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Preface

Why another book on protein crystallography? Because we believe that there is a

demand for a concise, accessible introduction to this powerful method. Proteins,

as the agents that carry out the functions of cells and tissues, are assuming a

paramount role in research areas ranging from drug development to cell biology.

The atomic structures of proteins, as revealed by crystallography, are increasingly

being used to provide detailed insights into function and mechanism. Indeed,

dealing with protein structure is becoming unavoidable. Thus, the number of

scientists who desire a basic grasp of crystallography is growing, but there has not

been a volume available that o√ers an appropriate introduction.

We have designed our book to meet this need. First, it is quite short, less than

half the length of most other books on this topic. Second, we have worked hard to

make it accessible. It has lots of illustrations, and equations are introduced by

using intuitive arguments. Third, it focuses tightly on crystallography as an

imaging or microscopical process, deemphasizing the practical details. Finally, it

contains a glossary that defines many crystallographic terms. The book is aimed

at anyone who would like a trip through the essentials of crystallography. It will

not turn you into a crystallographer; but we hope reading it will make it easier to

converse with one.

The authors are grateful to Alexander McPherson and Jason McLellan for the gift

of figures and to Michaelis Hadjithomas for creating and drawing many of the

figures in the book. They thank each other for support during periods of slow

progress. Many figures in this book were prepared with the help of PyMOL (De-

Lano, W. L. The PyMOL Molecular Graphics System [2002]; www.pymol.org).

www.pymol.org
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Introduction

1.1 What Is X-ray Crystallography?

In 1912 Walter Friedrich and Paul Knipping, following up on Max von Laue’s

prediction, illuminated a crystal of copper sulfate with X rays and obtained the

first X-ray di√raction pattern. This simple experiment has evolved into a power-

ful technique that has enabled us to decipher the structure of DNA and of protein

molecules. This technique has resulted in at least eight Nobel prizes, and re-

searchers in the field anticipate more to come.

X-ray crystallography is a powerful form of microscopy that allows us

to visualize atoms and molecules. Almost all that we know about the three-

dimensional structures of proteins and nucleic acids, we have learned from the

use of X-ray crystallography. This method provides images of molecular struc-

tures that are far more detailed than any provided by light microscopy because

the very short wavelengths of X rays allow them to ‘‘sense’’ structural variation at

the atomic level.

X-ray crystallography di√ers from the more familiar light microscopy in

several important ways. The key di√erences are:

1. Crystallography uses X rays instead of visible light. The X rays used in crys-

tallography have wavelengths of about 1 Å = 10–10 meters, while visible light

has a wavelength of &5000 Å.

2. Unlike microscopy, X-ray crystallography is lensless. We are familiar with the

idea that X rays pass straight through objects—like people!—without being
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deflected. This suggests why there are no substances that make good lenses

for X rays: it is the job of a lens to bend or refract light, and X rays are so

energetic that they resist bending.

3. The specimens used in crystallography are crystals, which contain many

perfectly repeated copies of the molecules we wish to see. In contrast, micro-

scopists frequently examine single objects.

The very short wavelength of X rays is what makes them useful for studying

the structure of matter at the atomic level. The ability of a microscope to resolve

Figure 1.1. Summation of two circular waves emanating from two sources near to
each other. Such waves might be produced by light interacting with two small holes in
an optical mask, or by two pebbles dropped simultaneously into a pool of water.
Bright areas represent the wave crests, and dark areas correspond to the wave troughs.
The two individual waves are shown on the left, and their sum is shown on the right.
In the upper panels, the waves are emanating from points that are separated by a
distance d1 � twice the wavelength. The resultant wave shows clear interference
patterns, which would reveal to an observer some distance away that this resultant
wave pattern contains contributions from two waves. In other words, the observer
can resolve the two sources. In the lower panels, the waves emanate from points
separated by a distance d2, which is less than the wavelength. In this case, the resultant
wave pattern appears almost identical with a wave coming from a single source. It is
impossible to determine whether this wave pattern was generated from one pebble or
two, and an observer would therefore be unable to resolve the two sources. In this
manner, the wavelength of the scattered radiation limits our ability to distinguish two
closely spaced points.
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fine details is limited by the wavelength of the radiation used. For example, two

carbon atoms joined by a single bond are about 1.5 Å apart. To resolve these two

atoms as separate objects, we need to use a wavelength of light that is (roughly)

no larger than the distance between the atoms; light with such a short wavelength

falls in the X-ray region of the spectrum.

We give the name resolution to the ability to distinguish or resolve two nearby

points. The e√ect of wavelength upon resolution is illustrated in Figure 1.1. The

upper panel shows waves emanating from two well-separated points; the lower

panel shows what happens when the two points are separated by less than one

wavelength. In the latter case, the two wave patterns blend together and can

hardly be distinguished from the waves emanating from a single point. Thus, it is

impossible to know whether the pattern of scattered waves results from two

closely spaced objects or a single larger object.

We have described X rays as electromagnetic waves with short wavelengths. It

is one of the counterintuitive findings of quantum mechanics that light can be

equally well described as a stream of particles called photons. The energy of a

photon of light is inversely proportional to its wavelength. Because the X-ray

photons used in crystallography have short wavelengths, they have high energies

(&10,000 electron volts). The highly energetic character of X rays complicates the

imaging process, as described below.

In an ordinary light microscope, light waves scattered by the specimen are

collected by a high-quality lens (or system of lenses) and focused to form an

image. This is illustrated in Figure 1.2a. Because X rays have much greater pene-

trating power than visible light, it is more di≈cult to fabricate lenses that are able

to focus X rays. The best X-ray lenses currently known are of poor quality

compared with optical lenses, and they cannot produce high-resolution images.

Thus, as shown in Figure 1.2b, we carry out crystallographic experiments with-

out lenses, collecting the scattered radiation directly on film or some other

detector. The pattern that the scattered radiation makes on the detector is the

di√raction pattern. We use this measured di√raction to perform calculations on a

computer that mimic the action of the lens. These calculations allow us to

recombine the scattered radiation to form an image.

Unfortunately, calculating the image is not quite as simple as we have sug-

gested. Experimental limitations preclude our extracting all the information

contained in the di√raction pattern. Specifically, a complex number is required

to completely describe the scattered waves that make up the di√raction pattern;



Figure 1.2. (a) Schematic of a conventional imaging experiment with visible light.
Here, the specimen is represented by a cat. Radiation scattered by the cat is collected
by the lens, and an image is created at the image plane of the lens. For each point in
the specimen, the lens collects light scattered in many di√erent directions and re-
directs it to form an image of that point. (b, c) Schematics of imaging experiments
involving proteins. In (b) a single molecule is shown scattering X rays that are
collected by a detector with no intervening lens. The pattern on the detector will look
nothing like the object itself. The computer and monitor symbolize the process by
which calculations that mimic the function of a lens are used to create an image. In (c)
a protein crystal is shown as the specimen, along with the punctate di√raction pattern
characteristic of crystals. In (b) and (c) the horizontal line entering from the left
represents the incident X-ray beam and the diagonal lines represent di√racted rays.
Adapted from Crystallography Made Crystal Clear by Gale Rhodes.
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however, we are able to measure only the squared modulus of this complex

number. We need to know the correct complex square root of this number to

create the image. In practical terms, we can measure the amplitude of the dif-

fracted rays but not their relative phases. The problem of recovering the correct

square roots is the phase problem and is considered in more detail in Chapter 3.

Crystallographic experiments require crystals, as shown in Figure 1.2c. Why

do we use crystals? In principle we could do an X-ray experiment to image a

single molecule, but there are two practical obstacles to this. First, it would be

impossible to measure the di√raction pattern from a single molecule because it

would be too weak and drowned in noise from scattering by other elements of

the system. The second obstacle is specimen damage; a single molecule would be

burned up by the X rays before it could give rise to a useful di√raction pattern.

Crystals help us with both of these di≈culties.

Crystalline specimens greatly increase signal-to-noise in the measured dif-

fraction pattern. The protein* crystals we use contain 1012 or more molecules,

and so di√ract at least 1012 times as much radiation as a single molecule. For

reasons that we discuss later, the di√raction pattern from a crystal is confined to

rays or beams emanating in certain directions, which form ‘‘spots’’ on the film,

making the pattern much easier to measure. These spots are often called reflec-

tions because the incoming X-ray beam appears to be reflected by the crystal to

form the outgoing ray.

A typical example of a crystallographic di√raction pattern is shown in Figure

1.3. The complete di√raction pattern comprises many pictures such as this one,

taken with the crystal in various orientations. The number of independent reflec-

tions in the di√raction pattern of a protein crystal is very large, typically tens or

even hundreds of thousands. This is a tremendous amount of information,

which should not be surprising—the di√raction pattern specifies the detailed

image of a molecule that may contain thousands of atoms.

Crystalline specimens also reduce specimen damage. The X rays that create

the di√raction pattern are scattered from all the molecules in the crystal lattice, so

each individual molecule receives a much smaller dose. For example, if 1012

photons are required to create a high-resolution di√raction pattern and a crystal

contains 1012 molecules, then on average each molecule is hit by only one photon.

*This book describes the use of crystallography to determine protein structure. The reader
should be aware, however, that most of the techniques we discuss are equally applicable to other
macromolecules such as DNA.
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Figure 1.3. This figure shows the di√raction pattern created when a crystal of the
protein ferritin was rotated through a small angle (0.5\) while illuminated by the
X-ray beam. The white feature extending from the left is the shadow of the beam stop,
a small piece of metal positioned to capture the undi√racted X rays that pass through
the crystal. The reasons behind the punctate character of the di√raction pattern will
be discussed later in the book.

Crystallography is an imaging technique. Any image maps a particular char-

acteristic of an object—color, reflectivity, and so on. X rays are scattered by

electrons, and so our image is a record of the spatial distribution of the mole-

cule’s electrons. This image is the electron density function. The maximum resolu-

tion that can be achieved in the electron density image is determined by the

wavelength of the light used. However, factors such as disorder in the crystals

degrade the resolution of the image, and as a result it is generally not possible to
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Figure 1.4. This stereo pair illustrates the results of a crystallographic experiment and
the interpretation of those results. The wire mesh contours show the experimentally
determined electron density function. The stick model shows how this density is
interpreted in terms of an atomic model. See ‘‘Viewing Stereo Pictures’’ for more
information.

resolve individual atoms in protein structures. Figure 1.4 shows a portion of the

electron density map for a protein molecule, presented as a stereo view.

To understand how to visualize electron density maps, it is useful to consider

a simpler example, such as the weather map shown in Figure 1.5. A weather map

is a means of visualizing a two-dimensional function, namely, atmospheric pres-

sure presented as a function of latitude and longitude. Points having the same

atmospheric pressure are linked by lines on the weather map called isocontours.

In a three-dimensional function such as the electron density function, isocon-

tours will take the form of surfaces. These surfaces are frequently drawn to

resemble a wire mesh (see Figure 1.4). This representation has the advantage of

being transparent; it allows crystallographers to see the interior of a complex

molecule. Drawing multiple contours in a three-dimensional electron density

map would give rise to nested sets of surfaces and produce images that are dense

and di≈cult to understand. Therefore (unlike the case with two-dimensional

maps), electron density maps in general are visualized by showing only one

contour at a time.

Electron density maps provide interesting pictures of molecules, but what we

really want from a crystallographic experiment is a quantitative representation of

a molecule’s atomic structure. We want to know exactly where all the atoms are—

to develop a list of the x, y, z coordinates of each atom in the molecule. From such

a list we can calculate many things: the distances between atoms and the angles

between bonds, for instance. To obtain these coordinates, the experimental elec-

tron density contours are superimposed on a stick drawing representing the



Viewing Stereo Pictures

Protein structure figures are commonly published as stereo pairs. We owe

our ability to see objects in three dimensions to the fact that our eyes are

separated from each other by about 6 cm. Each eye therefore sees an

object from a slightly di√erent perspective, and our brains can integrate

these di√erent perspectives to produce an impression of the object’s

three-dimensional structure. Images that utilize stereo pairs take advan-

tage of this ability by providing two slightly di√erent views of the mole-

cule, corresponding to what would be seen by each of the two eyes. By

looking at the left-hand panel with the left eye and the right-hand panel

with the right eye, readers can gain a very impressive and helpful sense of

depth. It takes some e√ort to learn to do this, but it is well worth it for

anyone interested in molecular structure. A complete and useful intro-

duction to stereo viewing is given on Gale Rhodes’ Web site at:

www.usm.maine.edu/&rhodes/0Help/StereoView.html.

The trick to viewing stereo figures is to convince each of your eyes to

look only at its intended panel. We here mention just two approaches to

accomplish this. The first is to buy a pair of special glasses that make the

process very easy. Searching on the Web for ‘‘stereo glasses’’ or ‘‘stereo

viewer’’ will bring up numerous sources. The cheapest glasses have card-

board frames and plastic lenses and cost only a few dollars. A more

elaborate pair will set you back more (&$20), but will still be reasonable.

The second approach is to learn to view stereo figures without special

tools. This takes some practice, but makes your life much simpler. A

method that works for most people is the following: Touch your nose to

the page between the two views. Try to relax your eyes. You will see a

blurry image. Slowly move the paper away from your eyes, while keeping

your eyes relaxed. You will start to see multiple images, but concentrate

on the central image. When the picture is in focus, the central image is the

fused stereo pair and should show the desired three-dimensional e√ect.

Note: If you wear glasses, you will probably find it easier to perform this

maneuver without them.

www.usm.maine.edu/~rhodes/0Help/StereoView.html
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Figure 1.5. Weather map of the continental United States, showing atmospheric
pressure isocontours on the day of Hurricane Katrina. Note the steep pressure mini-
mum near New Orleans. In this two-dimensional contour map, isocontour lines
represent points at the same pressure; the numbers give the pressure values of dif-
ferent isocontours in units of millibars.

underlying molecular structure. The stick drawing is constructed using com-

puter software that allows us to manipulate the positions of the atoms until they

fit well with the experimental image. The model atomic coordinates are then

recorded from the stick model.

The process of going from the contour image to a set of atomic coordinates is

called fitting the map. In Figure 1.4 one can see that the sticks are compatible with

the contours, but it is not trivial to go from the contours to the stick model. This

process is described in more detail in Section 4.3. Great strides have been made in

automating the process of fitting the map, but as of this writing the majority of

crystallographic structures cannot be completely fit in an automated manner.

The electron density images in these cases are noisy and/or lack resolution, and

the correct fit is not necessarily obvious. Fitting such maps requires human

judgment. Thus, the initial stick model is an interpretation of the electron density

image that is guided by what we know about the structure of proteins.

How do we know how accurate our atomic model is? Once we have a model

that specifies where each atom is, we can calculate the di√raction pattern that the
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crystal would give if the model were correct and compare it with the observed

data. The statistic that describes the comparison between calculated and ob-

served is called the R value or R index. The R value provides an objective measure

of how well our model agrees with the experimental data. Atomic models should

also be consistent with known biochemistry. Thus, for example, groups known

to be in the active site of an enzyme should be clustered together in the model.

Sometimes portions of the protein simply cannot be seen in the electron

density map. To understand why, it is important to recognize two things. First,

the di√raction pattern is averaged over time. The molecules in a crystal are not

stationary during the di√raction experiment. The atoms in a protein molecule

have the same energies as gas atoms at the same temperature, which means that

they are not at rest but are rattling around in a cage formed by their neighbors.

These motions are fast relative to the timescale of the di√raction experiment.

This will blur the appearance of the atoms in the final image, for the same reason

that rapidly moving objects appear blurred in photographs. Second, the di√rac-

tion pattern is averaged over space. The di√raction we measure is an average of

the scattering from all the molecules in the crystal. If conformational di√erences

exist between di√erent molecules in the crystal, the resulting image will reflect

the average of all those di√erent conformations. Thus, when the electron density

for a portion of a molecule is poorly defined, it often means that there are many

possible conformations or that the molecule is undergoing large motions at that

locus.

Remember that the initial stick model is built by a human being and therefore

reflects certain subjective decisions on the part of that person. How can we trust

the e√orts of one person to fit a model to a set of contours? Another person would

certainly do it a little di√erently. Initial models therefore must contain errors or

inaccuracies. What rescues crystallographers here is a process called refinement.

Refinement is a computational procedure that systematically alters the model to

maximize agreement between the observed and calculated di√raction patterns. In

general, this procedure is very successful in objectifying the model. As a result,

when similar or identical structures are solved independently in di√erent labora-

tories, the resultant atomic models usually agree within experimental error. In the

best cases (salts and small organic molecules), crystallography can yield molecular

models with accuracies of 0.001 Å in atomic positions. Protein crystals are less well

ordered, and the accuracy of protein structures is usually a few tenths of an

angstrom. We discuss refinement in detail later in the book.

Finally, refined models are deposited in the Protein Data Bank. Some years
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Figure 1.6. Three representations of a portion of a protein structure determined by
using an X-ray crystallography experiment. In all cases the underlying information is
a computer file containing the x, y, z coordinates of each atom in the structure. The
left-hand panel shows a surface representation of the molecule, emphasizing the
portions of the protein accessible to the surrounding solvent. The central panel is an
all-atom representation (also known as ball-and-stick) in which the atoms are shown
as spheres, connected by sticks representing bonds. In this diagram the atomic
spheres are drawn much smaller than their true size so that one can see the interior of
the molecule. All-atom renditions are most commonly used to illustrate small por-
tions of a molecule; they can be confusing when too many atoms are included. The
right-hand panel is a backbone trace, with the flat surface of the ribbon roughly
corresponding to the plane of the peptide bonds. This view clearly illustrates that the
domain shown comprises three a-helices connected by linker regions. Because of
their simplicity, ribbon diagrams are popular choices to illustrate overall topology
and are particularly useful to highlight regions of di√erent secondary structure. 

ago crystallographers agreed (some reluctantly) to share their results in an open

and usable way, by deposition in a public data bank. Today, the Protein Data

Bank (www.pdb.org) contains the atomic coordinates of almost all the proteins

whose X-ray structures have been determined, almost 50,000 at this writing. A

similar database, the Nucleic Acid Database (ndbserver.rutgers.edu), exists for

nucleic acid structures. Visit these sites to see your favorite macromolecules.

Atomic models of proteins and other macromolecules are extremely com-

plex, which can make them di≈cult to comprehend. To address this problem,

many di√erent methods have evolved for representing molecular structure.

These methods are complementary, in that they highlight di√erent aspects of the

structure. Figure 1.6 shows three of the many options available for molecular

drawings.

www.pdb.org
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We conclude this section with a summary of the steps needed to complete the

X-ray crystallographic study of a protein.

1. Grow crystals of the protein.

2. Measure the di√raction pattern.

3. Estimate phases and form an image = calculate electron density function.

4. Fit a model to the image using the known amino acid sequence.

5. Refine the model.

6. Analyze the model in terms of the molecule’s known biochemical functions.

Is it consistent? Does it explain things?

7. Deposit coordinates in the PDB.

1.2 A Quick Look at Protein Crystals

Crystals of proteins look a lot like the ones you grew in elementary school science

class. Unlike salts and small molecules, however, proteins are large, floppy, and

irregularly shaped, and it is often tricky to induce them to form an ordered

crystal lattice. There is an art to growing these crystals, which we will not dis-

cuss. However, growing crystals usually represents the most di≈cult and time-

consuming part of a macromolecular crystallography project. Because of the

large size of protein molecules, there are substantial voids between them in the

crystal lattice. The space between proteins in the lattice is not a vacuum; it is filled

with the solution from which the crystal was grown. Protein crystals typically

contain &50% solvent by volume, and sometimes as much as 75–80%. These

liquid channels often allow small compounds such as ligands to be di√used into

an existing crystal. A gallery of protein crystals is shown in Figure 1.7.

The external regularity of crystals mirrors their microscopic order. Crystals

are built of parallelepipeds (shoeboxes) called unit cells, which are stacked side by

side in three dimensions to give a regular array. Each unit cell has a small number

of molecules in it, usually related to each other by symmetry operations, such as

rotations or translations. The smallest unit needed to build up the whole crystal

by repeated symmetry is called the asymmetric unit. See Figure 1.8 for a sche-

matic view of how molecules are combined to build up a macroscopic crystal.

The study of crystal symmetry is one of the most historically important areas of

crystallography. In the interest of conserving space, we will give it only a very

brief treatment; see the text by Stout and Jensen if you would like to know more.

Crystals may possess three basic types of symmetry: rotations, mirrors and
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Figure 1.7. Gallery of pictures illustrating a variety of protein crystals. Note the wide
variety of shapes. Note also the variation in the perfection of the external appearance
of the crystals, which is not necessarily related to perfection in internal order. The
names of the proteins appear in the individual frames. Kindly provided by Alexander
McPherson.

inversions, and translations. In a crystal possessing rotational symmetry, every

molecule in the crystal is superimposed on an identical copy of itself when

rotated by a specific angle (for example, 180\) about a particular axis. Allowed

rotational symmetries are twofold (180\), threefold (120\), fourfold (90\), and

sixfold (60\). Note that fivefold symmetry is not allowed in crystals, nor is

sevenfold symmetry or higher. When we say they are not allowed, we mean that it

is physically impossible to build up a repeating three-dimensional array that is

based on fivefold or sevenfold symmetry. Mirror symmetry or inversion symmetry
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Figure 1.8. Illustration of how a crystal is built up by symmetric repetition of simple
elements. (a) The asymmetric unit is the smallest entity that is necessary to build up
the entire crystal. In this example, the asymmetric unit corresponds to a single
molecule. (b) Identical copies of this molecule are generated by the space group
symmetry operations. In the example shown, each of the four molecules in the unit
cell is related to the other three by twofold (180\) rotations about one of three
symmetry axes. The three rotational symmetry axes are parallel to the unit cell edges.
This type of packing arrangement is known as 222 symmetry. These four molecules
comprise the contents of the unit cell, which is shown in (c). The unit cell is a box that
encloses the various symmetry-related copies of the asymmetric unit. The edges of
the unit cell are defined by three vectors, a, b, and c. Finally, as shown in (d), multiple
copies of the unit cells are stacked together to form the crystal, much as bricks are
stacked to form a wall. Each unit cell is related to all of its neighbors by a pure
translation that constitutes an integer number of steps in a, b, and c. Kindly provided
by Alexander McPherson.

means that molecules in the crystal are superimposed on copies of themselves

when reflected through a particular plane or point. Mirror planes and inversions

change the hand of objects and can therefore not be present in protein crystals,

since the amino acids comprising proteins are chiral. Finally, translations can be

combined with rotations or mirror planes to give screw axes or glide planes,

respectively.
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Crystal lattices are divided into seven types, depending on the rotational

symmetry they contain. Cubic lattices are the most symmetric, containing four-

fold, threefold, and twofold rotation axes (432 symmetry). Tetragonal lattices

have fourfold symmetry, hexagonal lattices sixfold, and so on. Triclinic lattices

have no rotational symmetry. The shape of the unit cell—the lengths of the edges

and the angles between them—depends on the lattice symmetry. For example, in

triclinic lattices, which are the least symmetric, none of the unit cell edges is equal

to any other, and none of the angles is 90\ or 120\; in tetragonal lattices two sides

of the unit cell are equal, and all angles are 90\; and so on.

Exhaustive calculations have proven that exactly 230 di√erent possible com-

binations of lattices and symmetries exist; in other words, there are 230 (and only

230) distinct ways to pack identical copies of objects into a three-dimensional

lattice. Each of these packing arrangements is called a space group. Here, the word

group refers to an algebraic structure in which operators (symmetries) operate

on some element to produce another. Of the 230 space groups, only 65 are

possible for proteins: the rest involve mirror symmetries that would change the

hand of the molecule. (Note that it is possible to produce crystals of chiral

molecules that contain mirror symmetry, if one crystallizes the racemic mixture.)

The precise space group in which any protein will choose to crystallize is

impossible to predict. And to an experimenter who is mainly interested in the

structure and biological function of a protein, the details of the crystal symmetry

can seem artificial and irrelevant. However, because crystallography involves

creating an image of the contents of the crystal, the exact manner in which those

contents are arranged turns out to be important, and knowledge of the space

group is a prerequisite for structure determination. Fortunately, the symmetry of

the crystal lattice is reflected in the symmetry of the di√raction pattern. For

example, if a crystal is oriented so that a fourfold rotational symmetry axis within

the crystal is parallel to the X-ray beam, the di√raction pattern will show fourfold

symmetry. Thus, careful analysis of the di√raction pattern allows the determina-

tion of the space group. This determination can generally be carried out auto-

matically by the software that processes the di√raction data.

1.3 Noncrystalline Specimens

Crystals o√er important advantages in di√raction experiments, and the most

detailed structural information available is derived from scattering by crystals,

but useful structural information can also be obtained from noncrystalline speci-



16 Protein Crystallography

mens. Historically the most important noncrystalline di√raction specimens have

been fibers. Fibers are built from linear structures that repeat in one dimension

but not the other two—one-dimensional crystals, in e√ect. DNA is a famous

example, and a-helices are another. In both of these cases the repeated element is

small—a base pair or an amino acid. In some fibers, such as F-actin, the repeating

unit is an entire protein molecule. A macroscopic fiber is composed of many of

these units, with their long axes approximately parallel. However, these units are

randomly oriented about their long axes, so that the fiber is a rotationally aver-

aged structure. Fibers are therefore much less ordered than crystals, and their

di√raction patterns contain correspondingly less information.

When the repeating unit is small, the di√raction from helical structures can

often be used to deduce an atomic model of the structure, much as Watson and

Crick did for DNA. The process does not usually involve generating an image by

solving the phase problem; rather, a trial-and-error method is used in which a

model is built and the model’s calculated di√raction pattern compared with the

observed. When the repeated unit is a whole protein, the lack of information in

the di√raction pattern prevents an atomic model from being built unless the

structure of the protein monomer is known independently. A notable exception

to this rule is the fiber formed by the tobacco mosaic virus—the structure of this

virus was determined solely from the fiber di√raction pattern.

Molecules in solution are even less well ordered than those in a fiber. In a

solution at any given instant, we expect the molecules to be found in all possible

orientations. Besides, unlike a fiber or a crystal, in solution the molecules are free

to move, and so their orientations will change from one moment to the next. For

this reason, the di√raction pattern measured from a solution is the rotational

average of the pattern from a single molecule. Solution scattering experiments

were historically carried out by measuring radiation scattered within a small

angle of the incident beam, and so the method has been called small-angle X-ray

scattering or SAXS. However, recent instrumental advances have enabled us to

measure radiation scattered at larger angles as well. The principal kinds of results

that can be derived from solution scattering experiments are summarized below.

≤ From scattering very near the incident beam we can find molecular weight.

≤ From scattering at small angles we can determine molecular size, represented

by the radius of gyration, RG.

≤ At larger angles we can determine the approximate shape of the molecule. This

allows us to distinguish between a folded and an unfolded protein, for example.
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≤ New intense X-ray sources have enabled time-resolved solution scattering

experiments. By monitoring changes in size and shape over time, investiga-

tors can follow processes such as protein folding and oligomerization.

1.4 Summary

≤ X-ray crystallography is an imaging technique, like microscopy. It allows us

to directly image the molecules that make up crystals.

≤ X-ray crystallography is lensless. Because X rays have very high energies, we

are unable to fashion lenses capable of bending them. Because we lack good

lenses, we must mimic the action of a lens by measuring the di√racted radia-

tion and using it to calculate images.

≤ X rays have wavelengths comparable to the distances between atoms in

molecules. This means that individual atoms can be resolved in images of

molecules.

≤ Crystals are composed of a set of shoebox-like unit cells arrayed on a peri-

odic, three-dimensional lattice. The densely packed and well-ordered arrays

of molecules found in crystals give rise to strong scattering signals, with much

higher signal-to-noise ratios than individual molecules would give. Also, the

X-ray scattering necessary to produce an image can be distributed over all the

unit cells in a crystal, reducing specimen damage.

≤ Noncrystalline samples such as fibers and solutions are also useful specimens

for X-ray di√raction.

further reading
Several excellent texts cover topics discussed in this chapter, approaching the topics from
varied points of view.

Crystallography Made Crystal Clear, 2nd edition, by Gale Rhodes (Academic Press,
New York, 2003) is a clear and well-constructed paperback. Good figures; gentle math.

Outline of Crystallography for Biologists by David Blow (Oxford University Press,
Oxford, 2002) is written by one of the creators of protein crystallography. Makes extensive
use of the convolution operation to explain many crystallographic points. This is a power-
ful tool, but it comes with a learning curve. Wonderful physical insights.

The Optical Principles of the Di√raction of X-Rays by R. W. James (G. Bell and Sons,
Ltd., London, 1954) is a bible for the more physically inclined.

Many of our figures are adapted from Crystal Structure Analysis: A Primer, 2nd
edition, by J. P. Glusker and K. N. Trueblood (Oxford University Press, New York, 1985).
This book is more oriented to small-molecule crystallography, but the early chapters that
describe crystal di√raction show great clarity and physical insight. Inexpensive.

X-ray solution scattering is making gigantic strides because of new algorithms for data
analysis, and because of better instrumentation. See the outstanding review by Svergun
and colleagues: Koch, M. H., Vachette, P., and Svergun, D. I. Small-angle scattering: a view
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on the properties, structures and structural changes of biological macromolecules in
solution. Q. Rev. Biophys. 2003;36(2):147–227.

Progress in fiber di√raction is summarized in a fine review by Gerald Stubbs: Stubbs,
G. Developments in fiber di√raction. Curr. Opin. Struct. Biol. 1999;9(5):615–619, which
also provides links to earlier reviews and papers.

The art of protein crystallization is beautifully presented in Crystallization of Biolog-
ical Macromolecules by Alexander McPherson (Cold Spring Harbor Laboratory Press,
Cold Spring Harbor, NY, 1999).

See Introduction to Protein Architecture by Arthur Lesk (Oxford University Press,
Oxford, 2003) for an insightful and elegantly illustrated guide to protein structure.
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2

A Physical Understanding of Di√raction

2.1 What Is Di√raction?

Di√raction is the process by which matter deflects light rays from their straight-

line path. This process is also called scattering. In microscopy, light scattered by

the specimen is captured and focused by lenses to make an image. In crystallogra-

phy, the light scattered by the sample is captured by a detector (Figure 2.1); we

obtain an image by performing calculations that mimic the action of the lens.

The precise pattern made by the scattered light is called the di√raction pattern.

In general, a di√raction pattern does not resemble the object that gave rise to it,

but the appearance of the di√raction pattern is critically dependent on the object’s

structure. This chapter presents a general method for understanding how an

object and its di√raction pattern are related and how an image of an object can be

recovered from its di√raction pattern. The discussion is slanted toward crystals

and crystallography, but it is generally applicable to many imaging techniques.

Illuminate a simple one- or two-dimensional crystal with a laser pointer, and

you will observe the basics of di√raction. The di√raction pattern of such a crystal

can be projected onto a wall or screen and appears as a lattice of spots. Some of

the questions that might occur to you include the following: 

≤ Why is the di√raction pattern of a crystal confined to spots (called reflections

by crystallographers)?

≤ How is the arrangement of reflections related to the crystal lattice?

≤ How can we use the reflections to make an image of the specimen?
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Figure 2.1. Schematic of a protein crystal and its X-ray di√raction pattern. The
horizontal line entering from the left represents the X-ray beam used to illuminate the
crystal; the square on the right represents the detector. Many di√erent di√racted rays
emerge from the crystal and are captured by the detector; one such ray is represented
by the diagonal dashed line emerging from the crystal. Note the punctate character of
the di√raction pattern on the detector surface, with its regular arrangement of points.
Each point represents the spot where a di√erent ray emerging from the crystal strikes
the detector.

≤ How is the di√raction pattern of a single object related to that of a crystal

containing many copies of that object?

You should try this yourself. An ideal specimen is one of the grids used to

hold samples in the electron microscope; it looks like a piece of window screen,

but it has a much finer mesh. If you have access to a local electron microscopy

facility, you may be able to beg one. There are also Web sites that allow you to

download files containing simple one- and two-dimensional lattices designed to

be printed onto a sheet of transparency film.* Simply shine the laser beam

through the specimen and see what happens (an EM grid is very small, so you’ll

need to use a forceps to hold it, or you could a≈x it to something else using glue

or modeling clay). This experiment is shown in Figure 2.2.

*As of this writing, you can obtain such files at the following URLs: www.math.montana.edu/frank
w/ccp/GraphPaper/di√raction/index.htm and http://alpdmn.phys.psu.edu/gratings/. These links
may no longer be valid by the time you read this, but a search with keywords such as ‘‘laser printer
di√raction grating’’ and ‘‘laser printer di√raction patterns’’ is likely to yield other possibilities. It is
also possible to purchase demonstration gratings from scientific supply houses such as Edmund
Scientific. Finally, EM grids can be purchased inexpensively from suppliers on the Web.

www.math.montana.edu/frankw/ccp/GraphPaper/diffraction/index.htm
www.math.montana.edu/frankw/ccp/GraphPaper/diffraction/index.htm
http://alpdmn.phys.psu.edu/gratings/


Figure 2.2. A simple laser di√raction experiment. In the upper panel, an inexpensive
laser pointer (1) is used to illuminate an EM grid (2), which is glued to a paperclip
and a≈xed with modeling clay to an inverted drink cup. The di√raction pattern (3) is
projected onto a wall about 1.5 meters away. The EM grid appears as a bright spot
because it is reflecting light back toward the camera. The lower panel shows the same
setup, except with the room lights turned down so the details of the di√raction
pattern may be seen. The inset shows a photomicrograph of the EM grid; the scale bar
in the inset corresponds to 500 mm. Note the ripples that appear around the EM grid
in the lower panel; these represent interference patterns in the reflected light. (You
don’t need to clamp the laser pointer to do this experiment yourself; the clamp simply
serves to hold it steady so the photograph isn’t blurred.)
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Before we discuss this further, we need to review a few aspects of the behavior

of light. Many di√erent kinds of light (including X rays) can be generated by

accelerating electrons. In an incandescent light bulb, for example, the large ther-

mal energies of the atoms in the filament cause their electrons to undergo violent

changes in motion, or accelerations. These accelerations cause the electrons to

give o√ light. This process is reciprocal: X rays and other light waves can acceler-

ate electrons, which in turn causes the electrons to emit radiation.

How does light accelerate electrons? Recall that light propagates as an oscillat-

ing wave. What is oscillating is the force that the light beam exerts on electrons in

its path. If you shine a light wave onto an electron, the electron experiences this

oscillating force, called the electric field, E. The electric field causes the electron to

oscillate back and forth with the frequency of the incoming radiation. As the

electron oscillates, it is constantly changing velocity, which means it is accelerat-

ing. Hence, the electron will reradiate light at the same frequency as the incoming

light and with an amplitude proportional to the light’s electric field. When an

object such as a crystal is illuminated with X rays, each electron in the object

oscillates and reradiates X rays. The di√raction pattern seen by a distant observer

is the sum of all the X rays being scattered or di√racted by the crystal. 

Figure 2.3 shows several examples of adding waves together. Later on we will

discuss how to do this quantitatively, but the most important result is very

simple. When you add together several cosine waves of the same wavelength, you

obtain a resultant cosine wave of the same wavelength. Thus, adding together all

the waves scattered by the di√erent electrons in the sample yields a new (resul-

tant) wave.

The model for generating the di√raction pattern of an object by adding the

di√racted waves was developed by the Dutch physicist Christiaan Huygens in the

seventeenth century. To illustrate, consider dropping a pebble into a pond. It

gives o√ a circular wave or ripple. If you drop two pebbles in at di√erent places

you obtain two intersecting sets of ripples (recall Figure 1.1). An observer at the

surface of the water sees the sum of the two waves. If a crest from one wave falls

on a crest from the other wave, the resultant wave is twice as high; if a crest falls

on a trough, the resultant wave vanishes. When a specimen is illuminated by light

(or X rays) every electron in it reradiates a spherical wave, analogous to the

circular wave caused by the pebbles. An observer standing at a large distance

from the object sees the resultant di√raction pattern, which is the sum of all the

tiny waves given o√ by the individual electrons. 
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Figure 2.3. Adding two cosine waves of the same wavelength yields a third wave of the
same wavelength. However, the phase and amplitude of this resultant wave, in gen-
eral, will not be the same as those of the two summed waves. In fact, the relative phase
of the two summed waves critically a√ects the appearance of the third wave. In the
upper panel, the two waves to be added are perfectly in phase, and the resultant wave
has an amplitude twice that of the two input waves, and the same phase. In the lower
panel, the two added waves are 180\ out of phase and cancel one another so that the
resultant wave has zero amplitude. In the middle panel, the two added waves are out
of phase by an angle somewhat less than 180\, and the resultant wave has an inter-
mediate amplitude and phase. Two cosine waves add to give a third cosine wave. You
can add this third wave to a fourth, and so on. Therefore, the sum of any number of
cosine waves is another cosine.

Consider what happens when we image the di√raction pattern onto a surface.

Every point on this surface is struck by a wave that is the sum of di√racted rays

emanating from all points within the crystal. The di√erent waves that strike

di√erent parts of the surface all have the same wavelength, but they di√er in

amplitude (how bright the light is) and in phase. The amount by which the peak

of one wave is displaced from the peak of another is called the phase di√erence



Figure 2.4. Di√raction from two adjacent holes. The two holes shown are part of a
simple one-dimensional crystal, an infinite row of evenly spaced holes extending in
both directions (only two holes are shown for clarity’s sake). Light shines on the holes
from the left, and each hole produces a spherical pattern of di√racted light rays
extending o√ in all directions. In certain directions the waves from all the holes add
up coherently, producing strong di√raction; in other directions, the waves from the
di√erent holes cancel one another, leading to no or weak di√raction. Three types of
examples are shown in the figure. For each example, the dashed line allows for easy
comparison of the phases of the waves scattered from the two adjacent holes. (a) The
waves from adjacent holes are in phase along the direction of the incident beam and
add to give strong di√raction. (b)–(d) Shown are directions for which waves from
adjacent holes are shifted by an integer number of wavelengths nl—equivalently, they
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between the two waves; a shift of one wavelength l corresponds to a phase

di√erence of 2p. By convention the reflection hidden under the transmitted

beam (the zero-order reflection) is assigned a phase of zero degrees. The phase of

any other reflection is defined as the phase di√erence between that reflection and

the zero-order reflection.

2.2 Di√raction from One-dimensional Crystals

It is easy to see why the di√raction pattern from a simple one-dimensional crystal

is confined to spots. One-dimensional crystals have long been used in the field of

optics, where they are called gratings or di√raction gratings. Imagine a grating that

consists of a long line of evenly spaced holes. The grating is illuminated by a light

beam, and Figure 2.4 shows light rays emanating from two neighboring holes. In

general, waves emerging in a particular direction from two adjacent holes will be

out of phase with one another and will not add constructively, so one sees no

di√raction in these directions. However, in a few specific directions the rays from

one hole will be a whole number of wavelengths out of phase with the waves from

the adjacent hole.* Thus in these particular directions (and only in these direc-

tions), the waves from all the holes add up strongly, and a di√racted ray will be

seen to emerge. As shown in Figure 2.5, the angles u at which these rays emerge

are given by

nl = a sinu (2.1)

where n = 1, 2, 3, . . . , and is the number of wavelengths by which adjacent rays

di√er in phase. By measuring the angle u that the rays make with the main beam

one can calculate the spacing a. This is a version of Bragg’s law and is our first

crystallographic calculation. 

The row-of-holes grating gives a good idea of why we have a di√raction

have a phase shift of 2pn. Di√raction is also strong in these directions. (e) Shown is a
direction in which the waves from adjacent holes have a path length di√erence of l/2;
waves in this direction will cancel. In fact, the sum of waves from all the holes has a
negligible value everywhere except in the special directions for which the path length
di√erence is nl.

*Being a whole number of wavelengths out of phase is the same as being in phase.



Figure 2.5. The geometry of Figure 2.4, shown in more detail. The two holes are
separated by the crystal period a. Two di√racted rays are shown emerging from the
adjacent holes, traveling in the direction specified by the angle u. The di√erence in the
path lengths traveled by these two waves is given by d = a sinu. For these two
di√racted rays to be in phase, this path length di√erence must equal a whole number
of wavelengths; in other words, d = nl, where n is an integer. The resulting equation
nl = a sinu is called Bragg’s law. Strong di√raction will only be observed at those
angles u for which this expression is true, and thus Bragg’s law explains why the
di√raction pattern from a one-dimensional grating is a series of spots. We will en-
counter a related version of this expression for three-dimensional crystals.

Figure 2.6. A cosine grating, which is a one-dimensional crystal for which the density
fluctuation takes the form of a cosine wave. This object has an ultrasimple di√raction
pattern, as shown in Figure 2.7.
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Figure 2.7. The di√raction pattern of the cosine grating in Figure 2.6. The di√raction
pattern consists of only three spots, referred to as the +1, –1, and zeroth orders.
(‘‘Orders’’ is a historical usage associated with gratings; the word reflection is used in
most contexts.)

pattern composed of discrete reflections, but it does not illustrate how to go from

a di√raction pattern to an image. Another laser demonstration will help explain

how this is done. We use a very simple specimen, the di√raction pattern of which

is also very simple. Instead of a row of holes, we use a set of stripes whose profile

is that of a cosine wave—that is, a densitometer trace of the specimen would show

a cosine profile (Figure 2.6). The di√raction pattern of this cosine grating has

only three spots. These are the zero-order reflection, which lies under the trans-

mitted beam, and the +1 and –1 order reflections, which lie on either side of the

transmitted beam. See Figure 2.7. (We will not explain why the di√raction pat-

tern has this appearance. Simply treat it as an observation.)

We plan to build more complex patterns using this simple system, but first,

we must understand what happens to the di√raction spots when we change the

grating.

≤ If we rotate the grating, the line of three spots rotates by the same amount. 

≤ If we stretch the grating (increase a), the spots move closer together (u

decreases). This follows from Bragg’s law.

≤ If we shrink the grating (decrease a), the spots move farther apart (u in-

creases). Again, this follows from Bragg’s law.

≤ If we make the stripes blacker, the reflections get stronger. If we make the

stripes less black, the reflections get weaker. In the special case where the

stripes become transparent, there is no contrast and thus no di√raction.

≤ If we translate the grating in Figure 2.7 parallel to itself (perpendicular to the

beam), the intensity of the spots does not change. This is because the laser
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Figure 2.8. The e√ect of moving an object on the phase of its di√raction pattern.
The object being moved is the same row-of-holes grating discussed earlier. Only a
single hole is shown here. The original position of the hole is shown in gray; the
grating is then shifted upward. Outgoing rays in the direction u are shown for both
the original and the new position of the hole. The dashed line is drawn to help us
compare the positions of the wave crests before and after the hole position is
shifted. It shows that the wave crests have changed position in the new ray, mean-
ing that the phase of the di√racted ray has changed. In general, for a translation of
qz the resultant phase shift is 2pqz sinu/l. For a hole spacing of a in the one-
dimensional crystal Bragg’s law gives sinu = nl/a. Combining this with the pre-
vious expression gives us this result: Moving the grating a distance of qz shifts the
phase by an amount 2pnqz/a.

beam is much bigger than the spacing of the stripes and spans many unit

cells. Translating the grating does not significantly change the number of

stripes in the beam, so the amplitude of the scattered waves does not change

either. 

≤ However, when we translate the grating as described above, an invisible but

very important shift is occurring: the phase changes.

Why does the phase change when we translate the specimen? This is a very

important point, and one that is hard to explain. It is easier to first think about

the row-of-holes grating. Figure 2.8 shows how the length of the path traveled by

the waves changes as the grating is shifted. Look at the figure carefully. The phase

shift qa is related to the translation qz as follows.
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qa = (2p/l)qz sinu

To gain intuition about this, imagine you are an observer standing at some point

on the detector, watching the waves arrive. The wave crests would strike the

detector in a regular sequence, let us say at 0, 1, 2, 3, . . . time units on your clock.

After the grating is moved, the wave crests will still arrive at the same intervals,

but the zero time will be shifted; now the crests are arriving at 0.3, 1.3, 2.3, 3.3, . . .

time units (for example). Can you figure out how these shifts in the zero time are

related to the phase shifts given above?

2.3 Reconstructing Images from Di√raction Patterns

We now return to the idea of building complex images using the cosine grating

discussed above. In the di√raction pattern from any one-dimensional grating,

you can assign each pair of spots as coming from a properly chosen cosine

grating. This idea is illustrated in Figure 2.9. Here, we consider a square wave

grating as an example of a simple one-dimensional crystal (this grating simply

looks like a collection of evenly spaced lines). The row of spots in Figure 2.9

represents the di√raction pattern of such a square wave grating. If we consider

the spots one pair at time (†n), we see that each pair by itself represents the

di√raction pattern of a single cosine grating. (We have left out the zero-order

reflection for simplicity.) The cosine grating with the smallest period accounts

for the outer pair of spots, the one with the largest period accounts for the inner

pair, and the intermediate grating accounts for the middle pair. Thus, the di√rac-

tion from the square wave grating can be approximated by the di√raction from a

series of cosine gratings. Not only do the cosine gratings put spots in the right

places, but other properties of the di√raction pattern are correct as well:

≤ The intensity of the reflection is controlled by the contrast of the grating.

≤ The phase of the reflection is controlled by the translational position of the

grating.

≤ The spacing between the spots is controlled by the period of the grating.

Let us be more quantitative. We are using a series of cosine gratings to

approximate a square wave grating. What are the properties of these cosine

gratings? The equation describing the profile of the cosine grating that contrib-

utes the first-order spots (n = †1) is as follows:
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Figure 2.9. Any di√raction pattern can be represented as the sum of di√raction
patterns from a series of cosine waves. The seven spots on the right represent the
di√raction pattern from some arbitrary one-dimensional crystal, such as a square
wave grating. The upper three panels show that individual cosine gratings can each
account for one pair of spots in this di√raction pattern. Note that the periods of the
cosine gratings are decreasing as we move from the top downward. The bottom panel
shows the sum of all three cosine gratings, which successfully accounts for the ob-
served di√raction pattern. Because we can account for the entire di√raction pattern of
the crystal by adding together the di√raction patterns of the three cosine gratings, the
sum of these three gratings must be a good representation of the crystal. 

g(z) = F cos�2pz

a
– a�

where g is the contrast or amplitude of the grating, F is a constant related to how

dark the grating appears, a is the period of the grating (the unit cell of the

crystal), and a is the phase. Remember that translating the entire grating along z

changes the phase.
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For the †n pair of reflections the grating equation is

gn(z) = F(n)cos�2pnz

a
– an�

where the subscript n has been added to distinguish the di√erent g’s. Hence,

di√raction from grating g1 gives the +1 and –1 reflections; di√raction from

grating g2 gives the +2 and –2 reflections; di√raction from grating g3 gives the

+3 and –3 reflections.

And now for a very important statement: 

If each pair of reflections in the crystal’s di√raction pattern can be

accounted for by the di√raction of a single cosine grating, then the crystal’s

entire di√raction pattern can be mimicked by the di√raction from the sum of

many cosine gratings. If the di√raction patterns from two objects are similar,

then the objects themselves must be similar; therefore, the sum of the cosine

gratings must look like the crystal.

This is a profound result that introduces the field known as Fourier analysis.

It is useful to express this result mathematically. The contrast profile for our one-

dimensional crystal can be written as a sum of cosine terms. All we have to do is

add up the di√erent functions g from the individual cosine gratings. Their sum

gives us the function r(z), which represents an image of the crystal and takes the

form of a sum of cosines.

r(z) = g0 + g1 + g2 + g3 + ... + gn

r(z) =
n�

l=0

gl

r(z) =
1

a

n�
l=–n

F(l)cos�2plz

a
– al� (2.2)

The intuitive way we developed the Fourier series results in an equation that is not

exactly in standard form. For reasons of symmetry mathematicians like to include

both negative and positive values of n in the series. To conform to this convention

we have changed the limits of the summation in (2.2) to run from –n to n. We

have also added a normalization factor (1/a) to conform to standard practice.



Figure 2.10. This figure shows how a grating with a square profile can be approxi-
mated by larger and larger numbers of cosine gratings. The profile of the square wave
grating is shown by a dotted line. The four panels show how successively increasing N,
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This result is surprising, because the object we are imaging can have any

form. Why cosines, specifically? It turns out that sums of cosines can approxi-

mate any periodic function; Joseph Fourier demonstrated this in the early nine-

teenth century. Such cosine expansions are called Fourier series and are well

known in mathematical physics. To justify our earlier assertion that we could

represent a square wave grating with a series of cosine gratings, Figure 2.10 shows

exactly how well a Fourier series can approximate a square wave function. This

figure illustrates an important property of the Fourier series that is directly

relevant to crystallography and other imaging techniques: Adding more and

more cosine terms gives a better and better approximation.

Recall that in Chapter 1 we drew an analogy between microscopy and crys-

tallography. In microscopy, the di√racted light waves are added back together by

the lens, producing an image of the di√racting object. The Fourier series is the

mathematical equivalent of the lens—it adds waves to produce an image. Good

lenses capture more of the di√racted light than poor ones and so create a better

image; similarly, the more terms (waves, or spots in the di√raction pattern) we

include in the Fourier series, the more accurate our image will be.

So far in this text we have used the cosine in two very di√erent ways: to

represent cosine density fluctuations in the crystal and to generically represent

the electromagnetic wave comprising the X-ray beam. Rather than using the

cosine for this latter role, most books instead use the complex exponential e ix

(sometimes written exp(ix)). This usage is based on the identity shown in Equa-

tion (2.3). The expression in (2.3) can be derived by expanding both sides in

power series and showing that they are equal. This identity is far from ob-

vious and should really be regarded as a definition of e ix, which has no a priori

meaning.

e ix = cos(x) + isin(x) (2.3)

Why would we use e ix to denote a wave rather than the simpler cosine? One

reason is that it simplifies the multiplication of two waves. The product

cos(x)§cos(y) cannot be reduced, but e ix§e iy = e i(x+y). Several other important

identities involving e ix are given below.

the number of cosine terms, leads to more and more accurate approximations. The
top panel, with a single cosine term, is a very poor approximation; however, by the
time 49 terms are included (bottom panel), the approximation is quite good.
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e ix = cos(x) + isin(x)

e–ix = cos(x) – isin(x)

e ix + e–ix = 2cos(x)

cos(x) =
e ix + e–ix

2

The function e ix is a complex number. Recall that complex numbers take the

form A + iB, where i = �–1. They are plotted in the complex plane as shown in

Figure 2.11 and can be represented using either x-y (Cartesian) or polar coordi-

nates. The length of the vector C = A + iB is called the modulus or amplitude,

written ∆C ∆ or C. ∆C ∆2 = A2 + B2. ∆C ∆2 can also be written (A + iB)(A – iB),

where A – iB is called the complex conjugate of C, often written C*. The polar

coordinate expression for C is Ce ia, where C is the amplitude (vector length) and

a is the phase (the angle the vector makes with the x axis). C* is Ce–ia. This

notation is particularly suitable for crystallography, because we measure ampli-

tude and phase separately. When we measure the intensity of a reflection we are

measuring ∆F ∆2, where F = Fe ia. The missing phase that cannot be measured

directly in the crystallographic experiment is a. 

The e ix notation greatly simplifies the addition of waves: Represent each wave

by a complex vector, where the amplitude and phase of the vector are equal to the

wave’s amplitude and phase. Then add the vectors head to tail. The resultant

vector has amplitude and phase equal to the amplitude and phase of the summed

wave.

We can now rewrite equations (2.2) and (2.3) to represent the image of the

crystal, r(z), using the exponential notation:

r(z) =
1

a

$�
n=–$

F(n)e ian e–2pinz/a (2.4)

Note how the phase can be separated from both the amplitude and the spatial co-

ordinate in this notation. The limits n = † $ are a mathematician’s conceit; prac-

tically speaking, we try to measure reflections for as many values of n as possible,

since adding terms adds detail to the image (illustrated in Figure 2.10). The

number of terms included in the Fourier series determines the image’s resolution.

A high-resolution image is built from many terms and contains lots of detail.
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Figure 2.11. Two representations of complex numbers. In the complex plane, the real
axis runs horizontally and the imaginary axis runs vertically. A complex number C is a
vector in the complex plane. C can be represented by its two components, A and B, along
the real and imaginary axes. In this format one would write C = A + iB. Alternately, C
can be represented in polar form, specifying the modulus (length) of the vector C and its
angle a with respect to the real axis. In this format one writes C = ∆C ∆exp(ia) � C
exp(ia). C *, the complex conjugate of C, is also shown. C * has polar angle –a.

To this point we have used a square wave grating as a simple one-dimensional

model for a crystal. In real crystals r(z) represents how the electrons in the

molecules that make up the crystal are distributed throughout space. Like our

square wave example, the electron density function is periodic (since the crystal

is made up of identical building blocks stacked together); unlike the square wave,

the electron density function in crystals is three-dimensional. The next chapter

will consider the di√raction from three-dimensional crystals.

2.4 Summary

≤ Discrete di√raction patterns result when light interacts with periodic structures.

≤ Periodic structures can be represented by sums of cosine terms. These sums

are called Fourier series. The more terms we include in the sum, the better the

quality of the resulting image.

≤ The di√raction from a periodic structure is equivalent to the di√raction from

the summed cosine terms used to represent that object.
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further reading
There are many crystallography books that discuss di√raction from various points of
view.

Chapter one of The Optical Principles of the Di√raction of X-Rays by R. W. James
(G. Bell and Sons, Ltd., London, 1954) overlaps considerably with this chapter (and
reveals all the cheating that we did). James was also an explorer who reached the South
Pole.

The Web site run by Kevin Cowtan, www.ysbl.york.ac.uk/&cowtan/fourier/fourier
.html, provides many di√raction pattern pictures and a variety of tutorials that are rele-
vant both to this chapter and to later ones. Your authors learned a lot from this site.
Thanks, Kevin.

www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html
www.ysbl.york.ac.uk/~cowtan/fourier/fourier.html
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3

Di√raction from Three-Dimensional Crystals

3.1 The Electron Density Function in Three Dimensions

We started our discussion of di√raction using one- and two-dimensional crys-

tals as examples because they are easy to visualize. Di√raction from three-

dimensional crystals is similar to the one- and two-dimensional cases. The big-

gest di√erence is that when a three-dimensional crystal is illuminated with an

X-ray beam, the reflections do not all appear at the same time. Instead, the crystal

must be moved into di√erent orientations to allow all the reflections to be

observed. In the early twentieth century, the father-and-son team of William and

William Lawrence Bragg developed a simple, semiquantitative model to explain

di√raction from three-dimensional crystals.

In the Bragg model the crystal contains families of equally spaced parallel

planes running in di√erent directions. Examples of these families of planes are

shown in Figure 3.1. The Bragg plane families are named by three integers, h, k,

and l, called Miller indices. Within one unit cell the numbers of planes cutting the

x, y, and z axes are symbolized by h (along x), k (along y), and l (along z). Thus,

the 4, 1, 1 family of planes cuts the x axis four times within one unit cell; it cuts

the y axis once and the z axis once. The triple of integers h, k, l is often written as a

vector h. The perpendicular distance between any two adjacent planes within a

family is known as the d or Bragg spacing; d can be readily calculated from the

Miller indices and the unit cell dimensions.
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Figure 3.1. Bragg planes in a crystal unit cell. Eight di√erent families of planes are
shown. Each family h, k, l divides the x-axis into h parts, divides the y-axis into k parts,
and divides the z-axis into l parts. Each of these families of planes gives rise to a distinct
X-ray reflection. The values h, k, l are called Miller indices. Note that some of the in-
dices are negative; the signs of the indices specify the direction of the tilt for that family
of planes. Adapted from McPherson: Preparation and Analysis of Protein Crystals.

The Miller indices themselves had been developed earlier to describe the

regular, external faces of crystals. It has emerged that the faces we observe in

crystals are parallel to simple families of Bragg planes.

The Braggs imagined that each family of planes gave rise to a separate X-ray

reflection. Each plane acts like a lightly silvered mirror, reflecting a tiny fraction

of the incoming beam as shown in Figure 3.2. If (and only if ) waves reflected

from adjacent planes are in phase, then constructive interference occurs and

strong di√raction is observed. This is strictly analogous to the one-dimensional

Bragg’s law case we have already discussed, when di√raction from adjacent holes

adds in phase to give reflections.

As in the one-dimensional case, waves reflected from two adjacent planes are

in phase only when the path length di√erence for the two waves equals a whole

number of wavelengths. This condition leads to Bragg’s law:
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Figure 3.2. Bragg’s Law. (a) The two horizontal lines represent two planes belonging
to a family of Bragg planes, with an interplane spacing of d. Incoming X rays enter
from the upper left. Each plane acts as weak mirror and reflects a tiny fraction of each
ray toward the upper right (the transmitted rays are omitted for clarity). The ray
reflected from the lower plane travels a greater distance than the ray reflected from the
upper plane; the extra distance is ABC = 2d sinu. When this path length di√erence
equals a whole number of wavelengths l, the two reflected rays are in phase and the
Bragg condition occurs: nl = 2d sinu. (b) The n = 1 and the n = –1 reflection for a
given set of Bragg planes. The di√erence between these two reflections can be under-
stood as a di√erence in the orientation of the planes with respect to the X-ray beam.
In one case, the rays are reflected from the ‘‘top’’ of the planes, and in the other they
are reflected from the ‘‘bottom.’’ 

nl = 2d sinu (3.1)

Strong di√raction is only observed for values of u that correspond to integer

values of n. In practice crystallographers only consider the n = 1 reflection from

each family of planes, since the n = 2 reflection can be regarded as coming from

the planes 2h, 2k, 2l, which have a spacing d /2.

Representing anything as complicated as a protein crystal as a set of stacks of

planes may seem like a wild oversimplification, but for the simple crystals the

Braggs were studying in 1915, this model is reasonable. For example, in crystals
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Figure 3.3. A Bragg plane family and a three-dimensional cosine density fluctuation
have characteristics in common. A stack of planes and a cosine wave both having the
same spacing d are drawn next to one another to illustrate this point.

of the graphite form of carbon all the atoms lie in planes located at z = 0, 1,

2, . . . . These planes of atoms correspond well to the 001 family of Bragg planes.

Even for more complicated crystals, the Bragg theory is very useful for under-

standing the geometry of di√raction. On the other hand, the parallel plane model

does not lend itself to calculating images; but it is easy to connect Bragg theory

with the Fourier approach we took for calculating images of one-dimensional

crystals. The trick is to realize that, as shown in Figure 3.3, the Bragg plane family

h, k, l resembles the three-dimensional density wave cos(2p[hx/a + ky/b +

lz/c]). The Bragg planes can be thought of as simply marking the positions of the

peaks of the cosine wave. If, as in graphite, many atoms lie on or near a given set

of Bragg planes, the amplitude of the cosine density wave will be large, and

scattering will be strong for this reflection.

Like Bragg planes, a three-dimensional cosine density fluctuation also obeys

Bragg’s law. However, unlike the corresponding set of Bragg planes, the co-

sine density wave only gives reflections for the case n = †1. Thus, a three-

dimensional cosine density wave represents a kind of hypersimplified crystal that

only gives one pair of Bragg reflections. (The n = –1 case occurs when the X rays

come from below instead of from above, producing a symmetrically related

reflection; see Figure 3.2b). Of course, real crystals will be much more compli-

cated than a single cosine density wave, but they can be modeled by including

additional density waves. Thus, just as we modeled one-dimensional functions in

Chapter 2 by using sums of cosines, we can model a crystal’s three-dimensional

electron density distribution by using sums of cosine density waves, with each

density wave contributing one pair of reflections. As we saw in Chapter 2, many
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cosine terms are required to accurately reproduce the fine details of the target

function. To properly model the complexity of real protein crystals, tens or even

hundreds of thousands of reflections are required.

The expression for the electron density function in three dimensions is

closely analogous to the one-dimensional version obtained in Chapter 2. It looks

quite formidable, but we are now in a position to understand it intuitively.

Following is a reminder about what the variables are:

≤ V is the volume of the unit cell, whose edges are of length a, b, and c. For a

rectangular solid, V = abc.

≤ The Miller indices h, k, l specify the direction and period of the cosine wave.

They are used just like Miller indices for Bragg planes. In one unit cell there

are h periods of the cosine wave along the x axis, k periods along y, and l

along z.

≤ a is the phase of the cosine wave. It describes how far the crest of the wave is

from the coordinate origin, x = 0, y = 0, z = 0. a is not measured directly; it

is estimated by means we have not yet discussed.

≤ F(h, k, l) is the amplitude of the cosine wave h, k, l. F is obtained from the dif-

fraction experiment—the intensity of the h, k, l reflection is proportional to F 2.

≤ r(x, y, z) is what we wish to recover, namely, the image showing where the

electrons are localized in space (the electron density map). We calculate r at

closely spaced intervals of x, y, and z to make a three-dimensional function

that can be contoured and displayed on a computer screen. Calculating r is a

big job because the summation over all reflections has to be done for each

point x, y, z.

The equation in cosine form is

r(x, y, z) =
1

V

$�
h=–$

$�
k=–$

$�
l=–$

F(h, k, l)cos(2p�hx

a
+

ky

b
+

lz

c �– a) (3.2)

The equation in exponential form is

r(x, y, z) =
1

V

$�
h=–$

$�
k=–$

$�
l=–$

F(h, k, l)exp(ia)exp(–2pi�hx

a
+

ky

b
+

lz

c �)

(3.3)
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Some books use vector notation to condense these equations: h, k, l = h and (x/a,

y/b, z/c) = x. The latter are called fractional coordinates because they range from

0 to 1 along one unit cell edge. In vector notation, the same equation is written as

r(x) =
1

V

$�
–$

F (h)exp(ia)exp(–2pih § x) (3.4)

Equations (3.2) to (3.4) are simply three di√erent ways of writing the same

equation.

In summary, the F and a for every X-ray reflection correspond to the ampli-

tude and phase of a cosine density wave running through the crystal. By adding

these density waves together we can form an image.

Figure 3.4 shows an electron density function being built of cosine fluctua-

tions. Here we show a two-dimensional example, because it is easier to visualize

than a three-dimensional one. Panels a and b show two orthogonal density

fluctuations and their di√raction patterns; panel c is their sum. You can already see

that with only two cosine terms, peaks are starting to appear in the image shown in

Figure 3.4c. Panels d and e show the diagonal wave arising from the (1,1) reflec-

tion, but with two di√erent phases. One wave, given by cos(2p[x/a + y/b ]), has a

density maximum at the origin (in other words, its phase = 0); the other, given by

(cos(2p[x/a + y/b] – p)), has a minimum at the origin (phase = p radians).

Panels f and g are the sums of three cosine fluctuations—the two already summed

in panel c, plus the two versions of the (1,1) fluctuation. Note how the resultant

images change when the phase of the (1,1) contribution is changed.

As the electron density equation explicitly states, the images of molecules that

are produced using X-ray crystallography result from the addition of many

cosine terms that correspond to density waves within the crystal. The example

given in Figure 3.4 illustrates how critical it is to add these waves with the correct

relative phases if we are to obtain an accurate image. Unfortunately, although we

can measure the amplitude of each cosine term in our X-ray di√raction experi-

ment, for practical reasons it is impossible to measure the relative phases of these

terms. This is a critical technical issue and is known as the phase problem in

crystallography. Much of the intellectual e√ort that has been invested in crys-

tallography during the past century has been devoted to overcoming this prob-

lem. We discuss how protein crystallographers typically attack the phase problem

in the next chapter.

The quality of the image we create depends not only on accurate phases, but
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Figure 3.4. Series of two-dimensional cosine density fluctuations and their di√raction
patterns. For each panel, the cosine fluctuation is shown on the left, with its di√rac-
tion pattern on the right. Panel (c) represents the sum of panels (a) and (b); (f ) = (a)
+ (b) + (d); (g) = (a) + (b) + (e). In each panel, the white box represents one unit
cell in the two-dimensional crystal. This figure is described in more detail in the text. 

also on which cosine density fluctuations we incorporate in the electron density

function sum. Each hkl term in the Fourier summation has a period d, equal to

the Bragg spacing d for the hkl family of Bragg planes. Fourier terms with small

values of d provide fine detail (high-resolution information) in the electron

density map. Figure 3.5 illustrates the e√ect of resolution on the reconstruction

of a single object. When high-resolution (small d) di√raction data are omitted

from the Fourier summation, the resulting images lack detail. The same e√ect is

seen with crystals.



Figure 3.5. A cat and its di√raction pattern illustrate the e√ect of resolution on image
quality. A cat is shown in (a), and its calculated di√raction pattern is in (b). (What is
actually shown is the amplitude or modulus of the scattering vector—bright areas
represent strong scattering, and dark places represent weak scattering). In (d), the
di√raction pattern is truncated beyond a certain radius. In (c), we see the image of the
cat reconstructed from this truncated di√raction pattern. (The distance from the
center of the di√raction pattern corresponds to sinu/l, or resolution, so removing
data beyond a particular radius is equivalent to discarding the high-resolution dif-
fraction data.) The reconstructed image in (c) clearly does not contain the level of
detail seen in (a). The resolution of the di√raction pattern is reduced even further in
(f ), and the corresponding image shown in (e) has even less detail. This figure and
Figure 3.6 were inspired by similar figures found in Taylor and Lipson’s book on
optical transforms.
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In the di√raction pattern shown in Figure 1.3, each spot corresponds to one

reflection; the darker the spot, the more intense the reflection. Bragg’s law tells us

that reflections with small values of d have large values of sinu and so in this

figure the high-resolution reflections are those spots falling near the edge of the

detector. Note how the average intensity of the reflections tends to decrease as

one goes from the center of the detector out to the corners. This fallo√ in

intensity is caused in part by imperfections in the crystal that limit the resolution

of the data that can be measured. Much of the art in crystallography lies in

coaxing recalcitrant molecules to form well-ordered crystals from which high-

resolution data can be measured.

We can formally describe how the detail of the image depends on the resolu-

tion of the di√raction pattern. The resolution of the map is defined as the smallest

value of d for which reflections are included in the electron density sum. Thus

‘‘2 Å resolution’’ means that all (or most) of the terms in the summation having

d ? 2Å have been measured and included in the map calculation.

We can calculate d by rearranging Bragg’s law.

1

d
=

2sinu

l
(3.5)

The quantity 2sinu/l is often used as a variable representing resolution (see, for

example, Figure 3.7).

d can also be determined geometrically by calculating the spacing between

adjacent Bragg planes. In the case in which the lattice contains all right angles the

result is

�1

d
�2

= �h

a
�2

+ �k

b
�2

+ � l

c
�2

(3.6)

Crystal lattices for which the unit cell axes are not orthogonal give rise to some-

what more complicated expressions for d.

Figure 3.5 represents di√raction from a single object (a cat). Most of this

book, however, is concerned with di√raction from crystals. How is the di√raction

pattern of a single object related to the di√raction pattern of a crystal, which

contains many copies of that object? When you place multiple copies of an object

next to one another, their di√raction patterns interfere with each other, just as we



Figure 3.6. The di√raction patterns of a single object and multiple copies of that object.
(a) A single object—a collection of six spots—that corresponds to a single unit cell of a
crystal. Its di√raction pattern is shown on the right. Note that the di√raction pattern of a
single unit cell is continuous. (b) Two side-by-side copies of the object and the di√raction
pattern of this 1 — 2 array. See how placing two copies of the unit cell next to each other
gives rise to interference, which causes stripes to appear in the di√raction pattern. (c) Ten
copies of the unit cell assembled into a small one-dimensional crystal (a 1 — 10 array).
The di√raction pattern of this one-dimensional crystal now shows pronounced sampling
in the direction that corresponds to the unit cell packing. (d) A 2 — 2 array of unit cells.
The di√raction pattern now begins to show sampling in both dimensions. (e) Simulation
of a two-dimensional crystal with a 10 — 10 array of unit cells. The resulting di√raction
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saw with the row of holes in Chapter 2. The resultant di√raction pattern will be

strong in some directions and weak in others. Figure 3.6 illustrates this e√ect.

The figure shows an object consisting of six dots (think of this array as six tiny

holes in a laser di√raction grating, or as an imaginary two-dimensional molecule

containing six atoms). The object is repeated in several configurations, including

a two-dimensional crystalline array. The di√raction pattern of each configuration

is shown at the right. You can see that the di√raction pattern of the single object

is continuous; however, stacking the objects in a particular direction causes the

di√raction pattern to be sampled at regular intervals in that direction. The

di√raction pattern of the crystal appears very di√erent from that of the single

pattern is no longer continuous, but is confined to discrete spots (almost discrete—
you can still see some streaking connecting the brightest spots. In a real crystal with
thousands of unit cells, even this streaking would disappear). 
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molecule, but if you look closely at the figure you will be able to see that they are

in fact closely related. Imagine taking a piece of black paper and punching tiny

holes in it at the positions of the spots in the crystal di√raction pattern. If you

were to place this mask over the di√raction pattern of the single molecule, you

would obtain the crystal di√raction pattern.

The di√raction pattern of a crystal is a sampled version of the di√raction pattern

of the individual objects making up that crystal (the unit cells). The crystal’s dif-

fraction pattern is zero everywhere except for the spots where crystal di√raction is

allowed; and at these spots the crystal’s di√raction pattern equals that of the unit cell.

Bragg’s law explains this sampling phenomenon. Each unit cell in the crystal

produces a continuous di√raction pattern. The individual di√raction patterns

from all these unit cells contribute to the net di√raction observed from the

crystal. In most directions, the scattered waves from di√erent unit cells are out of

phase, and so cancel each other to give zero net scattering. Nonzero di√raction is

only observed in those directions for which the di√racted waves from all the unit

cells are in phase. Hence, the di√raction pattern consists of discrete spots or

reflections (Bragg peaks). At the positions of these Bragg peaks, the di√racted

waves from every unit cell simply add together. Therefore, at each reflection, the

amplitude of the crystal’s di√raction pattern equals the amplitude of the di√rac-

tion pattern of a single unit cell, multiplied by the number of unit cells in the

crystal. The intensity goes up as the square of number of unit cells.

A mathematical aside: how do we represent the electron density for a non-

periodic object like the cat? The di√raction patterns from crystals contain discrete

reflections, and the electron density in a crystal is calculated from the sum of

these reflections. As we saw in Figure 3.6, the di√raction patterns of nonperiodic

objects are continuous, and so one might expect that the electron density sum

would be transformed into an integral. This is exactly what happens in equation

(3.7), where q, r, and s represent continuous versions of h, k, and l.

r(x, y, z) =

$

�
–$

$

�
–$

$

�
–$

F (q, r, s)exp(–2pi(qx + ry + sz)+ ia) dqdrds

(3.7)

This integral is called a Fourier integral. It allows you convert a continuous

di√raction pattern to an image. This integral can be inverted (we omit the proof)

to give an equation for F.
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F(q, r, s) =

$

�
–$

$

�
–$

$

�
–$

r(x, y, z)exp(2pi(qx + ry + sz)) dxdydz (3.8)

3.2 Calculating the Di√raction Pattern from a Known Structure

We have figured out how to make an image from the di√raction pattern. How

about the other way around—a di√raction pattern from an object? This is impor-

tant because after we have produced a model of a molecule in our crystal struc-

ture determination, we want to check the model to make certain it is correct. A

good way to do this is to calculate the di√raction pattern of the model and to see

how well it agrees with experiment.

Let us start with a crystal having one atom in the unit cell. Atoms have known

distributions of electrons, and it is possible to calculate the di√raction patterns of

single atoms of every type. The single-atom di√raction patterns are called atomic

scattering factors and are conventionally symbolized f (hkl). Values of f for all

elements are available in tables; an example is shown in Figure 3.7. In general, the

atomic scattering factor is normalized in terms of the scattering of one electron.

Hence, f(hkl) for carbon, which has six electrons, has a maximum value of six.

Atomic scattering factors are continuous, like the di√raction pattern of the cat.

Suppose we have a crystal that contains a carbon atom at every lattice point and no

other atoms. To calculate the di√raction pattern of this crystal, one would do what

we did in Figure 3.6. Instead of the di√raction pattern of the six dots, we use the

known di√raction pattern of one carbon atom. We then sample this pattern at the

correct di√raction points. The resulting, very simple, equation, is given by

F(h, k, l) = f(h, k, l) = f �2sinu

l � (3.9)

The second equality comes from equation (3.5). Because the scattering is sym-

metric, all directions are the same; only the resolution matters.

What if the atom is not at the origin? We calculated earlier that when we shift

a grating of period a by an amount z, the phase of the nth reflection is shifted by

a = 2pnz/a (see Figure 2.8). This can be generalized to three dimensions. If we

move an object from the point (0, 0, 0) to the point (x, y, z), expressed in frac-

tional coordinates, the phase change in the reflection hkl is 2p(hx + ky + lz).

Thus, the di√raction pattern for a crystal containing one atom at a point x, y, z is:
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Figure 3.7. The atomic scattering factor as a function of resolution. The scattering
from a single atom (if we could measure it) would give a circularly symmetric pattern
on the detector. We would see a large peak of scattering at the origin, falling monoto-
nically as one moves radially outward. The atomic scattering factor is a radial trace
through this diagram. The curve shown has been calculated for carbon; other ele-
ments give curves that are very similar in appearance, di√ering mainly in the height of
the peak at the origin.

F(h, k, l) = f(h, k, l)exp(2pi(hx + ky + lz)) (3.10)

Note that this expression is just like the one for an atom at the origin, except with

a change in phase.

What if the crystal has many atoms in the unit cell? A crystal with many

atoms in the unit cell—say N atoms—is simply the sum of N crystals, each having

one atom in the unit cell. The di√raction pattern from such a crystal is calculated

just like the one above, but summed over all N atoms.

F(h, k, l) =
N�

j=1

fj(h, k, l)exp(2pi(hxj + kyj + lzj)) (3.11)

F is often called a structure factor, and equation (3.11) is known as the structure

factor equation.



Three-Dimensional Crystals 51

You may have noticed that we use boldface type for the structure factor F.

This is to show that F is a vector, because it represents a scattered wave. We will

follow this convention throughout the book. When we wish to discuss the ampli-

tude of a vector, we will use either normal typeface or vertical bars. For example,

FP refers to a vector while both FP and ∆FP∆ denote the amplitude of that vector.

We will use both representations of the amplitude interchangeably.

How do we find the di√raction pattern starting from the electron density

function, rather than an atomic model? The answer to this has already been given

for the case of a single cat or other object. The answer for a crystalline array of

objects is not very di√erent and simply uses a di√erent form of the structure

factor equation. In one case we sum over individual atoms and e√ectively infer

the electron density function from the atomic positions and the known shapes of

the electron clouds of each atom. In the other case, we integrate over the whole

cell using an explicitly defined electron density distribution (equation 3.8). The

two forms of the equation are therefore e√ectively equivalent, and which form is

actually used is dictated by the application.

This equation ignores the thermal motions of atoms within the crystal. Un-

less we’re doing our structure analysis at temperatures near absolute zero (which

rarely happens), each atom in the crystal will possess a significant amount of

thermal energy, which causes it to vibrate. Depending on how tightly an atom is

hemmed in by its neighbors, these vibrations can be substantial. This thermal

motion has an interesting e√ect on the di√raction pattern.

The dotted arrow in the left-hand panel of Figure 3.8 represents the contribu-

tion of a single atom at point xj to the structure factor F (h). This vector is just

one term in equation (3.11). If all the atoms in the crystal were perfectly still, then

at any given instant the equivalent atoms in other unit cells would also lie at

identical positions xj, and each of these equivalent atoms would make identical

contributions to the structure factor. This is shown in the right-hand panel of

Figure 3.8 by the vector sum of many identical dotted arrows.

Because each atom undergoes thermal motion, however, each arrow oscil-

lates around its mean position through angles 2ph§qxj, where qxj is the in-

stantaneous displacement of the atom. The solid arrow in the left-hand panel is a

snapshot of one such rotated vector—this is the contribution to the scattering

factor of an atom that has strayed from its equilibrium position by qxj. Every one

of the equivalent atoms in other unit cells is also undergoing thermal motion, but

since their motions are uncorrelated, at any given instant, qxj will be slightly
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Figure 3.8. Origin of the decrease in di√racted intensity caused by thermal motions
of atoms. This figure is described in the text.

di√erent for each atom. Therefore, the actual contributions to the structure

factor will resemble the vector sum of the solid arrows in the right-hand panel of

the figure. The e√ective contribution of atom j to the structure factor is multi-

plied by the factor [cos(2ph§qxj)], and so the amplitude of the summed

contributions drops. (Here we have used the notation that [z] is the average or

expectation value of z.) As the motions qxj become larger, the cosine becomes

smaller, and the structure factor is reduced more. Similarly, as h becomes larger,

the structure factor is further reduced. This is why structure factors become

weaker at high resolution.

To gain a more quantitative picture of this we need to find a way of evaluating

[cos(2ph§qxj)]. If we assume a Gaussian distribution for qxj, we can calculate

this factor.

[cos(2ph § qxj)] = �exp(–qx2/2u2)cos(2ph § qxj)dV (3.12)

where u2 = [qx2], the mean square atomic displacement.

This integral is a cosine Fourier transform of the Gaussian. When evaluated,

it yields another Gaussian, given by

[cos(2ph § qxj)] = exp(–B sin2u/l2) (3.13)

where B = 8p2u2. B is called the temperature factor and is typically expressed in

units of Å2; the larger the atomic motions, the larger the value of B. The entire
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exponential is called the Debye-Waller factor, and it is included in the structure

factor equation to account for the e√ects of thermal motion:

F(h, k, l) =
N�

j=1

fj(h, k, l)exp�–B
sin2u

l2 �exp(2pi(hxj + kyj + lzj)) (3.14)

Large values of B can dramatically reduce the structure factor amplitudes at high

resolution. If l = 1, for example, at 2 Å resolution sin2u/l2 = 1/16. If B = 48 Å2

(not an unusual value for atoms in protein crystals), the Debye-Waller factor is

e–3 &1/20. This means that F is reduced by a factor of 20, and that F 2, which is

what we measure, is decreased by a factor of 400.

High B values do not necessarily imply motion. Static disorder (i.e., a situa-

tion where equivalent atoms in di√erent unit cells are not perfectly aligned)

would have a similar e√ect on the di√raction. Thermal motion and other sorts of

disorder are the major impediment to measuring high-resolution di√raction

from most protein crystals.

3.3 Summary

≤ Di√raction from three-dimensional crystals can be mathematically modeled

as arising from three-dimensional cosine waves (density fluctuations) run-

ning through the crystal.

≤ The di√raction from any individual density fluctuation can only be seen

when Bragg’s law is satisfied: l = 2dsinu.

≤ We build up an image of the crystal—the electron density function—by

adding together all these density fluctuations, using a weight (F) and a phase

(a) for each term. We can measure F (as F 2), but we have not yet explained

how to obtain a.

≤ The di√raction pattern of a crystal can be calculated from its atomic model by

adding together the di√raction patterns of individual atoms. The di√raction

pattern of each atom is modified by a phase factor that corresponds to the

atom’s position in the unit cell.

≤ A simple model of the e√ects of temperature on di√raction shows that dif-

fracted intensities are reduced by a factor exp�–B
sin2u

l2 �, where B is pro-

portional to the mean square amplitude of an atom’s thermal motion. This

formalism also works for other kinds of disorder.
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further reading
A slender book by Ken Holmes and David Blow, The Use of X-ray Di√raction in the Study
of Protein and Nucleic Acid Structure (Robert Krieger Publishing, Inc., New York City,
1980) covers the building up of an image exceptionally well. The book also develops the
formalism of crystallography by using the mathematical tool of convolution. Convolution
allows one to build a crystal from a single unit cell and a lattice. This book was originally
published as a review article in Methods of Biochemical Analysis, volume 13. It is out of
print but used copies do appear on the Web at an a√ordable price. A good buy.

The books by Glusker and Trueblood and by James mentioned in earlier chapters also
cover the material in this chapter well. In Chapter 1 James calculates the phase di√erence
in scattering from two objects separated by a vector distance r and proves in a single figure
that the di√raction pattern of an object is its Fourier transform.

In the mid-1960s Taylor and Lipson published an impressive survey of optical trans-
forms—di√raction patterns produced from tiny two-dimensional optical samples, using
highly focused beams of visible light. The practical aspects of their work, while a tour-de-
force of optics, are now outmoded, but the optical transforms are extremely informative,
and the treatment of basic di√raction theory remains completely relevant. C. A. Taylor &
H. Lipson, Optical Transforms: Their Preparation and Application to X-ray Di√raction
Problems (Cornell University Press, Ithaca, 1965). Out of print, but available from used
book sellers.



55

4

Phase Determination by Isomorphous Replacement

4.1 Measuring the Phases

In 1934 Bernal and Hodgkin discovered that protein crystals, when kept moist,

gave rise to rich, high-resolution di√raction patterns. It became clear that

these patterns contained enough information to determine the structures of

protein molecules, if the phases could be measured. At that time phase de-

termination for proteins seemed an impossible task, since estimating phases was

very di≈cult even for simple crystals containing only tens of atoms in the unit

cell. A few heroic individuals, most notably Max Perutz, continued working on

the problem. In 1956 David Harker suggested a method of phase determination

for protein crystals that is now called multiple isomorphous replacement (MIR).

Perutz and others seized on this method, and within a decade, they had used

it to determine the structures of several proteins, including hemoglobin and

myoglobin. Since that time, multiple isomorphous replacement has been the

workhorse method for phase determination in protein crystallography. The

multiple-wavelength anomalous dispersion (MAD) method, which has recently

surpassed MIR in popularity, is a derivative of MIR and is discussed later in this

chapter.

To provide you with an overview of the multiple isomorphous replacement

method, we list the major steps below. We will then discuss these steps one at

a time.
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1. Collect X-ray data F P
2(h) from your native crystal.

2. Form a heavy atom derivative of this crystal.

3. Collect data F 2
PH(h) from the derivative.

4. Use the relation F 2
H(h)�(FPH(h)–FP(h))2 to estimate the heavy atom contri-

bution to di√raction.

5. Use the estimated heavy atom contribution F 2
H(h) to find the location of the

heavy atoms in the unit cell.

6. Repeat steps 2–5 for another derivative.

7. Use the phase circle construction to calculate the missing phase for each

reflection.

Collecting data means to measure the value of F 2
P(h) for as many di√erent

reflections as possible (we are ignoring the nuts and bolts of data collection in

this discussion). Recall that the resolution of your data is defined by the smallest

value of d (largest sinu) for which you can measure intensities for all (or most) of

the reflections. The intensities that we measure in the di√raction experiment give

us the square of the structure factor amplitude, so we merely need to take the

square root to obtain the length of the structure factor vectors. Our first step is to

collect a complete data set from a native crystal. By native, we mean that this is a

crystal of the protein of interest, without any heavy atoms bound to it. Data

collected from a native crystal are called native data.

Next we need to convert a native crystal into a heavy atom derivative. In heavy

atom derivatives a high-atomic-number atom is bound to specific sites on all the

protein molecules in the crystal, as shown in Figure 4.1. In the ideal case the

addition of the heavy atom has no e√ect on the crystal lattice or the protein

conformation. This, in fact, is what ‘‘isomorphous’’ means—if the addition of the

heavy atom does not alter the protein’s packing or conformation, then the native

and derivative crystals are said to be isomorphous. (Obtaining perfectly iso-

morphous derivatives can be a tricky business. One of the main sources of error

in the MIR method is the lack of perfect isomorphism.) Derivatives are usually

made by soaking native crystals in bu√er solutions containing heavy atom com-

pounds. Protein crystals have solvent channels through which the heavy atoms

can di√use, allowing them to bind to sites on the protein surface. Crystallogra-

phers have developed a large arsenal of di√erent heavy atom reagents that can

bind to di√erent protein side chains. Mercurial reagents tend to bind to cysteine

side chains, for example, and histidine side chains can coordinate platinum, gold,
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Figure 4.1. Schematic representing the preparation of heavy atom derivatives. At left
is shown a unit cell of a protein crystal, containing a pair of symmetry-related protein
molecules—the native crystal. At right is shown the heavy atom derivative. In the
derivative, the protein’s structure remains unaltered, but a heavy atom has been
bound to a specific site on every protein molecule.

and similar metals, while glutamate and aspartate side chains can coordinate

positively charged lanthanide ions.

Why do we want to add heavy atoms? Heavy atoms have lots of electrons, and

electrons scatter X rays; even one or two heavy atoms per protein can significantly

change the scattering from a crystal. By adding heavy atoms, we are perturbing

the scattering in a controlled way. We will learn shortly how we can exploit these

perturbations to estimate the phases.

How heavy is ‘‘heavy’’? The answer depends on many experimental variables,

but in general, iodine (53 electrons) is about the lightest useful element. Some of

the more commonly used heavy atom reagents contain platinum, mercury, or

lead (78, 80, and 82 electrons, respectively). Mercury acetate and uranyl nitrate

are two examples of popular heavy atom compounds.

The addition of the heavy atom causes small changes in the amplitude and

phase of each reflection. The vector diagram in Figure 4.2 shows the vector FP

representing the phase and amplitude of some reflection, as measured from a

native crystal, and also FPH, which represents the same reflection measured from

the crystal of the heavy atom derivative. The scattering of the derivative is made

up of the scattering from the protein FP plus the additional scattering contributed

by the heavy atoms, FH (FP and FH sum to give FPH). Note that the phase a of the

heavy atom scattering is random with respect to the phase of the protein compo-

nent. That is, the angle between vectors FP and FH can have any value. The
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Figure 4.2. The vector triangle formed by the scattering from the protein FP, the
heavy atom FH, and the derivatized protein FPH. One can draw a diagram like this for
every reflection.

amount by which the amplitude of a given reflection changes upon adding the

heavy atom, ∆FPH – FP∆, is known as the isomorphous di√erence.

FH is the scattering that our crystal would produce if it contained only the

heavy atoms (magically suspended in space, with no protein molecules to sup-

port them). Obviously, we cannot measure FH or even ∆FH∆. The only experimen-

tal data that we have are ∆FP∆ and ∆FPH∆, but we can crudely approximate ∆FH∆ by the

isomorphous di√erence, that is, ∆FH∆ � ∆∆FPH∆ – ∆FP∆∆. Note that this expression is

only truly correct when FP and FH are collinear; the remainder of the time, it is an

approximation, and depending on the phase aH , it can be a pretty poor one.

However, it is what we have to work with.

Why are we so interested in ∆FH∆? Because we can use ∆FH∆ to deduce the

positions of the heavy atoms. Many methods are available for finding the loca-

tions of the heavy atoms, but they all require some estimate for ∆FH∆. We will first

discuss a method that is not the most common, but which is easy to understand

and gives you the flavor. The process is a simple trial-and-error one in which we

systematically test each sample point in the unit cell to see whether it is a poten-

tial site for the heavy atom. We divide the unit cell into a fine grid—say 1 Å on

edge. We place an atom at grid point number one, and then use the symmetry of

the crystal to place atoms at other, symmetry-related grid points in the unit cell.

This process might yield, for example, 2, 4, or 8 atoms in total. We then calculate

the di√raction pattern FH calc from this set of atoms using the structure factor

equation (see equation 4.1).
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If we have guessed the wrong location for the heavy atom, ∆FH calc∆ will not be

similar to our estimate of ∆FH∆, but if we have guessed the correct one, the

calculated and observed values will be similar. We repeat this calculation for

every grid point, and the point for which ∆FH calc∆ and ∆FH∆ are most similar is taken

to be the correct position of the heavy atom.

A more commonly used method for finding heavy atoms involves the use of

the Patterson function. This function is convenient to use, because it can be

calculated from the structure factors’ experimentally measured amplitudes and it

requires no knowledge of their phases. The Patterson function represents a three-

dimensional map of the vectors between atoms, from which the actual atomic

positions can be inferred. The Patterson function is discussed in Chapter 5.

Having determined the locations of the heavy atoms, we can apply the struc-

ture factor equation to calculate the amplitude and phase of the heavy atom

scattering:

FH calc(h) =�
j

fH,j (h)e2p ih §x j

(4.1)

(The initial values of the heavy atom coordinates xj are usually in error, and in

general, they are refined by processes like those described in Chapter 7 before

proceeding to the next step.)

Now we can determine the phase—almost. We know three things: the ampli-

tudes ∆FP∆ and ∆FPH∆ and the vector FH. We can assemble these items in a diagram

known as the phase circle construction, shown in Figure 4.3a. You prepare the

phase diagram as follows: Draw a circle with radius ∆FP∆, centered at the origin.

We know that the vector FP has its tip somewhere on this circle but we do not

know where (because we only know its amplitude and not its phase). Also, from

the origin draw the vector – FH, whose phase and amplitude we have calculated

from the heavy atom positions. The terminus of this vector lies at point P. Next

draw a circle of radius ∆FPH∆ centered at P. Again, the vector FPH has its tip

somewhere on this circle, but we do not know where. The points along this circle

represent all possible values of the vector – FH + FPH (or FPH – FH), correspond-

ing to all the possible phases of FPH.

There are only two points at which all the information is consistent. Remem-

ber that the vector FP = FPH – FH (Figure 4.2). Because FP must lie on the circle

centered at the origin, and FPH – FH must lie on the circle centered at P, only the
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Figure 4.3. The phase circle construction for a single derivative (a) and for two
derivatives (b). There is one diagram like this for each reflection. The construction of
these phase circles is explained in the text. Only at the point marked by the heavy
arrow in (b) are the vector triangles from both derivatives consistent. In the real
world, because of experimental error, there is usually no single point that is consistent
with all the data, and elaborate algorithms are used to find the best phase.

points where these two circles intersect will satisfy all the constraints on FH, FP,

and FPH. Thus, FP must terminate at either of the two points indicated by heavy

arrows in Figure 4.3a, and aP can only take on the two possible values shown. But

which one is correct? This diagram cannot tell us. We need a second heavy atom

derivative to resolve the ambiguity.

Two heavy atom derivatives can determine the phase unambiguously. Figure
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4.3b shows a phase circle diagram that incorporates information from a second,

independent heavy atom derivative. In the second derivative, the heavy atoms

occupy di√erent positions than they do in the first, so its heavy atom scattering

vector FH2 is di√erent from FH. This leads to a di√erent set of phase circles for the

second derivative. Because the protein scattering FP is the same for the native and

both derivative crystals, all the phase circles must intersect at one point, which is

shown by the single heavy arrow. Only this point is consistent with the informa-

tion from both derivatives, so the value of aP corresponding to the heavy arrow

must be the correct one.

In the real world phases determined in this way are subject to large errors.

Because errors exist in FH, FP, and FPH, there is usually no single point where all

the circles meet. To improve the situation, more than two derivatives are often

used. However, the problem of choosing the correct phase when the circles do

not intersect cleanly remains a thorny one, and elaborate statistical procedures

have been devised to make the best choice and estimate the associated error. The

figure of merit for a reflection is an estimate of the reliability of the phase for that

reflection. Often denoted m, the figure of merit ranges from 0 to 1 and is

approximately equal to the cosine of the phase error for that reflection. The mean

figure of merit is the average of m over all reflections. A mean figure of merit of

0.7, for example, means that the average phase is in error by 45\.

Once the phases have been estimated, we can calculate the electron density

function r(x, y, z) using the expression given in Chapter 3 (equations 3.2–4).

Blow and Crick showed that the use of m-weighted coe≈cients in this summa-

tion can reduce the mean squared error in r. Thus, equation (3.4) is modified so

that mF(h) replaces the original F(h). This function is then contoured and

displayed on a computer, and a molecular model is fit as described in Section 4.3.

4.2 MAD Phasing

A new phasing technique called MAD has succeeded multiple isomorphous

replacement as the dominant method. MAD (multiple-wavelength anomalous

dispersion) is a variant of isomorphous replacement. In multiple isomorphous

replacement the scattering of a heavy atom at a known position acts as a reference

beacon—once we deduce the heavy atom substructure, we can calculate its scat-

tering and use that information to phase the remainder of the di√raction pattern.

In MAD, we also use a small number of special atoms as reference beacons. We

alter the scattering of these atoms by changing the wavelength l of the X rays.
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This change in scattering allows phases to be determined. MIR and MAD are

highly analogous. In both cases, we perturb the structure in a way that alters the

di√raction. For MIR, the perturbation is the addition of a heavy atom; for MAD,

the perturbation is a change in wavelength. For both methods, we characterize

the nature of the perturbation, calculate how the perturbation a√ects the di√rac-

tion, and use this information to phase the di√raction pattern.

How does changing the wavelength of the X rays change the di√raction

properties of an atom? First, you should remember that changing the wavelength

of X rays also changes their energy. Next, we must explain that up to this point,

when we calculated how atoms scatter X rays, we assumed that the electrons were

‘‘free’’—in other words, the electron’s scattering properties were not a√ected by

the fact that it is part of a larger atomic structure. For free electrons, scattering

does not change drastically when the wavelength is changed. When the energy of

the X rays is very close to the energy of a transition of an electron from one shell

to another, however, the assumption of free electrons is no longer valid. Under

these conditions, the electron exhibits resonant behavior that a√ects its scattering

properties. Resonant e√ects such as this are often seen in everyday life, for

example, when a car starts to vibrate at a certain speed.

4.2.1 How Is Anomalous Scattering Di√erent from Normal Scattering?

Fortunately, ‘‘anomalous’’ scattering is a misnomer—we actually understand the

process reasonably well. When l approaches the wavelength where an electronic

transition occurs (also known as an absorption edge), both the strength of the

scattering and the phase of the scattered radiation change. We express these

changes using a generalized form of the atomic scattering factor f :

fanom = fo + f % + if & (4.2)

fo is the scattering from the nonresonant atom, that is, the scattering that one

would observe far from the absorption edge. fo is independent of wavelength.

Near the absorption edge, the strength of the atom’s scattering begins to change

quite rapidly with wavelength. This e√ect is described by f %, the wavelength-

dependent change in the normal scattering. Finally, a new scattering term if &

appears near the absorption edge; scattering due to this term is 90\ out of phase

with the normal scattering and is wavelength dependent. We will not attempt to

derive why any of these changes in the scattering factor occur near the absorption
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Figure 4.4. The wavelength dependence of f % and f &, the real and imaginary contri-
butions to anomalous scattering, for an osmium derivative of a macromolecule.
These data were obtained by one of the authors, using tunable X rays at a synchrotron
radiation source. The LIII edge for osmium lies at 1.14 Å. Note how sharply f % and f &
change with minute changes in wavelength near the edge.

edge, but they will prove to be very important in exploiting the anomalous

scattering phenomenon for the purpose of phasing.

Figure 4.4 shows the change in f % and f & with wavelength (or energy) for a

representative element, osmium. Note that the strength of the scattering e√ect is

expressed in units of electrons. At the peak wavelengths, the magnitude of the

anomalous scattering e√ect for osmium is about 25 electrons. This means that

for every osmium atom bound to the protein, altering the wavelength can per-

turb the scattering by an amount that is equivalent to adding a heavy atom of

atomic number 25. This is not a very heavy atom, in particular when compared

with the heavy atoms typically used in multiple isomorphous replacement. How-

ever, the small size of the perturbation is compensated by the fact that the

structure of the crystal remains unchanged when we alter the wavelength, and

therefore, data measured at di√erent wavelengths can be thought of as deriving

from perfectly isomorphous derivatives.

Unfortunately, none of the elements normally found in proteins—C, H, N, O,

S—exhibit strong anomalous scattering e√ects (sulfur is a marginal anomalous

scatterer). Sometimes anomalous scatterers can be introduced into the crystal by
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soaking, just as heavy atoms are introduced for the MIR method. In other cases,

the protein may naturally contain a prosthetic group carrying an anomalous

scatterer (iron, for example). The most general approach to anomalous scatter-

ing studies utilizes selenium. Although selenium is not found in proteins natu-

rally, the selenium analog of methionine, called selenomethionine, can be intro-

duced into the growth medium of bacteria and thus into recombinant proteins.

Although the anomalous scattering e√ect associated with selenium is not as

strong as that with osmium, it is still significant and has been very successfully

exploited for phasing protein structures.

As the name suggests, MAD experiments are carried out using more than one

wavelength, for reasons we illustrate below. At least two di√erent wavelengths are

required, and they are typically chosen to maximize f & and minimize f %, respec-

tively. Almost always, a third wavelength is chosen at an energy remote from the

absorption edge.

We have known about the anomalous scattering e√ect for a long time, but to

exploit it for phasing, we must be able to adjust the wavelength of the X rays, just

as one changes the wavelength in a spectrophotometer. Laboratory X-ray sources

have a fixed wavelength, and so it was only when synchrotrons arrived, with their

very intense, tunable beams, that this technique came of age. It was pioneered by

Wayne Hendrickson in the 1980s.

A key feature of MAD is the breakdown of what is known as Friedel’s law.

Friedel’s law says that F(h,k,l) = F(–h, –k, –l). Recall from Chapter 3 that

F(h,k,l) and F(–h, –k, –l) can be considered to be rays reflected from opposite

faces of the same set of Bragg planes. Such pairs of reflections are said to be

centrosymmetrically related, and both members of the pair normally have the

same intensity. When anomalous scatterers are present this no longer holds. The

small di√erences between F(h) and F(–h) are key to phase determination.

The algebra required to explain MAD phase determination is beyond the

scope of this text, but Figures 4.5 and 4.6 give the basic idea. These figures are

analogous to Figures 4.2 and 4.3, which pertain to multiple isomorphous re-

placement. Figure 4.5 describes the scattering that is observed from a crystal

containing a few anomalous scattering atoms and many nonanomalously scatter-

ing atoms—for example, a protein containing a few selenomethionine residues.

In Figure 4.5a, FN is the scattering for all the nonselenium atoms. fa0 is the normal

scattering from the selenium atoms—the scattering that one would see at wave-

lengths far from the absorption edge. f a% is the change in scattering due to the f %



Figure 4.5. (a) The vector triangle associated with the anomalous scattering e√ect. As
explained in the text, FN is the scattering from the nonanomalously scattering atoms in
the crystal. The scattering from the anomalous atoms is given by the resultant of three
vectors: The wavelength-independent fa0 vector plus the wavelength-dependent f a% and
f a& vectors. The total scattering measured from the crystal, FTOT , is the vector sum of all
of these scattering vectors. (b) The relationship between F(h) and F(–h) when
anomalous scatterers are present. For the normal scattering components, the phase of
any reflection h is the negative of the phase of the –h reflection; thus the normal
scattering components of F(h) and F(–h) are mirrored in the x axis. However, the
imaginary scattering term if & is always 90\ out of phase with the normal scattering
terms. This means that the imaginary scattering components of h and –h are not
mirrored in the x axis. As a result, the length of the resultant vectors F(h) and F(–h)
will not be equal. This is known as the breakdown of Friedel’s law and is seen most
clearly in (c), where the components of F(–h) have been flipped across the x axis to
allow direct comparison with F(h).
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Figure 4.6. The construction of phase circles for MAD phasing is analogous to that for
multiple isomorphous replacement. (a) To simplify the phase diagram, we represent
the vector sum of the di√erent components of the anomalous scattering with a single
vector, FA = fa0 + f a% + f a& . (b) Because f a% and f a& are wavelength dependent, both the
phase and amplitude of FA change when the X-ray wavelength is changed from l1 to l2.
(c) Construction of the phase circle diagram for wavelength l1. Starting from the
origin, we draw the vector –FA(h). Centered on the tip of this vector, we draw a circle
of radius ∆F(h)∆. This circle represents all possible values of the vector F(h) – FA(h),
corresponding to the di√erent possible phases for F(h). The procedure is then repeated
to generate a second circle representing all possible values for the vector F(–h) –
FA(–h). These circles intersect at two points, indicated by the two heavy arrows. Just as
in the case of a single isomorphous derivative, we cannot distinguish which of the two
possibilities corresponds to the true phase aN; data from another wavelength are
required to resolve the ambiguity, as shown in Figure 4.7.

term in the atomic scattering factor, and f a& is the change in scattering due to f &.

Note that f a& is perpendicular to both fa0 and f a% (because it is 90\ out of phase

with the normal scattering). What we actually observe is the result of all these

scattering vectors, namely, the total scattering F = FN + fa0 + f a% + f a&.

Figure 4.5b shows how F(h) and its centrosymmetrically related reflection
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F(–h) are a√ected when anomalous scattering is present. For normal scattering,

the phase of any reflection a(h) = –a(–h). Thus, FN(h) and FN(–h) form a

pair of vectors reflected through the x axis; the same is true for both fa0 and f a%.

However, the f & term is always 90\ out of phase with the normal scattering term,

which means that f a&(h) and f a&(–h) do not form such a mirrored pair of vectors.

The result is that ∆F(h)∆ and ∆F(–h)∆ are no longer equal when a significant

anomalous scattering component is present. This can be seen clearly in Figure

4.5c, where F(–h) has been reflected across the x axis to allow for an easy

comparison with F(h).

This diagram contains information similar to that in a multiple isomorphous

replacement diagram. To exploit this information for phasing, we start by mea-

suring the lengths of the vectors F(h) and F(–h) (in other words, we collect a

data set at a given wavelength). We then deduce the positions of the anomalous

scatterers. There are usually only a few such scatterers, relative to the total num-

ber of atoms in the protein. To find their positions we use methods analogous to

those used in multiple isomorphous replacement to find heavy atoms, except we

use the anomalous di√erences ∆F(h) – F(–h)∆ instead of the isomorphous

di√erences.

Once we have located the anomalous scatterers, we can calculate the lengths

and phases of fa0, f a%, and f a&. This allows us to construct a phase circle diagram

(Figure 4.6). Note that the anomalous di√erences measured at a single wave-

length do not allow us to unambiguously determine the phases—we are left with

a twofold ambiguity, analogous to the isomorphous replacement situation in

which we have a single derivative. We need more information. Because f % and f &

change with wavelength, the phase ambiguity can be overcome by making an-

other measurement of the anomalous di√erences at a di√erent wavelength, as

shown in Figure 4.7.

A careful examination of Figure 4.6 reveals the essential similarity of the

MAD and MIR methods. If we think of the anomalous scatterers as being analo-

gous to heavy atoms, then FN in a MAD experiment is equivalent to the native

vector FP in the MIR experiment, and F(h) and F(–h) are equivalent to FPH

values for two di√erent derivatives. The phase circle construction drawn in Fig-

ure 4.6c is therefore similar to the two-derivative MIR experiment shown in

Figure 4.3b. There is a key di√erence, however—we do not actually measure the

value of FN in the MAD experiment. Therefore, F(h) and F(–h) data for a single

wavelength are not su≈cient to resolve the phase ambiguity in a MAD experi-

ment—data from at least one additional wavelength are also required.
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Figure 4.7. MAD data from two di√erent wavelengths provide a unique solution for
the phase circle construction. A phase circle diagram is shown that incorporates
information from both wavelengths l1 and l2 shown in Figure 4.6. All four circles are
seen to intersect in a single point (marked with the heavy arrow), corresponding to
the correct phase.

It is possible to combine the anomalous scattering and isomorphous replace-

ment methods. Many of the heavy atoms commonly used for isomorphous

replacement have strong anomalous scattering signals, which means that FPH(h)

will di√er significantly from FPH(–h). Hence, a single derivative with anomalous

scattering is equivalent to two di√erent derivatives. We call this method of phas-

ing single isomorphous replacement with anomalous scattering, or SIRAS.

4.3 Fitting Models to Experimental Electron Density Maps

The phasing techniques described in this chapter are intended to produce an

electron density map. This map represents a direct image of the electrons within

the molecule, but it is not the most useful representation of a protein. Chemists

and biologists prefer to view molecules in the form of atomic models, in which

the atomic positions are linked by sticks representing chemical bonds. Once

phase estimates have been obtained and the map calculated, therefore, the crys-

tallographer’s next task is to interpret the map by fitting an atomic model.
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Fitting the map is typically one of the most labor-intensive steps in a crystal

structure determination. Conceptually, the problem is straightforward. We must

determine which portions of the map correspond to the di√erent amino acids of

the protein and place the atoms of these residues accordingly (refer to Figure 1.4

for an example of a well-fit electron density map). We are aided in this process by

two things: We know the amino acid sequence of the protein, and we know a

great deal about protein stereochemistry (bond lengths, angles, and so on). This

knowledge is su≈cient to construct a stereochemically reasonable model of the

protein. What remains to be determined are the molecule’s torsion angles. These

angles determine the path followed by the protein’s backbone and the conforma-

tions of its side chains. The fitting procedure is equivalent to adjusting the torsion

angles so as to ‘‘thread’’ the protein chain through the electron density. In princi-

ple, one could build the model by positioning the first amino acid of the chain

into its proper place in the electron density map and then adjusting the torsion

angles of each subsequent residue in turn to position the atoms within electron

density.

In practice, the procedure is complicated by many factors. For example, side

chains are the landmarks that allow us to map the sequence onto the electron

density map. However, many crystals di√ract to only modest resolution, yielding

maps that lack detail and making it di≈cult to distinguish the side chains of

di√erent amino acids. Also, estimated phases frequently contain significant er-

rors, leading to noisy electron density maps. The convoluted paths followed by

protein chains are di≈cult to follow in noisy maps. This makes tracing the path

of the chain like finding one’s way out of a maze; dead ends are commonly

encountered, so a trial-and-error approach is required. The situation is compli-

cated by the close packing of protein molecules in crystals—it is often di≈cult to

decide where one molecule leaves o√ and its neighbor begins.

Fitting a protein chain to an electron density map requires complex judg-

ments that are di≈cult to reduce to simple formulas. Consequently, it has been

challenging to automate the process, and reliable fitting programs have only been

developed relatively recently. Not surprisingly, these programs perform better

with high-quality maps than with poor maps. Maps at resolutions of 2 Å or

better calculated with accurate phases can frequently be completely fit without

manual intervention by a crystallographer. Maps at lower resolution and/or with

high noise levels, however, still require substantial hands-on e√ort to interpret.

Since the 1970s, fitting has been accomplished using software that allows the
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user to build and manipulate stick figures of molecules, overlaid on displays of

the electron density map. Before the development of computer graphics, many

protein models were fit by using an ingenious optical comparator device known

as a Richards box (named after its inventor, the protein chemist Frederic Rich-

ards of Yale University). Wire models were built by hand out of thin metal rods.

Each chemical bond was represented by a small rod several centimeters long; at

this scale, the finished molecular model could span several meters. Sections

through the electron density were plotted on Plexiglas plates, which were stacked

to provide a three-dimensional view of the map. A semitransparent mirror was

then placed between the model and the map, and the lighting was arranged so

that the model appeared superimposed on the map. The model was adjusted

until it fit the map well, and coordinates were then measured from the model

with rulers. The Richards box was also a√ectionately called Fred’s Folly.

4.4 Summary

≤ In multiple isomorphous replacement, protein crystals are derivatized by

specific binding of heavy atoms. The positions of these heavy atoms in the

unit cell can be determined by using the isomorphous di√erences ∆FPH – FP∆.

The heavy atom structure factors FH can then be calculated. The heavy atoms

serve as reference points that allow us to find the protein phases.

≤ MAD phasing relies on the presence in the unit cell of an anomalous scatterer,

such as selenium, that plays a role analogous to a heavy atom. When data are

collected at wavelengths where the anomalous e√ect is strongest, the change

in scattering by the selenium echoes the change in scattering upon addition of

a heavy atom. Phases can be extracted by methods similar to those used in

multiple isomorphous replacement.

≤ Once the electron density map has been calculated, the map must be in-

terpreted by fitting an atomic model to it. Building an atomic model that

matches the protein sequence and contains appropriate bond lengths and

angles is straightforward, but adjusting the model’s torsion angles so that the

conformation of the protein matches the electron density is a more complex

task.

further reading
Phasing by isomorphous replacement and by anomalous scattering are covered in

depth by Blundell and Johnson in Protein Crystallography (Academic Press, New York,
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1976). This text, which has long served as the macromolecular crystallographer’s bible,
also covers the figure of merit with rigor and is a good reference for the chemistry of heavy
atom ligands. This book is out of print, and used copies have sold for over $700. Keep your
old texts!

The more contemporary book by Jan Drenth, Principles of Protein X-ray Crystallogra-
phy, 2nd edition (Springer-Verlag, New York, 1999), has a concise style and presents a
good treatment of MAD, as well as of many other topics. It is strong on analysis of errors
(and contains in-your-face math!).

Wayne Hendrickson, the architect of MAD, provides an insightful and compact intro-
duction in his article ‘‘Determination of macromolecular structures from anomalous
di√raction of synchrotron radiation,’’ Science 1991; 254(5028):51–58. Explains with great
clarity how one best combines anomalous scattering measured at several wavelengths.
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5

The Patterson Function

5.1 Definition of the Patterson Function

Remember that using MIR or MAD to solve the phase problem requires that we

determine the positions of the relevant heavy atoms or anomalous scatterers

within the unit cell. The Patterson function is a powerful tool for finding these

atoms. The function was defined in the early 1930s by A. L. Patterson, who won-

dered what information he could gain if he computed a Fourier synthesis from a

di√raction pattern for which he didn’t know the phases. He arrived at the function

P(u) =
1

V �
h

F 2 (h)exp(–2pih § u) (5.1)

in which he set all the phases to zero.* P(u)—now known as the Patterson

function—resembles the electron density function r(x). It is defined in the same

unit cell as the electron density function, but the amplitude of the coe≈cients is

chosen to be F 2(h) instead of F(h). To avoid confusing the Patterson and electron

density functions, it is customary to use a variable other than x to describe the

space of P. We have chosen u.

Unlike the electron density function, which cannot be calculated until we

know the phases, the Patterson function can always be calculated, because the

*The scalar or dot product of two vectors u and v is typically written u § v ; however, it is
sometimes written as simply uv. We use the two conventions interchangeably. 
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phases are set to zero—only the experimental intensity data are required. How-

ever, does the Patterson function have any useful physical meaning? It turns out

that it does.

In the electron density function peaks correspond to atoms. In the Patterson

function peaks correspond not to the positions of the atoms themselves, but to the

vectors between atoms. Thus, if the Patterson function has a peak at vector position

u, it means that there is a pair of atoms (or many pairs) that are separated by the

same vector distance u. To help demonstrate this, we can use the structure factor

equation to obtain an expression for F 2. Recall from Chapter 2 that the squared

modulus of any complex number C is given by the product of C with its complex

conjugate, that is, ∆C∆2 = C § C*, where C* denotes the complex conjugate of C.

Applying this to the structure factor equation, we obtain the following:

F 2 = F § F*

F(h) =
N�

atoms
j=1

fj exp(2pih § xj )

F*(h) =
N�

atoms
k=1

fk exp(–2pih § xk )

F(h) § F*(h) =
N�

atoms
j=1

fj exp(2pih § xj ) —
N�

atoms
k=1

fk exp(–2pih § xk )

F 2 = �
j

�
k

fj fk exp(2pih § [xj – xk]) (5.2)

We find that F 2 depends on the set of interatomic vectors xj – xk. In contrast, the

structure factor F depends on the set of atomic positions, xj:

F(h) =
N�

atoms
j=1

fj exp(2pih § xj ) (5.3)*

*Equation (5.3) is equivalent to equation (3.11) (but written with a slightly di√erent notation).
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Figure 5.1. Building up the Patterson function from the atomic positions. (a) One
unit cell of a simple two-dimensional crystal containing four atoms. (b) The same
unit cell shown in (a), but showing the vectors connecting the four atoms. (c) The
interatomic vectors from (b), shown emanating from a common origin. This is how
the vector peaks appear in the Patterson function. (d) Multiple unit cells of the
Patterson function. Peaks corresponding to interatomic vectors are shown as dots.
The vectors are drawn for only the central unit cell, but all the unit cells are identical.

If we use F as the coe≈cient in a Fourier series we obtain the electron density, r(x).

r(x) has peaks corresponding to the atomic positions, xj. By analogy, we might

expect that using F 2 as the coe≈cient in a Fourier series will give us a function,

P(u), that has peaks corresponding to the interatomic vectors, (xj – xk). This is

indeed the case and is easily demonstrated. Combining equations (5.1) and (5.2)

we obtain

P(u) =
1

V �
h

��
j

�
k

fj fk exp(2pih § [xj – xk])	exp(–2pih § u)

Combining terms leads to the following:

P(u) =
1

V �
h

�
j

�
k

fj fk exp(–2pih § [u – (xj – xk)])
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Figure 5.2. The Patterson peak corresponding to the vector between two atoms is
roughly twice as broad as either of the atoms themselves. The figure shows the profiles
through the centers of two atoms. The Patterson peak will contain not only vector 1,
running between the centers, but all possible vectors running from any point in one
atom to any point in the other. These include the long vector 2, running from the
trailing edge of the first atom to the leading edge of the second, and the short vector 3,
running between the leading edge of the first atom and the trailing edge of the second.
The di√erence in length between vectors 2 and 3 defines the width of the Patterson
peak and is approximately twice the width of the atoms.

At what values of u does this expression for P(u) take on large values? In other

words, where are the peaks in P(u)? It is clear that P(u) will be maximized when

the argument of the exponential equals zero; this is true when u = xj – xk. Hence,

peaks occur at the positions u that correspond to interatomic vectors.

For every pair of atoms in the original molecule, the Patterson function

contains a peak corresponding to the vector connecting these two atoms. In fact,

there will be two vectors: u1Ø2 corresponds to the vector from atom 1 to atom 2,

and u2Ø1 corresponds to the vector from atom 2 to atom 1. u1Ø2 = –u2Ø1. This

means that the Patterson function is centrosymmetric: P(u) = P(–u). The

relation between atomic positions, interatomic vectors, and the Patterson func-

tion is illustrated in Figure 5.1.

Comparison of equations (5.2) and (5.3) suggests that other di√erences exist

between the electron density function and the Patterson function. For example,

the shapes of the peaks in the electron density function are determined by the

atomic scattering factors fj, and the shapes of the peaks in the Patterson function

are determined by the product of atomic scattering factors fj fk. Note that this

product is e√ectively twice the width of the individual atomic scattering factors,

so Patterson peaks are twice as broad as atoms (Figure 5.2).
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Another di√erence between r(x) and P(u) is the number of peaks. If there

are N atoms in the unit cell, there are N peaks in r(x), but there are N2 peaks in

the Patterson function. The N Patterson peaks for which j = k (self-peaks) are

superimposed at the origin. Thus P(u) always has a huge peak at the origin.

Because there are so many peaks in the Patterson function, P(u) represents

many superimposed interatomic vectors u. P(u) can be thought of as the relative

probability that two scattering centers in the specimen are separated by the

vector u. Such a probability density is called a pair correlation function. Pair

correlation functions arise in many circumstances when the Fourier transform of

a distribution of scattering intensity is taken. For example, in solution scattering,

where all possible molecular orientations are present, one can obtain a pair

correlation function that gives the probability that two scattering centers are

separated by a distance u, without regard to direction.

5.2 Using the Patterson Function to Locate Atoms

We can often work backward from the set of Patterson vectors to determine the

actual positions of the atoms. There are many examples in the history of small-

molecule crystallography. One illustrative special case occurs when a small

organic molecule contains a single heavy atom. In that case the vectors between

the heavy atom and the light atoms are actually position vectors, and the Patter-

son function provides a (noisy) image of the structure itself with the heavy atom

placed at the origin. This is illustrated in Figure 5.3.

Macromolecular Patterson functions have too many peaks for such methods

to work. For example, if a protein crystal has 10,000 atoms in the unit cell (this is

about average) then 100 million Patterson peaks are present in one unit cell of the

Patterson function. Obviously, these peaks must extensively overlap; in fact, the

Patterson function of a protein is blurred and featureless. How can anything

useful be obtained from such a messy function?

The trick is to focus on heavy atoms. Vectors between heavy atoms give very

strong peaks that stand out from the others. Equation (5.2) tells us that the height

of the Patterson peak corresponding to the vector between atoms j and k is

proportional to the product of scattering factors, fj fk. Recall that the magnitude of

f is proportional to the number of electrons in the atom. Thus, a Patterson peak

corresponding to a vector between two carbon atoms has a weight of 6 — 6 = 36,

whereas a peak between two uranium atoms has a weight of 92 — 92 = 8,464,

almost 300 times stronger than the carbon-carbon peak. For molecules contain-
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Figure 5.3. An example of how atomic positions can be inferred from the Patterson
function when heavy atoms are present. (a) A simple organic compound—iodoben-
zene—containing a single heavy atom. The iodine atom is dark gray and is placed at
the origin of an arbitrary coordinate system. (b) The Patterson function calculated
from this molecule. Peaks in the Patterson function are shown as dots. Vectors be-
tween the iodine atom and carbon atoms appear as dark peaks, while carbon–carbon
vectors are shown as light peaks. There is also a peak at the origin, as is always the case
for the Patterson function. Note how the dark peaks reveal both the structure of the
molecule and its mirror image.

ing a moderate number of light atoms plus a few heavy atoms, the heavy atom-

heavy atom peaks can frequently be identified in the Patterson function, allowing

the heavy atom positions to be inferred.

Unfortunately, in large molecules like proteins, the Patterson functions are so

complex that even heavy atom peaks become lost. However, as we have seen in

Chapter 4, the positions of the heavy atoms must be known before we can

calculate phases in the MIR experiment. How do we find them? In this case, we

use what are called di√erence Patterson functions to accentuate the heavy atom

peaks and allow their identification.

Suppose we are searching for the positions of the heavy atoms in a heavy

atom derivative of a protein. The heavy atoms are bound to the protein and

occupy specific sites in the crystal lattice. Now imagine that we could magically

erase all the protein atoms from the crystal, without changing the positions of the

heavy atoms. The di√raction pattern of this imaginary heavy atom-only crystal

would correspond to the structure factors FH(h). The Patterson function calcu-

lated from these data would have coe≈cients F 2
H(h) and would be ideally suited

for determining the positions of the heavy atoms. Of course, we can’t erase the

protein atoms, and we can’t measure FH, but we can approximate FH. As men-

tioned in Chapter 4, the isomorphous di√erence qFiso = FPH – FP can be used as
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an estimate of FH. Using qFiso we can calculate what is known as an isomorphous

di√erence Patterson function:

Piso(u) =
1

V �
h

(FPH(h) – FP(h))2 exp(–2pih § u)

=
1

V �
h

qF 2
iso(h)exp(–2pih § u) (5.4)

This function is not identical with the true heavy atom Patterson calculated with

F 2
H(h) coe≈cients. However, it does contain strong peaks at positions corre-

sponding to interatomic vectors for the heavy atoms. Figure 5.4 shows an exam-

ple of an isomorphous di√erence Patterson function.

When using the di√erence Patterson function to locate heavy atoms in pro-

tein crystals, it is useful to exploit the symmetry of the crystal. For example,

suppose the crystal contains a twofold rotation axis of symmetry along the y

coordinate, as do crystals belonging to the monoclinic space group P2. If the unit

cell contains a heavy atom at the point x, y, z, then it will contain a second heavy

atom generated by the twofold symmetry axis at position –x, y,–z. These are

called equivalent positions. The di√erence Patterson vector between these two

heavy atoms is x – (–x), y – y, z – (–z) = 2x, 0, 2z. Also, because the Patterson

function is centrosymmetric, a second peak will occur at –x – x, y – y, –z – z

= –2x, 0, –2z. If we examine only the y = 0 section in the Patterson function, we

will find the peaks corresponding to the vectors between the two equivalent,

symmetry-related heavy atoms. We know that the peaks are located at †2x, †2z,

so by measuring the positions of the peaks we can obtain the x and z coordinates

of the heavy atom. Peaks representing vectors between symmetry-related heavy

atoms are major features in di√erence Patterson functions. The special sections

that contain vectors between symmetry-related atoms (like the y = 0 section in

the preceding example) are called Harker sections, after the protein crystallogra-

phy pioneer David Harker. See the legend of Figure 5.4 for a little more informa-

tion on determining the heavy atom positions from the Patterson function.

Because the Patterson function is centrosymmetric, it does not allow us to

determine the absolute handedness of a set of atoms or a molecule. If one starts

with the peak at –u then all of the coordinates derived will be the inverse of those

derived using the peak at u. We don’t know in advance which peak to choose, so
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Figure 5.4. Isomorphous di√erence Patterson map for a mercury derivative of a
protein. The crystals in this example contain hemoglobin from the annelid Glycera
dibanchiata. This two-dimensional contour plot shows the v = 0 section of the full
three-dimensional Patterson function (the u-w plane corresponds to the x-z plane in
the real unit cell). The section plotted extends over the full unit cell in w (across) and
halfway along the unit cell in u (down). The origin is at the upper left, and the large
peak there represents vectors between atoms and themselves. The peak about halfway
down on the left, lying at approximately u= 0.45 and w = 0.04, represents a vector
between two symmetry-related mercury atoms. It occurs at the position 2x, 2z, where
x and z are the mercury atom coordinates in the unit cell. The refined coordinates for
the mercury atom are x = 0.225 and z = 0.007. Reproduced from the dissertation The
Structure of Glycera Hemoglobin by E. A. Padlan.

we may choose the correct arrangement of heavy atoms, or we may choose its

inverse. If the incorrect arrangement of heavy atoms is chosen, it will give rise to

an inverse image—a protein containing d-amino acids and left-handed a-helices.

Changing the sign of every phase angle will invert the handedness of the image,

and most programs contain a switch to do this. (Crystallography is capable of

determining the absolute handedness of molecules through the use of anomalous

scattering, but we won’t describe how in this book. Note that Linus Pauling,

Robert Corey, and Herman Branson, in their landmark 1951 paper describing

the structure of the a-helix, did not attempt to assign absolute handedness and

actually chose arbitrarily to draw the helix as left-handed! Later that same year

Johannes Bijvoet published his account of how the absolute configuration of

chiral molecules can be determined by using anomalous scattering.)

The example we just examined o√ers no information about the y coordinate

of the heavy atom. In this case, we are at liberty to set the y coordinate equal to
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zero. This point is not at all obvious, but it follows from the rules that crys-

tallographers have established for choosing the origin of the unit cell. Generally

speaking, the origin is chosen at a point that bears some simple relation to the

symmetry elements of the unit cell. Thus, for space group P2, the convention is

to choose the origin to coincide with the twofold rotation axis. Because the

twofold axis runs parallel to the y axis, this severely limits the origin choice in the

x-z plane. However, any point along y may be chosen as the origin.

Obviously, if there are two distinct heavy atom binding sites in this deriva-

tive, we can set the y coordinate of only one of them equal to zero. The y

coordinate of the other site is determined from Patterson vectors that run from

the first heavy atom site to the second. Suppose that the heavy atom bound to site

1 has coordinates x1, 0, z1, and the atom at site 2 has coordinates x2, y2, z2. The

Patterson vector between these atoms is given by u = x2 – x1, v = y2 – 0 = y2,

and w = z2 – z1. We can find the values of x1, z1 and x2, z2 by using Harker

sections, as described above. This gives us u and w for the vector connecting the

two sites. These values of u and w define a line in the Patterson function. By

scanning along the line we will find a peak at some value of v, corresponding

to y2.

Crystals may contain rotation axes running in more than one direction. In

such cases, the choice of origin is limited to a few values along x, y, and z (for

example, the points where the axes intersect). In general, such space groups

contain Harker sections perpendicular to two or more axes, allowing us to mea-

sure directly all three coordinates of a heavy atom.

If we have two distinct heavy atom derivatives, say mercury and lead, we do

not initially know if our choices of origin for the two derivatives are the same.

Trial and error is used to find a common choice. In MIR the phase circle con-

struction produces a point of intersection of the three circles. If the two heavy

atom derivatives do not share a common origin, the circles will generally not

intersect as they are supposed to. For this reason, programs that calculate phases

test di√erent combinations of origin choices and choose the one that gives the

most consistent pattern of circle intersections. We do not need to worry about

whether the choices of origin we make for the native protein and heavy atom

derivatives are the same, since the phases of the native crystal are determined by

the phases of the heavy atom derivatives. The native crystal is constrained to have

a common origin with the heavy atom derivatives.

Isomorphous di√erence Patterson functions allow us to determine the po-

sitions of the heavy atoms used in the MIR method. What about the anoma-
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lous scatterers used in the MAD method? In this case we can use the anoma-

lous di√erence qFanom = F(h) – F(–h). The anomalous di√erence Patterson

function

Panom(u) =
1

V �
h

(F(h) – F(–h))2exp(–2pih § u) (5.5)

contains peaks that correspond to the vectors connecting anomalous scatterers in

the structure. We do not need to be concerned about consistent origin choice for

the MAD method, because all of the data are measured from a single crystal and

the positions of the anomalous scatterers do not change with wavelength.

5.3 Summary

≤ The Patterson function P(u) = 
1

V �
h

F 2(h)exp(–2pih § u) can be calculated

directly from the experimental data and requires no knowledge of the phases.

≤ The Patterson function is defined in the same unit cell as the electron density

but contains peaks at points ujk = (xj – xk), where xj and xk are the positions

of any two atoms. Thus, while peaks in the electron density function corre-

spond to atomic positions, peaks in the Patterson function correspond to

vectors connecting atomic positions. A structure with N atoms will have N

peaks in the electron density function and N 2 peaks in the Patterson function.

≤ The Patterson peak corresponding to the vector between atoms j and k has a

weight proportional to the product of the number of electrons in atoms j and

k. Therefore, Patterson vectors between heavy atoms are very strong.

≤ Heavy atom positions can often be found by working backward from the

(relatively small) set of heavy atom Patterson peaks. However, in large mole-

cules like proteins the Patterson functions are so crowded that it is impossible

to find even these heavy atom peaks. For such molecules we use di√erence

Patterson functions to make the heavy atoms stand out more clearly. In the

di√erence Patterson function, F2 is replaced by qF2, where qF can be either

the isomorphous di√erence qFiso = FPH(h) – FP(h) or the anomalous di√er-

ence qFanom = F(h) – F(–h).



82 Protein Crystallography

further reading
The Patterson function is covered particularly well in Chapter 12 of X-ray Structure
Determination by G. H. Stout and L. H. Jensen (John Wiley and Sons, New York, 1989).
This book is in print but used copies present a good value.

Crystal Structure Analysis: A Primer. 2nd edition, by J. P. Glusker and K. N. Trueblood
(Oxford University Press, New York, 1985), referenced earlier, provides a fine concise
treatment.

The International Union for Crystallography sponsored a symposium in 1984 entitled
Patterson and Pattersons. Fifty years of the Patterson function (IUCr Crystallographic Sym-
posia, Vol. 1.; eds. Jenny P. Glusker, Betty K. Patterson, and Miriam Rossi; New York,
Oxford University Press, 1987). This volume contains examples of the theory and practice
of the Patterson function, as well as personal reminiscences about A. L. Patterson, which
help reveal the human face of crystallography. Out of print, but look for it in your
university library.
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6

Phasing with Partially Known Structures

6.1 Di√erence Fourier Maps

Often we want to know the crystal structure of a molecule when the structure of a

similar one is already known. In fact, this is by far the most common problem

that crystallographers face. For example, one may wish to determine the struc-

ture of a mutant of a particular protein, when the structure of the wild type is

already known.* Other common cases include proteins that are crystallized in the

presence and absence of ligand or proteins that are evolutionary relatives of

known proteins. This chapter discusses methods that make use of known struc-

tural information to simplify the problem of structure determination. For conve-

nience, we refer to the molecule whose structure we’d like to find as the target

molecule and to the known structure as the reference molecule.

In particular, when the crystals of the target and reference molecules are

isomorphous the problem is straightforward. This circumstance is most com-

mon when the target is very similar to the reference—proteins di√ering at a single

amino acid position, for example, or proteins crystallized in the presence or ab-

*For the most part, small changes in a protein’s sequence create only local structural changes, so
it’s usually safe to assume that the overall structure of the mutant molecule will be similar to
that of the wild type. For example, hundreds of structures are known for variants of the
antigen-binding antibody fragment called Fab; all of them share the same overall fold and di√er
only in the residues at the antigen binding site.
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Figure 6.1. A cartoon depicting a simple case in which knowledge of the structure of
one molecule can be used to determine the structure of a closely related molecule
(provided the crystals of the two molecules are isomorphous with one another). In
the upper left is shown the known crystal structure of the reference molecule; at
upper right is shown the unknown structure of the isomorphous target crystal. The
target molecule di√ers from the reference in having one additional carbon atom. A
di√erence Fourier map calculated using the coe≈cients Ftarget – Freference and phases
calculated from the reference structure is shown below. It contains only two peaks,
corresponding to the extra carbons on the two copies of the target molecule.

sence of a ligand. Figure 6.1 illustrates such a case for a simple two-dimensional

crystal.

This situation is similar to the one we face in refinement, where the initial

model built into the electron density has inaccuracies that must be rectified.

(Refinement is discussed in more detail in Chapter 7.) We can thus regard the

reference structure (the structure for which we know the atomic coordinates) as

a preliminary or unrefined version of the target structure (the structure for

which we have measured the X-ray data). Any appropriate refinement method

may be used, but we will see that di√erence Fourier methods are often a good way

to start.

Di√erence electron density maps reveal structural di√erences between two

isomorphous crystals. Imagine we have two isomorphous crystals of a protein—

say, one with a small molecule ligand bound and one without. The ideal way to

visualize the di√erences between these two structures would be to subtract the

electron density function of one from that of the other. The resulting function

would show only the di√erences between the two structures. However, to calcu-
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Figure 6.2. Vector diagram showing the relation between the di√raction of the refer-
ence and the target in a di√erence Fourier map. Fq reflects the true di√erence between
the two structure factors, but we cannot measure Fq directly. We therefore approxi-
mate Fq by the dotted vector qF and use ∆qF ∆ as the di√erence map coe≈cient. This
appears to be a poor approximation, because the angle between qF and Fq (the
‘‘phase error’’) can be quite large. Fortunately, as the phase error increases, the ampli-
tude ∆qF ∆ decreases, so that when the phase error is at its worst—90\—the amplitude
falls to zero and this reflection makes no contribution to the map.

late such an ideal image we would need to know the phases for both structures.

The di√erence map (often called a di√erence Fourier) is an approximation to the

ideal image that does not require phases for the target structure. Di√erence maps

are typically flat and featureless throughout most of the unit cell, where the

molecules are identical, but they show peaks (positive or negative) where one

molecule has a feature that the other lacks. The di√erence map is calculated by

the relation

qr(x) =
1

V
� (FT (h) – FR (h)) eiaR e–2pih§x (6.1)

where FT and FR are the structure factor amplitudes from the target and reference

crystals, respectively. An approximation made in this equation is that the phases

from the target and reference crystals are the same. Since we do not know the

phases from the target, we use the reference phase (aR ) for both. Because the

structures are similar, one might assume that this is an excellent approximation,

but a more careful look reveals some problems.

Figure 6.2 shows the true di√erence coe≈cient, labeled Fq = FT – FR, and
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Figure 6.3. An Fobs – Fcalc di√erence Fourier map showing the binding of an inhibitor
to an enzyme. The enzyme shown is derived from the malaria parasite Plasmodium
falciparum, and the inhibitor represents a so-called lead compound for the develop-
ment of an antimalarial drug. The inhibitor structure has been fitted into the density
of the di√erence map. The values for Fcalc and the phases were calculated from a
model of the protein with no inhibitor, while the Fobs values represent the di√raction
data measured from the crystal of the protein bound to the inhibitor. This structure
can be found in the Protein Data Bank under accession number 1tv5.

how it is related to qF, which is the approximate coe≈cient used in equation

(6.1). Clearly, qF can di√er markedly from Fq. In general, ∆qF ∆ * ∆Fq∆, and the

phase of Fq is random compared with the phase of qF. qF therefore appears to

be a poor approximation for Fq. We have alluded to this problem before—it

appears when we use the isomorphous di√erences to approximate heavy atom

scattering (Chapters 4 and 5).

Fortunately, despite these problems, it is possible to show that structural

di√erences are represented accurately in the di√erence Fourier map (we won’t

include the proof here). The price we pay for the qF approximation is this:

although the correct features do appear in the di√erence maps, the peaks corre-

sponding to these features are only half the height they would be in an error-free

map. In addition, noise is introduced into the maps by the approximation. As
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long as the di√erences between the structures in the two isomorphous crystals

are small, however, the noise peaks are small compared with the true features.

In practice, here is how the di√erence Fourier would be used for a structure

determination of a protein:ligand complex. First, the structure of the protein

alone is determined. Next, di√raction data are collected from isomorphous crys-

tals of the protein containing the bound ligand. A di√erence Fourier map is then

calculated using the coe≈cients (Fobs – Fcalc) and phases acalc, where Fobs is the

observed structure factor amplitude from the complex crystals, and Fcalc and acalc

are the structure factor amplitude and phase calculated from the structure of the

uncomplexed protein. An example of such an ‘‘Fo – Fc’’ map is shown in Figure

6.3. This map demonstrates how the location of the drug in a drug:protein

complex can be revealed by a di√erence Fourier synthesis in which the only phase

information is derived from the uncomplexed protein.

6.2 Molecular Replacement

When the crystals of the target and reference molecule are not isomorphous the

problem is messier. We no longer have a preliminary model that is almost cor-

rect, as we would if the two crystal forms were isomorphous. We still know that

the structure of the target molecule will be similar to that of the reference, but we

do not know where the molecule is in the unit cell. The problem therefore boils

down to correctly orienting and positioning the reference molecule in the target’s

unit cell. (A particular choice for the position and orientation of a molecule is

sometimes called a pose.) Once this is accomplished, the resulting model can be

improved using the refinement methods discussed in Chapter 7. The methods

used to position the reference molecule have been termed molecular replacement.

The reference molecule is positioned by a search procedure—essentially a

sophisticated trial-and-error process. Figure 6.4 shows a target structure and

several possible models for it, created by placing the reference molecule in the

target unit cell in di√erent orientations and positions. We can easily see that most

of these guesses are wrong. However, when actually determining a structure we

do not know the correct answer in advance; how then would we know that these

models were wrong? The test is to calculate structure factors from all these

models and to compare them with the observed structure factor amplitudes

measured from the target crystal. For the incorrect guesses, the agreement is

poor, signaling that the models are not satisfactory representations for the target

crystal structure; agreement should be better for the correct guess.

The e√ect of rotating a molecule on its di√raction pattern is illustrated in
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Figure 6.4. The process of molecular replacement. (a) We use the same target and
reference molecules as in Figure 6.1, but we no longer assume that the crystals of the
target and reference are isomorphous. Thus, although we know the structure of the
reference molecule (and assume that the structure of the target molecule is similar),
we do not know how the molecule is positioned within the unit cell of the target
crystal. (b) Cartoons showing possible models for the target structure, obtained by
placing the reference molecule in di√erent orientations and positions within the
target unit cell. Three of the four guesses shown are clearly wrong (the most correct
guess is marked with an asterisk). Note that some of the guesses actually cause
symmetry-related molecules in the cell to overlap, which is physically impossible.
This is a common occurrence when we attempt brute-force solutions, in which all
possible orientations and positions are tested. The presence of such bad contacts can
help weed out incorrect answers when we are assessing several potential solutions. 

Figure 6.5. The structure of the molecule does not change when it is rotated and

therefore neither does its di√raction pattern. However, the di√raction pattern does

rotate along with the molecule. Recall that the di√raction pattern of a crystal repre-

sents a sampled version of the molecule’s di√raction pattern (this point is illustrated

by Figure 3.6). Because of this sampling e√ect, as the reference molecule is rotated

the intensities of di√erent reflections change significantly. We wish to orient the

reference molecule so that the predicted and observed intensities match.



Figure 6.5. The e√ect of rotating an object upon its di√raction pattern. Two orienta-
tions of the same molecule are shown. For each orientation, the Fourier transform of
the single molecule is shown on the left, and the Fourier transform of a crystalline
array of that molecule is shown on the right. Rotating the molecule rotates its di√rac-
tion pattern, and the crystal di√raction pattern represents a sampled version of the
molecular di√raction pattern. We know the unit cell parameters for the target crystal
—these define the spacing of the spots in the di√raction pattern, or, if you will, the
mask through which we observe the molecule’s di√raction pattern. In molecular
replacement, we are holding the crystal mask fixed and rotating the molecular trans-
form underneath. The correct orientation is the one in which the pattern of spot
intensities as seen through the mask best matches the observed di√raction intensities.
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In molecular replacement, a systematic search procedure is used to sample all

possible orientations and positions of the reference molecule in the target unit

cell. The orientation and position for which the calculated and observed struc-

ture factors agree most closely provide a plausible guess for the answer. Elaborate

software packages exist for carrying out these searches, but a detailed analysis of

their workings is beyond the scope of this book. However, the basic ideas are

quite straightforward.

An exhaustive, six-dimensional search is the obvious (if naïve) choice:

≤ Place the reference molecule successively at each of the points on a fine grid

sampling the asymmetric unit of the target crystal unit cell.

≤ At each test position, place the reference molecule into all possible orienta-

tions, again using a fine grid, creating a set of poses.

≤ For each pose, generate the symmetry mates of the reference molecule. This

produces a possible model for the crystal of the target molecule.

≤ Calculate FR(h) for each potential model, and compare it with FT(h).

This comparison can be made by calculating the correlation coe≈cient be-

tween FR(h) and FT(h), or by calculating the R value:

�
h

∆FR (h) – FT (h)∆

R = (6.2)�
h

FT (h)

The model with the highest correlation coe≈cient and/or lowest R value corre-

sponds to the correct solution (at least in principle).

This is a six-dimensional search. We have to scan three angles and three

coordinates in rather fine steps. Even with today’s powerful computational ca-

pabilities, this is a daunting challenge. To simplify the calculation, Michael

Rossmann and David Blow had the idea of separating the rotational and transla-

tional searches, performing two sequential three-dimensional searches instead of

one six-dimensional search. The idea behind their method can be seen most

easily using the Patterson function.



Partially Known Structures 91

6.2.1 We Discuss Rotational Searches First

Peaks in the Patterson function correspond to vectors between pairs of atoms in

the crystal. Some vectors will connect atoms within a single molecule and are

called self-vectors. Others will connect atoms in two di√erent molecules—cross

vectors. Most of the time, pairs of atoms within a single molecule will be closer to

each other than two atoms in two di√erent molecules. Thus, self-vectors in the

Patterson function tend to lie near the origin, and cross vectors away from the origin.

When a protein molecule is rotated, the distances between atoms within that

molecule do not change. Therefore, rotation of a molecule changes the directions

of the self-vectors in the Patterson function but not their lengths. Herein lies our

recipe for molecular replacement: For all possible orientations of the reference

molecule, calculate the Patterson function. Next, compare the self-vectors from

all these Patterson functions with the self-vectors from the Patterson function of

the target crystal. The best agreement will occur when the reference molecule is

in the same orientation as the molecule in the target crystal. We do this in

practice by using the correlation function R(u1, u2, u3), which is known as the

rotation function.

R(u1,u2,u3) = � Preference (M(u1,u2,u3) § u)Ptarget (u) dV (6.3)

all
space

Here M is a matrix that carries out the rotations and is a function of three

rotation angles u1, u2, u3. The function Preference is the Patterson function for the

reference molecule that has been edited to contain only self-vectors. Preference falls

to zero past a radius whose length is equal to that of the longest vector in the

molecule. Thus, although the integral is written over all vector space, the inte-

grand is only nonzero in a limited volume.

The rotation function works because the integral is large when peaks in

Preference fall on top of peaks in Ptarget. Therefore, the trio of angles u1, u2, u3 for

which R has the largest value should describe the orientation of the reference

molecule in the unit cell of the target crystal.

The goal of the rotation function is to orient molecular models within the

unit cell in ways that agree with the observed di√raction data. This involves

rotating our model. How do we do this? Rotations may be described using angles

devised by Euler in the eighteenth century. According to Euler’s rotation the-

orem, any rotation may be described by using successive rotations about three
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Figure 6.6. The three successive rotations that comprise a general rotation using Euler
angles.

coordinate axes embedded in the object being rotated. If the three axial rotations

are written in terms of rotation matrices B, C, and D, then a general rotation A

can be written as

A = BCD (6.4)

The three angles giving rise to the three rotation matrices are called Euler angles.

Several conventions for Euler angles exist, depending on how we draw the axes

about which the rotations are performed. The so-called x convention, illustrated

in Figure 6.6, is the most common definition. In this convention, the rotation

specified by Euler angles (u1, u2, u3) is accomplished by first rotating by an angle

u1 about the z axis, then by an angle u2 about the x axis, and third, by an angle u3

about the z axis (again). Note, however, that several other conventions in which

the rotations take place about other axes are also in common use.

In the x convention, the component rotations are given by

B =





cosu3

sinu3

0

–sinu3

cosu3

0

0

0

1





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C =





1

0

0

0

cosu2

sinu2

0

sinu2

cosu2






D =





cosu1

–sinu1

0

sinu1

cosu1

0

0

0

1






Multiplying these three matrices together to obtain A we find

A =





cosu3 cosu1 –cosu2 sinu1 sinu3

–sinu3 cosu1 –cosu2 sinu1 cosu3

sinu1 sinu2

cosu3 sinu1 +cosu2 cosu1 sinu3

–sinu3 sinu1 +cosu2 cosu1 cosu3

–sinu2 cosu1

sinu3 sinu2

cosu3 sinu2

cosu2






A useful way to think about the matrix operator A is to imagine it operating on

the coordinate axis system x, y, z to produce a new, rotated version of the coordi-

nate system. If x is a vector in the fixed (unrotated) coordinate system, it will have

another name, say x %, in the rotated system. These two names for the same vector

are related by

x % = Ax

The rotation matrix M used in equation (6.3) will work exactly like the matrix A

described above. Imagine that the functions Ptarget and Preference from equation

(6.3) are superimposed in space and that you are focusing on a particular point x

in Ptarget. We then rotate Preference with respect to Ptarget. As we rotate Preference,

di√erent points in that function will fall on top of our chosen point x. For each

orientation of the reference molecule, Mx is the point in Preference that falls on top

of the point x in Ptarget. Thus, M is a tool for relating the rotated and unrotated

Patterson functions.

The other major system for representing rotations makes use of spherical

polar angles, which are more intuitive than Euler angles. They are based on the

theorem that any rotation can be accomplished by a single spin about a properly

chosen axis. Thus, two angles are used to specify the longitude and colatitude of

the axis, and the third angle is used to specify the spin around it. This angular
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Figure 6.7. Spherical polar angles. Two angles specify the longitude and colatitude of
the rotation axis, and one angle specifies the spin about that axis. These angles are
particularly useful for the self-rotation function, where one may expect to find simple
rotations such as twofold axes. A section of the rotation function at k = 180\ will
show peaks on the sphere corresponding to twofold axes.

system is shown in Figure 6.7. The matrix that specifies rotations in the spherical

polar angle system is rather messy. It can be found in the original Rossmann and

Blow paper.*

The use of Euler angles has its di≈culties. If the value of the second Euler

angle is small, the first and third rotations are highly correlated, because they are

made around nearly parallel axes. This results in highly distorted peaks in the

rotation function. Use of modified (or quasiorthogonal) Euler angles can allevi-

ate this problem. The modified Euler angles are referred to as u+, u–, and u2 and

are given by:

u+ = (u1 + u3)/2

u– = (u1 – u3)/2

u2  = u2

In Figure 6.8 a contour plot is shown for a two-dimensional rotation func-

tion. Figure 6.8a uses conventional Euler angles, and Figure 6.8b uses the modi-

*Rossmann, M. G., and Blow, D. M. Acta Crystallogr. 1962;15:24.
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Figure 6.8. Quasi-orthogonal Euler angles. The same rotation function section is
calculated by using Euler angles (a) and quasi-orthogonal Euler angles (b). 

fied ones. Note that the peak appears much more symmetric when represented

using the modified angles. When peak shapes are elongated and distorted, it is

di≈cult to accurately measure the areas under these peaks. The more symmetric

peaks obtained with the modified angles allow the weights of peaks in di√erent

regions of the rotation function to be quantitatively compared. These angles are

incorporated as an option in many programs.

In this discussion, we’ve assumed that the rotation function will be used to

orient a reference molecule in the first step of a molecular replacement structure

determination. When Rossmann and Blow first conceived the rotation function
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in the early 1960s, however, a grand total of only two protein structures were

known, and the notion of using known protein structures to solve unknown

crystal structures was probably not foremost in their minds. In fact, the rotation

function was originally developed with another purpose, that of revealing non-

crystallographic symmetry within the crystal. What is noncrystallographic sym-

metry? Recall that for molecules to form a crystal, they must pack together in a

way that obeys the symmetry of that particular crystal’s space group. However,

molecules sometimes possess additional symmetry that is not reflected by the

crystal symmetry. This type of symmetry is known as noncrystallographic or

local symmetry. For example, suppose we wish to crystallize a molecule that

forms a symmetric C2 dimer—two identical monomers related by a twofold

rotational axis of symmetry. The dimer might happen to crystallize in a space

group containing a twofold symmetry axis, with the dimer’s twofold coincident

with the crystallographic twofold axis; in this case the crystal’s asymmetric unit

would contain one monomer. Alternatively, the molecule might crystallize in a

di√erent space group that contains a complete dimer in the asymmetric unit. In

the latter case, although the dimer’s twofold symmetry axis still exists, it is not

coincident with any crystallographic twofold axis, and in fact the dimer symme-

try axis is irrelevant to the symmetry of crystal packing. As another illustration,

we note that many protein oligomers (and some viruses) contain fivefold axes of

symmetry. Crystal lattices cannot contain fivefold axes, so the symmetry of the

oligomers cannot be reflected in the symmetry of the crystal. The fivefold axis is

therefore another example of noncrystallographic symmetry—it exists within

the oligomer, but it is not used to build up the crystal lattice.

The rotation function is very useful for finding and characterizing non-

crystallographic symmetry within a crystal. For this purpose we use a special

form of the function known as the self-rotation function. In the self-rotation

function, the Patterson function of the crystal is rotated and multiplied by an

unrotated version of itself. When the angle by which we rotate the Patterson

corresponds to the angle relating two subunits in the oligomer, then the rotated

and unrotated Patterson are similar, and the integral of their product is large. The

self-rotation function is plotted as a function of the rotation angles correspond-

ing to all possible relative orientations. Peaks in the self rotation function corre-

spond to the angles relating subunits, and reveal the direction of the noncrystal-

lographic symmetry axes in the crystal.

An example of the self-rotation function is shown in Figure 6.9. The crystal



Figure 6.9. Detection of noncrystallographic symmetry by using the self-rotation
function. (a) Structure of a protein isolated from the thermophilic microbe Meth-
anobacterium thermautotrophicum. This protein forms a homoheptamer, with seven
identical subunits arranged in a sevenfold symmetric ring. In this view, the sevenfold
axis of symmetry is perpendicular to the plane of the page. The structure of this
protein may be found in the Protein Data Bank under accession number 1jbm. (b)
The k = 51\ section of the self-rotation function. The self-rotation function is calcu-
lated as a function of the three polar angles v, f, and k and is represented in a
stereographic projection. In this projection the crystallographic a axis is perpendicu-
lar to the plane of the page; each section of the projection represents a single value of
k. Note the strong peak at f = 33\, v = 62\, revealing the direction of the non-
crystallographic symmetry axis. (c) Graph of how the intensity of this peak varies
with k. Note how maxima occur at intervals of 51.4\ (360\/7), reflecting the presence
of sevenfold rotational symmetry in the crystal.
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used for this figure contains a heptameric protein, in which the seven identical

subunits are related by sevenfold symmetry (rotations of 51.4\ and multiples

thereof). The rotation function is plotted by using spherical polar angles; Figure

6.9b shows a plot of the function for which the spin angle k has been limited to

51.4\. The strong peak at f = 33\, v = 62\ reveals the orientation of the

sevenfold axis. Of course self-rotation functions can be carried out equally well

using the Eulerian angular system; however, maps produced from spherical polar

angles provide very direct visual pictures of the molecular symmetry.

6.2.2 Translational Search

Once the orientation of the reference molecule has been predicted by the rotation

function, a translational search lets us find a complete model for the target

crystal. We explore the translation function using an example with only two

molecules in the unit cell to avoid the messy formalism required for the general

case. Suppose that we have already determined the orientation of both molecules

using the rotation function. Using this information, the translation function

creates models of the target crystal structure and compares the di√raction pat-

terns of these models with the observed data from the target crystals.

The structure factor for the entire crystal is the sum of the structure factors

for each of the two component molecules.

F(h) = F1(h) + F2(h)

where the subscripts denote the two molecules. The di√raction intensity from

the crystal is given by ∆F(h)∆2. What is the neatest way to calculate this? Recall

from Chapter 5 that ∆F(h)∆2 = F(h) § F*(h), where F* is the complex conjugate

of F.

To calculate the di√raction intensity expected from the crystal, we can write

∆F∆2 = F(h) § F*(h) = (F1 + F2) § (F1* + F2*)

= ∆F1∆2 + ∆F2∆2 + F1 § F2* + F1* § F2

where we have omitted the argument h for clarity.

We can then write the Patterson function as

P(u) = 
(∆ F1∆2 + ∆F2∆2+F1 § F2* + F1* § F2)exp(2pih § u)



Partially Known Structures 99

This deconstruction breaks the Patterson function into four terms. The first

represents vectors within molecule 1; the second, vectors within molecule 2; the

third, vectors from molecule 2 to molecule 1; and the fourth, vectors from

molecule 1 to molecule 2. Because we are interested in determining the locations

of our two molecules, the parts of the Patterson function that interest us are the

third and fourth terms, which contain positional information. To exploit this

positional information, we abstract the third term and define a ‘‘cross Patterson’’

function containing only intermolecular vectors:

Pcross(u) =
1

V
wF1(h) § F 2* (h)cos(2ph § u)

Note that the fourth term would have served equally well. The correlation func-

tion we wish to evaluate is analogous to the rotation function, and is given by

T = �Pcross(u) Pxtal(u)dV (6.5)

We can also write this as

T = wF1(h)§ F*2(h)§ ∆ Fobs(h)∆2 (6.6)

But how do the positions of molecules 1 and 2 enter into the calculation? Re-

member that F1 and F2 are calculated for the two reference molecules, centered at

the origin. We are now testing di√erent positions for these molecules in the unit

cell to find their correct locations. When we move molecules 1 and 2 to positions

x1 and x2, the di√raction patterns are phase shifted and become

F1 exp(2pihx1) and F2 exp(2pihx2),

respectively. Plugging this into the equation for T gives

T(x1, x2) = wF1(h)exp(2pihx1) § F 2* (h)exp(–2pihx2)§ ∆ Fobs(h)∆2

T(x1 – x2) = w∆ Fobs(h)∆2§F1(h)§F 2* (h)exp(2pih [x1 – x2]) (6.7)

This is a form that is often evaluated. It is simply a Fourier series like the electron

density function. Note that the position of the molecules appears indirectly, in

the form of the vector between molecules, as is seen in a Patterson function.
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Suppose the two molecules are related by symmetry, specifically by a twofold

rotation axis lying along the crystal’s y axis. In this case the vectors x1 and x2 are

symmetry related, with components x1, y1, z1 and –x1, y1, –z1. The vector

di√erence x1-x2 is therefore 2x1, 0, 2z1. Thus in this particular case T becomes

T(x1, z1) = w ∆ Fobs(h)∆2 § F1(h) § F 2* (h) exp(2pi[2hx1 + 2lz1])

This discussion has given the flavor of how the translation function works,

without going into too much detail. Many modifications have been made to the

translation function to reduce noise. For example, the target Patterson function

F 2
obs(h) can be modified to remove short-range (intramolecular) vectors, which

do not depend on position and only add noise to the calculation.

The classical translation function defined above is not the only method for

positioning molecules that have been previously oriented using the rotation

function. For example, one can simply move the correctly oriented molecule to

all possible positions in the unit cell and, at each position, calculate the correla-

tion coe≈cient or R value relating Fobs and Fcalc.

In practice, for cases in which the reference and target molecules have signifi-

cant di√erences, molecular replacement can take on an aspect of brute force. One

uses not only the highest peak in the rotation function to describe the orienta-

tion, but may test the top 20 peaks. For each of these a full translation function

analysis has to be carried out. At the end of the day one may have several di√erent

solutions with similar R values. The ultimate test of which solution is correct is

refinement; the models that can be improved until their calculated structure

factors agree with the observed data will be the correct ones. Sophisticated soft-

ware packages can perform molecular replacement searches in a highly auto-

mated manner.

Molecular replacement fails totally from time to time. For example, vectors

longer than the size of the molecule should not be included in the rotation

function, because we wish to limit the calculation to self-vectors. However, in

elongated and/or tightly packed molecules, it may be impossible to avoid includ-

ing large numbers of cross-vectors, thereby increasing the noise level and ‘‘poi-

soning’’ the rotation function. Also, when multiple molecules are present in the

crystal asymmetric unit, each individual molecule must be found separately. If

many molecules are present, each molecule accounts for only a small fraction of

the total scattering, and so its signal in the rotation function may be too low to

identify among the noise peaks.
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6.3 Summary

≤ Di√erence Fourier maps can reveal missing or misplaced bits of structure in a

molecular model. These maps use coe≈cients qF = (Fobs – Fcalc) and phases

acalc, where Fcalc and acalc are calculated from the model. Peaks in such maps

appear at half-weight.

≤ Molecular replacement uses the known structure of a reference molecule to

determine the crystal structure of a target molecule of similar structure. The

rotation function finds the orientation of the reference molecule in the target

unit cell, and the subsequent translation function finds its position. This

yields a model suggesting how the target molecule is posed in the unit cell,

which can then be refined.

≤ The self-rotation function compares a crystal’s Patterson function with itself

and can reveal internal symmetry within the asymmetric unit (noncrys-

tallographic symmetry).

further reading
The Molecular Replacement Method (ed. M. G. Rossmann; Gordon and Breach, New York,
1972) is an interesting collection of earlier papers on the rotation function and molecular
replacement, including many that explain methods well.

Check out the short review by Michael Rossmann, The Molecular Replacement Method
(Acta Crystallogr. A 1990;46(2):73–82). Very clear.

The program package AMoRe, which contains an elegant fast algorithm for the
rotation function, is described in (Navaza, J. AMoRe: an automated package for molecular
replacement. Acta Crystallogr. A 1994;50(2):157–163).

The program package Phaser implements sophisticated statistical methods to better
evaluate the rotation and translation functions used in molecular replacement, as de-
scribed in (Read, R. J. Pushing the boundaries of molecular replacement with maximum
likelihood. Acta Crystallogr. D 2001;57(10):1373–1382).

The di√erence Fourier map is covered well in the text by Blundell and Johnson,
Protein Crystallography (Academic Press, New York, 1976).
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7

Crystallographic Refinement

7.1 Refinement Improves the Model

The product of a crystallographic experiment is a ‘‘model.’’ The model is simply

the x, y, and z coordinates for every atom in the molecule (plus a set of tempera-

ture factors or B values, if there are su≈cient data). In an MIR or MAD experi-

ment, this model is built by fitting the experimentally derived electron density

map. In molecular replacement, the model is the structure of the reference

molecule, oriented and positioned in the unit cell of the target crystal.

Initial models contain errors. These errors have many sources: experimental

error (noise) in electron density maps, bias contributed by the individual who

built the model, or, in molecular replacement, genuine di√erences between the

target and reference molecules. The initial model can be improved, however, by a

process known as refinement. Refinement is important not only because it im-

proves the model but also because it eliminates the subjectivity inherent in

human map fitting, so that structures of the same molecule determined in dif-

ferent laboratories will agree within experimental error. A simple example of the

types of changes that occur during refinement is shown in Figure 7.1.

Here is the key insight into what makes refinement possible: we can calculate

the di√raction pattern corresponding to any model and compare the calculated

data with the observed data. Refinement is the process of systematically altering

the model so that the observed and calculated data agree more and more closely.

We have already met the exact mathematical relationship that connects the model
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Figure 7.1. Example of a portion of a crystallographic model before refinement (left)
and after refinement (right). The models are superimposed on the electron density
map. The side chain of the arginine residue is clearly misplaced in the initial model,
which was derived from a molecular replacement structure. Figure courtesy Jason
McLellan and Dan Leahy, Johns Hopkins School of Medicine.

with the di√raction data. It is the structure factor equation (3.11). Recall that the

input to this equation is a set of atomic coordinates—a model—and the output is

a set of F(h, k, l).

7.2 Least-Squares Refinement

We now address how the model can be systematically improved. The simplest

method is called least-squares refinement. This method is closely related to an-

other least-squares process, namely that of fitting a straight line through a set of

experimental data points. Comparing the two procedures is instructive.

Refinement and line fitting both have three requirements:

≤ A set of measurements of the independent and dependent variables. For a

straight line these are the coordinates of the points (xi,obs, yi,obs); x is the

independent variable, and y is the dependent variable. In crystallography, the

independent variables are the Miller indices h, k, l, and the dependent vari-

ables are the ∆F(h, k, l)∆. 

≤ A mathematical model that relates the dependent variables to the indepen-

dent variables. This allows you to calculate values for the dependent variable

(yi,calc or ∆Fcalc (h, k, l)∆) and compare them with the observed values (yi,obs or
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∆Fobs (h, k, l)∆). This model will contain several adjustable parameters. For a

line the parameters are the slope and intercept, and for crystallography they

are the atomic coordinates.

≤ A method of finding the values of these parameters that give the best fit of

yi,calc to yi,obs, or of ∆Fcalc (h, k, l)∆ to ∆Fobs(h, k, l)∆.

For a line, the model we use is the following:

yi,calc = mxi,obs + b

where m and b are the parameters to be optimized.

Here is how least squares works. For a given m and b we can calculate a set of

yi,calc; in general, the yi,calc values do not equal the corresponding yi,obs. We want the

particular values of m and b that make yi,calc and yi,obs agree most closely. We can

quantify the discrepancy between calculated and observed y values by defining qyi:

qyi = yi,obs – yi,calc

The model agrees best with the data when the absolute value of qyi, summed

over all the data points, is at a minimum. Rather than minimize ∆qyi∆, however,

we choose to minimize the squares of qyi. Thus, we define R = �
i

(yi,obs – yi,calc)2.

Now the problem reduces to finding the values of m and b for which R is a

minimum. To insert m and b into the equation we substitute for yi,calc.

R = �
i

(yi,obs – yi,calc)2 =�
i

(yi,obs – (mxi + b))2

We then minimize R by the usual expedient of setting its partial derivatives 
�R

�m

and 
�R

�b
 equal to zero.

�(R)
�� n�

i=1

(yi,obs – yi,calc)2�
= = 0

�m �m
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which gives

n�
i=1

–2(yi,obs – mxi,obs – b) § xi,obs = 0

On rearrangement this yields

m� x2
i,obs + b� xi,obs =� xi,obsyi,obs

This expression is a linear equation in m and b. The terms under the summation

signs are all known.

Setting �R/�b = 0 leads to a second linear equation:

m� xi,obs + b =� yi,obs

Thus, we have two equations and two unknowns and can solve for m and b

directly.

Data we measure will contain experimental errors. How do we account for

them? The errors can be modeled in many ways. If we assume that they follow a

Gaussian distribution, then it can be shown that the best approach is to minimize

��qyi

si
�2

rather than 

�(qyi)2.

Here si is the standard error of the ith measurement. In other words, we are

doing a weighted minimization, in which the individual data points are up- or

down-weighted according to their reliability.

The Gaussian model, although easy to understand, is not the most appropri-

ate model for crystallographic data. In recent years more sophisticated statistical

methods for error estimation have been introduced and have greatly improved

crystallographic computing. Modern refinement programs do not simply mini-

mize the weighted square of the di√erence, as described above (and shown



106 Protein Crystallography

in equation 7.1). Instead, they apply so-called maximum likelihood statistical

methods to arrive at the model most consistent with the data. The error propaga-

tion models required to estimate probabilities can be complicated, but the gen-

eral idea remains the same—data points are still weighted on the basis of their

reliability. For the sake of simplicity, we will only describe the least-squares

method in the following discussion.

For the straight line discussed earlier, the ycalc values depend on two param-

eters, the slope m and intercept b. In the crystallographic case, the calculated

structure factor Fcalc is a function of the model parameters p1, p2, . . . , pN, which

are primarily the x, y, and z coordinates of the di√erent atoms. The set of

parameters pi is often abbreviated as the array or vector p.

By analogy with what we did with the straight line, we can define a residual R

as the weighted square of the di√erence between observed and calculated struc-

ture factors, summed over all reflections:

R =�
h

�F(h)obs – F(h)calc

sh
�2

(7.1)

Note that the residual is based on the observable amplitudes ∆F ∆ and thus does

not require knowledge of phases. The best estimates of the model parameters are

those that give the minimum value for R. We find those optimal parameters by

di√erentiating R with respect to each parameter and setting the derivatives to

zero, just as we did earlier to find m and b.

�R

�p1

= 2�
h

wh(Fobs – Fcalc)
�Fcalc

�p1

= 0

�R

�p2

= 2�
h

wh(Fobs – Fcalc)
�Fcalc

�p2

= 0

�R

�pN

= 2�
h

wh(Fobs – Fcalc)
�Fcalc

�pN

= 0

�

where wh is a weighting term (for example, 1/sh
2). If the model has N param-

eters, we will obtain a set of N normal equations, one for each parameter pi. As



Crystallographic Refinement 107

long as N is less than the number of data points (reflections), we can hope to

solve this set of simultaneous equations and determine the best values for p.

However, if N exceeds the number of reflections, the system is said to be under-

determined, and no unique solution for p can be found. In practice, it is desir-

able to have a heavily overdetermined system, with the number of data points

being ]] N. Overdetermination ensures that the estimation of p is robust.

As we saw in the earlier example, a linear function yields a simple set of linear

normal equations that are easily solved. The structure factor equation is not

linear, however. Recall Equation (3.14): 

Fcalc =� fj e 2pi(hxj + kyj + lzj)e (–Bsin2u/l2)

This is a key di√erence between fitting a straight line and crystallographic refine-

ment. Di√erentiating the structure factor equation gives rise to a very complex

and nonlinear set of normal equations that cannot be solved directly. 

To overcome this problem, we must resort to approximations. Many possibil-

ities exist. The simplest calculations are obtained when using highly simplistic

approximations, but these are too unrealistic to be useful. More realistic approx-

imations give rise to more di≈cult calculations. A reasonable compromise uses a

Taylor series to obtain a linear approximation to the structure factor, which we

can plug into the expression for R. We then calculate derivatives and set them to

zero, generating a set of normal equations.

It is at this point that the need for a preliminary model becomes clear. A

Taylor series expansion is only valid in a limited range around the original set of

values. In our case, these original values are the set of coordinates from the initial

model. Solving the normal equations allows us to calculate corrections qpi to be

applied to each parameter (think of it as tweaking the positions of the atoms).

Because we are using an approximation to the structure factor, the corrections we

calculate are not perfect. Hence, we must carry out a series of successive approx-

imations. In each refinement cycle:

1. We apply the corrections, calculating pi,new = pi + qpi;

2. Minimize again using pi,new, and calculate qpi,new; and

3. Return to step 1.

The refinement converges when R no longer deceases from cycle to cycle.

Our systems of normal equations are really big. For example, a 35-kDa
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protein will contain about 300 residues, or about 2,400 nonhydrogen atoms.

Each atom has x, y, and z coordinates, which gives a model with 3 — 2,400 =

7,200 parameters. This means that the set of normal equations will contain 7,200

— 7,200 � 5 — 107 coe≈cients. In the language of linear algebra, to solve the

equations we would have to invert a normal matrix containing 5 — 107 elements.

Inverting such a large matrix is computationally intractable. To get around this

problem, we take additional shortcuts that allow our computers to solve the

equations quickly; even with these shortcuts, however, the calculations are im-

pressive in their scale. Until quite recently, refining even small to moderate-sized

proteins required weeks of CPU time. Now, refinements require hours to days.

An important question is whether we have su≈cient data to support the

refinement of complex atomic models containing thousands of parameters. Sup-

pose the 35-kDa example from the previous paragraph crystallizes in the space

group P222, with unit cell lengths a = 60 Å, b = 70 Å, and c = 80 Å. A 3 Å data

set from this crystal will contain only about 6,500 unique reflections, and a 2 Å

dataset will contain about 22,000 unique reflections. Therefore, the refinement is

underdetermined at 3 Å, and only threefold overdetermined at 2 Å. In contrast,

many small molecule structures are refined with data/parameter ratios of 20 or

30. Therefore, it appears that we simply don’t have enough di√raction data to refine

a typical protein structure.

We can surmount this problem by drawing on the tremendous body of

knowledge that is available about the chemical structures of protein molecules

(bond lengths, angles, and so on). This information is derived from high-

resolution crystal structures of amino acids and small peptides, as well as from

spectroscopy and theoretical studies. We can incorporate this knowledge into

our refinement in the form of appropriately weighted stereochemical restraints,

which act like additional data. Thus, the residual that is minimized would con-

tain many additional summations, in addition to the structure factor terms

shown in equation (7.1). An example might be

# bonds�
i=1

�bi,obs – bi,std

sbond,i
�2

Here the bi are the lengths of chemical bonds. The ‘‘observed’’ values are those

found in the model, and the standard values are readily available in the literature.
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Figure 7.2. A one-dimensional example illustrating the notion of local minima in
refinement. In this figure the horizontal axis represents some parameter that is chang-
ing during the refinement (an atomic position, for example). The y axis shows the R
value and is hence a measure of the how well the model agrees with the data. When a
model becomes trapped in a local minimum, it can be di≈cult for the refinement
program to extricate it and proceed to the global minimum, since moving the param-
eter by small amounts in either direction worsens the R value.

The s is a weight that determines how strongly this particular restraint contrib-

utes to the refinement. Keeping this sum small ensures that the bond lengths in

the model stay close to the known values bi,std. The bi,std values play the same role

in the normal equations as the Fobs values do and therefore act as additional

observations. This increase in the number of observations makes the refinement

e√ectively overdetermined.

The method outlined in this chapter assumes that the parameters in the

starting model are reasonably close to the correct values (in which case we say the

model lies ‘‘within the radius of convergence’’). This is not always possible, and a

poor initial model can make it di≈cult for the refinement to reach the correct

answer. Think of the minimization function as a highly convoluted multidimen-

sional surface; there is one correct answer (the global minimum), but many local

minima may lie between your current position and the global minimum. A one-

dimensional example of a minimization function is schematized in Figure 7.2.

It is di≈cult for the refinement program to traverse local minima. A good

example would be a flipped peptide bond that was built into a model with the

omega angle = 180\ when the correct value is actually v = 0\. The model with v

= 180\ isn’t very good, but it is better than a model with v = 90\, so the

refinement program will never move omega su≈ciently far to discover its correct

value. When a refinement becomes ‘‘stuck’’ before reaching an appropriate R

value, the model must be inspected and carefully compared with the electron
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density map. Frequently at this point the crystallographer can detect problems

such as the flipped peptide bond mentioned above. After any such gross prob-

lems are corrected, the refinement cycles can be resumed. 

Another way to circumvent the problem of local minima is simulated anneal-

ing. In this approach, the thermal motions of the molecule are simulated in the

computer. The atoms are allowed to move subject to Newton’s equations of

motion; they are restrained to obey simple chemical laws so that bond lengths

and angles remain reasonable. The idea behind this is that the thermal motion

will allow the molecule to sample many di√erent conformations and so escape

from any local minima in which it may have been trapped. The geometric

restraints are applied by writing an equation for the potential energy of the

molecule as a function of the coordinates. It contains, for example, terms for

bond stretching, hydrogen bonding, and charge interactions. Many of terms in

this equation look similar to the restraint terms in least-squares refinement. In

addition, an ‘‘X-ray force’’—arising from the familiar term (Fo – Fc)2—is applied

that biases the atomic motions toward those that reduce R. Because this bias is

weak, the molecule can make motions for which R increases temporarily and that

can allow it to surmount some local minima. The refinement starts at high

temperature, with the molecule making large motions. The motions are then

slowly damped by reducing the temperature until the molecule settles down into

a final structure. 

The metric that is most commonly used to monitor a refinement is the

crystallographic R value:

�
hkl


∆Fobs – Fcalc ∆�

R = (7.2)�
hkl

Fobs

As the refinement progresses and the model improves, R decreases. Note that this

R value is not exactly the same as the R values we defined earlier (equation 7.1),

which are the minimization targets for the refinement. However, the crystallo-

graphic R value is obviously very similar to the target function being minimized.

The R given in Equation 7.2 is the one usually quoted when describing the

structure.
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Powerful refinement methods, such as simulated annealing, can sometimes

drive down the R value by unrealistically distorting the model rather than by

improving it. Restraints control this problem but do not always eliminate it. The

free R value was introduced to address the problem of overfitting. At the outset of

the refinement, a random subset of the reflections is set aside. This is referred to

as the test set and typically corresponds to about 5% of the total. The balance of

the reflections is known as the working set. During refinement, the minimization

uses only the reflections in the working set. The R value for the reflections in the

working set will almost always decrease during refinement, but if the model is

truly improving, then the R value for the test set (known as Rfree) should also

decrease. Typically (Rfree – R) [ 0.1.

7.3 Summary

≤ Crystallographic structure determinations lead to models showing the spatial

location of the atoms of the protein.

≤ Initial models can contain significant errors. Refinement improves these

models by systematically adjusting the atomic positions to maximize the

agreement between the observed di√raction data and data calculated from

the model. 

≤ Because proteins and other macromolecules typically do not di√ract to very

high resolution, the refinement of their structures su√ers from a poor ratio of

data to parameters, which causes the refinements to be ill conditioned. To

overcome this problem, stereochemical restraints are included which ensure

that parameters, such as bond lengths, angles, and so on, remain close to

known values. These restraints act as additional data points, making the

refinements e√ectively overdetermined.

≤ Refinement by least squares is a generalization of the familiar fitting of a

straight line to a set of points. Least-squares refinement is an iterative process,

the progress of which is measured by both the crystallographic R value and by

how closely the model adheres to stereochemical rules. Modern refinement

programs use error treatments that are more sophisticated than that asso-

ciated with least-squares, but the overall approach to refinement remains

similar.

≤ Refinement by simulated annealing can help models to escape false minima.
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further reading
Least-squares analysis is covered with great clarity in X-ray Crystal Structure Determina-
tion: A Practical Guide by Stout and Jensen. Lyle Jensen introduced refinement in protein
crystallography in the face of deep skepticism.

See also the following paper, which gives a beautiful, didactic discussion of protein
refinement. Cruickshank, DWJ. Remarks about protein structure precision. Acta Crys-
tallogr. D 1999;55(3):583–601.

The advantages and perils of simulated annealing and related methods are well de-
scribed in Brunger AT, Adams PD. Molecular dynamics applied to X-ray structure refine-
ment, Acct. Chem. Res. 2002;35(6):404–412.

A brief and readable account of the application of maximum likelihood statistical
methods to crystallographic problems such as refinement is given in the following paper:
McCoy AJ. Liking likelihood. Acta Crystallogr. D 2004;60(12):2169–2183.
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Glossary

Anomalous scattering / anomalous di√erence When X rays are scattered by a free

electron, a phase change of 180\ occurs, so that the scattered radiation is out of

phase with the incident radiation. Under most circumstances the electrons in an

atom can be regarded as free, so that when calculating the di√raction by a crystal

(structure factors) it is customary to assume this 180\ phase shift. However, if the

energy of the X rays is near an absorption edge of a particular atom type, this

assumption is no longer valid, and the phase change for scattering from such

atoms will di√er from 180\. This is represented mathematically by allowing the

atomic scattering factor f to be complex: f = f0 + f % + if &. Here f0 is the normal

scattering factor, and f % and f & are increments arising near the absorption edge.

Anomalous scattering is manifested in two ways: the Friedel’s law relation F(h,k,l)

= F(–h,–k,–l) breaks down, and F(h,k,l) becomes a function of wavelength

near the absorption edge. These e√ects allow one to determine the absolute

handedness of a molecule and to determine phases if an anomalous scatterer is

present in the crystal. The quantity ∆ F(h,k,l) – F(–h,–k,–l) ∆ is called the

anomalous di√erence.

Asymmetric unit The smallest substructure of a crystal that, when repeated by the

space group operations, can generate the entire crystal. The asymmetric unit is

often a single molecule but can also be an oligomer.

B factor / B value A parameter that describes the fallo√ of di√racted intensities with

increasing sinu/l that arises from thermal motion or disorder. The calculated

structure factors are multiplied by a temperature factor or Debye-Waller factor

exp(–Bsin2u/l2) to account for this e√ect. In simple models B = 8p2u2, where u2

is the mean-square amplitude of vibration of an atom. The customary units of B

are Å2.

Bijvoet pair A pair of reflections F+ and F–, where F+ is either F(h,k,l) or a

symmetry-related reflection (i.e., a reflection whose intensity is required by the
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symmetry of the di√raction pattern to be equal to F(h,k,l)); and F– is either

F(–h,–k,–l) or a symmetry-related reflection. F+ and F– have equal ampli-

tudes for normal scattering but will have unequal amplitudes in the presence of

anomalous scattering. See also Friedel pair.

Bragg reflection A particular point in the di√raction pattern of a crystal where Bragg’s

law predicts that significant di√racted intensity will occur (i.e., one of the ‘‘spots’’

in the di√raction pattern). So named because, in the Bragg model of di√raction,

the incident X-ray beam appears to be reflected by families of planes in the crystal

when Bragg’s law is satisfied. Bragg reflections are labeled by the Miller indices h,k,

and l, which denote which Bragg plane gives rise to a particular reflection.

Bragg’s law Arises from a schematic model of crystal di√raction in which the crystal

is represented by families of parallel planes spaced d units apart. If the incoming

X-ray beam makes an angle u with the planes, Bragg’s law states that for integer

values of n, whenever nl = 2d sinu the incoming X-ray beam will appear to be

reflected from the family of planes and will flash out of the crystal as a beam of X

rays, creating a spot or reflection on the detector.

Centric reflections Reflections whose phase is constrained by crystal symmetry to be

either 0\ or 180\. For centrosymmetric crystals all reflections are centric. Non-

centric crystals may still have zones of reflections that are centric.

Centrosymmetric In a centrosymmetric crystal, for each atom at position x,y,z there is

an identical atom (a symmetric mate) at –x, –y, –z. In centrosymmetric crystals

all reflections are centric. Crystals containing chiral molecules, such as l-amino

acids, cannot be centrosymmetric unless the crystal contains the racemic mixture.

Chiral volume A tool used during refinement to ensure that the configuration of

substituents around a-carbon atoms or other chiral centers has the correct hand.

A parallelepiped is defined for each such center; the volume of this parallelepiped

is given by the vector relation v1§(v2 — v3), where v1, v2, v3 are interatomic vectors,

defined so that the volume will be positive if the center has the correct chirality.

The chiral volume is restrained to be positive during refinement.

Combination of phase information For a given reflection hkl and a given source of

phase information, say MAD, the probability that the phase angle a is correct is

given by PMAD(a[hkl]). There are various models to compute PMAD from experi-

mental data. If there is an additional source of phase information, say MIR, then

one can generate a corresponding phase probability curve PMIR(a[hkl]). The

overall probability that the phase angle a is correct is given by the product of

these two curves: PTOT = PMADPMIR. Blow and Crick showed that the best phase

aBEST is given by the centroid phase of the curve PTOT.
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Debye-Waller factor The temperature factor as applied to di√raction intensities:

exp(–B[sin u/l]2). See B factor.

Density modification A method to improve electron density maps and to refine

phases. Density modification restores to the electron density map known charac-

teristics that have been distorted by phase errors. For example, the bulk solvent

regions between molecules should have a known, constant electron density, but

this is not the case in actual maps. Solvent flattening is a procedure in which the

solvent regions of the unit cell are set to the correct, constant value. The modified

density is then Fourier transformed to yield new structure factors Fcalc exp(iacalc).

Hybrid structure factors Fobs exp(iacalc) are then used to generate a new electron

density map. The solvent regions in this map will be flatter than before, but still

not flat. The process is repeated until the density in the solvent region no longer

changes. In general, the final maps are improved in all regions, not only in the

solvent, so that poor density within the molecule may become clearer. Histogram

matching and noncrystallographic symmetry averaging are other examples of den-

sity modification.

Di√erence maps Di√erence electron density maps (di√erence Fouriers) are used to

reveal unmodeled features in the structure. These maps are calculated from

Fourier syntheses by using coe≈cients (Fobs – Fcalc)exp(iacalc). Positive peaks in

di√erence Fouriers represent features present in the structure that are not ac-

counted for by the model. Negative peaks represent features in the model that are

not present in the structure. Adjacent positive and negative peaks often suggest

that an element has to be shifted in the model. Because the coe≈cients are

approximations, peaks in these maps come up at half their true weight. Maps

created using coe≈cients (2Fobs – Fcalc)exp(iacalc) add together the current calcu-

lated map plus twice the di√erence map to approximate a corrected map.

Di√erence Patterson maps are Fourier syntheses calculated using coe≈cients

(FPH – FP)2 where P stands for protein and PH stands for protein+heavy atom.

Such maps reveal the set of vectors running between heavy atoms and are fre-

quently used to locate such atoms. These maps contain noise since the coe≈cients

are approximations.

Direct methods Methods used to determine crystal structures of small molecules

([&100 nonhydrogen atoms). Developed by Karle and Hauptman and by Sayre,

direct methods restrict the set of possible phases by imposing physical constraints

on the electron density function r: r ? 0 and r2 & r are important examples.

Direct methods are probabilistic in nature and rely for their e√ectiveness on

having data to very high resolution. Classical direct methods are not useful for
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proteins, in general, since the width of the phase probability curves increases with

the number of atoms in the structure and becomes essentially flat for large

molecules. However, such direct methods have been very successful in determin-

ing the heavy atom or anomalous scatterer substructures within proteins. Mod-

ern direct methods employing dual space approaches have proven capable of

determining even very large structures, so long as atomic resolution data are

available.

Dispersive di√erence Dispersive means varying with wavelength. The MAD method

makes use of di√erences in the structure factor amplitudes at di√erent wave-

lengths. When F(h,k,l) is measured at the two wavelengths l1 and l2, the quan-

tity ∆l1F(h,k,l) – l2F(h,k,l)∆ is called the dispersive di√erence. See anomalous scat-

tering.

Dual space methods Phasing methods that alternate between reciprocal space (i.e.,

di√raction space–structure factors) and real space (the electron density map). A

simplistic example of how this might work would be to alter the phase of each

reflection (randomly, or according to some criterion of quality); this is in recipro-

cal space. A map would then be calculated with the modified phases and sub-

jected to density modification (real space). The phases resulting from density

modification would be modified again, and the process repeated until con-

vergence. Dual space methods, as implemented in programs such as SnB and

SHELX, have been tremendously successful at extending the applicability of di-

rect methods to macromolecules.

Electron density (function or map) X rays are scattered by electrons, and the strength

of the scattering by a tiny volume is proportional to the number of electrons in

that volume or to the electron density. The image created in crystallography is the

electron density function, represented graphically as an electron density map.

Error analysis In crystallography this term usually refers to analyzing errors arising

during estimation of the phases. In MIR, for example, it is rare for the phase

circles to meet at a single point, and no unique value for the protein phase aP

emerges from the calculation. Rather, we say that multiple values of aP are consis-

tent with the observations and their associated errors, each with a di√erent

probability of being correct. The result of an error analysis is a set of curves P(a),

one for each reflection, that give the probability that a particular phase a is the

correct value of aP. See combination of phase information.

Eulerian angles A set of three angles or rotations used to rotate an object in three

dimensions. In one convention the first rotation (u1) is applied to the x axis, the

second (u2) is applied to the moved y axis, and the third (u3) is applied to the
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twice-moved z axis. For crystallographic calculations, these rotations are applied

to a molecule by using a rotation matrix.

Ewald’s sphere A geometric construct designed to aid in the visualization of Bragg

reflections. A sphere is drawn centered on the crystal, with a radius of 1/l, where

l = the wavelength of the incident X-ray beam. The point where the beam exits

the sphere is defined as the origin of the reciprocal lattice. The axes of this lattice

correspond to the Miller indices h, k, and l, so that every lattice point corresponds

to a particular Bragg reflection. Rotating the crystal rotates the reciprocal lattice.

When a particular reciprocal lattice point lies on the surface of the Ewald sphere,

Bragg’s law is satisfied for that reflection. The direction of the di√racted beam is

obtained by drawing a ray from the center of the sphere through the position on

the surface where the reciprocal lattice point lies.

Figure of merit (FOM) The FOM, often denoted m, is a statistic indicating the

reliability of the experimental estimate for a particular phase. It is a measure of

the breadth of the phase probability curve P(a) for that reflection. The smaller m,

the broader the curve. It is roughly true that m = cos qa, where qa is the

estimated phase error; hence m = 0.5 corresponds to an estimated error of 60\.

The mean value of m, [m], is often quoted as a statistic describing the quality of

the phase determination.

Fractional coordinates If x, y, z are the coordinates of a point in Å units along the unit

axes a, b, c, then the fractional coordinates of the same point are x/∆a∆, y/∆b∆, z/∆c∆.

Free R value See Rfree

Friedel pair The pair of centrosymmetrically related reflections F(h,k,l) and

F(–h,–k,–l).

Friedel’s law The relation ∆F(h,k,l)∆ = ∆F(–h,–k,–l)∆, strictly valid only for normal

scattering. See anomalous scattering.

Hanging drop A crystal-growing method. A small reservoir (usually a well in a 24- or

96-well plate) is filled with a crystallization solution. A small volume (&1 ml) of

the well solution is pipetted onto a coverslip and mixed with an equal volume of

protein solution. The cover slip is then turned drop-side down and suspended

over the well, and the reservoir is sealed with grease or tape. The protein drop

becomes concentrated as water vapor moves from the drop to the well to equalize

osmotic strength. From time to time this concentration process produces a crys-

tal in the drop.

Harker section A special section in the Patterson function in which vectors between

symmetry-related atoms appear. In the space group P2, for example, for each

atom at position x,y,z there is another at position –x,y,–z. The interatomic
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vectors between these are 2x, 0, 2z and –2x, 0, –2z. The section y = 0 in the

Patterson function is a Harker section for this space group and contains all the

vectors between atoms related by the twofold rotation. Harker sections are useful

in determining the positions of heavy atoms.

Heavy atom refinement A method of improving the estimate of the positional and

other parameters associated with heavy atoms to improve the calculation of

phases. In MIR one has measured values for FPH-obs. One also has values for FPH-calc

= FP + FH. Using least-squares refinement, one can minimize the residual

w(FPH-obs – FPH-calc)2 with respect to the heavy atom positions and other param-

eters used in calculating FH. The process is cyclical. After improving the calcula-

tion of FH one redoes the phase calculation for FP , yielding a new estimate of

FPH-calc to use in the next refinement cycle.

Heavy atoms Atoms containing many electrons. Various heavy atom compounds are

used to derivatize protein molecules in the isomorphous replacement method.

Mercury compounds, for example, react with free –SH groups.

Histogram matching A method of density modification. The values of the electron

density sampled at regular intervals (grid points) throughout the three-

dimensional map form a probability distribution that is represented as a density

histogram. For error-free structures this histogram has a characteristic profile.

The histogram-matching method takes the density histogram calculated from an

initial set of phases and modifies it so that it takes the form of an expected density

histogram.

Huygens principle A principle by which the di√raction pattern of an object can be

calculated. It assumes that each volume element in the object is a source of

scattered spherical waves, whose amplitude is proportional to the scattering

power of that volume element. The object’s di√raction pattern as seen by a distant

observer is the sum of all the spherical waves emanating from it.

Insertion device A device that allows X rays to be generated in the straight segments

of a synchrotron ring. Arrays of magnets are inserted into the path of the electron

beam to force the beam into an oscillating path, thereby inducing the production

of X rays.

Intensity The observed strength of an X-ray reflection, proportional to the number of

X-ray photons striking the detector during the measurement period. The inten-

sity is proportional to the square of the structure factor amplitude: I(h)�∆F(h)∆2.

Isomorphous replacement A method of phase determination for macromolecular

crystals. Structure factor amplitudes FP(h) are measured from a native protein

crystal. Crystals derivatized with a heavy atom compound are then prepared and
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screened for isomorphism and quality. If a suitable crystal is found, structure

factor amplitudes FPH(h) are measured from it. Using direct or Patterson

methods the coordinates of the heavy atoms are determined, and amplitudes and

phases of the heavy atom structure factors FH(h) are calculated. The structure

factors for the native and derivative are related by the equation FP(h)exp(iaP) +

FH(h)exp(iaH) = FPH(h)exp(iaPH).

There is one equation for each reflection. We would like to solve each of these

equations for aP. We already know the four quantities FP, FPH, FH, and aH. It

turns out that the equation above is satisfied by two distinct values of aP. To

eliminate this ambiguity a second heavy atom derivative must be prepared, lead-

ing to a second set of equations like the one above. In most cases the two equa-

tions will have only one solution for aP in common.

Lattman angles Variants of Eulerian angles that produce undistorted rotation func-

tion maps, in which di√erent peaks can be accurately compared. In the Euler

angle system, when u2 is small the rotations u1 and u3 occur about axes that are

nearly parallel, and are strongly correlated. This correlation can be greatly re-

duced by using the modified angles: u+ = (u1 + u3)/2; u2 = u2; u– = (u1 – u3)/2.

Laue method A method to record a di√raction pattern very rapidly by using an X-ray

beam containing a broad spectrum of wavelengths. For beams containing all

wavelengths between lmin and lmax, the Ewald’s sphere construction involves two

spheres of radii 1/lmin and 1/lmax. Any reciprocal lattice point lying between

these two spherical shells will satisfy Bragg’s law for one of the intermediate

wavelengths and will give rise to a reflection on the detector. Laue experiments

must be carried out at synchrotrons, which provide intense white radiation. In

favorable cases a significant fraction of the reflections can be measured for a fixed

crystal setting, allowing nearly complete data sets to be recorded in a fraction of a

second.

Least-squares refinement A method of improving the accuracy of the atomic model

in an X-ray crystal structure. Least-squares refinement minimizes the residual R =

w
h

(Fobs(h) – Fcalc(h))2. One can linearize Fcalc in a power series, di√erentiate Fcalc

with respect to model parameters (like atomic coordinates), and then set the

derivatives to zero. This gives a set of normal equations that contain terms such as

the following:

��Fcalc

�uj
�quj

where quj is a shift in the x or y or z coordinate of an atom.

The math of minimizing R is now identical with that of finding the best line
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through a set of points. One recovers shifts quj for all the coordinates, and these

are added to the existing coordinates to provide updated, improved positions.

Because the linearization of Fcalc is quite inaccurate, the calculated shifts quj are

not completely accurate, and one has to repeat the refinement protocol many

times, each time using the updated coordinates for the expansion of Fcalc, until the

process converges and R is minimized.

MAD An acronym for multiple wavelength anomalous di√raction

Miller indices Integer indices h, k, and l, used to identify families of Bragg planes. The

(h,k,l) family of planes divides the unit cell vector a into h equal parts, the unit

cell vector b into k equal parts, and the unit cell vector c into l equal parts.

MIR An acronym for multiple isomorphous replacement. See isomorphous replace-

ment.

MIRAS A method of phase determination combining multiple isomorphous replace-

ment and anomalous scattering.

Mirror plane A symmetry element in a crystal that relates two structures by a mirror

operation. For example, if the z axis is normal to the mirror plane, then the

equivalent positions generated by the mirror are x, y, z and x, y,–z.

Molecular replacement A method of phase determination that does not require

heavy atoms or anomalous scattering. It is useful only when the structure of the

molecule of interest is similar to that of a reference molecule of known structure.

Molecular replacement works by creating a model of the unit cell of the crystal of

interest in which the reference molecule appears in the same position and orien-

tation as the molecule of interest. This model can then be refined. Placing a

molecule of known structure in a unit cell requires six numbers: three coordi-

nates for the center of mass and three angles to specify the orientation. Molecular

replacement finds these six numbers using two successive three-dimensional

searches. First the rotation function determines the molecule’s orientation in the

unit cell; then the translation function fixes its position.

Multiple isomorphous replacement See isomorphous replacement.

Multiple wavelength anomalous di√raction (MAD) A method of phase determina-

tion using anomalous scatterers that are present in the crystal. The current favor-

ite anomalous scatterer is selenium (Se), which is biosynthetically introduced

into the protein in the form of selenomethionine. Data from a crystal containing

an anomalous scatterer are usually collected at at least three wavelengths: one

remote from the absorption edge and two others at points within the absorption

region precisely chosen to maximize signal. Within each of the three data sets

Friedel’s law is violated, so that F(h) * F(–h). In addition, the values of F(h)
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vary among these three experiments because of the variation in f % and f & with

wavelength (see anomalous scattering). In a MAD experiment the positions of the

anomalous scattering atoms are first located by direct methods or from an anom-

alous di√erence Patterson map. Then, using methods analogous to those in MIR,

phases can be found. Heuristically, the three data sets in MAD are analogous to

the native and two derivative data sets collected in MIR. The signal in this method

is very weak and careful data collection is required.

Noncentric reflections Reflections whose phases are not constrained to be either 0\ or

180\. See centric reflections. Most reflections from protein crystals are noncentric.

Noncrystallographic symmetry Symmetry that occurs within the asymmetric unit,

but which is not displayed by the crystal as a whole. A good example can be seen

in crystals of icosahedral virus particles. These viruses possess fivefold axes of

symmetry, but fivefold symmetry is not allowed in crystal lattices. Hence fivefold

symmetry exists locally within the envelope of each virus, but not globally

throughout the crystal.

Normal equations and matrix In least-squares refinement there is one equation for

each independent reflection. A typical equation for reflection j can be sche-

matized as

Fobs(hj)–Fcalc(hj)=qF = … +
�Fcalc

�um

qum + …

where qum is the desired shift in an atomic coordinate. In general, the number of

reflections Nr is larger than the number of coordinate parameters Np. The family

of equations can be summarized schematically as






qF1

�
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
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

If we collect all the qF’s and all the qu’s as column vectors then this family of

equations can be written in matrix form as qF = M§qu where M is a nonsquare

matrix containing the partial derivatives shown in the brackets above. Families of

linear equations are much more readily handled when the matrix is square. If we

multiply both sides of the above equation by M T, the transpose of M, we get

M T§qF = M T§M§qu = Nqu

This modified set of equations is called the normal equations, and the matrix

N is called the normal matrix. The elements of N contain products of pairs of the

partial derivatives shown above.
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OMIT map An electron density map calculated to reduce the bias introduced by

phases calculated from the model. OMIT maps are often made to examine a

troublesome region in the normal map. OMIT maps are generated by using

observed amplitudes and phases calculated from that part of the model that is

outside the region being examined. In other words, the region of interest is

omitted from the phase calculation. In composite OMIT maps the unit cell is

divided into blocks, and an OMIT map is calculated separately for each block.

The block OMIT maps are then plotted together to give a composite map of the

whole unit cell.

Oscillation camera A data collection device that oscillates a crystal back and forth

through a small angle while data are being collected.

Patterson function A Fourier synthesis of the form

P(u) =
1

V �
h

I(h)cos(2ph § u)

The Patterson is defined in the same unit cell as the electron density function.

However, the phases in the Patterson function are all set to zero. The Patterson

coe≈cient uses the intensity I instead of the structure factor amplitude F. Peaks in

the Patterson function correspond to interatomic vectors in the structure. A peak

will occur at position u if there are two atoms with positions x and x%, such that x

– x% = u. The Patterson function is useful in determining heavy atom structures.

Phase combination See combination of phase information.

Phase extension A method of extending knowledge of phases to higher resolution.

Frequently experimental methods of phase determination (e.g., MIR) become

ine√ective beyond a certain resolution, even though the di√raction pattern ex-

tends farther. For example, lack of isomorphism or poor di√raction from deriva-

tive crystals might cause MIR phases to be useful only to 3 Å, even though the

native crystals di√ract to 2 Å. Methods such as density modification and symme-

try averaging can be used to extend the phases to the limit of di√raction.

Phase problem To create an electron density map we need both the amplitude and the

phase angle of the structure factor F. However, we can obtain only the amplitude

experimentally; the phase cannot be directly measured.

Phase refinement The methods used in phase extension can also be used to improve

estimated phases.

Phasing power A statistic used to show the size of the heavy atom or anomalous

scattering contribution compared with the errors in measurement.

The isomorphous phasing power is:
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













1/2

where�
hkl

qF 2
PH = �

hkl

�FPH–obs – FPH–calc � 2

�
hkl

F 2
H–calc

�
hkl

qF 2
PH

For anomalous scatterers two phasing power statistics are used. The anomalous

phasing power is:
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where qF+/– is the structure factor amplitude di√erence between Bijvoet pairs,

and FH-imag is the imaginary part of the calculated structure factor contribution

from the anomalously scattering atoms.

The dispersive phasing power is


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�qF+/–
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where qF+/– is the structure factor amplitude di√erence between Bijvoet pairs,

and FH-real is the real part of the calculated structure factor contribution from the

anomalously scattering atoms.

R value or R index A statistic that measures agreement between observed and calcu-

lated structure factors. If Fobs and Fcalc are the observed and calculated structure

factor amplitudes then

�
h

∆Fobs – Fcalc∆

R = �
h

Fobs

R is sometimes also defined for intensities instead of amplitudes. For protein

crystals a value of R less than .20 is considered quite good.

Radiation damage Degradation of a crystal from the energy deposited in it by the

X-ray beam. Cooling crystals to very low temperatures (&100K) reduces radia-

tion damage.

Ramachandran plot A plot showing the allowed values of the polypeptide backbone
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torsion angles f and c. Certain regions of this plot are forbidden because they

result in van der Waals crashes. In a well-refined structure almost all amino acids

should have f- and c-values in the allowed ranges.

RCullis (ano) A statistic that indicates the agreement between observed and calculated

Bijvoet pair di√erences.

�
h

« qF†PH–obs ∆ – ∆ qF†PH–calc «

RCullis(ano) = �
h

∆qF†PH–obs ∆

qF†PH-obs is the amplitude of the structure factor di√erence between Bijvoet pair

members;

qF†PH–calc = 2
f &

f %
FH sin(aPH – aH).

RCullis (iso) A statistic defined for centric reflections only that indicates the quality of

the phases determined for these reflections.

�
h

« FPH†FP ∆ – FH–calc ∆

RCullis(iso) = �
h

∆FPH † FP ∆

Here the + or – signs are chosen for each reflection so that the structure equa-

tion FP + FH = FPH is most nearly satisfied.

RCullis (l) A statistic that indicates how well dispersive e√ects in anomalous scattering

are accounted for by the model.

�
h

« FP (lj) – FP (l0) ∆ – Fcalc (lj) ∆

RCullis(l) = �
h

∆FP (lj) – FP (l0) ∆

where

Fcalc(lj) = �
anomalous
scatterers

(f % (lj) + if & (lj))exp(2pihxk)

Here FP(lj) and FP(l0) are structure factors at an anomalous and remote wave-

length, respectively.

Reciprocal lattice An imaginary geometric construct designed to aid in visualizing

di√raction. A lattice is defined in reciprocal space in which each Bragg reflection

hkl from a crystal is represented by a lattice point. The unit cell vectors of the

reciprocal lattice are conventionally called a*, b*, c*. In an orthogonal lattice a*
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is defined as being parallel to a, with ∆a*∆ = 1/ ∆a ∆. b* and c* are defined sim-

ilarly; hence, the name reciprocal lattice. (For nonorthogonal lattices the relation-

ships between the real and reciprocal space vectors are slightly more complex).

Reciprocal space A space or coordinate system in which the three-dimensional di-

√raction pattern of an object is defined: so-called because small distances in

direct space correspond to large distances in reciprocal space, and vice versa.

Reciprocal space is the space in which the Fourier transform of the object is

expressed. When the object is moved, reciprocal space moves with it. For any one

orientation of the object only a subset of points in reciprocal space can be seen in

a di√raction experiment. See Ewald’s sphere.

Refinement A mathematical method for systematically improving the values of pa-

rameters, such as atomic positions, known approximately from an initial model.

See least-squares refinement and simulated annealing.

Reflection See Bragg reflection

Resolution A descriptor of an X-ray data set, specifying the smallest value of the

Bragg spacing d for which data are present (confusingly, in crystallographic

parlance, ‘‘high resolution’’ corresponds to small values of d). Equivalently, the

period of the shortest wavelength Fourier components used in synthesizing the

electron density function.

Restraints, Restrained refinement Mathematical terms used in refinement that re-

strict the model parameters to lie within reasonable ranges. For example, if b0 is

the known average length of a certain type of chemical bond, and if the bj values

are the lengths of the various bonds of this type in a model, then including a term

w(bj – b0)2 in least-squares minimization will tend to keep the individual values

of bj near the canonical b0 value. Without restraints, parameters can drift to

unreasonable values during refinement, especially when the ratio of the number

of X-ray reflections to the number of model parameters is too low. Restraints can

be thought of as additional data points.

Rfree A variant of the R index that is useful in detecting biases introduced by refine-

ment.

�
subset of h

∆ Fobs – Fcalc ∆

Rfree = �
subset of h

Fobs

Here the subset of h represents a randomly chosen set of reflections, comprising

5–10% of the whole set, that are omitted from the refinement process. In the

ideal case the refined model would predict Fcalc in the omitted and refinement sets
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equally well: Rfree would equal R. In a case of extreme overrefinement, in which

much noise was fit, the refined model would predict Fcalc for the omitted set much

more poorly than for the refinement set. In practice one hopes to see (Rfree – R)

[ 0.05–0.1.

Rigid body refinement Refinement in which only the position and orientation of a

molecule or domain are varied.

RKraut (ano) A statistic used in anomalous scattering to indicate how well the model

accounts for the Bijvoet di√erences.

�
h

∆ F+PH–obs – F+PH–calc ∆ + ∆ F–PH–obs – F–PH–calc ∆

RKraut(ano) = �
h

∆F+PH–obs + F–PH–obs ∆

RKraut (iso) A statistic used in isomorphous replacement to evaluate the refinement of

heavy atom parameters.

�
h

∆ FPH – ∆ FP + FH–calc «

RKraut(iso) = �
h

∆FPH ∆

Rmerge A statistic used to indicate the quality of X-ray data. Rmerge reflects the internal

consistency of a data set: Do multiple observations of the same quantity (or

quantities related by crystal symmetry) agree? If there are N observations of a

given reflection, then

�
h

N�
j=1

∆ FM (h) – Fj (h) ∆

Rmerge =

N �
h

FM (h)

where FM is the mean value of the structure factor amplitude, and the Fj are the

individual measurements of the same structure factor.

Rossmann and Blow Michael Rossmann and David Blow introduced the rotation

function into protein crystallography.

Rotation camera A data collection device that rotates a crystal through a small angle

while data are being collected.

Rotation function A rotational search procedure that reveals noncrystallographic

symmetry within a crystal or that determines the orientation of a known mole-

cule or fragment in a target crystal (see molecular replacement.) The rotation

function seeks large overlap between two Patterson functions as a function of



Glossary 127

their relative orientation. Equivalently, comparison of di√raction patterns can

be used.

Scale factor A factor by which one multiplies calculated structure factors Fcalc to scale

them to the observed F values. Similarly for intensities.

Selenomethionine A homolog of the amino acid methionine containing a selenium

atom in place of the native sulfur.

Self-rotation function A rotation function comparing a Patterson function with itself.

Used to reveal noncrystallographic symmetry.

Self-vector A Patterson vector running between atoms in a single molecule.

Shake-and-Bake (SnB) A direct-methods algorithm for phase determination. SnB

combines density modification in direct space (shaking) with refinement of trip-

let phases in reciprocal space (baking). SnB has been successful in solving the

structures of sets of anomalous scatterers containing many atoms. It has also been

used in a few cases for small proteins, when very-high-resolution di√raction is

available.

Sigma A (sA) map A more sophisticated version of Sim weighting, in which errors in

the known part of the structure are taken into account. So named because the

factor sigma A (see sigma A plot) occurs in the weights.

Sigma A (sA) plot A graphical method of estimating the coordinate error in a refined

model. Sigma A (sA) is a statistic that is proportional to the fraction of the

structure actually included in the model, and also to a temperature factor-like

quantity. Plots of ln(sA) vs. sin2 u/l2 have linear segments whose slope is related

to the mean square coordinate error.

Sim weighting A weighting scheme to improve interpretability of electron density

syntheses—for example omit maps—in which the phases are obtained from a

partial structure. The method is based on a detailed error analysis.

Simulated annealing A method of structure refinement in which motions of protein

atoms at high temperature are simulated in the computer. The motions are

governed by Newton’s laws, but are restrained by requiring that the R index

between the moving molecule and the observed data stay small. As the molecule

cools (is annealed) in the computer, it can settle down into new configurations

that eliminate errors made in building the model. In other words, the model’s

thermal motion allows it to surmount some local minima. See the text for a fuller

description.

SIR Single isomorphous replacement. Use of a single heavy atom derivative to deter-

mine phases.

SIRAS Single isomorphous replacement + anomalous scattering. Use of a single
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heavy atom derivative, such as mercury, plus its anomalous scattering to deter-

mine phases.

Space group A set of symmetry operations that defines the symmetry of a crystal;

there are 230 possible space groups. Allowed symmetry operations include rota-

tions (e.g., twofold axis), inversion operations (e.g., mirror plane), and transla-

tions. Combinations of such elements are also possible; a rotation plus a transla-

tion gives a screw axis. Only the 65 space groups that do not contain an inversion

operation are possible for biological macromolecules (because they contain only

one stereoisomer).

Spherical polar angles A scheme for representing rotations based on the idea that any

arbitrary rotation can be accomplished by a spin about a single, properly chosen

axis. In a common convention the angles f and c represent the longitude and

colatitude of the rotation axis, and the angle k gives the spin around it.

Standard deviation Square root of the variance.

Structure factor The total scattering of radiation by a set of scatterers, often atoms. In

crystals the structure factor is given by F(S) = 

j

fj exp(2pix j §S) where fj is the

scattering factor for the jth atom at position xj. S is known as the scattering vector

and defines the direction of the scattered radiation. For a crystal the Bragg’s law

condition means that F(S) = 0 unless S = h, where h is a reciprocal lattice vector.

Symmetry averaging A form of density modification in which the electron density is

averaged to enforce local (noncrystallographic) symmetry. For example, it is

common to average the electron density of virus particles about their fivefold

axes.

Symmetry operation A transformation, such as rotation, that superimposes a mole-

cule within the crystal upon an identical copy of itself.

Symmetry-related reflections Set of two or more reflections related by symmetry

within the di√raction pattern. The structure factor amplitudes of symmetry-

related reflections are always equal, but the phases may display simple di√erences.

For example, in the space group P2 the structure factor amplitudes F(h,k,l) and

F(h,–k,l) are equal.

Synchrotron radiation Synchrotron radiation sources produce brilliant, highly colli-

mated X-ray beams containing a ‘‘white’’ frequency spectrum. A synchrotron is a

large facility in which highly energetic (Gev) electrons circulate in a polygonal

ring. At the vertices of the ring, bending magnets change the direction of the

electrons’ path, accelerating them in the process. Synchrotron radiation is emitted

by the electrons as they undergo this acceleration. Synchrotron radiation is gener-

ally focused and monochromatized to provide a beam with a tiny cross section
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and the desired wavelength. Ready access to synchrotron radiation has been

essential for the explosive growth in MAD phasing.

Temperature factor See B factor.

Thermal motion The random displacement of atomic centers from their mean posi-

tions arising from the thermal energy of the atom. See B factor.

Translation function A step in the molecular replacement method in which the posi-

tion of the reference molecule in the unit cell of the target crystal is determined.

Triplet relation A key relation in direct methods stating that if the reflections Eh, Ek,

and Eh–k are all strong, then their phases are related by the expression fh � fk +

fh–k. This relation becomes progressively weaker as the number of reflections in

the data set increases.

Undulator A type of insertion device producing X rays whose wavelengths are con-

fined to particular wavelengths. It consists of a periodic magnetic dipole structure

through which electrons pass. The electrons undergo oscillations and radiate.

This device is related to a free-electron laser.

Unit cell The building block of a crystal which, when repeated by pure translations,

can generate the entire crystal. The unit cell is a parallelepiped whose edges are

defined by three non-coplanar vectors conventionally called a, b, c. Unit cells

within the crystal are separated by an integral number of steps in these vectors.

van der Waals force A weak force existing between nearby nonbonded atoms. The

repulsive van der Waals force arises from the Pauli exclusion principle and resists

atoms being pushed too close together; this is often modeled as being propor-

tional to (1/R 12) where R is the center-to-center separation of two atoms. The

attractive part of the force arises from dipole–dipole interactions, in which quan-

tum mechanical fluctuations in the electron cloud around one atom induce a

transient dipole in a neighboring atom. Often modeled as proportional to

–(1/R 6).

Vapor di√usion See hanging drop method.

Variance A measure of the dispersion around the mean of independent measure-

ments of a quantity. If xi are the n measurements of a random variable with mean

[x], the variance v is given by

v =
1

n–1

n�
1

(xj – »x…)2

Weighting factor A multiplicative factor used in refinement and statistical analyses

that emphasizes terms that are known with high confidence. Often equal to

(1/variance) of the measurement involved.

Wiggler In synchrotrons, an insertion device similar to an undulator, but producing a



130 Glossary

white, rather than a linelike, spectrum. Wigglers contain fewer dipole elements

than an undulator.

Wilson plot A plot that allows one to determine the e√ective overall temperature factor

for a di√raction data set. It is based on the relation Iobs = Icalc exp(–2B sin2 u/l2).

If one averages over all the reflections in a fairly thin spherical shell in reciprocal

space, one can rewrite the equation above for each shell as

1n













= ln (constant) –
2Bsin2 ushell

l2

»I(h)…shell

in shell�
h

f 2
j

A plot of ln([I(h)]/wf 2) versus sin2ushell/l2 should therefore give a straight line.

B can be obtained from the slope of this line.
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Page numbers followed by an f indicate figures.

absolute handedness, 78–79, 113

absorption edge, 62–63

amino acids of proteins, 69

angles: Eulerian, 92, 116–117; Lattman,

119; spherical polar, 93–94, 94f, 128

annealing, simulated, 110, 127

anomalous phasing power, 123

anomalous scattering: choices of origin

and, 81; defined, 113; vs. normal, 62–

68; vector triangle associated with, 

65f

aspartate side chains, 57

asymmetric unit, 14f, 113

atomic models, for electron density maps,

9–11, 68–70

atomic scattering factors, 49, 50f

axes: fivefold, of symmetry, 96; of recipro-

cal lattice, 117; twofold rotation, 99

ball-and-stick representation, 11f, 68

Bernal, John D., 55

B factor, 113, 115, 129, 130

Bijvoet, Johannes, 79

Bijvoet pair, 113–114

Blow, David, 90, 95, 126

Bragg peaks, 48

Bragg plane families, 37–40, 38f

Bragg reflections, 114, 117. See also

reflections

Bragg’s law, 25, 26f, 39f, 48, 114

Bragg spacing, 37

calculated structure factor, 106

camera: oscillation, 122; rotation, 126

centric reflections, 114

centrosymmetric, 114

chiral volume, 114

circular waves, emanating from two

sources, 2f

combination of phase information, 114, 122

complex conjugate of C, 34, 98

complex numbers, 34, 35f

Corey, Robert, 79

cosine grating, 26f, 27, 31

cosine waves, 23f, 27, 30f

cross Patterson function, 99

crystal lattices: axes in, 96; reciprocal, 117,

124–125; types of, 15

crystallography, 6–7

crystals: advantages of use of, 5–6; asym-

metric unit, 14f; equivalent positions,

78; lattice types, 15; Miller indices, 37–

38; native, 56, 80; size and shape of, 12,

13f; solvent volume in, 12; space groups

of, 15; symmetry in, 12–15, 14f; three-

dimensional, 37–53; X-ray di√raction

pattern of, 20f

cubic lattices, 15

cysteine side chains, 56

data collection: experimental errors in,

105; in isomorphous replacement

method, 56
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Debye-Waller factor, 53, 113, 115

density modification: defined, 115; histo-

gram matching, 118; symmetry averag-

ing, 128

dependent variables, 103

di√erence electron density map, 84, 115

di√erence Fourier maps, 83–87; binding

of inhibitor to enzyme in, 86f; defined,

115; peaks in, 115; reference and target

di√raction in, 85f; in structure determi-

nation of protein:ligand complex, 87

di√erence Patterson function, 78, 79f

di√erence Patterson maps, 115

di√raction, 19; intensity of, 98; nonzero,

48; from one-dimensional crystals, 25–

29; from three-dimensional crystals,

37–53; from two adjacent holes, 24f. See

also scattering

di√raction gratings, 25

di√raction pattern: adding di√racted

waves to generate, 22–25, 23f; Bragg’s

law and, 26f; calculating from a known

structure, 49–53; defined, 3, 19; e√ect

of moving an object on phase of, 28f;

e√ect of resolution on image quality,

43f; first, 1; Laue method in recording,

119; of protein crystal, 20f; questions

concerning, 19–20; reconstructing

images from, 29–35; rotating molecule

on, 87–88, 89f; of single and multiple

objects, 46f; thermal motion e√ect on,

51–52; typical, 5, 6f

dimer, 96

direct methods: defined, 115–116; shake-

and-bake, 127; triplet relation, 129

dispersive di√erence, 116

dispersive phasing power, 123

dot product, 72

d spacing, 37

dual space methods, 116

e ix, 33–34

electric field, 22

electron density function: of cosine fluc-

tuations, 42–43, 43f; defined, 6, 116; vs.

Patterson function, 72–76; peaks in, 73;

in three dimensions, 37–49 

electron density map: defined, 116; density

modification method and, 115; di√er-

ence, 84; failure of protein portions to

be seen in, 10; fitting to atomic model,

9, 68–70; OMIT map, 122; resolution

of, 45, 69; visualizing, 7

electrons: free, 62, 113; light in accelera-

tion of, 22

EM grid, 20, 21f

enzyme, binding to inhibitor, in di√erence

Fourier map, 86f

equivalent positions, in Patterson func-

tion, 78

error analysis, 116

error estimation. See refinement

Eulerian angles, 92, 116–117

Euler’s rotation theorem, 91–93

Ewald’s sphere, 117, 119

fibers, as di√raction specimens, 16

figure of merit, for reflection, 61, 117

fitting the map, 9, 68–70

fivefold axes of symmetry, 96

fivefold symmetry, 13

Fourier analysis, 31

Fourier integral, 48

Fourier maps, di√erence. See di√erence

Fourier maps

Fourier series, 33, 99

fractional coordinates, 42, 117

Fred’s Folly, 70

free electrons, 62, 113

free R value, 111, 117

Friedel pair, 117

Friedel’s law: breakdown of, 65f; defined,

64, 117

Friedrich, Walter, 1

Gaussian model, 105

global minimum, 109

glutamate side chains, 57
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gratings, 25; cosine, 26f, 27; square wave,

29, 30f, 32f

hanging drop method, 117, 129

Harker, David, 55

Harker sections, 80, 117–118

heavy atom derivatives, 56–61, 57f, 80

heavy atom refinement, 118

heavy atoms, 118

histidine side chains, 56

histogram matching, 115, 118

Hodgkin, Dorothy, 55

Huygens principle, 118

independent variables. See Miller indices

inhibitor, binding to enzyme, in di√erence

Fournier map, 86f

insertion device: defined, 118; undulator,

129; wiggler, 129–130

intensity, defined, 118

inversion symmetry, 13–14

isocontours, 7

isomorphous di√erence, 58; MAD phas-

ing, 61–68

isomorphous di√erence Patterson func-

tion, 78, 79f

isomorphous phasing power, 122–123

isomorphous replacement: defined, 56,

118–119; multiple, 55–61; phase mea-

surement in, 55–61; steps in, 55–56

Knipping, Paul, 1

laser di√raction, 21f

lattices: axes in, 96; Lattman angles, 119;

Laue method, 119; reciprocal, 117, 124–

125; types of, 15

least-squares refinement, 103–111, 118,

119–120

light: behavior of, 22; in electron accelera-

tion, 22; imaging experiment with, 4f;

photons and, 3

light microscopy, vs. X-ray crystallogra-

phy, 1–2

line fitting, 103–104

local minima, in refinement, 109–110,

109f

local symmetry, 96

map. See electron density map

maximum likelihood statistical methods,

106

Miller indices, 37–38, 103, 120

mirror plane, 120

mirror symmetry, 13–14

model, 102

molecular replacement, 87–90, 88f;

defined, 120; failure of, 100; rotational

searches in, 91–98; six-dimensional

searches in, 90; translational searches in,

98–100

molecules: absolute handedness of, 78–79;

atomic structure of, 7; pose of, 87; refer-

ence, 83, 85f, 87–90; rotating on its

di√raction pattern, 87–88, 89f; target,

83, 85f.

multiple isomorphous replacement

(MIR), 55–61; choices of origin in, 80;

error analysis in, 116

multiple-wavelength anomalous disper-

sion (MAD) method, 55, 61–68; anom-

alous vs. normal scattering in, 62–68;

defined, 120–121; phase circle con-

struction for, 66f

native crystal, 56, 80

N atoms, 50

noncentric reflections, 121

noncrystalline specimens, 15–17

noncrystallographic symmetry, 96, 115,

121

nonzero di√raction, 48

normal equations, 121

Nucleic Acid Database, 11

object: making a di√raction pattern from,

49–53; rotating upon its di√raction pat-

tern, 87–88, 89f. See also molecules



134 Index

OMIT map, 122

one-dimensional crystals, di√raction from,

25–29

oscillation camera, 122

osmium, 63f

pair correlation function, 76

Patterson, A. L., 72

Patterson function, 59; building from

atomic positions, 74f; cross, 99; defined,

72, 122; vs. electron density function,

72–76; Harker section in, 80, 117–118;

isomorphous di√erence, 78, 79f; in

locating atoms, 76–81; peaks in, 73, 75f,

76, 77f, 91; rotational searches and, 91–

98; self-rotation function and, 96; trans-

lational searches and, 99; vectors in, 91

Pauli exclusion principle, 129

Pauling, Linus, 79

Perutz, Max, 55

phase changes, 28

phase circle construction, 60f, 66f, 80

phase combination, 114

phase di√erence, 23, 25

phase extension, 122

phase information, combination of, 114

phase measurement, 55–61

phase problem, 5, 42, 122

phase refinement, 122

phasing power, 122–123

phasing techniques: electron density maps

and, 68; multiple isomorphous re-

placement (MIR), 55–61; multiple-

wavelength anomalous dispersion

(MAD), 61–68; single isomorphous

replacement with anomalous scattering

(SIRAS), 68

photons, 3

polar angles, spherical, 93–94, 94f, 128

pose, 87

protein crystals. See crystals

Protein Data Bank, 10–11

quasiorthogonal Euler angles, 94

radiation damage, 123

Ramachandran plot, 123–124

RCullis, 124

reciprocal lattice, 117, 124–125

reciprocal space, 116, 125

reference molecule, 83; di√raction of, and

target di√raction, 85f; molecular

replacement in positioning, 87–90

refinement, 84; changes occurring in, 102,

103f; defined, 10, 102, 125; heavy atom,

118; least-square, 103–111, 118, 119–

120; local minima in, 109–110, 109f;

requirements for, 103–104; restrained,

125; rigid body, 126

reflections: +1 and –1, 27; Bijvoet pair,

113–114; Bragg, 114; centric, 114;

defined, 5; figure of merit for, 61; fluctua-

tions in intensity of, 45; measurement of

intensity of, 34; noncentric, 121;

symmetry-related, 128; zero-order, 25, 27

resolution: atomic scattering factor as

function of, 50f; defined, 3, 125; e√ect

of, on image quality, 43f; of the map, 45;

number of terms in determining, 34;

wavelength’s e√ect on, 2f, 3

restrained refinements, 125

Rfree, 125–126

ribbon diagrams, 11f

Richards, Frederic, 70

Richards box, 70

rigid body refinement, 126

RKraut, 126

Rmerge, 126

Rossman, Michael, 90, 95, 126

rotational searches, 91–98

rotational symmetry, 13

rotation camera, 126

rotation function, 95–96; defined, 91, 120,

126–127; goal of, 91–92

R value or index; defined, 10, 123; free,

111, 117

sampling e√ect, 88

scalar product, 72
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scale factor, 127

scattering, anomalous: choices of origin

and, 81; defined, 113; vs. normal, 62–

68; vector triangle associated with, 65f.

See also di√raction

searches, in molecular replacement: rota-

tional, 91–98; six-dimensional, 90;

translational, 98–100

selenium, 64

selenomethionine, 64, 127

self-rotation function, 96–98, 97f, 127

self-vector, 127

sevenfold symmetry, 13

shake-and bake (SnB) method, 127

side chains, 56–57, 69

sigma A plot, 127

simulated annealing, 110, 127

Sim weighting, 127

single isomorphous replacement (SIR),

127

single isomorphous replacement with

anomalous scattering (SIRAS), 68, 127–

128

six-dimensional searches, 90

solution scattering experiments, 16–17

solvent flattening, 115

space groups, 15, 128

spherical polar angles, 93–94, 94f, 128

square wave grating, 29, 30f, 32f

standard deviation, 128

static disorder, 53

statistical methods, 106, 124

stereo viewing, 8

structure factor, 50, 87, 98, 128

structure factor equation, 50, 58, 73,

103, 107

surface representation of molecule, 11f

symmetry, 222, 14f; fivefold, 13; five-

fold axes of, 96; inversion, 13–14;

local, 96; mirror, 13–14; non-

crystallographic, 96, 115, 121; in pro-

tein crystals, 12–15; rotational, 13;

translations, 14

symmetry averaging, 128

symmetry operation, 128

symmetry-related reflections, 128

synchrotron radiation, 128–129

synchrotrons, 119

target molecule, 83, 85f

Taylor series, 107

temperature factor, 113, 115, 129, 130

tetragonal lattices, 15

thermal motion: defined, 129; e√ect on

di√raction pattern of, 51–52; simulated

annealing of, 110

three-dimensional cosine density fluctua-

tion, 37–49

three-dimensional crystals, 37–53

three-dimensional vision, 8

tobacco mosaic virus, 16

torsion angles, 69

translational searches, 98–100

translation function, 98–100, 129

translations, 14

triclinic lattices, 15

triplet phases, refinement of, 127

triplet relation, 129, 222; symmetry, 14f

undulator, 129

unit cells, 12, 14f; choosing origin of, 80;

defined, 129; of Patterson function, 74f;

shape of, 15

van der Waals crashes, 124

van der Waals force, 129

vapor di√usion. See hanging drop method

vector notation, 42, 51

vectors: anomalous scattering and, 65f; in

Patterson function, 91; self-, 127

vision, three-dimensional, 8

wavelength of X-ray: e√ect on atom’s

di√raction properties, 62; e√ect on reso-

lution, 2f; in light microscopy, 2–3; in

MAD method, 64

weather map, 7, 9f

weighting factor, 129
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wiggler, 129–130

Wilson plot, 130

X-ray crystallography: defined, 1; vs. light

microscopy, 1–2; steps in, 12; use of

crystals in, 5

X-ray force, 110

X rays: in imaging process, 3–5, 4f; inten-

sity of, 118; wavelength of, 2–3

zero-order reflections, 25, 27

zeroth orders, 27f
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