41 unit of angular momentum on the z axis. For instance, the spacing between adjacent
members of the 3P, term mentioned above is 1.50 times greater than that in the 'P,
term. It was recognized that terms wherein S = 0, so that J is entirely due to orbital
angular momentum (J = L), undergo “normal splitting”—i.e., equal to what classical
physics would predict for the amount of angular momentum and charge involved. On
the other hand, terms wherein J is entirely due to spin (L =0, so J = §) undergo
twice the splitting predicted from classical considerations. [This extra factor of two
(actually 2.0023) was without theoretical explanation until Dirac’s relativistic treatment
of quantum mechanics. ]

Terms wherein J contains contributions from both L and S have Zeeman splittings
other than one or two times the normal value, depending on the details of the way L and
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Figure 5-8 » Energy levels for carbon atom terms resulting from configurations 1s22s22p2,
1s22522p3p, and 1322322p4p.

S are combined. The extent to which a term member’s energy is shifted by a magnetic
field of strength B is

AE =gB.M;B (5-59)

where f, is the Bohr magneton (Appendix 10) and g is the Landé g factor, which
accounts for the different effects of L and S on magnetic moment that we have been
discussing:

I+ +SS+ )~ L+ 1)
g=1+ 27+ 1) (5-60)

It is not difficult to see that this formula equals one when S =0, J = L, and equals two
when L =0, J = S. For the 3P, term, S=1, L =1, J =2, and gequals 1.5, indicating
that, in this state, half of the z-component of angular momentum is due to orbital
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motion, and half is due to spin (which is double-weighted in its effect on magnetic
moment).

3. Equivalent Electrons. Observe that the energy-level diagram for carbon
(Fig. 5-8) shows the 10 expected terms for the excited 2p3p and 2p4p configurations,
but not for the ground 2p> configuration. There are no new terms for the latter case,
but some of the terms present for 2p3p or 2p4p are gone, namely D, 3S, and 'P. The
remaining terms account for 15 states. Evidently 21 states that are possible for a pair
of nonequivalent p electrons are not allowed for a pair of equivalent electrons in a p?
configuration. We will see that some of the states that are different for nonequivalent
electrons become one and the same for equivalent electrons and must be excluded.
Others are excluded by the Pauli exclusion principle because they would require two
electrons to be in the same AO with the same spin.

We now demonstrate the method for discovering the terms that exist for equivalent
electrons. This is more difficult than for nonequivalent electrons, even though there are
fewer terms. We first list all the orbital-spin combinations (called microstates), strike
out those that are redundant or that violate the Pauli exclusion principle, and then infer
from the remaining microstates what terms exist.

Taking the p? case for illustration, we begin with the 36 microstates listed in
Table 5-3.  Some of these microstates are equivalent to others. For instance,
2p1(1)2p1 (2)x(1)B(2) is not a different state from 2p;(1)2p1(2)B8(1)x(2). These both
correspond to a pair of electrons in the same pair of spin orbitals, 2p; and 2p,. Since
electrons are indistinguishable, we cannot expect wavefunctions differing only in the
order of electron labels to correspond to different physical states. [The single state that
does exist would be accurately represented by 2p;(1)2p1 (2)(x(1)8(2) — B(1)x(2)),
which is a linear combination of the microstates. But we do not need to go to this level
of detail when finding terms. We only need to recognize that there is but one state here
and omit one of the microstates as superfluous.] Accordingly, we strike out rows 3, 19,
and 35 from Table 5-3, labeling them “R” for redundant.

Another way to recognize this equivalence is to observe that the microstates deemed
redundant differ only by an interchange of a pair of electrons. This reveals that the
set of four microstates with 2p1(1)2po(2) is equivalent to the set with 2po(1)2p1(2).
Therefore, we can strike out rows 13—16. A similar argument removes rows 25-32.
Already we have removed 15 microstates.

Next we look for violations of the Pauli exclusion principle. This leads us to strike
outrows 1,4, 17,20, 33, and 36, labeling them “P” for Pauli. Our remaining microstates
number 15 and are reassembled in Table 5-4, along with values of the quantum numbers
for z components of the relevant angular momentum vectors for individual electrons as
well as for their sum.

At this stage of the argument, the final column of Table 5-4 (the term symbols) is not
yet known. We are about to fill out this column by making use of a simple rule that is
based on the diagrammatic device described earlie—placing the larger vector so that
it has the maximum z extension and then placing the shorter vector in all its allowed
orientations. It is not difficult to see that the maximum resultant z component (M ;) can
be achieved in one and only one way, namely when both vectors give their maximum
z projection. This means that the maximum-M y-member of a given set of states in
the same term should be recognized as corresponding to one and only one microstate,
because there is only one way to achieve this orientation. So we look for this maximum
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TABLE 5-3 » Unrestricted List of Space-Spin Combinations for a
Pair of Electrons (Same Subshell). R = “Redundant,” P = “Pauli”

Electron number

Row number 1 2 1 2 Comment
1 P1 p1 o o P
2 p1 p1 a B
3 p1 p1 B o R
4 pi pi B B p
5 pI po ! !

6 p1 Po o B
7 p1 Po B o
8 p1 Po B B
9 p1 p-1 ! !

10 p1 p-1 ! B

11 pi p-1 B o

12 pi p-1 B B

13 Po p1 o o R

14 Po p1 a B R

15 po p1 B o R

16 po p1 B B R

17 Po Po o o P

18 po Po o B

19 po Po B o R

20 Po Po B B p

21 Po P-1 o o

22 po p-1 o B

23 Po pP-1 B o

24 po p-1 B B

25 P-1 P1 o o R

26 p-1 p1 o B R

27 p-1 p1 B o R

28 p-1 p1 B B R

29 pP-1 Po o o R

30 p-1 Po o B R

31 p-1 Po B o R

32 p-1 Po B B R

33 pP-1 pP—1 o o P

34 p-1 p-1 o B

35 p-1 p-1 B o R

36 p-1 p-1 B B P
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TABLE 5-4 » Allowed Space-Spin Combinations and M Quantum Numbers for a Pair of
p Electrons (Same Subshell)

Microstate  m;(1) m;(2) mg(1) my(2) My Mg Mj;  State term
pip1af 1 1 12 —12 2 0 2 ID,2
p1poca 1 0 12 12 1 1 2 3Py
p1poaf 1 0 12 —112 1 0 1 (‘D1
pipoBa 1 0o —12 172 1 0 1 (@ph
p1poBB 1 0 —12 =112 1 -1 0 (pY
pip_io 1 -1 172 172 0 1 1 éeh
pip—1ap | 12 —112 0 0 0 (DY
p1p—1Ba 1 -1 =12 12 0 0 0 (P
pip_188 1 -1 —1/2 —12 0 -1 -1 Py hH
popoe 0 0 12 —112 0 0 0 sy
pop—1oa [ 12 12 -1 1 0 (CPrY
pop—1ap 0o -1 12 —-12 -1 0 -1 (DhH
pop—1Ba 0 -1 —12 12 -1 0o -1 (ph
pop—188 o -1 -—12 =12 -1 -1 =2 (P
p_1p_10B -1 —1 12 —12 -2 0 -2 (D™

M and, from its microstate, get the L and S values that go with it. That gives us the
information we need to establish the term symbol.

We start, then, by seeking the maximum M ; value in Table 5-4. Thisis M ; =2, and
it occurs twice (in the first two rows). The first of these goes with M; =2, Mg=0.
Since these result when L and S are giving their maximum z component, we conclude
that L =2, S=0. This, then, is a member of the 1D2 term. (It is the ID% member of
that term, since M ; = 2.) We label this row ID% and proceed to select microstates that
can account for the other four members of this term. Our choice is controlled by the
requirements that (1) the M values for the other members must be 1,0, —1, —2, and
(2) we cannot have an | M| value larger than zero or an | M | value larger than 2. (That
would be impossible for states resulting from vectors having L =2 and S =0.) Our
selections are indicated in Table 5-4, with parentheses to indicate that these assignments
follow from recognition of the leading member ID%. (All are symbolized as 'D;.)

Thereis some arbitrariness in selecting the “inner” members, for which | M ;| < J: The
parenthetical term 1D% could just as easily be assigned to p;poBa as p1poaS. (Actually,
neither of these microstates is a correct wavefunction for ID%. A linear combination of
them is. But, if we only wish to designate term symbols, we need not worry about this.)

We have accomplished already the identification of a term ! D, and the elimination of
five microstates from our list. The other microstate having M ;=2 has My =M ;=1,
so we know this goes with L =1, S =1 and has the symbol 3P§. Again, four other
members exist down the table, and we select them, being careful that | M| and | M|
do not exceed 1, while M;=1,0, —1, —2.

At this point, we must recognize that we are not through with the 3P family. The
existence of the >P part of the symbol implies the existence of nine states, but >P»
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accounts for only five of them. The others come from Py and 3Py, resulting from
Mp =1 with M, =0, —1. (We did not worry about this for the ID, term because only
five states are implied by !D.) So we seek the microstates associated with these terms
and label them as shown in the table.

Only one microstate remains. For this M; = M, =0, so this is a state labeled 158.

The term symbols for the p2 configuration, then, are 1D2, 3P2, 3P1, 3Po, 1So, for a
total of 15 states. The energies for these terms are shown in Fig. 5-8. The five terms
fall into three energy groups, since the >P terms are found to be very close in energy.
High resolution spectra can be used to see the slight energy differences between terms
that appear to be at the same level at the energy scale used in Fig. 5-8. Delving further,
the degenerate energies of microstates in the same term can be made to separate by
imposing a magnetic field (Zeeman effect).

Based on spectroscopic assignments of energy levels for large numbers of atoms,
Hund proposed a set of rules enabling one to predict the energy ordering for terms
associated with equivalent electrons. These rules are, in order of decreasing influence:

1. Terms having greater spin multiplicity lie lower in energy.
2. Within each spin multiplicity, terms having greater L lie lower.

3. Within the same L and S, levels of different J behave oppositely, according to
whether the subshell is more or less than half-filled: If less than half-filled, terms
with lower J lie lower.

According to these rules, the five levels for carbon in its 1s22s?2p> configuration
should be, in order of increasing energy, >Py, 3Py, 3P (closely spaced) followed by ' Dy,
followed by 1S. The actual energies (in cm™ ) are, respectively, 0, 16.4,43.5,10194.8,
21647.7 (Fig. 5-8). The order of states for the excited 2p3p and 2p4p configurations
is different. This is not a breakdown of Hund’s rules because these are not equivalent-
electron cases.

Hund’s first rule is the source of the aufbau rule, cited earlier, that each AO of a
subshell becomes half-filled before any of them become filled with electrons. The
equivalence of these statements is easily demonstrated (Problem 5-30).

One can use Hund’s rules to find the lowest-energy state term symbol without going
through the tedious microstate process just described. For an atom having an outer
subshell configuration of p> we would first recognize that we seek maximum S, so the
electrons must have parallel spin, giving S=1. (We use Hund’s most influential rule
first.) Subject to this constraint, we seek maximum L. Since the electrons cannot both
be in p; with the same spin, pipo is next best, giving maximum M; =1, so L =1.
S=1,L=1gives J=2,1,0, so we know the corresponding terms are 3p,, 3py, 3P0.
Since the 2p subshell is less than half- filled, 3Py is the ground term.

D 5-8 Overview

This chapter describes the new features that appear when we deal with systems having
more than one electron. One of these features, interelectron repulsion, is easy to
understand in its manifestation as operators in the hamiltonian and as coulomb repulsion
integrals, J, in the average energy expression. Another feature, antisymmetry for
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electron exchange and the resulting existence of exchange integrals, K, is unfamiliar
and unintuitive, without a classical counterpart, yet is enormously important in its effect
on electronic structure.

In addition to these features, we have noted the importance of recognizing that atomic
states conserve magnitude and z component of total angular momentum. Using this
permits us to characterize states in terms of J, L, and S (even though the latter two are
not “good” quantum numbers) for ground and excited configurations. This is essential
in atomic spectroscopy (a topic we do not pursue in this book) and also allows one,
with the assistance of Hund’s rules, to predict the energy order for states associated
with the ground configuration of any atom.

In closing this chapter, we should emphasize again a point frequently forgotten by
chemist. In the orbital approach to many-electron systems we have a convenient approx-
imation. This is an imperfect but useful way to describe atomic structure. There are
more accurate ways to approximate eigenfunctions of many-electron hamiltonians, but
this usually involves more difficulty in interpretation. The orbital representation of v
appears to be the best compromise between accuracy and convenience for most chemical
purposes.

5-8.A Problems
5-1. Write down the hamiltonian operator for the lithium atom, in a.u.

5-2. Calculate the values of rjand 7, consistent with the He wavefunction ¥ (1,2) =
1s(1)2s(2) ... (Eq. 5-11).

5-3. Calculate the energy in electron volts of a photon with associated wavelength
0.1 a.u. Compare this result with the ionization energy in electron volts of the
hydrogen atom in its ground state. Why is this comparison relevant?

5-4. Show that the wavefunction (5-15) is normalized if the 1s and 2s orbitals are
orthonormal.

5-5. Show that the wavefunction (5-16) is antisymmetric with respect to exchange of
electron coordinates.

5-6. Show that the wavefunction (5-37) would vanish if 2s were replaced throughout
by 1s, giving a 1s>configuration.

5-7. Produce a totally antisymmetric wavefunction starting from the configuration
1s(D)a(1)2p(2)B(2)1s(3)B(3). Use the method described for Eq. (5-37) and use
a determinantal function as a check.

5-8. Set up the integral of the product between (1s1s2sefBa)* and 2s1slsaafB. (Use
symbols rather than explicit atomic orbital formulas.) Factor the integral into
a product of integrals over one-electron space functions and one-electron spin
functions. Indicate the value of each of the resulting six integrals and of their
product.

5-9. a) Write down the Slater determinantal wavefunction for the configuration
1s182p;.
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5-10.

5-11.

5-12.

5-13.

5-14.

5-15.

5-16.

5-17.

b) Expand this determinant into a linear combination of products.

c) Write down the nonzero part of expansion (b) when r3=0,r;=1au.,rmn =2
a.u. [Do not evaluate the expression; just use symbols like 1s (r = 1).] Also
write down the nonzero part of (b) when 7, = 0,7 = 1,73 =2, and when
r1 =0, =2, r3=1. Isthere any physical difference between saying “electron
3 is at the nucleus” and saying “an electron is at the nucleus?” Explain.

Wavefunction (5-38) describes a member of a doublet. Write the wavefunction
for the other member.

A particle is capable of being in any one of three spin states. Call them «, B,
and y. Suppose you have two such particles in a molecule.

a) Write down all the spin functions you can that are symmetric for exchange
of these two particles. (Do not worry about normalization.)
b) Write down all the antisymmetric cases.

The following wavefunction is proposed for an excited state of the lithium atom

Is(D) 1s(2) 1s(3)
v =—|2s(1) 2s(2) 2s(3)
V6 3s(1) 3s(2) 3s(3)

Here 1s, 2s, and 3s are eigenfunctions for the Li%* hamiltonian.

a) Does this wavefunction satisfy the Pauli exclusion principle? Explain.

b) Write the exact H for the lithium atom in atomic units.

¢) Is ¢ an eigenfunction for the exact hamiltonian?

d) If interelectronic repulsion terms are neglected in H, what energy, in a.u., is
associated with y?

e) What z component of spin and orbital angular momentum (in atomic units)
would you expect for the atom in this state, ignoring any nuclear contribution?

Write the normalized Slater determinantal wavefunction for beryllium in the
152252 configuration. Do not expand the determinant.

Write down the ground state configuration for the fluorine atom. Use Slater’s
rules to find the orbital exponents § = (Z — s)/n for 1s and 2s, 2p orbitals.

Show that the average value of an operator for a state described by an eigenfunc-
tion for that operator is identical to the eigenvalue associated with that eigen-
function.

Explain briefly the observation that the energy difference between the
lsz2s1(281/2) state and the 1522p1(2P1/2) state for Li is 14,904 cm~!, whereas
for Li2t the 2s'(2S; /,2) and 2p1(2P1 /2) states are essentially degenerate. (They
differ by only 2.4cm™1))

In Chapter 4 it was stated that the magnitude of the square of the angular momen-
tum is given by /(/ 4+ 1) a.u., and that z components can be any of the values
—1,—1+1,...1—1, ] a.u. Similar relations hold for spin. From this fact plus
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5-18.

5-19.

5-20.

5-21.

5-22.
5-23.

5-24.

Chapter 5 Many-Electron Atoms

the knowledge that the possible z components of spin angular momentum are
i% a.u., calculate the length of the spin angular momentum vector.

It has been shown that, for a single spinning electron, two spin states are possible
having z components of spin angular momentum of +1/2 and —1/2 a.u. For two
unpaired electrons, the state of greatest multiplicity is a triplet (My =41, 0, —1).
Show that, in general, the maximum spin multiplicity resulting from » unpaired
electrons equals n + 1.

You have been shown symbolically that 1s(1)2s(2) +2s(1)1s(2) and ¢ (1)8(2) +
B(1)a(2) are symmetric or antisymmetric for exchange of electron labels (elec-
tron coordinates). For a more concrete and familiar example, take two functions:
f(x)=exp(x) and g(y) = y3. Construct combinations of these functions that
are symmetric and antisymmetric for exchange of x and y coordinates. Set x =1
and y =2 and evaluate each function. Now set x =2 and y =1 and evaluate
again. Compare results.

Give all the allowed term symbols for a hydrogen atom (a) in the n =1 level,
(b) in the n =2 level. In each case, total up the states to see whether you have
the expected number.

Consider the following helium atom wavefunction:

¥ =1s(1)3ds2(2)a(Da(2)

a) Is this a satisfactory wavefunction in the sense of meeting general symme-
try conditions resulting from particle indistinguishability and the exclusion
principle? If not, how would you modify it to make it satisfactory?

b) Identify the term to which this state (modified if necessary) belongs.

How many states exist for the configuration spd?

A group of related terms has the common symbol 2P. (This is called a term
multiplet.)

a) What are the full term symbols for this multiplet?

b) How many energy levels exist (in the absence of a magnetic field) for this
multiplet?

¢) Indicate into how many levels each member of the multiplet splits in the
presence of an external magnetic field.

Given the following space part of an approximate wavefunction for a Li* ion:
(1/v/2)[15(1)2p1(2) + 2p1 (1) 1s(2)],

a) Write a physically possible spin part for this wavefunction.

b) What energy would this state have (in a.u.) if the 1/715 term in H did not
exist?

¢) What average energy (expressed in terms of symbols like J) would this state
have using the correct H (including 1/r12)?

d) You have not been shown the rules for operating with S2, the operator for the
square of total spin angular momentum, but you can nevertheless guess what
the result would be if S? operates on this state function. What is your guess?
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5-25.

5-26.

5-27.

5-28.

5-29.

5-30.

5-31.

5-32.

5-33.

5-34.

5-35.

A state in the term D3 is described by the wavefunction . What is the value of
x in each of the expressions Op ¥ = x 1/, where Op is as given below? (Assume
L-S coupling to be valid. If more than one x is possible, list them all.) (a) L?
(b) $% (¢) J* (d) L (e) S () JL.

Carbon (1s%2s22p?) and oxygen (1s>2s22p*) have a “symmetrical” relation in
their 2p occupancy: C has one electron /ess than a half-filled subshell, O has one
electron more. Another way of stating this is to note that C has 2 electrons and
4 holes in its 2p shell, while O has 2 holes and 4 electrons.

a) Show that this leads to the same lowest-energy family (or “multiplet”) of term
symbols, 3P2,0,1.

b) How do these atoms differ in the energy-ordering of these three terms?

c) Show that this agreement in lowest-energy multiplet terms holds in general
for atoms having this symmetrical occupation relation.

Predict the ground state term symbol for each of the following atoms.

a) Na (1s22522p°®3s)

b) P (1s225%2p®3s23p?)

¢) Ne (1s225%2p%)

d) Ti (15%2s22p%3s23p©4s23d?)

Calcium atoms are excited to the [Ar]4s4p configuration.

a) How many states are there?
b) What are the term symbols?

a) Find all the terms for boron in its ground configuration, 1s>2s>2p, and order
these terms according to energy.
b) Repeat for phosphorus, [Ne]3s23p°.

Explain how Hund’s first rule is equivalent to the aufbau rule that degenerate AOs
half-fill with electrons before any are filled, when forming the lowest-energy
state(s).

How many states exist for each of the following term multiplets?

a) °D
b) °F

For a given electron configuration, are all of the following terms possible?
Explain your reasoning. 2p; /25 2p, /25 1S,.

How many states exist for each of the following configurations? (a) sd (b) sp
(c) szp (d) pd (e) dd (nonequivalent)

a) How many states are associated with the *F term multiplet?
b) Write down the term symbols included in this multiplet.

By inspection, what is the term symbol with the maximum J value we can
have for the configuration sd? What other terms would be included in the same
multiplet?
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5-36. Derive a formula for the number of states that exist for two equivalent electrons

in a subshell having degeneracy g. How many states does this predict for p>?
for d2?

5-37. Evaluate the splitting between adjacent lines in Zeeman-split terms D3, *D,,

3Dy, 'D,, when B equals 1 tesla.

Multiple Choice Questions

(Try to answer these without referring to the text.)

1.

Which one of the following is an acceptable (unnormalized) approximate wavefunc-
tion for a state of the helium atom?

a) [1s(D)1s(2) — 1s(D1s(2)]a(Da(2)
b) Is(1)1s(2)[a(1)B(2) + B(1)a(2)]
o) [1s(1)2s(2) +2s(1) 1s(2)Ja (D (2)
d) [1s(1)2s(2) +2s(D)1s(2)][a(1)B(2) — B(1)a(2)]

e) None of the above is acceptable.

The spin multiplicity of an atom in its ground state and having the outer-shell con-
figuration 4s23d’ is

a) 19
b) 15
c) 7
d 5
e) None of the above.

Which one of the following statements is NOT true for the ground state of the helium
atom?

a) The atom’s size (measured by r,,) is larger than the size of He™ in its 1s state.
b) The ground state is a singlet.

c) The energy of the 2pg orbital is above that of the 2s orbital.

d) The effective nuclear charge seen by both electrons is less than 2.

e) The atom’s electronic energy is equal to —108.8eV.

The crudest orbital model for the ground state of He uses the 1s atomic orbitals for
He™, for which Z =2. Which of the following statements describes correctly the
situation that pertains to a change to a more appropriate value?

a) The improved Z value is larger than 2, and the orbitals become more contracted.

b) The improved Z value is larger than 2, and the orbitals become more expanded.

¢) Theimproved Z value is smaller than 2, and the orbitals become more contracted.

d) The improved Z value is smaller than 2, and the orbitals become more expanded.

e) Theimproved Z value is smaller than 2, but this only affects the computed energy,
and not orbital size.
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Chapter 6

Postulates and Theorems
of Quantum Mechanics

D 6-1 Introduction

The first part of this book has treated a number of systems from a fairly physical view-
point, using intuition as much as possible. Now, armed with the concepts already
developed, the reader should be in a better position to understand the more formal foun-
dation to be described in this chapter. This foundation is presented as a set of postulates.
From these follow proofs of various theorems. The ultimate test of the validity of the
postulates comes in comparing the theoretical predictions with experimental data. The
extra effort required to master the postulates and theorems is repaid many times over
when we seek to solve problems of chemical interest.

[ J 6-2 The Wavefunction Postulate

We have already described most of the requirements that a wavefunction must satisfy: i
must be acceptable (i.e., single-valued, nowhere infinite, continuous, with a piecewise
continuous first derivative). For bound states (i.e., states in which the particles lack the
energy to achieve infinite separation classically) we require that y» be square integrable.
So far we have considered only cases where the state of the system does not vary with
time. For much of quantum chemistry, these are the cases of interest, but, in general, a
state may change with time, and ¥ will be a function of  in order to follow the evolution
of the system.
Gathering all this together, we arrive at

Postulate I Any bound state of a dynamical system of n particles is described as
completely as possible by an acceptable, square-integrable function
V(g1,92,-.-q3n, W1, w2, ... ,wy,t), where the q’s are spatial coordi-
nates, w’s are spin coordinates, and t is the time coordinate. V*\V dt is
the probability that the space-spin coordinates lie in the volume element
dt(=dtdry---dt,) at time t, if ¥ is normalized.

For example, suppose we have a two-electron system in a time-dependent state
described by the wavefunction W (x1, y1, z1, w1, X2, V2, 22, w2, t). The spin coordinates
 would each be some combination of spin functions « and 8. If we integrate W*W
over the spin coordinates of both electrons, we are left with a spin-free density function.
Call it p(x1, y1, 21, X2, Y2, 22, ) = p(v1, v2,¢). We interpret p(vi, va,t)dvidvy as

166
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the probability that electron 1 is in dv; (i.e., between x; and x; +dx, y; and y; +
dy, and z; and z] + dz) and electron two is in dvy at time ¢. If we now integrate
over the coordinates of electron 2, we obtain a new density function, p’(vy, t), which
describes the probability of finding electron 1 in various volume elements at various
times regardless of the position of electron 2.

D 6-3 The Postulate for Constructing Operators

Much of the substance of the second postulate is already familiar. We earlier used
arguments based on de Broglie waves to construct hamiltonian operators. We then
noted that the kinetic energy part of the operators can be identified with a classical
term like p2/2m through the relation p, <> (%/i)d/dx. The potential energy terms
in the hamiltonian operators are completely classical, however. Thus, we could have
constructed the quantum mechanical hamiltonians by writing down the classical energy
expressions in terms of momenta and position, and then replacing every momentum term
by the appropriate partial differential operator. This is an example of the use of part c of:

Postulate II 7o every observable dynamical variable M there can be assigned a linear
hermitian operator M. One begins by writing the classical expression,
as fully as possible in terms of momenta and positions. Then:

a) IfMisqort, M is q ort. (q and t are space and time coordinates.)

b) If M is a momentum, p;, for the jth particle, the operator is
(7/1)3/0q j, where q j is conjugate to p; (e.g., X j is conjugate to px;).

c) If M is expressible in terms of the q’s, p’s and t, M is found by
substituting the above operators in the expression for M in such a way
that M is hermitian.

The reason for specifying that M must be hermitian is that the eigenvalues of a
hermitian operator must be real numbers.! We shall discuss this and other aspects of
hermiticity (including its definition) later in this chapter.

As an explicit example of this procedure, we reconsider the hydrogen atom. Assum-
ing a fixed nucleus (infinite inertia), the classical expression for the total energy of the
system is

Eclassical = (1/2me)(p)2¢ + p)z; + pg) - 62/ [47760()62 + y2 + 22)1/2]

where the first term is just the kinetic energy of the electron and the second term is the
electrostatic potential energy. The coordinate origin is on the nucleus. Application of
postulate II retains the position variables x, y, and z of the potential term unchanged,
but replaces p, by (/i) d/0x, etc.:

1<2+2+2>;$1 h32+h32+h32
2me Py Py Pz 2me | \ 277 9x 2wi dy 2mi 0z

—h2 5
872m.

UIn this text (and in quantum chemistry in general) a caret indicates an operator and not a unit vector quantity
as in classical physics.
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Thus, we arrive at

—h? &2
2 V- 2 2 4 2\1/2
872m, drep(x? + y2 + 22V

H=

and we are now free to transform H to other coordinate systems (such as r, 9, ¢) if
we wish.

D 6-4 The Time-Dependent Schrédinger Equation Postulate

We have discussed only cases where neither the hamiltonian H nor  is time dependent.
In those cases we required that ¢ be an eigenfunction of H. In the more general case
in which W and # are time dependent,” a different requirement is imposed by

Postulate III The state functions (or wavefunctions) satisfy the equation

N —h 9
H Vg, )=—2V(g.1) (6-1)

where ' is the hamiltonian operator for the system.

We should check to see if this is consistent with the time-independent Schrodinger
equation we have been using. Suppose that the hamiltonian is time independent. Let
us see if a solution to Eq. (6-1) exists when W(q, ¢) is separated into a product of space-
and time-dependent functions: W(q,t) =¥ (q) f(¢). Inserting this into Eq. (6-1) gives

N —h 0
Hl/f(Q)f(f)=l—.E¢(fJ)f(t) (6-2)
Dividing by ¥ (g) f(¢) gives

Ay (q) _ (=h/D@/30)f@)
¥ (@) 0

Since each side of Eq. (6-3) depends on a different variable, the two sides must equal
the same constant, which we call E. This gives

Hy(q)=EV(q) (6-4)

(6-3)

and
—hd
l—.Ef(t)=Ef(t) (6-5)

The first of these equations is just the time-independent Schrodinger equation we have
been using. The second equation has the solution f(¢) = A exp(—i Et/#). Hence, f* f
equals a constant, and so W*W = r*v ™ f oy *yr. Since f has no effect on energy or
particle distribution, we can ignore it in dealing with stationary states. The situation is
analogous to the case of standing waves discussed in Chapter 1.

2% and ¥ symbolize time dependence; H and Y symbolize time independence.
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Note that while we have shown that solutions may exist in which W is separable, this
does not mean that every solution of Eq. (6-1) with #=His separable (i.e., stationary).
We can imagine a situation where a system in a stationary state is suddenly perturbed
to produce a new time-independent hamiltonian. W will change as the system adjusts
to this new situation, giving us a case where the hamiltonian is time-independent (after
the perturbation, at least) but W is not a stationary state function. The way in which &
evolves in time is governed by Eq. (6-1).

EXAMPLE 6-1 Show that the average energy for a nonstationary state of the hydro-
gen atom is conserved as the system evolves, if H is not time-dependent.

SOLUTION » We choose a simple example:
1
V2

where each exponential equals exp(—i E¢/#). Then

V= —={¥15exp(it/2h) + Yo exp(it /81)}

(E):/w*l:lwdvdtz%/wf‘sexp(—it/Zh)ﬁwls exp(it/2h) dv dt

+ the analogous 2s2s term +1s2s and 2s1s cross terms. Since H does not operate on functions
of ¢, the exponentials in each of the first two integrals can join together, giving exp(0) = 1. So time-
dependence disappears from the first two integrals, and they become respectively equal to —% a.u.,
and —% a.u. Dependence on time does not disappear from the cross-term integrals, but that doesn’t
matter because the integration over space gives zero in each case, due to orbital orthogonality.
Thus, < £ >= %(—% a.u.) + % —% a.u.) = —15—6 a.u., which has no time-dependence. |

D 6-5 The Postulate Relating Measured Values

to Eigenvalues

The second postulate indicated that every observable variable of a system (such as
position, momentum, velocity, energy, dipole moment) was associated with a hermitian
operator. The connection between the observed value of a variable and the operator is
given by

Postulate IV Any result of a measurement of a dynamical variable is one of the eigen-
values of the corresponding operator.

Any measurement always gives a real number, and so this postulate requires that
eigenvalues of the appropriate operators be real. We will prove later that hermitian
operators satisfy this requirement.

If we measured the electronic energy of a hydrogen atom (the negative of its ion-
ization energy), we could get any of the allowed eigenvalues (—1/2n% a.u.) but no
intermediate value. What if, instead, we measured the distance of the electron from the
nucleus. By postulate II, the operator for this property is just the variable 7 itself. That
is, 7 =r. Hence, we need to consider the eigenvalues of 7 in the equation

ré(r,0,9)=A16(r,0,¢) (6-6)
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where 6 is an eigenfunction and X is a real number (corresponding to the distance of
the electron from the nucleus). We can rewrite this equation as

r—2)(r,0,¢9)=0 (6-7)

This form makes it more apparent that the function § must vanish at all points in space
except those where » = A. But X is an eigenvalue of » and hence is a possible result
of a measurement. Thus, we see that postulate IV implies some connection between
a measurement of, say, » =2 a.u. and an eigenfunction of r that is finite only at
r =2 a.u. We symbolize this eigenfunction §(» — 2 a.u.), this “delta function” being
zero whenever the argument is not zero. If we measured the electron’s position to be
at » =5.3 a.u., the corresponding eigenfunction would be é(» — 5.3 a.u.)—a function
that is zero everywhere except in a shell of infinitesimal thickness at » =5.3 a.u. If
instead we measured the point in space of the electron, rather than just the distance
from the nucleus, and found it to be 7y, 6y, ¢, then the corresponding eigenfunction
of the position operator would be & (r —r9)§(0 — 6p)5(¢ — ¢p). This function vanishes
everywhere except at rg, 6p, ¢p.

It is evident that any value of A from zero to infinity in Eq. (6-7) may be chosen
without spoiling the ability of § to serve as an eigenfunction of ». This means that,
unlike the energy measurement, the measurement of the distance of the electron from
the nucleus can have any value.

The eigenfunctions of the position operator are called Dirac delta functions. They
are “spike” functions having infinitesimal width. They are normalized through the
equation

/8 (x —xp)dx =1 (6-8)

where the integration range includes xo.> On first acquaintance, these functions seem
mathematically peculiar, but they make physical sense in the following way. One can
interpret the actual measurement of position as a process that forces the particle to
acquire a certain position at some instant. At that instant, 2 for the system (now
perturbed by the measuring process) ought to give unit probability for finding the
particle at that point (where it definitely is) and zero probability elsewhere, and this is
just what the Dirac delta function does.*

Postulate IV, then, is in accord with a picture wherein the process of measurement
forces the measured system into an eigenstate for the appropriate operator, giving the
corresponding eigenvalue as the measurement. This definition of “measurement” is
somewhat restrictive and can be deceptive. Often scientists refer to measurements
that are really measurements of average values rather than eigenvalues. This point is
discussed further below.

3The reader should avoid confusing the Dirac delta function § (x — xo) with the Kronecker delta §;, ; encountered
earlier. They are similar in that both vanish unless x = x( in the former and i = j in the latter. But they differ
in that the value of §; ; is definite (unity) while the value of §(xp — xo) is not defined. The Dirac delta function
has definite value only in integrated expressions like Eq. (6-8). The spin functions & and 8 may be thought of as
Dirac delta functions in the spin “coordinate” w. The Dirac delta function is admittedly unusual, and one tends to
be uneasy with it at first. This function is important and useful in quantum mechanics. However, since we will
make almost no use of it in this text, we will not develop the topic further.

4Notice that Eq. (6-8) does not involve §*§, but merely 8. Because § is nonzero only at one point, §*§ is likewise
nonzero only at the same point. § and §*§ are therefore not independent functions. It is convenient to view the
8 function as both the eigenfunction for the position operator and also as the probability distribution function for
the particle.
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D 6-6 The Postulate for Average Values

Suppose that we had somehow prepared a large number of hydrogen atoms so that they
were all in the same, known, stationary state. Then we could measure the distance of
the electron from the nucleus once in each atom and average these measurements to
obtain an average value. We have already indicated that this average would be given
by the sum of all the » values, each multiplied by its frequency of occurrence, which is
given by % dv if ¥ is normalized. Since 7 is a continuous variable, the sum becomes
an integral. This is the content of

Postulate V. When a large number of identical systems have the same state function
Y, the expected average of measurements on the variable M (one mea-
surement per system) is given by

Moo= [ ity ar / [vrwar (6-9)

The denominator is unity if ¥ is normalized.

It is important to understand the distinction between average value and eigenvalue
as they relate to measurements. A good example is the dipole moment. The dipole
moment operator for a system of n charged particles is u = _;_, z;r; where z; is the
charge on the ith particle and r; is its position vector with respect to an arbitrary origin.
(We get this by writing the classical formula and observing that momentum terms
do not appear. Hence, the quantum-mechanical operator is the same as the classical
expression.) What will the eigenfunctions and eigenvalues of (i be like?

The charge z; is only a number, while r; is a position operator, which has Dirac
delta functions as eigenfunctions. For a hydrogen atom, one eigenfunction of 7; would
be a delta function at » =1 a.u., § =0, ¢ = 0. The corresponding eigenvalue for [
would be the dipole moment obtained when a proton and an electron are separated by
1 a.u., clearly a finite number. But “everybody knows” that an unperturbed atom in a
stationary state has zero dipole moment. The difficulty is resolved when we recognize
that measurement of a variable in postulates IV and V means measuring the value of
a variable at a given instant. Hence, we must distinguish between the instantaneous
dipole moment of an atom, which can have any value from among the eigenvalues of
i and the average dipole moment, which is zero for the atom. In everyday scientific
discussion, the term “dipole moment” is usually understood to refer to the average
dipole moment. Indeed, the usual measurements of dipole moment are measurements
that effectively average over many molecules or long times (in atomic terms) or both.

[ J 6-7 Hermitian Operators

Let ¢ and ¢ be any square-integrable functions and A be an operator, all having the
same domain. A is defined to be hermitian if

/w*/iqbdv:/qb/i*w*dv (6-10)

The integration is over the entire range of each spatial coordinate. Recall that the
asterisk signifies reversal of the sign of i in a complex or imaginary term. The hermitian
property has important consequences in quantum chemistry.
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As an example of a test of an operator by Eq. (6-10), let us take the ¥ and ¢ to
be square-integrable functions of x and A to be i(d/dx). Then the left-hand side of
Eq. (6-10) becomes, upon integration by parts,

+ + 0 + + oo
f Y*(i d¢/dx) dx = W —i J (dy*/dx)p dx = —if P(dy*/dx) dx

(6-11)

Since i and ¢ are square integrable, they (and their product) must vanish at infinity,
giving the zero term in Eq. (6-11). We now write out the right-hand side of Eq. (6-10):

+o00 +o00

GG d/dx) y*dx = —i/ ¢ (dy* /dx)dx (6-12)

—0o0 —o0

where the minus sign comes from carrying out the operation indicated by the aster-
isk. Equation (6-12) is equal to Eq. (6-11), and so the operator i (d/dx) is hermitian.
Since the effect of i was to introduce a necessary sign reversal, it is apparent that the
equality would not result for 4 =d/dx. Clearly, any hermitian operator involving a
first derivative in any Cartesian coordinate must contain the factor i. The operators for
linear momenta (Chapter 2) are examples of this.

It is important to realize that Eq. (6-10) does not imply that ¥*A¢ = ¢ A*y*.
A simple example will make this clearer. Let A be the hydrogen atom hamiltonian,
H= —%Vz —1/r, and let ¢ be the 1s eigenfunction: ¢ = (1//7) exp(—r). Also, let
¥ = /8/m exp(—2r) which is not an eigenfunction of H. Then, since H ¢ = —%(f),

A 1

W*H¢=—§¢*¢> (6-13)

But
PH*Y* = ¢ [—%(l/rz)(d/dr)rz(d/dr) - 1/r}/8/n exp(=2r)  (6-14)
= ¢[(1/r) =2]y/8/mexp(=2r)=[(1/r) = 2]¥ "¢ (6-15)

(Since ¥ has no 6 or ¢ dependence, the parts of H* that include 9 /00 and 9/9¢ have
been omitted in Eq. (6-14).) Here we have two functions, —%1//*¢ and [(1/7) — 2]y *¢.
They are obviously different. However, by Eq. (6-10), their integrals are equal since
H is hermitian.

D 6-8 ProofThat Eigenvalues of Hermitian Operators
Are Real

Let A be a hermitian operator with a square-integrable eigenfunction . Then
Ay =ay (6-16)

Each side of Eq. (6-16) must be expressible as a real and an imaginary part. The real
parts must be equal to each other and so must the imaginary parts. Taking the complex
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conjugate of Eq. (6-16) causes the imaginary parts to reverse sign, but they remain
equal. Therefore, we may write

Ay =a*y* (6-17)
We multiply Eq. (6-16) from the left by ¢ * and integrate over all spatial variables:
/w*ﬁw dv:a/w*w dv (6-18)
Similarly, we multiply Eq. (6-17) from the left by v and integrate:

/wﬁ*w*dvza*/ww*dv (6-19)

Since A is hermitian, the left-hand sides of Eqgs. (6-18) and (6-19) are equal by definition
(Eq. 6-10). Therefore, the right-hand sides are equal, and their difference is zero:

(a—a*)/w*wdv=o (6-20)

Since v is square integrable the integral cannot be zero. Therefore, a — a™ is zero,
which requires that a be real.

D 6-9 Proof That Nondegenerate Eigenfunctions of a

Hermitian Operator Form an Orthogonal Set

Let v and ¢ be two square-integrable eigenfunctions of the hermitian operator A:

Ay = ary (6-21)
A*¢* = arg* (6-22)

Multiplying Eq. (6-21) from the left by ¢* and Eq. (6-22) from the left by ¥, and
integrating gives

/¢*/iwdv =a /¢*¢du (6-23)
/ YA G dv = ar / vo* dv (6-24)

The left sides of Eqgs. (6-23) and (6-24) are equal by (6-10), and
(a1 — az) [ ¢*v dv=0. (6-25)

If a1 # ay, the integral vanishes. This proves that nondegenerate eigenfunctions are
orthogonal.
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EXAMPLE 6-2 Ithas been shown (Section 6-7) thati (d /dx) is a hermitian operator.
We know that it has eigenfunctions exp(£ikx) with eigenvalues +k, which are
real. So far, so good. However, this operator also has eigenfunctions exp(£kx),
with eigenvalues +ik, which are imaginary. This appears to violate the proof
that eigenvalues of hermitian operators are real. Explain why neither of these
eigenfunction sets is covered by the proof of section 6-8, and how one of them
manages to obey the rule anyway.

SOLUTION » The test for Hermiticity requires that il//*¢|i_£ =0. If ¢ is ¥, and if ¢ is
square-integrable, this condition is satisfied, because 1/ */ vanishes at 00, giving 0 —0=0. But
neither of the exponential functions given above is square-integrable: They are both unequal to
zero at 00, so they both fall outside of the proof as given. Despite this, exp(Zikx) does have
real eigenvalues, leading us to look more closely. Is it the case that i 1//*1//|ir£ =0 for this set of
functions, even though they do not vanish at infinity? It is indeed, since ¥*v =1, givingi —i =0
for this term. Thus we see that our requirement that i be square integrable is more restrictive than
what is necessary, namely that iy * |J_r£ =0. Note that the other set of exponentials, exp(£kx),
leads to i *yr =i exp(£2kx), which does not produce a value of zero when values at x = 0o and
x = —oo are subtracted. Note also that the functions exp(%ikx) are orthogonal for different values
of k, whereas the functions exp(4kx) are not. |

The point of the above example is that all of our proofs about eigenvalues or
eigenfunctions of hermitian operators refer to cases where the eigenfunctions satisfy
the requirement that iy* |73 = 0. Square-integrability guarantees this, but some
nonsquare-integrable sets of functions can satisfy it too. A hermitian operator can have
eigenfunctions that are associated with complex or imaginary eigenvalues, but these
must result from eigenfunctions that do not satisfy the requirement.

6-10 Demonstration That All Eigenfunctions
of a Hermitian Operator May Be Expressed
as an Orthonormal Set

If a; = ay, Eq. (6-25) is satisfied even when the integral is finite. Therefore, degenerate
eigenfunctions need not be orthogonal. But they must be linearly independent or
else they are the self-same function (to within a multiplicative constant), and if they
are linearly independent, they can be converted to an orthogonal pair. Hence, it is
always possible to express the degenerate eigenfunctions of a hermitian operator as
an orthogonal set (and, as we have just proved, it is necessary that nondegenerate
eigenfunctions be orthogonal). Furthermore, the functions must be square integrable,
hence normalizable. In general, then, we are able to assume that all of the eigenfunctions
of a hermitian operator can be expressed as an orthonormal set.

One way to orthogonalize two nonorthogonal, linearly independent functions (which
may or may not be eigenfunctions) will now be demonstrated. Let the functions be v
and ¢ (assumed normalized) and the integral of their product have the value S:

/ Vipdv=S (6-26)
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We keep one of the functions unchanged, say v, and let ¢’ = ¢ — Sy be our new second
function. v and ¢’ are orthogonal since

/1//*¢/dv:/1//*(¢—Sl//)dv=/w*¢dv—5/ v dv=0 (6-27)

N 1

(The new function ¢’ needs to be renormalized.) This process, known as Schmidt
orthogonalization, may be generalized and applied sequentially to any number of lin-
early independent functions.

EXAMPLE 6-3 Two normalized 1s AOs are located on nearby nuclei, 4 and B, and
overlap each other enough so that f 1s41sp dv=0.500. Construct a function from
these two that is orthogonal to 154 and is normalized.

SOLUTION » ls}g =1sp —0.5- 154 is orthogonal to 1s 4. It is not yet normalized because

/(1sjg)2du = /(1s§ +0.25-15% —2-0.5-1s41sp) dv
3
= 1+0.25—2-0.5-0.5:0.75:Z.
So the normalized function we seek is %(153 —0.5-1sy). <

D 6-11 Proof That Commuting Operators Have
Simultaneous Eigenfunctions

A and B are commuting operators if, for the general square-integrable function f,
glf?fz fﬁ’/if This can be written (4B — fi’/i)f: 0, which requires that AB—BA=0.
(0 is called the null operator. It satisfies the equation, (A)f =0.) This difference of
operator products is called the commutator of Aand B and is usually symbolized’ by
[fi, é]. If the commutator [2, B] vanishes, then A and B commute.

We will now prove an important property of commuting operators, namely, that they
have “simultaneous” eigenfunctions (i.e., that a set of eigenfunctions can be found for
one of the operators that is also an eigenfunction set for the other operator). Let 5; be
the eigenfunctions for B:B Bi = b; B;. For the moment, assume all the numbers b; are
different (i.e., the eigenfunctions f; are nondegenerate). Let [/i, Zg’] =0. Then

B(AB;) = ABB; = Ab;B; =b;(AB;) (6-28)

The parentheses emphasize that the function obtained by operating on B; with A is
an eigenfunction of B with eigenvalue b;. But that function can only be a constant
times f; itself. Hence, for nondegenerate ; we have that A Bi =cpBi, and so B; is an
eigenfunction of A. This proves that the nondegenerate eigenfunctions for one operator
will also be eigenfunctions for any other operators that commute with it.

5Other less common conventions are [/i, 1;’]_ and (/i, 1§).
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If B; is degenerate with other functions g; ., then we can only go so far as to say that
A Bi = >_j ckBi.k, for this general linear combination is an eigenfunction of B having
eigenvalue b;. But if this is so, then §; is evidently not necessarily an eigenfunction of
A. We shall not prove it here, but it is possible to show that one can always find some
linear combinations of B; x to produce a set of new functions, g;, that are eigenfunctions

of 4 (and remain eigenfunctions of B as well). Therefore we can state that if A
and B commute, there exists a set of functions that are eigenfunctions for Aand B
simultaneously.

An example of this property occurred in the particle-in-a-ring system described
in Chapter 2. The hamiltonian and angular momentum operators commute for that
system. There we found one set of functions, the trigonometric functions, that are
eigenfunctions for H but not for L. But by mixing the energy-degenerate sines and
cosines we produced exponential functions that are eigenfunctions for both of these
operators.

Another example concerns the familiar symmetry operations for reflection, rotation,
etc. If one of these operations, symbolized 1%, commutes with the hamiltonian, then
we should expect there to be a set of eigenfunctions for H that are simultaneously
eigenfunctions for R. It was proved in Chapter 2 that this means that nondegenerate
eigenfunctions must be symmetric or antisymmetric with respect to R.

A symmetry operator that leaves H unchanged can be shown to commute with H
That is, if RH = H, then RH f= H R f, where f is any function. To show this, let R
be, say, a reflection operator. Then R operates on functions and operators to its right
by reflecting the appropriate coordinates: R (@)= f(Rg). If H is invariant under
reflection R, then H(q) = H(Rq), and it follows that RH(q)f(q) = H(Rq) f(Rg)=
H(q)f(Rq) = H(q)Rf(q) and so RHf HRf We shall formally develop the
ramifications of symmetry in quantum chemistry in Chapter 13.

The existence of simultaneous eigenfunctions for various operators has important
ramifications for the measurement of a system’s properties. This is discussed in
Section 6-15.

6-12 Completeness of Eigenfunctions of a
Hermitian Operator

In Chapter 3 we discussed the concept of completeness in connection with the power
series expansion of a function. Briefly, a series of functions® {¢} having certain restric-
tions (e.g., all derivatives vary smoothly) is said to be complete if an arbitrary function
/ having the same restrictions can be expressed in terms of the series’

[=Y cid; (6-29)

Proofs exist that certain hermitian operators corresponding to observable properties
have eigenfunctions forming a complete set in the space of well-behaved (continuous,

A symbol in braces is frequently employed to represent an entire set of functions.

7Equation (6-29) is overly restrictive in that it requires that the function and the series have identical values at
every point, whereas it is possible for them to disagree at points of zero measure. However, at the level of this
book, we can ignore this distinction and use Eq. (6-29) without encountering difficulty.
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single-valued, square-integrable) functions. These proofs are difficult and will not be
given here.® Instead we shall introduce

Postulate VI The eigenfunctions for any quantum mechanical operator corresponding
to an observable variable constitute a complete set. (Furthermore, we
have seen in Section 6-10 that we can assume that this set has been made
orthonormal.)

We will now use this property to investigate further the nature of the average value of
an operator. Let the system be in some state ¥ (normalized), not an eigenfunction of M.
However, M possesses eigenfunctions {u} that must form a complete set. Therefore,
we can express ¢ in terms of ’s:

Y= cimi (6-30)
i
Now we calculate the average value of M for the state i:

My, = /w*dev:/Zc;“u?Mchujdv
- ,

J
= ZZCTCJ'/MTM/LJGIU (6-31)
i
But A;[,ul-=m,-,ul-,and SO
My=) ) cics f wimjpjdv="3 % cicim; / piwjdv (6-32)
i i

But we are assuming that {i¢} is an orthonormal set, and so

MaV:ZZC;‘ijmjaij:Zc;kcimi (6-33)
i Jj i

What does this expression mean? Each measurement of the property corresponding
to M must give one of the eigenvalues m; (postulate IV) and the average of many
such measurements must be M,,. Equation (6-33) states how the individual measure-
ments must be weighted to give the average, so it follows that each ¢;*c; is a mea-
sure of the relative frequency for observing the corresponding m;. Putting it another
way, the absolute squares of the mixing coefficients in Eq. (6-30) give the probabil-
ities that a measurement of the variable M will give the corresponding eigenvalue.
For example, if ¥ happens to be equal to (1 /\/E)[L] + (1/«/5),u3, it follows that
Moy =(1/2)m1 + (1/2)ms3.

EXAMPLE 6-4 What is the average value for the z-component of orbital angular
momentum for the normalized function ¢ = (1/ ﬁ)(lﬂzs +2-vY2p,,)?

SOLUTION » Since we know that the 2s and 2 p; | eigenfunctions have z-components of angu-
lar momentum of O and +1 respectively, we can say at once that p, = % -0+ % -1=0.8 a.u.
<«

8See, e.g., Kemble [1, Section 25].
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[ J 6-13 The Variation Principle

Many of the calculations of quantum chemistry are based on the Rayleigh-Ritz variation
principle which states: For any normalized, acceptable function ¢,

Hyy = / ¢*Hpdr > Ey (6-34)

where Ey is the lowest eigenvalue of H.
This statement is easily proved. We expand ¢ in terms of {1}, the complete,
orthonormal set of eigenfunctions of H:

=Y v (6-35)
i
As in the preceding section, this leads to

/ ¢*Hpdr =Y cicE; (6-36)

Now cc; is never negative, and so Eq. (6-36) is merely a weighted average of the
eigenvalues E;. Such an average can never be lower than the lowest contributing
member and the principle is proved.

The variation principle is sometimes stated in an equivalent way by saying that the
average value of H over ¢ is an upper bound for the lowest eigenvalue of H. Following
the approach of the example at the end of the previous section, if ¢ for a hydrogen atom
happens to be a function equal to (1/+/2)¥15 + (1/+/2)¥25, the average energy for ¢
is (1/2) E1s + (1/2) Ea5, which obviously lies above the lowest eigenvalue E.

D 6-14 The Pauli Exclusion Principle

We have already discussed the Pauli exclusion principle in Chapter 5. In its most
general form, this is:

Postulate VII v must be antisymmetric (symmetric) for the exchange of identical
fermions (bosons).

D 6-15 Measurement, Commutators, and Uncertainty

If we measure the exact position of the electron in a hydrogen atom, we force it into
a state having a Dirac delta function as its wavefunction. Since this function is also
an eigenfunction for the dipole moment operator, it follows that we also know the
(instantaneous) dipole moment for the atom at that instant. In effect, measuring position
measures dipole moment too. But the delta function is not an eigenfunction for the
hamiltonian operator of the atom, and so we have not simultaneously measured the
electronic energy of the atom.

We have earlier seen that an eigenfunction for one operator can serve also as eigen-
function for another operator when the operators commute. In the above example, the
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operators for position and dipole moment commute with each other but not with the
hamiltonian operator. This leads us to recognize that we can simultaneously measure
values for two variables only if their operators commute.

Let us consider this situation more deeply by imagining two successive measure-
ments on a hydrogen atom, one immediately following the other. If we first measure
position and find » = 2.0 a.u., and then measure dipole moment, we will get the value
(u=2.0a.u.) corresponding to the electron being at » =2.0 a.u. That is where we found
it in the first measurement, and it has not had time to move elsewhere before the second
measurement. If we immediately follow with yet another position measurement, the
electron will still be found at » =2 a.u. (We are imagining that no time elapses between
measurements, which is a limit we cannot actually achieve. In the present case, though,
since measurement of 7 is also a measure of i, both measurements are done at once, So
this is really not a problem.) Hence, it makes sense to say that we know these two values
“simultaneously.” However, if we first measure position and then measure energy, we
find something very different. Suppose that we find » =2 a.u. and then, in a subsequent
measurement, £ = —1/2 a.u. (£ must, after all, be an eigenvalue of H , according
to postulate IV.) We know that the eigenfunction during the first measurement was
8(r — 2 a.u.), and that during the second measurement was a 1s AO. If we immediately
do yet another position measurement, we can find any value of » (with probabilities
given by 47 rzwlzs dr). The processes of measuring position and energy are incompati-
ble in the sense that there is no single function that can describe the situation that exists
during both measurements. The energy-measuring process can be pictured as forcing a
reconstruction of the wavefunction in such a manner that it no longer corresponds to a
particular position, while measurement of position forces a state function that does not
correspond to a particular energy. (In this case, separate measurements would really
be necessary, so the impossibility of doing a second measurement truly immediately
after the first must be recognized. Indeed, one has to allow for the fact that finding an
electron in one place and then at some other place must imply a lapse of time permitting
the electron to travel.)

The reader may suspect that there is some connection between commutators and the
uncertainty principle, and this is indeed the case. It can be shown® that the product
of widths of simultaneous measurements (i.e., the uncertainty in their values) of two
variables satisfies the relation

Aa-Ab> % ‘/ v* [/i, f;] vdt (6-37)

where 1 is normalized, and the absolute value | X| is defined as the positive square
root of X*X. If 4 and B are conjugate variables, such as position and momentum,
Eq. (6-37) becomes Aa - Ab > /i /2, which is Heisenberg’s uncertainty relation. If A
and B commute, the right-hand side of Eq. (6-37) vanishes, and the values of both
variables may, in theory, be simultaneously known exactly.

Among the properties of greatest interest in molecular quantum mechanics are
energy, symmetry, and electron orbital angular momentum because, for many
molecules, some of these operators commute. Thus, if we know that an oxygen
molecule is in a nondegenerate stationary electronic state, we know that it is possible
to characterize that state by a definite value of the orbital angular momentum along

9See Merzbacher [2, Section 10-5].
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the internuclear axis. Also, we know that the wavefunction must be symmetric or
antisymmetric for inversion through the molecular midpoint.

[ ] 6-16 Time-Dependent States

Much of quantum chemistry is concerned with stationary states, for which W is a
product of a space term ¥ (an eigenfunction of H ) and a time-dependent factor
exp(—i Et/h), which we usually ignore because it has no effect on particle probability
distribution. Sometimes, however, it becomes necessary to consider time-dependent
states. In this section we illustrate how some of these may be treated.

There are two types of situation to distinguish. One is situations where the potential
is changing as a function of time, and hence the hamiltonian operator is time dependent.
An example is a molecule or atom in a time-varying electromagnetic field. The other
is situations where the potential and hamiltonian operator do not change with time,
but the particle is nonetheless in a nonstationary state. An example is a particle that is
known to have been forced into a nonstationary state by a measurement of its position.
We deal here with the second category.

As our first example, consider a particle in a one-dimensional box with infinite walls.
Suppose that we measure the particle’s position and find it in the left side of the box
(i.e., between x =0 and L/2; we will be more specific shortly) at some instant that
we take to be f = 0. We are interested in knowing what this implies about a future
measurement of the particle’s position.

Our knowing that the particle is on the left side at # = 0 means that the wavefunction
for this state is not one of the time-independent box eigenfunctions we saw in Chapter 2,
because those all predict equal probabilities for finding the particle on the two sides
of the box. If the state function is not stationary, it must be time dependent, and it
must satisfy Schrodinger’s time-dependent equation (6-1). We have, then, that the state
function is time dependent, and that *W = |W|? is zero everywhere on the right side
of the box when ¢ = 0. (We have not yet been specific enough to describe |W|? in detail
on the left side of the box.)

Schrédinger’s time-dependent equation (6-1) is not an eigenvalue equation. How-
ever, Eq. (6-2) shows that Schrodinger’s time-dependent equation is satisfied by time-
independent eigenfunctions of A if they are multiplied by their time-dependent factors
f(t) =exp(—iEt/h). Furthermore, Eq. (6-2) continues to be satisfied if the term
¥ (q) f(¢) is replaced by a sum of such terms. (See Problem 6-9.) This means that
we can seek to express the time-dependent state function, W (x, ¢), as a sum of time-
independent box eigenfunctions as long as each of these is accompanied by its time
factor f(¢). When ¢t =0, all the factors f(¢#) equal unity, so at that point in time W
becomes the same as the sum of box eigenfunctions without their time factors.

Our strategy, then, is to find a linear combination of time-independent box eigen-
functions, 1, that describe W when ¢ = 0. This is easy to do because the time factors
are all equal to unity. Once we have found the proper mixture of v,,, we multiply each
by its time factor and then observe the behavior of |V |2 as t increases.

In the case of our particle-in-a-box example, we can start with a very simple approx-
imation to ¥ at ¢t = 0 by taking a 50-50 mixture of v and ¥:

W(x, 1) = (1/3/2) [y1 exp(—i Eit/h) + Yo exp(—i Eat /)] (6-38)
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Figure 6-1 » Stationary eigenfunctions (n = 1, 2) for the particle in a box and their normalized sum.

We have included the functions f(¢), even though they equal unity when # =0, because
they are needed to make W (x, ¢) a solution to Schrodinger’s equation (6-1) and because
they will inform us of the nature of W at later times.

We choose this pair of functions because, when ¢ = 0, both are positive on the left,
but they differ in sign on the right, giving us some cancellation there. (See Fig. 6-1.)
Obviously, we have not succeeded in describing a function that has no probability
density on the right, but we already have a definite imbalance in that direction. (It is
not difficult to see that some 3 with a positive coefficient should help remove much
of the remaining probability density on the right.)

Now we are in a position to examine this |¥|? as time progresses—the time evolution
of the square of a wavepacket that describes the probability distribution for a particle
that is known to have been in the left half of the box at # =0. This is mathematically
straightforward (Problem 6-20) and leads to the probability distributions sketched in
Fig. 6-2 after time steps of Az. The figure shows a changing distribution suggestive of
the particle bouncing back and forth in the box with a cycle time of 8 Az. Itis notdifficult
to see why this happens. W and W, have different “frequency factors” exp(—i E,t /%),
so they behave like two waves oscillating at different frequencies. Since E; =4F
(recall E ocn? in the box), W, oscillates four times faster than Wy. This means that, by
the time W has made half a cycle (and is equal to —1 times its starting coordinates),
W, has made two cycles and is just as it was at £ =0. It is easy to see from Fig. 6-1
that this will give a W that is skewed to the right, leading to the distribution shown in
Fig. 6-2(e). (This allows us to conclude that 4A¢ equals 1/2 of the cycle time of ;.
See Problem 6-21.)

If we want a more accurate starting representation for the localized particle, we must
mix together a larger number of stationary-state wavefunctions. In order to decide
how much of each is needed, we must have a better-defined description of W at t =0.
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Figure 6-2 » |W(x, t)|2 from Eq. (6-38) as it appears at various times.
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Figure 6-3 » A normalized half sine wave in the left half of a “box.” The numbers at left are values
of ¥, not of E.

Suppose, for instance, we choose to describe the starting wavefunction W (x, 0) as a
normalized half sine wave in the left side of the box and zero at the right (Fig. 6-3).
Then we can calculate the amount (c,) of each of the stationary-state functions v,
present in this function as follows:

L
cn=/ YW (x, 0)dx (6-39)
0

This follows from the completenesslo and orthonormality of {1,}. (See Problem 6-4.)
Evaluation of Eq. (6-39) for the first few terms gives (Problem 6-22)

W(x, 1) =0.600y +0.707¢r + 0.36013 +0.00014 + 0.086ys5 +---  (6-40)

This modifies slightly our earlier commonsense combination and also verifies our pre-
diction that 13 times a positive coefficient would be beneficial.

10Because W (x, 0) has a discontinuous derivative at the midpoint of the box, it falls outside the class for which
{¥,} is complete. However, because this problem is restricted to dx around one point, it should have little effect.
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This example illustrates the basic approach to such problems:
1. Find a function that represents the initial particle distribution W (x, 0).

2. Expand that function as a series of eigenfunctions for the hamiltonian, and include
the time-dependent factor for each term.

3. Evaluate the probability distribution at other times by examining |¥ (x, 7)|%.

As a second example, suppose one were considering the behavior of the electronic
state immediately after a tritium atom emits a beta particle to become a helium ion:
? H— %He +(i1 e. A crude analysis could be attempted by imagining that the nuclear
charge suddenly changes from 1 to 2 a.u., and the orbiting electron (not the beta particle)
suddenly finds itself in a state (the original 1s state) that is not an eigenfunction for the
new hamiltonian. We would accordingly set W (¢ = 0) to be the 1s AO of hydrogen and
expand this in terms of He™ eigenfunctions. Only s-type AOs could contribute because
of symmetry. The coefficients are given by

allspace
Cn =/ Vis(Z = Dns(Z =2)dv (6-41)
and the time-dependent wavefunction is (in a.u.)

W(r,0,¢,1) = c1¥15(Z = 2) exp(=2it) + c2yas(Z = 2) exp(—it /2)
+c335(Z =2) exp(—2it/9) + - - - (6-42)

This function could be evaluated at various times ¢ and would be found to give an
oscillating spherical distribution, as though the electron cloud were shrinking, then
rebounding to its original distance, then shrinking again, etc.

Our next example is perhaps the most important: It is a particle initially localized in
some region of space, say by measurement of its position, and free to move anywhere
thereafter. Taking the one-dimensional case, we imagine that the particle has been
detected around x = 0 at =0 (the measurement caused it to be “unfree” for an instant).
We assume that the average momentum of the particle is zero. We seek to know how
the probability distribution function for the particle will evolve in time.

As before, we need a functional description of the wavefunction at ¢ =0, W (x, 0).
We will then expand that in terms of eigenfunctions of the free-particle hamilto-
nian. As we have seen in Section 2-5, the free-particle eigenfunctions may be written
exp(xiv/2m Ex /h), where E is any nonnegative number. These are also eigenfunctions
for the momentum operator, with eigenvalues ~/2m E/i.

The function usually selected to describe W (x, 0) is a gaussian function:

W(x,0)= (:‘/2a /n) exp(—ax?) (6-43)

The constant o affects the width of the gaussian and reflects our degree of certainty
in our knowledge of position. Large o gives a tight function and small uncertainty
Ax. The relationship between the gaussian function in x and the coefficients of the
eigenfunctions as a function of /2m E/# is depicted in Fig. 6-4. Remarkably, the
coefficient values are also described by a gaussian function (in ~/2m E / /). Furthermore,
the tighter the gaussian function is in x, the broader the corresponding gaussian function
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X V2mEIh—>
(a) (b)
0 V2mE/h—
(c) (d)

Figure 6-4 » (aandc)Gaussian wave packets describing particles found to be at x =0 with differing
degrees of certainty. (b and d) Values of ¢; (where k = +/2m E / /i) for momentum eigenfunctions that
combine to express the gaussian wave packets to their left. (a, b) corresponds to relatively certain
position and relatively uncertain momentum, whereas (c, d) corresponds to the opposite situation.

isin +/2m E /hi (Problem 6-24). That is, we need to combine free-particle eigenfunction
contributions from a wider range of momenta to create a tighter position function. This
means that greater certainty in position goes with greater uncertainty in momentum, in
accord with the uncertainty principle.

Once we have the appropriate mixture of momentum eigenfunctions, each with its
time-dependent term, we can follow the time evolution of the particle wave packet.
We find that the packet spreads out more and more about x =0 as time passes, which
means that our knowledge of position is decreasing as time passes. Even though the
average position is not changing, the probability for finding the particle at a distance
from x =0 is increasing.

We can interpret this by remembering that the square of the wavefunction predicts
the results of many experiments. In each of many position measurements finding the
particle near x = 0, we impart some degree of momentum to the particle. Then, in
a second measurement, we find that some of the particles have moved away from
x =0. The longer we wait before taking the second measurement, the greater this
spread in x values. (Our assumption of zero average momentum amounts to saying that
large deviations from zero momentum are equally likely for motion toward x = +o00
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and —o0.) The more precise our first position measurement is, the greater the likelihood
of introducing momenta quite different from zero and the more rapidly the wave packet
spreads out as time passes.

In the first example, a packet located in half of a one-dimensional box, we saw | W |>
oscillate back and forth, changing shape in the process so that the motion cannot be
described with a single frequency. A related important case is that of an oscillator
moving in a harmonic potential. Let us assume the oscillator’s position at # =0 to be
described by a gaussian wavefunction. If this function is not centered at the oscilla-
tor’s equilibrium position, we have a time dependent situation analogous to the above
particle-in-a-box case. For a harmonic potential, it can be shown'! that |¥|? remains
a gaussian function as time passes (i.e., does not change shape), and that the center
of this gaussian oscillates back-and-forth about the equilibrium position with the clas-
sical frequency. This is a situation of interest to spectroscopists because it bears on
the process of electronically exciting a sample of diatomic molecules. Suppose the
molecules are initially in their ground electronic and ground vibrational states. Then
their vibrational wavefunction is a simple gaussian function (the lowest-energy har-
monic oscillator wavefunction) centered at R, (i.e., not off-center). If the molecules
are excited by a laser pulse to a new electronic state having an equilibrium internuclear
distance of R,, the vibrational wavefunction at r =0 is still the simple gaussian cen-
tered at R., which means that it is now off-center. As time passes, the center of this
function oscillates back and forth about R/, in a coherent manner (i.e., describable with
a single frequency). Thus, we have gone from an initial state describing an ensem-
ble of molecules vibrating about R, with zero-point energy Av/2 and with random
phases (i.e., a time-independent state wherein such measurable properties as average
molecular dipole moment appear to be constant) to a final state where the molecules are
vibrating in phase about R, (a time-dependent state, wherein one might expect to see
time variation of such properties). If R, were quite a bit smaller than R/, for instance,
then almost all the molecules would find themselves to be “too short” at t =0, “too
long” a short time later, etc., as they swing in phase about R,. As a result of this simple
behavior, it is possible to take advantage of it and time a second laser pulse to strike the
molecules when they are almost all at their shortest, or all at their longest, extension.
Of course, in real molecules the potential is not exactly harmonic. Furthermore, phase
coherence is eventually lost due to collisions. So the second pulse must come very
soon after the first one.

6-17 Summary

Some of the postulates and proofs described in this chapter are most important for what
follows in this book, and we list these points here.

1. ¢ describes a state as completely as possible and must meet certain mathemati-
cal requirements (single-valued, etc.). ¥ * is the probability density distribution
function for the system.

2. For any observable variable, there is an operator (hermitian) which is constructed
from the classical expression according to a simple recipe. (Operators related to

11gee Schiff [3, pp. 67, 68], and Tanner [4].
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“spin” are the exception because the classical analog does not exist.) The eigenvalues
for such an operator are the possible values we can measure for that quantity. The act
of measuring the quantity forces the system into a state described by an eigenfunction
of the operator. Once in that state, we may know exact values for other quantities
only if their operators commute with the operator associated with our measurement.

3. If the hamiltonian operator for a system is time independent, stationary eigenfunc-
tions exist of the form ¥ (¢, w) exp(—i Et/#). The time-dependent exponential does
not affect the measurable properties of a system in this state and is almost always
completely ignored in any time-independent problem.

4. The formula for the quantum-mechanical average value [Eq. (6-9)] is equivalent to
the arithmetic average of all the possible measured values of a property times their
frequency of occurrence [Eq. (6-33)]. This means that it is impossible to devise a
function that satisfies the general conditions on ¥ and leads to an average energy
lower than the lowest eigenvalue of H.

5. The square-integrable eigenfunctions for an operator corresponding to an observable
quantity form a complete set, which may be assumed orthonormal. The eigenvalues
are all real.

6. Any operation that leaves 4 unchanged also commutes with H.

7. Wavefunctions describing time-dependent states are solutions to Schrodinger’s time-
dependent equation. The absolute square of such a wavefunction gives a particle
distribution function that depends on time. The time evolution of this particle distri-
bution function is the quantum-mechanical equivalent of the classical concept of a
trajectory. It is often convenient to express the time-dependent wave packet as a lin-
ear combination of eigenfunctions of the time-independent hamiltonian multiplied
by their time-dependent phase factors.

6-17.A Problems
6-1. Prove that d*/dx? is hermitian.

6-2. Integrate the expressions in Egs. (6-13) and (6-15) to show that their integrals are
equal.

6-3. Prove that, if a normalized function is expanded in terms of an orthonormal set of
functions, the sum of the absolute squares of the expansion coefficients is unity.

6-4. Show that a particular coefficient ¢ in Eq. (6-30) is given by ¢y = [ uj dv.
6-5. A particle in a ring is in a state with wavefunction ¥ = 1//7 cos(2¢).

a) Calculate the average value for the angular momentum by evaluating
[Y*L.ydp, where L. = (h/i)d/d¢. (Use symmetry arguments to evaluate
the integral.)

b) Express i as a linear combination of exponentials and evaluate the average

value of the angular momentum using the formula L, 5y =) ; cj‘ ¢; L5 where
L; is the eigenvalue for the ith exponential function.
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6-6.

6-7.

6-8.

6-9.

6-10.

6-11.

6-12.

6-13.

6-14.

6-15.

Using Eq. (6-37), show that Ax - Ap, > /2.

What condition must the function ¢ satisfy for the equality part of > to hold in
Eq. (6-34)?

Suppose you had an operator and a set of eigenfunctions for it that were associated
with real eigenvalues. Does it necessarily follow that the operator is hermitian
as defined by Eq. (6-10)? [Hint: Consider d/dr and the set of all functions
exp(—ar), where a is real and positive definite.]

a) Show that the nonstationary state having wavefunction
W = (1/v2)¥15exp(it/2) + (1/3/2) Y2, exp(it /8)

is a solution to Schrodinger’s time-dependent equation when A is the time-
independent H of the hydrogen atom. Use atomic units (i.e., # =1).

b) This time-dependent state is dipolar and oscillates with a characteristic fre-
quency v. Show that v satisfies the relation £, — E; = AE =2mv in a.u.
(The dipole oscillates at the same frequency as that of light required to drive
the 1s <— 2p transition. This is central to the subject of spectroscopy.)

From the definition that ¢’ = ¢ — S [see the discussion following Eq. (6-26)],
evaluate the normalizing constant for ¢, assuming that ¢ and v are normalized.

Given the two normalized nonorthogonal functions (1/./7)exp(—r) and
J/1/3mrexp(—r), construct a new function ¢ that is orthogonal to the first
function and lies within the function space spanned by these two functions, and
is normalized.

If the hydrogen atom 1s AO is expanded in terms of the He™ AOs, what is the
coefficient for (a) the He™ 1s AO? (b) the He™ 2py AO?

The lowest-energy eigenfunction for the one-dimensional harmonic oscillator is
Yn—o = (B/7)'* exp(—px?/2).

a) Demonstrate whether or not momentum is a constant of motion (i.e., is a
“sharp” quantity) for this state.
b) Calculate the average momentum for this state.

Demonstrate whether x?d /dx and xd?/dx* commute. What about xd /dx and
x2d?/dx??

Evaluate the following integrals over all space. In neither case should you need

to do this by brute force.

a) [(3dyy)L*(3dyy) dv
b) [ (3dyy) L:(3dyy)dv
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6-16.

6-17.

6-18.

6-19.

6-20.
6-21.
6-22.

6-23.

6-24.

6-25.

Chapter 6 Postulates and Theorems of Quantum Mechanics

The operators for energy and angular momentum for an electron constrained to
move in a ring of constant potential are, respectively, in a.u. —(1/2)d?/d¢$> and

(1/i)d/d¢.

a) Discuss whether or not there should be a set of functions that are simultane-
ously eigenfunctions for both operators.

b) Discuss whether or not there is a set of functions that are eigenfunctions for
one of these operators but not the other.

c¢) Discuss whether it is reasonable to expect these two physical quantities to be
exactly knowable simultaneously or whether the uncertainty principle makes
this impossible.

Suppose a hydrogen atom state was approximated by the function ¢ = (1/4/3)1s
—|—(1/\/§)25 + (1/\/§)3s, where 1s, 2s, and 3s are normalized eigenfunctions for
the hydrogen atom hamiltonian. What would be the average value of energy
associated with this function, in a.u.?

A function f is defined as follows: f=0.1-1s4+0.2-2p; 4+ 0.3 - 3dy, where
1s is the normalized eigenfunction for the 1s state of the hydrogen atom, etc.
Evaluate the average value of the z component of angular momentum in a.u. for
this function.

Without looking back at the text, prove that (a) eigenvalues of hermitian operators
are real, (b) nondegenerate eigenfunctions of hermitian operators are orthogonal,
(c) nondegenerate eigenfunctions of A must be eigenfunctions of Bif A and B
commute.

Using Eq. (6-38), obtain an expression for |W|? as a function of x and 7.
Evaluate At of Fig. 6-2 in terms of m, &, and L.

Verify the values of the coefficients in Eq. (6-40). How can you tell from simple
inspection that (a) c» will be largest and positive, (b) ¢4 will be zero, (c) ¢; will
tend toward small values at large i ?

a) Evaluate the first two coefficients in Eq. (6-42).

b) What qualitative difference would you expect between W of Eq. (6-42) and
one that takes explicit account of the changing potential resulting as the beta
particle travels away from the nucleus?

Show by qualitative arguments based on mathematical functions why coefficients
¢ should drop off more rapidly with £ if the position wave packet is broader.

ck = [ (V2a/7) exp(—ax?) exp(ikx) dx.

a) Provethat,if V isrealand W (x, y, z, t) satisfies Schrodinger’s time-dependent
equation, then W(x, y, z, —t)* is also a solution. (This is called “invariance
under time reversal.”)

b) Show that, for stationary states, invariance under time reversal means that
Hy* = Ey* if Hy = Evy and if V is real.

¢) Show from (b) that nondegenerate eigenfunctions of A (with real V') must be
real.
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d) Whatbecomes of the 2p_1 AO (with time dependence included) upon complex
conjugation and time reversal? the 2py AO?

e) Can the statement in (c) be reworded to say that all degenerate eigenfunctions
of H (with real V') must be complex?

Multiple Choice Questions
(Try to answer these without referring to the text.)

1. Which one of the following statements about the eigenfunctions of a time-
independent Hamiltonian operator is true?

a) Any linear combination of these eigenfunctions is also an eigenfunction for H.
b) The state function for this system must be one of these eigenfunctions.

¢) The eigenvalues associated with these eigenfunctions must all be real.

d) These eigenfunctions must all be orthogonal to one another.

e) These eigenfunctions have no time dependence.

2. A hydrogen atom is in a nonstationary state having the wavefunction %{Wls
exp(it/2h) + Yragexp(it/8h) + V2 p, exp(it /8R) + Va2 p, , €xp(it /84)}

Which statement is true at any time #?

a) A measurement of the energy has a 25% chance of giving —0.5 a.u.

b) The average value of the z component of angular momentum is 0.5 a.u.

c) The average energy is —% a.u.

d) A measurement of the total angular momentum has a 75% chance of giving

«/5 a.u.

e) None of the above statements is true.

3. The function rexp(—0.372) cos 6 is expanded in terms of hydrogen atom wavefunc-
tions. This series may have finite contributions from bound-state eigenfunctions

a) of all types: s, px, Py, Pz, dxy, dy:, etc.
b) of all types except s.

c) of types px, py, p; only.
d) of type p. only.
e) of types p, and d> only.
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The Variation Method

[J 7-1 The Spirit of the Method

The proof of the Rayleigh-Ritz variation principle (Section 6-12) involves essentially
two ideas. The first is that any function can be expanded into a linear combination of
other functions that span the same function space. Thus, for example, exp(ikx) can
be expressed as cos(kx) + i sin(kx). An exponential can also be written as a linear
combination of powers of the argument:

exp(x)=14x4+x2/21+x3 /31 - +x"/nl+- - (7-1)
The second idea is that, if a function is expressed as a linear combination of eigenfunc-

tions for the energy operator, then the average energy associated with the function is a
weighted average of the energy eigenvalues. For example, if

¢= (%) v+ (%) ¥ (7-2)

Hy1=E, Hyr=Exwn, Ei#E (7-3)

then measuring the energy of many systems in states described by ¢ would give the
result £ half of the time and E5 the other half. The average value, %E 1+ %Ez must
lie between E| and E;. Alternatively, if

e g
¢ = §W1+ Elﬁz (7-4)

measurements would give £ one-third of the time, and E» the rest of the time, for an
average that still must lie between E1 and Ej. It should be evident that, even when ¢
is a linear combination of many eigenfunctions ;, the average value of £ can never
lie below the lowest or above the highest eigenvalue.

The variation method is based on the idea that, by varying a function to give the lowest
average energy, we tend to maximize the amount of the lowest-energy eigenfunction
Yo present in the linear combination already discussed. Thus, if we minimize

[¢*Hodv
[o*¢pdv

the resulting ¢ should tend to resemble ¥y since we have maximized (in a sense) the
amount of g in ¢ by this procedure.

where

E= (7-5)

190
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D 7-2 Nonlinear Variation: The Hydrogen Atom

We have already seen (Chapter 4) that the lowest-energy eigenfunction for the hydrogen
atom is (in atomic units)

1
Vs = (ﬁ) exp(—r) (7-6)

Suppose we did not know this and used the variation method to optimize the normalized

trial function
é-S
=1, — |exp(=¢r) (7-7)
T

In this example, when ¢ = 1, ¢ becomes identical to 11, but in more complicated sys-
tems the trial function never becomes identical to an eigenfunction of the hamiltonian.
Nevertheless, this is a good example to start with since there are few mathematical
complexities to obscure the philosophy of the approach.

The variation method requires that we minimize

= / ¢ Hepdv (7-8)
by varying ¢. [¢ is normalized, so no denominator is required in Eq. (7-8).] Since the

trial function ¢ has no 6- or ¢-dependent terms for V2 to operate on, only the radial
part of V? is needed in H. Thus [from Eq. (4-7)]

A=—co—r—-= (7-9)

According to Eq. (7-8), we need first to evaluate the quantity H o:

S [ 11d,d 17 [¢
H¢_[_§r_25 E—;}\/jexp( ¢r) (7-10)

1 2 3
:[%—%]\/?exp( —r) (7-11)

Incorporating this into Eq. (7-8) gives (after integrating 6 and ¢ in dv to give 47)

3 oo _ 2
F—dn (i)/ [(5 D) 52] exp (—22r) 2 dr (7-12)
0

T r
00 2 00

=473 {(; — 1)/ rexp(—2¢r) dr — (%) f rexp (=2¢r) dr} (7-13)
0 0

Using the integral table in Appendix 1, we obtain

2
E= (%) —¢ (7-14)
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Now we have a simple expression for E as a function of ¢. To obtain the minimum,
we set the derivative of E to zero:
dE 0 1 7-15
ac 0= ¢ (7-15)
As we expected, £ = 1. Inserting this value for ¢ into Eq. (7-14) gives E = —% a.u.,
which is identical with the lowest eigenvalue for the hydrogen atom.

This example demonstrates that minimizing E for a trial function causes the function
to become like the lowest eigenfunction for the system. But it is more realistic to
examine a case where the trial function is incapable of becoming exactly identical with
the lowest eigenfunction. Suppose we assumed a trial form (normalized) of

;5
¢ =‘/—r exp(—¢r) (7-16)
3

Proceeding as before, we first evaluate H o:

. 1 201 &2
H¢=[(—r—2)+ ér —%]d) (7-17)
This leads to
_ 4T¢% 3¢
E(C)zﬂ%—é (7-18)
so that
dE _ _4[¢ 3] ]
5_0_3[4 5 | (7-19)

and E is a minimum when ¢ = % Thus, our energy-optimized ¢ is

35 3r
b= e (-7) (7-20)

This is obviously not identical to the eigenfunction given by Eq. (7-6), but it must be
expressible as a linear combination of hydrogen atom eigenfunctions, and the amount
of 115 present should be quite large unless the trial form was unwisely chosen. Since
¢ also must contain contributions from higher energy eigenfunctions, it follows that £
must be highef in energy than —% a.u. We test this by inserting ¢ = % into Eq. (7-18),
obtaining an E of —% a.u., (—0.375 a.u.). This value is above the lowest eigenvalue,
but it is well below the second-lowest eigenvalue (—é a.u.) associated with 2s, 2p
eigenfunctions, and so we know that ¢ does indeed contain much 1s character. We can
find out exactly how much 1s eigenfunction is contained in ¢ by calculating the overlap
between ¢ and the 1s eigenfunction. That is, since the 1s function is orthogonal to all
the other hydrogen atom eigenfunctions;

/wlsl/fjdv={? ]:#ls (7-21)
j=1s
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and since

p=ci¥is+ Y v (7-22)
J#ls

it follows that

1 0
J Yy do = CWM’U + j;s Cj ¥ jdv = ¢y (7-23)

Integrating [ y15¢ dv, where ¢ is given by Eq. (7-20), gives ¢, =0.9775, so ¢ does
indeed “contain” a large amount of ¥, (If ¢15 =1, then 115 and ¢ are identical.)

This suggests another way of trying to get a “best” approximate wavefunction. We
could find the value of ¢ that maximized the overlap between ¢ and yr|s. This maximizes
c1s in Eq. (7-22). If one does this (Problem 7-6), one obtains ¢ = % which corresponds
to an overlap of 0.9826 and an E of —0.370 a.u. At first sight, this seems puzzling.
¢(§ = %) has a larger amount of s in it, but qﬁ(; = %) has a lower average energy.
But it is really not so unreasonable. Maximizing the value of ¢ causes ¢ to take on
a certain value that may cause the coefficient for some high-energy state (say, 6s) to
become relatively larger, producing a tendency to raise the average energy. On the
other hand, minimizing £ is a process that is implicitly concerned with what all the
coefficients are doing. This allows for a different sort of compromise wherein c3 may
be allowed to be a bit smaller if the associated energy loss is more than compensated
for by a favorable shifting in values of higher coefficients (e.g., if cp¢ increases and ces
decreases). The purpose of this discussion is to emphasize that the variation method
optimizes the trial function in a certain sense (best energy), but that other kinds of
optimization are conceivable. The optimization that gives best overlap is not generally
useful because it requires that we know the exact solution to begin with. If we vary
¢ to obtain optimal agreement for 7, or V7, or 2, we would find a different value of
¢ appropriate for each property. In each case, however, we would need to know the
correct value of , etc., before starting. A great virtue of the energy variation method
is that it does not require foreknowledge of the exact eigenvalue or eigenfunction.
However, the function that gives the lowest value for £ might not be especially good in
describing other properties. This is demonstrated in Fig. 7-1 and Table 7-1. The figure
indicates that the trial function differs from the exact function chiefly near the nucleus,
where r < 1. This discrepancy shows up when we compare average values for various
powers of 7. The operators 7, r>, and > become large when r is large. Thus, these
operators magnify ¥2 dv at large . Since the two functions are fairly similar at large
r, the average values show fair agreement. But »~! and »~2 become large when 7 is
small. Thus, the fact that the approximate function is too small at small » shows up
as a marked disagreement in the average value of 72, this average being much larger
for the exact function (see Table 7-1). Any trial function that is known to be especially
inaccurate in some region of space (e.g., at small r) will give unreliable average values
for operators that are largest in that region of space (e.g., r—2).

Choosing a trial form such as Eq. (7-16), which must vanish at » =0, might seem
foolish since we know that | does not vanish at » =0. And if we were interested in
electron density at the nucleus for, say, calculating the Fermi contact interaction, this
would indeed be a self-defeating choice. Butif our interest is in energies or other proper-
ties having operators that are large in regions where the trial function is not too deficient,
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r (bohrs)

Figure 7-1 » Plots of ¥/|¢ and ¢ [Eq. (7-20)] versus 7.

TABLE 7-1 » Comparison between Exact Values for Some Properties of (1s) Hydrogen and
Values Calculated from the Function Eq. (7-20)

Quantity Exact (1s) value (a.u.) Trial function value (a.u.)
; - -
Electron density
at nucleus % 0

r 1.5 1.67

r2 3.0 3.33

r3 75 7.78

r=1 1.0 0.75

=2 2.0 0.75

this choice would serve. One often settles for a mathematically convenient form even
though it is known to be inadequate in some way. Care must then be exercised, however,
to avoid using that trial wavefunction in ways which emphasize its inadequacies.

7-3 Nonlinear Variation: The Helium Atom

We mentioned in Chapter 5 that the ground-state wavefunction 1s(1)1s(2) for helium
was much too contracted if the 1s functions were taken from the He™ ion without
modification. Physically, this arises because, in He™, the single electron sees only a
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doubly positive nucleus, whereas in He each electron sees a doubly positive nucleus
and another electron, so that in He the repulsion between electrons prevents them from
spending as much time near the nucleus as in He™. Somehow, the 1s functions should
be modified to reflect this behavior. We will now show how the variation method may
be used to accomplish this.

The form of the hydrogenlike ion 1s solution is

73
1s=‘/?exp(—Zr) (7-24)

For He™, Z =2, but we have just seen that this gives a function that is too contracted.
Smaller values of Z would cause the function to die away more slowly with 7. Therefore,
it is reasonable to replace the atomic number Z with a variable parameter ¢ and find
the value of ¢ that gives the lowest average energy. Hence, we let

3
ls/(l):\/ z—eXP(—s‘rl) (7-25)
T
and our trial wavefunction is

$(1,2)=15M152) (1/v2) [«()B@) - B )] (7-26)

1

The average energy is [since ¢ (1, 2) is normalized]
E://qb*(l,Z)I:I(l,2)¢(1,2)dr(1)dr(2) (7-27)

Since H(1,2) contains no spin operators at our level of approximation, the integral
separates into an integral over the space coordinates of both electrons and an integral
over the spin coordinates of both electrons. The integration over spins gives a factor of
unity. There remains

E://1s’(1)1s’(2)1§l(1,2)1s’(1)1s’(2)dv(1)dv(2) (7-28)

H(Q 2)——1v2—1v2— (3) — (3)+<L> (7-29)
T2 r ) 2 i

and where the 6 and ¢ parts of V2 can be ignored since ¢ (1, 2) is independent of these
variables. The calculation is easier if we recognize that

where

R R . 1
H(1.2)= Hyer (1) + Hyger @)+ — (7-30)
12

n this trial function, ¢ has the same value in each atomic orbital. This is not a necessary restriction. There is no
physical reason for not choosing the more general trial function where orbitals with different ¢ are used. Symmetry
requires that such a function be written 2~ 1/2[1s'(1)1s” (2) + 1s” (1) 18/ ()12~ /2 [a(1) B(2) — B(1)a(2)]. This
type of function is called a “split shell” wavefunction. It gives a lower energy for He than does the function (7-26).
However, for most quantum-chemical calculations split shells are not used, the gain in accuracy usually not being
commensurate with the increased computational effort.
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This allows us to express Eq. (7-28) as the sum of three integrals, the first of these being

// 18/ (1)15"(2) Higer (1) 18 (1) 15" (2)dv(1)dv(2) (7-31)

Since the operator in the integrand operates only on coordinates of electron 1, we can
separate this into a product of two integrals:

fls/(Z)ls'(Z)dv(Z)/ls'(l)FIHe+ (1) 15’ (Hdv(1) (7-32)

The 1s’ functions are normalized, and so the first integral is unity. The second
integral is almost identical to the integral in Eq. (7-8) and has the value ({2 / 2) —-2¢.
Therefore, the first of the three integrals mentioned above equals ({2 / 2) —2¢. The
second of the three integrals is identical with Eq. (7-31) except that the operator acts
on electron 2 instead of 1. This integral is evaluated in the same manner and gives
the same result. The third integral, in which the operator is 1/712, is more difficult to
evaluate. This interesting and instructive problem constitutes a detour from the main
sequence of ideas in this chapter and is therefore discussed in Appendix 3. We here
simply take the result, %5, and proceed with the variation calculation.

We now have an expression for E as a function of ¢:

_ 5 27
E:2[(;2/2)—2§]+§§:§2—§§ (7-33)
Minimizing E with respect to ¢ gives
dE =0=2¢ 27 (7-34)
dc 8
so that
27
- 7-35
¢ T (7-35)

This value of ¢ is smaller than the unmodified He™ value of 2, as we anticipated. Let us
see how much the average energy has been improved. According to Eq. (7-33), when
¢ is 2, E is equal to —2.75 a.u. When ¢ = %—g, E equals —2.848 a.u., so the average
energy has been lowered by approximately 0.1 a.u., or 2.7 eV, or 62 kcal/mole. (The
exact nonrelativistic energy for He is —2.903724377 a.u.) Further analysis would show
that, by decreasing ¢, we have decreased the average kinetic energy (the less compressed
wavefunction changes slope less rapidly), raised the nuclear-electron attraction energy
from a large negative to a smaller negative value (the decreased attraction resulting
from the electrons being farther from the nucleus, on the average), and decreased the
interelectronic repulsion energy from a higher positive value to a lower one. The
variational procedure has allowed the wavefunction to adjust to the best compromise it
can achieve among these three factors. If ¢ becomes less than % the loss of nuclear—
electron attraction is too great to be offset by the loss of interelectronic repulsion and
kinetic energy.

Varying a parameter in the argument of an exponential produces a nonlinear change
in the function, and so calculations of the type described above are referred to as
nonlinear variation calculations. Such calculations tend to become mathematically
complicated and are not frequently used except for fairly simple systems. The fact
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that the hamiltonian operator is a linear operator [i.e., H (c101 + c2¢2) = (1 H o1+
ca Hgo)] makes a linear variation procedure more convenient for most purposes.

D 7-4 Linear Variation: The Polarizability

of the Hydrogen Atom

Suppose we wish to express a wavefunction ¥ (which may be approximate) as a linear
combination of two known functions ¢ and ¢»:

Y (c1, ) =c1é1 +crn (7-36)

The question is, what values of ¢; and ¢, give a i that best approximates the exact
wavefunction for a particular system? The usual approach is to determine which values
of ¢1 and ¢, give the Y associated with the minimum average energy attainable. The
technique for achieving this, called the linear variation method, is by far the most
common type of quantum chemical calculation performed.

An example of a problem that can be treated by this method is the polarizability of
the hydrogen atom. The wavefunction for the unperturbed hydrogen atom in its ground
state is spherically symmetrical. But, when a uniform z-directed external electric field
of strength F is imposed, the positive nucleus and the negative electron are attracted
in opposite directions, which leads to an electronic distribution that is skewed with
respect to the nucleus. The wavefunction describing this skewed distribution may be
approximated by mixing with the unperturbed 1s function some 2p, function: ¢ =
c11s+ c22p;. As indicated in Fig. 7-2, this produces a skewed wavefunction because
the 2p, function is of the same sign as the 1s function on one side of the nucleus and
of the opposite sign on the other. We will work out the details of this example after
developing the method for the general case.

Let the generalized trial function i be a linear combination of known functions

b1, @2, ..., ¢,. (This set of functions is called the basis set for the calculation.)
V=cip1+crpa+---+cndn (7-37)
where the coefficients ¢ are to be determined so that
*Hydr -
M —F (7-38)
[v*vdr

is minimized. Substituting Eq. (7-37) into Eq. (7-38) gives

5o Al + S8+ 4 o)) Hcrdi+exprt -+ endn) d

T (O T OB i) (11 + caprt o+ Cntn)dT
_ num 7-39)

denom

Since we will be dealing with cases in which the ¢’s and ¢’s are real, we will temporar-
ily omit the complex conjugate notation to simplify the derivation. At the minimum
value of E,
dE OE OE
T = =0 (7-40)
dcy  dca acy,




198 Chapter 7 The Variation Method

0.50

0.40}

0.30

0.20

0.10

1 1 1 1 1 1 ]

0 -3 -2 -1 0 1 2 3

z (a.u.)

Figure 7-2 » Values of ¢ versus z for 1s state of H atom (—-) and for approximate wavefunction
given by 0.982 1s —0.188 2p; (- - -). The nucleus is at z=0 for each case.

The partial derivative of Eq. (7-39) with respect to ¢ is

VE _ [l @i+ +ad)dr [+ Fand) Agde
dey denom denom

— (num) (denom) > [/ o1 (c1o1+ - +cupy) dt

+ / (c1p1+--- +Cn¢n)¢ldfj|
=0 (7-41)



Section 7-4 Linear Variation: The Polarizability of the Hydrogen Atom 199

Multiplying through by denom, recalling that num/denom equals £, and rearranging,

gives
c1 [/¢11:1¢1df—5/¢1¢1df]
+c [/¢1F1¢2df—5/¢1¢2df]

+- 4y [/¢1ﬁl¢ndr—E/¢1¢ndt]
-0 (7-42)

At this point, it is convenient to switch to an abbreviated notation:
/gb,-Hcpjdr = H;; (7-43)

/¢i¢j dt = Sij (7-44)

The integral §;; is normally called an overlap integral since its value is, in certain
cases, an indication of the extent to which the two functions ¢; and ¢ ; occupy the same
space. Use of this abbreviated notation produces, for Eq. (7-42),

ci (Hii—ESn)+ca(Hio— ESi2) + -+ + ¢ (Hin — ES1y) =0 (7-45)
A similar treatment for 3 E/dc; gives a similar equation:
i (Hin — ESit) +ca (Hip — ESpp) + -+ -+ ¢u (Hin — ESin) =0 (7-46)

Thus, requiring that d £ /d¢; vanish for all coefficients produces n homogeneous linear
equations (homogeneous, all equal zero; linear, all ¢;’s to first power). If one chooses
a value for E, there remain n unknowns—the coefficients ¢;. (The integrals H;; and
S;; are presumably knowable since H and the functions ¢; are known.) Of course, one
trivial solution for Eqgs. (7-46) is always possible, namely, ci =c; =---=¢, =0. But
this corresponds to ¥ =0, a case of no physical interest. Are there nontrivial solutions
as well? In quantum chemical calculations, nontrivial solutions usually exist only for
certain discrete values of E. This provides the approach for solving the problem.
First, find those values of £ for which nontrivial coefficients exist. Second, substitute
into Eqgs. (7-46) whichever of these values of E one is interested in and solve for the
coefficients. (Each value of E has its own associated set of coefficients.) But how do
we find these particular values of E that yield nontrivial solutions to Eqs. (7-46)? The
answer is given in Appendix 2, where it is shown that the condition which must be met
by the coefficients of a set of linear homogeneous equations in order that nontrivial
solutions exist is that their determinant vanish. Notice that, in the standard treatment
given in Appendix 2, the coefficients are known and x, y, and z are unknown. Here,
however, the coefficients ¢; are unknown, and H;; and S;; are known. Therefore, it is
the determinant of the H’s, S’s and E in Eqs. (7-46) that must equal zero:

Hy — ESy1 Hyp— ES;p -+ Hiy— ESiy

Hy —ESy Hyp—ESy -+ Hy— ESy
. . _ =0 (7-47)

Hnl _ESnl Hn2_ ESnZ Hnn _ESnn
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Expansion of this determinant gives a single equation containing the unknown E. Any
value of E satisfying this equation is associated with a nontrivial set of coefficients.
The lowest of these values of E is the minimum average energy achievable by variation
of the coefficients. Substitution of this value of E back into Eqs. (7-46) produces
n simultaneous equations for the n coefficients. Equation (7-47) is referred to as
the secular equation, and the determinant on the left-hand side is called the secular
determinant.

This method is best illustrated by example, and we will now proceed with the prob-
lem of a hydrogen atom in a z-directed uniform electric field of strength F' a.u. As
mentioned earlier, a suitable choice of functions to mix together to approximate the
accurate wavefunction is the 1s and 2p, hydrogenlike functions. The choice of two
basis functions leads to a 2 x 2 secular determinantal equation:

Hy — ESy Hia— ESip

_ ) (7-48)
Hy — ES1 Hpn— ES»

If we arbitrarily associate the 1s function with the index 1 and the 2p, function with
index 2 (consistent with ¥ = cj1s 4+ ¢22p;), then the terms in the determinant are
(returning to general complex conjugate notation):

Hllzfls*ﬁlsdt H12=/1s*1:12pzdt

Hyy = / 2pfHlsdt  Hyp= / 2p* H2p. dt (7-49)

(The electron label has been omitted since there is only one electron.) The correspond-
ing S integrals are obtained from these if H is omitted in each case. The hamiltonian
operator is just that for a hydrogen atom with an additional term to account for the
z-directed field:

. 1
H=—§V2—(1/r)—Frcos9 (7-50)

[The energy of a charge —e in a uniform electric field of strength /" and direction z is
—e F'z. In atomic units, one unit of field strength is e/a% =5.142 x 10" ¥ /m. The unit
of charge in atomic units is e, so this symbol does not appear explicitly in Eq. (7-50).
Also, the identity z=r cos 6 has been used.] This may also be written

H = Fiyg — Frcos6 (7-51)

where I:Ihyd is the hamiltonian for the unperturbed hydrogen atom.

The secular determinant contains four H-type and four S-type terms. However,
evaluating these eight integrals turns out to be much easier than one might expect.
In the first place, S1» = S$»; since these integrals differ only in the order of the two
functions in the integrand, and the functions commute. Also, because H is hermitian,
it follows immediately that H| = H 1*2. This leaves us with three S terms and three H
terms to evaluate. The three S terms are simple. Because the hydrogenlike functions
are orthonormal, S7; and S>; equal unity, and Sy» vanishes. These points have already
reduced the secular determinantal equation to

Hi—E Hip

_|=0 7-52
HY) Hn—E (752)
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Consider next the term Hjj. This may be written as
HH:/ 1s*1§hyd1sdr—/1s* (Frcos) 1sdt (7-53)

But the 1s function is an eigenfunction of I:Ihyd with eigenvalue —% a.u. Therefore, the

first integral on the right-hand side of Eq. (7-53) is
* 7 1 * 1
Is thdlSdT:_E 1s lsdr:_ia,u. (7-54)

The second term on the right-hand side of Eq. (7-53) is zero by symmetry since 1s*1s
is symmetric for reflection in the x y plane while » cos 6 (= z) is antisymmetric. Thus,
Hy = —Lau Similarly, Hyp = —% a.u. [Recall that the 8 eigenvalues of hydrogen
are equal to —l/(2n2), and here n = 2.] All that remains is Hj3:

lezfls*ﬁhdepzdt—Ffls* (rcosB)2p.dt (7-55)

The first term on the right-hand side is easily shown to be zero:
N 1
/ 1s* Hyya2p. dt = / Is* (—g) 2p,dt =0 (7-56)

Here we employ the fact that 2p; is an eigenfunction of ﬁhyd and then the fact that 1s
and 2p; AOs are orthogonal. The second term on the right-hand side must be written
out in full and integrated by “brute force.” It is remarkable that, of the eight terms
originally considered, only one needs to be done by detailed integration. Proceeding,
we substitute formulas for 1s and 2p; in this last integral to obtain

—F// (1)~ % exp(—r)[rcos0](327) "/ 2r exp(—r/2) cos 6 (r* sin0) dr d6 d ¢
(7-57)

We consider the integration over spin to have been carried out already, giving a factor
of unity. Integrating over ¢ to obtain 27, and regrouping terms gives

o0 s
—27 F/(43/27) / r*exp(=3r/2) dr / cos> 0 sin6 d6 (7-58)
0 0

—_ (F/zﬁ) L%} [%} = —21;# au. (7-59)

This completes the task of evaluating the terms in the secular determinant.” The final
result is (in atomic units)

_% _ E _215/2(F/35)
_ =0 (7-60)
—2B/2(F/3%) —L-E

2Since Hjy is real, it is clear that Hp| = Hj».
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which expands to

1 _ _
E+(5E/8)+E2—215F2/3IO:0 (7-61)

This is quadratic in £ having roots

9 17 2 ;210\1/2
PRI LA
16 2

(7-62)

When no external field is present, F' =0 and the roots are just —% and —% a.u., the
1s and 2p, eigenvalues for the unperturbed hydrogen atom. As F increases from zero,
the roots change, as indicated in Fig. 7-3. We see that, for a given field strength, there
are only two values of £ that will cause the determinant to vanish. If either of these
two values of E is substituted into the simultaneous equations related to Eq. (7-52),
then nontrivial values for ¢; and ¢, can be found. Thus, at F =0.1 a.u., E = —0.51425
au., and £ =—0.1107 a.u. are values of E for which 9 E/dc, and 9 E/dc, both
vanish. The former is the minimum, the latter the maximum in the curve of E versus
c1 (Fig. 7-4). (The normality requirement results in the two c’s being dependent, and
so E may be plotted against either of them.) Since the variation principle tells us that
E > Elowest exact, W€ can say immediately that the energy of the hydrogen atom in a
uniform electric field of 0.1 a.u. is —0.51425 a.u. or lower. That is, —0.51425 a.u. is
an upper bound to the true energy.

Now that we have the value of the lowest £; we can solve for ¢ and ¢, and obtain
the approximate ground state wavefunction. The homogeneous equations related to the
determinant in Eq. (7-52) are

ci(Hi1 — E) + c2Hip =0 (7-63)
ciHp+cy(Hn—E) =0 (7-64)

Substituting —0.51425 for E, and inserting the values for Hiy, H22, and Hjp found
earlier gives (when F=0.1 a.u.)

0.01425¢; —0.074493¢, =0 (7-65)
—0.074493¢; 4+ 0.38925¢, = 0 (7-66)

Equation (7-65) gives
c1 =5.2275¢; (7-67)

If we substitute this expression for c; into Eq. (7-66) we get
—0.3892¢2 4+-0.3892¢, =0 (7-68)

This is useless for evaluating c;. Itis one of the properties of such a set of homogeneous
equations that the last unused equation is useless for determining coefficients. This
arises because an equation like (7-63) still equals zero when ¢ and ¢; are both multiplied
by the same arbitrary constant. Therefore, these equations are inherently capable of
telling us the ratio of ¢ and ¢, only, and not their absolute values. We shall determine



Section 7-4 Linear Variation: The Polarizability of the Hydrogen Atom 203

0.0}
£y

—0.1}

-0.2|

-0.3}|
3
=
&
2

w  —04Fr

0.0 0.1 0.2 0.3
F (a.u.)

Figure 7-3 » Average energies for a hydrogen atom in a uniform electric field of strength F as
given by a linear variation calculation using a 1s, 2p; basis. (- - -) Results from accurate calculations.

absolute values by invoking the requirement that ¢ be normalized. In this case, this
means that

=1 (7-69)
or
(5.2275¢2)* + 3 =1 (7-70)
which gives
c2==0.18789 (7-71)

If we arbitrarily choose the positive root for cp, it follows from Eq. (7-67) that
c1 =0.98219.
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Figure 7-4 » E versus c; for a hydrogen atom in a uniform electric field of strength 0.1 a.u.

Thus, when F =0.1 a.u., the linear variation method using a 1s, 2p, basis set gives
an upper bound to the energy of —0.51425 a.u. and a corresponding approximate
wavefunction of

¥ =0.98219 1s+0.18789 2p. (7-72)

As mentioned earlier, the admixture of 2p, with 1s produces the skewed charge distri-
bution shown in Fig. 7-2.

Itis important to note that the extent of mixing between 1s and 2p, depends partly on
the size of the off-diagonal determinantal element Hj>. When Hj» is zero (no external
field), no mixing occurs. As Hj; increases, mixing increases. Generally speaking,
the larger the size of the off-diagonal element connecting two basis functions in the
secular determinant, the greater the degree of mixing of these basis functions in the
final solution, other factors being equal. H;; is sometimes referred to as the interaction
element between basis functions i and ;.

If we carried through the same procedure using the maximum E of —0.1107 a.u.,
we would obtain the approximate wavefunction

Y’ =0.98219 2p. —0.18789 1s (7-73)

This wavefunction is orthogonal to y. It may be proved that the second root,
E = —0.1107 is an upper bound for the energy of the second-lowest state of the
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hydrogen atom in the field. However, v/’ is probably not too good an approximation
to the exact wavefunction for that state. This is partly because the wavefunction v’
is one that maximizes E. Hence, there is no particular tendency for the procedure to
isolate the second-lowest state from the infinite manifold of states. Also, our basis set
was chosen with an eye toward its appropriateness for approximating the lowest state.
The true second-lowest state might be expected to contain significant amounts of the
2s AO, which is not included in this basis.

The values of E versus ¢ are plotted in Fig. 7-4. The values of E that we obtained
by the variation procedure correspond to the extrema in this figure. The low-energy
extreme corresponds to a wavefunction that shifts negative charge in the direction it
is attracted by the field. The high-energy extreme corresponds to a wavefunction that
shifts charge in the opposite direction. (When a calculation is performed over a more
extensive basis to produce more than two roots, the highest and lowest roots correspond,
respectively, to the maximum and minimum, the other roots to saddle points, on the
energy hypersurface.)

The detailed treatment just completed is rather involved, and so we now summarize
the main points. Step 1 involved selection of a basis set of functions which is capa-
ble of approximating the exact solution. Step 2 was the construction of the secular
determinant, including evaluation of all the H;;- and S;;-type integrals. Step 3 was
the conversion of the determinantal equation into its equivalent equation in powers of
E and solution for the roots E. Step 4 was the substitution of an E of interest into
the simultaneous equations that are related to the secular determinant and solution for
c1/cy. Finally, we used the normality requirement to arrive at convenient values for
c1 and c).

There are many ways one could increase the flexibility of the trial function in an
effort to increase the accuracy of the calculation. By adding additional basis functions,
one would stay within the linear variation framework, merely increasing the size of the
secular determinant. If these additional basis functions are of appropriate symmetries,
they will cause the minimum energy root to be lowered further and will mix into the
corresponding wavefunction to make it a better approximation to the lowest-energy
eigenfunction for the system. Also, the additional functions will increase the number
of roots E, thereby providing upper bounds for the energies of the third-, fourth-, etc.
lowest states of the system. Another possibility is to allow nonlinear variation of the
1s and 2p; orbital exponents, in combination with linear variation. This would be more
involved than the calculation we have shown here, but could easily be accomplished
with the aid of a computer.

EXAMPLE 7-1 Suppose the variational process just described were performed
using ¥ (c1, ¢2, ¢3) =c11s + ¢22po + ¢33dg. Would all three of these AOs be present
in the lowest-energy solution?

SOLUTION » We already know that 1s and 2pg will be mixed. They differ in reflection sym-
metry in just the right manner to provide a wavefunction skewed in the z direction, and this is
manifested as a nonzero interaction element Hy;. 3dg, however, is, like 1s, symmetric for reflection
through the x, y plane. Therefore, it cannot skew 1s in the z direction, and its interaction element
with 1s, Hy3, equals zero (by symmetry). Therefore, it is tempting to think that that 3dg will not
contribute. However, because 3dy and 2pg have opposite reflection symmetries through the x, y
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plane, they do interact, Hy3 is not zero, and so all three basis functions show up in the lowest-energy
solution. 1s and 3d are indirectly linked because they are each directly linked to 2pg. Physically,
one can argue that a 2pg AO that has been polarized by admixture with 3dg can better polarize the
1s AO than can the pure 2pg AO. (One could say that 3d is brought in “on the coat-tails” of 2py.)
Note also that 1s has zero angular momentum along the z axis before the electric field is turned
on. The z-directed field distorts the ground state, but has no effect on the z component of angular
momentum. Therefore, only eigenfunctions having m; =0 can contribute to the polarized ground
state. <

D 7-5 Linear Combination of Atomic Orbitals:

The H; Molecule-lon

We are now ready to consider using the linear variation method on molecular systems.
We begin with the simplest case, H;’ . This molecule—ion has enough symmetry so that
we could guess many important features of the solution without calculation. However,
to demonstrate the method, we shall first simply plunge ahead mathematically, and
discuss symmetry later.

The H;r system consists of two protons separated by a variable distance R, and a
single electron (see Fig. 7-5). The hamiltonian for this molecule is, in atomic units

Ay rp,r)= ! V24 Vi +V% ! ! + ! (7-74)
ATE =751 T T 1836 T 1836 a1l 51 R

Since all the particles in the system are capable of motion, the exact eigenfunction
of H will be a function of the coordinates of the electron and the protons. However,
the protons are each 1836 times as heavy as the electron, and in states of chemical
interest their velocity is much smaller than that of the electron. This means that, to a
very good degree of approximation, the electron can respond instantly to changes in
internuclear separation. In other words, whenever the nuclei are separated by a given
distance R, no matter how they got there, the motion of the electron will always be
described in the same way by . This means that we can separate the electronic and
nuclear motions with little loss of accuracy.® Given an internuclear separation, we can
solve for the electronic wavefunction by ignoring nuclear motion [i.e., omitting Vf, and

A R 8

Figure 7-5 » The H;‘ molecule—ion. 4 and B are protons. The electron is numbered “1.”

3However, there are times when coupling of electronic and nuclear motions becomes important.
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Vé in Eq. (7-74)]. This gives us a hamiltonian for the electronic energy and nuclear
repulsion energy of the system:

. 1 1 1 1
H(ry,rp,r)= _Evl - (J) - (a) + (E) (7-75)

For a given internuclear separation R, the internuclear repulsion 1/R is a constant, and
we can omit it and merely add it on again after we have found the electronic energy. If
we let Helec stand for the first three terms on the right-hand side of Eq. (7-75), we can
write

Ifle]ec‘/fe]ec (r1) = EelecVelec (r1) (7-76)
and
Eelec + Enuc rep = Eelec + 1/R (7-77)

Solving Eq. (7-76) for Eeje. for every value of R allows us to plot the electronic and
also the total energy of the system as a function of R. But Eeec(R) + 1/R is just the
potential energy for nuclear motion. Therefore, this quantity can be inserted as the
potential in the hamiltonian operator for nuclear motion:

Hyue ( )= Ll Vi + Vi + Eeec(R)+1/R (7-78)
nucll4,CR) = 2 | 1836 1836 elec / -
Houe (€ 4, ¥ ) Vinue (T4, ¥8) = Enuc¥nue (L4, T5) (7-79)

The eigenfunctions of Eq. (7-79) describe the translational, vibrational, and rotational
states of the molecule. Note that the eigenvalues of the hamiltonian for nuclear motion
are fotal energies for the system because they contain the electronic energy in their
potential parts. Hence,

Etot = Enuc (7‘80)
But

Yot (T4, X, T1) = Yelec (X1) Ynue (X4, TB) (7-81)

This approximation—that the electronic wavefunction depends only on the positions
of nuclei and not on their momenta—is called the Born—Oppenheimer approximation.*
Only to the extent that this approximation holds true is it valid, for example, to sep-
arate electronic and vibrational wavefunctions and treat various vibrational states as
a subset existing in conjunction with a given electronic state. We will assume the
Born—Oppenheimer approximation to be valid in all cases treated in this book.

Making the Born—-Oppenheimer approximation for H, we seek to solve for the
electronic eigenfunctions and eigenvalues with the nuclei fixed at various separation
distances R. We already know these solutions for the two extremes of R. When the two

Ttis analogous to the concept of reversibility in thermodynamics: The piston moves so slowly in the cylinder
that the gas can always maintain equilibrium, so pressure depends only on piston position; the nuclei move so
slowly in a molecule that the electrons can always maintain their optimum motion at each R, so electronic energy
depends only on nuclear position.
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nuclei are widely separated, the lowest-energy state is a 1s hydrogen atom and a distant
proton. (Since there is a choice about which nucleus is “the distant proton,” there are
really two degenerate lowest-energy states.) When R = 0, the system becomes He™
These two extremes are commonly referred to as the separated-atom and united-atom
limits, respectively.

In carrying out a linear variation calculation on H;r , our first problem is choice of
basis. In the separated-atom limit, the appropriate basis for the ground state would be a
1s atomic orbital (AO) on each proton. Then, regardless of which nucleus the electron
resided at, the basis could describe the wavefunction correctly. The appropriate basis
at the united-atom limit is a hydrogenlike 1s wavefunction with Z =2. At intermediate
values of R, choice of an appropriate basis is less obvious. One possible choice is
a large number of hydrogenlike orbitals or, alternatively, Stater-type orbitals (STOs),
all centered at the molecular midpoint. Such a basis is capable of approximating the
exact wavefunction to a high degree of accuracy, provided a sufficiently large number
of basis functions is used.’ Calculations using such a basis are called single-center
expansions. A different basis, and one that is much more popular among chemists,
is the separated-atom basis—a 1s hydrogen AO centered on each nucleus. At finite
values of R, this basis can produce only an approximation to the true wavefunction.
One way to improve this approximation is to allow additional AOs on each nucleus, 2s,
2p, 3s, etc., thereby increasing the mathematical flexibility of the basis. If we restrict
our basis to AOs that are occupied in the separated-atom limit ground state (the 1s AOs
in this case), then we are performing what is called a minimal basis set calculation. For
now, we will use a minimal basis set.

The wavefunction that we produce by linear variation will extend over the whole
H; molecule, and its square will tell us how the electron density is distributed in the
molecule. Hence, the one-electron molecular wavefunction is referred to as a molecular
orbital (MO) just as the one-electron atomic wavefunction is referred to as an atomic
orbital (AO). With a basis set of the type we have selected, the MOs are expressed as
linear combinations of AOs. For this reason, this kind of calculation is referred to as
a minimal basis set linear combination of atomic orbitals—molecular orbital (LCAO—-
MO) calculation.

Our second problem, now that we have selected a basis, is construction of the secular
determinant. Since we have only two basis functions (1s4, 1sp), we expect a 2 x 2
determinant:

Hyy— ESqu Hap— ESyp

_ _ =0 (7-82)
Hpa— ESpsa Hpp— ESpp
Here we have used the notation developed earlier, where
Han= [ 155, 1) Flaee () 152 (1) dr (1) (7-83)

etc. E of Eq. (7-82) is the average value of the energy. Henceforth, the bar is omitted.
If we take our basis functions to be normalized, S44 = Sgp = 1. Since our basis
functions and hamiltonian are all real, their integrals will be real. Therefore, S4p = Sp 4

5The hydrogenlike orbitals are a complete set if the continuum functions are included. Hence, this set can
allow one to approach arbitrarily close to the exact eigenfunction and eigenvalue. The Slater-type orbitals do not
constitute a complete set.
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and Hyp = Hy = Hp4. Since the hamiltonian is invariant to an interchange of the
labels 4 and B, it follows that H44 = Hpp. (H44 is the energy of an electron when
itis in a 1s AO on one side of the molecule, Hzp when it is on the other side.) This
leaves us with

Hyy—F Hyp— ESyB —

0 (7-84)
Hyp—ES4p Hys—E

For Eq. (7-84) to be satisfied, the product of the diagonal terms must equal that of the
off-diagonal terms, which means that

Hyy— E=%(Hap— ES4B) (7-85)
This gives two values for E:
Hyq+ Hyp
Ey="*""""7 7-86
+ £S5 (7-86)

To arrive at numerical values for £, and E_ requires that we choose a value for R
and explicitly evaluate H4,4, Hyp, and S4p. We know in advance that S p increases
monotonically from zero at R = oo to unity at R =0 because 1s4 and 1sp are each
normalized and everywhere positive. H, 4 is the average energy of an electron in a 1s
AO on nucleus 4, subject also to an attraction by nucleus B. Hence, H 44 should be
lower than the energy of the isolated H atom (—% a.u.) whenever R is finite. Hyp is
easily expanded to

1
HAB=/ISA (—Evz—l/rg)1sde—|—/lsA(—l/rA)lsde (7-87)

The operator in the first integrand is simply the hamiltonian operator for a hydrogen
atom centered at nucleus B. This operator operates on lsp to give —%ls - Hence,
the first integral becomes simply —%S 415- The second integral in Eq. (7-87) gives the
attraction between a nucleus and the “overlap charge.” Thus, H4p is zero at R =00 and
negative for finite R. The formulas for these terms are (after nontrivial mathematical
evaluation)

SAB :/ISAISBdUZCXp(—R) [1+R+R2/3] (7'88)
R 1

Hs =/1sAHeleclsAdv=—§—(1/R>[1—e—2R<1+R>] (7-89)

Hap = / I eteclspdv=—S45/2 — e ® (14 R) (7-90)

When R=2a.u., Syp=0.586, Hy4 =—0.972 a.u. and Hyp = —0.699 a.u. Inserting
these values into Eq. (7-86) gives £4 = —1.054 a.u. and E_ = —0.661 a.u. These
are electronic energies. Internuclear repulsion energy (—l—% a.u.) can be added to these
values to give —0.554 a.u. and —0.161 a.u., respectively.

The ways in which H4 4, H4p, S4B, and 1/ R contribute to the energy are illustrated
for R=2 a.u. in Fig. 7-6. H 4 is lower than the energy of an isolated H atom because
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Figure 7-6 » Contributions to the energy of H;‘ at R =2 a.u. in a minimal basis LCAO-MO cal-
culation.

the electron experiences additional nuclear attraction at R =?2. The effect of the Hyp
interaction element is to split the energy into two levels equally spaced above and below
H,44. The S4p term has the effect of partially negating this splitting. The internuclear
repulsion energy 1/ R merely raises each level by % a.u. The lower energy, E4 + 1/R,
has a final value that is lower than the separated-atom energy of —% a.u. Since the exact
energy at R =2 must be as low or lower than our value of —0.554 a.u., we can conclude
that the H;r molecule—ion has a state that is stable, with respect to dissociation into
H+ HT, by at least 0.054 a.u., or 1.47 eV, or 33.9 kcal/mole, neglecting vibrational
energy effects.

The data depicted in Fig. 7-6 are sometimes presented in the abbreviated form of
Fig. 7-7. The energy levels for the pertinent AOs of the separated atoms are indicated on
the left and right, and the final energies (either electronic or electronic plus internuclear)
are shown in the center.
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Figure 7-7 » Separated atom energies and energies at an intermediate R for H; .

E (a.u.)

Rlau)

Figure 7-8 » E+ + 1/R versus R for H;r (—) Calculation described in text. (- - -) Exact
calculation.

The behavior of these energies as a function of R is plotted in Fig. 7-8. Included
for comparison are the exact energies for the two lowest-energy states of H; . Only
the lower of these shows stability with respect to molecular dissociation. Both energy
levels approach infinity asymptotically as R approaches zero because of internuclear
repulsion. (The zero of energy corresponds to complete separation of the protons and
electron.)

Having found the roots Ey for the secular determinant, we can now solve for the
coefficients which describe the approximate wavefunctions in terms of our basis set.
Let us first find the approximate wavefunction corresponding to the lower energy. To do
this, we substitute the expression for £ [Eq. (7-86)] into the simultaneous equations
associated with the secular determinant (7-84):

cg(Hqjg— Ey)+cp(Hyp—E{SqB) =0 (7-91)
ca(Hyp—E{Sap)+cp(Hyu—E4) =0 (7-92)
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Equation (7-91) leads to

ca[Haa — (Haa+ Hap)/ (1+S,,)]=—cp[Hap — (Haa+ Hap)San/ (1+S,,)]

(7-93)
which ultimately gives
cy=cp (7-94)
The same procedure for £_ produces the result
c4=—cCp (7-95)

The normality requirement is
J\ l//*lp dv = 1 = J.(CAISA + CBISB)Z dv

1 1 Sap
=c,? J Mﬁqﬁ J 1,%42+chch 154Tsgdv (7-96)

so that
¢ +cp+2cqcpSqp=1 (7-97)
For ¢4 = cp, this gives
ca=1/1200+ 8451 =cp (7-98)
Forcy=—cp,
ca=1/[2(1=845)]"*=—cp (7-99)

Therefore, the LCAO-MO wavefunction corresponding to the lower energy £ is

1
=——— (Isy+1sp) (7-100)
Ve AT s ?
The higher-energy solution is
v 1 (1 Isp) (7-101)
_=—————(Isy—Isp -
V2(1 = S4p)

Just as was true for AOs, there are a number of ways to display these MOs pictorially.
One possibility is to plot the value of ¥4 or Wi along a ray passing through both nuclei.
(Other rays could also be chosen if we were especially interested in other regions.)
Another approach is to plot contours of ¥ or 1/ on a plane containing the internuclear
axis, Still another way is to sketch a three dimensional view of a surface of constant
value of ¥ or y2 containing about 90-95% of the wavefunction or the electron charge.
Finally, one can plot the value of v as distance above or below the plane containing
the internuclear axis. All of these schemes are shown in Fig. 7-9 for ¥4 and ¢_.
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(a)

(b)

Figure 7-9 » (a) Plot of 14, along the z axis. [Eq. (7-100)]. (b) Plot of {_ along the z axis
[Eq. (7-101)].

The wavefunctions ¥4 and ¥_ may be seen from Fig. 7-9 to be, respectively, sym-
metric and antisymmetric for inversion through the molecular midpoint. [They are
commonly called gerade (German for even) and ungerade, respectively.] This would
be expected for nondegenerate eigenfunctions of the hamiltonian, since it is invariant
to inversion. But ¢ and ¥ _ are not eigenfunctions. They are only approximations
to eigenfunctions. How is it that they show the proper symmetry characteristics of
eigenfunctions? The reason is that the symmetry of the H;“ molecule is manifested as
a symmetry in our secular determinant of Eq. (7-84). Note that the determinant is sym-
metric for reflection across either diagonal. The symmetry for reflection through the
principal diagonal (which runs from upper left to lower right) is due to the hermiticity
of A, and is always present in the secular determinant for any molecule regardless of
symmetry.® Symmetry for reflection through the other diagonal is due to the fact that
the hamiltonian is invariant to inversion and also to the fact that the basis functions at

6Hermiticity requires that H; ; = H ;;*. If H;; is imaginary, the determinant will be antisymmetric for reflection
through the principal diagonal.
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()

(d)
Figure 7-9 » (Continued) (c) Contour diagram of ¥/ . (d) Contour diagram of _.

the two ends of the molecule are identical. When the AOs in a basis set are interchanged
(times £1) by a symmetry operation of the molecule, the basis set is said to be balanced
for that operation. Thus, a 1s4 and 1sp basis is balanced for inversion in HT, but a
1s 4 and 2s g basis is not. Whenever a symmetry-balanced basis is used for a molecule,
the symmetry of the molecule is manifested in the secular determinant and ultimately
leads to approximate MOs that show the proper symmetry characteristics.

Since the eigenfunctions for H; must be gerade or ungerade, and since we started
with the simple balanced basis 1s4 and 1sp, it should be evident that it is unnecessary
to go through the linear variation procedure for this case. With such a simple basis
set, there is only one possible gerade linear combination of AOs, namely 1s4 + Isp.
Similarly, 1s 4 — 1sp is the only possible ungerade combination. Therefore, we could
have used symmetry to guess our solutions at the outset. Usually, however, we are not so
limited in our basis. We shall see that, while symmetry is useful in such circumstances,
it does not suffice to produce the variationally best solution.
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(e)

U]

Figure 7-9 » (Continued) (e) Three-dimensional sketch of contour envelope for ¥4 and

(f) for y—.

According to the theorem mentioned earlier (but not proved), the nth lowest root
of a linear variation calculation for a state function must lie above the nth lowest
exact eigenvalue for the system. However, the two states we are dealing with have
different symmetries. In such a case, a more powerful boundedness theorem holds—
one that holds even if we are not using a linear variation procedure. To prove this,
we first recognize that every H;r eigenfunction is either gerade (i.e., symmetric for
inversion) or ungerade. Since the lowest-energy approximate wavefunction v is
gerade, it must be expressible as a linear combination of these gerade eigenfunctions.
Hence, its average energy E. cannot be lower than the lowest eigenvalue for the
gerade eigenfunctions. Similarly, £_ cannot be lower than the lowest eigenvalue for
the ungerade eigenfunctions, and so we have a separate lower bound for the average
energy of trial functions of each symmetry type. For this reason, our approximate
energies in Fig. 7-8 must lie above the exact energies for both states. If we were to
make further efforts to lower the average energy of the ungerade function, even by
going outside the linear variation procedure, we could never fall below the exact energy
for the lowest-energy ungerade state unless we somehow allowed our trial function to
change symmetry. This means that a lowest average energy criterion can be used in
attempting to find the lowest-energy state of each symmetry type for a system, by either
linear or nonlinear variation methods.
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Figure 7-9 » (Continued) (g) Value of ¥/ and (h) of {/_ versus position in plane containing the
nuclei at points a and b.

EXAMPLE 7-2 Suppose one were to do a variational calculation on the hydrogen
atom using the unnormalized trial wavefunction ¢ = exp(—ar?) cos ), with & being
varied. What lower bound could we expect for the average energy?

SOLUTION » This function has a node in the x, y plane (where 6 = 7/2), and this nodal plane
exists regardless of the value of «. Therefore, our trial function is like the 2pg AO in symmetry. It
will be represented by a linear combination of pg AOs—a combination that changes as « is varied.
The average value of energy cannot be lower than the lowest eigenvalue in the set, whichis —1/8 a.u.
(for the 2py AO). |

Inspection of Fig. 7-9 shows that the charge distribution for the state described by
¥ is augmented at the molecular midpoint compared to the charge due to unperturbed
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atoms. This state is also the one that gives H; stability at finite R. Because this MO
puts electronic charge into the bond region and stabilizes the molecule, it is commonly
called a bonding MO. In the state described by v_, charge is shifted out of the bond
region and the molecule is unstable at finite R, and so ¥_ is called an antibonding MO.

Because the potential in H; (or in any linear molecule) is independent of ¢, the
angle about the internuclear axis, the ¢ dependence of the wavefunctions is always of
the form

®(p) = (1/v2m)exp(im¢), m=0,+1,£2, ... (7-102)

This fact may be arrived at in two ways. One way is to write down the Schrodinger
equation for H;“ using spherical polar coordinates or elliptical coordinates. (¢ is a
coordinate in each of these coordinate systems.) Then one attempts to separate coor-
dinates and finds that the ¢ coordinate is indeed separable from the others and yields
the equation

d*® (¢)
Tde?

The acceptable solutions of this are the functions (7-102). The other approach is to note
that, since the potential in H has no ¢ dependence, H commutes with L., the angular
momentum operator, so that the eigenfunctions of H are simultaneously eigenfunctions
of iz. We know the eigenfunctions of iz are the functions (7-102), and thus, we know
that these functions must also give the ¢ dependence of the eigenfunctions of H.

Two important conclusions emerge. First, each nondegenerate H;r wavefunction
must have a ¢ dependence given by one of the functions (7-102). This tells us something
about the shapes of the wavefunctions. Second, the nondegenerate H;r wavefunctions

—m*® (¢) (7-103)

are eigenfunctions of L., which means that an electron in any one of these states
has a definite, unvarying (i.e., sharp) component of angular momentum of value m#
mks units (m a.u.) along the internuclear axis. It is thus useful to know the m value
associated with a given one-electron wavefunction. A standard notation is used, which
is analogous to the atomic orbital notation wherein s, p, d, f, correspond to / values of
0, 1, 2, 3, respectively. The corresponding Greek lower-case letters o, 7, 8, ¢ indicate
values of |m| of 0, 1, 2, 3, respectively, in one-electron orbitals of linear molecules.
Thus, for the case at hand, ¥ and {_ are both 0 MOs because they are cylindrically
symmetrical (i.e., no ¢ dependence), which requires that m be zero. Because v is a
gerade function, it is symbolized 0. ¥, then, is a oy MO. (A simple way to determine
whether an MO is o, 7, or § is to imagine viewing it (in its real form) end-on (i.e., along
a projection of the internuclear axis.) If the MO from this view looks like an s AO,
itis a o MO. If it looks like a p AO, it is a w MO. A § MO has the four-leaf-clover
appearance of a d AO.)

Let us now examine the dependence of our LCAO-MO results on our original choice
of basis. The 1s AOs we have used are capable of giving the exact energy when
R = oo, but become increasingly inadequate as R decreases. As a result, Fig. 7-8
shows that, for both states, the approximate energy deviates more and more from the
exact energy as R decreases. At R =0, our oy function becomes a single 1s H atom
(Z =1) AO centered on a doubly positive nucleus. Yet we know that the lowest-
energy eigenfunction for that situation is a single 1s He™(Z =2) AO. An obvious
way to improve our wavefunction, then, is to allow the 1s basis functions to change
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their orbital exponents as R changes. This adds a nonlinear variation, and the calcu-
lation is more complicated. It is very easily performed with the aid of a computer,
however, and we summarize the results in Figs. 7-10 and 7-11. The internuclear repul-
sion has been omitted from the energies in Fig. 7-10. The lowest approximate energy
curve is now in perfect agreement with the exact electronic energy both at R =0 and
R = 00, and shows improved, though still not perfect, agreement at intermediate R.
The R dependence of the orbital exponent for this wavefunction (Fig. 7-11) varies
smoothly from 1 at R =00 to 2 at R =0, as expected. In contrast, the o, function
fails to reach a well-defined energy at R = 0 because the function becomes indeter-
minate at that point. [At R =0, Is4 — Isp becomes (Is4 — 1s4) =0.] However,
Figs. 7-10 and 7-11 indicate that the exact energy E_ is —% a.u. at R=0, corre-
sponding to the n =2 level of He™, and that the orbital exponent in our 1s basis
functions approaches 0.4 in the effort to approximate this state function at small R.
To understand this behavior, we must once again consider the symmetries of these
functions.

We have already seen that the nondegenerate eigenfunctions of H;r must be either
gerade or ungerade, and we note in Fig. 7-10 that the energy curve for the gerade state
is continuous as is the one for the ungerade state. In other words, as we move along
a given curve, we are always referring to a wavefunction of the same symmetry. This
continuity of symmetry along an energy curve is central to many applications of quan-
tum chemistry. The reason for continuity of symmetry can be seen by considering a
molecule having some element of symmetry, and having a nondegenerate wavefunction
or molecular orbital (which must be symmetric or antisymmetric with respect to the
symmetry operations of the molecule). If we change the molecule infinitesimally (with-
out destroying its symmetry), we expect the wavefunction to change infinitesimally also.

[ EXTH)

R(au)

Figure 7-10 » FE4 and E_ for H;‘ from (- - -) exact, (---) variable ¢, and (—) fixed £ ({ =1)
treatments.
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Figure 7-11 » Values of { minimizing £ and E_ as a function of R.

In particular it should not change symmetry because this is generally not an infinitesi-
mal change. (To change symmetry requires adding or removing nodes, changing signs
in parts of the function. Such changes have more than infinitesimal effects on ¢ and
on kinetic and potential parts of the energy.) The entire curve can be traversed by an
infinite number of such infinitesimal but symmetry conserving steps.

The continuity of symmetry enables the o, state of H2+ to correlate with an s-type
AO of Het as R goes to zero. This correlation is symmetry allowed because the
s-type AOs of He™ have the proper symmetry characteristics—they are gerade and
have no dependence on angle about the axis that is the internuclear axis when R > 0
(see Fig. 7-12). In contrast, the o, MO cannot correlate with an s-type AO. It must
correlate with an AO that is cylindrically symmetrical about the old internuclear axis
but is antisymmetric for inversion. A p-type AO pointing along the old internuclear
axis (called a p, AO) satisfies these requirements.

¢ ¢
w - T ’
(old internuclear axis)
0

g,
9 9 9

(1s)

OO — o~ (or

(2p,

[

Figure 7-12 » Sketches demonstrating how separated atom functions can be related to united-atom
functions through symmetry invariance. These functions are not drawn to a common scale.
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These symmetry requirements help us understand the o, curves of Figs. 7-10 and
7-11. The exact energy for E_ goes to —% a.u. at R =0 because the o, state of H;
correlates with a 2p AO of He™. Our basis set is incapable of reproducing a 2p AO at
R =0, and so the calculated energy curve fails to rejoin the exact curve at R =0. At
small R, our basis set is attempting to approximate the two lobes of an evolving 2p
AO. Apparently the orbital exponent that best enables the basis to accomplish this is
around 0.4.

D 7-6 Molecular Orbitals of Homonuclear

Diatomic Molecules

We have already seen how one produces the ground configurations for many-
electron atoms by placing pairs of electrons of opposite spin into AOs, starting
with the lowest-energy AO and working up. Subsequent manipulation of this
product function to produce proper space and spin symmetry yields the approxi-
mate wavefunction. Precisely the same procedure is used for molecules. Thus,
the electronic configurations for H; , Hz, and H; are log, (lag)z, and (lag)zlau,
respectively, and the approximate wavefunction for Hy is provided by the Slater
determinant |10g (D 1og(2) | When we come to consider heavier homonuclear
diatomic molecules, such as O, we must place electrons in higher energy MOs.
Such MOs are still provided by the minimal basis set, which now includes 1s, 2s,
and three 2p AOs on each atom since these AOs are occupied in the separated
atoms. We now consider the natures of the additional MOs produced by this larger
basis.

We begin by making a change to a basis set that is mathematically equivalent to the
starting set but is more convenient for discussing and analyzing the problem. This new
set is the set of symmetry orbitals (SOs) (1s4 & 1sp), (2s 4 = 2sp), etc. From our orig-
inal ten AOs, we thus produce ten SOs. These may be normalized, if desired. Each of
these SOs has definite symmetry. The SOs built from 2s AOs must be of og and oy, sym-
metry since the 2s AOs act like 1s AOs for all the symmetry operations of the molecule.
The 2p AOs pointing along the internuclear axis have cylindrical symmetry and hence
also give rise to a g and a oy SO. (We will take the internuclear axis to be coincident
with the z axis, and so these SOs are constructed from 2pg (or 2p;) AOs.) The functions
(2p+1, £2p+1;) are w SOs because |m| = 1. Since it is difficult to visualize complex
functions, however, the usual practice is to take linear combinations of the complex
7 functions to produce a corresponding set of real functions. (This is completely anal-
ogous to forming real p, and p,, AOs from complex p41 and p_; AOs.) Thus, we obtain
(2px, & 2pxj) and (2p,,, £ 2p,,), which are not eigenfunctions for the L. operator
anymore, but are still given the symbol 7. From Fig. 7-13, we see that the positive
combinations give ungerade w SOs. This is just the opposite of the case for o-type SOs.
We conclude from Fig. 7-13 that o and 7, SOs will tend to place charge into the bond
and hence contribute to bonding, whereas oy, and 7y SOs will contribute antibonding
character.

Even though these SOs are only a basis set, the reader may nevertheless recognize
that conversion to this symmetrized basis goes a long way toward producing our ultimate
MOs. Indeed, our (1s 4 = 1sg) SOs, if normalized, are the same as the MOs we obtained
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Figure 7-13 » Symmetry orbitals constructed from s- and p-type AOs. (a) Sketches according to
an idealized convention that ignores overlap between AOs on 4 and B. (b) Effects of overlap. Note
that the ps, — pop combination is bonding. This depends on our having chosen a common z axis for
both atoms. Sometimes the z axes are chosen to point from each atom toward the other. In that case,
Po, — Doy becomes antibonding.

for H;r . The essential advantage of a symmetrized basis set is that it simplifies the
secular determinant and makes it easier to understand and describe the mixing of the
basis functions by the hamiltonian. For instance, since our MOs must have pure o,
7, 8, ... and also g or u symmetry, and since our SOs are already of pure symmetry,
we expect no further mixing to occur between SOs of different symmetry in forming
MOs. This suggests that the interaction element H; ; between SOs ¢; and ¢ ; of different
symmetry should vanish. This is easily proved by noting that H is symmetric for
all symmetry operations of the molecule, and, if ¢; and ¢; differ in symmetry for
some operation, their product is antisymmetric for that operation, and therefore ¢ H¢ ;
is antisymmetric and its integral vanishes. Similarly, S;; vanishes, and H;; — ES;;
vanishes except in positions connecting basis functions of identical symmetry. As a
result, our secular determinant over SOs has the form (7-104), where the notation og[1s]
indicates a o SO made from 1Is4, 1sg AOs, etc. By placing basis functions of like
symmetry together, we have emphasized the block-diagonal form of our determinant,
all elements in the nonshaded areas being zero by symmetry. (The 7g[2py] and 7rg[2p,]
do not interact because of symmetry disagreements for reflection in the xz and yz
planes.) Each of the nonzero blocks of (7-104) is a separate determinant (which is
just a number), and the value of determinant (7-104) is simply the product of these six
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smaller determinants. Hence, if any one of these small determinants is zero, the large
determinant is zero, thereby satisfying our determinantal equation. Therefore, each of
these small determinants may be employed in a separate determinantal equation, and
the problem is said to be partitioned into six smaller problems. It follows immediately
that we can get mixing among the three oy SOs to produce three o, MOs and likewise
for the oy set, and that the 7 SOs can undergo no further mixing and hence are already
MOs. (Notice that SOs in one block are not linked by off-diagonal elements either
directly or indirectly, unlike the case described in Example (7-1).)

oglls] og[2s] og[2p]  aulls] oul2s] ou[2p] "Klsz] "gIZPy] mu[2px] 1r..[2p,]

alts) |

al2s) |

odl20] |~ ,

aults] -

au[2s]

a.[2p] i

me[2px] = E—

me[2p,] e —

(2] ZZ -

ml2p,] sz
(7-104)

What will be the nature of the lowest-energy o, MO? It will not be pure og[1s]
because admixture of oy[2s] and ox[2p] SOs can produce charge shifts that will lower
the energy. But the og[2s] and og[2p] SO energies are much higher than the og[1s]
(mainly because the 2s and 2p AOs are higher in energy in the atoms, and the atomic
contributions still dominate in the molecule). Any energy decrease to be gained by
charge shifting must be weighed against the energy increase due to the mixing in of
such high energy components. The former very quickly become overbalanced by the
latter, so the lowest energy o, MO is almost pure og[1s] SO, the og[2s] and og[2p] SOs
coming in only very slightly. This exemplifies an important general feature of quantum
chemical calculations: mixing between basis orbitals tends to be small if they have
widely different energies in the system. Thus, we now have two factors governing the
extent of mixing of functions ¢; and ¢ j—the size of the interaction element H;;, and
the difference in energy between them in the system (H;; — H ;).

A label we can use for this lowest-energy MO that avoids implying that it is identical
to the o, [15] SO is 10,. This stands for “the lowest-energy o, MO.” Because of the low
energy of the 1s AOs, the next-lowest MO is almost pure oy[1s], and we label it 10y,

When considering the remaining two o, MOs, we can expect substantial mixing
between og[2s] and o[2p] SOs because these functions are not very different in energy.
In the hydrogen atom, the 2s and 2p AOs are degenerate, and, as we move along the
periodic table, they become split farther and farther apart in energy. Therefore, we
might expect to find the greatest mixing for B, and C», and to find less mixing for O,
and F;. Figure 7-14 is a schematic diagram of the MO energy levels we should expect
for F». Here the 20, MO is primarily the o¢[2s] SO and the 30 MO is mainly the o¢[2p]
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Figure 7-14 » Schematic of MO energy level order for F,. The vertical axis is not an accurate
energy scale. For instance, the 1o levels are very much lower in energy relative to the other levels
than is suggested by the drawing. (- - -) indicates that the orbital is unoccupied in the ground state.

SO. Similarly 20, and 30y are mainly o,[2s] and oy[2p], respectively. The 17 and 30
MOs are degenerate at the separated atom limit, where they are all 2p AOs. As the
atoms come together and interact, the 7 levels split apart less than the o levels because
the 2p, and 2p), AOs approach each other side to side, whereas the 2p, AOs approach
end to end. The latter mode produces larger overlap and leads to larger interaction
elements and greater splitting. (Because of the symmetry of the molecule, the 157, MOs
are always degenerate, and they may be mixed together in any way. In particular, we
can regard them as being 1myx and 1,y or 17ry41 and 1,1 with equal validity. The
same situation holds for the 17rg pair.) From the ordering of energy levels in Fig. 7-14
we obtain for F; the configuration

B (1og)%(10y) (20¢)* 204)* (30g) > (1) * (170)* (7-105)

Now we will consider what happens for lighter molecules. Recall that here the 2s
and 2p AOs are closer together in energy. This allows greater mixing between the SOs
containing these AOs and produces increased energy level splitting. Thus, the og[2s]
and o,[2p] SOs mix together more, and the resulting splitting causes an additional
lowering in energy of the 20, level and an increase for the 30 level, compared to the
F; case. In a similar way the 20y, and 30, levels are lowered and raised, respectively, by
increased mixing between oy[2s] and o,[2p] SOs. The resulting energy level pattern
for C; is shown in Fig. 7-15. Note that the extra splitting has pushed the 30y level above
the 1, level. No other change in the orbital energy ordering has occurred. As a result,
C; has, the configuration
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g Mostly 2p0 and 2s

Mostly 2p,.

20,

Mostly 2s and 2p;
20g
1a,

Almost pure 1s
10,

Figure 7-15 » A schematic diagram of the MO energy level order for C,. The 2s and 2p, symmetry
functions mix more strongly in producing 20 and 30 MOs than is the case in F>. The level shifts
discussed in the text are indicated by dashed lines and arrows. (——-——) represent F; levels. Note
the inversion of the order of the 17y and 37y levels. The orbital ordering is deduced from spectra.
(See Mulliken [1].) (— — —) represent energies of orbitals not occupied by electrons. Note that there
is no well-defined energy ordinate for this figure, and no accurate relationship between absolute values
of orbital energies within a molecule or between molecules is implied.

Ca: (Iog)*(10y)*(209)* (204)* (1) * (7-106)

The above discussion is an effort to rationalize orbital energies obtained from cal-
culations or deduced from molecular spectra. We have not yet described the details of
how one goes about carrying out MO calculations on these molecules, nor will we in
this chapter. However, even in the absence of precise numerical results, it is possible for
such qualitative arguments to be very useful in understanding and predicting features
of a wide range of chemical reactions.

The molecular configurations obtained from the patterns of Figs. 7-14 and 7-15
predict molecular properties that are in strikingly good qualitative agreement with
experimental observations. The data in Table 7-2 show that, when we go from H;r
to Hp, adding a second electron to a bonding MO, the bond length decreases and the
dissociation energy increases. Adding a third electron (He;) causes partial occupation
of the antibonding 10, MO and causes the bond length to increase and the dissociation
energy to decrease. The four electron molecule He; is not observed as is consistent
with its configuration. The relative inertness of Nj as a chemical reactant becomes
understandable from the fact that it has six more “bonding electrons” than antibonding
electrons, giving a net of three bonds—one o and two 7w bonds. For N, to react, it
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TABLE 7-2 » Some Properties of Homonuclear Diatomic Molecules and Ions in their Ground
Electronic States

Equilibrium

Net number Binding internuclear

of bonding  energy, separagion,
Molecule MO configuration electrons De (eV) Re(A) Term®
H," log 1 2.7928  1.06 2%,
H, log? 2 4.747745 0.7414 Iy, *
H,~ log*1oy 1 1.7¢ 0.8 25, *
He; ™ log?loy 1 2.5 1.08 et
He, log’lo,? 0 0.001°  2.88 (')
He, ~ [Hez 120, 1 No data 25t
Li [Hez]20, 1 1.29 3.14 2p,t
Lip [He> 20,2 2 1.05 2.673 15, +
Lip ~ [Hez]20%20, 1 ~13() 32 2y, *
Be;™  [Hex]204,%20y 1 No definitive 2%, *

data

Bes [He> 120,220, 0 0.1 2.49 Iy, *
Be;~  [Beyllmy 1 ~0.3 2.4 2,
B,*t [Bea]lmy 1 1.8 — 1,
B, [Bex]17,%(?) 2 ~3 1.589 3%,
By~ [Bes ]l 3 No data 2,
CyF [Be]1m,* 3 5.3 1.301 21,
C, [Bep]1my* 4 6.36 1.2425 Iy, ™
Cr™ [Bes]1my*30, 5 8.6 — 2.t
Ny F [Bea]1my*30, 5 8.86 1.116 2.t
N, [Bea]1my*30,° 6 9.90 1.098 15,
N~ [Bea 117y #3042 17, 5 ~8.3 — 2,
0+ [Beo 17, *30,° 17, 5 6.7796  1.1171 21,
0, [Be 130> Lyt 1,2 4 52132 1.2075 3%,
0~ [Be130g2 1yt 174> 3 4.14 1.32 2,
Fp* [Bez 30,2 1y 17743 3 3.39 1.32 21,
F, [Bez 30,2 1y * 1y 2 1.65 1.42 Iy, *
Fy~ [Bez 130> 1yt 1re*30y 1 ~1.3 1.9 2ot
Next  [Bexl30,2 1my* 17,*30y 1 ~1.1 1.7 et
Ne» [Bex 30,2 1y * 17r4*30,, 2 0 0.003>  3.09 'z,

“This state is unstable with respect to loss of an electron, but is stable with respect to dissociation into an atom
and a negative ion.

bFrom Hirschfelder et al. [2]. Tt may be shown that any two neutral atoms will have some range of R where
the attractive part of the van der Waals’ interaction dominates. For He,, this minimum is so shallow and the
nuclei so light that a stable state (including vibrations) probably cannot exist. For Nej, a stable state should
exist. The data for Hep and Ney are calculated from considerations of intermolecular forces.

“The term symbol corresponds to the configuration of column 2.
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is necessary to supply enough energy to at least partially break these bonds prior to
forming new bonds. The reversal of the orbital energy order between 17, and 30, can
be seen to occur between N, and O;.

The configurations of Table 7-2 indicate that some molecules will have closed shells,
whereas others will have one or more unpaired electrons. For example, O, has a
configuration in which the degenerate 17, level “contains” two electrons. Several states
can be produced from such a configuration, just as several states could be produced from
the 1s2s configuration for He. Hund’s first rule has been found to hold for molecules,
and so the state of highest multiplicity is lowest in energy. For n unpaired electrons,
the highest multiplicity achievable is n 4+ 1. For Oo, this is three, and we expect the
ground state of the O, molecule to be a triplet. This is conveniently demonstrated to be
so by observing that liquid oxygen is attracted into the gap between poles of a magnet,
consistent with the existence of uncanceled electron spin magnetic moments.

Close perusal of Table 7-2 indicates that some of the data are not in accord with
the simple qualitative ideas just presented. For example, Li;r is more strongly bonded
than is Lip, even though the former has fewer bonding electrons. However, the Li;r
ion-molecule is longer than Liy. H, is less strongly bound than isoelectronic He:;r , yet
it has a shorter equilibrium internuclear separation. Irregularities such as these require
more detailed treatment. However, one of the useful characteristics of a qualitative
approach is that it enables us to recognize cases that deviate from our expectations and
therefore warrant further study.

In Figs. 7-14 and 7-15, we saw how MOs are related to SOs for the separated
atoms. Let us now consider how the separated atom SOs correlate with the united
atom AOs. Recall that these orbitals are correlated by requiring them to be of identical
symmetry. In Fig. 7-16 some of the possible SOs and united-atom AOs, together with
their symmetry labels, are shown. Note that the o, SOs can correlate with s or d, AOs,
oy SOs with py AOs, 7y SOs with p; AOs and g SOs with d; AOs. This gives us all
the information we need except for resolving the ambiguities within a given symmetry
type. For instance, which of the 1s, 2s, 3s, 3d,, ... in the AOs correlates with which of
the og[1s], 0g[2s], 0¢[2p], 0g[3s], ... inthe SOs? This question is resolved by use of the
noncrossing rule, which states that, in correlation diagrams, energy levels associated
with orbitals or states of the same symmetry will not cross. This requires that we match
up the lowest-energy united-atom AO of a given symmetry with the lowest energy SO
of that symmetry, and so on up the ladder. This leads to the diagram in Fig. 7-17. The
line interconnecting the 1s AO of the united atom with the 1s AOs of the separated
atoms refers, at intermediate R, to the 10, MO. We have already seen that this MO may
contain contributions from oy[2s] and og[2p] SOs. Thus, the correlation diagram tells
us what orbitals the 1o MO “turns into” at the limits of R, but does not imply that, at
other R values, this MO is comprised totally of 1s AOs.

Study of this correlation diagram reveals that the antibonding MOs (o, and 1) are the
MOs that correlate with higher energy united-atom AOs and hence favor the separated
atoms in terms of energy. This results from the fact that antibonding MOs have a nodal
plane bisecting the bond which is preserved as we proceed to the united atom, yielding
a united atom AO having one more node than the separated AOs we started with. Thus,
Iso, goes to p, 2pm, goes to d, etc. The MO is said to be “promoted.”

We have now seen several ways to explain the effects of an orbital. We may focus
on energies, and note that bonding and antibonding MOs correlate with low-energy
and high-energy united-atom orbitals, respectively. Or, as we saw earlier, we can focus
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Figure 7-16 » (a) Symmetry orbitals for homonuclear diatomic molecules. (b) United-atom AOs
characterized by symmetry with respect to z axis.

on charge distributions and their attractions for nuclei, and note that bonding MOs
concentrate charge in the bond region, attracting the nuclei together, whereas anti-
bonding MOs shift charge outside the bond, attracting the nuclei apart. Alternatively,
we can recognize that bonding MOs result from AOs on each atom coming together
in phase, resulting in positive overlap, while antibonding MOs result from opposite
phases coming together to give negative overlap.
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United Nearly Molecular range Very Separated
atom united weak atoms
atom 4fo, interaction
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Figure 7-17 » Correlation diagram between separated-atom orbitals and united-atom orbitals for
homonuclear diatomic molecules. Energy ordinate and internuclear separation abscissa are only
suggestive. No absolute values are implied by the sketch. [Note: For H;‘ 0g2p correlates with
3dog, 0g3s with 3sog. This arises because the separability of the H; hamiltonian (in the Born—
Oppenheimer approximation) leads to an additional quantum number for this molecule. In essence,
the H2+ wavefunction in elliptical coordinates may be written ¥ = L (A) M (i) e!™® The function L
may have nodal surfaces of elliptical shape. M may have nodes of hyperbolic shape. In the correlation
diagram for H; , it is necessary that ellipsoidal nodes correlate with spherical nodes in the united
atom, while hyperboloid nodes correlate with hyperboloid nodes (which may be planar). Sketching
0g2p and 0g3s and comparing them with 3sog and 3dog (i.e., 3d3,2_,2) makes clear how this “nodal
control” results in what, at first sight, appears to be a violation of the noncrossing rule. For H2+ ,
modifications for higher-energy states will also be required. For example, 4sog will correlate with
0g4s, not og3p.]
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Three common labeling conventions are used in Fig. 7-17. A level may be labeled
with reference to the separated atom AOs to which it correlates. The separated atom
AO symbol is placed fo the right of the MO symmetry symbol (e.g., 0¢2s). Note the
absence of square brackets, which we used to symbolize the SO (2s 4 + 2sg). The sym-
bol 0y2s means “the MO of o, symmetry that correlates with 2s AOs at R =00.” An
alternative label indicates the united-atom orbital with which the MO correlates. Here
the AO label is placed to the left of the symmetry symbol (e.g., 3poy). The u and g sub-
scripts in the united-atom notation are redundant and are often omitted. However, they
are helpful in drawing correlation diagrams. Finally, the MOs may be simply numbered
in their energy order within each symmetry type, as mentioned earlier (e.g., 20y).

EXAMPLE 7-3 A symmetry orbital is produced by taking 3d,, , — 3d,., 5, where
a and b are points on the z axis. Sketch the situation. What is the sign of the overlap
between these AOs? Is this SO bonding or antibonding? What is the symmetry
symbol for this SO?

SOLUTION » The sketch would show two four-leafed AOs, each like the 3d); AO shown in
Fig. 7-16, except that the phase signs of one would be minus those in the matching lobes of the
other. These AOs are positioned side by side, and their phases are such that the inner lobes pointing
towards each other are in phase. Hence the overlap is positive and the SO is bonding. Looking at
this SO along the z axis, it appears like a py, AO, so it is . Inversion causes interchange of lobes
of opposite sign, so it has u symmetry. Its symbol, then, is 7. <

Term symbols for electronic states of homonuclear diatomic molecules are much like
those in atoms. The main symbol gives information about the component of electronic
angular momentum along the z axis. If My =0, 1, £2, etc., then the main symbol is
3%, I, A, etc. My is the sum of m; values for the electrons. When identifying m;, we
assume that the # MOs are complex, with m; =41 and —1 rather than being mixed
to give real 7, and 7, MOs. The main symbol is decorated with a superscript at left,
giving spin multiplicity, and a g or u subscript at right for overall inversion symmetry.
As an example, C5 , with configuration 10g21011220g220uz 172 has M, = +£1 (zero for all
o electrons and either +1, +1, —1 or +1, —1, —1 for the three 7 electrons) so its main
symbol is I1. The inversion symmetry is u because there is an odd number of electrons
in ungerade MOs. There is one unpaired electron, so the multiplicity is 2. The term,
symbol is 2T, (“doublet-pi-you™).

X terms are given, in addition, a + or — superscript at the right, indicating whether the
wavefunction is symmetric or antisymmetric for reflection through a plane containing
the nuclei. Such a reflection has the effect of reversing the direction of ¢: Clockwise
motion around the internuclear axis becomes counterclockwise when viewed in a mirror
containing that axis. This transforms exp(i¢) and exp(—i¢) into each other, so that 7
and 7r_ turn into (minus) each other. To achieve a ¥ MO in the first place requires that
m values sum to 0. This happens for occupied equivalent 7 MOs only if 74 and 7_
are equally occupied, which means that both have one electron or both are full. The
full case must yield 12; , 1.e., must be symmetric for every operation, because each
MO occurs twice in the electron list, and even antisymmetric functions give symmetric
results when multiplied by themselves. For the half-filled case there are only two
possibilities: w4 (1)wr—(2) £ 7_(1)7(2). The “plus” case is symmetric for electron
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exchange, hence goes with the antisymmetric spin function o8 — B, hence is a singlet
state. Reflection causes 1 <> 7w_, but this returns the same function, so this case goes
witha '+ term. Similar reasoning shows that the “minus” case goes with a 3~ term.
Hund’s rule predicts the latter term to lie below the former in energy.

EXAMPLE 7-4 What term symbols represent possible excited states of N, produced
by promoting an electron from the highest occupied MO to the lowest unoccupied
MO?

SOLUTION » When an electron is promoted, the possible resulting 177y, 177g configurations can
be pictured as follows:

1ng
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! Y 4 yooo
| | K] |
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f

[
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+ —
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The excited molecule has two half-filled MOs, for which the electron spins can be opposite (singlet)
or the same (triplet). The sum of electron orbital momenta will remain zero (giving X if the electron
is excited from m; = —1to —1 or from 41 to 41, but will change to 42 or —2 (giving A) if changed
from —1 to +1 or from +1 to —1. In all cases, the excited state has an odd number of electrons in
the MOs of ungerade symmetry, so all terms will have a u subscript. The term symbols, then, are,
respectively lZu, 3 u, 3 Ay, lAu. |

These conventions for term symbols apply for any linear molecule having inversion
symmetry (e.g., HCCH, CO;). For linear molecules lacking inversion symmetry (CO,
HCN) all is the same except that there is no g—u symbol.

The noncrossing rule mentioned above is an important aid in constructing correlation
diagrams for many processes. It is called a rule rather than a law because it can only be
shown to be highly improbable, not impossible, for two levels of the same symmetry to
cross. Thus, imagine that we have a molecule with some variable parameter A and also
with a symmetry operation R which is not lost as A varies. For example, A might be the
H—O-H angle in water, and R could be reflection through the plane bisecting the H-O—H
angle. Suppose that we have a complete set of basis functions and that, at each value
of X, we manage to express exactly all but two of the eigenfunctions for the molecule.
This uses up all but two dimensions of our function space, leaving us, at each value of A,
with two eigenfunctions to determine and two functions in terms of which to express
them. (These functions change with A, but the above argument has nevertheless served
to reduce our problem to two dimensions.) Now let the two functions remaining from
our original basis be mixed to become orthonormal and also individually either sym-
metric or antisymmetric for R. We label these symmetrized basis functions y; and 7.
Because we began with a complete basis, it must be possible to express the as yet
undetermined wavefunctions | and v, exactly as linear combinations of x; and x»
at each value of A. Furthermore, if 1| and v, are, say, both antisymmetric for R, it
is necessary that y; and x; also both be antisymmetric. If ¥; and vy have opposite
symmetries, however, y1 and x> also have opposite symmetries. (In the latter case, x|
and x; can only mix to produce unsymmetric functions, and so we know that x| and x>
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are already identical with 11 and v.) To determine the mixing coefficients and state
energies for ¥; and yr», we solve the 2 x 2 secular equation over the basis x1, x2:

Hy1— E H,
1 12 =0 (7-107)
Hyp Hy — FE
The roots are
1 2 271/2
E:I:ZE {H11+H22:|:[4H12+(H11 — H»)?] } (7-108)

The crossing of energy levels for yr; and v, requires that, at some value of A, £ equals
E_. From Eq. (7-108), we see that this requires that the term in square brackets vanish,
which requires that Hj; and Hi; — H» vanish. Now, if x; and x> (and hence v
and 1) have opposite symmetries for R, Hjp vanishes for all values of A, and the
curves will cross whenever Hy; equals Hp,. But if x; and x2 (and hence | and ;)
have the same symmetry for R, Hy, is not generally zero. In this situation, the curve
crossing requires that both Hy» and H\| — Ha happen to pass through zero at the same
value of L. This simultaneous occurrence of two functions passing through zero is so
unlikely that it is safe to assume it will not happen.

If the molecule possesses several elements of symmetry, Hi, will vanish at all X if
Y1 and Y disagree in symmetry for any one of them, so the noncrossing rule applies
only to states having wavefunctions of identical symmetry for all symmetry operations
of the molecule.

A similar treatment for orbitals and orbital energy levels is possible, and the non-
crossing rule applies for orbital energies as well as for state energies.

D 7-7 Basis Set Choice and the Variational Wavefunction

One of the places where human decision can effect the outcome of a variational cal-
culation is in the choice of basis. Some insight into the ways this choice effects the
ultimate results is necessary if one is to make a wise choice of basis, or recognize which
calculated results are “physically real” and which are artifacts of basis choice.

One question we can ask is this: Is a minimal basis set equally appropriate for
calculating an MO wavefunction for, say, B, as F»? In each case we use 10 AOs
and 2 spin functions producing a total of 20 spin MOs. With B,, however, we have
10 electrons to go into these spin MOs, and in F, we have 18 electrons. In all but
the crudest MO calculations, the total energy is minimized in a manner that depends
on the natures of only the occupied MOs. In effect, then, the calculation for B; produces
the 10 “best” spin MOs from a basis set of 20 spin-AOs, whereas that for F, produces
the 18 best MOs from a different basis set of 20 spin-AOs. In a sense, then, the basis
for F, is less flexible than that for B;. Of course, the use of separated atom orbitals is a
conscious effort to choose that basis that best spans the same function space as the best
MOs. To the extent that this strategy is successful, the above problem is obviated (i.e., if
both sets are perfect, additional flexibility is useless). The strategy is not completely
successful, however, and comparison of results of minimal basis set calculations down
a series of molecules such as By, C;, N3, O3, and F, may be partially hampered by this
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ill-defined inequivalence in basis set adequacy. In contrast, comparison of calculated
results in a series of molecules such as C,;Hy,, 47 is much less likely to suffer from this
particular problem because the minimal basis set grows with increasing » in a way to
keep pace with the number of electrons.

Let us now briefly consider how basis sets might vary in adequacy for different
states of a given molecule. We will compare the wavefunction for the ground state of
a molecule with the wavefunction for a Rydberg state. Rydberg states are so named
because their spectral lines progress toward the ionization limit in a manner similar to the
spectral pattern for hydrogenlike ions (called a Rydberg series).” Hence, the Rydberg
states of molecules are in some way like excited states of the hydrogen atom. This can
be understood by visualizing an excited state for, say, N, wherein one electron is, on
the average, very far away from the rest of the molecule, which is now an N; “core.”
As the excited electron moves to orbitals farther and farther out, the N;r core becomes
effectively almost like a point positive charge. As a result, the coupling between the
angular momentum of this orbital and the internuclear axis grows progressively weaker,
so that the motion of the Rydberg electron becomes more and more independent of
orientation of the core. It is not surprising that a hydrogen-like AO centered in the bond
becomes more and more appropriate as a basis for describing this orbital. In contrast,
such a “single-center” basis normally requires many terms to accurately describe MOs
in ground or non-Rydberg excited states. Thus, for a Rydberg state of N, one would
do well to choose a basis set of AOs located on the nuclei to describe the MOs of the
N; core, and to use an AO (or several AOs) centered between the nuclei to describe
the orbital for the Rydberg electron.

Thus far we have kept the discussion within the framework of homonuclear diatomic
molecules. When we come to heteronuclear diatomics, for example, CO, we lose
inversion symmetry and we can no longer symmetry balance our basis. This means
that a given basis may be more inadequate for representing the wavefunction on one
end of the molecule than on the other. As a result, the electronic charge will be shifted
toward the end where the basis set is best able to minimize the energy. This charge
shift is an artifact of basis set imbalance, but, since we have no way to evaluate this
imbalance, it is difficult to tell how much it affects our results. Mulliken has published
some calculations on the HF molecule that illustrate this problem in a striking way.
Table 7-3 is a list of total energies and dipole moments calculated for HF using a variety
of basis sets.

The first column of data arises from a minimal basis set of STOs (1sn, 1sF, 25, 2pog»
2Prxps 2Pryp) With orbital exponents evaluated from Slater’s rules for atoms. The
second column results if the orbital exponents are allowed to vary independently
to minimize the molecular energy. The basis set for the third column is obtained
by augmenting the previous basis with additional STOs centered on the H nucleus
(28H, 2Poyys 2Prxy» 2P7yy)- Finally, the fourth column results from use of a basis set
that has been augmented (over the minimal basis) at both nuclei in a way thought to be
appropriately balanced. As the basis set grows increasingly flexible, the average energy
becomes lower, but the expectation value for the dipole moment does not converge uni-
formly toward the observed value. In particular, by augmenting the basis on hydrogen
only, we create a very unbalanced basis, which causes charge to shift too much toward
the hydrogen end of the molecule.

7See A. B. F. Duncan [3].
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TABLE 7-3 » Energies and Dipole Moments for Hydrogen Fluoride Calculated by the Variation
Method Using Different Basis Sets?

Min STO F; Aug. Aug. STO

Min STO Min STO STO H (very Fand H
Slater ¢ best & unbalanced) (balanced) Exp
E (a.u.) —99.4785  —99.5361 —99.6576 —100.0580 —100.527
wHTF™) 0.85D 1.44D 0.92D 1.98D 1.82D°

4See Mulliken [4].
bData from Weiss [5].

These problems with basis set adequacy are difficult to overcome completely. For-
tunately, with a certain amount of experience, insight, and caution, it is nevertheless
possible to carry out variational calculations and interpret their results to obtain reliable
and useful information.

D 7-8 Beyond the Orbital Approximation

Most of our discussion of the variation method has been restricted to calculations within
the orbital approximation. To avoid leaving an inaccurate impression of the capabilities
of the variation method, we shall briefly describe some calculations on some small
(two-electron) systems where the method can be employed to its fullest capabilities.
These calculations are listed in Table 7-4.

The calculation on He by Kinoshita expresses the spatial part of the wavefunction as

ks, kt kuy=e2 " ¢ Gks) " ()™ " (kt)” (7-109)

I,m,n=0
n,even

where
S=ri+r, u=rp, t=-—-r+nmn (7-110)

and k and ¢y, , are variable parameters. The exponential term causes the wavefunc-
tion to vanish as either electron goes to infinite 7, and the terms in the sum build up
a polynomial in one- and two-electron coordinates, reminiscent of the form of eigen-
functions for the harmonic oscillator and the hydrogenlike ion. Kinoshita carried out
his calculation to as many as 39 terms, obtaining an energy that he estimated to differ
from the exact result by no more than 1.2 x 107® a.u. A subsequent calculation by
Pekeris, using a related approach, required solving a secular determinant of order 1078
and yielded an energy estimated to be accurate to 1.0 x 10~ a.u. Applying corrections
for coupling between electronic and nuclear motions, and also for relativistic effects,
Pekeris arrived at a theoretical value for the ionization energy of He of 198310.687 cm ™!
compared to the experimental value of 198310.8, £0.15cm ™!,
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TABLE 7-4 » Results of Some Very Accurate Variational Calculations on
Two-Electron Systems

Estimated maximum

Minimized _energy error
System energy“ (a.u.) E — Eexact (a.u.)
He (ground singlet)”  —2.9037225 0.0000012
He (ground singlet)  —2.903724375 0.000000001
He (lowest triplet)© —2.17522937822 0.00000000001

H, (ground singlet)?  —1.17447498302¢ 0.000000001

?Uncorrected for nuclear motion and relativistic effects.
bFrom Kinoshita [6].

¢From Pekeris [7].

4From Kolos and Wolniewicz [8].

€At R=1.401078 a.u.

In the 35 years since Pekeris work was reported, even more extensive calculations
have been reported. For example, Drake et al. [9] have calculated an upper bound for
the ground state of helium having 22 significant figures using a wavefunction having
2358 terms.

Extremely accurate variational calculations have been carried out on H, by Kolos and
Wolniewicz. They used elliptic coordinates and an r coordinate and expressed their
wavefunction as an expansion in powers of these coordinates, analogous in spirit to the
Kinoshita wavefunction described above. Their most accurate wavefunctions contain
100 terms and are calculated for a range of R values. After including corrections for
relativistic effects and nuclear motion, Kolos and Wolniewicz arrived at a theoretical
value for the dissociation energy in Hy of 36117.4cm™~! compared to what was then
the best experimental value 36113.6 = 0.5cm™!. Subsequent redetermination of the
experimental value gave 36117.3+1.0cm~' 3

The dissociation energy, Dy, is the energy required to separate a molecule into its
constituent atoms, starting with a molecule in its lowest vibrational state. The binding
energy, D,, is the energy for the corresponding process if we omit the vibrational
energy of the molecule (see Fig. 7-18). These quantities are often much more sensitive
measures of the accuracies of calculations than are total energies. The reason for this is
easily understood when we recognize that the binding energy is a fairly small difference
between two large numbers—the total energy of the molecule and the total energy of
the separated atoms. Unless our errors in these two large energies are equal, the residual
error is magnified (in terms of percentage) when we take the difference. Thus, the best
total energy for H; in a certain orbital approximation is —1.133629 a.u., which is 96.7%
of the total energy. However, the corresponding binding energy is —0.133629 a.u.,
which is 76.6% of the correct value. The need to calculate accurate binding energies is
sometimes referred to as the need to achieve “chemical accuracy.”

The variational calculations cited above are among the most accurate performed,
and they give an indication of the capabilities of the method. Properties other than

8See Herzberg [10].
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Figure 7-18 » Schematic drawing showing the distinction between Dy, the dissociation energy
from the lowest vibrational level, and D,, the binding energy, which does not take vibrational energy
into account. The zero of energy is the energy of the separated atoms.

energy predicted from such wavefunctions are also very accurate. For example, Pekeris’
best wavefunction for the first triplet state of helium gives an electron density at the
nucleus of 33.18416 electrons per cubic bohr compared with the experimental value
33.18388 4 0.00023 deduced from hyperfine splitting. For most systems of chemical
interest, calculations of this sort become much too impractical to be considered. For
this reason the orbital approximation, with all its limitations, is used in most quantum-
chemical calculations on systems having more than two electrons.

7-8.A Problems
7-1. Given the following two functions, f(x) and g(x), for the range 0 >x > L:

() W
N\

0 u 0 —1
(@) (b)

Figure P7-1 »
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Can these functions be expressed accurately as linear combinations of particle-
in-a-box eigenfunctions (box walls at x =0, L)? Indicate your reasoning. If yes,
what is the expression for the first two coefficients in the expansion? Can you
evaluate any of these by inspection?

7-2. Consider a particle in a box with a biased potential that is higher at x = L than
at x = 0. An approximate solution for the ground state could be ¢ = /0.9y +
Vo1 Y, where ¥| and v, are the first and second eigenfunctions for the unbiased
box. (a) Make a rough sketch of ¢, showing how it skews the particle distribution.
(b) What is the average kinetic energy for ¢, in terms of 2, m, and L?

7-3. The normalized function ¢ = (2/457) 1/2,2 exp(—r) can be expanded in terms of
hydrogen atom eigenfunctions:

¢ =c1¥1s +caas +c3vop, + -

where Y15 = (1/4/7) exp(—r) and Yrap, = (1/4/327)r exp(—r/2) cos . Evaluate
c1 and c3.

7-4. Given the approximate wavefunction for the lowest state of a particle in a one-
dimensional box (Fig. P7-4):

o 172 L
Figure P7-4 »
¢=1/3/L2x/L), 0<x<L)2
¢$=v3/LI2(L—-x)/L], L/2=<x=<L
¢ =0, x<0, x>1L

a) Resolve ¢ into the box eigenfunctions. That is, evaluate ¢, in the expression

d)zzcn‘/fn,
n=1

where
Ypo=+/2/Lsin(nrx/L), 0<x<L, ¥,=0, x<0,x>1L

b) Using the coefficients from part (a) compare the value of ¢ at x = L/2 with
the values one obtains from the

m

Gapprox = »_ Ca¥n,  Withm =1,3,5,7, and 9

n=1
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7-6.

7-1.

7-8.

7-9.

7-10.

¢) Use the coefficients from part (a) to obtain an expression for £ appropriate
for ¢. Estimate the value of the infinite series and thereby estimate £. Com-
pare this value to Eexact-

. Letgp = exp(—arz) be a trial function (not normalized) for the ground state of

the hydrogen atom. Use the variation method to determine the minimum energy
attainable from this form by variation of «. Find the average value of » and the
most probable value of  for this wavefunction. Compare these » values and the
average energy with the exact values.

Let ¢ (o) = (o’ / 3m) 12y exp(—ar) be a trial function for the ground state of the
hydrogen atom:

a) Verify that the variation method gives o = % E= —% a.u.

b) Verify that ¢ (3) has an overlap of 0.9775 with the 1s function.
c) Find the value of « that maximizes the overlap of ¢ with the 1s function and
determine the average energy of this new ¢.

A normalized approximate wavefunction ¢ for the hydrogen atom is pro-
jected into its components and found to be ¢ = (1/+/2)¥1s + (1/v/4) s +
1/ «/§) Y35 + c45W4s. There are no higher terms.

a) What is the value of c45?
b) What is the value of the average energy?

A normalized, spherically symmetric variationally optimized function for the
hydrogen atom is analyzed by projecting out coefficients cys, 25, c2p,, etc. Itis

found that ¢y is equal to +/0.80 and cps = +/0.15.

a) What is the maximum possible value for cpp,? Explain your reasoning.
b) What is the minimum possible value for E that could correspond to this
function, based on the above data? Explain your reasoning.

A normalized trial wavefunction of the form (in a.u.)

¢=[20)/(4m6)]"* r2exp(—¢r)

is variationally optimized to give the lowest possible energy for the hydrogen
atom. The results part way along this process are [ ¢ Hpdv = £2/10 —¢ /3.

a) Complete the variational process to obtain the optimum ¢ and the minimized
average energy.

b) Calculate the value of ¢y in the expression ¢opt = c1¥1s + 25 + - - -

¢) Produce a new, normalized function x that is orthogonal to 15 but is other-
wise as similar as possible to @qpi. (Use the unexpanded symbolic terms vy
and ¢ in your answer.)

d) Suppose you are told that the average energy associated with your new func-
tion x is —0.133 a.u. Do you find this reasonable? Explain your answer.

¢ =’ /3m)V/*r exp(—ar) is anormalized trial function for the hydrogen atom.
The energy is minimized when o = 3/2. Calculate the average value of the
potential energy predicted by this function if o =3/2.



238

7-11.

7-12.

7-13.

7-14.

7-15.

7-16.

Chapter 7 The Variation Method

Prove that optimized trial function (7-20) must contain contributions from con-
tinuum wavefunctions.

Compare the orbital exponent for a 1s AO in He as found by the variation method
[Eq. (7-35)] with that given by Slater’s rules (Chapter 5).

A different trial function for calculating the polarizability of the hydrogen atom
in a uniform electric field of strength F is

Yrial = Yis(c1 +¢22)

This is somewhat similar to the example in the text, since zirg gives a p-like
function, but not exactly the 2p, eigenfunction.

a) Use this form to find an expression for the minimum E as a function of F.
What value of E does this give for F =0.1 a.u.? Can you suggest why this
trial function is superior to the one used in the text?

b) The polarizability is defined to be « in the expression

1 1
E=—=——aF?
2 2

What value of o do you obtain? [Exact @ =4.5 a.u.] 1 a.u. of field strength is

equal to e/ ag. Deduce the value of 1 a.u. of polarizability.

Which hydrogen atom state should be more polarizable, the 1s or 2s? [Consider
the factors that determine the extent of mixing between basis functions.] Explain
your reasoning.

¢, and ¢ are chosen to be a normalized set of basis functions for an LCAO
wavefunction for a one-electron homonuclear diatomic system. It is found that
the values for the integrals involving these functions are

/¢;1f1¢adu = 2au, /¢;§1§l¢>b dv=—2au,

A 1
f¢:H¢bdv =—lau, /q&:(pbdvzz.

Find an upper bound for the exact lowest electronic energy for this system. Find
the corresponding LCAO normalized approximate wavefunction.

¢, and ¢;, are chosen as the normalized basis functions for an LCAO wavefunc-
tion for a one-electron, heteronuclear, diatomic molecule. It is found that the
values for some integrals involving these functions are

/q&aI-AI(j)a dv=—-2a.u., /¢bﬁ¢bdv=—1 a.u.,
1

. 1
/¢aH(bde=—§ a.u., /¢a¢bd1):3

where H is the molecular hamiltonian. Set up the secular determinantal equation
and find the lowest electronic energy that can be computed from an LCAO
wavefunction c,¢, + cp¢p. Find ¢, and ¢ such that E is minimized and the
wavefunction is normalized.
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7-17. A possible basis function for representing the 10, wavefunction of H;r is a Is-like

AO (§3 / yr)l/ 2 exp(—¢r) located at the bond center. Assuming an internuclear
separation of 2 a.u., find the ¢ value that minimizes E. s this basis function
adequate to predict a bound H;r molecule? [Use Appendix 3 to help you develop
your formulas.]

7-18. Without referring to the text, and by inspection, what is the united atom limit for
the 10y molecular orbital’s energy (in a.u.) for H; ?

7-19. Show that, at R = oo, the ¥4 and _ wavefunctions for H; are capable of
describing a state wherein the electron is in a 1s orbital on atom A.

7-20. Evaluate Egs. (7-89) and (7-90) at R =0 to show that H44 = H 4p at this point.

7-21. Examining Eq. (7-86), and letting H4p = kH 44 what relationship between k
and S4p is necessary if the oy MO is to be lower in energy than the o, MO?
[Assume that H,4 4 is negative, and that £ and S p are positive.]

7-22. Consider the one-electron molecule—ion HeH?t:

a) Write down the hamiltonian operator (nonrelativistic, Born—-Oppenheimer
approximation) for the electronic energy in atomic units for this system.

b) Calculate the electronic energies for the lowest energy state of this system in
the separated atom and united atom limits.

7-23. For a homonuclear diatomic molecule aligned as shown in Fig. P7-23, character-
ize each of the following MOs as o, 7, §, and g or u, and bonding or antibonding.

a) 2pJ’a + 2pJ’b
b) 2p., +2p;,
c) 3d23 + 3ng
d) 3dyy, +3dyy,
e) 3d,;, —3dy

y 14

Figure P7-23 »

7-24. Characterize each of the following atomic orbitals with the symbols o, 7, §, and
also g or u. Let the z axis be the reference axis for angular momentum.

Is 2p; 3p, 3dy,
2s 2px 3dp 3d,:

7-25. Indicate whether you expect each of the following homonuclear diatomic MOs
to be bonding or antibonding. Sketch the MO in each case: (a) oy (b) 7y (¢) g
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7-26.

7-217.

7-28.

7-29.

7-30.

7-31.

7-32.

Chapter 7 The Variation Method

A homonuclear diatomic molecule MO of 7, symmetry is to be expressed as a
linear combination of AOs centered on the nuclei, which lie on the z axis. Which
of the AOs in the following list can contribute to the MO?

Is 2s 2p, 2p, 2p; 3s 3px
3py 3p: 3dyxy 3dy: 3dy: 3d2 3do_p2

Use sketches and symmetry arguments to decide which of the following integrals
vanish for diatomic molecules (the x, y, and z axes are shown in Fig. P7-23):

a) [2pzlspdv

b) [2pyalspdv

©) [ 2pza2pypdv
d) [2pya3d,dv
€) f2p2a3dyzb dv
f) flsaI:IZandv
g) flsalflzpza dv

Show that, for reflection through a plane containing the nuclei, if the MO 6,2_,»
is symmetric, then the MO 4, is antisymmetric. Show that the same is true for
7 MOs constructed from dy; and d), AOs. (The internuclear axis is assumed to
lie along the z coordinate.)

Assuming the internuclear axis to lie along the z coordinate, what are the possible
M}, quantum numbers for an MO constructed from 3d> — 3 2 ?

In a homonuclear diatomic correlation diagram, what MO symmetry symbols
(o, m, 8, g, u) could correlate with each of the united atom AOs listed below?
Assume z to be the “old” internuclear axis. Indicate for each case whether this
united atom orbital is the terminus for a bonding or an antibonding MO. (a) 2p,
(b) 2py (¢) 3dx: (d) 3dy),

A homonuclear diatomic system has the ground-state MO configuration
10g21032og220330gzln31ng2:

a) What is the net number of bonding electrons?

b) What spin multiplicity would you expect for the ground state?

¢) What would you expect the effect to be on the dissociation energy of this
molecule of ionization (1) from the 17 MO? (2) from the 30, MO?

d) Upon ionization (one-electron) from the 17, level, what would be the spin
multiplicity of the resulting ion?

e) To what type of united atom AO does the , MO correlate?

a) Without referring to the text, write out the ground state configuration for O;r
using MO symmetry symbols (ltrg2 etc.)

b) What is the net number of bonding electrons?

¢) How does the dissociation energy for this ion compare to that for O,?

d) What is the ground state term symbol for this ion?

e) Which occupied MOs may contain contributions from 2p, AOs, assuming z
to be the internuclear axis?
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7-33.

7-34.

7-35.

The reduced symmetry of heteronuclear (compared to homonuclear) diatomic
molecules results in their having a different correlation diagram. Set up a corre-
lation diagram for heteronuclear diatomics. Be sure to indicate that the energy
levels of each type of AO are not identical for the separated atoms. Comparing
correlation diagrams for homonuclear and heteronuclear molecules, does it seem
reasonable that He, is unstable, whereas the isoelectronic LiH and LiHet are
stable molecules?

Following are some Slater orbital coefficients for some MO’s of F; calculated
by Ransil [11] (the 2p, STOs are defined according to z axes pointing from each
atom toward the other):

log ci5,4=c15,8 =0.70483 205 c15,4=c15,8 =0.17327
Cs, 4 =C2s,B= 0.00912 Cs, 4 =C2s,B= —0.67160
Copy, 4 = C2p,, 8 = —0.00022 C2p,, 4 = C2p,, B = —0.08540

We see that the 1og MO is almost entirely made from Is AOs on 4 and B.
However, the 20, MO contains what appears to be an anomalously large amount
of 1s AO. This turns out to be an artifact of the fact that Slater-type 2s orbitals
are not orthogonal to 1s AOs on the same center. For F», the STO 1s, 2s overlap
is 0.2377. Use this fact to construct a new orbital, 2s’, that is orthogonal to 1s.
Express the 20, MO of Ransil in terms of the basis functions 1s, 2¢/, and 2p, on
centers 4 and B. You should find the 1s coefficients much reduced.

R, for H;r equals 2.00 a.u. At this distance, Eqjoc = —1.1026 a.u. What is the
value of D, for H; ?

Multiple Choice Questions

(Try to answer these without referring to the text.)

1. A homonuclear diatomic MO is given by ¢ =2p. , +2 p; p, where the z axis is the
same as the internuclear axis. Which one of the following statements about ¢ is
correct?

a) ¢ is an antibonding MO, symbolized oy,.

b)

¢ is a bonding MO, symbolized 7.

¢) ¢ is an antibonding MO, symbolized 7.

d)

¢ is a bonding MO, symbolized o.

e) ¢ is an antibonding MO, symbolized 7.

2. For the three species N», N;“ s Ny, which one of the following orders for the bond
energy (i.e., bond strength) is most reasonable?

a) N2>N;>N2_

b)

Ny >N;>N;

¢) Ny >N, >Nj

d)
e)

N, >NJ >N,
Only N, forms a bond; N;r and N5, do not.
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3. According to the LCAO-MO model, which one of the following second period
diatomic molecules has a double bond in the ground electronic state?

a) Li2
b) Bep
¢) Bx
d) G
e) Na

4. Which one of the following statements concerning HEL is false?

a) The nondegenerate LCAO-MOs (without spin) must be either symmetric or anti-
symmetric for inversion.

b) The lowest energy MO (without spin) of the molecule is antisymmetric for
inversion.

¢) The MOs transform into the AOs of the helium ion as the two nuclei are fused
together.

d) The ground state has a multiplicity of two.

e) The Born-Oppenheimer approximation permits finding the solution for the purely
electronic wave function at each value of the internuclear distance.

5. Which one of the following statements is false for bonding MOs formed from linear
combinations of AOs on atoms a and b?

a) Only AOs that have nonzero overlap can form bonding MOs.

b) Only AOs that have similar energies can form strongly bonding MOs.

¢) Bonding MOs cannot have a nodal plane perpendicular to the internuclear axis
and midway between a and b.

d) A pAO on b can combine with a p AO on a to form o, 7, or § MOs.

e) A maximum of three bonding MOs can be formed from 2p AOs on a and b.
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Chapter 8

The Simple Hiickel Method
and Applications

[ J 8-1 The Importance of Symmetry

Our discussions of the particle in a box, the harmonic oscillator, the hydrogen atom, and
homonuclear diatomic molecules have all included emphasis on the role that symmetry
plays in determining the qualitative nature of the eigenfunctions. When we encounter
larger systems, detailed and accurate solutions become much more difficult to perform
and interpret, but symmetry continues to exert strong control over the solutions.

In this chapter, we will describe a rather simple quantum chemical method that was
formulated in the early 1930s by E. Hiickel. One of the strengths of this method is
that, by virtue of its crudeness and simplicity, the effects of symmetry and topology on
molecular characteristics are easily seen. Also, the simplicity of the model makes it an
excellent pedagogical tool for illustrating many quantum chemical concepts, such as
bond order, electron densities, and orbital energies. Finally, the method and some of
its variants continue to be useful for certain research applications. Indeed, it is difficult
to argue against the proposition that every graduate student of organic and inorganic
chemistry should be acquainted with the Hiickel molecular orbital (HMO) method.

[ J 8-2 The Assumption of s—r Separability

The simple Hiickel method was devised to treat electrons in unsaturated molecules like
ethylene and benzene. By 1930 it was recognized that unsaturated hydrocarbons are
chemically more reactive than are alkanes, and that their spectroscopic and thermody-
namic properties are different too. The available evidence suggested the existence of
loosely held electrons in unsaturated molecules.

We have already seen that, when atoms combine to form a linear molecule, we
can distinguish between MOs of type o, 7, §, ... depending on whether the MOs are
associated with an m quantum number of 0, =1, £2, ... Thus, in acetylene (CoH>), the
minimal basis set of AOs on carbon and hydrogen lead to o and w MOs. Let us imagine
that our acetylene molecule is aligned along the z Cartesian axis. Then the p, mw-type
AOs on the carbons are antisymmetric for reflection through a plane containing the
molecular axis and the y axis. Similarly, the p,m-type AOs are antisymmetric for
reflection through a plane containing the molecular axis and the x axis. The p, AOs,
which are o-type functions, are symmetric for reflection through any plane containing

244



Section 8-2 The Assumption of o—r Separability 245

the molecular axis. It has become standard practice to carry over the o—m terminology
to planar (but nonlinear) molecules, where m is no longer a “good” quantum number.
In this expanded usage, a 7 orbital is one that is antisymmetric for reflection through
the plane of the molecule, a o orbital being symmetric for that reflection.

Hiickel found that, by treating only the 7 electrons explicitly, it is possible to repro-
duce theoretically many of the observed properties of unsaturated molecules such as
the uniform C—C bond lengths of benzene, the high-energy barrier to internal rotation
about double bonds, and the unusual chemical stability of benzene. Subsequent work
by a large number of investigators has revealed many other useful correlations between
experiment and this simple HMO method for 7 electrons.

Treating only the 7 electrons explicitly and ignoring the o electrons is clearly an
approximation, yet it appears to work surprisingly well. Physically, Hiickel’s approxi-
mation may be viewed as one that has the 7 electrons moving in a potential field due
to the nuclei and a “o core,” which is assumed to be frozen as the 7 electrons move
about. Mathematically, the c—m separability approximation is

Etot = Eo + En (8'1)

where Ey is taken to be the electronic energy E.| plus the internuclear repulsion
energy Vn.

Let us consider the implications of Eq. (8-1). We have already seen (Chapter 5),
that a sum of energies is consistent with a sum of hamiltonians and a product-type
wavefunction. This means that, if Eq. (8-1) is true, the wavefunction of our planar
molecule should be of the form (see Problem 8-1)

v, o)=Yz, ... . DY (k+1,....n) (8-2)
and our hamiltonian should be separable into 7 and o parts:
A2, ) =Hg(1,2, o k) + Ko k1, n) (8-3)

Equations (8-2) and (8-3) lead immediately to Eq. (8-1):

J¥avs (;;2,, +a’%) Yaodr(l, ... n)
[Vivzvavode(l, ... n)

[V HadT(L, k) [ WEH e edT(k+ 1, )

[Wivgdt(l,... k) [VEvedr(k+1,...,n)
:En+EU (8-4)

E =

If these equations were valid, one could ignore ¥, and legitimately minimize E, by
varying vV, But the equations are not valid because it is impossible to rigorously satisfy
Eq. (8-3). We cannot define A and #, so that they individually depend completely
on separate groups of electrons and still sum to the correct total hamiltonian. Writing
these operators explicitly gives

k k k k
R 1 1 1
;/,,(1,...,k)=—§§:vf+§ Vne(i)+5§j » — (8-5)
i=1 i=1 i=1 j=1,j#i "

R ln n ln n 1
Hykt1..m==33 Vit Vet5 D 3 —+Vm 06

p
i=k+1 i=k+1 i=k+1 j=k+1,j£i
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where Vye (i) represents the attraction between electron i and all the nuclei. These
hamiltonians do indeed depend on the separate groups of electrons, but they leave out
the operators for repulsion between o and 7 electrons:

k n
N A A 1
%—%ﬂ—XUZE E — (8-7)
i=1 j=k+1 rlj

In short, the o and 7 electrons really do interact with each other, and the fact that the
HMO method does not explicitly include such interactions must be kept in mind when
we consider the applicability of the method to certain problems. Some account of c—n
interactions is included implicitly in the method, as we shall see shortly.

D 8-3 The Independent z-Electron Assumption

The HMO method assumes further that the wavefunction v, is a product of one-electron
functions and that the hamiltonian #7; is a sum of one-electron operators. Thus, for
nm electrons,

Yre(1,2,...,n) = ¢i(D);(2)...¢1(n) (8-8)
A (1,2,....0) = Hy () + Hy Q) + - - + Hy (n) (8-9)

and

J¢*1() Hy (Wi (DdT (1) _ -
Tom (g (Dde(l) (8-10)

It follows that the total r energy E is a sum of one-electron energies:
Ex=E+E;j+ - +E (8-11)

This means that the 7 electrons are being treated as though they are independent of each
other, since E; depends only on ¢; and is not influenced by the presence or absence of
an electron in ¢ ;. However, this cannot be correct because 7 electrons in fact interact
strongly with each other. Once again, such interactions will be roughly accounted for
in an implicit way by the HMO method.

The implicit inclusion of interelectronic interactions is possible because we never
actually write down a detailed expression for the 7 one-electron hamiltonian operator
17:17r (7). (We cannot write it down because it results from a w—o separability assumption
and an independent 7 -electron assumption, and both assumptions are incorrect.) H, (i)
is considered to be an “effective” one-electron operator—an operator that somehow
includes the important physical interactions of the problem so that it can lead to a reason-
ably correct energy value E;. A key point is that the HMO method ultimately evaluates
E; via parameters that are evaluated by appeal to experiment. Hence, it is a semiem-
pirical method. Since the experimental numbers must include effects resulting from
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all the interelectronic interactions, it follows that these effects are implicitly included
to some extent in the HMO method through its parameters.

It was pointed out in Chapter 5 that, when the independent electron approximation
[Egs. (8-8)—(8-11)] is taken, all states belonging to the same configuration become
degenerate. In other words, considerations of space-spin symmetry do not affect the
energy in that approximation. Therefore, the HMO method can make no explicit use of
spin orbitals or Slater determinants, and so V¥, is normally taken to be a single product
function as in Eq. (8-8). The Pauli principle is provided for by assigning no more than
two electrons to a single MO.

EXAMPLE 8-1 If O were treated by the HMO method, what would be the form of
the wavefunction and energy for the ground state?

SOLUTION » The ground state configuration for O is 105 10,4220;201%30; ln,f’x lnl%yy X
Iwg x17g, y, Where we have shown the degenerate members of 7 levels explicitly and in their
real forms. The HMO wavefunction is simply a product of the pi MOs, one for each of the
six pi electrons: 1y, x (1) 1y, x (2) 17y, y(3) 1y, (D) 17g x (5)17g, (6). The HMO energy is
2Erux +2Er u,y+ Ex gx + Ex gy, Whichreduces to4E , +2Ex ¢. Note that, because O is
linear, there is no unique molecular plane containing the internuclear axis. Therefore this molecule
has two sets of # MOs, one pair pointing in the x direction, the other pair pointing along y. For a
planar molecule, only one of these pairs would qualify as w MOs, as will be seen in the next section.

<«

D 8-4 Setting up the Hiickel Determinant

8-4.A Identifying the Basis Atomic Orbitals and Constructing
a Determinant

The allyl radical, C3Hs, is a planar molecule! with three unsaturated carbon centers
(see Fig. 8-1). The minimal basis set of AOs for this molecule consists of a 1s AO
on each hydrogen and Is, 2s, 2py, 2p,, and 2p,; AOs on each carbon. Of all these
AOs only the 2p; AOs at the three carbons are antisymmetric for reflection through the
molecular plane.

y
H

|
l

H H

Figure 8-1 » Sketch of the nuclear framework for the allyl radical. All the nuclei are coplanar.
The z axis is taken to be perpendicular to the plane containing the nuclei.

I'The minimum energy conformation of the allyl system is planar. We will ignore the deviations from planarity
resulting from vibrational bending of the system.
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Figure 8-2 » The three m-type AOs in the minimal basis set of the allyl radical.

Following Hiickel, we ignore all the o-type AOs and take the three 2p, AOs as our
set of basis functions. Notice that this restricts us to the carbon atoms: the hydrogens
are not treated explicitly in the simple HMO method. We label our three basis functions
X1, X2, x3 as indicated in Fig. 8-2. We will assume these AOs to be normalized.

Suppose that we now perform a linear variation calculation using this basis set. We
know this will lead to a 3 x 3 determinant having roots that are MO energies which can
be used to obtain MO coefficients. The determinantal equation is

Hiy—ES1 Hipp—ESi2 Hiz— ESi3
Hy —ES) Hp—ES» Hyjp—ES;| =0 (8-12)
H31 — ES31 Hp— ES3; Hiz— ESs3

where
fb,:fxiﬁnxjdv (8-13)
S,’j =/X,'dev (8—14)

Since H;; and S§;; are integrals over the space coordinates of a single electron, the
electron index is suppressed in Egs. (8-13) and (8-14).

8-4.B The Quantity «

We have already indicated that there is no way to write an explicit expression for Hy
that is both consistent with our separability assumptions and physically correct. But,
without an expression for H,, how can we evaluate the integrals H;;? The HMO
method sidesteps this problem by carrying certain of the ;; integrals along as symbols
until they can be evaluated empirically by matching theory with experiment.

Let us first consider the integrals Hji, Hpy and H33. The interpretation consistent
with these integrals is that H1, for instance, is the average energy of an electron in AO
X1 experiencing a potential field due to the entire molecule. Symmetry requires that
Hy1 = H33. H»; should be different since an electron in AO x; experiences a different
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environment than it does when in y; or x3. It seems likely, however, that H> is not
very different from Hjj. In each case, we expect the dominant part of the potential to
arise from interactions with the local carbon atom, with more distant atoms playing a
secondary role. Hence, one of the approximations made in the HMO method is that all
H;; are identical if y; is on a carbon atom. The symbol « is used for such integrals.
Thus, for the example at hand, Hy; = Hyy = H33 = «. The quantity « is often called
the coulomb integral.”

8-4.C The Quantity g

Next, we consider the resonance integrals or bond mtegrals Hi», H23, and Hi3. (The
requirement that H,r be hermitian plus the fact that the x’s and Hn are real suffices
to make these equal to H,, H3p, and Hij, respectively.) The interpretation consistent
with these integrals is that Hy», for instance, is the energy of the overlap charge between
x1 and x2. Symmetry requires that Hj» = Hp3 in the allyl system. However, even when
symmetry does not require it, the assumption is made that all /;; are equal to the same
quantity (called 8) when i and j refer to “neighbors” (i.e., atoms connected by a o
bond). It is further assumed that H;; =0 when i and j are not neighbors. Therefore,
in the allyl case,

Hyy = Hy3 =B, Hi3=0.

8-4.D Overlap Integrals

Since the x’s are normalized, S;; = 1. The overlaps between neighbors are typically
around 0.3. Nevertheless, in the HMO method, all S;; (i # j) are taken to be zero.
Although this seems a fairly drastic approximation, it has been shown to have little
effect on the qualitative nature of the solutions.

8-4.E Further Manipulation of the Determinant

Our determinantal equation for the allyl system is now much simplified. It is

oa—F B 0
B a—E g |=0 (8-15)
0 B oa—F
Dividing each row of the determinant by B corresponds to dividing the whole deter-

minant by A3. This will not affect the equality. Letting (@ — E)/B = x, we obtain the
result

X 0
1 x 1|=0 (8-16)
0 1 «x

2The term “coulomb integral” for « is unfortunate since the same name is used for repulsion integrals of the
form le (Mx22)(1/r12)x1(1) x2(2) dv. The quantity « also contains kinetic energy and nuclear—electronic
attraction energy.
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3 ) CH, H
>~ —@
1 2 3 4 : 1 2 :
1 4 H H
L —)
Unsaturated part
Butadiene (CsHe) Cyclobutadiene (C.H,) Propylene (CsHe)
1 23 4 123 4
I|Jx 1 00 I|x 0 1 1 x 1
211 x 1 0 210 x 1 1 ( 1 xhl
same as ethylene
310 1 x 1 z } } J(; 0 in simplest form
410 0 1 x x of Hiickel method)

Figure 8-3 » HMO determinants for some small systems.

which is the form we will refer to as the HMO determinantal equation. Notice that x
occurs on the principal diagonal, 1 appears in positions where the indices correspond
to a bond, 0 appears in positions (e.g., 1,3) corresponding to no bond. This gives us a
simple prescription for writing the HMO determinant for any unsaturated hydrocarbon
system directly from a sketch of the molecular structure. The rules are (1) sketch
the framework defined by the n unsaturated carbons; (2) number the atoms 1, ... ,n
(the ordering of numbers is arbitrary); (3) fill in the #n x n determinant with x’s on the
diagonal, 1’s in positions where row column indices correspond to bonds, 0’s elsewhere.
See Fig. (8-3) for examples. As a check, it is useful to be sure that the determinant is
symmetric for reflection through the diagonal of x’s. This is necessary since, if atoms
i and j are neighbors, 1’s must appear in positions i, j and j, i of the determinant.

Since the Hiickel determinant contains only information about the number of unsat-
urated carbons and how they are connected together, it is sometimes referred to as a
topological determinant. (Topology refers to properties that are due to the connected-
ness of a figure, but are unaffected by twisting, bending, etc.)

D 8-5 Solving the HMO Determinantal Equation

for Orbital Energies
The HMO determinantal equation for the allyl system (8-16) can be expanded to give
xP—2x=0 (8-17)
or
x(x*=2)=0 (8-18)

Thus, the roots are x =0, x = +/2, and x = —/2. Recalling the definition of x, these
roots correspond respectively to the energies £ =«, £ =o — V2B, E=a+2B.
How should we interpret these results? Since « is supposed to be the energy of
a pi electron in a carbon 2p AO in the molecule, we expect this quantity to be neg-
ative (corresponding to a bound electron). Since f refers to an electron in a bond
region, it too should be negative. Therefore, the lowest-energy root should be E| =
o + /28, followed by E» = a, with E3 =« — +/28 being the highest-energy root.
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a—+/28
_._1__ —H— E+ «
__H__ _..H__ —-H— a+ /28

CyHS C,Hs CyHs™

Figure 8-4 » m-Electron configurations and total energies for the ground states of the allyl cation,
radical, and anion.

(It is convenient to number the orbital energies sequentially, starting with the lowest,
as we have done here.)

We have just seen that bringing three 2p, AOs together in a linear arrangement
causes a splitting into three MO energy levels. This is similar to the splitting into two
energy levels produced when two 1s AOs interact, discussed in connection with H;r . In
general, n linearly independent separated AOs will lead to » linearly independent MOs.

The ground-state m-electron configuration of the allyl system is built up by putting
electrons in pairs into the MOs, starting with those of lowest energy. Thus far, we have
been describing our system as the allyl radical. However, since we have as yet made
no use of the number of 7 electrons in the system, our results so far apply equally well
for the allyl cation, radical, or anion.

Configurations and total 7 energies for these systems in their ground states are
depicted in Fig. 8-4. The total w-electron energies are obtained by summing the one-
electron energies, as indicated earlier.

EXAMPLE 8-2 For a planar, unsaturated hydrocarbon having formula C, H,,, where
all the carbons are part of the unsaturated framework, how many pi MOs are there?

SOLUTION » Each carbon atom brings one 2p, AO into the basis set, so there are x basis AOs.
These x independent AOs mix to form x independent MOs. <

D 8-6 Solving for the Molecular Orbitals

We still have to find the coefficients that describe the MOs as linear combinations
of AOs. Recall from Chapter 7 that this is done by substituting energy roots of the
secular determinant back into the simultaneous equations. For the allyl system, the
simultaneous equations corresponding to the secular determinant (8-16) are

c1x+c2 =0 (8-19)
ci +ecx+c3 =0 (8-20)
¢y +c3x=0 (8-21)

(Compare these equations with the secular determinant in Eq. (8-16) and note the
obvious relation.) As we noted in Chapter 7, homogeneous equations like these can give
us only ratios between c, ¢, and c3, not their absolute values. So we anticipate using
only two of these equations and obtaining absolute values by satisfying the normality
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condition. Because we are neglecting overlap between AOs, the latter step corresponds
to requiring

Ad+d+ci=1 (8-22)

The roots x are, in order of increasing energy, —ﬁ, 0, —I—\/E. Let us take x = —«/E
first. Then

—V2e1+ =0 (8-23a)
c1—v2c+  ¢3=0 (8-23b)
2—v2c3=0 (8-23¢)

Comparing Eqs. (8-23a) and (8-23c) gives c¢] = c3. Equation (8-23a) gives ¢; = V2e.
Inserting these relations into the normality equation (8-22) gives

2
G+ (V2er) +ei=1 (8-24)
1
4¢2 =1, =+ (8-25)

It makes no difference which sign we choose for ¢ since any wavefunction is equivalent
to its negative. (Both give the same 2.) Choosing ¢| = —}—% gives

1 1 1
=—, =—, =— 8-26
=z @ NG =3 (8-26)
These coefficients define our lowest-energy MO, ¢:
¢1= 1 + : + : (8-27)
1= 2Xl ﬁXQ 2X3
A similar approach may be taken for x =0 and x = ++/2. The results are
1 1
x=0): dr=—F72x1——5=Xx3 (8-28)
V2§ V2
(x_+ﬁ>. é _l _L _|_l (8-29)
= : 3=5X ﬁxz > X3

The allyl system MOs are sketched in Fig. 8-5.

The lowest-energy MO, ¢1, has no nodes (other than the molecular-plane node
common to all # MOs) and is said to be bonding in the C; — C; and C, — C3 regions. It
is reasonable that such a bonding MO should have an energy wherein the bond-related
term B acts to lower the energy, as is true here. The second-lowest energy MO, ¢»,
has a nodal plane at the central carbon. Because there are no = AOs on neighboring
carbons in this MO, there are no interactions at all, and g is absent from the energy
expression. This MO is said to be nonbonding. The high-energy MO, ¢3 has nodal
planes intersecting both bonds. Because the w AOs show sign disagreement across both
bonds, this MO is everywhere antibonding and § terms act to raise the orbital energy
above «.

EXAMPLE 8-3 According to HMO theory, do the 7 electrons favor a linear, or a
bent allyl radical?




Section 8-7 The Cyclopropenyl System: Handling Degeneracies 253

¢I @ o 2

(a) (b)

Figure 8-5 » Sketches of the allyl system MOs. (a) emphasizes AO signs and magnitudes.
(b) resembles more closely the actual contours of the MOs.

SOLUTION » HMO theory favors neither. The difference between linear and bent allyl shows
up as a difference in C; — Cy — C3 angle and in C; to C3 distance. The HMO method has no
angular-dependent features and explicitly omits interactions between non-neighbor carbons, like
Cy and C3. |

D 8-7 The Cyclopropenyl System: Handling Degeneracies

The allyl system results when three = AOs interact in a linear arrangement wherein
Hi, = Hy3 = B, but Hj3 =0. We can also treat the situation where the three 7 AOs
approach each other on vertices of an ever-shrinking equilateral triangle. In this case,
each AO interacts equally with the other two. This triangular system is the cyclo-
propenyl system C3Hj3 shown in Fig. 8-6.

The HMO determinantal equation for this system is

x 1 1
1 x 1/=0, x*4+2-3x=0 (8-30)
1 1 x

H

|

C

A
H/ \H

Figure 8-6 » The cyclopropenyl system (all nuclei are coplanar).
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This equation can be factored as
x+2)x-Dx-1)=0 (8-31)

Therefore, the roots are x = —2, +1, +1.

Since the root x = 1 occurs twice, we can expect there to be two independent HMOs
having the same energy—a doubly degenerate level. The energy scheme and ground
state electron configuration for the cyclopropenyl radical (three 7 electrons) (I) gives
atotal E; of 3o 4+ 3. We can surmise from these orbital energies that ¢ is a bonding
MO, whereas ¢, and ¢3 are predominantly antibonding. To see if this is reflected in the
nodal properties of the MOs, let us solve for the coefficients. The equations consistent
with the HMO determinant and with orbital normality are

cix+c +c3 =0
cir+ox+c3 =0 (8-32)
c1+cy +e3x=0

612 + c% + c% =1
Setting x = —2 and solving gives

1 1 1

% —_ Eo=E=a—-8 x=+1)
’ E,=a+ 28 (x=-2)
49}

For this MO, the coefficients are all of the same sign, and so the AOs show phase
agreement across all bonds and all interactions are bonding.

To find ¢ and ¢3 is trickier. We begin by inserting x = %1 into our simultaneous
equations. This gives

(8-33)

c1+cr+c3 =0 (three times) (8-34)
A+ +a =1 (8-35)

With three unknowns and two equations, an infinite number of solutions is possible.
Let us pick a convenient one: ¢; = —c3, ¢3 =0. The normalization requirement then
gives ¢ = 1/\/5, = —1/«/5, ¢c3 =0. Let us call this solution ¢;:

1 1
- x— — 8-36
o)) ﬁXl ﬁxz (8-36)

We still need to find ¢3. There remain an infinite number of possibilities, so let us pick
one: ¢ =1/4/2, 2 =0, c3 = —1/+/2. We have used our experience with ¢» to choose
¢’s that guarantee a normalized ¢3. Also, it is clear that ¢3 is linearly independent of
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¢ since they contain different AOs. But it is desirable to have ¢3 orthogonal to ¢».
Let us test ¢ and ¢3 to see if they are orthogonal:

S = J $rp3dv = % J (1 — %21 — x3)dv

1 (1] (1] 0
=%{JMU—IWU—IWO+JX 3dv}=% (8-37)

Since S # 0, ¢, and ¢3 are nonorthogonal. We can project out that part of ¢3 that
is orthogonal to ¢ by using the Schmidt orthogonalization procedure described in
Section 6-10. We seek a new function ¢} given by

Py =¢3 — S (8-38)
where
S= f v =7 (8-39)
Therefore,
1 1
l=¢3— —pp=—— —2 8-40
b3 =3 2¢2 W X1+ x2—2x3) (8-40)

This function is orthogonal to ¢, but is not normalized. Renormalizing gives

¢35 = % (1 +x2—2x3) (8-41)
In summary, to produce HMO coefficients for degenerate MOs, pick any two indepen-
dent solutions from the infinite choice available, and orthogonalize one of them to the
other using the Schmidt (or any other) orthogonalization procedure.

The MOs for the cyclopropenyl system as seen from above the molecular plane are
sketched in Fig. 8-7. The MO ¢, can be seen to have both antibonding (C;—C;) and
nonbonding (C{-C3, C,—C3) interactions. ¢5 has antibonding (C;-C3, C,—C3) and
bonding (C1—C3) interactions. The interactions are of such size and number as to give
an equal net energy value (¢ — ) in each case. Since nodal planes produce antibonding
or nonbonding situations, it is not surprising that higher and higher-energy HMOs in a

(c)

———

0J0)

|

[

1
(a) (b)

0,

D O

Figure 8-7 » The HMO:s for the cyclopropenyl system: (a) ¢1 = A/V3)(x1 +x2+ x3); (b) o =
(l/ﬁ)(X] —x2) (©) (bé/ = (1/\/5)()(1 + x2 —2x3). The nodal planes intersect the molecular plane
at the dashed lines.
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system display more and more nodal planes. Notice that the MOs ¢ and ¢4 have the
same number of nodal planes (one, not counting the one in the molecular plane) but
that these planes are perpendicular to each other. This is a common feature of some
degenerate, orthogonal MOs in cyclic molecules.

It is important to notice the symmetry characteristics of these MOs. ¢ is either
symmetric or antisymmetric for every symmetry operation of the molecule. (It is
antisymmetric for reflection through the molecular plane, symmetric for rotation about
the threefold axis, etc.) This must be so for any nondegenerate MO. But the degenerate
MOs ¢, and ¢5 are neither symmetric nor antisymmetric for certain operations. (¢; is
antisymmetric for reflection through the plane indicated by the dashed line in Fig. 8-7,
but is neither symmetric nor antisymmetric for rotation about the threefold axis by
120°.) In fact, one can easily show that, given a cycle with an odd number of centers,
each with one AO of acommon type, there is but one way to combine the AOs (to form a
real MO) so that the result is symmetric or antisymmetric for all rotations and reflections
of the cycle. Hence, an HMO calculation for a three-, five, seven-, ... membered ring
can give only one nondegenerate MO. However, for a cycle containing an even number
of centers, the analogous argument shows that rwo nondegenerate MOs exist.

[ J 8-8 Charge Distributions from HMOs

Now that we have a method that provides us with orbitals and orbital energies, it should
be possible to get information about the way the -electron charge is distributed in the
system by squaring the total wavefunction 1. In the case of the neutral allyl radical,
we have (taking ¥, to be a simple product of MOs)

Vr =¢1(1¢1(2)$2(3) (8-42)

Hence, the probability for simultaneously finding electron 1 in dv(1), electron 2 in
dv(2) and electron 3 in dv(3) is

1//7% 1,2,3)dv(1)dv(2)dv(3) = ¢12(1)¢12(2)¢§ 3)dv(1)dv(2)dv(3) (8-43)

For most physical properties of interest, we need to know the probability for finding an
electron in a three-dimensional volume element dv. Since the probability for finding
an electron in dv is the sum of the probabilities for finding each electron there, the
one-electron density function p for the allyl radical is

p =201 +¢3 (8-44)

where we have suppressed the index for the electron. If we integrate p over all space,
we obtain a value of three. This means we are certain of finding a total & charge
corresponding to three 7 electrons in the system.

To find out how the 7 charge is distributed in the molecule, let us express p in terms
of AOs. First, we write ¢% and ¢% separately:

1
2

FERNRUESE WS U SR BV BV |
1—4X1 X2 4X3 \/5)(1)(2 ﬁX2X3 2)(1)(3

2 1 2 1 2
¢y = §X1 + §X3 — X1X3 (8-45)
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If we were to integrate qb% we would obtain

—>1 —1 —1 —0
—— lr—’"‘ ——
/d)ldv— /dev+ /dev—i— /X3dv+ /X1X2dv
7
—0 —0
1 1
+ﬁ/xzxzdv+§/mmdv
L (8-46)
42 4

Thus, one electron in ¢; shows up, upon integration, as being “distributed” % at
carbon 1, % at carbon 2, and }1 at carbon 3. We say that the atomic w-electron densities
due to an electron in ¢ are zlt’ %, z]T at Cq, Cy, and Cj3, respectively, If we accumulate
these figures for all the electrons, we arrive at a total 77 -electron density for each carbon.
For the allyl radical, Table 8-1 shows that each atom has a -electron density of unity.

Generalizing this approach gives for the total -electron density ¢; on atom i

all MOs

> mich, (8-47)
k

Here k is the MO index, c; is the coefficient for an AO on atom i in MO %, and ny, the
“occupation number,” is the number of electrons (0, 1, or 2) in MO k. (In those rare
cases where ¢;; is complex, czk in Eq. (8-47) must be replaced by ¢} cix.)

If we apply Eq. (8-47) to the cyclopropenyl radical, we encounter an ambi gulty If the
unpaired electron is assumed to be in MO ¢, of Fig. 8-7, we obtain g; = qz = 6 ,q3 = 6

On the other hand, if the unpaired electron is taken to be in @5, g1 =¢2 = 6 ,q3= %. The
HMO method resolves this ambiguity by assuming that each of the degenerate MOs is
occupied by half an electron. This has the effect of forcing the charge distribution to
show the overall symmetry of the molecule. In this example, it follows that g; =g, =
g3 = 1. The general rule is that, for purposes of calculating electron distributions, the
electron occupation is averaged in any set of partially occupied, degenerate MOs.

TABLE 8-1 » HMO 7 Electron
Densities in the Allyl Radical

Carbon atom

Electron 1 2 3
1in ¢ i i !
2in ¢ 3 3 !
3in ¢, 0 :

Sum 1 1 1
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Figure 8-8 » When the equilateral structure is distorted by decreasing R, and increasing R;3,
R»3, the energies associated with ¢1, ¢7, d)g/ shift as shown.

In actuality, the equilateral triangular structure for the cyclopropenyl radical is unsta-
ble, and therefore the above-described averaging process is only a theoretical ideal-
ization. It is fairly easy to see that a distortion from equilateral to isosceles form will
affect the MO energies E1, E», and Eg differently. In particular, a distortion of the
sort depicted in Fig. 8-8 would have little effect on £ but would raise £ (increased
antibonding) and lower E% (decreased antibonding and increased bonding). Thus, there
is good reason for the cyclopropenyl radical to be more stable in an isosceles rather
than equilateral triangular form. This is an example of the Jahn—Teller theorem, which
states, in effect, that a system having an odd number of electrons in degenerate MOs
will change its nuclear configuration in a way to remove the degeneracy.® The pref-
erence of the cyclopropenyl radical for a shape less symmetrical than what we might
have anticipated is frequently called Jahn—Teller distortion.*

Many times we are interested in comparing the i -electron distribution in the bonds
instead of on the atoms. In the integrated expression (8-46) are cross terms that vanish
under the HMO assumption of zero overlap. But the overlaps are not actually zero,
especially between AOs on nearest neighbors. Hence, we might view the factors 1/4/2
as indicating how much overlap charge is being placed in the C1—C, and C,—C3 bonds
by an electron in ¢1. The C;—C3 bond is usually ignored because these atoms are not
nearest neighbors and therefore have much smaller AO overlap. Since S12 = $p3 = S;;
for neighbors i and j in any 7 system (assuming equal bond distances), we need not
include S;;, explicitly in our bond index. If we proceed in this manner, two electrons in

3Linear systems are exceptions to this rule. Problems are also encountered if there is an odd number of electrons
and spin-orbit coupling is substantial. The reader should realize that the above statement of the theorem is a little
misleading inasmuch as it makes it sound like the molecule finds itself in a symmetric geometry that produces
denerate MOs and then “distorts” to a lower-energy geometry. It is actually we who have guessed a geometry that
is too symmetric. When our calculations reveal that this results in degenerate orbital energies containing an odd
number of electrons, we are alerted that we have erred in our assumption, and that the molecule is really in a less
symmetric, lower energy geometry.

4See Salem [1, Chapter 8].
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¢ would then give us a “bond order” of 2/+/2 = 1.414. It is more convenient in practice
to divide this number in half, because then the calculated w-bond order for ethylene
turns out to be unity rather than two. Since ethylene has one 7-bond, this can be seen
to be a more sensible index.

As aresult of these considerations, the 7-bond order (sometimes called mobile bond
order) of the allyl radical is 1/+/2 =0.707 in each bond. (Electrons in ¢ make no
contribution to bond order since ¢, vanishes. This is consistent with the nonbonding
label for ¢;.)

Generalizing the argument gives, for p;;, the w-bond order between nearest-
neighbor atoms i and j:

all MOs

pij = Z NkCikC jk (8-48)
k

where the symbols have the same meanings as in Eq. (8-46). In cases in which partially
filled degenerate MOs are encountered, the averaging procedure described in connection
with electron densities must be employed for bond orders as well.

EXAMPLE 8-4 Calculate p;3 for the cyclopropenyl radical, using data in Fig. 8-7.

SOLUTION » There are 2 electrons in ¢; and the coefficients on atoms 1 and 3 are %, SO

this MO contributes 2 x (i)2 =2/3. We allocate L electron to ¢. Since ¢3 =0 in this MO,
/3 2

the contribution to p13 is zero. The remaining % electron goes to ¢3, yielding a contribution of
1,1, =2_-1 —2_1_1

[ J 89 Some Simplifying Generalizations

Thus far we have presented the bare bones of the HMO method using fairly small
systems as examples. If we try to apply this method directly to larger molecules, it is
very cumbersome. A ten-carbon-atom system leads to a 10 x 10 HMO determinant.
Expanding and solving this for roots and coefficients is tedious. However, there are
some short cuts available for certain cases. In the event that the system is too compli-
cated to yield to these, one can use computer programs which are readily available.

For straight chain and monocyclic planar, conjugated hydrocarbon systems, simple
formulas exist for HMO energy roots and coefficients. These are derivable from the
very simple forms of the HMO determinants for such systems.> We state the results
without proof.

For a straight chain of » unsaturated carbons numbered sequentially,

X

—2coslkn/(n+1)], k=1,2,...,n (8-49)
[2/(n 4 D12 sinfklw /(n + 1)] (8-50)

Clk

where [ is the atom index and &k the MO index.

5See Coulson [2].
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For a cyclic polyene of n carbons,

x = —2cos(2xk/n), k=0,1,...,n—1 (8-51)
e =n Vexprik(—1)/n], i=+—1 (8-52)

The coefficients derived from Eq. (8-52) for monocyclic polyenes will be complex
when the MO is one of a degenerate pair. In such cases one may take linear combinations
of these degenerate MOs to produce MOs with real coefficients, if one desires.

There is also a diagrammatic way to find the energy levels for linear and monocyclic
systems.® Let us consider monocycles first. One begins by drawing a circle of radius
2 |B]. Into this circle inscribe the cycle, point down, as shown in Fig. 8-9 for benzene.
Project sideways the points where the polygon intersects the circle. The positions of
these projections correspond to the HMO energy levels if the circle center is assumed
to be at £ =« (see Fig. 8-9). The number of intersections at a given energy is identical
to the degeneracy. The numerical values for £ are often obtainable from such a sketch
by inspection or simple trigonometry.

For straight chains, a modified version of the above method may be used: For an n-
carbon chain, inscribe a cycle with 2n 4 2 carbons into the circle as before. Projecting
out all intersections except the highest and lowest, and ignoring degeneracies gives the
proper roots. This is exemplified for the allyl system in Fig. 8-10.

Examination of the energy levels in Figs. 8-9 and 8-10 reveals that the orbital energies
are symmetrically disposed about £ = «. Why is this so? Consider the allyl system.
The lowest-energy MO has two bonding interactions. The highest-energy MO differs
only in that these interactions are now antibonding. [See Fig. 8-5 and note that the
coefficients in ¢; and ¢3 are identical except for sign in Eqs. (8-27) and (8-29).] The
role of the 8 terms is thus reversed and so they act to raise the orbital energy for ¢3 just
as much as they lower it for ¢;. A similar situation holds for benzene. As we will see
shortly, the lowest energy corresponds to an MO without nodes between atoms, so this
is a totally bonding MO. The highest-energy MO has nodal planes between all neighbor
carbons, and so every interaction is antibonding. An analogous argument holds for the
degenerate pairs of benzene MOs. These observations suggest that the energy of an

A
—_  E,=a-28
/\ -
T E=a
_— Eyy=a+f
\\/ _ Ei=a+ 20

E

Figure 8-9 » HMO energy levels for benzene produced by projecting intersections of a hexagon
with a circle of radius 2 |8].

6See Frost and Musulin [3].



Section 8-9 Some Simplifying Generalizations 261

= T
/ \
& J ..

X~~~

Figure 8-10 » HMO energy levels for the allyl system (n = 3) produced by projecting the inter-
sections of an octagon (n =2 x 3 + 2) with a circle of radius 2 |8].

Ey=a— /28

E,=«a

MO should be expressible as a function of the net bond order associated with it, and
this is indeed the case. The energy of the ith MO is given by the expression

Ei = / b1 Flnss dv = / S cixifin S e do (8-53)
k /

=> > cuic / X Hr 1 dv (8-54)
k1

When the atom indices k and / are identical, the integral is equal to «; when k and / are
neighbors, it equals B. Otherwise it vanishes. Hence, we may write

neighbors

Ei=) cha+ Y. cuciP (8-55)
k k.l

However, c,%i is qr.i, the electron density at atom k due to one electron in MO ¢;,
and ciicy; i pr,i, the bond order between atoms & and / due to an electron in ¢;.
Therefore,

neighbors

Ei=Y qria+2 )" puip (8-56)
k

k<l

We have seen that the sum of electron densities must equal the total number of electrons
present. For one electron in ¢;, this gives additional simplification.

bonds

Ei=a+28 ) pu.i (8-57)
k<l

The total m-electron energy is the sum of one-electron energies. For nm electrons

bonds

Ex=na+28 ) pu (8-58)
k<l

where py; is the total w-bond order between neighbors £ and /. Hence, the individual
orbital energies directly reflect the amount of bonding or antibonding described by
the MOs, and the total energy reflects the net bonding or antibonding due to all the 7
electrons together.
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EXAMPLE 8-5 The total 7 energy of cycloheptatrienyl radical (C7Hy7) is 7o +
8.54298. What is the bond order for any bond in this molecule, assuming it to be
heptagonal?

SOLUTION » The total 7-bond order must be 8.5429/2 or 4.2714. This results from seven
identical bonds, so each bond order is 4.2714/7 =0.6102. |

Does this pairing of energy levels observed for allyl and benzene always occur? It
is easy to show that it cannot in rings with an odd number of carbon centers. Consider
the cyclopropenyl system. The lowest-energy MO is nodeless, totally bonding and has
an energy of 2o 4+ 2. [Note from Eq. (8-51) and also from the diagram method that
every monocyclic system has a totally bonding MO at this energy.] To transform these
three bonding interactions into antibonding interactions of equal magnitude requires
that we cause a sign reversal across every bond. This is impossible, for, if c¢| disagrees
in sign with ¢, and ¢3, then ¢ and ¢3 must agree in sign and cannot yield an antibonding
interaction.

Not surprisingly, this has all been considered in a rigorous mathematical fashion.
Systems containing a ring with an odd number of atoms are “nonalternant” systems. All
other homonuclear unsaturated systems are “alternant” systems. An alternant system
can always have asterisks placed on some of the centers so that no two neighbors are
both asterisked or unasterisked. For nonalternants, this is not possible (see Fig. 8-11).
It is convenient to subdivide alternant systems into even alternants or odd alternants
according to whether the number of centers is even or odd. With this terminology
defined, we can now state the pairing theorem and some of its immediate consequences.

The theorem states that, for alternant systems, (1) energy levels are paired such that,
for each level at £ = « + kB there is a level at £ =« — kB; (2) MOs that are paired
in energy differ only in the signs of the coefficients for one of the sets (asterisked or
unasterisked) of AOs.

It is easy to see that an immediate result of this theorem is that an odd-alternant
system, which must have an odd number of MOs, must have a nonbonding (£ = «)
MO that is not paired with another MO. It is also possible to show that the electron
density is unity at every carbon for the neutral ground state of an alternant system. The
proofs of the pairing theorem and some of its consequences are given in Appendix 5.

Another useful short cut exists that enables one to sketch qualitatively the MOs
for any linear polyene. The HMOs for the allyl and butadiene systems are given in
Fig. 8-12. Notice that the envelopes of positive (or negative) phase in these MOs are
similar in appearance to the particle in a one-dimensional “box” solutions described

(a) (b) (c)

Figure 8-11 » (a) Even and (b) odd alternants have no two neighbors identical in terms of an
asterisk label. (c) Nonalternants have neighbors that are identical.
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Figure 8-12 » MO:s for the allyl and butadiene systems. The dashed lines emphasize the similarity
between an envelope, or contoutr, of positive ¢ for these systems and the particle in a one-dimensional
box solutions.

in Chapter 2. This similarity makes it fairly easy to guess the first few MOs for
pentadienyl, hexatriene, etc. Also, if one knows the lowest-energy half of the MOs for
such molecules, one can generate the remaining MOs by appeal to the second part of
the pairing theorem. (The edges of the one-dimensional box should extend one C—C
bond length beyond the terminal atoms.)

As we consider larger systems, brute-force solution of determinantal equations
becomes too labor-intensive, and so such cases are always either solved on a computer’
or else by appeal to HMO tabulations in print.® However, the above generalizations
continue to be useful in understanding the MO results.

8-10 HMO Calculations on Some Simple Molecules

Thus far, we have used the allyl and cyclopropenyl systems as examples. We will now
describe the results of HMO calculations on some other simple but important systems.

8-10.A Ethylene (Even Alternant)
The Hiickel determinantal equation is

1
X _0
1 x

7Memy types of quantum-chemical computer programs are available from: Quantum Chemistry Program
Exchange, Chemistry Department. Indiana University, Bloomington, Indiana 47401. On the Internet at
http://www.QCPE.Indiana.edu/

8See Coulson and Streitwieser [4], Streitwieser and Brauman [5], and Heilbronner and Straub [6]. See also
Appendix 6 of this text.
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and so x> — 1 =0; x = +1, —1. The resulting orbital energies and coefficients are

1 1
Ey=a+B,¢1 ZEXI +EX2
1 1
E> =a—ﬂ,¢2=ﬁX1—ﬁX2 (8-59)

These, with the ground state electronic configuration indicated, are shown in (II).
m-Electron densities and w-bond order are indicated in the diagram beneath the MO
sketches. Ethylene is an even alternant, so it has pair<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>